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Foreword

Today, software is being used virtually everywhere in our society; in vehicles,
banking, commerce, media, industrial control systems, and health care, just to
mention a few. A large part of our infrastructure, including the communication
systems that interconnect people, machines, and devices, are built on and managed
through software. As our dependency on this infrastructure increases, so does the
need for assurance of the software; to ensure that the software is functioning as
intended, and that vulnerabilities are few and appropriately handled.

Assurance and verification of software are becoming essential, not only for IT
security, but for communication systems in large. The need for security, as well as
the means to verify security, will become even more emphasized with evolvements
toward 5G and Internet of things, which come with new requirements on networks
and services. Improved and proactive software assurance is also motivated by the
fact that security breaches in software systems keep appearing in spite of numerous
updates and patches.

Given the complexity and pervasiveness of today’s software systems, building
secure software is a challenging task, especially as security must be addressed
during all phases of the software engineering process rather than added as an
afterthought. In many cases, the security of software largely depends on developers’
awareness of security requirements. Therefore, to reduce the burden on developers,
there is a clear need for practical tools and methods for secure software
development.

A promising approach for early security hardening is to leverage prominent
modeling languages, such as the Unified Modeling Language (UML) for the
specification and strengthening of software security. Indeed, using UML for
developing secure software has a practical significance considering the fact that
UML is the de-facto standard for object-oriented modeling of software systems and
there exist many tools for UML modeling.

Because of the pervasive nature of security, adding security manually into a
UML design is tedious, may lead to the introduction of new security vulnerabilities,
and security components may become tangled and scattered throughout the whole
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design. Consequently, the resulting UML design model will most likely become
difficult to understand and maintain. In this respect, the aspect-oriented technology
emerged as an appealing approach for strengthening software security. This para-
digm, which has received considerable attention from researchers and industry,
allows a more advanced modularization by separating crosscutting concerns, such
as security, from the software functionalities.

This book contributes to methodical engineering of secure software-intensive
systems, by extending prominent modeling languages such as UML to address
security concerns throughout the development life cycle. Such measures, as well as
their extension, are vital in making software-intensive systems reliable, flexible, and
highly secure. These are properties necessary for software systems as we come to
depend on them as a natural part of our environment.

Stockholm, January 2015 Eva Fogelström
Director Security, Ericsson Research
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Preface

In the coming years, information technology will continue to transform the way we
think, work, communicate, and learn. The tremendous success of Internet-related
technologies (web services, voice over IP, mobile telephony, etc.) coupled with
advances both in hardware and software will invigorate the existing proliferation of
software intensive systems. This will allow for new services, applications, and
systems that will recede increasingly into the background of our lives. In this
setting, the secure engineering of such software-intensive systems becomes a major
concern. This is emphasized by the fact that security breaches of software systems
keep appearing at an alarming rate in spite of numerous updates and patches that are
constantly being issued.

Unfortunately, in many organizations, the emphasis on operational security
usually leads most investments to be directed to network security measures, such as
firewall, virtual private network, intrusion detection system, etc. However, in spite
of significant efforts on network security, the scale and severity of security breaches
have been increasing with no victory in sight in this arm race against attackers.
Recently, new efforts have emerged in extending the defense by rooting the security
in software itself. However, given the complexity and pervasiveness of today’s
software systems, building secure software is a challenging task. In most cases, the
security of software widely depends on developers’ awareness of security
requirements, which is unfortunately not always present. To reduce the burden on
developers, there is a clear need for practical tools and methods for secure software
development.

Very often security practices are added to existing software either as an after-
thought phase of the software development life cycle, or manually injected into
software code or UML models. However, this practice is no longer acceptable for
such an important aspect, especially with the increasing complexity and perva-
siveness of today’s software systems. Therefore, security must be addressed during
the early phases of the software engineering process. A promising approach to early
security hardening is to leverage prominent modeling languages, such as the
Unified Modeling Language (UML) for the specification, verification, and hard-
ening of software security. Indeed, using UML for secure software development
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would have more practical significance considering the fact that UML is the de-
facto standard for object-oriented modeling of software systems and there exist
many tools for UML modeling. In addition, UML supports standard extension
mechanisms that enable the language to be customized for different platforms or
domains.

Besides, because of the pervasive nature of security, adding security manually
into a UML design is tedious, may lead to additional security vulnerabilities, and
security components may become tangled and scattered throughout the whole
design. Consequently, the resulting UML design model will most likely become
difficult to understand and maintain. In this respect, the aspect-oriented technology
emerged as an appealing approach for security hardening. This paradigm has
received considerable attention from researchers and industrial practitioners alike. It
allows a more advanced modularization by separating crosscutting concerns, such
as security, from the software functionalities. Due to the increasing interest, the
aspect-oriented technology has stretched over earlier stages of the software
development life cycle. Aspect-Oriented Modeling (AOM) applies aspect-oriented
techniques to software models with the aim of modularizing crosscutting concerns.
It carries over the advantages of aspect-oriented programming to the modeling
level. Indeed, handling those concerns at the modeling level would significantly
help in alleviating the complexity of software models and facilitate reuse of existing
design models.

This book contributes to the secure engineering of software-intensive systems.
To this end, it extends current model-driven engineering paradigms and prominent
modeling languages, such as UML, to address security concerns throughout the
development life cycle. Moreover, it leverages the AOM paradigm for the speci-
fication and the systematic execution of security hardening practices on UML
models. In this regard, a UML profile has been developed for the specification of
security hardening aspects on UML diagrams. In addition, a weaving framework,
with the underlying theoretical foundations, has been elaborated for the systematic
injection of security aspects into UML models. The book will benefit researchers in
academia and industry as well as students in the field of software and systems
engineering. The reader will find, in this book, an overview of the research
advancements related to model-based software security hardening.

The book is organized as follows: Chapter 1 presents an introduction to software
security, model-driven engineering, UML, and aspect-oriented technologies.
Chapter 2 provides an overview of UML language. Chapter 3 describes the main
concepts of AOM. Chapter 4 explores the area of model-driven architecture with a
focus on model transformations. The main approaches that are adopted in the lit-
erature for security specification and hardening are presented in Chap. 5. Chapter 6
presents our AOM profile for security aspects specification. Afterwards, Chap. 7
details the design and implementation of the security weaving framework. In
addition, several real-life case studies are illustrated to demonstrate the relevance
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of the proposed framework for security hardening. Chapter 8 elaborates an opera-
tional semantics for the matching/weaving processes in activity diagrams. Moreover,
Chaps. 9 and 10 elaborate a denotational semantics for aspect matching and weaving
in executable models following a continuation-passing style. Finally, a summary and
evaluation of the presented work are presented in Chap. 11.

March 2015 Djedjiga Mouheb
Mourad Debbabi
Makan Pourzandi

Lingyu Wang
Mariam Nouh
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Chapter 1
Introduction

Software-intensive systems have become an inseparable part of our today’s lives. Our
dependence on software systems is very high in several sectors of our daily activi-
ties, such as, telecommunications, financial services, electronics, home appliances,
transportation, etc. At the same time, software complexity is increasing drastically.
Therefore, software systems become more susceptible to defects and vulnerabilities.
In fact, the statistics provided by the National Institute of Standards and Technology
(NIST) show that the amount of software security vulnerabilities, collected and ana-
lyzed from different sources, raises almost every year (Fig. 1.1).1 In this setting, the
security engineering of such software-intensive systems has become a major con-
cern. This is emphasized by the fact that, in spite of significant efforts on software
security from academia and industry, the scale and the severity of security breaches
have been increasing with no complete victory against attacks.

1.1 Motivations

Nowadays, software security hardening is generally conducted as an afterthought
phase of the software development life cycle, usually during the maintenance and
the deployment phases, by applying security updates and patches. In fact, security
mechanisms are usually fitted into pre-existing software without the consideration
of whether this would jeopardize the main functionality of the software and produce
additional vulnerabilities [142].However, given the complexity and the pervasiveness
of modern software systems, adding security mechanisms as an afterthought leads
to a huge cost in retrofitting security into the software and further can introduce
additional vulnerabilities. Studies have shown that considering security during the
early stages of the software development life cycle decreases significantly the cost
of the development [58, 99]. For example, a study conducted in [58] estimates that a
single security vulnerability costs around $7,000 if it is fixed during the testing phase

1 http://web.nvd.nist.gov/view/vuln/statistics.
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Fig. 1.1 NIST statistics: software vulnerabilities

Fig. 1.2 Cost of fixing vulnerabilities [58]

and can even reach $14,000 if the vulnerability is fixed at the maintenance phase.
However, this cost can be reduced to less than $500 if the vulnerability is repaired
during the design phase [58]. Given the large number of security vulnerabilities
that a software can contain, it is clear that fixing those vulnerabilities early saves a
substantial amount of money. As shown in Fig. 1.2, the cost can be reduced by $2.3M
for 200 vulnerabilities [58]. Another research suggests that if the cost of solving a
vulnerability in the design phase is $1, this cost will increase to $60–$100 to solve
the same vulnerability during later phases [99]. Furthermore, approximately 60%
of all vulnerabilities are usually introduced into software during the design phase
[38]. Therefore, security must be addressed during the early phases of the software
engineering process.

A promising approach to early security hardening is to adopt the emerging
Model-Driven Software Engineering (MDE) [51] paradigm and prominent mod-
eling languages, such as the Unified Modeling Language (UML) [152]. MDE is a
software development methodology that considers software modeling the primary
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focus of the development process. UML is the de facto standard language for software
specification and design. In addition, these paradigms are widely accepted by indus-
try and academia due to their expressiveness, easiness, and tool support.

Furthermore, security is a crosscutting concern that pervades the entire software.
Indeed, a security solution is not confined to one element in the software design
but may impact several elements. Moreover, one element of the design can integrate
several security solutions fixing different security vulnerabilities. Therefore, if the
developers add security solutionsmanually into a UMLdesign, security featuresmay
remain tangled and scattered throughout the whole UML design, especially in case
of large scale software (e.g., hundreds or thousands of classes). Consequently, the
resultingUMLdesignmodelsmay becomemore complex and difficult to understand.
Additionally, adding security manually is tedious and generally may lead to other
security flaws.

In this respect, Aspect-Oriented Programming (AOP) [114] is an appropriate
paradigm for security hardening. AOP has received considerable attention from
researchers and industrial practitioners alike. It allows a more advanced modu-
larization by separating crosscutting concerns, such as security, from the software
functionalities by introducing new modules, called aspects, that capture generally
one concern. The adoption of AOP techniques for developing secure software has
become the center of many research activities [35, 49, 56, 130, 141, 172, 199, 207].
This could be justified by the following observations: (i) Aspect-oriented techniques
allow security solutions to be carefully and precisely specified in isolation without
altering the logic of the software. (ii) Developers can systematically integrate the
security solutions into the software without digging into the inner working of those
solutions.

In this book, we aim at leveraging this technique to perform security hardening of
software at theUMLdesign level throughAspect-OrientedModeling (AOM) [31, 40,
182]. AOM allows software developers to conceptualize and express concerns in the
form of aspects at the modeling stage, and integrate them into their UML diagrams
using UML composition techniques. The concepts of AOM are similar to the ones
of AOP (pointcut-advice model), namely, adaptations, join points, and pointcuts. An
adaptation specifies the modification to be performed on the base model. A join point
is a location in the base model where an adaptation should be applied. A pointcut
is an expression that designates a set of join points. The process of identifying join
points is called matching and the process of composing aspects with base models is
called weaving.

Using AOM, security aspects can be precisely defined at UML design level, and
systematically injected, at the right places, into UML design models. However, in
spite of the increasing interest, to date, there is neither a standard language for
specifying UML aspects, nor a standard mechanism for weaving aspects into UML
design models. Accordingly, the primary objective of this book is to elaborate an
aspect-oriented modeling and weaving framework, with the underlying theoretical
foundations, for software security hardening at the UML design level.

Before presenting the proposed framework, we provide, in the following, an
overview of the core concepts that are involved in the field of model-based security
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hardening of software. We first recall some important concepts about software
security and themain security requirements. Then, we present an overview ofModel-
Driven Engineering (MDE) [51] and its main terms and concepts. Afterwards, we
provide the necessary background on modeling languages, focusing on the Unified
Modeling Language (UML) [152] since it is the de facto standard language for soft-
ware specification and design. Finally, we introduce the aspect-oriented paradigm,
with a focus on Aspect-Oriented Modeling (AOM) [31, 40, 182].

1.2 Software Security

Software security is the process of designing, building, and testing software, such that
it becomes resilient against attacks and threats. It gets to the heart of computer security
by identifying and expunging problems in the software itself [133]. Secure software
should be as vulnerability and defect free as possible. In addition, it should limit the
damage resulting from any failure and recover as quickly as possible from this failure.
Moreover, it should continue functioning correctly under malicious attacks [38]. In
the following, we briefly recall some important concepts and security requirements,
which will be considered in the course of this book.

• Security Policy: A security policy is a set of rules and guidelines that specify how to
achieve the needed security requirements for a system or an organization. It might
include rules for virus detection and prevention, granting and revoking access to
system resources, protecting critical information from unauthorized users, etc.

• Security Flaw: A security flaw is a defect in a program that can cause a system
to violate its security requirements. A software defect is the result of encoding
human errors into the software.

• Security Vulnerability: A security vulnerability is aweakness in a system that could
be exploited to violate the system’s security policy. It is the result of exploiting
a security flaw by an attacker. Examples of flaws that usually lead to vulnerabil-
ities include: memory management errors (e.g., buffer overflow [87]) and input
validation errors (e.g., format string, SQL injection, and cross-site scripting [86]).

• Attack: An attack or exploit is a technique that takes advantage of a security
vulnerability to violate a security policy.

• Security Hardening: Security hardening can be defined as any process, methodol-
ogy, product, or combination that is used to add security functionalities, remove
vulnerabilities, and/or prevent their exploitation in a software [140].

• Security Mechanism: A security mechanism is a software/hardware solution tar-
geting the enforcement of security policies. Examples of suchmechanisms include
access control mechanisms such as Role-Based Access Control [83].

Security requirements canbe classified into high-level and low-level requirements.
High-level security covers requirements such as, confidentiality, integrity, authenti-
cation, authorization, availability, etc. Low-level security deals with safety vulnera-
bilities that can be introduced in the software source code during the implementation
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phase. Those vulnerabilities depend on the platform and the programming language
used for the development of a software system. The most common low-level secu-
rity vulnerabilities include: buffer and integer overflows, format string errors, mem-
ory and file management errors, SQL and command injection, cross-site scripting,
directory traversal, clear and set interrupts, TOCTTOU (Time-of-Check-To-Time-
Of-Use) errors [46, 210], etc. Since we are dealing with security hardening at design
level, we are more interested in high-level security than low-level security. In the
following, we provide an overview of the main high-level security requirements that
are usually specified and verified on software.

• Confidentiality: The International Organization for Standardization (ISO) defines
confidentiality as “ensuring that information is accessible only to those authorized
to have access” [104]. Enforcing confidentiality is one of themain security services
provided bymany cryptographic protocols.Whenproperly enforced, it ensures that
the data that is sent between participants in a communication session reaches only
the intended receivers but unintended parties cannot determine what was sent.

• Integrity: It requires that data should not be accidentally or maliciously altered
or destroyed. In other words, the data received by the receiver should be exactly
the same as the data sent by the sender. The objective of integrity is to ensure
the correctness and the accuracy of data. Integrity can be compromised through
malicious altering, such as an attacker modifying a message in a communication
network, or accidental altering, such as a transmission error or a system crash.

• Authentication: The objective of an authentication requirement is to ensure that
users are who they claim to be. In other words, authentication provides assurance
that an entity is not pretending to have the identity of another entity without
being detected. To ensure the authentication property, a system must provide a
mechanism to verify the identity of its users before interacting with them.

• Authorization: It stipulates which user is allowed to access one or more resources
in a system. After a user is authenticated, the authorization process determines
whether that user has access to a specified resource. Legal users are granted
authorization to the required resources while illegal ones are denied access to the
resources. The authorization requirement prevents unauthorized users fromobtain-
ing access to inappropriate or confidential data. Authorization and authentication
are closely related because any meaningful authorization policy requires authen-
ticated users. Authorization requires that accessing critical information should be
controlled. Accordingly, different models of access control have been proposed.
The most knownmodels are Role-Based Access Control (RBAC) [83], Mandatory
Access Control (MAC) [45], and Discretionary Access Control (DAC) [144]:

– In the RBAC model, access decisions are based on the roles and the respon-
sibilities of users within an organization. Users and permissions to perform
operations on objects are assigned to roles.

– In theMACmodel, security levels (e.g., unclassified, confidential, secret and top
secret) are assigned to each object (classification) and each subject (clearance).
The permission for a subject to access an object depends on the relation between
the object’s classification and the subject’s clearance.
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– In theDACmodel, access restriction to objects is based on the identity of subjects
and/or groups to which they belong. In this model, every object has an owner
that controls the permissions to access the object. The owner of an object can
make decisions of who else in the system can access that object. In addition, the
owner is able to delegate his/her permissions to other users.

1.3 Model-Driven Engineering

Model-DrivenEngineering (MDE) [51] is a promising approach adopted for software
development. It aims to raise the level of abstraction in program specification by
consideringmodels as the primary focus of development.Oncedesigned, the software
model is used to direct all the different phases followed for development of the
software. These include code generation, verification and testing, maintenance, etc.
The main goal of MDE is to increase productivity by automating the development
process as much as possible. Moreover, it aims at maximizing compatibility between
systems by using standardized models and best practices in the application domain.
We start in this section by introducing the main concepts of MDE, which are used in
the course of this book.

• Model: It is an abstract representation of a specification, a design, or a system,
from a particular point of view [192]. A model usually focuses on a certain aspect
of the system and omits all other details.

• Executable model: It is a model that contains enough details that are required to
produce the desired functionality of a single problem domain.

• Modeling language: It is a specification language, generally defined by a syntax
and a semantics, for expressing models. It can be either graphical or textual. A
graphical modeling language uses diagrams to represent concepts and the relation-
ships between them. An example of such language is UML. A textual modeling
language uses reserved keywords associated with parameters. An example of such
language is Alf language [156] (Sect. 2.7.2).

• Meta-model: It is a model of a modeling language. It describes the structure,
the semantics, and the constraints for a modeling language. By analogy, a model
should conform to its meta-model as a program conforms to the grammar of a
particular programming language. A meta-model itself should be expressed in
some language, such as Meta-Object Facility (MOF) [151].

• Meta-Object Facility (MOF): It is an OMG standard language for defining meta-
models. It is also a meta-model and often called a meta-meta-model.

• Abstract syntax: It defines the concepts of a language and their relationships. It is
often defined using a meta-model.

• Concrete syntax: It defines how elements of a language should be formed. For
example, in the case of a graphical language, a concrete syntax defines the graphical
appearance of the language concepts and how they may be combined into a model.

http://dx.doi.org/10.1007/978-3-319-16106-8_2


1.3 Model-Driven Engineering 7

• Semantics: In the context of MDE, a semantics for a model describes the effect of
executing that model.

• Model transformation: It is the process of converting onemodel into anothermodel
of the same system based on some transformation rules [148]. More details about
this process are provided in Chap.4.

1.4 Unified Modeling Language

Nowadays, models appear constantly in our routine. Any person, even with no mod-
eling background, is used to read models representing, for example, driving direc-
tions, furniture assembling instructions, device safety procedures, etc. Models are an
appealing way of representing a system in many different fields. It is not a surprise
that modeling languages are becoming more and more important in software engi-
neering. Modeling abstracts a real system to a level where only the essential aspects
matter. It provides a means of understanding extremely complex software, as well as
it makes the communication among the development team much more efficient and
effective [198].

The Unified Modeling Language (UML) is a language and notation system used
to specify, construct, visualize, and document models of software systems. Before
UML, software developers used to have a collection of mismatched diagram tech-
niques, notation, and semantic approaches [125]. The creation of UML came as
a solution in order to have a unified notation and semantic model. UML covers a
wide range of applications and is suitable for technical (concurrent, distributed, time-
critical) systems and so-called commercial systems [205]. It is now used in many
different ways by people with very different backgrounds. Weilkiens and Oestereich
enumerate some interesting examples of professionals using UML [205]:

• Business planners, as a language to specify the planned operation of a business
process, perhaps in concert with a business process language such as the Business
Process Modeling Notation (BPMN) [145].

• Consumer device engineers, as a way to outline the requirements for an embedded
device and the way it is to be used by an end user.

• Software architects, as an overall design for a major stand-alone software product.
• IT professionals, as an agreed-on set of models to integrate existing applications.
• Database professionals, to manage the integration of databases into a data ware-
house, perhaps in concert with a data warehousing language such as the Common
Warehouse Metamodel (CWM) [146].

• Software developers, as a way to develop application that are flexible in the face
of changing business requirements and implementation infrastructure.

UML is now at version 2.4.1 [152]. A major update has been done at version 2.0
compared to version 1.x. The version 2.0 of UML improved behavioral modeling by
deriving all behavioral diagrams from a fundamental definition behavior, in contrast

http://dx.doi.org/10.1007/978-3-319-16106-8_4
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to UML 1.x, where different behavioral models were completely independent. It also
improved the relationship between structural and behavioral models. Now, UML
allows to designate that, for example, a state machine or sequence is the behavior of
a class or component. The new version of UML goes beyond the classes and objects
modeled by UML 1.x to add the capability to represent not only behavioral models,
but also architectural models, business processes and rules, as well as other models
used inmany different parts of computing and even non-computing disciplines [152].
Chapter2 is dedicated to the detailed presentation of UML, the main UML diagrams
and extension mechanisms.

1.5 Aspect-Oriented Paradigm

Aspect-orientation emerged as a paradigm that allows advanced modularization of
crosscutting concerns. A crosscutting concern is a concern that cannot be easily and
efficiently modularized into a single entity using object-oriented techniques. Thus,
such a concern remains scattered and tangled throughout various places in the appli-
cation. Scattering means that one concern is located in different modules whereas
tangling means that one module contains many concerns. These concerns may vary
depending on the application domain; they can be functional or non-functional, high-
level or low-level features. Security, logging, and synchronization are some examples
of such concerns. The objective of aspect-orientation is to encapsulate those concerns
that cross-cut an application into single units of modularization called aspects. Then,
define a mechanism to compose the different aspects into a coherent program.

The aspect-oriented paradigm originally emerged at the programming level. Var-
ious Aspect-Oriented Programming (AOP) [114] models were proposed to achieve
the aforementioned goals. The most important models are: Pointcut-Advice [131],
Multi-Dimensional Separation of Concerns [159], andAdaptive Programming [158].
In addition, many AOP languages have been developed, such as, AspectJ [113] and
HyperJ [160], built on top of the Java programming language, AspectC [61] and
AspectC++ [189], built on top of the C and C++ programming languages, etc. How-
ever, due to the rise of MDE, aspect-oriented techniques are no longer restricted to
the programming stage, but are increasingly adopted at prior stages of the software
development life cycle. In this context, Aspect-Oriented Modeling (AOM) aims at
applying AOP mechanisms at the modeling level, which encompasses requirements
engineering, analysis, and design stages [31].

An appropriateness analysis study of the different AOP models from a security
point of view has been conducted in [33]. As a result of this study, the pointcut-
advice model was identified as the most appropriate approach for security hardening.
Indeed, the pointcut-advice model allows capturing subtle points in the control flow
of applications that are important from a security point of view, such as method
calls, method executions, getting and setting of attributes, etc. In addition, security
behavior can be automatically injected at these points. The main concepts of the
pointcut-advice model are the following:

http://dx.doi.org/10.1007/978-3-319-16106-8_2
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• Aspect: An aspect is a unit of modularization that encapsulates a cross-cutting
concern of an application. Typically, an aspect contains a set of adaptations, spec-
ifying in what way a concern’s structure and behavior should be adapted, i.e.,
enhanced, replaced, or deleted [182].

• Advice and Introduction: Advice is a piece of code specifying how the behavior
of an application should be adapted at specific points. Whereas, an introduction
specifies how the structure of an application should be adapted. In AOM, we use
the term adaptation to refer to both structural and behavioral modifications.

• Join Point and Pointcut: A join point is an event during the execution of a program
such as a method call or a method execution. At the modeling level, a join point
represents a location in a model where an event happens, such as, a call message in
a sequence diagram or an action in an activity diagram. A pointcut is an expression
that designates a set of join points.

• Matching and Weaving: Matching is the process of selecting the join points that
satisfy a given pointcut expression.Whereas, weaving is the process of composing
aspects with the base modules. In other words, weaving is the process of applying
the aspect adaptations at the matched join points.

1.6 Outline

The remainder of this book is organized as follows:

• Chapter2 presents the necessary background on Unified Modeling Language
(UML). We discuss the benefits of using UML. Then, we present UML struc-
ture and its different views and concepts. Afterwards, we present an overview
of UML diagrams with examples of the most important ones. We also introduce
the main UML extension mechanisms, namely stereotypes, tagged values, and
constraints.

• Chapter3 is dedicated to presenting themain concepts anddefinitions in the domain
of AOP/AOM. We start by recalling the main AOP models. Then, we discuss the
appropriateness of these models from a security point of view. Afterwards, we
present the basic constructs of the pointcut-advicemodel since it is the one adopted
in this research. Finally, we introduce the main concepts of Aspect-OrientedMod-
eling (AOM).

• Chapter4 explores the area of Model-Driven Architecture (MDA) with a focus on
model transformations.We discuss the benefits ofMDA and themainMDA layers.
Then, we describe MDA transformations. Additionally, we explore the different
applications of model transformations in various domains. Moreover, we present
an overview as well as a comparative study of the different model transformation
languages and tools.

• Chapter5 presents the current literature related to security at the modeling level.
We start by surveying the state of the art in this domain. Then, we present
the main approaches that are adopted in the literature for security specification

http://dx.doi.org/10.1007/978-3-319-16106-8_2
http://dx.doi.org/10.1007/978-3-319-16106-8_3
http://dx.doi.org/10.1007/978-3-319-16106-8_4
http://dx.doi.org/10.1007/978-3-319-16106-8_5
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and hardening. The approaches in question are UML artifacts, extending UML
meta-language, and creating a new meta-language. In addition, we discuss the
usability of each approach for security specification according to a defined set of
criteria. Moreover, we investigate the main mechanisms used to address security
hardening at the modeling level, namely security design patterns, mechanism-
directed meta-languages, and AOM.

• Chapter6 presents our proposed AOM approach for security hardening of UML
design models. We provide details of the defined AOM profile for security aspects
specification. This includes the specification of aspect adaptations and a pointcut
language proposed to designate UML join points.

• Chapter7 details the design and the implementation of the security weaving frame-
work.We first provide a high-level overview that summarizes the main steps of the
weaving approach. Then, we detail each weaving step, namely, aspect specializa-
tion, join point matching, and actual weaving. Moreover, we provide algorithms
that implement the different matching and weaving methods in each supported
UML diagram. Finally, we present details about our prototype implementation.
This includes the authoring of the AOM profile and the implementation of the
weaving plug-in. In addition, we illustrate the proposed framework and demon-
strate its usefulness for security hardening by several real-life case studies.

• Chapter8 explores the semantics of the matching and the weaving processes in
activity diagrams using deductive proof systems. In addition, we formalize algo-
rithms for matching and weaving and prove the correctness and the completeness
of these algorithms with respect to the proposed semantics.

• Chapters9 and 10 are dedicated for presenting dynamic semantics for aspect
matching and weaving based on CPS and defunctionalization. The purpose is
to describe the semantics in a precise and elegant way. For clarity and to facili-
tate understanding, we elaborate the semantics in two steps. First, in Chap.9, we
present the CPS semantics for matching and weaving in λ-calculus. Second, in
Chap.10, we present the CPS semantics in xUML models.

• Finally, Chap. 11 briefly summarizes our contributions. In addition, it provides
an evaluation of the proposed framework as well as closing remarks and final
conclusions.

http://dx.doi.org/10.1007/978-3-319-16106-8_6
http://dx.doi.org/10.1007/978-3-319-16106-8_7
http://dx.doi.org/10.1007/978-3-319-16106-8_8
http://dx.doi.org/10.1007/978-3-319-16106-8_9
http://dx.doi.org/10.1007/978-3-319-16106-8_10
http://dx.doi.org/10.1007/978-3-319-16106-8_9
http://dx.doi.org/10.1007/978-3-319-16106-8_10
http://dx.doi.org/10.1007/978-3-319-16106-8_11


Chapter 2
Unified Modeling Language

The Unified Modeling Language (UML) [152] is a general-purpose modeling
language in the field of software engineering. It was created and standardized by
the Object Management Group (OMG) in 1997. UML came as a solution to pro-
vide a unified modeling notation and semantic models. The objective of UML is to
provide system architects, software engineers, and software developers with tools
to specify, construct, visualize, and document models of object-oriented software
systems. It is now considered the de facto language for software specification and
design. Currently, UML is at version 2.4.1 [152]. A major update has been done at
version 2.0 compared to version 1.x. UML 2.0 has been enhanced with significantly
more precise definitions of its abstract syntax rules and semantics, a more modu-
lar language structure, and a greatly improved capability for modeling large-scale
systems [152]. In addition, UML now is defined in terms of Meta-Object Facility
(MOF) [151], which makes it compliant with other meta-models defined by OMG.

In the following sections, we present an overview of UML background.
Section2.1 recalls the usefulness of a unifiedmodeling language. Section2.2 presents
the structure of UML language. The different UML views and concepts are pre-
sented in Sect. 2.3. In Sect. 2.4, we overview the main UML diagrams. Additionally,
in Sect. 2.5, we present the standard UML extension mechanisms, i.e., stereotypes,
tagged values, and constraints, followed by an overview of the OCL language in
Sect. 2.6. Section2.7 provides the necessary background on Executable UML and
related standards, i.e., Foundational UML and Alf language. Finally, we conclude
this chapter in Sect. 2.8.

2.1 Why Unified Modeling Language?

One of the objectives of modeling software systems is helping developers express
and discuss the problems and solutions involved in building a system. Usually, in
large sized systems, each developer is responsible for a certain component of the
system. However, the developer will need to have a good understanding of the other

© Springer International Publishing Switzerland 2015
D. Mouheb et al., Aspect-Oriented Security Hardening of UML Design Models,
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components as well. In order to accomplish this, having a unified modeling language
that is widely used will facilitate the interaction between developers. Additionally,
this will result in reducing the development cost. For instance, if different modeling
languages are used by developers of different components for the same system, it will
require each of them more time to understand the details of the other’s components.
Moreover, if a unifiedmodeling language is used, itwill ease the process of integrating
a new member into the development team, which will make the development wheel
move faster [166].

2.2 UML Structure

UML is an extremely extensive language. However, once its structure and concepts
are known, the size of the language no longer represents a problem. To be able to
understand the structure of the UML language, it is better to look at it from two
different dimensions (see Fig. 2.1).

First, one needs to distinguish between structural and behavioral elements. The
former represents the structure of the system while the latter is used to represent
the exact behavior of a given function in that system. The Others column presents
elements that refer to both structure and behavior [204].

In the second dimension, it is necessary to differentiate between Models and
Diagrams. A Model represents the complete description of the system, while a
diagram represents part of the model from a certain point of view. For example,
Fig. 2.2 represents two diagrams for the same model. The top diagram shows the
classes with their attributes and the name of the associations between them, while

Fig. 2.1 The structure of UML [204]
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Fig. 2.2 Example of two different diagrams of the same model

the bottom diagram shows a different view of the model from the perspective of the
student with a complete list of attributes, operations, and association information.

2.3 UML Views and Concepts

There are many ways to break up UML diagrams into perspectives or views that
capture a particular aspect of a system. In order to better understand the different
functionalities and usages of UML diagrams, the classification of Philippe Kruchten
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Fig. 2.3 Kruchten’s 4 + 1
view model

who introduced the 4 + 1 view model is adopted [167]. The 4 + 1 view model
organizes a description of a software architecture using five concurrent views, each
of which addresses a specific set of concerns [167], as shown in Fig. 2.3.

The 4 + 1 view model is adopted by many developers and architects because it
facilitates the examination of different parts of an architecture, and minimizes the
complexity of the overall viewing of a system.

Each view in the 4 + 1 view model focuses on certain aspects of the system and
intentionally conceals the rest. A general description of each view and the corre-
sponding UML diagrams supported by each view are listed below [167]:

• Logical View: Describes the object model of the design, which focuses on the
functionality provided to the user by the system. The logical view contains the
following diagrams: class diagrams, object diagrams, sequence diagrams, and
collaboration diagrams.

• Development View: Describes the structure of modules and files in the system.
It is more concerned with software management and its organization. The UML
Package diagrams can be used to describe this view.

• Process View: Describes the dynamic aspects of the system. It shows the different
processes and how they communicate with each other. The process view deals
with concurrency, distribution, performance, and availability. The UML Activity
diagrams represent this view.

• Physical View: Describes the mapping of the software to the hardware. In other
words, it is concernedwith how the application is going to be installed and executed
in the physical layer. Deployment diagrams are used to depict this view.

• Use Case View: This view is also called the Scenario view. It uses elements from
all other views to describe the functionality of the system and illustrate what the
system is supposed to do. The UML Use Case diagrams are used to describe
this view.

www.allitebooks.com
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2.4 UML Diagrams

The visual notation of UML models is expressed in a rich set of diagrams. UML 2
consists of fourteen diagram types describing different views of a software system.
The OMG’s UML specification classifies UML diagrams into two main categories:
structural and behavioral diagrams (Fig. 2.4). Structural diagrams describe the static
structure of objects in a system as well as the relationships and the dependencies
between the objects. Behavioral diagrams describe the dynamic behavior of objects
in a system.

Unhelkar [198] proposed an additional classification for UML diagrams based on
the time dependency of each diagram (Fig. 2.5). He suggests that UML models can
have either a static or a dynamic nature. Dynamic models are those which display
various states of elements and the events that cause state changes, and those diagrams
which are frozen in time are then static.

Table2.1 provides a brief description of each UML diagram.
To illustrate the different applications of UML diagrams, Fig. 2.6 depicts a hy-

pothetical situation where the system needs to implement two use cases (login and
logout). This requirement is shown in Fig. 2.6a by the Use Case diagram. In order to
implement these use cases, a developer can decide to define two classes which are:
User and Authenticator. The static structure of these classes is shown in Fig. 2.6b
as a Class diagram. The interaction among the instances of the classes in the login
scenario is presented as a Sequence diagram in Fig. 2.6c. This diagram shows that
a database with user credentials should also be implemented in this system. Finally,
internal behavior of the authenticator is specified using a State Machine Diagram.

Fig. 2.4 Taxonomy of UML diagrams
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Fig. 2.5 Diagrams
classification including
structural and behavioral
views as well as their static
versus dynamic nature [198]

Table 2.1 UML diagrams UML diagram Specifies

Class Classes, entities, business domain,
databases, etc.

Package The organization of packages,
sub-systems

Object Objects and their relationships at one
point in time

Component Software and hardware elements that
make up a system

Composite structure Component of object behavior at
run-time

Deployment The hardware architecture of a
system

Profile UML extensions

Activity A sequence of actions of a flow
within the system

Sequence Object interactions over time and the
exchanged messages

Interaction overview Interactions at a general high level

Communication Exchange of messages between
objects over time

Timing Changes in the state or value of
elements in a timeline

State machine The behavior of an object at run-time

Use case System functionality from the user’s
viewpoint
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(a)

(c)

(b)

(d)

Fig. 2.6 Examples of using UML diagrams



18 2 Unified Modeling Language

2.5 UML Extension Mechanisms

Even though UML is very expressive, there are situations where the language needs
to be extended to support specifications in a specific platform or domain. This is
where UML extension mechanisms come into play. They enable the addition of new
features that are not provided by the UML standard. There are two main standard
extension mechanisms in UML: (1) Stereotypes and tagged values, packaged in a
so-called UML profile, and (2) constraints. In the following, we provide an overview
of these extension mechanisms.

2.5.1 Stereotypes and Tagged Values

A stereotype defines how an existing meta-class may be extended [152]. Therefore,
it is considered as a user-defined meta-class. Its structure matches the structure of
an existing UML meta-class, which is referred to as “base class”. In this respect, a
stereotype represents a sub-class of the base class. A stereotype may have properties,
which are referred to as “tags”. When a stereotype is applied to a model element,
the values of the properties are referred to as “tagged values”. They are used to add
the additional information needed to specify the stereotype intent. A stereotype is
denoted by 〈〈StereotypeName〉〉 and can extend any kind of UML meta-class, such
as, Class, Operation, Dependency, etc. A tagged value consists of a name and one or
many values.

2.5.2 Constraints

Constraints extend the semantics of UML by specifying rules and restrictions on
model elements. Certain kinds of constraints are predefined in UML, while others
may be user-defined [152]. A user-defined constraint is described using a specific
language. The language used by UML to specify constraints is generally the Object
Constraint Language (OCL) [153], which is described in the next sub-section.

2.6 Object-Constraint Language

The Object Constraint Language (OCL) [153] is a formal language used to specify
expressions on UML models. These expressions typically specify constraints that
must hold for the system being modeled or queries over objects described in a
model. OCL is mainly used to specify application-dependent constraints for UML
models. In addition, it is used to specify invariants of the UML meta-language.
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More precisely, the main purposes for which OCL can be used are to: (1) query
UML elements, (2) specify invariants on classes and types in the class model, (3)
specify type invariants for stereotypes, (4) describe pre and post conditions on
operations, and (5) describe guards [153]. OCL is a pure specification language;
the evaluation of OCL expressions over UML elements cannot change anything in
the model. This means that when an OCL expression is evaluated, it simply returns
a value. It cannot have any effect on the state of the system even though an OCL
expression can be used to specify a state change (e.g., a post-condition) [153].

2.7 Executable UML

UML provides software designers with graphical modeling notations to specify,
construct, visualize, and document the artifacts of a software system. However, the
standard notations of UML are not always sufficient to capture the detailed software
behavior, such as variable and attribute assignments, operation calls, transition ef-
fects, etc. As a result, the models specified using UML notations remain abstract and
high level. In addition, the standard UML specification does not offer precise and
complete execution semantics for UML elements. In fact, the semantics is defined in-
formally in English. Consequently, it is not possible to define fully executable UML
models that can be simulated and validated before development. Furthermore, in the
security context, some vulnerabilities, such as the ones related to data flow, cannot
be easily detected on high-level models since these vulnerabilities involve variables
and their data values. Accordingly, it is important to have detailed and executable
specifications to be able to detect and fix such vulnerabilities.

Fortunately, the Object Management Group (OMG) proposed a new standard
called Semantics of a Foundational Subset for Executable UML Models [157]. This
standard defines the precise execution semantics for a selected subset of UML, the
so-called foundational UML (fUML) [157]. However, fUML provides only the ab-
stract syntax of executable UML and does not specify how executable models should
be formed. Consequently, the creation of executable models remains a difficult task,
especially for large-size executable UML models. For these reasons, OMG defined
another standard, called Action Language for Foundational UML (Alf) [156], to pro-
vide a concrete syntax for fUML. In the following, we present the main elements of
fUML. Afterwards, we provide a brief introduction to Alf language.

2.7.1 Foundational UML

Foundational UML (fUML) [157] is an executable subset of the standard UML
that can be used to specify, in an operational style, the structural and the behavioral
semantics of a system. The main elements of fUML are activities, actions, structures,
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and asynchronous communications [157]. In the following, we present the basic
features of activities and actions as they are used in Chap. 10.

Activities are specifications of control flow and data flow dependencies between
functions or processes in a system. An activity is composed of nodes connected
by edges (control flows and object flows) in the form of a complete flow graph.
A control flow specifies the sequencing of activity nodes. An object flow provides
a path for passing objects or data between activity nodes. There are mainly three
kinds of activity nodes: action nodes, object nodes, and control nodes. Actions are
fundamental units of executable behaviors that represent single stepswithin activities.
They operate on control and data they receive through their incoming edges, and
provide control and data to other actions through their outgoing edges. Foundational
UML supports various kinds of actions, which can be classified into four groups:

• Invocations actions: Include invocations of behaviors such as activities, invoca-
tions of operations, and communication actions such as sending of signals and
accepting of events.

• Object actions: Include creating objects and destroying objects.
• Structural feature actions: Include reading structural features, adding, removing,
and clearing structural feature values.

• Link actions: Include reading links, creating new links, destroying existing links,
and clearing associations.

Object nodes are used to hold data temporarily as the data wait to move through
the control flow graph. There are two main kinds of object nodes: activity para-
meter nodes and input/output pins. Activity parameter nodes hold inputs and out-
puts to activities, while pins hold inputs and outputs to actions. Control nodes are
nodes that coordinate flows in an activity. The main control nodes are initial
node, final node, fork node, join node, decision node, and merge node.
The initial/final node starts/terminates the activity execution. The fork and
join nodes are used to model concurrency and synchronization. The decision
and merge nodes are used to model branching.

An activity execution can be described in terms of tokens’ flow. A token is a locus
of control or a container for an object/data that may be present at an activity node. For
example, Fig. 2.71 illustrates a simple activity, which is invoked with an argument
of 1 for its input parameter. Consequently, a data token with a value of 1 is placed
on the input activity parameter node. Then, that data token flows to the input pin of
the action A along the object flow a. Consequently, the action A fires and produces
a result as a data token. Then, this data token flows to the output activity parameter
node along the object flow c. In addition, the action A produces a control token,
which flows to the action B along the control flow b. Finally, the action B accepts
the control token and fires, producing a data token that flows to the output activity
parameter node along the object flow d.

1 http://www.omg.org/news/meetings/tc/agendas/va/xUML_pdf/Seidewitz_Tutorial.pdf.

http://dx.doi.org/10.1007/978-3-319-16106-8_10
http://www.omg.org/news/meetings/tc/agendas/va/xUML_pdf/Seidewitz_Tutorial.pdf
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Fig. 2.7 Example of an activity

2.7.2 Action Language for Foundational UML

Action Language for Foundational UML (Alf) [156] is a textual representation for
specifying executable fUML behaviors within a UML model. Such a text may spec-
ify only parts of a UML model, or it may specify an entire UML model, at least
within the limits of the fUML subset [156]. The key components of Alf are: (1) An
abstract syntax, which is a MOF meta-model that defines the concepts of Alf and
their relationships, (2) a concrete syntax, which is a BNF specification for fUML
model elements, (3) a semantics, which is defined by mapping Alf abstract syntax
meta-model to fUML abstract syntax meta-model, and (4) a standard model library,
which consists of primitive types and behaviors from fUML model library, collec-
tion functions similar to OCL ones, and collection classes such as Set, List, etc. In
addition of being a standard, Alf is highly expressive and provides a compact rep-
resentation for specifying precise and detailed behaviors. Alf is composed of three
main constructs:

• Expressions: An expression is a behavioral unit that evaluates to a (possibly empty)
collection of values. Expressions may also have side effects, such as changing the
value of an attribute of an object. Alf expressions may be used in any place where
a UML value specification may be defined. For example, they may be used as the
body of a UML opaque expression or may be compiled into an equivalent UML
activity to act as the specification of such an expression.

• Statements: A statement is a behavior that is executed for its effect and does not
have values. Statements are the primary units of sequencing and control in Alf.
Alf statements may be used to define the detailed behavior of a UML action or a
complete UML behavior within a UML model.
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Fig. 2.8 Example of Alf code

• Units: A unit is a namespace defined using Alf notation. Units are lexically inde-
pendent segments of Alf text that provide a level of granularity similar to typical
programming language text files [156]. Alf units may be used to represent a model
element, e.g., class and activity, within a UMLmodel, or may be used to represent
an entire UML model.

The execution semantics of Alf is given by mapping Alf abstract syntax to fUML.
The result of executing anAlf code is thus given by the semantics of the fUMLmodel
to which it is mapped [156]. Figure2.82 shows an example of Alf code, which has
the same execution semantics as the fUML model presented in Fig. 2.7.

2.8 Conclusion

UML was defined as a unified language and notation to specify, construct, visualize,
and document models of software systems. It is considered the de facto standard
language for software specification and design. In this chapter, we have presented
an overview of UML language. We mainly presented the UML structure, the 4 + 1
view model, and the different UML diagrams. We have seen that there is a wide
range of UML diagrams with different capabilities. It is possible to see that each
diagram has a different purpose and a precise strength for particular tasks inside
the software development process. Choosing the right set of diagrams to model a
system is very important to make the design understandable and approachable [198].
Additionally, we have presented an overview of the main standard ways of extending
UML language to customize it to a particular domain.

2 http://www.omg.org/news/meetings/tc/agendas/va/xUML_pdf/Seidewitz_Tutorial.pdf.
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Chapter 3
Aspect-Oriented Paradigm

Object-Oriented Programming (OOP) has become the dominant programming
paradigm during the last few decades. It introduced the idea of using objects to
represent different components of a given system by breaking down a problem into
separate objects, and having each object grouping together data and behaviors into a
single entity. Such an approach aids in writing complex applications while maintain-
ing comprehensible source code [77]. However,some requirements do not decom-
pose efficiently into a single entity, and thus scatter in various places in the applica-
tion source code. To this end, Aspect-Oriented Programming is introduced to solve
this issue and separately allows for the specification of the different concerns of a
system [77].

Aspect-Oriented Programming (AOP) [114] is based on the idea of separation of
cross-cutting concerns. In other words, it separately specifies the different concerns
that cross-cut the application source code in many places, and then defines a mecha-
nism, called weaving, to compose the different parts into a coherent program. These
concerns may vary depending on the application domain; they can be functional or
non-functional, theymay be high-level or low-level features. The objective of aspect-
orientation is to realize these scattered concerns into single elements, called aspects,
and eject them from the various locations of the program [77]. AOP techniques have
emerged into various families of programming languages. They can be defined over
different languages, such as C, C++, PHP, and Java.

Many approaches were proposed in the literature to achieve the goals of AOP,
such as Pointcut-Advice [131], Multi-Dimensional Separation of Concerns [159],
and Adaptive Programming [158] models. According to the study conducted in [33],
the pointcut-advice model is the most appropriate one for security hardening.

The remainder of this chapter is organized as follows. In Sect. 3.1, we present
an overview of the main AOP models. In Sect. 3.2, we discuss the appropriateness
of these AOP models from a security perspective. Section3.3 presents the main
constructs of the pointcut-advice model. Section3.4 introduces the main concepts of
AOM. Finally, Sect. 3.5 concludes this chapter.

© Springer International Publishing Switzerland 2015
D. Mouheb et al., Aspect-Oriented Security Hardening of UML Design Models,
DOI 10.1007/978-3-319-16106-8_3
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3.1 AOP Models

Various AOP models have been proposed to achieve the goals of AOP. The most
important ones are: Pointcut-Advice [131], Multi-Dimensional Separation of Con-
cerns [159], and Adaptive Programming [158] models. In the following, an overview
of each model is presented.

3.1.1 Pointcut-Advice Model

The fundamental concepts of the pointcut-advice model are: join points, pointcuts,
and advices. A join point is an event during the execution of a program such as a
method call or amethod execution. A pointcut is an expression that designates a set of
join points. An advice is a piece of code specifying how the behavior of an application
should be adapted at specific points. Advice code can be executed before, after, or
around a specific join point. Before-advice and after-advice are executed before and
after the intercepted join point, respectively. Whereas, around-advice executes in
place of the intercepted join point. Moreover, the computation of the original join
point can be executed within the body of the around-advice using a special construct
named proceed. AspectJ [113] is the most known representative of the pointcut-
advicemodel. Figure3.1 shows a tracing aspect written inAspectJ where the pointcut
ptrace picks out any call to any method. Before-advice and after-advice are used
to display the start time and the end time respectively.

Around-advice must be declared with a return type, like a method because it is
allowed to return a value. Within the body of around-advice, the computation of the
original join point can be executed with the special syntax proceed(...). The
proceed form takes as arguments the context exposed by the pointcut of the around-
advice, and returns whatever the around-advice is declared to return. Accordingly,
the around-advice, shown in Fig. 3.2, doubles the second argument to foowhenever
it is called, and then halves its result.

Fig. 3.1 AspectJ tracing example

www.allitebooks.com
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Fig. 3.2 AspectJ around-advice with proceed

Matching is the process of selecting the join points that satisfy a given pointcut
expression. Whereas, weaving is the process of injecting the advice behaviour spec-
ified in the aspect at the identified join points. Commonly, the inputs to the weaving
process are the application and the aspect programs, and the produced result is the
combined programs. Figure3.3 shows a high-level representation of an aspect and
the result of the weaving process.

(a)

(b)

Fig. 3.3 Example of an aspect. a Before weaving. b After weaving
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3.1.2 Multi-Dimensional Separation of Concerns Model

Separation of concerns aims to identify, encapsulate, and manipulate those parts
of software that are relevant to a particular concept. Traditionally, most languages
and modularization approaches support only one dominant kind of modularization,
e.g., class in object-oriented languages. However, one needs different decomposi-
tions according to different concerns at different times. Then, once a system has
been decomposed, extensive refactoring and reengineering are needed to remodu-
larize it [159]. Multi-Dimensional Separation of Concerns (MDSOC) [159] allows
simultaneous separation according to multiple, arbitrary kinds (dimensions) of con-
cerns, with on-demand remodularization. The latter allows a developer to choose,
at any time, the best modularization, based on any or all of the concerns, for the
development task at hand. At the same time,these concerns can overlap and interact.
This model treats all concerns as first-class and co-equal, including components and
aspects,allowing them to be encapsulated and composed at will. This is in contrast
to most aspect-oriented models, which enable aspects to be composed with compo-
nents but do not support composition of components (or aspects) with one another.
Hyperspaces constitute an approach to achieve MDSOC. HyperJ [160] is the most
known language that supports hyperspaces in Java.

3.1.3 Adaptive Programming Model

Adaptive programming (AP) [158] has used the ideas of AOP several years before the
nameAOPwas coined. Following the LawofDemeter [20], a programming style rule
for loose coupling between the structure and behavior concerns, can result in a large
number of small methods scattered throughout the program, which can make it hard
to understand the high-level picture of what a program does. Adaptive programming,
which encapsulates class hierarchies using traversal strategies and adaptive visitors,
avoids this problem while even better supporting this loose coupling of concerns. It
enables an application to have an interface to the class hierarchy, i.e., the application
is not sensitive to the changes in the underlying class hierarchy. By specifying as
little as possible about your program using adaptive programming, you can make it
more general and flexible, easier to maintain, and easier to understand.

In a program, it is needed to derive the following:

• Derive a class graph: Create a set of classes that best captures the necessary
structure of your program data. A class graph is a simplified representation of
a Unified Modeling Language (UML) class diagram. Its nodes are classes and
primitive types and its edges are associations (has-a relations) and generalizations
(is-a relations).

• Derive a traversal strategy: Find a traversal path by specifying the root of the
traversal, the target classes, and the constraints in between to restrict the traversal.

• Derive a visitor method: Attach specific behavior to certain classes that are visited
along each traversal.
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DJ [158] is a Java library for adaptive programming that allows traversal strategies
to be constructed and interpreted dynamically at runtime. DJ allows traversing a
graph object according to the traversal strategy and allows specifying a visitor to be
executed before or after specific nodes.

3.2 AOP and Security

Several approaches have investigated the use of AOP for security. These approaches
can be categorized into the following groups: (1) languages targeting security [22,
23, 120], (2) case studies that explore the usefulness of AOP for developing and
injecting security concerns into software code [49, 101, 171, 187, 207], and (3) new
security-related pointcuts to enrich the expressiveness of the join point model [37,
122, 130].Moreover, an appropriateness analysis study of themost usedAOPmodels
from a security point of view has been conducted in [33]. The studied models are
the pointcut-advice, the multi-dimensional separation of concerns, and the adaptive
programming models.

All the aforementioned AOP models are candidates to separate crosscutting con-
cerns in general but a model might be more appropriate than another when it comes
to security hardening. In this respect, the authors in [33] have analyzed common
practices in security hardening inspired from CERT coding rules [18, 19, 21] and US
Department ofHomelandSecurity coding rules [24]where they are representations of
knowledge gained from real-world experiences about potential vulnerabilities that
exist in programming languages. The expressiveness of the aforementioned AOP
models is challenged to describe these practices. Depending on this analysis, the
following results have been concluded.

The MDSOC has a serious limitation from a security perspective. It does not
allow adding a functionality before, after, or around field accesses. Authorization
to a given field in a given class is a simple security example that we cannot handle
with HyperJ [160], which is a representative for the MDSOC model. The MDSOC
modelworks atmethod granularity and consequently it cannot operatewithinmethod
bodies. HyperJ does not support pulling apart of code within method bodies. Picking
out multiple concerns within method bodies is required in many situations to enforce
security. The adaptive programming is concerned with the loose coupling between
structure and behavior and focuses on certain kinds of concerns. DJ [158], which is
a representative for adaptive programming model, is unable to replace a method by
a more secure one.

The pointcut-advice model is the most popular model. It offers better granular-
ity than MDSOC and considers more general kinds of concerns than the adaptive
programming. Furthermore, the pointcut-advice model extensively adapts the pull
approach. It allows tracking subtle points in the control flow of applications that
are important from a security point of view, such as method calls, method execu-
tions, getting and setting of attributes, etc. In addition, security behavior can be
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automatically injected at these points. Hence, the pointcut-advice model was identi-
fied as the most appropriate approach for security hardening.

3.3 Basic Constructs of the Pointcut-Advice Model

As mentioned previously, the pointcut-advice model is considered the most
appropriate approach for security hardening. In this section, we explain the basic
concepts of this model through AspectJ language [113], which is the most known
representative of this model. The pointcut-advice model is based on the following
set of constructs:

3.3.1 Aspects

Aspects are elements that encapsulate concerns that cross-cut the core components
of a given application. It is composed of two kinds of crosscutting elements: (1)
Dynamic crosscutting, which defines additional behaviour to run at certain well-
defined points in the execution of programs, and (2) static crosscutting, which defines
elements that affect the static type signature of programs. Similar to a Java class, an
aspect can contain both fields and methods but it cannot be explicitly instantiated.

3.3.2 Join Points

A join point is a well-defined point in the execution of a program. A join point model
provides a common frame of reference that makes it possible to define the dynamic
structure of crosscutting concerns. Different kinds of join points are supported in
AspectJ language, as shown in Table3.1.

3.3.3 Pointcuts

A pointcut is an expression that picks out join points and exposes data from the
execution context of those join points. Pointcuts are used primarily by advice.
They can be composed with boolean operators (&&, ||, and !) to build up other
pointcuts. For instance, the pointcut designator call(void Point.f(int))
matches all method call join points where the signature of the called method is
void Point.f(int). AspectJ supports both named and anonymous pointcuts.
Named pointcuts are declared with the keyword pointcut and can be referred to
by its name in several places in an aspect. Anonymous pointcuts cannot be referred
to because they have no names. The primitive pointcuts provided by the language



3.3 Basic Constructs of the Pointcut-Advice Model 29

Table 3.1 AspectJ join points

Joinpoint Meaning

Method call Matches when a method is called, not including super calls of
non-static methods

Method execution Matches when the body of code for an actual method executes

Constructor call Matches when an object is built and that object’s initial constructor
is called

Constructor execution Matches when the body of code for an actual constructor
executes,after its this or super constructor call

Static initializer execution Matches when the static initializer for a class executes

Object pre-initialization Before the object initialization code for a particular class runs. This
encompasses the time between the start of its first called
constructor and the start of its parent’s constructor

Object initialization Matches when the object initialization code for a particular class
runs. This encompasses the time between the return of its parent’s
constructor and the return of its first called constructor

Field reference Matches when a non-constant field is referenced

Field set Matches when a field is assigned to

Exception-handler Matches when an exception handler executes

Advice execution Matches when the body of code for a piece of advice executes

are presented in Table3.2 following the documentation on the Eclipse site [162]. The
patterns used as parts of the syntax of AspectJ pointcuts are described in Fig. 3.4.

In many cases, the AspectJ compiler can determine statically if a piece of advice
should be executed at all the matched join points. In these cases, no dynamic test
is required to determine if the advice code should be executed or not. On the other
hand, there are cases where static analysis cannot determine the applicability of the
advice as in the case of the cflow pointcut. In such a situation, residual testing code
is added to guard the execution of the advice. The aforementioned AspectJ pointcuts
can be classified into three types:

• Kindedpointcutsmatch directly a granular bytecode instruction or a set of bytecode
instructions. For instance, a call pointcut matches the invoke bytecode instructions
and an execution pointcut matches a bounded region of bytecode instructions in a
method or a constructor execution.

• Scope matching pointcuts target a set of join points within a certain scope in the
program. There are two kinds of scopes: a static scope and a dynamic scope. A
static scope is a syntactic location in a program such as a class or a package.
The dynamic scope is a location in the control flow of a method call or a method
execution. The aim of such pointcuts is to restrict join point location lookup inside
a program. The pointcuts that belong to this class are within, withincode and cflow.

• Context matching pointcuts focus on providing contextual information such as
object values during runtime. These pointcuts are generally used in conjunction
with kinded pointcuts. The pointcuts that belong to this class are: args, target
and this.
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Table 3.2 AspectJ pointcuts

Pointcut Meaning

call(MethodPat) Picks out each method call join point whose
signature matches MethodPat

execution(MethodPat) Picks out each method execution join point whose
signature matches MethodPat

call(ConstructorPat) Picks out each constructor call join point whose
signature matches ConstructorPat

execution(ConstructorPat) Picks out each constructor execution join point
whose signature matches ConstructorPat

staticinitialization(TypePat) Picks out each static initializer execution join point
whose signature matches TypePat

preinitialization(ConstructorPat) Picks out each object pre-initialization join point
whose signature matches ConstructorPat

initialization(ConstructorPat) Picks out each object initialization join point whose
signature matches ConstructorPat

get(FieldPat) Picks out each field reference join point whose
signature matches FieldPat

set(FieldPat) Picks out each field set join point whose signature
matches FieldPat

handler(TypePat) Picks out each exception handler join point whose
signature matches TypePat

adviceexecution( ) Picks out all advice execution join points

within(TypePat) Picks out each join point where the executing code is
defined in a type matched by TypePat

withincode(MethodPat) Picks out each join point where the executing code is
defined in a method whose signature matches
MethodPat

withincode(ConstructorPat) Picks out each join point where the executing code is
defined in a constructor whose signature matches
ConstructorPat

cflow(Pointcut) Picks out each join point in the control flow of any
join point j picked out by Pointcut, including j itself

cflowbelow(Pointcut) Picks out each join point in the control flow of any
join point j picked out by (Pointcut), but not j itself

this(Type or Id) Picks out each join point where the currently
executing object is an instance of Type or of the type
of the identifier Id

target(Type or Id) Picks out each join point where the target object is
an instance of Type,or of the type of the identifier Id

args(Type or Id, ...) Picks out each join point where the arguments are
instances of Type or type of the identifier Id

if(BooleanExpression) Picks out each join point where the boolean
expression evaluates to true
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Fig. 3.4 AspectJ pointcut patterns

3.3.4 Advices

Advice is a method-like construct used to declare that certain piece of code should
execute at particular join points defined by a pointcut. Advice declarations define
advice by associating code with a pointcut, and the time when the code should be
executed. AspectJ supports before-advice, after-advice, and around-advice. Before-
advice runs when a join point is reached but before a program proceeds with this join
point. After-advice runs after a program proceeds with a join point. While before-
advice is relatively unproblematic, there can be three interpretations of after-advice:
after the execution of a join point completes normally, after it throws an exception,
or after it does either one. AspectJ allows after-advice for any of these situations.
Before-advice and after-advice are strictly additive, meaning the code in the advice
declaration runs just before or just after the normal computation at a join point. On
the other hand, around-advice provides a way to preempt the normal computation at
a join point and to continue a program just after it. Within the body of the around-
advice, the computation of the original join point can be executed with the special
syntax proceed(...). Each piece of advice is of the form

[strictfp] AdviceSpec [throws TypeList]: Pointcut {Body}

The strictfpmodifier is the only modifier allowed on advice. It has the effect
of making all floating-point expressions within the advice be FP-strict. An advice
declaration must include a throws clause listing the checked exceptions the body
may throw. This list of checked exceptions must be compatible with each target join
point of the advice, or an error is signalled by the compiler. The forms of AdviceSpec
are:

• before(Formals)
• after(Formals) returning [(Formal)]
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• after(Formals) throwing [(Formal)]
• after(Formals)
• Type around(Formals)

where Formal refers to a variable binding like those used for method parameters of
the form (Type Variable-Name) whereas Formals refers to a comma-delimited list of
Formals. Since more than one piece of advice may apply at the same join point, the
programmer can explicitly define a precedence order between aspects.

3.3.5 Introductions

Up until now, we have only seen constructs that allow implementing dynamic cross-
cuttings that change the way a program executes. AspectJ also allows implementing
static crosscuttings that affect the static structure of programs. This is done using
forms called introduction. An introduction is a member of an aspect, but it defines
or modifies a member of another type (class). With introduction we can:

• Add methods to an existing class.
• Add fields to an existing class.
• Extend an existing class with another.
• Implement an interface in an existing class.
• Convert checked exceptions into unchecked exceptions.

Introduction is a powerful mechanism for capturing crosscutting concerns because it
does not only change the behavior of components in an application, but also changes
their relationships.

3.4 Aspect-Oriented Modeling

Due to the rise of Model-Driven Engineering, aspect-oriented techniques are no
longer restricted to the programming stage, but are increasingly adopted at prior
stages of the software development life cycle. In this context, Aspect-Oriented Mod-
eling (AOM) aims at applyingAOPmechanisms at themodeling level, which encom-
passes requirements engineering, analysis, and design stages [31].

The concepts of AOM are similar to the ones of AOP, namely:

• An aspect is a unit of modularization that encapsulates a cross-cutting concern
of an application. Typically, an aspect contains a set of adaptations, specifying in
what way a concern’s structure and behavior should be adapted, i.e., enhanced,
replaced, or deleted

• An adaptation specifies the modification to be performed on the base model. We
distinguish between structural and behavioural adaptations.A structural adaptation
is similar to an introduction in AOP languages (e.g., AspectJ) in the sense that it
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affects the structural part of a software system. A behavioral adaptation is similar
to an advice in AOP languages since it affects the behavioral part of a system.

• A join point is a location in the base model where an adaptation should be applied.
• A pointcut is an expression that designates a set of join points.

3.5 Conclusion

In this chapter, we have reviewed the main concepts of aspect-oriented programming
and discussed the most-used AOP models, namely the pointcut-advice model, the
multi- dimensional separation of concerns model, and the adaptive programming
model. Following the success of AOP techniques in modularizing crosscutting con-
cerns at the implementation level, various contributions worked on abstracting the
AOP concepts and adopting them to the design level as well. Moreover, the applica-
bility of aspect-oriented techniques to specify security requirements and hardening
mechanisms has been heavily studied in the literature both at the design and imple-
mentation levels. In this context, we have discussed the appropriateness of the AOP
models from a security point of view. The pointcut-advice model is considered the
most appropriate one for security hardening. As such, we have presented an overview
of the main constructs of this model, namely, join points, pointcuts, advices and
introductions.



Chapter 4
Model-Driven Architecture and Model
Transformations

Model Driven Architecture (MDA) [148] is a well-known approach that facilitates
the development of software systems. It is an OMG initiative to Model-Driven
Engineering (MDE), with the goal of separating business decisions from underlying
platform technologies. Model transformation is the process of converting one model
to another model of the same system [148]. This process takes, as input, one or more
models that conform to specific meta-models, and produces, as output, one or more
models that conform to specificmeta-models. The goal underlying the use of amodel
transformation is to save time and efforts and reduce errors by automating the mod-
ification of models as much as possible. Model transformation is an essential part of
MDA. In this context, model transformations are mainly used to convert a model of a
certain layer into another layer, such as transforming a platform-independent model
into a platform-specific model. However, model transformations are also useful for
transforming models within the same layer, such as to perform model weaving as we
will see in Chap.7.

Within the MDA approach, model transformation can be divided into two
categories: Model-to-Model transformation (M2M) and Model-to-Text transforma-
tion (M2T) [148]. The former is used to transform models from PIM (Platform-
Independent Model) level to PSM (Platform-Specific Model) level, while the latter
is used to transform models from PSM level to code level. In this research, we are
interested in the first type, i.e., model-to-model transformation. Thus, throughout
this book, when we say model transformation we are referring to model-to-model
transformation in particular.

A model transformation is specified as a set of mappings. Each mapping consists
of a set of refinements of model elements, addition of further details to a model, or
conversion between different kinds of models. There are four different transforma-
tion approaches [148]: (1) Manual transformation, (2) transformation using a UML
profile, (3) transformation using patterns and markings, and (4) automatic transfor-
mation using tools and transformation languages. In this research, we are interested
in the automatic transformation.

Many classifications of model transformation approaches exist in the literature
[63,135,186]. Some classify them according to the nature of the transformation
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language, whether it is declarative, imperative, or hybrid (combination of declarative
and imperative). Others base the classification on the techniques used to implement
such transformation. Either by direct manipulation of the model using general pur-
pose programming language, or by dealing with some intermediate representation of
the model, or by using dedicated model transformation languages or meta-modeling
languages.

Czarnecki and Helsen [63] provide a classification of model transformation
approaches that has been adopted by many people in the software engineering com-
munity. In the following, we give a summary of their classification while pointing
out the strengths and limitations of each approach.

• Direct Manipulation Approach: This approach adopts object-oriented techniques
to transform models using general purpose programming language, such as Java.
This programming language will manipulate the internal representation of the
models using specialized application programming interfaces (APIs). Since this
approach uses any general purpose object-oriented language, the overhead of learn-
ing new language isminimal.However, since the language is not specially designed
to handle model transformation, many properties and features, such as scheduling
processes, are implemented from scratch.

• Relational Approach: This approach is considered a declarative approach where
the types of the source and target elements need to be explicitly specified along
with a constrained relation between them. Thus, this approach does not allow
in-place transformation. One implementation of this approach is the use of logi-
cal programming languages. In relational approaches, target elements are created
implicitly, unlike the first approach where target elements need to be explicitly
created. For instance, when the transformation is executed the different relations
are verified and then the target model contents are automatically created [64].

• Graph Transformation Based Approach: It is a declarative approach based on the
theoretical work done on graph transformation. It depends on two patterns, left
hand side (LHS), and right hand side (RHS) patterns. The LHS pattern is used
as a matching pattern against the model we need to transform. While the RHS
pattern will replace the matched patterns in that model. The main limitation is the
non-determinism of rule scheduling [107] as we will explain in Sect. 4.6.

• Structure Driven Approach: The structure driven approach consist of two phases.
The first phasewhere the hierarchical structure of the target model is being created.
The second phase where we set the different attributes and references in the target
model. In this approach, the user specifies the transformation rules, however, he/she
does not have any control over the rule scheduling as it is determined by the
framework. OptimalJ [7] is an example of an implementation of the structure
driven approach.

• Hybrid Approach: The hybrid approach is a combination of any of the previously
mentioned approaches. For example, the standard language QVT [150] is con-
sidered a hybrid approach as it contains three components such that two of them
adopt a relational approach, while the third is operational. Another example of a
hybrid approach is ATL [1] where a single ATL transformation rule may be fully
declarative, hybrid, or fully imperative.
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In this chapter, we explore the area of model transformation presented by the
Object Management Group (OMG) as part of the MDA framework in [148]. First, in
Sect. 4.1, we describe the main MDA layers. In Sect. 4.2, we recall the main benefits
of using the MDA approach. Afterwards, we provide an overview of the different
kinds of MDA transformations in Sect. 4.3. In Sect. 4.4, the different applications of
model transformations in different domains are described. In Sect. 4.5, the different
model transformation languages and tools are studied. Finally, we summarize this
chapter in Sect. 4.7.

4.1 MDA Layers

The MDA approach defines four layers that aim at separating the application logic
from any underlying technology platform. These layers are defined as follows [148]:

4.1.1 Computation Independent Model (CIM)

CIM model captures the user requirements and specifies what functionalities the
system should have without indicating any information about how it will achieve
these functionalities. In other words, at CIM level, the business requirements and the
domain of the system are described and all the structural details and the information
about the target platform are hidden as they are still undetermined.

4.1.2 Platform Independent Model (PIM)

PIM model is a business-oriented model that abstracts from platform issues, which
can survive the different technology changes. Additionally, PIM model satisfies the
main goals ofMDA, portability and reusability. Moreover, at the PIM level, the focus
is on the operation of the system while hiding all the details that are required for a
particular platform. In other words, only the part of the specification that does not
change from one platform to another is shown.

4.1.3 Platform Specific Model (PSM)

PSM is derived from the PIM level by adding some platform-specific characteristics
to it. In this level, it is defined how the different functionalities in the PIM level are
realized on a certain computing platform. It is important to mention that it is possible
to generate multiple PSMs from one PIM, each of which corresponds to a different
platform.
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4.1.4 Implementation Specific Model (ISM)

ISM is the actual generation of the executable code. Since the PSM already contains
all the details regarding the target platform, the generation of the code is somewhat
straightforward.

4.2 MDA Benefits

Following the MDA approach, while developing software and systems, is beneficial
in many ways. According to [203], the main advantages and benefits of using the
MDA approach is to achieve the following:

• Portability: Within MDA, portability is achieved through the development of the
PIM, which is, by definition, platform-independent. Using the PIM, and by pro-
viding the corresponding transformation rules, the same PIM can be transformed
to multiple PSMs, hence, being portable from one platform to another.

• Productivity: In MDA, the focus of the developers is to design the PIM and from
which the PSM and code will be automatically generated. Therefore, developers
need not to worry about the implementation and platform details as they will
be added later by the PIM to PSM transformation. According to [119], this can
improve productivity in two ways: The developers will have less work to do as the
details of the implementation do not require to be specified as they will be added
later by the transformation definitions. Likewise, at the code level, the developers
will have less code to write as most of the code will be automatically generated
from the PIM and PSM levels. Therefore, by shifting the focus from writing code
to designing PIMs, the developers will have the opportunity to pay more attention
to solve the business problem at hand. To summarize, improving productivity
requires the use of tools that can automate the transformations from PIM to PSM
and later to code.

• Cross-platform Interoperability: Interoperability property defines the ability of
different systems to inter-operate and work together. MDA makes the concept of
cross-platform interoperability possible through the establishment of the PIM. In
MDA, one PIM is used to generate multiple PSMs, each of which is targeting a
different platform. Therefore, two different PSMs can interoperate as they both
originate from the same PIM. This is made possible by building bridges and estab-
lishing links between the two PSMs. By having these bridges established, the two
PSMs that are targeted for different platforms can actually communicate.

• Maintenance and Documentation: As the PIM is used to generate the PSM and the
code afterwards, the generated code will be an exact representation of the model.
Therefore, the PIM can be considered as a high-level documentation that is needed
for any software system nowadays. However, the PIM will not be discarded after
generating the code but it will be maintained so that any future modifications to
the system will be made by modifying the PIM and regenerating the new PSM and
code [119].



4.3 MDA Transformations 39

4.3 MDA Transformations

The MDA guide [148] defines model transformation as: “the process of converting
one model to another model of the same system”. This process takes as input one or
more models that conforms to a specific meta-model and produces as output one or
more models that conforms to a given meta-model. Additionally, it is important to
mention that the transformation itself is also considered a model, i.e. it conforms to
a given meta-model.

Moreover, when transforming a PIM into a particular PSM, the input to the trans-
formation, alongwith the PIM, is a set ofmapping rules that specify howeach element
in the PIM will be transformed to the target PSM. The result of the transformation
along with the PSM is a record of transformation. The record of transformation con-
tains a map from elements of the PIM to the corresponding elements of the PSM.
Also, it shows which parts of the mapping were used for each part of the transfor-
mation.

When referring to model transformations, it is necessary to distinguish between
two types of transformations: model-to-model and model-to-code transformation.
Moreover, we usually refer to model-to-code transformations as model-to-text since
non-code artifacts may be generated, such as XML and documentation [63].

In the following, we present some definitions and key concepts relevant to model
transformations:

• Endogenous and Exogenous transformations: Endogenous transformations are
transformations of models that conform to the same meta-model. In other words,
both the input and output model(s) conform to the exact meta-model. On the other
hand, exogenous transformations are transformations of models that conform to
different meta-models [135].

• In-Place, Unidirectional and Bidirectional transformations: In-place transforma-
tion is a transformation that affects the same model. In other words, there is no
source model and target model, but only one model that is being modified by the
transformation. However, the unidirectional transformation must have source and
target models where the target model is generated or updated based on the source
model. In other words, the execution of the transformation can be done in one
direction only. In contrast, bidirectional transformation is when the execution can
be done in both directions, that is transform the source model to the target model
and transform the target model to the source model [135].

• Transformation Definition and Transformation Rules: As mentioned previously,
model transformation is the process of generating a target model from a source
model. This transformation is specified in what is called transformation definition.
Transformation definition consists of a set of rules, each of which specifies how
the elements in the source model will be transformed into elements in the target
model.

• Horizontal and Vertical Transformation:MDA supports two different directions of
transformations; horizontal and vertical transformations. Horizontal transforma-
tions may occur inside a single layer of abstraction, that is, the level of abstraction
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Fig. 4.1 Horizontal and
vertical transformations

of the source and target model are always the same. For example, merging a group
of PIMs or PSMs together will result of a new model where its level of abstraction
remains the same. However, vertical transformation is when there is progression
from one level of abstraction to a more specialized level, such as going from PIM
level to PSM,wheremore information about a specific platform is added (Fig. 4.1).

4.4 Applications of Model Transformations

Model transformation (MT) has become a useful technique that can be incorporated
in various development methodologies. In this section, we highlight some important
scenarios of model transformations in different application domains.

In the context of Model Driven Software Development (MDSD) [190], a software
system is developed through an iterative modeling process where the system model
is refined repeatedly until it reaches a stage where sufficient details to implement the
system are specified [150]. The refinement process aims at transforming the system
from abstract models to more concrete ones.

Another example where model transformation becomes useful is when adopting
Aspect-Oriented Software Development (AOSD) methodology [41]. AOSD is an
emerging technology where the aim is to isolate non-functional requirements from
the systemmain functionalities. However, at some point these isolated concerns need
to be composed “woven” with the primary concern to produce a working system.
Similarly, in the context of Product Line Software Engineering (PLSE) [168], which
is a software development technology targeting the creation of a portfolio of closely
related products that share common assets with variations in features and functions.
In PLSE, the different features that compose a given product need to be integrated
together to produce the final product. This integration of different software features
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can also be considered as a transformation process. Figure4.2 illustrates the refine-
ment and composition processes in different software development methodologies.

Moreover, software refactoring, code generation, and model translation are more
examples of applications to model transformation. Software refactoring is a soft-
ware transformation that preserves the software behavior, but enhances its internal
structure such that it makes it easier to understand and maintain. Additionally, model
translation is when the source model expressed in one language is transformed to
another model expressed in different language; for example, transforming UML
models to artifacts that can be analyzed formally using formal analysis tools [90].
Table4.1 summarizes the examples of model transformation applications with the
corresponding direction of the transformation.

(a) (b) (c)

Fig. 4.2 Transformation examples

Table 4.1 Examples of
model transformation

Example Transformation direction

Software refinement
(MDSD)

Vertical

Aspect weaving (AOSD) Horizontal

Feature integration (PLSE) Horizontal

Software refactoring Horizontal

Code generation Vertical

Model translation Vertical
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4.5 Model Transformation Languages and Tools

With the increasing interest in the MDA approach, many model transformation tech-
niques and languages have been proposed. Model transformations can be achieved
using different approaches, one approach suggests the use of APIs combined with a
general purpose programming language. For example, the Java meta-data interface
(JMI) [25] is one of the existing APIs that facilitates model access and manipula-
tion. Using this method there is no overhead to learn a new language since known
object-oriented languages can be used. However, since the language is not designed
to handel model manipulation, all transformation rules and transformation schedul-
ing must be implemented from scratch [107]. Therefore, transformation languages
should be the solution as they have better performance and portability. In the sequel,
we will describe the state-of-the-art in model transformation languages.

4.5.1 Query/View/Transformation Language

Query/View/Transformation (QVT) [150] is an OMG standard language for model
transformation. It consists of three components: two declarative (QVT-Relations and
QVT-Core) and one imperative (QVT-Operational):

• QVT-Relations: It implements the transformation by providing links that iden-
tify relations between elements in the source model and elements in the target
model. Traces between elements that are involved in a transformation are created
implicitly.

• QVT-Core: It is a small language that only supports pattern matching. Thus, its
semantics can be defined in a simple way. However, QVT-Core does not have a
full implementation and it is not as expressive as QVT-Relations.

• QVT-Operational: It is an imperative language that is designed for writing unidi-
rectional transformations.

QVT-Relations and QVT-Core languages are good for simple transformations
where the sourcemodel and the target model have a similar structure. However, when
it comes to more sophisticated transformations where elements in the target model
are built with no direct correspondencewith elements in the sourcemodel, declarative
languages can be a limitation. Thus, the need for an imperative language becomes
a must. Therefore, QVT proposed the third language, which is QVT-Operational
[108]. QVT integrates also OCL language that it extends with imperative features.
The Eclipse modeling framework provides an implementation of QVT-Operational
through its M2M open source project.1 Unlike other tools and languages that only
support some concepts of the QVT standard, Eclipse QVT-Operational (QVTO)
implements the final adopted specification.

1 http://projects.eclipse.org/projects/modeling.mmt.

http://projects.eclipse.org/projects/modeling.mmt
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4.5.2 Atlas Transformation Language

The Atlas Transformation Language (ATL) [1] is a hybrid language that is a mix of
declarative and imperative constructs. It consists of three components: Atlas Model
Weaver (AMW) [80], ATL, and ATL Virtual Machine. AMW creates links between
model elements and saves them in a separate model, commonly referred to as the
weaving model. ATL is the transformation language; it supports unidirectional trans-
formations and it is used to write ATL programs, which are executed by the ATL
virtual machine. ATL is not compliant with QVT, although, it implements similar
concepts and functionalities.

4.5.3 Open Architecture Ware

Open Architecture Ware (oAW) [6] is a framework that supports model transforma-
tions using a language called Xtend.2 The latter supports transformation of models
by running a sequence of statements. These statements are called within a workflow
and executed by a workflow engine. Moreover, oAW provides special support for
aspect-orientation [114] through a model weaver called XWeave [97].

4.5.4 IBM Model Transformation Framework

IBMModelTransformationFramework (MTF) [70] allows the specification ofmodel
transformations as a set of relations between models. These relations are expressed
using a language called Relation Definition Language (RDL) [70]. For example, a
relation can be established between classes that have a matching attribute. These
relations are then parsed and evaluated by a transformation engine. MTF supports
bi-directional transformations, i.e., transforming the sourcemodel to the targetmodel
and vice versa.

4.5.5 Kermeta

Kermeta [17] is a modeling and programming language for meta-model engineering.
It is considered the first executable meta-language that can be used for different
purposes, such as model and meta-model prototyping and simulation, verification
and validation of models against meta-models, model transformations, and aspect
weaving [17].

2 http://www.eclipse.org/xtend/.

http://www.eclipse.org/xtend/
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4.6 Comparative Study of Model Transformation Languages

The field of model transformation is relatively new and thus the support for trans-
formation languages is increasing through time. In the previous subsections, we
highlighted some of the existing transformation approaches and languages while
pointing out the different features that each of them provide.

As our objective in this research work is to provide a methodology for automatic
integration of security concerns “aspects” into design models, the technology of
model transformation can be of a great value. Moreover, one of the great challenges
we faced was to select the appropriate language from the pool of available transfor-
mation languages that best suits our needs. To do so, we identify some characteristics
that are desirable in the transformation language. The following is a description of
these characteristics:

Transformation Approach: While studying the existing transformation languages,
we found them to be either declarative, imperative, object-oriented, or hybrid.Declar-
ative languages are good for simple transformation that is based on establishing rela-
tions between the input and output models. Imperative languages are more suited for
complex transformations as they describe the different steps that need to be executed
to transform the source model into the target model. Hybrid languages are those who
combine both declarative and imperative constructs. Indeed, the process of weaving
aspects into base models is not always based on establishing direct relations between
the models. In fact, it may require complex operations that declarative languages
fail to achieve. Thus, imperative or perhaps hybrid approaches will give us more
expressiveness in terms of language constructs when dealing with aspects weaving.

Rule Scheduling: It is the order in which transformation rules are applied on
the models while executing the transformation. As defined in [63], rule scheduling
in transformation languages can be categorized as follows: (1) Implicit scheduling,
which is based on the implicit relations between rules, (2) Explicit scheduling, which
is based on explicit specification of rule ordering. Additionally, explicit scheduling
can be further classified into explicit internal and explicit external scheduling. While
the former is defined using explicit rule invocations, the latter depends on defining
the scheduling logic outside the transformation rules by the means of some special
language. Furthermore, in the context of aspect weaving, we need to have full control
over the order in which the rules are applied. Such control will help in handling
different issues, such as conflicting advices where the application of one advice
depends on the application of the other.

Traceability Support: The tool has to provide support for traceability between
models. It should provide a trace record that shows links between elements in the
source model to elements in the target model. This is important to be able to track
what aspect applied what modification on the base model. In addition, traceability is
of high value for documentation purposes.

Standardization: The Object Management Group (OMG) defined QVT (Query/
View/Transformation) as a standard language for model transformations. It is impor-
tant to choose a language that is based on a standard and thus support all other relevant
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Table 4.2 Comparison of model transformation languages and tools

Language/Tool Approach Rule scheduling Traceability Standardization

QVTO Imperative Explicit internal Yes Yes

ATL Hybrid Explicit internal Yes No

OAW Imperative Explicit external No No

MTF Declarative Implicit Yes No

Kermeta Imperative Explicit internal No No

Graph-based
language

Declarative Explicit external No No

General-purpose
programming
language

Imperative Explicit internal No No

standards, such as UML,MOF, OCL, etc. This will provide portability for the weaver
through different UML case tools, which provide support for OMG standards.

Table4.2 summarizes the different transformation languages. By comparing the
different languages/tools with regards to the aforementioned characteristics, we con-
clude that QVTO is the best language to use as it meets our needs for model weaving.

4.7 Conclusion

In this chapter, we have presented the background related to MDA and model trans-
formations. We have shown the benefits of such technology through its different
applications in various domains. Moreover, we have presented an overview of exist-
ing transformation languages and tools. Additionally, a comparison between these
tools with respect to a set of defined criteria is presented. As a result, we have decided
to use QVT Operational as the adopted language in our approach.
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Chapter 5
Model-Based Security

This chapter presents the background related to security at the modeling level. We
start in Sect. 5.1 by investigating security specification approaches for UML design.
Three main approaches have been adopted in literature for security specification:
(1) using UML artifacts, (2) extending UML meta-language, and (3) creating a new
meta-language. In Sect. 5.2, we evaluate the usability of these approaches for secu-
rity specification according to a set of defined criteria. Afterwards, in Sect. 5.3, we
overview the main design mechanisms that are typically adopted for security hard-
ening at the modeling level. These are security design patterns, mechanism-directed
meta-languages, and aspect-oriented modeling. We also highlight the challenges
related to the use of these mechanisms in UML design. In Sect. 5.4, we present
the research contributions that address security specification and hardening in UML
design. Finally, we conclude this chapter by a discussion on the relevance of these
mechanisms for security hardening.

5.1 Security Specification for UML Design

There are three main approaches that are usually adopted for security specification
in UML: using UML artifacts, extending UML meta-language, and creating a new
meta-language. Thus, a subsection is dedicated to present each approach and show
how it can be used for security specification.

5.1.1 Security Specification Using UML Artifacts

In this section, we show how stereotypes and tagged values, OCL, and behavior
diagrams can be used for security specification and design.

© Springer International Publishing Switzerland 2015
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5.1.1.1 Stereotypes and Tagged Values

Description: Stereotypes are provided as a mechanism for extending UML meta-
language. Therefore, a stereotype is considered as a user-defined meta-element. Its
structure matches the structure of an existing UML meta-element which is referred
to as “base class”. In that sense, a stereotype represents a subclass (subtype) of the
base class. It has the same form but with a different intent. A stereotype can have
tagged values used to define the additional information needed to specify the new
stereotype intent. Besides, constraints can be defined on both the base class attributes
as well as the tagged values. Code generators and other tools, such as those used for
verification and validation, reserve special treatment to stereotypes.
Use for Security Specification: Security requirements are specified by attaching
stereotypes along with their associated tagged values to selected elements of the
design (e.g., subsystems, classes, etc.). Thus, a “security” profile should be created
by some security expert for the specification of these stereotypes. The compiler used
to parse the UML diagram is then modified such that it can read and interpret the
stereotypes annotating the design. This interpretation consists in generating a formal
representation of the security requirement corresponding to the security annotation.
This security requirement is generated on the basis of the intent of the security expert
while taking into consideration the specificities of the analyzed design. In addition,
a formal semantics is associated with the design. Then, the formal security require-
ment together with the formal semantics are provided as inputs to a verification tool
(usually a model checker or a theorem prover). The result of verifying the security
requirement on the design is translated into some representation that non-security
expert developer can understand. Some stereotypes are parameterized over the adver-
sary type. These stereotypes are used to specify security properties that need to be
verified against a specification of an attacker (adversary). Faire exchange, secrecy,
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and authenticity are examples of these properties. The adversary type specifies the
adversary’s computation capabilities and initial knowledge.

Figure5.2 shows how stereotypes can be used to specify security requirements on
UML design of Fig. 5.1. The used stereotypes are Privacy, Auditing, Access
Control,Critical,Integrity, and NonRepud. For example, the stereotype
Privacy is attached to the Patient partition to specify that unauthorized disclosure
of sensitive information about the patient is not permitted.

5.1.1.2 Object Constraint Language (OCL)

Description: OCL is a formal language used to express constraints over UML dia-
grams. These constraintsmainly specify those conditions thatmust be satisfied by the
system being modeled. OCL is mainly used to specify application-specific require-
ments for UML models. In addition, it is used to specify invariants of UML meta-
language. More precisely, the main purposes for which OCL can be used are the
followings: (1) to specify invariants on classes and types in the meta-language, (2)
to specify type invariant for Stereotypes, (3) to describe pre and post conditions on
operations and methods, and (4) to describe guards [153].
Use for Security Specification: Since OCL is a language for constraints specifi-
cation, it is natural to be used for security specification. According to the main
usability purposes listed above, OCL has been used for security specification follow-
ing three main directions. First, for the security profiles extending UML for security
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Fig. 5.2 An example of specifying security using stereotypes
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specification, OCL is used to define constraints on elements described by stereo-
types and tagged values. Second, for those stereotypes used for the specification of
access control properties, OCL can be used by the designer to define access con-
trol constraints (preconditions and authorization guards). Third, some OCL exten-
sions [214] allow the specification of temporal logic formulas and thus are used
to specify security requirements in temporal logics, e.g., LTL, CTL, etc. Figure5.2
shows how OCL can be used to specify a constraint on the action “Fill admission
request”. This constraint restricts the execution of this action to working hours. This
will protect the system from malicious use during nights. The condition starts by
specifying its context, i.e., the method on which it is applied, which is the method
FillAdmissionRequest of the class Admission. Then the constraint speci-
fies the precondition to be satisfied before executing the controlled method.

5.1.1.3 Behavior Diagrams

Description: Behavior diagrams are UML diagrams used to depict the behavioral
features of the system under design. These include activity, state machine, and use
case diagrams as well as four interaction diagrams. The later are those diagrams
used to specify interactions between objects inside the system. Interaction diagrams
include communication, interaction overview, sequence, and timing diagrams.
Use for Security Specification: Behavior diagrams can be used for security spec-
ification in two ways. The first one is to specify the behavior that ‘MUST’ be
observed by the system and the second one is to specify the behavior that ‘MUST
NOT’ be observed by the system. The later has been investigated by some recent
contributions [215] where the used diagrams are called “Abuse cases diagrams”.
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Fig. 5.3 Fair exchange requirement inside medical applications



5.1 Security Specification for UML Design 51

Fill 

Admission 

Request

Receive 

Medical 

Evaluation

Capture 

Insurance 

Information

Fill Cost 
Information

Pre-Admission 

Test

Evaluate 
Patient Exams

Make 

Exams

Clinical 

Data

Clinical

Information

Medical 
Evaluation

[exams]

Patient
Administration Area

Admission Accounting

Medical Area

Medical Evaluation Exams

[Payment 

received]

Check 
Payment

Fig. 5.4 Enforcing the security requirement of Fig. 5.3 in the activity diagram of Fig. 5.1

Figure5.3 shows an example of an activity diagram specifying the behavior that must
be followed by the system after filling the cost information until sending the med-
ical evaluation to the patient. This behavior is required for enforcing faire exchange
between patients and the medical institution. Enforcing this behavior inside the orig-
inal design of Fig. 5.1 results in the new design presented in Fig. 5.4. This represents
one possible scenario of using behavior diagrams to enforce security requirements.
A non-security expert designer will use this “safe design” and integrate it inside its
original design. Another possible scenario is when the behavior diagram, specifying
a security requirement, is used to verify, throughmodel checking or theorem proving,
whether the design satisfies or not the security requirement. In this case, the diagram
is translated into a (1) transition system (finite state machine or automata, etc.) or
(2) a logic formula, both expressed in the input language of the target verification
tool. Indeed, many contributions establishing the correspondence between transition
systems and temporal logics can be found in language theory [50]. A third possible
scenario is the use of behavior diagrams to specify security aspects. Indeed, aspects
[114] are usually defined by specifying a behavior that is inserted before or after
some execution point. Thus this behavior can be easily specified by a behavioral
diagram. However, the weaving of aspects and the original design can be performed
on the level of design by weaving UML diagrams or postponed to the implementa-
tion phase. In the later case, the weaving is performed on selected files of the source
code and the actual aspects expressed in existing aspect languages, e.g., AspectJ, and
resulting from the refinement of their initial behavior diagrams.
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5.1.2 Security Specification by Extending UML
Meta-language

This section shows how UML meta-language can be extended to specify security
policies.
Description: In this approach, UML meta-language is directly extended by a meta-
language specification language as the Meta-Object Facility (MOF) [151]. MOF
defines a simple meta-meta-model, and the associated semantics, allowing the
description ofmeta-models in various domains including the domain of object design
and analysis. Extending UML meta-language (metamodel) is usually needed when
extension mechanisms provided by UML (mainly stereotypes) are not appropriate
for the target extension or when the resulting complexity is not tolerated.
Use for Security Specification: The two reasons stated above are the same moti-
vating the extension of UML meta-language for security specification. Although,
stereotypes allow the specification of a wide range of security requirements, they
are not appropriate for specifying structured security policies: Those that are usually
specified usingwell structured specification languages. Access control properties and
security aspects are the main requirements for which it is better to have dedicated
meta-elements than using standard UML meta-elements annotated by stereotypes
and tagged values.

5.1.3 Security Specification by Creating New Meta-languages

This section shows how newmeta-languages can be proposed for specifying security
policies.
Description: In this approach, a newmeta-language is defined using ameta-language
specification language as MOF. The motivations of crating a new meta-language are
the same as those of extending UML meta-language. The vocabulary used by the
meta-elements defined by the new meta-language have domain-specific intuition
and are much more precise than the one used for UML meta-elements. Thus, the
interfaces needed for manipulating the newmeta-elements are too simpler compared
to those required for UML design.

Table 5.1 Usability evaluation of security specification approaches

Stereotypes
and tagged
values

OCL Behavior
diagrams

Extending
UML Meta-
language

Creating new
Meta-
languages

Expressiveness All_Reqs,
All_Logics

All_Reqs,
All_Logics

Static_Reqs,
LTL_Logic

Static_Reqs,
All_Logics

All_Reqs,
All_Logics

Tool support Standard Highly
Portable

Standard Highly
Portable

Weakly
Portable

Verifiability Comp_Verif Good_Verif Good_Verif Good_Verif

Complexity Low_Comp to
High_Comp

Acceptable_
Comp

Low_Comp Acceptable_
Comp

Acceptable_
Comp
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Use for Security Specification: The motivations of creating new meta-languages
for security specification are exactly the same of extending UML meta-language
for security specification. Indeed, the approach is used for the same objectives and
allows the specification of almost the same security requirements.

5.2 Usability Discussion

This section discusses the usability of each security specification approach on the
light of our survey of the state of the art. First, we define a set of usability criteria that
will be used later to discuss the different security specification approaches presented
in the previous section. For the first approach, we discussed separately the usability
of each of the three UML artifacts used for security specification. The results of the
usability discussion of all the approaches are summarized in Table5.1.

5.2.1 Usability Criteria

Inspired by the state of the art of software usability and software security requirements
specification, we defined the following usability criteria:

• Expressiveness: Refers to the ability of specifying security requirements. This
is a discriminatory criterion since it leads to the rejection of any approach that
fails to specify the desired security requirements. Regarding this criterion, any
specification approach will be given two ranks. The first rank is related to the
covered security requirements and can take one of the following values:

– Static_Reqs: if it allows the specification of themajority of statically enforceable
security requirements.

– Dynamic_Reqs: if it allows the specification of the majority of dynamically
enforceable security requirements.

– All_Reqs: if it allows the specification of almost all the security requirements.

The second rank is related to the logic classification of the security requirements
that can be specified. It can take one of the following values:

– LTL_Logic: if the security requirements belonging to LTL logic can be specified
by the evaluated approach.

– CTL_Logic: if the security requirements belonging toCTL logic can be specified
by the evaluated approach.

– All_logics: if the specifiable security requirements can belong to any logic class.

• Tool Support: Refers to the availability of tools for specification and verification of
security requirements, which is of paramount importance. Tools aremainly used to
(1) artifact the specification and (2) compile and store the specification in a useful
intermediate representation (for verification and/or code generation). Tool support
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will be ranked by using one of the following three values: (1) Standard when tools
are provided by any standardUMLmodeling framework, (2)HighlyPortablewhen
they are not supported by all standard UML frameworks but can be easily ported
(e.g., plugged in), or (3) WeaklyPortable when the tools are almost unportable.

• Verifiability: Refers to the efforts needed to verify the design against the security
requirements. These cover (1) associating a semantics toUMLdesign, (2) formally
specifying security requirements, (3) actually verifying the design against the
security requirements, and (4) interpreting and presenting the verification results.
Verifiability will be ranked using one of the following three values: (1)Comp_Verif
for complex verifiability, (2) Good_Verif for verifiability with acceptable efforts,
and (3) Ease_Verif for easy verifiability.

• Complexity: Refers to the amount of security-relevant information added to aUML
design and its impact on its readability. Complexity will be evaluated using one of
the following three values: (1) High_Comp when the added security information
seriously deteriorates the readability of the design, (2) Acceptable_Comp when
it is tolerated, or (3) Low_Comp when it is negligible compared to the original
design complexity.

5.2.2 Security Specification Using UML Artifacts

5.2.2.1 Stereotypes and Tagged Values

In the following we discuss the usability of stereotypes and tagged values for security
specification.

• Expressiveness: UMLartifacts provided by standardUML,mainly stereotypes and
tagged values, are the most used by the majority of the contributions. Among these
contributions, we can cite: UMLSec [110] by Jürjens which provides a UML pro-
file and an open-source tool for specifying security requirements such as secrecy,
integrity, authenticity, faire exchange, role-based access control, secure communi-
cation links, and secure informationflow.Stereotypes are used byPavlich-Mariscal
et al. [164] and Basin et al. [127] for specifying access control policies and by
Montangero et al. [137] formodeling authentication protocols. These contributions
show that various security requirements have been specified using stereotypes and
tagged values.

• Tool Support: Stereotypes and tagged values have an excellent tool support since
any standard UML modeling framework supports profile specification.

• Verifiability: A lot ofwork is done in background to generate a formal semantics for
UMLdesign, formally specify the security requirement, verify the property against
the design, and show the verification result to the end user (UML designer). The
later usually consists in displaying counter examples and providing advices to
improve the design and fix the vulnerabilities.
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• Complexity: The complexity of the information added for security specification,
depends on the number of stereotypes and tagged values attached to each UML
element. For example, if different security stereotypes are associatedwith the same
UML element then it will be complex for the user to select all these stereotypes
and edit the associated tagged values. In this case, the security profile designer has
the responsibility of compacting as possible the architecture of his profile design.

5.2.2.2 OCL

OCL is also used bymany of the surveyed contributions to express formal constraints
in the specification of security properties. This is due to the fact that OCL is part of
UML standard, and by its formal nature, it allows precise specification of security
constraints. The approach of Painchaud et al. (SOCLe project) [161] is based on
temporal logic extension of OCL for security specification. OCL has been also used
by [127] to specify additional authorization constraints related to the state of the
system. As we mentioned above, it is natural to use OCL for security specification.
However, it is important here to distinguish between using OCL as a support for
some security specification artifact as stereotypes and behavior diagrams, and using
it as security specification language. In the former case, the use of OCL improves the
usability of any specification artifact by allowing the definition of constraints over
UML design entities. Accordingly, we focused our usability evaluation on the later
case. In the following, we discuss the usability of OCL for security specification.

• Expressiveness: As a security specification language, the standard OCL [153]
is limited to specifying pre and post conditions and invariants that should be
satisfied by the application behavior. However, some OCL extensions allow the
specification of temporal logic properties.

• Tool Support: Standard OCL benefits from the support of different tools provided
by standard UML modeling frameworks. However, the usability of OCL exten-
sions is limited by the availability of tools supporting the specification and the
compilation of security requirements.

• Verifiability: Once compiled and analyzed by the tool, security requirements speci-
fied usingOCL extensions are systematically provided as input formulas for verifi-
cation tools (model checkers and/or theorem provers). However, as for stereotypes,
a lot ofwork is done in background to generate a formal semantics forUMLdesign,
verify the properties against the design, and show the verification result to the end
user (UML designer).

• Complexity: The complexity introduced by this approach depends on the number
of OCL expressions added to specify security properties and weather they are
crosscutting the application functionalities design or separated from them.
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5.2.2.3 Behavior Diagrams

We notice the lack of using behavioral diagrams for security specification among the
surveyed approaches. In fact, only the approach of Zisman [215] that proposes the
modeling of abuse cases to represent possible attack scenarios and potential threats to
the system security. In the followingwe discuss the usability of behavior diagrams for
security specification. We distinguish in our discussion between the use of behavior
diagrams to specify security requirements for the sake of verification and their use
to specify security aspects for the sake of security enforcement or hardening.

• Expressiveness: Is limited to specify those security requirements that are natu-
rally expressible via transition systems. These include mainly attack scenarios and
dynamically enforceable security requirements. As for security aspects specifica-
tion, behavior diagrams are very useful for specifying advices behavior. However,
stereotypes should be defined to allow the specification of patterns needed for the
definition of pointcuts.

• Tool Support: Behavior diagrams benefit from a wide tool support. However, tool
support for this approach depends also on the tool support of stereotypes.

• Verifiability:Whenused for security requirements specification, behavior diagrams
are translated to transition systems or logical formulas in order to be verified on
the system design. While the former translation is almost systematic, the later is
limited to those diagrams satisfying some structural constraints (e.g., determin-
ism) and constrained by the availability of translation algorithms in language and
logic theory. As for stereotypes and OCL, a lot of work is done in background
to generate a formal semantics for UML design, verify the properties against the
design, and show the verification result to the end user (UML designer). When
used for security aspects specification, as for the first approach, a lot of work is
done in background to (1) identify diagram entities (e.g., methods/actions) match-
ing the specified patterns and (2) weaving diagrams specifying advices and those
specifying the system behavior.

• Complexity: Relatively acceptable since the behavior diagrams specifying security
requirements are separated from those specifying the system behavior and are
easily distinguishable from them. The complexity of security aspects specification
is comparable to that of security requirements specification.

5.2.3 Extending UML Meta-language

Only few contributions [164] have investigated the extension of UMLmeta-language
for security specification. This is due to the fact that this kind ofmodification requires
a high expertise and knowledge of UML meta-language and its objectives. Indeed,
the extension may require the modification of the whole meta-language which is too
complex. In the following, we discuss the usability of extendingUMLmeta-language
for security specification.
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• Expressiveness: Comparable to that of stereotypes.
• Tool Support: The extension is heavyweight so that “may require one to extend the
CASE-tool itself, in particular the storage components, i.e., the repository, and the
visualization components” [127]. This impacts negatively the portability of any
extension since any UML modeling framework is heavily modified to allow the
use of the new meta-elements and their interpretation.

• Verifiability: A lot ofwork is done in background to generate a formal semantics for
UML design, verify the properties against the design, and show the verification
result to the end user. However, if the extension targets some low-level policy
specification language or AOP language, then the effort spent in background is
limited to parsing the specification and translating it to the target language.

• Complexity: The complexity is comparable to that of using behavior diagrams.

5.2.4 Creating a New Meta-language

As for the previous approach, only few contributions [127] have investigated the
creation of newmeta-languages for security specification. In the followingwe discuss
the usability of creating a new meta-language for security specification.

• Expressiveness: Comparable to the expressiveness of extending UML meta-
language.

• Tool Support: Better than that of extending UML meta-language and comparable
to that of stereotypes. In addition, the compiler needed to parse the specification
can be easily plugged into the UML modeling framework.

• Verifiability: Better than that of extending UML meta-language. Indeed, the secu-
rity specification is exclusively based on the new meta-elements and thus is easier
to parse and translate.

• Complexity: Comparable to the complexity of extending UML meta-language.

5.3 Model-Based Security Hardening Mechanisms

Three main approaches are usually followed for the specification of security hard-
ening mechanisms at UML design level. These approaches are design patterns,
mechanism-directed meta-languages, and aspect-oriented modeling. In the follow-
ing, we introduce these approaches and then highlight the challenges related to their
use in UML design.
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5.3.1 Security Design Patterns

Design patterns are defined as generic reusable solutions to solve recurring problems
in software design. The idea of a pattern was first introduced as an architectural
concept by Alexander et al. [30] and was later adopted in the software engineering
community. One of the main goals of design patterns is to help designers in applying
good practices in software development. Indeed, design patterns capture the knowl-
edge of experts in a well-structured form that facilitates its reuse by designers. In
recent years, the application of the pattern concept in the field of information security
has been widely investigated. In this context, a security design pattern describes a
particular recurring security problem that arises in a specific context. In addition, it
presents a well-proven generic scheme for a security solution [184]. Like design pat-
terns, security patterns encapsulate the knowledge of security experts in the form of
proven solutions to common problems. Thus, developers can benefit from the skills
and the experience of security experts.

5.3.2 Mechanism-Directed Meta-languages

Following the same intuition of design patterns, many contributions have proposed
extensions of UML metamodel, each of which is dedicated to the design of a spe-
cific security hardening solution. UML extension mechanisms that are adopted are
mainly UML profiles (stereotypes and tagged values). The adoption of these exten-
sion mechanisms is motivated by their expressiveness to specify a wide range of
security requirements. In addition, UML standard extension mechanisms benefit
from a good tool support since any UMLmodeling framework supports the standard
profile specification. Accordingly, many UML extensions have been proposed in the
literature for specifying security requirements. The majority of these languages tar-
get RBAC security policies [27, 32, 72, 128, 174]. Other security requirements, such
as authentication, have been also addressed [137].

5.3.3 Aspect-Oriented Modeling

The applicability of aspect-oriented techniques to specify security requirements and
hardening mechanisms has been heavily studied in the literature both at the imple-
mentation and design levels [35, 49, 56, 93, 111, 141, 164, 172, 173, 199, 207, 211].
Indeed, aspect-oriented techniques support the idea of separating crosscutting con-
cerns from the application core functionality. Since security is a crosscutting concern
that pervades the entire software, it is natural to consider Aspect-Oriented Model-
ing (AOM) as a mechanism for security hardening at the modeling level. In fact, a
security hardening solution consists of specifying the needed security functionalities
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and the locations where these functionalities should be applied. In addition, these
security functionalities should be systematically injected into the base models at
specified locations, which could be achieved using AOM.

5.3.4 Challenges

The designer of security hardening mechanisms, using UML, has to deal with the
following challenges:

• Non-Standardization: There is a lackof standardization efforts regarding the design
of security hardening mechanisms. Consequently, for the same security policy,
different security experts can adopt different designs (e.g., pattern, aspect). As a
result, this will limit the adoption of these solutions and may confuse the end-
designer when having to choose between different solutions.

• Adaptability to Users’ Design: The security mechanism design provided by the
security expert is sometimes application-independent. This way, it will be generic
enough to be adapted to the design of the end-user. However, since this adapta-
tion/specialization will be performed by a non-security expert designer, it should
be as systematic and as easy as possible. It may be required that a well-detailed
procedure should accompany the security solution.

• Maintainability of Design and Security Mechanisms: During the development
process, the design models as well as the security solution may be in continuous
modification. Consequently, the security hardening solution should take into con-
sideration the appearance of new elements and the disappearance of others. Indeed,
the appearance of some elements necessitates applying the security solution to
these elements without reapplying it to the existing elements that are already
covered by the solution. If some elements will be dropped from the design while
they have been covered by the solution, then the corresponding security elements
should be, in turn, dropped from the design. Similar maintenance modifications
should be applied when the security solution itself is updated.

• Validation: Securitymechanisms are supposed to enforce the security policies they
are designed for. However, validating this claim is far from being a straightforward
task. Thus, rigorous verification and validation techniques should be applied on
the proposed security mechanism design.

5.4 Related Work on Model-Based Security

In this section, we present the state-of-the-art initiatives on security specification and
hardening at the design level. We classify the related work according to the adopted
mechanisms into three main categories: (1) Security design patterns, (2) mechanism-
directed meta-languages, and (3) aspect-oriented modeling.



60 5 Model-Based Security

5.4.1 Security Design Patterns

Several security design patterns have been proposed in order to guide software engi-
neers in designing security models at different phases of the software development
life cycle. A detailed study of different security patterns can be found in [42, 115,
123, 185, 209]. We present in the following an overview of the existing patterns.
Kienzle et al. [115] present 29 security patterns for web applications. The patterns
are classified into two categories: structural and procedural patterns. The structural
patterns include diagrams that describe both the structure and the interaction of the
design pattern. On the other hand, the procedural patterns are used to improve the
development process of security-critical software. Romanosky [179] presents eight
security design patterns that represent a collection of security practices. The pro-
posed patterns address high-level security concerns, such as, how to provide secure
communication in the presence of untrusted third-party, how to make a system fails
securely, etc. The discussion however has focused on architectural and procedural
guidelines more than on security patterns. Brown et al. [109] introduce the authen-
ticator pattern, which describes a general mechanism to provide identification and
authentication from a client to a server. This pattern has been later extended by
Fernandez and Warrier [82] for authentication and authorization.

The Open Group [48] presents a catalog of thirteen architectural-level and design-
level security patterns that are based on architectural framework standards. It also
presents a systematic methodology for using those security patterns to design a sys-
tem, which has good availability and protection properties. Fernández [81] provides
amethodology to build secure systems using patterns. Themain idea of this approach
is that security principles should be applied through the use of security patterns at
every stage of the software development process, i.e., requirements, analysis, design,
and implementation. At the end of each stage, audits are performed to verify that
the security policies are being followed. Chan and Kwok [54] propose an object-
oriented design pattern that models the main entities of security design, such as,
vulnerabilities, threats, risks, impact of loss and countermeasures for different parts
of an e-commerce system.

Schumacher et al. [184] present a list of forty-six patterns for integrating security
in systems engineering. The proposed patterns are at different levels of abstraction.
They range fromhigh-level patterns targeting the development of secure applications,
to low-level patterns addressing the security of operating systems. An IP telephony
case study is provided to illustrate the application of the patterns. Dougherty et al.
[73] propose security patterns that are categorized according to their level of abstrac-
tion into: architectural-level, design-level, and implementation-level patterns. The
security design patterns are proposed as extensions to the existing design patterns
(e.g., factory and strategy design patterns) by adding security-specific functionalities.

Yoshioka et al. [209] provide a survey of security patterns according to the dif-
ferent phases of the software development life cycle. During the requirement phase,
the different assets of the system are identified as well as the purpose of protect-
ing them. Additionally, the security requirements are specified alongside the system
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requirements. During the design phase, various security functions are designed as
patterns to protect the assets that are identified in the requirement phase. For instance,
such patterns may cover functions such as authentication, authorization, and access
control. Finally, implementation-level security patterns are needed to guide program-
mers while writing programs with guidelines illustrating the required techniques to
write secure programs.

5.4.2 Mechanism-Directed Meta-languages

Considerable work has been done in the literature to provide UMLmetamodel exten-
sions for the integration of security into various stages of the software development
life cycle. In the following, we present a brief summary of those contributions.
The UMLSec approach [110] is among the first efforts in extending UML for the
development of security-critical systems. It provides a UML profile where general
security requirements, e.g., secrecy, integrity, fair exchange, are encapsulated using
UML stereotypes and tagged values. It also defines a formal semantics to evalu-
ate UML diagrams against weaknesses. In order to analyze security specifications,
the behavior of a potential adversary, that can attack various parts of a system, is
formally modeled.

Basin et al. [128] propose an approach to model RBAC policies for model-driven
systems. This approach proposes a general schema, in which systems modeling
languages are combined with security modeling languages by defining dialects.
These dialects identify the protected resources from elements of the systemmodeling
language. This approach defines a general meta-model for generating security mod-
eling languages. SecureUML [127] is one instance of these languages defined for
modeling RBAC policies. It has an abstract syntax that is independent of any model-
ing language and a concrete syntax that is defined as a UML extension using stereo-
types and tagged values. From models in the combined languages, access control
infrastructures are automatically generated using MDA-based transformation mech-
anisms [148]. However, SecureUML only focuses on specifying the RBAC model.

The approach of Doan et al. [72] incorporates RBAC, MAC, and lifetimes into
UML for time-sensitive application design. Themain focus of this approach is that the
process of designing and integrating security in a software application captures not
only the current design state, but allows tracking the entire design evolution process
via the creation and the maintenance of a set of design instances over time. The
design tracking allows a software/security engineer to recover to an earlier design
version that satisfies specific security constraints.

Zisman [215] proposes a framework to support the design and the verification of
secure peer-to-peer applications. Design models and security requirements are spec-
ified using the UMLSec approach [110]. The modeling of abuse cases to represent
possible attack scenarios and potential threats helps designers to identify the security
properties to be verified in the system. In addition, this approach facilitates expressing
the properties to be verified by defining a graphical template language. It also allows
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the verification of the models against the specified properties and visualization of the
verification results.

Montangero et al. (For-LySa, DEGAS project) [137] present two UML profiles
to model authentication protocols: (1) the Static For-LySa profile, which describes
how the authentication protocol concepts (e.g., principals, keys, messages) can be
modeled using UML class diagrams, and (2) the For-LySa profile, which models the
dynamic aspects of the protocol in sequence diagrams, as well as the information
needed to analyze the protocol. In order to validate a protocol, For-LySa defines a
specification language together with its semantics to write pre/post conditions and
invariant constraints.

Ray et al. [174] address the issue of integrating different access control policies,
such as RBAC and MAC, into a single hybrid model. This approach uses parame-
terized UML diagrams to model RBAC and MAC frameworks and then compose
them manually to produce a hybrid access control policy. It is the first approach that
attempts to combine different access control policies. However, it focuses only on
how to model these policies in UML without considering how they can be used to
design a secure software system.

Painchaud et al. (SOCLe project) [161] provide a framework that integrates secu-
rity into the design of software applications. It also includes the verification of UML
specifications and a graphical user interface that allows the designer to visualize
the verification results. In this approach, security policies are specified using the
OCL language.

Alghathbar and Wijeskera [32] propose a framework, called AuthUML, to incor-
porate access control policies into use case diagrams. The aim of AuthUML is
analyzing access control policies during the early stages of the development life
cycle before proceeding to the design to ensure consistent, conflict-free, and com-
plete requirements.

Popp et al. [169] propose an extension to the conventional process of developing
use case oriented processes. In addition to modeling security properties with UML,
this approach provides a method to incorporate these security aspects into a use case
oriented development process.

Ledru et al. (EDEMOI project) [124] aim at modeling and analyzing airport
security. Security properties are first extracted from natural language standards and
documents, then integrated into UML diagrams as stereotypes in a UML profile.
UML specifications are then translated into formal models for verification purposes.
This approach is not general enough to be used for software development.

Ahn and Shin [27] propose a technique to describe the RBAC model with three
views using UML diagrams: static view, functional view, and dynamic view. This
approach focuses only on the way that UML elements can be used to model RBAC
policies rather than taking a larger view of examining secure software design. It does
not provide a systematic modeling approach that can be used by developers to create
applications with RBAC models.

Epstein and Sandhu’s work [78] is one of the first approaches that investigate the
possibility of using UML to model RBAC policies. However, it is limited to only
one specific RBAC model, which is the RBAC Framework for Network Enterprises
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(FNE) [195]. The FNE model contains seven abstract layers that are divided in two
different groups. This approach allows to present each of the FNE model’s layers
using UML notation by defining new stereotypes. This approach can assist the role
engineering process, however, it does not include subtle properties of RBAC, such
as separation of duty constraints, and it does not provide a method for deriving roles.

Brose et al. [52] extend UML models to support the automatic generation of
access control policies for CORBA-based systems. They specify both permissions
and prohibitions on accessing system’s objects since the analysis phase in use case
diagrams.UMLdesignmodels are used to generate the specification of access control
policies in VPL (View Policy Language) that is deployed together with the CORBA
application.

Vivas et al. [200] propose a UML-based approach for the development of business
process-driven systems where security requirements are integrated into the business
model. Security requirements are first stated at a high level of abstraction within a
functional representation of the system using tagged values. Next, the UML speci-
fication is translated into XMI representation. Finally, the resulting specification is
translated into a formal notation for consistency checking, verification, validation,
and simulation.

5.4.3 Aspect-Oriented Modeling

The application of AOM to security has generated a lot of research interest in the last
few years. Various contributions that aim at modeling security concerns as aspects
have been published recently. In the following, we present a brief overview of these
contributions. Pavlich-Mariscal et al. [163] propose a new UML artifact called Role
Slice to capture RBAC [83] policies within UML class models. A role slice diagram
contains information on a role’s permissions that cut across all classes in an appli-
cation. RBAC constraints are represented within a role slice diagram using UML
stereotypes. Moreover, this approach proposes algorithms that map access control
policies, provided in role slice diagrams, to AOP security enforcement code imple-
mented in AspectJ. In another effort [164], Pavlich-Mariscal et al. propose an aspect-
oriented approach to model access control policies. They augment UML metamodel
with new diagrams that are separated from the main UML design to represent Role-
Based Access Control (RBAC) [83], Mandatory Access Control (MAC) [45] and
Discretionary Access Control (DAC) [144] models. The separated security diagrams
are then composed with the main design using UML composition techniques. How-
ever, this approach is limited to access control and specifies only the structural part
of the access control policy without considering its behavior.

Ray et al. [173] propose an AOM approach for enforcing access control policies.
An access control aspect is represented as a pattern using UML diagram templates.
Other functional design concerns are specified in a separate model referred to as a
primarymodel. A compositionmechanism is used to integrate access control features
within the primary model. The composition mechanism involves the instantiation
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of the aspect to obtain a context-specific aspect, then composing context-specific
aspects with the primary model. This approach also is limited to access control and
specifies only the structural part of the access control policy. In another work [89],
the authors propose Aspect-oriented Architecture Models (AAMs) that show how
different concerns can be described independently of any underlying technology.
AAMmodels consist of: (1) A set of aspect models, (2) a primary architecturemodel,
and (3) composition directives that define how aspect models are composed with the
primary model. Aspect models are defined as general patterns represented using
UML diagram templates. These patterns are instantiated by binding the template
parameters to actual application values to produce context-specific aspects before
composing them with the primary model.

Zhang et al. [211] propose an aspect-oriented modeling of access control in Web
applications. The approach extends UML-based Web Engineering (UWE) method
by specifying the detailed behavior of each navigation node using a state machine.
Access control to navigation nodes is specified by refining the default state machines
by a statemachinemodeling the access control rules. This approach extends theUWE
metamodel to support aspects. In their AOM approach, an aspect contains navigation
nodes that are associated with the same access control rules. Access control rules are
defined in the aspect containing those navigation nodes.

Gao et al. [93] propose an aspect-oriented design approach for CORBA AC, a
reference model for enforcing access control in middleware applications. The RBAC
model is used to implement a functional CORBA AC mechanism. In this approach,
the RBAC core model is specified as the base model and each RBAC concern is
specified as an aspect. Thus, the approach presents four aspects: role hierarchy aspect,
static constraints aspect, temporal constraints aspect, and spatial constraints aspect.
This approach uses AspectJ [113] and its weaving rules for the implementation of
the CORBA AC model.

Georg et al. [94] propose an aspect-oriented approach for modeling access con-
trol. In this approach, aspects are patterns specifying structures and behaviors. An
aspect is defined in terms of structures of meta-roles called (meta-) RoleModels [94].
Two views are supported by an aspect: static and interaction views. These views are
described using two types of rolemodels: Static RoleModels (SRMs) and Interaction
Role Models (IRMs). Weaving is considered as a special case of UML model trans-
formation using design patterns. In another contribution, Georg et al. [95] propose
an aspect-oriented risk-driven methodology for designing secure applications. The
proposed methodology starts by identifying the assets of the application that need
to be protected. Then, typical attack scenarios are defined and modeled as aspects.
The attack model is composed with the application base model to produce the mis-
use model. After evaluating the application against the defined attacks, and if the
application presents a security risk, then a security mechanism, specified also as an
aspect, is incorporated into the application. Finally, the resulting system is analyzed
to give assurance that it is indeed resilient to the attack.

Jürjens and Houmb [111] present an AOM approach for developing and ana-
lyzing security-critical systems at both modeling and implementation levels. In this
approach, security aspects are specified as UMLSec [110] stereotypes that are woven
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into base models. The resulting UML models and the generated code are verified
against the specified security requirements using automated theorem provers [102].

Dai et al. [65] propose an aspect-oriented framework called the Formal Design
Analysis Framework (FDAF). The latter supports the design and the analysis of non-
functional requirements defined as reusable aspects for distributed real-time systems
using UML and formal methods. The FDAF approach presents a UML extension
to capture performance aspect information in UML models as stereotypes. Then, it
automatically transforms UML design into formal models to be able to analyze the
response time.

5.4.4 Comparative Study

Wehave conducted a comparative study (Table5.2) of the aforementioned approaches
according to a set of defined criteria, such as, the supported security requirements,
the mechanisms used for the specification of those requirements, formalization of
the approach, existence of a tool support, etc. From this study, we have observed
the following:

• The focus of many surveyed projects is on the specification of security policies,
and sometimes analyzing UML models against the specified policies. There is a
lack of approaches for the enforcement of such policies in software systems.

• Most of the approaches adoptRoleBasedAccessControl (RBAC),with an addition
of different flavors of access control based on labels, that is, Mandatory Access
Control (MAC). However, with the growing complexity of software, UMLmodels
must embed more complex security policies.

• The OCL language is employed in many of the surveyed projects for expressing
formal constraints in the specification of security policies. Tagged values are also
used for expressing access control properties.

• We have noticed the absence of expressiveness, applicability, and learning curve
in the majority of approaches. These criteria are important and must be taken into
account in futuremethodologies. As the final users of thesemethods will be human
developers, these criteria can decide whether this approach is realistic or not.

• The approach [164] uses UML stereotypes to represent security policies and then
uses AOP to enforce those policies at execution time. The approach transparently
enforces access control in software components by implementing/weaving the
access control aspect based on roles defined at the design stage. In our opinion,
this approach provides the right trade-off between security needs and ease of use
through demanding relatively smaller effort from the developers and providing
high level of abstraction of the security policies. However, further extension of
this work is still necessary for better expressing more security policies.

• In regards to secure code generation, further efforts are needed for reducing the
performance overhead of deploying these mechanisms in code. To the best of our
knowledge, the generation of efficient code has not been addressed in any of the
surveyed approaches.
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5.5 Conclusion

We have presented in this chapter existing approaches for specifying and hardening
security at the design level. We distinguish between those approaches that are based
on the artifacts provided by the standard UML specification and those that require
explicit extension of the UMLmeta-language. This mainly allows one to understand
when it is better to use UML artifacts and when it is useful to extend UML meta-
language. Moreover, we have investigated the mechanisms used for security harden-
ing at UML design: security design patterns, mechanism-directed meta-languages,
and aspect-oriented modeling. We have seen that security design patterns mainly
provide textual descriptions for solving a given security problem. Although this
approach provides reusable solutions to integrate security best practices early dur-
ing the software development process, it has some shortcomings. In fact, security
design patterns are provided as high-level and abstract solutions; information about
the behavior of security solutions is generally missing in these patterns. In addition,
they generally lack the structure and the methodologies needed for their application.
Moreover, although they are meant to be applied at the design stage, some of the
patterns are provided as directions written in English, which makes them hard to
implement by designers and limits their adoption by industry.

Furthermore, we observed that existing contributions that adopt the use of dedi-
cated meta-models mainly focus on specifying security requirements and sometimes
analyzing UML models against the specified requirements. How to systematically
enforce the specified requirements is not their main concern. In addition, themajority
of these approaches target mainly RBAC model. However, with the growing com-
plexity of software, UML models must embed more complex security policies as
well. Furthermore, this approach seems to be ineffective for non-security experts
as it requires continuous interaction with security experts during software design in
order to ensure the appropriate enforcement of security requirements.

The adoption of AOM for security specification and enforcement overcomes the
limitations observed in the previous approaches. Indeed, usingAOM, security experts
independently specify security enforcement mechanisms as aspects. Moreover, this
approach provides a way to automate the process of integrating those security mech-
anisms within the application base models. However, this approach suffers from
the lack of standardization for aspects specification and weaving. In addition, the
adoption of AOM for security hardening requires a well-defined procedure for the
specialization of the generic aspects designed by security experts.Moreover, from the
state-of-the-art related to AOM and security, we noticed that the majority of existing
approaches are limited to mainly specifying access control policies. Additionally,
they are limited in the supported UML diagrams; sometimes, only the structural part
of a security solution is specified without considering its behavior. In the following
chapters, we will address these issues by providing a more expressive and generic
AOM approach for specifying and systematically integrating security aspects into
both structural and behavioral UML diagrams.



Chapter 6
Security Aspect Specification

As mentioned in the introduction of this book, security should be addressed during
the early phases of the software development life cycle. From the state-of-the-art
survey presented in Chap.5, we have concluded that AOM is the most appropriate
approach to achieve this objective. In this context, we propose, in this chapter, an
AOM approach for specifying and systematically integrating security solutions into
UML design models, and therefore enabling secure code generation. The targeted
security concerns are those high-level requirements that are usually specified and
verified on software, and for which a security solution can be provided as an aspect.
Examples of such requirements are: confidentiality, integrity, authentication, autho-
rization, access control, etc. In the proposed approach, the security expert specifies
the needed security solutions as application-independent aspects. In addition, he/she
specifies how these aspects should be integrated into the design models. The devel-
oper then specializes the application-independent aspects to his/her design. Finally,
our framework automatically injects the application-dependent aspects at the appro-
priate locations in the design models.

In this chapter, we focus on the specification of security aspects. To this end, we
devise a UML profile that assists security experts in specifying security solutions
as aspects. The proposed profile covers the main UML diagrams that are used in
software design, i.e., class diagrams, state machine diagrams, sequence diagrams,
and activity diagrams. In addition, it covers most common AOP adaptations, i.e.,
adding new elements before, after, or around specific points, and removing existing
elements. Moreover, we define a high-level and user-friendly pointcut language to
designate the locations where aspect adaptations should be injected into basemodels.

The remainder of this chapter is organized as follows. Section6.1 summarizes our
approach for specifying and weaving aspects into UML design models. Afterwards,
we present our AOM profile in Sect. 6.2. The related work on AOM is given in
Sect. 6.3. Finally, Sect. 6.4 concludes this chapter.
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6.1 Proposed AOM Approach for Security Hardening

In this section, we present an overview of our proposed AOM approach for security
hardening of software. The proposed approach assists security experts in design-
ing security solutions in a precise way without altering the software functionalities.
In addition, the proposed approach allows developers with limited security knowl-
edge to reuse those solutions with minimal intervention. The approach architecture
is depicted in Fig. 6.1. The main steps of the proposed approach are the following:

• Security Aspect Specification: A security expert designs security solutions as
application-independent aspects. By analogy, these aspects are generic templates
representing the security features independently of the application specificities and
presented in a security aspects library. This design decision is useful in order to
support reusability of aspects in different application domains. Since there is no
standard language to specify aspects inUML, aUMLprofile is developed as part of
our framework in order to assist security experts in designing security aspects. This
profile is designed to allow as many modification capabilities as possible. These
capabilities include the common modification capabilities characterizing the most
prominent AOP languages (AspectJ [113] and AspectC++ [189]). As part of this
UML profile, we have developed a high-level language to specify the pointcuts
that designate the locations in the base model where the aspect adaptations should
be performed. The details about the design of this profile are provided in Sect. 6.2.

Fig. 6.1 Specification and weaving of UML security aspects
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• Security Aspect Specialization: The developer has the possibility to specialize the
application-independent aspects provided by the security expert according to the
application-dependent security requirements and needs. To specialize the aspects,
we provide a weaving interface, in which only the generic pointcuts are exposed
to the developers. By doing so, the complexity of the security solutions is kept
hidden from the developers. More details about security aspects specialization are
presented in Sect. 7.2.

• Join Point Matching: A security aspect mainly consists of a set of adaptations
that should be performed at some specific points (called join points in AOP) of
UML design. Based on the pointcuts specified in the aspect by the security expert
and specialized by the developer, our framework identifies, without any developer
interaction, the join points from the basemodelwhere the aspect adaptations should
be performed. More details about join point matching are presented in Sect. 7.3.

• Security Aspect Weaving: This represents the automatic injection of the security
solutions into the design models at the identified join points. To provide a portable
solution, we adopt a model-to-model transformation language; the QVT language
[150]. QVT is an OMG standard compatible with UML and supports a large set of
modifications on UML models. For each aspect adaptation and the corresponding
base model elements, a set of QVT transformation rules are generated. The details
about the aspect weaving step are provided in Sect. 7.4.

This chapter focuses on describing the security aspect specification step. The
remaining steps of our security hardening approach, i.e., security aspect specializa-
tion, join point matching, and security aspect weaving are detailed in Chap. 7.

6.2 A UML Profile for Aspect-Oriented Modeling

This section presents our AOM profile that extends UML for security aspects spec-
ification. An aspect represents a non-functional requirement. It contains a set of
adaptations and pointcuts. An adaptation specifies the modification that an aspect
performs on the base model. A pointcut specifies the locations in the base model
where an adaptation should be performed. The elements of this profile will be used
by security experts to specify security solutions for well-known security problems.
However, the profile is generic enough to be used for specifying non-security aspects.
In our AOM profile, an aspect is represented as a stereotyped package (Fig. 6.2). For
example, Fig. 6.3 shows a partial specification of an aspect designed to enforceRBAC
mechanisms.1 The RBAC aspect is modeled as a package stereotyped�aspect�. In
the following subsections, we show how adaptations and pointcuts can be specified
using our AOM profile.

1 The full specification of the RBAC aspect is presented in Sect. 7.6.1.2.

http://dx.doi.org/10.1007/978-3-319-16106-8_7
http://dx.doi.org/10.1007/978-3-319-16106-8_7
http://dx.doi.org/10.1007/978-3-319-16106-8_7
http://dx.doi.org/10.1007/978-3-319-16106-8_7
http://dx.doi.org/10.1007/978-3-319-16106-8_7
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Fig. 6.2 Meta-model for specifying aspects and their adaptations

Fig. 6.3 Partial view of the RBAC aspect

6.2.1 Aspect Adaptations

Asmentioned earlier, an adaptation specifies themodification that an aspect performs
on the base model. We classify adaptations according to the covered diagrams and
the modification rules that specify the effect of adaptations on the base model. UML
allows the specification of a software from multiple points of view using different
types of diagrams, such as, class diagrams, activity diagrams, sequence diagrams, etc.
Unfortunately, most of existing AOM approaches specify aspects within the same
modeling view (e.g., structural, behavioral). In this research, we propose an AOM
approach that covers both structural and behavioral views of a system.Notice that this
does not mean that we cover all existing UML diagrams. Instead, we focus on those
diagrams that are the most used by developers: class diagrams, sequence diagrams,
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state machine diagrams, and activity diagrams. Figure6.2 presents our specifica-
tion of adaptations. We define two types of adaptations: structural and behavioral
adaptations.

6.2.1.1 Structural Adaptations

Structural adaptations specify the modifications that affect structural diagrams. We
focus on class diagrams since they are the most used structural diagrams in software
design. A class diagram adaptation is similar to an introduction in AOP languages
(e.g., AspectJ). A structural adaptation ismodeled as an abstractmeta-element named
StructuralAdaptation. It is specialized by the meta-element ClassAdaptation used to
specify class diagram adaptations, which contain adaptation rules for class diagram
elements (see Sect. 6.2.2). Notice that the meta-element StructuralAdaptation can
be specialized to model adaptations for other structural diagrams, such as, compo-
nent diagrams, deployment diagrams, etc. As an example of a structural adaptation,
RoleAddition in Fig. 6.3 is a class adaptation (stereotype�ClassAdaptation�) used
for the integration of a class named Role into a package, designated by the pointcut
SubscriberPackagePointcut, as well as the adaptation rules that are required to the
adoption of an RBAC solution. The definition and the specification of adaptation
rules will be presented later in this section.

6.2.1.2 Behavioral Adaptations

Behavioral adaptations specify the modifications that affect behavioral diagrams. In
our approach, we support the behavioral diagrams that are the most used for the
specification of a system behavior, mainly, state machine diagrams, sequence dia-
grams, and activity diagrams. A behavioral adaptation is similar to an advice in
AOP languages (e.g., AspectJ). A behavioral adaptation is modeled as an abstract
meta-element named BehavioralAdaptation. We specialize the meta-element Behav-
ioralAdaptation by three meta-elements: StateMachineAdaptation, SequenceAdap-
tation, and ActivityAdaptation that are used to specify adaptations for state machine
diagrams, sequence diagrams, and activity diagrams respectively. As for the meta-
element StructuralAdaptation, the meta-element BehavioralAdaptation can also
be extended to model adaptations for other behavioral diagrams, such as, com-
munication diagrams, interaction overview diagrams, etc. As an example of a
behavioral adaptation, CheckAccess in Fig. 6.3 is a sequence adaptation (stereo-
type �SequenceAdaptation�) defining the adaptation rules required to inject the
behavior needed to check user permissions before any call to a sensitive method.
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6.2.2 Aspect Adaptation Rules

An adaptation rule specifies the effect that an aspect performs on the base model
elements. We support two types of adaptation rules: Adding a new element to the
basemodel and removing an existing element from the basemodel. Figure6.4 depicts
our specified meta-model for adaptation rules.

6.2.2.1 Adding a New Element

The addition of a new diagram element to the basemodel is modeled as a special kind
of operation, towhich a stereotype�Add� is applied.We use the same specification
for adding any kind of UML element, either structural or behavioral. Three tagged
values are attached to the stereotype �Add�:

• Name: The name of the element to be added to the base model.
• Type: The type of the element to be added to the base model. The values of this tag
are provided in the enumerations ClassElementType, StateMachineElementType,
SequenceElementType, and ActivityElementType.

• Position: The position where the new element needs to be added. The values of
this tag are given in the enumeration PositionType. This tag is needed for some

Fig. 6.4 Meta-model for specifying adaptation rules
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elements (e.g., a message, an action) to state where exactly the new element should
be added (e.g., before/after a join point). For some other elements (e.g., a class,
an operation), this tag is optional since these kinds of elements are always added
inside a join point.

The location where the new element should be added is specified by the meta-
element Pointcut (see Sect. 6.2.3). For example, in Fig. 6.3, the operation AddRole()
stereotyped �Add� is an adaptation rule belonging to the class adaptation RoleAd-
dition. It adds a new class, named Role, to the package SubscriberPackage, matched
by the pointcut SubsriberPackagePointcut. The class Role is defined inside the
RBAC aspect.

6.2.2.2 Removing an Existing Element

The deletion of an existing element from the base model is modeled as a special
kind of operation stereotyped �Remove�. The set of elements that should be
removed are given by a pointcut expression specified by the meta-element Point-
cut (see Sect. 6.2.3). The same specification is used for removing any kind of UML
element, either structural or behavioral. No tagged value is required for the specifi-
cation of a Remove adaptation rule; the pointcut specification is enough to select the
elements that should be removed.

The proposed profile for the specification of adaptations and their adaptation rules
is expressive enough to cover the common AOP adaptations; i.e., introductions and
before/after/around advices. For example, the profile allows to specify the addition
of a new class to an existing package, a new attribute or an operation to an existing
class, or a new association between two existing classes. In addition, we can remove
an existing class, an attribute or an operation from an existing class, or an association
between two existing classes. As for behavioral modifications, the profile allows to
specify the injection of any UML behavior before, after, or around any behavioral
UML element matched by the concerned pointcut. For example, the profile allows
to specify the addition of an interaction fragment before/after/around a specific mes-
sage in a sequence diagram, or an action before/after/around a specific action in an
activity diagram. Moreover, the proposed adaptation rules are generic; they can be
used to specify any security solution for any design. Table6.1 summarizes the main
adaptation rules that are supported by our approach.

6.2.3 Pointcuts

A pointcut is an expression that designates a set of join points. To specify pointcuts,
we propose a pointcut language in a textual representation rather than using UML
notations. This choice is motivated by the expressiveness and the easiness of the
textual representation comparing to UML. For example, expressing logical pointcuts
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Table 6.1 Supported adaptation rules

UML diagram Supported adaptation rules

Class diagram Adding/removing a class

Adding/removing an attribute

Adding/removing an operation

Adding/removing an association

Adding/removing a package

State machine diagram Adding/removing a state machine

Adding/removing a state

Adding/removing a transition

Adding/removing a region

Sequence diagram Adding/removing an interaction

Adding/removing an interaction use

Adding/removing a lifeline

Adding/removing a message

Activity diagram Adding/removing an activity

Adding/removing an action

Adding/removing a structured activity node

Adding/removing a control flow

in a textual way is more readable than expressing them in UML. In our approach,
a pointcut is modeled as a meta-element stereotyped �Pointcut� with two tagged
values (Fig. 6.4):

• TextExpression: The pointcut expression specified in our proposed textual pointcut
language.

• OCLExpression: An OCL expression equivalent to the textual one, which will be
automatically generated during the weaving process as we will see in Chap. 7.

The textual pointcuts are high-level and easy to write and understand. However,
they cannot be directly used to query UML elements and select the appropriate
join points. Thus, in our framework, we translate the textual pointcut expressions
into OCL expressions to query UML elements. By doing so, we benefit from the
expressiveness of the OCL language and, at the same time, we eliminate the overhead
of writing such complex expressions from the developers. More details about the
generation of OCL expressions from the textual ones are provided in Chap. 7.

Since the targeted join points are UML elements, pointcuts should be defined
based on designators that are specific to UML. To this end, we define a pointcut lan-
guage that provides UML-specific pointcut designators needed to select UML join
points. The proposed pointcut language covers all the kinds of join points where our
supported adaptations are performed. In the following,we present the primitive point-
cut designators for the main UML diagrams that are supported by our approach, i.e.,
class diagrams, state machine diagrams, sequence diagrams, and activity diagrams.

http://dx.doi.org/10.1007/978-3-319-16106-8_7
http://dx.doi.org/10.1007/978-3-319-16106-8_7


6.2 A UML Profile for Aspect-Oriented Modeling 77

Those primitives can be composed with logical operators (AND, OR, and NOT) to
build other pointcuts.

6.2.3.1 Class Diagram Pointcuts

Table6.2 presents the pointcut primitives that are proposed to designate class diagram
elements. We choose the main elements that are usually used in class diagrams, i.e.,
class, attribute, operation, association, and package. Class diagram elements are

Table 6.2 Class diagram pointcuts—part 1

Join point Pointcut designator Description

Class Class(NamePattern) Selects a class based on its name

Inside_Package(PackagePointcut) Selects a class that belongs to a specific
package matched by PackagePointcut

Contains_Attribute(AttributePointcut) Selects a class that contains a specific
attribute matched by AttributePointcut

Contains_Operation(Operation-
Pointcut)

Selects a class that contains a specific
operation matched by OperationPointcut

Associated_With(ClassPointcut) Selects a class that is associated with a
specific class matched by ClassPointcut

Attribute Attribute(NamePattern) Selects an attribute based on its name

Inside_Class(ClassPointcut) Selects an attribute that belongs to a
specific class matched by ClassPointcut

Of_Type(TypePattern) Selects an attribute that is of a certain type

Of_Visibility(VisibilityKind) Selects an attribute that is of a certain
visibility (e.g., public, private)

Operation Operation(NamePattern) Selects an operation based on its name

Inside_Class(ClassPointcut) Selects an operation that belongs to a
specific class matched by ClassPointcut

Args(TypePattern1, TypePattern2,…) Selects an operation based on the type of
its arguments

Of_Visibility(VisibilityKind) Selects an operation that is of a certain
visibility (e.g., public, private)

Association Association(NamePattern) Selects an association based on its name

Between(ClassPointcut,
ClassPointcut)

Selects an association that is between
certain classes

Member_Ends(AttributePointcut,
AttributePointcut)

Selects an association based on its member
ends

Aggregation_Kind(AggregationKind) Selects an association based on its
aggregation kind (e.g., composite)

Package Package(NamePattern) Selects a package based on its name

Inside_Package(PackagePointcut) Selects a package that belongs to a specific
package matched by PackagePointcut

Contains_Class(ClassPointcut) Selects a package that contains a specific
class matched by ClassPointcut
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designated either by their main properties, e.g., name, type, visibility, container,
and owned elements, or by other associated elements. For example, the following
pointcut expression designates a class, named c1, that is inside a package p1, and
contains an operation op1:

Class(c1) && Inside_Package(p1) && Contains_Operation(op1)

Moreover, if we want to designate all classes that contain either private attributes or
private operations, then the following pointcut is an example of such expression:

Class(∗) && (Contains_Attribute(Of_Visibility(Private)) ||

Contains_Operation(Of_Visibility(Private)))

Note that the symbol “∗” is used to designate all the elements of a particular type
regardless of their names, as it is used in AspectJ [113].

6.2.3.2 State Machine Diagram Pointcuts

Table6.3 presents the pointcut primitives proposed to designate the elements of
state machine diagrams. We choose the main elements that are usually used in state
machine diagrams, i.e., state machine, region, state, and transition. A state machine
diagram element is designated either by its name, container, owned elements, speci-
fied elements (in case of a state machine), incoming/outgoing transitions (in case of
a state), or source/target states (in case of a transition). For example, the following
pointcut expression designates a state, named s1, with an incoming transition t1, and
that belongs to a state machine sm1:

State(s1) && Incoming(t1) && Inside_State_Machine(sm1).

6.2.3.3 Sequence Diagram Pointcuts

Table6.4 presents the primitives proposed to designate sequence diagram elements.
We choose the main elements that are commonly used in sequence diagrams, i.e.,
interaction, message, and lifeline. A sequence diagram element is designated either
by its name, type, container, owned elements, specified elements (in case of an
interaction), or source/target lifelines (in case of a message). For example, the
pointcut SensitiveMethodPointcut in Fig. 6.3 is a conjunction of three pointcuts: (1)
Message_Call(SensitiveMethod) selects any message that calls SensitiveMethod(),
(2) Message_Source(User) selects any message whose source is of type User, and
(3)Message_Target(Resource) selects anymessage whose target is of typeResource.
The conjunction of these three pointcuts allows the selection of all message calls to
SensitiveMethod() from a User instance to a Resource instance.
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Table 6.3 State machine diagram pointcuts

Join point Pointcut designator Description

State
machine

State_Machine(NamePattern) Selects a state machine diagram based on its
name

Contains_Region(Region-
Pointcut)

Selects a state machine that contains a specific
region matched by RegionPointcut

Contains_State(StatePointcut) Selects a state machine that contains a specific
state matched by StatePointcut

Contains_Transition(Transition-
Pointcut)

Selects a state machine that contains a specific
transition matched by TransitionPointcut

Specifies_Class(ClassPointcut) Selects a state machine that specifies a specific
class matched by ClassPointcut

Region Region(NamePattern) Selects a region based on its name

Inside_State_Machine(State-
MachinePointcut)

Selects a region that belongs to a specific state
machine matched by StateMachinePointcut

Inside_State(StatePointcut) Selects a region that belongs to a specific state
matched by StatePointcut

Contains_State(StatePointcut) Selects a region that contains a specific state
matched by StatePointcut

Contains_Transition(Transition-
Pointcut)

Selects a region that contains a specific transition
matched by TransitionPointcut

State State(NamePattern) Selects a state based on its name

Inside_Region(RegionPointcut) Selects a state that belongs to a specific region
matched by RegionPointcut

Inside_State(StatePointcut) Selects a state that belongs to a specific state
matched by StatePointcut

Inside_State_Machine(State-
MachinePointcut)

Selects a state that belongs to a specific state
machine matched by StateMachinePointcut

Incoming(TransitionPointcut) Selects a state that has a specific incoming
transition matched by TransitionPointcut

Outgoing(TransitionPointcut) Selects a state that has a specific outgoing
transition matched by TransitionPointcut

Contains_State(StatePointcut) Selects a state that contains a specific state
matched by StatePointcut

Contains_Transition(Transi-
tionPointcut)

Selects a state that contains a specific transition
matched by TransitionPointcut

Transition Transition(NamePattern) Selects a transition based on its name

Inside_Region(RegionPointcut) Selects a transition that belongs to a specific
region matched by RegionPointcut

Inside_State(StatePointcut) Selects a transition that belongs to a specific state
matched by StatePointcut

Inside_State_Machine(State-
MachinePointcut)

Selects a transition that belongs to a specific state
machine matched by StateMachinePointcut

Source_State(StatePointcut) Selects a transition that has a specific source
state matched by StatePointcut

Target_State(StatePointcut) Selects a transition that has a specific target state
matched by StatePointcut
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Table 6.4 Sequence diagram pointcuts

Join point Pointcut designator Description

Interaction Interaction(NamePattern) Selects an interaction based on its name

Contains_Message(Message-
Pointcut)

Selects an interaction that contains a
specific message matched by
MessagePointcut

Contains_Lifeline(Lifeline-
Pointcut)

Selects an interaction that contains a
specific lifeline matched by
LifelinePointcut

Specifies_Operation(Operation-
Pointcut)

Selects an interaction that specifies the
behavior of a specific operation matched
by OperationPointcut

Message Message_Call(NamePattern) Selects a message call, either synchronous
or asynchronous, based on its name

Message_Syn_Call(NamePattern) Selects a message that specifies a
synchronous call

Message_Asyn_Call(Name-
Pattern)

Selects a message that specifies an
asynchronous call

Reply_Message(NamePattern) Selects a reply message based on its name

Create_Message(NamePattern) Selects a message that creates an object

Destroy_Message(NamePattern) Selects a message that destroys an object

Message_Source(TypePattern) Selects a message whose source is of a
certain type

Message_Target(TypePattern) Selects a message whose target is of a
certain type

Inside_Interaction(Interaction-
Pointcut)

Selects a message that belongs to a
specific interaction matched by
InteractionPointcut

Lifeline Lifeline(NamePattern) Selects a lifeline based on its name

Inside_Interaction(Interaction-
Pointcut)

Selects a lifeline that belongs to a specific
interaction matched by
InteractionPointcut

Covered_By_Fragment(Name-
Pattern)

Selects a lifeline that is covered by a
specific interaction fragment

Contains_Execution(NamePattern) Selects a lifeline that contains a specific
execution specification

6.2.3.4 Activity Diagram Pointcuts

Table6.5 presents the primitives proposed to designate the elements of activity
diagrams.We choose themain elements that are commonly used in activity diagrams,
i.e., activity, action, and edge. An activity diagram element is designated either by its
name, type, container, owned elements, specified elements (in case of an activity),
incoming/outgoing edges (in case of an action), or source/target actions (in case of
an edge). For example, the following pointcut expression designates a call operation
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Table 6.5 Activity diagram pointcuts

Join point Pointcut designator Description

Activity Activity(NamePattern) Selects an activity based on its name

Contains_Action(ActionPointcut) Selects an activity that contains a specific
action matched by ActionPointcut

Contains_Edge(EdgePointcut) Selects an activity that contains a specific
activity edge matched by EdgePointcut

Specifies_Operation(Operation-
Pointcut)

Selects an activity that specifies the
behavior of a specific operation matched
by OperationPointcut

Action Action(NamePattern) Selects an action based on its name

Call_Operation_Action(Name-
Pattern)

Selects an action that performs an
operation call

Call_Behavior_Action(Name-
Pattern)

Selects an action that performs a behavior
call

Create_Action(NamePattern) Selects an action that creates an object

Destroy_Action(NamePattern) Selects an action that destroys an object

Read_Action(NamePattern) Selects an action that reads the value(s) of
a structural feature

Write_Action(NamePattern) Selects an action that updates the value(s)
of a structural feature

Inside_Activity(ActivityPointcut) Selects an action that belongs to a specific
activity

Input(TypePattern, …) Selects an action based on the type of its
input pins

Output(TypePattern, …) Selects an action based on the type of its
output pins

Control
Node

Initial(NamePattern) Selects an initial node based on its name

Final(NamePattern) Selects an activity final node based on its
name

Flowfinal(NamePattern) Selects a flow final node based on its name

Fork(NamePattern) Selects a fork node based on its name

Join(NamePattern) Selects a join node based on its name

Decision(NamePattern) Selects a decision node based on its name

Merge(NamePattern) Selects a merge node based on its name

Activity
Edge

Edge(NamePattern) Selects an edge based on its name

Inside_Activity(ActivityPointcut) Selects an edge that belongs to a specific
activity

Source_Action(ActionPointcut) Selects an edge that has a specific source

Target_Action(ActionPointcut) Selects an edge that has a specific target
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action, named a1, that belongs to an activity act1: Call_Operation_Action(a1)
&& Inside_Activity(act1).

6.3 Related Work on AOM

During the last decade, AOM has become the center of many research activities. Fol-
lowing the success of AOP techniques in modularizing crosscutting concerns at the
implementation level, considerable number of contributions worked on abstracting
AOP concepts and adopting them at different specification and design languages.
An overview and a comparison of the existing approaches are presented in [31, 170,
182]. In the following, we provide a summary of the main approaches.

Kienzle et al. [116, 117] have proposed Reusable Aspect Models (RAM); an
AOM approach that specifies a concern using class, state machine, and sequence
diagrams. One of the goals of the RAM approach is to support aspect reusability,
i.e., build aspects with complex functionalities by reusing simple ones, by means
of aspect dependency chains. A weaver is implemented using Kompose [85] for
weaving class diagrams and Geko [138] for weaving state machine diagrams and
sequence diagrams.

The High-Level Aspects (HiLA) approach [212] extends UML state machines for
specifying history-dependent and concurrent behaviors. Join points in HiLA capture
points when a transition is being fired. Pointcuts may also contain constraints, i.e.,
advices are only executed when the constraints are satisfied. To increase reusability,
aspects are specified as UML templates, which are then specialized to the designer’s
application. HiLA also allows transformational aspects, i.e., aspects that can match
a sub-structure of the base state machine and replace them by the advice.

Klein et al. [118] have proposed various formal definitions of join points in
sequence diagrams. Aspects are specified as pairs of UML 2.0 sequence diagrams:
One sequence diagram for pointcuts and the other one for advice specification. Join
points can be either a single element or a collection of elements. This approach also
provides a formal definition of a new composition operator for sequence diagrams,
called an amalgamated sum, and describes its implementation using Kermeta.2

Tkatchenko and Kiczales [196] have added a join point model (JPM) to UML
metamodel. They have covered three UML diagrams, namely, class diagrams, state
machine diagrams, and sequence diagrams. For class diagrams, the considered join
points are class and operation elements. For sequence diagrams, they have considered
messages and lifelines as join points. For state machine diagrams, states and call
triggers have been considered as join points. Comparing with our approach, we
cover a wider range of diagrams and UML elements as join points. In addition, the
matching process in this approach is based only on direct name matching or on
signature comparison.

2 http://www.kermeta.org/.

http://www.kermeta.org/
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Clark et al. [59] have proposed an AOM approach called Theme/UML. This
approach is a symmetric one, i.e., there is no distinction between the base model
and the crosscutting concerns. It is a general-purpose AOM language. Aspects are
modeled as templates that are bound to base elements through binding relation-
ships. Package and class diagrams are used for modeling structural adaptations and
sequence diagrams are used for modeling behavioral adaptations. This approach is
possibly the most mature and the most well-engineered approach to AOM. However,
its main intent is the identification of aspects in the requirements analysis phase and
mapping those aspects to the design.

Some contributions have focused on abstracting AspectJ [113] into the modeling
level [79, 191, 208]. Evermann [79] has proposed aUMLprofile for AspectJ based on
the existing UMLmetamodel. An aspect is specified as a stereotyped class. Pointcuts
are modeled as stereotyped attributes, while advices are modeled as stereotyped
operations. In contrast to previous work on AspectJ profiles, this is possibly the most
complete specification so far. Stein et al. [191] have proposed one of the earlier
profiles for AspectJ. Pointcuts and advices are specified as stereotyped operations.
Join points are considered as messages in collaboration diagrams. The introduction
of new class elements or associations is specified using UML diagram templates.
Weaving of advices and introductions into base models is modeled as relationships
in collaboration diagrams denoting the crosscutting effects of aspects on their base
classes.

Yan et al. [208] have adopted the extension of UML metamodel by introducing
an AspectJ metamodel in order to support AspectJ software modeling. First, a meta-
model for Java was designed by tailoring UML meta-classes to Java. Then, the Java
metamodel was extended into AspectJ metamodel. This work aims at narrowing the
gap between conceptual modeling of aspects and their concrete implementation in
AspectJ. The same approach of extending UML metamodel for aspect specification
was also proposed by Chavez and Lucena [55]. However, the main limitation of such
an approach is the fact that extending UML metamodel requires either modifying
existing UML case tools, or implementing new ones in order to provide support for
the newly defined meta-classes.

One of the initial proposals in this field is the one ofAldawud et al. [28]. It provides
a UML profile for aspect specification by applying stereotypes on classes. Later, it
has been extended to support pointcut and advice specification [29]. Crosscutting
associations are used to showhowaspect elements relate to basemodel elements. This
profile is very generic and captures only few concepts of AOP. Other contributions in
this area [43, 44, 91, 112, 139, 165] have provided extensions of the UML language
for modeling aspects using standard UML extension mechanisms. However, the
majority of these approaches are programming language dependent and specify only
few concepts of AOP.
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6.4 Conclusion

In this chapter, we have presented an AOM approach for specifying and weaving
security aspects into UML design models. This approach is well suited for job sepa-
ration: security experts provide high-level security solutions including the details on
how to apply them in UML diagrams and the designers apply them in their design by
adapting them to the design context. With our approach, even the designers with lim-
ited security knowledge can use the security solutions to enforce the needed security
requirements in a systematic way in their design. As another result of our contribu-
tion, security solutions can be integrated into software from the early phases of the
development life cycle. This in turn helps accelerating the development of secure
applications and reducing errors and costs.

Different mechanisms can be used to specify aspects at the model level. Some
contributions suggest extending UML metamodel by adding new meta-classes or
creating new meta-models to specify aspect-oriented concepts. These techniques
suffer from implementation and interoperability issues, as UML case tools need to
be extended to support the newly specified meta-classes. The other technique, i.e.,
using standard UML extension mechanisms, is a better solution as it overcomes the
limitations identified in the previous approaches.

In this setting, we have developed a UML profile for the specification of aspects
at the design level. The proposed profile allows the specification of common aspect-
oriented primitives, i.e., adding new elements before/after/around join points and
removing existing elements. In addition, the proposed profile supports both struc-
tural and behavioral adaptations and covers the main diagrams that are used in UML
design. Furthermore, we have defined a high-level and user-friendly pointcut lan-
guage that can be used by security experts to designate UML elements. We have
seen that the proposed pointcut language is expressive enough to designate the main
elements that are used in a software design. In the next chapter, we will present our
approach for systematically weaving the security aspects, specified using our AOM
profile, into UML design models.



Chapter 7
Security Aspect Weaving

This chapter presents our aspect weaving framework for security hardening.
The proposed framework allows software developers to systematically integrate
security aspects, specified using our AOM profile, into UML design models. More
precisely, we provide the design and the implementation of the weaving capabilities
corresponding to the aspect adaptations that are supported by our AOM profile.

We start by providing a high-level overview that summarizes the main steps and
the technologies that are followed to implement the weaving framework. Afterwards,
we present the details of eachweaving step. The proposedweaver is implemented as a
model-to-model (M2M) transformation approach since the latter is defined following
the OMG’s standard recommendations. In addition, it provides many languages and
tools that can help in automating the weaving process. As a transformation language,
we adopt the OMG standard Query/View/Transformation (QVT) language [150]
since it is compatible with UML and supports a large set of modifications on UML
models. As for join points matching, we instrument the standard OCL language
to query UML elements due to its expressiveness and conformance to UML. The
proposed weaver covers all the diagrams that are supported by our approach, i.e.,
class diagrams, state machine diagrams, activity diagrams, and sequence diagrams.
For each diagram, we provide algorithms that implement its corresponding weaving
adaptations, i.e., before adaptation, after adaptation, and around adaptation. In addi-
tion, we present the transformation rules that implement aspect adaptation rules, i.e.,
add and remove adaptation rules.

Themain advantages of our weaving framework are the portability and the expres-
siveness thanks to the use of OMG standards, namely, OCL and QVT. Using OCL,
we were able to match a large and variant set of join points. Using QVT allowed
us to support a wide variety of modifications on different UML diagrams. In addi-
tion, QVT extends portability of the designed weaver to all tools supporting QVT
language.

The remainder of this chapter is organized as follows. Section7.1 gives an
overview of our security weaving approach. Section7.2 presents the specialization
of security aspects. The matching process is presented in Sect. 7.3. Afterwards, we
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provide details about the actual weaving process in Sect. 7.4. Section7.5 presents
our weaving tool followed by case studies in Sect. 7.6. In Sect. 7.7, we discuss the
related work on model weaving. Finally, we conclude this chapter in Sect. 7.8.

7.1 Approach Overview

In this section, we present an overview of our security weaving approach.
The proposed approach allows software developers to systematically integrate secu-
rity aspects, specified by a security expert using our AOM profile, into UML design
models. As wementioned previously, the weaving is based onmodel-to-model trans-
formation technology. The main steps and the technologies that are followed to

Fig. 7.1 Overview of the proposed security weaving approach
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implement the weaving capabilities are presented in Fig. 7.1. In the following, we
provide a brief description of each step:

• Aspect Specialization: The developer specializes the application-independent
aspect, provided by the security expert in a security aspects library, to his/her
application. An application-dependent aspect is automatically generated after this
step. More details about this step are presented in Sect. 7.2.

• Pointcut Translation: The textual pointcut expressions specified in the aspect using
our proposed pointcut language are automatically translated into equivalent OCL
expressions. The aspect will then be updated with the new OCL expressions. This
step and the previous one are preliminary steps before the actual weaving begins.

• Join Point Matching: The OCL expressions generated from the previous step are
evaluated on the base model to identify the locations where the weaving should
be performed. More details about pointcut translation and join point matching are
presented in Sect. 7.3.

• QVT Transformation Rules Generation: Using the aspect adaptations and the loca-
tions identified from the previous step, we generate the equivalent QVT transfor-
mation rules. These rules, in turn, will be given as input to the transformation
engine along with the base model, which will result in a secure woven model.

In the following sections, we explain each step of the weaving approach starting
from specializing the application-independent aspects, to identifying the join point
elements of the base model, where different kinds of adaptations need to be injected,
all the way through the process of the actual weaving.

7.2 Security Aspect Specialization

For the purpose of reuse, security aspects can be designed, by security experts,
as generic solutions that can be applied to any design model. More precisely, the
pointcuts specified by security experts are chosen to match specific points of the
designwhere securitymethods should be added. Since security solutions are provided
in a library of aspects, pointcuts are specified as generic patterns that should match
all possible join points that can be targeted by security solutions. Thus, before being
able to weave aspects into base models, the developer needs to specialize the generic
aspects to his/her application by choosing the elements of his/her model that are
targeted by the security solutions.

To specialize the aspects, we provide a graphical weaving interface that hides the
complexity of the security solutions and only exposes the generic pointcuts to the
developers (Fig. 7.2). Indeed, the developer does not need to understand the inner
working of the security solution. From this weaving interface and based on his/her
understanding of the application, the developer has the possibility of mapping each
generic element of the aspect to its corresponding element(s) in the base model.
After mapping all the generic elements, the application-dependent aspect will be
automatically generated.
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Fig. 7.2 Security aspects specialization

Notice here that this mapping operation has a one-to-many relationship. In other
words, one generic element in the pointcut expression can be mapped to multiple
elements in the base model. For example, consider the following pointcut expression
that aims at capturing any call to a sensitivemethod:Message_Call(sensitiveMethod).
In order to specialize this expression, the developer maps the abstract element sensi-
tiveMethod to the corresponding operation(s) in his/her application (e.g., op1, op2).
This will result in an expanded expression, where all the selected elements are com-
bined together with the logical operator OR (||) as follows: Message_Call(op1) ||
Message_Call(op2) (Fig. 7.2).

7.3 Join Point Matching

During this step, the actual join points where the aspect adaptations should be per-
formed are selected from the basemodel. To select the targeted join points, the textual
pointcuts, specified using our proposed pointcut language (Sect. 6.2.3), need to be
translated to a language that can navigate the base model and query its elements.
In our approach, we choose to translate the textual pointcut expressions into the
standard OCL language [153]. This is due to the high expressiveness of the OCL
language and its conformance to UML. In fact, OCL is defined as part of the UML
standard and is typically used to write constraints on UML elements. However, since
OCL 2.0 [149], it has been extended to include support for queries. Therefore, using
OCL, we can match a large and variant set of join points using matching criteria that
take into consideration different properties of UML elements such as names, types,
arguments, and locations.

We translate textual pointcuts to OCL constraints, which serve as predicates to
select the considered join points. This translation is done by producing a parser that is
capable of parsing and translating any textual pointcut expression, that conforms to a

http://dx.doi.org/10.1007/978-3-319-16106-8_6
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defined grammar, to its equivalent OCL expression. Indeed, this process is executed
automatically and in a total transparent way from the user. Once the OCL expression
is generated, it will be evaluated on the base model to select the targeted join points.
For example, the textual pointcut expression: “Message_Call(SensitiveMethod) &&
Message_Source(User)&&Message_Target(Resource)”will be tokenized into three
tokens connected with the logical operator && as follows: (1) Message_Call
(SensitiveMethod), (2) Message_Source(User), and (3) Message_Target(Resource).
The parser will parse the textual expression and will translate it into the following
OCL expression:

“self.oclIsTypeOf(Message) and self.name=‘SensitiveMethod ’ and
self.connector._end-> at(1).role.name=‘User ’ and
self.connector._end-> at(2).role.name=‘Resource”’

This expression will then be evaluated on the elements of the base model and the
matched elements, which correspond to all message calls to SensitiveMethod from
a User instance to a Resource instance, will be selected as join points.

7.4 Security Aspect Weaving

During this step, the aspect adaptations are automatically woven into the base model
at the identified join points according to the specification of the security solution. In
our framework, the process of weaving aspects into UML models is considered as a
model-to-model transformation process, where the base model is being transformed
into a new model that has been enhanced with some new features defined by the
aspect. As a transformation language, we adopt QVT (Query/View/Transformation)
language since it is an OMG standard compatible with UML and supports a large
set of modifications on UML models. The proposed model weaver is implemented
using well-known standards, which makes it a portable solution as it is independent
of any specific UML tool. In the following subsections, we present the details of the
weaver design and implementation, starting by a high-level description of the weaver
architecture.

7.4.1 Weaver Architecture

The weaver is designed to manipulate both structural and behavioral UML diagrams.
It is capable of weaving different types of UML diagrams that are used to model
different views of a system. Figure7.3 presents the general architecture of our model
weaver. It consists of two main components: (1) Join point matching module and
(2) Transformation module. The join point matching module is defined by extending
the QVT engine through the QVT Black-Box mechanism [150]. On the other hand,
the transformation module is composed of four different transformation definitions,
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Fig. 7.3 General architecture of the weaver

each of which corresponds to a particular kind of UML diagram. In the sequel, we
detail each component.

7.4.1.1 Join Point Matching Module

The join point matching module allows evaluating pointcut expressions, specified
in OCL, on UML base model elements and identifying the appropriate join points
that satisfy the given expressions. In our framework, this module is defined as an
extension to the QVT main functionalities using the QVT Black-Box mechanism,
which is an important feature of the QVT language. QVT Black-Box mechanism
facilitates the integration of external programs, expressed in other transformation
languages or programming languages, in order to perform a given task that is un-
realizable by the QVT language. Algorithm 7.1 presents the pseudo-code of our join
point matching algorithm. It takes as input an OCL expression along with the base
model elements and returns as output a set of join point elements that satisfy the
given expression.

This algorithm is executed for each pointcut expression specified in the aspect.
However, when dealing with big models with a large set of elements, this process
may become a significant overhead on the system. Therefore, some optimizations
are needed. Since each pointcut expression belongs to a specific adaptation, we
optimize this process by applying a filtering mechanism, such that we only evaluate
the pointcut expression on those elements that conform to the given adaptation instead
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Algorithm 7.1: Join Point Matching
Input: OCLExp,BaseModelElements
Output: JoinPointElem-set

query = createQuery(OCLExp);
for all el in BaseModelElements do

result = validate(query,el);
if result is true then

JoinPointElem-set.update(el);
end if

end for
return JoinPointElem-set;

of evaluating it on all base model elements. For example, in the case of a pointcut
expression defined in a class adaptation, the filtering mechanism will select from
the base model only class diagram elements, and then pass them to the join point
matching module. This optimization increases the efficiency and the performance of
the matching module.

7.4.1.2 Transformation Tool

The transformation tool consists of a set of transformation definitions, each of which
targets a particular UML diagram. In addition, each transformation definition con-
tains a set of mapping rules that define how each element in the corresponding
diagram should be transformed. In our weaver, we classify the transformation defi-
nitions according to the supported UML diagrams. Thus, we provide four types of
transformation definitions: class transformation definition, state machine transfor-
mation definition, activity transformation definition, and sequence transformation
definition (Fig. 7.3). For instance, the class transformation definition consists of a set
of mapping rules, which specify how each element of the class diagram can be trans-
formed or woven into the base model. A detailed description of each transformation
definition is provided in Sect. 7.4.2.

When the transformation tool receives the base model as input, each transfor-
mation definition applies some filtering operations on the input model to select the
corresponding set of diagrams. Then, each transformation definition executes the
appropriate mapping rules, using the underlying QVT engine, and produces the
woven model as output. This architecture facilitates the extension of the transfor-
mation tool to support a wider range of UML diagrams since new components can
be easily plugged-in without going through the hassle of modifying the existing
architecture. Moreover, since the definition of the mapping rules is based on UML
metamodel, the transformations can be used with any UMLmodel and are not depen-
dent on a particular specification or implementation.
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7.4.2 Transformation Definitions

The transformation definitions describe how each element in the source model (the
base model) is transformed in the target model (the woven model). This is achieved
by using mapping rules that describe a certain behavior. For each aspect adaptation
(e.g., class adaptation), we specify a corresponding transformation definition (e.g.,
class transformation definition). By analogy, the aspect adaptations are program
source code and the transformation definitions are its execution semantics. In other
words, a transformation definition defines how and when each construct in the aspect
adaptation should produce a given behavior. In the following, the four kinds of
transformation definitions are detailed.

7.4.2.1 Class Transformation Definition

The class transformation definition handles transformations of class diagrams. It
contains a set of mapping rules that specify how each class diagram element should
be transformed. To do so, the class transformation definition iterates through the
different adaptations of an aspect and selects the adaptation difference between the

Fig. 7.4 Example of class transformation definition
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class transformation definition and the other transformation definitions of behavioral
diagrams. The class diagrams are structural in nature; they are considered as a static
view. For example, the class transformation definition consists of adding/removing
structural elements inside/between class diagram elements, such as adding an
attribute/operation inside a given class or an association between two given classes.
Whereas, the transformation definition of a behavioral diagram consists of adding/
removing elements before/after/around behavioral diagram elements, such as adding
a new interaction fragment before sending a message in a sequence diagram.

Figure7.4 shows an example of a class transformation definition. The aspect
depicted in this figure contains a class adaptation named RoleAddition. This class
adaptation specifies an add adaptation rule (addAssignRole) that adds an operation,
named assignRole, to a class designated by the pointcutUserPointcut. Having a class
adaptation and an adaptation rule that adds an element of type Operation, the class
transformation definition is going to be selected and the mapping rule addOperation
will be executed. The result of this transformationwill be the addition of the newoper-
ation assignRole() to the class Client of the base model, i.e., the selected join point.

7.4.2.2 State Machine Transformation Definition

The statemachine transformation definition handles transformations of statemachine
diagrams. It corresponds to an aspect adaptation that is stereotyped StateMa-
chineAdaptation. In our approach, when handling transformations of state machine
diagrams, we identify two kinds of pointcut designators: (1) State-based pointcut
that designates a set of states without any consideration of the transitions/events
that were triggered to reach them, and (2) Path-based pointcut that designates a set
of states depending on the transitions that triggered them. For example, consider
the state machine diagram, depicted in Fig. 7.5a, where we want to add a new state
(State4) before the state State3 when triggered by transition Tr1, as it is specified by
the pointcut expression shown in Fig. 7.6.

During the matching process, the OCL expression is evaluated on the base model
elements and the state State3 is identified as a join point. Then, the weaving process
will inject the new state (State4) before the identified join point. However, if the
state State3 has more than one incoming transition, which is the case in our example,
the weaver will add the new state before all incoming transitions, which is not what
we aim for. To solve this problem, the OCL expression is used not only as a query
expression to identify the join points, but is also used to put further constraints on the
identified join points during the weaving. Thus, our identified join point is the state
State3 under the constraint of being triggered by the transition Tr1. The result of the
weaving is shown in Fig. 7.5b. In our approach, join points in state machine diagrams
can be either states or transitions. Furthermore, three weaving adaptations: before,
after, and around are supported. In the following, we provide the implementation
details of each weaving adaptation.
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(a)

(b)

Fig. 7.5 Weaving example for path-based join point. a Before weaving. b After weaving

Fig. 7.6 Example of path-based pointcut

Weaving Before Adaptation
This adaptation adds a new node in a state machine diagram before an identified
join point. Hence, it requires not only identifying the targeted join point, but also
its direct predecessors. Algorithm 7.2 summarizes the steps needed to perform this
adaptation. As shown in the algorithm, the two kinds of join points, State and Transi-
tion, are considered. In addition, both kinds of pointcuts, State-based andPath-based
pointcuts, are matched. The algorithm takes as input a set of join points, an OCL
expression, the new node to add, and a base model. It returns as output the woven
model, where the new node has been added before each of the identified join points.

Weaving After Adaptation
This adaptation adds a new node in a state machine diagram after an identified join
point. Hence, it requires not only identifying the targeted join point, but also its direct
successors. Algorithm 7.3 summarizes the steps needed to perform this adaptation.
The algorithm takes as input a set of join points, an OCL expression, the new node to
add, and a base model. It returns as output the woven model, where the new node has
been added after each of the identified join points. Similar to the before adaptation,
we consider both kinds of join points and pointcuts.
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Algorithm 7.2: State Machine Diagram: Weaving Before Adaptation
Input: JoinPointElem-set,OCLExp, newNode,BaseModel

edgeSet: Edge-set;
for nextJoinPoint in JoinPointElem-set do

if nextJoinPoint is of type STATE then
if isPathBased(OCLExp) then

oclConstraint = extractConstraint(OCLExp);
edgeSet = getInComingEdge(nextJoinPoint, oclConstraint);

else
edgeSet = getInComingEdges(nextJoinPoint);

end if
for all edge in edgeSet do

edge.setTarget(newNode);
end for
BaseModel = CreateEdge(newNode, nextJoinPoint);

else
if nextJoinPoint is of type TRANSITION then

temp = getSource(nextJoinPoint);
nextJoinPoint.setSource(newNode);
BaseModel = CreateEdge(temp, newNode);

end if
end if

end for

Algorithm 7.3: State Machine Diagram: Weaving After Adaptation
Input: JoinPointElem-set,OCLExp, newNode,BaseModel

edgeSet: Edge-set;
for nextJoinPoint in JoinPointElem-set do

if nextJoinPoint is of type STATE then
if isPathBased(OCLExp) then

oclConstraint = extractConstraint(OCLExp);
edgeSet = getOutGoingEdge(nextJoinPoint, oclConstraint);

else
edgeSet = getOutGoingEdges(nextJoinPoint);

end if
for all edge in edgeSet do

edge.setSource(newNode);
end for
BaseModel = CreateEdge(nextJoinPoint, newNode);

else
if nextJoinPoint is of type TRANSITION then

temp = getTarget(nextJoinPoint);
nextJoinPoint.setTarget(newNode);
BaseModel = CreateEdge(newNode, temp);

end if
end if

end for
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Weaving Around Adaptation
Around adaptations are performed in place of the join points they operate over, rather
than before or after. Additionally, inspired by AspectJ [113], the original join point
can be invoked, within the behavior of the around adaptation, using a special element
named proceed. Around adaptations can have one of two effects:

• In case there is no proceed element in the adaptation, then the join point is
replaced by the adaptation behavior.

• In case the adaptation contains a proceed element, then all the elements that
appear before the proceed element are injected before the join point, and simi-
larly, all the elements appearing after the proceed element are injected after the
join point.

Algorithm 7.4 summarizes the steps needed to perform an around adaptation in a
state machine diagram. The algorithm takes as input a set of join points, an OCL
expression, the new state machine element to add, and a base model. The algorithm
then replaces the current join point with the new state machine element. In addition,
it checks whether the new state machine element contains a proceed element or
not. If the proceed element exists, then it will be identified and replaced with the
current join point.

Algorithm 7.4: State Machine Diagram: Weaving Around Adaptation
Input: JoinPointElem-set,OCLExp, newSMElem,BaseModel

for nextJoinPoint in JoinPointElem-set do
replace(nextJoinPoint, newSMElem);
if isProceed(newSMElem) then

proceedElement = findProceed(newSMElem);
replace(proceedElement, nextJoinPoint);
delete(proceedElement);

else
delete(nextJoinPoint);

end if
end for

Procedure replace:

Input: oldElement, newElement
edgeSet: Edge-set;
edgeSet = inComingEdges(oldElement);
for all edge in edgeSet do

edge.setTarget(newElement);
end for
edgeSet = outGoingEdges(oldElement);
for all edge in edgeSet do

edge.setSource(newElement);
end for
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7.4.2.3 Activity Transformation Definition

The activity transformation definition handles transformations of activity diagrams.
It corresponds to an aspect adaptation that is stereotyped ActivityAdaptation. In our
approach, join points in activity diagrams can be either nodes or edges. A node can
be either an action or a control node (e.g., fork, join, decision, merge). Since an
activity diagrammodels the flow of actions in a business process, then ordering must
be taken into consideration when weaving a new behavior into such a flow. Weaving
adaptations in activity diagrams are very similar to those of state machine diagrams,
as both diagrams are constructed from nodes and edges. In the following, we describe
each weaving adaptation.

Weaving Before Adaptation
This adaptation adds a new node in an activity diagram before a join point. It requires
identifying the join point kind, whether it is an action, a control node, or an edge, and
its direct predecessor(s). In case of an action, all incoming edges are redirected to the
new node. As such, a new edge is created between the new node and the join point.
However, if the join point is a join or a merge node, where there is more than one
incoming edge, then the new node is duplicated for each edge. Thus, each incoming
edge to the join or themerge nodes is redirected to the new nodes.Moreover, two new
edges are created between the new nodes and the join point (Fig. 7.7). Algorithm 7.5
summarizes the steps of the before weaving adaptation in activity diagrams. The
algorithm takes as input a set of join points, the new node to add, and a base model.
It returns as output the woven model together with the new node added before each
of the identified join points.

Weaving After Adaptation
This adaptation adds a new node in an activity diagram after a join point. In case the
join point is an action, all outgoing edges are redirected to the new node. Accordingly,
a new edge is created between the join point and the new node. However, if the join
point is a fork or a decision node, where there is more than one outgoing edge, then a
new node is created for each edge. Moreover, two new edges are created between the
newnodes and the original join point successors (Fig. 7.8).Algorithm7.6 summarizes
the steps of weaving an after adaptation in activity diagrams. It takes, as input, a set

(a) (b)

Fig. 7.7 Example of Join node as join point. a Before weaving. b After weaving
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Algorithm 7.5: Activity Diagram: Weaving Before Adaptation
Input: JoinPointElem-set, newNode,BaseModel

edgeSet: ActivityEdge-set;
for nextJoinPoint in JoinPointElem-set do

if next Join Point is of type ActivityNode then
edgeSet = getInComingEdges(nextJoinPoint);
if nextJoinPoint is of type JoinNode or MergeNode then

for all edge in edgeSet do
copy newNode;
edge.setTarget(newNode);
BaseModel = CreateEdge(newNode, nextJoinPoint);

end for
else

for all edge in edgeSet do
edge.setTarget(newNode);

end for
BaseModel = CreateEdge(newNode, nextJoinPoint);

end if
else

if nextJoinPoint is of type ActivityEdge then
temp = getSource(nextJoinPoint);
nextJoinPoint.setSource(newNode);
BaseModel = CreateEdge(temp, newNode);

end if
end if

end for

(a) (b)

Fig. 7.8 Example of Fork node as join point. a Before weaving. b After weaving

of join points, the new node to add, and a base model. It returns, as output, the woven
model, with the new node added after each of the identified join points.

Weaving Around Adaptation
This adaptation replaces a join point in an activity diagram with a new behavior. In
addition, the original join point may be invoked using the proceed element. The
corresponding algorithm is similar to the one described previously for state machine
diagrams.
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Algorithm 7.6: Activity Diagram: Weaving After Adaptation
Input: JoinPointElem-set, newNode,BaseModel

edgeSet: ActivityEdge-set;
for nextJoinPoint in JoinPointElem-set do

if nextJoinPoint is of type ActivityNode then
edgeSet = getOutgoingEdges(nextJoinPoint);
if nextJoinPoint is of type ForkNode or DecisionNode then

for all edge in edgeSet do
copy newNode;
edge.setSource(newNode);
BaseModel = CreateEdge(nextJoinPoint, newNode);

end for
else

for all edge in edgeSet do
edge.setSource(newNode);

end for
BaseModel = CreateEdge(nextJoinPoint, newNode);

end if
else

if nextJoinPoint is of type ActivityEdge then
temp = getTarget(nextJoinPoint);
nextJoinPoint.setTarget(newNode);
BaseModel = CreateEdge(newNode, temp);

end if
end if

end for

7.4.2.4 Sequence Transformation Definition

The sequence transformation definition handles transformations of sequence dia-
grams. It corresponds to an aspect adaptation that is stereotypedSequenceAdaptation.
A sequence diagram is used to describe the interactions between different entities
in a system. Ordering in sequence diagrams is realized by a trace of events (e.g.,
send and receive events), each of which is specified by an element called Occurrence
Specification (Fig. 7.9). In our approach, we consider messages as join points, where
a new behavior may be added before, after, or around the occurrence of send/receive
message events. In the following, we describe each weaving adaptation in sequence
diagrams.

Fig. 7.9 Send/receive events
in a sequence diagram
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Weaving Before Adaptation
This adaptation adds a new element in a sequence diagram before a join point. As
mentioned previously, the order in sequence diagrams is represented by a trace of
events. Here, we are particularly interested in the send and the receive events of
the exchanged messages. Weaving an adaptation before a join point message means
that the adaptation should be performed before the “send event” of the message is
fired. Algorithm 7.7 describes the steps needed to weave a new element before a
join point message. The algorithm takes, as input, a set of join point messages, the
new element to add, and a base model. It returns, as output, the woven model, where
the new element has been added before each join point. The algorithm extracts the
trace of events from the base model and identifies the send event of the join point
message. Then, it inserts the send and the receive events of the new element before
the identified send event of the message.

Algorithm 7.7: Sequence Diagram: Weaving Before Adaptation
Input: JoinPointMessage-set, newElement,BaseModel

traceEvent: Event-list;
traceEvent = getEventTrace(BaseModel);
for all nextJoinPointMessage in JoinPointMessage-set do

sndEvent = getSendEvent(nextjoinPointMessage);
indx = traceEvent.getindexOf(sndEvent);
newSendEvent = CreateSendEvent(newElement);
newReceiveEvent = CreateReceiveEvent(newElement);
if indx = 1 then

traceEvent = traceEvent.prepend(newReceiveEvent);
traceEvent = traceEvent.prepend(newSendEvent);

else
traceEvent.insertAt(indx,newSendEvent);
traceEvent.insertAt(indx + 1,newReceiveEvent);

end if
end for

Weaving After Adaptation
This adaptation adds a new element in a sequence diagram after a join point. In
contrast with a before weaving adaptation, here we are interested in the receive event
of the join point message. In this case, the send/receive events of the new element are
inserted after the receive event of the join point message. Algorithm 7.8 summarizes
the steps needed to weave a new element after a join point message. The algorithm
takes, as input, a set of join point messages, the new element to add, and a basemodel.
It returns, as output, the woven model, where the new element has been added after
each join point.

Weaving Around Adaptation
Weaving around adaptation in a sequence diagram is simply a replace operation. Both
send and receive events of the join point message are replaced with the new element.
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Algorithm 7.8: Sequence Diagram: Weaving After Adaptation
Input: JoinPointMessage-set, newElement,BaseModel

traceEvent: Event-list;
traceEvent = getEventTrace(BaseModel);
for all nextJoinPointMessage in JoinPointMessage-set do

rcvEvent = getReceiveEvent(nextjoinPointMessage);
indx = traceEvent.getindexOf(rcvEvent);
newSendEvent = CreateSendEvent(newElement);
newReceiveEvent = CreateReceiveEvent(newElement);
if indx = traceEvent.size() then

traceEvent = traceEvent.append(newSendEvent);
traceEvent = traceEvent.append(newReceiveEvent);

else
traceEvent.insertAt(indx+1,newSendEvent);
traceEvent.insertAt(indx+2,newReceiveEvent);

end if
end for

Algorithm 7.9 presents the steps of weaving a new element around an identified join
point message. The algorithm takes as input a set of join point elements, the new
element to add, and a base model. It returns as output the woven model, where the
new element has been added around each of the identified join points.

Algorithm 7.9: Sequence Diagram: Weaving Around Adaptation
Input: JoinPointElem-set, newElem,BaseModel

for nextJoinPoint in JoinPointElem-set do
replace(nextJoinPoint, newElem);
if isProceed(newElem) then

proceedElement = findProceed(newElem);
replace(proceedElement, nextJoinPoint);
delete(proceedElement);

else
delete(nextJoinPoint);

end if
end for

Procedure replace:

Input: oldMsg, newMsg
traceEvent = getEventTrace(BaseModel);
sndEvent = getSendEvent(oldMsg);
rcvEvent = getReceiveEvent(oldMsg);
snd_indx = traceEvent.getindexOf(sndEvent);
rcv_indx = traceEvent.getindexOf(rcvEvent);
traceEvent.insertAt(snd_indx, newMsg.sendEvent);
traceEvent.insertAt(rcv_indx, newMsg.receiveEvent);
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7.4.3 Transformation Rules

In this section, we present the transformation rules, also called mapping rules, that
specify how elements of the basemodel should be transformed into thewovenmodel.
These mapping rules conform to the adaptation rules presented in Chap.6. Two
adaptation rules are supported in our approach: add and remove. We classify UML
elements targeted by the adaptations into three main categories: (1) Simple elements,
(2) Composite elements, and (3) Two-end elements. Simple elements are those that
are compact, i.e., they are single atomic elements. Examples of simple elements are
attributes, operations, simple states, and actions. Composite elements are those that
are composed of other UML elements or contain references to other UML elements.
Examples of composite elements are classes, sub-machine states, and structured
activity nodes. Two-end elements are those that connect twoUML elements together,
such as associations, transitions, massages, and edges. Table7.1 summarizes all the
supported elements according to their categories.

Before describing the definedmapping rules, we first introduce themain operators
that are defined by QVT language:

• “map” operator: It is used to apply a mapping rule to a single element or a set of
elements.

Table 7.1 Classification of the supported UML elements

UML diagram UML element Category type

Class diagram Package Composite

Class Composite

Operation Simple

Attribute Simple

Association Two-end

State machine diagram State machine Composite

State Simple

Sub-machine state Composite

Transition Two-end

Region Composite

Sequence diagram Interaction Composite

Interaction use Composite

Lifeline Simple

Message Two-end

Activity diagram Activity Composite

Action Simple

Structured activity node Composite

Edge Two-end

http://dx.doi.org/10.1007/978-3-319-16106-8_6
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• “→” operator: It is used to iterate on a collection of elements. When combined
with the map operator, it facilitates the access to each element of a collection in
order to apply the mapping rule to it.

• “·” operator: It is used to access properties or operations of single elements.

For instance, the following expression shows how to apply a mapping rule addAt-
tribute, which adds an attribute attr to a given set of Class elements Set{classElem},
using the map and → operators:

Set{classElem} → map addAttribute(attr);

The → operator iterates through the set classElem and, for each element in that set,
it applies the mapping rule addAttribute to it. The result of executing this expression
is a new set of classes, where each class has the new attribute attr added to it. In the
following, we detail the defined mapping rules.

7.4.3.1 Add Mapping Rule

Add mapping rule is called on all adaptation rules in the aspect that have the stereo-
type �add�. It is important to mention here that the order of adaptation rules, as
specified in the aspect, is preserved during the weaving. The following QVT expres-
sion illustrates how the add mapping rule is applied to each add adaptation rule
extracted from the aspect.

OrderedSet{addAdaptationRules} → map addMappingRule();

For each add adaptation rule, the associated tagged values determine the appropriate
mapping rule to be invoked. In fact, the tagged value type determines the appropriate
add sub-rule to be performed. In addition, the name of the new added element is
identified by the tagged value name. The tagged value position of the add adaptation
rule references the position where to add the new element in contrast with other
existing elements in the base model. For instance, it indicates whether to add the
new element before, after, or around the identified join point. In the case of a class
adaptation, the value of the position property is set to its default value (inside) because
of the nature of class diagrams, and therefore it is not taken into consideration during
the weaving. Finally, the value of the tagged value pointcut is passed to the join point
matching module to identify the set of join point elements. Depending on the type
of the added element, one of the following add sub-rules is applied to the matched
join points:

1. Add Simple Element(elemName, position)
This mapping rule adds a simple element to the base model. It takes two parame-
ters: the name of the element that should be added (elemName), and the position
where to add the element (position). This mapping rule creates the appropriate
meta-element object and sets its name to elemName. Depending on the position
value, the newly created element is placed in the base model accordingly.
object simple-meta-element {name := elemName};
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2. Add Composite Element(elemName, position)
This mapping rule adds a composite element to the base model. It is similar
to the add simple element rule. In addition, it adds a reference to the behavior
of the composite element provided in the aspect. For example, in the case of an
interaction use, a reference to the corresponding interaction is required. Thus, this
mapping rule iterates through the elements of the aspect and selects the behavior
that matches the element to add. Finally, the composite element is created.
behElem := Set{aspectElem} → Select(el where el.name = elemName);
objectcomposite-meta-element {name:=elemName;refersTo:=behElem};

3. Add Two-End Element(elemName, position, sourceExp, targetExp)
Dealing with a two-end element is different from simple and composite elements
because it requires the specification of the source and the target of that element.
Therefore, two additional pointcuts are needed: one to select the source element,
and one to select the target element. These two pointcuts are specified as para-
meters for the add adaptation, such that the first parameter represents the source
pointcut whereas the second parameter represents the target pointcut.
Set{sourceElem}:=Set{baseModelElem}→joinPointMatching(sourceExp);
Set{targetElem}:=Set{baseModelElem}→joinPointMatching(targetExp);
object two-end-meta-element {name:=elemName;source:=sourceElem;
target := targetElem;}

7.4.3.2 Remove Mapping Rule

The remove mapping rule is applied to each adaptation rule in the aspect that has the
stereotype�remove�. It reads the value of the tagged value pointcut and passes it to
the join point matching module to identify the set of elements to be removed. Unlike
the additive rules, the type of the element to be removed is not important. Thus, there
is only one general rule to remove any kind of UML element. Each identified join
point element is removed using the destroy method provided by QVT.

Set{elemToRemove} := Set{baseModelElem}→ joinPointMatching(pointcut);
Set{elemToRemove} → destroy();

Indeed, the remove operation is very sensitive and should be dealt with cautiously,
otherwise it may result in an incorrect woven model. For instance, removing a state
in a state machine diagram without reconnecting its predecessor with its successor
may result in two disconnected state machines. Therefore, we assume that in case of
any remove operation, it should be followed by an add operation that either replaces
the removed element or corrects any arising problematic issues.

7.4.3.3 Tagging Mapping Rule

Tagging mapping rules are used to trace the modifications that are performed on the
base model. Each element that has been added or modified by the transformation
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Table 7.2 List of all mapping rules—part 1

Transformation definition Mapping rule Sub-rule

Class transformation definition Add addClass

addAttribute

addOperation

addPackage

addAssociation

Remove removeClass

removeOperation

removeAssociation

removeAttribute

removePackage

Tag tagElement

State machine transformation definition Add addState

addTransition

addSubMachineState

addStateMachine

addRegion

Remove removeState

removeTransition

removeSubMachineState

removeStateMachine

removeRegion

Tag tagElement

Activity transformation definition Add addAction

addControlFlow

addObjectFlow

addStructuredActivityNode

addActivity

Remove removeAction

removeControlFlow

removeObjectFlow

removeStructuredActivityNode

removeActivity

Tag tagElement
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Table 7.3 List of all mapping rules—part 2

Transformation definition Mapping rule Sub-rule

Sequence transformation definition Add addMessage

addInteractionUse

addInteraction

addLifeline

Remove removeMessage

removeInteractionUse

removeInteraction

removeLifeline

Tag tagElement

needs to be easily identified in the woven model. To this end, we define special
keywords, e.g., �AddedElement� and �ModifiedElement�, and apply them
to the affected elements. When the woven model is generated, the affected elements
can be easily distinguished using these keywords. Note that keywords are properties
of UML elements [152]. Some keywords are predefined in UML. Moreover, user-
specific keywords can be defined as it is the case here. Tables7.2 and7.3 summarize
all the supported mapping rules.

7.5 Tool Support

To demonstrate the feasibility of our security hardening approach, we have designed
and implemented a prototype to support the specification and the systematic inte-
gration of security aspects into UML design models. The prototype is developed
as a plug-in to IBM-Rational Software Architect (RSA) [103]. RSA is an advanced
model-driven development tool. It contains a very powerful UML modeler that is
compliant with UML 2 standard. In addition, it supports many important function-
alities such as model manipulation, code generation, reverse engineering from Java
and C++, etc. Moreover, as RSA is built on top of Eclipse,1 our tool can be easily
integrated with any IDE that is based on the Eclipse platform. In this section, we
provide details about the authoring of our AOM profile and the weaving plug-in.

7.5.1 AOM Profile

This section provides details about the authoring of our AOM profile, presented in
Chap.6, in IBM-RSA tool. In RSA, UML Profiles are files with “.epx” extension.
The modeling perspective of RSA provides creating and editing capabilities of UML

1 http://www.eclipse.org.

http://dx.doi.org/10.1007/978-3-319-16106-8_6
http://www.eclipse.org
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Fig. 7.10 AOM profile editor

profiles using the UML extensibility feature. Figure7.10 depicts a screenshot of
the AOM profile editor. The two main views that are used in profile authoring are
the Model Explorer and the Properties View. The Model Explorer is used to create
the stereotypes of the profile, e.g., classAdaptation, pointcut, add, and remove. The
Properties View is used to create and set the tagged values that are associated with
each stereotype, e.g., name, type, position, and pointcut that are associated with the
stereotype add. In addition, the Properties View shows the profile properties, such as,
the profile name, the file location and size, the time when the file was last modified,
and whether or not the file is editable.

7.5.2 Weaving Framework

This section presents the design and the implementation details of our weaving tool.
As mentioned previously, this tool has been implemented as a plug-in on top of
IBM-RSA since it contains a very powerful UML modeler. In addition, RSA can be
augmented with Eclipse plug-ins, which allows our weaving tool to be embedded
into any Eclipse-based development environment. Figure7.11 shows a screenshot of
RSA tool with the weaving plug-in being deployed.
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Fig. 7.11 Weaving plug-in integrated to IBM-RSA

Fig. 7.12 Weaving plug-in

Theweaving plug-in consists of 253 Java classes, 51QVTmappingswith a total of
around 21,300 lines of code. This plug-in provides theweaving capabilities needed to
weave the security aspects, specified using our AOM profile, into UML base models.
Figure7.12 highlights the different components that have been implemented as part
of this plug-in. In the following, we detail each component.

7.5.2.1 Security Property Editor

The developer should be able to specify the security requirement that he/she wants
to enforce on his/her design. To this end, we have implemented a security property
editor, where the developer can select the model that he/she wants to harden, and on
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Fig. 7.13 Security property editor

the other hand the needed security requirement. Afterwards, the security aspect that
provides the security solutions for the needed requirement is automatically selected
from the security aspects library. The covered security requirements are those com-
monly specified and verified on software, and for which a security solution can be
provided as an aspect. Examples of these security requirements are secrecy, authen-
tication, authorization, etc. Figure7.13 depicts a screenshot of the security property
editor.

7.5.2.2 Aspect Specialization Through a Weaving Interface

Since security aspects are provided as generic solutions, the developer should be
able to specialize those aspects to his/her application before weaving them into base
models. To this end, we have implemented a graphical weaving interface to ease
the specialization of aspects and their weaving in a systematic way. As shown in
Fig. 7.14, the weaving interface presents, on the left hand side, all the generic ele-
ments of the aspect, and on the right hand side, all the elements of the base model.
From this weaving interface and based on his/her understanding of the application,
the developer maps each generic element of the aspect to its corresponding ele-
ment(s) in the base model. Using this weaving interface, the developer does not need
to understand how the security solution is specified. Indeed, all the details of the
security solution are kept hidden from the developer and only the generic elements
of the aspect are exposed to him/her. After mapping all the generic elements, the
application-dependent aspect is automatically generated.
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Fig. 7.14 Weaving interface

7.5.2.3 Aspect and Pointcut Parsers

The aspect parser is responsible for parsing the selected aspect, and identifying the
different kinds of adaptations that are contained in the aspect. Then, for each adap-
tation kind, it will invoke the corresponding transformation definition. Furthermore,
before executing the transformation rules, the textual pointcut expressions, specified
in the aspect, should be translated into OCL expressions. This is done by another
component, the Pointcut Parser, that is responsible of parsing and translating textual
pointcut expressions into OCL. In this context, we use CUP Parser Generator for
Java.2 This parser generator takes as input: (1) The grammar of the pointcut language
along with the actions required to translate each primitive pointcut designator to its
corresponding OCL primitive, and (2) a scanner used to break the textual pointcut
expression into meaningful tokens. It provides as output a Java parser that is capable
of parsing and translating any textual pointcut expression into its equivalent OCL
one. It is important to mention here that this process is executed automatically and
in a total transparency to the developer.

7.5.2.4 Weaving Process

This component is responsible for performing the actualweaving of the aspect and the
base model. It includes two main sub-components: Join Point Matching Module and
Transformation Rules. The join point matching module is responsible for querying
the base model elements using the generated OCL expressions, and returning those
elements that satisfy theOCL expressions. Thismodule is implemented as a Java pro-

2 http://www2.cs.tum.edu/projects/cup/.

http://www2.cs.tum.edu/projects/cup/
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gram and integrated to the weaving framework by extending the QVT engine through
the QVT/Black-Box mechanism [150]. This QVT feature allows the integration of
external programs, expressed in other transformation languages or programming lan-
guages, to the QVT rules. The transformation rules implement the aspect adaptation
rules. They are executed on the identified join points to produce the woven model.
These rules are expressed using the Eclipse M2M QVT Operational [108], that we
installed as a plug-in on top of IBM-RSA.

7.6 Case Studies

In this section, we detail the experiments that demonstrate the feasibility and the
relevance of our security hardening framework. We conduct case studies to add
securitymechanisms and fix various security vulnerabilities in different applications.
These conducted case studies can be summarized as follows:

• Adding input validation and access control to a service provider application.
• Adding authorization, blocking spam, and handling maximum size of instant
messages in SIP-Communicator [2].

• Replacing deprecated functions in OpenSAF [15].

In the following, we detail these case studies to show how our defined approach
can be applied to detect vulnerable points in UML design models, and afterwards
inject the needed solutions at these points.

7.6.1 Service Provider Application

In this case study, we show how to automatically integrate different security mecha-
nisms into a service provider application. The class diagram of the service provider
application is depicted in Fig. 7.15. The class Client represents the application’s
users (e.g., administrator, subscribers, managers). Each type of users has specific
privileges. A client can login to the database of subscribers (ResourceDB) through
an interface Provision, which is implemented by the classes SubscriberManager
and ServiceManager for manipulating subscribers and services respectively. Before
clients can access a particular service, they must first authenticate by providing user-
name and password as their credentials. The authentication process is modeled as an
activity diagram (Fig. 7.16).

Furthermore, when a client issues a request to delete a subscriber, the method
delete() of the SubscriberManager class is invoked. Then, this method executes
the command to delete the subscriber from the database. Afterwards, the database
destroys the respective instance of the subscriber by sending the destroy message.
To guarantee the deletion of the subscriber instance, the SubscriberManager asks
for the confirmation and sends the results to the client. The client’s permissions
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Fig. 7.15 Class diagram for a service provider application

Fig. 7.16 Activity diagram specifying the authentication process

must be verified before deleting a subscriber (i.e., only the administrator can delete
a subscriber). Figure7.17 represents a sequence diagram specifying the behavior of
the method SubscriberManager.delete().
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Fig. 7.17 Behavior of the method SubscriberManager.delete()

In the sequel, we showhowour framework can be used to specify and integrate two
security aspects to the service provider application: (1) Input Validation to check user
input, and (2) Role-Based Access Control to check user permissions before deleting
a subscriber.

7.6.1.1 Input Validation

The authentication process, as specified in Fig. 7.16, might be vulnerable to various
security attacks such as SQL injection and Cross-site Scripting (XSS) [86] due to
malicious inputs from the user. To fix such vulnerabilities, a security solution can
be provided as an aspect that validates user input as shown in Fig. 7.18. The input
validation aspect is specified using our proposed AOM profile presented in Chap. 6.
The aspect contains an activity adaptation specifying the addition of an input vali-

Fig. 7.18 Input validation aspect

http://dx.doi.org/10.1007/978-3-319-16106-8_6
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Fig. 7.19 Weaving interface: specializing the input validation aspect

dation behavior that sanitizes user input before being processed. In other words, it
checks the user input for special characters. If any special character exists then the
aspect sanitizes the input to remove its effect. This behavior will be injected as a
structured activity node after any action that gets user input. In the following, we
show how our framework can be used to weave this aspect into the authentication
scenario presented in Fig. 7.16.

The first step of the weaving is to specialize the input validation aspect to the
authentication scenario (Fig. 7.16). To this end, the developer uses the weaving
interface, depicted in Fig. 7.19, where he/she maps the abstract action GetUserIn-
put to the actions getUserName and getPassword. After this step, the application-
dependent aspect is automatically generated. Its specification is similar to the
application-independent one except for InputPointcut that will have the value:
action(getUserName) or action(getPassword).

The next step of theweaving is the automatic identification of the join pointswhere
the input validation behavior should be injected. To achieve this, we first translate
the textual expression of InputPointcut to OCL. The resulting OCL expression is as
follows:

“(self.oclIsKindOf(Action) and self.name=‘getUserName’) or
(self.oclIsKindOf(Action) and self.name=‘getPassword ’)”

This expression is evaluated by the join point matching module on the base model.
Accordingly, the actions getUserName and getPassword are selected as matched join
points. The last step of the weaving is the automatic injection of the input validation
behavior into the authentication scenario at the identified join points. This is achieved
by executing the QVTmapping rule that corresponds to the adaptation SanitizeInput
(Fig. 7.18). Finally, the resulting woven model is generated as shown in Fig. 7.20.
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Fig. 7.20 Authentication scenario—woven model

7.6.1.2 Role-Based Access Control

Now, we show how a security expert can use the designed AOM profile to specify
an RBAC aspect needed for enforcing access control into the design models of the
service provider application (Figs. 7.15 and7.17). Before illustrating the design of
the RBAC aspect, first we give a short background on the different RBAC models.
RBAC is organized into four models:

1. Flat RBAC: It is the core model that embodies the essential concepts of RBAC:
users, roles, and permissions. It specifies the assignment of users to roles and the
assignment of permissions to roles.

2. Hierarchical RBAC: It extends the Flat RBAC by supporting role hierarchies.
3. Constrained RBAC: It extends the Hierarchical RBAC by supporting separation

of duty constraints.
4. Symmetric RBAC: It extends the Constrained RBAC by adding the ability to

perform permission-role review.

In our case study, the Flat RBAC is used to enforce access control. The specifica-
tion of the RBAC aspect is presented in Fig. 7.21. In order to enforce RBAC access
control mechanisms on the different resources of the service provider application,
we need to introduce the RBAC components into the application using aspect adap-
tations. The RBAC aspect contains two kinds of adaptations: Class Adaptation and
Sequence Adaptation. The Class Adaptation specifies the necessary modifications
that should be performed on the class diagram of the service provider application
(Fig. 7.15). More precisely, it adds two classes, named Role and Permission, to
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Fig. 7.21 Specification of the RBAC aspect

the service provider application by the add adaptations AddRole and AddPermis-
sion respectively. The location where to add these two classes is provided by the
pointcut SubscriberPackagePointcut. In addition, it enforces the RBAC concepts,
i.e., user-role assignment and role-permission assignment, by adding two associa-
tions: UserAssignment between the classes (User, Role) and PermissionAssignment
between the classes (Role, Permission). Furthermore, the class adaptation adds two
new operations, assignRole and getPermission, to assign different roles to users and
get their permissions.

The Sequence Adaptation specifies the necessary modifications that should be
performed on the sequence diagram of the service provider application (Fig. 7.17).
More precisely, it adds a check access behavior, by the adaptation AddCheckAccess,
before calling a sensitive method. This behavior is responsible for checking whether
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the user, trying to access a given resource, has the appropriate privileges or not. The
location where to inject this behavior is specified by the pointcut SensitiveMethod-
Pointcut, which selects all message calls to SensitiveMethod() from a User instance
to a Resource instance.

In what follows, we show how the developer can use our framework to apply
the RBAC aspect to the base model of the service provider application (Figs. 7.15
and7.17). This RBAC aspect is though application-independent and must be spe-
cialized by the developer to the service provider application, as shown in Fig. 7.22.
In this case, the developer maps SensitiveMethod to SubscriberManager.delete().
The same way, the developer maps User to Client, Resource to Subscriber, and
SubscriberPackage to ServiceProviderApplication.

Having the RBAC aspect specialized to actual elements from the service provider
application, each pointcut element is automatically translated into its equivalent
OCL expression. For example, the pointcut SensitiveMethodPointcut, presented in
Fig. 7.21 with the textual expression: “Message_Call(delete) && Message_Source
(Client) && Message_Target(SubscriberManager)”, will be tokenized by the scan-
ner into three tokens connected with the logical operator && as follows: (1) Mes-
sage_Call(delete), (2)Message_Source(Client), and (3)Message_Target(Subscriber
Manager). The pointcut parser will parse the textual expression and will translate it
into the following OCL expression:

“self.oclIsTypeOf(Message) and self.name=‘delete’ and
self.connector._end-> at(1).role.name=‘Client ’ and
self.connector._end-> at(2).role.name=‘SubscriberManager ”’

This expression will then be evaluated on the elements of the service provider appli-
cation and thematched elements will be selected as join points. Figure7.23 shows the

Fig. 7.22 Security aspects specialization
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Fig. 7.23 Message SubscriberManager.delete() identified as join point

result of evaluating the previous OCL expression on the DeleteSubscriber sequence
diagram.

After identifying all the existing join points, the next step is to inject the different
adaptations of the RBAC aspect at the exact locations in the base model. This is done
by executing the QVTmapping rules that correspond to the adaptation rules specified
in the RBAC aspect. These mapping rules are then interpreted by the QVT trans-
formation engine that transforms the base model into a woven model. Figures7.24
and7.25 show the final result after weaving the RBAC aspect into the base models of
the service provider application. Note that the classes Role and Permission have been

Fig. 7.24 Woven model of class diagram
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Fig. 7.25 Woven model of DeleteSubscriber

added to the class diagram as well as the associations UserAssignment and Permis-
sionAssignment (Fig. 7.24). In addition, the methods assignRole and getPermission
have been added to the class Client. As for the DeleteSubscriber sequence diagram,
the CheckAccess fragment, in Fig. 7.21, has been added as an interaction use before
sending the message delete() (Fig. 7.25).

7.6.2 SIP-Communicator

SIP-Communicator3 is an open source software that provides internet-based audio/
video telephony and instant messaging services. It supports some of the most pop-
ular instant messaging and telephony protocols, e.g., Session Initiation Protocol
(SIP) [180], ExtensibleMessaging andPresenceProtocol (XMPP) [181], and Internet
Relay Chat (IRC) protocol [154]. It is composed of more than 1400 Java classes and
150K lines of code based on version 1.0. In this sub-section, we use our framework
to solve various issues that are reported in SIP-Communicator issue list.4 The con-
ducted experiments can be summarized as follows: (1) Adding authorization, (2)
blocking spam in messaging accounts, and (3) handling maximum size of instant
messages. In the following, we detail these experiments to show how our framework
can be used to pick out specific points in UML design models of SIP-Communicator
and afterwards inject the needed solutions at these points.

3 https://jitsi.org/.
4 http://java.net/jira/secure/IssueNavigator.jspa?mode=hide\&requestId=10290.

https://jitsi.org/
http://java.net/jira/secure/IssueNavigator.jspa?mode=hide&requestId=10290
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7.6.2.1 Authorization

We present, in this experiment, how to add an authorization mechanism into the
design models of SIP-Communicator to allow communications between only autho-
rized clients. The activity diagram, presented in Fig. 7.26, depicts the specification of
sending an instant message using SIP protocol. The action SendRequest, that invokes
themethod sendRequest(), is responsible for sending a request message. Thismethod
is being called in 32 different places inside functions implementing the operations of
SIP communicator, i.e., instant messaging, telephony, presence, notification, etc. The
activity diagram, presented in Fig. 7.26, is an example showing just one occurrence of
this method call. An authorization mechanism is required before any execution of the
action SendRequest. For this purpose, we catch all the actions named SendRequest
in the design models and automatically inject the authorization mechanism at the
appropriate locations.

The authorization aspect, presented in Fig. 7.27, specifies the addition of an access
control behavior that checks client permissions based on the information contained
in a message request. This is accomplished by defining the adaptation AddCheckPer-
mission that injects the authorization behavior as a structured activity node before
any sensitive method picked out by the pointcut SensitiveMethod. This aspect is
application-independent and must be specialized by the developer.

The first step of the weaving is to specialize the authorization aspect to the base
model depicted in Fig. 7.26. In this experiment, the developer maps the abstract

Fig. 7.26 Activity diagram for sending an instant message—base model
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Fig. 7.27 Authorization aspect

Fig. 7.28 Specialization of the authorization aspect

method SensitiveMethod to the method sendRequest as shown in Fig. 7.28. After
this step, the application-dependent aspect is automatically generated and without
the user intervention. Its specification is similar to the application-independent one
except for the pointcut SensitiveMethod thatwill have the value action(SendRequest).

The next step of the weaving is the automatic identification of the join points
where the check permission behavior, shown in Fig. 7.27, should be injected. To
achieve this, our framework first automatically translates the textual expression of
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Fig. 7.29 Sending an instant message with authorization—woven model
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Fig. 7.30 Activity diagram for handling an incoming message—base model
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Fig. 7.31 Aspect for SPAM blocking

the pointcut SensitiveMethod to OCL. The resulting OCL expression is as follows:
“self.oclIsTypeOf(Action) and self.name=‘SendRequest ”’.

The evaluation of this OCL expression by the join point matching module returns
all the actions named SendRequest as join points. The last step of the weaving is
the automatic injection of the check permission behavior into the base model at the
identified join points. This is achieved by executing theQVTmapping rule that is gen-
erated automatically from the adaptation AddCheckPermission shown in Fig. 7.27.
Finally, the resulting woven model for sending an instant message is generated as
shown in Fig. 7.29.

7.6.2.2 Blocking Spam in Messaging Accounts

In this sub-section, we address the problem of spam in instant messaging accounts.
To prevent this problem, we suggest, in this experiment, to reject any messages from
people who are not on the contact list. The activity diagram, presented in Fig. 7.30,
depicts the specification of handling an incoming message in SIP-Communicator.
The action named MessageReceived is a call operation action that is invoked each
time an instant message is received in a chat room.

To implement the aforementioned solution, we provide an aspect as depicted in
Fig. 7.31. The aspect contains an add adaptation (CheckMessageSource) that adds a
new behavior to reject any message whose sender is not in the contact list. This new
behavior should be invoked after receiving any instant message, i.e., after any call to
the method MessageReceived, picked out by the pointcut MessageReceived.

Since the aspect of Fig. 7.31 is application-dependent, there is no need to spe-
cialize it to SIP-Communicator application. To identify the join points where the
aspect adaptation CheckMessageSource should be performed, our framework auto-
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Fig. 7.32 Activity diagram for handling an incoming message—woven model

matically translates the textual expression of the pointcut MessageReceived to OCL.
The resulting OCL expression is as follows:

“self.oclIsTypeOf(CallOperationAction) and
self.operation.name=‘MessageReceived”’

The evaluation of this OCL expression, by the join point matching module, returns
as join points all the call operation actions that are invoking the method MessageRe-
ceived(). Finally, the last step of the weaving is the execution of the QVT mapping
rule corresponding to the adaptation CheckMessageSource. As a result, the new
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Fig. 7.33 Activity diagram for sending an instant message—base model

behavior CheckMessageSource is injected after the call action MessageReceived as
shown in Fig. 7.32.

7.6.2.3 Handling Maximum Message Size

In SIP-Communicator, various protocols are able to send messages of various sizes.
In this experiment, we handle the case where a user is trying to send messages that
exceed the maximum length allowed by the protocol. After sending a long message
to someone, we are never actually sure if it is received or not. One possible solution to
this issue is to return an error indicating that the message exceeds the maximum size
allowed. The detailed behavior of sending an instant message in SIP-Communicator
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Fig. 7.34 Aspect for handling the size of instant messages

is depicted in the activity diagram of Fig. 7.33. Before weaving the aspect of Fig. 7.34
into the base model of Fig. 7.33, we first identify the join points where the aspect
adaptation CheckMessageSize should be applied. For this purpose, our framework
translates automatically the textual expression of the pointcut SendMessage to OCL.
The resulting OCL expression is as follows:

“self.oclIsTypeOf(CallOperationAction) and
self.operation.name=‘SendMessage”’

The action namedSendMessage is a call operation action that sends an instantmes-
sage. An aspect is depicted in Fig. 7.34 to return an error indicating that the message
exceeds the maximum size allowed. It contains an add adaptation (CheckMessage-
Size) that adds a new behavior to check the size of the message to be sent. This new
behavior should be invoked around sending any instant message, i.e., around any call
to the method SendMessage, picked out by the pointcut SendMessage.

The evaluation of this OCL expression by the join point matching module returns
as join points all the call operation actions that are invoking the method SendMes-
sage(). Finally, the last step of the weaving is the execution of the QVT mapping
rule corresponding to the adaptation CheckMessageSize. As a result, the new behav-
ior CheckMessageSize is injected around the call action SendMessage as shown in
Fig. 7.35. If the message size exceeds the maximum allowed, an error message is
displayed to the user. Otherwise, the Proceed action in the aspect of Fig. 7.34 is
replaced by the original join point, i.e., the action SendMessage.
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Fig. 7.35 Activity diagram for sending an instant message—woven model

7.6.3 Replacing Deprecated Functions in OpenSAF

OpenSAF [15] is an open source project established to develop high availability
middleware that is consistent with the Service Availability Forum specifications [14].
TheOpenSAF project consists ofmore than 4800 files and 1.7M lines of codewritten
in Java and C languages based on the release 4.0.M4.We have conducted an analysis
of the C part of OpenSAF from a security point of view using a security verification
tool [197]. The analysis tool has reportedmore than 100 potential errors of deprecated
functions. These functions are quite abundant in the C library. In addition, they are
vulnerable to attacks such as buffer overflows [13]. The usage of safe alternatives is
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Fig. 7.36 Activity diagram of GetNode—base model

required as a preventive measure. We present next how to use our defined framework
to fix OpenSAF vulnerabilities that are related to the use of deprecated functions.

We illustrate our methods on two activity diagrams describing the behavior of the
functions GetNode and GetChassisType as shown in Figs. 7.36 and7.37 respectively.
Both activity diagrams include call operation actions that invoke a vulnerable func-
tion sprintf(). This function uses a format string argument that enable programmers to
specify howstrings should be formatted for output. This function is a deprecated func-
tion, which if not properly used, can be exploited to perform buffer overflows [12]. To
avoid this vulnerability, one possible solution is to use the secure function sprintf _s()
instead of sprintf(). Indeed, the function sprintf _s() allows checking the size of the
output buffer and the format string for valid formatting characters.
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Fig. 7.37 Activity diagram of GetChassisType—base model

Fig. 7.38 Aspect for replacing deprecated functions
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Fig. 7.39 Woven activity diagram of GetNode

An aspect is depicted in Fig. 7.38 to implement this solution. It contains the add
adaptation ReplaceSprintf that replaces any call to the function sprintf(), picked out
by the pointcut Deprecated, by a call to the secured function sprintf _s().

Since the aspect of Fig. 7.38 is application-dependent, there is no need to special-
ize it to OpenSAF application. To identify the join points where the aspect adaptation
should be performed, we first translate the textual expression of the pointcut Depre-
cated to OCL. The resulting OCL expression is as follows:

“self.oclIsTypeOf(CallOperationAction) and self.operation.name=‘sprintf ”’

The evaluation of this OCL expression by the join point matching module returns,
as join points, all the call operation actions that are invoking the function sprintf().
Finally, the last step of the weaving is the execution of the QVT mapping rule
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Fig. 7.40 Woven activity diagram of GetChassisType

corresponding to the adaptation ReplaceSprintf. As a result, all the calls to the func-
tion sprintf() are replaced by a call to the secured function sprintf _s() as shown in
Figs. 7.39 and7.40.

7.7 Related Work on Model Weaving

Various approaches have been proposed for weaving aspects into UML design
models. Some of them adopt a symmetric approach [85, 100], where there is no
distinction between aspects and base models, while others follow an asymmetric
approach [62, 97, 118, 138, 175, 206], where there is a clear distinction between



7.7 Related Work on Model Weaving 133

aspects and base models. In the following, we present a discussion of the main
contributions.

Cui et al. [62] have presented an approach for modeling and integrating aspects
into UML activity diagrams. Base models are modeled as activity diagrams while
aspect models, consisting of pointcut and advice models, are depicted as activity
diagrams extended by a set of stereotypes and tagged values. Compared to this
contribution that supports only adding new elements before and after the matched
join points, our framework considers also replacing existing elements by new ones
and removing elements. In addition, control nodes are also considered as join points in
our approach. Algorithms for matching and weaving are provided in [62]. However,
the implementation strategies have not been detailed. Additionally, there is no formal
semantics for these processes.

MATA [206] is a tool for weaving UML models based on graph transformations.
It supports weaving aspects into class, sequence, and state machine diagrams. In con-
trast to our approach, in MATA there are no explicit join points; any model element
can be a join point. The UML base model is transformed into an instance of type
graph. Similarly, the aspect model is transformed into a graph rule that is automati-
cally executed on the base graph. After the weaving, the result is transformed back to
a UML model. Graph theory and tools allow MATA to perform some analysis such
as aspect/feature interactions. MATA is one of the few tools that support both struc-
tural and behavioral composition. However, the weaving is not done on UMLmodels
directly, but rather is executed as a graph rule using graph transformation tools.

GeKo (Generic Composition with Kermeta) [138] is a generic AOM approach
that can be applied to any well-defined meta-model. It supports both structural and
behavioral composition. Theweaving is implemented asmodel transformations using
Kermeta [17],while thematching is performedusing aProlog-basedpatternmatching
engine. GeKo is one of the few approaches that provide a clear semantics for the
different operators used in the weaving. It supports adding, removing, and updating
elements of the base model. The graphical representation of the woven model is
supported. However, there is no support for traceability, meaning that the effect of
an aspect on the base model is not visualized.

Fleurey et al. [85] have presented a generic tool, called Kompose, for model
composition based on Kermeta [17]. Kompose focuses only on the structural com-
position of any modeling language described by a meta-model and does not support
behavioral composition. In addition, it adopts a signature comparison mechanism for
the matching of join points, which makes the specified aspects specific rather than
generic.

Groher andVoelter [97] have presented XWeave; a weaver that supports the weav-
ing of models and meta-models. This weaver is implemented following a model-to-
model transformation approach using the openArchitectureWare framework.5 The
main limitation of XWeave is the fact that it only supports the addition of new

5 http://www.itemis.com/itemis-ag/services-and-solutions/eclipse-modeling/language=en/35056/
openarchitectureware-oaw.

http://www.itemis.com/itemis-ag/services-and-solutions/eclipse-modeling/language=en/35056/openarchitectureware-oaw
http://www.itemis.com/itemis-ag/services-and-solutions/eclipse-modeling/language=en/35056/openarchitectureware-oaw
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elements to the base model. It does not support removing or replacing existing
elements. In addition, there are no supported theoretical foundations for this weaver.

Hovsepyan et al. [100] have proposed an approach, called Generic Reusable Con-
cern Compositions (GReCCo), for composing concern models. It supports composi-
tion of class and sequence diagrams. To support reusability, concerns are specified in
a generic way. In order to compose two concerns, a composition model is specified,
which provides directions to the transformation engine on how to compose the two
models. The GReCCo tool is implemented using ATL language [1]. Since concerns
are specified as generic models, their specialization to a particular context is needed
in the composition model. However, this suggests that for each composition opera-
tion, a separate composition model needs to be specified, which may be a costly task
in terms of effort and complexity.

Klein et al. [118] have proposed a semantic-basedweaving algorithm for sequence
diagrams. Similar to our approach, they support adding, replacing, and removing
behaviors. The weaving algorithm is implemented as a set of transformations. The
matching process consists of transforming the original model in such a way that
pointcuts only match a finite number of paths, which is a limitation of this approach.

ATLAS Model Weaver (AMW) [80] has been developed for establishing links
between models. These links are stored in the weaving model. The latter is created
conforming to a specific weaving meta-model, which enables creating links between
model elements and associations between links. AMW is based on ATL language,
which supports automatic creation of traceability links between the source and the
target models. However, AMW requires continuous interaction with the developer to
build theweavingmodel.Additionally,AMWdeals onlywith theXMI representation
of the models.

Reddy et al. [175] have presented an approach for composing aspect-oriented
class models. The authors have described a composition approach that utilizes a
composition algorithm and composition directives. Composition directives are used
when the default composition algorithm is known or expected to yield incorrect
models. The prototype tool is based on Kermeta [17]. However, it supports only
the default composition algorithm but not the composition directives. Other model
weaving approaches [92, 105, 213] that handle executable UML (xUML) models are
presented in the related work section of Chap.10.

Table7.4 summarizes the existing model weavers. It also compares the weavers
according to the supported diagrams, formalization of the weaving, tool support,
aspect reusability, weaver extensibility, and whether the approach adopts any stan-
dards for the implementation of the tool. The terms “CD”, “SMD”, “SD”, and “AD” in
the table refer respectively to class diagrams, state machine diagrams, sequence dia-
grams, and activity diagrams. The term “Generic” means that the approach supports
any kind of models with a well-defined meta-model. From this table, we conclude
that our approach is the only one that handles UML diagrams in a comprehensive
way in terms of the defined criteria.

http://dx.doi.org/10.1007/978-3-319-16106-8_10
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7.8 Conclusion

In this chapter, we have presented our weaving framework for integrating security
aspects into UML design models. We have detailed the main steps of the proposed
weaving approach. Additionally, we have presented the weaving algorithms that
implement the weaving capabilities for each of the supported UML diagrams. The
different transformation definitions and the mapping rules used to perform the weav-
ing were also detailed. The main advantages of our weaving approach are the porta-
bility and the expressiveness thanks to the use of OMG standards, namely, OCL and
QVT languages. By adopting OCL for evaluating the pointcuts, we were able to
match a rich join point model with a large and variant set of join points. For instance,
in activity diagrams, we consider not only executable nodes, i.e., action nodes, but
also various control nodes, e.g.,fork,decision. Some of these join points cannot
be captured at the code level with existing pointcuts. Thus, capturing such control
nodes, at the design level, allows modeling crosscutting concerns needed with alter-
natives, loops, exceptions, and multithreaded applications. Also, in state machine
diagrams, we consider not only static states as join points, but also, we capture states
that dynamically depend on the transitions that are triggered to reach them. The
adoption of QVT for implementing the weaving allowed us to support a wide variety
of modifications on different UML diagrams. In addition, QVT extends portability
of the designed weaver to all tools supporting QVT language. Moreover, traceability
of the performed weaving operations is also supported through the tagging rules for
the added and the modified elements. After weaving the needed security aspects, the
developer can validate the hardening of the models by making use of verification
and validation tools [69, 126]. In our approach, these tools take, as inputs, the woven
model and the corresponding security properties, and provide, as output, whether the
security properties are satisfied or not. The weaver has been developed as a plug-in
on top of IBM-RSA, which makes it portable to any IDE that is based on Eclipse.
We have also explored the viability and the relevance of our framework by using it to
inject security mechanisms into various mid-size open source projects, such as SIP
communicator and OpenSAF. Using our framework, we successfully solved differ-
ent security vulnerabilities in SIP communicator, replaced deprecated functions in
OpenSAF, and added access control and input validation mechanisms into a service
provider application.



Chapter 8
Static Matching and Weaving Semantics
in Activity Diagrams

Aspect-Oriented Modeling (AOM) is an emerging solution for handling security
concerns at the softwaremodeling level. In this respect,we have proposed, inChaps. 6
and 7, an AOM framework for specifying and systematically integrating security
aspects into UML design models. In this chapter, we present formal specifications
for aspect matching and weaving in UML activity diagrams. In fact, most of the
existing work on weaving aspects into UML design models is presented from a
practical perspective and lacks formal syntax and semantics. Accordingly, there is
a desideratum to put more emphasis on the theoretical foundations that allow for
rigorous definitions, establishment of theoretical results, and consequently a better
understanding of AOM.

We focus on activity diagrams typically used to model business processes and
operational workflows of systems [152]. Activity diagrams have a rich join point
model, and accordingly, itwill be very useful to formalize theirmatching andweaving
processes. We formalize both types of adaptations, i.e., add adaptations, which add
new elements to an activity diagram before, after, or around specific join points, and
remove adaptations, which delete existing elements from activity diagrams. To the
best of our knowledge, this is the first contribution in handling formal specifications
of adaptation weaving specifically for around adaptation with or without proceed.
Regarding the join point model, its novelty is that we consider not only executable
nodes, i.e., action nodes, but also various control nodes, i.e., initial, final,
flow final, fork, join, decision, and merge nodes. Actually, some of
these join points cannot be captured at the code level, and thus, capturing such control
nodes, at the design level, allows modeling crosscutting concerns with alternatives,
loops, exceptions, and multithreaded applications.

The remainder of this chapter is structured as follows. Section8.1 presents the syn-
tax of UML activity diagrams and aspects. In Sect. 8.2, we define formal semantics
for aspect matching and weaving. Afterwards, in Sect. 8.3, we formalize algorithms
for matching and weaving. In addition, we prove the correctness and the complete-
ness of these algorithms with respect to the proposed semantics. Finally, Sect. 8.4
concludes this chapter.

© Springer International Publishing Switzerland 2015
D. Mouheb et al., Aspect-Oriented Security Hardening of UML Design Models,
DOI 10.1007/978-3-319-16106-8_8
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8.1 Syntax

This section presents the syntax of UML activity diagrams and aspects. The proposed
syntax covers all the constructs that are required for the matching and the weaving
semantics. We need first to introduce the notations that are used to express our
semantics.

Notation

• Algorithms and notations are written with respect to OCaml [16].
• Given a record structure D = { f1 : D1; f2 : D2; . . . ; fn : Dn} and an element e
of type D, the access to the field fi of the element e is written as e · fi .

• Given a record structure D = { f1 : D1; f2 : D2; . . . ; fn : Dn} and an element e of
type D, the update operation that produces a copy e′ of the element e with a new
value v for the field fx , where 1 ≤ x ≤ n, is written as e′ = {e with fx = v}.

• Given a type τ , we write τ-set to denote sets having elements of type τ .
• Given a type τ , we write τ-uset to denote sets having a unary element of type τ .
• Given a type τ , we write τ-list to denote lists having elements of type τ .
• The type Identifier classifies identifiers.

8.1.1 Activity Diagrams Syntax

An activity diagram, as shown in Fig. 8.1, consists of a set of nodes and a set of edges.
An edge is a directed connection between two nodes represented by source and tar-
get. In addition, an edge may have a guard condition specifying if the edge can be
traversed. A node can be either an executable node (e.g., action, structured
activity) or a control node (e.g., initial, final). We consider the follow-
ing nodes:

• Initial: represents an initial node, at which the activity starts executing. It has one
outgoing edge and no incoming edges.

• Final: represents a final node that can be either: (1) an activity final, at which the
activity execution terminates, or (2) a flow final, at which a flow terminates. It has
one incoming edge and no outgoing edges.

• Fork/Decision: represents a fork or a decision node. It has one incoming edge
and multiple outgoing edges.

• Join/Merge: represents a join or a merge node. It has one outgoing edge and
multiple incoming edges.
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Fig. 8.1 Activity diagrams syntax—part 1
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• Action: represents an action node. It has one incoming and one outgoing edge.
Moreover it has input pins and output pins represented as a list of types. The type,
as specified in [155], can be Int to classify integers, Nat to classify naturals, Bool
to classify the usual truth values true or false, String to classify a sequence of
characters, or enumeration to represent user-defined data types. There are various
kinds of actions in UML 2. Among them, we consider the following:

– Opaque action is represented by action.
– Call operation action is represented by call. The operation to be invoked by
the action execution is specified by the operand field.

– Read structural feature action is represented by read. The structural feature to
be read is specified by the operand field.

– Write structural feature action is represented by write. The structural feature
to be written is specified by the operand field.

– Create object action is represented by create. The object to be created is
specified by the operand field.

– Destroy object action is represented by destroy. The object to be destroyed
is specified by the operand field.

• Proceed: represents a node that can be any of the previously defined nodes or
a proceed node. A proceed node is a special node that is used within the
around adaptation to represent the original computation of the matched join point.
A proceed node has one incoming and one outgoing edge.

• Structured Activity: represents a structured activity node, which may have in turn
its own nodes and edges. It has one incoming and one outgoing edge.

• Proceed Structured Activity: represents a structured activity that may have
proceed nodes. It has one incoming and one outgoing edge.

8.1.2 Aspect Syntax

An aspect, as depicted in Fig. 8.2, includes a list of adaptations. An adaptation can
be of two kinds:
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Fig. 8.2 Aspect syntax

• Add adaptation: It includes the following:

– The activity element to be injected at specific locations picked out by pointcuts.
It can be either a basic element (action) or a composed element (structured
activity or proceed structured activity).

– The insertion point that specifies where the activity element should be injected.
It can have the following three values: before, after, and around. A before-
(respectively after-) positionmeans that the new element should be added before
(respectively after) the identified location, while an around-position means that
the existing element at the identified location should be replaced with a new one.
In the case of around, the adaptation element may contain a proceed node
that represents the computation of the matched join point.

• Remove adaptation: It includes a pointcut that picks out the elements that should
be removed from the activity diagram.

A pointcut specifies a set of join points in the activity diagram where the aspect
adaptations should be applied. We consider the following kinds of basic pointcuts:
initial, final, flowfinal, fork, join, decision, merge, action,
call, read, write, create, destroy, args, and inside_activity. The
pointcuts initial, final, flowfinal, fork, join, decision, merge,
and action pick out the nodes initial, final, flowfinal, fork, join,
decision, merge, and action respectively. The pointcut call picks out action
nodes that perform specific operation calls. The pointcutread (respectivelywrite)
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picks out action nodes that read (respectively write) the values of a specific structural
feature. The pointcut create (respectively destroy) picks out action nodes that
create (respectively destroy) objects. The pointcut args picks out call actions where
the types of their input pins are instances of the specified types in the pointcut.
The pointcut inside_activity picks each join point inside a specific activity
diagram. These basic pointcuts can be combined with logical operators to produce
more complex ones.

8.2 Matching and Weaving Semantics

In this section, we present the matching and the weaving semantics. The matching
semantics describes how to identify the join points targeted by the activity adapta-
tions, whereas the weaving semantics describes how to apply the activity adaptations
at the identified join points.

8.2.1 Matching Semantics

We define the judgment A, n �match pcd, which is used in the matching semantic
rules, presented in Figs. 8.4 and 8.5, to describe that a node n belonging to the activity
Amatches the pointcut pcd. A node n can be an initial node i , an activity final node
af, a flow final node ff, a fork node f , a join node j , a decision node d, a merge node
m, an action node a, a call operation action node coa, a read structural feature action
node ra, a write structural feature action node wa, a create object action node ca,
a destroy object action node da, or either of these nodes sn. Before presenting the
matching rules, we need to explain the notation of equality of type lists presented in
Fig. 8.3, since it is used in the rule Args. Two lists of types are equal if the nth item
in the first list is an instance of the nth item in the second list.

Fig. 8.3 Equality of type
lists
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Fig. 8.4 Matching semantics—part 1
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Fig. 8.5 Matching semantics—part 2

In the following, we explain the matching semantic rules:

Initial Describes the case where the current node is an initial
node, the current pointcut is an initial one, and the point-
cut name equals the node name. In such a case, the initial
node matches the pointcut.

Final Describes the case where the current node is an activity
final node, the current pointcut is a final one, and the
pointcut name equals the node name. In such a case, the
activity final node matches the pointcut.

FlowFinal Describes the case where the current node is a flow final
node, the current pointcut is a flow final one, and the
pointcut name equals the node name. In such a case, the
flow final node matches the pointcut.

Fork Describes the casewhere the current node is a fork node,
the current pointcut is a fork one, and the pointcut name
equals the node name. In such a case, the fork node
matches the pointcut.

Join Describes the case where the current node is a join node,
the current pointcut is a join one, and the pointcut name
equals the node name. In such a case, the join node
matches the pointcut.

Decision Describes the case where the current node is a decision
node, the current pointcut is a decision one, and the
pointcut name equals the node name. In such a case, the
decision node matches the pointcut.

Merge Describes the case where the current node is a merge
node, the current pointcut is a merge one, and the point-
cut name equals the node name. In such a case, themerge
node matches the pointcut.
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Action Describes the case where the current node is an action
node that can be either an opaque action, a call operation
action, a read structural feature action, a write structural
feature action, a create object action, or a destroy object
action, the current pointcut is an action one, and the
pointcut name equals the node name. In such a case, the
action node matches the pointcut.

Call Describes the case where the current node is a call oper-
ation action node, the current pointcut is a call one, the
pointcut name equals the name of the operation to be
invoked. In such a case, the call operation action node
matches the pointcut.

Read Describes the casewhere the current node is a read struc-
tural feature action node, the current pointcut is a read
one, the pointcut name equals the name of the structural
feature to be read. In such a case, the read structural
feature action node matches the pointcut.

Write Describes the case where the current node is a write
structural feature action node, the current pointcut is a
write one, the pointcut name equals the name of the
structural feature to be written. In such a case, the write
structural feature action node matches the pointcut.

Create Describes the case where the current node is a create
object action node, the current pointcut is a create one,
the pointcut name equals the name of the object to be
created. In such a case, the create object action node
matches the pointcut.

Destroy Describes the case where the current node is a destroy
object action node, the current pointcut is a destroy one,
the pointcut name equals the name of the object to be
destroyed. In such a case, the destroy object action node
matches the pointcut.

InsideActivity Describes the case where the current node is an sn node,
i.e., initial, final, flow final, fork, join, decision, merge,
or action node, the current pointcut is an inside_activity
one, and the pointcut name equals the name of the activ-
ity containing the node. In such a case, the sn node
matches the pointcut.
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Args Describes the case where the current node is a call oper-
ation action, the current pointcut is an args one, and the
types given in the pointcut are equal to the types given
in the input pins of the action. In such a case, the call
operation action matches the pointcut.

And, Or1, Or2, and Not Describe the cases where pointcuts are combined using
logical operators to produce more complex ones.

8.2.2 Weaving Semantics

The weaving semantics, shown in Fig. 8.9, is represented by the weaving con-
figuration 〈Activity, Aspect, Node, State〉. The state State is a flag that repre-
sents the stage of the weaving process, which is either weaving or end. The
flag is equal to weaving when adaptations still have to be woven, whereas it
becomes end when the weaving is completed. Hence, the transformation
〈A, s, n,weaving〉 ↪→ 〈A′, [ ], n′,end〉 means that the activity diagram A′ is the
result of weaving all the applicable adaptations in the adaptation list s into the node n.
A node whose type is proceed is denoted pr, whereas the set {action,
call, read, write, create, destroy} is called actionSet. Before presenting
the weaving rules, we need to explain the following notation:

• The axiom � n defines that the node n is of type proceed or it is a structured
activity node having, at least, oneproceed node. Derivations ofproceed nodes
are shown in Fig. 8.6.

• The axiom � n defines that the node n is not of type proceed or it is a struc-
tured activity node that none of its nodes is of type proceed. Derivations of no
proceed nodes are shown in Fig. 8.7.

• The representation s′ = s[n1 → n2] describes that the set s′ comes out as a result
of substituting n1 by n2 wherever n1 appears in the set s, as long as the nodes in the
set s are not proceed structured activities. This is accompanied by modifying
the incoming and the outgoing edges of the node n2 together with modifying the
corresponding edges’ sources and targets. In the case that a node in the set s is a
proceed structured activity, we substitute n1 by n2 wherever n1 appears in the
nodes of this proceed structured activity. The substitution rules are shown in
Fig. 8.8.

Fig. 8.6 Derivation of Proceed nodes
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Fig. 8.7 Derivation of no Proceed nodes

Fig. 8.8 Substitution rules

In the following, we explain the weaving semantic rules:

Before Describes the case where an add before adaptation
matches a specific node. This adaptation can be applied
before this matched node unless it is an initial node since
this node starts the activity execution. The activity ele-
ment of the adaptation is inserted before the matched
node.

After Describes the case where an add after adaptation matches
a specific node. This adaptation can be applied after this
matched node unless it is a final node or a flow final node
since those nodes terminate the activity execution. The
activity element of the adaptation is inserted after the
matched node.

AroundWProceed Describes the case where an add around adaptation
matches an action node. Additionally, the adaptation
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element is a structured activity having, at least, one
proceed node. The activity element of the adaptation
replaces the matched node. Moreover, every occurrence
of a proceed node in the nodes of the adaptation ele-
ment is replaced by the corresponding matched node.

AroundWoutProceed Describes the case where an add around adaptation
matches an action node. Additionally, the adaptation ele-
ment is an action node or a structured activity that none
of its nodes is a proceed one. The activity element of
the adaptation replaces the matched node.

Remove Describes the case where a remove adaptation matches
a specific node. This adaptation can be applied just on
matched action nodes. The matched node is deleted from
the activity diagram.

NoMatch Describes the case where the current adaptation pointcut
does not match a node n. In this case, the activity diagram
remains the same and theweaving process continues with
the rest of the adaptations.

End Describes the case where there are no more adaptations
to apply on the activity diagram. In this case, the activ-
ity diagram remains the same and the weaving process
terminates.

8.3 Completeness and Correctness of the Weaving

In this section, we address the correctness and the completeness of the weaving in
UML activity diagrams. We first present the algorithms that implement the matching
and the weaving semantics reported in the rules in Figs. 8.4, 8.5, and 8.9. Then,
we prove the correctness and the completeness of the matching and the weaving
algorithms with respect to the semantics rules. By correctness (or soundness), we
mean the output of thematching/weaving algorithm is predicted by its corresponding
semantic rules. By completeness, we mean the behavior, derived from a semantic
rule, corresponds to a particular execution of the corresponding algorithm.

8.3.1 Algorithms

In this sub-section, we present algorithms that implement the matching and the
weaving processes. We have four algorithms: containProceed (Algorithm 8.1),
substitute (Algorithm 8.2), M (Algorithm 8.3), and W (Algorithms 8.4 and 8.5).
In the algorithms M and W , actionSet is the set {action, call, read, write,
create, destroy}. The algorithm containProceed takes a node n as input. It
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Fig. 8.9 Weaving semantics

returns true if the node n is of type proceed or if it is a structured activity node
that at least one of its nodes is of type proceed.

The algorithm substitute takes three arguments: a set s and two nodes n1 and n2.
It returns a set that comes out as a result of substituting n1 by n2 wherever n1 appears
in the set s as long as the nodes in the set s are not proceed structured activities.
This is accompanied by modifying the incoming and the outgoing edges of the node
n2 together with modifying the corresponding edges’ sources and targets. In the case
that a node in the set s is a proceed structured activity, we substitute n1 by n2
wherever n1 appears in the nodes of this proceed structured activity.
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Algorithm 8.1: Proceed Algorithm

containProceed(n) = case n.type of

proceed ⇒ true
proceed_str_activity ⇒ containProceed(n′) and n′ ∈ n.nodes
otherwise ⇒ false

Thematching algorithmM takes three arguments: A set of activity diagramsAS,
a node n, and a pointcut pcd. It returns true if the node n in the activity diagram
A, which belongs to the set AS , matches the pointcut pcd, and returns false
otherwise.

The weaving algorithm W takes three arguments: An activity diagram A, an
adaptation list s, and a node n. The outcome of the weaving algorithm is an activity
diagram A′ that represents the woven diagram. The function buildEdge, used in the
weaving algorithm, takes two nodes, as inputs, and returns an edge between these
two nodes as follows:

buildEdge : Node × Node → Edge
buildEdge(s, t) = e where (e.source = s) ∧ (e.target = t)

Algorithm 8.2: Substitute Algorithm

substitute(s, n1, n2) = case s of

∅ ⇒ ∅
{n} ⇒ if n.type �= proceed_str_activity and n �= n1 then {n} else

if n.type �= proceed_str_activity and e ∈ n.incoming and e′ ∈ n.outgoing
then
let n′ = {n2 with incoming = e, outgoing = e′}

e.target = n′
e′.source = n′

in {n′}
else
if n.type = proceed_str_activity then

let s = substitute(n.nodes, n1, n2)
n′ = {n with nodes = s}

in {n′}
{n} ∪ s′ ⇒ let s1 = substitute({n}, n1, n2)

s2 = substitute(s′, n1, n2)
in s1 ∪ s2
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Algorithm 8.3: Matching Algorithm
M(AS, n, pcd) = if A ∈ AS and n ∈ A.nodes then case pcd.kind of
inside_activity ⇒ if n.type ∈ {initial,final,flowfinal,fork,join,

decision,merge,action,call,read,write,create,
destroy} then pcd.name = A.name

initial|final|
flowfinal|fork|
join|decision|merge ⇒ if n.type = pcd.kind then n.name = pcd.name
action ⇒ if n.type ∈ actionSet then pcd.name = n.name
call|read|write|
create|destroy ⇒ if n.type = pcd.kind then pcd.name = n.operand
args ⇒ if n.type = call then

let rec eq pcd.input n.inpin= match pcd.input n.inpin with
τ1 :: l ′1, τ2 :: l ′2 →

if (τ1 = τ2) || (τ1 = Int and τ2=Nat) then
eq l ′1 l ′2

else
false

| [ ], [ ] → true

8.3.2 Completeness and Correctness

In this sub-section, we state and prove results that establish the soundness and the
completeness of the algorithms containProceed (Algorithm 8.1), substitute (Algo-
rithm 8.2),M (Algorithm 8.3), andW (Algorithms 8.4 and 8.5) with respect to the
semantics reported in Figs. 8.4, 8.5, 8.6, 8.8, and 8.9 respectively.

The following lemma states the soundness of the algorithm containProceed.

Lemma 8.1 (Soundness of containProceed) Given a node n. If containProceed
then � n.

The following lemma states the completeness of the algorithm containProceed.

Lemma 8.2 (Completeness of containProceed) Given a node n. If � n then
containProceed .

The proofs of Lemmas 8.1 and 8.2 are straightforward since the algorithm contain-
Proceed results from the rules presented in Fig. 8.6.

The following lemma states the soundness of the algorithm substitute.

Lemma 8.3 (Soundness of substitute) Given a set s and two nodes n1 and n2.
If substitute(s, n1, n2) = s′ then s′ = s[n1 → n2].
The following lemma states the completeness of the algorithm substitute.

Lemma 8.4 (Completeness of substitute) Given a set s and two nodes n1 and n2.
If s′ = s[n1 → n2] then substitute(s, n1, n2) = s′.

The proofs of Lemmas 8.3 and 8.4 are straightforward since the algorithm substitute
results from the rules presented in Fig. 8.8.

The following lemma states the soundness of the matching algorithm M.
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Algorithm 8.4: Weaving Algorithm - Part 1
W(A, s, n) = case s of
ad :: s′ ⇒ if M({A}, n, ad.pcd) then

case ad.kind of
add ⇒ case ad.pos of

before ⇒ if n.type �= initial then
let es = n.incoming

e ∈ es
e′′ = {e with target = ad.elem}
e′ = buildEdge(ad.elem, n)

n′′ = {ad.elem with incoming = e′′, outgoing = e′}
n′ = {n with incoming = (es\{e}) ∪ {e′}}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n}) ∪ {n′, n′′},

edges = (ed\{e}) ∪ {e′, e′′}}
in W(A′, s′, n′)

after ⇒ if n.type �= final and n.type �= flowfinal then
let os = n.outgoing

e ∈ os
next = e.target
e′ = buildEdge(ad.elem, next)
e′′ = {e with target = ad.elem}
n′ = {ad.elem with incoming = e′′, outgoing = e′}
es = next.incoming
n′′ = {next with incoming = (es\{e}) ∪ {e′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{next}) ∪ {n′, n′′},

edges = (ed\{e}) ∪ {e′, e′′}}
in W(A′, s′, n)

around ⇒ if n.type ∈ actionSet and containProceed(ad.elem) then
let e ∈ n.incoming

e′ ∈ n.outgoing
e′′ = {e with target = ad.elem}
e′′′ = {e′ with source = ad.elem}
{n′′} = substitute({ad.elem}, pr, n)

n′ = {n′′ with incoming = e′′, outgoing = e′′′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n}) ∪ {n′},

edges = (ed\{e, e′}) ∪ {e′′, e′′′}}
in W(A′, s′, n′)

else
if n.type ∈ actionSet and ¬containProceed(ad.elem) then

let {n′} = substitute({n}, n, ad.elem)

no = A.nodes
A′ = {A with nodes = (no\{n}) ∪ {n′}}

in W(A′, s′, n′)
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Algorithm 8.5: Weaving Algorithm - Part 2
remove ⇒ if n.type ∈ actionSet then

let e ∈ n.incoming
e′ ∈ n.outgoing
next = e′.target
e′′ = {e with target = next}
es = next.incoming
n′ = {next with incoming = (es\{e′}) ∪ {e′′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n, next}) ∪ {n′},

edges = (ed\{e, e′}) ∪ {e′′}}
in W(A′, s′, next)

else W(A, s′, n)

[ ] ⇒ A

Lemma 8.5 (Soundness of M) Given a set of activity diagrams AS, an activity
node n, and a pointcut pcd. If M(AS, n, pcd) where A ∈ AS and n ∈ A.nodes
then A, n �match pcd.

Proof The proof of Lemma 8.5 is straightforward by case analysis. Let us take as
example the following cases:

• Case (initial):
From the algorithm M, we have:
pcd.kind = initial
n.type = initial
n.name = pcd.name
Since n.type = initial then n is an initial node i .
By the rule (Initial) of the matching rules presented in Fig. 8.4, we conclude:
A, i �match pcd

• Case (call):
From the algorithm M, we have:
pcd.kind = call
n.type = call
pcd.name = n.operand
Since n.type = call then n is a call operation action node (coa).
By the rule (Call) of the matching rules presented in Fig. 8.4, we conclude:
A, coa �match pcd

• Case (read):
From the algorithm M, we have:
pcd.kind = read
n.type = read
pcd.name = n.operand
Since n.type = read then n is a read structural feature action node (ra).
By the rule (Read) of the matching rules presented in Fig. 8.4, we conclude:
A, ra �match pcd
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• Case (Write):
From the algorithm M, we have:
pcd.kind = write
n.type = write
pcd.name = n.operand
Since n.type = write then n is a write structural feature action node (wa).
By the rule (Write) of the matching rules presented in Fig. 8.4, we conclude:
A, wa �match pcd

• Case (inside_activity):
From the algorithm M, we have:
pcd.kind = inside_activity
n.type = action
pcd.name = A.name
Since n.type = action then n is a simple node (sn).
By the rule (InsideActivity) of the matching rules presented in Fig. 8.4, we conclude:
A, sn �match pcd

The following lemma states the completeness of the matching algorithm M.

Lemma 8.6 (Completeness ofM) Given a set of activity diagrams AS, an activity
diagram A where A ∈ AS, an activity node n where n ∈ A.nodes, and a pointcut
pcd. If A, n �match pcd then M(AS, n, pcd).

Proof The proof of Lemma 8.6 is straightforward by propagating the matching rules
presented in Figs. 8.4 and 8.5 from conclusion to premises. Let us take as example
the following case:

• Case (initial):
From the rule (Initial), we have:
pcd.kind = initial
pcd.name = i.name
Since n is an initial node i , then n.type = initial.
SinceA ∈ AS and n ∈ A.nodes, by the algorithmM presented (Algorithm 8.3),
we conclude:
M(AS, n, pcd)

The following theorem states the soundness of the weaving algorithm W .

Theorem 8.1 (Soundness ofW) Given an activity diagram A, an adaptation list s,
and a node n. If W(A, s, n)=A′′ then 〈A, s, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉.
Proof The proof is done by induction over the length of s.

1. Induction basis (s = [ ]):
By the algorithm W , we have:
W(A, [ ], n)=A
From the algorithm W , we conclude that s = [ ].
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From the rule (End) of the semantic weaving rules presented in Fig. 8.9, we
conclude:
〈A, s, n,weaving〉 ↪→ 〈A, [ ], n,end〉

2. Induction step:
We assume as induction hypothesis:
IfW(A, s′, n)=A′′ then 〈A, s′, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉.
Now, let us consider (s = ad :: s′). Since ad.kind can be:

• Case (add):
Since ad.pos can be:
– Subcase (before):
From the algorithm W , we have:
M({A}, n, ad.pcd)

ad.kind = add
ad.pos = before
n.type �= initial
es = n.incoming
e ∈ es
e′′ = {e with target = ad.elem}
e′ = buildEdge(ad.elem, n)

n′′ = {ad.elem with incoming = e′′, outgoing = e′}
n′ = {n with incoming = (es\{e}) ∪ {e′}}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n}) ∪ {n′, n′′},

edges = (ed\{e}) ∪ {e′, e′′}}
By the soundness of the algorithm M, we conclude:
A, n �match ad.pcd
From the rule (Before) of the semantic weaving rules presented in Fig. 8.9,
we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′, s′, n′,weaving〉
By the hypothesis, we conclude:
〈A′, s′, n′,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉
By the transitivity of ↪→, we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉

– Subcase (after):
From the algorithm W , we have:
M({A}, n, ad.pcd)

ad.kind = add
ad.pos = after
n.type �= final
n.type �= flowfinal
os = n.outgoing
e ∈ os
next = e.target
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e′ = buildEdge(ad.elem, next)
e′′ = {e with target = ad.elem}
n′ = {ad.elem with incoming = e′′, outgoing = e′}
es = next.incoming
n′′ = {next with incoming = (es\{e}) ∪ {e′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{next}) ∪ {n′, n′′},

edges = (ed\{e}) ∪ {e′, e′′}}
By the soundness of the algorithm M, we conclude:
A, n �match ad.pcd
From the rule (After) of the semantic weaving rules presented in Fig. 8.9,
we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′, s′, n,weaving〉
By the hypothesis, we conclude:
〈A′, s′, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉
By the transitivity of ↪→, we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉

– Subcase (around with proceed):
From the algorithm W , we have:
M({A}, n, ad.pcd)

ad.kind = add
ad.pos = around
n.type ∈ actionSet
containProceed(ad.elem)

e ∈ n.incoming
e′ ∈ n.outgoing
e′′ = {e with target = ad.elem}
e′′′ = {e′ with source = ad.elem}
{n′′} = substitute({ad.elem}, pr, n)

n′ = {n′′ with incoming = e′′, outgoing = e′′′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n}) ∪ {n′},

edges = (ed\{e, e′}) ∪ {e′′, e′′′}}
By the soundness of the algorithm M, we conclude:
A, n �match ad.pcd
By the soundness of the algorithm containProceed, we conclude:
� ad.elem
By the soundness of the algorithm substitute, we conclude:
{n′′} = {ad.elem}[pr → n]
From the rule (AroundWProceed) of the semanticweaving rules presented
in Fig. 8.9, we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′, s′, n′,weaving〉
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By the hypothesis, we conclude:
〈A′, s′, n′,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉
By the transitivity of ↪→, we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉

– Subcase (around without proceed):
From the algorithm W , we have:
M({A}, n, ad.pcd)

ad.kind = add
ad.pos = around
n.type ∈ actionSet
{n′} = substitute({n}, n, ad.elem)

no = A.nodes
A′ = {A with nodes = (no\{n}) ∪ {n′}}
By the soundness of the algorithm M, we conclude:
A, n �match ad.pcd
By the soundness of the algorithm containProceed and the rules presented
in Figs. 8.6 and 8.7, we conclude:
� ad.elem
By the soundness of the algorithm substitute, we conclude:
{n′} = {n}[n → ad.elem]
From the rule (AroundWoutProceed) of the semantic weaving rules pre-
sented in Fig. 8.9, we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′, s′, n′,weaving〉
By the hypothesis, we conclude:
〈A′, s′, n′,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉
By the transitivity of ↪→, we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉

• Case (remove):
From the algorithm W , we have:
M({A}, n, ad.pcd)

ad.kind = remove
n.type ∈ actionSet
e ∈ n.incoming
e′ ∈ n.outgoing
next = e′.target
e′′ = {e with target = next}
es = next.incoming
n′ = {next with incoming = (es\{e′}) ∪ {e′′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n, next}) ∪ {n′}, edges = (ed\{e, e′}) ∪ {e′′}}
By the soundness of the algorithm M, we conclude:
A, n �match ad.pcd
From the rule (Remove) of the semantic weaving rules presented in Fig. 8.9,
we conclude:
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〈A, s, n,weaving〉 ↪→ 〈A′, s′, next,weaving〉
By the hypothesis, we conclude:
〈A′, s′, next,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉
By the transitivity of ↪→, we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉

• Case (no match):
By the soundness and the completeness of the algorithmM, we conclude:
A, n �match ¬ ad.pcd
From the rule (NoMatch) of the semantic weaving rules presented in Fig. 8.9,
we conclude:
〈A, s, n,weaving〉 ↪→ 〈A, s′, n,weaving〉
By the hypothesis, we conclude:
〈A, s′, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉
By the transitivity of ↪→, we conclude:
〈A, s, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉

The following theorem states the completeness of the weaving algorithm W .

Theorem 8.2 (Completeness of W) Given an activity diagram A, an adaptation
list s, and a node n.
If 〈A, s, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉 then W(A, s, n)=A′′.

Proof The proof is done by induction over the length of s.

1. Induction basis (s = [ ]):
By the rule (End) of the semantic weaving rules presented in Fig. 8.9, we have:
〈A, s, n,weaving〉 ↪→ 〈A, [ ], n,end〉
From the rule (End) of the semantic weaving rules presented in Fig. 8.9, we
conclude that s = [ ].
From the algorithm W , we conclude:
W(A, [ ], n)=A.

2. Induction step:
We assume as induction hypothesis:
If 〈A, s′, n,weaving〉 ↪→ 〈A′′, [ ], n′′,end〉 then W(A, s′, n)=A′′.
Now, let us consider (s = ad :: s′). Since ad.kind can be:

• Case (add):
Since ad.pos can be:
– Subcase (before):
From the rule (Before) of the semantic weaving rules presented in Fig. 8.9,
we conclude:
ad.kind = add
ad.pos = before
n.type �= initial
A, n �match ad.pcd
es = n.incoming
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e ∈ es
e′′ = {e with target = ad.elem}
e′ = buildEdge(ad.elem, n)

n′′ = {ad.elem with incoming = e′′, outgoing = e′}
n′ = {n with incoming = (es\{e}) ∪ {e′}}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n}) ∪ {n′, n′′},

edges = (ed\{e}) ∪ {e′, e′′}}
By the completeness of the algorithm M, we conclude:
M({A}, n, ad.pcd)

From the algorithm W , we conclude:
W(A, s, n)=W(A′, s′, n′)
By the hypothesis, we conclude:
W(A′, s′, n′) = A′′

– Subcase (after):
From the rule (After) of the semantic weaving rules presented in Fig. 8.9,
we conclude:
ad.kind = add
ad.pos = after
n.type �= final
n.type �= flowfinal
A, n �match ad.pcd
os = n.outgoing
e ∈ os
next = e.target
e′ = buildEdge(ad.elem, next)
e′′ = {e with target = ad.elem}
n′ = {ad.elem with incoming = e′′, outgoing = e′}
es = next.incoming
n′′ = {next with incoming = (es\{e}) ∪ {e′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{next}) ∪ {n′, n′′},

edges = (ed\{e}) ∪ {e′, e′′}}
By the completeness of the algorithm M, we conclude:
M({A}, n, ad.pcd)

From the algorithm W , we conclude:
W(A, s, n)=W(A′, s′, n)

By the hypothesis, we conclude:
W(A′, s′, n) = A′′

– Subcase (around with proceed):
From the rule (AroundWProceed) of the semantic weaving rules presented
in Fig. 8.9, we conclude:
ad.kind = add
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ad.pos = around
� ad.elem
n.type ∈ actionSet
A, n �match ad.pcd
e ∈ n.incoming
e′ ∈ n.outgoing
e′′ = {e with target = ad.elem}
e′′′ = {e′ with source = ad.elem}
{n′′} = {ad.elem}[pr → n]
n′ = {n′′ with incoming = e′′, outgoing = e′′′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n}) ∪ {n′},

edges = (ed\{e, e′}) ∪ {e′′, e′′′}}
By the completeness of the algorithm M, we conclude:
M({A}, n, ad.pcd)

By the completeness of the algorithm containProceed, we conclude:
containProceed(ad.elem)

By the completeness of the algorithm substitute, we conclude:
{n′′} = substitute({ad.elem}, pr, n)

From the algorithm W , we conclude:
W(A, s, n)=W(A′, s′, n′)
By the hypothesis, we conclude:
W(A′, s′, n′) = A′′

– Subcase (around without proceed):
From the rule (AroundWouProceed) of the semantic weaving rules presented
in Fig. 8.9, we conclude:
ad.kind = add
ad.pos = around
� ad.elem
n.type ∈ actionSet
A, n �match ad.pcd
{n′} = {n}[n → ad.elem]
no = A.nodes
A′ = {A with nodes = (no\{n}) ∪ {n′}}
By the completeness of the algorithm M, we conclude:
M({A}, n, ad.pcd)

By the completeness of the algorithm containProceed, we conclude:
¬containProceed(ad.elem)

By the completeness of the algorithm substitute, we conclude:
{n′} = substitute({n}, n, ad.elem)

From the algorithm W , we conclude:
W(A, s, n)=W(A′, s′, n′)
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By the hypothesis, we conclude:
W(A′, s′, n′) = A′′

• Case (remove):
From the rule (Remove) of the semantic weaving rules presented in Fig. 8.9,
we conclude:
ad.kind = remove
n.type ∈ actionSet
A, n �match ad.pcd
e ∈ n.incoming
e′ ∈ n.outgoing
next = e′.target
e′′ = {e with target = next}
es = next.incoming
n′ = {next with incoming = (es\{e′}) ∪ {e′′}
no = A.nodes
ed = A.edges
A′ = {A with nodes = (no\{n, next}) ∪ {n′},

edges = (ed\{e, e′}) ∪ {e′′}}
By the completeness of the algorithm M, we conclude:
M({A}, n, ad.pcd)

From the algorithm W , we conclude:
W(A, s, n)=W(A′, s′, next)
By the hypothesis, we conclude:
W(A′, s′, next) = A′′

• Case (no match):
From the rule (NoMatch) of the semantic weaving rules presented in Fig. 8.9,
we conclude:
A, n �match ¬ ad.pcd
By the soundness and the completeness of the algorithmM, we conclude:
notM({A}, n, ad.pcd)

From the algorithm W , we conclude:
W(A, s, n)=W(A, s′, n)

By the hypothesis, we conclude:
W(A, s′, n)=A′′

8.4 Conclusion

Wehave presented in this chapter our contribution towards ascribing a formal seman-
tics for the proposedweaving framework.Wehave focusedonUMLactivity diagrams
since they offer a rich join point model that includes various kinds of actions and
control nodes. However, a formal semantics for matching and weaving for the other
diagrams, i.e., class diagrams, statemachinediagrams, and sequencediagrams, canbe
provided in the same vein as for activity diagrams. In this respect, a syntax of activity
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diagrams together with their corresponding adaptations has been defined to express
the matching and the weaving semantics. Then, we have elaborated formal speci-
fications for the matching and the weaving processes. We have addressed all kinds
of adaptations that are supported in our framework, namely, add before/after/around
(with and without proceed), and remove adaptations. Afterwards, we have pro-
vided algorithms that implement the matching and the weaving processes and proved
the correctness and the completeness of these algorithms with respect to the defined
semantics. It is important to mention here that our implementation of the weaving
rules, presented in Chap.7, is derived from these semantic descriptions. This work
on formalizing the matching and the weaving processes in UML activity diagrams
constitutes a first contribution towards elaborating robust theoretical foundations for
AOM. In the next chapters, we will extend this framework with executable speci-
fications to allow matching and weaving in the presence of more complex pointcut
primitives.

http://dx.doi.org/10.1007/978-3-319-16106-8_7


Chapter 9
Dynamic Matching and Weaving Semantics
in λ-Calculus

In Chap. 8, we have presented a formal semantics for aspect matching and weaving
in UML activity diagrams. To get the full advantages of our AOM framework for
security hardening, we have decided to enrich it with more security-related point-
cuts together with their semantic foundations. An example of such pointcuts is the
dataflow pointcut (dflow) [130]. This pointcut analyzes information flow in a sys-
tem to detect input validation vulnerabilities, such as SQL injection and Cross-site
Scripting (XSS) [86]. These vulnerabilities, if exploited by attackers, may lead to
serious security problems, such as breaking the confidentiality and the integrity of
sensitive information.

In order to match this kind of pointcut, UML models should be detailed enough
to include behaviors that manipulate variables and their data values that are useful
to be analyzed in terms of dataflow. In addition, runtime values should be available
at the time of matching in order to track dependencies between these values. To this
end, we extend our semantic framework to support executable UML (xUML) [134]
specifications and capture the semantics of matching and weaving dynamically dur-
ing the execution of the models. For clarity and to facilitate the understanding of
the semantics, we proceed in two steps: First, we elaborate the dynamic semantics
for matching and weaving on λ-calculus [57], since it serves as a base for many
programming languages and contains constructs that are similar to the ones of action
languages. In addition, it offers a powerful mathematical tool based on solid theo-
retical foundations. Afterwards, in Chap. 10, we present the dynamic semantics for
matching and weaving on xUML models.

Various research proposals have investigated formal semantics of aspect-oriented
languages [34, 53, 60, 66, 76, 88, 106, 129, 132, 201, 202]. However, the proposed
semantic models mainly define join points in an intuitive and ad-hoc manner. In
many cases, auxiliary structures need to be maintained for representing join points
and executing pieces of advice. As a result, the semantics for the matching and the
weaving processes become difficult to express, especially in the case of complex
pointcut primitives. Accordingly, there is a desideratum to put more emphasis on the
theoretical foundations that capture the definitions of aspect-oriented mechanisms in
a precise and rigorous way. Such theoretical foundations can serve both as a reference
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for an implementation and as a foundation to establish theoretical properties and
mathematical proofs.

The goal of this chapter is to provide a formal semantics for aspect matching
and weaving based on Continuation-Passing Style (CPS) [193]. As a first step, we
consider a core language based on λ-calculus. More precisely, we perform advice
matching and weaving during the evaluation of λ-expressions. We choose CPS as
the basis of our semantics because, as previously demonstrated in [74], modeling
aspect-oriented constructs, i.e., join points, pointcuts, and pieces of advice, in a frame-
based continuation-passing style provides a concise, accurate, and elegant description
of these mechanisms. Indeed, in CPS join points arise naturally as continuation
frames during the evaluation of the language expressions. In this setting, pointcuts
are expressions that designate a set of continuation frames. An advice specifies
actions to be performed when continuation frames satisfying a particular pointcut
are activated. In addition, by modeling join points as continuation frames, matching
and weaving can be described in a simplified and unified way for different kinds of
primitives. Furthermore, CPS simplifies matching flow-based pointcuts (e.g.,cflow
[113] and dflow [130] pointcuts), that are usually complex to express and require
additional structures to maintain the order of join points.

We start by formalizing matching and weaving semantics for basic pointcuts, such
as get, set, call, and exec pointcuts. These pointcuts are useful for injecting
security at specific points, such as, adding authorization before calling a sensitive
method, adding encryption before sending a secret message and decryption after
receiving the message, etc. In addition, we extend our semantic framework with
flow-based pointcuts, namely, cflow and Dflow pointcuts. These pointcuts are
important from a security perspective since they can detect and fix a considerable
number of vulnerabilities related to information flow, such as Cross-site Scripting
(XSS) and SQL injection attacks [86].

The remainder of this chapter is organized as follows. We start in Sect. 9.1 by pre-
senting the necessary background needed to understand the semantics. Section 9.2
presents the syntax of a core language based on λ-calculus and its denotational
semantics. We transform the semantics into a frame-based CPS style in Sect. 9.3.
Section 9.4 explores the semantics for matching and weaving based on CPS. In
Sect. 9.5, we extend our work by considering flow-based pointcuts and present an
example to illustrate the proposed framework. We discuss related work in Sect. 9.6.
Finally, concluding remarks are presented in Sect. 9.7.

9.1 Background

This section provides the background knowledge that is needed to understand the
semantics presented in this chapter. We start by an overview of λ-calculus, more
specifically, the untyped λ-calculus since it is the language targeted in this chapter.
Then, we introduce the denotational semantics. Afterwards, we review the concepts
of continuation-passing style and defunctionalization.
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9.1.1 λ-Calculus

λ-calculus is a theory of functions introduced by Alonzo Church in the 1930s as a
foundation for functional computing [57]. It provides a simple notation for defining
functions. The notation consists of a set of λ-expressions, each of which denotes
a function. A key characteristic of λ-calculus is that functions are values, just like
booleans and integers. In other words, functions in λ-calculus can be passed as argu-
ments to other functions or returned as values from other functions. In the following,
we provide details about the syntax and the semantics of λ-expressions based on the
work done in [96].

9.1.1.1 Syntax

The pure λ-calculus contains three kinds of λ-expressions, as shown in Fig. 9.1:

1. Variables: represented by x, y, z, etc.
2. Function abstractions (or function definitions): represented by the expression

λx. e, where x is a variable that represents the argument and e is a λ-expression
that represents the body of the function. For example, the expression λx. square x
is a function abstraction that takes a variable x and returns the square of x.

3. Function applications: represented by the expression e e′, where e and e′ are
λ-expressions. The expression e should evaluate to a function that is then applied
to the expression e′. For example, the expression (λx. square x) 3 evaluates,
intuitively, to 9, which is the result of applying the squaring function to 3.

9.1.1.2 Free and Bound Variables

An occurrence of a variable in a λ-expression is either bound or free. An occurrence
of a variable x in a λ-expression is bound if there is an enclosing λx. e, otherwise, it
is free.

Example Let us consider the following λ-expression:
e = λx. (x (λy. y z) x) y

e ::= x variable
| λ x. e abstraction
| e e application

Fig. 9.1 Syntax of λ-Calculus
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In this expression:

• Both occurrences of the variable x are bound since they are within the scope of λx.
• The first occurrence of the variable y is bound since it is within the scope of λy.
• The last occurrence of the variable y is free since it is outside the scope of λy.
• The variable z is free since there is no enclosing λz.

9.1.1.3 Semantics of λ-Expressions

The meaning of aλ-expression is obtained after all its function applications are carried
out. The process of evaluating a λ-expression is called conversion (or Reduction).
There are three kinds ofλ-conversion:α-conversion,β-conversion, andη-conversion.
In the following, we provide a brief description of them. The notation e[e′/x] used
hereafter means substituting e′ for each free occurrence of x in e. The substitution
is called valid if no free variable in e′ becomes bound after the substitution.

α-conversion

It deals with the manipulation of bound variables by allowing their names to be
changed. More precisely, it states that any abstraction λx. e can be converted to
λy. e[y/x] provided that the substitution of y for x in e is valid. For example, the
expression λx. x can be α-converted to λy. y. However, the expression λx. λy. x
cannot be α-converted to λy. λy. y because the substitution (λy. x)[y/x] is not valid
since y that substitutes x becomes bound in λy. y.

β-conversion

It is the most important conversion in evaluating λ-expressions. It states that any
application (λx. e1) e2 can be converted to e1[e2/x] provided that the substitution of
e2 for x in e1 is valid. This conversion is similar to the evaluation of a function call,
i.e., the body e1 of the function λx. e1 is evaluated in an environment, in which the
formal parameter x is bound to the actual parameter e2. For example, the expression
(λx. (λy. x)) 2 can be β-converted to λy. 2. However, the expression (λx. (λy. x)) y
cannot be β-converted to λy. y because the substitution (λy. x)[y/x] is not valid since
y that substitutes x becomes bound in λy. y.

There are different ways by which a β-reduction can be performed. For example,
the expression (λx. square x) ((λy. y) 3) may be β-reduced to either (λx. square x)
3 or square ((λy. y) 3). The order in which β-reductions are performed results in
different semantics, such as, call-by-value and call-by-name semantics:

• Call-by-value: ensures that functions are only called on values, i.e., given an appli-
cation (λx. e) e′, call-by-value semantics makes sure that e′ is first reduced to a
value before applying the function.

• Call-by-name: applies the function as soon as possible, i.e., given an application
(λx. e) e′, call-by-name semantics does not need to ensure that e′ is a value before
applying the function.
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η-conversion

It expresses the property that two functions are equal if they always give the same
results when applied to the same arguments. More precisely, it states that an abstrac-
tion λx. (e x) can be converted to e provided that x is not free in e. As we have
seen, the function λx. (e x) when applied to an argument e′ returns (e x)[e′/x]. If x
is not free in e then (e x)[e′/x] = e e′. Thus λx. (e x) and e denote the same function
since both return the same result, namely e e′, when applied to the same argument
e′. For example, the expression λy. (f x y) can be η-converted to f x. However, the
expression λx. (f x x) cannot be converted to f x because x is free in f x.

9.1.2 Denotational Semantics

Denotational semantics is an approach proposed by Christopher Strachey and Dana
Scott in the late 1960s to provide a formal semantics of programming languages [183].
Concisely, it gives programs a meaning (or denotation) by mapping the syntactic
constructs of a language to mathematical objects [183]. The important characteristic
of this approach is that it is generally compositional, i.e., the denotation of a program
is built out of the denotations of its sub-expressions. Denotational semantics is mostly
used to illustrate the essence of a language feature, without specifying how these
features are actually realized. Hence, the semantics is abstract and does not provide
full implementation details. In this semantics, each syntactic construct is mapped
directly into its meaning by defining a semantic function [[ _ ]] and a semantic domain
D, such that every syntactic construct is mapped by [[ _ ]] to elements of D, which
are abstract values such as integers, booleans, tuples of values, and functions [136].
Therefore, for each syntactic construct, a semantic equation is defined to describe
how the semantic function acts on the construct.

In denotational semantics, the context in which expressions are evaluated is called
an environment. The latter maps variables to values. Given two sets A and B, we will
write A →m B to denote the set of all mappings from A to B. A mapping m ∈ A →m B
could be defined by extension as [a1 �→ b1, . . . , an �→ bn] to denote the association
of the elements bi ’s to ai ’s. Given two mappings m and m′, we will write m † m′
to denote the overwriting of the mapping m by the associations of the mapping
m′. Figure 9.2 presents the denotational semantics of the λ-expressions presented in
Fig. 9.1. Given an expression e and an environment ε, the semantic function [[ _ ]]
yields the computed value v. In the case of:

• Variables: The denotation (computed value) is the value that the variable is bound
to in the environment.

• Function abstractions: The denotation is a closure 〈x, e, ε′〉 capturing the function
parameter x, the function body e, and the evaluation environment ε′, which maps
each free variable of e into its value at the time of the declaration of the function.
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[[ x ]]ε = ε(x)

[[ λ x. e ]]ε = x,e,ε

[[ e e ]]ε = let v= [[ e ]]ε in
let x,e ,ε = [[ e ]]ε in
[[ e ]]ε † [x v]

end
end

Fig. 9.2 Denotational semantics of λ-Calculus

• Function applications: The denotation is computed in three steps: (1) The expres-
sion e′, which is the argument, is evaluated to a value v, (2) the expression e,
which is an abstraction, is evaluated to a closure 〈x, e′′, ε′〉, (3) the expression e′′
is evaluated in the environment ε′ where the variable x is bound to the value v.

9.1.3 Continuation-Passing Style

Continuation-Passing Style (CPS) is a style of programming, in which every aspect
of control flow and data flow is passed explicitly in the form of a continuation [193].
Continuations were first discovered in 1964 by Van Wijngaarden [177]. Later in the
1970s, many researchers [121, 176, 194] have applied them in a wide variety of
settings [177]. In the following, we start by explaining the concept of a continuation
then we provide the main steps of a CPS transformation.

9.1.3.1 Continuations

A continuation is a function that describes the semantics of the rest of a computation.
Instead of returning a value, as in the familiar direct style, a function in CPS style
takes another function as an additional argument, to which it will pass the current
computational result. This additional function argument is the continuation. To better
illustrate the idea of continuations, let us consider the example presented in Fig. 9.3,
which is taken from [39].

The function prodprimes computes the product of all prime numbers that are
less than or equal to a given number n. There are several points in the control flow of
this program where control is returned. For example, the call to the function isprime
returns to a point κ1 with a boolean value b. The first call to the function prodprimes
(in the then clause of the second if) returns to a point κ2 with an integer i, and the
second call to prodprimes returns to a point κ3 with an integer j. Similarly, the call
to the main function prodprimes returns to a point κ with a result r.
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let prodprimes n =

if (n= 1) then 1

else if (isprime(n)) then n∗prodprimes(n−1)

else prodprimes(n− 1)

Fig. 9.3 Example of an OCaml function in direct style

let prodprimes n κ =

if (n= 1) then κ (1)

else let κ1 b =
if (b) then

let κ2 i = κ(n ∗ i) in prodprimes(n− 1,κ2) end
else

let κ3 j = κ(j) in prodprimes(n− 1,κ3) end
in

isprime(n,κ1)
end

Fig. 9.4 Example of an OCaml function in CPS style

These return points represent continuations that express “what to do next”. In
addition, each of these points can be considered as an additional argument to the
corresponding function. When the function call terminates, this additional argument
will tell us where to continue the computation. For example, the function prodprimes
can be given as additional argument the return point (the continuation) κ , and when
it has computed its result r, it will continue by applying κ to r. Similarly, the function
isprime can be given as additional argument the return point κ1, and when it has
computed its result b, it will continue by applying κ1 to b. The same treatment can
be done to the other function calls. Figure 9.4 shows another version of the example
presented above using continuations. Notice that all the return points mentioned
above, κ , κ1, κ2, and κ3 are continuation functions. Thus, as we can see, returning
from a function in CPS style is just like a function call.

9.1.3.2 CPS Transformation

Given a λ-expression e, it is possible to translate it into CPS. This translation is known
as CPS conversion. In the following, we provide the main steps of this conversion.
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An expression e is in a tail position if it is a sub-expression of an expression e′ and
when it is evaluated, it will be returned as the result of the evaluation of e′. The
keyword return is used hereafter just to indicate that e is in a tail position.

1. Each function definition should be augmented with an additional argument; the
continuation function to which it will pass the current computational result.
let f args = e ⇒ let f args κ = e

2. A variable or a constant in a tail position should be passed as an argument to the
continuation function instead of being returned.
return e ⇒ κ e

3. Each function call in a tail position should be augmented with the current contin-
uation. This is because in CPS, each function passes the result forward instead of
returning it.
return f args ⇒ f args κ

4. Each function call that is not in a tail position needs to be converted into a new
continuation, containing the old continuation and the rest of the computation.
Here, op represents a primitive operation, which could include an application.
op (f args) ⇒ f args (λr. κ op r)

9.1.4 Defunctionalization

Defunctionalization is a technique by which higher-order programs, i.e., programs
where functions can represent values, are transformed into semantically equivalent
first-order programs [176]. In a defunctionalized program, a first-class function is
represented with a constructor, holding the values of the free variables of a function
abstraction, and it is eliminated with a case expression dispatching over the corre-
sponding constructors [68]. More precisely, the defunctionalization process consists
of two main steps:

1. Transform each function abstraction into a data structure holding the free vari-
ables of the function abstraction and replace all function abstractions with their
corresponding data structures.

2. Define a second-class apply function that takes a data structure, which represent
the original function, and a value as its arguments. Basically, the apply function
is a collection of the bodies of all original functions with a case expression dis-
patching over the corresponding data structures. Afterwards, replace all function
applications with a call to the apply function.

Therefore, the result of the transformation is a program that contains only first-
order functions. However, the original higher-order structure is implicit in the pro-
gram. For a better understanding of the defunctionalization process, let us consider
the example, shown in Fig. 9.5, which was initially provided in [68]. The function
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aux : (Int → Int) → Int
main : Int× Int×Bool → Int

let aux f = f 1 + f 10
let main x y b = aux(λ z. z+ x) ∗ aux(λ z. if (b) then y+ z else y− z)

Fig. 9.5 Example of a higher-order program

type Lam = Lam1 | Lam2

type Lam1 = {id : Int}

type Lam2 = {id : Int; cond : Bool}

Fig. 9.6 New data structures

apply : Lam× Int → Int

let apply l z = match l with

Lam1 l ⇒ z+ l.id

| Lam2 l ⇒ if (l.cond) then l.id+ z else l.id − z

Fig. 9.7 Apply function

aux takes a first-class function f as an argument, applies it to 1 and 10, and outputs the
summation of the two applications. The function main calls aux twice and outputs
the multiplication of the results.

There are two function abstractions in the main function. To defunctionalize the
program, we should define data structures for these function abstractions and their
corresponding apply function. The first function abstraction (λz. z + x) contains
one free variable (x, of type integer), and therefore the first data structure requires an
integer. The second function abstraction (λz. if (b) then y+z else y−z) contains two
free variables (y, of type integer, and b, of type boolean), and therefore the second
data structure requires an integer and a boolean. The newly defined data structures
are shown in Fig. 9.6 and their corresponding apply function is presented in Fig. 9.7.

Lastly, we rewrite the program by replacing the function abstractions with their
corresponding data structures and their applications with the newly defined apply
function. The defunctionalized program is presented in Fig. 9.8.
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aux_def : Lam → Int
main_def : Int× Int×Bool → Int

let aux_def f = apply(f ,1)+apply(f ,10)
let main_def x y b = aux_def(Lam1(x)) ∗ aux_def(Lam2(y,b))

Fig. 9.8 Defunctionalized program

9.2 Syntax and Denotational Semantics

In this section, we present the syntax of our core language and its denotational
semantics. The language is based on untyped λ-calculus. The syntax is presented in
Fig. 9.9. We consider the following expressions:

• Constants and variables
• Functional constructs (function abstraction and function application)
• Local definitions
• Conditional expressions
• Sequential expressions
• Imperative features (referencing, dereferencing, and assignment expressions). The

expression ref e allocates a new reference and initializes it with the value of e.
The expression ! e reads the value stored at the location referenced by the value
of e. The expression e := e′ writes the value of e′ to the location referenced by
the value of e.

The denotational semantics of the core language is presented in Fig. 9.10. It asso-
ciates a value to each expression of the language. First, we define the function and
the types that are used in the semantics:

[[ _ ]]_ _ : Exp → Env → Store → Result
Result : Value × Store
Value : Int | Bool | Unit | Location | Closure
Closure : Identifier × Exp × Env
Env : Identifier → Value
Store : Location → Value

Given an expression e, a dynamic environment ε, and a store σ , the dynamic
evaluation function [[ _ ]] yields a pair (v, σ ′), where v is the computed value and
σ ′ is the updated store. The environment ε maps identifiers to values. The store σ

maps locations to values. A value can be either a constant, a location, or a closure.
In the case of an abstraction expression λx . e, the computed value is a closure
〈x, e, ε′〉 capturing the function parameter x, the function body e, and the evaluation
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e ::= c constant
| x variable
| λ x. e abstraction
| e e application
| let x = e in e local definition
| if e1 then e2 else e3 conditional
| e1; e2 sequence
| ref e referencing
| ! e dereferencing
| e := e assignment

Fig. 9.9 Core syntax

[[ c ]]ε σ = (c,σ)

[[ x ]]ε σ = (ε(x),σ)

[[ λ x. e ]]ε σ = ( x,e,ε ,σ)

[[ e e ]]ε σ = let (v,σ ) = [[ e ]]ε σ in
let ( x,e ,ε ,σ ) = [[ e ]]ε σ in [[ e ]]ε † [x v] σ end

end

[[ let x = e in e ]]ε σ = let (v,σ ) = [[ e ]]ε σ in [[ e ]]ε † [x v] σ end

[[ if e1 then e2 else e3 ]]ε σ = let (v,σ ) = [[ e1 ]]ε σ in
if (v) then [[ e2 ]]ε σ else [[ e3 ]]ε σ

end

[[ e1; e2 ]]ε σ = let (v,σ ) = [[ e1 ]]ε σ in [[ e2 ]]ε σ end

[[ ref e ]]ε σ = let (v,σ ) = [[ e ]]ε σ in
let = alloc(σ ) in ( σ † [ v]) end

end

[[ ! e ]]ε σ = let ( σ ) = [[ e ]]ε σ in (σ ( ),σ ) end

[[ e := e ]]ε σ = let ( σ ) = [[ e ]]ε σ in
let (v,σ ) = [[ e ]]ε σ in ((),σ † [ v]) end

end

Fig. 9.10 Denotational semantics
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environment ε′, which maps each free variable of e to its value at the time of the
declaration of the function. The function alloc used in the semantics allocates a new
cell in the store and returns a reference to it.

9.3 Continuation-Passing Style Semantics

In this section, we transform the previously defined denotational semantics into
CPS style. As we mentioned earlier, frame-based semantics allows describing AOP
semantics in a precise and unified way. To help understanding this transformation, we
proceed in two steps. First, we elaborate CPS semantics by representing continuations
as functions. Then, we provide CPS semantics by representing continuations as
frames.

9.3.1 Representation of Continuations as Functions

The CPS semantics is presented in Fig. 9.11. We translate the denotational seman-
tics into CPS following the original formulation of the CPS transformation [84]. In
essence, we modify the evaluation function to take a continuation as an additional
argument as follows:

[[ _ ]]_ _ _ : Exp → Env → Store → Cont → Result
Cont = Result → Result

The continuation, represented as a λ-expression, receives the result of the current
evaluation and provides the semantics of the rest of the computation.

9.3.2 Representation of Continuations as Frames

Continuations, which are λ-expressions, are often represented as closures. Ager et al.
[26] have provided a systematic conversion of these closures into data structures (or
frames) and an apply function interpreting the operations of these closures. This
conversion is based on the concept of defunctionalization [176]. Each frame stores
the value(s) of the free variable(s) of the original continuation function and awaits
the value(s) of the previous computation. Following this technique, we transform
the continuation functions, obtained from the previous step, into frames as shown in
Fig. 9.12.
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[[ c ]]ε σ κ = κ(c,σ)

[[ x ]]ε σ κ = κ(ε(x),σ)

[[ λ x. e ]]ε σ κ = κ(λ (v,κ ). [[ e ]]ε † [x v] σ κ )

[[ e e ]]ε σ κ = [[ e ]]ε σ (λ (v,σ ). [[ e ]]ε σ (λ f . f v κ))

[[ let x = e in e ]]ε σ κ = [[ e ]]ε σ (λ (v,σ ). [[ e ]]ε † [x v] σ κ)

[[ if e1 then e2 else e3 ]]ε σ κ = [[ e1 ]]ε (λ (v,σ ). if (v) then [[ e2 ]]ε σ κ
else [[ e3 ]]ε σ κ)

[[ e1; e2 ]]ε σ κ = [[ e1 ]]ε σ (λ (v,σ ). [[ e2 ]]ε σ κ)

[[ ref e ]]ε σ κ = [[ e ]]ε σ (λ (v,σ ). let = alloc(σ ) in κ( σ † [ v]) end)

[[ ! e ]]ε σ κ = [[ e ]]ε σ (λ ( σ ). κ(σ ( ),σ ))

[[ e := e ]]ε σ κ = [[ e ]]ε σ (λ ( σ ). [[ e ]]ε σ (λ (v,σ ). κ((),(σ † [ v]))))

Fig. 9.11 CPS semantics: continuations as functions

Using frame-based semantics, the continuation κ consists of a list of frames.
Before presenting the semantics, we first define the primitive functions that will be
used. The primitive push extends a continuation list with another frame.

push : Frame → Cont → Cont

let push f κ = f :: κ

The primitive apply, defined in Fig. 9.13, extracts the top frame from the continuation
list and evaluates it based on its corresponding continuation function. When the list
becomes empty, the primitive apply returns the current value and store as a result.

In this style, the semantics is defined in two parts: (1) The expression side, shown
in Fig. 9.14, provides the evaluation of the language expressions, and (2) the frame
side, shown in Fig. 9.15, provides the evaluation of the frames.

Example To illustrate this transformation, let us consider the following very simple
expression: e = (λx. x)(1). By applying the CPS semantics presented in Fig. 9.11,
the evaluation of this expression is as follows:

[[ e ]]ε σ κ = [[ 1 ]]ε σ (λ(v, σ ′). [[ λx . x ]]ε σ ′ (λ f. f v κ))
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# The GetF frame does not store any value.
# It awaits a location and a store.
type GetF = {}
# The SetF frame stores a location.
# It awaits a value and a store.
type SetF = {loc : Value}
# The CallF frame stores a function abstraction and an environment.
# It awaits the value of the function argument.
type CallF = {fun : Exp; env : Env}
# The ExecF frame stores the value of the argument.
# It awaits a closure, which is the result of the evaluation of the function
# abstraction, and a store.
type ExecF = {arg : Value}
# The LetF frame stores an identifier, a body of a let expression,
# and an environment.
# It awaits the value of the identifier and a store.
type LetF = {id : Identifier; exp : Exp; env : Env}
# The IfF frame stores then and else expressions and an environment.
# It awaits the value of the condition and a store.
type IfF = {thenExp : Exp; elseExp : Exp; env : Env}
# The SeqF frame stores the next expression and an environment.
# It awaits the value of the first expression and a store.
type SeqF = {nextExp : Exp; env : Env}
# The AllocF frame does not store any value.
# It awaits the value to be stored in the newly allocated cell and a store.
type AllocF = {}
# The RhsF frame stores the right-hand side expression of an assignment
# and an environment.
# It awaits a location and a store.
type RhsF = {exp : Exp; env : Env}

Fig. 9.12 Frames
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apply : Cont → (Value×Store) → (Value×Store)

let apply κ (v,σ) = match κ with
[ ] ⇒ (v,σ)

| f :: κ ⇒ F [[ f ]]σ v κ

Fig. 9.13 Apply function

[[ c ]]ε σ κ = apply(κ ,(c,σ))

[[ x ]]ε σ κ = apply(κ ,(ε(x),σ))

[[ λ x. e ]]ε σ κ = apply(κ ,( x,e,ε ,σ))

[[ e e ]]ε σ κ = [[ e ]]ε σ (push(CallF(e,ε), κ))

[[ let x = e in e ]]ε σ κ = [[ e ]]ε σ (push(LetF(x,e ,ε),κ))

[[ if e1 then e2 else e3 ]]ε σ κ = [[ e1 ]]ε σ (push(IfF(e2,e3,ε),κ))

[[ e1; e2 ]]ε σ κ = [[ e1 ]]ε σ (push(SeqF(e2,ε),κ))

[[ ref e ]]ε σ κ = [[ e ]]ε σ (push(AllocF(),κ))

[[ ! e ]]ε σ κ = [[ e ]]ε σ (push(GetF(),κ))

[[ e := e ]]ε σ κ = [[ e ]]ε σ (push(RhsF(e ,ε),κ))

Fig. 9.14 Frame-based CPS semantics: expression side

The defunctionalization process consists of transforming the following λ-
expressions into frames as shown below:

λ(v, σ ′). [[ λx . x ]]ε σ ′ (λ f. f v κ) transformed into CallF(λx. x, ε)
λ f. f v κ transformed into ExecF(1)

Using these frames, the evaluation of the expression e is provided as follows, by
applying the frame semantics presented in Figs. 9.14 and 9.15:

[[ e ]]ε σ κ = [[ 1 ]]ε σ (push(CallF(λx . x, ε), κ))

= apply(κ, (1, σ ))

= [[ λx . x ]]ε σ (push(ExecF(1), κ))

= apply(κ, (〈x, x, ε〉, σ ))

= [[ x ]]ε † [x �→ 1] σ κ
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F [[ _ ]]_ _ _ : Frame Store Value Cont Result

F [[ GetF f ]]σ v κ = apply(κ ,(σ(v),σ))

F [[ SetF f ]]σ v κ = apply(κ ,((),σ † [f .loc v]))

F [[ CallF f ]]σ v κ = [[ f .fun ]](f .env) σ (push(ExecF(v),κ))

F [[ ExecF f ]]σ v κ = [[ e ]]ε † [x f .arg] σ κ where v= x,e,ε

F [[ LetF f ]]σ v κ = [[ f.exp ]](f .env)† [f .id v] σ κ

F [[ IfF f ]]σ v κ = if (v) then [[ f.thenExp ]](f .env) σ κ else [[ f.elseExp ]](f .env) σ κ

F [[ SeqF f ]]σ v κ = [[ f.nextExp ]](f .env) σ κ

F [[ AllocF f ]]σ v κ = let = alloc(σ) in apply(κ ,( σ † [ v])) end

F [[ RhsF f ]]σ v κ = [[ f .exp ]](f .env) σ (push(SetF(v),κ))

Fig. 9.15 Frame-based CPS semantics: frame side

= apply(κ, (ε(x), σ ))

= (ε(x), σ )

= (1, σ )

The frames CallF and ExecF correspond respectively to the states where the
function λx . x is being called and executed with an argument equal to 1. In AOP, these
states are join points where a certain advice can be applied. Thus, by transforming
the denotational semantics into a frame-based style, the join points automatically
arise within the semantics, which makes it an appropriate approach for defining the
semantics of AOP.

9.4 Aspect Syntax and Semantics

In this section, we present our aspect extension to the core language and elaborate its
semantics. Our methodology of using CPS is based on a previous effort describing
the semantics of a first-order procedural language (PROC) [74]. In the following,
we start by presenting the aspect syntax. Then, we elaborate the matching and the
weaving semantics.
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9.4.1 Aspect Syntax

An aspect, depicted in Fig. 9.17, includes a list of advice. An advice specifies actions
to be performed when join points satisfying a particular pointcut are reached. As
in AspectJ [113], an advice may also compute the original join point through a
special expression named proceed. Hence, as shown in Fig. 9.16, we extend the
core syntax with an additional expression, proceed (e), to denote the computation
of the original join point with possibly a new argument e.

Syntactically, an advice contains two parts: (1) A body, which is an expression, and
(2) a pointcut, which designates a set of join points. An advice can be applied before,
after, or around a join point. However, before and after advice can be expressed as
around advice using the proceed expression [74]. Hence, we consider all kinds of
advice as around advice as this does not restrict the generality of the approach.

A pointcut is an expression that designates a set of join points. We first consider
the following basic pointcuts:GetPC,SetPC,CallPC, andExecPC. The pointcut
GetPC (resp. SetPC) picks out join points where the value of a variable is got from
(resp. set to) the store. The pointcut CallPC (resp. ExecPC) picks out join points
where a function is called (resp. executed).

9.4.2 Matching Semantics

Matching is a mechanism for identifying the join points targeted by an advice. In a
defunctionalized continuation-passing style, join points correspond to continuation
frames and arise naturally when a particular continuation frame receives the value
that it awaits. The matching semantics is shown in Fig. 9.18.

Given a pointcut p, the current frame f, the current value v, an environment ε, a
store σ , and a continuation κ , the matching semantics examines whether f matches
p. Matching depends on three factors: the kind and the content of the frame f and the
current value v that f receives. In the case of:

• GetPC pointcut, there is a match if f is a GetF frame and the location of the
identifier given in p is equal to the location that f receives.

• SetPC pointcut, there is a match if f is a SetF frame and the location of the
identifier given in p is equal to the location that is stored in f.

• CallPC pointcut, there is a match if f is a CallF frame and it holds a function equal
to the one given in p. Notice that the pointcut p contains only the function identifier
id and ε(id) gives its abstraction, assuming that in the environment identifiers map
to values in case of variables and function abstractions in case of functions.

• ExecPC pointcut, there is a match if f is an ExecF frame and the evaluation of
the function given in p is equal to the closure that f receives.

• NotPC pointcut, there is a match if f does not match the sub-pointcut of p.
• AndPC pointcut, there is a match if f matches both its sub-pointcuts.
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e ::= ...
| proceed (e) proceed

Fig. 9.16 Proceed expression

type Aspect = Advice list

type Advice = {body : Exp; pc : Pointcut}

type Pointcut = GetPC | SetPC | CallPC | ExecPC | NotPC | AndPC

type GetPC = {id : Identifier}

type SetPC = {id : Identifier; val : Value}

type CallPC = {id : Identifier; arg : Identifier}

type ExecPC = {id : Identifier; arg : Identifier}

type NotPC = {pc : Pointcut}

type AndPC = {pc1 : Pointcut; pc2 : Pointcut}

Fig. 9.17 Aspect syntax

Example Let us consider the previous expression (slightly changed to define a func-
tion f ):

e = (let f = λx. x in f (1) end)

and a pointcut p that captures any call to the function f with an argument x:

CallPC p = {id = f ; arg = x}

As shown in the previous section, the frame-based semantics of the expression e
use the frames CallF(λx . x, ε) and ExecF(1), which correspond to the states where
the function λx . x is called and executed respectively. By applying the matching
semantics presented in Fig. 9.18, it is clear that the pointcut p matches the CallF
frame.
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match_pc : Pointcut → Frame → Value → Store → Env → Cont → Bool

let match_pc p f v σ ε κ = match (p, f ) with

(GetPC p,GetF f ) ⇒ ε(p.id) = v

| (SetPC p,SetF f ) ⇒ ε(p.id) = f .loc

| (CallPC p,CallF f ) ⇒ let (v ,σ ) = [[ f .fun ]] ε σ κ in
let (v ,σ ) = [[ ε(p.id) ]]ε σ κ in v = v end

end

| (ExecPC p,ExecF f ) ⇒ let (v ,σ ) = [[ ε(p.id) ]] ε σ κ in v= v end

| (NotPC p,Frame f ) ⇒ not match_pc(p.pc, f ,v,σ ,ε,κ)

| (AndPC p,Frame f ) ⇒ match_pc(p.pc1, f ,v,σ ,ε,κ) and
match_pc(p.pc2, f ,v,σ ,ε,κ)

| otherwise ⇒ false

Fig. 9.18 Matching semantics

9.4.3 Weaving Semantics

The weaving semantics describes how to apply the matching advice at the identified
join points. Since join points correspond to continuation frames, advice body pro-
vides a means to modify the behavior of those continuation frames. The weaving is
performed directly in the evaluation function. To do so, we redefine the apply func-
tion, as shown in Fig. 9.19, to take an aspect α and an environment ε into account.
Accordingly, the signatures of the evaluation functions as well as the matching ones
are also modified to take the aspect and the environment as additional arguments.

The weaving is done in two steps. When a continuation frame is activated, we first
check for a matching advice by calling the get_matches function. If there is any
applicable advice, the function execute_advice is called. Otherwise, the original
computation is performed. In the following, we explain these two steps.

9.4.3.1 Advice Matching

Advice matching is shown in Fig. 9.20. To get an applicable advice, we go through
the aspect and check whether its enclosed pointcuts match the current frame. This is
done by using the function match_pc defined previously in Fig. 9.18. In case there
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apply : Cont → (Value×Store) → Env → Aspect → (Value×Store)

let apply κ (v,σ) ε α = match κ with

[ ] ⇒ (v,σ)

| f :: κ ⇒ let ms = get_matches(f ,v,σ ,ε,α,κ ) in
if ms = [ ] then F [[ f ]]ε σ v α κ
else

let argV = match f with
SetF f ⇒ v

| CallF f ⇒ v
| ExecF f ⇒ f .arg
| otherwise ⇒ ()

in execute_advice(ms, f ,argV,σ ,ε,α,κ )
end

end

Fig. 9.19 Redefined apply function

type MatchedAD = {arg : Identifier; ad : Advice}
get_matches : Frame → Value → Store → Env → Aspect → Cont

→ MatchedAD list

let get_matches f v σ ε α κ = match α with

[ ] ⇒ [ ]

| ad :: α ⇒ let p = ad.pc in
if match_pc(p, f ,v,σ ,ε,α,κ) then

let arg= match p with
SetPC p ⇒ p.id

| CallPC p | ExecPC p ⇒ p.arg
| otherwise ⇒ ()

in
MatchedAD(arg,ad) :: get_matches( f ,v,σ ,ε,α ,κ)

end
else

get_matches( f ,v,σ ,ε,α ,κ)
end

Fig. 9.20 Advice matching
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execute_advice : MatchedAD list → Frame → Value → Store → Env
→ Aspect → Cont → Result

let execute_advice ms f v σ ε α κ = match ms with

[ ] ⇒ apply(push(MarkerF(),(push(f ,κ))),(v,σ),ε,α)
| m :: ms ⇒ let ad = m.ad in

[[ ad.body ]]ε † [&proceed ms ,&jp f ,m.arg v] σ α κ
end

Fig. 9.21 Advice execution

is a match, we return a structure MatchedAD containing the advice itself and the
pointcut arguments that will pass values to the advice execution.

9.4.3.2 Advice Execution

Advice execution is shown in Fig. 9.21. It starts by evaluating the body of the first
applicable advice. The remaining applicable pieces of advice as well as the current
frame are stored in the environment by binding them to auxiliary variables, &proceed
and &jp respectively. To evaluate the advice body, we define a new continuation
frame, AdvExecF, as follows:

type AdvExecF = {matches : MatchedAD list; jp : Frame}
F[[ AdvExecF f ]]ε σ v α κ = execute_advice(f .matches, f .jp, v, σ, ε, α, κ)

The evaluation of the proceed expression is provided below. The value of its
argument is passed to the next advice or to the current join point if there is no further
advice. To execute the remaining pieces of advice, the AdvExecF frame is added to
the list of frames.

[[proceed (e) ]]ε σ α κ = [[ e ]]ε σ α (push(AdvExecF(ε(&proceed), ε(&jp)), κ))

When all applicable pieces of advice are executed, the original computation, i.e.,
the current join point, is invoked. To avoid matching the currently matched frame
repeatedly, we introduce a new frame, MarkerF, which invokes the primary apply
function, renamed here as apply_prim.

type MarkerF = { }
F[[ MarkerF f ]]ε σ v α κ = apply_prim(κ, (v, σ ))

Example If we consider the previous example:
Expression: e = (let f = λx. x in f (1) end)
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Pointcut: CallPC p = {id = f ; arg = x}
and we define advice a as:

Advice a = {body = proceed (2); pc = p}

As we have seen in the matching semantics, the frame CallF(λx . x, ε) is matched
as a join point. The advice a is then executed at the state when this frame is extracted
from the continuation list, i.e., when it receives the value of the argument. Since the
advice body is proceed (2), the frame CallF(λx . x, ε) will be evaluated with an
argument equal to 2 instead of 1.

9.5 Semantics of Flow-Based Pointcuts

In this section, we extend our framework to flow-based pointcuts, namely, control
flow (cflow) [113] and dataflow (dflow) [130] pointcuts. These pointcuts are
useful from a security perspective since they can detect a considerable number of
vulnerabilities related to information flow, such as Cross-site Scripting (XSS) and
SQL injection attacks [86]. First, we extend the aspect syntax with these two point-
cuts, as shown in Fig. 9.22, and then we provide their semantics in the following
subsections.

9.5.1 Control Flow Pointcut

The control flow pointcut, cflow(p), picks out each join point in the control flow of
the join points picked out by the pointcut p [113]. One of the techniques that are used
to implement cflow is the stack-based approach [71, 132]. The latter maintains a
stack of join points. The algorithm for matching cflow pointcut starts from the top
of the stack and matches each join point against p. If there is a match then the current
join point satisfies the cflow pointcut [132]. Implementing the cflow pointcut by
adopting this approach in our framework is straightforward as the stack of join points

type Pointcut = ... | CFlowPC | DFlowPC

type CFlowPC = {pc : Pointcut}

type DFlowPC = {pc : Pointcut; tag : Identifier}

Fig. 9.22 Syntax of cflow and dflow pointcuts
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type JpF = GetF | SetF | CallF | ExecF

let match_pc p f v σ ε α κ = match (p, f ) with
...
| (CFlowPC p,JpF f ) ⇒ let b1 = match_pc(p.pc, f ,v,σ ,ε,α,κ) in

if (b1) then
let κ = push(CflowF(p.pc),κ) in b1 end

else
exists(CflowF(p.pc),κ)

end

Fig. 9.23 Matching semantics of the cflow pointcut

corresponds to the list of continuation frames in our model. Figure 9.23 shows the
cflow matching semantics.

When a frame matches the sub-pointcut p of a cflow pointcut, a special marker
frame, CFlowF, is pushed into the continuation list. The purpose of using this marker
frame is to detect exit points of join points that match p. For example, if p is a
call pointcut, the marker frame is pushed into the continuation list if the top frame
matches p. Then, the marker frame will be extracted from the continuation list when
the evaluation of the function call terminates. The CFlowF is defined as follows:

type CFlowF = {pc : Pointcut}
F[[ CFlowF f ]]ε σ v α κ = apply(κ, (v, σ ), ε, α)

In summary, a join point frame f matches acflow pointcut that contains a pointcut
p if: (1) The frame f matches the sub-pointcut p, or (2) a CFlowF marker frame
that contains p exists in the continuation list. The primitive function exists used in
the matching semantics is defined in Fig. 9.24. This function takes a frame f and a
continuation list κ and checks whether f exists in the list or not.

9.5.2 Dataflow Pointcut

The dataflow pointcut, as defined in [130], picks out join points based on the origins
of values, i.e., dflow[x, x′](p) matches a join point if the value of x originates
from the value of x ′. Variable x should be bound to a value in the current join point
whereas variable x ′ should be bound to a value in a past join point matched by p.
Therefore, dflow must be used in conjunction with some other pointcut that binds
x to a value in the current join point [130]. To match a dflow pointcut, tags are
used to discriminate dflow pointcuts and track dependencies between values [130].
This pointcut is useful where information flow is important, such as to detect input
validation vulnerabilities in Web applications.
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exists : Frame → Cont → Bool

let exists f κ = match κ with

[ ] ⇒ false

| f :: κ ⇒ let b = match f with
CflowF f ⇒ f .pc = f .pc

| otherwise ⇒ false
in

b or exists(f ,κ )
end

Fig. 9.24 Exists function

As defined in Fig. 9.22, the dflow pointcut has a sub-pointcut pc and a unique
tag that discriminates this dflow pointcut from other dflow pointcuts. In order to
track dependencies between values, we use a tagging environment γ that maps values
to tags. As shown in Figs. 9.25 and 9.26, tag propagation is performed dynamically
at the same time we evaluate each expression. Thus, we augment the signatures of
the evaluation functions as well as the apply function with the tagging environment
as follows:

[[ _ ]]_ _ _ _ _ : Exp → Env → Tag_Env → Store → Aspect → Cont
→ Result

F[[ _ ]]_ _ _ _ _ _ : Frame → Env → Tag_Env → Store → Value → Aspect
→ Cont → Result

apply : Cont → (Value × Store) → Env → Tag_Env → Aspect
→ (Value × Store)

Notice that the definition of the apply function does not change, only the tagging
environment is passed to the matching function. Notice also that in the case of an
abstraction expression, the closure 〈x, e, ε′〉 is extended with a tagging environment
γ ′ to capture the tags generated during the function execution. In addition, we define
a marker frame DflowF that is used for tag propagation in the case of an application
expression. This frame stores a tagging environment before entering a function call
and awaits the result of the call.

type DflowF = {tag_env : Env}
In the following, we explain the tag propagation rules for the affected expressions:

• The value of a constant is associated with an empty set.
• In the case of an application expression (λx. e) e′, the tags of the value of the

argument e′ propagate to the value of the variable x. This is performed during the
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evaluation of the ExecF frame as shown in Fig. 9.26. In addition, the tags of the
argument as well as the tags that are generated during the execution of the function
body propagate to the result of the function call. For this reason, we use a DflowF
frame to access the result of the function call and restore the tagging environment
after returning from the call. The function getTags(γ ) is used to retrieve all the
tags stored in the tagging environment γ .

• In the case of a let expression (let x = e in e′), the tags of the value of the
expression e propagate to the value of x. This is performed during the evaluation
of the LetF frame as shown in Fig. 9.26.

• In the case of a referencing expressionref e, the tags of the value of the expression
e propagate to the value of the expression ref e. This is performed during the
evaluation of the AllocF frame as shown in Fig. 9.26.

• In the case of a dereferencing expression !e, the tags of the value of the reference
e propagate to the value stored at that reference. This is performed during the
evaluation of the GetF frame as shown in Fig. 9.26.

• In the case of an assignment expression e := e′, the tags of the value of the
expression e′ propagate to the value of the expression e. This is performed during
the evaluation of the SetF frame as shown in Fig. 9.26.

[[ c ]]ε γ σ α κ = apply(κ,(c,σ),ε,γ † [c ],α)

[[ x ]]ε γ σ α κ = apply(κ,(ε(x),σ),ε,γ ,α)

[[ λx. e ]]ε γ σ α κ = apply(κ,( x,e,ε ,γ ,σ),ε,γ ,α)

[[ e e ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(CallF(e,ε), κ))

[[ let x = e in e ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(LetF(x,e ,ε),κ))

[[ if e1 then e2 else e3 ]]ε γ σ α κ = [[ e1 ]]ε γ σ α (push(IfF(e2,e3,ε),κ))

[[ e1; e2 ]]ε γ σ α κ = [[ e1 ]]ε γ σ α (push(SeqF(e2,ε),κ))

[[ ref e ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(AllocF(),κ))

[[ ! e ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(GetF(),κ))

[[ e := e ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(RhsF(e ,ε),κ))

[[ proceed (e) ]]ε γ σ α κ= [[ e ]]ε γ σ α (push(AdvExecF(ε(&proceed),ε(&jp)),κ))

Fig. 9.25 Frame-based CPS semantics with the dflow pointcut: expression side
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F [[ GetF f ]]ε γ σ v α κ = apply(κ,(σ(v),σ),ε,γ † [σ(v) γ(v)],α)

F [[ SetF f ]]ε γ σ v α κ = apply(κ,((),σ † [f .loc v]),ε,γ † [f .loc γ(v)],α)

F [[ CallF f ]]ε γ σ v α κ = [[ f .fun ]](f .env) γ σ α (push(ExecF(v),κ))

F [[ ExecF f ]]ε γ σ v α κ =
[[ e ]](ε † [x f .arg])(γ † [ε(x) γ( f .arg)]) σ α (push(DflowF(γ),κ))
where v= x,e,ε ,γ

F [[ LetF f ]]ε γ σ v α κ = [[ f.exp ]](f .env† [f .id v])(γ † [ε(f .id) γ(v)]) σ κ

F [[ IfF f ]]ε γ σ v α κ = if (v) then [[ f.thenExp ]](f .env) γ σ α κ
else [[ f.elseExp ]](f .env) γ σ α κ

F [[ SeqF f ]]ε γ σ v α κ = [[ f.nextExp ]](f .env) γ σ α κ

F [[ AllocF f ]]ε γ σ v α κ =
let = alloc(σ) in apply(κ,( σ † [ v]),ε,γ † [ γ(v)],α) end

F [[ RhsF f ]]ε γ σ v α κ = [[ f .exp ]](f .env) γ σ α (push(SetF(v),κ))

F [[ AdvExecF f ]]ε γ σ v α κ = execute_advice(f .matches, f .jp,v,σ ,ε,γ ,α,κ)

F [[ MarkerF f ]]ε γ σ v α κ = apply_prim(κ,(v,σ))

F [[ CFlowF f ]]ε γ σ v α κ = apply(κ,(v,σ),ε,γ ,α)

F [[ DFlowF f ]]ε γ σ v α κ = apply(κ,(v,σ),ε, f .tag_env† [v getTags(γ)],α)

Fig. 9.26 Frame-based CPS semantics with the dflow pointcut: frame side

The matching semantics of the dflow pointcut is presented in Fig. 9.27. A join
point frame f matches a dflow pointcut that contains a pointcut pc and a tag t if: (1)
The frame f matches the pointcut pc of the dflow pointcut, or (2) the set of tags of
the value that the frame f awaits (captured by the variable val ′) contains the tag t. In
case a frame f matches the pointcut pc of the dflow pointcut, the tag t propagates
to the value associated with the frame f (captured by the variable val).
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let match_pc p f v σ ε γ α κ = match (p, f ) with
...
| (DFlowPC p,JpF f ) ⇒ let (b,γ ) = match_pc(p.pc, f ,v,σ ,ε,γ,α,κ) in

let val = match f with
GetF f ⇒ v
SetF f ⇒ v
CallF f ⇒ let p = p.pc in

let (v ,σ ) = [[ ε(p.id) ]]ε γ σ α κ
in
v

end
end

ExecF f ⇒ v
in

if (b) then (true,γ † [val γ (val)∪{p.tag}])
else let val = match f with

CallF f ⇒ v
otherwise ⇒ val

in
(p.tag ∈ γ (val ),γ )

end
end

end

Fig. 9.27 Matching semantics of the dflow pointcut

9.5.3 Example

To illustrate the semantics of the dflow pointcut, let us consider this example:

let userId = 1 in
let getInput = λx . e1 in # getInput : gets a user input

let write = λx ′. e2 in # write : writes a string on a web page
z = getInput(userId); w = write(z)

end
end

end

The presented example is vulnerable to Cross-Site Scripting (XSS) attacks [86] since
an untrusted input received from a user has not been sanitized before being placed
into the contents of a web page. Therefore, it enables an attacker to inject malicious
scripts into a web page and reveal confidential information. The dflow pointcut can
be remarkably used to address XSS flaws as shown in [130]. Below, we provide a
sanitizing aspect to fix the discussed vulnerability.
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Aspect (Pointcuts and Advice):

CallPC p1 = {id = getInput; arg = x}
DFlowPC p2 = {pc = p1; tag = t}
CallPC p3 = {id = write; arg = y}
AndPC p = {pc1 = p2; pc2 = p3}
Advice a = {body= let sanitize = λr. e3 in proceed (sanitize(y)); pc = p}

The pointcut p1 is a call pointcut that captures all calls to the getInput function.
Likewise, the pointcut p3 captures all calls to the write function. The pointcut p2 is a
dflow pointcut that captures all join points that depend on the join points captured
by the pointcut p1. Finally, the pointcut p picks out all calls to the write function
that are dependent on the results of invoking the function getInput. The advice a
first sanitizes the arguments of the join points captured by p, and then invokes the
original join points with the sanitized arguments. More precisely, advice a picks out
all calls to write(z) that depend on the result of getInput and replaces them with
write(sanitize(z)) by the following justification:

• The call to getInput(userId) matches the pointcut p2, and consequently, the tag t
is added to the tagging environment of the function and is given to the result of
the function evaluation.

• According to the tag propagation rule for assignment expressions, the value of the
variable z gets the tag t.

• Subsequently, the call to write(z) matches the pointcut p since it matches both
sub-pointcuts of p. More precisely, it matches the pointcut p3 as it is a call to the
write function, and matches the pointcut p2 as the value of the argument z has the
tag t.

Therefore, the advice a will be woven at this point and the function write will be
called with the sanitized input, which is the result of calling sanitize(z).

9.6 Related Work on AOP Semantics

There are many research contributions that have addressed AOP semantics [34, 35,
53, 60, 66, 74, 76, 88, 106, 129, 132, 201, 202]. Among these contributions, we
explore those that are more relevant to our work, mainly contributions that are based
on CPS or those handling flow-based pointcuts. Dutchyn [74] has presented a formal
model of dynamic join points, pointcuts, and advice using a first-order procedural
language called PROC [74]. The proposed semantic model is based on defunctional-
ization and continuation-passing style. The author has demonstrated that modeling
AOP concepts in this style provides a natural and precise way of describing these
mechanisms. The proposed model supports get, set, call, and exec pointcuts.
The author has also provided some hints for implementing the cflow pointcut but
did not provide the matching algorithm. Compared to [74], our contribution provides
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a clear presentation allowing a better view of this style of semantics. In addition, we
extend the aspect layer with flow-based pointcuts.

Masuhara et al. [129] have proposed the point-in-time join point model, where they
redefine join points as the states at the beginning and the end of certain events. Based
on this new model, the authors have designed a small AOP language and defined
its formal semantics in CPS. Moreover, they have demonstrated that this approach
is useful to model advanced pointcuts, such as exception handling and control flow.
The idea of this work is similar to ours in using continuations to model matching and
weaving semantics. However, the main difference is that our semantics is based on
frames, while in [129] the semantics follows the style of Danvy and Filinski [67] that
represent continuations as λ-functions. As we have seen, presenting continuations
as frames is a better approach since join points arise naturally within this semantics.

Wand et al. [202] have proposed semantics for AOP that handles dynamic join
points and recursive procedures. They have provided a denotational semantics for a
mini-language that embodies the key features of dynamic join points, pointcuts, and
advice. Three kinds of join points were supported, namely pcall, pexecution,
and aexecution. The proposed model is implemented as part of Aspect Sandbox
(ASB) [75], which is a framework for modeling AOP systems. This model is based on
a direct denotational semantics. Consequently, separate data-structures are required
for maintaining the dynamic join points, while in our semantics the join points arise
from the continuation list.

Djoko et al. [71] have defined an operational semantics for the main features of
AspectJ including cflow. The semantics of the cflow pointcut presented in this
approach is slightly different from AspectJ as they restricted the sub-pointcut to the
call pointcut. Comparing to this approach, our semantics of the cflow pointcut is
more general as we support all kinds of pointcuts. In addition, this approach requires
additional structures to maintain the join points. By adopting operational semantics
and partial evaluation approaches, Masuhara et al. [132] have provided a compilation
framework for a simple AOP language named AJD. They have also provided two
methods for implementing the cflow pointcut, namely, stack-based and state-based
implementations. However, no formal semantics is given for the defined pointcut.

The dflow pointcut was initially proposed by Masuhara and Kawauchi [130].
The authors have argued about the usefulness of this pointcut in the field of security
through an example of a Web-based application. They have also provided the design
of the dflow pointcut and its matching rules based on the origins of values. The
dflow pointcut has been implemented as an extension to Aspect Sandbox (ASB)
[75]. However, no formal semantics has been provided for this pointcut.

Alhadidi et al. [35] have presented the first formal framework for the dflow
pointcut based on λ-calculus. In this work, dataflow tags are propagated statically to
track data dependencies between λ-expressions. Compared to our framework, [35]
makes use of the effect-based type system for propagating dataflow tags, matching
pointcuts, and weaving advice. Though a static approach can help in reducing the
runtime overhead, expressions in this approach need to be typed since matching
depends primarily on types. The authors have also provided dynamic semantics and
proved that it is consistent with the static semantics. The pointcut enclosed in a
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dflow pointcut is restricted to call and get pointcuts in this approach, while
we consider the general case in our framework, i.e., the sub-pointcut of the dflow
pointcut can be any pointcut.

9.7 Conclusion

In this chapter, we have provided formal semantics for aspect matching and weaving
in λ-calculus. We chose CPS as the basis of our semantics because it provides a con-
cise, accurate, and elegant description of aspect-oriented mechanisms. Using this
style of semantics, one can easily notice that CPS and defunctionalization make
join points explicit and facilitate the aspect matching and weaving mechanisms. For
instance, we did not need to use any additional structure; the join points correspond
exactly to continuation frames. We have addressed basic pointcuts, i.e., get, set,
call, and exec pointcuts. These pointcuts are useful from a security perspec-
tive since they can pick out important points, where security mechanisms such as
authorization, encryption, and decryption, may be added before, after, or around
these points. In addition, we have extended our semantic framework with flow-based
pointcuts, namely, cflow and dflow pointcuts, since they are widely used to detect
and fix vulnerabilities related to information flow. The contribution presented in this
chapter is a first step towards establishing a dynamic semantics for aspect matching
and weaving based on CPS and defunctionalization. In the next chapter, we will apply
the results of this work to our AOM framework to elaborate semantics for matching
and weaving on executable UML models.



Chapter 10
Dynamic Matching and Weaving Semantics
in Executable UML

In this chapter, we elaborate dynamic semantics for aspect matching and weaving in
Executable UML (xUML) [134]. More precisely, we specify xUML models using the
Action Language for Foundational UML (Alf) [156] proposed by OMG. In addition
of being a standard, Alf is highly expressive. Moreover, Alf provides precise seman-
tics for specifying detailed and executable behaviors within a UML model, such
as creating class instances, establishing links between these instances, performing
operations on variables and attributes, etc. Therefore, more security checks can be
performed at the modeling phase and numerous flaws can get resolved before enter-
ing the implementation phase. This, in turn, significantly reduces costs and leads to
more trustworthy software.

Existing AOM approaches that handle xUML models [92, 105, 213] mainly focus
on providing a framework for executing the woven model for the purposes of sim-
ulation and verification. Moreover, these approaches are presented from a practical
perspective; to date we are not aware of any work that explores the semantic foun-
dations for aspect matching and weaving in xUML. It is our aim, in this chapter,
to define such a semantics, particularly on executable activity diagrams. We elabo-
rate the semantics in a frame-based CPS style by applying the results, presented in
Chap. 9, on xUML models. As we have seen in Chap. 9, a semantics, based on CPS
and defunctionalization, provides a precise and elegant description of aspect-oriented
mechanisms. Furthermore, by expressing executable models in a frame-based rep-
resentation, matching and weaving can be described in a simplified and unified way
for both UML elements and action language constructs.

As we did in Chap. 9, we start by formalizing the matching and the weaving
processes for basic pointcuts, i.e., get, set, call, and exec pointcuts. Then,
we elaborate the semantics for the dataflow pointcut. Notice here that we match
these pointcuts on both activity diagram elements and Alf expressions. For example,
an operation call can be performed as a call operation action, which is an activity
element, and as a function call inside Alf code. Consequently, our framework should
be able to capture both points.
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The remainder of this chapter is organized as follows. Section 10.1 introduces
a motivating example. The syntax of activity diagrams and Alf is presented in
Sect. 10.2, followed by their denotational semantics in Sect. 10.3. We transform the
semantics into CPS in Sect. 10.4. Afterwards, Sect. 10.5 explores the semantics for
matching and weaving. In Sect. 10.6, we extend the semantics with the dataflow
pointcut. We discuss related work in Sect. 10.7. Finally, concluding remarks are rep-
resented in Sect. 10.8.

10.1 Example

To clarify our motivation, let us consider a simple example of a caching process as
shown in Fig. 10.1. The caching executable activity diagram starts by executing the
action GetDataRequest. This action is a UML accept action that awaits a data request.
When a request is received, it checks whether the requested data is already cached
or not. If yes, then the action ReturnData, which is a call operation action, is called
and the requested data is returned. Otherwise, the action Caching&ReturningData is
activated. This action is an opaque action whose behavior is specified using Alf action
language. In this case, first the data is fetched and the cache is updated accordingly.
Then the operation ReturnData is called and the requested data is returned.

Let us assume that our goal is to insert logging before calling the operation Return-
Data. As it is highlighted in the example, this operation is called in two ways: as a call
operation action and as an Alf expression. Therefore, the matching semantics should
be able to capture both points. To do so, we provide a frame-based representation
for both activity elements and Alf expressions and perform matching and weaving
on frames.

Fig. 10.1 Caching example
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10.2 Syntax

In this section, we present the syntax of activity diagrams and Alf language. An
activity diagram starts with an initial node (•) that is connected to the subsequent
nodes (n) through an edge (→). A node can be either an executable node or a control
node. For the sake of illustration, we choose a small subset of nodes that captures
the essence of activity diagrams and omit complex features, such as concurrency and
exception handling. The proposed syntax is shown in Fig. 10.2. The purpose of using
labels is to uniquely refer to already defined nodes. In the following, we explain the
activity constructs:

• The notation • → n denotes an activity diagram, where • is the initial node and
n is the subsequent flow of nodes.

• a is an action node, that can be either:

– l : opaque (e), a labeled opaque action, where e is an Alf expression specifying
the behavior of the action.

– l : callOp (f), a labeled call operation action that invokes a function f.
– l : read (x), a labeled read variable action that reads the value of x.
– l : write (x), a labeled write variable action that updates the value of x.

• l : decision (e, n1, n2) denotes a labeled decision node having two alternative
flows n1 and n2.

• l : merge→ n denotes a labeled merge node that is followed by a flow of nodes n.
• l : � denotes a labeled activity final node.
• a → n denotes an action that is followed by the subsequent flow of nodes n.
• l denotes a label that uniquely refers to a node.

ad ::= • → n activity
n ::= a action

| l : decision (e, n1, n2) decision
| l : merge → n merge
| l : activity final
| a → n node sequence
| l label

a ::= l : opaque (e) opaque action
| l : callOp (f) call operation
| l : read (x) read variable
| l : write (x) write variable

Fig. 10.2 Syntax of activity diagrams
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e ::= c constant
| x variable
| f (x) = e operation def.
| f (e) operation call
| if e1 then e2 else e3 conditional exp.
| e1; e2 exp. sequence
| new e referencing
| ! e dereferencing
| x := e assignment

Fig. 10.3 Syntax of Alf language

Figure 10.3 presents the syntax of Alf language. To keep the presentation simple
and readable, we choose the main constructs of Alf and omit the object-oriented
characteristic of the language. We consider the following expressions:

• Constants and variables
• Functional constructs
• Conditional expressions
• Sequential expressions
• Imperative features (referencing, dereferencing, and assignments). The expression
new e allocates a new reference and initializes it with the value of e. The expression
! e reads the value stored at the location referenced by e.

10.3 Denotational Semantics

This section presents the denotational semantics of activity diagrams and Alf expres-
sions. The functions and the types used in the semantics are defined in Fig. 10.4.

A[[ _ ]]_ _ : Activity → Env → Store → Result
η[[ _ ]]_ _ _ _ : Node → Env → Store → Token → Value → Result
ξ [[ _ ]]_ _ : Exp → Env → Store → Result
Result : Value×Store
Env : Identifier → Value
Store : Location → Value
Value : Boolean | Natural | String | Unit | Location | Closure

Fig. 10.4 Semantic functions and types
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10.3.1 Denotational Semantics of Activity Diagrams

The denotational semantics of activity diagrams is presented in Fig. 10.5. Given an
activity diagram ad, a dynamic environment ε, and a store σ , the function A[[ _ ]]
yields the computed value v and the updated store σ ′ after the termination of the
activity execution. When an activity starts executing, a control token t is created
and placed on the initial node. This token then propagates along the edges to the
subsequent nodes. A node starts executing when it gets the required tokens and data
values. Thus, the evaluation function for nodes η[[ _ ]] takes a token t and a value v
as inputs, in addition to the environment ε and the store σ . When the execution of
a node terminates, it returns a value and the updated store that will be passed to the
subsequent nodes.

In the following, we explain the semantics of each activity construct. The seman-
tics of an opaque action, l : opaque (e), depends on the semantics of its Alf expres-
sion e. A call operation action, l : callOp (f), invokes the function f with the
argument value v that it receives from its input. A read variable action, l : read (x),

A[[ • → n ]]ε σ = let t = createToken() in η[[ n ]]ε σ t () end

η[[ l : opaque (e) ]]ε σ t v = ξ [[ e ]]ε σ

η[[ l : callOp (f) ]]ε σ t v = let ( x,e,ε ,σ ) = ξ [[ ε(f) ]]ε σ in
ξ [[ e ]]ε † [x v] σ

end

η[[ l : read (x) ]]ε σ t v = let ( σ ) = ξ [[ x ]]ε σ in (σ ( ),σ ) end

η[[ l : write (x) ]]ε σ t v = let ( σ ) = ξ [[ x ]]ε σ in ((),σ † [ v]) end

η[[ l : decision (e, n1, n2) ]]ε σ t v = let (v ,σ ) = ξ [[ e ]]ε σ in
if (v ) then η[[ n1 ]]ε σ t v
else η[[ n2 ]]ε σ t v

end

η[[ l : merge → n ]]ε σ t v = η[[ n ]]ε σ t v

η[[ l : ]]ε σ t v = let b = destroyAllTokens() in (v,σ) end

η[[ a → n ]]ε σ t v = let (v ,σ ) = η[[ a ]]ε σ t v in η[[ n ]]ε σ t v end

η[[ l ]]ε σ t v = η[[ ε(l) ]]ε σ t v

Fig. 10.5 Denotational semantics of activity diagrams
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reads the value of the variable x from the store. A write variable action, l : write
(x), updates the value of the variable x with the value v that it receives from its input.
A decision node, l : decision (e, n1, n2), guides the flow depending on the value
of the condition e. If e evaluates to true, the node n1 is executed, otherwise the node
n2 is executed. A merge node, l : merge → n, passes the token and the data that it
receives to its subsequent node n. A final node, l : �, terminates the activity execu-
tion. Accordingly, all tokens in the activity are destroyed. Finally, the semantics of a
label l depends on the semantics of the referenced node. Notice that the semantics of
an edge is to transfer tokens and data values from the source node to the target node.
In our syntax, a node is explicitly connected to its subsequent nodes (e.g., a → n).
Therefore, there is no need to separately define the semantics of an edge since it is
taken care of during the evaluation of the nodes.

ξ [[ c ]]ε σ = (c,σ)

ξ [[ x ]]ε σ = (ε(x),σ)

ξ [[ f (x) = e ]]ε σ = ( x,e,ε ,σ)

ξ [[ f (e) ]]ε σ = let (v,σ ) = ξ [[ e ]]ε σ in
let ( x,e ,ε ,σ ) = ξ [[ ε(f ) ]]ε σ in

ξ [[ e ]]ε † [x v] σ
end

end

ξ [[ if e1 then e2 else e3 ]]ε σ = let (v,σ ) = ξ [[ e1 ]]ε σ in
if (v) then ξ [[ e2 ]]ε σ else ξ [[ e3 ]]ε σ

end

ξ [[ e1; e2 ]]ε σ = let (v,σ ) = ξ [[ e1 ]]ε σ in ξ [[ e2 ]]ε σ end

ξ [[ new e ]]ε σ = let (v,σ ) = ξ [[ e ]]ε σ in
let = alloc(σ ) in ( σ † [ v]) end

end

ξ [[ ! e ]]ε σ = let ( σ ) = ξ [[ e ]]ε σ in (σ ( ),σ ) end

ξ [[ x := e ]]ε σ = let (v,σ ) = ξ [[ e ]]ε σ in
let ( σ ) = ξ [[ x ]]ε σ in ((),σ † [ v]) end

end

Fig. 10.6 Denotational semantics of Alf language
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10.3.2 Denotational Semantics of Alf Language

The denotational semantics of Alf language is presented in Fig. 10.6. Given an expres-
sion e, a dynamic environment ε, and a store σ , the dynamic evaluation function ξ [[ _ ]]
yields the computed value v and the updated store σ ′. Notice that in the case of a
function definition f (x) = e, the computed value is a closure 〈x, e, ε′〉 capturing the
function parameter x, the function body e, and the evaluation environment ε′, which
maps each free variable of e to its value at the time of the function declaration. The
function alloc used in the semantics allocates a new cell in the store and returns a
reference to it.

10.4 Continuation-Passing Style Semantics

In this section, we transform the previously defined denotational semantics into
CPS. As we mentioned earlier, frame-based semantics allows describing matching
and weaving processes in activity diagrams and Alf language in a precise and unified
way. To help understanding this transformation, we proceed in two steps. First, we
elaborate a CPS semantics by representing continuations as functions. Then, we
provide a CPS semantics by representing continuations as frames.

10.4.1 Representation of Continuations as Functions

First, we modify the evaluation functions to take a continuation as an additional
argument as shown in Fig. 10.7. As we did in the previous chapter, we translate
the denotational semantics into CPS following the original formulation of the CPS
transformation [84]. The CPS semantics of activity diagrams is presented in Fig. 10.8
and the CPS semantics of Alf is presented in Fig. 10.9.

A[[ _ ]]_ _ _ : Activity → Env → Store → Cont → Result
η[[ _ ]]_ _ _ _ _ : Node → Env → Store → Token → Value → Cont → Result
ξ [[ _ ]]_ _ _ : Exp → Env → Store → Cont → Result
Cont : Result → Result
Result : Value×Store

Fig. 10.7 Redefined semantic functions and types
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A[[ • → n ]]ε σ κ = let t = createToken() in η[[ n ]]ε σ t () κ end

η[[ l : opaque (e) ]]ε σ t v κ = ξ [[ e ]] ε σ κ

η[[ l : callOp (f) ]]ε σ t v κ = ξ [[ ε(f) ]]ε σ (λ (v ,σ ). ξ [[ e ]]ε † [x v] σ κ)
where v = x,e,ε

η[[ l : read (x) ]]ε σ t v κ = ξ [[ x ]]ε σ (λ ( σ ). κ(σ ( ),σ ))

η[[ l : write (x) ]]ε σ t v κ = ξ [[ x ]]ε σ (λ ( σ ). κ((),σ † [ v]))

η[[ l : decision (e, n1, n2) ]]ε σ t v κ =
ξ [[ e ]]ε σ (λ (v ,σ ). if (v ) then η[[ n1 ]]ε σ t v κ else η[[ n2 ]]ε σ t v κ)

η[[ l : merge → n ]]ε σ t v κ = η[[ n ]]ε σ t v κ

η[[ l : ]]ε σ t v κ = let b = destroyAllTokens() in κ(v,σ) end

η[[ a → n ]]ε σ t v κ = η[[ a ]]ε σ t v (λ (v ,σ ). η[[ n ]]ε σ t v κ)

η[[ l ]]ε σ t v κ = η[[ ε(l) ]]ε σ t v κ

Fig. 10.8 CPS semantics of activity diagrams: continuations as functions

10.4.2 Representation of Continuations as Frames

Using the defunctionalization technique [176], we transform the continuation func-
tions, obtained from the previous step, into frames as shown in Fig. 10.10. In the
following, we provide details about each frame:

• GetF does not store any value. It awaits a location and a store.
• SetF stores a value. It awaits a location and a store.
• CallF stores a function identifier and an environment. It awaits the value of the

function argument.
• ExecF stores the value of the argument. It awaits a closure, which is the result of

the evaluation of the function definition, and a store.
• IfF stores then and else expressions and an environment. It awaits the value of the

condition and a store.
• DecisionF stores then and else nodes, an environment, a control token, and a

value. It awaits the value of the condition and a store.
• ExpSeqF stores the next expression and an environment. It awaits the value of

the first expression and a store.
• NodeSeqF stores the next node, an environment, and a control token. It awaits

the output value of the first node and a store.
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• AllocF does not store any value. It awaits the value to be stored in the newly
allocated cell and a store.

• RhsF stores an identifier and an environment. It awaits a location and a store.

ξ [[ c ]]ε σ κ = κ(c,σ)

ξ [[ x ]]ε σ κ = κ(ε(x),σ)

ξ [[ f (x) = e ]]ε σ κ = κ(λ (v,κ ). [[ e ]]ε † [x v] σ κ )

ξ [[ f (e) ]]ε σ κ =
ξ [[ e ]]ε σ (λ (v,σ ). ξ [[ ε(f ) ]]ε σ (λ (v ,σ ). ξ [[ e ]]ε † [x v]σ κ))
where v = x,e ,ε

ξ [[ if e1 then e2 else e3 ]]ε σ κ =
ξ [[ e1 ]]ε σ (λ (v,σ ). if (v) then ξ [[ e2 ]]ε σ κ else ξ [[ e3 ]]ε σ κ)

ξ [[ e1; e2 ]]ε σ κ = ξ [[ e1 ]]ε σ (λ (v,σ ). ξ [[ e2 ]]ε σ κ)

ξ [[ new e ]]ε σ κ = ξ [[ e ]]ε σ (λ (v,σ ).
let = alloc(σ ) in κ( σ † [ v])) end

ξ [[ ! e ]]ε σ κ = ξ [[ e ]]ε σ (λ ( σ ). κ(σ ( ),σ ))

ξ [[ x := e ]]ε σ κ = ξ [[ e ]]ε σ (λ (v,σ ). ξ [[ x ]]ε σ
(λ ( σ ). κ((),σ † [ v])))

Fig. 10.9 CPS semantics of Alf language: continuations as functions

type GetF = {}
type SetF = {val : Value}
type CallF = {fun : Identifier; env : Env}
type ExecF= {arg : Value}
type IfF = {thenExp : Exp; elseExp : Exp; env : Env}
type DecisionF = {thenNode : Node; elseNode : Node; env : Env;

token : Token; val : Value}
type ExpSeqF = {nextExp : Exp; env : Env}
type NodeSeqF = {nextNode : Node; env : Env; token : Token}
type AllocF = {}
type RhsF = {id : Identifier; env : Env}

Fig. 10.10 Frames
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A[[ • → n ]]ε σ κ = let t = createToken() in η[[ n ]]ε σ t () κ end

η[[ l : opaque (e) ]]ε σ t v κ = ξ [[ e ]] ε σ κ

η[[ l : callOp (f) ]]ε σ t v κ = apply(push(CallF(f ,ε),κ),(v,σ))

η[[ l : read (x) ]]ε σ t v κ = ξ [[ x ]]ε σ (push(GetF(),κ))

η[[ l : write (x) ]]ε σ t v κ = ξ [[ x ]]ε σ (push(SetF(v),κ))

η[[ l : decision (e, n1, n2) ]]ε σ t v κ = ξ [[ e ]]ε σ(push(DecisionF(n1,n2,ε, t,v),κ))

η[[ l : merge → n ]]ε σ t v κ = η[[ n ]]ε σ t v κ

η[[ l : ]]ε σ t v κ = let b = destroyAllTokens() in κ(v,σ) end

η[[ a → n ]]ε σ t v κ = η[[ a ]]ε σ t v (push(NodeSeqF(n,ε, t),κ))

η[[ l ]]ε σ t v κ = η[[ ε(l) ]]ε σ t v κ

Fig. 10.11 Frame-based semantics of activity diagrams

ξ [[ c ]]ε σ κ = apply(κ ,(c,σ))

ξ [[ x ]]ε σ κ = apply(κ ,(ε(x),σ))

ξ [[ f (x) = e ]]ε σ κ = apply(κ ,( x,e,ε ,σ))

ξ [[ f (e) ]]ε σ κ = ξ [[ e ]]ε σ (push(CallF(f ,ε), κ))

ξ [[ if e1 then e2 else e3 ]]ε σ κ = ξ [[ e1 ]]ε σ (push(IfF(e2,e3,ε),κ))

ξ [[ e1; e2 ]]ε σ κ = ξ [[ e1 ]]ε σ (push(ExpSeqF(e2,ε),κ))

ξ [[ new e ]]ε σ κ = ξ [[ e ]]ε σ (push(AllocF(),κ))

ξ [[ ! e ]]ε σ κ = ξ [[ e ]]ε σ (push(GetF(),κ))

ξ [[ x := e ]]ε σ κ = ξ [[ e ]]ε σ (push(RhsF(x,ε),κ))

Fig. 10.12 Frame-based semantics of Alf language
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F [[ GetF f ]]σ v κ = apply(κ ,(σ(v),σ))

F [[ SetF f ]]σ v κ = apply(κ ,((),σ † [v f .val]))

F [[ CallF f ]]σ v κ = ξ [[ (f .env)(f .fun) ]](f .env) σ (push(ExecF(v),κ))

F [[ ExecF f ]]σ v κ = ξ [[ e ]]ε † [x f .arg] σ κ where v= x,e,ε

F [[ IfF f ]]σ v κ = if (v) then ξ [[ f.thenExp ]](f .env) σ κ
else ξ [[ f.elseExp ]](f .env) σ κ

F [[ DecisionF f ]]σ v κ = if (v) then η[[ f.thenNode ]](f .env) σ (f .token)
(f .val) κ else η[[ f.elseNode ]](f .env) σ (f .token) (f .val) κ

F [[ ExpSeqF f ]]σ v κ = ξ [[ f.nextExp ]](f .env) σ κ

F [[ NodeSeqF f ]]σ v κ = η[[ f.nextNode ]](f .env) σ (f .token) v κ

F [[ AllocF f ]]σ v κ = let = alloc(σ) in apply(κ ,( σ † [ v])) end

F [[ RhsF f ]]σ v κ = ξ [[ f .id ]](f .env) σ (push(SetF(v),κ))

Fig. 10.13 Semantics of frames

The frame-based semantics of activity diagrams is presented in Fig. 10.11 and
the frame-based semantics of Alf is presented in Fig. 10.12. Figure 10.13 shows the
evaluation of the frames that are needed for computations. The primitive functions
used in the semantics are the same as defined in the previous chapter.

10.5 Aspect Syntax and Semantics

In this section, we present our aspect extension to executable activity diagrams and
elaborate its frame-based semantics. We start by presenting the aspect syntax. Then,
we elaborate the matching and the weaving semantics.

Fig. 10.14 Proceed
Expression e ::= ...

| proceed (e) proceed
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type Aspect = Advice list
type Advice = {body : Exp; pc : Pointcut}
type Pointcut = GetPC | SetPC | CallPC | ExecPC | NotPC | AndPC
type GetPC = {id : Identifier}
type SetPC = {id : Identifier; val : Value}
type CallPC = {id : Identifier; arg : Identifier}
type ExecPC = {id : Identifier; arg : Identifier}
type NotPC = {pc : Pointcut}
type AndPC = {pc1 : Pointcut; pc2 : Pointcut}

Fig. 10.15 Aspect syntax

10.5.1 Aspect Syntax

An aspect includes a list of advice. An advice specifies actions to be performed when
join points satisfying a particular pointcut are reached. An advice may also compute
the original join point through a special expression named proceed. Hence, as
shown in Fig. 10.14, we extend Alf syntax with an additional expression to denote
the computation of the original join point with possibly a new argument e. The aspect
syntax is denoted in Fig. 10.15.

Syntactically, an advice contains two parts (Fig. 10.15): (1) A body, which is
an Alf expression, and (2) a pointcut, which designates a set of join points. An
advice can be applied before, after, or around a join point. However, before and after
advice can be expressed as around advice using theproceed expression. Hence, we
consider all kinds of advice as around advice as this does not restrict the generality
of the approach. We first consider basic pointcuts: GetPC, SetPC, CallPC, and
ExecPC. The pointcut GetPC (respectively SetPC) picks out join points where the
value of a variable is got from (respectively set to) the store. The pointcut CallPC
(respectively ExecPC) picks out join points where a function is called (respectively
executed).

10.5.2 Matching Semantics

Matching is a mechanism for identifying the join points targeted by the advice. In our
approach, join points correspond to specific points in the execution of both activity
diagrams and Alf expressions. However, since the semantics is in a frame-based
style, both kinds of join points are continuation frames and arise naturally within
the semantics. Therefore, our matching semantics examines whether a continuation
frame satisfies a given pointcut or not, as shown in Fig. 10.16. In the following, we
explain the matching rules.
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match_pc : Pointcut → Frame → Value → Store → Env → Cont →
Boolean
let match_pc p f v σ ε κ = match (p, f ) with

(GetPC p,GetF f ) ⇒ ε(p.id) = v
| (SetPC p,SetF f ) ⇒ ε(p.id) = v
| (CallPC p,CallF f ) ⇒ p.id = f .fun
| (ExecPC p,ExecF f ) ⇒ let (v ,σ ) = ξ [[ ε(p.id) ]] ε σ κ in v= v end
| (NotPC p,Frame f ) ⇒ not match_pc(p.pc, f ,v,σ ,ε,κ)
| (AndPC p,Frame f ) ⇒ match_pc(p.pc1, f ,v,σ ,ε,κ) and

match_pc(p.pc2, f ,v,σ ,ε,κ)
| otherwise ⇒ false

Fig. 10.16 Matching semantics

Given a pointcut p, the current frame f, the current value v, a store σ , an environ-
ment ε, and a continuation κ , the matching semantics examines whether f matches p.
Matching depends on three factors: the kind and the content of the frame f and the
current value v that f receives. In the case of:

• GetPC, there is a match if f is a GetF frame and the location of the identifier
given in p is equal to the location that f receives.

• SetPC, there is a match if f is a SetF frame and the location of the identifier given
in p is equal to the location that f receives.

• CallPC, there is a match if f is a CallF frame and it holds a function identifier that
is equal to the one given in p.

• ExecPC, there is a match if f is an ExecF frame and the evaluation of the function
given in p is equal to the closure that f receives.

• NotPC, there is a match if f does not match the sub-pointcut of p.
• AndPC, there is a match if f matches both sub-pointcuts of p.

10.5.3 Weaving Semantics

The weaving semantics describes how to apply the matching advice at the identified
join points. Since join points correspond to frames, advice body provides a means to
modify the behavior of those frames. The weaving is performed automatically during
the execution. Therefore, we redefine the apply function, as shown in Fig. 10.17, to
take an aspect α and an environment ε into account. The weaving is done in two
steps. When a frame is activated, we first check for a matching advice by calling the
function get_matches (Fig. 10.18). If there is any applicable advice then the function
execute_advice, defined in Fig. 10.19, is called. Otherwise, the original computation
is performed. In the following, we explain these two steps.
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apply : Cont → (Value×Store) → Env → Aspect → (Value×Store)
let apply κ (v,σ) ε α = match κ with

[ ] ⇒ (v,σ)
| f :: κ ⇒ let ms = get_matches(f ,v,σ ,ε,α,κ ) in

if ms = [ ] then F [[ f ]]ε σ v α κ
else let argV = match f with

SetF f ⇒ f .val
| CallF f ⇒ v
| ExecF f ⇒ f .arg
| otherwise ⇒ ()

in execute_advice(ms, f ,argV,σ ,ε,α,κ )
end

end

Fig. 10.17 Redefined apply function

type MatchedAD = {arg : Identifier; ad : Advice}
get_matches : Frame → Value → Store → Env → Aspect → Cont

→ MatchedAD list

let get_matches f v σ ε α κ = match α with
[ ] ⇒ [ ]

|ad :: α ⇒ let p = ad.pc in
if match_pc(p, f ,v,σ ,ε,α,κ) then

let arg= match p with
SetPC p ⇒ p.id

| CallPC p | ExecPC p ⇒ p.arg
| otherwise ⇒ ()

in MatchedAD(arg,ad) :: get_matches( f ,v,σ ,ε,α ,κ)
end

else get_matches( f ,v,σ ,ε,α ,κ)
end

Fig. 10.18 Advice matching

10.5.3.1 Advice Matching

To get an applicable advice, we go through the aspect and check whether its enclosed
pointcuts match the current frame (Fig. 10.18). This is done by calling the function
match_pc defined previously in Fig. 10.16. In case there is a match, we return a
structure MatchedAD containing the advice itself and the pointcut arguments that
will pass values to the advice.
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execute_advice : MatchedAD list → Frame → Value → Store → Env
→ Aspect → Cont → Result

let execute_advice ms f v σ ε α κ = match ms with
[ ] ⇒ apply(push(MarkerF(),(push(f ,κ))),(v,σ),ε,α)

|m :: ms ⇒ let ad = m.ad in
ξ [[ ad.body ]]ε † [&proceed ms , &jp f ,m.arg v] σ α κ

end

Fig. 10.19 Advice execution

10.5.3.2 Advice Execution

Advice execution is shown in Fig. 10.19. It starts by evaluating the first applicable
advice. The remaining pieces of advice as well as the current frame are stored in the
environment by binding them to auxiliary variables &proceed and &jp respectively.
To evaluate the advice body, we define a new frame, AdvExecF, as follows:

type AdvExecF = {matches : MatchedAD list; jp : Frame}
F[[ AdvExecF f ]]ε σ v α κ = execute_advice(f .matches, f .jp, v, σ, ε, α, κ)

The evaluation of the proceed expression is provided below. The value of its
argument is passed to the next advice or to the current join point if there is no further
advice. To execute the remaining pieces of advice, the frame AdvExecF is added to
the frame list.

[[ proceed (e) ]]ε σ α κ = [[ e ]]ε σ α (push(AdvExecF(ε(&proceed), ε(&jp)), κ))

When all the applicable pieces of advice are executed, the original computation,
i.e., the current frame is invoked. To avoid matching the currently matched frame
repeatedly, we introduce a new frame, MarkerF, which invokes the primary apply
function (apply_prim).

type MarkerF = { }
F[[ MarkerF f ]]ε σ v α κ = apply_prim(κ, (v, σ ))

10.6 Semantics of the Dataflow Pointcut

In this section, we explore the semantics of the dflow pointcut in xUML. As men-
tioned in the previous chapter, this pointcut is useful from a security perspective
since it can detect a considerable number of vulnerabilities related to information
flow, such as Cross-site Scripting (XSS) and SQL injection [86]. As defined below,
the dflow pointcut has a sub-pointcut pc and a unique tag that discriminates it from
other dflow pointcuts.

type DFlowPC = {pc : Pointcut; tag : Identifier}
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F [[ GetF f ]]ε γ σ v α κ = apply(κ,(σ(v),σ),ε,γ † [σ(v) γ(v)],α)

F [[ SetF f ]]ε γ σ v α κ = apply(κ,((),σ † [v f .val]),ε,γ † [v γ(f .val)],α)

F [[ CallF f ]]ε γ σ v α κ = ξ [[ (f .env)(f .fun) ]](f .env)γ σ α(push(ExecF(v),κ))

F [[ ExecF f ]]ε γ σ v α κ =
ξ [[ e ]](ε † [x f .arg]) (γ † [ε(x) γ( f .arg)]) σ α (push(DflowF(γ),κ))
where v= x,e,ε ,γ

F [[ IfF f ]]ε γ σ v α κ = if (v) then ξ [[ f.thenExp ]](f .env) γ σ α κ
else ξ [[ f.elseExp ]](f .env) γ σ α κ

F [[ DecisionF f ]]ε γ σ v α κ =
if (v) then η[[ f.thenNode ]](f .env) γ σ (f .token) (f .val) α κ
else η[[ f.elseNode ]](f .env) γ σ (f .token) (f .val) α κ

F [[ ExpSeqF f ]]ε γ σ v α κ = ξ [[ f.nextExp ]](f .env) γ σ α κ

F [[ NodeSeqF f ]]ε γ σ v α κ = η[[ f.nextNode ]](f .env) γ σ (f .token) v α κ

F [[ AllocF f ]]ε γ σ v α κ = let = alloc(σ) in
apply(κ,( σ † [ v]),ε,γ † [ γ(v)],α) end

F [[ RhsF f ]]ε γ σ v α κ = ξ [[ f .id ]](f .env) γ σ α (push(SetF(v),κ))

F [[ AdvExecF f ]]ε γ σ v α κ = execute_advice(f .matches, f .jp,v,σ ,ε,γ,α,κ)

F [[ MarkerF f ]]ε γ σ v α κ = apply_prim(κ,(v,σ))

F [[ DFlowF f ]]ε γ σ v α κ = apply(κ,(v,σ),ε, f .tag_env† [v getTags(γ)],α)

Fig. 10.20 Semantics of frames with the dflow pointcut

In order to track dependencies between values, we use a tagging environment
γ that maps values to tags. Tag propagation is performed dynamically during the
execution of the activity diagram and Alf expressions. In particular, this is done at the
frames side (Fig. 10.20). Notice that the functions now take the tagging environmentγ
as an additional argument. Notice also that in the case of anExecF frame, the closure
〈x, e, ε′, γ ′〉 is extended with a tagging environment γ ′ to capture the tags generated
during the function execution. In addition, we define a marker frame DflowF that is
used for tag propagation in the case of a function call. The DflowF frame stores a
tagging environment before entering a function call and awaits the result of the call.



10.6 Semantics of the Dataflow Pointcut 209

type DflowF = {tag_env : Env}
In the following, we explain the tag propagation rules for the affected frames:

• In the case of a GetF frame, the tags of the location v propagate to the value stored
at that location.

• In the case of a SetF frame, the tags of the value of the right-hand side of an
assignment propagate to the location of the assignment identifier.

• In the case of an ExecF frame, the tags of the argument value f .arg propagate to
the value of the variable x. In addition, the tags of the argument and the tags that
are generated during the function execution propagate to the result of the function.
For this reason, we use a DflowF frame to access the result of the function call
and restore the tagging environment after returning from the call. The function
getTags(γ ) used in F[[ DFlowF f ]] retrieves all the tags stored in the tagging
environment γ .

• In the case of an AllocF frame, the tags of v propagate to the created location 	.

The matching semantics of the dflow pointcut is presented in Fig. 10.21. A join
point frame f matches a dflow pointcut that contains a pointcut pc and a tag t if:
(1) The frame f matches the pointcut pc of the dflow pointcut, or (2) the set of tags

type JpF = GetF | SetF | CallF | ExecF
let match_pc p f v σ ε γ α κ = match (p, f ) with
...
| (DFlowPC p,JpF f ) ⇒ let (b,γ ) = match_pc(p.pc, f ,v,σ ,ε,γ,α,κ) in

let val = match f with
GetF f ⇒ v
SetF f ⇒ f .val
CallF f ⇒ let (v ,σ ) = ξ [[ ε(f .fun) ]]ε γ σ α κ

in
v

end
ExecF f ⇒ v

in
if (b)
then (true,γ † [val γ (val)∪{p.tag}])
else let val = match f with

CallF f ⇒ v
otherwise ⇒ val

in (p.tag ∈ γ (val ),γ )
end

end
end

Fig. 10.21 Matching semantics of the dflow pointcut
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of the value that the frame f awaits (captured by the variable val′) contains the tag t.
In case a frame f matches the pointcut pc of the dflow pointcut, the tag t propagates
to the value associated with the frame f (captured by the variable val).

Example To illustrate the dflow pointcut in xUML, let us consider the Search-
Page activity diagram presented in Fig. 10.22. The activity starts by accepting a
search request. Then, the searched phrase is extracted by the action GetQuery. If
the requested phrase is empty, an error message is generated. Otherwise, the action
Search is executed and the result message, containing both the requested phrase
and the search result, is generated. Finally, the generated message is printed on the
web page.

The presented example is vulnerable to XSS attacks since the untrusted input,
received from the user, has not been sanitized before being placed into the contents
of the web page. Therefore, it enables an attacker to inject malicious scripts into the
web page and reveal confidential information. To fix this vulnerability, we need to
sanitize the untrusted input and all the data that originated from it before printing
them on the web page. The dflow pointcut can be remarkably used to address this
problem. Indeed, the dflow pointcut, dflow(p), picks out all points in the activity
execution where values are dependent on the join points that are previously picked out
by p. Therefore, by defining pointcut p asCallPC(GetQuery), the pointcutdflow(p)

Fig. 10.22 Search page activity diagram
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picks all join points that are originated from the search phrase, which is the user input.
Below, we provide a sanitizing aspect for fixing the discussed vulnerability.

Aspect (Pointcuts and Advice):

CallPC p1 = {id = GetQuery; arg = x}
DFlowPC p2 = {pc = p1; tag = t}
CallPC p3 = {id = Print; arg = y}
AndPC p4 = {pc1 = p2; pc2 = p3}
Advice a = {body = proceed (Sanitize(y)); pc = p4}

Briefly, the aspect captures points where the function Print is called with an argu-
ment that is originated from the user input. The aspect first sanitizes the argument
by calling the function Sanitize and then calls the function Print with the sani-
tized argument. The join points targeted by this aspect are matched based on the
following:

• The call to the function GetQuery (Fig. 10.22) matches the pointcut p2 since it
matches the sub-pointcut p1. Consequently, the tag t of the dflow pointcut (p2)
is added to the tagging environment of the function GetQuery, and is given to the
result of the function evaluation.

• Then, if the search phrase is not empty then the action Search and its enclosing
Alf code are executed. According to the tag propagation rules for assignment and
call operation expressions, the values of the variables result and resultMessage,
used in the Alf expressions, get the tag t.

• Subsequently, the call to the function Print matches p4 since it matches both sub-
pointcuts of p4 (p2 and p3). More precisely, the call to the function Print matches the
pointcut p3 as p3 is a call to the function Print. In addition, the call to the function
Print matches the pointcut p2 as the value of its argument (resultMessage) has the
tag t. Therefore, the sanitizing advice will be woven at this point.

10.7 Related Work on Aspect Semantics in xUML

Existing AOM approaches that handle xUML models are presented from a practical
perspective [92, 105, 213]. In addition, they mainly focus on providing a framework
for executing the woven model for the purposes of simulation and verification. In the
following, we provide an overview of these approaches.

Fuentes and Sánchez [92] have proposed a dynamic weaver for aspect-oriented
executable UML models. A UML profile, called AOEM, is elaborated to sup-
port aspect-oriented concepts. Advice pieces are modeled as activity diagrams and
injected into the base model as structured activities. Pointcuts, that intercept message
sending and receiving, are specified using sequence diagrams. The weaving process
is defined as a chain of model transformations. However, no model transformation
language is used. Instead, Java and standards, like XSLT and XPath, are used to
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directly manipulate the XMI representation of the models. In addition, this approach
does not support action languages.

Zhang et al. [213] have presented Motorola WEAVR, a tool for weaving aspects
into executable UML state machines. Motorola WEAVR is one of the stable weavers
that is developed in an industrial environment. In addition, it concentrates on exe-
cutable modeling, and therefore it is more suited to detailed design. Motorola
WEAVR supports two types of join points that are action and transition. Aspect
interference is handled by allowing precedence relationships to be specified at the
modeling level. However, this weaver is based on the Telelogic TAU G2 [10] imple-
mentation. Therefore, it is tool-dependent and not portable. In addition, the graphical
representation of the woven models is not supported by the tool; the woven models
cannot be manually inspected.

Jackson et al. [105] have introduced an approach for specifying and weaving
executable class diagrams and sequence diagrams. This weaver is based on Kermeta
action language [143] for defining precise behaviors and providing executability.
However, it only supports weaving of executable class diagrams, as all behavioral
diagrams, such as sequence diagrams, are defined as methods. Furthermore, Kermeta
has been designed for specifying meta-model behaviors and it is not as expressive
as UML action languages.

10.8 Conclusion

In this chapter, we have presented a formal semantics for aspect matching and weav-
ing in xUML models expressed using the standard Alf language. We have elabo-
rated frame-based CPS semantics since this style of semantics allows formalizing
aspect-oriented mechanisms in a precise and elegant way. In fact, one can easily
notice that CPS and defunctionalization make join points explicit and facilitate aspect
matching and weaving. In addition, by expressing the semantics of activity diagrams
and Alf constructs in a frame-based representation, the matching and the weaving
processes are performed in a unified way for both activity diagrams and Alf con-
structs.

We have addressed useful pointcuts from a security perspective that pick out join
points where functions are called and executed, and where variables are get and set.
These pointcuts are useful since they detect important points, where security mecha-
nisms, such as, authorization, encryption, and decryption, may be added before, after,
or around these points. In addition, we have elaborated semantics for the dataflow
pointcut. This pointcut identifies join points based on data dependencies between
values, and therefore allowing the detection of vulnerabilities related to information
flow.

This contribution is very useful in the field of software security hardening since
it targets matching and weaving on precise and detailed specifications that are, at
the same time, high-level and independent of any programming language. Such
a semantics allows capturing more join points that cannot be easily identified on
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high-level and abstract UML models. Therefore, numerous flaws can get resolved
before entering the implementation phase, which significantly reduces costs and leads
to more trustworthy software. The proposed semantics is a first step towards a com-
plete semantic framework, where more security-related pointcuts can be addressed
together with their semantic foundations.



Chapter 11
Conclusion

With the increasing complexity and pervasiveness of today’s software systems,
security should be integrated to software since the first stages of the development
life cycle. In this context, model-driven engineering is a promising approach to early
software security hardening. This approach aims at alleviating the complexity of
software development by shifting the development efforts from the code level to the
modeling level, where models are first-class entities and are considered in every step
of the software development life cycle. Moreover, because of the pervasive nature
of security concerns and the lack of security knowledge among developers, there
is a clear need for a systematic way to integrate those concerns into the software
development process. In this respect, aspect-oriented modeling is the most appropri-
ate paradigm. Indeed, by separating security concerns from the main functionalities,
software developers can make use of the expertise of security specialists and sys-
tematically integrate security solutions into design models. In this setting, we have
elaborated anAOM framework for specifying and systematically integrating security
hardening solutions into UML design models.

For the specification of security aspects, we have devised, in Chap. 6, a UML
profile allowing the specification of common aspect-oriented primitives and cover-
ing the main UML diagrams, i.e., class diagrams, state machine diagrams, sequence
diagrams, and activity diagrams. The proposed profile allows specification of secu-
rity solutions for high-level security requirements, such as, confidentiality, integrity,
authentication, access control, etc. It supports adaptations, which add new elements
before, after, or around join points, and remove existing elements. In addition, we
have defined a UML-specific pointcut language that provides high-level and user-
friendly primitives to designate UML join points. Regarding the join point model,
in activity diagrams, we consider not only executable nodes but also various control
nodes to allow modeling crosscutting concerns that are needed with alternatives,
loops, exceptions, and multi-threaded applications. In state machine diagrams, we
consider not only static states, but also we capture states that dynamically depend
on the triggered transitions. For purposes of reuse, the aspects can be designed as
generic solutions, then specialized to a particular application.
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Furthermore, we have designed and implemented, in Chap.7, a weaving
framework to specialize the security aspects and automatically inject them into base
models. The weaver covers all the diagrams that are supported in our approach.
In addition, it supports all kinds of adaptations that can be specified using our AOM
profile presented in Chap. 6. The adoption of a model-to-model transformation to
implement the weaving process helped in generating the weaving rules in an auto-
matic way without having to manipulate the internal representation of UMLmodels.
Moreover, the adoption of the standard OCL language for evaluating the pointcuts
allowed us to match a wide set of join points belonging to various UML diagrams.
Besides, the adoption of the standard QVT language for implementing the adapta-
tion rules extends portability of the designed weaver to all tools supporting QVT
language. To get the full advantages of this comprehensive and portable framework,
we have developed it as a plug-in to IBM-RSA tool. To demonstrate the viability
and the relevance of our framework, we have used it to experiment adding various
securitymechanisms inmid-size open source projects such as SIP communicator and
OpenSAF. The supported security mechanisms are those related to high-level secu-
rity requirements such as access control, authentication, authorization, etc. Finally,
to validate the correctness of our weavingmethods, we can provide the wovenmodel,
together with the needed security properties, to verification and validation tools [69,
126], that will verify the woven model against the specified security properties.

From a theoretical point of view, our contribution is two fold: First, we have elabo-
rated formal specifications, in an operational style, formatching andweaving inUML
activity diagrams. The purpose of elaborating this semantics is to derive algorithms
for implementing our weaving adaptations presented in Chap.7. In this respect, a
syntax of activity diagrams together with their corresponding adaptations have been
defined to express the matching and the weaving semantic rules. Afterwards, we
have derived algorithms for matching and weaving and proved the correctness and
the completeness of these algorithms with respect to the defined semantic rules. To
the best of our knowledge, this is the first contribution in handling formal specifi-
cations for adaptation weaving, specifically for around adaptations with or without
proceed. We have elaborated the semantics for activity diagrams mainly because of
their richness in terms of actions and control nodes that can be captured as join points.
However, a formal semantics for matching and weaving for the other diagrams, i.e.,
class diagrams, state machine diagrams, and sequence diagrams, can be provided in
the same vein as for activity diagrams.

Second, to be able to address advanced security concerns such as information
flow vulnerabilities, we have extended our weaving framework to include xUML
models expressed using the standard Alf language. Indeed, xUML allows to specify
detailed and precise behaviors that include variables, assignments, operation calls,
etc. We have elaborated a semantics for matching and weaving in xUML following a
CPS/frame-based style because this style of semantics provides a concise, accurate,
and elegant description of aspect-oriented mechanisms. Indeed, CPS and defunc-
tionalization make join points explicit, and therefore allow the aspect matching and
weaving in a straightforward manner. In addition, by expressing the semantics of
activity diagrams and Alf language in a frame-based representation, the matching

http://dx.doi.org/10.1007/978-3-319-16106-8_7
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and the weaving processes are performed in a unified way for both activity diagram
elements and Alf expressions. We have addressed useful pointcuts from a secu-
rity perspective that pick out join points where functions are called and executed,
and where variables are get and set. In addition, we have elaborated semantics for
flow-based pointcuts, which are useful to detect and fix vulnerabilities related to
information flow. Using a CPS/frame-based style simplified greatly the specifica-
tion of the matching and the weaving semantics for this kind of pointcuts, which
is an advantage compared to expressing them in an operational style, where lots of
implementation details need to be specified. Regarding the implementation of the
matching and the weaving in xUML, it is not addressed in this book mainly because
of the lack of tools that support the execution of Alf expressions.

In the following, we evaluate our framework from different perspectives as
follows:

• User Friendliness: To facilitate the use of our framework, we have proposed a
pointcut language in a textual representation to designate join points in a user-
friendly way. It is important to mention here that the process of translating the
textual pointcuts into OCL is completely automatic and without any user inter-
vention. On the other hand, the added or the replaced-by elements, specified by
adaptations, are graphically represented using the concrete syntax of the mod-
eling language. The use of the concrete syntax makes our framework broadly
applicable because no experience with meta-modeling is required from develop-
ers. This facilitates using the framework by modelers who are unlikely to have
enough knowledge about UML abstract syntax. Moreover, the framework allows
visualizing the woven model easily.

• Formality: We have explored two styles of semantics for the formalization of
the matching and the weaving processes. First, we used a structured operational
style, in which our semantics is defined using deductive proof systems. Second,
we used a denotational style, in which our semantics is defined using CPS and
defunctionalization. Our main target is the activity diagram. However, the formal
definitions for the other diagrams can be provided in the same vein that we provide
them for activity diagrams. Klein et al. [118] have proposed formal definitions for
matching and weaving. However, their approach is limited to the detection of join
points for basic or combined sequence diagrams. Generic AOM approaches based
on graph transformation [138, 206] have a formal underpinning, but this is an
advantage of using graph transformations.

• Expressiveness: Our framework ismore expressive than previous ones, in the sense
that it supports a large set of modifications of UML models since it views model
weaving as simply as model transformation. Moreover, the elements allowed as
join points are more than in many previous approaches. However, the approaches
that are based on graph transformation, such as MATA [206] and GeKo [138], are
considered more expressive because they allow any modeling element to be a join
point. Another point to mention is that MATA supports sequence pointcuts, that is,
an aspect may match against a sequence of messages or a sequence of transitions.
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We do not address this pointcut in this book. However, this can be achieved in the
future by instrumenting OCL to identify specific sequences of model elements.

• Extensibility and Portability: In our framework, aspect adaptations are specified
using a UML profile. This mechanism allows extending UML metamodel ele-
ments, by means of stereotypes, without changing UML metamodel. Therefore,
new AOM extensions for security hardening can be easily added to our framework
by extending our AOM profile with the needed stereotypes and their associated
tagged values. In addition, since profiles are standard UML extensions, almost any
UML modeling framework can store and manipulate them. Moreover, the defined
architecture for the weaving framework facilitates the extension of the transforma-
tion tool to support a wider range of UML diagrams. Indeed, new transformations
can be easily plugged-in without going through the hassle of modifying and alter-
ing the existing architecture. Additionally, since QVT mapping rules are defined
based on UML meta-elements, our framework is portable to any UML modeling
framework and to other tools supporting QVT language [3–5, 8, 9, 11].

• Reusability: In our framework, security aspects can be designed as generic tem-
plates independently of the application specificities. Generic aspects are important
to define libraries of reusable aspects for special purposes such as security hard-
ening. Since generic pointcuts, as part of generic aspects, have no concrete speci-
fication, an aspect needs to be specialized to a specific application before it can be
woven into base models. To this end, we have provided a weaving interface that
exposes the generic pointcuts to the developer. After mapping all the generic point-
cuts to their corresponding elements in the base model, the application-dependent
aspect is automatically generated by the defined framework. It is important to
mention here that aspects in our framework can be generic and specific as well.
The modeler chooses the kind of aspects that fulfils his/her needs.

The work presented in this book can be further pursued by identifying and elab-
orating new AOM extensions, i.e., pointcut and advice primitives, together with
their semantic foundations, for security hardening. An example of such extensions is
tracematches [36]. Tracematches support matching a sequence of consecutive events
rather than individual join points. At the modeling level, this pointcut can help in
capturing, for instance, a sequence of messages in sequence diagrams or a sequence
of transitions in state machine diagrams. Tracematches are important from a secu-
rity perspective because some vulnerabilities involve a sequence of events, such as
transactions and race conditions [47]. Once new primitives have been identified, our
AOM framework can be extendedwith the newly-defined pointcuts and advices. This
means extending our AOM profile with the needed stereotypes along with their asso-
ciated tagged values, as well as extending our weaving framework with the needed
transformation rules. It is also important to explore the definition of AOM security
primitives for executable models, and in particular, in UML action languages. Fur-
thermore, thework thatwe did onUMLcan be extended to othermodeling languages,
such as Systems Modeling Language (SysML) [147], to address security hardening
in systems engineering.
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From a theoretical perspective, our framework can be extended by elaborating
the matching and the weaving semantics in other UML diagrams, such as, class
diagrams, sequence diagrams, and state machine diagrams. In addition, we have seen
thatCPS/frame-based style is an elegant and interesting venue for the formalization of
aspect-oriented constructs. Therefore, it is important to investigate the formalization
of other security primitives using this style of semantics. Another interesting work
is to explore the equivalence between CPS/frame-based semantics and the practical
techniques that are used to implement matching and weaving, such as the shadow
concept in AOP [98].
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