Learn to build powerful iPhone and iPad apps Co /"%
using Xcode 6 and Swift %;

Beginning

CO

SWIFT EDITION
Matthew Knott

Apress:



http:///
http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

0N

Apress’

M.al | itebooks.cogl


http:///
http://www.allitebooks.org

Contents at a Glance

About the AUtROr ........ccvciriserns s ————————_——————————— XV
About the Technical REVIEWET .......ccusssssssssmsssmssmmsssssssssssssmsssssssssssssssssssssssssssssssnsssnsssnsnss Xvii
ACKNOWIEAYMENES ....ccuurirriimissssnnnnsnnnnnsssssssssnsssnsssessssssssssssnsssssssssssssnnnnnnnsssssssssssnnnnnnnssssssssns Xix
INtroducCtion .......cccuvieiie s ————=—S————_—™——=_—w=~” xxi
Part 1: Getting Acquainted ........cccscermmssenmmssennmsssssssssssnsssssnsssssnsssssnsssssnsssssnnns 1
Chapter 1: Welcome t0 XCOUE....uuvummmemrmmmmmmmssssnnsssssssmsssssssssnssssssssssssssssnnsssssssssssssssnnnnnnnsnnnss 3
Chapter 2: Diving Right IN .......ccccuscmmmsmmmmssnmmsssmsssssmmssssmsssssssssssmsssnmsssssssssssssssssssssnsssssns 17
Chapter 3: Project Templates and Getting Around.........ccusceemmmssssnsnmsssssnsnnsssssnssssssssnsnnsssss 43
Chapter 4: Building INterfaces.......ccciuumsemmmmmsssnsnmsssssnsnssssssssnsssssssssssssssssnssssssnssssssssnsnssssss 75
Chapter 5: Getting Help and Code Completion .........ccvcuumeemnmsnnmssesssssssssssssssssssssssnssssansenss 119
Chapter 6: CONStraints........cccuserrismmmssssmmsssnsmssssssssssssssssnsssssnsssssnsssssnsessansessnnsessnnnessnnnenss 143
Part 2: Diving Deeper......uueeeemmmmmmssssssnsnnnnmmmsssssssnnsnnsnnsssssssssnnnnnssssssssnnnnnnns 179
Chapter 7: Storyboards........uuumusmessmmmmmmmmmssssssssmmssssssssss s ssnsssssnsnss 181
Chapter 8: Table and Collection VIieWsS .......ccuccccummmsssnsnmmssssssnmsssssssnsssssssssssssssssssssssansnnsans 225
Chapter 9: Frameworks, Libraries, and Targets.......cccuuemmmmmmmmmmmmsssssssmmmmmmnssssssssnns 287

v

[vww allitebooks.cond



http:///
http://www.allitebooks.org

vi

Contents at a Glance

Chapter 10: Advanced Editing .......ccccvunseeennmssssssnmmssssssnmsssssssnsssssssssssssssssssssssssssssssssnsnsssss 315
Chapter 11: Debugging and ANalYSIS .....uuuesssssssssssanssssanssssansssssnsssssnsssssnnssssnsssssnsssssnnssss 343
Part 3: Final Preparations and Releasing ........ccccccirurrnssssssmmmnnnnssssssssnssnnns 377
Chapter 12: Version Control with Git .........cccccmmmmmmmrmmnnnsssssmmmmmmmssssssssss s 379
Chapter 13: Localization........ccccussseensmssssssnnmssssssssmssssssssssssssssssssssssssssssssssssssssnnssssssnnnnsssns 413
Chapter 14: Devices and the Organizer ........ccessmsssmmssssmsssssmsssssmsssssssssssssssnsssssnsssssanssss 455
Chapter 15: Building, Sharing, and Distributing Applications...........ccccinnsemnmnnsssnnnnnnns 483
INA@X.ciiiiiirnie s ———————————————————————— 525

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Introduction

Welcome to Beginning Xcode, the book that aims to give you all the knowledge to start writing
applications using what is probably the most powerful integrated development environment (IDE)
ever. And that IDE is free.

As with many Apple products, Xcode has simplicity and ease of use in abundance, but don’t be
fooled: the shiny exterior masks a workhorse of a tool, incredibly powerful and with an extensive set
of integrated tools for every eventuality. Xcode is the development environment that all other IDEs
have a poster of pinned to their bedroom walls.

Xcode hasn’t always been this shining Rock God of awesomeness; it used to be a sorry band of
ragtag applications. When | first picked up Xcode 3 in 2007, | remember going through a multitude
of different applications to perform varying tasks, such as the very basic Interface Builder, and
finding out how to adapt my knowledge of C into Objective-C. Back then, what | really wanted was
something that showed me how to get the most out of Xcode and could give me the understanding |
needed to get going with the hundreds of app ideas | had in my head.

Fast-forward seven years, and both Xcode and | have come a long way. | feel as if I've gone from
being a kid, bumping my leaky paddleboat aimlessly around a lake, to being a handsome sea
captain at the prow of my vessel, gazing forth as | slice through choppy waves with grace and ease.
Well, aside from the handsome part, the analogy is a good one. Xcode 6is more complete and
powerful than ever before: it's an integrated product that puts in your hands the same power used by
the developers at Apple who write the apps found in iOS and Mac OS X.

I’ve always had a mixed experience with development books and have often been sick of building
the same old apps again and again. In this book I’'ve aimed to take you through almost every facet of
Xcode, helping you to understand the capabilities of each of the key areas as you build a number of
cool and exciting projects along the way and come to grips with the new Swift programing language.
By the end of the book, you should be ready to turn the ideas in your head into reality—and | can’t
wait to see what that looks like.

[vww allitebooks.cond



http://j.egges@uu.nl
http:///
http://www.allitebooks.org

Part 1

Getting Acquainted

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Chapter

Welcome to Xcode

Apple provides Xcode to developers to help them create applications for Macs, iPhones, and
iPads (OS X and iOS). Xcode was used to create many of your favorite iOS and OS X applications.
Arguably, without such a powerful, refined, integrated development environment (IDE), the thriving
ecosystem that is the App Store would not exist as it does today.

What Is Xcode?

All developers, regardless of the platform for which they’re developing, use an array of tools to take

an application from an idea to something that is readily available to millions of people. Apple is no
exception, and it provides a cultured, powerful, and polished set of development tools. These tools are
brought together within one application called Xcode. Xcode provides everything you need to create,
test, deploy, and distribute applications for iOS and OS X. With the release of iOS 8 and Xcode 6,
Apple has radically overhauled its toolset and created powerful new technologies that aid developers
in making the process of creating an application fun and rewarding; in addition to that, and for the first
time since Xcode was released, it now supports a brand-new proprietary programming language
called Swift.

The purpose of this book is to guide you in becoming familiar with Xcode 6, in the hope that you’ll
become more confident and embrace it to create amazing, innovative new applications for iOS and
OS X. As in many other technical books, as you progress through each chapter, you build on your
knowledge and systematically create a number of iOS applications.

Although Xcode was created primarily for developers working on iOS and OS X applications, it’s also
great if you work with other languages such as C, Java, and C++, among others. Xcode has a long,
interesting history of releases, some having a very good reception and some less so. First released in
2003, Xcode has had six major releases and seen a couple of major interface overhauls. After more
than 10 years of active development, it’s safe to say that Xcode is incredibly powerful and a leading
professional set of development tools. What’s more, Xcode is available to developers at absolutely
no cost; all you need is an iTunes account, and you’re good to go.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

4 CHAPTER 1: Welcome to Xcode

What Is Swift?

Before WWDC 2014, Apple’s World Wide Developer conference, if you created a project in Xcode,
the code that was added behind the scenes was written in a programming language called
Objective-C. At WWDC14, Apple unveiled a brand-new and highly streamlined programming
language called Swift. This new language greatly reduced the amount of code needed to achieve
equivalent outcomes in Objective-C. Swift is far less rigid than Objective-C and is very similar in
structure to Python, a move that will no doubt encourage more developers into what is already one
of the most accessible development ecosystems in existence today.

To make Swift even more appealing, Apple also introduced a new piece of software called Swift
Playground with Xcode 6. Playground gives you the ability to experiment with snippets of code
to see the result without putting them into your application, meaning you have a code sandbox in
which to try things such as loops or regular expressions and instantly see the result.

The purpose of this book is to teach you how to create apps using Swift in Xcode 6—it isn’t a definitive
Swift language guide. Apple, however, has released a free book that is a definitive guide to the Swift
programming language and has made it available via iBooks. Search iBooks for Swift programming, or
visit https://itunes.apple.com/us/book/swift-programming-language/id881256329?mt=11.

Why Choose Xcode?

If you have experience developing for other platforms, then you probably want to know what makes
Xcode so great. The main thing is that there’s simply no other IDE like it. It’s unique in the sense
that Apple has created it to be simple, yet at the same time it masks a powerful interior. You have
the ability to work with a range of technologies, and you also have a phenomenal developer toolkit
at your disposal. Xcode contains everything you could need: an intuitive code editor, advanced
debugging, seamless interface-editing features, and the benefit of being constantly updated and
maintained by Apple.

In addition, using Xcode is arguably the only practical way to develop applications for iOS and
OS X that can truly be called native. Xcode is what Apple itself uses to produce its own innovative
software, which is used by millions of people.

Aside from Xcode, it’s hard to find a commendable alternative if you’d like to develop native iOS or
OS X applications. Of course, there are third-party services and tools; but when using these you may
often find yourself battling inconsistencies and a lack of compatibility rather than focusing on what'’s
really important: creating great apps (and enjoying doing so). The purpose of Xcode isn’t to simply
be an IDE: it also helps and guides you on your quest to create something that has the potential to
reach a staggeringly large audience. For that reason, Xcode is a fantastic choice.

Prior Assumptions

Before you dive in and start reading this book, it's assumed that you have at least some familiarity
with developing for Cocoa Touch and are familiar with the concepts of object-oriented programming.
This book is geared toward those developing for iOS; however, it’s possible to get a lot out of this
book if you’re developing OS X applications, because many of the principles presented can be
applied to either platform.

[vww allitebooks.cond



https://itunes.apple.com/us/book/swift-programming-language/id881256329?mt=11
http:///
http://www.allitebooks.org

CHAPTER 1: Welcome to Xcode 5

It’s assumed that you are using a Mac and are preferably running the latest version of OS X. Unlike
the Objective-C based equivalent of this title, it’s absolutely necessary that you run the latest version
of Xcode. This book is written specifically for Xcode 6 and Swift, and the technology doesn’t exist

in previous versions of the IDE. There is a common misconception that you need the greatest and
latest “souped-up” Mac, but many previous-generation iMacs, MacBooks, Mac Minis and Mac Pros
will work just fine.

It’s also assumed that you know how to operate your Mac and how to use OS X. For example,

you need to know how to use the Finder, save files, and so forth—all the basics. Finally, a couple

of the chapters present scenarios in which an active Internet connection is required, and some
features of Xcode perform better when you’re connected. Additionally, some later chapters require a
physical device and a paid developer account to complete, but for the most part you can use an iOS
simulator to run your apps.

It’s also worth mentioning that the purpose of this book is not to teach you how to create
applications for iOS or teach you how to program in Swift or Objective-C; the purpose of this book
is to get you up and running with Xcode so you can apply your current knowledge of Swift and OS
X/iOS development and use the latest version of Xcode to its full potential to enable you to work
more productively and create fantastic applications.

A final note, this book was written at a time of transition, when OS X 10.10 Yosemite was not
released. All screenshots are taken using OS X 10.9. Despite being the same version of Xcode, there
are differences in icons between the versions, and when this happens | call it out.

What’s Covered in This Book
Part 1: Getting Acquainted

Chapter 1: This chapter starts you on your journey into the world of Xcode and
explains how to get Xcode onto your machine and prepare it for first use. You
are shown how to sign up as an Apple developer, and you get a look at the
wealth of resources provided by Apple to iOS and OS X developers.

Chapter 2: Here, you start a project and get the ball rolling in terms of becoming
familiar with Xcode. You learn the basics of how to create projects and build
applications, along with how to get around in Xcode.

Chapter 3: Next, the focus shifts to how to choose from Xcode’s different project
templates. You also get a guided tour around Xcode’s interface along with an
introduction to many of the menus, inspectors, and panels you should use to
work efficiently.

Chapter 4: This chapter focuses solely on how to design your interfaces using
Xcode’s built-in interface editor, Interface Builder. It gives you an in-depth look at
the libraries and inspectors available.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

6 CHAPTER 1: Welcome to Xcode

Part 2:

Part 3:

Chapter 5: Next, you’re shown how to access the invaluable help resources that
are built right in to Xcode and also how to make the most of its intelligent
code-completion feature.

Chapter 6: Building on Chapter 4, you see the Auto Layout system and learn
how it works with constraints and the new size classes introduced in Xcode 6 to
create a single layout for any device.

Diving Deeper

Chapter 7: This chapter shows you how to use a key feature for rapid
development in Xcode: Storyboards. You see how it can add a certain degree of
logic to how you display and push views in your application.

Chapter 8: This chapter explains how Xcode makes it easy to populate and
create table and collection views, with the addition of how to customize their
appearance and functionality.

Chapter 9: Here you learn how to add features to your application by adding
frameworks and libraries. You also learn how to create a different version of your
application in the same project with targets.

Chapter 10: This chapter shows you how to add your own personal touches to
Xcode in terms of editing code. In particular, the code editor is the focus of this
chapter, and you see how to work more productively and how to customize its

appearance and behavior to suit your tastes and requirements.

Chapter 11: This chapter presents the idea of making your application run more
efficiently and faster. This is done by looking at the range of different tools and
methods included in Xcode: for example, using breakpoints to step through your
code systematically. You also learn about the Swift Playground for prototyping
and testing your code.

Final Preparations and Releasing

Chapter 12: Here you learn how you can protect your code and work effectively
as a team by using Git, Xcode’s integrated version control software.

Chapter 13: This chapter examines the idea of localization and how to use
Xcode to accurately support multiple languages in your app.

Chapter 14: This chapter looks at the Organizer, what it’s for, how to navigate
around in it, and how to keep your developer assets in good standing order.

Chapter 15: To conclude, you make final touches to your application, build it for
release, and then share it either as an IPA file or via the App Store using either
Application Loader or the Organizer.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

CHAPTER 1: Welcome to Xcode 7

Getting and Installing Xcode

Before you can download Xcode, there are a couple of things you need to do. You need an iTunes
account (or an Apple ID) that allows you to download content from the Mac App Store; then you’re
good to go. If you don’t have an Apple ID, you can sign up for one at no cost at http://appleid.
apple.com. This book is written for Xcode 6, and to run it you also need a Mac that’s running the
latest version of OS X or at least OS X 10.9.3.

Once you’re equipped with an Apple ID and a Mac running OS X 10.9.3+, you can begin
downloading Xcode. As with many other Mac apps, you simply download it from the Mac App Store
at no additional cost. Open the App Store on your Mac, select Categories from the top bar of the
window, and then click the Developer Tools category. Usually, you can find Xcode right away either
at the top of the window or in the sidebar on the right displaying the top free apps. Alternatively,

you can use the Search bar at top right and enter “xcode”. Xcode’s icon is a hammer over an “A”
blueprint, as shown in Figure 1-1.

Search Results for “xcode”

Xcode
Developer Tools

[ Essentials _

Figure 1-1. Xcode in the Mac App Store

Note If you don't have access to the latest version of OS X or are running an older version that isn’t
supported, you can download previous versions of Xcode from the iOS Dev Center, but for this you need
to have a registered Apple developer account. This is explained later. However, this book covers the latest
version of Xcode (which is 6.0 at the time of writing).

Select the icon, and you're taken to Xcode’s App Store page. Here you can view all the features of
Xcode along with the latest additions to the current version of Xcode (at the time of writing, this is
6.0) and also preview some screenshots of Xcode. To download Xcode, click the gray Free button
and enter your Apple ID e-mail address and password, and your download will commence. Xcode
is about 2.4 GB, so you can go and make some coffee while you wait for the download to finish, as
shown in Figure 1-2.


http://appleid.apple.com/
http://appleid.apple.com/
http:///

8 CHAPTER 1: Welcome to Xcode

[ Froo_[v]

Xcode [
[ £sseaniats ]

Xcode provides everything developers need to create great applications for Mac, iPhone, and iPad. Xcode brings user interface
design, coding, testing, and debugging all into a unified workflow. The Xcode IDE combined with the Cocoa and Cocoa Touch

Apple Web Site »
frameworks, and the Swift programming language make developing apps easier and more fun than ever before.
Xeode Support »
-..More
N N License Agreement »
What's New in Version 6.0.1 e "
Includes SDKs for O5 X 10.9 Mavericks and i05 8.0. Privacy Policy »
-..More
Information
Category: Developer Teols
Updated: 18 September 2014
Version: 6.0.1
Price: Free
. Boate Foe_bea Yaw fnd Marqme Ufsw Preded Diwey JesorCosan Wedes Wy . s L LR Size: 2,46 GB
aon Mam st -

Family Sharing: Yes
Language: English
Developer: iTunes S.a.r.l
© 1999-2013 Apple Inc.

Rated 4+

Compatibility:
05 X 10.9.4 or later

Figure 1-2. Xcode in the Mac App Store, ready to be downloaded

With Xcode downloaded, open it from your Applications folder. You’re prompted to install some
additional packages: click Install, and enter your user password. This installation should take a
matter of seconds, as shown in Figure 1-3.


http:///

CHAPTER 1: Welcome to Xcode 9

System Component Installation

The following components will be updated

Installation complete

Quit [ Start Using Xcode |

Figure 1-3. Installing additional tools required by Xcode

Firing Up Xcode

Once you’ve successfully downloaded and installed the additional components, you can begin using
Xcode. In Chapter 2, you create your first project and become familiar with the basic areas of Xcode;
but for now, just make sure everything is in good order so you don’t encounter any problems later.

When you first launch Xcode, you’re presented with a Welcome splash screen. From here you can
create a new project, connect to an external repository, open documentation, visit Apple’s developer
portal, and also browse a list of your recent projects. For some, this screen causes irritation—you
can prevent it from appearing each time you open Xcode by simply checking or unchecking the
Show This Window When Xcode Launches box, as shown in Figure 1-4.


http:///

10 CHAPTER 1: Welcome to Xcode

Welcome to Xcode

Version 6.0.1 (6A317)

1 Get started with a playground

bt Explore new ideas quickly and easily.

1 Create a new Xcode project
¥%| Start building a new iPhone, iPad or Mac application.

52 Check out an existing project

~| Start working on something from an SCM repository

v Show this window when Xcode launches Open another project..
Figure 1-4. Xcode’s Welcome window, which is displayed optionally each time you open Xcode

To create a new project, you can click the Create A New Xcode Project button on the Welcome
screen or navigate to File » New » Project, where you're presented with a range of templates
provided by default by Xcode.

If you have gotten to this point, it’s safe to assume that you’ve successfully installed Xcode and that
you’'re ready to start creating projects. However, let’s save this for a deeper explanation in Chapter 2
and for now look at the variety of resources provided to developers by Apple.

Apple’s Resources for Developers

At this point, you have Xcode downloaded to your machine, and you’ve fired it up to make sure

it runs. If there’s one thing that makes Apple stand out from its competitors, it’s the wealth of
knowledge, resources, and tools that are made just for developers. There are thousands of
documents, thousands of samples to download, and dozens upon dozens of videos you can watch.
Currently you have Xcode installed, but that alone isn’t going to make you a great developer of iOS
and OS X applications. You also need to use the vast library provided by Apple. To gain access to
Apple’s resources, | urge you to sign up as a registered Apple developer. To do this, all you need is
an Apple ID; you can create a new one or use the same ID you use to download content from iTunes
or the App Store.


http:///

CHAPTER 1: Welcome to Xcode 1

First, head over to http://developer.apple.com. This is the central web site for Apple developers.
On the home page of the site, click iOS Dev Center. The iOS Dev Center is the central location

for all the resources provided to those who create iPhone, iPad, and iPod Touch applications, as
shown in Figure 1-5.

‘ Developer Technologies Resources Programs Support Member Center Q

iOS Dev Center 0S Dev Center

Hi, Guest Register Log In

Access additional resources in the iOS Dev Center. QELLD

Sign in with the Apple ID you used to register as an Apple Developer, or register for free today.

Development Resources i0S Developer Program
Documentation and Videos Featured Content App Review
Prepare your apps for the
i05 Developer Library W 05 B for Developers review process.
View the latest decumentation and sample . 5 . earn more #
W iO5 Design Resources LEarn me
code for i0S 8

“ode

ng Started « Sample

App Store Resource Center

* Technical Notes s Get information on
+ Techr RAs / R A
Technical Q&A distributing your app on iwi
- the App Store. Sign in »
u
L fu 5 News and Updat
Development Videos ke e
i0S 7 Tech Talks = WWDC 2014 @ Programming with Objective-C Stay up-to-date with the .M}

latest Apple developer news -

& Programming with Swift
and updates. Learn more *

Figure 1-5. The iOS Dev Center—home of Apple resources for iOS developers

You aren’t required to sign up in order to gain access to many of the resources, including the
Developer Library, an overwhelming wealth of example source code, release notes, and many more
things. You can happily browse through the iOS Dev Center right now.

However, there are great advantages to signing up as a registered Apple developer, and it will
become essential at some point if you’re planning to distribute applications via the App Store.
Therefore, it’s a good idea to sign up right from the start. To begin the process of signing up,
click the Register For Free text just below the Sign In button; alternatively, you can visit
http://developer.apple.com/programs/register/. In order to sign up, you need a valid Apple
ID; if you don’t have one or would like to dedicate an Apple ID to your developer account, create
a new one (don’t worry, none of your purchases or downloaded content from the App Store or
iTunes Store will be affected if you use your current one).

Once you’re happy with your Apple ID, go to http://developer.apple.com/programs/register/
and sign up for an account. In order to complete the process of signing up, you need to create a
personal and professional profile; you can change these at any time if you need to.


http://developer.apple.com/
http://developer.apple.com/programs/register/
http://developer.apple.com/programs/register/
http:///

12 CHAPTER 1: Welcome to Xcode

You’re required to complete your professional profile by telling Apple any previous platforms

you’ve developed for along with your primary markets and experience with Apple’s platforms.

This information is used by Apple to get an idea of the spectrum of people who are signing up as
developers. Again, once you have completed this, click the Next button. Also, it’s important to note
that what you select when updating your professional profile doesn’t bind you to anything, and that
you’re able to develop and release applications to any of the App Store’s markets. Furthermore, you
can, if needed, make any amendments to your professional profile (and personal profile, for that
matter) after you’ve signed up, as shown in Figure 1-6.

eo0o Apple Developer Registration "

| 4 > ||| 2] |[] connectapple.com < |0

Apple Developer Registration

@ Developer

Apple ID Personal Profile Professional Profile

Complete your professional profile

(All form fields are required)

Which Apple platforms do you develop with? Select all that apply.
105

Mac OS X

Safari

What is your primary market?

Business Medical Reference
Education Music Social Networking
Entertainment Navigation Sports

Finance MNews Travel

Games Photography Utilities

Health & Fitness Productivity Weather

Lifestyle

Check this box if you are currently enrolled in a college or university.

Figure 1-6. Completing your developer professional profile

Finally, you reach the tiresome agreement that comes with many of Apple’s products; read it, click
to agree, and then continue with the process. To finish, all you need to do is verify that the e-mail
address supplied is valid; you do this by opening the e-mail sent to you by Apple and entering the
verification code contained within.


http:///

CHAPTER 1: Welcome to Xcode 13

The Dev Center

As mentioned previously, Apple really does like to take care of its developers. As a developer, your
first port of call is the Developer Library, because it houses most of the resources provided by
Apple. If you select the iOS Developer Library link under Documentation And Videos, you’re taken
to an invaluable section of Apple’s developer web site. The Developer Library is a simple and
straightforward site: simply use the links on the left to navigate around and to filter the results.
You can either search for specific keywords or sort the results using one of the column titles, as
shown in Figure 1-7.

[ Developer

D iOS Developer Library [Q- Search (05 Developer Library ]

i0S Developer Library
~ Resource Types

Cetting Started Learn AbOUt iOS 8

Guides

Reference Explore new technologies and documents in
peease oy What's New in iOS.

Sample Code

Technical Notes

Technical Q&As

Video

Xcode Tasks

Documents Q 2574 of 2574
~ Topics
Title Resource Type Topic Framework Date ¥
Audio & Video Lt P
Data Management » Xcode Release Notes Release Notes Xeode 2014-09-23
General
Graphics & Animation » VideoSnake Sample Code Audio & Video AVFoundation 2014-09-18
Languages & Utilities
Mathematical Computation » AVCustomEdit Sample Code Audio & Video AvVFoundation 2014-09-18
Networking & Internet
Performance » What's New in iO5 Release Notes General 2014-09-17
Security
User Experience » What's New in Xcode Release Notes Xcode 2014-09-17
Xcode
» What's New in the iOS Developer Library Release Notes General 2014-09-17
= Frameworks e

Figure 1-7. The iOS Developer Library

In addition to the iOS Developer Library, you also have access to an array of getting-started
videos that explain core Objective-C and Cocoa Touch concepts. You’'re also given access to

a direct link to the latest version of Xcode on the Mac App Store and the ability to download
previous versions of Xcode if you’re not running the latest version of OS X or would like to target
older versions of iOS.


http:///

14 CHAPTER 1: Welcome to Xcode

Your Developer Account

Currently, your level of membership is that of a free account, meaning you have access to a
staggeringly vast amount of resources but not to all the resources you need if you’re planning to
release applications to the App Store. Although this isn’t necessary at this point, it’s a good idea

to sign up as a paid developer, because doing so gives you access to the Apple developer forums,
prerelease versions of iOS before they’re available to the public, prerelease versions of Xcode, the
ability to test your applications on your iOS devices, and, of course, the ability to submit applications
to the iOS App Store. The cost of signing up at the time of the writing of this book is $99 per year,
and it’s required for some of the concepts presented toward the end of the book.

As mentioned previously, it isn’t necessary to sign up this instant, but it's recommended that you do so at
some point. To sign up for a paid account, visit https://developer.apple.com/programs/ios/ and click
the Enroll Now button. You’re then guided through the process of signing up; it’s straightforward if
you follow the steps onscreen, as shown in Figure 1-8.

eoo Apple Developer Program Enrollment "
(> | :Q| E“| @ hups@ developer.apple.com [+ sade; |
‘ DEVE[ODEI‘ Apple Developer Program Enrollment
@

Enter Account Info

Are you enrolling as an individual or company?

Individual Company
Select this option if you are an individual or sole Select this option if you are a company, non-profit
proprietor/single person company. organization, joint venture, partnership, or government
organization
l Individual Development Only n Development Team

You are the only one allowed access to program resources You can add additional developers to your team who can access
program resources. Companies who have hired a contractor to

S App Store Distribution create apps for distribution on the App Store should enroll with
@J Your name will appear as the "seller® for apps you distribute on their company name and add the contractors to their team.
the App Store.
View example App Store Distribution
M Your legal entity name will appear as the “seller” for apps you

1 You will need: distribute on the App Store.
View exar

# Credit card billing information.

o A valid credit card for purchase. | You will need:

Figure 1-8. Choosing between an individual or a company developer account


https://developer.apple.com/programs/ios/
http:///

CHAPTER 1: Welcome to Xcode 15

It’s useful to note that when you’re prompted to choose between an individual or company account,
if you’re planning to operate under a name other than your own, you have to register as an official
company (this is verified by Apple) and then acquire what'’s called a Data Universal Numbering
System (DUNS) number that uniquely identifies your company; this takes around 7 days to process,
so plan ahead. If selling applications under your own name suffices, then go for the simpler option of
signing up as an individual; both accounts are essentially equal in terms of the resources you’re able
to access. This choice mainly determines the name with which you operate under on the App Store.

Don’t worry if you’re not ready to do this right now—it’s covered in detail later in the book when it
becomes essential if you’re planning to release applications on the App Store (free or paid) or want
to test your apps on an iOS device. Chapter 14 looks at using Provisioning Profiles and deployment
onto actual iOS devices as opposed to the virtual iOS Simulator, so you then need access to a paid
developer account.

Source Code

| strongly recommend that one of the first things you do is to go to the Apress web site for this
book and download the entire source code. Either search for the book at www.apress.com or go
directly to www.apress.com/9781430250043. When you get to the page for this book, scroll down
until you see the section of the web site with four tabs, the third of which is Source
Code/Downloads, as shown in Figure 1-9.

Full Description Table of Contents Source Code/Downloads Errata

Downloads are available to accompany this book.
Download Now

Your operating system can likely extract zipped downloads automatically, but you may require software such as WinZip for
PC, or Stuffit on a Mac.

Figure 1-9. The source code download page for this book

Additional Resources

In addition to Apple’s own resources, an extensive amount of third-party resources are available if
you ever have a burning question or get stuck somewhere:

Forums: Forums are a great way to ask questions, learn from other people’s
questions, and help other people. In particular, Stack Overflow
(http://stackoverflow.com/) has been invaluable to the entire developer
spectrum for years and has a vibrant, active collection of iOS developers.
There are also the Apple developer forums, which are available to those
with a paid Apple developer account.


http://www.apress.com/
http://www.apress.com/9781430250043
http://stackoverflow.com/
http:///

16

CHAPTER 1: Welcome to Xcode

Mailing lists: There’s a handy Xcode users mailing list that I'd recommend you
subscribe to and periodically check. Many other developers, including myself,
participate in answering questions relating to Xcode. You can subscribe at
https://1lists.apple.com/mailman/listinfo/xcode-users.

Xcode Overview: Apple provides a handy user’s guide that’s always being updated
to accompany the latest release of Xcode, so it’s a good idea to refer to it when
there’s a new update or if you’d like to follow up on something. It’s available at
https://developer.apple.com/library/ios/documentation/ToolsLanguages/
Conceptual/Xcode_Overview. Similarly, it’s also handy to glance over the latest
release notes when Xcode is updated. These are available at https://developer.
apple.com/library/ios/releasenotes/DeveloperTools/RN-Xcode.

Search engines: It’s easy to underestimate the power of a simple Google search
(and it’s apparent many people on online forums don’t have access to them).

It can save you a lot of time, because someone, somewhere, at some point has
undoubtedly had the same question you do—all you need to do is find where they
asked it!

Videos: If you type “Xcode” into iTunes U search, you’ll find a couple of good
university courses that focus not only on Xcode but also on iOS development in
general. Similarly, type “Xcode” into YouTube search, and you’ll be amazed at
what you can learn from the short screencasts that have been uploaded.

Contact me: | am happy to field questions via email at matthewknott@me.com or via
my blog at www.mattknott.com.

Summary

In this chapter, you have:

Successfully downloaded and installed Xcode

Had a look around the iOS Dev Center and also looked at the resources
provided by Apple to aid developers

Signed up and registered as an Apple developer and become aware of the
option of signing up for a paid developer account

Chapter 2 explains how to create your first project and helps you become more familiar with Xcode’s
interface and basic concepts.

[vww allitebooks.cond



https://lists.apple.com/mailman/listinfo/xcode-users
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview
https://developer.apple.com/library/ios/releasenotes/DeveloperTools/RN-Xcode
https://developer.apple.com/library/ios/releasenotes/DeveloperTools/RN-Xcode
http://mailto:matthewknott@me.com/
http://www.mattknott.com/
http:///
http://www.allitebooks.org

Chapter

Diving Right In

In Chapter 1, you downloaded Xcode, made sure it was correctly configured, signed up for a
developer account, and explored the wealth of resources provided by Apple to help you get started
with not only Xcode but also some of its fantastic new technologies. This chapter explains how

to create a working application using Xcode’s visual interface building tool (aptly named Interface
Builder) and its built-in code editor and then run the app on your machine.

As mentioned, as you progress through this book, the ultimate goal is not only to get a grip on the
latest and greatest version of Xcode but also, by the end of the book, to have walked you through
building a series of varied applications that give you many of the essential skills needed to go out
and start writing your own applications. The application you build in this chapter familiarizes yourself
with Xcode as a development environment before you start looking at sharing data between pieces
of your application in Chapter 3. For now, you develop a very simple application that has a custom
background color and a label, and you programmatically update the text in the label.

Be forewarned that in this chapter, a lot of the concepts are new and therefore require more
explanation to do them justice. As a result, on several occasions you’re told that later chapters revisit
many of the concepts presented. This is because the main goal of this chapter isn’t to turn you into
an Xcode pro, but rather to get you started and give you the confidence to believe that Xcode isn’t
as overwhelming as it may first appear. In Figure 2-1, you get a glimpse of the example application;
although simple, it will make you at least a little familiar with the workings of Xcode and help you to
understand that Xcode can help you produce a working application in next to no time.

17


http:///

18 CHAPTER 2: Diving Right In

i0S Simulator - iPhone 5s - iPhane Ss / iOS 8...
Carrier & 10:33 AM —

Bonjour!

i0S Simulator - iPhone 5s - iPhone 5s { i05 8.0 (12A4297e)
Bonjour!

Figure 2-1. The application you create in this chapter

Creating Your First Xcode Project

First you need to bring this project into existence. To do this, start by running the Xcode application,
and then click Create A New Xcode Project on the Welcome Screen or choose File » New » Project
(¥ +Shift+N). You're presented with a new window asking what kind of project you’d like to create.
Apple provides, by default, a variety of different project templates for both OS X and iOS, each of
which is useful for getting started on different types of projects; Chapter 3 covers each of them in
more detail. Continue as follows:

1. Because you’re creating a basic one-view application, it seems appropriate
to choose Single View Application, which can be found in the Application
category under iOS on the left side of the dialog.

2. Once you’ve selected the Single View Application project template, click the
Next arrow in the bottom-right corner. Figure 2-2 shows the template screen.


http:///

CHAPTER 2: Diving Right In 19

> H Lowding BA¥E | O&E0
7 a & H o e Choose a template for your new project:
105

Framework & Library =

Other Master-Detail Page-Based Single View Tabbed
oS X Apphcation Application Application Application

Agglication =
Framework & Litrary L
System Plug-in =
Other Game

supoorts the Fandamental view-

careroller that masages 4 table view.

Figure 2-2. The variety of different templates provided by Apple to help you get started with creating your app quickly

You need to specify a couple of things before you can actually get started. Once you select your
project template, a screen identical to that in Figure 2-3 is displayed. Following is a brief overview of
each of the values required to proceed —bear in mind that you learn more about the significance of
some of the values you enter here as the book progresses:

Product Name: What you would like to call your application. For example, if you
wanted to create an application called Chocolate Recipes, you’d specify the
Product Name to be something along the line of Chocolate Recipes. Although
not required, it’s generally good practice to omit any spaces and instead
capitalize each new word. The Product Name can be amended during the
development of your application, so you’re not obliged to stick with what you
specify; but regardless, the Product Name is a rather important detail that you’re
required to specify at this stage.

Organization Name: Required whether you’re working independently or you’re
part of a software development company. For now, your own name is adequate.
If you're looking to submit an application to the App Store, it’s in your best
interest to specify the correct name; although not required, it's recommended.
When you create a new file, your Organization Name automatically appears
along with copyright details at the top; that’s something to bear in mind if you
plan to work on a team or hand your project off to someone else.

Organization Identifier: Only really required if you’re planning to distribute your
application in some capacity. For example, to distribute an app via the App

Store, you're required to specify an App ID along with a Bundle Identifier, which is
created by Xcode depending on what you input as your Organization Identifier. The
company identifier is written in the style of reverse domain name notation; my web
site, for example, is mattknott.com, so my Organization Identifier is com.mattknott.


http://mattknott.com
http:///

20

CHAPTER 2: Diving Right In

Bundle Identifier: By default, a combination of the Organization Identifier and the
Product Name, to avoid confusion (I won’t focus on this too much right now).
You can’t edit this.

Language: Swift or Objective-C. For the first time, in Xcode 6, you get to choose
between two possible languages. This book covers the Swift programming
language, so please ensure that you select Swift for each example project.

Devices: The device you’d like your application to run on. This is possibly the
most straightforward part of getting up and running with your project. You have
three choices: iPhone, iPad, and Universal. The iPhone and iPad choices are
self-explanatory. A Universal application is one that is compatible with both the
iPhone (and iPod Touch) and iPad. Your selection here isn’t final, but it’s good to
make the right choice.

Use Core Data: Core Data is a large framework designed by Apple to simplify
and unify the methods for storing data in iOS. For example, if you wanted to
create a database for storing relational information in your application, you might
want to set up an SQLLite database. Core Data does all this for you and gives
you a simple interface to set up the tables, fields, and relationships.

Choose options for your new project:

Product Name: HelloWorld
Organization Name: Matthew Knott

Organization ldentifier: com.mattknott

Bundle Identifier: com.mattknott.HelloWorld

ik

Language: | Swift

4r

Devices: = iPhone

Use Core Data

Cancel Previous | |  Next |

Figure 2-3. Specifying the project’s details


http:///

CHAPTER 2: Diving Right In 21

Note If you've been using an older version of Xcode, you may have an annoying feeling that a field is
missing. In version 6 of Xcode, Apple decided to remove the ability to specify a Class Prefix value. The Class
Prefix was added to the start of every new class you created to help differentiate your classes from other
class files that might be imported into the project.

3. Now that you vaguely know what these values are for and what they
correspond to, you’re probably wondering what you should input to create
this project. As shown in Figure 2-3, type in HelloWorld as the Product
Name; input your own first and last name as your Organization Name;
use com.LASTNAME as your Organization Identifier (obviously change
LASTNAME to your actual last name), set the Language value to Swift if it
isn’t already, specify iPhone as the Device, and, finally, ensure that Use Core
Data isn’t selected.

4. Once you’ve made sure all your values are correct, click Next. You’re required
to save your project to disk.

5. When prompted to, use the familiar OS X dialog to find a location. Make sure
the box next to Source Control For This Project is unchecked, and then click
Create.

Note Git is a popular system used for version control and source-code management. You can integrate a
local Git repository with a web site such as GitHub or Bitbucket if you want to back up or share your code
online. If none of these things are familiar to you, Chapter 12 explains.

So, you’ve given Xcode all the relevant details and specified what kind of project you’re looking to
create. As a result, Xcode conveniently creates a basic, functioning application for you to use as a
starting point. The code that Xcode creates for you is just enough to get the application to run; it’s a
working, if slightly pointless, app that you can run right now if you like.

Choose Product » Run (3 +R), and you’ll find the application builds successfully and the iOS
Simulator pops up with the app running, as shown in Figure 2-4. It's nothing spectacular, nor will it
reach the top 25 in the App Store anytime soon, but it’s a functioning application created by Xcode
with very little input from you. Return to Xcode, and click the Stop button in the top-left corner or
choose Product » Stop (38+.).


http:///

22 CHAPTER 2: Diving Right In

iOS Simulator - iPhone 4s - iPhone 4s / iOS 8...
| Carrier 8:40 PM -

1

Figure 2-4. The initial application created by Xcode

Tip With the high resolution of modern i0S devices, unless you have a top-of-the-range Mac, the simulator
may be too large for your computer screen. If this is the case, then with the simulator selected, choose
Window » Scale » 50% or use the key shortcut & +3. The Scale menu also gives you the option to go to
100% or 75% scale using 38+1 or 38+2, respectively.


http:///

CHAPTER 2: Diving Right In 23

The Project

In order to make the app a little more interesting than a simple white screen, you need to open some
files that Xcode created. As with previous versions of Xcode, the way in which it organizes your
project’s file is somewhat strange. Upon returning to Xcode, if you look to the left of the interface,
you should see what appears to be an arrangement of folders and files. These are the files that make
up your project (see Figure 2-5). This part of Xcode is called the Project Navigator. If you’re unable
to find it, choose View » Navigators » Show Project Navigator (3+ 1). It's important to note that
when you create a folder in the Project Navigator, it doesn’t correspond to the structure in which the
files are saved in the Finder. The folders and organization of the Project Navigator are purely to help
you locate files in Xcode. If you create a folder in the Navigator, the same folder isn’t present in your
project when you browse in Finder. | revisit this when you add a file to your project later

in this chapter.

0 = Q & © E b ©

Vv | HelloWorld
s AppDelegate.swift
5| ViewController.swift
2] Main.storyboard
.1 Images.xcassets

»  Supporting Files
> | HelloWorldTests
» | Products

Figure 2-5. The Project Navigator


http:///

24 CHAPTER 2: Diving Right In

If you’ve used Xcode with Objective-C in the past, then you’ve almost certainly noted that when
using the Swift language, there are far fewer files in the project. The reason is that in Objective-C,
each class file is created with a header (.h) file and an implementation (.m) file. Swift combines all
class information into a single file.

With that in mind, select Main.storyboard from the Project Navigator. Xcode opens its built-in
graphical user interface (GUI) design tool, usually referred to as Interface Builder. Xcode 4.0
represented a major overhaul of Apple’s developer tools: Interface Builder, which was previously a
separate application, was conveniently integrated into Xcode, making it easy to switch between the
built-in code editor and interface design tool in a single application, as shown in Figure 2-6. One
warning is worth mentioning: the more you become familiar with Xcode, the more you may wish
for a larger screen!

B | a4 » [ Helloworld HelloWorld © 2 Main.storyboard + & Main.storyboard (Base) » No Selection 0D®@a ¢ 8 &

Quick Help

DO0DGeD

View Controller - A controller that
supports the fundamental view-
management madel in 05,

Navigation Controller - &
< controlier that manages navigation
through a hierarchy of views.

Table View Controller - A
controller that manages a table view.

] wAny hAny 2 ke B BB (@

Figure 2-6. Xcode’s built-in graphical interface designer


http:///

CHAPTER 2: Diving Right In 25

Designing the Interface

As noted previously, the app’s interface is neither exceptional nor revolutionary —in this chapter you
create something simple and straightforward. However, the basics presented here are echoed later
in the book in much more detail, and they’re the building blocks behind almost any app you could
want to build. To begin with, let’s look at the Attributes Inspector. You can find this by selecting the
fourth tab in the sidebar on the right side of Xcode’s interface; alternatively, you can choose

View » Utilities » Show Attributes Inspector (38+\_+4). The Attributes Inspector plays an important
role when it comes to layout and fine-tuning interface elements. Now follow these steps:

1. To change the background color of the application, first make sure the view is
selected by clicking the white area with an arrow pointing to it in Figure 2-6.

2. Under the View heading of the Attributes Inspector, select the color-picking
option for the Background attribute. Then use OS X’s default color picker
to choose a background color, as shown in Figure 2-7. In this example, I've
used the RGB sliders and chosen a background of Red: 181, Green: 218,
and Blue: 225, but you’re free to choose whichever colors you wish.

Coloes Alpha 15
im| (= Qo
& = " = — Background | [ | +
Q Tint | B2 | Default =
o - Drawing ™ Opaque Hidden
A 8 - o Clears Graphics Context
Red : . BT Clip Subviews
| | W Autoresize Subviews
Creen . .
- ( | 218 Stretching 0~ 0|~
Blue X Y,
i ’ o | 225 1 11
Width Height
Opacity
| ' A 1100 %

Figure 2-7. Changing the view’s background using the Attributes Inspector


http:///

26 CHAPTER 2: Diving Right In

3. Add a label to your view. To do this, open the Object Library (shown in
Figure 2-8), and drag a label object to your view. Generally, the Object
Library is right below the Attributes Inspector and accessible by selecting the
third tab; you can also access it via View » Utilities » Show Object Library
(™ +3FB+\+3).

h I @ B

Label - A variably sized amount of
Label static text.

09 (@ label

Figure 2-8. The Object Library, filtered for “label”

4. With the library open, use the small search bar to search for “label”.

5. Once you’ve found the label object, drag it to your interface at the top of
the view, as shown in Figure 2-9. As you position the label near the top, the
Guides shown in Figure 2-9 appear, and the label snaps into place.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

CHAPTER 2: Diving Right In 27

|' : | Interaction & User Interaction Enabled
] L Multiple Touch

Alpha 15

}atél Background | C——————— | * '

Tint B | Default

Drawing v Opaque Hidden
 Clears Graphics Context
Clip Subviews
~ Autoresize Subviews
Stretching 0. 0
X X
1l: 1]ls
Width Height

Figure 2-9. Dragging the label onto the view

Note Regardless of whether you’ve used Xcode before, you may wonder why you're only seeing what
appears to be the top portion of the device’s screen. This is because of a new Auto Layout feature that Apple
introduced with Xcode 6 and i0S 8, called Size Classes. | explain in greater detail later in the book.

6. Select your new label, and use the handles to extend its size so it fills the
width of the View. Then double its height to accommodate a larger font size.

7. Set the Alignment attribute in the Attributes Inspector to Center.

8. Click the T symbol in the Font attribute to alter the font. Set Font to Custom,
Family to Avenir, and Size to 32, as shown in Figure 2-10.


http:///

28 CHAPTER 2: Diving Right In

Color M | Default B
Font | Avenir Roman 32.0 @|:

“

Font | Custom

0T

Family | Avenir

“

Style | Roman
Size 325 |

Done J

ak

Autoshrink | Fixed Font Size

Figure 2-10. The Attributes Inspector’s Font property

9. Because you have Size Classes enabled for this view, it’s essential to set a
couple of parameters called constraints that tell iOS how to position the label
in the view. | cover this in detail later in the book, but for now, locate the pin
icon in the bottom-right corner of the design area and click it. A popover
appears.

10. At the top of the pin popover, you see a square with an | bar on each side
followed by a numeric value. Click the top, left, and right | bars to highlight
them red, as shown in Figure 2-11. Then click the Add 3 Constraints button.

I

et

Add New Constraints Hor
0 -
20 « [ ][140 B de | Left
ag

335 o on [_| Us

Spacing to nearest neighbor I

=) width 440 v |
[E4) Height 45 ol

= atic text.
=) Equal Widths

(&) Equal Heights
(& Aspect Ratio
I'E";iAIign Leading Edges

Update Frames = None
Add 3 Constraints

& o] tal E] | BB (@ label

Figure 2-11. Setting some constraints for the label


http:///

CHAPTER 2: Diving Right In 29

At this stage, although you can use the Attributes Inspector to specify the text to be displayed in the
label, it’s important to realize that Xcode isn’t just about creating graphical interfaces. It also houses
a very powerful code editor. So, as you progress through this chapter, you update the contents of
your label programmatically as opposed to graphically.

Making Connections

Before you leave Interface Builder and move on to focus on Xcode’s code editor, let’s look at a
powerful feature that allows you to use both simultaneously. Open the Assistant Editor by selecting
the shirt-and-bowtie icon in the top-right corner of Xcode, as shown in Figure 2-12, or by selecting
View » Assistant Editor » Show Assistant Editor (8§+"\_+Return).

=EAA OD0

D ® Show the Assistant editor

Label

Figure 2-12. The button to select the Assistant Editor looks like a shirt with a bowtie

Opening the Assistant Editor splits your screen, with Interface Builder occupying the left frame and
the code editor occupying the right (unless you’ve customized this appearance, as | show you later
in the book). Before you continue, you need to make sure Xcode has opened the correct file. You
should be looking at a file called ViewController.swift: you can verify this by looking at the jump
bar just above the code, as shown in Figure 2-13. Continue as follows:

1. With both Interface Builder and the code displayed using the Assistant Editor,
click the label you added to your view in Interface Builder to highlight it.

g8 <« » ) Automatic - s ViewController.swift - No Selection (4]

I !/

// ViewController.swift

// HelloWorld

!/

// Created by Matthew Knott on 02/08/2014.

// Copyright (c) 2014 Matthew Knott. All rights reserved.
//

import UIKit

class ViewController: UIViewController {

Figure 2-13. The jump bar in the Assistant Editor shows which file is open


http:///

30 CHAPTER 2: Diving Right In

Now you’re going to create a variable called an outlet (IBOutlet) to make the label accessible
through your code. In older versions of Xcode, the process of creating an outlet and then wiring it
into Interface Builder was quite long-winded, but Apple has simplified this greatly over the past few
versions of Xcode by allowing you to drag connections directly from Interface Builder into the code.

2. Holding down the Control key, click the label and drag a connection to the
ViewController.swift file. Position the cursor in the class scope, just
below the line class ViewController: UIViewController {, as
shown in Figure 2-14.

rr
import UIKit

class ViewController: UIViewController {

Figure 2-14. Creating an outlet using the Assistant Editor

DJD@

i K Insert Outlet

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the w
typically from a nib.

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recrea

When you release the mouse button, a Connection dialog appears, asking for a number of values
(see Figure 2-15). The key option you need to be aware of here is the Name text field. If the object
you’re connecting to code can be tapped or trigger an event, you can choose one of two options for
your connection: Outlet or Action. But in this instance Xcode intelligently knows that this label isn’t

interactive and therefore restricts your choices.

@I Connection
Object
L a b Name |
Type
Storage
Cancel

Outlet

View Controller

UlLabel
Weak

Connect

Figure 2-15. Creating an outlet for your label

// Copyright (c) 2014 Matthew Knott. ALl rights reser
17

import UIKit

class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the v
typically from a nib.

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recrea


http:///

CHAPTER 2: Diving Right In 31

3. The Name text field value determines how you refer to your label in code. For
now, type in 1bl0utput and click Connect.

If everything’s gone according to plan, the first few lines of code should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet weak var 1blOutput: UILabel!

4. You're finished with the Assistant Editor for now, so switch back to the
Standard Editor by selecting the icon from the toolbar with three lines in a
box, to the left of the Assistant Editor icon (see Figure 2-12).

You've finished with Interface Builder for this project. Now you need to write some code to
manipulate your label. Go to the Project Navigator and select ViewController.swift. The View
Controller’s class file opens in the code editor, as shown in Figure 2-16. This chapter touches on
many areas and concepts | explain throughout the book; but at this point, you’re going to start using
Xcode’s powerful code editor and see some of the intuitive features that make Xcode one of the best
IDEs ever.

806 < ViewController.swift o
| el A, Helloworld » g iPhone 55 HelloWorld: Ready | Today at 14:22 Ed+¥E LD
B2 QG A © E o @ (B8 « »| B Heloword HelloWorld » « ViewCentroller.swift | No Selection D ®

+ 1 HelloWorld I Z Quick Help
= 2 targets, §0S SDK 8.0 ,-’:: :l;eftlc_n: 1: Ller.swift
v HelloWorld o ey

- AppDelegate.swift /f Created by Matthew Knott on 82/08/2014.
// Copyright (c) 2814 Matthew Knott. ALl rights reserved.
Ly RX R -E NI EN ST [ — Y7
£ Mainstoryboard
[ Images.xcassats import UIKit
;M supparting Flies class ViewController: UIViewController {
* __ HelloWorldTests
> Products . 2IB0utlet weak var LblOutput: UlLabel!
erride func viewDidLoad() {
super.viewDidLoad()
/f Do any additional setup after loading the view, typically from a nib.
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning( )
/¢ Dispose of any rescurces that can be recreated.
¥
OO0 e@o
View Controller - A controller that
supports the fundamental view-
management madel in i05.
Mavigation Controller - A
( controller that manages navigation
through a hierarchy of views,
Table View Controller - &
controller that manages & table view.
+ I OE® BB @

Figure 2-16. Xcode's built-in code editor with the ViewController.swift file open


http:///

32 CHAPTER 2: Diving Right In

With the class file open, notice that it has a number of lines of code by default. This boilerplate code
gives the application a starting point you can build on.

In the code of the class file, look for a line that begins with override func viewDidlLoad(): this is the
start of the viewDidLoad function. To complete the very simple code for this application, you need to
tell the View Controller that when the view loads, it should set the label’s text to “Bonjour!”. Add the
highlighted code to the viewDidLoad function, as shown:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

1blOutput.text = "Bonjour!"
}

Here you can see Xcode’s powerful code-completion feature in action; it can assist you in writing
code much more efficiently. As you type 1bl, a pop-up appears that says UILabel! 1blOutput; when
this is highlighted, press the Tab or Return key to complete the word 1b10utput. Next type .te. Again
Xcode’s code completion snaps into action and shows a humber of options, but the first one in the
list is the one you want: String! text. With that item selected, press Return and continue typing
the code. You can easily see from this example how Xcode’s code completion helps you become a
really efficient programmer, as well as how it helps cut down on errors.

To recap, what you’ve done here is to declare a variable that is linked to the UILabel you added to
the view in Interface Builder using the Assistant Editor. You then added a single line of code to the
viewDidLoad function to set the text of the label programmatically —well done!

Running and Testing

It’s hard to stress enough how important it is to test your application thoroughly before even thinking
about submitting it to the App Store. There are many reasons for this. First, the App Store review
process is very thorough—if your app isn’t up to par, Apple isn’t afraid to let you know in the form of
a rejection. So testing means you reduce your chances of being rejected by Apple. When you submit
your app, if you’re rejected, you have to make the amendments and then resubmit your application,
all of which is time consuming—time that could otherwise have been used to sell your app. Second,
when someone downloads your application, they’re parting with their money and expect a certain
standard. When they purchase and download an app, it’s disappointing to find that it’s slow and hard
to use. Finally, testing makes you a better developer. Smoothing out the creases in your applications
now helps you build good habits, and you carry these on until they become second nature. Testing
can save you a lot of time when working on larger, more demanding projects.

Now that your application is ready to be run, the quickest way to check if it will build successfully
without crashing is to choose Product » Build (8§+B). If everything’s in order, you should see a small
dialog stating that the build has completed successfully. It’s time to run your application: choose
Product » Run (8+R), and Xcode will build and then run the application using the target specified,
which is (by default at this stage) the iOS Simulator.

The iOS Simulator is invaluable when you need to test your application quickly or test a feature
that you’ve recently implemented. However, it’s important to note that testing your app using the
iOS Simulator isn’t the same as testing it on an iOS device—that is, an actual iPhone/iPod Touch


http:///

CHAPTER 2: Diving Right In 33

or an iPad. Applications may not perform the same on a device as they do on iOS Simulator,
because the simulator doesn’t simulate all software and hardware functionality. To change the type
of device you’d like your application to be tested on via the iOS Simulator, go back to Xcode and
click the Stop button in the top-left corner. With the application no longer running, go back to the
iOS Simulator and choose Hardware » Device, and then select from the list of devices available.
Figure 2-17 shows the application running in the iOS Simulator.

iOS Simulator - iPhone 5s - iPhone 5s / iOS 8...
Carrier & 10:36 AM L&

I. . I
| Bonjour!

Figure 2-17. The i0S Simulator running the app using the iPhone 5s as the simulated hardware


http:///

34 CHAPTER 2: Diving Right In

Additionally, in the iOS Simulator you can change the orientation of the device, the scale at which
the device displays, and an array of other options covered later in this book. What’s recommended
now is that you browse through the menus of the iOS Simulator while your app is running and play
around with the options to get a little familiar with the different features.

Adding Files

One final thing worth mentioning at this early stage is how to add your own files to your project.
Applications can be made up of literally hundreds upon hundreds of files, ranging from images to
sounds. Let’s add some images to the example application: let’s change the app’s icon without
writing any code and then add a background image to the main view.

Before you add an icon file, you either need to create one or download the source code for this

book from the Apress web site and use the included files. Because this isn’t a book on iOS design

or even iOS development, | won’t digress about how to create perfect iOS app icons. Instead, I'll

just state that you need to create a PNG file that, in this instance, I'm calling icon120.png, with
dimensions 120 px by 120 px. Include whatever you like as the graphic, making sure it conforms to
these specifications. | created a file with a basic gradient and a speech bubble saying “Hil” in the
middle. To set the application icon, you work with a feature that Apple introduced in Xcode 5, called
Asset Catalogs; these are covered in more detail later in the book, but suffice to say they make the
headache of managing retina and standard-resolution images far easier than having a folder with lots
of different-sized images. Here are the steps:

1. From the Project Navigator, select Images.xcassets.

2. You’re presented with two items in the left column of the Asset Catalog. Click
AppIcon.

3. Bring the Finder window with the icon file in it over the top of Xcode, and
then drag the icon file to the box labeled iPhone App Icon i0S 7 60pt, as
shown in Figure 2-18.

HelloWorld Images.xcassets
g iP
=ms HelloWorld HelloWorld Images.xcassets » No Selection
___ Applcon Applcon
__ Launchimage
|,[. 101E5 ) ‘g B
- —_— 2% 2x% @
. Chapter 2 . HelloWorld * k&l icon120.png 10ni2055p?tllght lPhiDSSI! ?App
.| Images ’ 40pt 60pt

Figure 2-18. The Images Asset Catalog where you set the application icon


http:///

CHAPTER 2: Diving Right In 35

Run the application to see the icon in action. Once the app is running, choose Hardware » Home
(38+ Shift+H). If you’ve done everything right, you should see something like the image in Figure 2-19.

iOS Simulator - iPhone 5s - iPhone 5s / iOS 8...
Carrier = 12:00 PM

HelloWorld

Figure 2-19. The application’s new icon in the iOS Simulator

Note As you'll learn as you progress through the book, Apple requires you to create icons in numerous sizes
for the App Store, currently including up to 1,024 pixels square. It's good to get into the habit early of adding
the resolution to the filename to help you keep track of your assets.

With the icon successfully set, let’s look at another, more traditional way of adding files to the
project. (You expand your Asset Catalog knowledge later in the book.)

They say there’s more than one way to skin a cat, and the same can be said for accessing Xcode’s
Add Files dialog. First, you can choose File » Add Files to “HelloWorld” (38+\_+A), or you can right-
click in the Project Navigator area and choose Add Files to “HelloWorld”. But the method | want you
to use is to click the plus icon in the bottom-left corner of the Project Navigator and then click Add
Files to “HelloWorld”, as shown in Figure 2-20.

New File...
New Playground...
New Project...

Add Files to “HelloWorld”...
+ OH®

Figure 2-20. The Add Files dialog available from the Project Navigator



http:///

36 CHAPTER 2: Diving Right In

The Add Files dialog will be instantly familiar to any user of OS X. Now you need to locate an image
file you would like to use as the application background. In this example, | have downloaded an
image from the fantastic website www.unsplash.com, which has a collection of images licensed under
the Creative Commons license (they’re public domain). The image is included with the downloadable
resources for this chapter.

Once you’ve located your file, select it, and then make sure Copy Items If Needed is checked, as
shown in Figure 2-21. Click Add.

4| b iR = mﬂl i = v || @ Images =1L [
FAVORITES l . Ll icon120.png
L1 All My Files il ™ iNgy1b3MR...yannykov.jpg

# Applications

Desktop

[%! Documents
Name jNgylb3MROujx7rys
0 Downloads NNf_Rooftops by
Igor Ovsyannykov....

DE):!CES Kind JPEG image
() Remote Disc e 306 KB
=d Teday 11:19
MEDIA ed Today 11:19
1 Music »d Today 11:19
. Dimensions 2048 x 1353
Destination: (¥ Copy items if needed
Added folders: (») Create groups
Create folder references
Add to targets: v’u HelloWorld
HelloWorldTests
MNew Folder Cancel . Add

Figure 2-21. The Add Files dialog. Note that Copy Iltems If Needed is checked

At this point you return to Xcode. Look at the Project Navigator, where you see that your file has
been added to the project’s file structure. When | asked you to add the file, | also asked you to
ensure that Copy ltems If Needed was checked. The reason is that if you don’t check this option,
the file appears in the project structure as it does now, but the file itself isn’t copied into the project.
Hence, if you were to send the project to someone or to archive it, the image would be omitted.

vww allitebooks.conl



http://www.unsplash.com/
http:///
http://www.allitebooks.org

CHAPTER 2: Diving Right In

Organizing Files in Xcode

Before you proceed and make this image appear in your view, let’s talk about organizing files. As

| mentioned earlier, Xcode gives the illusion of organization: a kind of faux folder structure that in
Xcode is called Groups. Take the file you just added, and move it to the Supporting Files group by
clicking it and dragging it until Supporting Files is highlighted. Figure 2-22 shows a comparison of
the structure of the files in Finder compared to the structure of the files in Xcode.

37

O 8 Q AN © = D @
.. HelloWorld
= 2 targets, iOS SDK 8.0
¥ || HelloWorld
s AppDelegate.swift

v

£ Main.storyboard
. Images.xcassets
¥ | Supporting Files
« jNgylb3MROuJ...syannykov.jpg
_ Info.plist
» | HelloWorldTests

» _ Products

Name

¥ | HelloWorld

v—a

v

[

Helloworld
s AppDelegate.swift
. Base.lproj
g Main.storyboard
. Images.xcassets
¥ [ Applcon.appiconset
Contents.json
k=i icon120.png
¥ [ Launchimage.launchimage
| Contents.json
| Info.plist
=s jNgylb3MROu]...Ovsyannykov.jpg
s ViewController.swift
HelloWorld.xcodeproj
HelloWorldTests

Figure 2-22. The structure of the files in the Project Navigator in Xcode (leff) compared to those in Finder (right)

As you can see, there are some similarities, but there are items that are visible in one view and yet
hidden in the other. This peek behind the scenes teaches you that what you see in Xcode may or

may not physically exist on your file system.

You’ve done the hard work of adding the file to Xcode. Now let’s do the fun part—adding the image
to the View Controller using the Storyboard. Start by selecting Main.storyboard from the Project

Navigator. Now, from the Object Library, select an image view (UIImageView) object, and drag it to
your View Controller. If you're having trouble finding it in the list, remember that you can filter the list
by typing “image” in the search field. Resize the Image View so it fills the entire view. Your screen

should look something like Figure 2-23.


http:///

38 CHAPTER 2: Diving Right In

W: 480.0
H: 480.0

N/

Figure 2-23. Adding the image view and resizing it to fill the view

HllmagaView

Image View

Image [
Highlighted |
State || Highlighted

View

Mode | Scale To Fill 3]
Tag | 0 |@

Interaction || User Interaction Enabled
| Multiple Touch

Alpha | 13
Background | C— | Default D)
Tint | EEEE | Default &)

Drawing ¥ Opaque [ | Hidden
 Clears Graphics Context

|| Clip Subviews
™ Autoresize Subviews
Stretdling[ 0|@ | 0]@
X ¥
[ O I ©
DO ®O

| Defines the attributes and behavior of
- | reusable views in a collection view,...

Image View - Displays a single
image, or an animation described by
an array of images.

Text View - Displays multiple lines
of editable text and sends an action

Library (™ +36+\_+3).

Tip Remember, if you can’t see the Object Library, you can access it via View » Utilities » Show Object

With the image view positioned, it’s time to specify which image to use:

1.  With the image view selected, go to the Attributes Inspector.

2. From the Image drop-down, select the file you added. If you're using the
image from the download, then this is the file starting with jNgy.

3. The image fills the image view, but it may have been distorted in doing so.
You want the photo to fill the image view but maintain its ratio. To achieve
this, click the Mode drop-down list, and change it from the default Scale To
Fill option to Aspect Fill. Your image still fills the image view, but the ratio is

maintained, preserving the original look of the image.



http:///

CHAPTER 2: Diving Right In 39

4. You once again need to apply constraints, this time to the image view.
Ensuring that the image view is still selected, click the Pin button at the
bottom of the design area. This time, all four values should say O; if they
don’t, change the values to zero and then click all four | bars as shown in
Figure 2-24. Click the Add 4 Constraints button.

1is

0 +H[ JH/o v E
T tir

0 v =

Spacing to nearest neighbor Tc

| Constrain to margins =

) [E) width 600 - L

) [E5) Height 600 ~| B

(&) equal widths ':,!
Equal Heights r

) [E) Aspect Ratio as

1]]

Align ( Leading Edges °

Update Frames | None b

Add 4 Constraints nt

= o taf E] ‘ B @

Figure 2-24. Applying constraints to the image view

So you're finished, right? Not quite. With the image view filling all the available space, you can’t
see the label you added at the start of the project! This is because of the way these two items

are ordered, or rather how they’re layered: the image view is rendered in a layer above the label,
obscuring it. To resolve this, let’s look at the Document Outline. If you can’t see the Document
Outline (the column between the design area and the Project Navigator), click the Show Document
Outline button in the bottom-left corner of the Storyboard design area, or choose Editor » Show
Document Ouitline.

Expand all the items in the Document Outline. Beneath View, you should have your label, followed by
the image view. Drag the image view carefully to move it above the label, as shown in Figure 2-25.
Because of the hierarchy of the objects in the view, the image view is now rendered beneath the label,
although you may need to tweak the color of your label to make sure it’s visible against the image
background.


http:///

40 CHAPTER 2: Diving Right In

¥ [2) View Controller 5cene
¥ | View Controller
= | Top Layout Guide
— Bottom Layout Guide

v View
[Bl Image View - jNgy1b3MR...
Label - Label

» (&) Constraints
) First Responder
Exit

Figure 2-25. The Document Outline after rearranging the order of the elements in the view

You’re ready to run your app! Figure 2-26 presents the finished product.



http:///

CGHAPTER 2: Diving Right In a

Carrier ¥ 2:32 PM (-

Figure 2-26. The finished app


http:///

42 CHAPTER 2: Diving Right In

Summary

You’ve learned a lot in this chapter. Specifically, you have done the following:

Set up a new Xcode project and found that Xcode generates a functioning, yet
boring, application

Designed an interface using Xcode’s built-in graphical interface builder, and
used the Attributes Inspector to change some basic properties of the objects
you added to your view

Used the Assistant Editor to visually create connected outlets quickly and
efficiently with drag and drop

Looked at Xcode’s code editor, updated the contents of a UILabel
programmatically, and had an introduction to Xcode’s code-completion tool

Built and run your application in iOS Simulator, and looked at some different
features of the iOS Simulator

Compared and contrasted the basics of the structure of your files in the Project
Navigator and the structure of your project in the Finder, and added new files to
your project, which gave your application an icon without your having to write
any code

Added an image view (or UIImageView, to use its correct but less-friendly name)
to your view controller, and set its image in the Attribute Inspector

Moved objects in the Document Outline hierarchy

Essentially, the main purpose of this chapter wasn’t to create a groundbreaking application but
rather to give you a degree of comfort when it comes to working with the latest version of Xcode.
It’s easy to become overwhelmed with the sheer number of menus, tools, dialogs, and inspectors;
however, as you’ve seen, creating an app isn’t too daunting when you know where to look and what
to press.

Chapter 3 introduces you to the different project templates that come with Xcode. You set up a new
project and get a guided tour of the array of panels, windows, and menus that come with Xcode,
along with how to quickly access them.


http:///

Chapter

Project Templates and
Getting Around

In Chapter 2, you created a very basic application and then tested it on the iOS Simulator. You
were also introduced to the basics of the Project Navigator and looked at the Attributes Inspector.
In addition, you programmatically updated the contents of a label that had been placed onto the
view using Interface Builder and made it show an image file that had been added to the project,
and you used an Asset Catalog to set the application’s icon. In the first half of this chapter, you
take a step back from app creation and look at the array of different tabs, inspectors, panels,
buttons, and windows that come with Xcode, along with the different project templates that
Xcode provides.

In order to be an accomplished app developer, it’s important that you become intimately familiar
with the key areas of your IDE; there’s a good chance you already knew this, which is why you
bought this book. By the end of this chapter, you should be a lot more familiar with many of the
different interface elements of Xcode and should be able to quickly access Xcode features. You
should also be able to choose a project template without having to worry about whether you’ve
picked the right one, and you’ll have some of the key knowledge required to start creating your
own applications.

In this chapter, you create a working multiview application; then you learn how to pass information
from one view to another and display that information in the ShowMe application. Passing
information between views is essential for many applications; in this chapter you simply pass text
between views, but in Chapter 8 you discover how to pass a selection from a table view to another
view and also how to pass certain objects.

Without further ado, let’s get started!

43


http:///

44 CHAPTER 3: Project Templates and Getting Around

Project Templates

As a developer, you have the somewhat daunting task of making many, many decisions throughout
the development of your application. With iOS and OS X apps, arguably the first decision you need
to make is which project template to choose in Xcode. At this point you’re optimistic, excited about
the adventure ahead, and eager to get in there and begin writing your application, but not so fast!
Choosing the right project template can have a huge impact on the direction your application takes,
and that’s why this section goes through each of them and explains the cases in which you should
choose a project template provided by Xcode. It's worth mentioning here that, because the main
focus of this book is iOS development, | don’t go into detail about the OS X templates and instead
focus more on templates targeted at iOS application development.

To begin, you need to fire up Xcode if you haven’t done so already, and either choose Create A
New Xcode Project from the Welcome screen or go to File » New » Project (38 +Shift+N). You're
greeted with a screen that presents an array of different project templates to choose from, as
illustrated in Figure 3-1.

0e
louding EdHE | D=l
Choose a template for your new project: O

o5

- 1

Framework & Library :

Other Master-Detail Page-Based Single View Tabbed
05 x Application Application Application Application

Application =

Framework & Library ';""

System Plug-in -

Other Game

Cancel

View Controller - & controller that
3uppors the fundamental view.
managemers model in (05

Figure 3-1. Xcode’s different project templates

By default, when you first open Xcode and choose a project template, you’re given the option to
choose only from the ones provided by Apple; however, if you’d like to see what really goes into
making an Xcode project and perhaps tinker with one yourself, the default location of Xcode’s
project template is /Applications/Xcode.app/Contents/Developer/Platforms/iPhone0S.platform/
Developer/Library/Xcode/Templates/Project Templates (this is, of course, assuming that you have
Xcode located in your /Applications folder). Here, you can open the different project templates
provided by Apple and dissect them. However, | recommend that before you do this, you back up
that folder just in case you change something that corrupts the template.


http:///

CHAPTER 3: Project Templates and Getting Around 45

Note Notice that throughout this book you’re given the keyboard shortcut equivalent whenever you need

to access a menu item, open a window, or show a navigator or inspector. | strongly encourage you to take
advantage of keyboard shortcuts, because using them can drastically improve your workflow and allow you
to become a more productive developer—or, at the very least, make you appear to know what you’re doing.
It can also help make tiresome tasks somewhat bearable. What’s more, many of the shortcuts that apply to
Xcode can be brought over to other applications: for example, to Finder. You can also visit Xcode’s preferences
(38+,) and modify some of the shortcuts if they’re not quite to your liking.

Master Detail View

The Master Detail View template is a starting point if you’re looking to create an application that
presents the user with a UITableView and then pushes a detail view when the user taps a row.

By default, Xcode creates a project that, if targeting an iPhone, has one table view; the user can add
rows by tapping the plus button in the top-right corner of the navigation bar. If targeting the iPad, a
new row is added to the table view; however, the layouts of both the table and detail view fit much
more nicely in the iPad’s larger display.

Figure 3-2 shows the default project created when you specify Master Detail View as your project
template. It’s running universally via the iOS Simulator: iPad on the left, and iPhone on the right.

05 Simulator - iPad 2 - iPad 2 j I0% 8.0 (124433 1d) i0S Simulator - iPhone 55 - iPhone 55 / i0S 8...
Carier ¥ it it Carrier & 7:18 PM -
Edit Master t Detail :
Done Master 5

Diotail viow cortent goss hare

Figure 3-2. Master Detail View template running on both iPad (left) and iPhone (right)


http:///

46 CHAPTER 3: Project Templates and Getting Around

Page-Based Applications

Creating an application using the Page-Based template gives users the impression that they’re
swiping through the pages of a book. With a page-based project, Xcode gives you everything
you need to create an application that displays information in a book-like format: that is, it reveals
information as the user swipes the screen either left or right. By default, you’re provided with an
object that adheres to the UIPageViewControllerDelegate protocol, which specifies the root view
controller and initializes the view by loading PageViewModelController.

Figure 3-3 shows the default project created by Xcode when you choose to create a page-based
application; on the left you can see it running on the iPad, and on the right it’s running on the iPhone.
If you swipe or click the left- or right-most side of the screen, the content is pulled over as if you’re
reading a book.

08 Simulator - iPad / i0S 7.0 (11A455)
O, Simulator - iPhone Retina (4-bnch) / I06 7.0 (1 1A65)

Carrier ¥ 5:51 PM < -

January
January Fedruary

Figure 3-3. Page-Based template running on both iPad (left) and iPhone (right)

Single View Applications

This is perhaps the most organic project template provided by Xcode, and it will inevitably be the
starting point for many applications. The Single View project template provides you with a single
UIViewController that’s loaded when the application runs. It’s like a completely blank canvas

in which the application can take any shape you like. This is especially useful if you’re creating

a custom iOS application, if you aren’t sure of the exact approach you’re going to take, or if the
alternative templates don’t seem appropriate for your project.

Figure 3-4 illustrates what you’re given by Xcode when you choose this project template.
Surprisingly, it’s a blank, white view.

vww allitebooks.conl



http:///
http://www.allitebooks.org

CHAPTER 3: Project Templates and Getting Around 47

_iOS Simulator - iPad / i0S 7.0 (L1A465)

| Camiar ¥ ey 100, -

Carrier & 5:55 PM -

Figure 3-4. Single View template running on both iPad (left) and iPhone (right)

Tabbed Applications

Because many applications use tab bars to display different parts, it’s no surprise that Apple has created
a project template that allows you to quickly implement UIViewControllers in a UITabBarController.
By default you’re provided with two view controllers, each of which has its own tabs.

Figure 3-5 shows a tabbed application. As you can see, the application consists of a tab bar with
two tabs: the first loads FirstViewController, and the second SecondViewController.

05 Siessilaior - iPad 2 - iPad 2 | 105 8.0 (124433 1d) |05 S'mula‘or = |Ph°ne 5; = |Phone 5! I |os s..
Gty e o Carner = 10:35 PM -
First View First View
Loaded by FirstViewControlle
Loaded by FirstViewController
@ = Q m

Figure 3-5. Tabbed template running on both iPad (left) and iPhone (right)


http:///

48 CHAPTER 3: Project Templates and Getting Around

Games

In Xcode 6, Apple has consolidated the two separate game templates that existed in Xcode 5
(OpenGL Game and Sprite Kit Game) into a single template. What’s more, Apple has also added two
new game templates to the mix: the Scene Kit template and Metal, Apple’s new high-performance
alternative to OpenGL. Although this book isn’t intended for game development, a project later in the
book gives you a flavor of developing 2D games for iOS. Let’s look a little more closely at each of the
four variants of the game template.

OpenGL ES

The OpenGL ES Game template is an excellent choice if you’re planning to create a game using
Apple’s OpenGL ES and GLKit frameworks. OpenGL is used across multiple platforms including
consoles, PCs, and other mobile operating systems like Android; hence it’s a good choice for
cross-platform game development.

Sprite Kit

The Sprite Kit framework was introduced for the first time in Xcode 5 with iOS 7. Sprite Kit is Apple’s
answer to third-party game engines like Cocos2D. It may not have the features of Cocos2D, but

its simplicity, coupled with its powerful physics and the animation tools it provides to developers,
made it one of the hottest new frameworks in Xcode 5. In addition to giving you the tools to create
your own version of your favorite 2D physics game, you can also use Sprite Kit to add complex
animations to more traditional applications.

Note If you're interested, go to my blog at www.mattknott.com and search for Sprite Kit.
I've written a tutorial on adding Sprite Kit particle effects to regular iOS apps.

Scene Kit

Scene Kit is a 3D graphics API that was first introduced with OS X 10.8 and has now made its way
into iOS in version 8. Whereas Sprite Kit is a complete game engine, Scene Kit is designed to create
and render assets and integrate with other technologies such as Sprite Kit, Core Image, and Core
Animation. Scene Kit lets you render and manipulate 3D models in a regular app, such as presenting
a strand of DNA that can be rotated, pinched, and pulled around.

Metal

Metal is a huge deal for iOS game developers; there isn’t any other way to describe it. In a huge

leap forward, Apple has created this new technology as an alternative OpenGL ES in iOS 8. Apple’s
developers have basically created a bespoke API that can squeeze every ounce of power out of the
current A7 chip in the latest iOS hardware. The performance specs being touted by Apple imply that
Metal will be able to redraw models on the screen ten times faster than with OpenGL ES. This means
better graphics and better performance without the need for a hardware upgrade.


http://www.mattknott.com/
http:///

CHAPTER 3: Project Templates and Getting Around 49

Note In Xcode 6, in addition to consolidating the game templates, Apple also decided to retire two
templates that users of older versions of Xcode may be looking for: Empty Application and Utility Application.
The animation found in the utility application fell out of fashion with the iOS 8 Ul, and the Empty application,
as you learn in this chapter, became easily replicable with the Single View Application template.

Template Selection

Now that I’'ve explained each of the five default project templates provided by Apple, let’s start
looking at the various panels and panes you see in Xcode. To help with this, you’re going to build a
simple with two views or screens, using an innovative system for constructing interfaces and linking
views together. Storyboards make the development process much quicker, more visual, and more
accessible. | hope that through this example, even though it isn’t complex, you can appreciate the
real benefits of storyboards ahead of later chapters where they’re used more extensively. For this
project, called ShowMe, you use the Single View Application template.

Once you’ve started the process of creating this app, you need to specify which application template
you would like to use—that is, which one will best suit this application. In this instance, and as | just
mentioned, select the Single View Application template. Typically, when choosing a template, you go
through a thought process like the following to make sure you start with the right template:

How users will navigate around your application: If you’re using a good-old
UINavigationController as the crux of the application, chances are you need to
choose a single-view application and then implement a UINavigationController
manually. However, if users will navigate using the UITabBarController, then
your best choice, surprisingly, is a tabbed application.

How you’d like your screens to be laid out: Again, if screens will be pushed
via a UINavigationController or displayed as a single UIViewController,

a single-view application will suffice. However, if you’re creating a book or
magazine, the Page Based template is your best bet.

Whether you’re creating a game: If you’re creating a game, Apple provides the
Game template, which supports OpenGL ES; Sprite Kit for 2D games; Metal for
3D games; and Scene Kit to render 3D assets. Combined, these give you the
tools and features for almost any game project.

As with any other application created using Xcode, you need to start by creating a new
project. Let’s begin:

1. Create a new Xcode project by going to File » New » New Project
(38+Shift+N) or, alternatively, clicking Create A New Xcode Project from the
Welcome screen (#+Shift+1).

2. As I've already specified, select Single View Application from the Project
Templates dialog, and click Next.


http:///

50 CHAPTER 3: Project Templates and Getting Around

3. You’'re required to provide Xcode with those all-important little details such
as Product Name, Organization Name, and so on. Figure 3-6 illustrates the
values to put in (remember to enter your own first and last names in the
relevant fields, though!). For Product Name, use ShowMe.

Choose options for your new project:

Product Name:
Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

Devices:

Cancel

ShowMe
Matthew Knott

com.mattknott

com.mattknott.ShowMe
Swift
iPhone

Use Core Data

Figure 3-6. Inputting the options to create the application

4. For this project, you can specify your own name (that is, your first and last
names) as the Organization Name; for example, in my case this would be

Matthew Knott.

5. For Organization Identifier, | used reverse domain notation and entered

Previous

com.mattknott, but you could just as easily use com. YOURSURNAME.

6. Ensure that Device is set to iPhone and Language is set to Swift, and that

you’ve unchecked Use Core Data.

7. To finish, click Next. You're prompted to choose a location for your project.

Next

Save it somewhere that’s easy for you to find, and ensure that Source Control

is unchecked. Click Create. Now you’re now ready to explore the many

different areas of Xcode.


http:///

CHAPTER 3: Project Templates and Getting Around 51

Getting Around

Now that your application is ready and the project is set up, it’s be useful to become familiar with
the main areas of Xcode’s interface: the navigators, toolbar, editor, utilities panel, and debugging
area. Essentially, most actions you need to perform are in those main areas of the interface, with the
exception of actions contained in the menu bar. This section focuses on each of these areas so that
when attention is brought to them later in the book, you know where to look and what purpose they
serve. Figure 3-7 shows a breakdown of the main area of Xcode’s interface.

No Qu :Help

Utilities

oo o

T View Cont - A eoemrolier thas
| | wpsorinthe  famestsl vien-
S managemen  gelin K05

D 1B oo & 1Mo =

- o  Naigation  ntroller - A

.x | controllerth  anages ravigation
F seoughah chyed views.

Debug ‘Area

[ Table View  miroller - &
N comroliers  nages.atable view.

A owu 3 BOajEE

E N o) [C] )

Figure 3-7. The five main parts of Xcode’s interface

Navigators

Let’s first focus on the far-left side of Xcode: the section that houses the navigators. A navigator in
Xcode is something that allows you to browse various things, whether files, folders, warnings, build
errors, memory leaks, breakpoints, and so on. If you look at the top of the navigator panel, you see
that you can toggle the view using eight different tabs, as shown in Figure 3-8:

0 8 Q A © E D ©

Figure 3-8. Xcode’s different navigators, among which you can toggle


http:///

52

CHAPTER 3: Project Templates and Getting Around

Project Navigator: Perhaps one of the most important features of the enter
navigator panel. It allows you to explore the files in your project and also
displays what frameworks and interface files your project is made of. As
previously mentioned, the file structure of the Project Navigator doesn’t
correspond to that of the Finder; things like folders are there just to make it
easier for you to navigate your project in Xcode.

Symbol Navigator: Where you can browse what Xcode considers a symbol in
your project. A symbol is generally the name of a class or a function. In the

bar at the bottom of the Symbol Navigator, you can filter what’s displayed and
view Cocoa'’s built-in symbols or symbols defined in your project. The Symbol
Navigator is especially useful when you have dozens of Swift class files and you
need to quickly browse them to find a specific class declaration or function.

Search Navigator: A very useful means of searching your project to find a certain
bit of code. If you select the small magnifying glass in the search area, you can
specify search options such as where Xcode should look, and you can more
accurately define what you’re looking for. The Search Navigator is very useful
when you need to quickly find something and you have hundreds of different
files and thousands of lines of code.

Issue Navigator: Alert you to any issues by flagging warnings and errors as you
develop your application. The Issue Navigator not only tells you what’s wrong
but also attempts to accurately pinpoint exactly where the issue lies.

Test Navigator: Where you find your test targets and test classes. From here,
you manage all of your tests. They’re coded in a way similar to how the Project
Navigator and the editor work together: selecting a test opens the relevant code
and allows you to write unit tests that ensure individual classes and functions
work as they should.

Debug Navigator: Used when your code pauses. By default, it opens if a pause

is encountered. It also appears when a breakpoint is reached in your code.
Otherwise, the Debug Navigator remains dormant. When in use, it displays call
stacks along with the names of nested functions. If you click a function name,
you can navigate through it further. In addition, useful CPU and memory monitors
display the real-time impact of your code. The Debug Navigator should not be
confused with the debug area of Xcode, which | cover later in this chapter.

Note Breakpoints essentially tell Xcode when to pause your program. They’re especially useful when you're
trying to pin down an issue with your code. To add a breakpoint, open the editor and click the line number in
the gray area on the left, just between the navigator pane and the editor.


http:///

CHAPTER 3: Project Templates and Getting Around 53

Breakpoint Navigator: The hub in which you manage breakpoints. With a project
that has dozens of breakpoints, you’ll soon become accustomed to using

this tab. In the Breakpoint Navigator, you can also create different types of
breakpoints: for example, symbolic breakpoints.

Log Navigator: Like the history option of your Internet browser, except that
instead of recording what you open, it records your actions. Specifically, it lists
the status of a build (whether it failed, succeeded, or succeeded but has errors).
To reveal all the details of something like a build, simply click the log item; Xcode
brings up a new dialog in the editor, showing all the necessary details regarding
what you clicked.

Now that you know exactly what each of the eight different tabs corresponds to, there must be a
quicker way to access them, as opposed to having to click them each time. Well, first and foremost,
Xcode has a tendency to spontaneously hide some of its interface elements (usually because you've
clicked a button mistakenly). If you ever lose the navigator sidebar, go to View » Navigators » Show
Project Navigator to bring up the Project Navigator. To quickly switch between the tabs of the
navigator, press 3#+1 (for the Project Navigator) or 3+8 (for the Log Navigator). Again, it’s handy to use
keyboard shortcuts, because they can dramatically increase your productivity —which, to a developer
working through the night to complete a project for the morning, is everything. If you’re short on space,
you can press 3+0 to hide the navigator pane.

Toolbar

Moving on from the navigators section, there is the Toolbar. The Toolbar is present throughout

many familiar OS X applications (such as Finder), and it houses many useful buttons and displays
important information regarding build results. If you’ve previously used Xcode 4 or an earlier version,
you see a number of changes, most notably the size: the Toolbar has been compressed somewhat
in Xcode 5. To tackle the Toolbar, let’s examine each of the default buttons, starting on the left and
moving to the right. Figure 3-9 shows the default layout of the Toolbar.

e0e £ Main.storyboard

p m A ShowMe » g iPhone 55 ShawMe: Ready | Today at 09:26 EHFE [OE

Figure 3-9. The Xcode Toolbar’s default layout

First you see two buttons on the left: Run and Stop. These are rather self-explanatory at this point,
but clicking the Run button starts a build of your project and then launches it using whatever target
is specified in the active scheme, just to the right. In this instance, the scheme is set to ShowMe
and iPhone 5s. Once it’s running, you can stop your project by clicking the Stop button. Additionally,
if you click and hold your mouse over the Run button, you can choose from Run, Test, Profile, and
Analyze. | explain what these do later in this book; briefly, if you select an option from the menu,
it takes the place of Run and performs the specified action each time you click it.


http:///

54 CHAPTER 3: Project Templates and Getting Around

Next are the active scheme and device target. This is where you can choose a scheme, which
specifies how you’d like to run your project. Select ShowMe, and you’re given the option to choose
Edit Scheme, New Scheme, or Manage Scheme. A scheme allows you to specify in more detail how
you’d like your application to be run or debugged. If you click the iPhone 5s section, a drop-down
menu appears in which you can choose from different platforms on which to test your project.

Next is the Activity Viewer, which tells you what is happening when Xcode is performing an action.
For example, if you choose to clean your project, the Activity Viewer displays the progress of the
clean, similarly to when you’re building an application. What’s also nice about the Activity Viewer is
that, if you’re running the latest versions of Xcode and OS X, it displays the last action performed
along with when it was performed. Finally, the Activity Viewer displays small icons near the button
that let you quickly see the number of issues or errors found in your project.

On the right of the Activity Viewer are three editor buttons that change how the editor in Xcode looks
and behaves. You can choose the Standard, Assistant, or Version editor, respectively. Click to open
Main.storyboard from the Project Navigator (3+1), and then toggle between the three different
editors and see what happens. These are covered in the next section of this chapter.

Finally, you have three view buttons. These are very useful when you lose one of the main elements
of Xcode’s interface. The first button toggles the navigators section, the middle button toggles the
debug area, and the third button toggles the utilities section.

As with many other OS X applications, if you right-click a gray area of the Toolbar, you can customize
whether you'd like icons and text to appear, just icons, or just text. This isn’t particularly groundbreaking,
but if you prefer to have only icons, text, or both of them together, feel free to change this option.

It’s also worth mentioning that Xcode does support full-screen mode as introduced natively with OS
X Lion. This is especially useful when you’re working with the Assistant editor, previewing layouts
with size classes or storyboards, or designing iPad application interfaces. To toggle full-screen
mode, select the small arrows in the top-right corner of Xcode.

Editor

Perhaps the most important part of any integrated development environment is its code editor.
Xcode’s editor is exceptional in many ways. It has three different view options—Standard, Assistant,
and Version—each of which is covered shortly.

If you open AppDelegate. swift, you see that the editor is front and center. Simply click where you’d like

to begin coding, and then code away. As you type code, Xcode’s code-completion feature appears.

To choose an option from the code-completion dialog, use the arrow keys on your keyboard to navigate
the suggestions (sometimes there are multiple ways to instantiate a class), and press Return or Tab.

Notice that just above the editor window is a small jump bar. You can use this to open files, see
function declarations, and more efficiently navigate through your project and your code. | revisit this
in Chapter 10.


http:///

CHAPTER 3: Project Templates and Getting Around 55

Standard Editor

The Standard editor displays a single window and focuses on what has been selected from the
Project Navigator on the left (Figure 3-10). This is the preferred way of coding mainly because of
its simplicity.

eo0e - AppDelegate.swift e
B | A B Matthews iPhone (unavailable) Showdde: Ready | Today at 20:10 EdHA DEO
B2 a A © W o B |88 4 = | SshowMe ShowMe )+ AppDelegate.swift © No Selection

| v 1o ShowMe " .
= 2 targets, 105 SDK 8.0 F zo::s.eca'.e.sm't
ff ShowNe
¥ ShowMe Y,
N ApsDelegate sw 8 /f Created by Matthew Knott on 85/10/2814,
| s ViewController.swift :r:: Copyright (c) 2014 Matthew Knott. AlL rights reserved.
Main.storyboard
Images. xcassets impart UIKit
i @UIAppl icat lonMain
# _ Supparting Files class AppDelegate: UIResponder, UIApplicationDelegate {
> ShowMeTests indows UINindow?
var window: UINindow:
» Products.
func application(application: UlApplication, didFinishLaunchingWithOptions lawnchOptions: [NSObject: AnyObject]?) -= Bool {
// Override point for customization after application launch.
return truoe
}
func applicationWillResignActive(application: UIpplication) {
/7 Sent when the application is about to move from active to inmactive state. This can occur for certain types of temporary interruptions
{such as an incoming phone call or 5M5 message) or when the user quits the application and it begins the transition to the background
state.
// Use this method to psuse ongoing tasks, disable timers, and throttle down OpenGlL ES frome rates. Gemes should use this method to pause the
game.
}
func applicat kground{application: Ulapplication) {
// Use this method to release shared resources, save user dote, invelidete timers, and store enough applicotion state information to restore
your application te its current state in case it is terminated ter.
JF 1f your application supports background execution, this methed is called instead of applicationWillTerminate: when the user quits.
}
func applicationWillEnterForeground{application: UlApplicatioa) {
#/ Called as port of the transition from the background to the inbctive state; here you con undo many of the changes sade on entering the
background.
H
|+ OE@

Figure 3-10. The Standard editor

Assistant Editor

The Assistant editor offers a much more interesting approach, and chances are it will make you
want to go out and purchase a larger display. The Assistant editor displays separate windows and
contains logical contents depending on which file you’re working with. For example, in Figure 3-11,
| have the Main.storyboard open on the left; as a result, Xcode opens ViewController.swift on
the right automatically. This allows you to work simultaneously on both files without having to worry
about switching constantly.


http:///

56 CHAPTER 3: Project Templates and Getting Around

@00 Main.staryboard — Edited

 m /A 1 B Matthew's iPhone (unavailable) Showdle: Ready | Today at 20:13 E i | B=Nn |
B2 QA & = o B (88 « » | B showme; B ' B [ view Controller Scene View Contreller B8 @ » | [ Automatic  + ViewController.swift - Ne Selection + X
v 1 Showhe " i i
== 2 targets, 105 SOK 8.0 D 2 E " :”I'-l‘_mcf‘\m\‘?f-?*'- t
¥ ShowMe - ,’: Showtte
= AppDelegate swift - / Created by Matthew Knott on @5/18/2014.
= ViewController. swift / Copyright (] 2814 Matthew Knott. ALL rights reserved.
Images. xeassets impart UIKit
AL class ViewController: UIViewController {
| * Supporting Files
> (] ShowMaTasts override func viewdidload() {
super.viswDidLoad()
¥ | Products // Do any additional sctup after loading the view, typically
from a nib.
¥
override fun: didReceiveMemcryWarning() {
super didRece LveMemoryWarning ()
/f Dispose of any respurces that can be recreated.
}
}
| oE®@ Ln} wCompact hAny B il 1ad Bl

Figure 3-11. The Assistant editor

Notice on the far right, along the jump bar, a small button with a plus symbol on it. If you click this,
Xcode allows you to have multiple editors open—as many as you and your display can handle. In
addition, it’s important to understand that you aren’t restricted to the automated file: you can choose
any file in the project to view. This can be useful when you’re referencing keys in a strings file for
localization of an app, which is something you do toward the end of the book.

Version Editor

Because you haven’t made use of version control yet, the Version editor isn’t too significant right
now. All you need to know is that, as you can see in Figure 3-12, the most recent version of a file is
selected on the left, and Xcode opens another version of that file on the right and lets you track and
view changes made to this file.

vww allitebooks.conl



http:///
http://www.allitebooks.org

CHAPTER 3: Project Templates and Getting Around 57

®006 = ViewController.swift
' M S+ B Matthew's iPhone (unavailable) Loading Revision E El 7 = El
B s a A 8 B c @ B « » QB ShowMe ShowMe © = ViewControllerswift  No Selection
ShowMe I

| ¥ = 3 asgets, 105 50K 8.0 Fi ViewController, swift
Y Ehoe

v ShowMe

= AppDelegate.swift /7 Created by Matthew Knott on 85/108/2814.
N /f Copyright (c) 2014 Matthew Knott. ALL rights reserved.

fiewController. swif
Main.storyboard
Images. xcassets import UIKit
LaunchScreen.xib
¥ | Supporting Files
& o func viewdidLoad() {
ShowMeTests per.viewdidload()

* __ Products /f Do any additional setup after loading the wiew,
typically from a nib.

class ViewCentroller: UlviewController {

override func didReceiveMenoryWarning() {
super . didReceiveMenoryWarning()
/f Dispose of any resources that can be recreated.

+ | OE(® No Selection Lo No Selection

Figure 3-12. The Version editor

Utilities
The utilities area provides essential tools for your project. What’s useful about the utilities area is
that it varies in terms of what it displays, depending on what you’re using. Like the navigator area,

the utilities area consists of different tabs along the top, but it also includes tabs toward the middle
and bottom.

Let’s first focus on the main tabs along the top. Providing you have ViewController.swift open, you
see two tabs along the top, as shown in Figure 3-13.

Figure 3-13. The tabs in the utilities area of Xcode with a code file open

First is the File Inspector. It lets you manage attributes of a file: for example, its name, type path, and
location in your project. As with many other inspectors in the utilities area, additional options can be

changed if you scroll down. The File Inspector is one of two inspectors that are always present in the
utilities area, regardless of which file you’re working with.

Second is the Quick Help Inspector. Here you can easily access information about a symbol in
Xcode. This is especially useful when you’d like to know where something has been declared, how
it was declared, and its scope and parameters. This is the other tab that is always present in the
utilities area.


http:///

58 CHAPTER 3: Project Templates and Getting Around

The Utility Navigator really comes into its own when you’re working with Interface Builder. Interface
Builder was introduced in Chapter 2, when you used it in conjunction with the Main.Storyboard file.
This is the file you start with in this chapter:

1. Open Main.storyboard from the Project Navigator. You have only a single
view in the storyboard; but this will be a multiview application, so let’s add a
second view. Just as you did with the label and image views in the previous
chapter, view controllers can be dragged in from the Object Library. Drag in
a view controller from the Object Library, and position it to the right of the
current view controller, as shown in Figure 3-14.

View Controller 2
ew Controller

or

caniroller TRat mamagts & Tk view

e o Any b Any Biolla B1| B (®

=

+10

Figure 3-14. Dragging a view controller from the Object Library to the design area

2. Once you've released the view controller, use the small bar at the top of the
view controller to maneuver it neatly beside the existing view controller, as

shown in Figure 3-15.


http:///

CHAPTER 3: Project Templates and Getting Around

g 4 P = ShowMe ShowMe » [l Main.storyboard » [l Main.storyboard (Base) » No Selection 4 »

View Controller U ] E

Figure 3-15. Moving the view controller so that it snaps neatly into place beside the existing view controller

3. At this point you have two view controllers on the storyboard. But remember
from Chapter 2 that a view controller in a storyboard needs a view controller
code file in order to interact with the visual portion. You need to create
a new view controller file called MessageViewController that subclasses
UIViewController. | explain subclassing in great detail later in the book; for
now create the file by going to File » New (3$+N) and selecting Cocoa Touch
Class, as shown in Figure 3-16. Click Next.

Choose a template for your new file:
' i0S X R
Source | (Gl S

User Interface

Core Data Test Case Class Playground Swift File
Resource Class

. Other
B = m h C Cr
Source
User Interface Objective-C Header File C File C++ File
Core Data File
! Resource
Other
Cocoa Touch Class
A Cocoa Touch class.
Cancel Previous [ Next \

Figure 3-16. The new file template selection


http:///

60 CHAPTER 3: Project Templates and Getting Around

4. On the next screen, you're asked for two values: Class and Subclass Of. For
the Subclass Of value, you need to tell Xcode which class your new class is
based on. If you were creating a class to hold custom properties, such as a
Car class or an Animal class, you would use a generic NSObject; but in this
instance you need a view controller, so set the value to UIViewController.

5. The Class value is largely up to you; this is the name you use to instantiate
this view controller. When naming classes, always try to make the names
semantically accurate—that is, they should describe the function of the
class. This view controller displays the message it’s sent, so | named it
MessageViewController.

6. Ensure that Also Create XIB File is not checked, that the device shown is
iPhone, and, of course, that Language is Swift. Check that your values match
Figure 3-17, and click Next.

Choose options for your new file:

Class:  MessageViewController
Subclass of:  UlViewController v
Also create XIB file
iPhone

Language: Swift

Cancel Previous | Next

Figure 3-17. Subclassing UIViewController

7. On the next screen, you’re prompted for a save location for your new file.
Stick with the default settings. Ensure that in the Targets box, ShowMe is
selected; then click Create.

You should now have a new file in your Project Navigator called MessageViewController.swift, which
means you have all the files needed for the project and you’re ready to put together the interface for
the first view controller. Reopen Main.storyboard from the Project Navigator. Before you add anything
to the view, click the left view in the storyboard, and then look back to the utilities area on the right. You
should see that the two tabs in Figure 3-13 have become six tabs, as shown in Figure 3-18.


http:///

CHAPTER 3: Project Templates and Getting Around

D ® 8B & B

Figure 3-18. The utilities tabs in Interface Builder

I’ve already covered the first two tabs, so let’s look at the remaining four:

Identity Inspector: Here you can change details regarding an object, similar to
the File Inspector. You can change and access the class name, accessibility
details, runtime attributes, and so on. The ldentity Inspector is only active when
you have an object selected. With MainViewController.xib open, select the
view, and the information in the Identity Inspector should become visible. You'll
use this tab often when adding views to a storyboard, as | cover later.

Attributes Inspector: A very useful inspector to work with when you’re designing
interfaces graphically. With the view selected, you can change many properties,
such as background color and so forth. Without this tab, you’d have to make
changes programmatically, which would be not only time-consuming but also
tedious and tiresome. All the different objects you can add through Interface
Builder have different properties that can be configured.

Size Inspector: Allows you to specify the positioning of objects that are
selected, along with minimum and maximum sizes and so on. This is also one
of the places you can view and manage constraints, as covered in detail later
in this book.

Connections Inspector: Lets you connect outlets to interface objects as well as
make new connections and break existing ones. The Connections Inspector

is essentially an overview of which parts of your code the visual elements are
connected to. For example, when a label is populated, it shows the name of the
outlet you call in code; and in the case of a button, it indicates which action the
button triggers when clicked.

Like the Project Navigator, each of these tabs is accessible via View » Utilities » Show File
Inspector; more important, the tabs can be accessed using similar keyboard shortcuts. To access
the File Inspector, simply press \_+3+1. For the Attributes Inspector, press \+3+4. If you want to
quickly dismiss the utilities area, use the keyboard shortcut \_+38+0.


http:///

62 CHAPTER 3: Project Templates and Getting Around

Just below the inspectors are four more tabs: File Templates Library, Code Snippets Library, Object
Library, and Media Files, as shown in Figure 3-19:

h I @ &

Cocoa Touch Class - A Cocoa
Touch class

— " Test Case Class - A class

{ Test lmplementlng a unit test

Playground - A Playground

(mm]
oo

4

Figure 3-19. The File Template, Code Snippets, and Object libraries, along with the Media Files tab

The File Templates Library contains templates for common classes, heads,
protocols, and so forth. To add one to your project, click and drag it to the
Project Navigator.

The Code Snippet Library contains short pieces of code that you can use by
clicking and dragging them into the editor with a code file open.

The Object Library is where you find the standard Cocoa controls for
applications. You make extensive use of this library throughout this book. Simply
click and drop an item onto a view with Interface Builder open.

The Medla Files tab contains useful graphics, sounds, and icons you can use in
your interfaces, again, by dragging and dropping them onto your interface.

These four tabs are accessible via View » Utilities » Show File Template Library or with the
keyboard shortcut ~+\_+3+1. The tabs are always visible, regardless of what file type you’re
working with; however, they’re most useful while working with Interface Builder.

Before adding any objects to your view, you need to add an element called a navigation controller
to manage the navigation back and forth through the different views. Xcode maxes this very easy
to do:

1. If you haven'’t already, select the left view in the storyboard by clicking the
large white area in the design area.


http:///

CHAPTER 3: Project Templates and Getting Around

2. Go to Editor » Embed In » Navigation Controller, as shown in Figure 3-20.
You should see a navigation controller appear to the left of the view. Once
it'’s there, you can pretty much ignore it for the rest of the project, because as
the focus will be on the two views; but without it, navigating views would be

extremely troublesome.

Navigate Izﬂm Product Debug Source Control Window Help

Align > Main.storyboard — Edited

; Arrange » 21:51

-—I Resolve Auto Layout Issues p E .

B8 < " Ppin p 1) B Main.storyboard (Base) » [E] View Controller §

Unembed Scroll View
Size to Fit Content 3 Navigation Controller B

....] Localization Locking > Tab Bar Controller —
Canvas >

Size Class [ 2
Figure 3-20. Embedding in a navigation controller

3. To make the design process easier, let's change how the view is displayed.
At the bottom of the design area are the words w Any h Any. Click this
location, as shown in Figure 3-21, and move your mouse around until you get
the vertical compact area. This make the view the shape it will appear on the
simulated iPhone, so more of the view is visible; this only affects Interface
Builder. After you click the new area, it says w Compact h Any.


http:///

64 CHAPTER 3: Project Templates and Getting Around

Compact Width | Any Height

Base Values

For all compact width layouts
(e.g. 3.5-inch, 4-inch, and 4.7-inch
iPhones in portrait or landscape)

wAny hAny

Figure 3-21. Changing the dimensions of the view

4. Position the design area so you can see the first view, which has a line
attaching it to the navigation controller.

5. From the Object library, you need to add three items to the view. First, drag a
label onto the view, and position it toward the top of the view in the center.

6. Click the label once to select it, and then select the Attributes Inspector.
Here you can really appreciate the range of minute customizations available
to you. The second property in the Attributes Inspector for this label is a text
field that says Label. Change this to say Text to send. You can also edit
labels by double-clicking them on the view, but this method helps you see
some of the minute adjustments you can make in the Attributes Inspector.

7. Click the T in the Font box, and select Headline from the font list, as shown in
Figure 3-22.


http:///

CHAPTER 3: Project Templates and Getting Around 65

Label
Text | Plain -

Text to send
Color | I | Default =

Font Headline (T)| 2

[t

Font | Text Styles — Headline

4r

Family | Not Applicable
Style | Not Applicable

Size Not Applicable |7/ ||

Done ,|

TS

Autoshrink | Fixed Font Size

Figure 3-22. Selecting the Headline text style for your label

10.

When you changed the text, the label probably truncated most of it.
Rearrange the label by dragging one of the small handles in the corners until
all the text is visible. You may need to re-center it after this.

Now that the label is in place, drag a text field from the Object Library onto
the view, and position it below the label. As you move the text field, you
should get a feel for the vertical positioning as the object snaps into place
below the label. Drag out the sides of the text field until a blue line appears
on the side of the view; this indicates the view’s margin.

Drag a button onto the view. Position it a little below the text field. Then
double-click the button and change its text to Show Me. That’s it! You’ve
built your interface, and you should have something resembling Figure 3-23.


http:///

66 CHAPTER 3: Project Templates and Getting Around

BE 4 p» "...‘: ShowMe » || ShowMe » . Main.storyboard Main.storyboard (Base) » No Selection >
:oller o = View
' - -

Text to send
Show Me

Figure 3-23. The MainViewController.xib file with all of its elements

11. You need to add some constraints in order to make sure the elements line
up correctly when the application runs. Click a white area of the view, and
then click the Resolve Auto Layout Issues button in the bottom-right corner
of the design area. Select Add Missing Constraints, and Xcode will do the
hard work for you.

Selected Views
Update Frames AW S
Update Constraints {36=
Add Missing Constraints
Reset to Suggested Constraints X (3=
Clear Constraints

All Views in View Controller
Update Frames
Update Constraints
Reset to Suggested Constraints
Clear Constraints

EREE] (@ )}

Figure 3-24. Adding missing constraints to the view to get all elements lined up nicely

vww allitebooks.conl



http:///
http://www.allitebooks.org

CHAPTER 3: Project Templates and Getting Around 67

The last thing you need to do is link the objects from Interface Builder into the view controller code
as outlets and actions. These next steps reuse knowledge and skills you picked up in this chapter
and Chapter 2. So, as a challenge, I'll present the steps for you without any visual aids. You can see
how everything matches up at the end:

1. Open the Assistant Editor. You should see ViewController.swift displayed
in the code editor portion.

2. Select the text field. Holding down the Ctrl key, click and drag a connection
to the class file, positioning it just below class ViewController:
UIViewController. Create an outlet named textToSendField.

3. Perform a similar action on the Show Me button. Ctrl-drag another
connection to the class file, positioning it below the outlet you just created;
but this time when you release the mouse button, specify that you’re creating
an action, not an outlet, and name it showMe.

That’s it for the first view for now. But before you move on, check that the code in your
ViewController.swift file is the same as the following:

import UIKit

class ViewController: UIViewController {
@IBOutlet weak var textToSendField: UITextField!
@IBAction func showMe(sender: AnyObject) {

}

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

You’ve covered a lot of ground so far in this chapter, so let’s take a look at the application in
action. Run the application in the Simulator, as you were shown in Chapter 2; the output should
resemble Figure 3-25.


http:///

68 CHAPTER 3: Project Templates and Getting Around

| i0OS Simulator - iPhone 6 - iPhone 6 / iOS 8.1 (12B411)
Carrier ¥ 9:30 PM -

Text to send

Show Me

Figure 3-25. The application running in the Simulator

At this point, if your app runs successfully and you’re staring at the result of your hard work, give
yourself a pat on the back. You’ve built the first part of the application; now it’s time to configure the
second view controller and bring the two together using a linkage called a segue.

Configuring the Second View Controller

Hopefully you're feeling pleased with what you’ve done so far. You should be—but the application
isn’t finished. The idea behind this application is to type some text in the text field and have it display
on another view controller when you click the Show Me button. Using storyboards to build an
application comes into its own when you’re working with multiple views. First you need to create a
linkage called a segue between the Show Me button and what will be the Message view controller;
by creating this linkage, you can move between view controllers without writing a single line of code.
Next you need to create the interface and, finally, the underlying code to tie it all together.

Now that you know what you’re aiming for, let’s get started. Again, let’s see how much you
remember from creating the previous view controller:

1. Switch back to the Standard Editor by clicking the button to the left of the
Assistant Editor on the toolbar.

2. Position the storyboard so that you can see both view controllers.

3. Click the Show Me Button, and then Ctrl-drag a connection from it to the
view controller on the right, as shown in Figure 3-26.


http:///

CHAPTER 3: Project Templates and Getting Around

Text to send

Figure 3-26. Making a connection from the Show Me Button to the second view controller

4. When you release the mouse button, a dialog appears with a number of
options in it; these are the different types of segues available. Select Show,
as shown in Figure 3-27.

Action Segue
show
show detail R?
present modally

popover presentation
custom

Non-Adaptive Action Segue
push (deprecated)
modal (deprecated)

Figure 3-27. Selecting the Show segue type

Note | explain the different types of segues when you take a closer look at storyboards in Chapter 7.

You’ve created a relationship between the button and the second view controller. To see what this
means, run the application again. Note that when you click the button, the second view slides in

nicely, and there is a Back button to take you back to the initial view, but it’s all a bit simplistic at the

moment. Let’s finish configuring the second view controller:

5. Stop the Simulator, and then align the storyboard so that you can see the
second view controller.

6. Drag two labels onto the view, one below the other, and position them near
the top of the view under the navigation bar placeholder. Double-click the
first label, and set its text to You Said.... Then resize the second label so that
it’s the width of the view.


http:///

70 CHAPTER 3: Project Templates and Getting Around

When you created MessageViewController.swift, it was so that you could interact with the
visual part of the view controller. So, the next step is to link this view controller to the custom
MessageViewController class, using the Identity Inspector.

7. Click the bar at the very top of the right view controller, and then open the
Identity Inspector, just to the left of the Attribute Inspector. Change Class to
MessageViewController, as shown in Figure 3-28.

Custom Class

Class ' MessageViewController ) v
D ® E UlCollectionViewController
lﬁl-. Identity UllmagePickerController
T | UlinputViewController
' UlNavigationController
Restoration ID I

Storyboard

You Said Use Storyboard ID

Label User Defined Runtime Attributes
Key Path Type Value

Figure 3-28. Selecting the MessageViewController class for the second view controller

8. Now that you’ve created this relationship, turn on the Assistant Editor and,
with MessageViewController.swift selected, Ctrl-drag a connection from
the bottom label to below the line starting class MessageViewController and
create an outlet named messagelabel.

9. Click the view and then add the constraints required for a flexible layout by
clicking the Resolve Auto Layout Issues button and clicking Add Missing
Constraints.

Hopefully, your view should now resemble Figure 3-29.

B 4 » | BSh.e) ' ' Main.storyboard (Base) » No Selection | 22« » [} = Mes..wift = [© MessageViewController < 3 » + X

i
/f MessageViewController.swift
//  ShowMe
I

= // Created by Matthew Knott on 25/11/2014.

w S // Copyright (c) 2014 Matthew Knott. All rights reserved.

___Ii /"

import UIKit

class MessageViewController: UIViewController {

You Said s @IBOutlet weak var messagelLabel: UILabel!
override func viewDidLoad() {
Label super.viewDidLoad()

// Do any additional setup after loading the view.

Figure 3-29. The complete, very simple layout for the second view controller, called MessageViewController


http:///

CHAPTER 3: Project Templates and Getting Around I

Before | go any further, let’s think about what the objective is. The user should be able to push
the Show Me button on the ViewController and have whatever they have written in the text field
appear in the MessageViewController. To make this happen, you need to add some code to the
MessageViewController class file so it can receive the message from the MainViewController.

Note When a new view is loaded on to the screen, replacing another one in an iOS application, this is
referred to as pushing a view.

The MainViewController will interface with the MessageViewController using a custom initializer that
will accept the text passed from the ViewController.

1. Start by switching back to the Standard editor and opening
MessageViewController.swift from the Project Navigator.

2. Create a variable to hold the message data to be displayed. The data coming
from the first view controller is text, so create a String variable by adding the
following highlighted code just below your outlet:

class MessageViewController: UIViewController {
@IBOutlet weak var messagelabel: UILabel!

var messageData: String?

3. Next, you need to take the supplied text and display it withi the Label, you
do this by setting the text property of the messagelLabel object. Add the
highlighted code below to the viewDidLoad method:

override func viewDidlLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
messageLabel.text = messageData

4. Finally, scroll down to the bottom of this file and locate the code shown
below, a function called prepareForSegue. Highlight the function and copy it
with Edit » Copy (38+C); you’re going to need this in just a minute.

// MARK: - Navigation

// In a storyboard-based application, you will often want to do a little preparation before navigation
override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

// Get the new view controller using segue.destinationViewController.

// Pass the selected object to the new view controller.


http:///

72 CHAPTER 3: Project Templates and Getting Around

Now all that remains is to complete the code to send the data to the MessageViewController.
1. Open ViewController.swift, from the Project Navigator.

2. Underneath the didReceiveMemoryWarning function, paste in the code you
copied from the other view controller using Edit » Paste (3+V) so that the
bottom of your code file looks like this:

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

// MARK: - Navigation
// In a storyboard-based application, you will often want to do a little preparation before navigation
override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

// Get the new view controller using segue.destinationViewController.

// Pass the selected object to the new view controller.

3. The prepareForSegue method is called just before a Segue linking views
is called. Normally, you would name your Segue’s and control the actions
based on the Segue that has been triggered, but in this instance, you only
have one Segue, so when this method is called, you know that you that
the destination of the Segue is the MessageViewController, so you’re going
to create an instance of MessageViewController based on the Segue’s
destination controller, and then set the messageData String with the text of
your text field. Add the following highlighted code into the prepareForSegue
method, removing the two comments:

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
let messageController = segue.destinationViewController as MessageViewController
messageController.messageData = textToSendField.text?

}

Xcode automatically understands that you have a MessageViewController class without having to
make any specific references to it in your code file, and when you type messageController. on the
second line of the method, it knows you have an object called messageData ready and waiting for you
to pass it the contents of the text field.

That’s it, you should now be able to run the application and find that you can click in the text field,
type a message, and click Show Me, which takes you to the MessageViewController and shows
whatever you typed, as shown in Figure 3-30


http:///

CHAPTER 3: Project Templates and Getting Around 73

iOS Simulator - iPhone 5s - iPhone 5s / iOS 8... | iOS Simulator - iPhone 5s - iPhone 5s / iOS 8... |
Carier & 4:49 PM - Carrier & 4:50 PM -
| 1 |

( Back .

- push |
‘ : You said...

You've done a great job! |
!

You've done a great job!

Text to send

Show Me

Figure 3-30. The finished application

Debugging Area

The final focus is the debugging area. In order to actually see this in action, you need to add some
code to the project that captures the text that was entered when the button is clicked, and you use
NSLog to add a message to the console. Go to ViewController.swift and go to the showMe action
that you’ve left empty so far. Add the following highlighted code:

@IBAction func showMe(sender: AnyObject) {
NSLog("User Wrote: %@", textToSendField.text)
}

The debug area allows you to pin down any issues with your program. Because the debug area can
quickly become very complex and can be used for a variety of different things, I'll only show you
the basics for now and revisit it later in the book. Now run your application and try to click the Show
Me button without adding any text to the text field. You should see that when you click the button, a
message is added to the output console, as shown in Figure 3-31.

=E = [ & L 2 M|« ShowMe
2014-11-27 21:15:88.318 ShowMe[15790:928442] User Wrote: You did
a great job!

Autet | ® O @ All Qutput * i | 0

Figure 3-31. The result of the NSLog method call is displayed in the output console

For now all you need to know is that the debugger included with Xcode is the LLVM-GCC debugger,
this means you can debug a variety of code in a variety of languages. This is especially useful as
Swift can use frameworks and libraries written in Objective-C. As a nice bonus, you’ve also added
some basic input validation to your application to help prevent the user making mistakes.


http:///

74 CHAPTER 3: Project Templates and Getting Around

Summary

This chapter covered two rather contrasting topics: project templates and the basics of Xcode’s
interface. The purpose of doing so was, first, to give you the confidence to start an Xcode project
and choose correctly a project template suitable for your projects and, second, to drop you in at the
deep end to understand how to start with nothing and build a working application, while providing a
basic familiarization with the key parts of Xcode’s interface.

More specifically, in this chapter, you have:
Created an application with multiple views
Passed an object from one view controller to another
Learned about Segues and the hugely important prepareForSegue method

Looked at each of Xcode’s default project templates and when you might
use them

Explored key parts of Xcode’s interface

The next chapter will look at Xcode’s graphical Interface Builder in greater detail and learn how to
use this to build interfaces efficiently.


http:///

Chapter

Building Interfaces

A lot was covered in Chapter 3: you looked at each of Xcode’s default iOS project templates,
examined when exactly you should use them, and then took a tour of the main areas of Xcode’s
workspace. And if that wasn’t enough, you created an application with multiple views that could
share information between the views.

The focus of this chapter is to delve deeper into Xcode’s graphical interface design tool, Interface
Builder. Interface Builder has always been a key part of the Xcode set of development tools.
However, with the release of Xcode 4, Interface Builder became part of Xcode itself, as opposed to
previous versions in which it was a separate application. As already discussed in previous chapters,
what makes Interface Builder an attractive addition to Apple’s developer tools is that it removes the
need to write code in order to design great interfaces for your applications. It allows you to lay out
your views and windows by dragging built-in Cocoa objects from the Object Library and placing
them on the screen.

What’s even more useful is that by using the Attributes Inspector, you can make many changes that
would otherwise require lines upon lines of code. As a developer, this is good news for two reasons.
First, you don’t have to continuously test, build, and run your application in order to see if what
you’re designing with code looks good. With Interface Builder, you can see this right away. Second,
similar to what’s just been mentioned, you can make changes graphically, which saves a lot of time
and effort. All this—plus using Interface Builder makes designing views fun!

This chapter explains how to set up an application using the Tabbed Application template. The
great thing about using a Tabbed Application is that each of the tabs can act as an app within an
app, each one showing a drastically different set of tools and styles. The two initial tabs you set up
will showcase some of the interface elements you haven’t seen yet, as well as use your device’s
GPS function. Once you’ve done this, you set up a third tab that will allow you to demonstrate
some of the important interface elements that can’t be added using Interface Builder. A goal of
this chapter is to show how much you can achieve while using as little code as possible, and it’s
important to note how little code this example requires compared to how much you would need to
write if Interface Builder were not a part of Xcode. The last thing you look at is how you can alter
interface elements with code to achieve results that Interface Builder alone can’t do but that are

75


http:///

76 CHAPTER 4: Building Interfaces

important in building beautiful, easy-to-use interfaces. Following is an outline of what each of the
tabs will include:

Track It: Here you create a text view that displays detailed telemetry from the
GPS receiver, on either a physical device or in the simulator. You also use a
switch to turn the GPS on and off.

Slide It: As the name implies, in the second tab you look at how to implement
the slider tab, where to build a series of sliders to alter the background color
of the entire view, and how to output their values into text fields. You also learn
the answer to one of the burning questions all iOS developers ask: “How do |
dismiss the keyboard?”

Alert: In the final tab, you see how to use a segmented control to determine
what happens when a button is pushed. The choice is between an alert view
and an action sheet, two popular elements in many applications.

Getting Ready

Now that you’ve had a sneak peek at the aim of this chapter, hopefully you’re raring to go. Let’s get to it:

1.

Open Xcode, and create a new project by clicking Create A New Xcode
Project on the Welcome screen or choosing File » New » Project
(38+Shift+N). Select the Tabbed Application template, and click Next.

Name your project Showcase, and ensure that the device is set to iPhone.
Configure the other settings as you did in previous applications. Make sure
the key settings match those in Figure 4-1, and click Next.

Choose options for your new project:

Product Name: Showcase
Organization Name: Matthew Knott
Organization Identifier: com.mattknott
Bundle Identifier: com.mattknott.Showcase

Language: = Swift

Devices: | iPhone

Cancel Previous | Next

Figure 4-1. Configuring the Showcase application


http:///

CHAPTER 4: Building Interfaces 77

3. You don’t want to create a Git repository, so leave the Source Control option
unchecked. Ensure that your project is going to be saved where you want it
to be, and click Create.

You’ve now created the bare bones of your Showcase tabbed application. To see what Apple’s
template has given you as a starting point, click Main.Storyboard; you should see a screen
resembling that shown in Figure 4-2.

ane Main.storyboard u
I P T A Showsase gy IPhane 5 Showease: Ready | Today at 19:30 EdHA D=0
| BRE A A @ = @ B 4« & shewease Showease Main. aryboard Mainsonybeasd Base) © [ Tab Bar Cortrollar Seane Tab Bar Contraller Dm0 @
| Showea Simulated Mat

_ s
= 2 targets, i35 50K 8.0

nfarred

¥ Showcae
- AppDelegate swift
+ FirstViewController.swift
=+ SecondViewController. swift

s Infarred

e | Inferred

Top Bar | Inferred

................ Bortom Bar | None

| LaunchSereen.xib e
| »_Isupporting Files ) )
» | ShowcaseTests o b Gt First View TR
» (3 Producss WP S — & 13 Initial View Cantroller
Layout W Adjust Seroll View Insees
Hide Bomom Bar on Push
o Resize View From NIE
Use Full Screen (Deprecated)
Exteend Edges o Uncler Top Bars.
. o Under Battom Bars
Under Opaque Bars
Transition Style | Caver Vertical
— Presentation | Full Streen
Defines Cantext
Provides Context
Comtent Size | Use Preferred Explicit Size

= = = .._.‘... omciopes
View Controller - A controller tha

Second View supparts th funcamental view

A management model in 105,

cortrelier (Rat manages ravigason

( Navigation Controller - &
through a hierarchy of views.

Table View Contraller - &
L) enntroller that marages a tbi view,

|+ CE@ [n] vAny hAny B loi ki B1| B8 (@

Figure 4-2. The starting point for the Showcase application

By default, the template gives you a UITabBarController with two UIViewControllers attached
named FirstViewController and SecondViewController. Although these names are perfectly
good, tab orders can change as a project develops, so it’s always better to use names that are
semantically accurate. So, before you add a third tab, let’s rename the files to something more
appropriate.

With the Project Navigator open ( +1), highlight FirstViewController.swift and press Return on your
keyboard. You should now be able to rename the file. Remove the text, and type TrackViewController.swift
(remember to add the .swift extension). Repeat this for SecondViewController.swift, but

call it S1iderViewController.swift. Your Project Navigator should closely resemble what you

see in Figure 4-3.


http:///

78 CHAPTER 4: Building Interfaces

Main.storyboard
~ Images.xcassets
LaunchScreen.xib
» _ Supporting Files
> ShowcaseTests
> Products

Figure 4-3. The current project’s files as shown in the Project Navigator

Next you need to update your code files to use these new file names, and to do this you use the
Search Navigator (38+3). You need to set up the Search Navigator to rename every instance of
FirstViewController to TrackViewController. By default, you see Find » Text » Containing
above the search criteria. Click the word Find, and select Replace » Text » Containing, as
shown in Figure 4-4.

B 2 QA © = o B || <« » | B showase

Find P lina [
Replace > Text > Containing
= Regular Expression Matching
=== |n Project “TIgnonngcases | Starting with
l Ending with
LA
ShowcaseTests

Figure 4-4. Configuring the Search Navigator to perform a find-and-replace task

In the first text field, type FirstViewController; and in the second, type TrackViewController. At this
point you encounter an uncharacteristically poor piece of interface design: you need to press Return
to perform the search, although Xcode doesn’t make this clear. Click Replace All, and Xcode will

go through all the files listed and replace the word FirstViewController with TrackViewController.
Figure 4-5 illustrates the results of this find-and-replace operation in the Search Navigator.


http:///

CHAPTER 4: Building Interfaces 79

lEﬁQ&@%D@

Replace ) Text ) Containing

Q- FirstViewController

=== In Project Ignoring Case
TrackViewController

Preview Replace Replace All

4 results in 2 files

y . FirstViewController.swift
* Showcase project

— || FirstViewController.swift
[(c] class FirstViewController: UlView
~ Controller {
Main.storyboard
Showcase project
First View Controller: Class = "First
ViewController"
L |Label: Text = "Loaded by FirstView
Controller"

v

Figure 4-5. The Search Navigator updating references to old file and class names

Note When performing a batch find-and-replace operation, Xcode may ask if you want to enable
automatic snapshots. It’s recommended that you enable this, because developers often perform this
step in error. Having a snapshot means you can roll back in the event of a catastrophic mistake in your
application. I'll cover this in Chapter 14.

Once the find-and-replace operation has completed, repeat the task, but in the first box enter
SecondViewController as the text you’re searching for and in the second type SliderViewController
as the text you want to replace it with. Press Return, and then click Replace All.

You’ve now updated all references to your renamed view controllers. Next you create a third view
controller called ActionViewController:

1. Switch back to the Project Navigator from the Search Navigator so you’re
ready to start interacting with the project files again.

2. Create a new file (3+N). Select Source from the left sidebar under iOS, and
then choose Cocoa Touch Class, as you did in Chapter 3. Click Next.


http:///

80 CHAPTER 4: Building Interfaces

3. Specify ActionViewController as the class name. Type UIViewController in
the Subclass Of field, and ensure that Also Create XIB File is not checked.
Click Next. Create this file in the same location where all your other files are
stored, and click Create.

Adding Tab Bar Icons to an Asset Catalog

Since they were introduced in Xcode 5, Asset Catalogs have been used to store the icons that
appear on tabs in the Tabbed Application template. Although this isn’t the way you have to store the
images, it’s certainly best practice, and it makes storing retina and regular versions of the same icon
much easier and less cluttered. Chapter 2 briefly explained the Asset Catalogs, but here | go into the
topic a little deeper.

For this project, | have created three purpose-built icons that are available in the Chapter 4 source
code available from the Apress web site. If you don’t want to create your own icons, a fantastic range
of free tab-bar icons created by Charlene are available for download at www.iconbeast.com. Once
you’ve downloaded the icons, you’re ready to begin working with the Asset Catalog in this project:

1. Head back to Xcode, and select Images.xcassets. You should see the three
images shown in Figure 4-6.

B 2 Q N © =2 o B |B| <« » & Showcase ) [ Showea
7 Showcase Applcon
= 2 targets, iOS SDK 8.0 =
¥ | Showcase
s+ AppDelegate.swift
= TrackViewController.swift
= | SliderViewController.swift

@ first
m second

»  ActionViewController.swift
Main.storyboard

LaunchScreen.xib
P || Supporting Files
» | ShowcaseTests
» | Products

Figure 4-6. The contents of the Images . xcassets library

2. Select the image named first, and delete it by pressing the Backspace key
or right-clicking and selecting Remove Selected ltems. Repeat this step for
the image named second.

3. Click the plus symbol at the bottom of the list of images, and from the menu
that appears select New Image Set, as shown in Figure 4-7. This creates a
new image set called image.


http://www.iconbeast.com/
http:///

CHAPTER 4: Building Interfaces 81

New Image Set

New App Icon
New Launch Image
New OS X Icon

New Folder
Mew Folder From Selection

Import...
Import From Project...

+ OH@® DR

Figure 4-7. Creating a new image set

4. Select the new image set, and press Return so that you can rename the file;
rename it Track. Repeat step 3 twice to create two more new image sets, and
name them Slider and Alert, respectively. You’ve now created three image
sets, which will contain the tab-bar icons for the three tabs.

5. Open a Finder window, and browse to where you extracted the icons from
the book’s source code.

6. Select the Track image set. You see something resembling the screens

in Figure 4-8.
B2l 4 » L:l*,J Showcase ) || Showcase ) (77| Images.xcassets ) || Track
LjAler Track
| Applcon
| Slider

1x 2% 3x

Universal

Figure 4-8. The three new image sets

One of the benefits of using Asset Catalogs for storing images is that they make it easy to group
images that have different resolutions. In this case, you have a 1x container and a 2x container.
Traditionally, in the 1x container you would place the standard-resolution image, and in the

2x container the retina, or higher-resolution image. Unlike with the Applcon image set, there are
fewer restrictions on image size here; but as a guideline for tab-bar icons, use 30px x 30px for


http:///

82 CHAPTER 4: Building Interfaces

standard-resolution icons, 60px x 60px for 2x retina icons, and 90px x 90px for 3x retina icons
(used for the new iPhone 6), which is what the icons are currently set to.

7. In the Finder window, locate the icon named mapicon.png, and drag it into
the 1x container. Then drag the mapicon@2x.png file into the 2x container and
mapicon@3x.png into the 3x container.

8. Repeat step 7 for the two remaining image sets, dragging slidericon.png,
slidericon@2x.png, and slidericon@3x.png into the containers for the Slider
image set, and alerticon.png, alerticon@2x.png and alerticon@3x.png
into the Alert image set. Your Asset Catalog should now resemble that
shown in Figure 4-9.

92 | €« » | B showcase) Showcase ) [l Images.xcassets ) /.. Alert
B .
| Applcon
==/ Slider

(11| Track VN &

1x 2X 3x

Universal

Figure 4-9. The three image sets with the icons in place

A great benefit of using Asset Catalogs for managing images is that you’re left with a much neater
project in the Project Navigator! Now you’re set up and can begin working on your interfaces using
Interface Builder, let’s start by taking a closer look at the different areas of the Interface Builder.

Before You Start ...

Notice that, unlike in Chapter 3, your project has no .xib files; instead, you work with
Main.storyboard. Storyboards were discussed briefly in Chapter 2, and | explain them in increasing
detail as | progress through the book; but let’s stop for a minute and take a closer look at what is
involved in a storyboard.

Storyboards are a relatively new feature of Xcode. They allow you to logically lay out how views
are pushed and managed as a user navigates through your application. They can greatly simplify
applications, plus they add a degree of logic to how you develop your projects.

Because you work with them a little in this chapter, it’s important to know the basics because, after
all, they’re part of Interface Builder. Open Main.storyboard, and let’s take a look at the key controls.
Conveniently, all the controls for your storyboard are located at the bottom of the storyboard design
area and are separated into three groups, as shown in Figure 4-10.


http:///

CHAPTER 4: Building Interfaces 83

] wAny hAny 2 o tal F]

Figure 4-10. The storyboard controls

Let’s look at the groups and their icons:

Document Qutline toggle: This first button, located by itself in the bottom-left
corner of the design area, hides and displays the document outline, which |
cover in more detail in Chapter 7 and throughout the book.

Form Factor toggle: Located in the middle of the design area icons, this control
allows you to alter how view controllers in the storyboard are displayed. This is
incredibly useful if you’re designing a single interface for multiple form factors,
because you can quickly move between orientations and sizes and have that
reflected for the entire storyboard.

Constraint controls: These are described in greater detail in Chapter 6. For now,
these four buttons, which are grouped together, let you control the behavior

of the elements in your view when faced with differing resolutions or different
screen resolutions:

Align: Allows you to position elements in relation to the view, letting you
set a range of alignments including centering and aligning to the top of
the view.

Pin: Fixes an element in place by manually setting its constraints.

Resolve Auto Layout Issues: One of the most useful buttons in Xcode 6.
You can often use the powerful auto-layout functions offered from this
menu to do all the hard work for you.

Resizing Behavior: Controls how views handle resizing. You can choose
from one, none, or both of the options available.

If you have used an older version of Xcode, you may have noticed that the zoom controls have been
removed in Xcode 6. This is in part because many developers handle zoom by using the pinch and
squeeze gestures on a multitouch-enabled device or by double-clicking the whitespace around the
views to shap in or out of the storyboard.

This concludes our brief look at the storyboard design area controls. Chapters 6 and 7 examine all of
these in intimate detail, but for now let’'s move on and build the interface.


http:///

84 CHAPTER 4: Building Interfaces

Building the Interface

Now that you’re familiar with the storyboard controls, you can start to get your interface in order.
To do that, you first remove the two views that were added by default. With Main.storyboard
selected, you have two view controllers, as you saw in Figure 4-2. As you did in Chapter 3, you begin
by removing the bulk of the Xcode-created content so that you can see for yourself exactly how the
different elements are created:

1. Above each of the two view controllers is a bar. Click the bar, and three icons
appear. Select the bar, as shown in Figure 4-11, and press the Backspace
key to delete it.

B8 « » & Showcase ) Showcase ) [ Main.storyboard » [B Main.storyboard (Base) First Scene » First

I

Figure 4-11. The view controller, outlined in blue after selecting the top bar

2. Repeat this step for the other view controller so you’re left with only a tab bar
controller.

3. To make the views easier to fit on the design area, use the w Any h Any
control to set a compact appearance for the views: change it so that it reads
w Compact h Any.

4. All your views are going to be based on standard view controllers, so locate
the View Controller object in the Object Library and drag three of them to the
design area. Position them as shown in Figure 4-12.


http:///

CHAPTER 4: Building Interfaces 85

LX) # Main.storyboard — Edited "
P [ Showcase : g iPhone 55 Finished running Showcase oa (Phone 55 1 EEHE O=0
1R A4 A © H o @ B« > | B sShowane Showsase [l Mainstoryboare [l Main.storyboard (Base) + [ Tab Bar Controller Scene Tab Bar Cortrofier 4hw

+ 7 Showcase
™ 2targets, 105 50K 80
¥ Showtise o

AppDelegate swit

o TrackViewController saift
SliderViewControber.swift

« ActionViewController.swift
B images neassats
* | Supporting Files 1
* | ShowcaseTests
» Products.

o

Figure 4-12. Main.storyboard with the three orphaned view controllers. The Utilities pane can be hidden to give extra room

Although you’ve added the three view controllers, they’re currently orphans—that is, there is no
relationship between the view controllers and the tab bar controller, so you need to create one. The
process for creating a relationship between the tab bar controller and the view controllers is similar
to how you connected objects to their actions and methods in Chapter 3:

1. Set the zoom level so that you can see all of the view controllers. If you're
having trouble, try double-clicking some whitespace in the design area;
the view should zoom out to show all three view controllers and the
tab bar controller.

2. Select the tab bar controller by clicking it once.

3. Holding the control key (*), click the tab bar controller, and drag a
connection to the top view controller, as shown in Figure 4-13.


http:///

86 CHAPTER 4: Building Interfaces

Tak Bar Contraller

Figure 4-13. Connecting the tab bar controller to the view controller

4. When you release the mouse button, a dialog appears, asking you to choose
the segue type. Chapter 7 covers segues; for now, select View Controllers
under the Relationship Segue heading, as shown in Figure 4-14.

Manual Segue
show
show detail
present modally
popover presentation

custom
Relationship Segue

view controllers
Non-Adaptive Manual Segue

push (deprecated)

modal (deprecated)

Figure 4-14. The segue selection dialog


http:///

CHAPTER 4: Building Interfaces 87

Now that you’ve created a relationship between the tab bar controller and the view controller, notice
that a few changes have been made in your design area. The tab bar controller has a tab showing
on the tab bar, as does the view controller. Also, a line connects the tab bar controller to the top
view controller; this is called a segue, and it’s a visual representation of the relationship between two
elements in a storyboard. Segues can link elements in several different ways, but on this occasion
you only choose the View Controllers branch to create a relationship segue.

5. Repeat step 4 for the remaining two view controllers—first the bottom view
controller, then the middle one—until you’re left with something resembling
the screen shown in Figure 4-15.

ano £ Main.storyboard — Edited )
| | A Showcase | . IPhone 55 Finished running Showcase on iPhone 55 EdHA OO
TR Q4 A © B o @ BB o« £ showcase Showease [l Mainstoryboars © [l Main storysoard (Base) | Mo Selection D® @ ¢a e
v 1 Showease
= 2rargess, 05 SOK 8.0
¥ Shewcase -
- AppOelegate swift

TrackViewControler.swift
SliderViewController swift

B mages scasiats
¥ Supparting Files
| ShowcaseTests
» Preducts

View Controller - A comraller that

susports the funcamental view
managertrs model in K5

Havigation Controller - &
< cortroller EHAE Masages Radgatien
through a hierarchy o views.

Table View Cotraller - &
H cantroller thit manages a table view

wCompact hAny B (ol b B EEE

Figure 4-15. The view controllers are all connected to the tab bar controller

+
@
=]
@®

Setting the Tab Icons

You’re nearly ready to focus on the individual views in your application, but before you do, there
are a couple more tasks to complete. You need to implement the icons you added to the image
Asset Catalog:

1. Zoom back in to the design area.

2. Location the topmost view controller, and select the square icon above the
text Item, as shown in Figure 4-16.


http:///

88 CHAPTER 4: Building Interfaces

Item

Figure 4-16. Selecting the tab bar icon in the top view controller

3.  Open the Attributes Inspector (\_+38+4). Set the Title attribute to Track It and
the Image attribute to Track. Be sure not to set the Selected Image
attribute —it needs to stay blank.

4. Select the bottom view controller’s tab bar item, and set Title to Slide It and
Image to Slider.

5. Select the tab bar item from the middle view controller, and set Title to Action
and Image to Alert.

Using the images Asset Catalog and the storyboard, you’ve successfully named your tabs and set
their icons. The tabbed application is really starting to take shape. The visual relationship between
the tab bar controller and the view controllers is in place, and if you want to, you can build and run
the application in the simulator—it will work fine. However, there is one other relationship you’ve yet
to establish.

The three views on the design area are currently controlled by the default view controller class.
But you want to use the purpose-made view controllers that you created earlier in this chapter.

In Chapter 3, you created view controllers with .xib files, so this relationship was created for you;
but now you have to do this yourself:

1. Select the top bar above the Track It view controller, as in Figure 4-11, and
then open the Identity Inspector (\_+36+3).

2. Click the drop-down list for the Class attribute, and select
TrackViewController, as shown in Figure 4-17.


http:///

CHAPTER 4: Building Interfaces 89

h ®@ B & B ©

Custom Class

Class | UIViewController » I8/
Module ‘ActionViewControIIer
GLKViewController
Identity SliderViewController
Storyboard ID TrackViewController
UllmagePickerController
!
Restoration ID

Use Storyboard ID

Figure 4-17. Selecting the custom view controller class

3. Select the top bar above the bottom view controller, and this time set the
class to SliderViewController.

4. Repeat step 3 with the middle view controller, and set its class to
ActionViewController.

5. Build and run the application using the simulator; you should find that at this
stage you have three bland but working tabs.

That’s it: the preparation work is complete! So far you’ve renamed the default view controller classes
and created an extra one, created entries in the Asset Catalog and populated it with some icons, and
removed the default view controllers from the storyboard and replaced them with three brand-new
ones, all before setting the classes, icons, and titles of each one. You’re ready to learn more about
building great interfaces.

Tracking Location with the Track It Tab

For the first tab, you create a view that allows you to display detailed information about the current
location, including speed, course, longitude, latitude, and positional accuracy. To do this, you will
use the CorelLocation framework.

Corelocation is used in many applications in the App Store, whether in an obvious way such as in
a map-based application or in a more subtle way such as providing localized information whereever
you go. The skills you learn here will give you a good grounding in applying CorelLocation in your
own applications.

Corelocation by itself isn’t that useful without something to control and display its information. To
do this, you add a switch control to turn positional tracking on and off and a text view to display the
output information. By the end of this section, you should have created something resembling the
screen shown in Figure 4-18.


http:///

90 CHAPTER 4: Building Interfaces

iOS Simulator - iPhone 5s - iPhone 5s / iOS 8...

<+37.32893832,-122.01979684> +/-
10.00m (speed 3.38 mps / course 184.24)
@ 8/1/14, 4:03:53 PM British Summer
Time

[ — AN
= 4 I b
D — AN

Track It Slide It Alert

Figure 4-18. The Track It tab in action

Although you’re working with a storyboard file and your views are laid out together on the design
area, you can still design your views as you did in Chapter 3 with the .xib files. But you have the
added bonus of being able to edit all your views in one location, without having to load up different
files from the Project Navigator.


http:///

CHAPTER 4: Building Interfaces 91

UlTextViews and UlSwitches

To build a simple but effective view, let’s use two of the most common and useful controls provided
by Apple: UITextView and UISwitch. The UISwitch control (or Switch, as it appears in the Object
Library) is found throughout the Settings app on your iPhone or iPad. It has on and off states, and
you use it to turn tracking on and off again:

1. Search the Object Library for Switch, and drag the object to the view. Position
it in the middle, as shown in Figure 4-19. Blue guidelines appear as you
approach the middle of the view.

Figure 4-19. Snapping the switch into place using the guidelines

2. With the switch selected, open the Attribute Inspector and change the State
attribute to Off.

3. You need to add a UITextView (or Text View, as it appears in the Object
Library). A text view can contain a large amount of text; the user can type in
it, like a text field, or scroll through it. Search the Object Library for Text View,
and drag it so it appears just above the switch (refer back to Figure 4-18 for
size and positioning reference).

4. With the text view selected, open the Attributes Inspector and remove the
placeholder text from the Text attribute.

5. To change the view’s background color, select a patch of whitespace on the
view and then, in the Attributes Inspector, click the Background drop-down
list and select Dark Gray Color from the list of prespecified colors to the right
of the color indicator.

6. As you have in previous chapters, with the view still selected, bring up the Fix
Auto Layout Issues menu and click Reset To Suggested Constraints under
the All Views In View Controller heading.


http:///

92 CHAPTER 4: Building Interfaces

You’ve added the two controls needed for this tab. Next you need to create the actions and outlets
in the TrackViewController class file that will make them come to life and give them purpose:

1. Switch to the Assistant Editor, and ensure that you have the
TrackViewController.swift file selected. If you have a different file open, go
back to double-check whether you correctly set the view controller’s class.

2. Select the text view. As in previous chapters, control-drag a connection
from the text view to the class file, just below the line that says class
TrackViewController: UIViewController.

3. You're creating an outlet named locationText. Type this in, and click the
Connect button.

4. Repeat step 3 for the switch, this time naming the outlet toggleSwitch.

5. Drag another connection from the switch, this time being sure to create an
action, and name it changeToggle.

The code of your header file should look like this:
import UIKit
class TrackViewController: UIViewController {

@IBOutlet weak var locationText: UITextView!
@IBOutlet weak var toggleSwitch: UISwitch!
@IBAction func changeToggle(sender: AnyObject) {

}

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

You’ve created all your outlets and actions. But before you can write any code, you need to add the
Corelocation framework to the project so you can interact with the GPS features of your device.

Tip If you accidentally create an outlet instead of an action, as | often find myself doing, you may have
trouble running your application after removing the erroneous line. This is because your control is still looking
for that outlet. Select the control, and open the Connections Inspector. You can remove the reference to the
defunct outlet there.


http:///

CHAPTER 4: Building Interfaces 93

Adding Frameworks to a Project

A framework is a collection of classes and functions that provides additional functionality to your
project. In iOS, all the GPS and location-based features are accessed through the CorelLocation
framework. Some of the most commonly used frameworks are CoreData, MapKit, and Corelmage,
among others.

As of iOS 7 and Xcode 5, Apple gave Objective-C developers an alternative to manually adding
frameworks, called modules. Modules are a very simple concept: instead of going through Xcode to
select a framework, physically add it to a project, and reference it in code with a #import statement,
you simply reference it with the @import statement, and Xcode automatically identifies the framework
and adds it into your project.

In Swift, Apple has kept this functionality and made it the default approach. Thus you never again
need to add a core Apple framework manually. Chapter 9 explains modules and frameworks in
more detail. As I’'ve already mentioned, you need to add CorelLocation, and what have previously
been a protracted process of locating and importing the framework is now as simple as writing a
single line of code:

1. From the Project Navigator, select the TrackViewController.swift file, and
close the Assistant Editor in favor of the Standard Editor.

2. Drop down a line from import UIKit, and type import Corelocation. This
single line makes the classes, functions, and protocols of the CoreLocation
framework available to your application.

3. You need to specify that the view controller can act as a delegate for the
CLLocationManager class. This means when the location manager is running,
it knows this file contains the functions that handle certain events, such as
the position of the device changing. Add, CLLocationManagerDelegate after
class TrackViewController: UIViewController. As shown in Figure 4-20,
code completion appears, to help your complete the protocol name.

import UIKit
import CoreLocation

class TrackViewController: UIViewController, CLlLocatignManagerDelegate {

@IBOutlet | —
@IBOutlet JZEant

@IBAction i y
¥ The CLLocationManagerDelegate protocol defines the methods used

to receive location and heading updates from a CLLocationManager
override f object. More. .
SUPET . VIEWDIULUSU ]
// Do any additional setup after loading the view, typically from a nib.

}

Figure 4-20. Adding the CLLocationManagerDelegate protocol to TrackViewController


http:///

94 CHAPTER 4: Building Interfaces

4. The first few lines of your TrackViewController.swift file should resemble
the following code:

import UIKit
import Corelocation

class TrackViewController: UIViewController, ClLLocationManagerDelegate {

@IBOutlet weak var locationText: UITextView!
@IBOutlet weak var toggleSwitch: UISwitch!
@IBAction func changeToggle(sender: AnyObject) {

}

5. You're ready to start setting up your interface in the device’s GPS
and location tracking technology, which is done via a class called
CLLocationManager. Before the first @1BOutlet, add the following highlighted
code to create an instance of the location manager class:

var locationManager: CLLocationManager!
@IBOutlet weak var locationText: UITextView!

Note You have created the instance of the location manager in what is called the global scope; this means
any of your functions in the TrackViewController class can see and use the location manager. This is important
because the location manager is the primary interface into the location functions, and you want to be efficient
and consistent by having only a single instance of the class declared in your application.

Next, you need to implement the action of the toggle switch being turned on or off. The code you
add here does the majority of the work in this tab. A little below the line you just added should be
the changeToggle action. Let’s go through the code step by step before you see the final code block:

1. You need to determine whether the switch was turned on or off when the
action is called. You do this with an if ... else ... statement. Add the
highlighted code into the action:

@IBAction func changeToggle(sender: AnyObject) {
if toggleSwitch.on {

}

else

{
}


http:///

CHAPTER 4: Building Interfaces 95

The .on property of the UISwitch class returns either a true or a false value, depending on the
switch’s position. If true or on, the code in the first set of braces is executed; otherwise, if false or
off, the code in the second set of parentheses is executed.

Tip In Swift, parentheses containing the conditions of an if statement are optional.

2. All the code you write in this view controller will be completely useless if the
device’s location services are disabled. To account for this, the next block of
code will prevent the switch being turned on if location services are disabled.
Add the highlighted code:

@IBAction func changeToggle(sender: AnyObject) {
if toggleSwitch.on {
if (CLLocationManager.locationServicesEnabled() == false) {
self.toggleSwitch.on = false

else

}

3. The next step is to check whether the locationManager object has been
initialized and, if not, to initialize it. There are numerous ways of initializing a
CLLocationManager object, but in this case you do four things: initialize the
object, tell it that this view controller is acting as its delegate, tell it to be
accurate within 10 meters, and tell it to update when it moves more than
10 meters from the last recorded position. So, drop down a line after the
last statement, and add the following highlighted code:

@IBAction func changeToggle(sender: AnyObject) {
if toggleSwitch.on {
if (CLLocationManager.locationServicesEnabled() == false) {
self.toggleSwitch.on = false

if locationManager == nil {
locationManager = CLLocationManager()
locationManager.delegate = self
locationManager.distanceFilter = 10.0
locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
locationManager.requestihenInUseAuthorization()


http:///

96 CHAPTER 4: Building Interfaces

else

}

4. The last thing you need to do in this half of the if statement is to tell the
locationManager object to start updating the location. You do this by calling
the startUpdatinglocation function. Once activated, it begins tracking your
location; then, every time the conditions you initialized it with are met, it fires
the delegate function didUpdatelocations, which you add later. For now,
drop down a line and add the following highlighted code:

@IBAction func changeToggle(sender: AnyObject) {
if(toggleSwitch.on)

if (CLLocationManager.locationServicesEnabled() == false) {
self.toggleSwitch.on = false

}

if locationManager == nil {
locationManager = CLLocationManager()
locationManager.delegate = self
locationManager.distanceFilter = 10.0
locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
locationManager.requesthWhenInUseAuthorization()

}
locationManager.startUpdatingLocation()
ilse
{
}

}

5. You need to code the else outcome, which is triggered when the switch is
set to off. All you want to do in this instance is tell the locationManager object
to stop tracking by calling the stopUpdatinglLocation function. Complete the
action by adding the highlighted code between the else braces:

@IBAction func changeToggle(sender: AnyObject) {
if(toggleSwitch.on)

if (CLLocationManager.locationServicesEnabled() == false) {
self.toggleSwitch.on = false

}


http:///

CHAPTER 4: Building Interfaces 97

if locationManager == nil {
locationManager = CLLocationManager()
locationManager.delegate = self
locationManager.distanceFilter = 10.0
locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
locationManager.requesthWhenInUseAuthorization()

}
locationManager.startUpdatinglocation()
}
else
{
if locationManager != nil {
locationManager.stopUpdatingLocation()
}
}

}

Those few lines can be used as boilerplate code any time you want to initialize a CLLocationManager.
I mentioned the didUpdatelocations delegate method that the locationManager object looks for
every time an update is triggered. It’s a very simple implementation that takes the last reported
location information and outputs its description value to the text view. To do this, add the following
highlighted code after the didReceiveMemoryWarning function:

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

func locationManager(manager: CLLocationManager!, didUpdatelLocations locations: [AnyObject]!) {
var location:CLLocation = locations[locations.endIndex-1] as CLLocation
self.locationText.text = location.description

}

You need to implement one final delegate method: the didFailWithError function that is called if
there is a fault while trying to obtain a location and that writes the error description to the text view.
It’s not essential for this example, but I’'m trying to give you some useful boilerplate code; plus, you
should always account for and handle failures such as this. Add the highlighted function below your
last delegate function:

func locationManager(manager: CLLocationManager!, didUpdatelocations locations: [AnyObject]!) {
var location:CLLocation = locations[locations.endIndex-1] as CLLocation
self.locationText.text = location.description;

}

func locationManager(manager: CLLocationManager!, didFailWithError error: NSError!) {
locationText.text = "failed with error \(error.description) "
}


http:///

98 CHAPTER 4: Building Interfaces

That’s it—you’ve finished the code for the Track It tab. But before you run it, you need to do something
new: add several entries to the application’s info.plist file. For a number of frameworks and classes,
Apple likes you to add a privacy declaration that explains to the user what you’re doing with their
location information. In iOS 8, these are mandatory, and the code won’t function without them:

1. In the Project Navigator, expand the Supporting Files group, and select
Info.plist.

2. Move your mouse cursor over the first line, titled Information Property List.
A small plus symbol appears, as shown in Figure 4-21. Click it.

B9 <« » [ Showcase ) [ | Showcase ) _ | Supporting Files ) . Info.plist } No Selection
Key Type Value

v Information Property List @, Dictionary (14 items)
Localization native development r... ;k String en :
Executable file 4 String ${EXECUTABLE_NAME}
Bundle identifier 4 String com.mattknott. ${PRODUCT_NAME:rfc1034identifier}
InfoDictionary version 4 String 6.0
Bundle name 4 String ${PRODUCT_NAME}

Figure 4-21. Adding an item to the application’s info.plist file

3. A new row is inserted. In the list on the left, scroll until you see the item
Privacy - Location Usage Description. Select it, double-click the empty
Value field, and type Testing CoreLocation or whatever message you want
to present to the user. Your finished entry should resemble that
shown in Figure 4-22.

B2 <« » [ Showcase ) | | Showcase ) | Supporting Files ) _ Info.plist » No Selection
Key Type Value
¥ Information Property List Dictionary (15 items)
| Privacy - Location Usage Des... = © O String 5+ Testing Corelocation |

Localization native developmentr... 4  String en =
Executable file 4 String ${EXECUTABLE_NAME}
Bundle identifier 4 String com.mattknott. ${PRODUCT_NAME:rfc1034identifier}
InfoDictionary version 4 String 6.0
Bundle name 4 String ${PRODUCT_NAME}

Figure 4-22. The privacy statement in the info.plist file


http:///

CHAPTER 4: Building Interfaces 99

4. Repeat step 2 to create another entry under Information Property List.
This time, you need to type the description as well as the value. Type in
NSLocationWhenInUseUsageDescription; then, under Value, again enter
Testing CoreLocation.

This may seem like an unnecessary chore, but without it, not only won’t your app work, but it will
also be rejected by Apple if you submit it to the App Store.

With the privacy message set, the last thing to do is test it in the simulator. When you flip the switch,
you should see the privacy message, as shown in Figure 4-23.

iOS Simulator - iPhone 5s - iPhone 5s / iOS 8... )

Allow “Showcase” to Access
Your Location While You Use
the App?

Testing CoreLocation

Don’t Allow

Figure 4-23. The custom privacy message being displayed to the user


http:///

100 CHAPTER 4: Building Interfaces

Simulating a Location

When you run your application in the simulator and accept the privacy message, you may find that
nothing happens. The reason for this is simple: by default, the simulator doesn’t have a location,
and therefore it’s unable to give you any details about a location, let alone update the location as
it’s moving.

Note If nothing happens, you may not have Location Services enabled. Return to the home screen on
your virtual device by going to Hardware » Home, and then open the Settings app. In Privacy, select
Location, and then ensure that Location Services is enabled.

Fortunately, Apple has provided some pretty nifty tools for specifying a location. It can also
simulate a drive or bike ride, which is the preset you use in this case. In the simulator menu bar,
select Debug » Location » City Bike Ride. All of a sudden your text view begins filling as a virtual
bike peddles through California, near Apple headquarters in Cupertino. (Chapter 11 explains more
about location debugging.)

That does it for this tab! You’ve created a really neat app that you could deploy to your phone
while you take a run to view your location and meters run per second reflected in real time, which
is pretty amazing.

Mixing Colors with the Slide It Tab

The second tab uses UISlider controls to create a RGB (red green blue) color mixer that alters the
background color in real time and outputs the values to a series of text fields. This is another tab
with real-world, practical applications. RGB is a color system that defines colors by assigning three
values between 0 and 255 to each primary color. Any web developer, graphic designer, or even iOS
app programmer will at some point need a tool that gives them the RGB value for a certain color.
With this tab, you can play around with different combinations before implementing the one you like.

The interface for this tab is by far the most complex of the three, so let’s begin. You create one block
of elements for the red color and then repeat the steps two times for the green and blue colors:

1. Add a Label object from the Object Library to the Slide It view. Position it
near the top of the view, and then double-click it and change the text to say
Red, as shown in Figure 4-24.


http:///

CHAPTER 4: Building Interfaces

® E

)

| g
[]
o N

Figure 4-24. The color label in position

2. Search for Slider in the Object Library, and drag it onto the view. Position it
below the label, and resize it so it fills about two-thirds of the view’s width, as
shown in Figure 4-25.

Red

Figure 4-25. The slider added to the view and made wider

3. You want to add a text field to display the RGB value. Drag in a text field
from the Object Library, and position it to the right of the slider, as shown
in Figure 4-26.

101


http:///

102 CHAPTER 4: Building Interfaces

Red

Figure 4-26. The text field added to the view and positioned to the right of the slider

4. Repeat steps 1 through 3, positioning each group of elements one under the
other until your view resembles that shown in Figure 4-27.

Red

Green

Blue

Figure 4-27. The finished interface

5. To ensure that all the elements line up when you run the application, take a
moment to add the constraints for the view. Select a white area of the view,
click the Fix Auto Layout Issues button, and click Add Missing Constraints.

6. Select the red slider, and examine its values in the Attributes Inspector. Its
value range is set with 0 as a minimum value and 1 as a maximum. Your
instinct might be to set the maximum to 255, the upper value of a color in the
RGB format; but the technique used here expects a value between 0 and 1,
so this fits your needs perfectly. You do, however, want to change the starting
point for the slider to be the maximum value, so change the Current value to
1 from 0.5. Repeat this for the green and blue sliders.


http:///

CHAPTER 4: Building Interfaces 103

This completes the interface, leaving you ready to create your outlets and actions before moving
on to the code, which is very simple for this tab. As you did in the previous tab, open the Assistant
Editor and ensure that it shows the SliderViewController.swift file:

1.

Create an outlet for each of the UISlider controls, naming them redSlider,
greenSlider, and blueSlider, respectively.

Create outlets for each of the UITextFields, naming them redValue,
greenValue, and blueValue, respectively.

Create actions for all the UISlider controls, naming them changeRed,
changeGreen, and changeBlue, respectively.

For reasons that | go into shortly, make your view controller a
text view delegate by adding, UITextFieldDelegate after class
SliderViewController: UIViewController.

Before you move on, check that the start of your code looks like this:

import UIKit

class SliderViewController: UIViewController, UITextFieldDelegate {

@IBOutlet weak var redSlider: UISlider!
@IBOutlet weak var greenSlider: UISlider!
@IBOutlet weak var blueSlider: UISlider!
@IBOutlet weak var redValue: UITextField!
@IBOutlet weak var greenValue: UITextField!
@IBOutlet weak var blueValue: UITextField!
@IBAction func changeRed(sender: AnyObject) {

}

@IBAction func changeGreen(sender: AnyObject) {

}

@IBAction func changeBlue(sender: AnyObject) {

}

That’s it for Interface Builder for this tab. This has been one of the most complex interfaces you've
encountered so far. Switch back to the Standard Editor, and open SliderViewController.swift from
the Project Navigator:

1.

As with the previous tab, you need to store the value specified by the
sliders by declaring and initializing some global variables that are of CGFloat
type. Add the following code after the line class SliderViewController:
UIViewController, UITextFieldDelegate {:

var redColor:CGFloat = 1.0
var greenColor:CGFloat = 1.0
var blueColor:CGFloat = 1.0


http:///

104 CHAPTER 4: Building Interfaces

Navigate to the viewDidLoad function. Under the line super.viewDidLoad(),
you need to set the delegate property of the text fields in order to use the
UITextViewDelegate protocol. Add these lines:

self.redValue.delegate = self
self.greenValue.delegate = self
self.blueValue.delegate = self

You’re going to call a function that you haven’t written yet, so don’t panic
when Xcode doesn’t help you through code completion and then adds

a red exclamation mark next to this line. You call the function by adding
updateColor() to the viewDidLoad function after the last code you wrote.
Your completed viewDidLoad function should now look like this:

override func viewDidLoad() {
super.viewDidLoad()

redValue.delegate = self
greenValue.delegate = self
blueValue.delegate = self

updateColor()
}

You need to write the updateColor function, which basically takes the red,
green, and blue values and uses them to set the view’s background color.
Under the viewDidLoad function, add the following code:

func updateColor() {
self.view.backgroundColor =
UIColor(red: redColor, green: greenColor, blue: blueColor, alpha: 1.0)

}

In this code, you create a UIColor object from the red, green, and blue values. The alpha property
controls the opacity of the background, with 1.0 being totally opaque and 0.0 being transparent.

Now you need to add the code to the three actions that are linked with their corresponding sliders:
changeRed, changeGreen, and changeBlue. All of these actions use practically the same code—only
the variable and outlet names change, depending on the color. Let’s set the changeRed code step by
step, after which you complete the remaining two methods yourself:

1.

You need to get the value from this color’s slider and assign it to the redColor
float. In the action for the red slider, write redColor = CGFloat(redSlider.value).

You want to update the text field with the correct RGB value. To do that,
you need to convert the value from between 0.0 and 1.0 to between 0 and
255; so, you multiply the value of redColor by 255. Finally, you ensure that
there are no decimal places by using the String(Format: function and

the %.0f placeholder, which in plain English means “put the float value


http:///

CHAPTER 4: Building Interfaces 105

here but limit it to 0 decimal places.” The number before f controls the
number of decimal places shown in the string. Also, in order to make the
format function recognize the float, you need to convert it from a CGFloat
to a Float. The code to achieve this is redValue.text = String(format:
"%.0f",Float(redColor*255.0)).

3. Achange has been made, so you need to call the updateColor function to
make sure the change is reflected in the color set in the view’s background.
The code for this is the same as in the viewDidLoad function, so type
updateColor().

The code for the finished action should look like this:

@IBAction func changeRed(sender: AnyObject) {
redColor = CGFloat(redSlider.value)
redValue.text = String(format: "%.0f",Float(redColor*255.0))
updateColor()

}

Your challenge is to implement the remaining two actions by yourself. When you’re done, check that
your code matches mine:

@IBAction func changeGreen(sender: AnyObject) {
greenColor = CGFloat(greenSlider.value)
greenValue.text = String(format: "%.0f",Float(greenColor*255.0))
updateColor()

@IBAction func changeBlue(sender: AnyObject) {
blueColor = CGFloat(blueSlider.value)
blueValue.text = String(format: "%.0f",Float(blueColor*255.0))
updateColor()

You need to write one final function to complete this tab: the textFieldShouldReturn method, which
the text fields will look for now that they know this view controller is acting as a delegate for those
text fields.

The UlTextViewDelegate Implementation

Text fields are probably the most common control in an iOS app—they’re everywhere. You tap inside
them, the keyboard slides in, and you add your text. It's probably second nature to you that tapping
the Return key dismisses the keyboard. Hold that thought; go ahead and run your application, and
select the Slide It tab.

Play around with the sliders, and see how the background color changes as you modify the values.
You’ve created something that can be usefully applied in the real world, which, as | mentioned
previously, is done by giving the RGB values so they can be selected. Let’s test this. Tap in one of
the text fields: as expected, the keyboard slides in. Great—now try to go to the Track It tab. Hmm,
not so great: the keyboard is blocking the path, so you're effectively stuck and must quit and
relaunch the app to have any hope of accessing the other tabs.


http:///

106 CHAPTER 4: Building Interfaces

You want to make it so that when you press Return, the keyboard dismisses itself. This is why you
made your view controller take on the UITextViewDelegate role. By doing this, when you press
Return, the text field tries to call the textFieldShouldReturn function; but because you haven’t added
this function yet, it doesn’t do anything. Add the following code beneath your viewDidLoad function:

func textFieldShouldReturn(textField: UITextField!) -> Bool {
textField.resignFirstResponder()
return true

}

When you tap the text field, the text field assumes responsibility for everything that happens
thereafter—in other words, it becomes the first responder. When this function is called, you’re
telling it to give up this status with the resignFirstResponder function before returning a Boolean
value, which in this case can be either true or false (the result is the same). Rerun your application:
you should find that you can dismiss the keyboard with the Return key and that you have a fully
functional color slider view, as shown in Figure 4-28.

]
B

an

Track It Slide It Alert

Figure 4-28. The finished Slide It tab, complete with dismissible keyboard


http:///

CHAPTER 4: Building Interfaces 107

Note If you’re running this in the simulator, as of Xcode 6 and i0S 8, the keyboard doesn’t automatically
show—the simulator assumes you want to use your physical keyboard. But on a device, you experience the
problem of not being able to dismiss the keyboard, which is why you must always test on a physical device.
To summon the keyboard in the simulator, go to Hardware » Keyboard » Toggle Software Keyboard (38-+K).

Adding “O0ff the Menu” Controls

You’ve created two hugely different but incredibly cool tab views so far. For the third tab, you look at
another common control you add through Interface Builder: the segmented control. In addition, you
also look at two important controls that you can’t add through Interface Builder: the alert view and
the action sheet.

Alert Views and Action Sheets with UlAlertController

Before you begin building your interface, let’s clarify what | mean when | talk about alert views and
action sheets. Figure 4-29 shows how both are used in the iCloud settings area of the Settings
application in iOS 8. You already encountered an alert view, when the Track It tab asked for access
to your location.

Upgrading to iCloud Drive
Other devices will not be able to access
documents in iCloud until they are also

upgraded to iOS 8 or OS X Yosemite.

Cancel Continue

If you sign out of your account, all
Documents & Data and Photo Stream photos
stored in iCloud will be deleted from this
iPhone.

Sign Out

Cancel

Figure 4-29. An example of an action sheet (left) and an alert view (right)



http:///

108 CHAPTER 4: Building Interfaces

Action sheets, as their name implies, can be used to present the user with several options for a
specific action. For example, when you tap the flag icon while looking at an e-mail, you’re asked
whether you want to Flag, Mark as Read / Unread, or Move To Junk. If you give the user the option
to add account details to your application, you might use an action sheet to ask whether the user
wants to add an account for your site or a third-party account, such as an OpenlD account.

Alert views are coded in a way very similar to action sheets. Alert views are used to draw the user’s
attention to an event, such as a timer ending, or to confirm whether the user wants to activate a
feature or delete some data. You’ll use them often, and the good news is that they’re easy to set up
and use.

In iOS 8, Apple introduced a new class called UIAlertController, which combines the older
UIAlertView and UIActionSheet classes into a single class. This is a fairly sensible move on Apple’s
part; the legacy classes were extremely similar.

Building the Action Tab Interface

Now that you have a clearer understanding of what alert views and action sheets do, you’re ready to
build the third and final tab: the Action tab. Just the middle view controller needs to be built. Adjust
your storyboard so it’s visible in the design area:

1. Search for Segmented Control in the Object Library, as shown in Figure 4-30.
Drag it onto the view and position it in the center, at the top of the view.

h {} ® H

multiple segments, each of which

Segmented Control - Displays
1
functions as a discrete button.

Text Field - Displays editable text
Text and sends an action message to a
target object when Return is tapped.

Slider - Displays a continuous range

= of values and allows the selection of a
single value.

m[m|

oo

Figure 4-30. Searching for Segmented Control in the Object Library


http:///

CHAPTER 4: Building Interfaces

Figure 4-31.

You need to change the values of the segments. To do this, select the
segmented control you added to the view, and open the Attributes Inspector.
Change the segment Title attribute from First to Alert.

Changing the second segment’s title isn’t as obvious. Looking at the
Attributes Inspector for the segmented control, notice the drop-down list
above the Title attribute that you just changed. Click it, and select Segment
1- Second.

You can now change the Title attribute of the second segment from Second
to Action Sheet, as shown in Figure 4-31.

Segment  Segment 1 - Action Sheet #

Title | Action Sheet

Image I'I‘.I\]l! -
Behavior (¥ Enabled Selected

Content Offset 0|l 0.
X Y

Control
Alignment D m E] =
Horizontal
= £ | [ 3
Vertical

Changing the second segment’s Title attribute

Using the square handles on either side of the segmented control, resize it
so that you can see all of the text in the second segment. Reposition it so it’s
centered again.

You want to add a button control to the view to trigger whichever option is
selected. Search for Button in the Object Library, and drag it on to the view,
positioning it dead center as you did the switch in the first tab.

Using the Attributes Inspector, change the button’s Title attribute from
Button to Show Me. Again, you need to reposition it to be dead center after
changing the text. Your view should resemble that shown in Figure 4-32.

109


http:///

110 CHAPTER 4: Building Interfaces

Alert

Action Sheet

Figure 4-32. The completed interface for the Action tab

Show Me

8. Click the view, go to Fix Auto Layout Issues, and click Add Missing

Constraints.

9. You’re ready to create the outlets and actions. As usual, switch to the
Assistant Editor, and ensure that you have ActionViewController.swift
selected. Control-drag a connection from the segmented control into
the header, and create an outlet named actionControl, as shown

in Figure 4-33.
E Connection
| Object
Name
Alert

— ) Type
Storage

Cancel

Qutlet
Alert

| actio nControl|

UlSegmentedControl |+
Weak

Connect

l

Figure 4-33. Creating the actionControl outlet

|

// Created by Matthew Knott on @1/08/20814.
// Copyright (c) 2014 Matthew Knott. All rights reserved.
/7
import UIKit
class ActionViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.



http:///

CHAPTER 4: Building Interfaces 111

10. Create an outlet for the button called showmeButton, and then create an
action for it named performAction.

The first lines of your ActionViewController.swift file should now resemble the following code:
import UIKit
class ActionViewController: UIViewController {

@IBOutlet weak var actionControl: UISegmentedControl!
@IBOutlet weak var showmeButton: UIButton!
@IBAction func performAction(sender: AnyObject) {

}

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
}

It’s important to quickly check the official documentation when experimenting with different controls
and frameworks, because quite often you need to specify that your view controller is acting as a
delegate for the classes you’re adding. This can be the case with action sheets and alert views if

you want to take advantage of any of their delegate methods for handling user responses. Missing a
delegate reference can lead to your application failing or your code not being called in some situations.
Because you won’t be using the delegate methods in this example, there is no need to add them.

You’re now ready to begin coding the action in this class file. Switch back to the Standard Editor,
and open ActionViewController.swift from the Project Navigator. All you need to look at in the file
is the stub for the performAction action:

1. Scroll down until you find the performAction action. Inside its braces, you’ll
type an if ... else ... statement to see which segment is currently
selected and determine the appropriate action to perform. You do this by
checking the UISegmentedControl’s selectedSegmentIndex property. The
segments are held in an array, and the index is an incremental number
assigned to each entry. The index starts at 0, so if the selected index is 0,
that means Alert is selected; if it’s 1, that means Action Sheet is selected.
Type the highlighted code into the action:

@IBAction func performAction(sender: AnyObject) {
if actionControl.selectedSegmentIndex == 0 {

}

else

{
}


http:///

112

CHAPTER 4: Building Interfaces

2. You need to initialize and show the alert view. The new UIAlertController
takes far more code to initialize than its predecessor, but it’s far more flexible.
Type the highlighted code; once the action sheet code is written, you can see
the completed result:

@IBAction func performAction(sender: AnyObject) {
if actionControl.selectedSegmentIndex == 0 {
var controller : UIAlertController = UIAlertController(title: "This is an alert",
message: "You've created an alert view",
preferredStyle: UIAlertControllerStyle.Alert);

var okAction : UIAlertAction = UIAlertAction(title: "Okay",
style: UIAlertActionStyle.Default,
handler: {
(alert: UIAlertAction!) in controller.dismissViewControllerAnimated(true,
completion: nil)

1)

controller.addAction(okAction);

self.presentViewController(controller, animated: true, completion: nil)

3. To code the else eventuality, type this very similar highlighted code inside the
second set of parentheses:

@IBAction func performAction(sender: AnyObject) {
if actionControl.selectedSegmentIndex == 0 {
var controller : UIAlertController = UIAlertController(title: "This is an alert",
message: "You've created an alert view",
preferredStyle: UIAlertControllerStyle.Alert);

var okAction : UIAlertAction = UIAlertAction(title: "Okay",
style: UIAlertActionStyle.Default,
handler: {
(alert: UIAlertAction!) in controller.dismissViewControllerAnimated(true,
completion: nil)

H
controller.addAction(okAction);

self.presentViewController(controller, animated: true, completion: nil)

}

else

{
var controller : UIAlertController = UIAlertController(title: "This is an
action sheet",


http:///

CHAPTER 4: Building Interfaces 113

message: "You've created an action sheet”,
preferredStyle: UIAlertControllerStyle.ActionSheet);

var okAction : UIAlertAction = UIAlertAction(title: "Okay",
style: UIAlertActionStyle.Default,
handler: {
(alert: UIAlertAction!) in controller.dismissViewControllerAnimated(true,
completion: nil)

H

controller.addAction(okAction);

self.presentViewController(controller, animated: true, completion: nil) }

}

You’ve just written code that performs four distinct tasks. First, you define a UIAlertController
called controller. Next, you define a UIAlertAction that adds a button to either the alert view or the
action sheet to dismiss the controller. Third, you add the action to the controller, associating the two.
Finally, you tell the main view to present the UIAlertController. The only difference between these
two pieces of code is that UIAlertControllerStyle is Alert for an alert view and ActionSheet for an
action sheet.

That’s it—you’ve configured your view controller to show either an alert view or an action sheet
depending on the selected index of a segmented control. Because the focus of this book is Xcode,
not iOS app development, I’'m only scratching the surface of what you can do with these two
controls, but they’re extremely easy to build on and are a key addition to any developer’s bag of
tricks.

You’ve coded the third and final tab, so go ahead and run the application in the simulator. It should
produce results similar to those shown in Figure 4-34. Look at all the great things you’ve been
able to achieve in this chapter, with a relatively small amount of effort and code! Hopefully your
confidence with the Xcode IDE, iOS, and the Swift language is beginning to build.


http:///

114 CHAPTER 4: Building Interfaces

This is an alert
You've created an alert view

OK

Figure 4-34. The alert view shown in the Alert tab

Changing the Interface with Code

In this chapter, you’ve taken a good look at how you can adjust the interface elements’ attributes
using the Attribute Inspector. But just as you can’t use Interface Builder to add action sheets
and alert views, there are some visual effects you can only achieve through code. You’ve already
done a lot of hard work in this chapter, and you won’t learn any more about Xcode here. So,
look at this section as totally optional. However, you’ll probably want to use the skills you can
develop here to build your own applications for iOS devices, in which case these examples will
prove invaluable.


http:///

CHAPTER 4: Building Interfaces 115

Buttons and i0S 8

With iOS 7, Apple introduced the most radical change in design since the launch of the first iPhone:
moving away from skeuomorphism to a flat design style. The decision was controversial when
announced, but many are now warming to the change and have adapted their applications to fit with
the new styles.

One area that changed that many want to alter in their applications is the standard button. Figure 4-35
shows the three buttons from the Contact screen in iOS 6 and iOS 7. In iOS 6, buttons looked like
buttons, whereas in iOS 7 and iOS 8, they’re shown in the same style as hyperlinks on a web page.

Send Message

Send Share Add to

Message Contact Favorites Share Contact

Add to Favourites

Figure 4-35. The three buttons from the Contact app’s detail view for i0S 6 (left) and updated for iOS 7 (right)

Although you can change the background color of the button, you can’t add rounded corners in
Interface Builder, so you need to delve into code to make these alterations:

1.

From the Project Navigator, open ActionViewController.swift and
scroll down to the viewDidLoad function. Drop down a line after
super.viewDidLoad(), and you're ready to add some custom code.

You’re going to change the background color to a dark blue. You do this
similarly to how you changed the background color in the Slide It tab, by
creating a color using RGB values. But this time, you need to convert real
RGB values, which range from 0 to 255, to fit in with what the method
expects, which is a value between 0.0 and 1.0. To do this, you divide the
value by 255.0. Add this line of code:

showmeButton.backgroundColor = UIColor(red: 9/255.0, green: 95/255.0, blue: 134/255.0,
alpha: 1.0)

The button will be hard to read with blue text on a blue background, so the
next task is to change the text color to white. You could do this in Interface
Builder, but then you wouldn’t be able to read the button’s text when looking
at the storyboard. Type the following code on the next line:

showmeButton.setTitleColor(UIColor.whiteColor(), forState: UIControlState.Normal)


http:///

116 CHAPTER 4: Building Interfaces

4. You can easily apply a curved corner to the button by specifying a float value
greater that 0.0 to the button’s cornerRadius property. You do this using the
following code:

showmeButton.layer.cornerRadius = 4.0

Your viewDidLoad function should now look like this:

override func viewDidLoad() {
super.viewDidLoad()
showmeButton.backgroundColor =
UIColor(red: 9/255.0, green: 95/255.0, blue: 134/255.0, alpha: 1.0)
showmeButton.setTitleColor(UIColor.whiteColor(), forState: UIControlState.Normal)
showmeButton.layer.cornerRadius = 4.0

}

Run the application in the simulator: you see the difference immediately in your button on the Action
tab. The problem is that the button isn’t set at a suitable size to make the most of your effects. Open
Main.Storyboard from the Project Navigator, make the button on the Action view much bigger, and
then reposition it to center it. Now run the application again: your button should look great and
resemble that shown in Figure 4-36.

iOS Simulator - iPhone 5s - iPhone 5s / |058 i
Carrier & 1:23 PM (-

Figure 4-36. The customized button


http:///

CHAPTER 4: Building Interfaces 117

That’s it for this chapter. As a final challenge, try to apply curved corners to the text view in the Track
It tab using the code you used to curve the button. If you get stuck, the answer can be found at the
end of the summary for this chapter.

Summary

This has been a long chapter, but you’'ve made it through and should be really proud of what you've
achieved. The objective for the chapter was to learn more about creating interfaces in Xcode, and
you did that with a mix of Interface Builder and writing custom code. The application you created
was called Showcase, mostly because it gives you a cool app that you can load on your phone so
you can show your friends and colleagues the kind of amazing things you’re now able to develop!

Specifically, in this chapter, you did the following:
Created an application from the Tabbed Application template
Renamed the default view controllers, and created your own from scratch
Removed the default views from the storyboard, and created three of your own
Tied your new view controllers to their respective classes
Created image sets in the images Asset Catalog, and populated them
Linked views to a tab bar controller in a storyboard
Learned about frameworks, and accessed the device’s GPS function

Learned about UITextView, UISegmentedControl, UISwitch, and UISlider
controls

Programmatically created a UIAlertView and a UIActionSheet
Learned how to modify the visual appearance of controls using code

When you go through that list, you can see how many new skills you’ve learned in this chapter.
Before moving on, though, | promised the solution to rounding the corners of the text view in the
Track It tab. If you did it right, you should have added the following line to the viewDidLoad function
in TrackViewController.swift:

locationText.layer.cornerRadius = 5.0

Very well done if you got that right.

Now on to Chapter 5, where you begin to look at the help provided by Apple through Xcode,
along with how Xcode’s intelligent code-completion feature makes coding much quicker and
more efficient.


http:///

Chapter

Getting Help and Code Completion

In Chapter 4, you accomplished quite a lot. You should be starting to feel more confident with the
tools and features available in Xcode, and hopefully you’re seeing how it can help you build your
own applications.

This chapter focuses on the wealth of help that Xcode offers while you create the next big

OS X and iOS apps. You see how Xcode makes writing code quick and easy with its intelligent
code-completion feature. Looking at code completion will also help you grasp the basics of
working with Xcode’s code editor. The main focus of Chapter 4 was Interface Builder with a
dash of storyboarding. You went from having a default tab bar application to an application
that had three very different tabs. This chapter explains how to create the project shown in
Figure 5-1, which demonstrates how to interact with some of the built-in applications: Mail,
Messaging, and Safari.

sosen OF-UK ¥ s O 60% B e OZ-UK T w47 LR weee 02K T 48 o 0% E sere O2UK T was o To%

Beginning Xcode Send New Message Cancel aprass.com c

Beginning Xcoda

| am really enjoying the book! . . H =
| am interested in your o

products, please call me
Sent from my iPhone I8} back Send o=
&

QIWIEIR|TiY|U]I|O}P

ASDFGHUJKL . E

Z X CVBNM

123 @ 0 space retum
Figure 5-1. The InTouch application

119


http:///

120 CHAPTER 5: Getting Help and Code Completion

Getting Help

Xcode provides help in a variety of different ways, not only on how to use Xcode but also on how
to program using Objective-C and Apple’s frameworks. This section explains how Xcode helps you
find a solution when you’re stuck, whether you’re using the code editor, the property list editor, or
Interface Builder, or you’ve just encountered a problem while coding.

Creating the Project
Okay, you know what the aim of the chapter is, let’s start building the project.

1. Open Xcode, and create a new project by clicking Create A New Xcode
Project on the Welcome screen or going to File » New » Project (38+Shift+N).
Select the Single View Application template, and click Next.

2. Name your project InTouch, and ensure that Language is set to Swift and
the Devices option is set to iPhone. Configure the other settings as you did
in previous applications. Make sure the key settings match those shown in
Figure 5-2, and click Next.

Choose options for your new project:

Product Name: | InTouch
Organization Name: Matthew Knott
Organization Identifier: com.mattknott
Bundle Identifier: com.mattknott.InTouch
Language: | Swift
Devices: | iPhone

Use Core Data

Cancel Previous Next

Figure 5-2. The initial settings for the InTouch application

3. You don’t want to create a Git repository, so leave Source Control
unchecked. Make sure your project will be saved where you want it to be,
and click Create.

That’s the foundation of the project setup. You’ll be amazed how much you can achieve beyond this
with very little code and effort. Before you proceed, it’s important to understand that you don’t have
to go to your favorite search engine if you're stuck. Xcode has one of the best support systems of
any IDE out there, if not the best.


http:///

CHAPTER 5: Getting Help and Code Completion 121

Downloading Additional Documentation

Large parts of this chapter are dependent on you having the relevant documentation installed

on your computer. Xcode often does this by default, but it’s well worth checking that you have
everything you need installed; otherwise you miss out on some excellent application programming
interface (API) and system documentation. To check the state of your documentation, start by
selecting Xcode » Preferences from the menu bar (¥+,). Click the Downloads tab, and you’re
presented with two lists, as shown in Figure 5-3. You can download legacy simulators and additional
documentation sets. It’s optional for this chapter, but if you want to bolster your documentation, you
should download Xcode 6 library and i0S 8 library. Click the down-pointing arrow next to the file
size, and the documentation begins downloading.

(2] 6] Downloads

YN, © & / B |

General Accounts Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source

& 3

ontrol  Downloads ' Locations

(a]

¥ Components

@ 105 7.1 Simulator
W@ 05 7.0 Simulator

¥ Documentation

i. i05 8 library

i@ 05X 10.9 doc set
i 05X v10.10 library
i’ Xcode 6 library

Check for and install updates automatically Check and Install Now

Figure 5-3. The Xcode Downloads tab in the Preferences window

Quick Help

To begin, let’s focus on Quick Help. Quick Help provides a concise definition of symbols, interface
objects, and build settings. The beauty of using Quick Help is that it resides in the Utilities area of
Xcode and doesn’t take away your focus when you’re working on a project. To access the Quick
Help Inspector, go to View » Utilities » Show Quick Help Inspector (\_+3+2). To see Quick Help in
action, open AppDelegate.swift and highlight UIResponder. Quick Help instantly updates to give you
useful information. Figure 5-4 shows Quick Help in action.


http:///

122 CHAPTER 5: Getting Help and Code Completion
B3| « » | & InTouch » [ InTouch ) » AppDelegate.swift ) [&] AppDelegate B (@,
1/ Quick Help
// AppDelegate.swift
// InTouch Declaration @availability(i0s,
17/ introduced=2.0) class
// Created by Matthew Knott on 82/08/2014. UIResponder : NSObject
// Copyright (c) 2014 Matthew Knott. All rights reserved. -
17 Description The UIResponder class defines

import UIKit

@UIApplicationMain
class AppDelegate: UIRespopder, UIApplicationDelegate {

var window: UIWindow?

func application(application: UIApplication!,
didFinishLaunchingWithOptions launchOptions: NSDictionary!) ->
Bool {
// Override point for customization after application launch.
return true

}

func applicationWillResignActive(application: UIApplication!) {

// Sent when the application is about to move from active to
inactive state. This can occur for certain types of
temporary interruptions (such as an incoming phone call or
SMS message) or when the user quits the application and it
begins the transition to the background state.

// Use this method to pause ongoing tasks, disable timers, and
throttle down OpenGL ES frame rates. Games should use this

' method to pause the game.

Figure 5-4. Quick Help showing information about the UIResponder class

Availability
Declared In
Reference
Guides
Sample Code

an interface for objects that
respond to and handle events.
It is the superclass of
UlApplication, UlView and its
subclasses (which include
UlwWindow). Instances of these
classes are sometimes referred
to as responder objects or,
simply, responders.

i05 (2.0 and later)
UlResponder.h

UlResponder Class Reference
Event Handling Guide for i0S

Custom Section Titles with

NS FetchedResultsController,
Handling Touches Using
Responder Methods and
Gesture Recognizers,

MT AudioProcessingTap Audio
Processor, TableView
Fundamentals for iOS,
iAdSuite

You can see from Figure 5-4 that a range of information appears —exactly what is displayed varies
with what you select. However, following are the main entries of a Quick Help entity:

Declaration: The declaration gives you an overview of the class’s definition,
including its base class and any adopted protocols, to help you understand the
class’s capabilities.

Description: This is rather self-explanatory, but the main point is that the
description of a symbol, an object, or a setting covers how it should be used
and also gives an overview of event handling.

Availability: The availability states the minimum requirements in terms of the
version of iOS the user can be running in order for the object or symbol to
function. Many classes have been available since the release of the iPhone
software development kit (SDK); however, it’s a good idea to keep an eye on
newer technologies to ensure that you don’t run into compatibility issues.

Declared In: Here you’re given the name of the header file in which the object or
symbol is defined. When you click it, you can view the header’s source code in
the code editor.

Reference: Each of the main classes has a class reference that fully explores
and explains the class and its protocols and functions.


http:///

CHAPTER 5: Getting Help and Code Completion

Guides: If you installed the iOS 8 Library documentation, guides are available for
certain classes that give you straightforward help for implementing and using
the class, as well as how it can work with other classes.

Sample Code: Apple has made dozens and dozens of functioning applications
available to demonstrate different classes and their implementation. These
sample code applications can be very simple or full-blown games. Again, the
availability of sample code in Quick Help depends on you’ve downloaded the
iOS 8 Library.

If you come across a symbol, an object, or a setting that doesn’t have a Quick Help entry, you can
search Xcode’s documentation for whatever you’ve selected. For instance, in AppDelegate.swift,
if you highlight func, you see that there isn’t a Quick Help entry. With @func still highlighted, click
Search Documentation, as shown in Figure 5-5, and the Documentation Viewer window appears.

b ®

Quick Help

Search Documentation

Figure 5-5. Quick Help’s Search Documentation button, which you can click when no entry exists for the highlighted entity

Another way to access Quick Help is to press the Option key (\) and select a class in the code
editor. Figure 5-6 illustrates the dialog displayed when the UIWindow class is selected in
AppDelegate.swift. This is only accessible from the code editor, but it’s very useful if you need to
quickly look up a class definition. You’re provided with a description of the class, the version of
iOS in which it was introduced, where it’s declared, and a link to additional documentation

(any text that’s blue is a link that opens an external file, either source code in the code editor or a
class reference in the Documentation Viewer).

var window: UIWindow?

@availability(i0S, introduced=2.0) class UIWindow :
UIView hi

The UIWindow class defines an object known as a window that manages 11
and coordinates the views an app displays on a device screen. Unless an
app can display content on an external device screen, an app has only

one window.

i0S (2.0 and later) I
UlWindow.h il
UlWindow Class Reference ]

¥

e

Figure 5-6. A more compact version of Quick Help, displaying information regarding the UIWindow class

123


http:///

124 CHAPTER 5: Getting Help and Code Completion

Documentation Viewer

Before | focus on the Documentation Viewer in detail, | want to talk about how this facet of Xcode
has changed from previous versions. Documentation Viewer was introduced in Xcode 5, having
previously been integrated into the Organizer tool, which is examined later in the book in Chapter 14.

As you become more familiar with the workings of Xcode, you’ll learn to depend on the
Documentation Viewer for its quick access to documentation and SDK references, which, given the
literally thousands of APIs, are remarkably detailed. Figure 5-7 shows the Documentation Viewer.
To open it, go to Help » Documentation And APl Reference (\_+38+0).

ene Documentation — UIWindow Class Reference o

I L | Q- Search documentation o i

[ I m ) | ~ UWindow Class Reference H

|'v g 105 8 library Overview UlWindow

| » I Audio & Video ¥ Tasks Inherits from: None |
» [ Cocoa Touch Layer ¥ Configuring Windows Conforms to: None |

| » [ Core O5 Layer windowLevel Framework: LIkt in (05 2.0 and later, More related items |
> |_] Core Services Layer sereen goug
» [ Data Management rootViewContraller The UIWindow class defines an object known as a window that manages and coordinates the

> D General

¥ Making Windows Key |
» [ Graphics & Animation {

5 d views an app displays on a device screen. Unless an app can display content on an external
e\r\ﬁ'm oW s
device screen, an app has only one window.

» [ Languages & Utlities
> u Mathematical Computation
» [ Media Layer
» [ Metworking & Internet
» [ Performance
» [l Security
» [ User Experience
» [ Xcode
» [l 05X v10.9 doc set
» g Xcode 6 library

makeKeyAndVisible |

becomeKeyWindow
makeKeyWindow
resignKeyWindow
¥ Converting Coordinates
convertPoint:toWindow:
convertPoint:fromWindow:
convertRect:toWindow:
convertRect:fromWindow:
¥ Sending Events
sendEvent:
v Constants
UlWindowLeve|
Keyboard Notification User In...
¥ Noufications
UwindowDidBecomeVisibleN...
UwindowDidBecomeHidden...
UiwindowDidBecomeKeyNoti...
uwindowDidResignKeyNotifi..
UlKeyboardwillShowNotification

Figure 5-7. The Documentation Viewer

The Documentation Viewer allows you to search and browse a variety of different documents and

resources, including these:

Configuring Wir

windowLevel

The receiver's window level.

Declaration

var windowlLevel:

JBJECTIVE-C

@property(nonatomic) UIWindowLevel windowLevel

m  Class, framework, protocol, and object references

Technical guides

Getting started documents
Technical Q&A

Change logs and revision histories
Technical videos

Sample code

UIWindowlevel


http:///

CHAPTER 5: Getting Help and Code Completion 125

Notice that in addition to the document being viewed, the Documentation Viewer has three key
areas: the Toolbar, the Navigator, and the Table of Contents; | cover all three of these in detail in the
following sections.

Note What’s really useful about the documentation sets in Xcode is the fact that they’re completely
accessible offline. This means if you’re working where there isn’t an Internet connection, you still have access
to the wealth of documentation and references.

Toolbar

The Toolbar contains all of Documentation Viewer’s navigation and sharing features. They’re as
follows, moving left to right across the bar:

Backward/forward navigation: The Documentation Viewer works very much like
a web browser in that the content is HTML based. You can bookmark pages

of interest; you can navigate backward and forward through the history of your
research. This can be invaluable as you dip in and out of API references, trying
to find how to correctly instantiate a new class or get a better understanding of
the class properties.

Sidebar controls: Immediately after the backward and forward navigation arrows
are two buttons. The first controls the visibility of the Navigator, and the second
controls the visibility of the Table of Contents.

Search: The sheer amount of documentation provided by Apple can overwhelm
even the most seasoned iOS developers, and it would be absurd for Apple to
assume developers can find the correct documentation for the nitty-gritty details
of underlying Swift and Objective-C technologies, classes, and functions. That’s
why the Documentation Organizer has a very useful search functionality that
allows you to search for a particular term.

To demonstrate, search for a broad term: for example, gesture. This can relate

to a variety of different things, but luckily Xcode helps you find just what you're
looking for. Figure 5-8 illustrates the results that are displayed when searching

for gesture.


http:///

126 CHAPTER 5: Getting Help and Code Completion

806 Documentation — UIWindow Class Reference e
| < > [« | - gesturd | 2 i
W R | Toos

< G s

| » ) Audio & Video = UIPanGestureRecognizer |
» [ Cocoa Touch Layer UITapGestureRecognizer \

| » [ Core OS Layer UIPinchGestureRecognizer R NSAAc RamE |
» [l Core Services Layel UlswipeGestureRecognizer
» [ Data Management UIGestureRecognizerDelegate own as a window that manages and coordinates the
- & C‘E"‘"f‘] UlRotationGestureRecognizer n. Unless an app can display content on an external |
» [ Graphics & Animat Tow. |

» [ Languages & Utiliti
» [ Mathematical Com
» [ Media Layer

» [ Networking & Inter

m gestureRecognizers
[0 gestureRecognizers

» [ Performance 3 gestureRecognizers
» [ Security [ gestureRecognizers |
» [ User Experience [ gestureRecognizers I
» [ Xcode
» [ 05X v10.9 doc set < Guides |
» g Xcode 6 library I Built-in Gesture Recognizers Recognize Common Gestures .

I Handling Gesture Events

u Declaring a Specific Order for Two Cesture Recognizers
Bl Specifying a One-Way Rela...n Two Gesture Recognizers
B Permitting Si Gesture

B simple Gesture Recognizers
M Handling Touches Using R...ds and Gesture Recognizers
wvel windowLevel

Figure 5-8. The top results displayed when searching for gesture

Notice that as you type, only a few results are displayed; click Show All Results
to see the full set of results spread across a number of sections. In this case,
API Reference, SDK Guides, Tool Guides, and Sample Code are shown.

Share: A familiar icon to most people, and almost identical in function to its
equivalent in Safari, the Share button presents a list of ways to share or export
the current document: Open In Safari, Add Bookmark, Email Link, Message,
and, if available, the option to open a PDF copy of the document. Because
documentation in the Documentation Viewer is often spread over numerous
pages, it can be difficult to search in the scope of the entire document. This

is where opening the PDF copy can be useful, and most classes and APIs
support this. Another new feature is the ability to open sample code in the Swift
Playground, which you see in detail in Chapter 11.

The Navigator Sidebar

The Navigator provides you with two methods of accessing help and documentation. First, you can
browse the entire library of documentation installed on the machine; and second, you can place
bookmarks in various pieces of documentation. Access to each feature is controlled by two icons at
the top of the Navigator, as shown in Figure 5-9.


http:///

CHAPTER 5: Getting Help and Code Completion 127

W N

» (g iOS 8 library
» g OSXv10.10 library
v [ Xcode 6 library

» [ Cocoa Touch Layer

> ﬂj Core OS Layer
uj Core Services Layer
[Z)] Data Management
()] General
()] Graphics & Animation
ﬂj Languages & Utilities
()] Media Layer
()] User Experience

U Xcode

Yy v¥vvYyY yYyYvYYYY

Figure 5-9. The Navigator gives you access to the document library and your bookmarks

The ability to browse the documentation lets you start with a topic area, such as file management,
and then expand that topic, viewing all sample code, guides, and class references. For many
developers, this is the best way to use the system documentation to approach a problem or area of
development, because all the relevant resources are available when you reach the topic area; you
don’t have to start with a specific class or framework.

The ability to bookmark articles, guides, references, and sample code is another heavily used feature
of the Documentation Viewer. This makes it easy to refer to a piece of documentation at a later date.
It’s inevitable that at some point you’re going to stumble on something that may not be useful right
away but that you may want to refer to later—so a bookmark is just what you need!

Adding a Bookmark

To bookmark a piece of documentation, Figure 5-10 shows that you have three choices. You've
already seen the Add Bookmark option from the Share icon (1) on the Toolbar. Alternatively, you can
simply click the bookmark icon found throughout the documentation (2), or you can right-click the
documentation while you’re viewing it and select Add Bookmark (3).


http:///

128 CHAPTER 5: Getting Help and Code Completion

en0e Documentation — UiWindow Class Reference o

| < » | [A B | a-gesture = A}
R — W W v ulu::,::ms Reference UIWi ndDW o_l

| » @ 05X v10.10 library ¥ Tasks Inherits from:  UView

er : NSObject

v “ Xcode & Nbrary ¥ Configuring Windows Conforms toc  iTratt t, NCoordinateSpace, NSCoding, UlAppearance, UlAppearanceContainer, NSObject, UIDynamiciten
| » I Cocoa Touch Layer windowLevel Frameworkc  UIKit in 105 2.0 and later. More related inems
» [ Core OS5 Layer screen
» [l Core Services Layer rootviewContraller
» [l Data Management ¥ Making Windows Key ¥
» [ General loeyWindow This s a prefminary document for an API or lechnology in development. Apple is supplying this information 1o help you plan
3 E' Graphics & Animation makeKeyAndVisible for the adoption of the technologies and programming interfaces described herein for use on Apple-branded procucts. This
[ n Languages & Utilities becomeKeyWindow information is subject 10 change, and software imp according 1o thi should be tested with final operating
» [ Media Layer makeKeyWindow system software and final documontation. Newer vorsions of this document may be provided with future betas of the AP| or
» [ User Experience rasignkeyWindow technology.
» [ Xcode ¥ Converting Coordinates
comvertfoint:toWindow:
SR o The UIWindow class defines an object known as a window that manages and coordinates the views an app displays

rtRect: oW :
QenRRRCKIGMEcow on a device screen. Unless an app can display content on an external device screen, an app has only one window.
convertRect:fromWindow:

¥ r""d":; "‘""“ The two principal functions of a window are 1o provide an area for displaying its views and 1o distribute events o the
sencbvent;

¥ Constans views. To change the content your app displays. you can change the window's root view; you don't create a new
UmWindowLevel window. A window belongs to a level —typically, UIWindowLeve INorma L —that represents where it sits on the z-axis
Keyboard Notification User in.. relative to other windows. For example, a system alert window appears above normal app windows.

¥ Notifications

Back
UmindowDidBecomeVisibleN. faicad
UmindowDidBecomeHidden.. NOT
NiindowDidecomeleytioll, . When you use st " Add Bookmark 1o create an app, a window is created for you. f you choose
UnwindowDidResignKeyNotif 10 create a window a  Rewveal in Library e Full Screen at Launch option in the Attributes inspector
UeyboardWillshowNotification 50 that the window |s sized appopessy e carmem device. Because a window doesnl receive louch events

Figure 5-10. Three ways to bookmark documentation while viewing it

Viewing Your Bookmarks

Once you’ve bookmarked documentation, when you want to access it again, ensure that the
Navigator is active using the relevant Toolbar icon and then select the bookmarks icon. You see a
list of everything you’'ve bookmarked. Simply click the documentation item in the Navigator, and it
opens. To delete a bookmark, select the item from the sidebar and then press Backspace, or right-
click the item and select Delete.

Unfortunately, your bookmarks aren’t synced anywhere, so you have to be on your device to access
them. It's sometimes useful to use Apple’s online documentation library if you want to access your
bookmarks on other devices, such as your iPhone or iPad.

The Table of Contents Sidebar

The Table of Contents sits to the left of the document you’re viewing. As you would expect, it
provides a hierarchical overview, allowing you to quickly navigate a large document and see any
associated source code or example projects (see Figure 5-11).


http:///

CHAPTER 5: Getting Help and Code Completion 129

8en0e Documentation — Swift Standard Library Reference: String
I Lol [v] Q- swift |
¥ init0 7
Declaration 5 let secondCheck = string.hasSuffix("World")
Ascussion 6 J// secondCheck is false
¥ init{count:, repeatedvalue:)
Declaration
Discussion
¥ Querying a String
¥ var isEmpty { get } Converting Strings
Declaration o »
Discussion
¥ hasPrefix(_ :) -> Bool

D Rrapian tolnt() -> Int?
Discussion

B.‘

¥ hasSuffix(_ :) -> Bool Returns an optional integer, containing the result of attempting to convert the characters in the string into an integer value.
Declaration 1

Discussion
¥ Converting Strings Declaration
Declaration func toInt() —> Int?
Discussion
¥ Operators
v Discussion
Declaration
Discussion Use this method to convert a string of characters into an integer value. The method returns an optional—if the conversion
¥ fm succeeded, the value will be the resulting integer; if the conversion failed, the value will be nil:
Declaration
Discussion

¥ ==

1 let string = "42"

Declaration

Discussion 3 ("Got_the number: \(number]")

Figure 5-11. The Table of Contents lets you navigate large documents quickly

Quickly Accessing Documentation

Xcode makes it easy to access help while you’re working on your project without having to open the
Documentation Viewer each time you want to look something up. Simply right-click, and, depending
on what part of Xcode you’re working with, a help menu appears in which you can access popular
documentation guides that are displayed as submenus. You can access these menus from the Source
Editor (Figure 5-12), Interface Builder (Figure 5-13), and the Project Navigator (Figure 5-14), along

with a variety of others. When you choose an item from the help submenu, the Documentation Viewer
is displayed and shows the relevant guide or reference. These is useful when you would like to look
something up quickly or want to know how to perform a task in the part of Xcode you’re using.


http:///

130 CHAPTER 5: Getting Help and Code Completion

|B8 | < » [ inTouch ) [ InTouch | . AppDelegate.swift » No Selection

//  InTouch

import UIKit

@UIApplicationMa
class AppDelegat

var window: |

func applica
{

/f Overr
return t

func applica
/f Sent )

of &

appl

i/ Use t
shou

}

func applica
/f Use t
appl

late

/f If yo
appl

func applica
/f Calle
cha

H

// AppDelegate.swift

// Created by Matthew Knott on 82/88/2014.
// Copyright (c) 2014 Matthew Knott. ALl rights reserved.

Cut
Copy
Paste

Find Selected Text in Workspace...

Show lssue sLaunchingWithOptions launchOptions: N5Dictionary!) -> Bool
Jump to Definition fon launch.
Structure >
: T, stiont) {
Discard Changes in Selected Files active to inactive state. This can occur for certain types
Show Blame for Line 1 phone call or SMS message) or when the user quits the
* background state.
Refactor » timers, and throttle down OpenGL ES frame rates. Games
Open in Assistant Editor
Reveal in Project Navigator leation!) {
2 % e user data, invalidate timers, and store enough
Reveal in Symbol Navigator spplication to its current state in case it is terminated

Show in Finder
an, this method is called instead of

Continue to Here

Speech P Llication!) {
round to the inactive state: here vou can undo many of the
Source Editor Help » Catching Mistakes with Fix-it

func applicationDidBecomeActive(application: UIApplica Editing a Svmbol Everywhere in a Scope

Customizing Syntax Colors and Fonts

// Restart any tasks that were paused (or not yet : 5 = 5 the
application was previously in the background, ¢ Entering Text with Code Completion
Folding and Unfolding Source Code
func applicationWillTerminate(application: UIApplicatiy .
/f Called when the application is about to termina Show All Help Topics...
applicationDidEnterBackground:.
1
Figure 5-12. The Source Editor help menu
B8 <« » [ inTouch ) [ InTouch » 2 Main.storyboard » 2 Main.storyboard (Base) ' No Selecti | Dhe @ ¢ B @
| Quick Help
View Controller
— No Quick Help

v Zoom to 100% Nl
Zoom to 50%
Zoom to 25%
Zoom to 12.5%
Zoom In 38}
Zoom Qut O]

%

Interface Builder Help > Building User Interfaces

Inspecting and Configuring Interface Builder Files
Previewing Your Layout for Different Localizations, iOS Devices, and iOS Versions
Creating Storyboard and Xib Files

Figure 5-13. The Interface Builder help menu


http:///

CHAPTER 5: Getting Help and Code Completion 131

TR Q A e E o @ B« & wTeuch 8]

: . " Quick Help
v ? ¢ Capabilities Info Build Settings Build Phases Build Rules
argers, 105 Show in Finder

InTouch !
appoele  Open As >
viewCor  Show File Inspector

& Main.sto Bundle idertifier | com.mattknott
New File...
Images.)

suppory  Mew Project... Version | 1.0
inTouchtes  Add Files to “InTouch™... Buid |1
Products

Tearn None
New Group

. No matching signing identity found
New Group from Selection » i +

Sort by Name
Sort by Type

Find in Selected Groups..

Source Control » mentinfa

Project Navigator Help » About the Project Navigator

Creating a Project

Creating a Workspace e
Adding a New File

Adding an Existing File or Folder ;

Show All Help Topics...
oW elp Topics. | .

Upside Dawn o0 o

Figure 5-14. The Project Navigator help menu

Apple’s Web Site

As mentioned previously in this chapter and also at the beginning of this book, Apple’s developer
web site also provides an excellent library of information. In fact, when you download a
documentation set, you’re in fact downloading an offline version of Apple’s reference library—the
Documentation Viewer is essentially a glorified web browser.

Here is a list of useful online resources that are provided by Apple, aimed mainly at iOS developers:

http://developer.apple.com: The main home of Apple’s developer web site.
Here you can access the three developer centers available; see the latest and
greatest news in the world of Apple, specifically for developers; and access
many other parts of Apple’s developer world, such as resource centers,
information about copyright, and much more. | discuss these later when it’s time
to build and share your application.

https://developer.apple.com/devcenter/ios/index.action: The iOS Dev
Center is the main hub of all Apple resources provided to iOS developers and is
immensely useful when you’re developing applications. You can access the iOS
Provisioning Portal, Member Center, iOS Reference Library, and also available
downloads.

https://developer.apple.com/library/ios/navigation: The iOS Developer
Library is what’s used to populate the Documentation Organizer. The

library includes technical guides, a wealth of references, sample code, and
documentation. Apple really sets itself apart with the overwhelming amount
of support provided to developers. If you’re working with a certain technology
in iOS or OS X, chances are there’s a detailed guide for it. You can search the
library using the search bar to the left. It's easy to become overwhelmed, but
once you get familiar with its layout, finding what you need will become easy.


http://developer.apple.com/
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/library/ios/navigation
http:///

132 CHAPTER 5: Getting Help and Code Completion

https://developer.apple.com/library/ios/navigation/#section=Resource’%20
Types&topic=Sample%20Code: It’s always useful to see something up and running,
and seeing a working example can also save you a lot of time. The sample code
provided by Apple allows you to test a particular technology yourself, dissect
the code, and even use the code in your own applications.

https://devforums.apple.com: Something that | haven’t really mentioned is
Apple’s Developer Forums. The Developer Forums aren’t as active as other
forums available online, but the users are much more helpful and willing to offer
advice and solutions.

https://developer.apple.com/videos/ios: Apple also provides a host of useful
videos. Topics range from low-level technologies to high-level technologies
and frameworks provided by Apple. Because many developers don’t have the
chance to attend WWDC, Apple’s annual World Wide Developers Conference,
the video coverage of the conference can also be useful. This too can be found
in the videos section of the developer web site.

Code Completion

Code completion can greatly increase any developer’s productivity and can also save you a lot of
time—that is, if you know how to use it correctly. Using code completion in Xcode can take some
getting used to, depending on your prior experience; however, Xcode is much more intelligent than

other IDEs.

To get a taste of code completion and also using the Source Editor as a whole, let’s do things a
bit differently this time. Specifically, you’ll code your actions manually and then wire them up using
Interface Builder, instead of using Interface Builder to create the action stubs and linkages as you did

in previous chapters:

1.

Open ViewController.swift and, under the line import UIKit, begin typing
the following (remembering that it’s case sensitive):

import MessageUI

Xcode’s code completion may appear, but in this case it makes no suggestions;
this isn’t particularly helpful, but it’s one of the downsides of the modules
approach. Once you’ve typed the code, Xcode happily accepts it. Fortunately,
importing frameworks is a minor part of your application, and the code
completion is excellent for everything else.

You've imported the MessageUI framework because it gives you access to
MFMailComposeViewController, among other classes, so try out some of

the skills you learned earlier in this chapter. Go ahead and search for it in
Documentation Viewer; you’ll find a wealth of information, including confirmation
of its parent framework.


https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Sample%20Code
https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Sample%20Code
https://devforums.apple.com/
https://developer.apple.com/videos/ios
http:///

CHAPTER 5: Getting Help and Code Completion 133

2. You need to tell the view controller to act as a delegate for
MFMessageComposeViewControllerDelegate and
MFMailComposeViewControllerDelegate. To do this, immediately next to class
ViewController: UIViewController, type the following, using the code-
completion dialog to insert the correct code as shown in Figure 5-15:

» MFMessageComposeViewControllerDelegate, MFMailComposeViewControllerDelegate

import UIKit
import MessageUI

class ViewController: UIViewController, MFMelss

MFMessageComposeViewController

Pr| MFMessageComposeViewControllerDelegate MFMessageComposeViewControllerDelegate

The MFMessageComposeViewController class provides a standard system user interface for composing
text messages. Use this class to configure the initial recipients and body of the message, if desired, and
to configure a delegate object to respond to the final result of the user’'s action—whether ... More...
- DSUPST s ULUNCLCLVErMSNUT YyWarn mLnygy )
// Dispose of any resources that can be recreated.
}

Figure 5-15. The code-completion dialog appears as you add the delegate protocols

Note You can use the up and down arrows to change the selection in the code-completion dialog.
Then, with the correct item highlighted, press Enter: your cursor focuses on the end of the line, and the
code is entered.

When you add the MFMessageComposeViewControllerDelegate protocol,

you receive an immediate error; it’s important to note that you haven’t done
anything wrong. The issue is that this protocol has a single delegate function
that must be implemented in the class adopting the protocol. This means if you
want to add that protocol onto this view controller, the next thing to do is to
add the delegate function. Before you do that, ensure that the start of your view
controller looks like this:

import UIKit
import MessageUI

class ViewController: UIViewController, MFMessageComposeViewControllerDelegate,
MFMailComposeViewControllerDelegate {

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.


http:///

134 CHAPTER 5: Getting Help and Code Completion

3. To remove the error, you can use Xcode’s powerful code completion to quickly
add the missing delegate method. After the viewDidLoad function, drop down
a couple of lines and start typing messageComposeViewController. As you do,
code completion kicks in and presents you with the delegate function, as
shown in Figure 5-16. Press the Tab key to create the method.

class ViewController: UIViewController, MFMessageComposeViewControllerDelegate, MFMailComposeViewControllerDelegate {

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

messageComposeVi
messageCompose

ontroller{controller: MFMessageComposeViewController

ewController(controller: MFMessageComposeViewController!, dic i

™M
Delegate callback which is called upon user's completion of message composition.

HrDispoée of aﬁy resources that can be recreated.

}

Figure 5-16. Using code completion to create the missing delegate function

4. The method was generated with a code placeholder. Remove this with the
Backspace key so you're left with an empty function.

5. You need to manually write three actions that the buttons in your app’s
interface will use to open the web site or begin composing an e-mail or
text message. Begin typing the following highlighted code just before the
override func viewDidLoad() line:

import UIKit
import MessageUI

class ViewController: UIViewController, MFMessageComposeViewControllerDelegate,
MFMailComposeViewControllerDelegate {

@IBAction func sendEmail(sender: AnyObject) {

}
@IBAction func sendText(sender: AnyObject) {

}

@IBAction func openliebsite(sender: AnyObject) {
}

Now that you’ve created the stubs for each action, let’s go through the actions and focus on what
the code will do before writing it.


http:///

CHAPTER 5: Getting Help and Code Completion 135

Opening Web Sites in Safari

Many applications that you download from the App Store use web views in the native application to
load visual information from the Web or from locally stored assets. This is generally frowned on by
Apple, which prefers you to write everything natively. In the InTouch app, your goal is to direct users to
your company web site, and you do this by forcing Safari to open and display a specified web address.
There are some good reasons for using Safari in this instance: first, it’s overkill to implement a web
view for something that will require a lot of work to create a completely functional implementation with
back and forward controls; and, second, if the user opens the home page in Safari, they will be able to
bookmark it, sync the tab with other iOS devices, and share it on social media.

Locate the openlebsite action stub you just created. Between the braces, begin to type the
highlighted code, but feel free to replace http://apress.com with your own URL:

@IBAction func openWebsite(sender: AnyObject) {
UIApplication.sharedApplication().openURL(NSURL(string: "http://apress.com"))
}

In this code, notice that you aren’t creating any variables: you access the UIApplication class and
use what are called type methods in Swift. Although this book isn’t a guide to the Swift language

as such, it’s important to understand some of the basic concepts of the language. If you have
experience with other C-based languages, you may be familiar with static methods; a type method is
the same thing. In essence, a type method is a function that you can access without instantiating the
parent class—that is, without assigning it to a variable. Type methods are great when you want to
quickly access a function without setting a bunch of parameters.

Note Each time you add a bracket, notice that for a brief moment a little yellow box appears around its
counterpart (that is, the one you're closing). This is to make sure you don’t add too many or too few brackets;
this also applies to braces.

Sending an E-mail with MFMailComposeViewController

Next, let’s write the code that will allow the user to send an e-mail from your application.
What’s significant is that you don’t need to create an interface for this; you simply use
MFMailComposeViewController and preset the values. This is a great approach because unless
Apple changes the class, your application will always use the iOS Mail application’s compose
view, instantly making it familiar to users, more future-proof, and less work than writing your
own view.


http://apress.com/
http://apress.com/
http:///

136 CHAPTER 5: Getting Help and Code Completion

To implement the view controller, you also have to write another delegate function to handle what
happens after the e-mail has been sent. First write the action by adding the following highlighted code:

@IBAction func sendEmail(sender: AnyObject) {
if MFMailComposeViewController.canSendMail()

{
var mailVC = MFMailComposeViewController()
mailVC.setSubject("Beginning Xcode")
mailVC.setToRecipients(["xcode@mattknott.com"])
mailVC.setMessageBody("<p>I am really enjoying the book!</p>", isHTML: false)
mailVC.mailComposeDelegate = self;
self.presentViewController(mailVC, animated: true, completion: nil)

}

else

{
println("This device is currently unable to send email")

}

}

Feel free to change xcode@mattknott.com to your own e-mail address, and also feel free to change
the subject and presumptuous contents of the e-mail message to whatever you’d like the user to see
before they begin to compose their e-mail message to you.

Next you need to create a new function mailComposeController: didFinishWithResult. Thisis a
delegate function that is called when the user wants to dismiss the mail-compose view controller.
In this instance, you account for each of the possible outcomes of trying to send an e-mail before
you let the user dismiss the compose view, which they can do after they’ve sent their message
or if they decide to cancel it. Add the following function before the other delegate function,
messageComposeViewController: didFinishWithResult:

func mailComposeController(controller: MFMailComposeViewController!,
didFinishWithResult result: MFMailComposeResult, error: NSError!) {

switch result.value {

case MFMailComposeResultSent.value:
println("Result: Email Sent!")

case MFMailComposeResultCancelled.value:
println("Result: Email Cancelled.")

case MFMailComposeResultFailed.value:
println("Result: Error, Unable to Send Email.")

case MFMailComposeResultSaved.value:
println("Result: Mail Saved as Draft.")


http:///

CHAPTER 5: Getting Help and Code Completion 137

default:
println("unknown");

}

self.dismissViewControllerAnimated(true, completion: nil)

}

You'’ve written all the code needed to send an e-mail. Next you look at text messaging and how the
process is similar to sending an e-mail.

Sending a Text Message

Short Message Service (SMS) messaging is still one of the most popular forms of communication
in the world today, and just like e-mail, Apple makes it easy to send a text message from your
application. The code is very similar to the previous two methods, but there is one big distinction:
you have to test this on a physical device, because the simulator can’t simulate SMS.

With that in mind, in the sendText action, type the following highlighted code:

@IBAction func sendText(sender: AnyObject) {
if MFMessageComposeViewController.canSendText()

{
var smsVC : MFMessageComposeViewController = MFMessageComposeViewController()
smsVC.messageComposeDelegate = self
smsVC.recipients = ["1234500000"]
smsVC.body = "I am interested in your products, please call me back."
self.presentViewController(smsVC, animated: true, completion: nil)
}
else
{
println("This device is currently unable to send text messages")
}

}

Just as with the e-mail implementation, you now need to complete the code for the delegate
function that is called when the process of sending the text message is completed. Once
again you compare the result of the attempt to send a text message against several possible
results and print text to the console based on the outcome. Add the highlighted code to the
messageComposeViewController: didFinishWithResult: function:

func messageComposeViewController(controller: MFMessageComposeViewController!,
didFinishWithResult result: MessageComposeResult) {

switch result.value {

case MessageComposeResultSent.value:
println("Result: Text Message Sent!")

case MessageComposeResultCancelled.value:
println("Result: Text Message Cancelled.")


http:///

138 CHAPTER 5: Getting Help and Code Completion

case MessageComposeResultFailed.value:
println("Result: Error, Unable to Send Text Message.")
default:
println("unknown");

}

self.dismissViewControllexAnimated(true, completion: nil)

Building the Interface

You’ve written all the code your application needs to perform three essential communication tasks.
Now you need to build and connect your interface to harness the code you’ve just written:

1. Open Main.storyboard from the Project Navigator.

2. Drag a label and three buttons onto the view. Position the label at the top of
the view and the three buttons beneath it, one on top of the other.

3. Resize the label so it fills the full width of the view, and then open the
Attributes Inspector (\_+3+4). Set the Text attribute to say “Ways to get in
touch”. In the Font attribute, click the T to customize the font. Set Font to
Custom, Family to Helvetica Neue, Style to Thin, and Size to 23, as shown in
Figure 5-17. You may need to increase the height of the label.

b ® T B @
Label
Text | Plain

Ways to get in touch
Color | I | Default

Font | Helvetica Neue Thin 17.0 [T}/ ;

Font | Custom
Family | Helvetica Neue
Style | Thin
Size 23|} ;

Done

Autoshrink | Fixed Font Size =

Tighten Letter Spacing

Figure 5-17. Setting the custom font properties


http:///

CHAPTER 5: Getting Help and Code Completion 139

4. In order, double-click each of the buttons and name them Email, Text
Message, and Website, respectively, before centering them.

5. Use the Resolve Auto Layout Issues button, and select Reset To Suggested
Constraints under the All Views In View Controller heading to pin the
elements in place.

Your finished interface should look something like that shown in Figure 5-18.

B <« & InTouch InTouch » [ Main.storyboard » [l Main.storyboard (Base) » [Z] View Controller Scene ) View Controller » View

Ways to get in touch

Email
Text Message

Website

Figure 5-18. The finished interface

Making Connections

The code is written and the interface is assembled, but there is no linkage between the two. To
address this, you need to connect the actions you’ve created to the buttons using the Connections
Inspector (the sixth and final inspector):

1. Be sure you still have MainStoryboard.storyboard open. If it isn’t, open it from
the Project Navigator.

2. Open the Connections Inspector (\_+3+6) with the view controller selected
from the document outline, as shown in Figure 5-19. Note that you can select
the view controller by clicking the bar at the top in the design area.


http:///

140 CHAPTER 5: Getting Help and Code Completion

BH <« » B InTouch InTouch Main.storyboard Main.storyboard (Base) + [} View Controller Scene View Controller

¥ [ view Controller Scene

¥ ® View Controller U ® B
Top Layout Guide )
Bottom Layout Guide _—
v View
» B Email
> B Text Message Ways to get in touch
L Ways to get in touch
» B Website
» [E) constraints Email
{1} First Responder
[ Exit Text Message
Website

Figure 5-19. Main.storyboard with the view controller selected and the Connections Inspector open

3. Under the Received Actions heading in the Connections Inspector, you see
the three actions with a hollow circle next to each one. From the sendEmail
method’s circle, click and drag a connection to the button, as shown in
Figure 5-20.

Outlets
0 ‘E‘, Ez searchDisplayController
J view == View
Presenting Segues
relationship
show
L show detal
Ways to get in touch present medally
popover presentation
embed
Enikgit—_ push (deprecated)
madal ideprecated)
custom

Referencing Outlets
New Referencing Outlet
Website Referencing Outlet Collections
B « Beferencing Outlet Collection
Received Actions
openWebsite:
sendEmail:

sendText:

Figure 5-20. Connecting an action to a button from the Connections Inspector

4. A menu appears when you release the connection, presenting you with a list
of trigger events. The action is called when the correct type of event occurs.
Select Touch Up Inside from toward the bottom of the list.

o®0 |0 |[© |0O000O00000

50


http:///

CHAPTER 5: Getting Help and Code Completion 141

Note When a button in an i0S application is tapped, the Touch Up Inside event is triggered. By linking the
action to this event, you can be sure the code will be executed when the user taps your button.

5. Repeat these steps, linking the two remaining actions to their respective
buttons, and making sure to select the Touch Up Inside event from the list.

You’ve now learned one of several ways to link buttons to preexisting actions! Well done—you’re
well on your way to becoming an Xcode master.

Running the Application

Run the application either on your device or on the iOS simulator. When you tap the Website button,
InTouch is placed in the background and Safari opens. Similarly, if you click the Email or Text Message
button, a view is pushed in which the user can send an e-mail or SMS. Figure 5-21 illustrates, in order
on the main view, the Email compose screen, the Text Message compose screen, and Safari with

the web site.

wers O3-UK T s O 60% B e OZ-UK T w47 LR weee 02K T 48 o TO% W sere O2UK T was o 0% W

Beginning Xcode Send MNew Message Cancel aprass.com c

Beginning Xcoda

| am really enjoying the book!

| am interested in your
products, please call me
Sent from my iPhone I8} back Send == .
QWERTYU I OP S el—
ASDFGHUJKL . =
ZXCVBNM

123 @ 0 space retum

Figure 5-21. All the different views of the application


http:///

142 CHAPTER 5: Getting Help and Code Completion

Note You can’t send an e-mail from the i0S simulator, and you can’t even see the SMS dialog in it; so in
order to fully test this feature, you need to run InTouch on an actual i0S device that has an e-mail account
configured. You commence testing on a physical device in Chapter 14; if you haven’t skipped ahead to find
out how to test on a physical device, this will be a great project to come back to. For now, though, take my
word for it and assume that it works.

Summary

This chapter explored quite a few different topics, and you added some interesting communication
features to an application. Here is what you achieved:

Looked at the Documentation Viewer

Saw how Xcode makes it easy to access help from wherever you’re
working in Xcode

Learned about Quick Help

Explored Apple’s online documentation

Became more familiar with the Source Editor

Used code completion to speed up how you code
Connected actions using the Connections Inspector
Added a framework to your project

The next chapter looks at constraints. If you’ve been testing on a physical device or have tried rotating
the simulator, you’ve probably noticed that things can get a little messed up. | explain in detail how to
quickly fix this in Interface Builder, and | also provide your first look at programmatically adding objects to
the view controller while using programmatically generated constraints to keep them aligned.


http:///

Chapter

Constraints

Chapter 5 detailed the many ways Xcode gives you access to help, documentation, and guidance.
You created a handy communications application along the way that could compose a text message
or an e-mail, or even open a web site in another browser. You also looked at an alternative to the
Assistant Editor for making connections between Interface Builder controls and your outlets and
actions, and | talked briefly about how the Organizer had changed since Xcode 5.

This chapter introduces you to an area of Xcode that changed significantly between versions 4 and
5 and has undergone another significant revision in Xcode 6: the Auto Layout system. Auto Layout
(or Auto layout, as Apple sometimes refers to it) has been updated in Xcode 6 with the addition of
size classes to allow for more adaptable storyboards, the subject of the next chapter. In this chapter,
you use Auto Layout to build an example application that adapts to changing resolutions and screen
orientations the way you want it to. What’s great is that the techniques you learn here are largely
applicable to both iOS and OS X development.

Understanding Auto Layout

In Xcode 5, Auto Layout provides you with a comprehensive set of tools to automatically lay out
your controls in a view and constrain how different controls react to each other when the resolution
changes or when the iOS device is rotated. In the past there was a lot of stigma around Auto
Layout because of its shortcomings: it was inaccurate and offered poor flexibility. In Xcode 5, Apple
completely overhauled Auto Layout, creating something totally new that gave developers very fine
control over the behavior of the elements in a view.

Although many of the tools and principals remain, Apple has added an extra layer of configuration
with the introduction of size classes. This mechanism means a single storyboard can work on both
iPhone and iPad, which in the past were separate storyboards. The catalysts for this were the iPhone
6 and, even more, the iPhone 6 Plus, which bridge the gap between phone and tablet. The so-called
phablet blurred the lines, and Xcode 6 changed to embrace this, making life easier for developers by
allowing them to use a single storyboard if they want to.

143


http:///

144 CHAPTER 6: Constraints

This chapter takes you through the principles of Auto Layout before focusing specifically on how size
classes affects these principles. I’ll present four ways to add constraints to your controls:

Manually, using the Control + click-and-drag method you’re familiar with for
creating connections

Using the Add Missing Constraints function to automatically add constraints

Using Reset To Suggested Constraints to update constraints when you move
constrained controls

Using the Pin menu to set constraints with numeric precision

As a context for demonstrating the power of Auto Layout, you create a login dialog similar to those
in many password-protected services. Let’s begin!

Building an Authentication View

The authentication view you create in this chapter will be a familiar sight to users of Twitter,
Facebook, or any of the countless other web service-based apps in the App Store. You build the
project in this chapter in a way that teaches you how to lay out the elements of a view with Auto
Layout and constraints; at the same time, you learn some of the finer points of configuring text fields
that will be crucial when you develop your own applications.

Figure 6-1 shows LoginApp, the project you create in this chapter. Here you can see constraints in
action. When the device rotates, the text field resizes and adapts to the new orientation. | also explain
in depth the text field’s attributes; you can see in the finished application that you set placeholder text
on the e-mail address, but a number of hidden refinements contribute to a rich user experience.

Carrier ¥ 8:41 PM - Email Address

Email Address
matthewknott@me.com

matthewknott@me.com
Password
Password

assesseREN
asssssRREN
Log In
LogIn

Figure 6-1. The login page for the app resizes automatically when rotated


http:///

CHAPTER 6: Constraints 145

You’ve done this several times already, so you should be pretty familiar with creating new projects by
now. But to give you a heads-up, it’s always important to read the setup steps, because in the next
chapter you try something new:

1. Open Xcode, and create a new project by going to File » New » New Project
(¥+Shift+N) or, alternatively, choosing Create A New Xcode Project from the
Welcome screen (3+Shift+1).

2. Select Single View Application, and click Next.

3. Name the project LoginApp, ensure that Devices is set to Universal, and
leave the other options at their defaults, as shown in Figure 6-2. Click Next.

Choose options for your new project:

Product Name: | LoginApp
Organization Name: Matthew Knott

Organization Identifier: com.mattknott

Bundle Identifier: com.mattknott.LoginApp

ap

Language: @ Swift

Devices: | Universal

4ar

Use Core Data

Cancel Previous | Next |

Figure 6-2. Setting up the project

4. Select a location to save the project, and click Create.

That’s it! You're ready to start building your application. But before you begin building up your view,
note that everything you do in this chapter relating to Auto Layout and setting constraints is done
purely from Interface Builder—you don’t write a single line of code. However, at the end of the
chapter you look at using a little code just to add the finishing touches to your form. With that in
mind, let’s open Main.storyboard and get to work on the interface.


http:///

146 CHAPTER 6: Constraints

Design Considerations

If you haven’t already, | hope that after reading this book you start writing your own applications
using Xcode, whether for fun, to solve a problem you encounter, or maybe because of a gap you've
spotted in the market. When you’re a beginner, you’ll make design decisions that, when you run the
application, make you realize you’ve made a terrible error in judgment about how you’ve arranged
the layout.

The good thing is that most of the time there’s a simple solution, and the whole thing becomes a
valuable learning experience. Login dialogs are a potential banana skin when you’re starting out:
when you design a beautiful layout on a static view, it’s easy to forget about the keyboard that in
many cases slides up and covers the fields, making them inaccessible. To address this problem,
make sure you position the text fields and labels in a way that ensures that the keyboard will not
obscure them in any of the iOS screen formats. Follow these steps:

1. After you open Main.storyboard, open the Document Outline, if it isn’t
already visible, by clicking the button in the bottom-left corner of the design
area that has a box with a solid line down the left inside it, as shown in
Figure 6-3.

IEI& wAny hAny

Figure 6-3. The Show Document Outline button in the bottom-left corner of the design area (indicated by the arrow)

2. Click the disclosure triangle to the left of View Controller Scene, and then
click the disclosure triangle to the left of View Controller. Click the View item,
as shown in Figure 6-4, and then open the Attributes Inspector (36+38+4).

B 4 » i LoginApp » LoginApp Main.storyboard » 3 Main.storyboard (Base) ' || View Controller Scene View Controller » View

¥ [ View Controller Scene

v View Controller
Top Layout Guide
Bottom Layout Cuide
2.1 First Responder
[543 Exit

Figure 6-4. Selecting the view from the Document Outline


http:///

CHAPTER 6: Constraints

Note The Document Outline bar can be extremely useful when you’re working with a large number of
controls in a view. You can alter the hierarchy of the elements to make one appear above or below another,
or you can add controls to a scroll view instead of the main view. It’s also useful for creating connections
between view controllers that are physically far apart in the design area, to save zooming out many times.

3. To make this view more appealing, give it a background color. | selected a
pale green color for my view, but you can select whichever color you like.
Click the Background drop-down list, and either select a preset color or click
Other if you want to choose from the pallet or specify an RGB color. | used
Red 206, Green 228, and Blue 188: you can use the same colors by using the
color sliders from the color picker and setting RGB sliders from the
drop-down menu, as shown in Figure 6-5.

0o

N i B[

Colors

RGB Sliders
Red
§ 206
Green
s ; v [228
Blue
; 188

Figure 6-5. Setting an RGB color

View
Mode | Scale To Fill s
Tag 0l

Interaction ¥/ User Interaction Enabled
Multiple Touch

Alpha i =

Background | [ 1| =

Tint | BN | Default :

Hidden
v Clears Graphics Context

Drawing v/ Opaque

4. You’re ready to add controls to the view. Drag a label and a text field from
the Object Library onto the view: put the label in the top-left corner, where
it snaps to the blue guidelines, and snap the text field into place directly

beneath it, as shown in Figure 6-6.

147


http:///

148 CHAPTER 6: Constraints

k
5]

:Label

o

Figure 6-6. The text field snaps into place below the label

5. Use the handle on the right of the text-field box to resize it. Drag it to the right
until, again, the blue guidelines appear.

6. Because the second row is a copy of these elements, you can duplicate
them. Holding down the Command (38) key, in the Document Outline, click
to highlight both Label and Round Style Text Field. You should see handles
appear on both items in the view, as shown in Figure 6-7.

2 a4 » | B Loginapp LoginApp » Main.s...board » Main.s...(Base) » [~ View...er Scene View Controller » View ) F Round Style Text Field

-----

v View Controller > =
Top Layout Guide b i
Bottom Layout Guide

mf i)

v View Q_ape;_

Label =
Round Style Text Field = a

71 First Responder
[E Exit

Figure 6-7. Both elements of the view selected

7. To duplicate the items, copy them with #+C and then click a blank area of
the view or select View from the Document Outline. Click the light green view,
and paste the elements back into the view with 3+V. When the two items
appear on the view, they’re grouped together: move them as one, and shap
them into place below the first text field.

8. Drag in a button from the Object Library and position it centrally in the view, a
little below the last text field. If everything has gone to plan, your view should
resemble that in Figure 6-8.


http:///

CHAPTER 6: Constraints

C_1l
Label

Label

Button

Figure 6-8. The skeleton of the LoginApp

9. With the elements all in place, you need to set the titles and text colors of the
labels and the button. Select the first label, and from the Attributes Inspector,
set Color to Dark Gray Color from the list of presets. Change Text from Label
to Email Address. Your attributes for the first label should now resemble
those shown in Figure 6-9.

D ®E T E O ;

Label

“»

Text | Plain

Email Address
Color [ | Dark Gray Color -

*

“

Font | System 17.0

I
i

Alignment |

Lines 1|,

Behavior (¥ Enabled
Highlighted

Figure 6-9. The attributes of the first label

10. Resize the label to the right just enough to display the full text.

11. Repeat the previous steps on the second label, but set its Title to Password.
Then set the button’s Title to Log In. When you resize the Password label,
drag it to the same width as Email Address: when they’re the same size, a
blue guide line appears.

Before you go any further, let’s run the application as it stands using the iPhone 6 Simulator.
The Simulator opens, and the text fields appear off the view. Rotate the Simulator by selecting

149

Hardware » Rotate Left from the menu bar or pressing ¥+left arrow. Now, the problem is that the

fields are too short and aligned on the left rather than spanning the entire view; as you can see in

Figure 6-10, the elements stay the same size but also stay in the same position.


http:///

150 CHAPTER 6: Constraints

i0S Simulator - iPhone 6 - iPhone 6 / iOS 8.1 (12B411)

Email Address

| Password

Leg In

Figure 6-10. The misaligned view, badly needing some constraints

The elements don’t move because they have no behaviors applied to them, telling them what to
do when the screen rotates or the view is bigger or smaller that the storyboard. In Xcode, these
behaviors are called constraints.

Debugging Views in Xcode

Before you apply constraints to the view to snap everything into its proper place, let’s take a
moment to look at Xcode’s incredibly useful view-debugging tool. This tool allows you to pause the
execution of the application, analyze each control in the view, and see views that may have rendered
offscreen—something the Simulator can’t help you with. It’s important to be aware of this facility as
you begin to implement constraints, because in addition to giving you a flexible layout that adjusts
intelligently to varying form factors and orientations, they can also have unforeseen and confusing
effects, such as moving elements way off screen when rotated.

Follow these steps:

1. In the Simulator, rotate the screen back to portrait mode by going to
Hardware » Rotate Right.

2. Leave the app running, and switch back to Xcode.

3. At the bottom of the screen is the icon for the View Debugger, as shown in
Figure 6-11. Alternatively, go to Debug » View Debugging » Capture View
Hierarchy.

N

= (] 2 L || <7 LoginApp

Figure 6-11. Acessing the View Debugger


http:///

CHAPTER 6: Constraints 151

When the View Debugger runs, the first thing you see are the two fields extending outside the
bounds of the view, as shown in Figure 6-12.

B < » LoginApp

Email Address

Password

Log In

Figure 6-12. Using the View Debugger in Xcode to view elements outside the bounds of the view

The View Debugger gives you a huge array of tools to help track down stray elements, but for the
most part, you can get everything you need from the basic view hierarchy. Stop the application in the
Simulator, and you’re returned to the storyboard so that you can begin adding constraints to the view.

Manually Adding Constraints

The first method I’ll explain for adding constraints is the manual method, in which you use the
familiar Control + click-and-drag technique to specify a constraining relationship between multiple
elements. You should be used to holding the Control key while clicking and dragging—you’ve done it
a number of times in previous chapters to create connections to actions and outlets.

Note Even though the constraints are being added manually, they’re still part of Auto Layout, which is a bit
of a contradiction and can be confusing.

Here are the steps:

1. Let’s add a number of manual constraints to the layout. Select the first text
field, and then, while holding down the Control key, click the text field and
drag a line to the left side of the view. When you release the mouse button, a
contextual dialog appears, as shown in Figure 6-13.


http:///

152 CHAPTER 6: Constraints

Emeil Addrass Ernail Address

Figure 6-13. Dragging a line from the text field to the side of the view (leff) presents a context menu (right)

2. You want to tell Interface Builder to constrain the position of the text field
to the sides of the view so that when the view rotates, the text field resizes.
Select Leading Space To Container Margin from the menu, and an orange
guideline appears to the left of the text field.

3. Control-drag a connection from the first text field to the right side of the
view. When you release the mouse button, select Trailing Space To Container
Margin. That’s all you need to do to constrain the Email Address text field to
the sides of the view.

4. Repeat the process by selecting the Password text field, Control-dragging
a connection to the left side of the view, and selecting Leading Space To
Container Margin. Next, Control-drag a connection from the text field to the
right side of the text field, and choose Trailing Space To Container Margin.

5. The constraint for the Log In button is slightly different. At this point you’re
probably happy with the vertical position and size of the button, but to keep
it that way, you need to add some constraints. First, you want to constrain
the button so that it stays centered horizontally. To do this, select the button,
and Control-drag a line directly beneath the button, as shown in Figure 6-14.

vord

Figure 6-14. Dragging a connection below the Log In button so that you can constrain it horizontally


http:///

CHAPTER 6: Constraints 153

6. When you release the mouse button, the context menu opens again: this time
select Center Horizontally In Container. A guideline appears from the top of
the view to the bottom.

7. One final constraint: whatever happens, you want the Log In button to remain
the same distance beneath the Password text field as it is now. Control-drag a
connection from the button to the Password text field, and select Vertical Spacing.

That’s it! With a few clicks, you’ve done enough to make your layout respond to changes in
orientation and form factor. All that’s left to do is to test it in the Simulator. click the Run button
(38+R). When the Simulator launches, the elements are aligned nicely in the narrow screen size.
Rotate the interface by selecting Hardware » Rotate Left from the menu bar or pressing 3#+left
arrow, as you did earlier. The elements should resize just as you want and exactly as previewed in
Figure 6-1, with the button staying in the middle of the view and the text fields resizing because
you’ve constrained them to be a fixed distance from the side of the view.

Even though you’ve added six constraints to this relatively sparse view and the layout is completely
satisfactory, Xcode is less than happy. At the top of Xcode, in the Activity Viewer, is a yellow warning
triangle; and in the Document Outline, next to the View Controller Scene node, is a red arrow,

as shown in Figure 6-15. Both of these warnings stem from a lack of constraints applied to the
elements in the view.

Main.storyboard

Finished running LoginApp on iPhone 6 2

82 4 » | @ LoginApp LoginApp » Main.storyboard » Main.storyboard (Base) » No Selection <4 >

¥ [Z] View Controller Scene o

v View Controller
Top Layout Guide
Bottom Layout Cuide
v View
L Email Address -
F Round Style Text Field Email Address

Figure 6-15. Xcode displaying two separate warnings because of a lack of constraints

Xcode wants you to specify constraints for every object in the view, including vertical and horizontal
positioning, whether in relation to the view itself or to other elements in the view. When you move
on to the next segment, you’ll find out what constraints you need to manually add to satisfy Xcode’s
exacting standards.

Before moving on, let’s quickly look at the attributes of a constraint. Back in the Interface Builder,
select the Log In button. Now, select one of the constraint guidelines by single-clicking it; it becomes
highlighted, as shown in Figure 6-16. Alternatively, with the View item inspected in the Document
Outline, you can expand Constraints and select the last constraint in the list, also shown in Figure 6-16.


http:///

154 CHAPTER 6: Constraints

v View

L Email Address

F Round Style Text Field Email Address

L Password

F Round Style Text Field

B Login

v Cunstraints Password

@ Horizontal Space - Ro...
@j Horizontal Space - Ro...
@ Horizontal Space - Ro... =
%) Horizontal Space - Ro... LogIn
t-i,-_‘l Center X Alignment -...

' 1= vertical Space - (8) ...

Figure 6-16. Selecting the constraint for the button’s vertical spacing

If you look at the Attributes Inspector for a moment, as shown in Figure 6-17, you see a variety of
ways to fine-tune how a constraint works. First, look at the Relation attribute, which should currently
be set to Equal. You can change it to Less Than Or Equal To or More Than Or Equal To. These two
options allow the constraint to be flexible, whereas Equal is a fixed value that can’t be deviated from.

b ® T E ©
Vertical Space Constraint
First Item | Log In.Top v
Relation | Equal

Second Item | Round Style...Field.Bottom ~

Constant | 8 *lls
Priority | 1000 wlls
Multiplier | 1 Ld|=

Placeholder | | Remove at build time

™ Installed

Figure 6-17. The attributes of the constraint

The Constant attribute contains the numerical value assigned to the constraint. Currently, if you
positioned your button in the same place as mine, the value is 8. Putting these attributes into plain
English, this means the text field will stay a distance equal to 8 points from the Password text field;
increasing or decreasing this value has an impact on the spacing when the application runs. You
learn more about customizing these values as the chapter and the book progress. For now; let’s
move on to look at some other aspects of Auto Layout and constraints.

Specifying Constraints with the Align Menu

The Control-drag method of specifying constraints isn’t everyone’s preferred way of working, so let’s
look at how to apply the same constraints using the Align menu and then the Pin menu. The Align
menu is used to specify how controls align to each other and the wider view. Because the constraint


http:///

CHAPTER 6: Constraints 155

you applied to the button is an alignment constraint, you can use the Align menu to constrain it the
same way you did earlier with the Control-drag method. The Align button is one of several buttons
available at the bottom of Interface Builder: it’s the first button in the cluster of buttons at lower
right, and it resembles a small box on top of a larger one. Refer back to Chapter 4 if you need to
reacquaint yourself with these buttons.

Before you use either the Align menu or the Pin menu, you need to remove the constraints you’ve
applied to your controls. Select the view controller, either from the Document Outline or by clicking
a green portion of the view, and then click the Resolve Auto Layout Issues button. Choose Clear
Constraints under the All Views In View Controller heading, as shown in Figure 6-18, to remove all
the constraints set in this view controller.

Update Frames

Update Constraints

Add Missing Constraints

Reset to Suggested Constraints

2o s EJEE )

Figure 6-18. Selecting Clear Constraints from the Resolve Auto Layout Issues menu

The constraints you applied earlier are removed, and the view is ready for you to reapply them
using the Align and Pin menus. First, select just the Log In button, and then click the Align button.
In the menu that appears, select the check box next to Horizontal Center In Container, as shown in
Figure 6-19.

| Line Break | Truncate Middle

idge | Content
Add New Alignment Constraints

S nset 0=
=) Leading Edges v Top B
E"_-‘-_',,I'Trailing Edges ¥ oll2
s Top Edges - oy
2 D DGO

“‘_‘l Bottom Edges -

ER : View Controller - A conu
|35 Horizontal Centers B 42 the Fadanenial

Eﬁ\l‘enical Centers ~ management model in i0S.

EJ Baselines -
— Navigation Controller -
¥ [E5) Horizontal Center in Container | 0 ¥ | controller that manages nay

— through a hierarchy of view
|z2) Vertical Center in Container 0 - 2 4

Update Frames ( None Table View Controller -

Add 1 Constraint controller that manages a ti

any ~Any BB B®

Figure 6-19. Adding a horizontal alignment constraint using the Align menu


http:///

156 CHAPTER 6: Constraints

Clicking the button currently showing Add 1 Constraint applies the constraint to the button, exactly
the same as when you used the Control-drag method, but without the need to be precise with your
mouse movements.

Specifying Constraints with the Pin Menu

So far, I've shown you how to center the Log In button using the Align menu. Now it’s time to
constrain the text fields so that their leading and trailing edges stay fixed to the side of the view’s
margin at all times. This technique is known as pinning, because you’re fixing a positional attribute
of the control. Therefore, it makes sense to reapply the constraints to the text fields by using the
Pin menu. The Pin menu is the second button in the cluster of buttons at lower right in the Interface
Builder design area; it sits next to the Align button.

What’s great about the Pin menu is that you can apply constraints to both text fields in a single
action. Click the Email Address text field to select it, and then hold the 3 key and click the Password
text field to select it too. Click the Pin button, and a menu appears, as shown in Figure 6-20.

e 1/ ||«
Add New Constraints V7 Adjust to Fit
8 Y on | None
Email Address : on | Default
0 v 0 v
o ng | Default
8 - pe | Default
Password Spacing to nearest neighbor ce | Default
o ¥ Constrain to margins ‘“’E n“r{’i‘l' @ o
[ width 568~ .
Log In |E3) Height 30 ~ jew Controller - A controller that
— ipports the fundamental view-
=) Equal Widths anagement model in i0S.
|5 Equal Heights
= A avigation Controller - A
(=) Aspect Ratio introller that manages navigation
E_'J Alon Leading Edges rough a hierarchy of views.
E I 1}
Hpcaaibramesiiond ible View Controller - A
Add Constraints introller that manages a table view.
T
] wAny hAny = o 2 E1| 88 (@

Figure 6-20. The Pin menu

Let’s focus on the top area of the Pin menu, which contains four text fields with a value of either 8

or 0 in Figure 6-20. This area is used to set the spacing to the nearest neighbor. Just below these
boxes, note that there is a Constrain To Margins check box that is currently checked; this is perfect
because it’s important to respect the margin when designing your interface. If you added an element
that you wanted to be fixed to the edge of the screen, you would uncheck this box to pin the
element to the side of the view.


http:///

CHAPTER 6: Constraints 157

Thinking about this specific situation, the nearest neighbor that you want to fix to is the view itself;
you want to fix the leading and trailing edges of the text fields to that neighbor. Earlier in this chapter,
when | discussed the attributes of one of the constraints, it had a value of 8 points. Conveniently,
Xcode has anticipated that you might want to fix the leading and trailing edges; but the value in the
left and right boxes that control the leading- and trailing-edge constraints is 0. Can that be right?
Absolutely: it’s 0 because the elements are currently positioned against the left and right margin. The
Constrain To Margins check box is selected, so all you need to do here is tell Xcode that you want to
apply the constraints.

At this point, it’s easy to become confused. The Add Constraints button is grayed out, so how do
you set the constraints? Luckily, the answer is easy. At the center of the four text fields in the Pin
menu is a square shape with red I-bars going to each of the text fields; click the left and right I-bars,
and they become bright red. Also notice that the button at the bottom of the Pin menu now says Add
4 Constraints, as shown in Figure 6-21.

Add New Constraints W A
8 i on | Nor
e on | Def
0 v(H| |H|0 v
ng | Def
8 - pe | Def
Spacing to nearest neighbor ce | Def
¥/ Constrain to margins ""B Dot
(=) width 568 v| |
|E5) Height 30 v jew Cor
— —— |pports t
(=] Equal Widths anagems
[;Ei] Equal Heights
= r avigatic
=] Aspect Ratio B ler
rough a
) Align | Leading Edges i
Update Frames | None *) able Vie
Add 4 Constraints introller

A

l —
taf E1| BB (®

= o

Figure 6-21. Specifying the Pin constraints for the text fields. Note the emphasized left and right I-bars

Click the Add 4 Constraints button to apply the constraints to your text fields. This is the quickest
and most efficient way to add the same set of constraints to a number of controls—and sometimes,
being a great developer is as much about knowing the shortcuts in your development environment
as it is about knowing the code.

If you run the app now, it reacts exactly the same way it did when you used the Control-drag
method. But Xcode is still not happy; to fill in the blanks and satisfy Xcode’s exacting standards you
will learn how to let Xcode determine the constraints for the layout.


http:///

158 CHAPTER 6: Constraints

You now know two different ways to use Xcode to manage your layout with constraints. Although
next | explain how to use automatically set constraints, there will always be a need to override or add
additional constraints manually; the skills you’ve learned here will be extremely useful when building
your own applications.

Automatically Adding Constraints

So far in this chapter, the techniques you've used can definitely be classified as manual, although the
process certainly hasn’t been complex. Apple has gone to a lot of effort to make managing layouts
even easier by providing two great methods for automatically setting constraints. It’s not perfect, but
it’s the quickest way to put the bulk of your constraints in place with the click of a button.

In the previous section, you may have noticed that Xcode isn’t happy with the constraints you
applied manually in this application, even though the application functions exactly as required. This
is because Xcode feels it doesn’t have all the information it requires to position the design elements
and is making some decisions itself. It would be far happier if you were making all the decisions.

At first, the logic of the situation can be hard to comprehend. Before you added the constraints,
there were no warnings, but now that there are five working constraints in place, Xcode isn’t happy.
Fortunately, there are two ways you can find out more about why Xcode is upset, as | indicated back
in Figure 6-15 the warning triangle in the Activity Viewer and the red arrow in the Document Outline.
Click both now. The Issues Navigator appears in place of the Project Navigator, and a list of all the
Auto Layout issues replaces the Document Outling, as shown in Figure 6-22.

B2 Q A & = o 8 8|« » | & Loginapp ) (1 LoginApp) B M
Byiklle By Type £ Structure View Controller
v A, LoginApp
- 2 issues ¥ Missing Constraints o
v Main.stlorvboard ¢ Round Style Text Field
Ambiguous Layout Need constraints for: Y position
Vertical position is ambiguous for
"Log In". ¥ Missing Constraints (&)
Ambiguous Layout
: T i Log In
Vertical position is ambiguous for B Need constraints for: Y position
"Round Style Text Field". eed constraints for: Y positio
¥ Missing Constraints o]
F Round Style Text Field
Need constraints for: Y position

Figure 6-22. The Issues Navigator and the Document Outline showing that there are issues with the layout

Troubleshooting from the Document Outline gives you the most detail about the issues Xcode has
flagged. You can see that the first three warnings, which are more serious, were triggered because
you haven'’t yet provided all the constraints that Xcode expects for each control. All the constraints
have focused on the x (horizontal) axis and ignored the y (vertical) axis. Let’s address these missing
constraints to satisfy Xcode. Luckily, Apple has made this incredibly straightforward in Xcode 6.


http:///

CHAPTER 6: Constraints 159

Adding Missing Constraints

The Constraint Warning Details view accessed from the Document Outline allows you to
automatically resolve layout issues one by one. But in many cases, you just want to let Xcode do the
fixing for you. Let’s try both methods.

In the Constraint Warning Details view, click the red dot next to the first constraint warning. As
shown in Figure 6-23, you can easily fix the constraint issue with a single click of the Add Missing
Constraints button.

o B ‘BB <4 » & LoginApp ) | LoginApp » B Mair

- Add missing constraints for "Round Style Text
© Field"? This will add enough constraints to

" resolve the ambiguity. [+
Cancel Add Missing Constraints
uous for |
¥ Miscinn Cnnstrainte f

Figure 6-23. Fixing individual issues with the Constraint Warning Details view

Ironically, sometimes when you fix this issue this way, the number of issues can go up before it
goes down. Keep repeating this step until all the issues are gone. That wasn’t too hard, right? In

the Document Ouitline, click the Structure button in the top-left corner to return to the standard
Document Outline view. Then expand the Constraints item: Xcode has created many more than five
constraints, as shown in Figure 6-24, where | have highlighted each constraint so that its position on
the view is shown. Finally, run the application just to make sure everything is in place.

B Login

v (&) Constraints
'8l Trailing Alignment — Emai... L e
I Vertical Space - Email Ad... "| il @ﬂb l
B Horizontal Space - Round... || SRENWAGGIEEMIN T m
Horizontal Space - Round... e .
= Vertical Space - Round St...
|8 Leading Alignment - Rou...
|® Leading Alignment - Rou...

Password

Horizontal Space - Round...

Horizontal Space - Round...

Vertical Space - (116) - R...

= Vertical Space - Round St...

R Center X Alignment - Vie...

= Vertical Space - Log In -...
) First Responder

—

=7

Figure 6-24. Examining the constraints that Xcode has created

Back in Interface Builder, note that the previously orange guidelines have become blue! The orange
guidelines are Xcode’s way of telling you that there is more to do.

Just as you’ve achieved a perfect set of constraints, let’s wipe the slate clean and reset all of them
so you can dip a toe into fully automated constraint-setting. To do this, select View Controller
from the Document Outline; then click the Resolve Auto Layout Issues button, and choose Clear
Constraints under the All Views In View Controller heading to again remove all the constraints that
were set in this view controller.


http:///

160 CHAPTER 6: Constraints

You’re back to square one as far as constraints are concerned. Now, reselect the Resolve Auto
Layout Issues button, and click Add Missing Constraints under the All Views In View Controller
heading, as shown in Figure 6-25. This makes Xcode look at every element in the view controller
and add the constraints it feels are needed to make the layout adjust to a change in the shape of the
view, such as rotating the device or using a different form factor. Because this is a universal app with
size classes enabled, the constraints need to be thoroughly tested and customized so your app can
be deployed to any iOS device running iOS 8.

Add Missing Constraints
Reset to Suggested Constraints X {+3=
Clear Constraints

Update Frames

Add Missing Constraints

Reset to Suggested Constraints
Clear Constraints

= ol RTEITER@® )

Figure 6-25. Using Add Missing Constraints to automatically set the constraints for the view

While I’'m on the topic of the Resolve Auto Layout Issues menu, | want to quickly draw your attention
to the Reset To Suggested Constraints option. It can be used just like Add Missing Constraints,

in that even if you have no constraints, you can select this option to automatically generate all the
constraints for your view. Where Reset To Suggested Constraints comes into its own, however,

is when you’ve heavily modified your constraints and gotten into a mess: you can use Reset To
Suggested Constraints to return to firm footing and restart the modification process, being more
careful to test as you go and ensuring that you use the Preview facility (which | cover shortly).

Updating Constraints

In a short space of time, you’ve increased your knowledge and now know a number of ways to add
constraints to a layout. Adding constraints is well and good, but layouts change, and constraints
need updating. There are two ways to do this, depending on the severity of your changes.

In Interface Builder, move the Log In button further from the Password text field; this causes the blue
guideline to turn orange, as shown in Figure 6-26. The constraint is orange because in this example,
it was originally set to pin the button 8 points below the Password text field: you moved the button
further from the text field, so the constraint is no longer correct. Interface Builder shows that in this
instance, it has moved 12 points further from the text field, as indicated by the +12 value attached to
the now-invalid constraint.


http:///

CHAPTER 6: Constraints 161

Password

Figure 6-26. An invalid constraint highlighted in Interface Builder, showing that the constraint is off by 12 points

These types of minor interface changes happen all the time when you’re tweaking your layout to be
pixel perfect, and fortunately they’re very easy to fix. With the Log In button selected, go back to the
Resolve Auto Layout Issues button. This time, select Update Constraints (Shift+3+=): the constraint
guideline turns back to blue, happy that it is now satisfying the terms of the constraint.

If you’re in a situation where you’ve fine-tuned a number of elements in your layout and want to keep
the constraints but with the updated values, go back to your best friend when using Auto Layout: the
Resolve Auto Layout Issues button. Select Update Constants under the All Views In view controller
heading, which, as it implies, updates all the altered constraints in your view controller to their
correct values.

That’s it for the principles of Auto Layout in this chapter. You’ve learned a lot about how to apply
constraints, how to fix issues with your layout, and a lot more. Now let’s change pace a little and
examine how to preview a layout in Xcode, using size classes to change constraints depending on
the form factor, and customizing text fields to create a great user experience.

Previewing Your Layout

As you’ve gone through this book, you’ve created a number of small projects that show off particular
features of Xcode or iOS. But in the real world, you’re potentially creating massive applications, and
you may need to go through complex processes to produce a specific layout that you want to test
for potential issues in real time without having to rely on the Simulator and repetitively go through the
application to get to the view you’re working on each time. And when you’re facing a tight deadline,
you need to get things done as quickly as possible. This is where previewing can come in handy.

The Preview tool is a fantastic addition that Apple built into Xcode 5—but it was not easy to find or
use. Fortunately that has changed in Xcode 6. Enable the Assistant Editor in Xcode, click Automatic
on the jump bar, and then mouse over Preview to expose Main.storyboard (Preview), as shown in
Figure 6-27.


http:///

162 CHAPTER 6: Constraints

Main.storyboard — Edited o

4
pp: Succeeded | Today at 10:37 [1 Manual > | EHNFAE | L&
1 |
I > B Main.storyboard (Base) > No Selection | B8 | < | [ Automatic (1) » ift - No Selection + X
: 7 9 I
/7 v ) Top Level Objects (1) >
g "ol
- 7 Localizations
g |/ { Ol 014.
T —

1/  Preview (1) "' Main.storyboard (Preview)
import UIKit
class ViewController: UIViewController {

override func viewDidLoad() {

super.viewDidLoad()

// Do any additional setup after loading the view, typically from a nib.
1

Figure 6-27. Accessing the Preview menu

You may have to resize your windows slightly to accommodate both panes. The result is that
you have a preview of your layout on a specific device: in this case, a 4-inch iPhone as shown in
Figure 6-28.

‘eane Main.storyboard — Edited

| b m A LeginApp i iPhene & LoginApp | Build LoginApp: Succeeded | Today at 10:37 EAE D=0 |

B R a A S @ o S (BE|a =B wneg toginapp  [B) Maissteryboard [ Main storyboard (Rase) - Mo Selection B8 4 = [ Preview ) [ Mainstoryboard (Preview) IR

| & loginApp
| * ™ 2rargen, o5 sox 8.1 2 =
¥ LoginApp -
- AppDelegate swift

» ViewController swift Email Address

images. xcassets -
LaunchSereen b Email Address
» | Supporting Files Password

* & LoginAppTests
* | Products. Password

Log In

Leg In

=1 IPhane 4-inch

|+ 0oEE O wARY bRy B el e B + English

Figure 6-28. Xcode with the Preview tool enabled

You can zoom out the preview by using the standard pinch gesture on a multitouch device or by
double-clicking a white area of the Preview background to toggle zoom levels. You can’t make any
changes to the application in the Preview tool, but anything you change in the Interface Builder is
immediately reflected here.


http:///

CHAPTER 6: Constraints 163

In the bottom-right corner are two buttons. On the left is a plus symbol: clicking it allows you to add
another form factor to the preview pane, meaning you can preview different devices simultaneously,
greatly simplifying the process of configuring your views. On the right is a language (quite possibly
English, as in my case). If you’re working on a localized application, you can use this to switch
between languages; or you can use a double-length pseudo-language to test how your view reacts
even when you don’t have any other languages set up, meaning you can get a solid interface
configured from the very start.

All of these features clearly make the Preview tool a necessity for all Xcode developers. Let’s make
some changes to the way the application looks when it runs on the iPad without changing the
iPhone version, all in a single storyboard, using size classes.

Size Classes

One of the most significant changes in application development that Apple introduced in Xcode 6, aside
from the Swift programming language, has to be size classes. Through this new mechanism, there is

no longer a need for separate storyboards for iPhone and iPad. All layout is done by default in a much
squarer view, rather than the typically rectangular layouts provided in previous version of Xcode.

Although using size classes isn’t mandatory at this point, they’re certainly preferable to maintaining
two storyboards, although there are instances when you would want to do this. One of the first
apps | wrote was universal, but the iPhone portion was based around a tab bar controller, whereas
the iPad portion adopted a very different dashboard approach. This significant difference in styles
couldn’t have been achieved with size classes, so it’s important to remember that although they’re
the standard for new iOS applications in Xcode 6, they aren’t your only option.

At the bottom of the design area, notice that it says wAny and hAny, as shown in Figure 6-29. This
means the interface you design here and the constraints you apply will be used regardless of the
width or height of the screen.

[} wAny hAny B ol tal E

Figure 6-29. Xcode indicates that the interface being built is for any width and any height

To understand a bit better what this means, let’s use the Preview tool you just discovered to show
what the interface will look like on an iPad as well as an iPhone. If you’ve closed the preview, reopen
it as instructed in the previous section. Then click the + symbol in the bottom-left corner, and select
iPad. An iPad appears alongside the iPhone. Remember to zoom out to see both devices, as shown
in Figure 6-30.


http:///

164 CHAPTER 6: Constraints

|- = LoginApp LoginApp - [§) Main.storyboard 8 Main.storyboard (Base) Mo Selaction B | 4 » ) Preview + [ Mainstoryboard (Preview) B+ X
C__1J
Email Address
Password
Login

Figure 6-30. The Preview tool showing an iPhone and an iPad side by side

Although there is nothing technically wrong with the way the text fields span the view, they’re
realistically far too big and will add to the impression that the user is running a scaled-up iPhone
app, which isn’t desirable. To demonstrate the power of size classes, let’s alter the layout for iPad by
centering the Email Address and Password fields and making them a fixed width.

Click wAny hAny, and move the mouse over the grid until you get to Regular Width | Any Height, as
shown in Figure 6-31. Note that the description below Base Values indicates that this layout is for
iPads in portrait or landscape orientation.

Regular Width | Any Height

Base Values

J = tof tal ED

Figure 6-31. Selecting Regular Width | Any Height as a size class to develop the iPad layout



http:///

CHAPTER 6: Constraints 165

This is where things can get fiddly because of the width of the view and the number of panes. For
now, let’s experiment with moving the Assistant Editor’s location. Go to View » Assistant Editor »
Assistant Editors On Bottom. Immediately the preview shifts below the Interface Builder: it’s obvious
that this is the best way to work on an iPad layout, as you can see in Figure 6-32.

LG Main.storyboard — Edited "
| % LoginApp | g iPhone 6 LoginApp: Ready | Today at 13:13 EAE D=0
B QA G B o B B 4| B LoginAnp Main_storyboard ) [} Main.storyboard tRase) | No Selection DeaE o0 e

+ = LoginApp
= 2targess, 105 50K 8.1
v LoginApp

" :rpequrgal; w!!h —

» antroller. swil

R ' Email Address

LaunchScreen.xib
» _ Supporting Files Passmord
> LoginAppTeis
* Products
og In
[ n] wRegular nAmy B ke bad

B« [ Preview - Main.storyboard (Preview) @+

1 ) ® 0

Label - A variably sized amourt of
Label ;s rext

Button - intercepts touch events asd

+ I0E® + English | B8 [®

Figure 6-32. Moving the Assistant Editor below the Interface Builder

This may be a slightly daunting task, and the layout will appear to fall apart before it’s finally drawn
together, so stay with me while you make some significant changes:

1.  Open the Document Outline, and expand the Constraints portion for the view.

2. Click the second constraint, which should be Trailing Alignment. Holding
down Shift, click the bottommost Leading Alignment constraint, as shown
in Figure 6-33. You've selected all the constraints that position the elements
in the view that you’re going to resize and reposition. You’ve left out the
first constraint, which controls the vertical spacing from the top of the view,
because that is consistent across both layouts. You’ve also left out the Log
In button, which aligns itself to the center of the view and is a fixed distance
below the Password text field; again, there is no need to change this.


http:///

166 CHAPTER 6: Constraints

B o« > Q LoginApp » | L..» M.» MBI v D v V. Cunstrﬂinm » ETrailing Alignment - Round Style Text Field - Round Style Text Field

F Round Style Text Field

B Log In -

L =)

v [E] Constraints ® B
[&] Vertical Space - Email Address - Top Layout Guide

'8l Trailing Alignment - Round Style Text Field -...
|2 Leading Alignment - Round Style Text Field -...
|2 Leading Alignment - Round Style Text Field -...
= Vertical Space - Round Style Text Field - Email... a5
T Vertical Space - Password - Round Style Text Field aSS.IEVOP’d I
= Vertical Space - Round Style Text Field - Password -

B Horizontal Space - Round Style Text Field - View
[E8 Horizontal Space - Round Style Text Field - View
|2 Leading Alignment - Round Style Text Field -... Log In
EECenter X Alignment - Log In - Round Style Te...
[E] Vertical Space - Log In - Round Style Text Field
() First Responder

Exit

mail Address |
.II

H

®

wRegular hAny = i ksl 2

Figure 6-33. Selecting the iPhone-specific constraints

3. Open the Attributes Inspector. Notice that the last item in the Attributes
Inspector for a constraint is the Installed attribute. Importantly, to the left of
this attribute is a plus symbol. This tiny + symbol appears next to a number
of attributes and settings in the different inspectors; it’s used when you want
to add an exception or customization for a specific size class. Click the +
symbol next to the Installed attribute, and choose Regular Width | Any Height
(Current), as shown in Figure 6-34.

Placeholder [ | Remove at build time

Add Size Class Customization

Regular Width | Any Height (current)

Any Width | 2
Compact Width | 2
Regular Width >

Figure 6-34. Selecting a size class for which to customize the Installed attribute

4. When you’ve made your selection, you see a second Installed attribute:
to the left, it says wR hAny. Uncheck this new Installed attribute so that it
resembles Figure 6-35.



http:///

CHAPTER 6: Constraints 167

D eE ¥ E O

Layout Constraint

First Item | Multiple Constraint Types v

Relation | Equal

a

Second Item | Multiple Constraint Types ¥

Constant Multiple Constraint Types v |J

Priority | 1000 -

Multiplier . 1 | :
Placeholder || Remove at build time

# Installed
wR hAny || Installed

Figure 6-35. Disabling the selected constraints for the iPad’s size class

At this point, the preview layout on the iPad may collapse and all the components scrunch up into
the top-left corner; this is because when you uncheck Installed for this size class, Xcode has no idea
what size the elements should be or where to put them. Although this may seem pretty catastrophic,
it will be sorted out quickly.

5. Back in the Document Outline or on the view itself, hold down the & key and
click the two labels and the two text fields so they’re highlighted as shown in
Figure 6-36.

w [ View Controller Scene o
¥ (L) View Controller . @ B
Top Layout Guide E -
Bottom Layout Guide |
v View W ==
» M Email Address
Round Style Text Field

» [N Password
Round Style Text Field
B Login | | &
v (&) Constraints 1
[E) Vertical Space - Email Address - Top Layout Guide Log In
Trailing Alignment - Round Style Text Field -...

Leading Alignment = Round Style Text Field -..

Figure 6-36. Selecting the labels and text fields in the view


http:///

168 CHAPTER 6: Constraints

6. Click the Pin button. Check the Width box, and set the value to 400, as shown in
Figure 6-37. This makes life easier by locking all four elements to the same width.

1|s 1+
i1 wRegular hAny B 1 A B Width Height
: # Installed
. Add New Constraints
o = Multiple
lo v |- ] [Multiple ~
8 * |
. . DO e
Spacing to nearest neighbor L
J 1 M
» Constrain to margins el - A varlably sized amount of
¥ (&) width {400 -+ atic text.
- Height Multiple ~| =
utton - Intercepts touch events and
£ equat widths inds an action message to a target

Figure 6-37. Fixing the width of the labels and text fields to 400 points

7. Click the Add 4 Constraints button. Xcode continues to display a number of
warnings, but these should diminish as you add more constraints.

8. Let’s sort out the positioning. With the four elements still selected, click the
Align button and then check Horizontal Center In Container, as shown in
Figure 6-38. Click Add 4 Constraints. Your preview still looks horrendous, but
you’re a couple of clicks away from finishing.

P P

i wRegular hAny = o ta] B Width Height

™ Installed
. Add New Alignment Constraints

e [B Leading Edges 0 -

@] Trailing Edges 0 -

@ Top Edges 0 v

@ Bottom Edges V] B

@ Horizontal Centers 0 - D06
) [ Vertical Centers 0 -

@ i o _| Label - A variably sized amount of
o B e static text.
# [ Horizontal Center in Container | 0 | B
= @ Vertical Center in Container 0 ¥  Button - Intercepts touch events and

sends an action message to a target

Update Frames | None + object when it's tapped.

Add 4 Constraints
Seamented Control - Disnlavs

Figure 6-38. Centering the four elements in the view with constraints


http:///

CHAPTER 6: Constraints 169

9. Tap a green area of the view in the Interface Builder to deselect those four
elements. The only element that is missing in terms of constraints is the
vertical spacing between labels and text fields; fix this by going to Resolve
Auto Layout Issues and choosing Add Missing Constraints under the All
Views In View Controller, just as you did back in Figure 6-25.

10. If everything has worked as planned, your layout for the iPad should snap
into place as shown in Figure 6-39. There are still Xcode warnings, because
the elements being displayed in the Interface Builder are in a different
position due to the constraints you’ve added. To resolve this, again select
Resolve Auto Layout Issues and choose Update Frames under the All Views
In View Controller heading. The layout changes to match the one shown in
the preview.

&4
A

E_j Preview Main.storyboard (Preview)
Email Address

Password

Email Address

Password

LoaIn

Figure 6-39. The Preview tool showing two different layouts created by using size classes

11. Change to the iPad Air Simulator, and run the application. Feel free to rotate
the virtual device and see how the layout stays true to your constraints,
regardless of the orientation. What’s more, if you change the size class back

to wAny hAny, the old layout and constraints are exactly where you left them.

12.  You need to know how to disable size classes. In the storyboard, open the

File Inspector, and scroll down until you see the Use Size Classes check box.

Don’t uncheck it on this occasion, but if you need to in the future, you know
where it is.

Finishing Touches

English

You're getting close to the end of this chapter. With the text fields you’ve added to your view, you
have an opportunity to look at how you can use the Interface Builder to create a tailored experience

that makes it easy for users to fill out this form.


http:///

170 CHAPTER 6: Constraints

Customizing Text Fields

Even though you only have a couple of text fields in the view, you can apply a wealth of
customizations to make the form fit the purpose. You can also add some neat features so that your
users can fly through it in an intuitive manner.

Hiding Passwords

How seriously you take security in your application can make or break it on the App Store, so you
need to make sure the basic features a user expects to see in a password-protected app are in
place. Therefore, the first customization concerns how to set your Password text field to behave like
a typical password field by obscuring the user’s password as they type it, which requires absolutely
no code at all:

1.
2.

Figure 6-40.

4.

Close the Assistant Editor by clicking Standard Editor.

Select the Password text field in the Interface Builder, and then open the
Attributes Inspector.

Scroll down the list of attributes until you see the Secure Text Entry check
box; select it, as shown in Figure 6-40.

Capitalization | None
Correction | Default
Spell Checking | Default
Keyboard Type | Default
Appearance | Default
Return Key | Default

Auto-enable Return Key
V Secure Text Entry

Making the Password text field secure

Run the application in the Simulator, and try typing in the Password field. You
see that as in other applications, the password is obfuscated as you type it.

Another behavior you may want to add to the Password field is automatic
clearing of the contents when you tap in the field. This is useful when you
can’t see what you’ve typed. Go back to the Interface Builder, and back to
the Password field’s Attributes Inspector. The Clear Button attribute section
has a Clears When Editing Begins check box; select it, and change the drop-
down option above it from Never Appears to Appears While Editing.

Rerun your application in the Simulator. Type in a password, click the Email
Address text field, and then click back into the Password field. The contents
should be cleared, ready for you to have another go at remembering the
password. You can also clear the field while editing.


http:///

CHAPTER 6: Constraints 17

Configuring a Text Field for E-mail Addresses

You’ve configured the Password field to fit with your users’ expectations, but what can you do to
make the Email Address field easier to use? Quite a bit, as it happens. Getting the user interface
right can go a long way toward making your application a hit on the App Store. These may seem like
small changes, but in an oversaturated market, having an immaculate, intuitive interface can make a

big difference:
1. Select the Email Address text field, and open the Attributes Inspector.

2. The first thing you want to do is emphasize that users should type an e-mail
address. You do this by adding placeholder text to guide them. In the
Placeholder text field, | typed E.g. matthewknott@me.com, but you can
type whatever you want.

3. The placeholder text you type is immediately reflected in the text field, as
shown in Figure 6-41.

Font System 14.0 1)z

Alignment il = | = | = |
. Placeholder E.g. matthewknott@me.com
mail Address

Background | E

Disabled [

I

assword Border Style

Clear Button Newver appears

Clear when editing begins

Figure 6-41. Setting placeholder text in the Attributes Inspector

4. Think back on how you cleared the Password field when editing. You should
make it easier for users to clear the Email Address field, but it shouldn’t be
the default action. Go to the Clear Button section in Attributes Inspector, and
change the drop-down option from Never Appears to Appears While Editing.
With this option set, the user is be given the opportunity to clear the field
whenever they’re focused on it.

5. Run your application in the Simulator, and type something in the Email
Address field. As you can see in Figure 6-42, the Clear button (an X inside
a circle) appears nicely, which is great. What’s not so great is that it’s
suggesting I’ve misspelled my e-mail address, which is annoying.


http:///

172 CHAPTER 6: Constraints

iOsiSimulatoreiPhone 6 iPhonel6lAIOS S 12B411) i
Carrier 4:28 PM L
Email Address

matthewknott@me.com

Password

Log In

Figure 6-42. The Clear button appears when the user edits the e-mail address. But, annoyingly, it’s reporting spelling errors

6. Back in the Attributes Inspector, find the Correction attribute, and select No
from the list of options. Below that, change Spell Checking to No as well. Now
iOS will ignore the spellings of e-mail addresses.

7. Another common feature that users expect and value when entering an
e-mail address is having the keyboard presented in a way that gives priority
to common keys such as @. iOS has a number of options for configuring the
keyboard, and all are available from the Keyboard attribute, found directly
below the Spell Checking attribute. Figure 6-43 shows the great variety of
context-specific keyboard options Apple provides by default, which in turn
let you, the developer, make life that much easier for your users. In this case,
choose E-Mail Address from the list.

Min FontSi; ~ Default
ASCII Capable
Numbers and Punctuation
Capitalizatic URL
Number Pad
Phone Pad
Spellchackl Name Phone Pad ’
Keyboard Ty L
Decimal Pad
Twitter
Return Kt web Search
| I Auto-enable Return Key
Secure Text Entry

Correctic

Appearam

Figure 6-43. Choosing the E-mail Address keyboard options from a very rich list of context-specific keyboard options

8. Rerun the application in the Simulator, and tap into the Email Address field.
The keyboard shown to the user makes it easier to quickly type an e-mail
address without having to go hunting for the @ symbol.

You’re well on your way to having happy users. There is just one more tweak | want to add to make
this application as easy as possible to navigate.


http:///

CHAPTER 6: Constraints 173

Navigating Forms

A lot of what you’ve looked at regarding customizing text fields has focused on simplifying the
experience for the user. This final example is no exception, but it requires you to write some code,
even though | said this was a code-free chapter. | lied (sorry!).

The two text fields don’t present much of a burden to the user in terms of navigating, but with a
couple of lines of code, you can add the icing on the cake by allowing the user to navigate through
the text fields using the keyboard. This makes it easier for users to complete the fields in double
time. The technique learned here can be scaled up to larger forms, where your users will really
appreciate it:

1. Open the Assistant Editor, and ensure that the ViewController.swift file is
loaded. If you want the Assistant Editor located back on the right, go to
View » Assistant Editor » Assistant Editors On Right.

2. Control-drag a connection from the Email Address text field to just below the
class declaration, and create an outlet named usernameField.

3. Do the same for the Password text field, and name this outlet passwordField.

4. Switch back to the Standard Editor. You need to make some changes to the
interface before moving on to the implementation file.

5. When the user selects the Email Address field, you want them to see a Next
button instead of the Return button so that they can tap it to move to the
Password field. To set this, select the Email Address text field, and, in the
Attributes Inspector, look for the Return Key attribute. Select Next from its list
of options.

6. Scroll down the list of attributes until you find the View section and,
specifically, the Tag attribute. Enter 1 as the attribute value. Tags are integer
values that are used to identify different elements in a layout when you look
at them in code. If you have 30 text fields in your view, the only way in code
to differentiate one UITextField from another is to examine its tag.

7. Select the Password field, and change its Return Key attribute to Done
and its Tag attribute to 2. Run the application in the Simulator to see these
buttons in action, as shown in Figure 6-44.


http:///

174 CHAPTER 6: Constraints

iOS Simulator - iPhone 6 - iPhone 6 / iOS 8.1 (12B411)

i0S Simulator - iPhone 6 - iPhone 6 / iOS 8.1 (12B411)

| Carrier ¥ 4:42 PM L

Email Address
|

Passwaord

Log In

QIWIEJR]T]YJU]LI JO]P
AISIDJF]JG]JH]JK]L

ZIX|CJV|IBINIM

123 space @ y Next

| Carrier = 4:43 PM L]

Email Address

Password

Log In

QIWIEJR|ITIYJURIJO|]P

7123 space

Figure 6-44. The keyboard changes depending on which field is selected

8. The buttons look good but don’t currently do anything. Open ViewController.
swift from the Project Navigator, where you add the functionality needed to

finish this application.

9. Addthe UITextFieldDelegate protocol to the class by adding the highlighted

code to the class declaration:

import UIKit

class ViewController: UIViewController, UITextFieldDelegate {

@IBOutlet weak var usernameField: UITextField!
@IBOutlet weak var passwordField: UITextField!


http:///

CHAPTER 6: Constraints

10.

11.

12.

13.

14.

Go to the viewDidLoad method, and add the following highlighted code to
specify that the view controller is the delegate for the text fields:

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
usernameField.delegate = self
passwordField.delegate = self

}

You need to add the textFieldShouldReturn method, as you did in Chapter 4,
to understand what happens when the user presses the Return key, whether
you’ve configured it to say Next or Done. Drop down a few lines after the
viewDidLoad method, and type the stub for the method as follows:

func textFieldShouldReturn(textField: UITextField) -> Bool {

}

This method returns a Boolean value and shows an error until that is returned; for now,
ignore it.

You want the method to work out the tag for the next field, assuming it’s one
more than the current textField.tag property, and assign it to a variable
called nextTag for analysis. Add this highlighted code:

func textFieldShouldReturn(textField: UITextField) -> Bool {
let nextTag = textField.tag + 1 as Int
}

You need to see if there is an element in the view with a tag that matches the
nextTag integer value so that you can either move to the Password field or
dismiss the keyboard. You do this by creating an instance of the UIResponder
class and setting it by going to the current text field’s parent view and searching
based on the tag. Do that by adding this line of code to your method:

func textFieldShouldReturn(textField: UITextField) -> Bool {
let nextTag = textField.tag + 1 as Int
var nextField : UIResponder? = textField.superview?.viewWithTag(nextTag)

}

The following if else statement determines the course of action based on
whether the nextField object was found:

func textFieldShouldReturn(textField: UITextField) -> Bool {
let nextTag = textField.tag + 1 as Int
var nextField : UIResponder? = textField.superview?.viewWithTag(nextTag)

175


http:///

176

CHAPTER 6: Constraints

15.

16.

if let field : UIResponder = nextField {

}

else

{

}
}

If the current field is the Email Address field, the code in the first set of braces
is executed. In this case, you want to focus the cursor in the password field
so that the user can type their password. To do this, make that field the first
responder by adding the following highlighted code:

func textFieldShouldReturn(textField: UITextField) -> Bool {
let nextTag = textField.tag + 1 as Int
var nextField : UIResponder? = textField.superview?.viewWithTag(nextTag)

if let field : UIResponder = nextField {
field.becomeFirstResponder ()
}

else

{

}
}

The else code executes if the current field is the Password field. In many
cases you would execute your login routine at this stage, but because

you don’t have one, let’s just dismiss the keyboard by resigning the first-
responder state. After the if else statement, you need to return a Boolean
value indicating whether the use of the Return key in iOS should insert a line
break, which it should not. Type the following highlighted code to complete
the method:

func textFieldShouldReturn(textField: UITextField) -> Bool {
let nextTag = textField.tag + 1 as Int
var nextField : UIResponder? = textField.superview?.viewWithTag(nextTag)

if let field : UIResponder = nextField {
field.becomeFirstResponder ()
}

else

{
}

textField.resignFirstResponder()

return false


http:///

CHAPTER 6: Constraints 177

Run your application in the Simulator. You should be able to tap into the Email Address field and
navigate to the Password field using the Next button; then use the Done button to dismiss the
keyboard. The great thing is that you can use the same textFieldShouldReturn method whether you
have 2 text fields or 30, as long as you make sure each field has a unique tag value that is one more
than its predecessor.

Summary

Whatever your feelings were about constraints, Auto Layout and size classes before this chapter,
I hope that now you feel at least a bit more confident about how to manipulate them with Xcode.
Specifically in this chapter, you have done the following:

Learned about how Auto Layout has changed in Xcode 6

Manually added constraints with the Control-drag method as well as with the
Align and Pin menus

Learned how to add missing constraints and much more with the Resolve Auto
Layout Issues menu

Added a layer of polish to your text fields with the Secure and Placeholder
attributes

Used a small piece of code to take control of how the Return key works

You’ve covered a lot this chapter, but hopefully it’s all contributing to an application you’re working
on or giving you the confidence to begin writing that application you’ve been thinking about for
months.

The next chapter focuses on storyboards: the visual approach to building applications through Xcode
that lets you create large portions of your application without the need to write a single line of code.


http:///

Part 2

Diving Deeper


http:///

Chapter

Storyboards

Chapter 6 for the most part took a break from writing code to look in detail at Auto Layout, Xcode’s
system for arranging layouts and specifying how they react to changes in form factor or orientation.
It also explained how to craft a tailor-made user experience by customizing keyboards and text fields.

You’re now in the second part of this book, “Diving Deeper,” and you’ll see that demonstrated

from the outset as you get into the nitty-gritty of building a complex multiview application using
storyboards. First | present the background of storyboards and the concepts behind them, and then
you see the key feature of Xcode storyboards—the segue—and how to make the most of segues
when rapidly creating applications.

So far in this book, in every chapter but Chapter 1 you’ve created an application as a context for
your journey through Xcode. The only difference with this chapter’s project is that you’re building it
over this and the next chapter. The reason is that you're creating a functional Twitter client for iPad.
You begin by laying out and connecting the views using storyboard techniques, but the client is built
around customized table views (the subject of Chapter 8). There’s a lot to cover, and | rely heavily on
two Apple-provided frameworks that take a lot of the pain out of communicating and authenticating
with Twitter: the Accounts and Social frameworks.

Although this project won’t have all the bells and whistles you might expect from a full Twitter client,
you can still choose from multiple accounts, see a full Twitter feed, and compose and post tweets.
To get a flavor of what this application will look like, see Figure 7-1.

181


http:///

182 CHAPTER 7: Storyhoards

-

What do you guys think?: Samsung 2014 Phanes
to Have Twice the Pixels, Folding Displays by
2015 hitpe//t cofuZW2SKAE via @gizmodo

Figure 7-1. Some of the key screens in SocialApp, your functional Twitter client

A Brief History of Storyhoards

Apple introduced the storyboard approach to building iOS apps with iOS 5. Although it was initially
seen as a novelty, it has grown to where it is now: the preferred system for application development
used with the majority of Xcode’s iOS templates.

Storyboards aren’t a new concept; they have been used by developers for decades. They’re

used today as part of the software planning and prototyping process. When my team and | are
brainstorming for a particular solution, we storyboard using whiteboards or flip-chart pages because
it's a way to rapidly express relationships between web pages or views in a mobile application. It's
this system for rapid prototyping that Apple has successfully captured in Xcode 6 —but Apple has
taken it to another level allowing for agile application development.

Outside of development, storyboards originally came from the world of cinema. They were
developed by Walt Disney Studios in the 1930s to plan out animations scene by scene, which

is a process that is still used today even in major motion pictures. Although there are parallels in
terminology, the major difference between storyboards in animation and storyboards for software
development is that in animation, the progress of the story is linear: scene B always follows scene A.
But in software development, this is rarely the case: perhaps scene A links to scenes B and C, with
scene B linking to scene D and scene C linking to scene E, which links back to scene A. It’s because
of the complexity of designing a multipage application’s user experience that storyboards are so
valuable. The thing that movie storyboards and application storyboards share is their ability to show
us the bigger picture without having all the footage—or, in our case, code.

For the SocialApp Twitter application developed in this chapter and the next, I've made a basic
storyboard using a graphics package, as shown in Figure 7-2.


http:///

CHAPTER 7: Storyhoards

1. Account
Selection

2. Tweet List

Account Name

3. Tweet Detail

Title
Content

Title
Content

Title
Content

|

Title
Content

Figure 7-2. The basic composition of SocialApp, the example Twitter client

This is the process that my team of developers and | go through when we start thinking about the
composition of an application and the functionality we want to add. We use this storyboarding
process to explore ways of assembling those functions in a way that results in an easy-to-use
application. When dealing with storyboards in Xcode, Apple refers to the views as scenes.

Title
Content

]

4. Compose
Tweet

183

As you can see in Figure 7-2, this app has four scenes, and one scene leads to another. Before you

begin developing this app, let’s look at each scene in more detail:

1. Account Selection: Today people often manage several Twitter accounts, so
the first scene is a grouped style table view controller that lists each account
available on the device.

2. Tweet List: Once the user has selected their preferred account, you want to
show the 20 most recent tweets on that user’s timeline. These are displayed
in a plain style table view with a custom table cell.


http:///

184 CHAPTER 7: Storyhoards

3. Tweet Detail: The user can see more details about the tweet and its author in
the Tweet Detail scene. This is based on a standard view controller and lists
the user’s name, their avatar, and the full tweet content in a text view.

4. Compose Tweet: Accessed from the compose icon in the Tweet List, this
standard view controller uses a text view to compose a tweet and then posts
it to Twitter on behalf of the user.

If you want to reference the scenes in this storyboard to the actual application screenshots shown in
Figure 7-1, the first screenshot is scene 2, Tweet List; the second is 3, Tweet Detail; and the third is 4,
Compose Tweet.

Now that you know a little more about storyboards, their origin, and how they’re used by developers
every day, it’s time to begin putting this application together. This chapter focuses on laying out

the scenes in the storyboard and putting the connecting segues in place, as well as embedding
navigation controllers and creating the custom classes behind the view controllers, so let’s get
started.

Creating a New Project Called SocialApp

Before | get into adding in the finer details of the interface, you need to create the project and then
lay out the views for this application:

1. Open Xcode, and create a new project by clicking Create a New Xcode
Project from the Welcome screen or going to File » New » Project
(38+Shift+N). Select the Single View Application template, and click Next.

2. Name your project SocialApp, and ensure that the targeted device is set to
iPad, not iPhone or Universal. Configure the other settings as you’ve done in
previous applications so they match Figure 7-3 (again substituting your name
for mine), and click Next.


http:///

CHAPTER 7: Storyhoards

Choose options for your new project:

Product Name:
Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

Devices:

Cancel

Figure 7-3. Setting the project options

SocialApp
Matthew Knott

com.mattknott

com.mattknott.SocialApp

Swift

iPad

Use Core Data

Previous | Next

3. You don't need to create a Git repository this time, so leave that option
unchecked and make sure your project will be saved in the right place. Then

click Create.

4. As should be familiar by now, you’re ready to begin your application in
earnest. The focus of this chapter is storyboards, so it makes sense to open

Main.Storyboard. Select it from the Project Navigator.

185

This is the first time you’ve created an iPad app, but due to Size Classes (introduced with iOS 8 and
Xcode 6) the view hasn’t changed from when you were working on iPhone apps. Although this isn’t

why Apple introduced Size Classes, it means iPad apps are much easier to develop because the

views occupy less screen real estate.

Tip If at any time you want to get a bird’s-eye view of the burgeoning storyboard, zoom out by using pinch
and zoom on a trackpad, by double-clicking an empty part of the design area, or by pressing ~=+36+Shift+{.

Note When your zoom level is less than 100%, you can still create segues between scenes and reposition
them, but you can’t add controls to your views. For that, you need to be zoomed in to 100% or greater.


http:///

186 CHAPTER 7: Storyhoards

At this point in the process, you may need to refer back to the initial layout storyboard created for
Figure 7-2. As | explained at that time, the first scene in the application is a table view controller that
lists the available accounts. You could add a table view to the default view controller that was added
to the storyboard, but it’s easier to add a completely separate table view controller:

1. The table view controller is the third item in the Object Library. Drag one onto
the design area and drop it next to the existing view controller, as shown in
Figure 7-4. You may need to move it around a little to get a tidy design area.

ane Main.storyboard — Edited

 m % SocialApp | g iPad Air SocalApp: Ready | Today at 21:00 2 EOd¥Yyi DO

B QA& EHCc @ B L socialhop SocialApp Mainstonboard | [l Main.ato. rd (Rave) Table View Controlier Scene Tabie View Controller = [ = Demo0®
Socka View Contralier
= 2 rargets, 05 50K 80
v R 5 Foed
- AppDelegate.vwilt
- WiewControdler swift
Images. xCassets
LaunehSereen.xit: - o -

* | Supporting Files
* | SotialAppTesss
[ Products

] ®

View Controller - A controller that

Table View Controller - A
controller that manages a table view.

+10

[=

s (H] Any nAny B ol lal B[ B (&

Figure 7-4. The table view controller scene, next to the initial scene the project was created with

2. Before you add any more scenes, let’s run the application in the simulator.
Click the Run button on the Toolbar, or press ¥#+R. Notice that the default
view controller is loaded instead of the table view controller, and there is no
obvious way of accessing the Table View Controller.

3. Quit the simulator, and return to Xcode.

The default view controller is the starting point because there is an arrow pointing to the left side

of it, known as the starting arrow. As you might expect, you can drag and drop the starting arrow
onto the table view controller. When the arrow is over the table view controller, the scene becomes
highlighted in blue, as shown in Figure 7-5. The starting arrow now points to the table view controller,
just as it once pointed to the default view controller.


http:///

CHAPTER 7: Storyhoards 187

View Controller Table View Controller

— Prototype Cells -

Figure 7-5. The starting arrow being hovered over the table view controller

If you run the application again, you should be greeted with an empty table view. It was that easy to
change the starting point for this application! Before storyboards, you would have had to modify the
application delegate to tell it which view controller to start with; now you can just drag and drop a
visual aid.

If you want to be a bit more precise when setting the initial scene, and you don’t want to drag and
drop the starting arrow, there is another way to do it:

1. Select the table view controller in the design area, either by clicking the
scene while zoomed out or by selecting Table View Controller from the
Document Outline.

2. Open the Attributes Inspector, and look down to the View Controller section.
Notice that Is Initial View Controller is select. Unselect it, and the starting
arrow disappears! You’d better bring it back; otherwise the application will
run with a black screen.

3. It would be a good idea to set a title while you’re here. To do so, click in the
Title box and set the title to Accounts.


http:///

188 CHAPTER 7: Storyhoards

There is a final way to make the table view controller the initial view controller: by deleting the default
view controller. Let’s do that now, as well as delete its code files:

1. Select the blank view by clicking its scene while zoomed out or by selecting
View Controller from the Document Outline, as shown in Figure 7-6.

B8 <« » | & Socialapp ) SocialApp »

v [=] View Controller Scene

¥ @ View Controller

Top Layout Guide
Bottom Layout Guide
View

iJ First Responder

[E] Exit

Figure 7-6. Selecting the initial view controller from the Document Outline

2. Delete the view controller by pressing the Backspace key or by selecting
Edit » Delete.

3. You need to remove the file that Xcode added for this view controller. Using
the Project Navigator, select ViewController.swift and, again, press the
Backspace key or select Edit » Delete.

4. You’re presented with the dialog shown in Figure 7-7, giving you options for
file deletion. The Remove References button removes files from the project
but leaves them in place in the project folder on your Mac. In this case you
want to delete the file altogether, so select the Move to Trash option.

Do you want to move the file “ViewController.swift” to the
Trash, or only remove the reference to it?

Cancel . Remove Reference | Move to Trash

Figure 7-7. The dialog presented by Xcode when removing files via the Project Navigator

Congratulations: you’ve removed all the unnecessary files and views from the project! You’re now
going to step away from the storyboard for a moment to create four custom view controllers for the
views by subclassing either UITableViewController or UIViewController.


http:///

CHAPTER 7: Storyhoards 189

Creating View Controllers

You can add as many view controllers to the storyboard as you like. But if you don’t tie them to a
view controller class file, the application will be extremely limited, because you’ll have no way of
interacting with the view controllers or controlling them using code. Therefore, let’s break away from
the application and focus for a moment on the design pattern you’re using. It’s called model-view-
controller, more commonly shortened to MVC.

The Model-View-Controller Design Pattern

Using Xcode with the OS X and iOS SDKs is one of the most natural environments for developing
using the MVC principle. First, you don’t have to configure Xcode for MVC. Xcode was built from the
ground up for MVC, and all the application templates except the Empty Application template are set
up using the MVC principle. Second, the semantics of the terminology are completely logical:

Model: An object that stores data in a structured way. Core Data lets you create
data models to interface with stored data. You can also create custom classes to
represent objects, such as a vehicle class, which might have a type property, a
wheels property, a make property, and many more.

View: Unsurprisingly, consists of your views, as laid out in your storyboard. The view
should be all the visual elements of an application, held in isolation from any code.

Controller: The part that manages the views and the models. It acts as an
intermediary between the two, taking information from the model and using it to
coordinate changes in the view.

SocialApp currently has a view, and you know you’re going to add several more. Before you do,
let’s create all the view controllers so that when you add the views, you can tie them directly to a
controller. All your view controllers subclass either UITableViewController or UIViewController to
create an individual class file for each view. You’ve done this in previous chapters, but this time you
need to create four view controllers of different types.

Subclassing UlViewController

UIViewController is the class name given to the standard view controller that has been used so far
in all the applications in this book. When you declare a class that subclasses UIViewController,
you type, for example,

class MyCustomViewController: UIViewController


http:///

190 CHAPTER 7: Storyhoards

This says that the view controller called MyCustomViewController subclasses UIViewController.
Subclassing means taking on all the attributes of another class, but with the ability to add your own
methods and properties and override others. Two of your views subclass UIViewController. The two
view controllers will be called TweetViewController and ComposeViewController. First, let’s create
TweetViewController, and then see if you can repeat the process for ComposeViewController:

1. Right-click the SocialApp group in the Project Navigator and select New File,
as shown in Figure 7-8; or select the SocialApp group and press #+N.

Hl

B 2 aQ AN & = o B 338 <4 » | & socialApp ) [ SocialApp )
. SocialApp '
“ 2 targets, i0S SDK 8.0
Lm - i OCia I..I.
= App

» [=] Table View Controller Scene

Show in Finder
Mair Open with External Editor

. ima Open As >
Law Show File Inspector

> .2 Sup|

>\ St} New Project
I Produc Ject...

| Add Files to “SocialApp”...

Delete

Figure 7-8. Adding a file to the SocialApp group in the Project Navigator

2. You’re presented with the file template selection screen. Ensure that Source
is selected from the list under the iOS heading, select Cocoa Touch Class, as
shown in Figure 7-9, and click Next.


http:///

CHAPTER 7: Storyhoards 191

Choose a template for your new file:

i0s N
Source | (&L 'Y
User Interface 3 y
Core Data Test Case Class Playground Swift File
Resource Class
Other
h c c-
Source
User Interface Objective-C Header File C File C++ File
Core Data File
Resource
Other
Cocoa Touch Class
A Cocoa Touch class.
Cancel Previous | [ Next]

Figure 7-9. Selecting the Cocoa Touch Class file template

3. Set the Subclass Of field to UlViewController. This defaults the Class field to
ViewController, making it easy for you to change it to TweetViewController. Be
sure the Also Create XIB File check box is unchecked, as shown in Figure 7-10,
and click Next.


http:///

192 CHAPTER 7: Storyhoards

Choose options for your new file:

Class:  TweetViewController

Subclass of:  UlViewController v
Also create XIB file

iPhone

Language: @ Swift

4r

Cancel Previous

Next

Figure 7-10. Setting the options for the TweetViewController file

4. You need to choose a location to save the file. Xcode automatically suggests
the project folder, which is what you want. Be sure Group is set to SocialApp
and that the SocialApp target is selected, as shown in Figure 7-11, and click
Create.


http:///

CHAPTER 7: Storyhoards

193

(< >)(s = EA m]

v J __ SocialApp 3 (Q
FAVORITES il @ SocialApp ~ AppDelegate.swift
‘_Eg All My Files SocialApp.xcodeproj | Base.lproj >
T | SocialAppTests ™ [ Images.xcassets >
#\; Applications i
@ Documents
0 Downloads
DEVICES
Remote Disc
SHARED
[ iMac
TAGS
Group | [ SocialApp v
Targets |V /\ SocialApp
SocialAppTests
New Folder Cancel . Create

Figure 7-11. Choosing a save location and specifying the group and target

You're returned to Xcode, where you can see that TweetViewController.swift has been added to
the project. Great! That’s one view controller; now repeat this process for ComposeViewController.

When you’re done, your Project Navigator should resemble that shown in Figure 7-12.


http:///

194 CHAPTER 7: Storyhoards

¥ | SocialApp
» AppDelegate.swift
Main.storyboard
. Images.xcassets
LaunchScreen.xib
s TweetViewController.swift
» ComposeViewController.swift
b | Supporting Files
» | SocialAppTests
» | Products

Figure 7-12. The growing project in the Project Navigator

Well done! Creating view controllers and subclassing other classes and objects is a core task for
developing applications, so you’re perfecting a valuable skill.

One thing you can foresee, looking at Figure 7-12, is that the file list is growing, and you still have
three more view controllers to add. You need to tidy up the structure by grouping the view controllers
together:

1. At the bottom of the Project Navigator, type View in the Show Files With
Matching Name filter to make sure you only see your view controllers.

2. Click the first view controller file (in my case, it's TweetViewController.swift).
Holding the Shift key, select the last file (in my case, ComposeViewController.swift).
Both view controllers should be selected, as shown on the left in Figure 7-13.


http:///

B\ ComposeViewControl -

+ | OE Bview )

CHAPTER 7: Storyhoards 195
BRE QA © E o B B2 Q A © = B Bl «»|h:
7. SocialApp . SocialApp 1
=4 2 targets, i0S SDK 8.0 = 2 targets, i0S SDK 8.0 //  Compose"
1 - // SocialAj
¥ __ SocialApp ¥ | SocialApp 7/

= Show in Finder pred

- DINDOSS yrigl
=== QOpen with External Editor

Open As > UIKi-
Show File Inspector

ompo:
New File... .

rride
New Project... supt
Add Files to “SocialApp”... /0
Delete

rride
New Group supt

New Group from Selection /11

Sort by Name
Sort by Type

MARK
Find in Selected Groups... En a

rride

i » I/t
ﬂ (Gwiew  Source Control |

Figure 7-13. Selecting the view controllers, and creating a new group to contain them

3.
shown on the right in Figure 7-13.

Right-click the selected files, and choose New Group from Selection, as

When prompted, name your new group View Controllers. Clear the filter by

clicking the X at the end of it. You should be left with a neat project,

as shown in Figure 7-14.

B QO

- SocialApp

B
B

¥ | SocialApp

P SocialAppTests
> Products

Figure 7-14. The view controllers grouped neatly together

©

=

&)

2 targets, iOS SDK 8.0

= AppDelegate.swift
Main.storyboard
' Images.xcassets
LaunchScreen.xib
¥ i View Controlle
= TweetViewController.swift
=+ ComposeViewController.swift
P | | Supporting Files


http:///

196 CHAPTER 7: Storyhoards

Organizing your project neatly and logically ensures the admiration of your development team
colleagues. They will thank you for it. Organizing files in big projects means if someone else has to
work on your project, they don’t have to hunt for the custom classes or the view controllers, because
you’ve applied logic and good housekeeping to your project structure.

Subclassing UlTableViewController

You've created two of the four view controllers, and it’s time to create the remainder. The process

is more or less the same, but there are some subtle changes. UIViewControllers are fairly
straightforward: the views themselves are blank canvases, ready for you to add controls; and their
methods are also very minimal, giving you just a viewDidLoad function and a handler for low memory.
UITableViewController, however, is a more complex system, designed for displaying large amounts
of data through a structured interface. It has a number of intrinsic attributes that result in the code
files containing methods that are used to control the number of rows, sections, and more. | explain
these in detail in Chapter 8; for now, let’s just create them so you can get back to the storyboard.

The process is largely the same as before, but this time you start by selecting the View Controllers
group instead of SocialApp in the Project Navigator. You need to create the two instances

of UITableViewController that this application uses, called AccountsViewController and
FeedViewController:

1. Right-click the View Controllers group and select New File, as shown in
Figure 7-15, or press #+N. You’re presented with the file template selection
screen.

'y

Images.xcassets

LaunchScreen.xib import UIKit
—_. Y% Show in Finder poseViewControl
afiweedll | o Erernal Edi
Open with External Editor L . :
4+ Compot : ide func viewDi
: ; Open A > iuper.viewDidlLoa

> Supporting

» | SocialAppTes '/ Do any additi

Show File Inspector

New Project ride func didRec

= ,. . " iuper.didReceive
Add Files to “SocialApp”... I/ Dispose of an
Delete

Figure 7-15. Adding a new file to the View Controllers group

2. As with the UIViewControllers, select the Cocoa Touch Class file template,
and click Next. Set the Class field to AccountsViewController and the
Subclass Of field to UlTableViewController, as shown in Figure 7-16, and
click Next.


http:///

CHAPTER 7: Storyhoards 197

Choose options for your new file:

Class: | AccountsViewController

Subclass of:  UlTableViewController v
Also create XIB file

iPhone

Language: = Swift =

Cancel Previous Next |

Figure 7-16. Specifying the options for the UITableViewController

3. Accept the suggested file location, and click Create.

4. You should be a master at creating new view controllers, so repeat these
steps and create another UITableViewController called FeedViewController.

You’ve now created four view controllers. Let’s finish adding the views to the storyboard and tie
them to their respective controllers. Your Project Navigator should look something like the screen
shown in Figure 7-17.

¥ SocialApp
+ AppDelegate.swift
Main.storyboard
' Images.xcassets
LaunchScreen.xib
¥ | View Controllers
+ TweetViewController.swift
s+ ComposeViewController.swift
= AccountsViewController.swift
+ | FeedViewController.swift
» _ Supporting Files
b SocialAppTests
> Products

Figure 7-17. The Project Navigator with all the view controllers nicely organized


http:///

198 CHAPTER 7: Storyhoards

Pairing the View to the Controller

I’ve explained the fundamentals of the MVC design pattern on which these applications are based.
You’ve created the controllers, and next you need to add the views to the storyboard and tie them to
their specific view controller by using the Identity Inspector from the Utilities bar:

1. Open Main.Storyboard, and select Accounts from below Accounts Scene in
the Document Outline. When setting the class of a view, you need to select its
view controller before you apply the class; otherwise things get messy. That’s
why you use the Document Outline to make sure of your selection.

2. Open the Identity Inspector from the Utilities bar, or press ~+3+1. Xcode
should resemble the screen shown in Figure 7-18.

8en0e Main.storyboard
» m “ SocialApp | G iPad Air SocialApp: Ready | 28/09/2014 at 21:00 5 EdA D0
BRER Q& ©F o @ |88« & socialipp Socialipp )« Mai. ard Mai...ase) ) [ Table View Controlier Scene Accounts |« [, > De@eB 01 &
v [y Sochlipp v [ Accounts Scene Custom Class
2 targets, 105 SO 8.0 -
v SoclalApp Class View e O
- AppDelegate.swift » [_| Table View Module | None v
| First Responder
Imlqes_x( .ss.u-s“ E Exit Identity

LaunchScreen.xib Staryboard 1D
¥ | View Controllers L

= TweetViewController.swift

- ComposeViewController.swift

= AccountsViewController swift

- FeedViewController.swift

Protctye Co - Restoration 1D

Use Storyboard 1D

User Defined Runtime Attributes

» _ Supporting Files Key Path  Type Value
* | SocialAppTests
» Products
+
Document
Label | X
®

View Controller - A controller that
supparts the furdamental view
management model in 105,

Navigation Centroller - &
through a hierarchy of views

Table View Controller - A
controller that manages a table view.

+ OE@® < [ ] Any HAny ol B B @

Figure 7-18. Xcode with the view controller selected and the Identity Inspector open

3. In the Identity Inspector, look for the Custom Class section. This is where
you bind your view controller’s visual element to the actual view controller.
In the Class field, it currently says that this view controller’s class is
UITableViewController. It’s grayed out because although it knows what its
base type is, you haven't yet tied it to a custom view controller. Click the
down arrow at the end of the field, and you should see three selections: the
base class and the two custom view controllers, as shown in Figure 7-19.
Select AccountsViewController.


http:///

CHAPTER 7: Storyhoards 199

O ® * B ©
Custom Class

Class | UITableViewController G3|¥

Module | AccountsViewController

FeedViewController
Identity UlTableViewController

Storyboard ID

Restoration ID
Use Storyboard ID

Figure 7-19. The list of available view controllers

Note If at any time you don’t see one of your view controllers listed as an option in the Custom Class list
and you have the view controller selected in Interface Builder, either quit Xcode and relaunch it or write the
class name in yourself—but remember, it’s case sensitive. Sometimes Xcode loses track of which classes

have been created.

You’ve told the view controller on your storyboard that it no longer complies with its base

class UITableViewController; now it’s controlled by the AccountsViewController class. Xcode
immediately reacts to the change in custom class. Try opening the Assistant Editor: it displays the
implementation file for the Accounts view controller, confirming that the class is valid and the link to
the storyboard is working.

Understanding Inheritance

Subclassing and base classes are two terms that feature heavily when describing the concept of
inheritance. Inheritance is one of the key principles of object-oriented programming. It describes a
link between two classes: the base or superclass, and the custom class, which can be referred to as
a subclass or derived class.

The best way to think about a base class and subclass is as a parent and child; the child descends
from the parent and shares the same genes, but the child is not identical to the parent. And
although the parent has its own attributes, the child has the ability to gain its own new attributes. In
Wales, people are often named along the lines of David ap Gwillim, meaning David son of Gwillim.
That is exactly what class AccountsViewController: UITableViewController is saying in the
AccountsViewController.swift file: that it descends directly from UITableViewController.

Now that you have a better understanding of inheritance and why you create custom classes, you
can finish building the storyboard.


http:///

200 CHAPTER 7: Storyhoards

Building Up the Storyboard

With Main. Storyboard open, let’s get back to the focus of this chapter: storyboards. You’ve created
the first scene for account selection; it’s time to create the second scene, which is the list of tweets,
more commonly known as the Twitter feed, which is controlled by FeedViewController:

1. This is another UITableViewController class, so you need to drag a table
view controller from the Object Library and drop it next to the first scene, as
shown in Figure 7-20.

Prototype Cells - Prototype Cells -

Figure 7-20. The storyboard with two table view controllers side by side

2. Select the new table view controller, and open the Attributes Inspector. Set the
Title attribute to Feed; this will help you keep track of your scenes in what will
be a full storyboard.

3. Select the Identity Inspector, click the Class drop-down list, and choose
FeedViewController.

4. You have two scenes on your storyboard. Let’s add the last two so you
can move on to a careful examination of one of the key features of any
storyboard: segues. The third scene is a regular view controller that is used
to show the details of the tweet. Drag a view controller from the Object
Library, and drop it above and to the right of the Feed view controller.

5. Select the new view controller, and open the Attributes Inspector. Set the
Title attribute to Tweet. To set the class, open the Identity Inspector and set
the Class value to TweetViewController. Your growing storyboard should
resemble that shown in Figure 7-21.


http:///

CHAPTER 7: Storyhoards 201

Prototype Cells - Prototype Cells -

Figure 7-21. The three scenes, positioned nicely and ready for the fourth

6. By now you can start to appreciate how it can sometimes be challenging to
work on large, multiview applications using storyboards. This is why it’s best
to meticulously name every scene as it’s created, so you can quickly identify
a scene via the Document Outline. The next scene is ComposeViewController,
which you use to write tweets and post them to Twitter. Drag in another view
controller, and position it directly below TweetViewController.

7. Click the new view controller, and open the Attributes Inspector. Set the Title
attribute to Compose. As you’ve done previously, open the Identity Inspector,
and set the Class value to ComposeViewController.

All the scenes of the storyboard are laid out neatly. Each view controller on the storyboard is tied to
its respective view controller class. Although you have the basic structure in terms of the scenes,
the scenes themselves are largely empty. Let’s focus on the individual scenes and begin adding the
elements that will make up the interface. Before you move on, check that your interface resembles
that shown in Figure 7-22.


http:///

202 CHAPTER 7: Storyhoards

Figure 7-22. The storyboard as it stands, with all the scenes in place, but without their interface elements

Linking Scenes and Building Interfaces

One message that should be coming across in this chapter is that building an application with
storyboards is part of a structured process. First you plan your application and its scenes, and
then you create the view controllers before tying them into their respective visual counterparts on
the storyboard, giving you separate view controllers that have their classes set but are ultimately
strangers to one another. To address this issue, you need to progress through each scene from 1
through 4, building and connecting the interface with segues.

What Are Segues?

Just as the concept of storyboards is rooted in the movie industry, so is the term segue (pronounced
“seg-way”). In a film, a segue is a transition between scenes, so you can immediately see how

it's appropriate as a term that describes the mechanism used by Xcode to transition between
storyboard scenes.

In Xcode, segues need a start point and an end point. Typically, the start point is a button or a table
cell. The end point is almost always another view controller. Think back to Chapter 3 for a moment;
there you wrote several lines of code to push the second view controller onto the screen. With
storyboards, a segue allows you to do this with a couple of clicks.


http:///

CHAPTER 7: Storyhoards 203

To demonstrate how to create a segue, let’s start by linking the Accounts view controller to the Feed
view controller. It’s important to note that the Accounts view controller doesn’t need any specific
interface work at this point; | explain that in more detail in Chapter 8. Here are the steps:

1. Double-click the design area to zoom back to 100%. Move the storyboard
around so you can get as much of the Accounts view controller and the Feed
view controller in view as possible, as shown in Figure 7-23.

B - & socialapp B Main.story B Main.storyboard (Base)  No Selection

Accounts Feed

Prototype Cells - Prototype Cells

[ m} Any h ANy = i sl B

Figure 7-23. Scenes 1 and 2 side by side: the Accounts view controller and the Feed view controller

2. The Accounts view controller lists all the Twitter accounts that are set up on
the device in a table view. Selecting one of the rows takes you to the Feed
view controller. To make this happen, you need to create a Show segue
from the table cell to the Feed view controller. Highlight the table cell in the
Accounts view controller by clicking it, as shown in Figure 7-24.


http:///

204 CHAPTER 7: Storyhoards

B« = SocialApp ! SacialApp Main.storyboard Main.storyboard (Base) ' ] Accounts Scene Accounts Table View Table View Cell

v [T Accounts Scene

v Accounts

v Table View

Prototype Cells

Content View
oI First Responder
) Exit
v [ Feed Scene

v Feed
»> Table View

Figure 7-24. The Accounts view controller table cell highlighted

Note It's not immediately obvious that you’ve selected the table cell, but if you look at the jump bar above
the design area, or in the Document Outline shown in Figure 7-24, you see that it is indeed selected.

3. Hold down the Control key, click the table cell, and drag a connecting line
from the cell to the Feed view controller, as shown in Figure 7-25.

Feed

- | Prototype Cells

Figure 7-25. Dragging a connecting line between the table cell and the Feed view controller

4. When you release the mouse button, you’re presented with a contextual
dialog asking about the type of segue you want to create, as shown in
Figure 7-26. In this instance, you want to create a Show segue from the

Selection Segue list of types.


http:///

CHAPTER 7: Storyhoards

Prototype Cells

Selection Segue
show
show detail
present modally
popover presentation
custom
Accessory Action
show
show detail
present modally
popover presentation
custom
Non-Adaptive Selection Segue
push (deprecated)
modal (deprecated)
v

Figure 7-26. The contextual menu presented when you create a segue from a table cell

Note The dialog that appears when you create a segue is contextual because depending on your start

point, the options for creating a segue are different. The start point for this segue is a table cell, so the options
you’re presented with are specific to this scenario. As you can see, there are three headings: Selection Segue,
Accessory Action, and Non-Adaptive Selection Segue. This is because a table cell has two elements that support
user interaction: the cell itself triggers the Selection segue, whereas the cell accessory triggers the Accessory
Action segue, the Non-Adaptive heading encapsulates the segues that were deprecated with Xcode 6 and iOS 8.

5. A segue is created between your two view controllers. Select it, and then
open the Identity Inspector, as shown in Figure 7-27. In the Identifier field,
type ShowTweets.

=] Accounts Scene ) (<) Show segue to Feed 4i» O ® g E ©
Storyboard Segue

Identifier —ShowTweets

Segue | Show (e.g. Push) 4

@

Figure 7-27. Inspecting the segue

205


http:///

206 CHAPTER 7: Storyhoards

This segue is triggered when the user taps the table cell for the Twitter account they want to use.
When this happens, you need to pass the selected account details to the Feed view controller. In
Chapter 3, you did this by writing code that passed an object to the next view controller; but when
working with segues, you use the prepareForSegue method, which is called every time a segue on
the view controller is triggered. | explain this method in more detail later, when you write the code
that performs different actions depending on the segue that is being triggered. But to identify which
segue is being triggered, you must give each an identifier.

Tip Even when you have only one segue coming from a view controller, as in this case, it’s still a good
practice to give it an identifier so that if you add more segues to the view controller in the future, you won’t
have a situation where you’re passing information to the wrong target view controller.

Before you go any further, let’s take a minute to look at the different segue styles available and in
what situations you might use each one:

Show: Prior to Xcode 6 and iOS 8, this was referred to as a Push segue. This segue
dismisses the current view and pushes the target of the segue onto the screen.
Behind the scenes, the Show segue adds the target view controller onto the
navigation stack, which is why you always need a navigation controller to be present
when using a Show segue. Xcode does all the work of managing the navigation
stack for you: when your Show segue is triggered, the view controller that is
presented automatically has a button to go back to the previous view controller.

Present Modally: Modal segues are definitely the most interesting and varied type
you can use, especially when working with iPad applications. A modal segue
presents another view controller without the need of a navigation controller. You
can slide these over the top of the view that calls the segue. A number of transition
animations and presentation styles are available, some of which | explain later in
this chapter. Figure 7-28 shows a modal segue in action, presenting the tweet view
controller from SocialApp modally with the Form Sheet presentation style.


http:///

CHAPTER 7: Storyhoards 207

- Apress Cancel

#Gmail's new #AndroidApp to support Yahoo and Outloak hitp://t.ca/
rkdEONPEUD

Figure 7-28. A modal segue in action

Popover Presentation: Popovers are visually similar to some modal segues in that
they cause a view controller to appear above the view controller that originated the
segue. These are useful for displaying contextual information; for example, if you
created an application for an online store, you could use popover segues to provide
a quick view of your products. You can see an example of a popover in Figure 7-29;

note that the arrow at the top of the view controller is generated by Xcode and can
be configured.


http:///

208 CHAPTER 7: Storyhoards

Carrier & 9:28 PM 100% -

Show Popover

| AM A POPOVER!

Figure 7-29. An example of a popover segue presenting another view controller on top of the view

Show Detail: Known as a Replace segue prior to Xcode 6, this style was previously
available only when working with an iPad storyboard. It’s mainly used with master-
detail applications. (Refer to Chapter 3 if you’re unfamiliar with the Master-Detail
Application template.) A Show Detail segue replaces the originating view controller
with the target one in the navigation stack.

Custom: As you might expect, a custom segue can be anything you tell it to be. With
a custom segue, you specify a custom UIStoryboardSegue class in a way similar to
how you would set custom classes for the view controllers.

Now that you understand the different segue styles, perhaps you’ve noticed from the description of
the Show segue that your application is missing something essential: a navigation controller.

Adding a Navigation Controller

A navigation controller, or UINavigationController, is used to manage navigation through the
various view controllers in your application. It keeps track of where the user has been, adding
each successive view controller to the navigation stack, and provides a mechanism for the user to
navigate backward through the navigation stack, all without you having to write any code. You first
encountered navigation controllers in Chapter 3, where you added one programmatically to your
application; however, this time | explain how Xcode makes this possible in just a couple of clicks.

Because the Accounts view controller is the originator of the Push segue, and because it’s the initial
scene on the storyboard, the navigation controller needs to be applied here:

1. Select Accounts from the Document Outline, as shown in Figure 7-30,
because you’re applying the navigation controller explicitly to the view
controller.


http:///

CHAPTER 7: Storyhoards 209

U

B 2 @ &A ©¢ = & |28 <« » [& socalApp ) [ Socialapp ) @)

», SocialApp v [E| Accounts Scene
= 2 targets, i0S SDK 8.0

v (3 SocialApp > ®Acoums
s AppDelegate.swift ) First Responder
Exit

Show segue to Feed

Images.xcassets

LaunchScreen.xib » [ Feed Scene

¥ View Controllers
» TweetViewController.swift » [Z] Compose Scene
+ ComposeViewController.swift -

b 5] Tweet Scene
=+ AccountsViewController.swift =

+ FeedViewController.swift
» | Supporting Files

> | SocialAppTests
» | Products

Figure 7-30. Selecting the Accounts view controller from the Document Outline

2. To add a navigation controller to this view controller, from the menu bar
select Editor » Embed In » Navigation Controller. Xcode adds a navigation
controller to the storyboard and attaches it to the Accounts view controller
for you, as shown in Figure 7-31.

aviganios Comatias J—

Figure 7-31. The navigation controller added to the storyboard and linked to the Accounts view controller

3. You can set a title for the view that is visible to the user and provides
meaningful text for the Back button. Zoom back in to the storyboard.
In Accounts, highlight the navigation bar at the top of the view or select
Navigation ltem from the Document Outline, as shown in Figure 7-32.


http:///

210 CHAPTER 7: Storyhoards

BE < » & Socialapp ) [ Socialapp Main.storyboard Main.storyboard (Base) » [} Accounts Scene Accounts » < Navigation Item

¥ | Accounts Scene

v Accounts

b  Table View —
*) First Responder
[ Exit
Show segue to Feed PrOtOtype Cells
» 2 Feed Scene
» [7] Compose Scene
Figure 7-32. Selecting the Navigation Item from the Document Outline for the Accounts view controller
4. Open the Attributes Inspector, and set the Title attribute to Accounts.
Notice how the title appears at the top of the view controller, as shown
in Figure 7-33. What’s also neat is that when you select an account and
segue to the Feed view controller, the Back button is automatically labeled
Accounts.
Main.storyboard ' [lj Main.storyboard (Base) » [ Accounts Scene Accounts + < Accounts 44> 0DeE&a U 0 @

Navigation ltem

Title Accounts

— Prompt

Accounts Back Button

Prototype Cells

Figure 7-33. The Title attribute for the navigation bar in place

With the navigation controller in place and the Accounts view controller complete for now, you’re
ready to start building the interface on the remaining three scenes. Next up: the Feed view controller.

Creating an Interface for the Feed View Controller

The Feed view controller is responsible for showing all the tweets in the user’s Twitter timeline. In
Chapter 8, you create a custom table cell to display the actual tweet. But for now you need to add a
button to the navigation bar so you can compose new tweets, and then create modal segues to both
the Compose scene and the Tweet scene. Zoom to 100%, and ensure that the Feed view controller
is front and center:

1. Position the Feed view controller in the design area.

2. Locate Navigation ltem in the Object Library, as shown in Figure 7-34, and
drag it onto the Feed view controller. Remember to use the filter and search
for navigation to make your search easier.


http:///

CHAPTER 7: Storyhoards 211

O 00 =

Navigation Controller - A
< controller that manages navigation
through a hierarchy of views.

Navigation Bar - Provides a
mechanism for displaying a
navigation bar just below the status
bar.

state of the navigation bar, including

< Navigation Item - Represents a
a title.

88 ((® navigation

Figure 7-34. Searching for Navigation Item in the Object Library

3. You need to add a button to the navigation bar so that you can create a
modal segue to the Compose view controller. To do this, search for button
in the Object Library. You’re looking specifically for Bar Button Item, which
should be the second item in the Object Library. Drag it onto the right side of
the navigation bar, positioning it as shown in Figure 7-35.

Main.storyboard Main.storyboard (Base) » [©] Feed Scene Feed ' < Feed Item < /> 0D aE Y @ @
+ | Bar Button Item
| Style | Bordered

" Identifier Custom

Feed e Tint | | Default

Prototype Cells | | Baritem
Title ' item
Image v ||
Tag ol |
+ Enabled

Figure 7-35. Adding a bar button item to the navigation bar

4. If you still have the Attributes Inspector open, when you drop the bar button
item on the navigation bar, its attributes are displayed. If not, open the
Attributes Inspector and select the new button.

5. You could change the Title attribute of this button to read Compose,
because that is the scene it will link to. However, Apple provides a standard
set of icons you can use for this button by choosing one of the predefined
Identifiers. Click the Identifier attribute list and select Compose, as shown in
Figure 7-36. Your button changes from text to an icon with a pencil in a box.


http:///

212 CHAPTER 7: Storyhoards

Feed ) < Feed ) = Item 4h > ® O B O
Bar Button Item
|
£ Style | Bordered -
C_1 Identifi v Custom k
Ti
ltem Add
| Edit
Bar Item Done
Tit Cancel
Save
Ima¢  yndo
T: Redo =
' Reply

Figure 7-36. Selecting the Compose identifier for the bar button item

Note Apple provides a number of identifiers that can be used for many common tasks. You should use these
whenever possible, to provide users with icons they’re familiar with and also to future-proof your application.
If Apple updates that identifier in the future, your applications will be easy to update to the new design.

6. While you’re working with the navigation bar and the Attributes Inspector,
select it as you did for the previous scene and change the Title attribute from
Title to Feed.

7. You've created the interface for your second scene. Now you need to create
modal segues to the Compose view controller and the Tweet view controller.
This time, because the scenes are spread out in the storyboard, you can use
the Document Outline to add an element of simple precision to the task of
creating segues. Compress all the scenes except the Feed, Compose, and
Tweet view controllers by clicking the triangles to the left of each scene’s title.
Then, expand Feed, and beneath that expand Table View, so your Document
Outline resembles that shown in Figure 7-37.


http:///

CHAPTER 7: Storyhoards

B8 <« » | |2 socialApp > [ SocialApp ) [§

» [5 Accounts Scene

v [5]] Feed Scene
v || Feed
v Table View
> Table View Cell
P < Feed
[ﬁ First Responder

[E3 Exit
» [=] Compose Scene
» [Z] Tweet Scene

> Navigation Controller Scene

Figure 7-37. Preparing to create seques using the Document Outline

8.

The first segue you create is to the Tweet view controller. You get to this
scene by selecting one of the table cells, so highlight Table View Cell and
Control-drag a connection from there to the Tweet view controller, as shown

in Figure 7-38.

v [E] Feed Scene

v | Feed

P < | Title
{71 First Respon/der

[=3 Exit
v [Z] Compose Sc/:ne

» . Compose/
{71 First Responder

[E] Exit

v [Z] Tweet Scizne

v Table View
» [E Table VRw Cell

(v  Twee!

Tok Layout Guide
Bottom Layout Guide
View
{70 First Responder

Figure 7-38. Creating a segue using the Document Outline

213


http:///

214 CHAPTER 7: Storyhoards

10.

11.

12.

Figure 7-39.

13.

When you release the mouse button, the contextual dialog appears, just as
it did in Figure 7-26. This time select Present Modally under the Selection
Segue heading. You now have a modal segue connecting the table cell in
your scene to the Tweet view controller, but you need to customize it slightly.

In the Feed Scene section of the Document Outline, notice the item Present
Modally Segue to Tweet. This is the segue: select it to highlight it, and then
open the Attributes Inspector.

Set the Identifier attribute to ShowTweet, the Presentation attribute to Form
Sheet, and the Transition attribute to Cover Vertical.

You need to create a modal segue from the Compose bar button item to the
Compose view controller. Expand Feed in the Document Outline to reveal
Compose, as shown in Figure 7-39.

=

» |- | Accounts Scene

v = Feed Scene
v Feed
v Table View
> Table View Cell
V¥ < | Feed

! First Responder

| Exit
Present modally segue to Tweet

Exposing the bar button item in the Document Outline

In the Document Outline, Control-drag a connection from the Compose
button to the Compose view controller, as shown in Figure 7-40. When you
release the button, select Present Modally. Notice this time that the menu is
different because you’re dragging from a button, not a table cell.


http:///

CHAPTER 7: Storyhoards 215

v Table View
I Table View Cell
v < Feed
Fompose
&p) First RI"espn nder
=] Exit |
Preser;'t modally segue to Tweet
|

v [Z] Compo:.e Scene

(v Com’l‘pse )
Top Layout Guide
Bottom Layout Guide
View
@) First Responder
(=] Exit

Figure 7-40. Making a connection between the button and the Compose view controller

14. Two segues are listed in the Document Outline for your scene. Select the one
named Present Modally Segue to Compose. Open the Attributes Inspector,
and set the Identifier attribute to ComposeTweet, the Presentation attribute
to Form Sheet, and Transition to Cover Vertical.

Let’s review where you are with the project. Zoom out so you can see more of the storyboard,

as shown in Figure 7-41. Notice how much smaller the Compose and Tweet view controllers are
because you created segues for them. The reason is that they’re adjusting to the presentation style
you specified on each segue: Form Sheet. If you refer back to Figure 7-28, you see the finished
Tweet view controller in action, displayed modally over the Feed view controller.

Figure 7-41. The storyboard changes in appearance after you set up two scenes


http:///

216 CHAPTER 7: Storyhoards

The way the view controller reacts dynamically to the segue means you can be fairly confident
that the interface you build in Interface Builder will be what you get on a physical device or in the
simulator. You’re ready to move on to the third scene: the Tweet view controller.

Creating an Interface for Tweet View Controller

The purpose of the third scene is to display details about the tweet the user selects from the Twitter
feed. You could display all types of information, but for this application you simply display the tweet
author’s name, the tweet content, and the tweet author’s avatar image. Because you’ve done these
steps a few times already in this chapter, | use screenshots at key points in the process so you can

verify that you haven’t missed anything:

1. Because this is a modal scene, it has no Back button. You need to be able
to dismiss the view controller when the user wants to return to the Twitter
feed. Add a button at upper right in the view by dragging one from the Object
Library. In the Attributes Inspector, set the Title attribute to Cancel.

2. You may need to resize the button slightly to make the text visible. When
you’re happy with the button’s appearance, position it as shown in
Figure 7-42. You’ll set the auto layout constraints once the view is built.

Figure 7-42. Placing the button on the Tweet view controller

3. You need to add an image view from the Object Library to the view controller.
Position it somewhere in the view, and then open the Size Inspector. This is
a handy tool for gaining pinpoint precision over an object’s size and position.
Set the X axis value to 16 and the Y axis value to 20; these control where
the top-left corner of the image view is positioned relative to the parent view.
Set the Width and Height values to 82, as shown in Figure 7-43, to create a
square image view.


http:///

CHAPTER 7: Storyhoards 217

ODe E ¢ 0 ©

View

ar

Show | Frame Rectangle
16 |, 20 |,

82 . 82 .
Width Height

Figure 7-43. Setting the width, height, and x and y axis positions of the image view

4. From the Object Library, drag in a label to contain the tweet author’s name.
Position it loosely between the image view and the Cancel button. You'll
adjust the size and the font, and it makes sense not to finalize the position

until after you’ve done that.

5. Open the Attributes Inspector with the label selected. Select T by the Font
attribute. Set Font to Custom, Family to Helvetica Neue, Style to Thin, and
Size to 32, as shown in Figure 7-44.

Font | Helvetica Neue Thin 32.0 [T |+

4
A

ar

Font | Custom

ar

Family | Helvetica Neue

Style | Thin ]
Size 325
Done
Autoshrink | Fixed Font Size =] r

Figure 7-44. Adjusting the Font attribute for the label that shows the tweet author’s name

6. Notice that you can’t see any text in the label, due to its size and shape.
Position the left side and top of the label so it snaps into alignment with the
top of the image view. Then resize it so that it uses the rest of the available
width in the view controller and the height is sufficient to show the text
clearly, as shown in Figure 7-45.


http:///

218 CHAPTER 7: Storyhoards

E

o
= 412.0
H: 30.0

I I_'\I(-\f-\l Y - Il
Capel Cancet

N

Figure 7-45. Setting the label to fill the remaining width

7. You need something to show the textual content of the selected tweet.
Tweets vary in size, so the best choice is a text view. Drag one from the
Object Library, snapping it into place below the image view. Resize it to give
it a generous size, as shown in Figure 7-46.

Label Cancel

(m} (m] [m]
Lorem ipsum dolor sit er elit lamet, consectetaur cillium adipisicing pecu, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore

Oeu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa O
qui officia deserunt mollit anim id est laborum. Nam liber te conscient to factor tum
poen legum odioque civiuda.

Figure 7-46. The text view added to the view controller

8. You don’t want this text view to behave like a regular text view, because it
shouldn’t be editable. Open the Attributes Editor, and uncheck the Editable
attribute. Leave Selectable checked so the user can copy the tweet text.

9. While the attributes of the text view are open, look at the Detection section.
Twitter posts often contain links, so check the Links attribute, which tells
Xcode to detect links and provides a code-free way of opening the link in
Safari.

10. Click the Resolve Auto Layout Issues button. Under the heading All Views in
Tweet View Controller, click Add Missing Constraints. This ensures that your
layout adapts correctly.



http:///

CHAPTER 7: Storyhoards 219

11.

12.

Even though you’re using storyboards, you still need to create actions and
outlets for the interface objects. Open the Assistant Editor, and be sure it
displays TweetViewController.swift in the right pane. If it doesn’t, you need
to go back and set the class for this view controller to TweetViewController.

As you’ve done numerous times in this book, Control-drag the following
outlets: tweetAuthorAvatar for the image view, tweetAuthorName for the
author’s name label, and tweetText for the text view. Create an action for the
Cancel button called dismissView. Your header should contain the following
highlighted code:

import UIKit

class TweetViewController: UIViewController {
@IBOutlet weak var tweetAuthorAvatar: UIImageView!
@IBOutlet weak var tweetAuthorName: UILabel!

@IBOutlet weak var tweetText: UITextView!
@IBAction func dismissView(sender: AnyObject) {

}

You’re finished setting up the third scene for viewing tweets in detail. Next you need to set up the
fourth and final scene: the Compose scene.

Creating an Interface for the Compose View Controller

The Compose view controller provides an interface for the user to create a tweet and post it to
Twitter. You use a text view for the composition of the tweet, and you give the user two buttons—one
to dismiss the view and one to post the tweet—and an activity indicator that triggers when posting
the tweet. Make sense? Great! Let’s get started:

1.

To make the text view stand out a bit, let’s change the view’s background
color. Click a blank area of the view, and open the Attributes Inspector.
Choose a light gray background color; | changed the Background attribute to
one of the predefined colors (Group Table View Background Color).

Before you add the interface objects just mentioned, let’s add a label to act
as a title for the view. Drag in a label from the Object Library, and position it
in the upper-left corner of the view.

In the Attributes Inspector, change the label’s Text attribute to Compose a
Tweet. You also want to make it stand out, so click the T in the Font attribute
and set Font to Custom, Family to Helvetica Neue, Style to Thin, and Size

to 32. Resize the Label so that all the text is visible, but don’t resize it to fill
the width of the view. Reposition the label in the upper-left corner so the
guidelines for the margin appear.


http:///

220 CHAPTER 7: Storyhoards

4. Drag a button to the upper-right corner of the view; this button will dismiss
the view controller. Open the Attributes Inspector, and change the button’s
Title attribute to Cancel. Before you move on, the top of your scene should
resemble that shown in Figure 7-47.

Cancel

Compose a Tweet

Figure 7-47. The label and button in position on the Compose scene

5. Drag in a text view, and position it below the label and button. This is where
the user composes posts to Twitter, so make it a decent size. Be sure to
expand the text view left and right until the margin appears.

6. One downside is that by default, the text view is populated with Lorem Ipsum
placeholder text. Open the Attributes Inspector, and remove all the default
text from the Text attribute. Your scene should be progressing nicely and
resemble that shown in Figure 7-48.

Cancel

Compose a Tweet

Figure 7-48. The text view in position below the button and label

7. You need to add a second button to allow the user to post the content
to Twitter. Drag in a button, and position it below to the text view. In the
Attributes Inspector, change the Title attribute to Post. Set the Background
attribute to White Color. Then make the button a little larger and move it
toward the center of the view until the blue guideline appears and it snaps into
place, centered horizontally and positioned just below the text view.


http:///

CHAPTER 7: Storyhoards

This is the first time you’ve dealt with the next object: an activity indicator.
Activity indicators are very common in applications that rely on data from the
Internet. The control produces the familiar spinning wheel that has become
synonymous with data transfer over the past decade; it has long been used with
AJAX-based applications on the Web and in iOS applications since iOS 2.0.
Drag one in from the Object Library, and position it to the left of the Post button.

By default, the activity indicator is visible and static; you want it to be hidden
until it’s told to start animating. Xcode provides a simple attribute to achieve
this: open the Attributes Inspector with the activity indicator selected, and

check the Hides When Stopped attribute. Figure 7-49 shows the finished scene.

Compose a Tweet Canics

Post

Figure 7-49. The finished Compose scene

10.

11.

12.

With the interface elements laid out, let’s fix them in place. Click Resolve
Auto Layout Issues. Then, under the All Views in Compose View Controller
heading, click Add Missing Constraints.

The text view needs to remain at a constant height, so click the text view and
then click Pin. Click the Height check box, and be sure the value is around
the 170 mark.

If you click the Post button, you see a constraint travelling from it to the
bottom of the view. Click the constraint, and then, in the Attributes Editor,
change Priority to 250, as shown in Figure 7-50. This change means iOS
won’t try to stretch your button down to the bottom of the view.

221


http:///

222 CHAPTER 7: Storyhoards

I Vertical Space Constraint

4

First ltem | Bottom Layout Guide.Top

D
—4
w
r
a

Relation | Equal

H g Second Item | Post.Bottom v
Constant 294 e

Priority | 250 v+

Multiplier | 1 vls

Placeholder Remove at build time

W Installed

s mecneom oo

Figure 7-50. Adjusting the vertical space constraint beneath the Post button

13. There are no segues from this scene, so all that remains is to create
the outlets and actions. Open the Assistant Editor, and ensure that
ComposeViewController.swift is showing on the right.

14. Create an outlet for the text view called tweetContent, one for the
Post button called postButton, and one for the activity indicator called
postActivity. Create an action for the Cancel button called dismissView and
one for the Post button called postToTwitter.

You should have the following highlighted outlets and actions in your header file:
class ComposeViewController: UIViewController {

@IBOutlet weak var tweetContent: UITextView!
@IBOutlet weak var postButton: UIButton!
@IBOutlet weak var postActivity: UIActivityIndicatorView!

@IBAction func dismissView(sender: AnyObject) {

}

@IBAction func postToTwitter(sender: AnyObject) {
}

That’s it for the fourth and final scene—you have all the elements in place for your users to compose
messages and post them to Twitter. You’ve worked really hard getting to this stage in the project,
and you’ve earned a rest before you learn about table and collection views in the next chapter.


http:///

CHAPTER 7: Storyhoards 223

Summary

It can be hard going through an entire chapter without having a completed application to show for
it at the end; but in any project, you have to do preparation work, which is what you’ve done here.
In the next chapter, you see the application come to life in the first few pages as you configure table
views and take the first steps in the use of the Social and Accounts frameworks.

In this chapter, you’ve been shown all the skills essential to using Xcode to build an application
structure with storyboards. At its core, such an app consists of scenes and segues. But specifically
you’ve learned about the following:

Organizing files in the Project Navigator using groups

The model-view-controller design pattern and how Xcode is built around it
Applying custom view controller classes to view controllers in the storyboard
The inheritance principle of object-oriented programming

Different ways of creating segues

Types of segues

Specifying identifiers for segues

Embedding navigation controllers

Using the Size Inspector to precisely position elements in the view

When you’ve had a well-deserved rest, move on to the next chapter to finish the SocialApp.


http:///

Chapter

Table and Collection Views

In Chapter 7, you started work on SocialApp, a Twitter client; | presented an in-depth look at building
an application structure with storyboards, explaining how to tie scenes together with segues. You
also learned about the principles of the model-view-controller design pattern, combining the View
element with the Controller element. In addition, you learned about subclassing and how inheritance
is an import concept of object-oriented programming. Most important, you worked hard preparing
the scenes for SocialApp and tying them all together with segues.

In this age of big data, it seems in every facet of our lives we’re being bombarded by more and more
data, and as developers, we often find ourselves needing a way to display large amounts of data to
users in a concise and structured manner. In iOS, Apple has provided the table view and collection
view for this purpose.

This chapter focuses on the table view and collection view. You explore how each view is structured
and how you can use Xcode to alter their appearance. Additionally, you learn about creating custom
cells, where you subclass UITableViewCell to customize the elements in your cells. As in the other
chapters in this book, many additional lessons are learned along the way; you see how the segue
identifiers specified in Chapter 7 allow you to share data between view controllers, and you learn
about a variety of ways to obtain data from the Internet and display that in an application.

Because this chapter is reliant on your having access to at least one Twitter account, if you don’t
have one, it would be a good idea to register at www.twitter.com. Ensure that you’ve created the
account and that you’ve “followed” some other Twitter users; whatever your personal feelings are
about Twitter, remember that you don’t have to use it beyond this chapter, and you can delete your
account when you’re ready.

After you finish SocialApp, | explain collection views and how they differ from table views. They’re
very close cousins—collection views have methods and properties similar to those of table views—
so much of what you learn about table views can be directly applied to collection views.

225


http://www.twitter.com/
http:///

226 CHAPTER 8: Table and Collection Views

What Is a Table View?

A table view represents an instance of the UITableView class; it presents the user with a single
column of cells listed vertically. Table views provide developers with a great way of displaying a
large number of options or data to the user, such as in a Twitter application where you can scroll
through potentially hundreds or even thousands of tweets. They can also be used to neatly lay out
application settings, exploiting the table view’s hierarchical structure to take the user from high-level
categories right down to granular details and micro settings. The flexibility of table views means
you can find one in nearly every application, but you may not recognize them right away. Figure 8-1
shows some of the table views in use through iOS and the default applications.

esesc 02-UK T 19:23 0 55% M  esesc 02-UK T 19:23 10 55% M)  eeesc 02-UK T 19:24 © 55% M
Settings Swansea @ Cancel
Bluetooth Of . Swansea, Wales — Al
Mobile Body Measurements

. swansea train station

Personal Hotspot Off 0 Fitness
City Centre Car Park & Valeting
Carrier :'_];' -UJ K & 84 The Kingsway, Swansea, SA1, Wales n Me
Swansea City FC e
E Swansea, SA1 2FA, Wales Nutrition
Notifications
. swansea university Results
Control Centre L Sleep
Do Mot Disturb QWERTYU I OFP | "
CJ Vitals

AISID FIGH JK|L

. General

Z XCVBNM
Display & Brightness

Wallpaper 123 @ @ space ' iir-ﬁ.‘::\

Figure 8-1. Table views in various iOS apps

Because of their popularity, Apple spends a lot of time improving the flexibility and feature set of table
views with each successive release of iOS. This makes it easy to add features such as Pull To Refresh.


http:///

CHAPTER 8: Table and Collection Views 227

Table View Composition

Before you get into the configuration of table views, it’s good to have a basic idea of their
composition and key components, which are layered on top of each other. Figure 8-2 shows a visual
breakdown of the different elements in a table view. Let’s examine these components in more detail:

Carrier ¥ 10:15 AM -

__1 Padding
SECTION 0 HEADER Header
Ce" 0 Table Cell

(i) Table Cell

Cell 1 U Cell Content
Section 0 Footer Footer

— vaamy  |Cell O |
SECTION 1 HEADER PR =
Cell 0 v
Cell 1 ©)

Section 1 Footer

Figure 8-2. A breakdown of a table view’s anatomy

View: The foundation in the hierarchy of element. It sits at the bottom of the
stack, coordinating all the child components. The View element controls the
overall look and feel of the table and anchors all the delegate methods together.

Section: The next item in the table-view stack. Sections are useful for breaking
up tables, grouping cells together, and providing a header and footer for the

group.

Cell: Represents a row in the table view and can have varying states, such as
when it’s being edited, that affects the number of key areas in a cell. The two
default areas of a table cell are the cell content and the accessory view. You may
think the cell content area is self-explanatory, but it’s actually a varied element
and, depending on the style of cell, can contain an image, a title, and a subtitle.
The accessory view can contain a disclosure indicator, such as an arrow, a detalil
accessory for providing more information about the row, or both.

Table View Styles

Table views in iOS 8 look exactly as they did in iOS 7. It’s worth noting that when Apple released

iOS 7, most areas received a visual makeover, but the greatest change was seen in table views.
There are two separate styles for table views, but with iOS 7, they’re no longer all that visually distinct.
Figure 8-3 shows a plain style table view on the left and a grouped style table view on the right.


http:///

228 CHAPTER 8: Table and Collection Views

Carrier = 10:36 AM ] Carrier = 10:36 AM —
Head
eader HEADER
K’ Cell0 % Cell0
@ Cellt % Celli
@ Cell2 * Cell2
Footer Footer

Figure 8-3. A plain table view (left) and a grouped table view (right)

In practical terms, you would typically use the plain style to list large amounts of data, usually in a
single section with no header or footer. The grouped style is ideal for situations where you have a
static list of data and you want to group similar items together, such as the different configuration
options in the Settings application in iOS (first image in Figure 8-1).

Configuring the Accounts View

In the Twitter client SocialApp, the Accounts view is one of the simplest to set up, because it
uses a plain table view with very little customization. However, you also get your first introduction
to the Social and Accounts frameworks, which allow you to access details about accounts set
up on the device and then use the account to authorize requests to social media sites such as
Twitter or Facebook.

This is the first time you’ve had to go back to work on an existing project. If you haven’t already
opened the SocialApp project that you started in Chapter 7, start by opening Xcode, and then use
File » Open (¥+0) and locate SocialApp.xcodeproj in the folder where you created it. Click Open,
as shown in Figure 8-4.


http:///

CHAPTER 8: Table and Collection Views

®0e6e I SocialApp

(<>] (e = o m) (&) (%) (2] (am) Q
| SocialApp * [ SocialApp -

B SocialApp.xcodeproj

. SocialAppTests -

FAVORITES
£l All My Files
@ AirDrop
gL\; Applicati...

|ﬁj Documents
) Downloads

DEVICES

T ¥ YT YT YT YTYTYY

SHARED
[ iMac
Name

TAGS Kind
@ Red Size
= Created
- Orange Modified

Yellow Last opened
~ Green
£ Rlua

() Remote...

SocialApp.xcodeproj
Xcode Project

44 KB

28 Sep 2014 09:51
30 Sep 2014 19:07
30 Sep 2014 19:07

1 of 3 selected, 196.22 GB available

Figure 8-4. Opening the SocialApp project that you started in Chapter 7

Note If you've downloaded the book’s source code, then you can open the project from the Chapter 7

folder. Don’t open the Chapter 8 SocialApp project, because it's complete.

Before you configure the table view for the Accounts scene, let’s explore the options available in

229

Xcode for altering the table view itself; later in this chapter, you customize the cells. With the project
open, select Main.Storyboard from the Project Navigator, and position the storyboard so that you’re

looking at the Accounts scene, as shown in Figure 8-5.


http:///

230 CHAPTER 8: Table and Collection Views

ane Main.storyboard — Edited

| el N SocialApp i iPad Al Socialapp: Ready | Todyy at 19:59

B2 A A ©Eo B B« L sacisaps Secialaps © [l Main staryboard o [l Main starybonrd (Raca) © Mo Selection
v [ oo ¥ [ Axcounts Scene
2 targets, I05 50X 8.0
¥ | Soclalapp v () Accounts
- AppOelegate.swift L4 Table View
= < Accourts
Images xeassets B First Responder Accounts
LaunchScreen.xib [ e
* - Wiew Concrollers Shaw segue to Feed Prototype Cells
+ TweetViewController swift > I Fosd Scene
- ComposeViewCantrollerswift
= | AccoustsViewContreller swift # [Tl Composs Scene
- | FeedViewController.swift
i » [ Tweet Scene
» _ Supparting Files
P £ SodalApgTests » I Navigation Controller Scene
* | Products
+ I CHB® (<] Inl Any:thiy

Figure 8-5. The Accounts scene positioned and ready to go

The Key Attributes of Table Views

= ol ksl B0 | B8

EEE O=0

2001

0 @ao

View Controller - A comrollr that
SUppes the fundamental view-
managemen medel in i05.

Navigation Costraller - &
contraler that manages ravigation
thiough a hierarchy of views.

Table View Controller - A
controlier that manages a table view

Select the table view in the Accounts scene; you can do this by either clicking the words Table View
Prototype Content in the middle of the view or selecting Table View from the Accounts scene in the
Document Outline. Now open the Attributes Inspector. If you’re looking at the right object, the first
segment in the Attributes Inspector is Table View. Figure 8-6 shows the default attributes of a table

view in Xcode 6.

Dea Y aE O
Table View

Content | Dynamic Prototypes

Prototype Cells 1+

Style | Plain
Separator | Default
== | Default

Separator Insets | Default

Figure 8-6. The default attributes of a table view in Xcode 6


http:///

CHAPTER 8: Table and Collection Views 231

When configuring a table view, most of the time you’re after one of these first five attributes, because
they have the largest influence on the table view’s structure and style. Let’s look at these options in
more detail.

Content (Dynamic Prototypes): Unlike many of the attributes you can configure in
Xcode, the content type can’t be set programmatically. It’s purely an Xcode thing.
Selecting Dynamic Prototypes as the content type gives you a single table cell
by default. The idea is that often, you have only one cell style in a table, so you
configure the one cell, and in code you reuse it for each row. Using the Prototype
Cells attribute that is available for this content type, you can increase the number
of prototypes and have one for each distinct cell type. If you’re using dynamic
prototypes, you must customize the code to be able to view any cells in your
view. This is the content type you’ll use for all the table views in this application.

Content (Static Cells): When using static cells, you use Xcode to specify how
many sections exist in your table view and how many cells appear in each
section. You can then create segues from these individual cells to other scenes
in your storyboard. One of the biggest differences between static cells and
dynamic prototypes is that although the delegate methods that table views use
to specify the number of sections and cells can be used to influence the table
view, they can also be completely removed, leaving the attributes specified in
Xcode as the controlling factor.

Style: This is where you choose between plain or grouped styles. As you can see
in Figure 8-3, there is very little difference between the two in iOS 8. Both styles
can be extensively customized using code to change sizes and colors.

Separator: The separator in a table view is the line that appears between cells.
This attribute gives you four options to choose from: Default, Single Line,
Single Line Etched, and None. In reality, these four options are only two. The
Default style is the same as the Single Line style, and Single Line Etched is the
same as None, because as it was deemed not compatible with the flat design
approach Apple took with iOS 7; effectively, this style and its code equivalent
UITableViewCellSeparatorStyleSinglelLineEtched have been deprecated.

Separator Insets: This was introduced in iOS 7 and Xcode 5. In earlier versions
of iOS, the separator spanned the full width of the cell; however, in iOS 8, there
is a small indent on the left side of the cell by default. By setting the Separator
Insets attribute to Custom, you can specify a custom left and right indent,
depending on the style you want to achieve.

Note In programming, when a class is deprecated, it has been decommissioned, isn’t supported, and is no
longer considered acceptable for use. Often when a class is deprecated, it remains available for use; however,
because it’s unsupported, it may have consequences with other areas of your application and may cause
unexpected issues with other classes.


http:///

232 CHAPTER 8: Table and Collection Views

Manipulating Static Table Views

Let’s take a look at how Xcode allows you to manipulate a static layout, before going back and
implementing the dynamic prototype system you’re using for this scene:

1. Select the Accounts table view, and then open the Attributes Inspector. Set
the Content attribute to Static Cells; you should notice that the single cell you
had becomes three cells, and the second attribute becomes Sections.

2. Let’s increase the number of sections so that there are two groups of cells
to work with: change the Sections attribute to 2. Your table should now
resemble the one shown in Figure 8-7.

Table View

Content  Static Cells

(— Sections 2]
Accounts Style | Plain
- Separator Default
Section-1 [ Default
Separator Insets  Default
Selection Single Selection
Editing Mo Selection During Editing *
+ Show Selection on Touch
Index Row Limit (']
Section-2 Text [— | Default

Background [—1 | Default
Normal

— | Default
Tracking
Scroll View
Style Default

Scroll Indicators W/ Shows Horizontal Indicator
 Shows Vertical Indicator

Figure 8-7. The static layout with two sections

3. The number of cells in a section is controlled directly by the section
attributes. Select the first section by clicking Section-1 in the view or by
expanding Table View in the Document Outline and selecting Section-1, as
shown in Figure 8-8.


http:///

CHAPTER 8: Table and Collection Views

233

BE < » [ socialApp SocialApp + [l Main.storyboard ) [l Main.st...(Base) | I Accounts Scene » () Accounts Table View i Section-1 |« [ B 0D & = O 0
v Accounts Scene Table View Section
¥ Accounts - Rows
v Table View - -
= Header Section-1
| > secton1 |
» i Section-2 Accounts Footer | No Footer
< Accounts ~
Section-1

First Respander
[ Exit
Show segue to Feed

» | Feed Scene
» || Compose Scene
[ Tweet Scene

» [1] Navigation Controller Scene Section-2

Figure 8-8. Selecting Section-1 and viewing the section attributes

4. In the Attributes Inspector, the terminology changes slightly from cells to
rows. Looking at the attributes, you can see that here you specify the header
and footer value of your section and also the number of rows. Feel free to try
setting your own values for these attributes and see how the table changes.

5. You can also delete individual cells and move them around. In Section-2,
delete two cells; click the cells individually, and then press the Backspace
key to remove them. Select the single remaining cell.

6. In the Attributes Inspector, change Style to Basic; doing so adds the word
Title to the cell.

7. Double-click the word Title to edit it, as shown in Figure 8-9, and change it to
read Cell 1.

Section-2

Title

Figure 8-9. Changing the title of the basic cell

8. Press the Return key to commit the change, and then reselect Section-2. Now
increase the number of rows from one to three by changing the Rows attribute
to 3. This allows you to clone your row three times. This is a really handy
way of duplicating a custom cell when using static cells instead of dynamic
prototypes.

9. Rename each of your new cells by double-clicking Cell 1 and changing them
to 2 and 3, respectively, so that Section-2 resembles Figure 8-10.

@


http:///

234 CHAPTER 8: Table and Collection Views

Figure 8-10.

10.

Figure 8-11.

11.

12.

13.

14.

15.

Section-2

Cell 1

Cell 2

Cell 3
Section-2 with three basic style cells
To demonstrate how easy it is to reorder a static table view, highlight Cell 3
with a single click and then drag it to the top of Section-2. A solid blue line

appears, as shown in Figure 8-11. You can also move cells between sections,
meaning that changing your layout needn’t be a chore.

Section-2

Celr3
Cell 1 k

Cell 2

Selecting the third cell and dragging it to the first position

Now that you’ve seen the various ways Xcode lets you manipulate static
layouts, you’re ready to get the Accounts scene built up and working.
Reselect the table view, change the Content attribute to Dynamic Prototypes,
and ensure that Style is set to Grouped. This will leave you with three cells in
the single section.

You only want one prototype cell, so delete any excess cells by manually
highlighting them and pressing the Backspace key until you’re left with a
single cell, ready for customizing.

Highlight the one remaining cell, and go to the Attributes Inspector. The style
should currently be set to Custom, which is fine because you’ll be setting the
content programmatically.

Set the Accessory attribute to Disclosure Indicator, which adds the indicator
arrow on the right side of the cell.

Give your cell an identifier so that you can refer to it in code and reuse it
efficiently. Set the Identifier attribute to AccountCell. The cell’s attributes
should resemble those shown in Figure 8-12.


http:///

CHAPTER 8: Table and Collection Views 235

Table View Cell

Style  Custom

Identifier | AccountCell

Accounts Selection Default
Accessory Disclosure Indicator

Editing Acc.  None

PROTOTYPE CELLS

Indentation 0. 10 |2
Level Width

+ Indent While Editing
Shows Re-order Controls
Separator Default Insets

Figure 8-12. The table cell configured, ready to have its content set

You're finished with the layout and design of your table view, and it’s time to add the code to access
the Twitter accounts on the device and display them in the table. To do this, you need to add the
Accounts and Social frameworks to the project.

The Accounts and Social Framework

In previous chapters, you've taken advantage of some of the Apple-provided frameworks, and in this
chapter you use two: Accounts.framework and Social.framework. Like the other frameworks you’'ve
used, they make potentially complex and intensive tasks much simpler. Based on the fact that this

is the first time you’ve worked with these two frameworks, it’s also worth noting that they work really
well together, and you sometimes need to use both in order to make the most of their functionality.
Accounts framework classes are prefixed with AC; in this project, you create an instance of the
ACAccount class to hold the details of a selected Twitter account. You hand that ACAccount object to
other view controllers as you navigate through the project and then combine it with one of the Social
framework’s classes, SLRequest, which uses the ACAccount object to authenticate requests with Twitter.

If you’ve worked with Twitter’s APIs in the past, you know that authentication involves a process
called three-legged OAuth that sends a number of requests back and forth with Twitter. The
combination of the ACAccount object with the SLRequests means you don’t have to do any of that.
iOS does all the running around so that you’re free to focus on functionality and how you handle the
requests to Twitter.

Now that you understand the roles of the frameworks you need to add to the project, you're ready to
begin writing the code that will display Twitter accounts in the table view.


http:///

236 CHAPTER 8: Table and Collection Views

Retrieving and Displaying Twitter Accounts

To finish this scene, you need to achieve two objectives: retrieve an array of Twitter accounts
registered on the device or in the Simulator, and display them for users to choose from. Let’s start
by setting up the view controller’s header, importing the frameworks, and creating the properties that
are needed for this scene. As in previous chapters, | explain what needs to be done bit by bit and
then review the code at the end of the process:

1. Open AccountsViewController.swift. You first need to import the Accounts
framework that is used for this scene. After the line import UIKit, add the
following highlighted line:

import UIKit
import Accounts

Note API stands for application programming interface. An APl is a mechanism that specifies how different
pieces of computer software interact with one another. In i0S, Apple uses the term AP/to describe new
classes in frameworks. When | talk about the Twitter API, | don’t mean classes in the Social framework, but
rather the Twitter REST API, which you can learn more about at http://dev.twitter.com.

2. You need to create an array to store the retrieved accounts and make them
available to all functions in this class. Add the highlighted code:

import UIKit
import Accounts

class AccountsViewController: UITableViewController {

var twitterAccounts : NSArray?

3. You need to declare an instance of ACAccountStore. The ACAccountStore
class is the gateway to the list of Twitter and other social media accounts
stored in iOS; you declare it and then try to get permission from the user
to access the Twitter account. If the user grants permission, the object
becomes initialized. Add the highlighted code after the NSArray:

var twitterAccounts : NSArray?
var accountStore : ACAccountStore?


http://dev.twitter.com/
http:///

CHAPTER 8: Table and Collection Views 237

So far, you’ve added a reference to the Accounts framework, created an array
called twitterAccounts, and created an ACAccountStore object to manage the
retrieval of Twitter accounts. Your initial code should look like this:

import UIKit
import Accounts

class AccountsViewController: UITableViewController {

var twitterAccounts : NSArray?
var accountStore : ACAccountStore?

To get into the nitty-gritty, scroll down until you see the viewDidLoad
function. The first thing you want to do when the view loads is initialize the
ACAccountStore instance. That doesn’t mean you’re accessing the accounts;
you’re just initializing the object so that it can be interacted with. Drop down
a line after [super viewDidLoad]; and type the following highlighted line:

super.viewDidLoad()
accountStore = ACAccountStore()

You’ll use the requestAccessToAccountsWithType method of the
accountStore object. This method needs to be told the type of

account to which you’re requesting access. You do this by creating an
ACAccountType object and then using another accountStore method:
accountTypeWithAccountTypeIdentifier. Drop down a line, and add this
highlighted code (as a single line):

super.viewDidLoad()

accountStore = ACAccountStore()

var accountType : ACAccountType = accountStore!.
accountTypelithAccountTypeIdentifier(ACAccountTypeldentifierTwitter)

You’re at the stage where you want to ask the user for permission

to use their Twitter accounts in the application using the
requestAccessToAccountsWithType method. When this method is accessed,
it creates an alert for the user to either grant or deny the request to access
their Twitter account. Add the following highlighted code:

var accountType : ACAccountType = accountStore!.
accountTypelithAccountTypeldentifier (ACAccountTypeldentifierTwitter)

accountStore?.requestAccessToAccountsiWithType(accountType, options: nil,
completion: { granted, error in

)


http:///

238

CHAPTER 8: Table and Collection Views

Notice that you pass the accountType object into the method to specify
that it wants Twitter account access, and you handle completion using a
code block into which you add the logic as to whether granted returned yes
or no. Because you only want to look at the accounts available if access
was granted, that should be the next thing you check. To do so, add the
highlighted if statement in the code block as shown next:

var accountType : ACAccountType =
accountStore!.accountTypeWithAccountTypeldentifier (ACAccountTypeldentifierTwitter)

accountStore?.requestAccessToAccountsWithType(accountType, options: nil,
completion: { granted, error in
if(granted)

}
1)

With access granted, you need to populate the twitterAccounts object
with all the available Twitter accounts on the device. Here you use the
accountshithAccountType method of the accountStore and reuse the
accountType object to restrict the request to Twitter accounts. In the if
statement, add the following highlighted code:

if(granted)
{

self.twitterAccounts = self.accountStore!.accountsithAccountType(accountType)

}

Although the user has granted access, you need to check whether user

has added any Twitter accounts to the device. This is done by checking the
twitterAccounts count property in an if else statement. After the previous
line, drop down and add this code:

if(granted)
self.twitterAccounts = self.accountStore!.accountsWithAccountType(accountType)

if (self.twitterAccounts?.count == 0)


http:///

CHAPTER 8: Table and Collection Views 239

10. If there are no Twitter accounts stored in iOS, you want to summon an alert
view and tell the user that no accounts were found. Because you’re running
on an arbitrary thread and all interface changes need to be executed on the
main thread, you add a Grand Central Dispatch call to execute the display of
the alert view. Add the following highlighted code in the first set of braces:

if (self.twitterAccounts?.count == 0)

{
var noAccountsAlert : UIAlertController = UIAlertController(title: "No Accounts
Found",
message: "No Twitter accounts were found.",
preferredStyle: UIAlertControllerStyle.Alert)
var dismissButton : UIAlertAction = UIAlertAction(title: "Okay",
style: UIAlertActionStyle.Cancel) {
alert in
noAccountsAlert.dismissViewControllerAnimated(true, completion: nil)
}
noAccountsAlert.addAction(dismissButton)
dispatch_async(dispatch_get_main_queue()) {
self.presentViewController(noAccountsAlert, animated: true, completion: nil)
}
}
else
{
}

11.  If there are Twitter accounts, they’re added to the twitterAccounts object,
and you just need to tell the table view to reload the data shown in the table.
This is done by accessing the reloadData method. In the second set of
braces for the else statement, add this highlighted lines of code:

else

{
dispatch_async(dispatch_get_main_queue()) {
self.tableView.reloadData()
}


http:///

240 CHAPTER 8: Table and Collection Views

You’ve added the code that pulls together a dataset for the table view in the shape
of the twitterAccounts array. Now you need to get that data into the cells by using
two of the UITableView class’s delegate methods: numberOfSectionsInTableView
and numberOfRowsInSection. These two methods control the number of sections
displayed in the table and also the number of table cells per section by returning
an NSInteger, a numeric value that the table view interprets. Setting up these

two methods is pretty simple in this application: you only ever have one section,
and the number of cells is the count property from the twitterAccounts object.
Furthermore, Apple has already added stubs for these two methods.

12.  Scroll down until you find the numberOfSectionsInTableView
method; or click AccountsViewController in the jump bar and select
numberOfSectionsInTableView, as shown in Figure 8-13.

mw

H 4 P> ﬁ SocialApp » | SocialApp » || View Controllers : = AccountsViewController.swi lr_ AccountsViewController =] >
[ witterAccounts 3

Find % Q- numberOfSectionsinTableView » || Done
| [[@ accountStore | = =
accountstore = ACACCOuntSTorel)
var accountType : ACAccountType = accountStore!.accountTypeWithAccount [ viewDidLoad() ar)
accountStore?, requestAccessToAccountsWithTypelaccountType, options: n: () didReceivablomoryWaming(
completion: { granted, error in
iflgranted) Table view data source
£ o L o . . M numberOfSectionsinTableView(_:)
self.twitterAccounts = self.accountStore!.accountsWithAccount m tableView(_:numberOfRowsInSection:)
if (self.twitterAccounts?.count == @)
Mavigation
var noAccountsAlert : UIAlertController = UIAlertControllémpsasmvemmremmsssamesmmmmay
message: "No Twitter accounts were found.“,
preferredStyle: UIAlertControllerStyle.Alert)
Figure 8-13. Navigating code using the jump bar
13. You may notice that, confusingly, a warning appears beside the method
declaration and also the one below it. This is a casualty of Apple changing the
way Swift is handled by Xcode; it’s not something you’ve done. No doubt Apple
will resolve this in the future. If you don’t see the warning, ignore this step; but
if you do, click the warning triangle. A pop-over appears above the method,
as shown in Figure 8-14; click the first Fix-it option to remove the ! from the
parameter. Repeat this for the warning against the other method as well.
override func didReceiveMemoryWarning() {
Issue Owerriding instance method parameter of type "UlTableView® with implicithy i optional type 'UiTableView!'
Fix-it Add parentheses to silence this warning
override func numberOfSectionsInTableView(tableView: UITableView) —= Int {
// #warning Potentially incomplete method implementation. Overriding instance method parameter of type 'UlTableView' with implicitly unwrapped optiona...
// Return the number of sections.
return @

Figure 8-14. Fixing a warning in Xcode


http:///

CHAPTER 8: Table and Collection Views

14. As previously mentioned, the numberOfSectionsInTableView method returns
a value that determines how many sections appear in the table view. In this
instance, you only want a single section, so change the return value to 1 as
shown next:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
// Return the number of sections.
return 1

}

15.  You need to set the numberOfRowsInSection method to return the number
of items held in the array so that the application knows how many cells to
create in the table view. Because there may be no items in the array, and you
don’t want an exception, add the highlighted if statement as shown next:

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) ->
Int {
// Return the number of rows in the section.

if let cellCount = self.twitterAccounts?.count {
return cellCount
}

else

{
}

retuxn 0

}

16. The application will try to create an instance of your prototype cell if there
are any Twitter accounts set up in the Simulator, so it’s important to set
the correct reference name for the cell before trying to run the application.
| explain this in more detail once you’ve run the application. Look for the
cellForRowAtIndexPath method: it should be just below the last method you
changed. It’'s commented out by default, so remove the /* from the start and
the */ from the end of the method.

17. At this point, you may get a red error indicator next to the overridden
function. To resolve this, remove all ! from the function definition so that it
matches the following line:

override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

241


http:///

242 CHAPTER 8: Table and Collection Views

18. Focusing on the contents of the function, you can see that an object called
cell is initialized and then the last line returns the cell object. This object
is a UITableViewCell. When it’s initialized, it’s passed a value that currently
says "reuseldentifier" but that needs to say "AccountCell"”, which is the
name you gave the table cell when you configured the table view in the
storyboard. Go ahead and change the highlighted value as shown next:

let cell = tableView.dequeueReusableCellWithIdentifier("AccountCell”,
forIndexPath: indexPath) as UITableViewCell

19. It's been a very long time coming, but you’re at a point where you can run the
application in the Simulator. Go to Product » Run (+R) to launch the application.

The first thing you should see is a prompt for access to the device’s Twitter
accounts, as shown in Figure 8-15. It's important to click OK at this point to grant
access; you're then presented with one of the two outcomes, depending on the
number of Twitter accounts you have. If there are no Twitter accounts installed, you
get the alert view warning you that no accounts were found; otherwise you see a
single row with an arrow in your table view.

“SocialApp” Would Like
Access to Twitter Accounts

Don’t Allow OK

Figure 8-15. The security prompt asking for access to the Twitter accounts for the application

20. If you don’t have any Twitter accounts added in iOS and you saw the alert,
adding your Twitter account is very easy. In the Simulator, return to the home
screen by going to Hardware » Home (3+Shift+H). Navigate to the first page
of icons, click the Settings icon, scroll down, and select the Twitter option
from the left column, as shown in Figure 8-16.

ALLOW THESE APPS TO USE YOUR ACCOUNT
W Twitter -
— - SocialApp O
'a Facebook

®® Flickr
m Vimeo

Figure 8-16. Selecting the Twitter settings


http:///

CHAPTER 8: Table and Collection Views

Note

If you accidentally refuse permission to the application, you can grant permission from the Twitter

settings. SocialApp is listed at the bottom of the Twitter settings with a switch beside it, as shown in
Figure 8-16. Turn this to the on position, and permission will be granted to access the accounts.

21.

Type in your Twitter account name and password, and click Sign In. You can
repeat this step to add more Twitter accounts if you wish. When you’re done,
go back to Xcode and rerun your application; this time your view should
resemble Figure 8-17.

0.8 iOS Simulator - iPad Air - iPad Air [ iOS 8.0 (12A365)

Carrier = 4:35 PM 100% -

Accounts

Figure 8-17. The Accounts view with a single row showing

22.

Although the application runs, you still have to make the table view display

the account name in the cell (currently it’s empty); and to do that, you need to
add some code to the delegate method cellForRowAtIndexPath. This is the
method you quickly altered before running the application. All delegate methods
are called as the result of an event occurring. In this case, it’s the table view
responding to the number of rows it has been told to display and then calling the
cellForRowAtIndexPath method to allow it to populate the specific cell’s contents.
To display the correct account information in the cell, the application needs to
know which row it’s on so that the corresponding entry can be fetched from the
array. You can establish this by looking at the method variable indexPath. This
object has properties indicating the cell’s section and row numbers: both follow
the array format for positioning, starting at 0 and incrementing by 1. Because
there is only one section, the row value corresponds to the position of elements
in the twitterAccounts array. For example, if the indexPath row property is 0, the
application will fetch the account at position 0 in the array.

Remove the comment // Configure the cell... and in its place create an
ACAccount object based on the account stored at the supplied position in the
array:

let account = self.twitterAccounts!.objectAtIndex(indexPath.row) as ACAccount

243


http:///

244

CHAPTER 8: Table and Collection Views

23.

24,

25.

Put a value in the table view cell that shows the name of the account in the
array. The table cell is currently the default UITableViewCell, which has three
controls that can be manipulated: a label called textLabel, a subtitle label
called detailTextLabel, and an image view called imageView. Let’s take

the accountDescription property of the account object and use it to set the
textLabel’s Text property, as shown in the highlighted code:

let account = self.twitterAccounts!.objectAtIndex(indexPath.row) as ACAccount

cell.textLabel.text = account.accountDescription

The complete method should look like this:

override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

let cell = tableView.dequeueReusableCellWithIdentifier("AccountCell"”,
forIndexPath: indexPath) as UITableViewCell

let account = self.twitterAccounts!.objectAtIndex(indexPath.row) as ACAccount
cell.textlLabel.text = account.accountDescription

return cell

Run your application again; this time the table view should be populated as
shown in Figure 8-18. What’s more, if you select an account, you’re taken
to the FeedViewController scene. But beware: if you click the Compose
button, the view appears and looks great, but you haven’t yet written the
code to dismiss the view controller and thus are stuck unless you rerun the
application from Xcode.

Y06 i0S Simulator — iPad Air — iPad Air / iOS 8.0 (12A365)
Carrier ¥ 5:03 PM 1009 -

Accounts

@beginningxcode5

Figure 8-18. The table view showing a list of Twitter accounts


http:///

CHAPTER 8: Table and Collection Views 245

26.

27.

28.
29.

30.

One great feature to take note of here is that as you show the Feed view controller,
you’re automatically given a button that takes you back to the Accounts view
controller without even having to write any code.

Before you focus on the next scene—the Feed view controller—you need to think
ahead slightly. When an account is selected, that selection is currently retained in
the Accounts view controller; you need to pass it on, a bit like a baton in a relay, to
the Feed view controller when the segue is triggered. To do this, you need to create
a custom initializer in the Feed view controller to receive the selected ACAccount
object to be passed across.

Open FeedViewController.swift from the Project Navigator. Right after the
class definition, type the following highlighted line:

class FeedViewController: UITableViewController {

var selectedAccount : ACAccount!

Because you need to refer to both the Accounts and the Social framework,
add the following two highlighted import statements after import UIKit:

import UIKit
import Accounts
import Social

You’ve now created a property in your FeedViewController class that can receive
the baton, or in this case the selected ACAccount, from the Accounts view controller.
All that remains is to pass the object across when the segue is called.

Open AccountsViewController.swift once more from the Project Navigator.

If you weren’t using segues to navigate between view controllers, you would
use the didSelectRowAtIndexPath method to determine what to do next; but
because you’re using a segue, you use the prepareForSegue method. Yet
again, the good folks at Apple have already written a basic implementation
of the method for you, but it’s currently commented out. At the bottom of the
AccountsViewController.swift file, you should see the method you need,
commented out in green (assuming you haven’t deviated from the color
scheme). Before the line // MARK: - Navigation are the characters /* that
index the start of a commented block of code; remove them. Next, look for
*/ just before the last }; this signifies the end of the comment block. Remove
it as well. The method is now uncommented and ready for use.

Remove the erroneous ! exclamation mark after the UIStoryboardSegue
parameter from the prepareForSegue method.


http:///

246

CHAPTER 8: Table and Collection Views

31.

32.

33.

The prepareForSegue method is called when a segue is about to be triggered.
It gives you a chance to perform any actions that need to be processed
before the view changes. One of the parameters passed to this method

is a UIStoryboardSegue object called segue; you can use this to check the
segue identifier and then take appropriate action. The identifier for this segue
to the Feed view controller scene is ShowTweets. To check for this in an if
statement, add the highlighted code to the method:

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject!) {

if(segue.identifier == "ShowTweets")

}

You need to find out which account was selected. Create an ACAccount
object from the selection, and pass that to the Feed view controller’s selected
account property. The first task is to determine which row was selected. You
do this by creating an NSIndexPath object called path based on the result of
the indexPathForSelectedRow method. Add the following highlighted line to
your if statement:

if(segue.identifier == "ShowTweets")

var path : NSIndexPath = self.tableView.indexPathForSelectedRouw()!
}

Create the ACAccount object, called account. This is almost an exact duplicate
of when you instantiated an ACAccount object in the cellForRowAtIndexPath
method, as the highlighted code shows:

if(segue.identifier == "ShowTweets")
var path : NSIndexPath = self.tableView.indexPathForSelectedRow()!

let account = self.twitterAccounts!.objectAtIndex(path.row) as ACAccount


http:///

CHAPTER 8: Table and Collection Views 247

34. Pass the account object to the Feed view controller. When a segue is
triggered and this method is called, the destination view controller is stored
in a property of the segue object called destinationViewController. Because
you know that the destination view controller is a Feed view controller, you
cast destinationViewController from a generic AnyObject type to be a
FeedViewController type. Once you’ve created a FeedViewController object,
you simply take the account object and give it to selectedAccount. All of
these actions are done in the following highlighted code:

if(segue.identifier == "ShowTweets")

{
var path : NSIndexPath = self.tableView.indexPathForSelectedRow()!

let account = self.twitterAccounts!.objectAtIndex(path.row) as ACAccount

let targetController = segue.destinationViewController as FeedViewController
targetController.selectedAccount = account

}

That’s it! You've finished writing the code for the Accounts view controller and even added a bit to
the Feed view controller. That’s one down and five to go. Let’'s move on to the Feed view controller,
where you build on your table-view skills and learn about creating custom cells and subclassing
UITableViewCell to take customizations to another level.

Configuring the Feed View

The Feed view is the center point of SocialApp; it lists the 20 latest tweets using some of the
methods and classes used in the previous Accounts view, along with many that haven’t been
encountered in the app so far. In the sections that follow, you learn how to

Use the SLRequest class to fetch the JSON-formatted data from the Internet
Use an NSCache object to handle some basic caching
Use an NSOperationQueue to streamline the retrieval of Twitter avatar images

Subclass UITableViewCell to create a custom class for the cells in the table
view

Because | really want to focus on the table view and how to populate it, | won’t go into much detail
about the code used for retrieving the data from the Twitter API or processing it. You've already
learned how to access the documentation for different classes, so if you want to know more, |
encourage you to look at the documentation and then branch out onto the Internet if you want to
know more.


http:///

248 CHAPTER 8: Table and Collection Views

Figure 8-19 shows what the rows in the finished table view will look like. Before | get into the
code, you need to build the cell’s interface and link it to a custom UITableViewCell class. Here are
the steps:

'.'. Cocoa Controls

%ﬁ

LogDispatcher.Swift for iOS: A more powerful printin(_:) - http://t.co/dfSkK585xc

Figure 8-19. A look ahead at a row from the finished Feed view

1. You subclass UITableViewCell the same way you did
UITableViewController. Right-click the SocialApp group in the Project
Navigator, and select New File (36+N), as shown in Figure 8-20.

B & Q& © = o @ B «

+ [ SocialApp 1/
®= 2 targets, i0S SDK 8.0 ta
P 4 Accounts.framework 3:..-'
v ial/ S
CRsodal’ gy, in Finder i
UpE with external edito */
Mai
Ima ODEI'I A.S L4 %
Lau Show File Inspector gi
v Vie
= ! New Project... l;
= Add Files to "SocialApp”... ;
3 A *
Ry /!
F Delete o
> Sup 7/
» _Sociah New Group re
» _ Produw New Group from Selection ¥

Sort by Name
Sort by Type 1/
Find in Selected Groups... B

Source Control I

Project Navigator Help >

Figure 8-20. Adding a new file to the SocialApp group in the Project Navigator

2. Select the Cocoa Touch Class option, which should be selected by default,
and click Next. Set the Subclass Of value to UITableViewCell and the Class
value to TweetCell. There is no need to create an XIB file, so leave that
unchecked and click Next. As always, you want to save the file in the project
folder. Click Create to create the file and add it to the project. You’re now
ready to set up the visual elements of the table view.


http:///

CHAPTER 8: Table and Collection Views 249

3. Open Main.storyboard from the Project Navigator, and arrange the view so
you can see the Feed scene and are at 100% zoom, as shown in Figure 8-21.

B 4 » | & Socialapp SocialApp » & Main.storyboard » Main.storyboard (Base) » [¥] Feed Scene Feed « >
» [ Accounts Scene
@ E
v [ Feed Scene L . |
| Y@Fed | =
> Table View F =
eed |
P < Feed —I
1) First Responder Prototype Cells
[ Exit

Present modally seque to Tweet
Present modally segue to Compose

» [¥] Compose Scene
» [%] Tweet Scene

» |7 Navigation Controller Scene

Figure 8-21. The storyboard file, open and ready for you to build the interface

4. The default row height of the cell is far too small to display everything nicely.
To resize the cell, select the table view as you did in the previous scene by
clicking the view where it says Table View Prototype Content or by selecting
Table View from the Feed view controller scene in the Document Outline.
Next, open the Size Inspector and set the Row Height value to 120, as shown
in Figure 8-22.

e s ¢ 3 &

Table View
Row Height 120;
Section Height 221+ 2215

Header Footer

Figure 8-22. Adjusting the height of the row in the Size Inspector

5. Before you start creating the interface of the cell, you need to specify that the
cell is controlled by the new TweetCell class. Select the cell, open the Identity
Inspector, and, from the Class drop-down list, select TweetCell.

6. Open the Attributes Inspector for the cell. You need to specify a reuse
identifier here, so in the Identifier attribute, type TweetCell.


http:///

250 CHAPTER 8: Table and Collection Views
7. Now that there is plenty of room to work, you can add the controls: an image
view and two labels. Start by dragging in an image view from the Object
Library onto the cell. It tries to fill the view, but don’t worry; put it anywhere,
and go back the Size Inspector. Set the X and Y values to 20 and the Height
and Width values to 79. The view should resemble that shown in Figure 8-23.
B <« » [ socialApp SocialApp Mai...ard Mai...ase) ) [ Fee...ene Feed Tab...iew  — TweetCell Content View Image View Dm0 &
» [ Accounts Scene View
v I Feed Sc. Show | Frame Rectangle [
= um:“ - 20]: 20:
v | Table View Feed D/ < , ! 7
v TweerCell | Width 2l He:gh‘.?rg ;
v Content View Prototype Cells
Image View Constraints
* < Food o & B The selected views have no comstraints. At build
® First Responder i WAl b peokmd oy v
- s | T
Present modally segue to Tweet fnkdnsic Sizx {sDefauR Cystem Dened) s
Present modally seque to Compose o o o

¥ | Compose Scene k )

Figure 8-23. Manually sizing and positioning the image view

8.

This image view will display the Twitter photo of the tweet’s author. Before
you leave the image view, you need to set a default image to act as a
placeholder while the image is downloading from the Internet. Open
Images.xcassets from the Project Navigator: in the project files for this
chapter is a folder called images that contains a file called camera.png. Drag
that file from Finder to the Asset Catalog sidebar, as shown in Figure 8-24.

i\ e SocialApp SocialApp Images.xcassets » No Selection
v b SocialApp __ Applcon
== 2 targets, iO5 SDK 8.0
» 54 Accounts.framework > m
v SocialApp
= Appl Images
Main = _ sa = Il 1= = ™ > e
Laun FAVORITES Images = camera.png
v | View =1 All My Files SocialApp
T o
. ce & AirDrop
ad A Amallanar

Figure 8-24. Dragging in camexra.png

9.

10.

When you release the file, it automatically creates an image set named
camera. Switch back to the storyboard, select the image view if it isn’t already
selected, and open the Attributes Inspector.

Set the Image attribute to camera, which should be shown in the list of
available images. Your image view should now resemble Figure 8-25.


http:///

CHAPTER 8: Table and Collection Views 251

Figure 8-25.

11.

12.

Figure 8-26.

13.

Image View
Image camera »
[—) Highlighted v
State || Highlighted
Feed Z ghlig
T
Prototype Cells =2
Mode | Scale To Fill
o o o Tag 0l

a o Interaction |_| User Interaction Enabled
Multiple Touch

o Alpha 1|5
Background [——] | Default
Tint | B | Default

Setting the attributes of the image view so that it has a placeholder image

Add a label for the user name of the author of the tweet. To do so, drag in a
label from the Object Library, and align it with the top of the image view. In
the Attributes Inspector, change the Text attribute to User Name. Using the
T icon, change the Font attribute to System Bold and Size to 17.

With the font and the placeholder text set correctly, size the label
appropriately. Keep it at a single-line height, but increase the width to the
right until the blue margin appears. It should resemble Figure 8-26.

Feed Df
' Prototype Cells '

ooo

éJser Name

Aligning the User Name label

The final object that needs to be added to the cell is a label for the tweet
content. Drag in a label, and position it just below the User Name label. Make
it the same width as the User Name label, and then increase the height until
the margin guidelines at the bottom of the cell appear. It should resemble
Figure 8-27.


http:///

252 CHAPTER 8: Table and Collection Views

Feed
' Prototype Cells
User Name
o (]
o abel
o o

Figure 8-27. Aligning the tweet Content label

14. In the Attributes Inspector, set the Text attribute to Content and the Lines
attribute to 2. Xcode will wrap the text onto a second line if needed. If the
text length exceeds what will fit on two lines, the Line Breaks attribute will
determine what will happen. The default option is Truncate Tail, which cuts

the text short and appends an ellipsis or ... to the end of the text.

15. To align the interface elements, click the Resolve Auto Layout Issues button.

Under All Views in TweetCell, choose Add Missing Constraints.

16. You’ve now built the interface for the custom cell. Next you need to create
the outlets for the three objects. Open the Assistant Editor with the cell
selected, and this time ensure that the code file that is loaded is TweetCell.
swift; it’s likely that the file loaded is actually FeedViewController.swift.
Click the file name on the jump bar, as shown in Figure 8-28. and then

choose TweetCell.swift.

L Content | B8 <« » | 7] Automat = FeedViewController.swift viewDidLoad() 42p + X
7 B TweetCell swift
/f FeedViewControvwereemwsss
= | /f  SocialApp
L1 77
// Created by Matthew Knott on 30/09/2014.
| % // Copyright (c) 2014 Matthew Knott. All rights reserved.

import UIKit
import Accounts
import Social

Figure 8-28. Ensuring that TweetCell. swift is loaded before creating the outlet

17. Control-drag a connection from the image view to just below class

TweetCell, and release the mouse. Name this outlet tweetUserAvatar, as

shown in Figure 8-29.


http:///

CHAPTER 8: Table and Collection Views 253

I
/! TweetCell.swift
// SocialApp

(= /]
// Created by Matthew Knott
Feed %i // Copyright (c) 2014 Matthe
/
Prototype Cells Connection | Qutlet 3 import UIKit
Object TweetCell
o o class TweetCell: UITableView(
User Name Name | tweetUserAvatar
o o Type UlimageView X
Storage | Weak & override func awakeFromN:
Content super.awakeFromNib()
o - Cancel Connect // Initialization coc

T

override func setSelectec
super.setSelected(se’

Figure 8-29. Creating an outlet for the image view called tweetUserAvatar

18. Create an outlet in the same way for the User Name label, naming it

tweetUserName. Finally, create an outlet for the Content label named
tweetContent. The start of your custom UITableViewCell class should
resemble the following code:

import UIKit

class TweetCell: UITableViewCell {
@IBOutlet weak var tweetUserAvatar: UIImageView!
@IBOutlet weak var tweetUserName: UILabel!
@IBOutlet weak var tweetContent: UILabel!

Now that you’ve created the interface and the outlets for the objects in the cell’s view, you can begin
to bring all the different elements and classes together in the Feed view controller. Here you write
the code that fetches the Twitter feed and then parses the returned data before displaying it in the
custom table cell:

1.

To get started, prepare the header file. Switch back to the Standard
Editor, and then open FeedViewController.swift from the Project
Navigator. You need to create some instance variables, just as you did
for AccountsViewController, but this time you're creating three. After var
selectedAccount : ACAccount!, add the following highlighted code:

class FeedViewController: UITableViewController {

var selectedAccount : ACAccount!
var tweets : NSMutableArray?
var imageCache : NSCache?

var queue : NSOperationQueue?


http:///

254 CHAPTER 8: Table and Collection Views

Note You've got a lot of code to get through for this view controller. As | already mentioned, | won't be
going into a huge amount of detail, but be assured that much of the code you’re writing in this chapter is
interchangeable with any kind of application that fetches data from the Internet.

2. Scroll down to the viewDidLoad method. Because this method is called when
the view loads, you perform a few key tasks here. First, clear out all the green
commented lines of code so you’re left with just super.viewDidLoad().

3. You need to set the title of the view to the Twitter account name that was
passed to the view from the previous Accounts view controller, initialize
NSOperationQueue and configure its basic settings, and finally add a call
to a function that hasn’t been written yet called retrieveTweets. Add the
highlighted code to your viewDidLoad method:

override func viewDidlLoad() {
super.viewDidLoad()

self.navigationItem.title = selectedAccount.accountDescription

queue = NSOperationQueue()
queue! .maxConcurrentOperationCount = 4

retrieveTweets()

}

4. Xcode correctly flags the last line of the viewDidLoad method as being in
error. This is because you haven’t written that function yet. Drop down a few
lines after the viewDidLoad method, and declare the function stub as shown
next:

func retrieveTweets() {

}

5. Xcode is happy that everything is back in order. You still need to write this
method’s substantial code. I'll take you through each major block of code
and explain the function as | go, as opposed to going line by line as | have in
the past. First you need to clear the tweets array to remove any previously
stored tweets. Add the highlighted code to start the function:

func retrieveTweets() {
tweets?.removeAllObjects()
}


http:///

CHAPTER 8: Table and Collection Views 255

You need to check that you do indeed have a valid ACAccount object. If so,
you declare and initialize an SLRequest object with the URL to the Twitter API
that provides the home timeline data you want to display in the table view.
You then authenticate the request using the selectedAccount ACAccount
object. Drop down a line and add this highlighted code:

func retrieveTweets() {
tweets?.removeAllObjects()

if let account = selectedAccount {
let requestURL =
NSURL(string: "https://api.twitter.com/1.1/statuses/home_timeline.json")

let request = SLRequest(forServiceType: SLServiceTypeTwitter,
requestMethod: SLRequestMethod.GET,
URL: requestURL,
parameters: nil)

request.account = account

}

For the final block of this method, you’ve given the request object all the
parameters it needs, and now you execute the performRequestWithHandler
method. This method accesses the supplied URL and returns the response
from the request to a code block. If the request is successful, it returns a
status code of 200. When this happens, you parse the JSON code into an
array and use that as the contents of the tweets array. Finally, you call the
reloadData method of the table view to update the information shown on the
screen. Add the highlighted code after the last line you wrote:

request.account = account
request.performRequestiiithHandlex()

{

responseData, urlResponse, error in

if(urlResponse.statusCode == 200)

{
var jsonParseError : NSError?
self.tweets = NSISONSerialization.JSONObjectlWithData(responseData,
options: NSJSONReadingOptions.MutableContainers,
error: &jsonParseError) as? NSMutableArray
}

dispatch_async(dispatch_get_main_queue()) {
self.tableView.reloadData()
}


https://api.twitter.com/1.1/statuses/home_timeline.json
http:///

256 CHAPTER 8: Table and Collection Views

Note If you aren’t familiar with http response codes, it may be worth looking up the possible codes
online. Even if you’ve never heard the term before, you’'ve almost certainly come across them while browsing
the Internet. Errors 404 and 500 are two of the more visible error codes that you may have seen on a web site
in the past, but there are many others, and it’s worth doing some research on them if you intend to use web
APIs to get data into your application.

8. The completed code for the retrieveTweets method should look like this:

func retrieveTweets() {
tweets?.removeAllObjects()

if let account = selectedAccount {
let requestURL =
NSURL(string: "https://api.twitter.com/1.1/statuses/home_timeline.json")
let request = SLRequest(forServiceType: SLServiceTypeTwitter,
requestMethod: SLRequestMethod.GET,
URL: requestURL,
parameters: nil)

request.account = account
request.performRequestWithHandler ()

responseData, urlResponse, error in

if(urlResponse.statusCode == 200)

{
var jsonParseError : NSError?
self.tweets = NSJISONSerialization.JSONObjectWithData(responseData,
options: NSJSONReadingOptions.MutableContainers,
error: &jsonParseError) as? NSMutableArray
}

dispatch_async(dispatch_get main_queue()) {
self.tableView.reloadData()
}

}

9. This is a good point at which to run your application to check for errors. The
application should compile and allow you to select a Twitter account. On the
feed screen, you don’t see anything yet; but more important, you shouldn’t
see any errors. If you do, check things such as the correctness of the name
of the segue in the storyboard and whether you typed the URL correctly.


https://api.twitter.com/1.1/statuses/home_timeline.json
http:///

CHAPTER 8: Table and Collection Views

10.

11.

12.

Back in FeedViewController.swift, it’s time to look at the table-view
delegate methods. Starting with numberOfSectionsInTableView and
numberOfRowsInSection, you need to return 1 for the single section you want
to have and the number of tweets in the array to set the number of rows in
the table. Again, Xcode may show warnings against these two methods;

as before, accept the first suggestion from the Fix-it dialog. The completed
methods should look like this:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
// Return the number of sections.
return 1

}

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) ->
Int {
// Return the number of rows in the section.

if let tweetCount = self.tweets?.count {
return tweetCount
}

else

{
}

return 0

}

It’s time to pair the data you’ve received and stored in the array with the
custom TweetCell table cell with the cel1ForRowAtIndexPath method. Delete
the comments surrounding the method so you’re left with just the stub (and
an Xcode warning).

Remove the exclamation marks from the method declaration, and change the
highlighted values shown next:

override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

let cell = tableView.dequeueReusableCellWithIdentifier("TweetCell",
forIndexPath: indexPath) as TweetCell

// Configure the cell...

return cell

257


http:///

258

CHAPTER 8: Table and Collection Views

13.

14.

15.

You need to create two NSDictionary objects to store different parts of

the Twitter feed data. One stores the main message data, the other stores
the portion that relates directly to the user who created the tweet. An
NSDictionary is a type of array that uses a key-value pairing system to store
and access data. This means instead of asking for the value at position 0, as
you would with an array, you ask for the value that corresponds to “name.”
Add the following highlighted code into your method:

let cell = tableView.dequeueReusableCellWithIdentifier("TweetCell",
forIndexPath: indexPath) as TweetCell

let tweetData = tweets?.objectAtIndex(indexPath.row) as NSDictionary
let userData = tweetData.objectForKey("user") as NSDictionary

return cell

Let’s take data from those NSDictionary objects and populate the interface.
Add the following highlighted code to set the values of the two labels and
then return the cell object to stop the error from being reported in Xcode:

let tweetData = tweets?.objectAtIndex(indexPath.row) as NSDictionary
let userData = tweetData.objectForKey("user") as NSDictionary

cell.tweetContent.text? = tweetData.objectForKey("text") as String
cell.tweetUserName.text? = userData.objectForKey("name") as String

return cell

Because you returned the cell object, you’re now error free and can run the
application. You haven’t set the image yet, but you should be able to select
your Twitter account and see the user and content values in each cell, as
shown in Figure 8-30. If you get an exception when you go to the Feed view
controller, check that you specified the correct identifier on the cell in the
storyboard as well as in the code.

.08 i0S Simulator - iPad Air - iPad Air / iOS 8.0 (12A365)
Carrier = 8:41AM 1009 M-
|
£ Accounts @beginningxcode5 K]

I Cocoa Controls

LogDispatcher.Swift for iOS: A more powerful printin(_:) - http://t.co/dfSkK585xc

| Ray Wenderlich

Really interesting read about what it's like working at Apple by @bricepollock: http://
t.co/OkM57i315d (via @rendoncepeda)

Figure 8-30. The avatar-less Twitter feed being displayed


http:///

CHAPTER 8: Table and Collection Views

16.

17.

| hope you have a huge sense of satisfaction at seeing your application finally
come to life as it reads live data from the Internet. There is one final block of
code for this method, which focuses on retrieving, caching, and displaying
Twitter users’ avatars. First you try to retrieve the image from the cache; if
that fails, you create an operation for the NSOperationQueue queue object to
fetch the image’s data and create an image from it before displaying it and
then caching it for future use. Add the following highlighted code:

cell.tweetUserName.text? = userData.objectForKey("name") as String

let imageURLString = userData.objectForKey("profile_image url") as String
let image = imageCache?.objectForKey(imageURLString) as UIImage?

if let cachedImage = image {
cell.tweetUserAvatar.image = cachedImage
}

else

{

cell.tweetUserAvatar.image = UIImage(named: "camera.png")

queue?.addOperationiithBlock() {
let imageURL = NSURL(string: imageURLString) as NSURL!
let imageData = NSData(contentsOfURL: imageURL) as NSData?
let image = UIImage(data: imageData!) as UIImage?

if let downloadedImage = image {
NSOperationQueue.mainQueue().addOperationliithBlock(){
let cell = tableView.cellForRowAtIndexPath(indexPath) as TweetCell
cell.tweetUserAvatar.image = downloadedImage

}

self.imageCache?.setObject(downloadedImage, forKey: imageURLString)

}

return cell

Take this opportunity to rerun the application. This time, after a brief delay,
images should appear instead of the placeholder camera.png image, as
shown in Figure 8-31.

259


http:///

260 CHAPTER 8: Table and Collection Views

.06 i0S Simulator - iPad Air - iPad Air [ iOS 8.0 (12A365) i
Carrier = 9:08 AM 100% M-
| S|
< Accounts @beginningxcode5 |

Cocoa Controls

LogDispatcher.Swift for iOS: A more powerful printin(_:) - http://t.co/dfSkK585xc

Ray Wenderlich

Really interesting read about what it's like working at Apple by @bricepollock: http://
t.co/OkM57i315d (via @rendoncepeda) |

Figure 8-31. The Twitter feed, with avatar images included this time

Note There is always a delay when fetching data from the Internet. But because you're using the
NSOperationQueue object and efficiently switched between the main and arbitrary threads, there is no
slowdown in the application, which would have guaranteed you negative app store reviews. Notice how
quickly you can scroll up and down the list of tweets, all because the NSCache stores them for later use.

Before moving on, here is the full code for the cel1ForRowAtIndexPath method:

override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

let cell = tableView.dequeueReusableCellWithIdentifier("TweetCell",
forIndexPath: indexPath) as TweetCell

let tweetData = tweets?.objectAtIndex(indexPath.row) as NSDictionary
let userData = tweetData.objectForKey("user") as NSDictionary

cell.tweetContent.text? = tweetData.objectForKey("text") as String
cell.tweetUserName.text? = userData.objectForKey("name") as String

let imageURLString = userData.objectForKey("profile image url") as String
let image = imageCache?.objectForKey(imageURLString) as UIImage?

if let cachedImage = image {
cell.tweetUserAvatar.image = cachedImage
}


http:///

CHAPTER 8: Table and Collection Views

else

{

cell.tweetUserAvatar.image = UIImage(named: "camera.png")

queue?.addOperationhWithBlock() {
let imageURL = NSURL(string: imageURLString) as NSURL!
let imageData = NSData(contentsOfURL: imageURL) as NSData?
let image = UIImage(data: imageData!) as UIImage?

if let downloadedImage = image {
NSOperationQueue.mainQueue().addOperationWithBlock(){
let cell = tableView.cellForRowAtIndexPath(indexPath) as TweetCell
cell.tweetUserAvatar.image = downloadedImage

}

self.imageCache?.setObject(downloadedImage, forKey: imageURLString)

}

return cell

18. In this file, let’s create the stubs for the two segues away from this view
controller: ComposeTweet and ShowTweet. Scroll down to the bottom of the file,
uncomment the prepareForSegue method, and remove the ! from the method
declaration if Xcode gives you a warning.

19. Handle the two possible segues by adding the following highlighted code:

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject!) {

if(segue.identifier == "ComposeTweet")

{

else if(segue.identifier == "ShowTweet")
{

}

}

That’s it for the Feed view controller for now. Once the other views have been configured, you’ll

261

come back to this file and add the code to pass the baton when the segue is triggered. For now, let’s

move on to the third view controller: Tweet view controller.

Because the last two views in the application subclass the UIViewController, in the following
section | only focus on adding the code. This is mainly so that you can see how the application

builds up in stages and that it’s rarely spit into neat chunks. But this will also give you the
satisfaction of building your own working Twitter client.


http:///

262 CHAPTER 8: Table and Collection Views

Configuring the Tweet View

The Tweet view controller allows the user to see the full text of the tweet they selected from the
Twitter feed, as well as any associated metadata. This is useful if the text in the table-view cell has
been truncated. If you were making a complete Twitter client, you would have to add numerous
bits of additional information, such as how many times the tweet has become a favorite or been
retweeted. For SocialApp, however, you configure the Feed view controller to pass across an
NSDictionary object containing the data of the selected tweet; you then pick relevant information
from that object to be displayed in the view.

First, as you did with the Feed view controller, let’s configure the Tweet view controller to receive
the NSDictionary. Because you’re just pulling information from an NSDictionary object and not
interacting with Twitter or the Internet, you don’t need the Accounts or Social framework in this view
controller. Follow these steps:

1. Open TweetViewController.swift from the Project Navigator. After the
@IBOutlets and @IBActions, create an NSDictionary property called
selectedTweet with this line of code:

var selectedTweet : NSDictionary?

This creates the property —or, to think of it another way, it’s a runner on the track
waiting to receive the NSDictionary baton from the runner or view controller
before it. Now you need to go back to Feed view controller and pass across an
NSDictionary of tweet data.

2. Backin FeedViewController.swift, scroll down to the prepareForSegue
method. You’ve already created the if statement that checks for the
ShowTweet segue, but in that if statement you need to determine the
selected row’s index, retrieve the relevant entry from the tweets array, and
pass it to the Tweet view controller by setting its selectedTweet property.
Following is the if statement and all the required highlighted code:

else if(segue.identifier == "ShowTweet")

{
var path : NSIndexPath = self.tableView.indexPathForSelectedRow()!

let tweetData = self.tweets!.objectAtIndex(path.row) as NSDictionary
let targetController = segue.destinationViewController as TweetViewController

targetController.selectedTweet = tweetData

}

3. Now that the information is being passed across, it’s easy to access the
information you want to display. Open TweetViewController.swift again.


http:///

CHAPTER 8: Table and Collection Views 263

4. All the processing of data is done in the viewDidLoad method. You fetch
the user’s avatar directly from the Internet, rather than from the cache. You
should be familiar with the rest of the code from the previous view controller.
Add the highlighted code to the viewDidLoad method:

override func viewDidlLoad() {
super.viewDidLoad()

let userData = selectedTweet?.objectForKey("user") as NSDictionary

tweetText.text? = selectedTweet?.objectForKey("text") as NSString
tweetAuthorName.text? = userData.objectForKey("name") as String

let imageURLString = userData.objectForKey("profile_image_ url") as String
let imageURL = NSURL(string: imageURLString) as NSURL!
let imageData = NSData(contentsOfURL: imageURL!) as NSData!

dispatch_async(dispatch_get_main_queue()) {
self.tweetAuthorAvatar.image = UIImage(data: imageData!)
}

}

5. To make the tweet close with the Cancel button, you implement the
dismissView method, which uses the UIViewController method of
dismissViewControllerAnimated. Because it’s a UIViewController
method and this is the implementation file for a class that subclasses
UIViewController, you access your base class methods by using self,
although it isn’t always necessary with Swift. Add the highlighted line of code
to your action:

@IBAction func dismissView(sender: AnyObject) {
self.dismissViewControllerAnimated(true, completion: nil)
}

That’s it! Go ahead and run your application. Select a tweet from the feed, and the tweet should be
expanded in the modal dialog. For the first time, you can see the form sheet presentation style in
effect, as shown in Figure 8-32. Now let’'s move on to the final view controller in this application: the
Compose view controller.


http:///

264 CHAPTER 8: Table and Collection Views

iOS Simulator - iPad Air - iPad Air / iOS 8.0 (12A365)

Apress Cancel

Meozilla's new feature for its Firefox browser allows users to make video
calls across the web without plugin. hitp://t.co/ZBbNdvshIP

Figure 8-32. The Tweet view controller showing the data that was passed to it along with an image pulled directly from the
Internet. Notice the link detection in effect

Configuring the Compose View

The final view for this application is the Compose view controller. This is where the user can
compose a message and post it to Twitter. Let’s enforce the 140-character limit for tweets by using a
UITextView delegate method and then animate the activity indicator when it’s sending the tweet data
to Twitter. Here are the steps:

1. You've created the visual element and set up the outlets, so open
ComposeViewController.swift. As previously mentioned, you’re using a
UITextView delegate method, so the first thing you need to do is implement
the UITextViewDelegate protocol. Add the highlighted code to the class line
so that it looks like this:

class ComposeViewController: UIViewController, UITextViewDelegate {

2. You need the Social and Accounts frameworks for this view controller, so add
their import statements beneath the line that says import UIKit:

import UIKit
import Accounts
import Social


http:///

CHAPTER 8: Table and Collection Views

To create a property to receive the ACAccount object for the selected
account from the Feed view controller, after the class line, add the following
highlighted code:

class ComposeViewController: UIViewController, UITextViewDelegate {
var selectedAccount : ACAccount!

Go back to FeedViewController.swift to pass the selected account details
over to your newly created property.

Scroll down until you see the prepareForSegue method. You have an empty
if statement set up for the ComposeTweet segue; modify it so that it passes
the selectedAccount object to the Compose view controller, as shown next:

if(segue.identifier == "ComposeTweet")

let targetController = segue.destinationViewController as ComposeViewController
targetController.selectedAccount = selectedAccount

}

Switch back to ComposeViewController.swift.

You need to create a custom function and a delegate method as well as two
actions in this file. The good news is that none of them require a great deal
of code. Scroll down until you see the viewDidLoad method. All you need

to do here is specify the delegate property of the text view, which as I've
mentioned previously is this view controller, so it’s set to self. Although you
can add this in the storyboard, let’s do it here for the sake of variety. After the
line super.viewDidLoad(), add the following code:

override func viewDidLoad() {
super.viewDidLoad()
self.tweetContent.delegate = self

}

You need to create a function called postContentto handle the transmission
of the text that is sent to the Twitter account passed to the view controller.
Create the function stub just below the viewDidlLoad method:

func postContent(post : String) {

}

265


http:///

266

CHAPTER 8: Table and Collection Views

10.

11.

As you can see, the function takes one parameter: a String object called
post. The first thing you want to do when this function is called is to start
animating the postActivity activity indicator. You do this by sending the
startAnimating message. Due to the way the activity indicator was configured
in Chapter 7, it’s at this point that it appears and begins its animation:

func postContent(post : String){
postActivity.startAnimating()

}

You’re ready to prepare the Twitter request. Just as you did in the Feed

view controller, let’s create an NSURL object with the appropriate APl URL

for the type of request you want to make, which is used when instantiating
the SLRequest object. A key difference this time is that you use a different
HTTP method. You no longer issue a get request but instead issue a post
request. When a post request is made with the SLRequest object, you supply
the required parameters in an NSDictionary object. If you refer to the Twitter
documentation for the status update API at https://dev.twitter.com/docs/
api/1.1/post/statuses/update, you see that the only required parameter

is called status. The status parameter should be the textual content of the
status update, which is the contents of the post parameter the function is
supplied with. Drop down a line in the function, and add the following code:

func postContent(post : String){
postActivity.startAnimating()

if let account = selectedAccount {
let requestURL = NSURL(string: "https://api.twitter.com/1.1/statuses/update.
json")
let request = SLRequest(forServiceType: SLServiceTypeTwitter,
requestMethod: SLRequestMethod.POST,
URL: requestURL,
parameters: NSDictionary(object: post, forKey: "status"))

request.account = account

}

Access the performRequestWithHandler method of the SLRequest object just
as you did in the Feed view controller. This time, however, when you receive
a successful response code, you want to stop animating the activity indicator


https://dev.twitter.com/docs/api/1.1/post/statuses/update
https://dev.twitter.com/docs/api/1.1/post/statuses/update
https://api.twitter.com/1.1/statuses/update.json
https://api.twitter.com/1.1/statuses/update.json
http:///

CHAPTER 8: Table and Collection Views 267

and dismiss the view controller. Drop down a line, and add the following
highlighted code to complete the method:

request.account = account

request.performRequestiithHandlex()

{
responseData, urlResponse, error in
if(urlResponse.statusCode == 200)
{
println("Status Posted")
dispatch_async(dispatch_get_main_queue())
self.postActivity.stopAnimating()
self.dismissViewControllerAnimated(true, completion: nil)
}
}
}

Your finished method code should look like this:

func postContent(post : String){
postActivity.startAnimating()

if let account = selectedAccount {
let requestURL = NSURL(string: "https://api.twitter.com/1.1/statuses/update.json")
let request = SLRequest(forServiceType: SLServiceTypeTwitter,
requestMethod: SLRequestMethod.POST,
URL: requestURL,
parameters: NSDictionary(object: post, forKey: "status"))
request.account = account
request.performRequestWithHandler ()

responseData, urlResponse, error in

if(urlResponse.statusCode == 200)

{
println("Status Posted")
dispatch_async(dispatch _get main_queue())
self.postActivity.stopAnimating()
self.dismissViewControllerAnimated(true, completion: nil)
}
}


https://api.twitter.com/1.1/statuses/update.json
http:///

268 CHAPTER 8: Table and Collection Views

12. It’s time to address the two action methods: dismissView and postToTwitter.
These are both one-liners; dismissView is a duplicate of the method used in
the Tweet view controller, and postToTwitter simply calls the postContent
method you just finished writing. Implement them both as follows:

@IBAction func dismissView(sender: AnyObject) {
dismissViewControllexAnimated(true, completion: nil)
}

@IBAction func postToTwitter(sender: AnyObject) {
postContent(self.tweetContent.text)
}

13.  You need to implement a UITextView delegate method that restricts
the text view’s content to 140 characters. This is done by using the
shouldChangeTextInRange method, which is called every time a character
is typed. The method checks that the text view’s content isn’t greater than
140 characters and that it won’t exceed 140 characters if someone pastes in
some text. If the content is too large, the method returns false, and no more
text can be typed. Add the following method just below viewDidlLoad:

func textView(textView: UITextView,
shouldChangeTextInRange range: NSRange,
replacementText text: String) -> Bool {
let targetlength : Int = 140
return countElements(textView.text) <= targetlength

}

That was the last line of code for this application! Go ahead and run it and see how all the hard work
you’ve put in over these two chapters has finally paid off. You should be able to successfully access
your Twitter accounts, view the Twitter feed, see a tweet in detail, and even post your own.

Importantly, in this chapter, you’ve learned all about configuring table views and the different
methods and properties of the UITableView class, which you no doubt will use heavily in your own
applications.

Discovering the Collection View

A collection view is a fantastic class that Apple introduced fairly recently in iOS 6 (compared to most
other objects, which have existed since the first version). Collection views offer developers a flexible
way to display large amounts of data just like their cousin the table view, with the difference being
that you can display data in columns as well as rows. Another neat feature is that collection views
can scroll either vertically or horizontally, giving you that extra dimension as a developer.

Although structurally they’re quite similar, one of the largest differences between the collection view
and the table view is that the collection view’s layout is completely separate from the view. It can
be set to either a default or a custom UICollectionViewlLayout, giving you a massive amount of
flexibility over your design.


http:///

CHAPTER 8: Table and Collection Views 269

To demonstrate the implementation and configuration of a collection view, let’s make some pretty
drastic changes to SocialApp. First, let’s turn it into a tabbed application, and then look at storing
user preferences to automate account selection.

Embedding a Tab Bar Controller

The change I’'m aiming for here is to have a Feed tab and a Following tab in the application, with the
Feed tab obviously being the Feed view controller. Let’s create the Following view controller, which

is a collection view controller that shows the avatars of all the users that the selected Twitter account
follows. To turn SocialApp into a tabbed application, you need to add a tab bar controller between
the Accounts view and the Feed view:

1. Open Main.storyboard from the Project Navigator. Navigate around the
storyboard until you're able to see the segue connection from the Accounts
scene to the Feed scene. Highlight the segue and delete it, as shown in
Figure 8-33.

B o« & Secialipp Socialagp © [l Mainstoryboard © [l Main storyboard (Base) : Mo Selection

0 Any hAny E ol i B

Figure 8-33. The SocialApp storyboard with the ShowTweets segue removed

2. Add a tab bar controller, with the Feed scene as one of the tabs. You could
drag in a tab bar controller and manually link it up, but instead let’s allow
Xcode do the hard work for you. Select the Feed view controller either by
clicking it directly in the storyboard or by selecting Feed from beneath Feed
Scene in the Document Outline.


http:///

270 CHAPTER 8: Table and Collection Views

3. From the menu bar, select Editor » Embed In » Tab Bar Controller, as shown
in Figure 8-34. This adds a tab bar controller to your storyboard, sets the
Feed scene as the first tab, and arranges the views to suit your needs.

Edit View Find Navigate m Product Debug Source Control Window Help

Align » Main.storyboard — Edited
ialApp g iPad Air Arrange P ad Air
' Resolve Auto Layout Issues » E
» 2 o @ |BB| <« » |8 Ppin » B Main.storyboard (Base) » [*] Feed Scene » [ Feed
v B Accounts S Qg
k. > \ Accounts Unembed
4l First Resp —,
vift [E] Exit Size to Fit Content #= Navigation Controller
Localization Locking > Tab Bar Controller
S ¥ [ Feed Scene
5, Canvas >
lib

Size Class >
Presentm  Add Vertical Guide
Present m

5
s

Figure 8-34. Embedding a tab bar controller into SocialApp

4. You need to re-create the ShowTweets segue, but this time you’re doing
things differently by linking from the Accounts view controller to the tab bar
controller. This is called a manual segue because it isn’t tied to a button or
table cell that can be triggered by the user. Instead, the segue is triggered
programmatically, because it’s not possible to segue from a table cell to a tab
bar controller and then on to the view controller displayed by the controller.
Zoom out, and control-drag a connection from the yellow Accounts icon to
the tab bar controller, as shown in Figure 8-35.

S—=2 E Tab Bar Controller

Figure 8-35. Connecting the Accounts view controller to the tab bar controller with a manual segue

5. When you release the mouse button, select Show as the segue type. Select
the newly created segue, and open the Attributes Inspector. Set Identifier
back to ShowTweets.


http:///

CHAPTER 8: Table and Collection Views 2mM

You're finished with the storyboard for now, but before you add the Collection view controller, let’s
get the application back to a working condition. This involves executing a manual segue and storing
the user’s account selection so that whenever the application runs in the future, it will default to the
account that the user selected and go straight to the feed.

Persisting User Preferences with NSUserDefaults

In a real-world scenario, a user picking up SocialApp would find it slightly annoying to have to select
their account every time the application runs. Fortunately, iOS gives you a number of ways to persist
user preferences, including iCloud and Core Data. In this instance, you’re using the incredibly handy
NSUserDefaults class.

NSUserDefaults allows the app to store values or certain types of objects against a textual key

and can’t be accessed from other applications. Whenever the application is closed and rerun, the
preferences stored in NSUserDefaults are preserved, but the user can access and change the saved
preferences to their heart’s content. The NSUserDefaults class has methods that make it easy to
both store and access a range of common types such as Booleans, floats, integers, doubles, and
URLSs, and it also supports the storage of the following objects:

NSData
NSString
NSNumber
NSDate
NSArray
NSDictionary

The object you want to store here is an ACAccount, so you have to convert it to an NSData object, but
I’ll get to that in a moment. Follow these steps:

1. Open AccountsViewController.swift from the Project Navigator. You need
to create an NSUserDefaults instance variable to allow you to access the
preferences from different methods without having to instantiate the method
each time. After the line var accountStore : ACAccountStore?, drop down a
line and add the highlighted code:

import UIKit
import Accounts

class AccountsViewController: UITableViewController {

var twitterAccounts : NSArray?
var accountStore : ACAccountStore?
var userDefaults : NSUserDefaults?

2. Scroll down to the viewDidLoad method. The first thing you need to do when
the view loads is to initialize the userDefaults object and then determine
whether a preference called selectedAccount has already been saved; if so,


http:///

272 CHAPTER 8: Table and Collection Views

you execute the manual segue with the performSeguelWithIdentifier method
and go straight to the Feed view controller. After the line accountStore =
ACAccountStore(), add the highlighted code:

override func viewDidLoad() {
super.viewDidLoad()
accountStore = ACAccountStore()

usexrDefaults = NSUserDefaults.standardUserDefaults()

if (userDefaults?.objectForKey("selectedAccount") != nil) {
performSeguelithIdentifier("ShowTweets", sender: self)
}

var accountType : ACAccountType =
accountStore!.accountTypeWithAccountTypeldentifier (ACAccountTypeldentifierTwitter)

3. That’s it for the viewDidLoad method. It’s time to address what happens
when you tap on a cell. In the past, the segue from the cell was triggered,
and the prepareForSegue method then passed the selected account
across to the feed. This time, however, the application is going to save the
selection before moving away. To do this, you use another key UITableView
method called didSelectRowAtIndexPath, which is triggered every time a
table cell is selected. Before you implement this method, delete the entire
prepareForSegue method; there is no longer a segue associated with the cell,
and the method won’t be needed from here on out.

4. To create the didSelectRowAtIndexPath method stub, after the
cellForRowAtIndexPath method, type the following highlighted code:

let account = self.twitterAccounts!.objectAtIndex(indexPath.row) as ACAccount
cell.textlabel?.text = account.accountDescription

return cell

}

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {

}

5. In this method, you use the indexPath object to allocate an ACAccount object
from twitterAccounts array based on the selected cell’s index. Add the
following highlighted code to the didSelectRowAtIndexPath method:

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {
let account = self.twitterAccounts!.objectAtIndex(indexPath.row) as ACAccount


http:///

CHAPTER 8: Table and Collection Views

As mentioned previously, you need to convert the account object into
something that can be stored in the NSUserPreferences; in this case, it will
be converted to an NSData object using the NSKeyedArchiver class. After the
previous line, add the following highlighted code:

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {
let account = self.twitterAccounts!.objectAtIndex(indexPath.row) as ACAccount
let accountData = NSKeyedArchiver.archivedDatalithRootObject(account) as NSData

The selected account is in a compatible format, so it can be saved to

the NSUserPreferences instance, userDefaults. The process for saving

a preference comes in two parts: first, use the setObject: forKey:
method, which associates the accountData object with a key; then, call the
synchronize method, which saves the preference to the system. Add the
following code to the method:

let accountData = NSKeyedArchiver.archivedDataWithRootObject(account) as NSData
userDefaults?.setObject(accountData, forKey: "selectedAccount")
userDefaults?.synchronize()

Now that you’ve saved the user’s selection, you can manually trigger the
segue. Just as you did in the viewDidLoad method, you need to call the
performSeguelWithIdentifier method. Add this code to complete the
method:

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {
let account = self.twitterAccounts!.objectAtIndex(indexPath.row) as ACAccount
let accountData = NSKeyedArchiver.archivedDataWithRootObject(account) as NSData
userDefaults?.setObject(accountData, forKey: "selectedAccount")
userDefaults?.synchronize()

performSeguelithIdentifier("ShowTweets", sender: self)

}

273

That’s it for the Accounts view controller. You’ve removed the previous mechanisms for selecting an

account, considered the overall user experience, and replaced those mechanisms with something

that will be much more user friendly.

Now that you’ve saved the user’s selection, you need to implement the retrieval of that selection

when the application moves to the Feed view controller:

1.

Open FeedViewController.swift, and scroll down to the viewDidlLoad
method.


http:///

274 CHAPTER 8: Table and Collection Views

2.  When the view loads, you create an instance of NSUserDefaults; there is
no point in creating an instance variable, because this is the only time you
need to access it in this file. You then retrieve the selected account from
the preferences using the objectForKey method, which retrieves the object
associated with the key that is supplied: in this case, selectedAccount.
Finally, you reverse the conversion process with the NSKeyedUnarchiver
class, which allows the conversion of the NSData object back into an
ACAccount object. After the line super.viewDidLoad(), add the following
highlighted code:

override func viewDidLoad() {
super.viewDidLoad()

let userDefaults = NSUserDefaults.standardUserDefaults()
let accountData = userDefaults.objectForKey("selectedAccount™) as NSData
selectedAccount = NSKeyedUnarchiver.unarchiveObjectiithData(accountData) as ACAccount

self.navigationItem.title = selectedAccount.accountDescription

queue = NSOperationQueue()
queue!.maxConcurrentOperationCount = 4

retrieveTweets()

}

3. Run the application in the Simulator. Select an account, and you segue
across to the newly tabbed Feed view. Quit the Simulator, and then rerun the
application. If everything has been done correctly, you should start facing
the Feed view instead of the Accounts view! As a user, this is a much more
favorable situation to be in. There is, however, one small issue you need to
address: after embedding a tab bar controller, the table-view positioning
changed, and now the first row renders underneath the navigation bar and
the title has vanished, as shown in Figure 8-36. This is far from ideal, and
unfortunately Xcode doesn’t give you an easy way to fix this; it has to be
done in code.

0o i0S Simulator — iPad Air - iPad Air / iOS 8.0 (12A365)
Carrier = 9:46 PM 100%; .-
< Accounts |

...........

Figure 8-36. The first table row obscured by the navigation bar


http:///

CHAPTER 8: Table and Collection Views 275

4. The title no longer applies itself because when you embedded the tab bar
controller, you effectively inserted another level between the view and the
navigation bar controller. Ensure that you still have FeedViewController.
swift open. Then, in the viewDidLoad method, change the line self.
navigationItem.title = selectedAccount.accountDescription to the
following:

self.tabBarController?.navigationItem.title = selectedAccount.accountDescription

5. Drop down another line. The issue of the table row being obscured by the
navigation bar is an iOS 7 & 8-specific issue with an iOS 7 & 8-specific fix,
but this doesn’t mean your application can’t be backward compatible. Let’s
use a handy method called respondsToSelector to evaluate whether the
method you need to call exists before calling it. Add the following
highlighted code:

self.tabBarController?.navigationItem.title = selectedAccount.accountDescription
self.tabBarController?.edgesForExtendedLayout = UIRectEdge.None

6. Rerun the application, and it should function perfectly! You’ve successfully
implemented a user preferences system that will make life much easier for
your users. You’re now ready to start creating the Collection view controller.

Adding a Collection View Controller

You’ve successfully pulled apart and reassembled your application. It’s time to turn your attention
back to the storyboard and, in particular, adding a Collection view controller into the application:

1. Open Main.storyboard from the Project Navigator, and position the scenes
as shown in Figure 8-37.


http:///

276 CHAPTER 8: Table and Collection Views

Figure 8-37. Arranging the storyboard in anticipation of the Collection view controller

2. Dragin a Collection view controller from the Object Library, and position it
below the Feed scene, as shown in Figure 8-38.

IR & IV LOIECTION YiEw LONTroaer

selection (¥ Clear on Appearance

View Controller
Title
Is Initial View Controller
Layout # Adjust Screll View Insets
Hide Bottom Bar on Push
o Resize View From NIB
Use Full Screen (Deprecated)
Extend Edges ¥ Under Top Bars
 Under Bottom Bars
Under Opaque Bars
Transition Scyle | Cover Vertical
Presentation | Full Screen
Defines Context
Provides Context

Cantant Size. liea Prafarrad Fynlicir Size
D06 O

Object - Provides a template for
objects and controllers not directly
available in Interface Builder.

Collection View Controller - &
controller that manages a collection
wiew

AVKit Player View Controller - A
wiew controller that manages a
AVPlayer object.

Any HAny B ol i BE]

og
¥

<= SocialApp
Figure 8-38. Dragging in a Collection view controller from the Object Library
3. Create a relationship between the tab bar controller and the Collection view

controller. To do this, select the tab bar controller and then control-drag a
connection to the Collection view controller, as shown in Figure 8-39.


http:///

CHAPTER 8: Table and Collection Views

Figure 8-39. Control-dragging a connection from the tab bar controller to the Collection view controller

4. When you release the mouse, select View Controllers under Relationship
Segues. You now have two tabs in the application. The tab bar controller may
look like a solid grey line, but if you were to run the app, you would have two
tabs called Item—which isn’t great.

5. To set the Feed tab bar button title, position your storyboard so that you can
select the tab bar button on the Feed scene. Open the Attributes Inspector,
as shown in Figure 8-40.

[ Feed Scene ) || Feed } & Tab Bar ltem 4h> 0D B ¢ 0 6

Tab Bar Item
Badge

System Item | Custom

Selected Image
Title Position | Default Position

Figure 8-40. Selecting the Feed tab bar button

6. Change the System Item drop-down list from Custom to Most Recent. A neat
clock icon appears. Repeat this process for the Collection view controller you
added to the storyboard, changing System Item from Custom to Contacts.
Your tab bar controller should now look like the one shown in Figure 8-41.

Figure 8-41. The tab bar controller featuring two correctly named tab bar items

7. As you did with the other view controllers, you need to create a
customer view controller class file. In this instance, you’re subclassing
UICollectionViewController. Right-click the View Controllers group in the
Project Navigator, and select New File.


http:///

278 CHAPTER 8: Table and Collection Views

8. When prompted, select the Cocoa Touch Class option, and click Next. Set
the Subclass Of value to UICollectionViewController and the Class value
to FollowingViewController, and then click Next. Accept the default folder
Xcode suggests to save the file, and click Create.

Now that you’ve successfully created the last custom view controller for this application, you’re
ready to configure the visual aspects of the collection view before fetching the user details followed
by the selected account from Twitter.

Note When adding the new view controller, a few errors may appear in Xcode. Don’t panic: you’ll fix those
very shortly. They’re not your fault.

Configuring a Collection View

I’ve already mentioned that the UICollectionView class is very similar to the UITableView class in
terms of methods and the fact that they both use cells to present large amounts of data to the user.
They also have sections with independent headers and footers. Yet despite these similarities, the
collection-view configuration in Xcode is drastically different from that of the table view.

To begin, open Main.storyboard from the Project Navigator, and move the storyboard until you can
see the collection view, as shown in Figure 8-42. Structurally, what you’re looking at isn’t really any
different from what you started with in the table view, as shown in Figure 8-21. The white-bordered
box in the top-left corner of the view is the prototype cell.

Collection View Controller

Figure 8-42. The top of the Collection view controller

Select the collection view so that you can look at the key attributes in the Attributes Inspector. To do
this, click the main area of the collection view or select Collection View from the Document Outline,
as shown in Figure 8-43.


http:///

CHAPTER 8: Table and Collection Views 279

B8 <4 » & SocialApp SocialApp
» 5| Accounts Scene
» [ Feed Scene

v [ Collection View Controller Scene

v ftem
» [ Collection View

* Contacts
i) First Responder
= Exit

» [Z] Compose Scene

» [F] Tweet Scene

» [ Navigation Controller Scene

» 2] Tab Bar Controller Scene

Figure 8-43. Selecting the collection view from the Document Outline

Open the Attributes Inspector. Let’s take a closer look at the key options available to you:

Itemms: Unlike the table view, collection views don’t have a static mode. The
Iltems attribute increases and decreases the number of prototype cells. No
matter how many items you have to display, if they have a single type of
appearance, then you only need one cell, which you reuse.

Layout: In a collection view, the layout is a separate entity from the view. The
default layout is Flow, which provides a grid of items continuing uninterrupted
in a fixed direction. Changing the attribute to Custom exposes a class selector
whereby you can specify a custom UICollectionViewlLayout.

Scroll Direction: As you might expect, this attribute controls the direction in
which the cells are positioned for scrolling.

Accessories: The Section Header and Section Footer options allow you to add
a prototype header and footer to the section. Unlike with table views, you can’t
manually specify any text in either container; it must be set programmatically.

Unlike in other views, much in collection views depends on the settings of the Size Inspector. When
you open the Size Inspector, you see many configurable values; Figure 8-44 shows the different
sizes and where they take effect. In this example, the number of items is set to 8 to help you
visualize how the cells react to one another.


http:///

280 CHAPTER 8: Table and Collection Views

-------

Left Right
o Scroll View Size
+» Scroll Indicators
ety ol: (1 H
Tep Sottom
1

‘>

Figure 8-44. The different sizes you can alter in a collection view

Cell Width and Height: Points 1 and 2 represent the width and height of the cell,
respectively. The cell doesn’t have to be square; the two values can change
independently of each other.

Minimum Spacing: The first value (highlighted by point 3), For Cells, sets a
minimum value for the horizontal spacing between cells. This is useful because
by default, the cells are spaced nicely, and the horizontal gap is far greater than
10 points. However, you know it won'’t slip below 10 points if the size of the view
changes. The For Lines value shown by point 4 sets a minimum width between
the rows of cells.

Section Insets: These four values control the spacing around the outside of the
section of cells, so the cells function as a collective entity. When you increase
the value of any of the sizes illustrated by points 5-8, you move the cells further
from that side of the view. By default, the Section Insets values are set to 0,
which can leave content feeling squashed; set a nice inset value to bring the
cells in from the edge, which is more visually appealing.

Follow these steps:

1.

For the Followers collection view, set the Cell Size Width and Height values to
75, set Minimum Spacing to 10 For Cells and 30 For Lines, and set all Section
Insets to 30.

Before you start adding code to the Followers view controller, you need

to specify the class the view controller uses. Select the Collection view
controller by either clicking the top bar of the view controller or selecting Item
under Collection View Controller Scene in the Document Outline.

Open the Identity Inspector, and set the class to FollowingViewController, as
shown in Figure 8-45.


http:///

CHAPTER 8: Table and Collection Views 281

D ®@ B¢ E @

Custom Class

Class | FollowingViewController 3|«

(YR FollowingViewController

UlCollectionViewController
Identity

Storyboard ID

Restoration ID

Use Storyboard ID

Figure 8-45. Setting Class to FollowingViewController

4. Select the single cell in the Following view controller. Open the Attributes
Inspector, and set the Identifier value to Cell.

Displaying Items in a Collection View

You’ve configured the collection view in Xcode, but to finish the view you need to write the code that
retrieves the list of users the app follows. | won’t focus too much on the code for retrieving the list of
followed users, but rather on the key methods of the UICollectionViewController class:

1. Open FollowingViewController.swift from the Project Navigator. The first
thing you need to do is import the Social and Accounts frameworks. After the
line import UIKit, add the following highlighted import statements:

import UIKit
import Accounts
import Social

2. Unless Apple has fixed this in Xcode 6.1, you may see a number of errors
in the code; let’s fix those now. Almost all the errors can be resolved by
removing the ! suffix after the class names in method declarations in the file.
Additionally, you may need to add a ? to an object, as highlighted here in the
viewDidLoad method:

self.collectionView?.registerClass(UICollectionViewCell.self,
forCellWithReuseIdentifier: reuseldentifier)


http:///

282

CHAPTER 8: Table and Collection Views

Declare a number of instance variables, just as you did with the Feed view
controller. You need an NSMutableArray instance called following to store the
details of each user the selected account follows, an NSCache object called
imageCache, and an NSOperationQueue object imaginatively called queue. The
start of your file with these items added should look like this:

import UIKit
import Accounts
import Social

let reuseIdentifier = "Cell"
class FollowingViewController: UICollectionViewController {

var following : NSMutableArray?
var imageCache : NSCache?
var queue : NSOperationQueue?

Move down to the viewDidLoad method; in this method, just as you did
with the Feed view controller, you want to initialize the queue object, set the
navigation bar title to Following, and then call the retrieveUsers function,
which you’ll add shortly. Add the highlighted code to your viewDidLoad
method:

override func viewDidLoad() {
super.viewDidLoad()

// Register cell classes
self.collectionView?.registerClass(UICollectionViewCell.self,
forCellWithReuseIdentifier: reuseldentifier)

queue = NSOperationQueue()
queue? .maxConcurrentOperationCount = 4

self.tabBarController?.navigationItem.title = "Following"

retrieveUsers()

}

Look at the retrieveUsers function. Create a stub for the function below the
viewDidLoad method, as shown next:

retrieveUsers()

}

func retrieveUsers() {

}


http:///

CHAPTER 8: Table and Collection Views 283

6. Much of this code is the same as that used in the Feed view controller, so
| don’t present the code in any detail. Clear the following array, and then
retrieve selectAccount from the stored user preferences, as shown next:

func retrieveUsers() {
following?.removeAllObjects()

let userDefaults = NSUserDefaults.standardUserDefaults()

let accountData = userDefaults.objectForKey("selectedAccount™) as NSData

let selectedAccount = NSKeyedUnarchiver.unarchiveObjectWithData(accountData) as
ACAccount

}

7. Declare an SLRequest object, and instantiate it using the URL specified by
the Twitter API for retrieving a list of “friends,” as Twitter refers to the API that
returns “up to 200 users,” followed by the supplied account:

let accountData = userDefaults.objectForKey("selectedAccount") as NSData
let selectedAccount = NSKeyedUnarchiver.unarchiveObjectWithData(accountData) as ACAccount

let requestURL = NSURL(string: "https://api.twitter.com/1.1/friends/list.json?count=200")

let request = SLRequest(forServiceType: SLServiceTypeTwitter,
requestMethod: SLRequestMethod.GET,
URL: requestURL,
parameters: nil)

request.account = selectedAccount

Note For more information on configuring the Twitter Friends/List AP, visit https://dev.twitter.com/
docs/api/1.1/get/friends/list.

8. You need to call the performRequestWithHandler method of the SLRequest.
Just as before, you check for a valid status code and parse the JSON
response before picking the “users” array from the parsed code and
assigning it to the following array. Calling the UICollectionView method
reloadData causes three methods to be called. Add the following code to
complete this method:

request.account = selectedAccount
request.performRequestiithHandlex()

{

responseData, urlResponse, error in


https://api.twitter.com/1.1/friends/list.json?count=200
https://dev.twitter.com/docs/api/1.1/get/friends/list
https://dev.twitter.com/docs/api/1.1/get/friends/list
http:///

284

CHAPTER 8: Table and Collection Views

10.

11.

12.

if (urlResponse.statusCode == 200)

{
var jsonParseError : NSError?
let followingData = NSJSONSerialization.JSONObjectWithData(responseData,
options: NSJSONReadingOptions.MutableContainers,
error: &jsonParseError) as NSDictionary
self.following = followingData.objectForKey("users") as? NSMutableArray
}

dispatch_async(dispatch_get_main_queue()) {
self.collectionView.reloadData()
}

}

On to the delegate methods. Just as with the table view, you have to specify
the number of sections via the number0fSectionsInCollectionView method.
Set it to return 1 as shown next:

override func numberOfSectionsInCollectionView(collectionView: UICollectionView) -> Int {
return 1
}

You need to specify how many of the potential 200 cells to render should
appear via the numberOfItemsInSection method, which returns the number of
rows in the following array:

override func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int {
if let followCount = following?.count {
return followCount
}

else

{
}

return 0

}

Scroll down, and locate the cellForItemAtIndexPath method. It’'s used to
initialize the cell and set its content, just as its UITableView equivalent does.

Using the highlighted code to pull the relevant data for the current index from
the following array and store it in an NSDictionary object before extracting
the URL for the user’s profile image, as you did in the Feed view controller:

override func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) -> UICollectionViewCell {
let cell = collectionView.dequeueReusableCellWithReuseIdentifier(reuseldentifier,
forIndexPath: indexPath) as UICollectionViewCell


http:///

CHAPTER 8: Table and Collection Views 285

let userData = following?.objectAtIndex(indexPath.row) as NSDictionary
let imageURLString = userData.objectForKey("profile_image url") as String

return cell

}

13. You need to set up the image that is programmatically added to the cell using
the addSubview method because no UIImageView exists in the cell, and then
return the cell object. Complete the method with this highlighted code:

override func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) -> UICollectionViewCell {
let cell = collectionView.dequeueReusableCellWithReuseIdentifier(reuseldentifier,
forIndexPath: indexPath) as UICollectionViewCell

let userData = following?.objectAtIndex(indexPath.row) as NSDictionary
let imageURLString = userData.objectForKey("profile image url") as String

if let image = imageCache?.objectForKey(imageURLString) as? UIImage {
let imageView = UIImageView(image: image) as UIImageView
imageView.bounds = cell.frame
cell.addSubview(imageView)

}
else
{
queue?.addOperationlithBlock() {
let imageURL = NSURL(string: imageURLString) as NSURL?
let imageData = NSData(contentsOfURL: imageURL!) as NSData?
let image = UIImage(data: imageData!) as UIImage?
if let downloadedImage = image {
NSOperationQueue.mainQueue().addOperationliithBlock(){
let imageView = UIImageView(image: image)
imageView.bounds = cell.frame
if let cell = self.collectionView.cellForItemAtIndexPath(indexPath)
as UICollectionViewCell! {
cell.addSubview(imageView)
}
}
self.imageCache?.setObject(image!, forKey: imageURLString)
}
}
}

return cell

}

That completes the collection view and the chapter! Go ahead and run your application. As long as
you’'re following some other Twitter users, your collection view should populate with user avatars as
shown in Figure 8-46. Note that I've used the Xcode logo instead of some of the faces, for privacy
reasons.


http:///

286 CHAPTER 8: Table and Collection Views

e i0S Simulator - iPad Air — iPad Air / iOS 8.0 (12A365)
Carrier ¥ 10:47 PM 100% -
!
< Accounts Following

Figure 8-46. The finished collection view showing the avatars of users you follow

Summary

There’s no doubt that you covered a lot in this chapter. Most important, you’ve taken SocialApp from
the shell it was at the end of Chapter 7 and created a working Twitter client. This was no mean feat,
and hopefully you’re feeling really pleased with yourself. Take a break and reflect on all the things
you’ve learned in this chapter:

The difference between static and prototype table cells

When to use a grouped or a plain style table view

How to create a custom table cell

How to fetch data from the Internet

How to parse JSON data

How to embed a tab bar controller into your application

How to persist user preferences even when the application has closed

The next chapter looks at other ways you can use frameworks in Xcode, as well as libraries and how
Xcode lets you create different applications with the same code using targets.


http:///

Chapter

Frameworks, Libraries,
and Targets

In Chapter 8, you learned about how to configure and implement table and collection views as

you completed a Twitter client, SocialApp. You also used two frameworks, Social and Accounts,

to access the Twitter API; frameworks are a topic | explain in more detail in this chapter. You also
parsed the JSON-formatted data and looked at NSDictionaries in action. The chapter covered many
important aspects of Xcode application development, and | hope you found the project useful and
enjoyable—maybe even a bit exciting!

Chapter 8 had a lot of code to go through as you subclassed cells and view controllers, but in
this chapter you see how a little code can go a long way. This chapter explains how Xcode uses
frameworks to add extra functionality; libraries to encapsulate lots of classes, methods, and
resources neatly; and targets to create different versions of your application in a single project.

The project for this chapter is an application based on the Map Kit framework that displays pushpins
on a map. You create two versions of the application by using targets: both use the same base code,
but the output changes based on the version.

Map Kit is a framework provided by Apple that renders an interactive map. It has numerous classes
for modifying and complementing the map. Whether you’re adding pushpins or custom markers,
plotting routes, or outlining areas, the Map Kit framework has everything you need to create arich,
map-based application.

287


http:///

288 CHAPTER 9: Frameworks, Libraries, and Targets

Understanding Frameworks

Chapter 7 introduced inheritance as being one of the core principles of object-oriented
programming. Frameworks embody another of these core principles: encapsulation. Encapsulation
is usually defined as one of two things:

A mechanism by which information (code) is hidden
A construct for bundling data together

A framework groups classes, resources, interface files, and more together in a hierarchical package.
Although you can view some of the resources in the framework, the implementation of the classes—
the key code—is hidden. Figure 9-1 shows the Map Kit framework you’re working with in this
chapter.

| ® 0 06 ] Headers e
(al> | ) (#)(2)( (] Q
svorres |+ ot TS b Mapt
E1 All My Files 4 § ™ MapKit I MKAnnotation.h
= T ] ImagelQ.framework ) f :
s IOKItf k § module.map h MKAnnotationView.h
g {tiramewor I MKCircle.h

JavaScriptCore.framework
LocalAuthen....framework

i MKCircleRenderer.h
i MKCircleView.h

&8 Deskron Mapkdt-framework i MKDirections.h
[51 Documents :e:,a:lcces,.éty.frame\:ork i ' MKDirectionsRequest.h
O Downloads Medfa_l_aylzr' rafmewor k i MKDirectionsResponse.h
edialoolboX.framewor:
h MKDirectionsTypes.h
DEVICES MessageUl.framework = X
— . N I MKDistanceFormatter.h
(L) Remote Disc Metal framework i MKFoundation.h
MobileCores...s.framework * . .
h MKGeodesicPelyline.h
e 3 moce cap ; MKGeometry.h
© Red MultipeerCo...y.framework * ii-'- MKLocaISearréhh
n .
Orange :Evﬁ:::zigéz;z;r:i??:k I MEKLocalSearchRequest.h
: : ) h MKLocalSearchResponse.h
Yellow Notification...r.framework ' MKMapCamera.h
GCreen OpenAL.framework = 2

' MKMapltem.h
h MKMapSnapshot.h
1 MKMapSnapshotOptions.h

OpenGLES.framework
PassKit.framewark
Pu rple Phatne framawnrl

) Blue

45 items, 189.56 GB available

Figure 9-1. A look at the large number of class headers held in MapKit. framework

As you learn later in this chapter, frameworks don’t differ greatly from libraries in terms of definition:
the key difference is in how you define their purpose. Frameworks encapsulate a wide range of
functions; Map Kit has a mass of classes and different resources. Libraries, on the other hand, are
intended to fulfill smaller, more specific tasks, such as caching images or grouping code you may
use often for a specific type of project, such as with Map Kit applications. Frameworks provide a
way to unlock the features and functions of the operating system and the hardware.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets 289

Creating the Project

The project for this chapter is called MapPin; it shows a number of pushpins on a map with a
textual annotation. Many applications use the Apple-provided Map Kit to display information in
really interesting ways, and if this is something you want to add to your own applications, hopefully
you’ll be encouraged by how easy it is to add a map view to your application and to make it display
information with just a few lines of code:

1. Open Xcode, and creating a new project by clicking Create A New Xcode
Project from the Welcome screen or going to File » New » Project
(¥ +Shift+N). Select the Single View Application template, and click Next.

2. Name your project MapPin, and ensure that Language is set to Swift and
Devices is set to iPhone, not iPad or Universal. Configure the other values to
your own preferences; mine are shown in Figure 9-2. Click Next.

Choose options for your new project:

Product Name: |MapPin
Organization Name: Matthew Knott

Organization Identifier: com.mattknott

Bundle Identifier: com.mattknott.MapPin

ar

Language: = Swift

Devices:  iPhone

4ar

Use Core Data

Cancel Previous Next |

Figure 9-2. The initial settings for the MapPin project

3. You don’t want to create a Git repository, so leave that option unchecked.
You also don’t want to add this to another project. With those options set,
click Create.

4. You now have a blank project—a fresh canvas to which you need to add a map
view. Open Main.storyboard, and locate a map view object in the Object Library.
Drag it onto the view controller in the design area, as shown in Figure 9-3.


http:///

290 CHAPTER 9: Frameworks, Libraries, and Targets

BR = & MapPin MapPin + & Mainstoryboard © 5 Main storyboard (Base) © No Selection DB O3 6
Identity and Type

Name Main storyboard

Type | Default - Interface Build... *

View Controller

Location  Relative to Group
Base.lproj/
Main storyboard

Full Path /Users/matthewknott/
Deskiop/Beginning Xcode/
Projects/Chapter 9/MapPin/
MapFin Base.Iproj/

Main. storyboard

Interface Builder Document
Opens in | Detault (6.0) v
Bullds for | Project Deployment Tar... -
View as | i05 7.0 and Later v
o Use Auto Layout
o Use Size Classes

Global Tint | EEEER | Default

Localization
o & Base
English Localizable Strings &

Target Membership

o A MagPin
DO®O
VISUAN EHELL VIEW Wit DIan -

FProvides a blur effect

Visual Effect Views with Blur
and Vibrancy - Frovides a biur
effect, plus vibrancy for nested views

MapKit View - Displays maps and
8 v provides an embecdatle interface to
m navigale map content.

GLKit View - Provides a default

0 ~Any hAny B ol s E1 (B8 (@

Figure 9-3. Dragging a map view object onto the view controller

The map view represents an MKMapView object and is the only object needed to display maps in your
application. Go ahead and run the application to see what happens after you add the object to the
view controller. The application builds successfully and launches in the simulator; then it drops back
to Xcode with an exception, as shown in Figure 9-4, because the application has no knowledge of
the MKMapView class. The prerequisite for adding a map view to your applications is that you also
need to add the Map Kit framework.

E =» 0> o L X 00|« MapPin ) ¥ Thread 1 » [I]] 12 top_level_code

34 777
0x0000000000000001 0x0 + 1
)

libc++abi.dylib: terminating with uncaught exception of
type NSException
(11db)

Auto 2 | @ (D = All Qutput * ]@ oo

Figure 9-4. The exception shown in the debug area when you add a map view without the Map Kit framework



http:///

CHAPTER 9: Frameworks, Libraries, and Targets 291

Adding a Framework

Back as early as Chapter 4, in the Showcase application, you first encountered frameworks. At that
point | gave a very brief explanation of how to import one and how the modules concept works. Let’s
recap.

With iOS 7 and Xcode 5, before Swift came along, Apple gave developers a new alternative called
modules for manually adding frameworks to a project. The concept behind modules is that instead
of going through Xcode to find and add a selected framework to physically integrate into a project
and then go on to reference it in code with an #import statement, you can simply reference it with a
single line of code using the @import statement. Xcode automatically identifies the framework and
links the frameworks headers at build time behind the scenes.

As you can imagine, not having to go through the time-consuming process of locating and adding
frameworks was a big hit with developers, and with Swift, Apple has kept this functionality and made
it the default approach. You rarely need to manually import a framework in a Swift application.

The only downside is that before you add a framework, you need to know its name. To help you,
Table 9-1 lists some of the more important iOS 8 frameworks that you haven’t come across yet and
explains some of the functionality they unlock.

Table 9-1. Key Frameworks for iOS 8

Framework Purpose

Core Data Interface to interact with efficient relational databases. Great for managing large
amounts of data.

Local Authentication New for iOS 8, provides access to the Touch ID API for devices with a fingerprint
reader.

HealthKit Also new in iOS 8, provides numerous APlIs to access the M7 motion chip’s

functions, such as the pedometer.

Web Kit Allows you to use much more Safari-level functionality for your web view and is
highly customizable.

Notification Center Lets you add your own custom widgets to the notification center in iOS 8.
This is a great way to extend your app’s functionality.

Photos and Photos Ul Two new frameworks that allow you to manipulate photos and add custom
functionality to the iOS 8 Photos app.

Message Ul Allows you to create emails and text messages programmatically.



http:///

292 CHAPTER 9: Frameworks, Libraries, and Targets

These are just a few examples of the dozens and dozens of frameworks available to you with
iOS 8. | mentioned that you rarely have to add a framework to a project. However, this is one

of those occasions when you do have to perform this task, because you’re using the Map Kit
framework:

1. Adding a framework to the project is a breeze. Start by selecting the MapPin
project in the Project Navigator, as shown in Figure 9-5.

B =2 Q A © = o B |B| <« » | & MapPin

Pl 0
¥ MapPin . - PROJECT
s AppDelegate.swift ™ MapPin
3| ViewController.swift

Main.storyboard -lAE(.}:I_ETS..
= Images.xcassets m_
LaunchScreen.xib [Maprinless
» | Supporting Files
» | MapPinTests
» | Products

Figure 9-5. Selecting the MapPin project from the Project Navigator
2. On the screen that appears, select MapPin from the list of targets, and then

choose the General tab. Scroll down to the Linked Frameworks And Libraries
section, as shown in Figure 9-6.

¥ Linked Frameworks and Libraries

Figure 9-6. The Linked Frameworks And Libraries area of your project’s settings

3. You can display a list of available frameworks, as shown in Figure 9-7, by

clicking the + symbol at the bottom of the section, below Add Frameworks &
Libraries Here.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets 293

Choose frameworks and libraries to add:

Q|

v [ _]iOS 8.0

fi 4 Accelerate.framework

{4 Accounts.framework

{4 AddressBook.framework

(-4 AddressBookUI.framewark

{4 AdSupport.framework

[ AssetsLibrary.framework

{4 AudioToolbox.framework

-4 AudioUnit.framework

[+ AVFoundation.framework

{4 AVKit.framework

| bundlel.o
CarrierBundleUtilities.dylib

fi4 CFNetwork.framework

(4 CloudKit.framework

fi4 CoreAudio.framework

—= N ey R TP ¥ PR -

Add Other... Cancel Add

Figure 9-7. The list of frameworks and libraries available with the SDK in Xcode 6

4. Scroll through the list until you see MapKit.framework, or use the filter bar and
type “map” to narrow the list substantially.

5. Select the Map Kit framework, and click the Add button. You return to Xcode,
and the Map Kit framework is added to the project.

It’s important to be aware of the APIs available for your development platform, so you can create
the best, most functional and integrated application. Also, frameworks become deprecated between
releases of iOS and are replaced with new classes and methods. Fortunately, the documentation in
Xcode lists all the frameworks and describes their purpose.


http:///

294 CHAPTER 9: Frameworks, Libraries, and Targets

To see this, open the Documentation Viewer by going to Help » Documentation and API Reference
("\°+36+0). Search for “Device Frameworks”, and open the document. As you can see in Figure 9-8,
the document contains a table listing all the available frameworks and the version of iOS in which
they were introduced. This page is updated with each iOS release, so it makes sense to bookmark it.

| 806 Documentation — iOS Technology Overview: I0S Frameworks ™
< > [ E | o device frameworks | =

Device Frameworks
Table A-1 describes the frameworks available in i05-based devices. You can find these frameworks in the
<Xcode.app>Contents/Developer/Platforms/iPhoneds.platform/Developer/SDEs/ <i0S_SDK>/Systen/Library/Frameworks directory, where <Xcode.app> is the
path to your Xcode app and <iO5_SDK> is the specific SDK version you are targeting. The "First available” column lists the iO5 version in which the framework first appeared.
Table A-1 Device frameworks

Name Fist Prefixes Description

available

Accelerate. framework 4.0 :gé:“' Contains accelerated math and DSP functions. See Accelerate Framework.

Accounts . framework 5.0 AC Contains interfaces for managing access to a user's system accounts. See Accounts Framework,

AddressDook. framework 2.0 AB Contains functions for accessing the user's contacts database directly. See Address Book Framework.

& Ai 1 r? It defi d it il
RAdEe R BOONTE  FERRRwaL 2.0 B Cnntamslclasses for displaying the sy people picker and editor interfaces. See Address Book
Ul Framework.

AdSupport. framework 6.0 AS Contains a class for gathering analytics. See Ad Support Framework.,

Assetslibrary.framewerk 4.0 AL Contains classes for accessing the user's photos and videos. See Assets Library Framework.

A bomoslbui. Prasewcrk 2.0 :g:iio Eﬁzitgms the interfaces for handling audio stream data and for playing and recording audio. See Corl

Figure 9-8. Listing the frameworks available, in the Documentation Viewer

Bookmarking was covered in Chapter 5, but to remind you, simply click the bookmark symbol as
shown in Figure 9-9. This section will now be quickly accessible in future updates.

| &6 Documentation —

‘ < > | D " Q- device frameworks

'R, Device Frameworks
|

Table A-1 describes the frameworks available in iOS-based devices. You ¢
<Xcode.app>Contents/Developer/Platforms/iPhone0S.platform/De
path to your Xcode app and <i0OS_SDK> is the specific SDK version you ar

Figure 9-9. Bookmarking the Device Frameworks document

Now that you've added the prerequisite framework for using a map view, you’re in a position to
run the application again. Run it, you should be greeted by a map showing an area of the world, as
shown in Figure 9-10.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets 295

\

Figure 9-10. The MapPin application displays an interactive map without you even writing a line of code


http:///

296 CHAPTER 9: Frameworks, Libraries, and Targets

Manipulating a Map View

You haven’t written a single line of code, but already what the application does is fairly impressive;
you can pan and zoom the map. Although this is initially fun, it’s not very useful. If you’re writing
a Map Kit-based application, you’ll instinctively want to add your own touches, setting the initial

position of the map and adding some landmarks, as | now explain.

In this application, you set the region property of the map view to show a map of Wales in the UK,
and then you add points of interest that display as pushpins. But the first thing to do is to align the

map correctly using constraints and then create an outlet for the map view:
1. Open Main.storyboard from the Project Navigator.

2. Select the map view, and click the Pin icon.

3. Uncheck Prefer Margin Relative, and then click the four | bars at value 0 to
lock the map view to the screen edges, as shown in Figure 9-11. Click Add 4

Constraints.

Add New Constraints

Spacing to nearest neighbor
Constrain to margins
(=) width 600
&) Height 600
& equal widths
Lu Equal Heights
[ Aspect Ratio
&3] Align | Leading Edges
Update Frames @ None

= Add 4 Constraints

wARy hANy Bl tal B BB (®

| Global Tint | EEEE | Default

ih Localizable Strings &

aership

‘in
‘inTests

D OO

iew Controller - A controller that
ipports the fundamental view-
anagement model in i0S.

avigation Controller - A
introller that manages navigation
rough a hierarchy of views.

able View Controller - &
introller that manages a table view.

Figure 9-11. Pinning the map view in place

4. Now that the view is pinned in place, enable the Assistant Editor so you

can create an outlet. Make sure the file displayed in the code editor is
ViewController.swift.

5. Control-drag a connection from the map view to the header just above the

@end line, as shown in Figure 9-12.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets 297

..ase) ) [ Vie...ene ) Vie...oller » View » Map View B8 < » [ Automatic & ViewController.swift - [ ViewController + X
I
// ViewController.swift
// MapPin
7

J// Created by Matthew Knott on 3@/08/2014.
= T // Copyright (c) 2014 Matthew Knott. All rights reserved.
[—) 77

import UIKit

class ViewController: UIViewController {

O—= i
-—_ - "@ Insert Outlet or Outlet Collection

e override func viewDidLoad() {

super.viewDidLoad()

// Do any additional setup after loading the view,
typically from a nib.

Figure 9-12. Dragging a connection from the map view for an outlet

6. Name the outlet mapView, and then click Connect. You see an error and a
warning for the outlet because the import reference for the Map Kit framework
hasn’t been added to the view controller’s header file.

7. From the Project Navigator, open ViewController.swift. Switch back to the
Standard Editor. Import the Map Kit framework so you have access to the
map view class and its associated classes. To do this, add the following code
after the import UIKit line (remember, it’s case sensitive):

import MapKit

8. In order to manipulate the map view from the view controller, you need
to set it up as the delegate. Therefore, the next thing to do is add the
MKMapViewDelegate protocol to the view controller. Amend the class
ViewController: UIViewController line with the highlighted code as follows:

class ViewController: UIViewController, MKMapViewDelegate {

9. Before moving on, check that the beginning of your view controller matches
that shown here:

import UIKit
import MapKit

class ViewController: UIViewController, MKMapViewDelegate {

@IBOutlet weak var mapView: MKMapView!


http:///

298

CHAPTER 9: Frameworks, Libraries, and Targets

10.

11.

12.

Note

You’re finished with the header and are ready to move on to the implementation
file, where you can start manipulating the map. Open ViewController.m from
the Project Navigator. Scroll to the viewDidLoad method.

You need to tell the map view that the view controller will be its delegate,

so it obeys the instructions you send it. To do this, you use the delegate
property of the mapView object and set it to self. In the viewDidLoad function,
after the super.viewDidLoad() line, add the following statement:

mapView.delegate = self

To position the map view in a specific position, you need to create a region,
represented by MKCoordinateRegion. Think of a region as an invisible window
that can be set at a specific location and that shows a specific amount of
the map. To create your region, you need two sets of values: the latitude and
longitude for the center point of the region, and the north-to-south and east-
to-west span values. Drop down a line, and add the following three lines of
highlighted code:

override func viewDidLoad() {
super.viewDidLoad()
mapView.delegate = self
let centerPoint = CLLocationCoordinate2D(latitude: 52.011937, longitude: -3.713379)
let coordinateSpan = MKCoordinateSpanMake(3.5, 3.5)
let coordinateRegion = MKCoordinateRegionMake(centerPoint, coordinateSpan)

You’re probably familiar with longitude and latitude, but the span is a concept that is unique to Apple

Maps. It consists of a /atitude delta, which is a measurement in degrees north to south that equates to
roughly 111 kilometers; and a longitude delta, which is also measured in degrees but, unlike the latitude,
equates to a distance that varies from 111 kilometers at the equator to 0 at either pole. If you want to
show a fixed zoom level where the location can’t be guaranteed, you’ll get more consistent results with the
MKCoordinateRegionMakeWithDistance method.

13.

You need to apply this region to the mapView object. Do this by calling two
methods that apply the region in a way that ensures the map displays
properly. Drop down a line, and add the following code:

let centerPoint = ClLLocationCoordinate2D(latitude: 52.011937, longitude: -3.713379)
let coordinateSpan = MKCoordinateSpanMake(3.5, 3.5)
let coordinateRegion = MKCoordinateRegionMake(centerPoint, coordinateSpan)

mapView.setRegion(coordinateRegion, animated: false)
mapView.regionThatFits(coordinateRegion)


http:///

CHAPTER 9: Frameworks, Libraries, and Targets

14. Run the application. When the map loads, it should be focused over Wales,
as shown in Figure 9-13. If your view doesn’t match the figure, check that
you set the delegate correctly and that your latitude and longitude values are

spot on.

Carrier & SRt ot |

Runcorn
Che ster ) Macclesfiele

Stoke-on-Trent

Snowdonia
National Park
Shrewsburyo
Dudle
Red¢
WALES Worcestero
{

o
Hereford
Pembrokeshire eyu

Coast
National Park Brecon Beacons Gloucester
National Park :

L|ane|||Q

Swansea

O |
Weston-super-Mare

Exmoor

National Park
Taunton Si

0
<Exeter

Weymoutho

O
Newton Abbot

Legal
®

Dl oaale -

Figure 9-13. The map view now that you’ve specified a region to display

299


http:///

300 CHAPTER 9: Frameworks, Libraries, and Targets

Knowing how to move the map where you want it to be and setting the correct region to view are
basic but essential skills when working with a map view. Another common requirement in a Map Kit
application is marking locations on the map using pushpins.

You do this by creating instances of the MKPointAnnotation class and adding them to the map
individually using the addAnnotation method. To instantiate an MKPointAnnotation, you set three
attributes—title, subtitle, and coordinates—as follows:

15. Drop down a line in the viewDidLoad method, and add the following
highlighted code:

mapView.setRegion(coordinateRegion, animated: false)
mapView.regionThatFits(coordinateRegion)

var annotationi = MKPointAnnotation()

annotationi.title = "Swansea Bay"

annotationi.subtitle = "Beautiful Beaches"

annotationi.coordinate = CLLocationCoordinate2DMake(51.587736,-3.90152)

var annotation2 = MKPointAnnotation()

annotation2.title = "Menai Bridge"

annotation2.subtitle = "Fantastic Engineering"

annotation2.coordinate = CLLocationCoordinate2DMake(53.220527,-4.163561)

var annotation3 = MKPointAnnotation()

annotation3.title = "Parc Y Scarlets"

annotation3.subtitle = "Oh Dear"

annotation3.coordinate = CLLocationCoordinate2DMake(51.678809,-4.127469)

var annotation4 = MKPointAnnotation()

annotationg4.title = "Castell Coch"

annotation4.subtitle = "A Fairytale Castle"

annotation4.coordinate = CLLocationCoordinate2DMake(51.535819,-3.2547)

var annotation5 = MKPointAnnotation()

annotation5.title = "Arthur's Stone"

annotation5.subtitle = "Rock Of Legend"

annotation5.coordinate = CLLocationCoordinate2DMake(51.593735,-4.179525)

mapView.addAnnotation(annotation1)
mapView.addAnnotation(annotation2)
mapView.addAnnotation(annotation3)
mapView.addAnnotation(annotations)
mapView.addAnnotation(annotations)

16. Rerun the application. You should see five annotations. Tap an annotation,
as shown in Figure 9-14, to display the text associated with that pushpin.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets 301
—_—

"Cilei‘e'_o Macclesfiels

| Sioke-on-fr t

: s T;:r L4

Shre shupy_:.: &8

Swansea Bay
shil Beautiful Beaches
Co
i l_ Park

National

e~

Figure 9-14. The map view, now with five annotations showing various attractions in Wales


http:///

302 CHAPTER 9: Frameworks, Libraries, and Targets

With very little code, you’ve made a really useful and interactive application! You could make endless
customizations, such as replacing the pushpins with an image or adding controls to the callout that
display the annotation text. | won’t explain how to customize the pushpins any further, because the
focus of this book is Xcode. However, I'll show you one of the key steps you typically perform before
any customization of a class’s behavior: subclassing the MKPointAnnotation class and then creating
a custom initializer to simplify creation of the annotations.

Subclassing MKPointAnnotation

Because this code is reusable in different projects, you create it in a separate class file.
You’re working with annotations, so it probably comes as no surprise that you subclass the
MKPointAnnotation class and replace the pushpin objects you just created with this new class, MyPin:

1. To create the new class, select File » New » File (38+N). Choose Cocoa
Touch from the left menu, and then select the Cocoa Touch Class template,
as shown in Figure 9-15. Click Next.

Choose a template for your new file:
i0s N
Source 3

Test
User Interface

Core Data Test Case Class Playground Swift File
Resource Class

Other
05 X h C o
Source
User Interface Objective-C Header File C File C++ File
Core Data File
Resource
Other
Cocoa Touch Class
A Cocoa Touch class.
Cancel Previous | Next

Figure 9-15. Creating a new Objective-C class

2. Name the class MyPin, and set Subclass Of to MKPointAnnotation. Click Next.
Then accept the default save location, and click Create.

3. You have successfully created your custom class, but to make it work
you need to make some modifications. Open MyPin.swift in the Project
Navigator.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets

You can add a custom initializer to simplify the process of creating the
annotation. The initializer takes the three parameters that are required: title,
subtitle, and coordinate. Add the following highlighted code:

import UIKit
import MapKit

class MyPin: MKPointAnnotation {

init(title : String, subtitle : String, coordinate : CLLocationCoordinate2D) {
super.init()
self.title = title
self.subtitle = subtitle
self.coordinate = coordinate

}

As you can see, the initializer is straightforward. The MKPointAnnotation class
already has title, subtitle, and coordinate properties; you’ve written an
initializer that lets you create the object with all the parameters you need for the
application in one go. If there were others you wanted to set when you initialize
the object, you could add them to the initializer and eliminate the need to set
properties after initialization.

With the custom initialization function written, you can modify the
annotations declared in the viewDidLoad function to use the new class. Open
ViewController.swift in the Project Navigator.

Scroll down to the viewDidLoad method where you created the five instances
of MKPointAnnotation, and replace them with the highlighted code:

override func viewDidLoad() {
super.viewDidLoad()

mapView.delegate = self

let centerPoint = CLLocationCoordinate2D(latitude: 52.011937, longitude: -3.713379)

let coordinateSpan = MKCoordinateSpanMake(3.5, 3.5)
let coordinateRegion = MKCoordinateRegionMake(centerPoint, coordinateSpan)

mapView.setRegion(coordinateRegion, animated: false)
mapView.regionThatFits(coordinateRegion)

var annotationi = MyPin(title: "Swansea Bay",
subtitle: "Beautiful Beaches",
coordinate: CLLocationCoordinate2DMake(51.587736,-3.90152))

var annotation2 = MyPin(title: "Menai Bridge",
subtitle: "Fantastic Engineering",
cooxrdinate: CLLocationCoordinate2DMake(53.220527,-4.163561))

303


http:///

304 CHAPTER 9: Frameworks, Libraries, and Targets

var annotation3 = MyPin(title: "Parc Y Scarlets”,
subtitle: "Oh Dear",
coordinate: CLLocationCoordinate2DMake(51.678809,-4.127469))

var annotation4 = MyPin(title: "Castell Coch",
subtitle: "A Fairytale Castle",
coordinate: CLLocationCoordinate2DMake(51.535819,-3.2547))

var annotation5 = MyPin(title: "Arthur's Stone",
subtitle: "Rock Of Legend”,
coordinate: CLLocationCoordinate2DMake(51.593735,-4.179525))

mapView.addAnnotation(annotation1)
mapView.addAnnotation(annotation2)
mapView.addAnnotation(annotation3)
mapView.addAnnotation(annotation4)
mapView.addAnnotation(annotations)

Note In Objective-C, you would have had to declare the initializer in the class header, implement the
initializer in the implementation file, and then import the header into the view controller in order to use the
class. Swift has changed all that and created something far more straightforward.

Go ahead and rerun your application. The pushpins are still in place, but you did this with a fraction
of the code.

Static Libraries, Frameworks, and Swift

Nothing exposes Swift’s infancy more than its lack of support for native frameworks and static
libraries. Apple doesn’t support the creation of compiled frameworks or static libraries for
distribution.

In the Objective-C version of this book, | would take you through creating a static library that could
reuse with multiple projects—but, alas, this is isn’t possible with Swift. To explain a little better, here
is a quote from the official Swift blog that explains the reasoning behind this decision:

While yourapp’s runtime compatibility is ensured, the Swift language itself will continue
to evolve, and the binary interface will also change. To be safe, all components of
your app should be built with the same version of Xcode and the Swift compiler to
ensure that they work together.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets 305

This means that frameworks need to be managed carefully. For instance, if your
project uses frameworks to share code with an embedded extension, you will want
to build the frameworks, app, and extensions together. It would be dangerous to
rely upon binary frameworks that use Swift — especially from third parties. As Swift
changes, those frameworks will be incompatible with the rest of your app. When the
binary interface stabilizes in a year or two, the Swift runtime will become part of the
host OS and this limitation will no longer exist.

Apple Swift blog, July 11, 2014, https://developer.apple.com/swift/blog/?id=2

What can be confusing is that Xcode contains the templates for frameworks and static libraries and
even offers Swift as a language. But when you create a project, it’s created in Objective-C. Because
the language focus of this book is Swift, it doesn’t make sense to mix and match different languages
at this stage.

On a more positive note, when the language matures, Apple will almost certainly add support for
native Swift frameworks and libraries. Let’'s move on to creating different versions of the application
in the same project by using targets.

Working with Multiple Targets

I hope that when you finish this book, you’re ready to start writing your own applications for the App
Store. When you create an application that you want to charge for, it’s likely that you’ll also want to
create a free version with fewer features to tempt users into upgrading to the full version. You can
create a new project and copy all your code over to it, but then you’ve fallen into the snare of having
to maintain two versions of the same code.

By using different targets, Xcode allows you to maintain multiple versions of the same application
in the same project and then, in the code, identify which version of the application is running and
adjust the functionality to suit. For this example, let’s create another target called MapPinSatellite
that displays the map in satellite mode instead of the default standard mode.

Rather than create a new target and apply a lot of settings, you can duplicate the existing MapPin
target:

1. Select the MapPin project from the Project Navigator. When the project
settings load, select the MapPin target and press 3+D, or right-click the
MapPin target and click Duplicate, as shown in Figure 9-16.


https://developer.apple.com/swift/blog/?id=2
http:///

306 CHAPTER 9: Frameworks, Libraries, and Targets

B 2 Q N © = o 3 (BB <« » | & MapPin

] General Capabilities
¥ Deployment Info

2 targets, i0S SDK 8.0

» 54 MapKit.framework PROJECT
¥ | MapPin ',!l MapPin
s AppDelegate.swift Beployiiant Taret

= ViewController.swift TARGETS

Main.storyboard \ A‘ _ Duplicate D
3 MyPin.swift | MapPin Delete

LaunchScreen.xib Project Editor Help | 2

b | MapPinTests
P | Products

Figure 9-16. Duplicating the MapPin target

2. Xcode detects that you're duplicating an iPhone-specific target and asks if
you want to convert it for use with an iPad, as shown in Figure 9-17. In this
instance, you just want to duplicate the target, so select Duplicate Only.

~ Images.xcassets Main Interface

» | Supporting Files I Device Orientation

Duplicate iPhone Target

the same time. The user interface used for running on iPhone can be used as a starting point
for iPad development. Would you like to duplicate the iPhone target and transition the new
target for running on iPad?

The selected target is an iPhone target, you can duplicate and transition it to an iPad target at

Duplicate Only Cancel - Duplicate and Transition to iPad

Figure 9-17. Xcode prompts you if you try to duplicate an iPhone-specific target

3. Xcode duplicates the target and names it MapPin Copy. This is great but
not really what you want your target to be named. Click the MapPin Copy
target, and then click it again so you can edit its name. Change the name to
MapPinSatellite, as shown in Figure 9-18.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets

O3 <« » |3 MapPin

]

[
5 Rl
JOI
>
0/
i
U
|0

WA ; ats, i0S SDK 8.0
b [ MapKit.framework PROJECT
v [ MapPin ™ MapPin
= AppDelegate.swift
s ViewController.swift TARGRIS
;oﬁs‘: MapPin

Main.storyboard F 3
4 MyPin.swift [ MapPinTests
' Images.xcassets MapPinSatellite| I

LaunchScreen.xib

Figure 9-18. Renaming the new target

4. You need to change a couple of the target’s settings to reflect its new name.
With the MapPinSatellite target selected, open the Build Settings tab. There
are dozens of settings in this list! To make things easier, use the search
filter at the top of the page. First, change the Product Name property to
MapPinSatellite; to do this, search for product name, double-click the words
MapPin copy, and change them to MapPinSatellite, as shown in Figure 9-19.

307

B2 | 4« » | & MapPin
] General Capabilities Info Build Settings Build Phases Build Rules
PROJECT Basic | Levels + Q- product n

™ MapPin
TARGETS ¥ Packaging

#% MapPin Setting sy MapPinSatellite

MapPinTests = -
- » Product Name MapFinsatellite]

Figure 9-19. Changing the product name setting to MapPinSatellite

5. The next setting to change is the name of the info.plist file. Change
the filter, and then rename the value from MapPin copy-Info.plist to
MapPinSatellite-Info.plist, as shown in Figure 9-20.


http:///

308 CHAPTER 9: Frameworks, Libraries, and Targets

PROJECT Basic m Levels +
L] MapPin
TARGETS ¥ Deployment
#A MapPin Setting
MapPinTests

\; Targeted Device Family

¥ Packaging
Setting
Create Info.plist Section in Binary
Expand Build Settings in Info.plist File

Info.plist Other Preprocessor Flags
Info.plist Qutput Encoding
Info.plist Preprocessor Definitions
Info.plist Preprocessor Prefix File
Preprocess Info.plist File

Figure 9-20. Renaming the info.plist setting

,;\-_ MapPinSatellite

iPhone 3

No 5
Yes »
MapPinSatellitel-Info.plist

binary 5

No

6. When you duplicated the target, Xcode actually duplicated three things: the
target, the info.plist file, and the targets scheme. You've just named the
info.plist file in the settings for your target, so you should change the
info.plist file name next. In the Project Navigator, notice that at the bottom
of the project there is now a plist file named MapPin copy-Info.plist.
Highlight the file, press Return to begin editing, and change the name to
MapPinSatellite-Info.plist. Your Product Navigator should resemble

Figure 9-21.

Q. info.plist


http:///

CHAPTER 9: Frameworks, Libraries, and Targets

B = Q A © = o &
¥ 1405 fargets, 05 SDK 8.0
» [+ MapKit.framework
Vv |/ MapPin
+ AppDelegate.swift
> ViewController.swift
. Main.storyboard
= MyPin.swift
1 Images.xcassets
LaunchScreen.xib
» | Supporting Files
» | MapPinTests
» (| Products
~ MapPinSatellite-Info.plist

Figure 9-21. The Project Navigator after renaming the file

7. There is one final item to change: the scheme. Go to Product » Scheme »

Manage Schemes, and you're presented with a list of available schemes, as
shown in Figure 9-22.

309


http:///

310 CHAPTER 9: Frameworks, Libraries, and Targets

v Autocreate schemes Autocreate Schemes Now

1

v MapPin ™ MapPin project »
. v MapPin copy ™ MapPin project
1
1

+ - B
Edit... | Close

Figure 9-22. Xcode’s Manage Schemes view, listing the available schemes

8. Highlight the bottom scheme named MapPin Copy, and press Return.
Change the scheme name to MapPinSatellite. You’ve now updated
everything required to start taking advantage of your new target. Click OK to
close the window.

9. Open ViewController.swift from the Project Navigator, and scroll down
to the viewDidLoad function. To separate functionality based on the active
target, you first need to identify which version of the application is being run.
You find this by examining the application’s bundle identifier, which changes
depending on which target scheme is being run. The bundle identifier is
a combination of the Company Identifier specified in Figure 9-2 and the
Product Name.

10. You need to retrieve the bundle identifier, assign it to a String object, and
then use println to output the identifier to the console. After the line super.
viewDidLoad(), drop down a line and add the following highlighted code:

override func viewDidlLoad() {
super.viewDidLoad()

var currentBundle : String =
NSBundle.mainBundle().objectForInfoDictionaryKey("CFBundleIdentifiexr") as String
println(curxentBundle)


http:///

CHAPTER 9: Frameworks, Libraries, and Targets

11.  Run the application, and you see the bundle identifier in the debug console,

as shown in Figure 9-23.

com.mattknott.MapPin

All Output +

Figure 9-23. The bindle identifier shown in the debug console

12.

WO

To change the scheme for this project from MapPin to MapPinSatellite, select

the MapPin scheme next to the Run and Stop buttons in the Toolbar area,

and select MapPinSatellite, as shown in

Figure 9-24.

® 006

v B MapPin  Edit Scheme...
= 3 targets, New Scheme...
» i MapKii  Manage Schemes...
¥ | MapPin

= AppDelegate.swift
E‘- T . |
s MyPin.swift
Main.storyboard
1 Images.xcassets
» __  Supporting Files
» | MapPinTests
» | |Products
MapPinSatellite-Info.plist

Figure 9-24. Changing to the MapPinSatellite scheme

’ v /A MapPin >
;fa-,f MapPinSatellite >
B =

[N MapPin |
B i0s Device e —
MapPin } = Vi
i0S Simulator I
g iPad 2 ft
@ iPad Air
@ iPad Retina Knott on 30/
Matthew Knot
\§ iPhone 4s
\§ iPhone 5

¥ 77 iPhone 5s

iPh 6 Pl :
. g " UIViewControl
\§ iPhone 6

g 8 Resizable iPad

\# Resizable iPhone
et

mapView: MKW

DidLoad() {
~0ad ()

var currentBundle : String
NSBundle.mainBundle().c

3


http:///

312 CHAPTER 9: Frameworks, Libraries, and Targets

13. If the Stop button is active, click it to terminate the application running under
the other scheme; otherwise Xcode will throw an error about the simulator
being in use. Run the application again with the new scheme: the bundle
identifier in the debug area changes to match the product name specified
for this scheme, which ends with MapPinSatellite. You now have two distinct
values that let you implement different functionality.

14. The different functionality in this project is that the original target runs
using the standard map type, but the satellite version runs with the
satellite map type. In the ViewController.swift file, after the line mapView.
delegate = self line, add the following highlighted code, remembering that
MapPinSatellite is case sensitive and must match what you've written as a
bundle identifier:

if currentBundle.hasSuffix("MapPinSatellite")
{

}

mapView.mapType = MKMapType.Satellite

Note hasSuffix is a helper function that examines the end of the string to see if it matches the supplied
string. This is quicker than typing the full string for comparison and reduces the chance of a typo.

15. Run your application once with the MapPinSatelite scheme and again with
the MapPin scheme to appreciate the difference, as shown in Figure 9-25.
Remember to stop the application when switching schemes.


http:///

CHAPTER 9: Frameworks, Libraries, and Targets 313

iOS Simulator — iPhone 5s — iPhone 5s / iOS 8...
Carrier & 10:19 AM  Southport

i0S Simulator - iPhone 5s - iPhone 5s / iOS 8...

Liverpool

(- @
|-
~ Cheslero Macclesfiel

Stoke-on-Tr.

Snowdonia
National Park

Shrewsbury,,

WALES Worcester

(s

0H erefor
IPembrokeshire j‘d’

Coast
National Park ’ Bre:r._m Beacons GloucesterS,
oNatrona.' Park

Llanel
Swalseao'.'

Exmoor
National Park

Cn’Eml‘er

Weymou lh0

o
Newton Abbot

Legal
; )

LYW

Figure 9-25. The application running under both schemes

Summary

As you get further into this book, the topics become more advanced. If you’re serious about
becoming an iOS or Mac OS developer, then the skills you’ve learned in this chapter will help you do
super-efficient work, using frameworks and custom initializers to good effect.

This chapter combined your knowledge of frameworks and targets to create a Map Kit-based
application that shows just a few of the many hundreds of points of interest in Wales. You learned
how to add annotations to the map view and then subclassed MKPointAnnotation to create a one-hit
initializer for the annotation object.

Specifically, in this chapter you have done the following:

B Learned more about modules, which are an efficient way to expose new APIs in
your project

B Learned about manually adding frameworks to a project

B Looked at the Device Frameworks section in the help documentation and
bookmarked it for future reference


http:///

314 CHAPTER 9: Frameworks, Libraries, and Targets

Discovered how to use map views and manipulate them in code
Duplicated a target to create different sets of features from the same code
Learned about Swift and why native libraries and frameworks aren’t supported

In the next chapter, you learn how to mold Xcode into a more personalized development
environment and how to get more out of Xcode as you explore new customizations that will make
you a better and more efficient developer.


http:///

Chapter

Advanced Editing

Chapter 9 looked at how to add frameworks to a project and efficient ways of managing code
through the use of libraries, as well as using multiple targets and aggregate targets. These skills were
combined and developed as you created a basic Map Kit application that showed a selection of
interesting points on a map of Wales, the country | live in. If you want to become an accomplished
iOS or Xcode developer, either on your own or in a team of developers, then learning how to
efficiently reuse code is essential.

This chapter maintains the efficiency theme and focuses on the code editor while you create a fun
Sprite Kit-based application called AlienDev that shows our hero, the alien dev (Alien Cyborg Deyv, to
give him his full name) surrounded by an increasing numbers of bugs (evil ones). | explain how small
bits of reusable code can be saved as snippets, readily available to be dropped into your application,
as well as look at the many ways you can customize Xcode to work for you. It’s a cliché, but
everyone is different, and developers are no exception. Xcode is hugely customizable, from the font
and colors used in the code editor to the way Xcode reacts to different events. There are many ways
you can tweak the IDE to be a better environment for you to code in. | also discuss how to work with
large implementation files by using code folding and some of the subtle ways you can efficiently
navigate your code using the jump bar and its pragma marks to bring order to your

jump-bar hierarchy.

Without further ado, let’s get started on the project—let the bug wars commence!

Getting Started

The project for this chapter is created using the Sprite Kit application template. As mentioned in
Chapter 3, Sprite Kit is an exciting new framework that Apple introduced with Xcode 5 and iOS 7
to let developers easily create 2D animations and even games without having to use a third-party
system such as Cocos2D or Unity.

315


http:///

316 CHAPTER 10: Advanced Editing

Note |recommend that you download the resources for this project and all the others in the book from
the Apress web site at www.apress. com. Alternatively, if you're feeling adventurous, you can create your
own characters.

Follow these steps:

1. Open Xcode, and create a new project by clicking Create A New Xcode
Project on the Welcome screen or going to File » New » Project
(¥8+Shift+N). Select the Game template, and click Next.

2. Name your project AlienDev. Be sure Game Technology is set to SpriteKit and
Devices is set to iPhone, not iPad or Universal. Configure the other values to
your own preference; mine are shown in Figure 10-1. Click Next.

Choose options for your new project:

Product Name: |AlienDev
Organization Name: |Matthew Knott

Organizaticn |dentifier:  com.mattknott

Bundle Identifier: com.mattknott.AlienDev
Language: | Swift =
Game Technology: | SpriteKit -

Devices: | iPhone

Cancel Previous Next

Figure 10-1. Setting up the initial project

3. By now you should be familiar with the process: you want to save in the
default location, and you don’t want to create a Git repository, so go ahead
and click Create.


http://www.apress.com/
http:///

CHAPTER 10: Advanced Editing

4. Xcode takes you straight into the project settings. You want the application to
run in landscape mode only, so scroll down to the Deployment Info section.
The default-supported orientations for an iPhone application are Portrait,
Landscape Left, and Landscape Right; you need to uncheck Portrait so that
only the landscape options remain, as shown in Figure 10-2.

Device Orientation Portrait
Upside Down
v Landscape Left
¥ Landscape Right

Status Bar Style | Default
™ Hide status bar

Figure 10-2. Restricting Device Orientation to landscape

5. Before you go any further, let’s stop to take a look at the assets for the
application. Figure 10-3 shows the two characters you use: the hero—the alien
dev—on the left and the villainous bug on the right. One thing you should be
able to gather is that | am not a graphic artist. Each character is represented
by a single high-resolution image: Dev.png and Bug.png. Both are transparent
png images, which means the background appears in the white space behind
them. Downloaded these images, or create your own with the same names.

Figure 10-3. The hero and villain for this application

6. Open Images.xcassets from the Project Navigator, and drag the files from the
Finder into the sidebar of the asset catalog in Xcode, as shown in Figure 10-4.

317


http:///

318 CHAPTER 10: Advanced Editing

», AlienDev Applcon
® 2 targets, I05 SDK 8.1

¥ | AlienDev
+ AppDelegate.swift
# GameScene.sks - m
s GameScene.swift - @B:,
s GameViewController.swift
Main.storyboard

v
< Spaceship

LaunchScreen.xib

» Supporting Files FAVORITES ' 5781430250043.zip . Images = bug.png
» [ AlienDevTests L All My Files &l Chapter 2 i dev.png
» | Products @ pirDrop (1] Chapter 3

- " [ Chapter 4

j\. Applicati.. 0 Chapter 5

o 1 Chapter 7

- = Chapter 8

|} Documents Chapter 9
0 Downloads | Chapter 10
| Chapter 11

Figure 10-4. Dragging the image files into the Supporting Files group

7. When you release the files, image sets are created automatically. Highlight
the spaceship image set, and remove it with the Backspace key so that your
asset catalog resembles Figure 10-5.

B < » 3 AlienDev ) | AlienDev ) [ Images.xcassets ) |§ dev
| Applcon dev
= bug
i
1x 2% 3x
Universal

Figure 10-5. The images asset catalog with the new image sets

With the assets in place, let’s start to look at the code for the application. The rest of this chapter is
dedicated to code: how to look at it, how to manage it efficiently, and how to quickly navigate it.

Efficient Editing

A good developer can be compared to a master craftsman, except that instead of a hammer and
chisel, developers have IDEs and compilers. Like a master craftsman, good developers take pride
in their work, taking time to achieve perfection and adding the painstakingly small touches that set
their product apart from the rest. Unlike a master craftsman, though, when the tool isn’t right, you
don’t have to pick up a different one, because developer tools aren’t static; Xcode’s interface is an
organic entity that can be tailored to your needs and made to work the way you want it to.


http:///

CHAPTER 10: Advanced Editing 319

Changing Color Schemes

One of the things you find when working in a team of developers is that everyone has a different
way of working, whether it’s how they write their comments or how they indent their code. But
when you’re working with a flexible IDE like Xcode, most developers tailor the color scheme to meet
their needs. You may not have realized it, but changing the color scheme can have a drastic effect
on productivity; sometimes | find the lightness of the standard color scheme can cause eye strain

or even migraines, so | switch to a dark background scheme with high contrast to make the code
easier on the eyes.

To see what Xcode lets you change, open the Xcode preferences by selecting Xcode » Preferences
(38+,); when the preferences open, select the Fonts & Colors tab, as shown in Figure 10-6.

1 ®0 6 Fonts & Colors

@ o O / B M o= 4

General Accounts Behaviors Navigation 'Fonts & Colors Text Editing Key Bindings Source Control Downloads Locations

Basic Source Editor Console
Plain Text
Comments
Documentation Comments
Dusk Documentation Comment Keywords
Strings
Ko Key Characters
Midnight i
Keywards

Preprocessor Statements
URLs

Presentation

Presentation Large Attributes
Project Class Names

Printing Project Function and Method Names
Project Constants

Sunset Project Type Names
Project Instance Variables and Globals

Font —
—| (= — [ —
g = Background Selection Cursor Invisibles

Figure 10-6. The Fonts & Colors tab in Xcode’s preferences


http:///

320 CHAPTER 10: Advanced Editing

The Fonts & Colors tab is divided into four key areas, as highlighted in Figure 10-7.

Theme list: This area lists the preset themes Xcode makes available.

A theme is a predetermined combination of fonts and colors.

Detail view: The items listed in the detail view are known as syntax categories.
These represent all the conceivably customizable elements of code in either the
source editor or console, depending on which tab is selected at the top of the
detail view.

Font configuration: This area allows you to customize the font and color for the
selected syntax category.

General colors: The general colors control the background color; the selection
color, which is used when highlighting text; the cursor color; and the “invisibles”
color or the instruction pointer if you’re looking at the Console tab.

ene Fonts & Colors
9
A ) / |
General Accounts Behaviors Fonts & Colors | Text Eciting Key Bindings Source Control Downloads Locations
Basic Console
Theme Detail
C— ation Comnents 1 T
List Dusk tation Comment Keywords View
i t Koy
Strings
Law ay Characters
Nunbers
Midnight =
Keywards
P Preprocessor Stat t
URLs
Presentation Large Attr
Printing Project Functicn and Method Names
Project Constants
Sunset Pro
« " Font Config.
—] = — ==z I G I C I
+ - Background Selection Cursor Invisibles en era 0 Ors

Figure 10-7. The key areas of the Fonts & Colors tab

Try changing the different themes: Dusk and Midnight are good if you want a high-contrast theme,
whereas Low Key and Sunset are great if you want something that’s a little washed out. There are
specialist themes too, with Printing giving a monochrome look and Presentation using an enlarged
font size for when you’re hooked up to a projector to demonstrate your code.

Select the Default theme for now, and then choose the Comments syntax category. The font
configuration area displays the key details about the selected syntax category, as shown in

Figure 10-8. You can see that the font used for comments is Menlo Regular, size 11, and green.

To change the font details, click the T icon as you would when setting font information for labels

and text fields in Interface Builder. Unlike in Interface Builder, however, you’re presented with the
standard font-selection dialog that will be familiar to anyone who has used Mac OS X for a while; this

is shown in Figure 10-9.


http:///

CHAPTER 10: Advanced Editing 321

T

Font Menlo Regular - 11.0 (T) |

Figure 10-8. The font configuration details

.80 6 ' Fonts
Tv||F«|THI|D

Collection Family Typeface Size
All Fonts Lucida Grande Regular 11
English Lucida Handwriting | Italic 9
Favorites Lucida Sans Bold 10
Recently Used Lucida Sans Typewrite | Bold Italic 11
Fixed Width Lucida Sans Unicode 12 [
Fun Marion 13
Modern Marker Felt %
PDF Matura MT Script Capi

. 18
Traditional Menlo |

e ¥ -

+ B Q

Figure 10-9. The font-selection dialog

Creating a New Theme

Although it’s easy to modify a theme, there is no Reset button to revert your changes to the theme’s
original settings. If you modify a theme and want to get it back to its original state, the best way is
to start over and create a new theme based on one of the preset themes. This may sound drastic,
but it’s perfectly all right; all the themes that come with Xcode by default are stored as templates in
Xcode that can be re-created in a couple of clicks.

First, let’s examine the Add button at the bottom of the theme list. Click the + symbol, as shown in
Figure 10-10. You’re presented with a pop-up menu that effectively gives you two choices: you can
either duplicate your current theme or create a new theme from one of the default templates.


http:///

322 CHAPTER 10: Advanced Editing

Duplicate "Default"

New Theme from Template isor Statements
Bare
Basic is
Default !lass Names
Dusk ‘unction and Method Names
Low Key | -
= = onstants
Midnight |
Presentation ype Names
Presentation Large 'nstance Variables and Globals
Printing Menlo Reg!
Spartan _
Sunset = | - ]
I 'I—_:I I:I__.
—— Background Selection

Figure 10-10. The Add menu in the themes list

Select Midnight, and a new version of the Midnight theme is added to your themes list, as shown in
Figure 10-11. At this point you can change the hame of the theme to anything you want. I'll name my
theme Matt’s Midnight; call your theme whatever suits your fancy.

Strings
Low Ke
Y Characters
Numbers
Midnight
Keywords
Midnight 2 Preprocessor Statements
o s e
Presentation Attributes
Project Class Names
Presentation Large Project Function and Method Names

Figure 10-11. The new theme, ready to be customized

There may be a time where you get bored with your theme and want to remove it; this is done by
clicking the minus symbol next to the + symbol in the themes list.

Sharing or Importing a Theme

You’ve spent hours customizing your theme to suit your preferences, fine-tuning every syntax
category until the color and tone are perfect, and now you want to share it with the world. The good
news is that this is really easy to do!


http:///

CHAPTER 10: Advanced Editing 323

All the themes you create are stored on your computer in a dvtcolortheme file format. To locate
these files, open the Finder, and then select Go from the menu bar. The Library option is hidden by
default, but if you press the Option (") key, Library appears; choose it, and the user library appears,
as shown in Figure 10-12.

06 i Library
4| > ss = | (D | e ELJ:L?"L ~ || am Q
FAVORITES
L1 All My Files
? AirDrop

# Applicati... Accounts Application Assistants Audio
| Desktop Support

! Documents

) Downloads

DEVICES

C) Remotem Caches Calendars ColorPickers Colors

SHARED
£ iMac

TAGS

© Red Compositions Containers Cookies Dictionaries
Orange

Yellow
Green

Rlua ————

50 items, 192.46 GB available - —

Figure 10-12. Viewing the library for my user account

The path to the themes is quite deep in the library: select the Developer folder and then Xcode »
UserData » FontAndColorThemes. You can see the custom theme | created called Matt’s Midnight.
dvtcolortheme, as shown in Figure 10-13. From here, you can add themes you’ve downloaded from
the Internet or copy them to share online.

® 006 ] FontAndColorThemes .
G EHEImEIE) @)@ |

FAVORITES Name A  Date Modified Size Kind

= All My Files | Matt's Midnight.dvtcolortheme Today 10:16 5 KB Documer]
@ AirDrop

#\; Applicati...

[0 Desktop

Figure 10-13. The contents of my FontsAndColoxThemes folder

Note The FontAndColorThemes folder is only visible if you've duplicated a theme, so if you skipped the
previous section, you may not see this folder.


http:///

324 CHAPTER 10: Advanced Editing

Note Whenever you make changes in this folder, you must restart Xcode for those changes to take effect.

Back in Xcode, choose the theme you’re happiest with, and close the preferences by clicking the
red ball in the top-left corner. You now know everything there is to know about themes in Xcode!
Next, | delve into the code for AlienDev and show you how to make dealing with large amounts of
code less of a chore.

Organizing and Navigating Code

You've learned how to alter the visual appearance of code, so it’s time to go a bit deeper and look

at the fantastic shortcuts Xcode provides to help you be super-efficient in how you code. In order to
see some of the finer points of organizing and navigating through code, you first need to add that
code. At this point, you’ve added the assets to display in the Sprite Kit scene, but if you were to run
the application, it would still have all the behaviors of the default Sprite Kit template. The first thing
you need to do is make some modifications to GameViewController.swift so that the stage is set for
adding the hero and the villainous bugs.

Start by opening GameViewController.swift from the Project Navigator. Because you're using a
landscape-only orientation, and because of the point at which viewDidlLoad is called, you need to
create a method that performs the initialization once the view has been added to the stack. This
method is called viewWilllLayoutSubviews, and you need to add it just after viewDidLoad, as shown
highlighted here:

override func viewDidLoad() {
super.viewDidLoad()

if let scene = GameScene.unarchiveFromFile("GameScene") as? GameScene {
// Configure the view.
let skView = self.view as SKView
skView.showsFPS = true
skView.showsNodeCount = true

/* Sprite Kit applies additional optimizations to improve rendering performance */
skView.ignoresSiblingOrder = true

/* Set the scale mode to scale to fit the window */
scene.scaleMode = .AspectFill

skView.presentScene(scene)

}

override func viewWillLayoutSubviews() {
super.viewhillLayoutSubviews()
}


http:///

CHAPTER 10: Advanced Editing 325

After you’ve created the new method with the single line of code, you need to move the bulk of the code
from viewDidLoad into viewWilllLayoutSubviews. Do this by highlighting all the code after
super.viewDidLoad(), as shown in Figure 10-14, and using Edit » Cut (¥+X) to cut the code and
Edit » Paste (88+V) to paste the code into the method after the line super.viewWillLayoutSubviews().

class GameViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad ()

if let scene = GameScene.unarchiveFromFile("GameScene") as? GameScene {
// Configure the view.
let skView = self.view as SKView
skView. showsFPS = true
skView. showsNodeCount = true

/* Sprite Kit applies additional optimizations to improve rendering performance x/
skView. ignoresSiblingOrder = true

/% Set the scale mode to scale to fit the window %/
scene.scaleMode = .AspectFill

skView.presentScene(scene)

Figure 10-14. Highlighting the code in the viewDidLoad method that needs to be moved

After you move the code, the finished structure of the two methods should resemble the code
shown next:

override func viewDidLoad() {
super.viewDidLoad()
}

override func viewWilllayoutSubviews() {
super.viewWillLayoutSubviews()

if let scene = GameScene.unarchiveFromFile("GameScene") as? GameScene {
// Configure the view.
let skview = self.view as SKView
skView.showsFPS = true
skView.showsNodeCount = true

/* Sprite Kit applies additional optimizations to improve rendering performance */
skView.ignoresSiblingOrder = true

/* Set the scale mode to scale to fit the window */
scene.scaleMode = .AspectFill

skView.presentScene(scene)


http:///

326 CHAPTER 10: Advanced Editing

The outcome of any code tutorial is usually a known entity, but in this case let’s pretend you don’t
know what’s going to happen as you develop this application. You’ve emptied all the bespoken
code from the override of the viewDidLoad method, because it was effectively just taking up space
at this point, but you might need it in the future. So let’s set a reminder to clean up the method if it
doesn’t get used.

Creating Code Reminders

Xcode provides several handy tags that can be used in code comments to help you remember to
deal with different tasks such as adding code to a method, fixing something that isn’t quite right but
doesn’t break the compiler, and or adding a general reminder to either research something further or
double-check whether you’ve added all the required elements to a view.

In Swift, you comment a single line of code by prefixing it with two forward slashes (//). If you then
start your comment in one of the following two ways, Xcode detects it and displays it in the jump
bar, which I'll explain shortly:

// TODO: TODO reminders should be used when you want to create a quick reminder about
a piece of work you haven’t done. This can be great when you're writing a large method and
you want to focus on the key functionality, but you know you need to come back later and
write the error checking.

// FIXME: | use FIXME mainly when transitioning code between two versions of i0S. When
i0S 8 came out, some of my i0S 7 applications developed small code glitches. | pinpointed
these glitches in one go, adding FIXME comments to the errors of concern so that | could
work through them one by one, checking them off.

Because this is something you want to look at later on, let’s use the TODO mark to set a reminder.
After the line super.viewDidLoad(); add your TODO comment so the method looks like this:

override func viewDidLoad() {
super.viewDidLoad()

//T0DO: Remove if not used

Note These code words are case sensitive. If you use any lowercase characters or fail to use the colon
correctly, they won’t display in the jump bar.

That’s it: you’ve added a handy reference that will stand out in the jump bar like a sore thumb and
remind you to tidy your code when you finish the application.


http:///

CHAPTER 10: Advanced Editing 327

Using the Jump Bar

I’'ve mentioned the jump bar several times, so let’s take a closer look at it. The jump bar is the series
of items at the top of the code view, as shown in Figure 10-15. It’s called the jump bar because,
depending on which part you choose, it allows you to jump quickly between files, folders, and
different areas of a code file.

28 <4 » [ AlienDev) [ | AlienDev ) s GameViewController.swift ) [} viewDidLoad()

Figure 10-15. The jump bar is located at the top of the code window

The very last block of the jump bar, which in Figure 10-15 says viewDidLoad(), is by far the most
commonly used part. For many developers, this is the jump bar, and it’s the only part of it they ever
use. Select this block of the jump bar, and you should see the effect of the added TODO comment, as
shown in Figure 10-16. Although there are many comments in the code, the only one that appears in
the jump view among the methods is the cleanup message.

Product Debug Source Control Window Help
. Ga [ SKNode
unarchiveFromFile(_:)

AlienDev | Build AlienDev: Succeed

= [ GameViewController =
v ) AlienDev ) = GameViewController.s viewDidLoad()
tthew Knott on ©3/11/2014. viewWillLayoutSubviews()

2014 Matthew Knott. All rights rese shouldAutorotate()
supportedinterfaceOrientations()
didReceiveMemoryWarning()

: prefersStatusBarHidden()

Figure 10-16. The structure of the code outlined in the jump view

Notice in the jump bar that each of the methods is listed, as well as the class implementation.
Selecting any of these takes you directly to the relevant portion of code.


http:///

328 CHAPTER 10: Advanced Editing

Organizing Code with Pragma Marks

If you have any experience programming with a C-based language, you’re probably familiar with the
#pragma directive. Traditionally it’s used to provide additional information to the compiler in addition
to what the language itself can express. You can also provide additional information to the IDE by
using the #pragma mark directive to create sections for the methods in the jump bar. In Swift, the
pragma mark has been streamlined to fit the same format as the other bookmarking tags and is now
written // MARK:, as you may have noticed in previous chapters.

Let’s say you want to isolate the bottom three methods in the GameViewController.swift file. You
can add a directive to indicate that these methods are not to be touched. Before the override func
shouldAutorotate() method, type the following code:

//MARK: Standard Methods : Ignore
Now go back and look at what the jump view shows for the code file. As shown in Figure 10-17, the
mark has been added to the hierarchy and now provides a heading for the bottom three methods.

s GameView nntrollar cwift
SKNode

[) unarchiveFromFile(_:)

GameViewController

AlienDev | Build AlienDev: Succeedes

lev » AlienDev »

= CameViewController.swi
T [ viewDidLoad()

TODO: Remove if not used
[ viewwillLayoutSubviews()
Standard Methods : Ignore
(] shouldAutorotate()

rn scene

rn nil

ntroller: UIViewController {

c viewDidLoad() {
ewDidLoad()

Remove if not used

supportedinterfaceOrientations()
[l didReceiveMemoryWarning()
[@) prefersStatusBarHidden()

Figure 10-17. The mark appearing in the jump bar to isolate the standard methods

These marks are incredibly useful, especially when you’re working with dozens of methods.
Grouping your methods together by area of function makes your life easier and also that of anyone

else who needs to look at your code.

Building the Scene

Unlike other applications you've built so far in this book, a Sprite Kit application doesn’t need
much work in the view controller, which initializes the environment. All the logic that controls what
you see on the screen comes from the scene. By default, the Sprite Kit application comes with two
custom classes: GameViewController and GameScene. Open GameScene.swift, and you see that it

subclasses SKScene.


http:///

CHAPTER 10: Advanced Editing

In a Sprite Kit application, the scene is responsible for calculating what is shown onscreen in
each frame. Let’s modify GameScene to add the alien dev hero to the screen, before swamping
him with bugs:

1. If you haven’t already, open GameScene.swift. Create an SKSpriteNode
variable called alienDev to hold all the information for the alien dev’s
character in the scene. Add the following highlighted code:

import SpriteKit
class GameScene: SKScene {

var alienDev : SKSpriteNode?

2. Let’s clean up this file a little. Scroll down, and remove the touchesBegan method.

3. Remove all the code in the didMoveToView method. The entire file should now
look like this:

import SpriteKit
class GameScene: SKScene {
var alienDev : SKSpriteNode?

override func didMoveToView(view: SKView) {
/* Setup your scene here */

}

override func update(currentTime: CFTimeInterval) {
/* Called before each frame is rendered */

}

4. Let’s set the scene for the application by choosing the background color and
initializing and adding the alienDev object. The SKScene object is always the
root node in the hierarchy of Sprite Kit nodes; so you need to add the sprites
to the scene to begin creating the hierarchy. In the didMoveToView method,
add the following highlighted code:

override func didMoveToView(view: SKView) {
/* Setup your scene here */
self.backgroundColor = SKColor.whiteColor()
alienDev = SKSpriteNode(imageNamed: "dev")
alienDev!.position = CGPointMake(CGRectGetMidX(self.frame), CGRectGetMidY(self.frame))
alienDev?.size = CGSizeMake(120, 220)

self.addChild(alienDev!)

329


http:///

330 CHAPTER 10: Advanced Editing

5. Run the application. If everything works as it should, the hero stands alone in
the middle of the screen, as shown in Figure 10-18, along with the node and
frames per second (fps) counts. These two values are great for debugging
poor performance in your animation and can help to identify choke points
where you may have too many sprites (nodes) on the screen at any one time.
They can also help you scale your application for different devices; more
capable hardware can handle more sprites without a drop in performance,
whereas an older device may need to have lower-quality images and
fewer sprites. When you’re finished with them, you can disable them by
changing the showsFPS and showsNodeCount properties of SKView to NO in
GameViewController.swift.

i0S Simulator - iPhone 6 - iPhone 6 / i0S 8.1 (12B411)

1 nods 60.0 £ps
Figure 10-18. The AlienDev app in action, with the single, static sprite

6. The hero is a bit lonely on the screen, which looks quite sparse. Before you
add his nemesis, the bug, let’s add a title to the scene as another node.
It’s an instance of the SKLabelNode class. Although this will be the only text
you add, adding text nodes to the scene is a common requirement, so let’s
be efficient and create a function that adds to the scene whatever text you
send it. Drop down a few lines after the didMoveToView method, and add the
following function stub:

func createTextNode(text: String, nodeName: String, position: CGPoint) -> SKLabelNode {

}


http:///

CHAPTER 10: Advanced Editing 331

7. The function returns an SKLabelNode object, so you need to declare and
initialize an object of this class and return it. In the function, add the following
lines of highlighted code:

func createTextNode(text: String, nodeName: String, position: CGPoint) -> SKLabelNode {
let labelNode = SKLabelNode(fontNamed: "Futura")

return labelNode

8. Set the attributes of the 1abelNode object to specify the text, size, color, and
position of the label, as well as give it a name as an identifier. Once the attributes
are set, return the label. To do so, add the following highlighted code:

func createTextNode(text: String, nodeName: String, position: CGPoint) -> SKLabelNode {
let labelNode = SKLabelNode(fontNamed: "Futura")
labelNode.name = nodeName
labelNode.text = text
labelNode.fontSize = 30
labelNode.fontColor = SKColor.blackColox()
labelNode.position = position
return labelNode

Note Sprite Kit applications don’t use UIKit like the other solutions have, so in this instance you use
SKColor to set the color rather than UIColor. They’re separate classes in separate frameworks but perform
largely the same function with almost identical syntax.

9. Now that you have a function for generating labels, let’s give the application
a title. Go back to the didMoveToView method and, after the line
self.addChild(alienDev!) add the following code:

self.addChild(alienDev!)

let title = createTextNode("Welcome to Alien Dev",

nodeName: "titleNode",

position: CGPointMake(CGRectGetMidX(self.frame), CGRectGetMaxY(self.frame)-150))
self.addChild(title)

10. Run the application again. This time it looks a little less sparse, as you can
see in Figure 10-19.


http:///

332 CHAPTER 10: Advanced Editing

iOS Simulator - iPhone 6 - iPhone 6 / iOS 8.1 (12B411)

Welcome to Alien Dev

2 nodas 60.0 £ps

Figure 10-19. The application, now with two nodes: the dev and the title

11.  You've got everything in this scene except the bugs that plague the hero. In
this application, the bugs appear from the top of the screen and slide down
toward the hero—the alien dev. To achieve this, let’s create a function that
adds a bug at a random position offscreen. This is called by the SKScene
update method at regular intervals. Add the stub for this function beneath the
createTextNode function:

func createBug() {
}

12. This will be a particularly large function. As in previous chapters, | won’t
dwell too much on the actual code—just how Xcode ultimately makes it
easy to manage and interact with this code. In pseudo code, let’s create an
SKSpriteNode as you did when you initialized the dev character. You set the
bug to appear just offscreen above the top of the screen, but then randomly
determine where it “spawns” on the x (horizontal) axis. After adding the bug
to the scene, you indicate how long it should appear and then send it down
the screen before it disappears and is removed from the scene. Add the
following highlighted code in the createBug function:

func createBug() {
let evilBug = SKSpriteNode(imageNamed: "bug")
evilBug.size = CGSizeMake(220, 120)


http:///

CHAPTER 10: Advanced Editing 333

let minX = (evilBug.size.width / 2)
let maxX = (self.frame.size.width - evilBug.size.width)
let rangeX : UInt32 = UInt32(maxX - minX)

let finalX = Int(arc4random() % rangeX) + Int(minX)

evilBug.position = CGPointMake(CGFloat(finalX),
self.frame.size.height + evilBug.size.height/2)
self.addChild(evilBug)

let minDuration : Int
let maxDuration : Int
let rangeDuration : U

let finalDuration = Int(arcqrandom() % rangeDuration) + minDuration

let actionMove = SKAction.moveTo(CGPointMake(CGFloat(finalX),
-evilBug.size.height/2), duration:NSTimeInterval(finalDuration))
let actionMoveDone = SKAction.removeFromParent()

evilBug.runAction(SKAction.sequence([actionMove, actionMoveDone]))

Folding Code

The GameScene. swift file is really starting to fill out now, but there are still two methods and some
instance variables to add so that you can see the application in all its glory. Xcode kindly provides a
way to make this file easier to navigate and modify, in the shape of code folding.

Code folding is the concept of compressing code that is encapsulated by brackets—such as in
methods, if statements, and other logical structures—into a single line, thus hiding the code from
view and allowing you to focus on a specific segment of code. You can fold code in the editor as
well as through menus and key combinations. Code folding isn’t unique to Xcode—the concept
exists in many popular IDEs and code editors—but it’s not as obvious how to access it in Xcode as it
is in those other systems.

First, let’s look at code folding and how it’s done in the editor. Scroll to the top of the GameScene.
swift file, to the start of the didMoveToView method. Move your mouse cursor to the gutter next to
the code just adjacent to the start of the method, as shown in Figure 10-20.

var alienDev : SKSpriteNode?

override func didMoveToView(view: SKView) {
/* Setup your scene here x/
self.backgroundColor = SKColor.whiteColor()
alienDev = SKSpriteNode(imageNamed: "dev")
alienDev!.position = CGPointMake(CGRectGetMidX(se
alienDev?.size = CGSizeMake(120, 220)

E 4

Figure 10-20. Exposing the fold toggle in the code editor


http:///

334 CHAPTER 10: Advanced Editing

Notice that a downward-pointing arrow appears: Xcode highlights all the code that will be hidden if
you click the mouse on that area of the gutter. Click the arrow, and the entire method is compressed,
as shown in Figure 10-21. As you can see, the code shrinks to a single line, greatly reducing the
visual clutter. There is now a right-pointing arrow in the gutter: click it, and your method is restored.

class GameScene: SKScene {
var alienDev : SKSpriteNode?
override func didMoveToView(view: SKView) { ==}
func createTextNode(text: String, nodeName: String, position: CGPoint) -> SKLabelNode {

let labelNode = SKLabelNode(fontMNamed: "Futura")
labelNode.name = nodeName

Figure 10-21. The “folded” didMoveToView method

Folding one method at a time can be time consuming, which is where the menu options come into
play. From the menu bar, select Editor » Code Folding. As you can see in Figure 10-22, Xcode gives
you a number of options for folding the code in this file: Fold, Unfold, and Unfold All. In addition,
Xcode separates itself from other, lesser IDEs by giving you the option to specifically Fold Methods
& Functions or Fold Comment Blocks. This fine level of control is really satisfying for developers who
like to fold methods but not comments, rather than folding everything that could possibly be folded.

=

L+e Structure B
W8 Code Folding > Fold N3
Syntax Coloring B Unfold NHE—
spr . Unfold All
Show Invisibles
ame . Fold Methods & Functions N8~
- ol il oty Unfold Methods & Functions "\ {r3§—
rride func didMoveToView(view: SkVier Fold Comment Blocks ~r38—
¢ createTextNode(text: String, noden ~Unfold Comment Blocks ~haee B
let labelNode = SKLabelNode(fontNam i
labelNode.name = nodeName Focus Follows Selection

labelNode,text = text
labelNode. fontSize = 30

Figure 10-22. Options offered in Xcode’s Editor tab

Select the Fold Methods & Functions option. Instantly, the implementation is compressed from 60
lines to just 14, as shown in Figure 10-23!


http:///

CHAPTER 10: Advanced Editing 335

import SpriteKit
class GameScene: SKScene {

var alienDev : SKSpriteNode?

- override func didMoveToView(view: SKView) { e}

v func createTextNode(text: String, nodeName: String, position: CGPoint) -> SKLabelNode {(s '}
> func createBug() { « }

> , override func update(currentTime: CFTimeInterval) {(e=/}

Figure 10-23. The neatly folded implementation file

Now that there is some room to breathe in the file, you can add the remaining two methods and the

instance variables. This code is provided by Apple as part of its Sprite Kit adventure template, and it
allows you to call the createBug method at regular intervals. At the top of GameScene. swift, add the

two instance variables as follows:

class GameScene: SKScene {
var alienDev : SKSpriteNode?

var lastSpawnTimeInterval : CFTimeInterval?
var lastUpdateTimeInterval : CFTimeInterval?

These variables are used to calculate the time elapsed between frames. Next, you need to create
one function stub and use an existing one to handle the updates: updateWithTimeSincelastUpdate
and update. The update method is a class method that is called each frame, and
updateWithTimeSincelastUpdate is a custom function that ensures that bugs are added at a constant
rate. Add the updatelWithTimeSincelastUpdate function stub before the update method in the
implementation file, as shown in the following highlighted code:

func updateWithTimeSincelLastUpdate(timeSincelast : CFTimeInterval) {
}
override func update(currentTime: CFTimeInterval) {

In the update method, add this highlighted code, which accurately calculates the elapsed time and
calls the custom method:

override func update(currentTime: CFTimeInterval) {
if let lastUpdate = lastUpdateTimeInterval {

var timeSincelLast = currentTime - lastUpdate as CFTimeInterval


http:///

336 CHAPTER 10: Advanced Editing

lastUpdateTimeInterval = currentTime

if (timeSincelLast > 1) {
timeSincelast = 1.0 / 60.0
lastUpdateTimeInterval = currentTime

}
updatellithTimeSinceLastUpdate(timeSincelast)
}
else
{
lastUpdateTimeInterval = currentTime
}

}

For the last method in this implementation file, let’s look at another weapon in the efficient
developer’s arsenal: code snippets.

The Code Snippet Library

The Code Snippet library is a collection of small pieces of code, like microtemplates, that allow you
to quickly create commonly written blocks of code by simply dragging and dropping the code into
the code editor. The concept of code snippets, like code folding, is not unique to Xcode; but like
code folding, it's implemented in a clear and intuitive manner. The Code Snippet library, shown in
Figure 10-24, is located in the utilities bar and is accessed by clicking the { } icon (Control+ \_+38+2).

0 {} @ &

{ } C Block typedef - Define a block as
a type.

C Inline Block as Variable - Save
{ } a block to a variable to allow reuse or
passing it as an argument.

{ } C typedef - Define a typedef.

og
oo

Figure 10-24. The Code Snippet library


http:///

CHAPTER 10: Advanced Editing 337

Using Code Snippets

I’ll explain how to create an if statement using a code snippet, but before you can do that, you need
to add a line of code to the updatelWithTimeSincelastUpdate function. The following highlighted line
updates the lastSpawnTimeInterval object:

func updateWithTimeSincelastUpdate(timeSincelast : CFTimeInterval) {
if let lastSpawn = lastSpawnTimeInterval {

lastSpawnTimeInterval! += timeSincelast
}

else

{
}

lastSpawnTimeInterval = 0

}

You want to spawn a bug every 1 second, so you need an if statement to check that the
lastSpawnTimeInterval object, which counts milliseconds, is greater than 1. Look in the Code
Snippet library for If Statement, or type if state in the filter box, as shown in Figure 10-25.

0 {} @ &

{ } If Statement - Execute code only
when a certain condition is true.

If-Else Statement - Execute code
{ } when a condition is true, or different
code if the condition is false.

BB if state

Figure 10-25. Filtering the Code Snippet library for an if statement

Create an empty line under the last line of code you added, and then drag the if statement from the
Code Snippet library. Position it just below that last line of code, as shown in Figure 10-26.


http:///

338 CHAPTER 10: Advanced Editing

> func createBug() { - }

func updateWithTimeSincelLastUpdate(timeSincelast : CFTimeInterval) {
if let lastSpawn = lastSpawnTimeInterval {
la mTimeInterval! += timeSincelLast

y L
else

{

lastSpawnTimeInterval = @

¥

Figure 10-26. Dragging an if statement from the Code Snippet library

When you release the snippet, it creates the outline of the if statement exactly as it does when you
use the code-completion method for creating if statements. Change the conditions placeholder to
say lastSpawnTimeInterval! > 1 and the statements to lastSpawnTimeInterval! = 0 and, below
that, createBug().

The finished method code looks like this:

func updateWithTimeSincelastUpdate(timeSincelast : CFTimeInterval) {
if let lastSpawn = lastSpawnTimeInterval {
lastSpawnTimeInterval! += timeSincelast
if (lastSpawnTimeInterval > 1 ) {
lastSpawnTimeInterval = 0

createBug()
}
}
else
{
lastSpawnTimeInterval = 0
}

Tip If your code is a bit messy after dragging in the code snippet, highlight the whole function and go to
Editor » Structure » Re-Indent (Ctrl+) to fix the indenting.

Using code snippets to create an if statement isn’t the most efficient way to use them, but look
through the list of snippets—there are dozens of premade snippets for a wide range of scenarios.


http:///

CHAPTER 10: Advanced Editing 339

Creating Code Snippets

Where code snippets come into their own is when you create them from your own code. You know
better than anyone else the code you type time and again—whether it's a template for a web request
or a pattern you use for error handling—so creating code snippets is a great way to simplify code
reuse.

Now for the paradox of creating code snippets—it’s as easy as drag and drop, but drag and drop
isn’t necessarily easy. To explain, you create a code snippet by highlighting the code you wish to
save and dragging it into the Code Snippet library. Unfortunately, if you try this, you probably find
you just end up selecting different code when you try to drag; this is where the art of dragging code
in Xcode comes into play.

Let’s say you want to save the last two methods you created as they’re the best way to perform a
Sprite Kit action at a regular interval. Start by highlighting the code, as shown in Figure 10-27.

func updateWithTimeSinceLastUpdate(timeSincelast : CFTimeInterval) {
if let lastSpawn = lastSpawnTimeInterval {
lastSpawnTimeInterval! += timeSincelast
if (lastSpawnTimeInterval > 1 ) {
lastSpawnTimeInterval = @
createBug()

}

else
{
lastSpawnTimeInterval = @
}
override func update(currentTime: CFTimeInterval) {
if let lastUpdate = lastUpdateTimeInterval {
var timeSinceLast = currentTime - lastUpdate as CFTimeInterval
lastUpdateTimeInterval = currentTime
if (timeSincelLast > 1) {
timeSincelast = 1.0 / 6@.0
lastUpdateTimeInterval = currentTime
}
updateWithTimeSincelastUpdate(timeSincelLast)
}
else
lastUpdateTimeInterval = currentTime

}

Figure 10-27. The highlighted code that you want to create a snippet from

Now, the technique—click and hold the mouse pointer in place until it changes from an | bar to a
normal mouse cursor and drag the code to the Code Snippet library, as shown in Figure 10-28.


http:///

340 CHAPTER 10: Advanced Editing

func updatew:l.thTa.meS:.nceLastUpdate(tln{eSmceLast —CFTimeIntervat) <
if let lastSpawn = lastSpawnTimel{t39urse Control
Past%pamﬂrne_IrueEvc_ LD o+= tlmESmCQggg;‘,mw o
if (lastSpawnTimeInterval > 1|) {
lastSpawnTimelInterval = @

Turna ——

createBug() b {} ©
}
} h
else q } If Statement - Execute code only
{ when a certain condition is true.
lastSpawnTimeInterval = @
}
g If-Else Statement - Execute code

‘ . when a condition is true, or different
override func update(currentTime: CFTimeIMte€rvalddelif the condition is false.

if let lastUpdate = lastUpdateTimdqinterval {
var timeSincelast = currentTime - lastUpdate as CFTimeInterval

stUpdateTimeInterval = currdnilime

v

i - —
(tlmeSmceLast 1?@{/ - og ,@ if state

timeSinceLast

Figure 10-28. Dragging the code to the Code Snippet library

When you release the mouse, it will create an entry in the library called My Code Snippet. To save it
from getting lost, it’s important to name the snippet and set its attributes before you forget why you
created it. Double-click the snippet to see a preview of the code, as shown in Figure 10-29; click the
Edit button.

| Source Control

{ 1 | My Code Snippet Repository --
user | All Platforms | Tuma -
e _— D {} ®
5 Ci func updateWithTimeSincelLastUpdate(timeSincelast : .
CFTimeInterval) { . | .
if let lastSpawn = lastSpawnTimeInterval { { } Union Declaration - Declare a new
lastSpawnTimeInterval! += timeSincelast union type, where all fields overlap at

if (lastSpawnTimeInterval = 1 ) { the same memory location.

lastSpawnTimeInterval = @

createBug()
{ } While Statement - Execute code

} while a condition is true.

else

{

lastSpawnTimeInterval = @ :
! { 11 My Code Snippet
} /| User_
Edit Done oo /7
oo \N

Figure 10-29. Previewing the code snippet you created


http:///

CHAPTER 10: Advanced Editing 341

You can see that you can now edit the entire code snippet here, but what you want to do is set the
Title to SKScene Update Functions, the Platform to iOS, and the Completion Shortcut to SKU, as
shown in Figure 10-30, then click Done.

Source Control
Title | SKScene Update Functions

Repository --
{User. Summary Tusa
Platform [ iOS - Language | Swift - D {} @ £

Completion Shortcut | SKU Union Declaration - Declare a new

Completion Scopes | Class Implementation )+ { } union type, where all fields overlap at
the same memory location.
func updateWithTimeSinceLastUpdate(timeSincelLast :
CFTimeInterval) {
if let lastSpawn = lastSpawnTimeInterval {
lastSpawnTimeInterval! += timeSincelast
if (lastSpawnTimeInterval > 1 ) {
lastSpawnTimeInterval = @
createBug()

{ } While Statement - Execute code
while a condition is true.

} | { 1 SKScene Update Functions
else / Lsex

Edit Done oo
oo

Figure 10-30. Setting the properties of the snippet

You can see as soon as the Title property is set, it’s updated in the library. One important value you
set is the Completion Shortcut. | mentioned earlier that an if statement isn’t the most efficient use
of a code snippet, but in fact the drag and drop of the code snippet wasn’t efficient because you’ve
learned that when you type if in the code editor, you can press the Tab key to complete the entire
statement, which is faster than dragging the snippet. All that actually happens is when you type if, it
sees that you have a snippet in your library with a completion shortcut of if.

Go to your code editor and after the last method, type SKU. You see that you can now quickly create
the two update methods in your snippet simply by typing that completion shortcut, as shown in
Figure 10-31.

| - SKScene Update Functions

Figure 10-31. Quickly adding the snippet to the implementation file

It’s this feature that exemplifies how Xcode has many of the same features you find in other IDEs,
but Apple has taken the concept and refined it to make the developer’s life so much easier. All that
remains now is to run the application and watch the alien dev being bombarded by bugs, as shown
in Figure 10-32.


http:///

342 CHAPTER 10: Advanced Editing

i05S Simulator - iPhone 6 - iPhone 6 / i0S 8.1 (12B411)

Welcome to Alien Dev

6 nodes 60.0 £ps

Figure 10-32. The completed AlienDev application

Summary

This chapter used a Sprite Kit application as a backdrop to show the numerous ways Xcode can
help reduce the overhead of writing code by streamlining how you code and by fine-tuning the
development environment to suit your personal preferences.

Specifically in this chapter, you’ve learned:
How to select a theme for the code editor
How to customize a theme, share it, and import third-party themes
Which keywords to use in code comments and when to use them
How to use the jump bar to quickly navigate to a block of code or a comment
How to fold blocks of code to allow you to focus on specific areas of the code
How to create and use code snippets to allow you to reuse code

The next chapter will take a detailed look at how to debug issues in applications and how Xcode can
give insight into what’s going on behind the scenes.


http:///

Chapter

Debugging and Analysis

Chapter 10 looked at some of the ways Xcode can empower you to be a more effective and efficient
developer, from tweaking the theme used to display code in the code editor, to using the jump bar
and code snippets to speed up development. You learned all that by creating a Sprite Kit-based
animation application where the hero, the alien dev, had bugs raining down on him from above.

This leads nicely into this chapter, where you learn about debugging and analysis and, hopefully,
answer the question, “How can Xcode help when the bugs start raining down?” Xcode has a whole
suite of tools dedicated to making your life easier when it comes to determining why your code
throws an exception or why in some cases nothing happens at all. This chapter takes a detailed look
at all of these reasons. Additionally, | discuss some of the lesser-known debugging tools that aren’t
integrated into Xcode but are essential as you explore the breadth of the features of iOS application
development with Xcode.

At the end of the chapter, | introduce you to one of the major new features of Xcode 6 for Swift
programmers: the Swift playground. This a code sandbox lets you focus on trying different pieces of
logic and sampling the outcome.

This chapter initially focuses on three common debugging scenarios and how Xcode can be used to
address them:

Logic errors: Sometimes the hardest to debug, logic errors occur when your
application doesn’t do what you expect it to do, but they don’t cause your
application to trigger an exception or warning at either compile time or runtime.
An example would be a button that doesn’t do anything or a map view not
displaying the specified area.

Runtime errors: A runtime error is one that is detected after the application has
compiled and it’s either launching or running. Unhandled runtime errors are
usually fatal to the application and cause it to crash.

Compile-time errors: When you tell Xcode to run or build your application, it
uses the compiler to take all of your code, linked files, and libraries and compile
them into a binary. A compile-time error stops your application from compiling
into a binary, so it must be resolved before you can run the application.

343


http:///

344 CHAPTER 11: Debugging and Analysis

This chapter explains how to create an application that lists some of the European Union
(abbreviated to EU throughout this chapter) member states in a table view calls EUStates. The table
view uses an array as its data source, which is traditionally a great way of demonstrating runtime and
logic errors because of their precise nature (they have a set number of items known as the bounds of
the array, and going outside of those bounds can trigger a runtime or logic error).

Building the Application

EUStates is a very simple application to build. The focus here is on how to use Xcode to debug an
application, so the code is minimal. To create the EUStates application, let’s start with a Single View
Application template and add a Table view controller. Many of these steps will be familiar to you from
when you created the Twitter client in Chapters 7 and 8:

1. Open Xcode and create a new project by going to File » New » New Project
(38+Shift+N) or, alternatively, choosing Create A New Xcode Project on the
Welcome screen (38+Shift+1).

2. Select the Single View Application Template, and click Next.

3. Name the product EUStates, substitute your personal information for mine,
ensure that Device is set to iPhone, and leave the other options set to their
defaults, as shown in Figure 11-1. Click Next.

Choose options for your new project:

Product Name: | EUStates]
Organization Name: Matthew Knott
Organization Identifier: com.mattknott
Bundle |dentifier: com.mattknott.ELStates
Language: = Swift
Devices:  iPhone

Use Core Data

Cancel Previous Next

Figure 11-1. Setting up the application


http:///

CHAPTER 11: Debugging and Analysis 345

4. The default save location is okay, so create the application by clicking Create.

5. Open Main.storyboard from the Project Navigator. It resents a single view
on the storyboard; select the view and remove it so that you're left with an
empty storyboard, as shown in Figure 11-2.

eo0e Main.storyboard — Edited
b m A EUStates | g iPhone 6 EUStates: Ready | Today at 15:14 SEEE O=0
B

% Q A SCESo R B < B EuSuates DUStates Main.storybaard + [l Main.storyboard (Base) + Mo Sebection D2mOo0e
. EUStates
= 2 targets, 105 5DK 8.0
A EUStates

+ AppDelegate ywift

+ ViewController swift

L4

n
& | Supporting Files
b EUStatesTests
Preducs

' ® O

Wiew Controdber - A centroller that
Supserts the fundamental view-
mansgement madel in 105,

Navigation Controller - &
i (e el
thecugh a hisrarchy of views.

Table View Cortrolier - A
concroller that manages a table veew

+10

[
a

Any HAny B lol lai B B8 (=

Figure 11-2. Starting with a blank storyboard

6. To complete the initial set up of the application, select ViewController.swift
in the Project Navigator. Remove it either by pressing the Backspace key or
by right-clicking the file and selecting Delete and then Move to Trash when
prompted.

7. The application you’re creating is based around a single Table view controller.
That means you need to subclass UITableViewController to create a
custom view controller and then tie that into a Table view controller on the
storyboard. Select File » New » File (3+N), choose Cocoa Touch Class
from the list of templates, and click Next.

8. Set the Subclass Of value to UITableViewController and the Class value
to StatesViewController. Leave Targeted For iPad and With XIB For User
Interface unselected, and click Next. Accept the default location to save the
new class files, and click Create.


http:///

346 CHAPTER 11: Debugging and Analysis

9. Let’s add the Table view controller to the storyboard. Open Main.storyboard
from the Project Navigator. Open the Object Library, and locate the Table
View Controller object near the top of the list.

10. Drag a Table view controller onto the storyboard’s design area, as shown in
Figure 11-3.

T

8an0e Main.storyboard
| el A EUStates - g iPhone & EUStates: Ready | Today at 15:14 2 =1 =0 al=0a |
—— PR » =T
BR QA& o B B M« B Eustates ELStates Main_storyboard Main.storyboard (Base) | Mo Selection aie Dem$Qg e
v

gets, (05 50K K0
¥ [ EUSuates
- AppDelegate swift Table View

_J'ur;;;:.n:;;}; Prototype Cells -
LaunchScreen.xib

* | Supporting Files.
- StatesViewControlier. swift

F o EURatesTests

[ Products

o

DOe@ao

View Controlber - A contraller that
Supoorts the fundamentsl view
management macel in K5

Navigation Controller - &
( conraller that manages navigation
threugh a hierarchy of views.

Table View Controller - A
controlier that manages a table view

+ OR@ 3 0 Any nAny = o ket B1 B8 (B
Figure 11-3. Dragging a Table view controller onto the storyboard
11. You need to specify the class for the new Table view controller. If the Table

view controller isn’t select it, do so, and then open the Identity Inspector.
Change the Class value to StatesViewController, as shown in Figure 11-4.


http:///

CHAPTER 11: Debugging and Analysis 347

OeE ¥ B

Custom Class

Module

Identity

Storyboard ID

Restoration ID

Class | StatesViewController +1h4

Current - EUStates v

Use Storyboard ID

Figure 11-4. Setting the Class value for the Table view controller to StatesViewController

12. Click the Attributes Inspector. If it isn’t selected, check Is Initial View
Controller as shown in Figure 11-5.

:w Controller

C_1

O e &3 ¥ 8

Refreshing Disa_bled

View Controller
Title
# Is Initial View Controller

Layout |__\ﬂ Adjust Scroll View Insets

Figure 11-5. Specifying the initial view for the storyboard

ar

13. With the structure of the application complete, it’s time to create the array
to hold 15 EU member states. This is done by creating an NSMutableArray
as an instance variable and then populating it in a custom method. Open
StatesViewController.swift from the Project Navigator. To declare the
instance variable, add the highlighted code to the file as shown next:

class StatesViewController: UITableViewController {

let states = NSMutableArray(capacity: 15)

14. You need to create a method to initialize the array and populate it with
15 EU member states. After the viewDidLoad method, to create a new function
called initStates, drop down a few lines and add the following stub:

func initStates() {

}


http:///

348 CHAPTER 11: Debugging and Analysis

15. To populate NSMutableArray, you add string values for the first 15 member
states of the EU to the array. Add the highlighted code to the initStates
function:

func initStates() {
states[0] = "Austria"

states[1] = "Belgium"
states[2] = "Bulgaria”
states[3] = "Croatia"
states[4] = "Cyprus"
states[5] = "Czech Republic"
states[6] = "Denmark"
states[7] = "Estonia"
states[8] = "Finland"
states[9] = "France"
states[10] = "Germany"
states[11] = "Greece"
states[12] = "Hungary”
states[13] = "Ixeland"
states[14] = "Italy"

}

16. Now that you have a data source, all that remains is to use the states array
to populate the table view. You may recall from Chapter 8 that three methods
need to be altered: numberOfSectionsInTableView, numberOfRowsInSection,
and cellForRowAtIndexPath. All of these methods sit beneath // MARK: -
Table view data source. Click the jump bar, and you see that this mark is
used to neatly separate the table view methods from the rest of the view
controller. Select numberOfSectionsInTableView( :), as shown in Figure 11-6.

&) EUStates » || EUStates » > StatesViewController.swi  [[©] StatesViewController

SR Al TR e R SO O I . @ states B
// Configure the cell... viewDidLoad()

return cell initStates()

didReceiveMemoryWarning()

Table view data source

Jverride to support conditional editing of the M| numberOfSectionsinTableView(_:)

rride func tableView(tableView: UITableView!, ci ™ ’ 7 T ) => Bool {
// Return NO if you do not want the specified : el bt RowsinSect oa)

return true o
Navigation

Figure 11-6. Selecting the numberOfSectionsInTableView method from the jump bar

Note If you aren’t running the latest version of Xcode, you may see some warnings. If so, click the warning:
Xcode automatically fixes the issue by removing erroneous exclamation marks from the method declaration.


http:///

CHAPTER 11: Debugging and Analysis 349

17. Change the return value from 0 to 1, as shown next, and feel free to remove
the comments:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
return 1

}

18. Move down to the numberOfRowsInSection method, which dictates how
many rows to render in the table view’s section. Because you want this to be
the number of elements in your array, you simply return states.count. The
finished method should now resemble the following code:

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -»>
Int {

return states.count
}

19. The final part of this implementation is to set the text of the table cell to the value
of the corresponding index in the array. You use a string formatted to append the
index number onto the table cell so that each cell appears like this: 2: Bulgaria.
Go to the cellForRowAtIndexPath method, which is currently commented out,
and remove the /* from the start and */ from the end of the method.

20. Remove any exclamation marks from the method declaration that may cause
an error, and also remove any comments from the method. Then add the
highlighted code:

override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCellWithIdentifier("StateCell",
forIndexPath: indexPath) as UITableViewCell

let cellText = "\(indexPath.row): \(states[indexPath.row])"
cell.textLabel.text = cellText

return cell

}

That’s the last of the code you need to write for this application. Now you can run the application
in the Simulator. Unfortunately, when you do, not a lot happens, as shown in Figure 11-7. All the

methods are set correctly, so where’s the problem? To get to the bottom of this conundrum, you

need to see what’s happening behind the scenes; and to do that, you need to use breakpoints.


http:///

350 CHAPTER 11: Debugging and Analysis

i0S Simulator - iPhone 6 - iPhone 6 / iOS 8.0 (12A365)
Carrier ¥ 8:48 PM L

Figure 11-7. The application running in the Simulator, but not doing very much

Using Breakpoints to Resolve Logical Errors

You’ve come across the first issue with the application. You need to use Xcode’s debugging tools to
analyze the problem and understand what has gone wrong and what you should do to fix it. The first
tool in a developer’s arsenal is the humble breakpoint.

Breakpoints allow you to specify a point in the application at which to pause the execution

of the code and see what’s happening behind the scenes. This way, you can associate a
specific event with the line of code at fault. When a breakpoint is reached and the application
pauses, you get to see the state of all of your objects and what values they contain. The
application checks the numberOfSectionsInTableView and numberOfRowsInSection methods to
set the parameters for the table view, so these are good places to start the analysis. Because
the numberOfSectionsInTableView method returns a fixed value, let’s concentrate on the
numberOfRowsInSection method first.


http:///

CHAPTER 11: Debugging and Analysis 351

Setting a Breakpoint

If you’ve used other development environments in the past, you may find that adding a breakpoint
in Xcode is very familiar; even if you haven’t, you’ll find that the process is intuitive. Scroll down to
the numberOfRowsInSection method, and click in the grey bar to the left of the method declaration
to place a breakpoint, as shown in Figure 11-8; if you have line numbers turned on, click the line
number. When you add a breakpoint, a dark blue arrow appears on top of the line number.

override func numberOfSectionsInTableView(tableView: UITableView) -= Int {
return 1
H

= override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return states.count
T

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) -
let cell = tahLe\riew.dequeueReusableceuhithldentifier["SLaLeteLL", forIndexPath: indexPath)

Figure 11-8. The breakpoint added for a line of code

During runtime, when this line of code is reached, the application will pause and, hopefully, provide
insight into why there isn’t any information in the table view. Try running the application now. It
launches in the Simulator, and then you’re dropped back to Xcode with the Debug Navigator
(Figure 11-9) showing the state of the application and the debug area (Figure 11-10) showing a
selection of objects that are relevant to where the application has paused.

BR QA OC E o B

EUStates

PID 35729, Paused @ aip
@ CPU 0%
8 Memory 18.4 MB
_| Disk Zero KB/s
 Network Zero KB/s
v Thread 1

== Queue: com.apple.main-thread (serial)

100

I 1 @objc EUStates.StatesViewCont..
] 2 -[uiSectionRowData refreshWith...
7] 24 ulApplicationMain
[T 25 top_level_code
FY 26 main

27 start

Figure 11-9. The Debug Navigator, showing key information about the application at this point in time


http:///

352 CHAPTER 11: Debugging and Analysis

E =» b & & 2|\ 0D| » ¥ » Y 0 EuStates.StatesViewController.tableView (EUSta..., numberOfRowsinSection : Swift.Int) -> Swift.Int
> tableView = (UITableView *) 0x00007f1f603b400 (1ldb)

> section = (Int) 0

> self = (EuStates.StatesviewController) 0x00007ff1f2e205¢c0

Auto & > = All Output + w0

Figure 11-10. The debug area and, on the left, a selection of objects relevant in the context of the breakpoint

Before you look at why the application isn’t working, let’s examine both of these key areas in some
detail to see what information they provide.

The Debug Navigator

While the application is paused, the Debug Navigator, as shown in Figure 11-11, can be used to
provide a live snapshot of the activities taking place in the application. It displays the application’s
performance in terms of resource usage and the call stack of each thread in the thread list.

BRaA4fM©=ECc

Widget Toggle and EUStates
VIQW Selechon PD 35827, Paused
| cru %
. Memory 18.5 MB
Resource Usage Widgets 1
. Disk Zero KBJs
M Network Zero KB/

v glre_a_d 1
Thread List and ) EOR
Call Stack :

.apple.main-threa

2-u
24 UlAppl

1 25 top_level_code
26 main

27 start
» gy Thread 2
Quewe: com.apple.libdispatch-mana

Display Configuration
and Filter EEE®

Figure 11-11. The three key areas of the Debug Navigator, shown while debugging an application

The resource usage is the only portion of the Debug Navigator that appears while the application
is running as well as when it’s paused. When you’re developing for iOS, memory management is
essential, but the task of ensuring that objects are correctly disposed of has been automated to
a large extent with the introduction of automatic reference counting (ARC) in iOS 5. Before Xcode
5, ARC could be turned on or off depending on your preference, but with Xcode 5 it ceased to be
presented as an option and is enabled by default for all iOS application templates. ARC basically
automates the disposal of objects when they’re no longer needed, handling almost all memory
management and therefore giving you a lot of insurance against memory leaks.


http:///

CHAPTER 11: Debugging and Analysis 353

The thread list and the call stack in each thread show which methods are currently being executed
by each thread. You can see from the expanded call stack for the main thread (thread 1) in

Figure 11-12 that the currently executed method is tableView:numberOfRowsInSection:, which was
called by [UISectionRowData refreshWithSection:tableView:tableViewRowData:]. This can make
understanding the flow of your application much easier.

v 4y Thread 1
== Queue: com.apple.main-thread (serial)

i

:'- { 1 @objc EUStates.StatesViewController.tableView (EUStates.StatesViewController)(ObjectiveC.UlTableView, numberOfRowsInSection : Swift.Int) -> Swift.Int
2 -[UlSectionRowData refreshWithSection:tableView:tableViewRowData:]
| 24 UlApplicationMain
'] 25 top_level_code
F1 26 main
| 27 start

Figure 11-12. A detailed look at the call stack of the main thread

An icon adjacent to each thread reflects the thread’s status:
No icon / blue icon: The thread is running normally.

Yellow icon: The thread is being blocked and is waiting for another thread to be
unlocked or a certain condition to be met.

Red icon: The thread has been suspended. While suspended, the thread doesn’t
execute any code when you proceed from the breakpoint.

The Debug Area

The debug area was covered in some detail in Chapter 3, so | won’t go over old ground. But unlike
in Chapter 3, the debug area has now come to life so you can interact with some of the controls and
features you learned about earlier in the book.

Referring back to Figure 11-10 and your own instances of Xcode use for a moment, notice that the
main output of the debug area at this time is the list of four variables that are relevant in the context
of the method you’re paused on. Figure 11-13 shows the control bar for the debug area. | explained
what each icon means in Chapter 3, but at that time you didn’t necessarily have the ability to see
what they do. As you go through the rest of this chapter, feel free to click the buttons to see their
effect and then stop and rerun the application to get back to the breakpoint.

E = > & i T |0h|< ] 0 EUStates.StatesViewController.tableView (E...berOfRowsinSection : Swift.Int) -> Swift.Int

= =

Figure 11-13. The control bar for the debug area


http:///

354 CHAPTER 11: Debugging and Analysis

The buttons that appear in the debug area, listed left to right, are as follows:
Hide: Show or hide the debug area.

Breakpoint toggle: Currently dark blue; toggles all breakpoints between enabled
and disabled.

Continue: Resumes execution of the application and then becomes a pause
button.

Step Over: Allows you to move out of the function being executed onto the next
instruction.

Step Into: Allows you to see in intricate detail each step of the application’s
execution. Think of the application as a film that’s been paused: each time you
click Step Into, you move a single frame ahead.

Step Out: Shows the next piece of code to be executed. Use this if you’ve
stepped too deep into your application’s inner workings.

Debug View Hierarchy: A new feature in Xcode 6 that helps you understand
where elements of your view may be sitting, either off-screen or on. Sometimes
a constraint may seem sensible enough when you add it but can have
unexpected consequences when your application runs; this tool is invaluable in
understanding what has happened.

Simulate Location: Explained later in the chapter.

In addition to these controls, the debug area has its own jump bar. This jump bar shows the threads
in the application and, in turn, each thread’s call stack, as shown in Figure 11-14.

[ ———— [—
CICN I IR AR = © e ool b (St Sstevontole XObchc U, rumbeOfiowiraction o) > St
3 tableView = (Umableview *) Ox00007ff59e  © 1 1 @objc EUStates. ontroller.! on...ri{ObjectiveC.UITableView, numberOffowsinSection : Swift.nt) -> Swift.int

L section = (In:) 0 | 2 -[Ul5ec Data Section:tableViewst Data:]

3 self = (EuStates.StatesviewController) QX000 | Jata rectFor tion:helghtCanBeGuessed:]

3

| 4 =|uITableViewRowData heightForTable]
] 5 -[UMableView _updateContentSize]
_| & -[UITableView didMoveToWindow]

1 7 -[un " nodi

Figure 11-14. The debug area’s jump bar

While trying to solve the current predicament of a table view with no content, you essentially have
two initial lines of investigation: the data source (is there anything for the table to display?) and

the application logic (did you correctly pass the information to the table view?). Looking at the
objects in the debug area as shown back in Figure 11-10, you have an item called self. Click the
disclosure indicator triangle next to it, and beneath self you see an array called states. Looking at
the information about states, it should be obvious where the fault lies: the states array, instead of
saying “15 values,” says “0 values,” meaning it hasn’t been populated. Before you investigate why
the array hasn’t been populated, there are a few more things to cover in relation to breakpoints: most
important, the Breakpoint Navigator.


http:///

CHAPTER 11: Debugging and Analysis 355

The Breakpoint Navigator

At this point you’ve only created a single breakpoint, which is fine for working through the current
problem, but in day-to-day development you’ll come across various issues that call for a range of
different breakpoints. You’ll often set breakpoints on key pieces of logic and turn them on or off as
required when flowing through an application. To manage these numerous breakpoints, you need to
take advantage of the Breakpoint Navigator (36+7), which is the seventh icon in the list of navigators
and resembles the shape of a breakpoint indicator.

Figure 11-15 shows the Breakpoint Navigator as it stands for this application. It gives you access to
all the breakpoints in the project from a single location, and you can also use it to create an array of
special breakpoints from the + symbol at the bottom of the navigator.

|
(11l

‘ B R QMO =D @

v B EUStates
1 Breakpoint

¥ = StatesViewController.swift
| [7] tableView(_:numberOfRowsInSection:) [

+ B(@®

Figure 11-15. The Breakpoint Navigator

In addition to a standard breakpoint, Xcode lets you add the following breakpoints, which are used in
specific scenarios:

Exception breakpoint: Triggers when any Objective-C or C++ exception is
thrown or when a specific C++ exception is thrown.

Symbolic breakpoint: Triggers when a specific method is triggered, which can be
refined to a specific method in a specific class or even a specific function.

OpenGL ES error breakpoint: Used when creating OpenGL ES-based
applications (mainly games). As with standard breakpoints, these can be
configured to be conditional, as | explain shortly.

Test failure breakpoint: Triggers when a unit-test assertion fails, giving you an
even greater level of granular analysis during testing.


http:///

356 CHAPTER 11: Debugging and Analysis

Xcode also gives you a large degree of control over the behavior of your breakpoints. Right-click the
breakpoint, as shown in Figure 11-16.

B2 Qo © Ep B g8 -

v P EUStates
1 Breakpoint

¥ = StatesViewController.swift

'Edit Breakpoint...
Disable Breakpoint
Share Breakpoint

Delete Breakpoint
Move Breakpoint To » 1

Breakpoint Navigator Help >

e o=

Figure 11-16. The contextual menu displayed when you right-click a breakpoint in the Breakpoint Navigator

You can use this menu to edit the attributes of the breakpoint; you can also disable or delete the
breakpoint. Sharing a breakpoint makes it available to other users of the same project. This menu
also continues Xcode’s great support for contextual help, providing numerous useful and relevant
pages on the Breakpoint Navigator and its features. Here, you focus on the edit ability.

Click Edit Breakpoint, and you're presented with a pop-over dialog, as shown in Figure 11-17. This
dialog first shows the file and line number where the breakpoint has been added, and then provides
several properties that can be set for the breakpoint:

Condition: A specific programming condition that must exist for the breakpoint
to trigger, such as the incremental number in a for loop being equal to 10.

Ignore: The number of times the condition needs to be met before it triggers
a pause.

Action: The action menu exemplifies Xcode’s flexibility as an IDE. When
the condition of the breakpoint is met, Xcode can perform any number of
combinations of the following actions:

Execute a piece of AppleScript

Capture an OpenGL frame

Issue a debugger command

Log a message to the console (or have it spoken to youl)
Run a shell command

Play a sound

Options: Although plural, offers only one option, which is to continue after the
breakpoint has triggered. This may seem counterintuitive, but if you just want
the actions you add to be executed and the program to continue, this saves you
from having to manually resume the application.


http:///

CHAPTER 11: Debugging and Analysis 357

» EUStates
1 Breakpoint

¥ = StatesViewController.swift
[} tableView(_:numberOfRowsinSection:) [

W StatesViewController.swift:57
Condition

H H
Ignore |0 || times before stopping ==
Action | Add Action | <7 y i
Options Automatically continue after evaluating actions :00007ff592803400

T Y YeLuun =y u
v self = (EUstates StatesViewController) Ox00007f59be96040
» UIKit.UITableViewController (UiTableViewController)

Figure 11-17. Editing a breakpoint

Conditional Breakpoints

Conditional breakpoints only trigger when certain conditions are met. In this case, it would be great if
even after you fix the current issue, the debugger would notify you any time you get to a breakpoint
and the states array is in a null state. Let’s make the breakpoint conditional and add some humor to
it at the same time (yes, breakpoints can be fun):

1. Right-click the breakpoint in the Breakpoint Navigator, and choose Edit
Breakpoint.

In the Condition box, type states.count == 0.
Click Add Action, and choose Log Message from the list.

Set the Message value to I’'ve fallen and | can’t get up at %B.

o ~ w0 Db

Change the radio button selection from Log Message To Console to Speak
Message. Your finished breakpoint should resemble that shown in Figure 11-18.

m EUStates override func numberOfSectionsInT
1 Breakpoint return 1
v = StatesViewController.swift
override func tableView(tableView

—___J-_ return states.count

 StatesViewController.swift:57

Condition | states.count ==

ew(tableView
Ignore [0 ||| times before stopping 'iew.dequeueF

Action | Log Message % +) (= | <
100007fc70401

I've fallen and | can't get up at %B
Log message to console @exp@ = expression roller) 0x00007
(=) Speak message %B = breakpoint name UITableViewCon
%H = breakpoint hit count A

2
Options Automatically continue after evaluating actions

+ |2 (@ D Aute T TS @

Figure 11-18. The customized breakpoint with a little added humor


http:///

358 CHAPTER 11: Debugging and Analysis

Rerun the application, and you’re greeted by a synthesized voice saying, “I’'ve fallen and | can’t

get up at table view _:numberOfRowsInSection.” Although this is amusing, the issue with the
application—that the array is empty —still has not been resolved. The fact that the array is empty
means that the initStates method isn’t being called before it tries to build the table. The real issue
is that the method isn’t called at all.

Switch back to the Project Navigator, and open StatesViewController.swift. Go to the viewDidLoad
method, and add the highlighted code to the method:

override func viewDidlLoad() {
super.viewDidLoad()

initStates()

Now rerun the application. It runs, and you’re dropped back to Xcode. This isn’t because of the
breakpoint—as you should have noticed, there was no voice expressing its need for assistance —but
rather because of a runtime error.

Runtime Errors

Although logic errors are frustrating, runtime errors are far more destructive to your application and
your reputation. Outside of your IDE, a runtime error will cause your application to crash, which will
annoy your users no end and harm your reputation as a developer of bulletproof software. Because
of the risk associated with software glitches, it’s essential to thoroughly test your software for
robustness.

The question here is, how do you address a runtime error? It’s often one of the hardest errors to
debug, but there is a wealth of information to help you get to the bottom of the issue. When the
application crashed, it dumped the exception details and the call stack into the console in the debug
area, as shown in Figure 11-19.

1 12 top_level_code

ra g UiRALAL UAUUUUUUULUEIH IS T TVLAPpLLALaLLU _TUIl] T wiJ
25 UIKit 0x000000010e348550 UIApplicationMain + 1282

26 EUStates 0x000000010d8dfcce top_level_code + 78

27 EUStates 0x000000010d8dfdoa main + 42

28 1libdyld.dylib 0x000000010fdc6145 start + 1

29 77?7 0x0000000000000001 Ox0 + 1

)
libc++abi.dylib: terminating with uncaught exception of type NSException
(1ldb)

All Output 2 O |

Figure 11-19. The console in the debug area after a runtime error has occurred


http:///

CHAPTER 11: Debugging and Analysis 359

When you first look at this mass of detail, it can be daunting, but it’s actually incredibly useful.
Starting at the end of the message, you can see that the application threw a standard NSException.
This isn’t particularly helpful at this point. Then you have the call stack in reverse order, meaning
you need to scroll up through the console to get to the point of failure. As you scroll up, look at item
number 4, as shown next:

4 UIKit 0x000000010e432084 -[UITableView dequeueReusableCellWithIdentifier:forIndexPath:] + 153

The call stack is like the black-box flight recorder on an aircraft: just like a real black box, it gives a
detailed log of what happened leading up to a crash. ltem 4 is significant because this is the last event
that happened before Xcode started reporting the calls to the exception handlers in items 3 to O,
which can largely be discarded.

Item 4 is significant because it shows a call to the TableView class’s dequeueReusableCellWithIdent
ifier:forIndexPath: method. If you open StatesViewController.swift from the Project Navigator

and scroll down to the cellForRowAtIndexPath method, you see that this is called in the first line of

the method.

Using Exception Breakpoints

To confirm your suspicions about this line, you can create an exception breakpoint to confirm the
true source of the exception. Open the Breakpoint Navigator, click the + symbol at the bottom of the
navigator, and then select Add Exception Breakpoint, as shown in Figure 11-20.

Add Symbolic Breakpoint...
Add OpenGL ES Error Breakpoint
Add Test Failure Breakpoint

+ B’ D Auto: | ©® O ®

Figure 11-20. Adding an exception breakpoint

A new breakpoint to capture all exceptions is added to the list of breakpoints, as shown in Figure 11-21.
All that remains is to run the application and see what Xcode can tell you about this particular issue.


http:///

360 CHAPTER 11: Debugging and Analysis

B & Q A © = b &
»n EUStates

2 Breakpoints
v = StatesViewController.swift

=)

[ All Exceptions

Figure 11-21. A breakpoint to capture all exceptions has been added to the Breakpoint Navigator

Run the application again. Immediately the new breakpoint intercepts the exception and confirms
your suspicions about the exception’s source, which is indeed the call to the dequeueReusableCellli
thIdentifier:forIndexPath: method, as shown in Figure 11-22.

B« = EUStates EUStates ' = St ller.swift » [ tablevi :numberOfRowsinSection:) a4 »

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
i 3 return states,count
}

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: N5IndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCellWithIdentifier("StateCell", forIndexPath: indexPath) as UITableViewCell Thread 1: breakpoint 2.1
let cellText = "\(indexPath.row): \(states[indexPath.row])"
cell.textlLabel?.text = cellText

return cell
}

Figure 11-22. The exception breakpoint pinpointing the source of the exception

So, now that you know the source of the exception, how do you resolve it? It isn’t always obvious,
but in this case, Xcode gives you all the answers needed to get the application up, running, and error
free. What’s more, the solution has been there since the initial exception.

Click the Breakpoints toggle button in the debug area to disable all the breakpoints, and then rerun
the application. It crashes back to Xcode and again provides a mass of detail about the crash. This
time, scroll up through the details in the console until you reach the top and see the following line:

2014-10-28 21:12:00.089 EUStates[38309:2650763] *** Terminating app due to uncaught exception
'NSInternalInconsistencyException', reason: 'unable to dequeue a cell with identifier StateCell -
must register a nib or a class for the identifier or connect a prototype cell in a storyboard'

Roughly translated, this line says that you told the dequeueReusableCellWithIdentifier method to
dequeue a cell called StateCell, which indeed you did in the first line of the cel1ForRowAtIndexPath
method:

let cell = tableView.dequeueReusableCellWithIdentifier("StateCell",
forIndexPath: indexPath) as UITableViewCell


http:///

CHAPTER 11: Debugging and Analysis 361

It’s saying that you haven’t set up a prototype cell in the storyboard with the identifier of StateCell,
so it doesn’t know what you’re asking it to do. As you may recall from looking at table views in
Chapter 8, you need to specify a reuse identifier for each cell you want to reference, so now you can
see what happens if you don't.

To resolve this exception and move one step closer toward a working application, open
main.storyboard from the Project Navigator. Select the prototype cell from the table view, and then
open the Attributes Inspector as shown in Figure 11-23.

. EUStates E..es ) M...rd ) M...e) » £ St..e St...er Table View Table View Cell < [, > 0O & O B @
Table View Cell
Style  Custom
Prototype Cells - Wentifier [ Reuse Identifier

Selection | Default
Accessory  None

Editing Acc. | None

Indentation 0lls 10 ;
= T

Figure 11-23. Selecting the prototype cell from the table view in the storyboard

In the Identifier attribute, match the cell identifier to the code to set the value as StateCell, as shown
in Figure 11-24.

Table View Cell | < /. > O ® g B ©

Table View Cell

ar

Style | Custom

C_] Identifier | StateCel||

a»

Selection | Default

Accessory | None -

4

Editing Acc. | None

Figure 11-24. Setting the cell Identifier attribute

It’s taken a while to reach this point, but it’s finally time to rerun the application and see it in action.
Click the Run button, and your application should run successfully, as shown in Figure 11-25.


http:///

362 CHAPTER 11: Debugging and Analysis

i0S Simulator - iPhone 6 - iPhone 6 / i0S 8.0 (12A365) '

Carrier & | 917 PM L U
0: Austria

1: Belgium
2: Bulgaria
3: Croatia

4: Gyprus [

Figure 11-25. The application, finally running!

Compile-Time Errors

So far, this chapter has discussed logic errors, where the application runs but doesn’t work, and
runtime errors, where the application runs but then crashes. In both situations, when Xcode is
initiated to run the application, the compiler is happy that all the code’s syntax is correct, and it
compiles the application.

A compile-time error occurs when the compiler is processing the code and encounters an issue with
either the syntax of the code or one of the linked files. The good news is that often, compile-time
errors are easily overcome, and many times Xcode even helps you overcome them by suggesting
solutions.

Let’s start to introduce some syntax errors into the application so you can see this in action. Open
StatesViewController.swift from the project, and scroll down to the viewDidLoad method. After the
super.viewDidLoad() line of code, let’s specify a background color for the table. Add the highlighted
code exactly as shown—the casing of words is extremely important:

override func viewDidLoad() {
super.viewDidLoad()

self.tableview.backgroundColor = UIColour.redColox()?

initStates()
}

Instantly, Xcode shows you that you have made a mistake by indicating the error with a red circle
next to the line, as shown in Figure 11-26.


http:///

CHAPTER 11: Debugging and Analysis 363

override func viewDidLoad() {
super.viewDidLoad()

0 self.tableView.backgroundColor = UIColoyr.redColor()?

initStates()
Figure 11-26. Xcode indicating an error with the syntax

Just to prove that you’ve created a compile-time error, try to run the application; it will fail and report
the failure to build in the Activity Bar, as shown in Figure 11-27. Notice that the number of compile-
time errors is reflected in the Activity Bar as a red circle with a white exclamation mark in it, next to
the number of issues. To get an overview of the issues, click the red circle, which takes you to the
Issue Navigator.

s StatesViewController.swift
EUStates | Build EUStates: Failed | Today at 21:22 0:

Figure 11-27. The Activity Bar reflecting the compile-time error

The Issue Navigator

This small issue serves two purposes: it shows you how Xcode spots syntax issues, and it serves
as a great example that although Swift is a very comprehensive and advanced languagg, it has
plenty of room for growth. You’ve actually created two errors in this single line of code; in Swift,
Xcode identifies that there is a syntax error and shows you the line the error occurs on. If you were
deliberately creating this error in Objective-C, Xcode would spot that there were two errors and offer
to fix both for you. No doubt Apple will continue to develop the language throughout version 6 of
Xcode and through each successive release, but for now, you have to work things out for yourself.

To get an overview of any warnings or errors in the project, use the Issue Navigator ( +4), as shown
in Figure 11-28.

BR QNS 2 o B
D

‘ v A EUStates o

i
“ % 1issue

| ¥ i StatesViewController.swift

Figure 11-28. The issue listed in the Issue Navigator


http:///

364 CHAPTER 11: Debugging and Analysis

As you can see, Xcode has seen the misspelled class name and is effectively saying it doesn’t know
what you’re referring to. Go into the code editor and correct this by removing the u from the

class name so that it says UIColor. Although the class name is fixed, Xcode now picks up on the
other issue.

Issues that are highlighted with a white dot in the red circle in the Issue Navigator can be fixed
automatically by Xcode. Select the Swift Compiler Error from the list, and you’re directed to the
specific point in the code that Xcode feels is in error, as shown in Figure 11-29.

| B2 Q A © m o B (BE| <« » | B musates EUStates + - StatesViewController.swift » [ viewDidLoad) 40V-
| @ syTyee import UIKit
v A E"i‘ls‘:z:t“ 0 class StatesViewController: UITableViewController {
¥ g StatesViewController.swift let states = NSMutableArraylranacitv: 15)
o Issue ooperand of postfix 7 should have optional type; type is 'UlColor'

override func viewDidLoad() -
super.viewDidload() | i
self.tableView. backgroundColor = UIColor. redColor()

Operand of postfix "7 should have optional type; type is "UiColor
initStates()

Figure 11-29. The issue detail pop-over, explaining the issue and offering to fix it

As you can see, Xcode adds a pop-over explaining what the issue is, and it also gives a suggested
fix. Click the Fix-it option and Xcode corrects the syntax issue. Immediately the Activity Bar loses the
error indicator and the Issues Navigator says No Issues.

And that is how easy Xcode makes it to manage compile-time errors! Sometimes you will find it
slightly more challenging than this, but powerful code completion coupled with a highly responsive
editor and debug system largely prevent errors or allow you to resolve them the second they crop up.

Tools to Help with Debugging

So far, this chapter has looked at the debug tools that are built into Xcode, but you can also access
a couple of extremely useful tools through the Simulator to help you debug your applications.
Although these tools don’t specifically debug anything, they allow you to test certain functions of
your application in a way that can trigger an exception and therefore let you debug the error before
you release your product.


http:///

CHAPTER 11: Debugging and Analysis 365

In the next section, | explain the tools you can use to help debug Map Kit-based applications and
applications that have a print function. Rather than write another application to demonstrate these
features, let’s use the default iOS Maps application.

To access Maps, first make sure you stop EUStates, which returns the Simulator to the home
screen—but not the first page. To get to the first page, open the Simulator and then use the mouse to
slide the pages across until you reach the page with the Maps icon on it, as shown in Figure 11-30.

i0S Simulator - iPhone 6 - iPhone 6 / iOS 8.0 (12A365)
Carrier = 10:14 AM

i

Calendar Maps Game Center

Newsstand Health Passbook Settings

Figure 11-30. The main icons all appear on the first page in the Simulator

Run the Maps application from the Simulator. Depending on previous usage of both the Simulator
and Xcode, you should see a view resembling that in Figure 11-31 a map with no user location and
no movement.


http:///

366 CHAPTER 11: Debugging and Analysis

|

Carrier =

=

IRELAND

| dl

_i0S Simulator - iPhone 6 - iPhone 6 / iOS 8.0 (12A365)

CuDUb“" Lrverpcnlo X

10:15 AM

Dundee

Glasgow_____] gEdinburgh
castle
1 Tyne
~.Belfast
W
UNITED

KINGDOM
9 ~Manchester

(o)
heffiel
Stoke-on-Trent .5 " c
O _Derby
rw‘fl!innir\gham
e,
oL . London -
yne e
Cardiff Bristol
Sguthampton®

Plvmouth.u

Figure 11-31. The default starting point in the Maps application

Debugging a Location

The challenge when developing a Map Kit-based application is your location. Unless you’re
commuting, using a physical device won'’t really help you develop your application because you
want to try the application in different locations—perhaps even at different speeds, such as when
driving or cycling—and using a MacBook while cycling isn’t advisable!

M

Because of this conundrum, Apple introduced location simulation in Xcode and the Simulator, which
lets you use preset locations and scenarios or create your own. As shown in Figure 11-32, you can
debug the location by selecting Debug » Location and then selecting Apple. Aimost immediately,

a blue circle appears over California. Clicking the arrow in the bottom-left corner of the Maps
application zooms you to Apple headquarters in Cupertino.


http:///

CHAPTER 11: Debugging and Analysis 367

Hardware Debug Window Help

Toggle Slow Animations in Frontmost App 38T ) (12A365) |

Color Blended Layers . I
0| - Color Copied Images U
77 Color Misaligned Images | =
::; ; Color Offscreen-Rendered
j:‘: . Open System Log... %8/
/¢ © Trigger iCloud sync {8l

o I S \one
impo — |

B Custom Location...
class StatesVie gppw
let states d + City Bicycle Ride
Aberdeen C|w Run

override fil =

superay Freeway Drive
“Bundee _’_r—

self.t8

Glasgow __ pEdinburgh N o
initSta

Figure 11-32. Accessing the options for debugging location from the Simulator

Next, return to the Debug » Location menu and select Freeway Drive. The simulated position
starts speeding around the Junipero Serra freeway, which is a great way to test an application that
measures speed or distance.

Note If nothing happens, click the location arrow in the bottom-left corner of the Maps application. It will
request access to your location and then begin tracking.

To simulate a specific location, return to the menu and choose Custom Location. From here you can
specify a longitude and latitude as the user’s location. Specify a longitude of 51.62228 and a latitude
of -3.943491 to put the user in the middle of the city of Swansea. Simulating location is great for
applications that use routing or that perhaps make recommendations based on a location.

Print Debugging with the Printer Simulator

Adding print functionality to your application is a great way to enrich its capabilities. Although the
ability to print from in an application isn’t overly complicated, you need to be able to test the actual
print functionality. If you don’t have a printer that supports Air Print, the technology for printing from
an iOS device, fear not, because the Printer Simulator can solve all your worries.

Unfortunately, the Printer Simulator is no longer bundled with Xcode and must be downloaded from
the Apple web site. In Xcode, go to Xcode » Open Developer Tool » More Developer Tools, which
prompts you to sign in with your Apple developer credentials.

Once you have done this, look for the newest release of Hardware 10 Tools for Xcode; the releases
are in reverse chronological order, so the newest version is near the top. Click the item, and, on the
right, you’ll see a .dmg file for download, as shown in Figure 11-33. Note that | am using Xcode 6.0.1
final release, not the 6.1 beta.


http:///

368 CHAPTER 11: Debugging and Analysis

Categories
™ Applications (12)

v Developer Toals (255)

o 105 (22)
o osx (93
05 X server (9)
o safari (1)

Description Release Date

» Hardware 10 Tools for Xcode - Xcode 6.1

Oct 16, 2014

¥ Hardware 10 Tools for Xcode - September 2014 Sep 2, 2014

This package includes additional naruware ifo tools formery nundled in the xme
installer. These tools include: Apple Bluetooth Guidelines Vali

Explorer, HomeKit Accessory SImuIalor 10 Registry Explorer, Nelwork Link
Conditioner.prefpane, PacketLogger and Printer Simulator. These graphics tools
support running on OS X 10.10 and OS X 10.9.

Figure 11-33. Downloading the Hardware 10 Tools for Xcode

Download and then open the .dmg file. Open it, and then open the Printer Simulator. It launches as a
simple console and reports that it has set up several types of printers,

3. HarwarelOTools September 2014
[ c

3(4.64 MB)

as shown in Figure 11-34.

en0e

Printer Simulator

K €

Clear Log Show in Finder Load Paper

Filter

[29/0ct/2e14:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2814:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:
[29/0ct/2014:

10:32:24
10:32:24
10:32:24
10:32:24
1@:32:24
18:32:24
19:32:24
10:32:24
18:32:24
10:32:24
10:32:24
19:32:24
10:32:24
10:32:24
19:32:24
18:32:24
18:32:24
10:32:24
10:32:24
19:32:24
18:32:24
18:32:24
10:32:24

+aeee]
+0008]
+aae]
+eee]
+ee0e]
+8000]
+8000]
+a000]
+aaea)
+ao0a)
+8000)
+8000]
+2a08]
+a000]
+a008]
+aa0e]
+a000]
+ee0e]
+a000]
+aeee]
+ao0e]
+a000]
+a000)

Listening for connections on 8.@.8.0:8632.
Listening for connections on [::1):8632.

[Printer Simulated InkJet] Registered "Simulated InkJet @ Matthew's MacBook Pro" for LPD on port @.

[Printer Simulated Inklet] Registered “Simulated InkJet @ Matthew's MacBook Pro” for IPPS on port 8632,

[Printer Simulated InkJet] Registered "Simulated InkJet @ Matthew's MacBook Pro” for IPP on port 8632,

[Printer Simulated 2-Sided InkJet] Registered "Simulated 2-Sided InkJet @ Matthew's MacBook Pro” for LPD on port @.
[Printer Simulated 2-Sided InkJet] Registered “Simulated 2-Sided InkJet @ Matthew's MacBook Pro™ for IPPS on port 8632,
[Printer Simulated 2-Sided InkJet] Registered "Simulated 2-Sided InkJet @ Matthew's MacBook Pro" for IPP on port 8632.
[Printer Simulated Laser] Registered "Simulated Laser @ Matthew's MacBook Pro" for LPD on port @,

[Printer Simulated Laser] Registered "Simulated Laser @ Matthew's MacBook Pro" for IPPS on port B632.

[Printer Simulated Laser] Registered "Simulated Laser @ Matthew's MacBook Pro" for IPP on port 8632,

[Printer Simulated Color Laser] Registered "Simulated Color Laser @ Matthew's MacBook Pro" for
[Printer Simulated Coler Laser] Registered "Simulated Color Laser @ Matthew's MacBook Pro" for
[Printer Simulated Color Laser] Registered "Simulated Color Laser @ Matthew's MacBook Pro” for
[Printer Simulated Label Printer] Registered "Simulated Label Printer @ Matthew's MacBook Pro”
[Printer Simulated Label Printer] Registered "Simulated Label Printer @ Matthew's MacBook Pro”
[Printer Simulated Label Printer] Registered "Simulated Label Printer @ Matthew's MacBook Pro”

LPD on port @.

IPPS on port B632.
IPP on port B632.

for LPD on port @.
for IPPS on port 8632.
for IPP on port BB32.

[Printer Simulated 36" Roll Printer] Registered "Simulated 36" Roll Printer @ Matthew’'s MacBook Pro" for LPD on port 0.
[Printer Simulated 36" Roll Printer] Registered "Simulated 36" Roll Printer @ Matthew's MacBook Pro” for IPPS on port

[Printer Simulated 36" Roll Printer] Registered "Simulated 36" Roll Printer @ Matthew's MacBook Pro" for IPP on port B8632.

[Printer Save Original to Simulator] Registered “Save Original to Simulator @ Matthew's MacBook Pro" for LPD on port 0.
[Printer Save Original to Simulator] Registered “Save Original to Simulator @ Matthew's MacBook Pro" for IPPS on port

[Printer Save Original to Simulator] Registered "Save Original to Simulator @ Matthew's MacBook Pro” for IPP on port 8632.

Figure 11-34. The Printer Simulator running and providing a selection of printers

The Simulator may not be what you expected, but it's extremely powerful and can simulate an
incredible number of scenarios. To see an example of its power, click the Load Paper icon from
the toolbar. A dialog slides down, showing all six of the simulated printers, with the options of
customizing their functions and paper sizes. Dismiss the dialog by clicking OK.

To use one of these virtual printers, return to the home screen in the Simulator and choose the

Photos application. It should load with four sample images in the library, as shown in Figure 11-35.


http:///

CGHAPTER 11: Debugging and Analysis

iOS Simulator - iPhone 6 - iPhone 6 / iOS 8.0 (12A365)

Carrier ¥

< Collections

July 14

Figure 11-35. The Photos app with default photos

10:52 AM

Moments

Q  Select

Share

369

Open a photo, and click the Share icon in the bottom-left corner. The sharing action sheet appears,

as shown in Figure 11-36.

uﬁ ®0 -

Mail Twitter

Facebook

U N R

Copy Slideshow

Assign to
Contact

Flickr More

Use as Print
Wallpaper

Figure 11-36. The i0OS sharing menu

From this action sheet, select the Print option. You’re presented with the standard iOS print dialog,

as shown in Figure 11-37.


http:///

370 CHAPTER 11: Debugging and Analysis

i0S Simulator - iPhone 6

iPhone 6 / iO5 8.0 (12A365)

Carrier ¥

Cancel

Printer

1 Copy

Figure 11-37. The iOS printer options

Printer Options

10:56 AM -

Select Printer

Choose the first option to select a printer. You’re then presented with a list of simulated printers;

choose Simulated Inkjet, and click the Print button. After a brief pause, the Printer Simulator springs
to life. Details about the print job appear in the console; then the Preview application appears,
displaying the results of your print job, as shown in Figure 11-38.

enea

A

L

Clear Log Show in Finder Load Paper

Printer Simulator

Filter

R9/0ct/2014:10:32: 4

Fo ]

Figure 11-38. The output of the simulated print job

+b004]
+o0ea]
]
oa0d ]
b0
bl
]
2000 ]
+o0ea)
+o0d)
+o0ea]
o)
+daea]
0]
i)
o0
a0
+0aea]
+adi]
+oad]
]
000
b0
v
+boea)
]
ea0 |
i)
+bana]
oo
sdaea]
veona]
]
+bded]

[Printer Simalated 36 Roll Printer] Registered “Simulated 36"
[Frinter Simslated 36 Rall Printer] Registered "Sisulated 35"
[Printer Save Original to Simvlator] Registered “Save Origimal
[Printer Save Original to Simylator] Registered "Save Original
[Printer Save Original to Sisslater] Registered “Save Original

[Client
[Client
[Client
[ELient
[Client
[Client
[Client
[Client

n
2
1
]
E]
3
4
3

Encrypting comnection.
Encrypting comnection.
Connection from 192.168.0.11 now encrypted.
Connection from 197.163.9.11 now encrypted.
Eacrypting comnection.
Conmection from 192.163.0.11 now encrypted.
Escrypting comnection.

ENITT g nwLiew 3 reoe
Roll Prister @ Matthew's MacBeok Pro®
Roll Prister @ Matthew's MacBeok Pro®
to Sisulator @ Matthew's MacBeok Pro®
to Simulator @ Matthew's MacBeok Pro®
o Sisulator @ Matihew's MacBookh Pro®

for
for
for
for
for

TR
IPPS on port
IPP on pert
LPD on pert
IPPS on port
IPF on pert

Accepted "Photo” fer primting (printer “Simslated InkJet®, job sR46243024, image/jpeg, 1 pages)
[Printer Simalated Inklet] Accepled “Phote™ for printisg (job #245243024, image/jpeg, 1 pages)
[Job 246343024) Accepted “Photo” for printing (prieter “Simulated Inklet®, image/ipeg, 1 pages)
[Printer Simalated InkJet] Printing job P246243224 (“Phote™).
[Job 246243024) Printing “Phote™.

lJob 246343024) header.bitsPerPicel = 24

[Job 246243824] header.colorSpace = 1

[Job 246243024] header.duplextode = 1

[Job 246243024) header.printleality = 5

[Job 246243024) header.mediaType = @

[Job 246243824) header.inputSlot = @

[Job 246343824) header.outputfin = @

[Job 246743024] header.finishings = @ @ 0 @

[Job 246243024) hesder.width = 2400

LJob 246243024] header.height = 3400

[Job 246243824] header.resolution = 609

[Job 246243024] xres = 620

[Joh 246243024) yres = GO0

[Client 4] Conmection from 192.168.0.11 now encrypted.
Sisulated Inklet: Converting job §246243024 to POF for viewing,
Sisulated Inklet: Converted 1 pages to POF.

3ok

Viewing "/va L L b

[T/PrinterSimulator,Ving jA/ inkjet-246243024~


http:///

CHAPTER 11: Debugging and Analysis 3n

Setting up printing for your application is often done blind, with no visual indication of the output
until you print, so being able to quickly test this functionality and debug any issues (such as missing
pages) is invaluable. The depth offered by the Printer Simulator means that you can test print
functionality on a range of device types at different resolutions and have a high degree of confidence
in your finished product—and you also aren’t contributing to the erosion of the rainforests with
reams of test prints.

Playground

Accompanying the announcement of the Swift programming language was the Playground feature
of Xcode 6. A playground is effectively a code sandbox or scratchpad where you can drop in, write
some Swift code, and experiment with it outside the confines of your application.

This can be great for learning the language, or even for more seasoned developers who want

to perfect a regular expression, for example, or see a visual representation of the curve they’re
calculating. Playgrounds can be saved and shared among friends and colleagues, meaning you no
longer have to rely on code snippets or large projects as ways of sharing code—you can also share
playgrounds. And because Xcode is free, playgrounds surely lend themselves to computer science
in schools as a great way of writing a piece of logic without having to build an interface or make full
use of an IDE.

There are literally hundreds of uses for playgrounds. Although they don’t strictly have to be used for
debugging purposes, they can certainly help when you hit a sticky patch in your application’s logic.

Let’'s take a moment to demonstrate the power of playgrounds. Start a new playground in Xcode by
going to File » New » Playground. Then enter a name for your playground: | chose BeginningXcode,
as shown in Figure 11-39. Click Next, and specify a location to save the playground.

oo e A

=) =
= Choose options for your new file:

The target platform for the playground

Name | BeginningXcode

Platform: = i0S

Cancel Previous Next

Figure 11-39. Setting the options for the playground


http:///

372 CHAPTER 11: Debugging and Analysis

After saving your playground, you arrive at a screen with a couple of lines of code, as shown in
Figure 11-40. This is the playground: on the left is a code editor, and on the right is a light grey pane
that shows relevant details of the code, such as the stored value or the number of times a loop has run.

e 0o ® BeginningXcode.playground

"

B 1 ) B BeginningXcode.playground » No Selection
// Playground - noun: a place where people can play

import UIKit

var str = "Hello, playground” Hello, playground

[

Figure 11-40. The default contents of the playground

Okay, so the playground is open, What do you do next? Let’s start by taking a look at how the
playground reacts to a few simple functions.

Drop down a few lines from the default code, and type the following:

var sum = 4
for var 1 = 0; 1 < 6; i++ {
sum += sum * i

sum

As you type, notice that familiar things like code completion work exactly as they do in the regular
Xcode code editor. Notice as well that the grey bar to the right of the code starts to fill up.

The grey bar shows that the starting value of sum is 4, that the loop executes 6 times, and that
the finishing value of sum is 2,880. Notice that you didn’t have to tell the playground to print to the
console—you just wrote the variable name.


http:///

CHAPTER 11: Debugging and Analysis 373

You’re probably starting to see how this can be extremely useful; playgrounds are incredibly
powerful. Let’s move on and add some far more complicated code and see what happens. Suppose
you want to draw a circle in your view for some reason. Below the last block of code, add the
following code to your playground:

var bounds = CGRect(x: 0,y: 0,width: 200,height: 200)
var center = CGPoint(x: 100, y: 100)
var radius = CGFloat(100.0)

var path:UIBezierPath = UIBezierPath()
path.addArchWithCenter(center,
radius: radius,
startAngle: CGFloat(0),
endAngle: (CGFloat(M_PI) * 2),
clockwise: true)
path.stroke()

This code creates a very simple circle with a radius of 100 in the center of a 200 x 200 invisible area.
The playground lets you go beyond seeing the values in variables: you can visualize objects and
even complex animations.

Hover over the last line in the grey bar on the right which should say 5 path elements, and notice
that to the right, two icons appear: an eye and a hollow circle. Click the eye icon; as shown in
Figure 11-41, you can use Quick Look to see the result of your code! Pretty neat, but there is much
more you can do.

| var bounds = CGRect(x: @,y: @,width: 200,height: 20@) %0y 0w 200 h 200}
var center = CGPoint(x: 50, y: 58)
var radius = CGFloat(100.@) —

var path:UIBezierPath = UIBezierPath() //’ \
path.addArcWithCenter(center, 4 R
radius: radius, /
| startAngle: CGFloat(@),
endAngle: (CGFloat{M_PI) = 2), [ \
clockwise: true) ' '
path.stroke() | |

Figure 11-41. Using Quick Look to preview the circle

Let’s say you want to modify values, add color information, or animate the circle drawing. Clicking
the Quick Look icon each time would quickly become a pain. Move the mouse back to 5 path
elements, and this time mouse over the empty circle, which changes to a plus symbol. Click it.

An Assistant Editor pane appears to the right of your code with your perfect blue circle in it, as
shown in Figure 11-42. If a massive console element appears first, dismiss it by clicking the X in the
top-left corner so that you can focus on your circle.


http:///

374 CHAPTER 11: Debugging and Analysis

YT & BeginningXcode. playground

[ Tomeing [ Sagnaisgience. playground (Femebra) .

Figure 11-42. The circle shown in the Assistant Editor

Try removing the * 2 from the line endAngle: (CGFloat(M_PI) * 2), and see that immediately the
circle changes to a half circle.

Hover over the line in the for loop that appears as (6 times) in the grey bar, and again click the plus
symbol. Notice that the playground renders a nice graph showing the value of sum during each loop,

as shown in Figure 11-43. This is incredibly useful when you’re trying to animate something and you

want it to accelerate rather than move at a constant speed.

ann ® BeginningXcode.playground "
B @ BeginningXcode.playground © No Selection [ B (] Timeline @ BaginningXcode playground (Timeling) +
/7 Playground - noun: a place where people ean play
t UIKit
ar str = "Hello, playground Hello, playground
4 4
=_ Mt {6 times)

2,380

n0e) 0y 0 w200 h 200
50 y 50
100.0
var path:ULB ath = U 0 path elements
ath. sodArcWithCenter(cer 3 path elernents 3,000
radius: radius,
startAngle:
endAngle: (
clockwise: true
th.stroke(} 3 path elements C 2,000

Figure 11-43. Viewing the values created in the for loop as well as the circle

That’s it for playgrounds in Beginning Xcode. If you’re moving on to a Swift programming language
book or learning from the free Swift programming book that Apple released, go straight to the
playground and start tapping out the examples: tweak them, break them, and see what happens.


http:///

CHAPTER 11: Debugging and Analysis 375

Summary

Until IDEs develop artificial intelligence and can accurately predict what programmers intend to do in
our code and automatically resolve any errors, there will be a need to debug code. It’s rare to write
something that works fine the first time, so knowing how to debug an application in Xcode is an
essential skill.

This chapter presented a detailed look at how Xcode can be used to resolve various issues with
applications. You also learned how to use Simulators to put the functionality of the application to the
test when physically moving or when owning additional hardware would otherwise be required.

Specifically, in this chapter, you learned the following:
About the types of errors that can occur
How to use breakpoints effectively to investigate logic and runtime issues
How the call stack can be interpreted to lead to solutions for runtime errors

How the Breakpoint and Issue Navigators can help you efficiently debug an
application

How to use the Location and Printer Simulator features to assist with testing and
debugging an application

Using playground to try things with Swift code outside of a specific application

You now move into the final part of the book. Chapter 12 looks at the fine level of integration Xcode
has with the popular version-control software called Git. You find out how it can help you work better
in a team of developers and give you the ability to roll back changes.


http:///

Part 3

Final Preparations and
Releasing


http:///

Chapter

Version Control with Git

Chapter 11 focused on errors and exceptions and how you can use the tools in Xcode to root
them out. You looked at the three most common types of errors and exceptions: logic, runtime,
and compile-time errors. You also looked at how to make sense of the call stack when your
application crashes.

The focus of this chapter is version control, and specifically how Xcode integrates with the Git
source code management system. Xcode stands out from other IDEs in this department. Its
integration is so fine and complete that it’s a joy to use and so intuitive you’ll wonder why you
haven’t used it before.

As you work through the intricacies of version control, you’ll create a voice-recorder application
called HearMeNow. This application has Record and Play buttons initially, but later you’ll branch the
project and modify it to play back the voice at half speed —perfect when trying to listen to people like
me who talk too quickly. It’s important to note that although the application will run without error in
the Simulator, you need a physical device with a microphone to see it working with your recordings.

Why Use Version Control?

Actually, the question when it comes to version control is, why not? Have you ever developed a
solution, taken a vacation, and, when you returned, discovered that while you were away, a member
of your team made a small change and suddenly there were a dozen bugs as a consequence? If so,
version control would have saved the day.

Version-control software, also known as source control or revision control, allows you to track and
manage changes made to code over time. If something suddenly stops working, you can compare
it to an older version to see what’s changed and hopefully get to the bottom of what’s gone wrong.
Version control makes it easy to see what’s changed between releases. Changes to a file are
highlighted and logged against a specific user, and can even hold comments.

379


http:///

380 CHAPTER 12: Version Control with Git

A wide variety of version-control systems are on the market, and unlike many software markets,
some of the best systems are open source. Most software-development houses use one of several
tools for version control, depending on the language they write in or their preference. The most
popular systems are Git, Subversion (SVN), and Microsoft’s Team Foundation Server (TFS) or Visual
Studio Online. Xcode uses the extremely popular Git system to provide version control.

What Is Git?

If you’re British, a git is that colleague who steals your lunch, even though it had your name written
on it in capital letters with black marker. The Git source-control management system actually has a
little to do with this vernacular in its origins. It’s the brainchild of the principal developer of the Linux
kernel, Linus Torvalds. When none of the version-control packages available at the time supported
his vision of robust distributed development of the Linux kernel, Torvalds wrote his own system: Git.
He names all of his software after himself and has quipped that this one was no different, so read
into that what you will. The software is quite amazing: Torvalds designed Git to be fast, efficient, and
robust, and it excels at all three.

Git is notable as a system because it can be used either locally for version control or with a server
to allow global collaboration on a piece of software. Online systems such as GitHub and Bitbucket
provide free Git repositories so you can back up your project online and invite people to take a copy
by cloning, branching, or forking the project. Another notable feature that separates Git from other,
similar systems is that when you make a change, Git snapshots the project, giving you a true point-
in-time view; other systems simply track changes on individual files.

When talking about Git, many terms may sound strange or complicated. Let’s look at these terms to
prove there’s nothing to be afraid of:

Repository: Also known as a repo, a repository encapsulates your project,
storing the different versions of the files and folders and tracking the changes.

Commit: When you’ve made changes to a file and want to put them into the
repository, you commit those changes.

Branch: Branching a project allows you to work on a duplicate of that project
in the repository without altering the original. Typically this is done when you

want to add a new feature: you branch off from the original project, make the
changes, and then merge the branch back into the master branch or trunk.

Fork: If you want to work on a project but have read-only access, or you want to
send a project in a brave new direction, forking is a good idea. This allows you
to duplicate the repository, but it’s reserved for online services such as GitHub
or Bitbucket.


http:///

CHAPTER 12: Version Control with Git 381

Creating the Project

Because it’s suitable for the vast majority of iOS projects, you yet again use the Single View
Application template for this chapter’s project. The project focuses on using the built-in microphone
of an iOS device to record a voice or sound and play it back. Here are the steps:

1. Open Xcode, and create a new project by going to File » New » New Project
(&B+Shift+N) or choosing Create A New Xcode Project on the Welcome screen
(38+Shift+1).

2. Select the Single View Application Template, and click Next.

3. Name the project HearMeNow, substitute your personal information,
ensure that Devices is set to iPhone, and leave the other options set to their
defaults, as shown in Figure 12-1. Click Next.

Choose options for your new project:

Product Name: HearMeNoM
Organization Name: Matthew Knott
Organization Identifier: com.mattknott
Bundle Identifier: com mattknott. HearMeNow
Language: | Swift
Devices: | iPhone

Use Core Data

Cancel Previous Next
Figure 12-1. Setting up the initial options for the project

4. Click the Source Control check box at the bottom of the Save dialog.
This specifies that the project should use source control. Next, specify that
you want to create a Git repository locally by choosing My Mac from the
drop-down list, unless you have a server set up to house Git repositories.
Be sure your settings match those shown in Figure 12-2, and click Create.
(Don’t worry if you don’t see the Add To option—it comes and goes
depending on whether you have other workspaces open).


http:///

382 CHAPTER 12: Version Control with Git

Source Control: ¥ Create Git repository on = My Mac
under version control

Xcode will place your project L

New Folder Cancel Create

Figure 12-2. Choosing to create a Git repository locally on the Mac

Note For this chapter, you create a local Git repository on the Mac. Many development teams choose to use
a dedicated server or an online solution, because doing so gives everyone access to all the team’s projects
and greatly simplifies backups. Online solutions are examined later in this chapter.

5. The project and a local Git repository have now been created for the project.
Take a moment to select Source Control from the menu bar. This menu is
where you perform the different actions covered in this chapter. As you can
see at the top of the menu in Figure 12-3, you’re working on the master
branch, which is fine because you just started the project.

Product Debug Source (o.,1:|l] Window Help

HearMeNow: Read 0 HearMeNow — " master >
o Check Out...
Genera ca  Commit... N3#C  hases Build Rules
Push...
¥ Identity Pull... %X

Refresh Status

Discard All Changes...

History...

T P—— =

Figure 12-3. The Source Gontrol menu

6. Select History from the Source Control menu. Figure 12-4 shows the history
of the project in a source-control context. When you created the project, a
shapshot of that start point was automatically created: it’s called the initial
commit. Click Done to close the dialog.


http:///

CHAPTER 12: Version Control with Git

Project history: Q~ Search commit r
Today

Matthew Knott

Initial Commit

Done

Figure 12-4. The dialog showing the history of the project under Source Control

Note Depending on the version of OS X, when you open the History dialog you may be prompted to allow
access to contacts. This is so that Xcode can try to identify who made changes to the project and the
repository.

The project has been created and is under source control. You’re ready to begin building the
interface for the project and writing the code, which uses of a framework c