
Blender
for Animation
and Film-Based
Production
Michelangelo
Manrique

Computer Game Development

Blender for Animation and Film-Based Production explores why Blender is ideal for
animation films. It demonstrates Blender’s capability to do the job in each production
department. Whether you are a beginner or more advanced user, you’ll see why Blender
should be taken into consideration in animation and film production.

This Blender reference will help you:

•	 Manage your projects from start to finish

•	 Understand the different stages in any animation production

•	 See how studios work and develop their animation projects

Describing the versatility and power of Blender, the book shows you why studios should
incorporate Blender in their pipeline. It avoids tedious tutorials and incomprehensible
examples. Instead, the book guides you toward finding efficient solutions for issues
with your production files or pipeline. It familiarizes you with the animation industry and
explores the risks involved in choosing Blender as a primary tool in animation studios.

Features

•	 Includes examples of using the open-source software Blender in professional
productions

•	 Shows how versatile Blender’s features are in film/animation applications

•	 Provides useful information on setting up your home studio and producing a
successful project using Blender or other open-source software

•	 Presents basic principles of digital animation that can be used in any 3D application

K21397

A N A K P E T E R S B O O KBlender
for Animation
and Film-Based
Production
Michelangelo
Manrique

Blender for Anim
ation and Film

-Based Production

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A N A K P E T E R S B O O K

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140624

International Standard Book Number-13: 978-1-4822-0475-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

To my lovely wife and children.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface, xiii

Author, xv

CHAPTER 1 ▪ Why Blender? 1

CHAPTER 2 ▪ History of Blender 9
2.1 BLENDER’S ROAD MAP 10

CHAPTER 3 ▪ Blender User Interface 15
3.1 START-UP BLENDER 16

3.2 CONTROLS AND BUTTONS 19

3.3 EDITOR SYSTEM 21

.. Editor’s Header 
.. Systematize Editors 
.. Workspace Layout 

... Configuring our Workspace Layout 
.. Scenes 

... Configuring Our Scene 
3.4 EDITOR TYPES 26

.. D View 
.. Timeline 
.. Graphic Editor 
.. DopeSheet 
.. NLA Editor 
.. UV/Image Editor 
.. Video Sequence Editor 
.. Text Editor 
.. Node Editor 

vii

www.allitebooks.com

http://www.allitebooks.org

viii Contents

.. Logic Editor 
.. Properties Editor 
.. Outliner 
.. User Preferences 
.. Info Window 
.. File Browser 
.. Console 

3.5 MODES AND CONTEXT 45

3.6 INTERNATIONALIZATION 48

CHAPTER 4 ▪ Blender in a Digital Studio Pipeline 49
4.1 USING BLENDER FOR PREPRODUCTION TASKS 51

.. Developing the Script with Blender 
.. Using the Video Sequence Editor to Build the Storyboard 
.. Creating Concept Art 

4.2 USING BLENDER FOR POSTPRODUCTION TASKS 54

4.3 ORGANIZE THE PROJECT IN DISK 56

4.4 BLENDER AND THE OPEN MOVIES 57

CHAPTER 5 ▪ Modeling Your Main Character 61
5.1 MODELING IN BLENDER 64

5.2 MODIFIERS 65

5.3 MAKING PROPS 68

5.4 BUILDING THE ENVIRONMENT OF THE SCENE 75

5.5 TOPOLOGY SOLUTIONS 76

CHAPTER 6 ▪ Applying Materials to Our Objects 81
6.1 PREVIEW 85

6.2 DIFFUSE 85

6.3 SPECULAR 86

6.4 SHADING 87

6.5 TRANSPARENCY 88

6.6 MIRROR 90

6.7 SUBSURFACE SCATTERING 91

6.8 STRAND 92

6.9 OPTIONS 93

6.10 SHADOW 93

www.allitebooks.com

http://www.allitebooks.org

Contents ix

CHAPTER 7 ▪ Blender Internal Textures 97
7.1 PREVIEW 101

7.2 COLORS 101

7.3 MAPPING 101

7.4 INFLUENCE 103

CHAPTER 8 ▪ UV Unwrap and External Textures 105
8.1 UNWRAPPING A MESH 105

8.2 UV LAYOUTS 106

8.3 EDITING UVS 107

8.4 OPTIMIZE THE UV MAP 110

8.5 COMBINE UV MAPS 111

8.6 REFINE LAYOUT 112

8.7 APPLYING IMAGES 113

CHAPTER 9 ▪ Introduction to Rigging: Armatures and Bones 117
9.1 THE ARMATURE OBJECT 119

9.2 BONES 121

.. Bones’ Segments 
.. Bones’ Influence 

CHAPTER 10 ▪ The Animation Process 131
10.1 TIMELINE AND ANIMATICS 132

10.2 MARKERS 133

10.3 KEYFRAMES 134

10.4 TYPES OF ANIMATION 136

.. The Twelve Principles Developed at Disney 
10.5 USING CONSTRAINTS IN ANIMATION 136

10.6 SHAPE KEYS 137

10.7 WALKCYCLE 139

CHAPTER 11 ▪ Introduction to Lighting 141
11.1 LAMPS 142

11.2 SHADOW 142

11.3 ENVIRONMENT LIGHT 143

11.4 AMBIENT OCCLUSION 143

11.5 RESOLVING ISSUES WITH LIGHTS 144

x Contents

CHAPTER 12 ▪ Compositing Nodes 149
12.1 SETTING UP NODES 150

12.2 USING NODES 151

12.3 NODE TYPES 154

.. Input Nodes 
.. Output Nodes 
.. Color Nodes 
.. Vector Nodes 
.. Filter Nodes 
.. Convertor Nodes 
.. Matte Nodes 
.. Distortion Nodes 

CHAPTER 13 ▪ Using Particles and Dynamics 167
13.1 DYNAMICS AND FORCE FIELDS 169

.. Drag 
.. Turbulence 
.. Boid 
.. Curve Guide 
.. Texture 
.. Lennard-Jones 
.. Charge 
.. Harmonic 
.. Magnetic 
.. Vortex 
.. Wind 
.. Force 

13.2 COLLISIONS 175

13.3 PARTICLES 177

.. Emission 
.. Velocity 
.. Rotation 
.. Physics 
.. Render 
.. Display 
.. Children 
.. Field Weights 

Contents xi

.. Force Field Settings 
.. Cache 

13.4 SOFT BODY 184

.. Soft Body Solver 
.. Soft Body 

13.5 CLOTH 186

13.6 FLUIDS 188

13.7 SMOKE 195

.. Flow 

CHAPTER 14 ▪ Render 199
14.1 BLENDER INTERNAL 200

.. Render 
.. Dimensions 
.. Antialiasing 
.. Sampled Motion Blur 
.. Shading 
.. Performance 
.. Post Processing 
.. Freestyle 
.. Stamp 
.. Output 
.. Bake 

14.2 CYCLES 205

14.3 EXTERNAL RENDER ENGINES 206

.. Freestyle 
.. Yafray 

14.4 RENDER SETTINGS AND TIPS 208

.. Using Layers to Organize Our Render 
.. When Something Goes Wrong 

CHAPTER 15 ▪ Final Movie Compositing 213
15.1 USING BLENDER IN POSTPRODUCTION 213

.. Effects 
... Add 

... Subtract 
... Alpha Over and Alpha Under 

xii Contents

... Cross 
... Gamma Cross 
... Multiply 
... Wipe 
... Glow 
... Transform 
... Color 
... Speed Control 
... Multicam Selector 
... Adjustment Layer 

.. Audio 

CHAPTER 16 ▪ Python 219
16.1 PYTHON API 220

.. Accessing Data 
.. Accessing Attributes 
.. Creating or Removing Data 
.. Context 
.. Operators 
.. Example 
.. Types 

... Native Types 

... Internal Types 
... Mathutils Types 

.. Animation Using Python 
16.2 BLENDER/PYTHON API IN FILM PRODUCTION 227

CHAPTER 17 ▪ Film Promotion and Conclusion 239
17.1 CONCLUSION 240

APPENDIX, 241

REFERENCES, 243

INDEX, 245

Preface

Theidea for this book started quite some time ago—when I was working on the project
that became my Blender Foundation Certified Trainer certificate. At that time, , I

wanted to write about how I created that animation project from scratch. I thought that
sharing this experience may be useful to others with similar interests.

That project ended in my homemade studio, where I developed my personal projects.
It was also the place where I carried out my professional and educational activities.

This book remained in a corner in that small studio waiting to be completed some day.
In the meantime, Blender was upgraded several times, with new code and completely new
features. For this reason, this book has been reviewed and updated several times to keep up
with Blender’s latest releases.

My intention is not to write a detailed manual about Blender’s features, or where to find
specific buttons. Nor is this a book laid out in the form of a structured tutorial. I would like
to think of this book as a mixed bag, where I share my experiences with Blender, and discuss
its usefulness in most of today’s studios.

The purpose of this book is to show why Blender is perfect for animation films, demon-
strating Blender’s capability to do the job in each production department.

Some parts of this book may be oriented toward beginners, some to advanced learners,
and some to professional users. I will not explainwhat every button does but what options are
available. I like to let people explore, discover, and learn on their own. A positive approach
toward Blender is always a good starting point in learning how it could be used for film
production.

The reasons I chose to work with Blender will be detailed in Chapter , Why Blender,
but how this application became my favorite is something you will discover in the rest of
the pages. I will be very glad if you can understand and benefit from the possibilities of this
wonderful suite.

My goal is to familiarize youwith the animation industry, and to achieve this goal, demon-
strating that Blender is as good as any other suite is my objective. The risks involved in
choosing applications like Blender as a primary tool in animation studios is something we
will see along the course of this book. Knowing this is important in understanding the way
the film industry works.

Let us go ahead and see how film production works and why Blender should be taken into
consideration.

xiii

Author

BornonMay, ,MichelangeloManrique has always been interested in the fine arts,
which not only encouraged him to pursue university education in history of art, but also

to work as a painter and an art curator. Michelangelo is also technologically adept, which led
him to Blender in . Blender caught his attention right away and he was fascinated by
this D suite’s workflow and many possibilities.

Currently, Michelangelo is a programmer and D artist. He is working toward devel-
oping animation productions and rigging. He is also involved in publishing tutorials and
writing books, while he also conducts different courses on Blender. He is available for free-
lance or collaborative work with other studios. Michelangelo offers different Blender courses
designed to suit individual student needs. For teaching, he uses video-conferencing soft-
ware to interact with students and share each other’s desktops. The topics covered in his
courses are: Blender interface and basics, modeling, shading and textures, rigging, ani-
mation, lighting, rendering, compositing and nodes, dynamics, and Blender production
pipeline.

xv

CHAP T ER 1

Why Blender?

IconsiderBlendertobe the best D content creation suite I have ever used due to several
reasons. It’s not at the top of my list for sentimental reasons or because it’s the only one I

have used; it’s at the top of my list simply because I feel really comfortable working with it.
You have probably come across a lot of open source and free software. Blender is one of the

most popular applications not only in the open source community but also in the D content
environment, and it has been climbing the list of D creation suites in recent years.

If you are interested in open source or free software, check thewebsites of the Free Software
Foundation at http://fsf.org and the Open Source Initiative at http://opensource.org.

Blender has seen a lot of success throughout its history—not just in developing open-
source movies but also in building a growing community around it.

But Blender has also had some hardships: refactoring stress, license issues, or the fear of
studios introducing Blender in their pipeline.

It is worth comparing Blender supported by a small group of developers, mostly volun-
teers, with other D creation suites supported by a large number of official developers, a big
infrastructure, and a lot of money invested in research and development. I want to empha-
size that this doesn’t mean a better product, but sufficient resources if organized well might
end in a better product.

This is also comparable to the perspective on big and small studios. Big studios’ films
are not necessarily always the better ones or worthy of awards just because they have the
infrastructure and funds for research and development (Figures . and .). Small studios
also have a lot of great ideas, but lack infrastructure or funds to put their ideas to work.

Blender’s workflow and the strong community supporting Blender are probably the
two best reasons to use Blender as your main D creation suite for small productions or
homemade studios.

Is it only suitable for small projects and homemade studios? No, Blender is also suitable
for enterprises, big studios, and universities and colleges because it is not only used for D
films or by artists but also by professionals in varied disciplines likemathematics and science.
A search on the Internet would reveal the various kinds of professional institutions that are
successfully using Blender on a day-to-day basis, as shown in Figure ..



2 Blender for Animation and Film-Based Production

FIGURE 1.1 (See color insert.)TheWind is Changing by Andy Goralczyk, . Awesome render-
ing demonstrating how powerful Blender can be in the right hands. This still is an awesome render
from  years ago. I can assure you that Blender has improved even more in its latest releases, so can
you reach the limits?

A good example is the University of Castilla-LaMancha, which has been using Blender in
many of its projects thanks to Dr. Carlos González Morcillo, Blender Foundation–certified
trainer and associate professor of the Department of Technology and Information System at
the University of Castilla-La Mancha.

One of the scientific projects developed in Blender is Ganas, a nonlinear animation of
characters for sign language representation.

Blender conferences have showcased many projects in the field of science, education, and
the like. A lot of interesting, non–D film related projects are being developed by profession-
als or amateur artists in a very wide range of activities. Projects like BioBlender, and others
developed by the TOSMI (Training in Open-Source Multimedia Instruments) group and
for archaeological research do not use the D feature of Blender but have turned out to be of
quite good quality.

“Blender is for artists” might have been the software’s initial goal, but, in fact, Blender has
been used in so many different areas that they are the ones that contribute much toward its
improvement. A lot of new features are suggested and bugs are reported and fixed.

www.allitebooks.com

http://www.allitebooks.org

Why Blender? 3

FIGURE 1.2 (See color insert.) Gorilla by Everett Gunther. Interesting use of Blender’s particle
system.

FIGURE 1.3 (See color insert.)Contractile Ring simulation byBioBlender.Here, we see howBlender
is used in scientific projects.

4 Blender for Animation and Film-Based Production

The results you get with Blender are obviously based on your skills, like in any other appli-
cation you use or activity you perform. The best thing about Blender is that an amateur can
create projects with ease without prior knowledge of the software.

I know that it is hard to believe given Blender’s complicated interface and I totally agree
that it will look a bit scary for amateurs at the beginning but I’ll tell you why this perception
is wrong.

Sometime back I read something really interesting in Iker J. de los Mozos’ blog,
http://somosposmodernos.com. Iker is a great artist and rigger and has worked in very inter-
esting projects, including movies like Planet ,The Missing Lynx,The Lady and the Reaper,
Justin and the Knights of Valour, and Frozen.

I came across some words in his blog that set me thinking about the way we have to
approach new software. He basically said that we cannot learn to handle new software
correctly if we approach it with preconceived notions.

In other words, we cannot learn and grasp everything that Blender can offer us if we
approach Blender software with our knowledge of the Maya software. It’s very interesting
to start from scratch like a newbie, letting the software surprise us. This will result in a bet-
ter learning curve than trying to do in Blender what you can do in Maya or any other D
creation suite.

The Blender interface has been a highly debated topic in computer-generated imagery
forums and communities. A whole range of new proposals, changes, and implements are
available on the internet but we will be quite mistaken if we approach Blender with any other
D suite in mind.

We must discard our conventional ideas and approach Blender as total newbies. Ulti-
mately, Blender is not harder to learn than any other application is for people starting
from scratch.The problem lies in the fact that people try to find the same things in the same
place even when the applications are very different.

As mentioned earlier, the Blender interface has been a very hot topic in various commu-
nities and forums. Recently, a study by Andrew Price, http://blenderguru.com, revealed in
the Blender Conference  and titled The Big Issues demonstrated popular interest in the
Blender user interface.

That study showed that although many people are comfortable with the new interface, a
significant number of people totally disagree with it, and are the reason for Blender not being
popular.

A couple of clicks, surfing between windows, areas and panels are all you need to navigate
through Blender. You can argue that it is this aspect of Blender’s user interface that makes
you avoid it. I cannot blame you for thinking so because it can be confusing when you use it
for the first time, but, believe me, it is not really so hard to understand.

When you get used to Blender’s user interface—and you do not need much time for
that—the workflow is one of the best as it allows you to develop your project in a comfort-
able way.

Once you learn to use the basic operators and their keyboard shortcuts, you will enjoy
developing new objects, characters, and scenes; applying materials and textures to your
models or providing an armature, and animating your characters.

Why Blender? 5

FIGURE 1.4 (See color insert.) Big Buck Bunny project developed by the Blender Institute.The open
movies developed by the BI represent a great example of Blender used for film production.

Over the years, I found people giving very different reasons for not using Blender,
like it’s frustrating using Blender if you don’t know the keyboard shortcuts. I will con-
cede that the earlier versions of Blender were difficult but in the recent versions of
Blender, the user interface has been simplified to such an extent that this statement is
baseless.

It is true that some conventions like the use of left and right mouse buttons can be
improved but those shortcomings are like small drops in the ocean.

Blender is powerful and can be effective in animation studios as the main studio creation
suite or, in the worst case, as a shared application helping in some specific areas. I will be
honest and agree that adopting Blender in a big studio’s pipeline could be taking toomuch of
a risk for several reasons but I am confident it will work as well as any other private software
as a shared tool (Figures . and .).

Using Blender as the main tool in very big studios is not only an utopian because, we
should be honest, there are a lot of economical interests in adopting one or another creation
suite. Ultimately, everything is determined by the market and some applications, as men-
tioned earlier, expend a lot of human and economical resources to improve their position in
the market (Figure .).

The number and reliability of Blender’s features and the variety available makes Blender
the perfect application to use. Modular implementations and new features that people pro-
pose every day are introduced into Blender’s trunk code a feature that others cannot claim
they have.

Blender is an open-source software and has one of the biggest and most enthusiastic
communities helping in source code development and sharing years of knowledge and
experience. A growing number of educational institutions are also supporting it as partners.

6 Blender for Animation and Film-Based Production

FIGURE 1.5 (See color insert.) Tears of Steel is another great example not only for Blender used in
animation films but also for vfx projects.

FIGURE 1.6 (See color insert.) Sintel became a very ambitious project for the Blender Foundation
and served as an important test for new awesome features added to Blender’s code.

Like other applications, Blender is always evolving, and improving its interface even while
it is trying to become a really interesting and strong creation suite for artists. In the final
analysis, as mentioned earlier, Blender is not only for artists but also for other disciplines
such as education, architecture, and science.

The fine quality of the work produced by several artists using Blender is in itself proof
that Blender suits artists’ needs. Although we cannot claim that Blender is the best ever D

Why Blender? 7

application in the world, which no other software can also claim to be, we can argue that
Blender is one of the most interesting D applications in the world with the additional point
advantage of being completely free and open to you.

This book focuses on new Blender users but, frommy point of view, it could also be inter-
esting for those who aremore knowledgeable in the subject, because they could use this book
to recollect old stuff learned in the past or to update their current knowledge of recently
added features.

I still use Blender’s wiki documentation for information on something I am working on,
which is not a bad practice at all. It will be futile to try to understand all the features in
Blender at one go—in fact nobody should attempt to do so—for manuals and information
sources like books are the only way to get all answers to our questions even when we are not
connected to the Internet.

This book introduces you to many of these questions. I am sure there are different ways
to solve any issue or to complete any Blender exercise successfully, however the solutions
I propose in this book are those I have actually used in my homemade studio.

They are not necessarily the best solutions, but they will help you to get reasonably good
results in your project. Remember that the purpose of this book is to create a Blender refer-
ence to help people manage projects from start to finish, to understand the different stages
in any animation production, and to throw some light on how studios work and develop a
complete animation project (Figures . and .).

It will be difficult to provide all these in a single book—there could be something that
I might miss—but I will make an honest effort to put down everything that is needed.

FIGURE 1.7 (See color insert.) Tube, an open movie developed by Bassam Kurdali and urchn.org.

8 Blender for Animation and Film-Based Production

FIGURE 1.8 (See color insert.) Ara’s Tale, a movie developed by Martin Lubich.

In my opinion, this book will help you in the hard task of finding solutions for determined
issues avoiding the loss of productive hours searching the net for any specific trouble with
your production files or pipeline. We will see some different areas in-depth and others as
simple introduction, depending on the purpose of the chapter but I will try to compile as
much useful information as you might need.

I assume you are a committed artist and you are probably nervous looking to develop your
project as soon as possible. If I have not mentioned it earlier, I will do so right now, be patient
because good results require hard work and this takes time.

Read this book to learn how to set up your small home studio and produce a successful
project, using Blender and any other open-source application.

Because Blender and other open-source applications are supported and developedmainly
by volunteers, they are continuously evolving with new features being added and perfor-
mance bugs being fixed constantly. At the moment of authoring this book, I am using the
Blender . series, but you will find references to older versions, and sometimes comparison
between both, old and modern versions.

Everything you learn in this book will be useful for other D applications. In other words,
once you learn some basic principles about digital animation you can put them into prac-
tice in any other software. Remember, adapting your knowledge to different applications or
different versions of the same software makes you valuable in the animation studios’ market.

Everything you need is on http://www.blender.org.

CHAP T ER 2

History of Blender

Blender’s history is closely connected to Ton Roosendaal, currently chairman of
the Blender Foundation, where some open-content projects have been developed using

Blender as the main tool.
The Blender Institute was founded in the summer of  by Ton where he coordinates

with Blender development and organizes some training DVDs on animation projects.
Ton founded the animation studioNeoGeo between  and , which quickly became

one of the most important animation studios in the Netherlands. There, he was responsible
for software development and in charge of the art department, when he noticed theNeoGeo’s
in-house D tool was too old to maintain and upgrade. A new rewrite of this tool was pro-
posed by Ton, becoming one of the most important decisions for the current Blender state,
because this new tool was later named Blender.

Ten years later, in , Ton Roosendaal and Frank van Beek together founded a company
called Not a Number (NaN) to support the Blender market and development. In January of
that year, a free version of Blender was released.

Themain objective of NaNwas to offer professional Dmodeling and animation tools but
because of low sales and the difficult economic climate in theNetherlands in those days, NaN
investors decided to shut down all operations early in , signifying the end of Blender’s
development. Two months later, in March  Ton founded the nonprofit organization
Blender Foundation that is the main organization supporting Blender in both development
and artistic projects.

The Blender Foundation was created with the intention of continuing Blender’s develop-
ment and promotion based on the community and following an open-source model.

In July , NaN investors agreed to the Blender Foundation’s organization goals and
released an open-source Blender version. The Free Blender Campaign raised , EUR
for the Blender source and intellectual property rights from NaN investors signifying that
Blender as an open-source tool under the GNU General Public License (GPL).

The blender development continues thanks to dedicated volunteer developers from
around the world with some hired help and a great and committed community of Blender’s
fans and enthusiasts.



10 Blender for Animation and Film-Based Production

2.1 BLENDER’S ROAD MAP
The beginnings of Blender at NeoGeo and NaN

• .—January 

• .—January 

• .—April 

• .x—June 

• .—September 

• .—November 

• .—April 

• .x—June 

• .—June 

• .—August 

• .—December 

• .—August 

• .—October 

• .x—December 

Blender becomes open source on October , , at the first Blender Conference
scheduled.

• .—October .

• .—February .

• .—May .

• .x—July .

• .—October . Blender UI redesign, Knife tool, Mesh undo, Mesh drawmodes,
new Transform functionality, Face Loop selection and subdivision, Python API,
Radiosity render, Audio window as frame slider, and smaller fixes.

• .—December . New default startup file built in, Mesh subdivision surfaces,
Python updates and fixes, and more bug fixes.

• .—January . Rendering improvements, Displacement mapping, YafRay sup-
port, and bug fixes.

History of Blender 11

• .—April . Game Engine is back, Ambient occlusion, Musgrave, Voronoi and
Noise procedural textures, UV and Image editor, Python API, Render engine, YafRay
export, and Localization.

• .—August . Particle forces and deflection, UV unwrapping with LSCM, YafRay
improvements and further integration, Weighted creases for subdivision surface,
Python API, Game Engine, Oversampling for render, Ramp Shading, Color picker,
Interface upgrades, and bug fixes.

• .—November . Undo, Outliner, Mesh editing, Object hooks, Python API,
Curve Deform, Taper Curves, Particle duplicators, Rendering updates, Stretch to
constraint, UI drawing, Game Engine, and bug fixes.

• .—December . Normals and Textures, Normal Map support, and bug fixes.

• .—June . Transformation tools, Transformationwidgets, Soft body, Force Fields
and deflection, Incremental Subdivision Surfaces, Transparent filtering, Timeline,
Python scripting, Game Engine, and bug fixes.

• .—December .

• .—January .
The development and release of the Elephants Dream animation project by the Blender
Institute Project Orange resulted in the release of Blender . as shown in Figure ..

• .—July .

FIGURE 2.1 (See color insert.) Project Orange resulted in Elephants Dream, the first open movie
developed by the Blender Foundation.

12 Blender for Animation and Film-Based Production

FIGURE 2.2 (See color insert.) Project Peach resulted in the Big Buck Bunny movie developed by
the Blender Foundation as a result of which Blender was improved to end up with the . version.

• .—February .

• .—May . Sculpt and multires, Subsurface scattering, Python scripts and API,
New Composite nodes, New modifiers, Character animation, Physics engine, Mesh
primitives update, and bug fixes.

• .—September . Bug fixes.
The development and release of the Big Buck Bunny animation project by the Blender
Institute Project Peach resulted in the release of Blender . as shown in Figure ..

• .—May . Hair and Fur, Particle system rewrite, Image browsing, Cloth sim-
ulation, Glossy reflections, Approximate AO, Render Baking, Mesh Deform, Physics
caching and baking, Action editor updates, Armature drawing, Constraint system,
Armature tools, QMC and adaptive sampling, Skinning update, Sequencer, Game
Engine update, UV texture editing, Soft shadows, Compositing nodes, Render pipeline,
Shading features, Python API.

• .—August . Bug fixes.
The development and release of the Yo Frankie! game project by the Blender Institute
Project Apricot resulted in the release of Blender . as shown in Figure ..

• .—October .

• .—June .

Blender’s refactor and new paradigms implemented. A whole review and redesign is
programmed.

www.allitebooks.com

http://www.allitebooks.org

History of Blender 13

FIGURE 2.3 (See color insert.) Project Apricot was the first game developed by the Blender
Foundation to be run within Blender Game Engine and resulted in the development of Blender ..

• .x—From  to August .
The development and release of the Sintel animation project by the Blender Institute
Project Durian resulted in the release of Blender . whose main purpose was to sta-
bilize code and make sculpting tools improved at the same time that rendering quality
was improved with Global Illumination rendering as shown in Figure ..

• .—October .

• .—December .

FIGURE 2.4 (See color insert.) Project Durian represented a step forward in Blender development.
With the new . redesign proposal, the Sintel movie ended up with the Blender appearance as we
see it now.

14 Blender for Animation and Film-Based Production

FIGURE 2.5 (See color insert.) Project Mango, titled Tears of Steel, was a vfx and realistic render-
ing project using both real and cgi developments. The Blender Foundation developed this vfx movie
involving real human actors together with visual effects developed entirely with Blender and resulting
in the development and improvement of the most recent Blender versions.

• .—February .

• .—April .
The development and release of the Tears of Steelmovie project by the Blender Institute
Project Mango resulted in the release of Blender . as shown in Figure ..

• .—October .

• .—December .

• .—February .

• .—May .

• .a—May .

• .b—May .

• .—July .

• .a—July .

• . RC—October .

• . RC—October .

CHAP T ER 3

Blender User Interface

There are several documents and videos on the Blender user interface available over
the net and in many diverse formats like books, DVDs, and magazines. Most of the

documentation meant for new users provides information on what a specific button does
or in which panel we could find a specific feature; in general, they cover, in a very trivial
manner, a lot of useless stuff in very large fonts that, in fact, are not really useful for new
Blender users or students making the learning path hard, complex, stressful, and completely
useless. This was the reason several people who wanted to use Blender gave up their attempt
to use it.

In this book, we talk about those aspects we need to know to develop our project success-
fully. We will learn how animation studios develop their animation projects and the ways in
which we can involve Blender in such a process. We will also provide in-depth technical lists
about different types of editors, buttons, or properties and they will be provided as merely
added information complementing the main idea.

We attempt to create here a comprehensible and solid learning path and focus on the
important stuff, so once we know where to find things in the interface and how to use the
different features, the rest will come with time and practice.

There is nomagic rule that tells new users what they need to do at every moment, because
as Blender evolves the position of some of the buttons are moved and some buttons that
should not have been there in the first place are removed. Every project requires specific
solutions as it evolves and grows on its own, and those solutions might vary depending on
the version of Blender that is used.

In fact, has much of the D paradigms used in other applications such asMaya or dsMax
are also found in Blender, but Blender also has its own principles. We need to understand
those principles to build the foundation of our knowledge of Blender.

This chapter does not aim to give an in-depth explanation of each Blender button, panel,
or feature, but aims to provide an overview of the most common editors, contexts, and
workspaces within Blender to understand how this software could be introduced into the
animation studios’ workflow.

The current Blender user interface is modular and customizable, thanks to Open GL,
allowing artists and other blender users to set it up and customize it to their needs or simply



16 Blender for Animation and Film-Based Production

adapt it to their taste. That means we can join and split editors, open and collapse panels,
drag and drop panels, or change all we need to accommodate our workspace layout to look
exactly like we want. We talk more about the workspace layout later in Section ...

This and the fact that Blender is also a cross-platform application officially supported by
the most common desktop operating systems in the market, for example, Linux, Windows,
or Mac OS X, makes Blender the perfect D application to get introduced to and to learn
about because its user interface looks exactly the same on different machines with different
hardware specifications.

This is also an advantage for colleges, universities, or freelances trying to teach Blender
because this consistency opens relationships between teachers and students getting rid of
useless old barriers and requirements like using the same operating system in order to use
the same user interface. However, this doesn’t get rid of other unknowns of the equation like
keyboard shortcuts because, unlike the user interface, they are not the same over different
operating systems and platforms.

We can say that the most recent Blender releases are the result of an in-depth refactor
made from version . where the whole application was reviewed to improve code, appear-
ance, and performance.That . refactor revolution followedwhat is referred to the three rules
criteria, that consists of

. Nonoverlapping: This is based on the principle of having everything we need visible or
easily accessible, for example, no boxes overlapping background context, control, or
buttons.

. Nonblocking: This is based on the principle of avoiding pop ups of useless windows
or messages disrupting the user’s work with useless questions regarding actions or
operators to execute, for example, Are you sure you want to add a Cube?

. Nonmodal: This is based on the principle of not changing commonly used methods. In
other words, imagine we need to modify our object; those changes will not be visible
until we click a confirmation button in a pop-up window. The aim is to avoid that and
make the user focus on the work instead of the eventual tool itself.

3.1 START-UP BLENDER
As mentioned earlier, the first look at Blender is probably intimidating. For those who are
familiar with any other D software, the Blender user interface could have some similarities
with those applications, especially the latest Blender versions. But that does not mean that
other applications are fine and Blender is adapting its user interface to them.

Blender has been faithful to its principles ever since the first releases. If we compare the
different Blender versions down the years, we will find that visuals have remained pretty
much the same and work in the same way, as shown in Figure ..

Of course, the . refactor revolution hasmeant an incredible step forward in user interface
organization and user experience, but those who have had experience in using Blender will
confirm that much of the current features were there even in the chaotic user interface of
older Blender versions.

Blender User Interface 17

(a)

(b)

FIGURE 3.1 Blender user interface evolution along the years. Many of the paradigms of very old
versions remain in the most recent versions. This picture represents the default layout for Blender
. released in  (a) and Blender .. r built in  (b).

The first contact we have with the Blender user interface is called splash screen, that is, a
small pop-up square that contains information on the Blender version and revision, a column
with some useful links on the left and the latest or recently opened files on the right. We also
can select the keymap preset in this screen like Blender orMaya. This option will change our
relationship with Blender and the basic actions such Scale, Translate, or Rotate.

By default, the Blender keymap is selected, as shown in Figure .. But didn’t we say some-
thing about the paradigm of nonoverlapping and nonblocking pop up? Well, in fact, we’re
starting Blender and the splash screen is there to help in this initial state to speed up your
work sessions with useful links to the most recently opened files.

One thing that people don’t know is that it has been common practice for Blender to use
the artwork of Blender community artists on their splash screens.The featured artworks were
those from contests organized by the Blender Foundation and served as a great opportunity
to promote both artists’ works and open-source projects.

Coming back to the Blender user interface, it is important that we understand some user
interface concepts because we will refer to them later in the book.The Blender user interface

18 Blender for Animation and Film-Based Production

(a)

(e)
(f)

(c)

(b)
(d)

FIGURE 3.2 The Blender user interface by default. Customizable and easily adaptable to our needs
thanks to Open GL. In this example, we see a basic workspace layout distribution: Splash screen (a),
D View Editor (b) with Object/Mesh operators (c) internal panel. Outliner (d) with a tree of all
objects and data inside the scene. Property Editor (e) panel with buttons and Timeline (f).

is closely linked to elements like Editors, Headers, Context buttons, Regions, Panels, and
Controls.

• Editors in Blender refer to those areas of work in the determined production pipeline,
what some animation studios call departments. For example, we have to open DView
Editor for object/mesh editing or extrapolation to those animation studios, modeling
department, NLA Editor for animation and strips managing, Node Editor to work with
nodes and compositing, andUV/ImageEditor for renders andUVUnwrap actions, and
so on.

Sometimes there are divergences in the naming conventions regarding Editors, like
in the Blender Wiki Documentation at wiki.blender.org, where we sometimes see two
names for the same concept: Editor andWindow. I honestly prefer to call them Blender
Editors, because I don’t see each of these areas like a window if we define it as we know
in the IT world.

The Blender editors are DView, Timeline, Graphic Editor, DopeSheet, NLA Editor,
UV/Image Editor, Video Sequence Editor, Movie Clip Editor, Text Editor, Node Editor,
Logic Editor, Properties Editor, Outliner, User Preferences, InfoWindow, File Browser,
and Console. We can switch between editors with the Editor Type Menu, as shown in
Figure ..

• Context buttons are those giving access to other options, and they are usually placed
on the editor header. An example is the Properties panel that allows us to switch to
different options for Scene, Materials, Modifiers, and more.

Blender User Interface 19

FIGURE 3.3 Editor Type Menu. By selecting the editor type we need at the determined moment
from the Editor Type Menu, Blender will offer us different properties, features, and operators panels.

• Panels are those collapsible sections where control options are grouped.

• Regions are the spaces included in some editors where more panels and controls are
placed. Sometimes the Blender user interface saves space by collapsing regions that are
easily accessible by keys T and N also called the Tool Shelf and Properties Region.

• Controls are really the options allowing you to modify parameters and values or
executing operators.

3.2 CONTROLS AND BUTTONS
In Blender, we call the elements that allow us to modify any value or setting controls. They
display additional content or execute any specific function to confirm or refuse any opera-
tion. As mentioned earlier, Blender has been cleaning the face of the controls with respect to
older versions since the . refactor revolution, making them comprehensible and sensitive
to the user. There are a few control types:

. Buttons: They execute operators and provide access to tools like Rotate or Scale, for
example. We don’t need to remember where the buttons are located because many of
these buttons have a keyboard shortcut.

20 Blender for Animation and Film-Based Production

This shortcut speeds up your work session in Blender because you don’t need to localize
the right button and click on it every time you want to execute any specific function.

However, sometimes it is useful to remember where the button is placed in case of
keyboard shortcut issues. We must remember now that keyboard shortcuts for these
buttons may differ in the different Blender distros, depending on whether the release
is for Linux, Windows, Mac OS, or any other operating system.

Buttons organization is themain headache for newBlender users.My teaching expe-
rience has shown that they are overwhelmed, even frightened, on their first approach to
Blender, by the keyboard shortcuts.Theyusuallywonderwhy theBlender user interface
gives such importance to keyboard shortcuts, and they worry that theymay not be able
to remember the shortcuts or to locate the corresponding button in the user interface.

a. Operation Buttons: As mentioned earlier, they apply the operator or function we
want to execute, like Duplicate Objects. There is an interesting feature in the latest
Blender releases that allows us to copy the Python command the operator executes
by pressing Ctrl+C and then pasting it wherever we want to use it, say Python Con-
sole or any of our Python scripts or add-ons. For example: if we put ourmouse over
the buttonTranslate, placed in the Tool Shelf panel, and we press Ctrl+C, we’ve now
the Python command in the clipboard buffer.Thenwe can switch toText Editor and
paste using Ctrl+V, resulting in bpy.ops.transform.translate() being pasted within
the text editor buffer.

b. Toggle Buttons: By enabling these buttons, we make available other kind of buttons,
normally a number button, which lets us control value of influence.

c. Radio Buttons: This allows us to choose from different value selections.

d. Number Buttons:They allow us to switch values of the properties, say Start Frame: .
We can modify those values by clicking on the little arrows at the side of the but-
ton, for increasing or decreasing the value and also by dragging the ranged value for
percentages, like %. We can also enter values manually by clicking on the button
itself; if the button is labeled, this label disappears so we can enter our value, but
will appear again after confirmation by pressing Enter or after cancellation of the
edit by pressing Esc. As we noticed earlier, we can copy the value of any of these
inputs by pressing Ctrl+C and paste it wherever we need, say on another number
button, by pressing Ctrl+V.

. Checkboxes: As we can expect, they allow us to enable/disable options. Some are sim-
ple checkboxes that instruct Blender to activate any function and some display hidden
content related to the context, making visible more controls and buttons.

. Sliders: These are used to enter a float value. The values can be limited by the source
code, allowing us to enter from . to . but can also be unlimited so we can enter
values from −∞ to +∞.

. Menus: These are the lists of elements that allow us to select one of them, like Render
Presets.

Blender User Interface 21

3.3 EDITOR SYSTEM
As we have discussed earlier, the Blender user interface may be strange the very first time we
deal with it. When we start Blender, we see different windows, or again editors as I prefer to
call them and they constitute the Blender environment. To understand this, we should get
rid of the common concept of window as we know it. In Blender, we are not talking about
window in this strict meaning, and we don’t refer to the Blender window like these with the
minimize, maximize, and close buttons we all know in the IT world.

When we start Blender, we have some editors within the main window and each one con-
tains specific functions according to its purpose. For example, the default scene contains five
basic editors: Info Window, D View, Timeline, Outliner, and Properties together with the
splash screen we already know.

Each editor has its own functions and options, but they also have a couple of things in
common. First, all editors have a header containing relevant information about the edi-
tor. Second, editors can be systematized, split, and joined, making the workspace layout
customizable to our needs.

It’s important to know that when we make a call to any operator using keyboard short-
cuts, that will affect current selected editor. In other words, editors are automatically selected
depending on where our mouse is. For example, if our mouse is over D View and we press
key A, we are selecting or deselecting everything in our scene, but if our mouse is over
Properties Editor and we press key A we open or close panels.

3.3.1 Editor’s Header

Editor’s headers contain important information about the editor purpose like icon buttons or
menu lists, as shown in Figure .. They do not have a fixed position over the editor because
they could be at the top, like in the Outliner, or at the bottom like in the Timeline.

We can switch the header position by clickingRMB, rightmouse button, over it and select-
ing the right option.The header itself can be made visible or hidden. To hide it, just drag the
border and automatically a small + (plus) button will be visible.The opposite, that is to make
the header visible, can be achieved by a click and drag on this small button.

We should not confuse those small + (plus) buttons in the header with the ones we have
in the D View for Tool Shelf and Transformation panels visible on the left and right sides
when those panels are collapsed.

3.3.2 Systematize Editors

Themain purpose in using the nonoverlapping paradigm is to have a clean workspace layout
to work with; that is, we can split or join editors and subdivide our main window into several
editors and frames to customize the Blender’s workspace to our needs. But, the paradigm of

FIGURE 3.4 D View Header. Showing or hiding headers of editors is really easy; it can be done by
dragging and dropping the border on the small + (plus) button.

22 Blender for Animation and Film-Based Production

(a) (b)

FIGURE 3.5 Editors’ split and join. With the editors’ split widgets, it is easy to customize the
workspace layout to our needs. Click and drag to split editors (a) or to join and combine (b).

nonoverlapping is also broken by just a single case. In the latest Blender’s releases, we have
the option of splitting an editor and making it fit another window, intentionally made for
multiple monitors support as we will see later in this section.

. Maximize editor: We have ways to maximize any editor and make it full screen. The
maximized editor will obviously contain its internal panels and header. We can maxi-
mize editors then by using the View→ Toggle Full Screen, or using one of the following
keyboard shortcuts: Shift+Spacebar or Ctrl+↓ or Ctrl+↑ keys.

. Split editors: There are a couple of split editor widgets, on the left-bottom and top-right
corners of each editor. If we want to split an editor into two, we can drag from any of
those widgets; notice our cursor is a cross icon once we let the mouse hover over the
widget, as shown in Figure ..

. Join editors: To join and combine two editors, we can drag the same split editor widget
and drag it over the editors we want to combine. The editors that combine become
darker and a big lighter arrow indicates that the previous editor has filled in, as shown
in Figure ..

. Editors size: It’s really easy to change our editor’s size by dragging the editor’s border
with LMB, left mouse button.

. Switch editors’ content: In Blender, we can switch editor’s content using the editors split
widgets again. In this case, to switch content between editors, we need to useCtrl+LMB.

. Open editor in a new window: Blender, allows us to open editors in a new window
supporting multimonitors. This is what I meant earlier when I spoke of the broken
nonoverlapping paradigm.

The paradigm is not broken if we move the recently opened window outside the
Blender’s main window, which is another monitor. We can open the selected editor in
a new window by using Shift+LMB on the editor’s split widgets and dragging.

The new window follows the same principles this section talks about; for example,
maximize, split, join, resize, and open in a new window. The content of the editor in
the new window is automatically updated if we manipulate the main Blender window,

www.allitebooks.com

http://www.allitebooks.org

Blender User Interface 23

that is, if we open D View editor in a new window and move it to our right monitor
using a Camera view, then we have in the left monitor our main Blender window and
another D View editor using Side view for modeling, and all changes we make in the
latest one are automatically reflected in our recently opened right-side window.

3.3.3 Workspace Layout

Animation studios have very different areas to cover when working on any project. Each of
these areas requires a specific layout to work efficiently, and D applications are working hard
to allowmaximum customization. But, sometimes, it’s hard to customize everything we need
by ourselves. Blender offers several different layouts by default, so we can switch from one to
another depending on the stage of our project.

Everyone of those default screens is what we call Workspace Layout. To switch our
workspace layout, we have a dropdown located in the InfoWindow header together, the Scene
dropdown, as shown in Figure ..

The integrated workspace layouts Blender currently has are as follows:

. D View Full: By selecting this workspace layout, we have the D View Editor full sized
in the window using the optionOnly Render.TheTool Shelf panel, accessible with key T
or by dragging the small + (plus) icon on the left, and the Transformation Panel, acces-
sible with key N, or by dragging the small + (plus) icon on the right, are still working
in this workspace.

. Animation: This workspace is designed for a fluid animation stage. When working
with animations, we need certain kinds of editors helping in the process as config-
uring everything from scratch could be tedious for many people. Blender supports,
by default, a very useful Animation workspace layout containing the following edi-
tors: DopeSheet, Graphic Editor, D View, Timeline, D View with hidden header and
Camera View selected, Outliner, and Properties Editor.

FIGURE 3.6 Workspace Layout options list. List of current available workspace layouts built-in
within Blender.

24 Blender for Animation and Film-Based Production

. Compositing:Thisworkspace is designed to offermore control over the final appearance
of the scene, specially for color correction, lights, effects, and more. This workspace
contains the following editors: Node Editor, UV/Image Editor, D View with Camera
View selected, Properties Editor, and Timeline.

. Default: The default workspace layout is the one where we launch Blender. It contains
the famous initial Blender’s Cube. The default workspace is usually used for modeling
stage. This workspace contains the following editors: D View with Tool Shelf open,
Timeline, Outliner, and Properties Editor.

. Game Logic: This workspace is designed to work with Blender’s Game Engine in games
development. This workspace contains the following editors: Outliner, D View, Text
Editor, Logic Editor, and Properties Editor.

. Motion Track: The Motion Track Editor has been added recently thanks to the Mango
Project, and it’s purposed to work with camera tracking. This workspace contains
the following editors: Three Movie Clip Editors (for graph view, dopesheet view, and
editing clip preview) and Timeline.

. Scripting:Themain purpose of this workspace is to offer a comfortable layout for docu-
menting or script writing.This is useful to write newBlender scripts and to test whether
they work as expected, for example, Blender add-ons or fixing Blender’s bugs. This
workspace contains the following editors: Text editor, D View, Outliner, Properties
Editor, and Python Console.

. UV Editing: This is designed to control how textures map the objects and customize
projections. This workspace contains the following editors: UV/Image Editor and
D View with Tool Shelf open.

. Video Editing: The Video Editing workspace is targeted for postproduction tasks
like cutting or joining animation pieces. This workspace contains the following edi-
tors: Graphic Editor, two Video Sequence Editors (preview and strip manager), and
Timeline.

3.3.3.1 Configuring our Workspace Layout
Sometimes default workspace layouts built in Blender are not enough for our purpose. As we
have already explained, we can configure our workspace layout to suit our needs by adding
or deleting layouts.

. Add a new layout: In the workspace layout widget, we can add, based on our current
layout, a new one to the list by clicking on the Add button plus-like icon. Then we can
rename our recently created workspace layout as we desire.

. Delete layout: Close to the Add new workspace layout button there is another one, a
cross-like icon, that we can use to delete the selected workspace layout. Blender will
automatically switch its interface to the next workspace layout in the list. Take care to
see that no confirmation pop-up message appears.

Blender User Interface 25

3.3.4 Scenes

It is very important we understand how scenes work in Blender. We will always be working
on scenes, and if we can control their behavior, we can be more productive in our work.
Scenes and workspace layouts are both very important bits to understand because they can
change the entire Blender user interface and, hence, our approach to Blender. Scenes are
independent and can store everything you can imagine, and can be totally different from one
another; that is, we may have Scene. for modeling the main character in our project and
Scene. for modeling props and environment objects. It’s important to know that scenes
don’t remember the workspace layout; so, in our example, we will be in the same workspace
layout even when we switch between scenes.

3.3.4.1 Configuring Our Scene
Like workspace layouts, our scenes can be configured as we need, not only by addition
or deletion of scenes but also in their relationship with objects and data. We can config-
ure our scene with the scene widget close to the workspace layout widget, as shown in
Figure .. Actually, both look the same.

. AddNew Scene:We are able to add a new scene to our current project by clicking on the
Add button plus-like icon.When we add a new scene, Blender offers us a small list with
options to select the way we want to create our new scene. This is important because
what we select here will determine how we must work with the future scene:

a. New:Thismakes a new empty default scene and sets the render settings to its default
state.

b. Copy Settings: This makes the same as previous one but, in this case, copies the
render settings from the base scene.

c. Link Objects: The link objects generate a new scene linking objects in the old scene
to those in the new one.Thatmeans that changes in those objects affect both scenes
because objects are actually shared between both scenes.

FIGURE 3.7 Select Scene dropdown. This widget allow us to switch between scenes, but at the same
time, we might create new or delete current existing scenes.

26 Blender for Animation and Film-Based Production

d. Link Object Data: The new scene makes a copy of the old scene Objects but links to
the Object Data; for example, materials, mesh. That means, that changes in those
objects are independent in each scene but changes in any of the object data are
shared. To avoid that we need to make single-user from the Properties Editor, the
Object Data.

e. Full Copy: This makes a new a copy of the old scene, but nothing is shared. Objects
are completely independent between scenes, and changes in the objects don’t affect
the other scene.

. Delete Scene: We can delete scenes by clicking the cross-like icon close to theAdd scene
button.

3.4 EDITOR TYPES
We already know that studios’ productions are usually divided into several areas and stages,
and for big studios into actual departments. Each of these areas requires specific solutions
and features, but accommodating them in the user interface for any of the D applications
in the market is not easy. Blender uses different editor types for different purposes according
to the requirement of each work. We’ve identified these editors earlier in Section ., but we
will see them a little more in depth now.

3.4.1 3D View

The D View is where we do much of the work on modeling and scene creation. This editor
is big and wide enough, but Blender has powerful tools to deal with everything we need to
do in the DView. It’s probably the editor we will spendmore time with and, because of that,
we need to know as much as possible about it. On a first and quick view at this editor, we
can see we’re dealing with something like a deep space with a grid floor and probably the
famous Cube if we’re in Blender’s default scene, as shown in Figure .. But this editor, like
others, is comprised of different kinds of elements, as we already know, like a Header and
a couple of panels; for example, the Transform Panel and Tool Shelf panel. We are going to
check everything in depth so that we have a clear idea about where we are and what we are
talking about.

. D Viewport: This is the big space with the grid on the floor where the actual objects
reside. We can build our scene, modeling our objects or rigging our characters there.

. Header: This contains very important information and, if I may say so, important but-
tons in the way of shortcuts making our workflow much more productive. Once we
know and get used to shortcuts, we don’t use frequently the elements placed in this
header but sometimes it’s still easier and faster to select a specific option from these
elements rather than typing the shortcut commands. Some of the elements, the D
View header contains, may change depending on the mode we are working on.

a. Editor type selector: This button pops up a list of the different editor types that we
can switch to.

Blender User Interface 27

FIGURE 3.8 D View Editor. The picture shows the editor in the Object Mode that determines the
different options displayed in the header.

b. Hide menus: This is a small − (minus) button close to the Editor type selector that
shows or hides the pulldown menus.

c. Pulldownmenus:This contains relevant options for DViewmanagement depend-
ing on the mode we are in.

i. Object Mode: While in this mode we have View, Select, and Object menus.

ii. Edit Mode: While in this mode we have View, Select, andMeshmenus.

iii. Sculpt Mode: While in this mode we have View, Sculpt, Brush, and Hide/Mask.

iv. Vertex Paint: While in this mode we have View, Paint, and Brush.

v. Texture Paint: While in this mode we have View and Brush.

vi. Weight Paint: While in this mode we have View,Weights, and Brush.

d. Mode selector:This helps to switch between possible modes. Available modes in the
D View are as described in the previous point c.

e. Draw mode: Also known as Viewport shading, it determines how we see objects in
our D View. Possible options are Texture, Solid,Wireframe, or Bounding box.

f. Pivot Point: This modifies the object pivot point, also called the transformation
center, on the D viewport. It’s only visible while in Edit or Object Mode.

g. Transform Manipulators: We can manipulate actions like Scale or Rotate thanks to
these manipulators in the same way that we can make all of these in specific axes

28 Blender for Animation and Film-Based Production

orientation. This is also possible by keyboard shortcuts, of course. These manipu-
lators are only visible while in Edit or Object Mode.

h. Layers: The Blender layers are such that they can remain visible even as we move
objects between them.This is important to understand to set render settings in the
right way for successful rendering. The layer selector is visible in all modes except
Edit Mode.

i. Lock to Scene: This option is visible in all modes except Edit Mode.

j. Proportional editing object mode: This is only visible in the Edit and Object Modes.

k. Snap: This controls the snapping tools that help in the modeling or transformation
stage. It’s only visible in the Edit or Object Modes.

l. Open GL render active viewport: This is usually used for previews and quick views
of what we are working on. This option is visible in all modes.

. Tool Shelf panel: This is the panel on the left that we can open or collapse by pressing
the T key or using the small + (plus) button. It contains very useful operators to man-
age the required actions. Object tools, Mesh tools, Brushes, and more are located there
depending on the mode we are in.

. Transformation panel: This is the panel on the right that we can open or collapse by
pressing the N key or using the small + (plus) button. Transform properties and coords,
Grease Pencil,Display, or Transform orientations are some of the features located in this
panel.

3.4.2 Timeline

Working in animation projects requires us to adjust to specific timelines, not in a business
context, but in an artistic one. Each scene is conceived to adjust to that timeline that is usually
fixed by the project storyboard. We have in Blender an editor to help in such circumstances.
The Timeline editor, as in Figure ., is usually at the bottom of the Blender workspace lay-
out and is very useful in providing information regarding our scene. We can get important
information on frames or seconds our scene is composed of, active keyframes for any spe-
cific object, the start and the end of the current scene, or addition of markers for a better
comprehension of our developed scene.

FIGURE 3.9 Timeline. We can get a lot of information from our scene, use the playback options, or
just stick to predefined timelines in production. In complex animation films, it is usual to usemarkers
within the Timeline editor.

Blender User Interface 29

Wemay also control our animation by using the playback controls in the Timeline editor.

. Header:

a. Editor type selector: This button pops up with a list of the different editor types that
we can switch to.

b. Pulldown menus: These contain important options to operate with our animation.
It’s common for all the different modes. Available options areView,Marker, Frame,
and Playback.

c. Preview range: This is a small clock-like icons that help to bring some light to the
current range for our scene.

d. Start: This refers to the first frame of the range.

e. End: This refers to the end frame of the range.

f. Current frame: This is the number of frames we are manipulating at a determined
moment. Changing its value moves the current frame line, also called time cursor,
within the Timeline editor.

g. Playback buttons: We can manage our animation scenes with these playback but-
tons. Available options are Jump to first/last frame of range, Jump to next/previous
keyframe, Play reverse, Play normal, and Stop/pause when any of the play buttons
are clicked.

3.4.3 Graphic Editor

TheGraphic Editor, as in Figure ., formerly known as IPO editor, deals with interpolation
of keyframes using the well known F-Curves.

. Channel Box:This is the area on the left side and contains the list of channels and every-
thing that is linked to animation data; that is, anything assigned to keyframes. We can
filter what we can visualize by enabling or disabling the small checkboxes.

. Header:
a. Editor type selector: This pops up a list of the different editor types that we can

switch to.

b. Hide menus: The small − (minus) button helps to hide the pulldown menus.

c. Pulldown menus: This contains very useful options for markers, channels, or key
administration. It’s common for the different modes we can work in the Graphic
Editor. Available options are View, Select,Marker, Channel, and Key.

d. Mode selector:This helps switch between possible modes. In the Graphic Editor, we
can work in Drivers and F-Curve Editor modes.

e. Channels’ visibility: We can decide here if we want to display channels for selected
objects and data or also display channels for objects that are not visible. If Drivers

30 Blender for Animation and Film-Based Production

FIGURE 3.10 Graphic Editor.

mode is selected, then we also have an option to show only drivers that are disabled
or have errors.

f. Match F-Curve name: This is an option to display those F-Curves that match the
search text that is our input. By clicking on the lens-like icon, an input field, where
we can enter our text, is automatically displayed.

g. Filters: If we enable this button, Blender offers us the possibility of filtering the
curves we want to display according to the data type; that is, we can set the data
type we want to display as scene-related animation data or world-related animation
data, among others.

h. Auto snap:This allows us tomanage the snap settings. Options available areNearest
Marker, Nearest Frame, Time Step, and No Auto-Snap.

i. Pivot Center:This is used for rotating or scaling.The available options are Individual
Centers, D Cursor, and Bounding Box Center.

j. Copy/Paste keyframes: These options are useful to copy/paste keyframes to the
copy/paste buffer. It’s also possible to do this with the shortcuts Ctrl+C and Ctrl+V.

k. Create snapshot or Ghost: Creates a background aid F-Curve for the selected one.

3.4.4 DopeSheet

This editor is used to find out how a scene is structured. We can check everything that is
happening in the scene using this editor. The dopesheet lists all actions or keys within the

Blender User Interface 31

FIGURE 3.11 DopeSheet used in one of the scenes of the PlatformMichelangelo Studio project RAT
bProficiency. We can see the left column with animation channels and their respective keyframes
stored in the Dope closed-up Sheet main editor. It is also interesting to notice a tree-like list of the
whole animated data in the scene while in DopeSheet mode.

current scene, so animators can check their position in the timeframe, their length, and their
relation to any other internal elements as shown in Figure ..

There are four interesting modes in the dope closed-up sheet, and each one is used
specifically in very different contexts.

. Dope closed-up Sheet: This is used to edit and manage multiple actions by manipulat-
ing keyframes. All objects animated in the scene are listed here with their respective
keyframes.

. Action Editor: This is used to edit and manage actions by manipulating keyframes. It is
used to manipulate a single action at a time.

. Grease Pencil: All our sketches are edited with the grease pencil. Also keyframes are
used to structure motion in a timeframe.

a. Header:

i. Editor type selector: This pops up a list of the different editor types that we can
switch to.

ii. Pull-down menu: This contains important options to manage the action strips.
The available options for DopeSheet mode are View, Select, Marker, Channel,
and Key. The available options for Grease Pencil mode are the switches Key to
Frame.

32 Blender for Animation and Film-Based Production

iii. Context selector: We can use the drop-down list to select the right mode. The
available options are Dope closed-up Sheet, Action Editor, and Grease Pencil.

iv. Display summary: This displays the additional summary line.

v. Channels filtering: These are some buttons to filter the elements we want to dis-
play.However, this is not available forGrease Pencilmode.The available options
are Display only selected, Show hidden, and Show only errors.

vi. Browse action:This feature helps to select the action we want to display.We also
have the option to create or delete such action, although only for Action Editor
mode.

vii. Copy and Paste keyframes: These are a couple of buttons to copy and paste
keyframes within the editor.

b. Track tree: This is the left column where the channels with actions are listed. This
tree contains elements that we may expand or collapse to show information like
transformation axis and such. The list is dynamically updated according to the
mode we are in.

c. Main editor: This is where all the keyframes are located. When working on any
channel containing animated data, strips and dots represent the action itself. We
can deal with those keyframes and adapt to the horizontal keyframe scale. We also
have a current frame line telling us where the active frame we are working on is.

3.4.5 NLA Editor

To avoid the hard work of manipulating or fixing animations using the keyframe method,
we can use the NLA editor to make it user-friendly. We can manage a lot of interesting
properties in our animations, tracks, and strips, to reorganize and fix everything we want
in an easy manner. Figure . represents the NLA editor with a single animation track
and strip.

. Header:

a. Editor type selector: This pops up a list of the different editor types that we can
switch to.

b. Pull-down menu: This contains important options to manage the animation strips.
The available options are View, Select,Marker, Edit, and Add.

c. Channels filtering: We have three buttons to filter the NLA editor data we want
to display. They are Include channels related to selected objects and data, Include
channels from objects and bones that are not visible, and finally Include animation
data blocks with no NLA data.

d. Filters: These show the options for whether channels related to certain types of
data are included. By enabling this option, we have several other suboptions being

www.allitebooks.com

http://www.allitebooks.org

Blender User Interface 33

FIGURE 3.12 NLA Editor.

displayed, such as elements related to animation data on Scene,World,Node,Object
level,Mesh,Material, Lamp, Texture, and Camera.

e. Time snap:This helps us to Snap to actual frames and seconds.The available options
are Nearest Marker, Nearest Frame, Time Step, and No Auto-Snap.

. Tracks:The left panel is wherewe canmanage our animation tracks likewe deal with the
outline elements. We can organize our animation tracks and strips easily from within
this panel.

. Strips editor: This is where the actual animation strips are placed and we can adjust,
snap them to build our animation project.

. Animation Data: The right panel, accessible with the N key, if hidden by default, is
where we can manage all our track/strip data properties and customize the animation
in order to get the final expected result.

3.4.6 UV/Image Editor

This editor is usually used to visualize rendered images or to deal with the UV unwrap
technique to apply external textures to our objects.

We will see more about UV in Chapter .

3.4.7 Video Sequence Editor

Blender is a powerful tool. Although we are aware of it, not too many people know that
Blender has its own editor to work on andmanipulate video streaming and that we can com-
bine the compositing nodes to work on both images or video tracks so the final movie is

34 Blender for Animation and Film-Based Production

FIGURE 3.13 Video Sequence Editor.

obtained after assembling the video strips within the Video Sequence Editor as shown in
Figure ..

Many studios produce their final postproduction on external editors and assemble the
final movie in really expensive software. We can’t compare the VSE in Blender with such
specific applications. Anyway, the VSE is powerful enough to suit the needs of small and
medium studios that might use this editor for very different purposes like making animat-
ics, composing rough timelines, applying effects to determined scenes, or assembling small
projects.

. Header:

a. Editor type selector: This pops up a list of the different editor types that we can
switch to.

b. Pull-down menu: This contains important options to manage the strips. Available
options are View, Select,Marker, Add, and Strip.

c. Type of Sequencer View: We can select between three types of views. Depending
on the selected view, we have available different options. The available views are
Sequencer, Preview, and Both.

. Stripes: This is the editor where we can add and manage the strips. We have them sep-
arated by channels and use the same horizontal rule as other editors, incorporating
the timeline at the bottom, where we may control where the strips start and where
they end.

Blender User Interface 35

3.4.8 Text Editor

It is not usual for D applications, but Blender contains an internal text editor as part of its
editor types. It is very useful for scripting and coding within the Blender interface; at the
same time, we can check our recent script in action with Alt+P keys that parses the text in
the text buffer to the internal Python interpreter. It also comes with some useful plug-ins
that help us to write classes or functions, word completion, or browse variables along the
text. But there are many other useful reasons for getting the internal text editor within the
Blender architecture; that is, taking notes for a to-do list for your project, scheduling your
work, writing documentation, and so on. For example, imagine a rigger writing technical
notes that the animator could check whenever he wants regarding the rigging specifications
and use. Figure . represents the text editor with a Python file open.

. Text buffer: This is where we write the text itself. Like any other editor; it’s empty by
default waiting for us to type and input our text. This text buffer is empty and doesn’t
allow you to type anything until you open a file ormake a new file with theNew button.

. Header:

a. Editor type selector: This pops up a list of the different editor types that we can
switch to.

b. Pulldown menus: This contains specific information and options for text manage-
ment like format, templates, copy and paste, save, and more.

FIGURE 3.14 Text Editor.

36 Blender for Animation and Film-Based Production

i. Default: By default, the available options for the pulldownmenu areView, Text,
and Templates.

ii. Create or Open Text: When we create a new text or we open a text block, the
available options for this menu are View, Text, Edit, Format, and Templates.

c. Text Id block textbox: We can select the text file we want to edit by browsing with
the text Id block browser. A list of all our open files in buffer is displayed. Near this
is the textbox which we can use to modify or input a new file name together with
+ (plus) and x (ex) buttons.

d. Display options: We have three buttons to enable or disable Line number column on
the left of the text, Word-wrap horizontally, and Syntax highlight, which is useful
for scripting.

e. Run script: This button is an alias of the Alt+P shortcut and basically executes the
text buffer script we already have parsing it to the built-in Python interpreter.There
is an option close to it to Register the script as a module on loading, so we don’t
need to load the script everytime we load Blender. If checked, Blender will load it
automatically, for which our script should be a Python script.

3.4.9 Node Editor

When we need to post process or add any of the post effects to our renders, as in Figure
., we need to deal with the Node editor, where we can use the Nodes for refining and
texturing the material so that we improve the final composition. Here we give the final touch
to the animation or render adding very different kinds of effects, settings, and values that
determine the final output. That is directly related to the render time that Blender lets you
spend for each still, because for complex projects with complex node trees, the render time
increases as more resources are required for processing.

. Header:

a. Editor type selector: This pops up a list of the different editor types that we can
switch to.

b. Pulldown menu: This contains relevant options to manage the ongoing rendered
frame. The available options are View, Select, Add, and Node.

c. Node tree type: We can switch between three types to display our node tree, like
Shader nodes, Texture nodes, and Compositing nodes:

i. In Shader nodesmode, we have a few other options being displayed likeMaterial
datablock to be linked.

ii. In Texture nodesmode, we have options like Texture datablock to be linked, and
theType of data to take the texture fromdisplayedwithObject,World, andBrush
as available options.

Blender User Interface 37

FIGURE 3.15 Node Editor. We can make the final postproduction composition updates and effects
with a node tree within the Node Editor. This image represents the node tree for the project
codenamedMushroom.

d. Use Nodes: This enables the compositing node tree.

e. Free Unused: This frees nodes that are not being used during the compositing
process.

f. Backdrop:This uses the active Viewer node as the background for the current com-
positing; for example, in Figure ., it enables display of the landscape background.

g. Channels: These are the channels that are used to draw, namely RGB, RGB and
Alpha, Alpha, and more.

h. Snap to: This is the type of element to snap node to. The available options are Node
X/Y, Node Y, Node X, and Increment, Copy, and paste nodes

. Node board: We’d add here the kind of nodes we need at any time or combine them
to obtain the desired result. Here we can also group nodes and check the result of this
combination in real time if the Use Nodes and Backdrop options are enabled on this
editor header.

3.4.10 Logic Editor

This editor is the one dealing with all the gaming features Blender includes. It works with
each game object, so they store a number of logical components usually called Logic Bricks

38 Blender for Animation and Film-Based Production

FIGURE 3.16 Logic Editor.

that guides directly the behavior of the objects in the scenes in the sameway they do to others.
Figure . represents the Logic editor by default.

. Header:

a. Editor type selector: This pops up a list of the different editor types that we can
switch to.

b. Pulldown menu: This contains specific information and options for views and deal
with logic bricks. The available options are View and Add, the latest one where we
can work with Actuators, Controllers, and Sensors.

. Logic Bricks: Blender incorporates some prebuilt functions as blocks, also called bricks,
that combine to create the logic of the game; that is, thewaywe control ourmain charac-
ter, physics, or game targets. We found three kinds of logic bricks: Sensors, Controllers,
and Actuators.

a. Sensors: If we look in the Blender wiki, sensors are described as primitive event
listeners, which are triggered by specific events such as collision, a key press, or
mouse movement. That is a good definition in theory, but in other words, sensors
are those elements Blender calls, when we execute any action as mentioned earlier,
mouse movements. The sensors parse to Controllers anything that we make.

b. Controllers: The controllers read the sensor output to execute actuators that are
connected, if conditions are fine.

c. Actuators: These are the logic bricks working with the game simulation directly.

. Properties panel: In the Logic Editor, properties are those elements accessing data values
for the whole game or for particular objects.

3.4.11 Properties Editor

Theproperties editor is the one that stores different panels for different contexts.Those panels
contain the specific options for each context.

In Blender, we have several contexts available and we can switch between them depending
on the object we have selected in D view. The available contexts are Render, Render Layers,
Scene, World, Object, Object Constraints, Modifiers, Object data, Material, Texture, Particle,
and Physics by default (Figure .).

Blender User Interface 39

(b)

(c)

(a)

FIGURE 3.17 Properties Editor stores different panels with different options depending on the con-
text that is determined by the type of object selected in the D view.The picture represents the Object
context (a), the Render context (b), and the Object Data context (c).

There are some other contexts depending on the type of selected object likeBone andBone
Constraints, if we are working with bones and armatures.

3.4.12 Outliner

Some projects contain a lot of data, objects, datablocks, or scenes and keeping it organized
is not an easy task. Blender has the Outliner Editor, that helps us to navigate through all the
elements that our ongoing Blender session contains. With the Outliner, we can organize and
programme our work, as shown in Figure .; for example, view the current data tree, select
or deselect objects, hide or show elements, make objects unselectable, allow objects to be
rendered, delete objects, and more.

. Editor type selector: This pops up a list of the different editor types that we can
switch to.

. Pull-down menu: This contains important options to work with Blender’s objects and
data. The available options are View and Search.

. Type of information to display: This allows us to filter the outliner display to show
different objects, datablocks, or specific data. The available options are All Scenes, Cur-
rent Scene, Visible Layers, Selected, Active, Same Types, Groups, Libraries, Sequence,
Datablocks, User Preferences, and Key Maps.

. Live Search Filtering: This input is really useful to filter and fetch, within the Outliner,
for the string we input.

40 Blender for Animation and Film-Based Production

FIGURE 3.18 Outliner.

3.4.13 User Preferences

Like any other software, Blender can be customized to match users’ needs using the User
Preferences editor as shown in Figure .. There we can modify options for very different
purposes like interface, add-ons, files, or system options. Modifying these settings will result
in how Blender works. The available options are Interface, Editing, Input, Add-Ons,Themes,
File, and System.

FIGURE 3.19 User Preferences. We can configure our Blender settings from this editor. Modifying
these settings will result in a change in Blender’s behavior.

Blender User Interface 41

. Header: The User Preferences editor’s Header is pretty simple and only contains the
Save As Default that makes the current file the default .blend file.

. Options: We can modify Blender’s settings in seven different areas.

a. Interface: Here we can configure how to display UI elements and their behavior.We
have the chance tomodify options forDisplay,ViewManipulation,Auto Perspective,
D Viewport, Manipulators, or Menus. For example, we can enable/disable if we
want Blender to show the splash screen or if we want to display the Tooltips.

b. Editing: In this panel, we can configure how some tools will react to our inputs; for
example, enable Auto Keyframing or make new objects enter edit mode by default
when we create them. As we see, configuring these options will determine how we
work with Blender, that is, how Blender reacts to our inputs. Some options are Link
material to, Undo steps, Grease Pencil, Keyframing, or Duplicate data.

c. Add-ons: Blender add-ons are simply features that are not enabled in Blender by
default, but the user might enable and use them within his working sessions.There
are a lot of add-ons available not only in each Blender release but also over the net.
Add-ons are available in different areas of Blender like Animation, Game Engine,
Objects, Render, and more. Many of the add-ons are simply Python scripts written
by users and incorporated within the Blender trunk code. Each user is able to write
his own add-on script and make it available by installing it on this panel.

d. Themes: If we want to modify Blender appearance and colors, we can modify the
Blender theme and make it our own. We can modify every aspect of the user inter-
face here with regard to the colors; for example, in D View we may modify color
for active object edges, the selected vertex, the active bones, and everything we
want. As before, we are able to modify everything in color for each of the Blender
editors.

e. File: It is also possible to modify settings for the file managing system, so we may
set a temporary folder, configure relative paths, set default fonts location, or decide
wherewewant our render output by default.We can also configure here the number
of saved versions we want, compress the file if we want to, and do more.

3.4.14 Info Window

In Blender, the Info window is like any other editor; however, it only contains the header
where Blender stores important and useful information and options to control our Blender’
sessions, as shown in Figure ..

FIGURE 3.20 Info Window.

42 Blender for Animation and Film-Based Production

. Editor type selector: This pops up a list of the different editor types that we can
switch to.

. Pulldown menu: This contains important info and options for control of Blender and
user experience. Available options are File, Add, Render,Window, and Help.

. Select workspace layout: This feature offers a drop-down menu with the different built-
in layouts available as in Section ... We may add or delete new layouts if desired.

. Select scene: This is a drop-down selector with all our available scenes so that we can
switch from one to another as required. We may add or delete scenes in our current
Blender session from within this widget as we saw in Section ...

. Engine for rendering: This is the drop-down menu to select the render engine we want
to use in the current Blender session. Available engines are Blender Render, Blender
Game, and Cycles Render.

. Render progression bar: While rendering, Blender shows a progression bar close to the
Engine to use for rendering the drop-down menu. This bar shows the progress in the
status of the current render process.

. File info:The Info window also stores useful and important info for the current file rela-
tive to our scene and objects. So we have info like Blender version, number of vertices or
faces or our meshes, number of objects and lamps, and probably the amount of memory
our file consumes. All this info is important in order to know if we are going out of our
hardware limits.

3.4.15 File Browser

The File Browser editor deals with file managing and operations like fetch and open or save
and folders’ structure such as create folder. Figure . represents the File Browse editor by
default.

By default, the File Browser editor contains the following:

. Header:

a. Editor type selector: This pops up a list of the different editor types that we can
switch to.

b. Move between folders: This widget contains four buttons that allows us to move
between folders on the disk. They areMove to previous folder,Move to next folder,
Move to parent directory, and Refresh the file list.

c. Create new directory: This is a button to generate a folder in the current selected
path. A confirmation message will appear after clicking this button and once
confirmed we will be able to apply a name to the recently created directory.

d. Display mode for the file list: This is a set of three buttons that sets the display mode
for the elements within the current selected path. The modes available are Display

www.allitebooks.com

http://www.allitebooks.org

Blender User Interface 43

FIGURE 3.21 File Browser.

as short list where Blender shows just the file or folder name and size on disk (only
for files), Display as detailed list where Blender shows all those in the previous one
plus the modification date, and finally, Display as thumbnails that makes Blender
show the folder structure with bigger icons and file names below.

e. Sort by:This allows us to sort the directory elements alphabetically, or by extension,
modification date, time, and size.

f. Show hidden: This enables or disables the option to make hidden files within the
directory visible.

g. File filtering:This funnel-like icon enables the option of filtering directory elements
showing them according to several criteria. The available options are show folders,
.blend files, .blend, .blend, etc., files, images, movies, script files, font files, sound
files, and text files. We can combine and select as many filters as we want, so, for
example, we can filter to list only folders and .blend files in the current directory.

. Side panel: This panel contains relevant options depending on the action we want to
execute; that is, there are different tabs depending on whether we are saving or opening
a file.

a. If opening a file: The file browser editor’s side panel contains tabs for System, System
bookmarks, Bookmarks, Recent, and Open Blender File.

b. If saving a file: The file browser editor’s side panel contains tabs for System, System
bookmarks, Bookmarks, Recent, and Save Blender File.

44 Blender for Animation and Film-Based Production

i. System: This contains a list of available drives that we have to navigate within.

ii. System bookmarks: This includes default system favorite folders for easy access.

iii. Bookmarks: We have the option to add new bookmarks to access our projects
easily. Just navigate to that folder and click the Add button. We can delete
bookmarks in the same way by clicking the x (cross) button.

iv. Recent: This shows a list of the recently accessed directories.

v. Open blender file: This allows us to deal with some important options before
loading any blender (.blend) file and is visible when we select the Open file
option either from the Info Window editor or by pressing Ctrl+O keys. Load
UI allows us to load the workspace layout in the file because Blender saves that
layout into the .blend file. Another option is the Trusted source that is useful
when we are not sure if the file we are loading is safe or not.

vi. Save blender file: This deals with options for saving our session into the .blend
file by selecting Save as from either the Info Window editor or by pressing
Ctrl+Shift+S keys. Compress allows us to compress the saved file. Remap rel-
ative is useful to remap relative paths while saving in a different directory. Save
copy makes a copy of the current system. Legacy mesh format is a bit complex
and we deal with it later.

. File browser and folder navigation: We have here a list of all files and folders in the
current directory. We can see the current directory path in the top input field close to
the Open Blender File button. The input below shows the selected file name close to
the icons − (minus) and + (plus) and Cancel. The latest version closes the File Browser
editor returning to the previous Blender workspace.

3.4.16 Console

To directly use Python with Blender, we can use the Console editor. It manages our Python
commands directly over the Blender’s core architecture. We can launch the Console editor
by selecting from the editor type selector or using a keyboard shortcut by pressing Shift+F.
Figure . represents Console editor by default.

. Header:

a. Editor type selector: This pops up a list of the different editor types that we can
switch to.

b. Pulldown menu: We can manage some features and settings for the console editor.
The available options are those of Console.

c. Autocomplete: This is accessible by pressing the button or just using Ctrl+Spacebar.
Basically it suggests any expression and tries to autocomplete depending on the
already typed characters; for example, typing bpy and enabling autocomplete option
gives us the chance to use some of the bpy built-in modules.

Blender User Interface 45

FIGURE 3.22 Console.

. Console display: All results from our Python commands input will be the output in the
console display. It’s currently color mode enabled, so it helps us in the scripting pro-
cess. Since Blender ., Python .x has been accepted. Console displays the command
prompt, that is, where we write our commands, in the way of “>>>” symbols.

3.5 MODES AND CONTEXT
We can not only display different options in Blender depending on the mode we are in but
also filter such options according to the context we are working in. In Blender, we can select
the context we want to be working in from the Properties Editor, which shows the Context
buttons as shown in Figure ..

The different context types Blender allows us to work with are

. Render: Everything related to rendering of our scene is located in this panel. We can
configure a variety of settings affecting the final render result. Here we can decide if we
need to render our scene like an animation generating a motion picture or merely as a
static still.

FIGURE 3.23 Context buttons.We can switch the context we are working in from these buttons. Each
context displays its own options and features.

46 Blender for Animation and Film-Based Production

We can modify the dimensions of the final result or the range of frames for the ani-
mation. We can also decide on the quality of our render by applying anti-aliasing or
enabling compositing with nodes.

Some of the panels located in such context are Render, Layers, Dimensions, Anti-
Aliasing, Sampled Motion Blur, Shading, Performance, Post Processing, Stamp, Output,
and Bake.

. Scene: From here we can modify general settings related to the scene like change the
metrics, simplify subdivision to streamline computer processes, or evenmodify gravity,
which is specially useful for simulations projects.

Some of the panels located in such a context are Scene, Audio, Units, Keying Set,
Gravity, Simplify, and Color Management.

. World: Our scene will also be affected by the settings we can modify in the World con-
text. Here we find settings like the type of color we want for the horizon while we are in
DView, enabling ambient occlusion,modifying the environment lighting, or applying
indirect lighting and enabling a kind of fog denominatedmist.

Some of the panels located in such a context areWorld,Ambient Occlusion, Environ-
ment Lighting, Indirect Lighting, Gather,Mist, and Stars.

. Object: All those aspects that allow us to modify the appearance of our objects, prim-
itives, or models, are located in the object context. Here we can modify our object’s
name, change its transformation properties, that is, Location, Rotation, and Scale. We
also may lock such properties to avoid the object being translated, scaled, or rotated.
Another interesting feature is that we can move our objects between layers or organize
them in groups within this context.

Some of the panels located in such a context are Transform, Delta Trans-
form, Transform Locks, Relations, Groups, Display, Duplication, Relations Extras, and
Motion Paths.

. Constraints: This is a very important context because it determines the relationship
between our objects and how they operate between them and the environment. Con-
straints are just tools that modify our objects’ behavior and sometimes enable some
kind of relationship between them.

We find four big categories of constraints according to its purpose. They areMotion
Tracking, Transform, Tracking, and Relationship. There are constraints that allow us to
copy location, rotation, or scale and others to limit location, rotation, scale, or distance.
Some are merely there to force our object to track another one if the latter modifies its
transform properties.

a. Motion Tracking: Camera Solver, Object Solver, and Follow Track.

b. Transform: Copy Location, Copy Rotation, Copy Scale, Copy Transform, Limit Dis-
tance, Limit Location, Limit Rotation, Limit Scale, Maintain Volume, and Transfor-
mation.

Blender User Interface 47

c. Tracking: Clamp To, Damped Track, Inverse Kinematics, Locked Track, Spline IK,
Stretch To, and Track To.

d. Relationship:Action,Child Of, Floor, Follow Path, Pivot,Rigid Body Joint, Script, and
Shrinkwrap.

. Modifiers: Even as constraints affect the behavior of our objects, modifiers change the
appearance of our objects. There are four categories of modifiers depending on their
purpose. They areModify, Generate, Deform, and Simulate.

Somemodifiers change the aspect of our objects by applying deformation likeArma-
tures or Lattices. Others are used to generate new objects by using the first one as the
base, likeMirror, Array, Bevel, Solidify, or the famous Subdivision Surface. Our objects
may be targets of simulations and physics too, because of which we find modifiers like
Cloth, Collision, Fluid Simulation, Particle System, Smoke, or Soft Body.

a. Modify: UV Project, Vertex Weight Edit, Vertex Weight Mix, and Vertex Weight
Proximity.

b. Generate:Array, Bevel, Boolean, Build,Decimate, Edge Split,Mask,Mirror,Multires-
olution, Remesh, Screw, Skin, Solidify, Subdivision Surface, and Triangulate.

c. Deform: Armature, Cast, Curve, Displace, Hook, Laplacian Smooth, Lattice, Mesh
Deform, Shrinkwrap, Simple Deform, Smooth,Warp, andWave.

d. Simulation: Cloth, Collision, Dynamic Paint, Explode, Fluid Simulation, Ocean,
Particle Instance, Particle System, Smoke, and Soft Body.

. Object Data: This context focuses on modifying those properties related to our objects
in Edit Mode. In fact, some of the panels located in this context are only available if we
are in such a mode. From here we may add vertex groups, change the name of ObData,
apply new shape keys, or add new UV maps.

Some of the panels located in such a context are Normals, Texture Space, Vertex
Groups, Shape Keys, UVMaps, Vertex Colors, and Geometry Data.

. Materials: Everything related to materials that we want to apply to our objects are here.
In this context we can create ourmaterials library that we can apply later to our objects.
We can also modify all those parameters to get the material quality desired. From here
we can modify color, intensity, and the kind of specular light and its intensity.

We also can modify the quantity of light emitted, the ambient light received by our
objects, and the transparency or raytrace. Fromherewe can alsomodifymaterials when
our objects have applied a particles modifier. We can also select the kind of shadow
projected and received or get rid of the shadows completely.

Some of the panels located in such a context are Preview,Diffuse, Specular, Shading,
Transparency,Mirror, Subsurface Scattering, Strand, Options, and Shadow.

. Textures: As in the previous context, here we can work with the kind of texture we want
to add to our objects, the type of map we want to apply to such texture, and how many

48 Blender for Animation and Film-Based Production

influence should use. We can create new textures and add them to our library to use
later in our objects and improve the quality of our work.
Some of the panels located in such a context are Mapping and Influence. Blender
offers different kind of internal textures, also called procedural textures, namely, Blend,
Clouds, Distorted Noise, Environment Map, Image or Movie,Magic,Marble,Musgrave,
Noise, Point Density, Stucci, Voronoi, Voxel Data,Wood, and Ocean.

. Particles: By default this is an empty context until a newparticle system is added.We can
then find parameters to modify such a system, because we can select between emitter
and hair. Some parameters that will affect our particle system are the number of emis-
sions, physics, children, as for example, if we want to render emissors, velocity, or if we
want to apply such a particle system to the whole object, or just to any vertex group.The
particle system context incorporates a very interesting panel called Force Field Settings
where we can apply internal forces like Wind or Turbulence, for example.
Some of the panels located in such a context for the Emitter particles are Emission,
Cache, Velocity, Rotation, Physics, Render, Display, Children, Field Weights, Force Field
Settings, and Vertex Groups.
Some of the panels located in such context for the Hair particles are Emission, Hair
dynamics, Render, Display, Childrens, Field Weights, Force Field Settings, and Vertex
Groups.

. Physics.

3.6 INTERNATIONALIZATION
Blender has been updated to support international languages for both the interface and
tooltips. Even though the default language is English, we can enable our preferred language
from the User Preferences editor under the System tab as shown in Figure .. If we enable
it, Blender shows three different settings:

. Language: We can select our language here.

. Interface: If we want Blender’s user interface showing buttons and menus in our
preferred language, we have to enable this option.

. Tooltips: As before, enabling this option shows all Blender’s Tooltips in our preferred
language.

FIGURE 3.24 Internationalization options. We can switch to another language from the User
Preferences editor.

CHAP T ER 4

Blender in a Digital Studio
Pipeline

Before we start enumerating the reasons why Blender is a D suite that could suit
any animation studio requirement, we need to know how those studios work and what

are the different stages of any project.
Every kind of studio—big or small or home based—has several standard stages. That

doesn’t mean all studios work in the same way, using the same production process.
A very important thing to take into consideration is that big studios have a larger number

of people working in their films, and the projects are usually different in size and quality,
though the last point about quality is not always true.

It has been proven that there are a fair number of open movies of good quality devel-
opedwith Blender to demonstrate that small projects—we should probably call themmodest
projects—can be developed with the same professionalism as the big studios without huge
infrastructure, executive producers, and funds.

We know that Blender has already been used for years in a professional way, for example,
in commercials. There are a lot of incredible professional commercials that have been
developed using Blender.

In the same way, there are many open movies developed with this D creation suite,
as demonstrated by the Blender Foundation and Blender Institute funded open movies or
the ones developed by private studios or those incorporating Blender in their pipeline at a
particular point as shown in Figure ..

This open movie was the first to give us a clear idea on how to develop a D film. What
happens inside any of the big and famous animation studios is usually a mystery but nowa-
days, thanks to the open source concept, we can understand each of the specific areas a D
film is composed of.

We already know how to set up our disk to store everything and how the different teams
work together in modeling, lighting, and compositing, for example.



50 Blender for Animation and Film-Based Production

FIGURE 4.1 Orange studio at the Blender Institute. The resulting open movie Elephants Dream
become the first open movie developed entirely using Blender.

And this has resulted in the big studios opening their doors and letting us know how they
develop their products, and the different stages and processes to finally create the magic.
It’s common nowadays to learn about it on their own websites where they describe all these
processes in production.

Anyway, asmentioned earlier, we can find some common stages in any Dfilmproduction
independent of the studio and the size of the project. The different stages we find in D film
development are

. Script writing

. Storyboarding

. Art conceptualization

. Modeling

. Rigging

. Choosing the surface

. Deciding the layout

. Character animation

. Producing effects

. Postproduction

Blender in a Digital Studio Pipeline 51

Actually, Blender is commonly used in production stages such as modeling, rigging, anima-
tion, and more, but it’s less common to use Blender for preproduction or postproduction
purposes. However, we’ll see right now that it’s also possible to do this and sometimes even
recommended.

4.1 USING BLENDER FOR PREPRODUCTION TASKS
In animation studios, the preproduction stage is the one where the project is in a very initial
stage with rough ideas, concepts, and things to develop. It’s normal to have many meetings
with the project crew and create teams for different purposes.

We can argue about what’s good and what’s bad in comparing big and small studios. For
example, having to organize teams and contents in an extremely super production is not
an easy task and maybe small studios cooperate better with fewer members in the team
organizing roles.

At the same time, production is, logically, slower in small studios than in big animation
studios, if we talk about projects of the same size. It is always a good idea to have everything
organized, not only for big productions but also for small ones. It’s highly recommended to
have organized a clear idea on the project timeline, and at the same time, it’s important to
keep organized the project structure on the disk.

This, though it seems the logical thing to do, is not always possible. We can’t have every-
thing under control in a film production. Sometimes there are delays in development,
sometimes we need to modify a specific character, or directly get rid of determined scenes.

That is an inevitable consequence of film productions being artistic creations. Things
could change independently when we think we have everything under control.

Because of this, it’s also common to work together with spreadsheets and calendars. It’s
very important in a very well organized project to know how much time is spent by each
department and howmuch time any teamhas left to complete the stuff.Thismakes the whole
project stick to deadlines and executive producers are usually pushing to get things done
within that scheduled deadline.

Spreadsheets are usually used to store asmany details as possible, so different departments
have useful information to develop their parts of the project. Some of the information we
store in those breakup are scene number, scene name, shot number, shot type, description,
frames, duration, use of environment or props, use of physics, dialog, ambience, or even
render engine to be used, and the render time as shown in Figure ..

As mentioned earlier, it’s also common to use a schedule sheet so that the project is orga-
nized in the calendar determining the production length as shown in Figure .. Developing
a good schedule is a very important task, but that doesn’t mean tasks are merely scheduled
with no reason. It has to be done by thinking carefully aboutwhat the filmneeds, the available
team skills, and the amount of funds the project has. It’s also common to develop different
schedule graphics to take care of delays in production.

Anyway, what we want to know is how Blender can deal with this preproduction stage
and with things like writing the script, developing our storyboard, or creating the concept
art, for example.

52 Blender for Animation and Film-Based Production

FIGURE 4.2 Mushroom project breakup. We can use spreadsheets to develop the project breakup.
This gives a lot of information for the different departments.

FIGURE 4.3 (See color insert.) Schedule graphic determining the project stages in the calendar.
Picture represents the schedule document for the Mushroom project.

4.1.1 Developing the Script with Blender

Writing the script is one of the first things when developing animation projects, at least hav-
ing a rough set of ideas is really important before themachine starts working. For that, writers
have a lot of applications to work with depending on the platform and operating system they
are running but we’ll see how we can do it with Blender too.

As we already know, Blender incorporates a Text Editor that is supposed to be used to run
Python scripts within the Blender architecture, but we also said that this editor suits other

www.allitebooks.com

http://www.allitebooks.org

Blender in a Digital Studio Pipeline 53

FIGURE 4.4 Script written within Blender. We can also write our script using Blender’s Text Editor,
which suits our needs perfectly.

requirements in our projects and one could be the writing of our project script. It’s not crazy
to have a .blend file with our script written in Blender, as shown in Figure ..

4.1.2 Using the Video Sequence Editor to Build the Storyboard

Once we have the story script in any manner, we will start working on our storyboard. It’s
true that Blender doesn’t support painting D like other editors such as GIMP or MyPaint,
for example, or at least not at the same level; so we’ll need to develop our sketches there.
But what we can do is to build our storyboard, and start playing with timeline and layouts,
using the Video Sequence Editor within Blender. We can compose, add or delete sketches,
and adapt our storyboard to the purpose of our project and we can also check our script that
was written earlier with the Text Editor.

4.1.3 Creating Concept Art

Every animation project requires a lot of work in concept art, so artists recreate what we have
in our script and storyboard in their drawings and pictures. A lot of references, models, and
inspirational concepts that will be used in the production are developed by artists in these
concept art D sketches.

It’s normal to use painting software to develop the concept art, and we already know that
Blender is not a tool for such kind of painting. But what can we do regarding concept art in
Blender?Well, we can use Blender as the base for concept art sketches; that is, we can develop
layout structures and objects or build our primitive scene with Blender’s primitive objects
and then retouch and paint it with external tools to feature the final concept art sketch.

This is a practice that is used so artists can play with the scene compositing in space layout,
disposition, measures, and more, making the concept art sketch more accurate to the final
shot, as shown in Figure ..

54 Blender for Animation and Film-Based Production

FIGURE 4.5 Concept art primitives. We can get the primitives of concept art using Blender and then
repaint with external tools.

But, painting software is not always required. It’s also usual to develop the whole concept
art in a traditional way, using paper and ink or any other technique.The fact is that the days of
concept art creation are really stressful because it’s common to fill everything with drawings,
ideas, concepts, and more. Everything in the studio is covered by a lot of potential ideas as
shown in Figure ..

Not all ideas go to the final film of course. There are a lot of them that simply don’t go
further for very different reasons but anyway, each one of them helps in clarifying the idea
of the film. After the concept art is created, we have a clear idea what we have in the film and
what we don’t have appearing in it (Figure .).

4.2 USING BLENDER FOR POSTPRODUCTION TASKS
It’s usual that once studios have the production almost ready, they fix or add final bits to the
compositing and it’s common to use external applications for things such as adding effects,
fix compositing lights, or making the final composition with video and audio editors.

Blender in a Digital Studio Pipeline 55

FIGURE 4.6 Elephants Dream project. The picture shows a desk full of artwork and concept art for
the movie.

FIGURE 4.7 (See color insert.) Omega stop motion project. Directed by Eva Franz and Andy
Goralczyk, this is an awesome stop motion movie developed using Blender. The picture represents
the concept art developed for the movie.

56 Blender for Animation and Film-Based Production

Blender has all we need to make this with no need to export or work in external applica-
tions for that. We’ll see postproduction features later in this book but it’s interesting to know
at this point that such things are possible with Blender.

As we can see, Blender suits almost everything any studio needs to successfully develop
any animation project, from preproduction tasks to production work and finally postpro-
duction tasks.

4.3 ORGANIZE THE PROJECT IN DISK
It’s also important for any studio to have a clear idea on how the project folder in the disk is
organized. For that, it’s strongly recommended to follow some guidelines and naming con-
ventions, as shown in Figure .. And this is so, because in large projects, the number of files,
tests, animatics, mattes, and more is huge so it is easy to lose anything or expend valuable
production time in messy directories and folders or incomprehensible file names.

At the same time, it’s a very good idea to track everything with version control systems.
Nowadays, it’s really common for animation studios to collaborate with each other from very
different locations thanks to the Internet.

This relationship is not possible if they don’t work under version control systems such
as git, subversion, mercurial, or any other out there. The time spent in re-factoring or
re-modeling awhole scene is valuable inmoney in professional productions so using backups
to previous revisions makes the difference between success and breakdown.

FIGURE 4.8 (See color insert.)Project’s folder structure. Having a clean and organized project folder
helps in productivity. It is strongly recommended to apply a project naming convention to avoid
mistakes and messy project structure on disk.

Blender in a Digital Studio Pipeline 57

A good folder structure could be as follows:

. chars:The folder contains all our project’s character models using naming conventions;
that is, it’s a good rule of thumb to have bunnymodel.blend for our bunny model and
bunnyrig.blend for our bunny rig in separate files.This folder usually contains a textures
folder where all textures used in our models are placed.

. envs: This is for everything related to the environment and is usually where we store
objects, building sets, and scenarios. Everything that won’t be animated in the scene is
here. Like the chars, it might contain a textures folder where all our objects’ textures
are located.

. mattes:This folder usually contains Dpaintings used in backgrounds.Think onmattes
like those backgrounds used for theatrical plays.

. pre: In times of the Lighthouse Animation Studio and theMushroom codenamed project
we were using this folder to store everything related to preproduction, such as script
and storyboard or breakdown and schedule sheets.

. props: This is the folder for the known properties that are basically those objects we will
animate in our project. This folder might also contain a textures folder.

. py: The folder to store all our Python scripts that we might be loading later in our
project.

. scene: This is an important folder because we store here the whole scenes tree of our
project. For very large projects, we need to set up a clean structure here.

. tests: For all our tests and animatics or render tests.

. tutorials: When we are developing an open source project, it’s common to launch our
project with some written or video tutorials.

. production: For postproduction purposes and to store all final shots and compositing.

Blender currently offers many open movie workshops where we can learn not only technical
aspects like modeling or texturing but also how to organize projects as shown in Figure ..

One of the most interesting things of open movies is that they include almost everything
used in film production, that is, from concept art pictures to D models, riggings, complete
set of scenes, and so on.

This also gives us an idea of how is it all organized by the different teams, not only on disk
but also in the production breakdown.

4.4 BLENDER AND THE OPEN MOVIES
The open movies is a concept that has become popular in last few years. The idea is to create
a film with a wide range of people from different places and then release the whole content
as open source under any of the current open source licenses.

58 Blender for Animation and Film-Based Production

FIGURE 4.9 (See color insert.) Tears of SteelDVD box. Blender released not only the movie but also
a whole open movie workshop containing all files used in the D film production.

The Blender Foundation started in  with the very first open movie project. The usual
period of work for open movies developed in the Blender Foundation is about – months
where artists are invited to the Blender Institute and coordinated as teams for the different
stages of the film production.

With such a small number of artists it’s common to see each one working in several dif-
ferent disciplines. This is something that does not happen in big studios where it’s not usual
to work in any area other than what you were contracted for.

The final open movie product is released by the Blender Foundation in DVD or down-
loadable format. First, a preorder campaign looking for donations and funds is launched, so
the project’s costs are supported and the film is completed.

Nowadays, there are other ways to get funds in order to develop artistic content. A very
well-known project, the Tube open movie, uses a kickstarter platform in order to obtain the
required amount of money for its development.

So, for example, the Tube project started with a goal of $,. The first Blender Foun-
dation open movie, Elephants Dream cost $, to produce.The recently produced Sintel
cost $,–$,. As expected, the amount of money an open movie costs depends
on very different things like the length of the movie, the number of people in the teams, or
added elements that raise the production expenses.

Blender in a Digital Studio Pipeline 59

As we see, it’s not free as in free beer to develop a film but we don’t want to say that money
is everything in a film. We want to think that there should be something more. Obviously, it
helps in film production but let’s get rid of this thought now and focus on the artistic one.

At the moment, the Blender Foundation has released four open movie projects and each
one has been used to improve the Blender features and pipeline.

. Elephants Dream: . Codenamed theOrange project.This project needed the whole
animation system refactored in the same way and the render engine needed a whole
recode. But the great improvement Blender got from this project is the node-based
compositor. Directed by Bassam Kurdali and produced by Ton Roosendaal.

. Big Buck Bunny: . Codenamed the Peach project, we have to talk about the great
improvement in the particles system because of the requirement for furry characters.
Directed by Sacha Goedegebure and produced by Ton Roosendaal.

. Sintel: . Codenamed the Durian project, this was a very ambitious and epic project
that finally resulted in a  min short film. The main improvements were to test the
stability, illumination rendering, or testing tools like sculpting of the refactored .
version. Directed by Colin Levy and produced by Ton Roosendaal.

. Tears of Steel: . Codenamed the Mango project, this time the Blender Foundation
developed a film with real actors in order to test Blender in vfx and realistic rendering.
This film is based on a sci-fi theme recorded inAmsterdam.The use of green screen and
motion track was introduced for visual effects. Directed by Ian Hubert and produced
by Ton Roosendaal.

At the moment of authoring this book, the latest open movie project announced by the
Blender Foundation was codenamed Gooseberry. It’s intended to be a feature film developed
by the Blender Institute and small studios around the world together.

As we see it’s a very interesting idea that makes it easy for small studios to contribute to
feature films and that demonstrates that Blender could be used in the pipeline of current
studios.

We can then say that open movies are not only a way of producing D films but also a
way to share knowledge. They are a way to contribute to other people sharing the hard work
developed by an enthusiastic team.This becomes an interesting knowledge for other people
improving their skills, creating better and committed artists, andmaking amore competitive
market.

CHAP T ER 5

Modeling Your Main Character

Without doubt, one of the most important points when developing an animation
film is related to the main character design. It’s mandatory that this design matches

all the requirements in the film’s preproduction meetings.
The main character in a film will be the one maintaining a straight forward relationship

with the viewer both visually and sentimentally.
Because of that, animation studios have more than one D departments working on the

project, but one art department where all the first sketches, backgrounds, environments,
ideas, color tests, and everything regarding the visual aspect of the film are recreated with
digital or traditional painting techniques.

Animation studios spend a lot of time of the preproduction stage developing all these
details, where the artists don’t stop developing sketches and tests that will be studied and
approved later so they can go directly to the production team, making all the D work
necessary to adapt those ideas to the final expected product.

Once the production team have something to work with, let’s say the main character, one
of the first things to do is to model everything. All sketches and tests should be moved from
D to the D environment, in our case using Blender, of course.

The resulting model is not always exactly as the original idea developed by the creative art
team because like any other task in a film production, everything evolves and new ideas and
changes are incorporated at the same time that others are rejected.

Anyway, in very ambitious productions developed by big studios this rarely happens
because the preproduction time is huge in such cases and everything needs to be clear when
production starts to avoid delays in production, resulting in waste of time and money.

In small studios, modifying some ideas during production time is much more common,
the project evolves at the same time as the ideas come; however, this is a very risky production
method because if the project falls into the incorporation of new ideas with no control, the
production time exceeds the expected one and each change requires time to develop and
introduce, maybe resulting in an absolute failure and abandoning of the project.

In Blender, modeling our main character or any other kind of object or scene is a very
intuitive process thanks to the built-in tools and the workspace where the mouse and key-
board peripherals interrelate to help us and speed up our work. Regarding that, the Blender



62 Blender for Animation and Film-Based Production

community have something like a slogan, use Blender with your left hand in the keyboard and
your right hand on the mouse, and we will see their reasons.

The design or model of our main character will depend on the kind of story we are devel-
oping, because the final result will vary depending on each case. We also have to take care of
an important thing, that is to think about the next department using our recently developed
model.

That means that when we are developing a model, object, or scene, this will automatically
go to the next stage in the production chain, in our case the rigging department where they
will apply the armature and bones to be used later by the animation team.

As mentioned earlier, from the business point of view, the time spent in any film pro-
duction costs money. Each aspect of the film is studied before starting the production. They
test production time and possible delays and finally producers will supply and invest enough
money to start film production. If the productive time is delayed for any reason, the budget
increases and this might make the investors retire from the project.

From a creative point of view, each error of the creative art team harms the work of the
next department, and thismeanswaste of time andmoney trying to fix those technical issues.
But, what does it mean if we are talking about modeling with Blender?

Easy. While modeling a character, we have to take care of important things like how we
develop the mesh, topology, proportions, and how to distribute vertices and edges so the
rigging team can make a proper rig that the animation team could use without trouble.

An example of a mistake in this stage was recorded in one of our first projects in Platform
Michelangelo Studio, codenamed RAT bProficiency, where we didn’t complete the model of
our main character by distributing vertices and edges as it should have been. The result was
we had trouble in animating hands, where we developed a completely wrong topology as
shown in Figure ..

FIGURE 5.1 Awrongmodel will create trouble in the following stages of production, hurting the final
result. In the picture, we see some of those modeling issues that will become bigger in the animation
of hands and eyes.

Modeling Your Main Character 63

FIGURE 5.2 Different types of characters.The top picture represents amechanical character whereas
the bottom one has a very much organic and toon-styled character.

With this in mind, again, good results are usually the result of very good preproduction
work as we have alreadymentioned.Thismeans wemust ensure we have inmind a character
that suits the idea we want to transmit in our project (Figure .).

Some examples of different ideas when developing characters are the following:

. Action: This is the mechanical part.
Character: We design our character with a rigid body, some tubes, and lights, mak-
ing it look technical and ensuring all moving parts are well designed to avoid future
overlapping.

. Action: This is the Toon part.
Character: We design our character to allow for a soft body—do not confuse this with
the dynamic soft bodies in Blender—tomake it elastic and funny.We ensure those parts
that stretch are well designed to avoid unstable behavior during animation.

64 Blender for Animation and Film-Based Production

FIGURE 5.3 (See color insert.) Developing a convincing character is not always easy. The picture
represents the main character for Tube open movie. Notice that it suits perfectly the project concept,
giving credibility to the film and increasing the viewer interest for this awesome film.

This seems to be a matter of common sense but is just here where people fail. A not-so-well
designed character makes the whole production fail as well. Production requires hard work
in specific areas to go to the next improving it and making it look as it should do.

Again, when a piece of the chain fails, then the production is not a success. Because of that,
it is very important to take some time developing this model in the preproduction stage. If
our project is a homemade one andwe have no time frame for it, then we’re lucky, because we
can modify it as many times as we need because a successful animation requires a successful
model to animate, but we currently have the most appreciated value in any production, time.

We must remember that a good animation is as good as the mesh allows. Having a well-
designed character and a right model or meshmakes life easier while working in other areas.

It adds proficiency to our project and ensures good results. Riggers are usually supervising
the modeling work to be sure they will be provided with models with enough quality to
develop their rigging that automatically increases possibilities for animators (Figure .).

5.1 MODELING IN BLENDER
We have several ways for modeling. Blender allows us to use the traditional method of
extrude, where we are making and adapting faces and vertices to the desired topology.

In the sameway,we build our character using sculpting tools, wherewemodify the volume
to finally get our character from the primitive block.

Modeling Your Main Character 65

FIGURE 5.4 This picture represents the difference betweenObject, on the left, andMesh, on the right.

Another method is to use other tools such as curves, but depending on the character, this
methodmight not help to achieve the desired result, so it is commonly used tomodel objects
and props.

We are going to cover here the extrusion method in the same way as we’ll talk about some
of the most important modifiers that help in our character’s development. We should make
clear that Blender allowsmodeling usingmeshes, objects, curves, surfaces, text objects, meta
objects, or groups of objects.

First of all, we need to understand the difference between mesh and object, as shown in
Figure .. This difference is not always clear, especially so for beginners, although it is a
common topic in dedicated forums.

In Blender, there are different types of objects such as meshes, curves, surfaces, meta
objects, text, armatures, empties, cameras, lamps, and force fields. These objects are usu-
ally available where Blender is in Object Mode, as we had mentioned in Chapter . What we
need to study now is the first kind of object calledMesh.

A mesh is, basically, the object’s structure composed of faces, vertices, and edges that can
be edited with the editing tools within Blender; that is, a mesh is the object itself but in Edit
Mode we can modify its topology.

As an example, we can think about a block of plasteline on the table, where if nobody
modifies it, we have a block of plasteline in object mode.We canmove or translate this block
and we still are in object mode, but if we start modifying or deforming it like adding more
plasteline or modifying its topology we’d be in edit mode then.

5.2 MODIFIERS
The purpose of modifiers while modeling is to help and accelerate the process so mod-
elers don’t have to deal with tedious operations. What modifiers do is to display and
render the object in a different way without affecting the basic topology. We can think

66 Blender for Animation and Film-Based Production

FIGURE 5.5 We can select themodifier from theAddModifier dropdownmenu.The list of modifiers
contains four types or groups of modifiers depending on the purpose of its use. Basically Modify,
Generate, Deform, and Simulate are the main groups where modifiers are located.

about modifiers like visual effects we apply to objects to alter their visualization but not
their topology.

In Blender, we have four types or groups of modifiers depending on their function or the
generated effect as shown in Figure .:

• Modify:They are a group ofmodifiers affecting the object data.They differ fromDeform
because the latter affects the object shape exclusively. Some of the modifiers found here
areMesh Cache, UV Project, UVWrap, and Vertex Weight.

• Generate: As the name implies, they are modifiers affecting or altering the geometry of
the object.They are so named because they generate a new geometry. Some of themod-
ifiers found here are Array, Bevel, Boolean, Build, Decimate, Edge Split, Mask, Mirror,
Multiresolution, Remesh, Screw, Skin, Solidify, Subdivision Surface, and Triangulate.

• Deform: These types of modifiers only affect objects’ shape. Some of the modifiers
found here are Armature, Cast, Curve,Displace,Hook, Laplacian Smooth, Lattice,Mesh
Deform, Shrinkwrap, Simple Deform, Smooth,Warp, andWave.

• Simulate: This is usually auto generated in the modifiers’ panel when we add a Particle
System or we play with Physics. Some of the modifiers found here are Cloth, Collision,
Explode, Fluid, Particle Instance, Particle System, Smoke, Soft Body,Dynamic Paint, and
Ocean.

When we add modifiers, they are stored in what is called a modifier stack. We have to take
care of the order of modifiers in this modifier stack because this order affects the final result.

Modeling Your Main Character 67

FIGURE 5.6 (See color insert.) The modifier panel contains some common elements shared by
all kinds of modifier types, but also specific buttons and properties. The picture represents the
Subdivision Surface modifier.

Probably the most common example is that applying a Subdivision Surface modifier in the
first place and a Mirror in the second place gives a different result from applying a Mirror
modifier in the first place and a Subdivision Surface later.

What is the significance of all these options within the modifier panels? Well, each mod-
ifier might have its own options depending on the purpose of the modifier effect. But,
we can talk about some common parts shared between the modifier panels as shown in
Figure ..

The elements that a modifier panel is composed of are as follows:

• Header: In the modifier panel header, we find important icons that we can use to
collapse the panel, change modifier name, or display filter to use this modifier while
rendering in realtime or in EditMode.We also have some buttons tomove themodifier
over the stack or to delete the modifier from it.

• Apply/Copy buttons: The Apply button confirms the modifier’s action making it real to
the object. The Copy button just duplicates the modifier in the stack with the same set-
tings. The latter option is especially useful if we need to apply another similar modifier
to the object by simply changing a couple of settings.

• Modifier settings: These settings are specific to each modifier and might contain
different options, buttons, and inputs depending on the purpose of the modifier.

It is important to know that all modifiers are not always available. They are listed only under
certain circumstances like the object type. That means that we can add a modifier to the
stack by using the dropdown menu in Add Modifier, but the list of available modifiers is
automatically updated according to the selected object type.

68 Blender for Animation and Film-Based Production

5.3 MAKING PROPS
Usually, a normal scene is composed of different kinds of objects; so, in order to successfully
complete a whole scene animation, studios usually set some differences between three types
of elements: Characters, Properties, and Environments.

They can all be part of the same scene together, of course, but combined in a very different
manner depending on the purpose of the scene or the project sketch. At the end of the day,
they usually follow some criteria.

. Characters: These are the primary elements in the scene usually. They do the actions
playing with props in the scene environment. They feel emotions or they are the ones
changing the events in the story.

Studios spend much of the preproduction time and money trying to find a perfect
and suitable character, because it’s the one with which the spectator will identify or the
one the viewer will hate, depending on the story. Concept art is very important at this
point as shown in Figure ..

FIGURE 5.7 Concept art for characters in the Blender Foundation Peach project. It is evident that
character concepts evolve from the beginning sketches to the final concept. Adapting personality and
appearance is very important to obtain the desired result.

Modeling Your Main Character 69

FIGURE 5.8 (See color insert.) Some of the props used in the Big Buck Bunny open movie. All those
elements are part of the animation process because at any moment they can require animation. In
other words, they interact with characters somehow.

Geometry, topology, and appearance are, of course, very important but building the
personality of the character is one of the most important tasks when developing any
character.

. Properties: In the animation business, we call those objects props that are involved in
the action we are developing such as elements our characters get, give, use, or play with
as shown in Figure ..

In some old cartoons like Hanna–Barbera’s original animations, they are easily rec-
ognizable because they usually use a shading very different from the background plates.
I mean in the original, to differentiate from remastered ones.

So, for example, in a table you easily recognize the element Fred Flintstone has in
his hands because the shading of the object itself is very different from the surrounding
elements even if they are of the same family, say books, and they are on the table too.
I’m personally fascinated by this peculiarity of the old animation process.

. Environments: These are elements that compose the foreground or background scene
but they are mostly nonanimated objects but not necessarily motionless, as we will
see later.

In this chapter, we cover the Properties elements. If we have a look at the previous list, it’s
the usual hierarchy of character, props, and environment but we can switch its elements in
projects and productions.

That simply depends on the story or the scene objectives. Zooming along a landscape
is a well-known introduction and resource where the environment gets importance in the
scene and probably is the only element in the scene itself, as we know from Big Buck Bunny
produced by the Blender Institute.

70 Blender for Animation and Film-Based Production

(a) (b)

FIGURE 5.9 Character and props relationship. Relationship between character and properties should
be as real as possible avoiding overlapping or wrong positioning: (a) represents a normal relationship
but (b) represents an overlapping one. Look at the cheese block.

Another example could be an object like a ball moving down a staircase, as you may
remember from the scene inThe Changeling by Peter Medak, , where the ball becomes
the prop., also called property, that is the main element in the scene. We can say that the ball
is almost the main character of the scene.

Making props is also a hard job because they play with characters in the most common
cases and where they don’t they become the most important element of the scene. When
props and characters establish a close relationship, then it needs to be as true as possible.

Credible relationship is possible only if props and characters are at the same level of details,
for example, using the same or similar shading and lights levels and contact between both
elements is as close as possible without overlapping as shown in Figures . and ..

Imagine any character you know, say Sintel from Blender Institute’s Durian project, in
the scene where she takes Scales, the baby dragon, in her arms. Both, the girl character and
baby dragon need to have a credible shading and lighting compositing and contact between
both elements should be as real as possible avoiding overlapping or artifacts as shown in
Figure ..

Nowwe knowbasic concepts about properties, we are going tomake a simple exercisewith
a single Glass to show how to model some kind of properties in the same way we continue
learning more about Blender’s modeling features.

Modeling a glass is really easy for several reasons. We can do it manually, extruding and
modeling from primitives or just play withCurves andModifiers that Blender supports really
well, making it in just a couple of steps.

The latter method is the one used in most animation studios working under several pro-
duction times and getting the final object faster and looking more professional. So now we
see another reason for making Blender the tool for animation studios.

Modeling Your Main Character 71

FIGURE 5.10 Character and props relationship. Relationship between character and properties
should be as real as possible avoiding overlapping or wrong positioning: (a) represents a normal
relationship but (b) represents a wrong relationship with overlapping. Look at the fingers.

FIGURE 5.11 Sintel and Scales relationship.The Blender crew got to create a convincing relationship
between both characters. As we see, relationship between objects in a scene must be real, not only
between props and characters, but also between characters and environment.

First, we add a newBezier Curveusing the processwe already knowby using theAddMenu
panel in either of the twoways we have discussed.Thenwe go toRight View by pressing  Key
in Numpad and rotate the curve by pressing R key and enter −90 after that and press Enter
key to confirm.We should ensure we are inOrtho View.Thenwe go to Front View by pressing
 Key and move the curve a little bit on the X axis. To make it, we just press G key to grab the
curve and X key to tell Blender the axis we want to move along. Then, we move the curve a
little bit more to the right.

72 Blender for Animation and Film-Based Production

FIGURE 5.12 Geometry Panel for curve object. Bevel Object option receives the instruction of using
the Curve object to modify the mesh according to changes made in that object.

Now we add a new object. This time a Circle Curve. To make it, we just go to Add
panel by pressing Shift+A key and add a Curve → Circle. There is no need to change the
view if we are still in Front View, and we should be. Now we will assign, or link, the pre-
vious Curve to the Curve Circle object; so, modifying the previous one will modify the
second too.

With Circle Curve selected, we go to the Object Data button in the Property Panel. We
click on the icon that looks like a curve. There should be a panel inside titled Geometry and
a Bevel Object, an input option. We will use the first curve we have added at the beginning.
So we select that one and type Curve; if all is fine, it should appear in a floating menu after
clicking the input option, then just select it as shown in Figure . so we have an object like
the one shown in Figure ..

Now we have to select the Curve object, check the Outliner Editor in case of doubts, so
we can modify it as we do with any other mesh. Then we go to Edit Mode with Tab Key to
use the editing operators we are familiar with. The extrude, translate, and rotate operators
should be enough to get something similar to the object shown in Figure .. Once we do
this, we can see that Circle Curve, left object in the picture, modifies the mesh automatically
when we modify the Curve, which is the right object in the picture.

FIGURE 5.13 Bevel Object applied to Circle Curve. Circle Curve after the Bevel Object option
application. Modifying the Curve Object will modify the Circle Curve object.

Modeling Your Main Character 73

FIGURE 5.14 Bevel Object result. Circle Curve after the Bevel Object option and the Curve editing.
Left object takes the form of the right one thanks to the Bevel Object operation.

We have to remember that our left object in Figure . is still a curve, Circle Curve to
be specific. To convert it into a mesh to apply shading, textures, and so on, we need to use
another operator. In Object Mode, we have to select the Circle Curve object, again the left
one in the picture, or the cup look-alike and press Alt+C Key. The Convert menu appears.
Here, we can convert objects in two different ways:

. Curve fromMesh/Text

. Mesh from Curve/Meta/Surf/Text

We need the second method to convert the Curve into a Mesh. We tell Blender we want to
convert our Curve into a Mesh. The result will be to have an object with vertices, edges,
and faces that we have modeled with a simple curve instead of extruding it from basic
primitives.

This is a common technique used for symmetrical objects such as glasses, cups, crockery,
and so on. Then, once we have converted our curve into a mesh we should ensure that the
Object Data in the Property Editor is now in Mesh properties instead of Curve properties.
And if we go to Edit Mode we will see the cup now as a mesh, as we mentioned earlier, with
vertices, faces, and edges (Figure .).

In one of the first projects we made in PlatformMichelangelo Studio, later the homemade
studio Lighthouse Animation, codenamed RAT bProficiency, we used this method to model
cups, glasses, and dishes and it was really easy to have them ready in a couple of modeling
sessions.

This technique allowed us to speed up our production time so we could invest muchmore
time in other stages such as animation. Why we didn’t do it and released the project without
refining animation is another story.

74 Blender for Animation and Film-Based Production

FIGURE 5.15 (See color insert.) Convert to Mesh from Curve. Circle Curve after the Convert to
Mesh from Curve operator. We get access to this by selecting the Curve to convert and pressing
Alt+C Key.

Anyway, as can be seen, this technique is really powerful, and there is no need to model
these kinds of objects using theMirror and Extrudemethod, which requires special care and
details (Figure .).

As mentioned earlier, props will be important stuff in the animation result because they
will be used by characters to play with or they become the most important element in the

FIGURE 5.16 (See color insert.) RAT bProficiency. First project developed by former Platform
Michelangelo Studio was an educational resource for Blender teaching, releasing its production files
using the GPL License. This project was also mentioned in my Blender Foundation Certification.

Modeling Your Main Character 75

FIGURE 5.17 (See color insert.)TheDoctor Show.We can see the relationship between the props and
the character must be as refined as possible. In this case, the Blender constraints help while animating
the swords at the same time as our character’s hands.

scene when there is no character; so it’s important to pay attention to detail when we develop
them and, as we did with our character, take the time to develop them in sketches or concept
art drawings.

Maybe the most clear definition of property in animation business is that the object has a
direct relation to the character itself, because that character gets the property on its hands; so
the relationship between the property object and the character’s hand should be completely
credible.

In another project from Platform Michelangelo Studio, codenamed Gecko later released
as The Doctor Show we had a kind of small monster as the main character and in the first
episode, he gets a couple of swords in his hands. Every time he moves his hands, the swords,
the property objects, in essence, should make the same movement.

What we need to understand right now is that developing a solid relationship between
props and characters is not only a matter of good modeling, but also achieving as perfect an
animation as possible. This can be achieved thanks to the Blender constraints as we will see
in the animation chapter (Figure .).

5.4 BUILDING THE ENVIRONMENT OF THE SCENE
The environment of the scene is everything that builds the world surrounding the scene. It’s
really easy to understand if we think of it as something made of elements that do not require
animation. They are just there to complete the scene helping to create the feeling we want to
produce in the viewer.

Sometimes, because of the nature of nonanimated objects, we tend to forget their impor-
tance. We don’t spend the same time developing such elements like the time we spend on

76 Blender for Animation and Film-Based Production

FIGURE 5.18 (See color insert.)Theparanoia of the Elephants Dream openmovie perfectly suits the
world developed by the Blender Institute crew. Characters and environment keep viewers attention
within the story.

the character’s development. This is an error because we need our characters in a world that
completes the feeling between the scene and the viewer. The environment is very important
in order to get catch the viewer’s attention as shown in Figure ..

Good productions have a great team working on environment development. Back-
grounds, colors, materials, textures, and lights, everything should match whatever produc-
tion wants to transmit to the viewer. The quality of the final production results directly
from the relationship of all those elements. We don’t want to see a super character in
a really crappy environment. We can lose all interest in the story simply because both
don’t match.

The environment development is usually the result of preproduction meetings where the
team talks about localizations, structure, volumes, appearance, or ambience. This, like any
other aspect of the animation movies, is taken into consideration by the concept art artists.
For very big productions, a large number of sketches are done for that. They don’t want to
miss anything about the environment of the scenes. Everything should be in the right place.
Everything should look good. And everything should match the story background as shown
in Figure ..

5.5 TOPOLOGY SOLUTIONS
The following pictures represent different solutions to different tasks. We see interesting
solutions in topology for modeling eyelids, mouth, hands, and more.

Asmentioned earlier, having awell-developedmodel will help to succeed in the next stage.
Sometimes we find different solutions for a problem while modeling our characters but to
get the best possible solutions is a very important skill for people in modeling (Figures .
through .).

Modeling Your Main Character 77

FIGURE 5.19 (See color insert.)DavidRevoy’s sketches for the Blender Foundation’sDurian project.
The environment of the Sintel open movie perfectly matches the story and its characters.

78 Blender for Animation and Film-Based Production

FIGURE 5.20 (See color insert.) Topology example, notice the loops around the mouth and eyes.

FIGURE 5.21 (See color insert.) Topology example, notice the loops and faces building the mouth.

Modeling Your Main Character 79

FIGURE 5.22 Example of easy topology for toony character.

FIGURE 5.23 Example of Macandy topology for fingers.

FIGURE 5.24 Another example of topology for Platform Michelangelo’s RAT bProficiency project.
Notice the loops for nose and eyes. Also, the ears are a nice example of the use of Blender loops.

80 Blender for Animation and Film-Based Production

FIGURE 5.25 Nice example of topology for hands. From BI’s Peach project and chinchilla character.

FIGURE 5.26 Another example of loops used in legs.

CHAP T ER 6

Applying Materials to Our
Objects

Whenwe talk aboutmaterials we think about colors.This topic surely needs a whole
book to help us understand howwrong we are if we think about materials in this way.

The process to apply materials in Blender is also known as Shading a model. Blender has
a powerful shading system really able to manipulate objects’ colors in the most suitable way
for our project. Working together with textures, shading is also a kind of science so avoid
trying to understand all shading parameters at the beginning. We look at the basics here to
apply materials to our models without apparent complications so that the model appears as
we would like it to.

There are different ways to apply materials; it depends on whether we want to apply a
material to the whole object or just part of it, say vertex groups alone.

We can applymaterials to the surface of our objects in different ways, by using theMaterial
button in the Properties editor and then add andmodify newmaterials’ settings. Another way
might be by using the Nodes. The latter is less common at least for beginners.

Talking about the first method, we add new materials using the traditional method. We
first select the object we want to apply the new material to. To do it we must be sure we are
in Object Mode and then go to the Properties panel and select the Material button as shown
in Figure ..

Once we have selected the Material property, we should see an empty container with plus
andminus buttons close to it.The plus button is to add a newmaterial property to the object
and the minus one is just the inverse. By clicking on the button for adding a new material
property we create an emptymaterial for our object as shown in Figure ..

If we want to apply a real material to the recently created slot, we need to click onNew but-
ton below. After adding a newmaterial we then have a singlematerial working for ourmodel.
This makes available different new tabs with lots of properties. Trying to know everything
at one go will be a mistake, because of that, I will introduce some basic operators that suit
our basic requirements at the moment. We really don’t need to know the whole of Blender’s
material system at this point.



82 Blender for Animation and Film-Based Production

FIGURE 6.1 Material button located in the Properties Editor panel. This makes us work in the right
context to apply materials to our objects.

FIGURE 6.2 The new empty material linked to our object.

It’s also possible to expand the drop-down list where we have something like a library with
all the materials used in our current scene. We can reuse any of our recently made materials
on any other object in the scene.

As mentioned earlier, we have now different panels such as Preview, Diffuse, Specular,
Shading, Transparency, Mirror, Subsurface Scattering, Strand, Options, Shadow, and Custom
Properties as shown in Figure . later in the chapter.

The materials’ properties panel is given here for a quick overview:

. Preview: How the material appears

. Diffuse: What color to apply

. Specular: What specular brightness the object shows

. Shading: How the color works in the scene environment

. Transparency: How to make the objects look like transparent objects

. Mirror: How to apply a reflective effect like mirrors

. Subsurface scattering: How to use values to apply like different skin levels

. Strand: How to use values to play with particles and strands, say green

. Options: How to use values to play with the material itself

. Shadow: How the material works with shadows

. Custom Properties: How to add new and custom user’s properties

So, going back to our object, we have added a material to it. To modify the color, we
just need to go to Diffuse panel and click over the color to open the Color Picker.

Applying Materials to Our Objects 83

FIGURE 6.3 Diffuse is easily changeable by clicking in the color bar and picking a new color from
the Picker Color.The vertical bar is just for darker/lighter Diffuse.Moving themouse out of the Color
Picker after choosing the right color will close it automatically.

After selecting the one we desire, our Preview panel should update automatically as shown
in Figure ..

Now our object should have the same color as the one selected in Diffuse. The
Intensity slider in the Diffuse Panel makes the color intensity increase/decrease mak-
ing it looking vivid/darker, respectively. Values here go from . (darker) to .
(vivid).

Blender shading is really complex and it is directly related to the render engine. Depend-
ing on the render engine, we might have different results. Blender shading also allows us to
work with textures we can link to materials making it even more complex to understand.
As mentioned earlier, explaining all the shading functionalities is not the purpose of this
book, because the subject is so vast it deserves a whole book to talk about relations between
materials, textures, lighting, and render engine simulation.

Wehave to take care of the selected render engine because resultsmay vary a lot depending
on if we are using the Blender Internal engine or the Cycles one.They both process the scene
information in very different ways and the required settings are completely different from
each other.

84 Blender for Animation and Film-Based Production

FIGURE 6.4 We can see that material is not used by more than a single user in the top picture. How-
ever, when we duplicate the object or assign the same material or we click on that number to make it
single, we can see the number of users sharing this material like in the picture at the bottom.

However, going back to our recently created material, we can see four different types of
render format:

. Surface: This is the basic type applying the material as a single plate over the objects’
surface.

. Wire:This applies thematerial to the wireframe of the object and renders only its edges.

. Volume: This is specially used to render clouds or smoke.

. Halos: This is used to render the halos surrounding the objects’ vertex.

We have said we can reuse materials, but we must know something about this option. First,
if we have an object with an applied material and we duplicate the object, then we probably
think we are also duplicating the same material in our library. That’s wrong, we are telling
Blender that material is used by two users, in other words objects.

This is easily recognizable because of the small button showing the number of users using
the active material as shown in Figure ..

As mentioned earlier, there is also the option of applyingmaterials to some faces or vertex
groups of the object instead of applying it over the whole object. Using the same principles
we can deal with it really easily.

First, we need to add a new material for the whole object, as we did earlier. Once we have
our object using the new material with the surface render type, we must add a new material
by using the plus icon and clicking the New button as we did before.

A newmaterial is deployed probably labeledMaterial.. Once we select the diffuse color
we want to apply to the vertices group we need to go to the DView and enter Edit Mode. We
just need to select those vertices or faces we want to apply the new material and then click
on the Assign button just below our materials library as shown in Figure ..

When reusing materials in more than a single user, we should take care as modifying the
shared material in any object will result in modified materials in any other object sharing
the same material. So, in order to make small or bigger modifications in any of the shared
materials, we must remember to free it as we already know.

Select the object you want to modify the material for and click on the button where it
mentions the number of users sharing the same material. This number will be reduced by
one unit and you can now be sure that the material you are going to modify won’t affect
others.

Applying Materials to Our Objects 85

FIGURE 6.5 Thismethod allows us to apply different materials to the same object.TheAssign button
is only deployed if we are in Edit Mode.

6.1 PREVIEW
We have a quick-preview visualization about how the material will look. This is an approx-
imate idea though because, as mentioned earlier, this will change once the render engine
processes all the elements required. Anyway, we might have a good approach to the final
result in this preview.

We can select between different shapes sowe can preview as close as possible to our object.
For example, if we are applying thismaterial to a sphere, it’smuchmore interesting to preview
with the sphere selected than the plane. The same is true with all other preview types:

. Plane

. Sphere

. Cube

. Monkey or Suzanne

. Strand

. Sphere with Sky

6.2 DIFFUSE
If we don’t want to complicate it too much, we can say that diffuse should be handled like
the color to apply to the object. We can think about the basis of shading where all other
parameters do affect, but it’s a good approach to obtain the result of the desired material
based on the color as shown in Figure ..

If we play with the intensity value then we will have the same color being modified in
brightness getting darker or more vivid results.

We can also select in this panel the type of shader from the Diffuse Shader Model drop-
down list. This will determine the aspect of the material and each one of the available values
is useful for specific purposes.

86 Blender for Animation and Film-Based Production

FIGURE 6.6 Diffuse panel. We set up the base color of the material here. This will be improved later
by modifying different settings.

• Lambert, Blender’s default shader

• Oren–Nayar

• Toon

• Minnaert

• Fresnel

6.3 SPECULAR
We can see a kind of brightness in all objects. That is the specular brightness. We have taken
into consideration the fact that specular brightness is strictly related to the point of view.

Like in theDiffuse panel, we can pick up a color for the specular brightness andwe can play
with its intensity too.That is a lower intensity results in a less-appreciable specular brightness
and a higher value resulting in a vivid and strong specular brightness as shown in Figure ..

Again, like in the Diffuse panel, we have a drop-down list where we can select the Specular
Shader Model from the available values:

• CookTorr, Blender’s default

• Phong

• Blinn

• Toon

• WardIso

FIGURE 6.7 Specular panel. Here, we can modify all values to work with specular property.

Applying Materials to Our Objects 87

We can see another interesting property too.The Hardness slider allows us to determine the
size the specular brightness will have. So, a lower value in this property results in a very small
specular brightness and a higher value results in a bigger specular brightness projected over
the object.

We notice that Specular and Diffuse panels share an option called Ramp. We can use this
property when we need the material beingmodified to have its base color blend into another
depending on the results we are looking for.

It’s easy to understand if we think of it like the typical gradient color in other applications.
We can not only play with ramp values to obtain the desired gradient color but also to play
with textures so they are applied according to the ramp values. Available properties for Ramp
features are as follows:

• Add/Delete: We are able to add or delete stop strips on the colorband.

• Flip: This is particularly useful if we want to flip the whole colorband without the need
for moving the stop strips.

• Active color stop: We can select the active stop strip to play with either this button or
click directly over the color stop.

• Interpolation: Determines the relationship between the color stop strips. Available
values are Linear, Cardinal, Ease, B-Spline, and Constant.

• Colorband: This is the visual representation of the gradient result.

• Position: This is the actual position of the color stop. We can refine its position by
modifying this integer.

• Color: This sets the color for the current stop strip. This determines the gradient of the
final result.

• Input: This tells us how is the rampmapped on the object’s surface. Available values are
Shader, Energy, Normal, and Result.

• Blend: This tells us how the ramp is applied to the diffuse color or the specular
shader. Available values are Mix, Add, Multiple, Subtract, Screen, Divide, Difference,
Darken, Lighten, Overlay, Dodge, Burn, Hue, Saturation, Value, Color, Soft Light, and
Linear Light.

• Factor: This, simply put, determines the amount of color ramp applied. In other words,
we can think about it like alpha. Less factor results in a transparent color ramp and
higher values result in a totally opaque color ramp (Figure .).

6.4 SHADING
The shading panel is the onewhere we can set those properties affecting relationship between
material and scene or strictly speaking, the environment, as shown in Figure ..

88 Blender for Animation and Film-Based Production

FIGURE 6.8 Probably the most common use of the specular is to simulate the brightness in the eyes.

FIGURE 6.9 Shading panel.

• Emit: It’s basically the amount of light the current material emits to the environment.

• Ambient: This is the amount of ambient color the material receives from the environ-
ment.

• Translucency: This determines the amount of shading the material receives on the back
side.

• Shadeless: This material has to be enabled or disabled to make it nonsensitive to light
or shadows.

• Tangent Shading: We can enable this option if we want to obtain anisotropic shading
effects.

• Cubic Interpolation:This option improves the transition between the lighted and shaded
zones.

6.5 TRANSPARENCY
Like any other computer graphic imaging application, Blender has the ability to apply trans-
parency to its shaded objects. Tomakematerials using the transparency process, we just need
to enable the Render material as transparent checkbox close to the Transparency panel title
as shown in Figure ..

This allows us to play with some interesting options and properties that Blender shows up
within the same panel. The first thing we need to know is that we have three methods to use
for rendering transparency. We can select one from the three buttonsMask, Z Transparency,
and Raytrace.

Applying Materials to Our Objects 89

FIGURE 6.10 Transparency panel with different possibilities.The top one uses theMask feature.The
middle one uses the Z Transparency one and the bottom picture uses the Raytrace feature. Notice the
raytrace-specific properties.

• Mask: This simply masks the background. We can’t modify Specular values in this
method.

• Z Transparency: A bit more complex thanMask, this uses the alpha buffer for transpar-
ent faces. Here also we can play with the Specular value.

• Raytrace: This is too complex to understand but basically uses raytracing to calcu-
late refractions. When using this mode, we have very technical options to play with,
like Index of Refraction, Falloff, Limit, and Gloss, for example. The final result of the
material will be determined by a mix of all those properties.

The Transparency panel also shares some common properties, like Alpha, Specular,
and Fresnel.

The Alpha value determines the level of transparency of the material. So, higher val-
ues, near ., will give a totally opaque material and lower values near . result in a very
transparent material.

90 Blender for Animation and Film-Based Production

The Specular slider works in the same way but just for the specular value. Here it’s
interesting to understand that if we are in the Mask method, we can’t set up a completely
transparent material and a shiny specular, but we can get that result if we are in the Z
Transparency method.

For example, we set the Alpha slider at . and the Specular value at .. Then we switch
between Mask and Z Transparency methods. The result will be a completely transparent
material while in theMaskmethod, and a shiny sparkle while in the Z Transparencymethod.

6.6 MIRROR
In Blender, the mirror effect is simulated using raytracing. This algorithm can be used to
simulate a material reflecting its surrounding environment as shown in Figure ..

Like the Transparency, theMirror effect can be enabled by the Enable raytraced reflections
checkbox near the Mirror panel title. Then, we have some options available.

First of all, we must know that the amount of mirror reflection is determined by the
Reflectivity value. The higher the value is set, the higher is the resulting mirror effect.

We can also set a color for the mirrored effect. Usually, a mirror object will reflect colors
similar to the ones surrounding it but sometimes the color reflected is not the same. Because
of that, we have the option of selecting the color we want the mirror effect to reflect in the
context by picking one from the color picker.

There is also an interesting option called Fresnel, working together with the Blend slider.
This option controls how reflective material is dependent on the Blend factor.This is usually
used to make a proportional relation between those areas of the material to be reflective and
those nonreflective.

For the Mirror effect, we must take care of the value of Depth. This sets the number of
bounds the reflection is processed. Higher values could increase the render time. This value
should be taken into consideration depending on the number of reflective objects we have
in the scene.

We also have to know that reflected rays are also result of the Maximum Distance value.
Those being of higher value they are determined by the Fade to option, usually Sky or
Material.

FIGURE 6.11 Mirror panel.

Applying Materials to Our Objects 91

Finally, we have the Gloss properties where we can play with some values to make a real-
istic reflection. The Gloss basically results in a flat or grainy surface and combining their
properties together the Mirror ones to obtain the desired reflection is something that could
take time.

If we want the best result, we need to consider all the factors involved. Visual results
are time consuming while processing. Obviously, getting the most professional result while
working on raytracing is directly related to the power of the machine we are working on.
Anyway, as stated earlier, finding the balance between everything, performance and visuals,
is the big task while working with mirrored materials.

6.7 SUBSURFACE SCATTERING
This is really useful for those material compounds at various levels. Quite often, all objects
are not simply compounded by a single color or in other words, by a single-color level, so the
light has to bounce between every level of skin being processed to get the final skin material.

This effect is specially used for human or animal skins, fruits, and basically a lot of organic
and inorganic materials. The Subsurface Scattering is always used to achieve the level of
realism desired. Professional results are only possible when using the Subsurface Scattering
properties.

Like the Transparency and Mirror panels, the Subsurface Scattering can be enabled
by clicking the Enable diffuse subsurface scattering effect checkbox near the Subsurface
Scattering panel title. Again, some options are then available to us.

We notice first when enabling the Subsurface Scattering that it is a preset selector. Blender
offers us some prebuilt presets to be used quickly. They are according to the purpose of the
preset and set the basic properties for us, that is, IOR, Scale, and Color. This doesn’t mean
we have everything done when selecting a preset; we still need to modify some values to
make it look the way we want it. We are able to add or delete presets from this panel too
(Figures . and .).

FIGURE 6.12 Subsurface Scattering panel.

92 Blender for Animation and Film-Based Production

FIGURE 6.13 Great example of subsurface scattering for rendering at blenderworkshop. (From
www.wordpress.com.)

6.8 STRAND
When we play with strands in Blender, we refer to Hair particles system that might be used
to simulate hair or green, for example. In Blender, there are two different types of strand
methods. The strand panel contains interesting options so, we can simulate our particles in
a such detail as we need, as shown in Figure ..

First of all we see a very important option called Size, where we have Root, Tip, and
Minimum. These will determine the size of the strands, so we can make fat or thin strands

FIGURE 6.14 Strand panel.

Applying Materials to Our Objects 93

FIGURE 6.15 Awesome example of Blender strands use. The Big Buck Bunny was a step forward in
strands and fur.

by modifying the root or tip options. A very important option is the Blender units, where we
use Blender to enable the strands using the Blender units instead of pixels value.

The aspect of the strands will also be determined by the combination of Tangent Shad-
ing and the Shape input value. With that, we tell Blender to use the direction of strands as
normals (Figure .).

6.9 OPTIONS
With this panel, we determine howmaterial will be applied in the rendered scene. It contains
different options to alter the appearance of the material and includes some added features
that modify the final render.

Some of the checkboxeswe find here areTraceable, Full Oversampling, Sky,UseMist, Invert
Z Depth, Face Textures, Face Textures Alpha, Vertex Color Paint, Vertex Color Light, Object
Color, and UV Project as shown in Figure ..

Their names are very representative of what they do, for instance, Traceable allows mate-
rial to be included in the raytracing, Sky helps to render material with sky background, or
Use Mist enables the option Mist in the World context.

A very interesting option is the Light Group one. Here, we can tell Blender to limit lighting
to a predefined group of lamps.

6.10 SHADOW
This panel, obviously, deals with the relationship between material and shadows; basically,
how shadow affects the material. Technically speaking, the shadows appearing in any scene
are calculated by very different parameters like objects’ shape, lighting, materials, and more
as shown in Figure ..

We see here some options like Receive, Receive transparent, Cast Only, and Shadows only.
Wemight exercise control at this point to decide if we want this material to receive shadows,

94 Blender for Animation and Film-Based Production

FIGURE 6.16 (See color insert.) Options panel.

FIGURE 6.17 (See color insert.) Shadow panel.

if we want the object to be invisible and only cast a shadow, and if we want to apply an alpha
value (Figures . and .).

Notice that we can manage what we want to do with shadows and with how material
affects those shadows within this panel. This is very important in order to obtain realistic
and interesting renders.

Applying Materials to Our Objects 95

FIGURE 6.18 (See color insert.) After adding a new material, we have different panels to play with.
Depending on the results we want for our model, we shall play with the operators of those panels, so,
if we want our object to look like a transparent one, we just need to activate the Transparency panel
and play with operators inside.

CHAP T ER 7

Blender Internal Textures

Wealready know about how to apply materials to objects, but sometimes that is not
enough to obtain the desired result.Well, we can say that there can be no professional

result if we don’t combine the material with textures. However small the project is, we have
to know how to apply textures to materials in order to improve the final look.

A texture is a simple image or pattern that is applied to the surface of the object and usually
combined with the material. This process is commonly calledmapping by studios.

The good thing about textures is they might affect almost everything, not only color but
also specular, transparency, and reflection, and they are available not only to work with
materials but also to apply a kind of property to sculpting or painting methods.

We first need to know where the texture options are placed in the Blender’s user interface.
We need to go to the Texture button within the Properties editor so some texture panels are
displayed for us as shown in Figure .. The available panels are Texture datablock,Mapping,
and Influence by default, but when we have any texture created within our library, we also
have Preview, Colors, and specific texture options panel as shown in Figure ..

The first thing we see when we are in the Textures context is that we can work with three
kind of textures, namely,World,Material, and Other Data:

• World: Texture is applied to the world.This requires that the option Blend Sky from the
World context is enabled.

• Material: This affects the selected object and is combined with the material the object
surface has applied.

• Other Data: We have the option to create a Brush and a Brush Mask texture here.

We must understand one thing now. Independent of the type of texture created, we must
know that all textures we create are being saved in a library, so they are available for choice
even when we are in any other context. For example, if we create a texture using the Material
type, we will have this texture available for use if we are, say, in Sculpt Mode, or if we want
to use the same texture for the World type.



98 Blender for Animation and Film-Based Production

FIGURE 7.1 Texture button located in the Properties Editor panel. This makes us work in the right
context to apply textures to our objects.

FIGURE 7.2 Panels for the recently created Clouds texture. Notice we have some common panels
over the whole texture types and specific panels depending on the selected texture.

Because the most interesting texture for us is the Material one, from the point of view of
the animation studios’ productions, we will start with that type of texture. The first thing we
must think about is that textures are like layers we add to the base material to complete its
properties until we get the object surface to look close to reality. Even if we don’t look for
photo reality in our project, the thing is that almost every studios’ productions use textures
in addition to base materials in order to improve the quality of rendered scenes.

By default we have an empty texture datablock, so we need to create a new texture item
so we can start working on applying that texture to the object surface. Remember we’re talk-
ing now about Material type of texture. For the latest Blender releases, an empty texture
slot is generated automatically, but it has no texture type associated by default. If necessary,

Blender Internal Textures 99

FIGURE 7.3 List of available texture types. Each one will show different custom panel properties in
the texture context.

we will get rid of it and create a new one, so we understand the whole process of creating
new textures.

In order to create a new texture slot, we must click the New button. This will make a new
texture slot within the texture datablock. Here we can move the texture slot up and down,
we can modify the texture name, make it single user like we can do with materials, and save
even if it has no users associated with it or simply delete it.

The most interesting feature here is the Texture type drop-down list where we can select
the kind of texture we want to use already as shown in Figure .:

• Wood: As its name indicates it’s usually used to simulate wood or any other ring-
based texture. Like the Marble texture, we can determine the strip band wave with
the Sine, Saw, and Tri options. In this case, we also can select the type of bands we
want the texture to simulate; the available options are Bands, Rings, Band Noise, and
Ring Noise. Once we have this, we can choose the texture to have a Soft or Hard Noise
base option.

• Voronoi: It’s a very particular texture, commonly used to simulate metal and organic
shades.Thefirst thingweneed to do is to select the algorithm to use forDistanceMetric.

100 Blender for Animation and Film-Based Production

The available options areMinkowski,Minkowski ,Minkowski /, Chebychev,Manhat-
tan,Distance Squared, and Actual Distance. We can play later with the Feature Weights
to adjust the final appearance.

• Stucci: This is definitely the most interesting for creating grainy surfaces like walls,
asphalt, fruits, and so on. We can adjust the type with Plastic, Wall in, and Wall out
options.This will determine the aspect of the texture.Then, we can adjust the Noise by
selecting Soft orHard and the Noise base to combine. As usual in textures, we also can
adjust the Size and Turbulence.

• Noise: This is a true generated noise that is not Perlin. That means it’s totally different
for each frame. This might end in artifacts while rendering the animation.

• Musgrave: This is an interesting texture type. Commonly used to simulate organics, it
can be practically used for everything. We can select from different Musgrave texture
bases like Hetero Terrain, fBM, Hybrid Multifractal, Ridged Multifractal, and Multi-
fractal. This texture is combined with the Noise base option by selecting one from the
drop-downmenu.The available options are Cell Noise, Voronoi Crackle, Voronoi F-F,
Voronoi F, Voronoi F, Voronoi F, Voronoi F, Improved Perlin, Original Perlin, and
Blender Original.

• Marble: As its name indicates, it’s usually used to simulate marble or fire. We have the
option to modify the strip bands with the Sin, Saw, or Tri options and make them Soft,
Sharp, or Sharper at the same time by combining these parameters. We also can com-
bine it with a Noise either Soft or Hard by applying a Noise base from the drop-down
menu. We can adjust the final look with Size, Turbulence, Depth, and Nabla options.
We can play with a lot of properties while using this texture, and a minimal change
determines a completely different texture. Some available parameters are Dimension,
Lacunarity, Octaves, Offset, Intensity, and Gain. As usual with textures, we can also
adjust Size and Nabla.

• Magic: This is not a commonly used texture. Maybe if you want to apply some kind of
interference to the film, you can use this. The available options to adjust are Depth and
Turbulence.

• Distorted Noise:This texture type takes the selected Noise Base and applies a Noise Dis-
tortion obtaining amixed one.We can control andmodify parameters fromDistortion,
Size, and Nabla to obtain very different results.The available options for both the Noise
drop-down menus are Cell Noise, Voronoi Crackle, Voronoi F-F, Voronoi F, Voronoi
F, Voronoi F, Voronoi F, Improved Perlin, Original Perlin, and Blender Original.

• Clouds: Using this texture is like using the Perlin noise. We can select the algorithm
that determines the final appearance of the texture. We can do that from the Noise
Basis drop-down list where available options are Cell Noise, Voronoi Crackle, Voronoi
F-F, Voronoi F, Voronoi F, Voronoi F, Voronoi F, Improved Perlin, Original Per-
lin, and Blender Original. We also have some other options to play with like make the

Blender Internal Textures 101

clouds texture appear in grayscale or color and make it soft or hard. Parameters like
Size, Depth, and Nabla will determine the final look of the texture.

• Blend:This texture type is the most commonly used. It’s used to blend textures between
them or to apply gradient effects.We can tweak the direction of the texture progression
with the Horizontal and Vertical buttons. The available progressions for this texture
type are Radial, Quadratic sphere, Spherical, Diagonal, Easing, Quadratic, and Linear.

7.1 PREVIEW
This panel like the material preview one provides a first visual picture of the appearance of
the texture.The visualized result is a very first impression of its appearance, wemust remem-
ber that Blender render has a lot of procedural parameters to take into account. Anyway, this
is a good start in order to obtain a previsualization of our selected texture.

Here we can combine this previsualization with Material to know how the texture is
applied to the current Material.

If we are previsualizing the texture using any of the Texture or Both optionwe have a Show
Alpha checkbox we might enable so the alpha channel is also previsualized (Figure .).

7.2 COLORS
This panel is specially useful if we want to apply ormodify colors of the new texture. For that,
we can activate the checkbox Ramp.We are already aware how the ramp properties work and
how to manipulate the stop strips.

We can modify color with the values of Brightness, Contrast, and Saturation as shown in
Figure ..

7.3 MAPPING
When we talk about mapping a texture, we are looking at how we want it to affect the
object. We can modify such a texture to appear exactly as we need it in projection, size, or

FIGURE 7.4 Texture Preview panel within the texture context. It is the very first attempt to get the
texture type displayed.

102 Blender for Animation and Film-Based Production

FIGURE 7.5 We can modify values like Brightness, Contrast, or Saturation of the texture but also
apply or modify a new ramp color.

coordinates.Themapping panel is commonly used to adapt the texture to our object surface
modifying parameters such the ones mentioned earlier.

For example, we can select the Texture Coordinates depending on Blender’s built-
in options, so we can select between Tangent, Stress, Reflection, Normal, Window,
Strand/Particle, UV, Generated, Object, or Global.

In the same way, we canmodify theMapping Projection applied to the texture, depending
on if we want to project our texture as Sphere, Tube, Cube, or simply Flat.

Asmentioned earlier, we can play with those parameters but in the sameway we can apply
or limit the texture to being used in combination with the three axes X, Y, and Z.

There are two very interesting options too in this panel. The Offset for the X, Y, and Z
locations and the Size for X, Y, and Z. Playing with those values, we can alsomake our texture
move within the object surface and scale it to finally being adapted to our needs (Figure .).

FIGURE 7.6 The mapping panel allows us to adjust our texture to our needs in size, offset, and
projection. Depending on our needs, we need to play with all these values to obtain the desired result.

Blender Internal Textures 103

7.4 INFLUENCE
The Influence panel splits some properties into different groups. In short, we can modify
different properties for Diffuse, Shading, Specular, and Geometry. We can enable or disable
these properties and modify their values.

For Diffuse, we have properties like Intensity, Color, Alpha, and Translucency. These are
basically properties to modify the amount of texture applied to such specific diffuse-related
properties.

For the Shading group, we have properties like Ambient, Emit, Mirror, and Ray Mirror.
They are basically properties affecting the amount of texture applied to such specific shading-
related properties.

For Specular group, we have properties like Intensity, Color, andHardness. They are prop-
erties affecting the amount of texture applied to such specific specular-related properties.

For Geometry, we have properties like Normal,Wrap, and Displace. These are properties
affecting the amount of texture applied to such specific geometry-related properties.

Wehave in this panel a very important option, BlendType.That determines themode used
to apply the texture.Wehave several options here such asLinear Light, SoftLight,Color,Value,
Saturation,Hue, Lighten,Darken,Divide,Difference,Overlay, Screen,Multiply, Subtract,Add,
orMix (Figure .).

FIGURE 7.7 Blender’s influence panel. We can modify the final look of our materials by playing and
combining the different options.

CHAP T ER 8

UV Unwrap and External
Textures

The unwrapping technique is commonly used in each film production. But we won’t
discuss it like a big tutorial. We’ll explain in short, what unwrapping is and why studios

use this technique, say for complete character textures.
In fact, it’s a really important technique for mapping textures because what it does is to

build a plain shape of our object’s topology so that it might be modified and repainted to
adapt the new texture to the same object’s topology. It’s easy if you think of it like origami
(Figure .).

8.1 UNWRAPPING A MESH
Before starting to unwrap our objects, we need to be sure we don’t need to modify their
topology. Well that is not crucial, but it would save time because then we would have to
rewrap the new changes made in the object’s topology.

Towrap our objects we need tomark our edges as seams.That will tell Blender fromwhere
we want to break our object in order to create the plain shape. Once we have the object with
our seamsmarked, we are able to go toUV/Image Editorwhere our unwrapped object should
appear.

We should see somedifferent points that corresponds to the vertex in the recentlywrapped
mesh. Consequently, we will also see the edges and the faces, but now everything is flat. Our
object looks flat on the UV/Image Editor.

The UV is so complex that we won’t see it in depth. We just need to know that almost
every D filmwe watch has an incredible work of wrapping to apply external textures, some-
times to develop a completely new look, sometimes to paint and refine specific aspects of the
object’s original texture, and sometimes to add layers of details so the final appearance suits
the required needs.



106 Blender for Animation and Film-Based Production

FIGURE 8.1 Some textures used in Big Buck Bunny open movie for the chinchilla character.

8.2 UV LAYOUTS
Usually, UVmaps are generated so we can use a couple of them in the same object, for exam-
ple, for texture, specular, or bump maps. But, sometimes, we also need to translate a specific
UV map to another mesh.

It’s easily done in Blender with the Shift key and by selecting the mesh containing the UV
map we want to transfer. Then, go to Object menu >Make Links > Join as UVs. When we do
this we have a mesh with a UV applied that matches the original mesh UV map.

This is the easy way, of course. Talking about UV, we have some other complex things
to take into consideration, like the multiple UV layouts. So imagine we have or we want
several UV layouts for different parts of any object. We could make new UV layouts using
the New button from the UVMaps panel within the Mesh (Object Data) Properties context
as shown in Figure ..This is useful, asmentioned earlier, when someUVmaps are required
for the same mesh but we have to take care when we need to unwrap the same face several

UV Unwrap and External Textures 107

FIGURE 8.2 UVMaps panel within the Object Data Properties context. We can use this panel to add
or delete UV layers.

times because the result will be determined by the combination of the alpha values of those
UV layers.

Sometimes copying UV layouts from one mesh to another is very useful, especially in
those cases where we need to restore something because of an issue. Anyway, we should
take special care in deleting UV maps because this option deletes everything related to the
unwrapping linked to the selected mesh.

Asmentioned earlier, we could create newUVmaps using the New button, but also delete
UV layers taking special care that everything related to the unwrapped mesh will be deleted
too. From this panel, we could modify the UV map to anything more comprehensible like
UV Skin or UV Face.

In the same way, we can enable or disable the UV layer from the rendering process using
the small camera icon close to the UVMap name.

8.3 EDITING UVS
Editing the UV maps is a bit difficult at least for the very beginners but nothing we could
not manage in a couple of training sessions. More complexity comes if we don’t have enough
knowledge of the UV wrapping feature.

At the moment, we have some basic knowledge of what the UV maps are and why they
are so important for any film production. But how can we edit the UVmaps within Blender?

This is probably a very huge topic that might deserve a whole book. In fact, there are some
interesting publications out there on this.

Once we have our seams marked and the UV map generated, we need to accommodate
our vertices and islands. The size of the UV faces might vary from a single pixel to a very
wide size. Anyway, we need to adjust our points so we can convert it to anything we could
paint so we can use it as texture.

We have some interesting operators to play with the UV regions:

• Border Select:We can use the B key to use something like a box lasso to select our points.

• Select or Deselect All: As we already know, we can select or deselect all with the A key.

108 Blender for Animation and Film-Based Production

• Linked UVs: With the combination of Ctrl+L keys, we can select everything that is part
of the current UV map.

• Pin UVs: This is really useful to avoid the UV maps moving meanwhile we are making
any unwrap action. This is accessible by using the combination of Shift+P keys.

• Border Select Pinned: We can use the Shift+B keys to select only the pinned UV points.

• Unlink Selection: We can use this feature to cut the selected points from the current
map. This is only applicable to those points that conform to a whole face. We can do
this using the combination of Alt+L keys.

When editing UVs, there is a very interesting and important option, namely, the Sync Selec-
tion. When we enable this option, which is located in the UV/Image Editor header, we are
able to visualize in this editor everything we select in the D view.

That means that if, for example, we have some faces of our object in the D view selected,
they are also selected and visualized in the UV/Image editor. This is a very important fea-
ture because it allows us to have an accurate control over the recently unwrapped map
with enough knowledge of which parts correspond to the object in D view as shown in
Figure ..

When we are in the opposite case, with the Sync Selection disabled, only those faces
selected are visualized in the UV/Image editor. Notice the edges or vertices are not visu-
alized in this mode unless we switch to that mode in the header of the UV/Image editor as
shown in Figure ..

FIGURE 8.3 Unwrapping from theMushroomproject.With Sync Selection enabled, we can visualize
the selected vertices, faces, or edges automatically in the wrappedmodel within the UV/Image editor.

UV Unwrap and External Textures 109

FIGURE 8.4 Unwrapping from the Mushroom project. With Sync Selection disabled, we only
visualize in the UV/Image editor those elements selected in the D view.

Available selection modes are Vertex, Edges, Faces, or Islands.
We also have a small selection menu where we could manage everything our maps share,

it’s called the Sticky Selection Mode. The available modes are Shared Vertex, where we can
visualize the vertex shared; Shared Location, wherewe can visualize theUVs sharing location;
and Disabled that disables the Sticky Selection mode.

A peculiar thing we should have in mind is that Sync Selection doesn’t work as we expect
in all cases. For example, if we select Edges, it will work like when using the Shared Vertex
mode but if we select Faces, then this feature works like in Disabled Stick Selection mode.

But what can we do with UVs? Just use the select feature?
Well, we can also manipulate UVs like any other object, so we can translate, rotate, or

scale. We also are able to show or hide like we could do with any normal object using the H
key. The UVs can also be locked in any of the X and Y axis.

As we see, the UVs behave like any other kind of object so we can manipulate it over the
UV/Image editor like if it was a desktop.

Another interesting element in the UV/Image editor is the Pivot Point. This determines
the behavior of the cursor with respect to the selected elements together at the center. The
available options for the Pivot Point option are Bounding Box Center,Median Point, and D
Cursor Location.

In the UV/Image editor header, we also have a Proportional Editing.This is an interesting
feature that works in the same way as the D editor. With this feature, we can control the
elements surrounding the selection in a smooth way so that moving a specific vertex within
a specific range by Proportional Editing will affect those surrounding vertices (Figure .).

110 Blender for Animation and Film-Based Production

FIGURE 8.5 UV/Image editor header that contains almost everythingwe need tomanage a wrapping
session.

The Snap feature works in the same way as it does in D view, but we have to take care
that it works only if we snap to UVs and not to pixels.

For the snap feature, we could find more options if we go to the Snap submenu within the
header. The available options are Snap Pixels that moves the selection to the nearest pixel if
an image is loaded, Snap to Cursor that moves selection to the D cursor position and Snap
to Adjacent Unselected that moves the selection to the close adjacent unselected element.

What if we can weld or align UVs elements? Well, what the W makes is to weld, in other
words, move selected elements to their average position, but the Align,W,W, andW line
up the selected UV elements on the X or Y axis.

It is also interesting that we can Mirror the elements that compound a UV map. And we
can do it, as expected, in the X and Y axes. This is basically done as we do in the D view by
combining the Ctrl+M key and then entering X or Y key for the axis.

In the same way that we can split and cut elements in our UVs, we also can join or stitch
UVs sharing vertices. We can modify the parameters for stitching by adjusting options like
Limit and Limit Distance.

But what we can’t forget is the Minimize Stretch tool that helps us relax the UVs element
angles. Applying this feature makes the UVs appear smooth and a bit relaxed as mentioned
earlier.

We previously talked about enabling a lock for some elements in the UVs but the practical
way to use is to use the Pinning feature.This is really useful sometimes because it keeps some
elements without altering its location.

We can use this feature using the P key to pin selected elements or Alt+P keys to unpin
those selected elements.

There are plenty of examples for the Pinning feature, but probably the analogy with the
Mirror Modifier is the most effective to understand how powerful this feature can be.

When we are editing a symmetrical object in D view using the Mirror modifier, we have
some vertices in the mirror axis that can be shared by both sides, the original and the mir-
rored one. If we enable the option to pin those vertices, then they will share the place and
stay in the same location.

With this in mind, imagine how useful this feature can be if we use it with live unwrap,
where the work is visualized automatically (Figure .).

8.4 OPTIMIZE THE UV MAP
The usual process to unwrap a mesh is to use the Seams marks. But this is not enough to
keep it clear and this isn’t a warranty of success either. We have to make some changes to
the recently unwrapped mesh like Modify orientation of the UV map, arrange that map, or
stitch several maps together.

UV Unwrap and External Textures 111

FIGURE 8.6 Bird wrapped from the Big Buck Bunny open movie developed by the Blender
Foundation.

Sometimes, we need to addmore faces or vertices to our unwrappedmesh.This could end
in a kind of trouble, so even Blender adds those new elements to the UVmap automatically.

This was discussed earlier in this chapter, but again, if possible we have to try to start our
unwrap process once we reckon the mesh is as complete as possible, trying to avoid adding
new faces or vertices when the unwrap process has started (Figure .).

8.5 COMBINE UV MAPS
When working on unwrapped meshes it’s very common to have a very high percentage of
the job done but we always have parts of the unwrapped map that don’t suit the expected
result ending in a very messy organization of islands, edges, or vertices.

In such cases, we need to clean up the corrupted zones so they look fine and clean and the
UV texture is applied correctly.

A first step to success in these cases is to separate elements to unwrap. That is, make each
one a separate UV map. If we make it in this way we ensure we are unwrapping the mesh
using the right solution for each case.

Once we have the different pieces unwrapped, then we can check that we have all those
different UVmaps as part of the same UV Texture map so we can finally make the entire UV
map using the stitch feature discussed earlier.

To complete the task, we need to arrange and stitch the different UVs. One of the most
interesting operators while working in this kind of work is the Average Island Scale that
creates all islands so that they are on the same scale more or less. This is a great help as
generalizing and resizing the islands to the same scale ensures a smooth appearance. We can
use this feature with the combination of Ctrl+A keys.

112 Blender for Animation and Film-Based Production

FIGURE 8.7 The chinchilla character from the Blender Institute’s project. Notice how we have some
parts of the model selected say by using vertex group and it is automatically visualized in the UVs
within the UV/Image editor.

Now that we have our islands looking approximately the same size, we can use the Pack
Islands feature to let them fill up almost the whole UV space. It’s a very efficient feature
making logical use of the available UV space so the generated UV map makes use of it.

To avoidUVs going outside of theUV range, we can enable the Constrain to Image Bound
option.

8.6 REFINE LAYOUT
Oncewe have applied aUVmap texture to our characters, we then have the option to refine it
if more detail is required at some point. But sometimes we realize that we don’t have enough
space in pixels to achieve the desired level of details.

A common solution is to scale the UVmap to a specific point where we needmore details.
But then, we should be careful because what we do will provide the same detail to any other
zone of UV texture even to those zones with less visibility in the final film production.

We are talking about using UV textures and what we have to think about is how powerful
is the machine on which we are developing or the one where we will render our film. Then
we talk about memory again. We are manipulating images and this requires computation
memory and resources.

So, how can we manage this memory in a responsive way? By reusing resources. So we
can share some UV textures in very different objects and then modify or alter another UV
map with those different elements. A very practical example is to use a generic UV texture

UV Unwrap and External Textures 113

for the skin in arms, hands, legs, and such elements so the loaded images don’t jeopardize
the machine resources.

8.7 APPLYING IMAGES
We already have talked about this.The final reason to use UV textures is to apply such exter-
nal, usually painted, textures to our characters. What we should know about UV maps in
Blender is how to export UV layout images and how to apply textures.

The export process is useful because sometimes the team working in the unwrap process
is not the same as the team painting those textures. So, the export option is really useful in
such cases.

In Blender, we can export ourUVs using the SaveUVFace Layout option located inUVs >
Save UV Face Layoutmenu. We have the option to save our UVs in very different formats.

The available export options are as follows:

• All UVs: If this option is not enabled, then only the selected UV faces will be exported.

• Modified: This option exports the UVs from the modified mesh.

• Format: We can select from among the available formats seen before.

• Size: We can select the size of the image in pixels.

• Fill Opacity: We can export our outlined image using an opacity factor or a transpar-
ent one.

We have to take care to have all our edges and islands within the boundary of the UVs space
before exporting it as an image. Otherwise, everything outside that boundary will not be
generated and exported.

Then we have our outlined model in a plain D image so the artistic team is able to edit
and paint texture according to requirements or following the Concept art guidelines.

Once we have our texture painted, we can apply it back to the UVs layout.
Here, we have to say that Blender incorporates an interactive view so we can check auto-

matically what we do in the UV/Image editor directly over our character model in the D
view. For that we can switch the viewport shading option to Textured.

Right now we have everything in place but we have to tell Blender to enable the UVs in
the render processing. There are a few ways in which this can be done. Use UV Coordinates
and set up a texture using its UV coordinates.

We can do this in the Texture properties context by selecting an image as texture type.
Then in the mapping panel we can choose the UV from the Coordinates menu and select the
UV layer we want to use.

An option is to select the Color property in the Influence panel in the same way as the Use
Alpha property in case our texture is using the alpha channel.

We are able to load or save images within the UV editor. We have to take care of this
when we are working in a film production because if we are editing the .blend file and we are

114 Blender for Animation and Film-Based Production

FIGURE 8.8 The creature character for Creatures Factory open movie. Notice different UV maps in
the picture just corresponding to the head where a specular texture was applied.

already modifying the UV texture with an external tool, we have to remember to Reload the
texture before saving the .blend file again.

In the same way, we should take care about moving the texture between folders because
we need to tell Blender where the file has been moved to.

To keep this clean is even more important where the unwrap process and texture paint-
ing are in different departments. Working both teams in separate environments makes
things complex, so a clear organization and a strong communication are vital for success
(Figure .).

In such cases, remember Blender incorporates a text editor where we could add notes,
to-do lists, or messages to any specific team regarding guidelines to follow or simply track
the latest changes made to such a file.

When we want to generate a new image, Blender shows us some options:

. Image name: As expected, apply a name to the generated image.

. Width and Height: We can also set the width and height in pixels.

. Color: It creates a solid color for a solid image.

. Alpha: It adds an alpha channel to the generated image.

. Generated Type: This is for the type of image to generate. The available values are UV
Grid, Color Grid, Blank, and  bit.

In the same way, we can save our image to any of the external formats supported.This works
like any other software and we have the options of Save, Save as, and Save as Copy.

UV Unwrap and External Textures 115

There is also an interesting option that Blender supports. We can pack images within the
.blend file. That means the current UVs are packed into the file. But what does the packing
mean?

If we pack our images inside Blender, then in any case the file is modified in the future,
the images will not be auto repacked, so the old versions of the images will be still available.
To update, we have to repack or reload images.

CHAP T ER 9

Introduction to Rigging
Armatures and Bones

Whenwe see characters and objects moving in an animationmovie, it doesn’t mean
they are all using an Armature, that is, it is not mandatory all objects have to pass the

Rig process.
Wemay animate any kind of object by adding a couple of keyframesmodifying its location

over the scene and we will get our object going from point A to point B on the scene within
a determined timeframe.

There are different techniques in animation that we will cover later in this chapter, but
rigging is one of the most important tasks in animation movies.

As we discussed in the previous chapter, a good model is necessary if we want to achieve
good results, because the rigger will need to apply an Armature, or skeleton that will be
manipulated later by the animation crew so they are able to apply deformations resulting in
poses making the final animation possible.

The complexity of a very good rig varies depending on the project and the final result
expected. In very important projects, the number of bones that compose the skeleton of the
main characters is overwhelming.Wemustmention here that the rigging teamusually shows
the final skeleton with the minimum manipulators needed, keeping those secondary bones
or helpers hidden in layers.

A very good rigging not only consists of using the necessary bones and applying the
right constraints but also organize it in layers, keeping it clean, and adding widgets and
manipulators to keep it as organized as possible as shown in Figure ..

The rigger job is related to very technical aspects and closely related to maths and pro-
gramming because many times the rigger must resolve artifacts issues or any other kind of
malfunction in the model and it’s there where the rigger starts a very technical process of
research.

In the same way, an advanced knowledge of constraints is basic for the development of
this job because that will determine the workflow, not only for the rigger but also for the
final result.



118 Blender for Animation and Film-Based Production

FIGURE 9.1 Thefinal riggingmust be structured and organized in layers so that we can show or hide
bones, widgets, and manipulators easily, avoiding chaos in the animation process.

FIGURE 9.2 Scene of the Pixar’s Bugsmovie where we can think about the reuse of the armatures on
a group of similar characters, instead of developing a specific one for each character.

Many times, we reuse armatures and it’s very important we keep this in mind when we
need to use similar armatures on the same type of characters, for example, in a group scene
as shown in Figure ..

In a typical work day of a studio’s rigger, we find the following tasks to be done:

• The rigger gets the model.

• The rigger starts a study about how to develop the armature, probably on paper first.

• When the rigger has anything to start with, the first bones are generated, making
children and parents follow a naming convention.

• The rigger adapts bones to the mesh by making sure the bones are aligned with the
edges and vertices of the model so that the deformations are smooth.

Introduction to Rigging 119

• The rigger applies constraints like copy location, rotation or scale, IK, track, or any
other needed to get the bone working as expected.

• The rigger applies the skeleton to the model and redefines to avoid possible issues,
usually using Weight Paint.

• The rigger organizes different groups of bones using colors and layers.

• The rigger makes widgets for easy manipulation.

Next, we will see in depth how to work with Armatures in Blender. Without doubt, work
in Blender on our own skeleton is bound to be an exciting experience, and we will see how
Blender’s versatility suits any animation studio requirements for this kind of job.

9.1 THE ARMATURE OBJECT
As discussed, the Armature object is like any other kind of object, say mesh, lamp, or empty,
for example. Like them, the object Armature shares some common properties with other
Blender objects. To name some examples, it has a center and a determined location and
rotation or scale properties that may be modified. To modify, they should be in Edit Mode,
might be reused and linked in different scenes or files, and might be animated like any other
Blender object.

At this point, we must understand that when we say that it might be animated like any
other Blender object we refer to the set of bones forming the armature like unique object.
In order to use the armature and make the poses manipulating the bones, we must be in
Pose Mode.

When a rigger makes an armature, he is making his first pose. That means every time
we edit the armature in Edit mode we are modifying the so-called rest position or default
position of the armature as shown in Figure ..

We can access the Armature properties panel once we get it selected and we click on the
Armature context icon within the Properties editor as shown in Figure ., where we will see
different panels to manipulate our Armature properties like apply name, manage layers, type
of armature to show, or a library with poses and groups of bones.

Let’s see the panels that show the properties of the object Armature:

. Armature name: We can apply a custom name to our Armature by editing this input
button. If we have some armatures in our scene, we are able to select them using the
Outliner editor or using the small button on the left of the previous input button that
will drop down a list with all available armatures in the scene.

. Skeleton: In this panel, we might adapt our armature to different and useful options.
We first tell Blender if we want our armature in Pose Position or Rest Position. That
is the default and original position of the armature. In the same way, we can move
and organize the bones in different layers, allowing a clear visualization and a better
organized project.This option is specially useful, to organize bones depending on their
nature, for example, widgets for head or arms, helpers, IK layers, drivers, and so on.

120 Blender for Animation and Film-Based Production

FIGURE 9.3 When we are making the armature in Edit Mode, we are modifying the so-called rest
position. In the picture, we see that position by default in Pose Mode.

. Display: We can select how we want Blender to show the armature, specifically the type
of figure representing bones. We also can filter to show names, axes, shapes, colors,
x-ray, and so on.The available figures areOctahedral, Stick, B-Bone, Envelope, orWire.
Each one has its pros and cons, and the decision about taking one over the rest is up to
the rigger depending on his preferences and needs.

. Bone Groups: A very important property helping riggers in their work is the separation
of bones into different groups and apply different colors to these groups.This will make
the armature comprehensible not only for the rigger himself but also the animation
crew. An example could be a group of bones called deformGroup where we can place
all those bones deforming the mesh and apply a black color to that group. We might
add another group for IKGroup where we could place all those bones related to inverse
kinematics and apply a yellow color to that group. In this way, the rigger’s work is pretty
dynamic because we can see which kind of bones we are manipulating with a single
overview, in which group the bone is placed, and its nature and its purpose.

. Pose Library: Blender allows us to store different poses in something called Pose
Library; we can use any of the stored poses later in production. To add or delete poses
from that library is really easy from this panel, in the same way as renaming poses.
Blender also allows us to addmore than a single library.That is specially useful to orga-
nize our libraries as different groups of poses, for example, a library calledDancing and
another called Running.

Introduction to Rigging 121

FIGURE 9.4 Properties of the Armature object are located in the Properties editor once we click the
Armature context button.

. Inverse Kinematics: This determines the type of IK solver used in the animation.
Available options are Standard and iTaSC.

. Motion Paths: We can use it to enable the option to visualize the motion paths our
animated objects leavewhen they are animated.We can select the type of range between
AroundFrame and In Range.We candisplay both paths depending on the selected range
or range of frames from the current one.

9.2 BONES
As discussed earlier, the bones are the elements that compose the armature object. This
means that adding a single bone to our characters implies creating an armature object, even
if it is composed of a single bone. Bones may be represented in diverse ways as we pointed
out in Section .. The Octahedral type is used by default, and we will use it as the basis to
continue with this rigging adventure (Figure .).

To manipulate bones correctly so we can complete our armature successfully we should
know the elements that the bones are composed of.

122 Blender for Animation and Film-Based Production

FIGURE 9.5 Widgets are really useful for the animation crew. Using these widgets, there is no need
to visualize complex armatures. It is kind of what you see is what you need paradigm.

. Start point: This is also called root or head.

. Body: It’s the bone’s core itself and may be modified and adapted in location, rotation,
and scale.

. End point: This is also called tip or tail.

At this point, there is something we need to know. Both the root and the tip may be
manipulated independently, but they only allow modification of their location property.
They can’t be resized or rotated independently. On the other hand, the bone’s body allows
it to be escalated, rotated, or translated. It’s also important to understand that we can
extrude bones from an existing one and we must do this from the root or the tip of the
previous bone.

It’s important to check from where we are going to extrude new bones because the behav-
iormight vary depending onwhether it extrudes from root or tip. Usually, in a lot of riggings,
the extruding action is done from the tip, because this creates a logical structure for the skele-
ton. But, wemust remember that sometimes it’s not useful for our purpose and then we need
to extrude from root. It’s up to us depending on our needs (Figure .).

Introduction to Rigging 123

FIGURE 9.6 Bones’ structure represented on the left, where we can see bones’ elements like tip, body,
and root. The two figures on the right represent an extruding exercise, one from the tip (middle) and
one from the root (right).

We can access the bones’ properties panels by selecting the Armature context with the
bone-like button from the Properties editor. We will see all available options automatically
where we might modify our bones’ properties with such a transformation, lock axis, add
relationships to groups,modify deformations, or change appearance and display (Figure .).

Let’s see the panels that the bones’ properties provide:

. Bone Name: We can apply a name to our bones from this input. During the rigging
process, it’s very important to follow a naming convention helping to locate bones in
the armature tree. This keeps the structure clean and organized. By default, Blender
adds the bones’ name automatically, something like Bone. that in very large projects
like the big animation studios ones, are not really useful, in fact, worse because it delays
production. We will see later a proposal for naming conventions.

. Transform: In Edit mode, we can manage the head, tail, and roll values from this panel.
We can also lock the bone properties by enabling the Lock option.

. Relations: We can move our bones to different layers. We can also modify their rela-
tionship or assign a new parent, connect to that parent, or make them independent.
Here, we have the useful feature to add our bones to different predefined groups.

. Deform: If this option is enabled, we are allowing our bones to deform geometry
so we can apply values to factors like Envelope, or add segments and modify the
influence ratio.

. Display: This panel contains all options to modify our bones the way we want to see
them.We can show or hide bones, like we can do in the Outliner editor. A very impor-
tant property in this panel is that we can apply a custom widget. This means that we
are able to apply any other shape to the bone so that bone is displayed with that shape

124 Blender for Animation and Film-Based Production

FIGURE 9.7 We can access the bones’ properties panels from the Armature’s context by clicking the
bone-like icon in the Properties editor.

instead of the predefined bone shape like Octahedral, Stick, etc. This is really useful to
create a widgets as manipulators that will help the animation crew in the animation
process.

. Inverse Kinematics: Once we know a lot of armatures and bones, we notice a very
interesting property of the bones. They are composed of small segments making the
bone very flexible in case we need that property. By default, a bone is composed of a
single segment but we can modify that, as discussed to apply some flexibility to that
bone. This allows us to play with the number of bones we need to introduce in our
characters.

9.2.1 Bones’ Segments

In cartoon animations, it’s very easy to see some characters requiring this kind of prop-
erty because in this animation style it’s common to use the stretch and bounce resource by
increasing the number of segments the bone is composed of.This technique comes from the
first Walt Disney animations and you can see what we mean in any of the classical cartoons
of that company.

Introduction to Rigging 125

FIGURE 9.8 In the picture, the armature on the left uses bones with a single segment by default. On
the right, the armature uses four segments per bone, so deformation and flexibility of the object are
smooth.

We see an example in Figure .. Notice the difference between add bones with a single
segment and that when we raise the number of those segments. We notice, in the armature
of the right, that the flexibility support when we increase the number of segments in each
bone. Specifically, we can use four segments per bone.

This will allow us to deform our characters and objects smoothly, avoiding strange arti-
facts and reducing rigidity, making it look natural. If we need a practical example where the
segments are really necessary, we could talk about the RAT bProficiency project where the
segments are really necessary when we want to apply the rig to the character’s tail. This ele-
ment should be very flexible and should avoid any rigidity. We can solve that by adding as
many bones as needed but we could bemaking the skeleton overly complex with the attached
risk of making it less organized than expected. The perfect solution for this trouble is to add
some bones to that character’s tail and then apply the segments solution by increasing the
number of segments per bone. In doing this, we make the character’s tail deform smoothly
and we have a clean and organized skeleton with less bones and better results as shown in
Figure ..

We can do this from the panel Deform within the Bones’ properties context. We must
mention here that working with B-bones we must be careful with the mode we are working
on. If we work with B-bones in Edit mode, these bones will be displayed as any other bone
in edit mode, that is like, rigid elements. However, if we switch to Object mode, we will
notice that our bones are displayed as segments and how Blender automatically calculates

126 Blender for Animation and Film-Based Production

FIGURE 9.9 Thepicture on the left represents the number of bones added to the solution.The picture
on the right represents the number of segments added to the solution. On the right, we increase the
number of segments per bone and the result looks smooth and clever.

the deform curve depending on our bones’ properties. Finally, if we are in Pose mode, we
can deform and apply poses.

This means that segments are always present, we can see them even at a glance. The ele-
ments we should take into consideration depend on the specific cases, so the riggers must be
careful with those elements requiring this solution.

9.2.2 Bones’ Influence

Bones are grouped to complete the whole armature as we already know, but they should be
applied to the object we want to deform in the manner that objects deform their original
shape as we move bones. The principle of applying the skeleton to the object so it’s affected
by the change is called Skinning and we have different methods to apply it in Blender. We’ll
see now one that is commonly used in the studios.

To let our characters or objects to be deformed by our bones, we must link our bones to
those objects, that is, basically, link our Armature. Blender needs to be able to recognize that
a determined object has linked an armature and the bones composed in that armature are
then allowed to deform our object depending on their influence.

Blender supports a couple of methods to link an armature to our objects. One is to add
an Armature modifier to our object. The other one is to create a parent–child relationship
between both object and armature.

We reckon the modifier Armature as the most interesting one to illustrate Blender skills.
First, once we have our object and our armature, we must be sure to be in Object mode, then
we select our object, andwe go to theModifiers context by clicking on thewrench-like icon in
the Properties editor. There we find the Armature modifier and selecting it we have Blender
showing all available properties for that context. We have some very interesting panels there;
let’s check the most interesting ones:

. Modifier name: We supply a modifier name here, in our case the object that represents
our armature. As discussed earlier, a single object might contain different armatures,
so it’s important to use a naming convention.

Introduction to Rigging 127

. Display type: This is used as a filter where we enable the option to show or hide our
modifier in different states.The available options areUsemodifier during render,Display
modifier in realtime, and Use modifier while in Edit mode.

. Move modifier panel: These are basically two arrows, up and down, to move our modi-
fier around others. It’s important to take into consideration the order of the modifiers.
Because Blender takes care of the modifier position in the tree, results may vary
depending on that position. For example, applying a Mirror first and a Subdivision
Surface later ends in a different result compared to applying a Subdivision Surface first
and a Mirror later.

. Removemodifier:This deletes or unlinks themodifier and the object. Basically, it breaks
the relationship between both elements.

. Object: This refers to the name we apply to our Armature as object. Here, we will tell
Blender the object that should be used as armature is our recently created Armature.

. Bind To: This is a method where we can bind the armature to any provided mesh and
this can be done by enabling or disabling Vertex Groups or Bone Envelopes.

. Vertex Group name: We might apply our modifier to vertices groups in specific objects
instead of on the whole object itself. Sometimes, this is used to apply some effects to
specific parts of meshes, so the modifier doesn’t affect the rest of the vertices.

The second option is to apply our armature by establishing a parent–child relationship
between object and armature. For that, we need to select our object inObjectmode andpress-
ing the Shift keywe select our Armature.Then, we press Ctrl+P keys to use the parent feature.

The Set Parent pop-up menu appears asking us about the type of relationship we want to
apply to both objects as shown in Figure ., where we can select Armature Deform with
envelope, for example.

FIGURE 9.10 The Set Parent To pop-up menu allows us to select the type of relationship between
two objects. Here, we select Armature Deform to make the armature deform the object.

128 Blender for Animation and Film-Based Production

FIGURE 9.11 We see that Bone. is directly connected to its parent in the picture on the left. But
the bone Bone..L is not directly connected showing a dotted line in the right picture.

Then, our armature is automatically linked to the object and each kind of deformation
of our bones will affect that object. It must be said that the skinning method by applying a
modifier Armature is very interesting and gives us more control over our rig. So, the parent–
child method can be used for small tasks by animation studios like an auxiliary method.

As we can see, an armature is composed of a bone’s chain that might or might not be
connected between them.This implies that bones might or might not share contact between
them. As shown in Figure ., bones that keep contact in the parent–child relationship also
share location for root and tip.That is, the tip for one bone is in the same place as the root of
the other one. On the other hand, we have bones that have a parent–child relationship even
when they have no contact between them. Instead, we see a dotted line between the tip of
one bone and the root of the other one.

Sometimes, it’s not necessary to keep the direct contact between bones; sometimes it’s even
necessary to break this contact, so we can enable or disable that with the Connected option
located in the Relations panel.

In both cases, whether the bone is connected or not, we are able to tell Blender to avoid
this bone inheriting the parent’s rotation or scale from the same Relations panel. Disabling
these options we make the child bone keep its own rotation or scale. In some animation
styles, this is really important and to know our bones’ chain offers these possibilities is
important to understand the complexity of the rigging process.

We have seen how to create a simple bones’ chain and how each bone keeps a parent–child
relationship. There are some motivations in the rigging process to modify this relationship.
Thismeans that sometimes we require the bones added to the chain to be able to change their
relationship and so we have to assign another parent to them. This is easily done in Blender
and we have a few methods to do it.

Introduction to Rigging 129

FIGURE 9.12 Make Parent float panel. Here, we could modify the child–parent relationship and the
option to make it connected or keep the offset between both bones.

We can use the Relations panel that we are familiar with. For that, in Edit mode, we select
the child bone and then we insert the new parent bone name in the Parent input field.

Another way is by using keyboard shortcuts. In the same way we talked about linking
objects and armatures, we should select the child bone in Edit mode, then by pressing Shift
key we select the bone we want to be parent. To apply the relationship, we press Ctrl+P and
then select if we want this relationship to be Connected or Keep Offset (disconnected) as
shown in Figure ..

As shown in Figure ., now our bone displays an influence range that says the range
could affect in a possible deformation.We can scale that influence range from the Posemode.
We select the bone and then press Alt+S.

It’s important to know that if we are in Edit mode and the display type is Envelope, we can
select the tip or root of our bone and scale so the influence range is proportionally scaled as
shown in Figure ..

FIGURE 9.13 Wecan visualize Envelopemode sowe know the influence range.That influcence range
might be modified in Pose Mode, as seen in the left image. On the other hand, we can scale the tip
and the root so the influence is proportionally scaled too like in the image on the right.

CHAP T ER 10

The Animation Process

And we finally come to the hot point in any studio’s animation project. Well, people
consider this the most important stage in any film production, but as we already know

from the previous chapters, every small task is important for a successful result.
We saw the importance of getting a good story, how a very good concept artmakes it really

interesting for viewer, and how a wrong model might end in future errors for riggers and,
therefore, in the animation process.

It’s completely normal that people who do not work in an animation studio’s environment
might think on these lines. At the end, the animation, the rendered motion is the visual
contact between the product and the viewer.

We don’t say this process is not important, not at all. We must understand at this point
that the animation process is as important as the rigging or modeling ones with the attached
risk than a very bad animation is visible to everyone at a glance.

Technically speaking, animation means to move any object or character or simply change
their shape over time. But under this simple principle, we have very different ways we can
use to animate any object. Here are three ways we can use:

. Modifying the location, rotation, or scale of any object

. Modifying the mesh by using, say, shape keys

. Deforming the object via Armature, that is, using the rig attached to the object

In Blender we have three methods for animation:

. Key framing: Poses are stored using single frames. This is a manual method because
each frame might be moved in time changing its position so the animator can adjust
them in a precise manner.

. Curves: This method uses animation curves that give the animator a high degree of
control of the movements. The animator manipulates something like graphics where
the values stored in location, rotation, and scale are represented vertically while the
timeline is represented horizontally.



132 Blender for Animation and Film-Based Production

FIGURE 10.1 The picture represents how we can animate almost everything. In the picture, we have
animated the Influence value of Copy Location constraint. We can see the default option in the left
image, but notice the animated Influence option in the picture on the right. We just animated it by
pressing the I key with the mouse over the option.

. Path: They are just drawn in the D Viewer and then the object uses a constraint to
follow that path according to some properties. This is not a very accurate method, but
it’s used frequently for specific purposes.

One of the most interesting improvements in the latest Blender releases is that almost every-
thing can be animated.This is a really interesting point because we can animate whatever we
want including property values, say Shader intensity, alpha values, and location coordinates.
It’s really simple by using the I key with the mouse over the property we want to animate as
shown in Figure ..

10.1 TIMELINE AND ANIMATICS
If we have to talk about animation, then we have to make some reference to the Timeline
editor. We already know something about this editor from Section ...

We know that Timeline is really important in production because we control there the
actual length of the scene either in seconds or frames. We can visualize where the keyframes
are, control the start and end of the scene shot, add or check for possible markers helping in
production, playback the animation, and set all changes we need to get the expected result.

What we need to know is how important the so-called animatics are for any film produc-
tion.There are several type of animatics, with more or less details, but what they basically do
is to set an approach for the final scene in timeline words.

The Animation Process 133

FIGURE 10.2 Elephants Dream open movie, codenamed Orange project. Animatics give us very
important information about the scene length and resources consumption.

With animatics, we not only know if the scene is going as we expected and if it takes the
time we want but we also know if animation is going to be as we desire. For that, we can use
a very different type of animatics, as explained earlier, with more or less quality that depends
on the purpose of the animatics.

For instance, if we want to know if our character goes from point A to point B in a credible
timeline, we can make simple animatics of primitive objects moving from point A to point
B, just as if our character were in place moving between these locations.

On the other hand, if we want to check a movement our character makes, say running or
walking, then we need to make better animatics and just render the whole scene with very
low quality and probably no colors and composition. In such cases, it’s usual to render only
the character movement, without added elements such as environment or any other thing,
except those properties we want to check if any.

Animatics are really important and give us an idea on how the animation will look in
timeline terms (Figure .).

10.2 MARKERS
Another great solution helping animators is the use of markers that we might read from the
Timeline.These markers are usually used to delimit actions or hot points. Animators should
take into consideration, say where a specific character talks, the point the camera has to
switch to, the point where some vehicle crashes, or anything else the animator should take
care of.

Even though they are specially useful in the animation process, markers are not exclusive
to the Timeline editor but may also be used in very different editors in Blender, like Graph
Editor, Action Editor, or Dopesheet, each one for its own purpose, of course.

134 Blender for Animation and Film-Based Production

The beautiful thing is that the marker wemake for specific frame is also visible in all other
supporting markers. So, if we think we need to add a marker in Timeline at frame  because
our character starts talking by phone, the samemarker will appears in Action Editor at frame
 so future production teams or any other member of the film crew is able to see that at this
frame we have something interesting happening that should be taken into account.

10.3 KEYFRAMES
In animation, the keyframes are the golden egg. They form the basis of animation. In short,
they store information about the value of specific data at determined frames (Figure .).

Their use is really simple. We control animation by applying control points and manipu-
lating the interpolation curve. For instance, if we want a wheel spinning, then we can use the
following scheme:

. Control point : A value of  at frame 

. Control point : A value of  at frame 

In that example, we can visualize that the wheel has a value of  at frame , but what if we
want the wheel having a value of  at frame  instead?Well, it’s really simple, what we need
is just add another control point at this frame:

. Control point : A value of  at frame 

. Control point : A value of  at frame 

. Control point : A value of  at frame 

To add keyframes, we just need to press the I key. Then, a pop-up menu appears with very
different options as shown in Figure ..We can select between add keyframes for Location,
Rotation or Scale, Location and Rotation, Location and Scale, and so on.

FIGURE 10.3 Keyframes example. The picture represents the stored keyframes for different objects.
Notice the stored keyframes are related to Rotation.

The Animation Process 135

FIGURE 10.4 Insert keyframemenu.We can select the type of keyframe we want to store by pressing
the I key and selecting the one we want from this pop-up menu.

As mentioned earlier, one of the most interesting updates in the latest Blender releases is
the ability to animate almost everything. It’s absolutely amazing to be able to animate prop-
erties by simply letting the cursor hover over the image and press the I key. At this moment,
Blendermakes a keyframe storing the information on this property. If wewant to add another
value then we can use the same technique to store another value at any other frame in the
timeline, getting an animation of this property.

This is probably best illustrated with an example, so let’s say we are in frame , we go to
materials, let the mouse hover over diffuse, select the color blue, and then press the I key. We
then go to frame , let the mouse hover over diffuse, select the color orange, and then press
the I key. If we render that as animation, we’ll see our object switching the color from blue
to orange in just  frames, probably in less than  s depending on the frame rate settings.

In the previous example, what we have are just two control points which we can modify
by the interpolation curve or by moving the respective keyframes in the Dopesheet editor.

This technique is really useful and speeds up the animation process but doesn’t exclude
the responsibility of taking care of such keyframes. When we add keyframes in this way, we
cannot be totally sure how they are being stored in the whole animation structure and it’s
good to control and check everything is fine even if we use this technique.

136 Blender for Animation and Film-Based Production

10.4 TYPES OF ANIMATION
We can think about two types of animation. This is really important to know so we under-
stand the animation process and how to develop specific animations in the right way. This
doesn’t mean they are not compatible with one another, because film productions usually
mix both techniques depending on the requirements of the animated scene.

. Straight Ahead: This animation type basically begins at the beginning and ends at the
end. So easy!

. Pose to Pose: This is a type of animation using a progressive refinement.

Obviously, the first type of animation, straight ahead, is subject to improvisation, can get out
of hand easily, is hard to track progress of, and a bit messy if we compare with the second
type. It’s also harder to fix because we need to modify more keyframes manually if we need
to fix specific values on any frame.

The second type of animation, pose to pose, looks planned and structured. In case we need
to fix things it’s rather easy because the use of control points where refinement is done with
interpolation curves is an easy way to do it.

10.4.1 The Twelve Principles Developed at Disney

. Squash and stretch

. Anticipation

. Staging

. Straight and ahead, action, and Pose to Pose

. Follow through and Overlapping action

. Slow In and Slow Out

. Arcs

. Secondary action

. Timing

. Exaggeration

. Solid drawing

. Appeal

10.5 USING CONSTRAINTS IN ANIMATION
We can control our object properties using constraints. In fact, they apply some kind of limit
or add specific values to these properties so the result is affected by these new rules. For
instance, imagine applying a limit rotation to any specific bone within an armature.

The Animation Process 137

FIGURE 10.5 Different constraints available in different groups depending on the desired purpose.

In animation, we can use constraints for those elements that only allow constraints using
targets.Without going into toomuch detail, it is enough to say, it’s usual in animation studios
to use these kind of constraints in animation projects. As mentioned earlier, imagine a bone
with a constraint of Copy rotation from any other targeted bone.

In such a case, the owner of the constraints will copy rotation once the targeted bone
modifies its own rotation. This is a kind of indirect constraints animation.

Constraints are accessible from the Properties editor by clicking the bone and chain-like
icon, once we have a bone selected.

Then, an Add Bone Constraint selector appears in such a context as shown in
Figure ..

Blender provides uswith four groups of constraints, grouped depending on the purpose.

• Motion tracking: Available constraints in this group are Camera Solver, Follow Track,
and Object Solver.

• Transform: Available constraints in this group are Copy Location, Copy Rotation, Copy
Scale, Copy Transforms, Limit Distance, Limit Location, Limit Rotation, Limit Scale,
Maintain Volume, and Transformation.

• Tracking: Available constraints in this group are Clamp To, Damped Track, Inverse
Kinematics, Locked Track, Spline IK, Stretch To, and Track To.

• Relationship: Available constraints in this group areAction,Child Of, Floor, Follow Path,
Pivot, Rigid Body Joint, and Shrinkwrap.

10.6 SHAPE KEYS
The shape keys definitively provide us with an interesting method of refining deformations.
It’s common lately to see studios putting more and more work on the shape keys animation
method.

138 Blender for Animation and Film-Based Production

FIGURE 10.6 The shake keys panel stores the library of the different shapes we have added. Notice
the options Relative and Value of influence.

If we talk about shape keys we have to mention facial deformation. Nowadays, we can’t
imagine facial expressions and animations without shape keys. Of course, any of the super
productions in these days use a very complete facial rig (Figure .). Without doubt they
use a lot of constraints to make the rig work properly depending on the circumstances but
we must be sure that they also use shape keys to refine deformations and speed up the
animations.

In Blender, shape keys are used in some kind of objects like meshes, curves, or lattices but
it’s specially designed to deform object vertices so we can build new shapes ready to be used
in a simply way.

Technically speaking, we can see two different types of shape keys, the Relative one, where
the new shape key is applied based on the base one and the Absolute one, where the new
shape key is relative to the previous and next one.

They are used for different purposes, so for instance, if we have made a facial animation
using our armature and facial bones, we can refine the possible glitches with a shape key
refining eyelids for example. In this case, we are using a relative shape key.

On the other hand, if we want to have a sphere object deforming its topology from sphere
to cylinder and then to a cube, we can use the absolute shape keys, where it is based on the
previous and next figures involving a lineal deformation over time (Figure .).

The Animation Process 139

FIGURE 10.7 With shape keys, it’s really easy to manipulate facial expressions in Blender. It’s great
to use this technique to refine poses fixing possible issues.

10.7 WALKCYCLE
Absolutely every animation project, if not all, has its own walkcycle. This depends on the
level of the project. We don’t refer to walkcycle as the animation process where any character
seems to be walking.

Well, that is the most common meaning of the walkcycle but we can see walkcycle or
simple cycles in more animations like mechanical or organic ones. So, for instance, a ball
bouncing on the wall could be done with a bouncecycle. Same is applied for running or
jumping, for example.

140 Blender for Animation and Film-Based Production

FIGURE 10.8 Interesting comparison between cycles. (From http://minyos.its.rmit.edu.au/.)

A basic walkcycle, talking about the process of any character walking, consists of
 frames where we can visualize some acting like references. So we have called it Two
contact positions or the Middle Pose but what we need to take care of are frames , , ,
, and . We will see that graphically (Figure .).

CHAP T ER 11

Introduction to Lighting

Itmay seem redundant if we say that lighting is a very important step in film production.
But, again, we are not exaggerating when we say the lighting team is responsible for the

success or failure of a project.
Again, this is so because building the lights for a film is really complex and its result is

directly visible for the viewer. We can allow an unnoticed error in rigging or animation but
visual errors in light, texturing, materials, and other similar areas will be very obvious to the
viewers.

Lighting a film is a kind of art that requires some skills but is so rewarding at the end. We
should be aware of this. We could have a great scene with very detailed characters and won-
derful animation, but if lights arenotmanaged in great detail, thewhole projectwill be ruined.

We already know that every scene in Blender is affected by several laws and properties
from materials, lights, textures, environment, and world settings. But what are the elements
affecting lights in Blender?

. World:The color of the ambience is very important to set the right lights.

. Ambient occlusion:This option is necessary to give some realism to the scene.

. Indirect light: Like in the real world, objects’ color will be affected by surrounding
objects’ colors.

. Lamps: Depending on the lamps setup, we will have very different results.

. Engine:Obviously, depending on the render engine selected the whole result will vary,
for example, from Blender Internal to Cycles.

We won’t talk about the technical laws of lighting because this requires a lot of effort that is
not needed right now. We need to know how important it is to set up the right lighting in
film productions, why many good projects were ruined because of a poor interpretation of
this element and why many small and modest projects were a completely success because of
the right use of compositing and lighting.

Even if we don’t need to know all the technical laws, we must know that as with any other
element in render processing, a bad use of its settings could end in never-ending renders
because of the amount of ambient occlusion, ray tracing, or calculation on indirect lighting.



142 Blender for Animation and Film-Based Production

Therefore, it’s a good idea to use the Blender Internal render because this simplifies all these
processes to avoid calculating the real physics for lighting.

If we have to talk about how to set up lights in Blender, we could come up with something
simple in three or four steps. For example, select the type of lamp we want to use, position
the light and direction, select the color of the light, and modify values like energy.

In fact, it’s more complex than this of course, but we will use those steps as the starting
point to know how the lights are managed in Blender.

11.1 LAMPS
In this panel, we can select between different lamp types. We have to know that depending
on the selected type, we will have different options and controls.

The available lamp types in Blender are Point, Sun, Spot, Hemi, and Area.
From this panel, we could modify the light color and apply the energy value. The energy

value is equivalent to the amount of light the lamp emits.
The light type also depends on the Falloff selected. Available values for the falloff are

Lin/Quad Weighted, Custom Curve, Inverse Square, Inverse Linear, and Constant. This value
is also dependent on the Distance value. The falloff property is only available for Point and
Spot lamp types.

We also have some options to enable us to refine our light setup, like Negative to cast the
negative light, allow Blender to use lamp on those objects in the same layer withThis Layer
Only, create Specular highlights, or enable Diffuse shading (Figure .).

11.2 SHADOW
If we talk about lights, we have to talk about shadows. To produce a convincing project, we
have to set up a balanced system between lights and shadows.

In this Blender panel, we can choose if we do notwant to use shadow at all withNo Shadow
or use ray tracing to cast shadows with Ray Shadow button.

If we have Ray Shadow selected, then we can select the color of the shadow being cast by
the lamp. In the same way, we can play with Sampling properties like the number of samples,

FIGURE 11.1 Different types of lamps we can use in Blender. Each one contains its own properties
and results vary one from the other.

Introduction to Lighting 143

FIGURE 11.2 The shadow panel where we canmodify and adapt the shadows of the scene. If we play
with lights, we need to take shadows into account.

size, or method being used—Adaptive QMC that is faster for processing or Constant QMC
that generates less noise.

This panel will not be available if we select a Hemi lamp (Figure .).

11.3 ENVIRONMENT LIGHT
We could think about the environment light as a property that provides light in all directions,
wrapping the whole scene.This light is calculated in the same way as the Ambient Occlusion
(AO) with the small but important difference that Environment lighting checks the ambient
value of thematerial shading properties, indicating the amount of color thematerial receives.

We can also select the color of the environment light projected and the energy value.
The available options for environment light color are Sky Texture, Sky Color, and White
(Figure .).

11.4 AMBIENT OCCLUSION
The AO is a very interesting ray-tracing calculation that makes renders look great. This is
not a very technical explanation but the fact is the AO does not exist in real life, so it just
simulates a nonphysical effect to make renders look better.

The thing we must understand is that AO doesn’t have anything to do with lights, because
it even works if we don’t have any lamp on our scene but it’s commonly used together with
lamps to improve renders’ appearance.

The AO is located in theWorld context and requires the ray-tracing option enabled in the
Shading panel of the Render context.

FIGURE 11.3 With the environment light, we manage the whole light on the scene. As we know, it
manages the light provided in all directions over the scene.

144 Blender for Animation and Film-Based Production

FIGURE 11.4 Even though the ambient occlusion does not exist in real life, it is a very common
feature to improve the final renders’ look.

Then,we can playwith theAOcolor that is located in theWorld panel of theworld context.
This makes Blender use that color for the AO calculation.

In this panel, we have some properties to play with. We can adjust the Factor value and
the method to mix the material shading between Add or Multiply (Figure .).

11.5 RESOLVING ISSUES WITH LIGHTS
When we work with lights, it’s usual to set up a trial-and-error environment, so we canmod-
ify and adapt our lighting environment properties later. But it’s also common to have some
issues with the lighting environment in film production.

While producing the RAT bProficiency project, we had several issues with lighting, prob-
ably because we were relative beginners in film production but we finally managed to solve
them. We don’t mean they were the best solutions, because we could probably have made
them look better, but we did solve some issues with very practical fixes.

We have to admit that we were using a very messy environment light, because it was our
first experience as shown in Figure ..

FIGURE 11.5 A completely messy environment light for the RAT bProficiency project. Even though
it was a beginner project, it ended up with Platform Michelangelo Studio.

Introduction to Lighting 145

FIGURE 11.6 Issue fixed with a point lamp. Notice the bottom picture makes the lamp to raytrace
lamp object making the material simulate a warm scene.

We had to solve, for example, an issue with the lighting over the table where everything
looked a bit gray. We couldn’t manage to have a nice and warm ambience over the table. We
finally came up with the solution of adding an object, basically a lamp, and use a Point lamp
as shown in Figure ..

Notice the picture at the bottommakes the object’s shadows a bit smooth, integrating each
to the other while the picture at the top looks harder. Notice the shadow of the cup over the
cheese.

This is a very rare issue but be sure that the most famous film production deals with these
kind of issues during production. Setting up a really nice environment light is a very hard
task but as important as any other such animation. In fact, we could say, evenmore important
because, as mentioned earlier in this book, the visual aspects will be the first contact with the
final user.

Those visual aspects the final user has access to at first glance are very valuable to
determine a complete success or a failure (Figures . through .).

146 Blender for Animation and Film-Based Production

FIGURE 11.7 Environment light for the Big Buck Bunny open movie developed by the Blender
Institute. Notice the point lamps used in the middle of the scene grouped in a circle shape.

FIGURE 11.8 Environment light for the shaman scene in the Sintel open movie developed by the
Blender Institute. Notice, we have here some interesting point and spot lamps dispersed over the
scene to create the warm ambience.

Introduction to Lighting 147

FIGURE 11.9 Rendered scene with Sintel and Shaman from the Sintel open movie developed by the
Blender Institute.

CHAP T ER 12

Compositing Nodes

Tounderstandwhat nodes are is not easy, but we can think about them as small filters
with the ability, and used single or grouped tomodify our render’s final result, generating

the final composition expected.
Nodes are necessary elements in almost every project for some reasons. First, they apply

those visual changes that improve the initial state. On the other hand, it’s a bit hard to get
into the detail level in a straightforward way, so the use of nodes is more than important in
such cases in order to obtain this plus in quality.

There are nodes of very different types and their functionality varies depending on the
group they are stored in. Some projects only require the use of a small number of nodes
to adjust the final composition, but others require a very complex group of nodes resulting
in a complete network. In this case, the team working with compositing and nodes need to
know the final result they need to achieve. The process of making a complex node network
is called Noodle.

Nodes are very important in animation films and projects because applying the right
nodes in the right place will improve the overall ambience improving the feeling between
product and viewer. The project already has passed through a very hard process of pre-
production, modeling, rigging, and animation, but the final appearance, the one that
will be in direct relationship with the viewers, is created by the compositing and light-
ing team.

Depending on how big the animation studio is, these teams may be structured in differed
departments or grouped just in a single one. Anyway, they must work to apply that level of
detail giving the product the final appearance to make it attractive to viewers.

This topic has been the subject of forums and talks, because we find two different ways
of approaching the topic. One argues about the necessity of that visual aspect, based on the
importance of the story not the visual aspect. But sometimes, the story is misunderstood
because the film is overwhelmed by the visual aspect.

Anyway, it seems like there is no doubt that the visual appearance should be taken into
consideration in some measure. We won’t enter into that discussion because it’s not our
objective right now. We’ll simply see how we can alter and improve the final result using
Blender’s nodes.



150 Blender for Animation and Film-Based Production

When we say that we can improve the visual aspect using nodes, we don’t mean using
nodes will solve previous mistakes. It’s not magic. We must know how to combine them
for a successful result because a bad use of nodes might result in a very poor final
product.

We can find three node types:

• Input Nodes: They are nodes providing information but they do not receive any infor-
mation from others. That means these types of nodes are connected to others but they
don’t receive connection.

• Output Nodes: They process information to offer a final result. These nodes receive
external connection but they don’t require to be connected to any other node. They
manipulate information and the final result is shown by themselves.

• Processing Nodes: These nodes process and filter information to produce a different
result. These nodes receive an external connection and they are connected to others
at the same time.

12.1 SETTING UP NODES
Touse nodes in Blender, wemust select some parametersmakingBlender receive andmanip-
ulate information about our nodes. In the first place, we need to go to Properties editor to
the Render context. There we will see the Post-Processing panel where we need to have the
option Composting enabled. With this option, we make sure Blender will use our nodes in
the render process as shown in Figure ..

After enabling the Compositing option, we will go to the Node editor to enable the Com-
posite Nodes by clicking i the Image icon and enabling the Use Nodes option. There we will
find other useful options for our work with nodes like Free Unused, which will free themem-
ory space to avoid processing unused nodes, or the Backdrop option that will generate the
node result as background in theNode editor, so we can get a first approach on how our work
with Nodes is going as shown in Figure ..

FIGURE 12.1 EnableCompositing fromProperties editor, Render context, and Postprocessing panel.

Compositing Nodes 151

FIGURE 12.2 Basic options for Node editor. Enabling Composite Node, and Use Nodes is enough to
tell Blender to use nodes in the render processing.

12.2 USING NODES
Now, we will see the structure of a single node and its elements as shown in Figure .. We
will learn how to work with them so we can create a node structure or the desired noodle.

A node is composed of the following:

• Titlebar: Here, we can see the name of the node and some buttons and options to hide
content like the Collapse Node and Hide Preview.

FIGURE 12.3 Structure of a node. Different elements compound the node and determine node
behavior.

152 Blender for Animation and Film-Based Production

• Toggle Preview: This shows or hides a preview of the node.

• Node Toggle: This completely collapses the node leaving only the name visible.

• Input Sockets: The small circles in the left bottom side are the so-called input sockets
and they have the responsibility to accept the input connection from other nodes.

• Blue sockets: These accept vectors.

• Yellow sockets: These accept colors.

• Grey sockets: These accept single values like alpha.

• Output Sockets: Like the Input Sockets, the small circles on the right upper side
are the so-called output sockets, and they determine the type of output used by
the node.

• Blue sockets: These produce vectors.

• Yellow sockets: These produce colors.

• Grey sockets: These produce singe values like alpha.

• Image Preview: Asmentioned earlier, nodes include a small preview of the image show-
ing the result after the node has processed the information depending on the node
parameters and options.

• Buttons and menus: Depending on the type of node selected, we will see different
parameters and options here. We will adjust specific values to optimize the expected
result we want our node to apply to the final compositing.

• Threads: A curved line illustrates the connection between an output socket from node
A to the input socket of node B.

As shown in Figure ., we can see the structure of the different nodes. In our example,
we have a scene with a cube. We have applied an orange material and rendered the image.
Once in the Node editor, we see four types of nodes used. In the first place, we have a Render
Layers node, where we only have output sockets, in our case the render or the image of our
rendered scene.

We connect the Image output socket to the input socket of another node, this time the
RGB Curves node. Notice that sockets must be the same type, in our case Image. Then we
modify the color curve for the Red layer. The RGB node is connected by the output Image
socket to the input socket of the Blur node, where we apply a blur effect to the compositing.

As we can see in the preview of the Blur node, the initial image has been altered for both
the diffuse level of the Red layer and the blur effect itself, where we have applied a value of
 in the X axis.

Compositing Nodes 153

Finally, we connect from the Image output socket of the Blur node to the input socket of
the Composite node. Using the latest one, we say to Blender to use our noodle tree informa-
tion in the final render processing. In fact, if we render again using F key, our final result
will be different from the very beginning because Blender has used the noodle information
in the render processing resulting in the new composite.

It’s important to understand what the sockets are and how they work in the noodles devel-
opment. We can resume sockets as connection points where we link information between
nodes. As mentioned earlier, sockets from the left side are input sockets and the ones on the
right side are called output sockets.

To make the process of creating new sockets easier, Blender shows us the different types
of sockets by applying different colors, depending on the type of information we expect to
manipulate in such connectors.

There are some basic colors:

. Yellow: This is related to the color information. Here we can manipulate information
for input and output as they always have a color relation.

. Grey: This is usually used for numeric values, but could also contain information for
a value map or a ramp color. This type of connectors is usually used to manipulate
alpha.

. Blue: This is related to information about vectors and coordinates.

Both input and output sockets might be connected only to others sharing the same
type unless we use a special case denominated as Converter. Sometimes, Blender knows
how to manipulate such exceptions by applying the converter automatically, but not
always.

A very interesting point while manipulating nodes is that such sockets usually have a
name describing their action.They are like a clue to the information that is to bemanipulated
in both input and output as shown in Figure ..

To add nodes to our noodle, we can use two methods. In the first place, we can make that
from the menu in the header of the Node editor with option Add and then select the type of
node we want to add. On the other hand, we might add a new node if we keep the cursor in
the Node editor and press the Space key where we can select the type of node from a small
pop-up menu.

To connect nodes, we know that we should join output sockets from one node to
input sockets from another node. We also know that in most cases they should be of the
same type. For that, we just click using LMB over a specific output socket and keeping
it pressed we connect to the input socket of another node. We should see an associa-
tion line called thread indicating that we are sharing information between the selected
nodes.

If we would like to disconnect both sockets, we could make it in two ways. One by one
select any of the sockets by clicking with LMB and moving it a bit to raise the button and

154 Blender for Animation and Film-Based Production

FIGURE 12.4 Each socket contains a small name describing the action or property we could
manipulate. Notice in this picture that the sockets we are manipulating are related to image.

disconnect. Another way is by using Ctrl+LMB where we see something like a cutter. If we
move that cutter to our thread, the connection line, we will see it’s disconnected meaning
that both nodes are not sharing information anymore.

Nodes are elements we can organize in our Node editor, so we canmove, duplicate, group,
or delete so we keep our noodle clear and easily readable.

12.3 NODE TYPES
12.3.1 Input Nodes

Input nodes are those producing information. This information is exported to other nodes
so that it can bemanipulated in order to produce a completely new information.These nodes
are easily recognizable because they have only output sockets (Figure .):

• Render Layers Node

• Image Node

• Texture Node

• Value Node

Compositing Nodes 155

FIGURE 12.5 The available input nodes. As mentioned earlier, input nodes are those producing
information.

• RGB Node

• Time Node

12.3.2 Output Nodes

The output nodes are the ones showing the information processed by the rest of nodes
(Figure .). These nodes are really useful to check the approximated result of specific
operation or to check how our noodle is working at a determined point.

• Viewer Node

• Composite Node

• Split Viewer Node

• File Output Node

12.3.3 Color Nodes

These nodes are the ones manipulating the color information like contrast, layers, colors,
alpha, or intensity (Figure .).

• RGB Curve Node

• Mix Node

156 Blender for Animation and Film-Based Production

FIGURE 12.6 The available output nodes. As mentioned earlier, output nodes are the ones showing
information processed by the rest of nodes.

• Hue Saturation Node

• Bright/Contrast Node

• Gamma Node

• Invert Node

• Alpha Over Node

• Z-Combine Node

12.3.4 Vector Nodes (Figure 12.8)

• Normal Node

• Vector Curves Node

• Map Value Node

Compositing Nodes 157

FIGURE 12.7 The available color nodes. Asmentioned earlier, color nodes are the onesmanipulating
color information.

12.3.5 Filter Nodes (Figure 12.9)

• Filter Node

• Blur Node

• Bilateral Blur Node

• Vector Blur Node

• Dilate/Erode Node

• Defocus Node

12.3.6 Convertor Nodes (Figure 12.10)

• ColorRamp Node

• RGB to BW Node

• Set Alpha Node

• ID Mask Node

158 Blender for Animation and Film-Based Production

FIGURE 12.8 The available vector nodes.

• Math Node

• Combine/Separate Node

12.3.7 Matte Nodes (Figure 12.11)

• Difference Key Node

• Chroma Key Node

• Luminance Key Node

• Color Spill Node

• Channel Key Node

12.3.8 Distortion Nodes (Figure 12.12)

• Translate Node

• Rotate Node

Compositing Nodes 159

FIGURE 12.9 The available filter nodes.

• Scale Node

• Flip Node

• Displace Node

• Map UV Node

It’s also interesting to see some of the Blender Foundation’s open movies node trees. For
example, as shown in Figure ., the Creatures Factory open movie is very distinctive with
the glow and neon effects. In the picture, we can see those nodes working within the noodle
to finally obtain the desired glowed effect.

In the same way, the Big Buck Bunny open movie developed by the Blender Institute and
Blender Foundation uses a very distinctive compositing noodle that makes it looking warm
and sunny as shown in Figure .. Notice the use of nodes like Blur, RGB Curves, Mask,
and Glow, for example.

160 Blender for Animation and Film-Based Production

FIGURE 12.10 The available convertor nodes.

Another example is shown in Figure ., where we have to take an special view to the
lightwrap node and the blur one. This picture represents a very warm environment light
within the shaman tent. Atmosphere created with the noodle tree is awesome and perfectly
suits the scene requirements.

For a Lighthouse CGI Animation, formerly Platform Michelangelo Studio, project code-
named Haiku, we came with a very complex noodle tree specially for some characteristic
effects for convulsions and such as shown in Figure ..

Some of the nodes used in the compositing were animated, as shown in the mentioned
picture. So we can check how node properties could also be animated by placing the mouse
over and inserting the right keyframe with the I Key.

For that project, we used and animated node properties for Lens Distortion, Defo-
cus, Translate, or Displace. Also, ColorRamp and Map Values were used to adjust colors
environment together with blur nodes to create a depth effect.

Compositing Nodes 161

FIGURE 12.11 The available matte nodes.

162 Blender for Animation and Film-Based Production

FIGURE 12.12 The available distortion nodes.

Compositing Nodes 163

FIGURE 12.13 The compositing nodes for a Creatures Factory open movie developed by Andy
Goralczyk. Notice the neon and glare nodes that are very representative of the film compositing.

164 Blender for Animation and Film-Based Production

FIGURE 12.14 The compositing nodes for Big Buck Bunny open movie developed by the Blender
Institute.

Compositing Nodes 165

FIGURE 12.15 The compositing nodes for Sintel open movie developed by the Blender Institute.

166 Blender for Animation and Film-Based Production

FIGURE 12.16 The compositing nodes for Haiku Poem movie developed by Lighthouse CGI
Animation.

CHAP T ER 13

Using Particles and Dynamics

Wecan hardly imagine a D film without physical simulation. In Blender, when we
say physics, it does not only refer to actual physical phenomena but also to the grass,

fur, or hair.
The question is, can we imagine any of the D films we already know or have watched

without physics? We could simplify this broad question by answering the following
specific ones:

. Did the characters have hair or were they furry?

. Was there cloth simulation?

. Was it raining at some point in the film?

. Did you see smoke or wind phenomena at some point in the film?

. Did you see particle effects in the environment?

These are just some questions, but if you answer Yes to any of them, then that film is using
physics. Even if your answer is No for all of them, the film might have still used physics at
some point.

We’ll nowdiscover howBlendermanages the different options regarding physics, andwe’ll
set the basis of the knowledge so the next time we watch a D film, we’ll know at a glance
where physics is being used.

Understanding physics in Blender is difficult if we look at it from a technical point of view,
so we will just see what options are available. Our purpose here is not to develop any physical
laws in Blender, but to understand Blender’s physical and dynamic effects, which are used in
almost every film production.

Technically speaking, Blender offers different kinds of physical simulation, as shown in
Figure .. Some of these may deserve elaborating as they are used on a day-to-day basis,
like particles and soft bodies, but for now we will look at each of them in brief:



168 Blender for Animation and Film-Based Production

FIGURE 13.1 Force field types. We can select the force type from the drop-down menu within the
Force Fields panel.

• Dynamics: Also called as force field are phenomena used to modify physical behavior.

• Particles: With particles we can simulate hair, furry characters, grass, or other particles
in the environment.

• Soft body: A really interesting feature dealing with almost everything that bends or
deforms depending on other physics, like collision. For example, we can simulate balls
falling and bouncing on the floor.

• Cloth: This is a specific type of phenomena to make dynamic clothes in addition to
forces like wind, for example.

• Fluids: To simulate everything related to dynamic fluids. It doesn’t need to be strictly
water simulation, but different kind of fluids and viscosity can be simulated.

• Smoke: This is a perfect feature to simulate smoke and fire, but also dust.

• Dynamic paint:This is a recently added physics system for the simulation of objects that
would have otherwise been quite difficult. It converts the object to canvas and brushes
enabling us to simulate things like rain drops on the floor, feet in the snow, etc.

Using Particles and Dynamics 169

• Green screen and track motion: This is probably the best known effect. Maybe it’s not
strictly a physics phenomena, but we will include it in this chapter because it shares
some principles of dynamics.

These are the most important but surely not the only physical simulations we will see in
Blender.

It is important to understand that physics simulation is a feature with a high level of
resource consumption. In other words, we need to make sure that the level of simulation
we want is possible within the hardware capabilities.

13.1 DYNAMICS AND FORCE FIELDS
Force fields are a way to modify the current dynamics. So, for example, we can modify the
behavior or appearance of any of our particle system or our cloth simulation by adding a
Force Field modifier system to that simulation.

But we have to know that this is notmandatory.We can tell Blender to not apply force field
to a specific particle system by disabling the correct force field type from the Force Weights
panel within the particle context.

How do we enable Force Fields? First we need to go to the Physics context and then use
the Enable physics for Force Field. The Force Fields panel will appear with specific options
to determine the physics behavior.

As we see, we can first select the type of force field being used. The specific proper-
ties of each type depend on the selected element. Available force field types are Smoke
Flow, Drag, Turbulence, Boid, Curve Guide, Texture, Lennard-Jones, Charge, Harmonic,
Magnetic, Vortex, Wind, and Force. These are discussed briefly next.

13.1.1 Drag

This is a force creating some resistance to particles motion.
Here the most characteristic options are Linear and Quadratic. Other options are similar

to the ones used in other force fields.

13.1.2 Turbulence

This is a very easy effect to understand. This basically makes a turbulence effect using D
noise, so our particles are randomized over D space.

Some parameters to take into account are Size, which determines the amount of noise,
and Flow, which converts the force to velocity flow.

The Turbulence field has more or less the same options as other force fields do, like
Strength, Noise, and Seed.

13.1.3 Boid

This force field is a bit complex to understand. We won’t be learning about it in depth here,
but we have to know that it could be used to simulate swarm or bands, like insects or birds.

170 Blender for Animation and Film-Based Production

FIGURE 13.2 The Boid requires some properties to be enabled in the Boids option of the Physics
panel within the Particles context.

Boids might work with positive and negative values, but the point is that we have to
manage the Boids properties in the Physics panel within the Particles context, as shown in
Figure ..

Here we have several properties and options to determine the final Boids calculation.
The Boid properties for the Force Fields panel within the Physics context are the same as

for Force.

13.1.4 Curve Guide

This is an effect used to guide particles to move along specified paths. This is something that
we see in film productions; it is not that important but is commonly used—we want to have
some control over our particles and we don’t want our simulation going out of control.

For instance, imagine an environment where you want dynamic particles or liquid to fol-
low a path. We can use Curve Guide to define a path that the particles should flow along.
This effect is commonly used in commercial introductions and the like.

We have some specific, interesting options for this effect like Minimum Distance, Free or
Falloff Power. A combination of these parameters will determine the final result.

Using Particles and Dynamics 171

FIGURE 13.3 Force Fields panel using the Curve Guide. Notice that the Kink option has further
options to configure.

It’s important to understand that particles have a lifetime. In this case, our particles will
be following the defined path during their lifetime. So parameters like velocity and length of
the path should be taken into consideration.

We also have options to refine our Curve Guide simulation like Additive, Weights, and
Use Max.

But what is different in all these methods are the Kink dropdown options. These will
determine the form of the force field:

• Curl is used to determine the radius of influence.

• Radial simulates a D standing wave.

• Wave simulates a D standing wave.

• Roll simulates a single dimensional wave.

• Nothing is used to disable the Kink feature.

When using a kink option from the dropdown, apart from the Nothing option, we will have
further options to manage that kink feature. Available options are Frequency, Shape, and
Amplitude (Figure .).

13.1.5 Texture

This is a very interesting force field. We can use a texture to create a complex force field
depending on our needs.

172 Blender for Animation and Film-Based Production

FIGURE 13.4 The Texture field panel allows us to use textures to build complex and exclusive force
fields.

This field works with three axes represented by RGB—red for the x-axis, green for the
y-axis, and blue for the z-axis.

We can define how the texture field should be calculated in the Texture Mode drop-down
menu. The available values are Curl, Gradient, and RGB.

RGB uses three colors in predefined directions. To make this work, we need an RGB
texture.

Gradient calculates the force intensity depending on the grayscale.
Curl is used to calculate the force using the rotation of RGB vectors.
If we select the Gradient or Curl option, we have to consider the Nabla option as well,

which defines the size of the offset used in the force calculation.
We can see two options in this panel—Use Coordinates and D. The first makes Blender

use the emitter object coordinates, rotation, and scale to calculate the texture force field.
The second limits Blender to use just the x- and y-axes to calculate the texture field
(Figure .).

13.1.6 Lennard-Jones

The Lennard-Jones force field has a short-range behavior, and this range is determined by
the size of particles, for example.

This force basically works like an attractive or repulsive force depending on the combi-
nation of the particles size and distance. It tries to maintain a reasonable distance between
particles and only works if they are relatively close.

Using Particles and Dynamics 173

13.1.7 Charge

This option basically attracts or repels particles based on positive and negative charges of the
particles. This force field can be used only on particles with charge and becomes useless for
particles without charge.

13.1.8 Harmonic

This is a very special force assigned to particles. It basically represents the pendulum phe-
nomenon. When using this field, we have to note that the particles in the target do not
influence each other.

Here, wemust keep inmind that the Damping value will result in the particles being stop-
ped upon contact with the object. An interesting option specific to this force is Rest Length.

Rest Length controls the rest of the harmonic force, that is, when the value is set to , the
particles form a shape, and when the value is positive, the particles repel and scatter away.
Think about magnetics (Figure .).

13.1.9 Magnetic

This field will be easy to understand if we think about magnets. We can attribute positive or
negative charges to objects to make them attract or repel particles.

FIGURE 13.5 TheHarmonic field has almost the same buttons as other force fields except the specific
Rest Length option.

174 Blender for Animation and Film-Based Production

13.1.10 Vortex

This is used especially to create vortex points on an object to twist around the object’s local
z-axis. This force is commonly used to simulate twisters or other spiral phenomena.

13.1.11 Wind

To understand wind is really simple. The wind force uses a constant in a determined direc-
tion, along the object’s local z-axis. We can visually determine the strength of this force
because the circles shown in the D view may vary in space.

Wind applies a constant force in a single direction, along the object’s local z-axis. The
strength of the force is visualized by the spacing of the circles.

13.1.12 Force

This is a pretty simple type of force field. It is used to create a constant positive or negative
force toward the center of an object.

Here, we can select the shape or direction being used to calculate the force. Available
options are Every Point, Surface, Plane, and Point as shown in Figure ..

All of these force fields have four common properties—Strength, Flow, Noise, and Seed.
The combination of these values will determine the added parameters affecting the force. For
example, we can apply a random noise to the force or modify the calculation seed.

FIGURE 13.6 Force Fields panel where we can determine the type of force being used and set up all
other specific parameters for the physics behavior.

Using Particles and Dynamics 175

As mentioned earlier, Dynamics and Force Fileds share some common properties and
settings. But they don’t work exactly the same in all Force Felds but have relatively common
values, so it’s easy to understand what they do:

• Strength: As the name suggests, it’s just the strength of an effect. This option accepts
both positive and negative values that will determine the direction of the particles.

• Flow:This setting converts the force of an effect to flow velocity.

• Noise:This adds a D noise, rendering particles with some kind of randomized noise.

• Seed: Blender changes and auto generates a new pattern for this effect.

• Collision Absorption: When this option is enabled, particles will be absorbed by an
object upon collision.

• Falloff: If the fall of power is greater than , three different options are made avail-
able through this feature—Sphere, Tube, and Cone. This option will render one of
these shapes to the particles. We can also define the direction and the minimum and
maximum distance for the particles.

13.2 COLLISIONS
This is not a force field, but we have to know that when using particles, soft bodies, or cloth
simulation, we have to deal with collision objects. Some important things to take into account
when working with dynamic elements and collisions are as follows:

. Objects should be in the same layer so that the simulation might be calculated, that
is, we need those objects placed in the same layer so Blender is able to proceed with
the simulation. In Blender, it’s not possible, at the moment of authoring this book, to
calculate simulations with objects being placed in different layers.

. We have to limit the particles’ effect to a group of objects.

. To get a perfect deflection in soft bodies is practically impossible because they usually
penetrate or keep away from colliding objects.

. To use deflection with hair particles simulation, we can animate them like soft bodies,
so they are taken into account.

Blender usually saves simulations in cache. Therefore, it’s important to remember that
when we modify any property in the particle system or fields, we need to recalculate the
simulation by freeing the cache.

This is done with the Free Cache button within the Cache panel (Figure .).
When we define an object as a collision object, Blender offers different options to control

its behavior. To set a perfect balance between particles, soft bodies, cloth simulations, and
collisions is not always easy; it is a trial-and-error process. Let’s briefly look at the options
available for collision object:

176 Blender for Animation and Film-Based Production

FIGURE 13.7 Cache panel within the Particles properties context.This panel is useful to regulate the
machine performance by freeing cache or baking.

• Permeability: This option determines the fraction of particles passing through the
collision mesh.

• Stickiness: This option is used to define how many particles stick to the collision
object.

• Kill Particles: This option will kill particles upon contact with the collision object.

• Damping Factor: This option determines the damping value during a collision. It does
not deal with the velocity of the particles.

• Random Damping: This option applies randomized damping, like a kind of noise.

• Friction Factor: This will adjust the friction between particles during collision. So the
movement along the surface vary from viscose to smooth.

• Random Friction: This option applies randomized friction, like a kind of noise.

There are some interesting options in the Collision panel for soft body collisions.

• Outer: Determines the size of the outer collision.

• Inner: Determines the size of the inner collision.

• Absorption: This option determines the percentage of force that gets lost, or absorbed,
when colliding with the collision object.

Using Particles and Dynamics 177

13.3 PARTICLES
In this section, we will be learning about what particles are. We already know that Blender
supports two kinds of particles: emitter and hair. However, we could also define particles as
elements emitted from the mesh of an object. As dynamic elements, they should be working
together with force fields and should accept physics, so that a combination of these three
results in the desired visual effect.

In fact, some very common elements in film making like fire, smoke, mist, and other
similar effects are done with dynamic particles using the emitter type. On the other hand,
simulating hair, strands, fur, or grass is usually done with particles using the hair type
(Figure .).

The way particles are generally visualized in the D view depends on many factors like
the velocity of the particles, the movement of the emitter, gravity or air resistance, and the
influence of force fields or collisions or modifiers like lattices.

There are three ways to render particles: Halos, Meshes, and Strand.
When we apply a particle system to any object, we should know that this is not the

only particle system that the object could have. We can add several particle systems to the
same object for different purposes. So we can use a particle system for the furry skin of a

FIGURE 13.8 Particles properties context.We canmanage everything from our particle system from
this context.

178 Blender for Animation and Film-Based Production

FIGURE 13.9 Different particle systems used in RAT bProficiency project over the same character.

character, another one to make the whiskers, and a third one refining the hair for some
different vertex groups.

In fact, we used such a system for our RAT character as shown in Figure ..
To create a new particle system, we first need to select the object we want to apply the

particle system to. Then we go to the Particle properties context and create a new one by
clicking the New button, or the “+” icon, as shown in Figure ..

First, we have to determine when we have to add a particle system, the purpose of such
a system, and evaluate if it’s really needed. What do we need? Because this will determine
the kind of particles type to be used. By default, Blender works with two different particle
types:

• Emitter: Here particles are small elements emitted by the emitter object to the D space
depending on very different settings. This system makes particles go from the start to
the end frame in the scene along their lifetime.

• Hair: This system is usually used and rendered as strands.

Like any other dynamic and physics feature in Blender, every type has different panels
and options.

13.3.1 Emission

This panel stores the settings for the initial organization of the particles system. With this
panel, we basically define how we want particles to enter a scene. But we can also define the
end, the lifetime, or apply random values.

Using Particles and Dynamics 179

FIGURE 13.10 Emission panel, where we can control the initial state of the particles system.

This system produces small particles emitted from the emitter object to the D scene for
a specific amount of time. As mentioned earlier, we can control the number of particles to
emit. This number represents the maximum of the parent particles. We will see that each
parent particle could be split into child particles.

The Start and the End options determine the time frame for which particles will be sim-
ulated. A very important property is the Lifetime value, which determines how long the
particles will live.

When we work with emitter type of particles, we have the option to define from where
they should be emitted. This gives us control over the organization and distribution of
the particles. The available options are Verts, where particles are emitted from vertices
of the mesh; Faces, where particles are emitted from the faces of the mesh; and Volume,
where particles are emitted from the volume of the mesh.

Once we have selected from where we want the particles to be emitted, we have some
more options to choose for the distribution of the particles. A very interesting property is
the Random option that determines if the particles should be emitted by applying some kind
of noise or using a linear method. We can also choose between random parts of the emitter
object and the amount of jitter applied in the simulation (Figure .).

13.3.2 Velocity

This panel contains options to set up the initial state of the particle system. This will deter-
mine the first look of the particles depending on the particle system type. It’s commonly
misunderstood with the initial particles’ size.

We have some groups or properties here like Emitter Geometry and Emitter Object.
Probably the most important option here is the Normal value. This will determine

the initial starting speed. This value complements with the X, Y, and Z values from the
Geometry Object.

The Random option applies a random value to the initial speed (Figure .).

180 Blender for Animation and Film-Based Production

FIGURE 13.11 Velocity panel, where we can control the initial speed of the particle system.

13.3.3 Rotation

Here we will find some special properties to deal with the rotation of the particles according
to their lifetime.These can be used to define how particles should rotate from the start to the
end of their lifetime.

We can select initial values from the Initial Orientation dropdown list. Available val-
ues are None; Normal; Normal-Tangent; Velocity/Hair; Global X, Y, and Z; or Object X,
Y, and Z.

TheAngular Velocity determines themagnitude of the velocity. Available values areNone,
Velocity, Horizontal, Vertical or Global X, Y, and Z.

As we discussed in the Curve Guide Force Field, we have to set the Angular Velocity if we
want particles to follow the defined curve path (Figure .).

13.3.4 Physics

Whenwewant tomove particles or to simulate any physical action, we have to use this panel.
There are several ways to make particles move, but what determines their actual behavior is
the Physics panel.

We have some kind of different systems to simulate, namely, Newtonian, Keyed, Boids,
and Fluid.

The Newtonian system makes particles move according to physical laws and principles.
The Keyed system is applied to those E dynamic or static particles whose animated targets
are other particle systems. The Boids system is used for particles with a limited artificial

FIGURE 13.12 Rotation panel, where we control the rotation of the particles along their lifetime.

Using Particles and Dynamics 181

FIGURE 13.13 Physics panel, where we have control over the physical laws in the simulation.

intelligence expecting some behavior. Finally, the Fluid system is used to simulate fluid
dynamics.

Based on our requirements, we will need an appropriate combination of these parameters
together with the Force Field dynamics in order to achieve the desired result.

Some of the most important properties in this panel are Size, which determines the size
of the particles and Mass, which determines the mass of the particles. Each system contains
properties specific to the selected principle (Figure .).

13.3.5 Render

In this panel, we canmanage how the particles systemwill be passed to the rendering process.
We can assign amaterial to the particle system from theMaterial index.This will make the

particle system use this specific material while rendering. We also have the option to enable
rendering for the Emitter, Parents, Unborn or Died particles as well.

We also have some options to define how the particles will be rendered. Each type
will contain its own properties defining the final look of the particles in the rendering
process. The available values are None, Halo, Line, Path, Object, Group, and Billboard
(Figure .).

13.3.6 Display

This panel tells Blender how the particle system should be visualized in D. It is important
to know that even will not see particles in the D view, but they are there, and if enabled, will
be rendered in D.

We can choose from different types of D view depending on our selection. The available
modes are None, Rendered, Point, Circle, Cross, and Axis.

Here probably the most important option is the Display slider, which determines the
percentage of particles to be displayed in the viewport.

We also have options such as Size, Velocity, and Number that will display different ele-
ments in the viewport. For example, the size of the particles is displayed with the particle
being wrapped with a circle (Figure .).

182 Blender for Animation and Film-Based Production

FIGURE 13.14 We can control how particles are rendered from the Render panel. Different systems
are also available for rendering purposes.

FIGURE 13.15 The way the particles are displayed in the D viewport is determined by the settings
we apply in this panel.

13.3.7 Children

As mentioned earlier, the particle system is a compound system composed of both parent
and children particles. In this panel, we can control how many child particles each parent
particle can have.

Some very important properties to take care of are the Display and Render values. The
Display value will determine howmany children particles should be visualized for each par-
ent in the D view and the Render value will determine how many of them will be rendered
in the final rendering process.

There are options to modify how the children behave with respect to their parents, such
as Clump, Shape, Length, or Threshold.

In order to obtain the desired effect, it’s good to play around a bit with values within this
panel because there are somany combinations where getting the desired effect is just amatter
of time.

Sometimes it’s good to have a mixed system, that is, a compound particle system. For
example, we could have a particle systemwith  parents and  children per parent instead
of a particle system with , parents (Figure .).

Using Particles and Dynamics 183

FIGURE 13.16 Children panel stores enough parameters to deal with parent/children relationship.

13.3.8 Field Weights

This panel allows us to control howmuch of the force field effects affect to our particle system.
As mentioned earlier, the particle system could be affected by any of the force fields available
within Blender, but in this panel we can define specific values by increasing or decreasing
the effector weight.

Here the most important values usually are Gravity and All. This latest one scales all
effector weights (Figure .).

FIGURE 13.17 We can control how much of the force field effects affect our particle system with
this panel.

184 Blender for Animation and Film-Based Production

FIGURE 13.18 We can apply special Force Fields to our particle system and make the effect affect its
self-elements.

13.3.9 Force Field Settings

We can allow our particle system elements to behave like any Force Fields effector. We can
also enable the option of each particle affecting other particles in the same system. Blender
allows us to apply two force field systems to our particle system.

For example, we can apply a self-effect field, like a Vortex or Wind, to our particle system
(Figure .).

13.3.10 Cache

We can’t imagine particles or dynamics without cache. What Blender does is it saves the
generated simulation in cache to make calculations easier. This is a really useful and vital
activity when working with particles and dynamics, so we can safely execute the simulation
once again from cache.

The cache panel has some very useful operators like Bake, Bake All Dynamics, and Free
All Bakes.

When we bake a simulation, we’re telling Blender to save that simulation on disk in some-
thing like log files in order to visualize that same simulation as many times as we want.What
we have to remember is to free the cache when we modify any parameter in the particles or
dynamic properties. This will make Blender to recalculate the simulation according to the
new changes (Figure .).

13.4 SOFT BODY
First thing that comes to mind when we hear soft bodies is a ball bouncing on the floor.
When we talk about soft bodies, we talk about simulation of soft and rigid objects with a
deformable property.

The way Blender manages it is by applying different forces, outer and inner, so the vertices
of the object simulate the shape corresponding to a specific state, depending on other soft
body objects or collision objects.

An interesting thing about soft bodies is that the generated shape could be converted to
a new solid object. So when we have the bouncing ball deformed over the floor in a specific
frame, we can select that object and create a new one with just the same shape.

When do we need to use soft bodies? Or, in other words, where are soft bodies used in
filmmaking? Possible answers to these questions are as follows:

Using Particles and Dynamics 185

FIGURE 13.19 Cache panel allows us tomanage simulation bakes tomaintainmachine performance.
The cache helps avoid extra calculations in simulations.

• To deform and make elastic objects

• To create cloth simulation reacting to force fields like wind, for example, a flag

• To create dynamic hair

In Blender, we have some objects or data type supporting soft body. Basically those contain
vertices or control points like Meshes, Curves, Surfaces, and Lattices.

Applying soft body simulation to an object is easy by using the Soft Body button within
the Physics properties context (Figure .).

13.4.1 Soft Body Solver

This is a very important panel because its settings determine how effective the simulation is.
Using the Min Step and the Max Step, we set the number of steps per frame in the sim-

ulation, so we can customize them to make soft bodies avoid fast-moving collision objects,
for example.

Another important setting is the Error Limit. This value will tell us how precise the sim-
ulation will be based on collisions. We must define this value because it’s really important to
achieve professional results (Figure .).

13.4.2 Soft Body

This panel also contains important simulation properties.
We can modify here the Friction, Mass, and Speed values that are directly applied to the

simulation.With the Friction value, we can calculate the surface friction for collision objects

186 Blender for Animation and Film-Based Production

FIGURE 13.20 Enabling soft body is easy from the Physics properties context.

FIGURE 13.21 Soft Body Solver panel, which determines the level of accuracy of the simulation.

or between soft body objects. In the same way, the Mass value determines the mass of the
object. Modifying this value will result in a very different kind of simulation (Figure .).

13.5 CLOTH
Blender has its own system for cloth simulation. Cloth simulation is a very difficult task to
achieve. We can basically simulate everything related to clothes with this built-in feature.

Using Particles and Dynamics 187

FIGURE 13.22 Soft Body panel contains common properties to deal with like Mass, Speed, and
Friction.

FIGURE 13.23 Cloth simulation is also supported by Blender.

To enable Cloth simulation, we just need to use the Cloth button within the Physics
properties context (Figure .).

First, we can select from Blender’s presets for Cloth simulation. The available values are
Cotton, Denim, Leather, Rubber, and Silk, as shown in Figure ..

These presets automodify some values, so we can use them as a starting point to our
custom simulation.

We can also add new or delete newwith the New or Delete buttons. Once we have selected
a preset, we have to define some values to render the desired effect. For Cloth simulation,
almost every value has to be taken into consideration.

188 Blender for Animation and Film-Based Production

FIGURE 13.24 Some prebuilt in cloth presets we can use as basis.

The Damping group with Spring, Air, and Velocity or the Material group with Mass,
Structural, or Bending needs to have the correct combination of values to achieve the
desired result.

So for example, having a high Spring value will result in a smooth simulation but will
obviously consume more resources. Here, the cache and baking come in handy. We should
also modify the Air resistance that basically slows down things that are falling down. The
amount of wrinkles can also be managed with the Bending value, a higher Bending values
means bigger wrinkles.

Another interesting panel to work with in cloth simulation is Cloth Collision. Here we
can define the amount of collision iterations to be calculated. It’s important to enable this
option even when we have other objects with collision settings; this won’t work unless we
have Cloth Collision enabled within the Physics properties context (Figure .).

It’s important to take care of the amount of iterations we apply because higher valuesmean
best quality, but also more resource consumption.

It is also possible to add force fields to cloth simulation from theCloth FieldWeights panel,
where we can manage how they affect our simulation. As simple example is to apply a very
small value for Gravity, so falling down of the cloth becomes slow; this is similar to applying
a very high value for Air resistance (Figure .).

The simulated object can be converted to another one with the current shape as the default
mesh. In other words, if we started with a subdivided plane, applied a cloth simulation, and
now we want to use the simulated shape at a determined point, we could do so by using the
Alt+C keys and then selecting Mesh from Curve/Meta/Surf/Text.

This is really useful if, for example, we want a scene in a restaurant where we need more
than one table. We could simulate a single tablecloth and then convert it to an object, dupli-
cating it as many times as needed. It’s easier than trying to simulate a huge number of
tablecloths individually.

13.6 FLUIDS
To achieve a convincing fluids simulation is not an easy task. There are a lot of factors to
consider. Something we have not discussed so far is that some studios have an experience
department to develop these kinds of physics effects (Figures . and .).

Using Particles and Dynamics 189

(a)

(b)

FIGURE 13.25 Cloth simulation made with Blender. (a)The Denim cloth preset. (b) Leather default
preset.

190 Blender for Animation and Film-Based Production

FIGURE 13.26 Cloth simulation made with Blender.

FIGURE 13.27 Different fluid types. We have to select the fluid type depending on our needs.

In Blender, we can simulate Fluids by enabling that option from the Physics properties
context.

There are different fluid types to choose from. For example, if we need to simulate a simple
water jets, we will need to enable a domain as well (Figures . and .).

A basic example is to add a Cube, make it Domain, then add another within the previous
one and use the Fluid type in the smaller one.Then we can go to the domain object and bake
the simulation.

Like in other kinds of simulations, we can set up an obstacle in our fluid simulation. It’s
quite obvious how obstacles work, so to enable it, add a new object and select the Obstacle
type from the drop-down menu (Figures . through .).

Using Particles and Dynamics 191

FIGURE 13.28 Basic fluid example with Domain and Fluid types.

FIGURE 13.29 Fluid Control type.

FIGURE 13.30 Fluid Particle type.

192 Blender for Animation and Film-Based Production

FIGURE 13.31 Fluid Outflow type.

FIGURE 13.32 Fluid Inflow type.

FIGURE 13.33 Fluid Obstacle type.

If we bake our simulation now, we will notice that the obstacle object affects the fluid
element as it is a simple collision object, as shown in Figure ..

In the Domain, we control the final resolution of the fluid simulation. A very important
value to take into account is the Final Resolution (Figures . and .). It’s obvious that
raising that value will result in the best quality, but also progressively consumes more mem-
ory, as shown in Figure .. So it’s important to know how to set a perfect combination
of values.

We also have a Preview value, that is, the quality used in the D viewport. Sometimes we
don’t need to view the full quality when editing our fluid simulation, so we raise the Final
resolution value only for rendering, keeping a lower value in the Preview.

Notice we can control when the simulation is supposed to start and end and its speed, for
which we have the Start, End, and Speed sliders (Figure .).

Using Particles and Dynamics 193

FIGURE 13.34 Fluid simulation using an intermediate object as Obstacle.

FIGURE 13.35 Fluid Fluid type.

FIGURE 13.36 (See color insert.) Fluid Domain type.

194 Blender for Animation and Film-Based Production

FIGURE 13.37 Fluid Domain type with a higher Final Resolution value.

FIGURE 13.38 Fluid simulation developed by Andrew Price at blenderguru.com.

Using Particles and Dynamics 195

13.7 SMOKE
In Blender, the smoke physics simulation is not only useful to simulate the smoke itself, but
also dust, mist, fire, and similar phenomena.

To simulate fire, for example, we need to deal with volumetric textures as well
(Figure .).

The principle to create smoke is the same as that for fluids or cloth simulation. We have
a domain, a flow, and collision options. Again, the quality of the smoke will depend on our
hardware capabilities because a very detailed smoke, like any other simulation, consumes a
lot of computer memory.

13.7.1 Flow

To create a flow effect of the smoke, we need to add a Cube to make it a Domain. Then
we can add a plane at the bottom within the previous Cube and apply the Flow type of
smoke (Figure .). As mentioned before, if we want a higher-quality smoke, we need to
enable the Smoke High Resolution option within the Physics properties context as shown in
Figure ..

We also can add obstacles or collision objects to our smoke simulation. Basically, add a
new object and select the Collision type of smoke tomake it work as expected.We have to be
sure to include the collision object within the smoke Domain so that Blender can calculate
the simulation, as shown in Figure ..

FIGURE 13.39 Smoke Domain type.

196 Blender for Animation and Film-Based Production

FIGURE 13.40 Smoke Flow type.

FIGURE 13.41 Smoke simulation made with Blender. The resolution depends on our settings and
computer resources.

Using Particles and Dynamics 197

FIGURE 13.42 Smoke simulation made with Blender. Collision objects can also be used in smoke
simulation.

CHAP T ER 14

Render

Wefinally have a project moving to the end with the render process.Thatmeans, the
project has successfully passed all previous stages. The rendering process might be a

more stressful moment than developing the project itself. Depending on the purpose and
size of the animation project, the rendering process could be done in different ways, from a
single computer to different connected computers or ending in a professional render farm.

When we say the render process might be stressful, it is because studios have usually
developed the project with months of hard work, and the render process is the end of that
effort. The expected result is either a complete success or a failure at the end of the render
process.

Usually, this process is done at the end of production, which means the team does not
have the time to refactor possible issues. Big studios usually solve this with pre-render tests
but small studios work in a very straightforward way. There is no time for errors, so the
render process needs to be fine. The generated stills should not contain errors or the whole
production will be ruined.

To avoid that, as mentioned earlier, it’s important to test everything to do with lights,
textures, or materials to avoid glitches at any point. So it’s not enough doing a render test of
just a couple of frames in a scene but also for very different frames in the timeline, especially
where we know any camera changes, any light changes, or anything might end in strange
results.

This prerender tests will save a lot of time and money for producers and it’s definitively
the difference between success and ruin of the project.

In Blender, we have very different ways of rendering an animation project:

. Blender Internal

. Cycles

. External render engines

TheBlender internal render is good enough for small projects and produces very nice results.
There are other specific renders that produce very different results and they are emerging



200 Blender for Animation and Film-Based Production

FIGURE 14.1 Different panels in the Render context for different render engines. The left picture
represents the Render context for Cycles render.The image on the right represents the Render context
for Blender Internal render.

to improve not only the quality but also the processing of the render allowing to generate
complex renders with less computer resources.

The Render context within Blender changes depending on the render engine selected as
shown in Figure ..

14.1 BLENDER INTERNAL
The Blender internal render is the one built-in in Blender by default.

Until the external render engines emerged, a lot of animation projects were developed
using this internal render engine. It offers all guarantees to suit any small project, in the small
or medium animation studios. In fact, the projects developed by the Blender Foundation
were developed and rendered using this render engine.

It’s true that architecture or technical renders has been using external ones for several
reasons.

The important thing now is to know what each render engine offers because they end in
very different results. The same scene may differ when rendered using the Blender Inter-
nal render if we compare with Cycles and this also differs compared to external render
engines.

Then, the most important thing is to have a clear idea on the render engine that suits
our needs.

Render 201

FIGURE 14.2 Blender Internal Render.

14.1.1 Render

We can determine the type of render we will be using by selecting between the three available
options, namely, Render, Animation, and Play.

The first renders the current frame in the selectedDisplay, where we find options likeKeep
UI, NewWindow, Image Editor, and Full Screen.

The Animation button renders from the start to the end of the frame range exporting to
the format selected in the Output panel.

The Play button just plays back the rendered frames (Figure .).

14.1.2 Dimensions

In this panel, we can set up some very important options determining the length and final
aspect of the render.

First, we can set the Resolution, setting the width and height (X and Y) in pixels. A very
interesting option is that in determined moments we can reduce it without the need for
modifying those values but the Percentage scale value. This is really useful for render tests.

Another interesting option is the Frame Range that determines where the playback starts
and ends. We can also adjust here the frames to skip while rendering.

In this panel, we can play with Aspect Ratio and Frame Rate setting the number of frames
per second used in the final render (Figure .).

14.1.3 Antialiasing

If we enable this option we tell Blender to combine multiple samples per pixel that improves
the render quality avoiding strange issues or artifacts.

We can select the amount of antialiasing between , , , and  in the same way that
we switch the filter used in the combination. The available filters are Mitchell–Netravalli,
Gaussian, Catmull–Rom, Cubic, Quadratic, Tent, and Box (Figure .).

14.1.4 Sampled Motion Blur

It’s used to simulate motion (Figure .). This is a particular effect to avoid static renders
when they should appear like motion. This is a slow process but produces a very realistic
result with blurred images.

Here, we should take into account the Motion Samples option, which sets the number of
samples that we tell Blender to use for each frame.

202 Blender for Animation and Film-Based Production

FIGURE 14.3 Dimensions panel within the Render context.

FIGURE 14.4 Antialiasing panel.

FIGURE 14.5 Sampled Motion Blur panel.

14.1.5 Shading

We can enable or disable different options to include or discard different properties being
processed while rendering.

We can basically enable Textures to affect material properties, calculate Shadows, use
Subsurface Scattering, calculate Environment Map, or enable Ray Tracing (Figure .).

14.1.6 Performance

We can set up how the render will deal with our machine in this panel.
First, we can select the number ofThreads or let Blender auto-detect. Second, we can play

with memory and tell Blender to Save Buffers, Free Image Texture, or Free Unused Nodes,
so the render processes free memory as needed (Figure .).

Render 203

FIGURE 14.6 The Shading panel used with Blender Internal Render.

FIGURE 14.7 Performance panel.

14.1.7 Post Processing

This panel is very important if we want to enable options like Compositing or Sequencer.
The compositing option is very important as it allows Blender to use the compositing

nodes while rendering; otherwise, they will be ignored and the whole compositing is done
with this information (Figure .).

The same happens with the Sequencer option.

14.1.8 Freestyle

This is a completely new render engine that generates a D render for the given D scene
(Figure .). This render is usually generated by different lines and patterns that result in a
very interesting render style.

14.1.9 Stamp

If we enable this option, we can print the information text within the render image. The
available info to print is Time,Date, RenderTime, Frame, Scene, Camera, Lens, Filename, and
Marker.

204 Blender for Animation and Film-Based Production

FIGURE 14.8 Post Processing panel where we can enable Compositing or Sequencer.

FIGURE 14.9 Freestyle panel.

FIGURE 14.10 Stamp panel helps printing information in the rendered images.

We can adjust and edit the font size, color, and background (Figure .).

14.1.10 Output

We can set up where we want to store the resulting images, like directory, filename,
compression of the files, or the file format (Figure .).

Render 205

FIGURE 14.11 Output panel.

FIGURE 14.12 Bake panel.

14.1.11 Bake

Blender uses Bake to precompute the process so that the user gets the final result faster
(Figure .). In Blender, we can bake several things, that is, we can precompute and save it
in the cache for later use.

14.2 CYCLES
Cycles is a relatively new render engine. Currently, Blender offers this engine as an add-on
enabled by default because it’s still being developed.

We must take care because selecting Cycles as the render engine could give very differ-
ent options than the ones Blender uses in contexts like materials and textures as shown in
Figure ..

Notice the panels for Light Paths, Film, andOpenGLRender that are exclusively for Cycles
render engine.

Cycles principle is based on the GPU rendering, that makes use of the graphic card for
the rendering process. The result is a very fast rendering compared with the CPU ones.

We can divide the current GPU rendering process into two modes, CUDA and OpenCL,
or in other words the mode of choice for Nvidia and AMD/ATI, respectively.

206 Blender for Animation and Film-Based Production

FIGURE 14.13 Render properties context while Cycles render engine is selected.

As mentioned earlier, we are not going to discuss in depth about Cycles. It is enough to
know that Blender supports other render engines even when they are applied as add-on or
they are simply external renders.

As mentioned earlier, some of the Properties context changes depend on whether Cycles
or Blender Internal render engine is selected. As shown in Figure ., thematerial contexts
vary and consequently the results in the final render will do too. As shown in Figure .,
the same panel with nodes enabled allows us to control the shaded appearance.

14.3 EXTERNAL RENDER ENGINES
14.3.1 Freestyle

Freestyle is a new way of rendering by creating a nonphoto realistic render. It basically draws
lines and edges and uses an interface to allow control of the different options and parameters
determining the final appearance of the render.

The good point of this new style of rendering is the great chance of customization to draw
the lines and edges resulting in this peculiar style.

We can use two different modes within the Freestyle engine—the Python scripting and
the Parameter editor.

Render 207

FIGURE 14.14 Material properties context while Cycles render engine is selected.

The Python scripting supports predefined scripts written in Python producing results
close to styles like cartoons or the Japanese brush.

On the other hand, the Parameter editor mode allows flexible customization for lines and
edges (Figure .).

It’s important to know that at the moment of authoring this book, this engine is only
available for Blender Internal Render. So, in essence, we are talking more of a feature than a
real render engine.

14.3.2 Yafray

The thin external engine has been used by Blender users for years in architecture and inte-
rior designs. The number of artists and professionals using the Blender Internal Render to
produce such material is really low.

The render information provided by Blender could be used by this render engine but this
doesn’t mean that we don’t have to manage and set up different properties in Yafray too in
order to obtain the desired result.

Anyway, our purpose is not to list all the external render engines applicable to Blender
but to understand that the option to use external render engines with our Blender’s render
information exists.

208 Blender for Animation and Film-Based Production

FIGURE 14.15 Material properties context while Cycles render engine is selected using the nodes
option.

FIGURE 14.16 Freestyle panel within the Render properties context.

14.4 RENDER SETTINGS AND TIPS
14.4.1 Using Layers to Organize Our Render

For small projects, any D film contains a lot of assets and they should be organized in layers.
This is equivalent to the render process that, depending on the desired result, might need to
organize some render layers to apply the right compositing nodes or add the specific info for
processing (Figure .).

Render 209

FIGURE 14.17 Freestyle panel within the Scene properties context. We can manage everything
related to this feature here like Line appearance and the Freestyle mode.

It’s quite common to render the whole environment behind our character in a separate
layer to apply a compositing effect of blur and deep noise later. If we render everything in
the same layer, this effect is too complex to accomplish.

This is just an example why we need to organize the render layers according to what we
want to produce because each shot in each scene for the D film has its own requirements,
sometimes so many that we can’t enumerate them (Figure .).

14.4.2 When Something Goes Wrong

When we develop a scene, setting up the lighting environment when animations are com-
pletely done and compositing with nodes doesn’t guarantee that the scene will render
according to what we are expecting.

There are several issues that could make our rendered scene looking weird, sometimes
unexpected and sometimes undesired but the truth is that for a large film production
appearance, more issues are to be expected (Figure .).

In fact, the issues appearing while rendering are in direct relationship to the size of the
project. It’s obvious that the possible number of issues in film productions with hundreds of
scenes will be much more than in others with a very small number of scenes.

210 Blender for Animation and Film-Based Production

FIGURE 14.18 (See color insert.) This picture represents an example of FreeStyle render result.
Notice the toon style that Blender is capable of achieving using this feature.

FIGURE 14.19 Picture modeled with Blender and rendered using the Yafray extension. Image
provided by http://blenderartists.org by the user enricoceric.

Render 211

FIGURE 14.20 Some rendering issues for Sintel open movie developed by Blender Foundation.

Anyway, we all learn from such errors and sometimes it’s very productive because some
refinements and adjustments are developed to solve a specific rendering issue as shown in
Figure .. In the figure, notice the issue with the textures of the eyes and face.

Sometimes things go wrong not at the rendering process but earlier, for example, while
animation and poses stored have any issues, it will result in a weird render as shown in
Figure ..

212 Blender for Animation and Film-Based Production

FIGURE 14.21 Animation and posing issues in the RAT bProficiency project. This weird pose will
end in a very weird render.

CHAP T ER 15

Final Movie Compositing

In the same way we saw that Blender has a powerful node editor capable of modifying or
adding effects to stills or video, Blender also has a very interesting editor for postprocess-

ing.This stage of any movie production is usually developed with external and specific tools.
Companies spend a lot of money on this kind of software because even though we know that
each stage of film production is important, postproduction will make the final product ready
and accessible to the public. Every detail needs to be double checked to adjust composition,
audio, soundtrack, vfx, and everything must be in place and postproduction software needs
to be powerful enough to operate with all these factors.

In Blenderwe have theVideo Sequence Editor totally integratedwith the application.As in
any other Blender editor, we can access the VSE andmanipulate it as we saw in Chapter  and
Section ... This editor works with blocks of strips, so we can assemble them to build our
final movie. When studios produce a film, they end up with a large number of small pieces
of animations, probably for some specific scenes in the movie, actions, battle, dialogue, and
so on, so it’s usual to assemble previously rendered animation streams within a single Video
Sequence Editor session to finally add video effects such as fades, transitions, credits, or audio
to complete the final film production.

As mentioned earlier, the Blender’s VSE is a fully video editing system integrated in the
application and very powerful, and this is a good reason to try it instead of using external,
expensive, and privative licensed applications. Another good reason is that as in many other
features in Blender, the VSE can also be improved using add-ons and plug-ins or totally
adapted because of Python scripts.

15.1 USING BLENDER IN POSTPRODUCTION
To understand how to successfully complete our film production we need to know how the
Blender’s VSE works. We already talked about it in Chapter  and Section .. but we will
see it in depth now.The first thing we can check when we open the VSE is that the workspace
is divided horizontally into channels numbered on the left. We will put our animation strips
and streams within each channel. At the bottom, we see some numbers too that are meant
to be the movie time or movie frames, which we can modify according to our needs.

An interesting point is that Blender’s VSE not only accepts very different types of files
like the traditional Audio-Video Interleaved (.avi), Apple QuickTime (.mov), single image



214 Blender for Animation and Film-Based Production

(.jpg, .png, .tiff, etc.), a sequence of images of any format (.jpg, .jpg, .jpg, etc.) but also
a Scene in the current .blend file or an audio file. We can also work with the format we want
and mix them in the same VSE session, so we could be working over a .avi strip overlapping
a single .jpg or a sequence of them and apply a Alpha Over effect.

When we add any of the supported formats, the strips are colored following a pattern,
that is,

• Blue for any of the movie formats

• Gray for a single image

• Purple for a sequence of images

• Green for an audio file

15.1.1 Effects

The option of editing and applying effects to recently rendered strips is an awesome feature
we can enjoy within Blender. It has a lot of built-in effects that we all know from other editors
because they are really common in this kind of software.

When we add new affects to Blender, we have to know that some add new strips to the
editor, some use just a single strip, and some use a couple of strips. Anyway, we can improve
our project by applying the final postproduction visual effects:

. Add

. Subtract

. Alpha Over

. Alpha Under

. Cross

. Gamma Cross

. Over Drop

. Wipe

. Glow

. Transform

. Color

. Speed Control

. Multicam Selector

. Adjustment Layer

Final Movie Compositing 215

15.1.1.1 Add
This effect automatically merges the color of two strips andmust be used with an image strip.

This effect is usually used to increase or decrease images’ brightness or to add black and
white masks. A peculiarity is that we can apply that to the whole image or just to some areas.

15.1.1.2 Subtract
This is an effect used to subtract color from a specific strip or to create the negative of any
image.

15.1.1.3 Alpha Over and Alpha Under
The Alpha effect deals with all those transparent zones in our strips, that is, for a scene,
in those areas without anything solid on them. In such cases, the alpha has a value of .
On the other hand, for an image or movie strip, the whole strip is opaque resulting in an
alpha value of .

This effect is very common to apply over layers to integrate the new strip together the
second one as if they both were the same. That depends on the use of Alpha Over or Alpha
Under.

TheAlphaOver onemeans that new strips are layered up.We can play herewith the Factor
value that determines the amount of background and foreground to show.

The Alpha Under is just the inverse.The new strips are layered down but works similar to
the previous one. We can play here also with the Factor value.

15.1.1.4 Cross
This is an effect to fade from one strip to another depending on the overlapping number of
frames.

15.1.1.5 Gamma Cross
This is a very similar effect but uses color correction while fading. It’s a very popular effect
specially for fading from or to black. The transition is really smooth and reduces the eye
impact.

15.1.1.6 Multiply
As in other software, this effect multiplies the value of two colors. There are a couple of ways
in which to use the Multiply effect. The most common ones are using it with a mask and
using it with solid colors.

We have to take care of this effect because we notice a bit of luminosity reduction on the
whole strip.

15.1.1.7 Wipe
This is a kind of transition effect between strips. In Blender, we have some different pre-built-
in transitions available like Clock, Iris, Double Wipe, and Single Wipe.

216 Blender for Animation and Film-Based Production

15.1.1.8 Glow
This effect is specially used to make some parts of the image look bright and glowing. We
have some properties to determine the type of glow used, like Threshold, Clamp, and Blur
distance.

15.1.1.9 Transform
This is a particular type of effect. In fact we can apply several different effects with it. With
Transform, we can switch, scale, or rotate the images of the strip.

In that, we have several properties to play with. We just need to select the Transform strip
and go to the Effect Strip panel within the transform properties panel. There we can play
with some properties like Interpolation, Translation Unit, Position, Scale (we can apply an
uniform scale), and Rotation.

15.1.1.10 Color
This effects crates a solid colored strip. By default it’s completely solid but we can play with
the Opacity property within the Edit Strip panel to apply some transparency. Notice that
depending on the type of Blend used, we will have different results that may vary from what
we expect.

15.1.1.11 Speed Control
This effect is really useful to control the time that the strip is reproduced. We can apply here
the typical effect or make the strip play faster or slower than its normal value.

We have to remember that the Speed value of  makes the strip play slower. But making it
greater than  plays the strip faster. If we apply this to play faster we have to take into account
that some frames will be ignored. This is important to avoid or to fix possible issues when
using this type of effect.

15.1.1.12 Multicam Selector
This is a relatively new effect added into Blender that deals with something people have been
asking for years. We can use this effect to deal with the multicam editing within Blender.

15.1.1.13 Adjustment Layer
This kind of effect makes all the strips below the selected one work as its input. So if we think
of a practical case where we could use it, for example, imagine we want to use a color effect
over several strips, we could apply an adjustment layer on top and then apply a color effect.

15.1.2 Audio

We have been talking about everything to do with preproduction, development, and post-
production of filming, but everything we have talked about is related to visuals.

Postproduction filming has an important aspect that we might take into account—the
audio, sounds, and music.

Final Movie Compositing 217

Now, Blender incorporates an audio sequencer editor, in which we can import .wav or
.mp files. A very interesting option is that we can even incorporate that audio within the
movie and use a F-Curve to modify the volume properties.

When we add a sound strip within the sequence editor, we have to take care of the Sound
panel. Here we have some interesting options to play with.

We can make the sound part of the current blend file by using the Pack button. Another
interesting option is to enable the Caching feature, that decodes and loads the file into RAM.

For a quick visual of the sound waves, we can enable the DrawWaveform that makes the
sound waves visually represented within the strip in the sequence editor.

Some other common properties for sounds are also available such as Volume, Pitch,
and Pan.

A very important thing we have to remember now is that in the recent versions of Blender,
almost everything is animatable, so if wewant to fade two sounds, we can playwith keyframes
and the volume property.

CHAP T ER 16

Python

Something that people don’t think about is the role of scripting in film productions.
In fact, we can consider it as a forgotten task for people.
Blender has been developed using Python as one of the main programming languages

and the software’s entire interface and tools are accessible using Python modules. Like many
other D software such as D Max, using MAXScript, Blender could be extended using
Python.

Such extensionsmight be for very specific purposes or to improve Blender functionalities,
like modules, and to add completely new features. Many of the current built-in features of
Blender started as Python projects to extend a determined area of Blender and were finally
incorporated into the trunk of the code.

This shows us how extensible Blender is and it’s promising future potential. And one of
the most interesting things about extending Blender is that we can do it just using Python
scripting. We could write a plug-in in Python, load it into Blender, and run it to extend it,
say, by adding new panels for specific purposes. This avoids the need to make changes to
Blender’s source code and recompile the whole code to have the new changes available.

One of the most important areas where Blender uses Python extensions are add-ons. In
fact, Blender includes an add-ons editor where we can find different add-ons for the various
functionalities of Blender.

We have add-ons related to objects and for rendering, animation, etc. But what is
an add-on?

An add-on is a Python script that we can enable or disable to enhance a particular
functionality in Blender when needed.

So, for example, if we need to have a panel with buttons to display or hide different bones
of an armature, we could write a Python script, an add-on in fact, to add such a panel with
the required buttons.

The Blender Foundation assesses and validates the huge amount of add-ons written by
volunteers. Those considered stable are included and officially supported by Blender, and
the others are made available through the website as part of the catalog because they are not
considered stable enough to be part of a Blender release, but these are also good and can be
pretty useful.



220 Blender for Animation and Film-Based Production

We can always check the catalog for any specific add-ons we want; they are generally
released under the GPL license. Once downloaded, we can modify and adapt the add-on
to suit our needs.

Another interesting thing about add-ons is that they can be a starting point to learning
about coding your own add-ons.

There are specific add-ons for each purpose. We can use modules or libraries to import
available presets for Blender’s tools, scripts used as startup files when Blender is launched, or
custom scripts we just require to run from a text editor.

Depending on the purpose of the scripts, we can have them stored in different folders.
There are many ways to install add-ons—we can import a script to a text editor and run it
there, but we can also install add-ons from the User Preferences editor.

16.1 PYTHON API
We will not be discussing what Python is, but rather what we can do with it in Blender, and,
more interestingly, how it is used in film productions.

Extending Blender functionalities with Python has its benefits, which that range from
improving features with missing functionalities to creating completely new tools and man-
aging objects in the D view.

The intention here is not to go in depth into the Blender/Python API but to understand
how Blender can deal with this awesome functionality, because film productions use a lot of
scripting, and sometimes more than people could imagine.

We will now look at some basic concepts, how to manage them in Blender, and how they
could be used in any film production.

16.1.1 Accessing Data

First, we need to have a clear idea about what this means. A basic feature is that everything
a button can do in the Blender interface is also doable via Python scripting.

For example, pressing the Render button in Blender starts the rendering process, but this
can also be done without having to press the button—with Python scripting.

Let’s look at an example script. To access the current loaded data, we can use the module
bpy.data that is completely available within Blender.

For Blender's default cube scene
>>> bpy.data.objects
<bpy_collection[3], BlendDataObjects>

>>> bpy.data.cameras
<bpy_collection[1], BlendDataScenes>

>>> bpy.data.lamps
<bpy_collection[1], BlendDataMaterials>

Trying to access on to non valid data
>>> bpy.data.lights

Python 221

Traceback (most recent call last):
File "<blender_console>", line 1, in <module>

AttributeError: 'BlendData' object has no attribute 'lights'

Any programmer will find this easy. If you are not a programmer, it takes just a little more
time to understand, but it’s not that complex to understand the following.

Collections are like arrays that we can access using the index or the string. We must be
careful about this because as said in the API manual, the index may change while running
Blender.

>>> list(bpy.data.cameras)
[bpy.data.cameras['Camera']]

>>> list(bpy.data.objects)
[bpy.data.objects['Camera'], bpy.data.objects['Cube'],

bpy.data.objects['Lamp']]

Accessing using string index
>>> bpy.data.objects['Camera']
bpy.data.objects['Camera']

Accessing using integer index
>>> bpy.data.objects[0]
bpy.data.objects['Camera']

16.1.2 Accessing Attributes

Now, we have to imagine that we have something like an object. Our object is a collection of
attributes like name, x-axis location, rotation, and scale.

Then we can also access our datablock attributes using Python like we could do using any
other user interface button. Imagine scaling a cube. We can do this by pressing the S key but
also by accessing the scale attribute using Python.

>>> bpy.data.objects[0].name
'Camera'

>>> bpy.data.scenes["Scene"]
bpy.data.scenes['Scene']

>>> bpy.data.materials.new("MyMaterial")
bpy.data.materials['MyMaterial']

16.1.3 Creating or Removing Data

This is a very interesting function, especially for beginners of Blender’s Python API. All of
us programmers know that we can create new objects by instantiating the class.

In Blender, we can’t create new datablocks in this way but only using the methods on the
collections in bpy.data.

222 Blender for Animation and Film-Based Production

>>> bpy.types.Object()
Traceback (most recent call last):

File "<blender_console>", line 1, in <module>
TypeError: bpy_struct.__new__(type): expected a single argument

This results in a Traceback error. In this case, we should be using the following script
instead:

>>> bpy.data.meshes.new(name="hello")
bpy.data.meshes['hello']

16.1.4 Context

This is a very interesting aspect because even though we sometimes access datablock
attributes by name, it’s more usual to access them based on the user’s behavior. The con-
text is always available and usually represents each active object, scene, or element and
consequently its attributes.

If we have selected the Cube
>>> bpy.context.object
bpy.data.objects['Cube']

If we have selected both, the cube and the lamp
>>> bpy.context.selected_objects
[bpy.data.objects['Cube'], bpy.data.objects['Camera']]

>>> bpy.context.scene
bpy.data.scenes['Scene']

An important point to note is that context is read-only. So, assigning new values directly
will throw an error but modifying it using the data API will work.

bpy.context.object = obj will end in error.
bpy.context.scene.objects.active = obj will work fine.

16.1.5 Operators

These are the tools the user usually manipulates through Blender’s user interface buttons,
menus, or keyboard shortcuts. So, they are also accessible by Python scripting using the
module bpy.ops. A very interesting feature is to use the Ctrl+Space keys to autocomplete
this task in the Python Console within Blender.This will show us available operators and the
structure of data.

>>> bpy.ops.scene.delete()
{'FINISHED'}
>>> bpy.ops.object.lamp_add()
{'FINISHED'}
>>> bpy.ops.material.new()
{'FINISHED'}

Python 223

16.1.6 Example
import bpy

class OBJECT_PT_object(bpy.types.Panel):
bl_label = "Render Isolated Objects"
bl_space_type = "PROPERTIES"
bl_region_type = "WINDOW"
bl_context = "scene"

def draw(self,context):
layout = self.layout

obj = bpy.context.active_object

row = layout.row()
row.operator("obj.isolate_object",text="Render")

view = context.space_data

class selectObj(bpy.types.Operator):
bl_idname = "obj.isolate_object"
bl_label = "object selected"

def execute(self,context):
obj = bpy.context.active_object
ob=obj.name
self.report({'INFO'}, "Object and Lamps ready to render")
bpy.ops.object.select_name(name=ob)
bpy.ops.object.select_by_type(extend=True, type="LAMP")

return {'FINISHED'}

def register():
bpy.utils.register_class(selectObj)
bpy.utils.register_class(OBJECT_PT_object)

def unregister():
bpy.utils.unregister_class(selectObj)
bpy.utils.unregister_class(OBJECT_PT_object)

if __name__ == "__main__":
register()

This script registers the operator within Blender, meaning it’s fully integrated; so we can
call it from the operator pop-up menu or add it to the toolbar.

224 Blender for Animation and Film-Based Production

Another example could be registering a panel. To place this panel within a context, we
have to tell Blender where we want it to be placed. In this case, note the variables with the
prefix "bl".

import bpy
from bpy.props import *

nf="0"
fps=int(24)

class OBJECT_PT_Framing(bpy.types.Panel):
bl_label="Scene Framing"
bl_space_type="PROPERTIES"
bl_region_type="WINDOW"
bl_context="scene"

def draw(self,context):
layout=self.layout

obj=context.object
scene=context.scene

split=layout.split()
col=split.column()

col.prop(scene, "prop_seconds", slider=False)

col.operator("op.calculate_frames",text="Calculate")

class SCENE_OT_calc(bpy.types.Operator):
''''''
bl_idname = "op.calculate_frames"
bl_label = "Calculate"

def execute(self, context):

scene=context.scene

propSeconds=scene.prop_seconds
nfint=int(propSeconds*fps)
nf=str(nfint)
scene.frame_end=nfint

return {'FINISHED'}

Python 225

###
REGISTER
###
def register():

bpy.utils.register_class(SCENE_OT_calc)
bpy.utils.register_class(OBJECT_PT_Framing)

bt=bpy.types.Scene

bt.prop_seconds = IntProperty(
name="Seconds", description="Number of seconds the

scene will be",
min=0, max=59, default=0)

def unregister():
bpy.utils.unregister_class(SCENE_OT_calc)
bpy.utils.unregister_class(OBJECT_PT_Framing)

if __name__ == "__main__":
register()

This will register a new panel in the Object context, according to the example "Hello
World".

16.1.7 Types

Python has its own data types but we can add more in Blender for easy access to datablocks,
that is, in Python, we have data types like boolean or integer but we are able to add our own
ones so we can use them within Blender data structure.

16.1.7.1 Native Types
blender float/int/boolean -> float/int/boolean

blender enumerator -> string

>>> C.object.rotation_mode = 'AXIS_ANGLE'

blender enumerator (multiple) -> set of strings

setting multiple camera overlay guides
bpy.context.scene.camera.data.show_guide = {'GOLDEN', 'CENTER'}

passing as an operator argument for report types
self.report({'WARNING', 'INFO'}, "Some message!")

16.1.7.2 Internal Types
These are used on internal datablocks and collections like bpy.types.

226 Blender for Animation and Film-Based Production

>>> bpy.context.object
bpy.data.objects['Cube']

>>> C.scene.objects
bpy.data.scenes['Scene'].objects

16.1.7.3 Mathutils Types
These are used for vectors, quaternion, Euler’s, matrix, and color types, which are accessible
from mathutils and used in attributes such as bpy.types.Object.rotation.

Here’s an example of a matrix-vector multiplication:

bpy.context.object.matrix_world *
bpy.context.object.data.verts[0].co

Example:

modifies the Z axis in place.
bpy.context.object.location.z += 10.0

location variable holds a reference to the object too.
location = bpy.context.object.location
location *= 5.0

Copying the value drops the reference so the value can be
passed to

functions and modified without unwanted side effects.
location = bpy.context.object.location.copy()

16.1.8 Animation Using Python

In Python, key frames for animation processes can be added in two different ways.
Simple example:

obj = bpy.context.object
obj.location[2] = 0.0
obj.keyframe_insert(data_path="location", frame=10.0, index=2)
obj.location[2] = 1.0
obj.keyframe_insert(data_path="location", frame=20.0, index=2)

Using low-level functions:

obj = bpy.context.object
obj.animation_data_create()
obj.animation_data.action = bpy.data.actions.new(name="MyAction")
fcu_z = obj.animation_data.action.fcurves.new(data_path="location",

index=2)
fcu_z.keyframe_points.add(2)
fcu_z.keyframe_points[0].co = 10.0, 0.0
fcu_z.keyframe_points[1].co = 20.0, 1.0

Python 227

16.2 BLENDER/PYTHON API IN FILM PRODUCTION
As mentioned at the beginning of this chapter, we can hardly imagine a film production
without scripting. In our case, we can hardly imagine a Blender movie released without
scripting.

Python scripting is required at some point in any production process. Maybe the most
common use of Python in film production is related to rigging and animation. Riggers not
only provide an armature structured in layers using the right widgets, but sometimes it’s very
interesting to develop new features or panels with Python as well, to manage bone layers,
behavior constraints, bone groups, etc.

Let’s take the example of the Mushroom project for Lighthouse CGI animation, where
Python scripting was used to manage the main character’s armature. The script contains
different panels within the Transform context in order to manage specific areas of the
armature.

So, for example, we developed a Bone Layer to manage everything related to bone layers,
allowing us to show/hide bone layers easily as shown in Figure ..

FIGURE 16.1 Bone Layers panel generated by Python script.This panel allowed the Lighthouse CGI
animation crew to deal with armature layers easily.

228 Blender for Animation and Film-Based Production

FIGURE 16.2 Drivers’ Influence Deform to allow enabling/disabling of facial constraints.

FIGURE 16.3 FK/IK Switcher panel generated with Python, which allows switching from FK to IK
solver for arms and legs.

Another panel generated using Python script was the one for Drivers’ Influence Deform.
This was an interesting panel containing some sliders to enable or disable facial constraints
for General, Mouth & Jaw, and Eyes & Eyebrows, as shown in Figure ..

Another interesting feature we thought about was something to easily switch between IK
and FK. So we came with the FK/IK Switcher panel also generated with Python, where we
had control of the FK and IK for arms and legs, as shown in Figure ..

But we also had a necessity for joint deform. That is, to allow deform arms and legs in
a very wavy way (i.e., undulating), so we developed easy access to those properties using
Python script, as shown in Figure ..

Depending on body poses, we wanted to manage elbows and knees easily. We developed
another panel generated via Python containing three widgets for controlling those parts.
Usually, we have a single widget, or point, to control elbow or knee, but in our case we
were required to use three, so we generated the three-way Controlled Pole panel as shown
in Figure ..

The following code is the one used to generate all of the armature helpers we have seen.

import bpy

class MollyRigProperties_BoneLayers(bpy.types.Panel):
bl_space_type = 'VIEW_3D'

Python 229

FIGURE 16.4 jDeform Control Points panel to allow waved deform in arms and legs. Custom
properties were easy to access with this panel.

FIGURE 16.5 The -way Controlled Pole panel allows to control elbows and knees with three
different widgets or points.

bl_region_type = 'UI'
bl_label = "Bone Layers"

@classmethod
def poll(self, context):

try:
ob = context.active_object
mode = context.mode
return (ob.name == "Molly_Armature" and mode == "POSE")

except AttributeError:
return 0

def draw(self, context):
pose_bones = context.active_object.pose.bones
layout = self.layout
col = layout.column()

col.label(text="Control Layer:")
viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

230 Blender for Animation and Film-Based Production

index=16, toggle=True, text="Base")
viewprop.prop(context.active_object.data, "layers",

index=15, toggle=True, text="Helpers")

viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=0, toggle=True, text="Center")

col.label(text="Facial Layer:")
viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=7, toggle=True, text="Basic")
viewprop.prop(context.active_object.data, "layers",

index=23, toggle=True, text="Extra")

col.label(text="Arm Layer:")
viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=3, toggle=True, text="Arm R IK")
viewprop.prop(context.active_object.data, "layers",

index=4, toggle=True, text="Arm L IK")

viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=19, toggle=True, text="Arm R FK")
viewprop.prop(context.active_object.data, "layers",

index=20, toggle=True, text="Arm L FK")

col.label(text="Hand Layer:")
viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=5, toggle=True, text="Hand R IK")
viewprop.prop(context.active_object.data, "layers",

index=6, toggle=True, text="Hand L IK")

viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=21, toggle=True, text="Hand R FK")
viewprop.prop(context.active_object.data, "layers",

index=22, toggle=True, text="Hand L FK")

col.label(text="Finger Layer:")
viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=10, toggle=True, text="Finger R Ctrl")

Python 231

viewprop.prop(context.active_object.data, "layers",
index=11, toggle=True, text="Finger L Ctrl")

col.label(text="Leg Layer:")
viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=1, toggle=True, text="Leg R IK")
viewprop.prop(context.active_object.data, "layers",

index=2, toggle=True, text="Leg L IK")

viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=17, toggle=True, text="Leg R FK")
viewprop.prop(context.active_object.data, "layers",

index=18, toggle=True, text="Leg L FK")

col.label(text="Foot Layer:")
viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=8, toggle=True, text="Foot R IK")
viewprop.prop(context.active_object.data, "layers",

index=9, toggle=True, text="Foot L IK")

viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=24, toggle=True, text="Foot R FK")
viewprop.prop(context.active_object.data, "layers",

index=25, toggle=True, text="Foot L FK")

col.label(text="Jelly Points:")
viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=12, toggle=True, text="Arm R jPoints")
viewprop.prop(context.active_object.data, "layers",

index=13, toggle=True, text="Arm L jPoints")

viewprop = col.row()
viewprop.prop(context.active_object.data, "layers",

index=28, toggle=True, text="Leg R jPoints")
viewprop.prop(context.active_object.data, "layers",

index=29, toggle=True, text="Leg L jPoints")

class MollyRigProperties_diDeform(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_label = "Drivers' Influence Deform"

232 Blender for Animation and Film-Based Production

@classmethod
def poll(self, context):

try:
ob = context.active_object
mode = context.mode
return (ob.name == "Molly_Armature" and mode == "POSE")

except AttributeError:
return 0

def draw(self, context):
pose_bones = context.active_object.pose.bones
layout = self.layout
col = layout.column()

col.label(text="Disable Facial Constraints:")
col.prop(pose_bones["RootController"], '["EnableCons"]',

text="General", slider=True)
col.prop(pose_bones["RootController"], '["JawCons"]',

text="Mouth & Jaw", slider=True)
col.prop(pose_bones["RootController"], '["EyelidsCons"]',

text="Eyes & Eyebrows", slider=True)

class MollyRigProperties_FKIK(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_label = "FK/IK Switcher"

@classmethod
def poll(self, context):

try:
ob = context.active_object
mode = context.mode
return (ob.name == "Molly_Armature" and mode == "POSE")

except AttributeError:
return 0

def draw(self, context):
pose_bones = context.active_object.pose.bones
layout = self.layout
col = layout.column()

col.label(text="FK/IK Arms:")
col.prop(pose_bones["RootController"], '["IK_Arm_L"]',

text="FK/IK Arm L", slider=True)

Python 233

col.prop(pose_bones["RootController"], '["IK_Arm_R"]',
text="FK/IK Arm R", slider=True)

col.label(text="FK/IK Legs:")
col.prop(pose_bones["RootController"], '["IK_Leg_L"]',

text="FK/IK Leg L", slider=True)
col.prop(pose_bones["RootController"], '["IK_Leg_R"]',

text="FK/IK Leg R", slider=True)

class MollyRigProperties_jDeform(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_label = "jDeform Control Points"

@classmethod
def poll(self, context):

try:
ob = context.active_object
mode = context.mode
return (ob.name == "Molly_Armature" and mode == "POSE")

except AttributeError:
return 0

def draw(self, context):
pose_bones = context.active_object.pose.bones
layout = self.layout
col = layout.column()

col.label(text="Disable/Enable:")
col.prop(pose_bones["RootController"], '["jDeform_Arm_L"]',

text="Arm L", slider=True)
col.prop(pose_bones["RootController"], '["jDeform_Arm_R"]',

text="Arm R", slider=True)

col.prop(pose_bones["RootController"], '["jDeform_Leg_L"]',
text="Leg L", slider=True)

col.prop(pose_bones["RootController"], '["jDeform_Leg_R"]',
text="Leg R", slider=True)

class MollyRigProperties_3wayPole(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_label = "3-way Controlled Pole"

@classmethod
def poll(self, context):

234 Blender for Animation and Film-Based Production

try:
ob = context.active_object
mode = context.mode
return (ob.name == "Molly_Armature" and mode == "POSE")

except AttributeError:
return 0

def draw(self, context):
pose_bones = context.active_object.pose.bones
layout = self.layout
col = layout.column()

col.label(text="Disable/Enable:")
col.prop(pose_bones["RootController"],

'["3wayPole_elbow_L"]', text="Elbow L", slider=True)
col.prop(pose_bones["RootController"],

'["3wayPole_elbow_R"]', text="Elbow R", slider=True)

col.prop(pose_bones["RootController"],
'["3wayPole_L"]', text="Knee L", slider=True)

col.prop(pose_bones["RootController"],
'["3wayPole_R"]', text="Knee R", slider=True)

def register():
bpy.utils.register_class(MollyRigProperties_BoneLayers)
bpy.utils.register_class(MollyRigProperties_diDeform)
bpy.utils.register_class(MollyRigProperties_FKIK)
bpy.utils.register_class(MollyRigProperties_jDeform)
bpy.utils.register_class(MollyRigProperties_3wayPole)

def unregister():
bpy.utils.unregister_class(MollyRigProperties_BoneLayers)
bpy.utils.unregister_class(MollyRigProperties_diDeform)
bpy.utils.unregister_class(MollyRigProperties_FKIK)
bpy.utils.unregister_class(MollyRigProperties_jDeform)
bpy.utils.unregister_class(MollyRigProperties_3wayPole)

if __name__ == "__main__":
register()

For a general overview, you could have a look at the Blender Institute openmovies to know
how scripts are used in Dfilmproductions. About  scripts for different purposes like input
and output, modules, operators, user interface, and utilities were developed for a project
codenamed Durian. And about  Python scripts were developed for a project codenamed
Peach.

Python 235

This is very representative of the importance of scripting in film production.
While working on the second episode of The Doctor Show, we noticed the need for a

render for estimating the time for animatics. That is, we usually need to know how much
time a determined animatics is going to need. A lot of times we had to do animatics with
lengths of  and  frames and to know the time this might take is really useful for the
production pipeline.

For this reason, we wrote a short Python script to be used as an add-on within Blender.

import bpy
from bpy.props import *

class OBJECT_PT_Render(bpy.types.Panel):
bl_label="Estimated Time"
bl_space_type="PROPERTIES"
bl_region_type="WINDOW"
bl_context="render"

def draw(self,context):
layout=self.layout

obj=context.object
scene=context.scene

split = layout.split()
col = split.column()

col.prop(scene, "prop_frames", slider=True)
col.prop(scene, "prop_days", slider=False)
col.prop(scene, "prop_hours", slider=False)
col.prop(scene, "prop_minutes", slider=False)
col.prop(scene, "prop_seconds", slider=False)

col.operator("renderop.calc_render_time",text="Calculate",
icon="RENDER_RESULT");

row=layout.row()
row.label(text="Estimated Render Time:")
row=layout.row()
row.label(et)

class RENDER_OT_calc(bpy.types.Operator):
'''Calculates the estimated render time'''
bl_idname = "renderop.calc_render_time"
bl_label = "Calculate"
bl_register = True

236 Blender for Animation and Film-Based Production

def execute(self, context):

scene=context.scene

propDays=scene.prop_days
propHours=scene.prop_hours
propMinutes=scene.prop_minutes
propSeconds=scene.prop_seconds

startFrame=scene.frame_start
endFrame=scene.frame_end
nF=int(endFrame-startFrame+1)

rt=[propDays,propHours,propMinutes,propSeconds]

rtd=rt[0]
rth=rt[1]
rtm=rt[2]
rts=rt[3]

rtd=rtd*86400
rth=rth*3600
rtm=rtm*60

rtime=rtd+rth+rtm+rts
rtime=rtime*nF

if rtime<60 :
rtSec=rtime

if rtime>=60 & rtime<3600 :
rtMin=int(rtime/60)
rtMinrest=rtime-(rtMin*60)
rtSec=rtMinrest
rtDay="0"

if rtime>=3600 & rtime<=86400 :
rtHrs=int(rtime/3600)
rtHrsrest=rtime-(rtHrs*3600)
rtMin=int(rtHrsrest/60)
rtMinrest=rtHrsrest-(rtMin*60)
rtSec=rtMinrest
rtDay="0"

if rtime>=86400 :
rtDay=int(rtime/86400)

Python 237

rtDayrest=rtime-(rtDay*86400)
rtHrs=int(rtDayrest/3600)
rtHrsrest=rtDayrest-(rtHrs*3600)
rtMin=int(rtHrsrest/60)
rtMinrest=rtHrsrest-(rtMin*60)
rtSec=rtMinrest

et=str(rtDay) + "days " + str(rtHrs) + "hrs " + str(rtMin)
+ "min " + str(rtSec) + "sec "

global et

return {'FINISHED'}

###
REGISTER
###
def register():

bpy.utils.register_class(RENDER_OT_calc)
bpy.utils.register_class(OBJECT_PT_Render)

bt=bpy.types.Scene

bt.prop_frames = IntProperty(
name="Frames", description="Number of frames the animation

is suposed",
min=0, max=10000, default=250)

bt.prop_days = IntProperty(
name="Days", description="Number of days of the

single render",
min=0, max=30, default=0)

bt.prop_hours = IntProperty(
name="Hours", description="Number of hours of the

single render",
min=0, max=24, default=0)

bt.prop_minutes = IntProperty(
name="Minutes", description="Number of minutes of the

single render",
min=0, max=59, default=0)

bt.prop_seconds = IntProperty(
name="Seconds", description="Number of seconds of the

single render",
min=0, max=59, default=0)

238 Blender for Animation and Film-Based Production

def unregister():
bpy.utils.unregister_class(OBJECT_PT_Render)
bpy.utils.unregister_class(RENDER_OT_calc)

if __name__ == "__main__":
register()

CHAP T ER 17

Film Promotion and Conclusion

Once we have everything done, we are ready to promote our product. We have been
talking about the whole production process, and now we have a final rendered and

postprocessed product we want to show the world.
This is a very specific topic because it depends on the size of the project and the funding.

For big projects, the promotion starts even before the production does, but for small projects
it takes quite a bit of effort to find ways to go to the public.

We have discussed the costs to make even open movies that are almost self-funding
projects but this doesn’t ensure they will be a success because they are usually seen by a lim-
ited audience following the project or those with any kind of knowledge about the existence
of the project.

The big studios, the big productions use very different ways for film promotion. They
usually invest the same or evenmore in promotion than in production.The profits will come
once the large audience knows about the product and, at some point, consume it.

Anyway, we will make some distinction between the usual ways to promote big or small
film productions:

. Theater: This is the final target for every film production though not always accessible.
It’s the golden egg for producers. Theaters require some specific business operations
and deals and not all small productions have a financial budget to afford this option.

Anyway, sometimes, the theaters themselves are the ones promoting some film as
they did with Blender Foundation films.

It’s also possible to incorporate partners funding the film production and include
some terms and conditions to premiere at any theater, but again, that depends on the
marketing and how the film production has been defined.

. Television:This is a very exclusive promotionalway that is usually only accessible to very
big productions. It’s said that Hollywood spends billions of dollars every year per  s
of TV advertising. But the truth is that has been the more effective way of promotion.

It’s also usual that film sequels use this channel for promoting special campaigns that
announce the recently created film and televisions incorporate part of the previous film
into their daily program.



240 Blender for Animation and Film-Based Production

The open movies can rarely be promoted on television unless they are very strong
and are backed by a huge funding program. In such cases, other ways of promotion are
also available and will probably be more effective because they are less time and effort
consuming.

. Internet: Nowadays, the best and most common way to promote film productions is
through the Internet. The wide variety of methods available for advertising on the net
makes it accessible to a large audience. Small studios have found in the Internet a way
to not only promote their small products but also to make premiers or screenings.

Today, it’s possible to ask for preorders of anymovie that the open sourcemakes. But
it’s also possible to find specialized websites to promote artistic works. This trying to
find the required fundings for film production is an awesome option.

Internet offers a simple way of reaching out to millions of people with a couple of
clicks. It also offers specialized websites, as mentioned earlier, for funding or to upload
the final movie so people are able to access the film and watch it.

It’s widely known that there are campaigns deployed against piracy of artistic works
over the net. Of course, we encourage everyone to use the open source and free software
because it’s a perfect option to extend creativity, to increase knowledge about any topic,
and to share products and life.

17.1 CONCLUSION
Blender offers enough warranties to be part of any studio pipeline for film production. In
this book, we have seen how Blender is so versatile from initial processes to the final touch
and compositing.

We have seen how Blender provides good solutions for modeling, rigging, animation, or
texturing. We even saw how Blender could deal with all preproduction tasks, from scripting
to developing concept art. Basically, every step that film production requires is possible and
realizable using Blender.

We are not attempting to get rid of the current studios nor do we mean to suggest getting
rid of everything else and using only Blender. Established studios have their own internal
routines but we are sure they should be thinking about integrating Blender in their pipeline
because we are sure they will find it more and more useful every day.

With the latest Blender releases, we are all experiencing some incredible changes because
we see how it’s improving not only in its user interface but also in its internal features.Motion
tracking, particles, dynamics, physics, sculpting, and a lot of new features are being inte-
grated into Blender every day by passionate people working as volunteers or, in a reduced
number, as official Blender Foundation’s developers.

Happy Blending!

Appendix

KEYBOARD COMMANDS

G Translate or move
G + x, y, or z Move along specific axis supplied
S Scale
S + x, y, or z Scale along specific axis supplied
R Rotate
R + x, y, or z Scale along specific axis supplied
X Delete
M Move to specific layer
NumPad  Front view
NumPad  Side view
NumPad  Top view
NumPad  Perspective or orthogonal view
Shift + F File browser editor
Shift + F Logic editor
Shift + F Node editor
Shift + F Console
Shift + F D view
Shift + F Graph editor
Shift + F Properties editor
Shift + F Video sequence editor
Shift + F Outliner
Shift + F UV/image editor
Shift + F Text editor
Shift + F Dope sheet
MMB Click Middle mouse button; manage the D view over the control point
MMB Scroll Middle mouse button; zoom the D view
MMB + Shift Pan the D viewport
LMB Click Left mouse button; sets an action or activates operators and buttons
RMB Click Right mouse button; select an object
RMB + Shift Allow to select multiple objects
TAB Switch modes
A Select or deselect all
E Extrude



242 Appendix

U Unwrap
Ctrl + R Loopcut
B Border select
Alt + B Cut and show
Shift + B Zoom selected area
F Create new face or edge
Ctrl + Shift + F Edge flip

References

Blain, J.M. .The Complete Guide to Blender Graphics, A K Peters/CRC Press.

Blender Foundation, Big Buck Bunny, http://peach.blender.org.

Blender Foundation, Elephants Dream, http://orange.blender.org.

Blender Foundation, Sintel, http://durian.blender.org.

Blender Foundation, Tears of Steel, http://mango.blender.org.

Hess, R. . Blender Foundations: The Essential Guide to Learning Blender ., Focal Press.

Mullen, T. and Andaur, C. . Blender Digital Movie Making, Wiley.

Powell, A.W. . Blender . Lighting and Rendering, Packt Publishing.

Simonds, B. . Blender Master Class, No Starch Press.

Wickes, R. . Foundation Blender Compositing, Friendsoft.

Williamson, J. . Character Development in Blender ., Course Technology Cengage
Learning.



FIGURE 1.1 The Wind is Changing by Andy Goralczyk, . Awesome rendering demonstrating
how powerful Blender can be in the right hands. This still is an awesome render from  years ago.
I can assure you that Blender has improved even more in its latest releases, so can you reach the
limits?

FIGURE 1.2 Gorilla by Everett Gunther. Interesting use of Blender’s particle system.

FIGURE 1.3 Contractile Ring simulation byBioBlender.Here, we see howBlender is used in scientific
projects.

FIGURE 1.4 Big Buck Bunny project developed by the Blender Institute. The open movies developed
by the BI represent a great example of Blender used for film production.

FIGURE 1.5 Tears of Steel is another great example not only for Blender used in animation films but
also for vfx projects.

FIGURE 1.6 Sintel became a very ambitious project for the Blender Foundation and served as an
important test for new awesome features added to Blender’s code.

FIGURE 1.7 Tube, an open movie developed by Bassam Kurdali and urchn.org.

FIGURE 1.8 Ara’s Tale, a movie developed by Martin Lubich.

FIGURE 2.1 Project Orange resulted in Elephants Dream, the first open movie developed by the
Blender Foundation.

FIGURE 2.2 Project Peach resulted in the Big Buck Bunnymovie developed by the Blender Founda-
tion as a result of which Blender was improved to end up with the . version.

FIGURE 2.3 Project Apricot was the first game developed by the Blender Foundation to be runwithin
Blender Game Engine and resulted in the development of Blender ..

FIGURE 2.4 Project Durian represented a step forward in Blender development. With the new .
redesign proposal, the Sintelmovie ended up with the Blender appearance as we see it now.

FIGURE 2.5 Project Mango, titled Tears of Steel, was a vfx and realistic rendering project using both
real and cgi developments. The Blender Foundation developed this vfx movie involving real human
actors together with visual effects developed entirely with Blender and resulting in the development
and improvement of the most recent Blender versions.

FIGURE 4.3 Schedule graphic determining the project stages in the calendar. Picture represents the
schedule document for the Mushroom project.

FIGURE 4.7 Omega stop motion project. Directed by Eva Franz and Andy Goralczyk, this is an awe-
some stop motion movie developed using Blender. The picture represents the concept art developed
for the movie.

FIGURE 4.8 Project’s folder structure. Having a clean and organized project folder helps in produc-
tivity. It is strongly recommended to apply a project naming convention to avoid mistakes and messy
project structure on disk.

FIGURE 4.9 Tears of SteelDVDbox. Blender released not only themovie but also awhole openmovie
workshop containing all files used in the D film production.

FIGURE 5.3 Developing a convincing character is not always easy. The picture represents the main
character for Tube open movie. Notice that it suits perfectly the project concept, giving credibility to
the film and increasing the viewer interest for this awesome film.

FIGURE 5.6 The modifier panel contains some common elements shared by all kinds of modi-
fier types, but also specific buttons and properties. The picture represents the Subdivision Surface
modifier.

FIGURE 5.8 Some of the props used in the Big Buck Bunny open movie. All those elements are part
of the animation process because at any moment they can require animation. In other words, they
interact with characters somehow.

FIGURE 5.15 Convert to Mesh from Curve. Circle Curve after the Convert to Mesh from Curve
operator. We get access to this by selecting the Curve to convert and pressing Alt+C Key.

FIGURE 5.16 RAT bProficiency. First project developed by former Platform Michelangelo Studio
was an educational resource for Blender teaching, releasing its production files using theGPL License.
This project was also mentioned in my Blender Foundation Certification.

FIGURE 5.17 The Doctor Show. We can see the relationship between the props and the character
must be as refined as possible. In this case, the Blender constraints help while animating the swords
at the same time as our character’s hands.

FIGURE 5.18 The paranoia of the Elephants Dream open movie perfectly suits the world developed
by the Blender Institute crew. Characters and environment keep viewers attention within the story.

FIGURE 5.19 David Revoy’s sketches for the Blender Foundation’s Durian project.The environment
of the Sintel open movie perfectly matches the story and its characters.

FIGURE 5.20 Topology example, notice the loops around the mouth and eyes.

FIGURE 5.21 Topology example, notice the loops and faces building the mouth.

FIGURE 6.16 Options panel.

FIGURE 6.17 Shadow panel.

FIGURE 6.18 After adding a new material, we have different panels to play with. Depending on the
results we want for our model, we shall play with the operators of those panels, so, if we want our
object to look like a transparent one, we just need to activate the Transparency panel and play with
operators inside.

FIGURE 13.36 Fluid Domain type.

FIGURE 14.18 This picture represents an example of FreeStyle render result. Notice the toon style
that Blender is capable of achieving using this feature.

Blender
for Animation
and Film-Based
Production
Michelangelo
Manrique

Computer Game Development

Blender for Animation and Film-Based Production explores why Blender is ideal for
animation films. It demonstrates Blender’s capability to do the job in each production
department. Whether you are a beginner or more advanced user, you’ll see why Blender
should be taken into consideration in animation and film production.

This Blender reference will help you:

•	 Manage your projects from start to finish

•	 Understand the different stages in any animation production

•	 See how studios work and develop their animation projects

Describing the versatility and power of Blender, the book shows you why studios should
incorporate Blender in their pipeline. It avoids tedious tutorials and incomprehensible
examples. Instead, the book guides you toward finding efficient solutions for issues
with your production files or pipeline. It familiarizes you with the animation industry and
explores the risks involved in choosing Blender as a primary tool in animation studios.

Features

•	 Includes examples of using the open-source software Blender in professional
productions

•	 Shows how versatile Blender’s features are in film/animation applications

•	 Provides useful information on setting up your home studio and producing a
successful project using Blender or other open-source software

•	 Presents basic principles of digital animation that can be used in any 3D application

K21397

A N A K P E T E R S B O O KBlender
for Animation
and Film-Based
Production
Michelangelo
Manrique

Blender for Anim
ation and Film

-Based Production

	Front Cover
	Dedication
	Contents
	Preface
	Author
	CHAPTER 1 - Why Blender?
	CHAPTER 2 - History of Blender
	CHAPTER 3 - Blender User Interface
	CHAPTER 4 - Blender in a Digital Studio Pipeline
	CHAPTER 5 - Modeling Your Main Character
	CHAPTER 6 - Applying Materials to Our Objects
	CHAPTER 7 - Blender Internal Textures
	CHAPTER 8 - UV Unwrap and External Textures
	CHAPTER 9 - Introduction to Rigging: Armatures and Bones
	CHAPTER 10 - The Animation Process
	CHAPTER 11 - Introduction to Lighting
	CHAPTER 12 - Compositing Nodes
	CHAPTER 13 - Using Particles and Dynamics
	CHAPTER 14 - Render
	CHAPTER 15 - Final Movie Compositing
	CHAPTER 16 - Python
	CHAPTER 17 - Film Promotion and Conclusion
	Appendix
	References
	Color Insert
	Back Cover

