
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Early Praise for Build iOS Games with Sprite Kit

This book is your quickest path from creating a new Sprite Kit project in Xcode
to shipping an iOS game. Joshua and Jonathan have a great deal of experience
creating games with Sprite Kit and teaching the technology in their popular sem-
inar. In this book they show you the fundamentals and help you avoid the gotchas.

➤ Daniel H. Steinberg, Dim Sum Thinking

I had never written a game before, but with hands-on practice, this book guided
me through the basics of how to set up a Sprite Kit app. In detail, it covers how
to progress from the basics up to advanced topics, like physics, textures, and
frame-based animations. This book is a great way to dip your toes into the exciting
new Sprite Kit framework.

➤ Ash Furrow, iOS developer

Apple’s documentation for Sprite Kit is pretty good, but it’s not enough. Jonathan
and Josh make it easy to understand the concepts behind developing games with
Sprite Kit. Throughout the book you will develop two complete games while having
fun learning about scenes, sprites, textures, and sounds. Are you building a new
game with Sprite Kit? Just buy this book and read it.

➤ Cesare Rocchi, CEO, Studio Magnolia

As an iOS developer wanting to step into the world of mobile-game development,
I really enjoyed reading this book. It’s a great introduction to Sprite Kit, explaining
the basics and the more advanced stuff very well.

➤ Romain Pouclet, iOS developer, TechSolCom

www.allitebooks.com

http://www.allitebooks.org

Rather than just telling the reader what to do, Jonathan Penn and Joshua Smith
walk the programmer through why they are using a given method or set of num-
bers. Very few people go to this trouble, which is one big reason this book is a
must-read.

➤ Janie Clayton-Hasz, iOS developer at Digital World Biology LLC

After reading the book, game development on iOS seems less wizard-like. I would
not be surprised if there were a flood of games released on the market due to how
easy the authors made it seem.

➤ John Moses, developer

This is a fun book! Sprite Kit makes it easier than ever to build games for iOS,
and these authors know their stuff and know how to get you up and running with
it in no time.

➤ Kevin Munc, mobile developer and founder, Method Up LLC

This book was so much fun to read and follow along with that by the time I was
done, I had developed a solid grasp of the Sprite Kit APIs plus a fully featured
game end-to-end. Well done, Rubber City Wizards!

➤ Zak Nixon, lead software engineer and CEO, Deep Digital LLC

www.allitebooks.com

http://www.allitebooks.org

Build iOS Games with Sprite Kit
Unleash Your Imagination in Two Dimensions

Jonathan Penn
Josh Smith

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-210-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2014

www.allitebooks.com

http://pragprog.com
rights@pragprog.com
http://www.allitebooks.org

Contents

Preface vii

1. Introduction to Sprite Kit 1
Setting Up a Sprite Kit Project 2
Drawing Scenes and Sprite Nodes 3
Following the Finger Around 6
Making the Ship Glide 7

2. Actions: Go, Sprite, Go! 13
Shooting at Asteroids with Simple Motion Actions 13
Moving Nodes on a Path 23
Playing Sound Effects in the Scene 28
Implementing Weapon Power-Ups with Actions 32

3. Explosions and Particle Effects 37
Generating a Parallax Field of Stars 37
Building Thruster Fire with Xcode’s Particle Editor 41
Loading Particle Emitter Files 45
Spewing Particles Briefly for Explosions 47

4. Menus and Cutscenes 53
Crafting a Basic Menu with UIKit’s Interface Builder 54
Showing the Star Field Underneath UIKit 62
Custom Scenes and Gesture Recognizers 64
Building a Game-Ending Sequence 72

5. Keeping Score with a Heads-Up Display 77
Planning the Node Layout 77
Aligning Label Nodes Within Groups 80
Updating the Display 85
Pulsing Power-Up Countdowns for the Win 89
Showing the High Score 95

www.allitebooks.com

http://www.allitebooks.org

6. Pinball Physics 101 99
Follow the Bouncing Ball 99
Moving the Plunger with a Touch 110
Using a Fixed Joint to Stick the Ball to the Plunger 117
Building a Scrolling Table with an Edge Body 120

7. More Physics: Paddles and Collisions 127
Building Paddles with Bodies, Pins, and Torque 127
Loading Targets and Bumpers from a Layout File 136
Detecting Collisions Between Bodies 144
Responding to Collisions 148
Slowing Down the Ball on Rebound 152

8. Polishing the Pinball Game 155
Cueing the Player to Pull the Plunger with Sprite Animations 155
Adding Bonus Points with a Spinner 163
Showing Puffs of Smoke When Hitting Targets and Bumpers 168
Covering the Table with a Textured Overlay 171
Locking the Game to Portrait and Removing the Status Bar 174

9. Where to Go Next 177
Reviewing the Game-Development Process 177
Other Resources 180
Will I Hit It Big? 182
Don’t Forget to Play! 183

Bibliography 185

Index 187

Contents • vi

www.allitebooks.com

http://www.allitebooks.org

Preface
Imagine going back in time to visit the people who wrote for the original Atari
2600 game console and showing them games on an iPhone. Jaws would drop.
Minds would be blown. They’d probably check for smoke and mirrors.

We’ve come a long way from the video game industry’s humble beginnings.
Writing games was a challenge back then. It still is today, of course, but the
challenges then involved shoving individual pixels around, saving CPU cycles
for rudimentary sounds, and interpreting raw player input from analog joy-
sticks. Today, our challenges are often bounded more by our imaginations
than by technical constraints.

And that’s why we think you’ve joined us here in this book. You have an
unprecedented amount of power in a computer resting in the palm of your
hand. You want to write a game, and you’d like to do it for iOS. We have good
news for you.

Welcome to Sprite Kit! Apple’s exciting 2D-game development engine sports
an excellent API to help bring your 2D game idea from paper to pixels. If you’re
already an iOS developer, then there’s nothing else you need to do. It comes
with excellent Xcode support and gives you a template ready to get started.
It doesn’t get any easier than this.

Sprite Kit provides the scaffolding for you to organize your game code, animate
objects on the screen, play sound effects, handle touch events, simulate
physical movements and collisions, and more. Any game that functions in
two dimensions, such as platformers, puzzles, or overhead action games, will
work great with Sprite Kit’s tools.

This book will help you learn enough to take your own 2D game idea and
implement it with Sprite Kit’s building blocks.

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite
http://www.allitebooks.org

How Do We Get There?
The best way to learn Sprite Kit is to build a game...or two! In this book, we’ll
walk through all the steps to build two actual games (that are quite fun, in
the authors’ not-so-humble opinions). We have chosen these games because
they provide an opportunity to learn the way of the Sprite Kit APIs step by
step.

Let’s get to know these games.

Space Run
This will be an infinite runner game, like Canabalt but in space. The goal is
just to stay alive as long as possible and rack up points. It’s a single-finger
game, which makes it a great fit for the casual game market. Check out the
sketches in the following figure:

Figure 1—Paper prototype of Space Run

As the player, you are on a mission to race through light-years of space to
rescue a distant science team that is in trouble. But this is no vacation cruise!
You have to dodge things that will destroy your fragile ship (asteroids and

Preface • viii

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite
http://www.allitebooks.org

enemy ships), and you can go on the offensive with your photon torpedoes
when running isn’t enough.

Here are the features we want to achieve:

• Obstacles - We want simple asteroids that just float aimlessly along a
straight line, and we want enemy ships that spin and turn along a path
to make it harder to avoid them.

• Weapons - The ship should shoot a photon torpedo at regular intervals.
Any obstacle can be destroyed when hit.

• Power-ups - We want to give players something they can collect that makes
their weapon shoot faster for a certain amount of time.

• Variable difficulty - We want to let players pick Easy mode or Hard mode,
which determines the frequency of obstacles that appear on the screen.

• Scoring - We want to keep track of and show the player’s score. Forward
progress is difficult in the game, so the points awarded for each obstacle
destroyed increase as a multiple of the elapsed time. Also, Hard mode
doubles the point values.

• Special effects - What space game would be any fun without explosions?
We need ’em—lots of ’em. We also need a thrilling deep-space star field
zooming past to give the illusion of hyper-speed. The game should be a
visual extravaganza of light and color.

• Single-finger control - We want this to be a casual game that’s easy to pick
up and play and doesn’t require a lot of commitment to learn. The ship
will follow your finger as you move, and the cannon will fire continuously
as long as your finger touches the screen.

Space Run is perfect to start with because you can jump right in and practice
moving a ship image around on the screen by handling touch events. You’ll
riff on the idea and add new features as you learn about them in Sprite Kit’s
toolbox.

Physics Ball
Classic pinball at its finest! We’re going to build a simple pinball game with
all the fun and physics of the real thing. It will be an excellent casual game
full of sound effects and will automatically scroll taller than the screen. Check
out the sketch in the following figure:

report erratum • discuss

How Do We Get There? • ix

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 2—Paper prototype of Physics Ball

Here are the goals we want to achieve:

• Physics - This needs to feel like a real pinball table, with gravity, friction,
ricochets, and spin.

• Sound - As the ball bounces around, we need to play sound effects. Lots
of them. To protect the player from auditory boredom, we’ll randomly pick
from different sounds for each hit.

• Bonus scoring - If the ball flies past a special spinner, then that activates
bonus score mode, and all scores are increased by a large factor. This
bonus mode should be in effect as long as the spinner is in motion.

• Camera panning - The screen real estate on even a four-inch iPhone is
kind of small.

• Special effects - We want to use little puffs and sparks whenever the ball
hits targets or bumpers. All for the visual delight of the player!

• Two-finger control - A pinball wizard can play by sense of smell. For mortals
the game requires two fingers. Tap on the left side of the screen to flip the
left paddle. Tap on the right side for the right paddle.

The mechanics of pinball are well known, so this type of game will be a won-
derful introduction to the Sprite Kit physics engine. We’ll need to figure out
how to handle collisions, define the shapes and boundaries, and control the
physical properties of the ball in real time. We’ll even make the playing field
taller than the screen and add some "impossible" physics into the mix to make
it more interesting.

Preface • x

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

This will be much easier to implement once you have the basics of Sprite Kit’s
APIs under your belt. You can jump ahead and dive right into these chapters
if you want, but don’t worry if you feel overwhelmed. This game builds on the
knowledge from the earlier chapters. Take your time and enjoy the journey.

The Road Ahead
Reading this book is kind of like playing a game, too. You’re the player. Your
goal is to learn about Sprite Kit and have fun along the way. Each of these
chapters is like a level, and each one has a challenge to implement pieces of
the game as we’ve sketched it out. Here’s an overview of the progress you’ll
make:

• Chapter 1, Introduction to Sprite Kit, on page 1, is our intro level—an
easy one meant to introduce you to the Sprite Kit template that comes
with Xcode and the simplest way to interact with a spaceship node on
the screen.

• Chapter 2, Actions: Go, Sprite, Go!, on page 13, is the next level, where
we play with more complexity. In this chapter you’ll get to know Sprite
Kit’s actions, how to apply them to nodes, how to chain them together,
and how to use them to help simplify the control of the spaceship and
other characters on the screen.

• Chapter 3, Explosions and Particle Effects, on page 37, starts giving our
Space Run game some sparkle and panache. We’ve got the ship, asteroids,
and photon torpedoes flying around on the screen, but we want explosions
to happen when they collide. We also want a thrust effect out of the back
of the ship. Through all this, you’ll learn quite a bit about the built-in
particle editor.

• Chapter 4, Menus and Cutscenes, on page 53, is where we’ll start stitching
the Space Run game together. You’ll learn more about Sprite Kit scenes,
how they interact with UIKit, how to transition, and how to make an
opening scene for your game.

• Chapter 5, Keeping Score with a Heads-Up Display, on page 77, adds some
more visual feedback of the player’s current progress through a heads-
up display. We’ll talk about laying out nodes where you want them on
the scene and updating the game state throughout play. By the time you
reach this chapter, you’ll have a fully functioning Space Run game!

report erratum • discuss

The Road Ahead • xi

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

• Chapter 6, Pinball Physics 101, on page 99, is where we’ll start building
our pinball game. We’ll start playing around with physics bodies in a
scene to understand how best to model the pinball mechanics.

• Chapter 7, More Physics: Paddles and Collisions, on page 127, builds on
the knowledge about the Sprite Kit physics engine and talks about collision
categories, complex bodies and edges, and more to complete the essence
of the pinball game.

• Chapter 8, Polishing the Pinball Game, on page 155, takes us deeper into
Sprite Kit to polish up the pinball game. We’ll build a bonus spinner target,
frame-based animations to cue when the user should pull the plunger,
and overlay table graphics, and we’ll clean up some of the rough edges!

• Chapter 9, Where to Go Next, on page 177, brings the book to a close,
reflecting on the games we created, the things you learned about Sprite
Kit, and resources to go further in game development.

How to Get the Most out of This Book
Code is broken down by chapter and split up into different steps where it
makes sense to take note of the code at that point. For the most part, you
should be able to follow along and create all the pieces yourself on the fly.
But if you want to double-check your work with the final product for that
step or if you want to pick up in the middle, just find the appropriate code
directory and start from there.

You can download the code from the book website.1 Each code snippet men-
tioned in the book shows the path to the file where it came from. That will
show you the chapter and step where you can catch up. If you are using an
ebook format, then you can click or tap on the path of the file above the
snippet to jump straight to the file hosted on the Pragmatic Programmers
website. That makes it easy to cut and paste if you want to.

The book builds in cognitive complexity, meaning that the tasks you perform
at the start will be very simple—just enough to get you started. It might feel
rote at first, but that’s because we don’t want you to get lost in the complex
possibilities that Sprite Kit provides later on. Each chapter assumes you’ve
achieved the goals of the prior one.

If you think about, it’s the same kind of progression that great games lead a
player through. You don’t know how to defeat the final boss when you first

1. http://pragprog.com/titles/pssprite/source_code

Preface • xii

report erratum • discuss

http://pragprog.com/titles/pssprite/source_code
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

sit down to learn the rules. You need to feel the basic mechanics of the game,
the way the other characters interact, and the boundaries of what you can
do. As each step builds on the previous one, you’ll discover how much you’ve
learned when you look back at the beginning.

This is why we think it’s best to work your way through the book in one
straight go. But should you want to skip around (and we certainly understand
the curiosity and excitement behind that if you do), then you can use the
code checkpoints at different chapters and steps to catch up to where the
book is at.

Expectations and Technical Requirements
This book assumes that you are at least somewhat familiar with the basics
behind iOS development and Xcode. We recommend keeping these references
handy as prerequisite reading:

• “Start Developing iOS Applications Today,”2 an excellent starting place
for Apple’s official documentation

• iOS SDK Development [AD12], by Chris Adamson and Bill Dudney

• Storyboards [Ste14], by Daniel Steinberg

You should at least be familiar with Apple’s introductory material, know about
how view controllers and memory management work, and know how to build
and run an application in the Xcode GUI. We’ll be working with at least Xcode
5.1 and iOS 7.0.

Acknowledgments
We’re so thankful for everyone who supported us while we experimented with
the material in this book. To the CocoaConf team for the opportunity to run
our one-day game workshop, again and again. To our workshop attendees,
who gave us such great feedback. To Daniel Steinberg for all those deep
lunchtime discussions when our paths crossed. To the Pragmatic Programmers
for the opportunity to put our thoughts into this format. To our editor,
Rebecca Gulick, for her patience and guidance. And to our families for putting
up with the delirious antics of creatives under deadlines.

You’ve all impacted us. We hope we can do the same in return.

We also want to thank the technical reviewers for their work to test the nar-
rative and code in this book: Janie Clayton-Hasz, James Dempsey, Mike

2. https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/FirstTutorial.html

report erratum • discuss

Expectations and Technical Requirements • xiii

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/FirstTutorial.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Enriquez, Ash Furrow, Brian Hogan, Jeff Holland, John Moses, Kevin Munc,
Zak Nixon, Romain Pouclet, Cesare Rocchi, Kim Shrier, Daniel Steinberg, T.J.
Usiyan, and Miles Wright.

And now, let the games begin!

So, are you ready, player one? Shall we build a game?

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 1

Introduction to Sprite Kit
Sprite Kit is an amazing little game engine. It comes with Apple’s iOS and OS
X developer tools, so there’s no problem with getting started. With its simple
API and boundless potential, you’ll have your 2D game idea up and running
on a real device in no time.

Let’s begin our journey into the world of Sprite Kit by building Space Run, a
single-finger game that’s an excellent diversion for casual play and a great
case study. We first sketched out the idea behind Space Run in Space Run,
on page viii, so go back and refresh your memory if you are fuzzy on the details.
Over the next few chapters, we’ll build up this game piece by piece until we
have menus, difficulty selection, scoring, cut scenes, explosions, and sound
effects!

Apple makes it quite easy to get started with the Sprite Kit project template.
It generates an iOS application with all the components wired up and a scene
ready to use. We’ll talk more about some of the underlying details of Sprite
Kit soon. Right now we’re going to introduce ourselves to the Sprite Kit world
by writing code and pausing throughout to reflect on what we’re doing.

What better way to get started than to figure out how to display and move a
spaceship around on the screen in response to the player’s finger? You’ll learn
how images are rendered as sprites. To update the position of the ship, you’ll
learn about touch handling in the Sprite Kit world and how the screen is
updated for every frame. By the end, you’ll understand how nodes and scenes
work together to let you build whatever world you can imagine.

Ready? Let’s go!

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Setting Up a Sprite Kit Project
Start by setting up a new Sprite Kit project from Apple’s template. With Xcode
open, choose File > New > Project. Make sure the iOS application templates
are selected in the sidebar and choose SpriteKit Game, as shown in the
following figure.

Figure 3—Choosing the Sprite Kit project template

Name the project SpaceRun and set the device type to iPhone. Also, set the
class prefix to the same as the authors’ prefix, RCW. That will make it easier
when you see filenames mentioned here as you follow along.

Figure 4—The Hello World
program according to Sprite

Kit

Run the app. You’ll see Hello, World text on the
screen, and a spinning spaceship node shows up
wherever you tap, as you can see in the figure
here. It doesn’t do anything impressive, but hey,
it’s a template to start with. You’ll want to design
or buy graphic assets for your own games that
you release to the App Store, but for now we’ll
just reuse the spaceship graphic in our game.

This template sets up a storyboard and an initial
view controller that has an SKView instance as its
view. This special subclass of UIView holds the
entire Sprite Kit world, runs the game’s clock,
and lets us transition between scenes. We’ll talk
more about the SKView in Chapter 4, Menus and
Cutscenes, on page 53, but for now you can rest
assured that all the important parts are wired up
for you. Let’s get down to business and cover how
to draw on the screen.

Chapter 1. Introduction to Sprite Kit • 2

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Drawing Scenes and Sprite Nodes
The template is a fine starting point, but if you’re going to send the spaceship
on a daring rescue mission, you need to figure out how to draw it yourself
and understand what’s going on. In this section, we’re going to write code to
experiment with scene setup and then talk about what goes on behind the
curtain.

Start by deleting the contents in the RCWMyScene.m file that came with the
template. Replace it with this implementation of the RCWMyScene class that
displays the spaceship image in the middle of the screen:

01-SpriteIntro/step01/SpaceRun/RCWMyScene.m
#import "RCWMyScene.h"

@implementation RCWMyScene

- (id)initWithSize:(CGSize)size
{

if (self = [super initWithSize:size]) {
self.backgroundColor = [SKColor blackColor];

NSString *name = @"Spaceship.png";
SKSpriteNode *ship = [SKSpriteNode spriteNodeWithImageNamed:name];
ship.position = CGPointMake(size.width/2, size.height/2);
[self addChild:ship];

}
return self;

}

@end

Everything in Sprite Kit takes place within an SKScene object. Think of it like
a stage where actors come and go. This specific RCWMyScene object is a subclass,
and the -initWithSize: method is the designated initializer,1 where we do all the
setup we need before the scene is presented in an SKView and rendered on the
screen.

We set the backgroundColor property to a black SKColor object. We then create a
sprite node that contains the spaceship image PNG that came with the tem-
plate. We update the ship’s position property to be the center of the scene and
then add the ship.

1. https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Initialization/Ini-
tialization.html

report erratum • discuss

Drawing Scenes and Sprite Nodes • 3

http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step01/SpaceRun/RCWMyScene.m
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Initialization/Initialization.html
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Initialization/Initialization.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

That’s it! Run the application, and you’ll see a huge ship in the
middle of the screen, like the image shown here.

That’s far too big. The Spaceship.png file defines a much larger
image size than we need in the normal course of our game. But
there’s no need to shrink the image file itself. Sprite Kit is very
efficient at resizing image textures on the fly.

Let’s update the visible size of the sprite node.

01-SpriteIntro/step02/SpaceRun/RCWMyScene.m
self.backgroundColor = [SKColor blackColor];

NSString *name = @"Spaceship.png";
SKSpriteNode *ship = [SKSpriteNode spriteNodeWithImageNamed:name];
ship.position = CGPointMake(size.width/2, size.height/2);
ship.size = CGSizeMake(40, 40);➤

[self addChild:ship];

Changing this size property applies an efficient transform to the pixels of the
image to make the image fit within the given width and height. If you’re
familiar with the standard iOS Core Graphics routines, it’s similar to what
happens when scaling with a CGAffineTransform. But instead of calculating the
transforms yourself, node objects expose simple property APIs to achieve the
same effect.

Now run the game, and you’ll see the image shown here.

Ah, that’s much better! There’s enough room for everything
else on the screen.

What Just Happened?
Let’s stop and reflect on what we just did. To draw the space-
ship on the screen, we had to create an instance of SKSpriteNode
and add it as a child node of our scene. The RCWMyScene object
is a subclass of SKScene, which shares the same superclass as the sprite node,
SKNode.

There’s a pattern here that’s important to point out. Everything that Sprite
Kit draws on the screen is some kind of subclass of SKNode. Our ship is repre-
sented by an SKSpriteNode, which means that it is rendered as a sprite, or a
textured image. The texture is loaded automatically from a file named Space-
ship.png in this case. We’re calling [self addChild:ship] to add the ship to the scene
because our scene itself is also a node, and we want the spaceship to be a
child node of the scene.

Chapter 1. Introduction to Sprite Kit • 4

report erratum • discusswww.allitebooks.com

http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step02/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite
http://www.allitebooks.org

Sprite Kit uses this node tree structure to decide how to draw everything on
the screen for each frame. In contrast to the way Cocoa and Cocoa Touch
converse with you in their own flavor of the model-view-controller paradigm,
Sprite Kit speaks the language of scene graphs to keep everything organized.2,3

Each of the nodes in this huge graph has important information about how
the scene is drawn. Our ship node knows the texture that should be rendered,
and it knows the size and position onscreen. Other nodes for labels, particles,
and even empty nodes that are just containers for other nodes form the
structure of the graph, as shown in the following figure.

Figure 5—Nodes laid out in a scene graph

As our game evolves, we will use nodes of all kinds to represent the different
characters that our player will see and interact with. It’s important to note
that in a scene graph, the nodes are both models and views. We’re not in the
familiar model-view-controller world that Apple recommends for normal iOS
applications. We’re in a scene graph. Nodes represent what is drawn on the
screen, and they also represent the state of the game characters that change
according to the rules of the game world. Nodes really are both the model and
the view.

2. http://en.wikipedia.org/wiki/Model-view-controller
3. http://en.wikipedia.org/wiki/Scene_graph

report erratum • discuss

Drawing Scenes and Sprite Nodes • 5

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Scene_graph
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Notice that strange text at the bottom of the screen that says “1 node 60 fps”?
That is a special debug label added automatically by Sprite Kit. Take a look
at the RCWViewController.m file in the -viewDidLoad method.

- (void)viewDidLoad
{

[super viewDidLoad];

SKView * skView = (SKView *)self.view;
skView.showsFPS = YES;➤

skView.showsNodeCount = YES;➤

SKScene * scene = [RCWMyScene sceneWithSize:skView.bounds.size];
scene.scaleMode = SKSceneScaleModeAspectFill;

[skView presentScene:scene];
}

Don’t worry about where this SKView object came from yet. We’ll talk about
how it relates to the scene graph of Sprite Kit later, in Chapter 4, Menus and
Cutscenes, on page 53. The only thing we have to worry about here are the
showFPS and showsNodeCount properties. Setting them to YES tells Sprite Kit that
we want to see this special debug information to give us feedback about the
load we are putting on the rendering engine. We’ll remove these lines or set
them to NO when we’re ready to ship the game.

Our ship is drawn in the middle of the screen, but now we want to have it
follow wherever the finger touches. Let’s start working on that next.

Following the Finger Around
To move the ship around, we have to update its position property every time a
finger comes in contact with the screen. Thankfully, handling touch events
in Sprite Kit scenes is the same as elsewhere in iOS. We have all the standard
low-level touch event methods.

We’ll add this method after the -initWithSize: method to move the ship when a
touch begins:

01-SpriteIntro/step03/SpaceRun/RCWMyScene.m
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

UITouch *touch = [touches anyObject];
CGPoint touchPoint = [touch locationInNode:self];
SKNode *ship = [self childNodeWithName:@"ship"];
ship.position = touchPoint;

}

Chapter 1. Introduction to Sprite Kit • 6

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

In the -touchesBegan:withEvent: method, we grab one of the touches out of the set
with the anyObject method. Because our game is meant to be played with a
single finger, we’re going to let the system pick, just in case more than one
touch comes in contact with the screen at the same time.

We then ask the touch to return coordinates in our scene’s coordinate space
using the -locationInNode: method and passing in the scene as the parameter.
Remember that our RCWMyScene class is a subclass of SKScene, which itself is
a subclass of SKNode. It’s nodes all the way down to the bottom! Each node’s
children are positioned within that node’s local coordinate space, just like
UIView objects in normal UIKit. By calling this method with the scene, we are
asking the touch object to convert from screen coordinates to scene coordi-
nates so we have the right location to move the ship as the player expects.

Once we have the ship’s new coordinates, we’re ready to update the position
property. But how do we get access to the ship node in this method? Here
we’re using one of the powerful features of Sprite Kit. We can give nodes
names and look them up anywhere in the scene graph. That’s what we’re
doing by calling [self childNodeWithName:@"ship"]. In this case, we’re just looking
for a direct descendant of this scene with that exact name. You’ll learn how
to find nodes with more flexible queries later.

Of course, to make this work we have to give the node the name we’re looking
for. Update the -initWithSize: method to set the name property.

01-SpriteIntro/step03/SpaceRun/RCWMyScene.m
NSString *name = @"Spaceship.png";
SKSpriteNode *ship = [SKSpriteNode spriteNodeWithImageNamed:name];
ship.position = CGPointMake(size.width/2, size.height/2);
ship.size = CGSizeMake(40, 40);
ship.name = @"ship";➤

[self addChild:ship];

Now, when we run the game, tapping anywhere on the screen updates the
position property, and the ship jumps under the finger.

But we don’t just want the ship to jump when a finger touches. We want the
ship to follow the finger on the screen as it moves. Let’s do that next.

Making the Ship Glide
As our game is now, we have a mechanical problem with our ship. It only moves
when a touch begins on the screen, and we want it to move toward where the
finger drags around on the screen. Because we get all the standard touch events
from iOS, we could copy the same code into -touchesMoved:withEvent: and update
the ship’s position property there, but there’s a simpler way with Sprite Kit.

report erratum • discuss

Making the Ship Glide • 7

http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Let’s start with a property that keeps track of the touch that we received until
the touch ends. Add this class extension to the top of the RCWMyScene.m file
above the @implementation definition:

01-SpriteIntro/step04/SpaceRun/RCWMyScene.m
@interface RCWMyScene ()
@property (nonatomic, weak) UITouch *shipTouch;
@end

We’re declaring the property as weak because we don’t want to keep a reference
to the object when the system is done with it. UITouch objects live and update
themselves for the lifetime of the touch. The touch-handling system releases
the objects when the touch is ended. Because our property is weak, it will
automatically be set to nil for us.

Now let’s set that property in -touchesBegan:withEvent:.

01-SpriteIntro/step04/SpaceRun/RCWMyScene.m
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

self.shipTouch = [touches anyObject];
}

Every time a new touch happens, we’ll keep a weak reference to it so we can
use it later. Next, we’ll update the ship’s position every time a frame is drawn
by adding this method to the bottom of the RCWMyScene class:

01-SpriteIntro/step04/SpaceRun/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

if (self.shipTouch) {
SKNode *ship = [self childNodeWithName:@"ship"];
ship.position = [self.shipTouch locationInNode:self];

}
}

The -update: method has special significance on SKScene objects. If Sprite Kit
sees this on a scene, it will be called just before every frame is rendered to
the screen. This is a great place to update the state of the game, such as
making the ship node follow the finger.

In this method, we’re checking to see whether the shipTouch property is nil.
Remember that because this is a weak property, it will be set to nil for us by
the touch-handling system when it releases the touches after they are done.

If the touch is still there, then we find the ship node by name and update its
position property like we did before. Except this time, the position will change on
every frame, and the ship will keep up with wherever the finger is on the screen.

Chapter 1. Introduction to Sprite Kit • 8

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step04/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step04/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step04/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

It’s great that our ship can move, but this isn’t quite the effect we want. Our
game mechanics depend on the ship gliding with a constant speed from where
it is now to where the finger is currently on the screen. That makes it more
challenging for players so they can’t just tap around and cause the ship to
jump immediately out of harm’s way.

Smoothing Out the Motion
To create a smooth, gliding effect while the ship follows the finger, we’ll want
to update the ship’s position to move closer to the finger over time, rather
than jump right to the finger’s coordinates. Because the -update: method
receives the value of Sprite Kit’s clock in the currentTime parameter, we can use
that to calculate how far the ship should move by keeping track of the time
between frames.

First, we’ll add a new property to the class extension of the RCWMyScene object.
We’ll use this to record the last time we updated the frame.

01-SpriteIntro/step05/SpaceRun/RCWMyScene.m
@interface RCWMyScene ()
@property (nonatomic, weak) UITouch *shipTouch;
@property (nonatomic) NSTimeInterval lastUpdateTime;➤

@end

Then, in the -update: method, we’ll subtract the value of that property to calcu-
late the time delta since the last frame.

01-SpriteIntro/step05/SpaceRun/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

if (self.lastUpdateTime == 0) {
self.lastUpdateTime = currentTime;

}
NSTimeInterval timeDelta = currentTime - self.lastUpdateTime;

if (self.shipTouch) {
[self moveShipTowardPoint:[self.shipTouch locationInNode:self]

byTimeDelta:timeDelta];
}
self.lastUpdateTime = currentTime;

}

We’re checking to see whether the lastUpdateTime property is zero first, because
if it is, that means this is the first frame rendered of this scene. We need to
initialize this property before we can get meaningful time-delta calculations,
but we don’t know what to initialize it to until the first time we are called.

report erratum • discuss

Making the Ship Glide • 9

http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step05/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step05/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Next, we calculate the timeDelta value by subtracting the currentTime parameter
from the lastUpdateTime property. Then, if the shipTouch property holds a touch
object, we call a new method to move the ship according to the touch point
by how much time has passed. We’re asking the UITouch object itself to give
us the coordinate of the touch within the scene’s local coordinate system.
After all the work is done, we set the lastUpdateTime property to currentTime so we
are ready to calculate the time difference of the next frame.

Let’s write the -moveShipTowardPoint:byTimeDelta: method to nudge the ship by the
appropriate amount for this frame.

01-SpriteIntro/step05/SpaceRun/RCWMyScene.m
- (void)moveShipTowardPoint:(CGPoint)point byTimeDelta:(NSTimeInterval)timeDelta
{

CGFloat shipSpeed = 130; // points per second
SKNode *ship = [self childNodeWithName:@"ship"];
CGFloat distanceLeft = sqrt(pow(ship.position.x - point.x, 2) +

pow(ship.position.y - point.y, 2));
if (distanceLeft > 4) {

CGFloat distanceToTravel = timeDelta * shipSpeed;
CGFloat angle = atan2(point.y - ship.position.y,

point.x - ship.position.x);
CGFloat yOffset = distanceToTravel * sin(angle);
CGFloat xOffset = distanceToTravel * cos(angle);
ship.position = CGPointMake(ship.position.x + xOffset,

ship.position.y + yOffset);
}

}

Yikes! If you’d like to take a moment to write apology notes to your high school
trigonometry teacher, go right ahead. We did, too. Game development is a
great way to refresh the mind on all the math we thought wouldn’t be neces-
sary in real life. Don’t worry, we’ll break down this code together. Figure 6,
Calculating the distance to travel this frame, on page 11 provides a figure to
help visualize what’s happening:

First off, we are setting a shipSpeed variable to keep track of how many points
per second the ship should travel. We find the ship node and calculate
distanceLeft using the Pythagorean theorem with the ship’s current location
and final destination.4

Before we actually move the ship, we’re checking to see whether this distanceLeft
variable is greater than four points. If not, then we don’t want to move the
ship anymore. We’re close enough. If we kept trying to move the ship anyway,

4. http://en.wikipedia.org/wiki/Pythagorean_theorem

Chapter 1. Introduction to Sprite Kit • 10

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/01-SpriteIntro/step05/SpaceRun/RCWMyScene.m
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 6—Calculating the distance to travel this frame

then it’s possible that the ship would jitter around the touch point because
of the imprecision of the floating-point calculations. Four points is far enough
away that any rounding errors won’t wiggle the ship around the destination
point and close enough that the player will have the impression the ship
reached the finger.

Assuming we’re not close enough, then we calculate the distanceToTravel variable
by multiplying the timeDelta by the shipSpeed. This is how far we should move
for just this frame. We have to convert that distance back into x- and y-coor-
dinates, so we use the atan2() function and some more basic trigonometry to
set the ship node’s position property.

Now run the game, and the ship will glide at a nice, constant rate to wherever
your finger is on the screen. This is an important game mechanic because
players will have to think about how to maneuver around obstacles as they
approach. No cheating!

And that’s it for our whirlwind Sprite Kit introduction! You’ve learned a little
bit about how Sprite Kit draws things to the screen, you’ve learned how to
track touches and update the ship’s position over time, and you’ve learned
about the frame update loop along the way.

This is a great start, but weren’t we supposed to be able to shoot and dodge
obstacles? Yup, and to do that we’ll have to tackle the next topic, Sprite Kit
actions!

report erratum • discuss

Making the Ship Glide • 11

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 2

Actions: Go, Sprite, Go!
We’ve got the rudiments of Sprite Kit behind us. We know about nodes and
the scene graph, how to display images with sprite nodes, and how to move
the ship around on the screen in response to touch events.

Now we’re ready for some action with obstacles, enemies, and a weapon with
a power-up to defend ourselves. We’re going to achieve these things with
Sprite Kit actions, a powerful way to give behaviors to nodes that control what
they do during the course of the game. By the end of this chapter, you’ll
understand the powerful building blocks for all kinds of complex behaviors.

Ready? Let’s go!

Shooting at Asteroids with Simple Motion Actions
We’ll begin by exploring simple motion actions that move nodes around on
the screen. Although you know how to change a node’s position in real time
in the -update: method, which you did with the spaceship back in Chapter 1,
Introduction to Sprite Kit, on page 1, we’re going to use Sprite Kit actions to
move the other nodes around on the screen. Any movement that is determin-
istic with a constant velocity works well as an action because we can just
send the nodes on their merry way toward a destination point.

Before we start examining code, we need to make sure that the graphic assets
for two new sprite nodes are in the project: the photon torpedo and the
asteroid. Remember, you learned how to download the source code for this
book back in How to Get the Most out of This Book, on page xii. We’re going
to begin in the 02-Actions/step01 step directory. If you’ve been building your own
project while reading along, then drag and drop photon.png and asteroid.png into
the file browser sidebar of Xcode to add them to your project. Make sure you
have the Copy Items into Destination Group’s Folder (if Needed) checkbox

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

checked, and make sure that the SpaceRun target is checked, as it is in the
following figure.

Figure 7—Dragging and dropping files into the Xcode project

Timing the Launch of Photon Torpedoes
Let’s arm our ship with the very best ACME brand Mark III class photon tor-
pedoes—an excellent weapon available at any fine retail space port. As we
discussed when dreaming up the game back in Space Run, on page viii, our
ship will shoot as long as the finger is in contact with the screen and steering
it. Single-handed mechanics like this make it easy to casually play and will
work great for our needs here.

To know how often to launch the photon torpedoes, we need to keep track of
the last time we fired. Let’s do this with a property on our scene object defined
at the top of RCWMyScene.m in the class extension.

02-Actions/step01/SpaceRun/RCWMyScene.m
@interface RCWMyScene ()
@property (nonatomic, weak) UITouch *shipTouch;
@property (nonatomic) NSTimeInterval lastUpdateTime;
@property (nonatomic) NSTimeInterval lastShotFireTime;➤

@end

We’ll set this property every time a shot is fired and use it to calculate when
to fire the next one.

Because we only want the projectiles to launch when the finger is in contact
with the screen, add this code that triggers the launch inside the conditional
within the -update: method that checks the shipTouch property.

02-Actions/step01/SpaceRun/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

if (self.lastUpdateTime == 0) {
self.lastUpdateTime = currentTime;

}

Chapter 2. Actions: Go, Sprite, Go! • 14

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step01/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/02-Actions/step01/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

NSTimeInterval timeDelta = currentTime - self.lastUpdateTime;

if (self.shipTouch) {
[self moveShipTowardPoint:[self.shipTouch locationInNode:self]

byTimeDelta:timeDelta];

if (currentTime - self.lastShotFireTime > 0.5) {➤

[self shoot];➤

self.lastShotFireTime = currentTime;➤

}➤

}

self.lastUpdateTime = currentTime;
}

We subtract the currentTime parameter from our lastShotFireTime property and
check to see whether the difference is greater than half a second. If so, then
we call the soon-to-be-written -shoot method and assign the current time to
our lastShotFireTime property.

Don’t We Have to Initialize lastShotFireTime?

Remember back in Smoothing Out the Motion, on page 9, how we had to check to
see whether the lastUpdateTime property was zero before doing any time-delta calculations
for movement? Well, we don’t need to do that here. If lastShotFireTime is zero and current-
Time is some very large number, then our ship will fire the torpedo immediately, and
lastShotFireTime will be set to the current time. The timeDelta used for movement calcula-
tions is different because a very large timeDelta at the start of the game would make
the ship seem to jump, which isn’t what we want.

We know when to shoot. Now we need to make it happen. Let’s write the -shoot:
method that will add the photon node and send it off with a motion action.

02-Actions/step01/SpaceRun/RCWMyScene.m
- (void)shoot
{

SKNode *ship = [self childNodeWithName:@"ship"];

SKSpriteNode *photon = [SKSpriteNode spriteNodeWithImageNamed:@"photon"];
photon.name = @"photon";
photon.position = ship.position;
[self addChild:photon];

SKAction *fly = [SKAction moveByX:0
y:self.size.height+photon.size.height

duration:0.5];
[photon runAction:fly];

}

report erratum • discuss

Shooting at Asteroids with Simple Motion Actions • 15

www.allitebooks.com

http://media.pragprog.com/titles/pssprite/code/02-Actions/step01/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite
http://www.allitebooks.org

We find the ship node by name, just like we did in -moveShipTowardPoint:
byTimeDelta:. Then we create a new SKSpriteNode with our photon.png image texture.
We name it “photon” so we can find it later, and set its starting position to
be the same as the ship before adding it to the scene.

Then we invoke the action magic. All Sprite Kit actions are created using class
methods on the SKAction class. We don’t need to initialize any special subclasses
on our own; it’s all handled for us transparently through Apple’s class cluster
mechanism. In this case, we’re creating an action with the -moveByX:y:duration:
class method and by passing it to the -runAction: method on the photon node.
This causes the node to travel by the given y distance over the given duration
of time in seconds.

In this case, the y-coordinate we want the photon to travel to is up and off
the screen—far enough away to give the player the illusion that it just keeps
going off into space. We’re calculating that destination by adding the scene’s
height to the photon node’s height.

But wait! Those who’ve been doing iOS development will wonder why we’re
adding to make the node travel up. In the rest of iOS, the default coordinate
system has the {0,0} origin in the top-left corner, and y values increase for
rows of points farther down the screen. Sprite Kit uses a flipped y-axis with
the {0,0} origin at the bottom left of the screen, as you see in the following
figure.

Figure 8—Comparing Sprite Kit and UIKit coordinates

Why? It’s common for game engines to use this flipped y-axis, sometimes for
historical technical reasons, but also because it resembles the Cartesian

Chapter 2. Actions: Go, Sprite, Go! • 16

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

coordinate system used often in mathematics.1 Just keep this in mind as you
position and move your nodes around.

If we run the game now, the ship shoots while the finger touches the screen.
But we can’t stop here; we need to clean up after ourselves. All the photon
torpedo nodes are left on the scene just above where we can see them. Sprite
Kit is really good about ignoring nodes that aren’t displayed, so we won’t
notice much of a slowdown for a long while. But every one of those nodes
takes up memory space. We need to remove them from the scene when they’re
done playing their role.

Thankfully, there is a special -removeFromParent action we can run on any node
to throw it away, and we can chain sequences of actions together. Let’s change
the -shoot: method to run a sequence that first moves and then removes the
photon.

02-Actions/step02/SpaceRun/RCWMyScene.m
- (void)shoot
{

SKNode *ship = [self childNodeWithName:@"ship"];

SKSpriteNode *photon = [SKSpriteNode spriteNodeWithImageNamed:@"photon"];
photon.name = @"photon";
photon.position = ship.position;
[self addChild:photon];

SKAction *fly = [SKAction moveByX:0➤

y:self.size.height+photon.size.height➤

duration:0.5];➤

SKAction *remove = [SKAction removeFromParent];➤

SKAction *fireAndRemove = [SKAction sequence:@[fly, remove]];➤

[photon runAction:fireAndRemove];➤

}

We create the +removeFromParent action and then build a sequence by passing
an array of all the actions to run in order to the +sequence: method on SKAction.
No more memory leak! Now all we need is something to shoot at.

Plotting Random Asteroid Trajectories and Motion
Hurtling asteroids toward the spacecraft is a similar process to the way we
move the photons. We just need to decide how often and when they should
appear. Let’s create a single dispatch point in our -update: method that rolls
the dice and drops asteroids onto the scene.

1. http://en.wikipedia.org/wiki/Cartesian_coordinate_system

report erratum • discuss

Shooting at Asteroids with Simple Motion Actions • 17

http://media.pragprog.com/titles/pssprite/code/02-Actions/step02/SpaceRun/RCWMyScene.m
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

02-Actions/step03/SpaceRun/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

if (self.lastUpdateTime == 0) {
self.lastUpdateTime = currentTime;

}
NSTimeInterval timeDelta = currentTime - self.lastUpdateTime;
if (self.shipTouch) {

[self moveShipTowardPoint:[self.shipTouch locationInNode:self]
byTimeDelta:timeDelta];

if (currentTime - self.lastShotFireTime > 0.5) {
[self shoot];
self.lastShotFireTime = currentTime;

}
}
if (arc4random_uniform(1000) <= 15) {➤

[self dropAsteroid];➤

}➤

self.lastUpdateTime = currentTime;
}

We are using arc4random_uniform() to generate a uniformly distributed random
number between 0 and 999. If the result is less than 15, then the game drops
an asteroid, which is effectively 1.5 percent of the time a frame is drawn. Why
1.5 percent? It’s just a number that seemed challenging enough while noodling
around with different values. This is a great place to experiment and even
make this number increase over time if you want the difficulty to increase as
the game progresses.

Figure 9—Asteroid start and
end points forming a funnel

Before we implement the -dropAsteroid method to
actually do the work of sending the node down
the screen, let’s think through the math behind
how we want the asteroids to move. The aster-
oids should travel at random angles and speeds
toward the bottom of the screen. This is best
done by imagining a funnel where asteroids
randomly appear along the wide end above the
top of the screen and travel to random destina-
tions along the narrow end below the screen, as
in the figure here.

That means we need to generate random starting
points, ending points, and random durations so
our movement actions give the effect we want.
Now we have enough information to set up the
variables for calculations in the -dropAsteroid method.

Chapter 2. Actions: Go, Sprite, Go! • 18

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

02-Actions/step03/SpaceRun/RCWMyScene.m
- (void)dropAsteroid
{

CGFloat sideSize = 15 + arc4random_uniform(30);
CGFloat maxX = self.size.width;
CGFloat quarterX = maxX / 4;
CGFloat startX = arc4random_uniform(maxX + (quarterX * 2)) - quarterX;
CGFloat startY = self.size.height + sideSize;
CGFloat endX = arc4random_uniform(maxX);
CGFloat endY = 0 - sideSize;

// ...
}

We start our method by setting up the variables that we’ll use to initialize the
node and execute our actions. Let’s walk through what each of these is for:

• sideSize—The value used for the width and height of asteroids. We’re saying
that we want a random value between 15 and 44. Remember, arc4random_uni-
form() generates a value between 0 and one less than the parameter given
—29 in this case. We get the range we want by adding the lower bound,
which gives us between 15 and 44.

• maxX—The maximum x value of the scene, the scene’s width.

• quarterX—A quarter of the value of maxX. We’ll use this variable to help the
next equation make a little more sense.

• startX—The random starting x value for the asteroids. To get the funnel
effect, we want to generate a random value from between –1/4 of the scene
width to +1/4 of the scene width. That’s why were using the quarterX vari-
able and adjusting our random value to make sure it falls in that range.

• startY—The starting y value for the asteroids. It will always be above the
top of the screen by adding the scene’s height to the side height of the
node.

• endX—The random ending x value for the asteroids, which is simply a
value within the range of 0 to maxX.

• endY—The ending y value for the asteroids. It will always be below the
screen by subtracting the node’s side height from 0.

Phew! That’s a lot of setup, but it’s necessary to achieve the effect. We have
our starting position, so let’s create the asteroid node and add it to the scene.

report erratum • discuss

Shooting at Asteroids with Simple Motion Actions • 19

http://media.pragprog.com/titles/pssprite/code/02-Actions/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

02-Actions/step03/SpaceRun/RCWMyScene.m
// ...

SKSpriteNode *asteroid = [SKSpriteNode spriteNodeWithImageNamed:@"asteroid"];
asteroid.size = CGSizeMake(sideSize, sideSize);
asteroid.position = CGPointMake(startX, startY);
asteroid.name = @"obstacle";
[self addChild:asteroid];

// ...

We build the SKSpriteNode instance with the asteroid.png image, set its size to be
a square of sideSize, and position it at the random startX and startY point. We’re
naming this node “obstacle” to make it easy to find later when we have to
look up all the possible things that collide with the ship. And then we finally
add it to the scene as a child node.

Our asteroid is ready to go, so let’s construct and run the actions to make it
move.

02-Actions/step03/SpaceRun/RCWMyScene.m
// ...

SKAction *move = [SKAction moveTo:CGPointMake(endX, endY)
duration:3+arc4random_uniform(4)];

SKAction *remove = [SKAction removeFromParent];
SKAction *travelAndRemove = [SKAction sequence:@[move, remove]];

SKAction *spin = [SKAction rotateByAngle:3 duration:arc4random_uniform(2) + 1];
SKAction *spinForever = [SKAction repeatActionForever:spin];

SKAction *all = [SKAction group:@[spinForever, travelAndRemove]];
[asteroid runAction:all];

The first action moves the asteroid to the destination random ending point
built from the endX and endY variables we created earlier, and it does so over
a random duration between three and seven seconds. The second action
removes the node from the parent. The third action is a sequence of both the
travel and remove actions.

For some extra visual interest, we can introduce a new effect by spinning the
node at random speeds. The +rotateByAngle:duration: action rotates the node by
the given number of radians one time. Because we want the asteroids to keep
spinning, we wrap it in the +repeatActionForever: action so it will continue as long
as the node is in the scene.

Finally, we want to run both the spin and the movement together. That’s
where the +group: action comes into play. We pass this method an NSArray of

Chapter 2. Actions: Go, Sprite, Go! • 20

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step03/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/02-Actions/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

all the actions we want to run in parallel. Once we add this group action to
the node, the magic happens!

Run the game, and you’ll see the debris flying toward your ship. It might look
frightening at first, but you’ll quickly realize that you’re in no danger. These
asteroids don’t do anything when they pass through the ship. Let’s implement
some simple collision detection next.

Checking for Simple Collisions
For our game, we want simple collision detection to check and see whether
two node frames intersect. Sprite Kit makes this really easy. Let’s start by
calling a method named -checkCollisions at the end of the -update: method.

02-Actions/step04/SpaceRun/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

if (self.lastUpdateTime == 0) {
self.lastUpdateTime = currentTime;

}

NSTimeInterval timeDelta = currentTime - self.lastUpdateTime;
if (self.shipTouch) {

[self moveShipTowardPoint:[self.shipTouch locationInNode:self]
byTimeDelta:timeDelta];

if (currentTime - self.lastShotFireTime > 0.5) {
[self shoot];
self.lastShotFireTime = currentTime;

}
}

if (arc4random_uniform(1000) <= 15) {
[self dropAsteroid];

}
[self checkCollisions];➤

self.lastUpdateTime = currentTime;
}

By adding this method call here, we’re doing collision detection just before
every frame is rendered. Now we can implement the collision detection by
looping over all the nodes involved and checking for their frame intersection.

02-Actions/step04/SpaceRun/RCWMyScene.m
- (void)checkCollisions
{

SKNode *ship = [self childNodeWithName:@"ship"];

[self
enumerateChildNodesWithName:@"obstacle"

report erratum • discuss

Shooting at Asteroids with Simple Motion Actions • 21

http://media.pragprog.com/titles/pssprite/code/02-Actions/step04/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/02-Actions/step04/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

usingBlock:^(SKNode *obstacle, BOOL *stop) {
if ([ship intersectsNode:obstacle]) {

self.shipTouch = nil;
[ship removeFromParent];
[obstacle removeFromParent];

}
}];

}

We look up the ship node and stash it in the ship variable for use in our colli-
sion calculations. Then we use the -enumerateChildNodesWithName:usingBlock: method
and pass it the name we’re looking for and a code block that will be executed
for every node that has the same name. This is why we named our asteroid
“obstacle.” Any other node that we want to destroy the ship upon collision
will use the same name and will participate in this method call.

Inside the block of code we pass to this method, we are given two arguments:
the SKNode instance that passes the name test and a Boolean pointer we can
set to stop the loop, just like with NSArray’s -enumerateObjectsUsingBlock:. For every
obstacle node, we check for collision with the ship using the -intersectsNode:
method available on SKNode objects. This does simple rectangular frame
intersection, as shown in the following figure, which is sufficient for what we
need now.

Figure 10—Simple frame-based collision detection

If the ship and an obstacle touch, the game removes both from the scene and
sets the shipTouch property to nil. This property is used by our shooting logic
in the -update: method. If the ship is gone from the scene but the touch is still
tracked, then photon torpedoes will appear to shoot from the {0,0} coordinate
because the shooting logic is trying to look up the position of a nil node.

Run the game now. You’ll see that the ship and colliding asteroids will vanish
if they collide. That’s great, but let’s implement a collision check with our
photon torpedoes so we can fight back. Add an inner loop that checks to see
whether photon nodes intersect with each of the obstacles we loop over.

Chapter 2. Actions: Go, Sprite, Go! • 22

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

02-Actions/step04/SpaceRun/RCWMyScene.m
[self
enumerateChildNodesWithName:@"obstacle"
usingBlock:^(SKNode *obstacle, BOOL *stop) {

if ([ship intersectsNode:obstacle]) {
self.shipTouch = nil;
[ship removeFromParent];
[obstacle removeFromParent];

}
[self➤

enumerateChildNodesWithName:@"photon"➤

usingBlock:^(SKNode *photon, BOOL *stop) {➤

if ([photon intersectsNode:obstacle]) {➤

[photon removeFromParent];➤

[obstacle removeFromParent];➤

*stop = YES;➤

}➤

}];➤

}];

Inside our loop for each of the obstacles, we’re adding an inner loop for all the
nodes with the name “photon.” Within the code block for that loop, we check
to see whether this particular photon torpedo node also intersects the obstacle
node’s frame. If so, we then remove both and set the stop pointer parameter to
YES to end this inner loop. We’re stopping this loop because there’s no need to
finish going over the rest of the photon nodes to check for intersection with
this obstacle. The obstacle is gone, so this inner loop is done.

And that’s it! We have dangerous asteroids and a weapon to defend ourselves.
Go ahead and play the game for a while to see how long you can stay alive.
Seem too easy? Then let’s add enemy ships that follow complex paths next!

Moving Nodes on a Path
Unlike the asteroids, the enemy ships should appear to be flying around.
What we want is a way to specify a path the enemy ship nodes follow as they
zigzag and loop around on their way past the player’s ship. Thankfully, Sprite
Kit makes that easy to do.

First, we need to add the enemy.png image to our Xcode project so we can use it
in our sprite node. Drag it into the sidebar and set the options like we did before
in Figure 7, Dragging and dropping files into the Xcode project, on page 14.

Next, we need to decide when to send the enemy ships toward the player.
We’ve already established a nice random timing mechanism when dropping
asteroids on the scene. Let’s expand it by changing the section of our -update:
method to call a general -dropThing method instead.

report erratum • discuss

Moving Nodes on a Path • 23

http://media.pragprog.com/titles/pssprite/code/02-Actions/step04/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

But What If My Images Are Not Rectangles?

As you’re learning how to build your simple game, checking for node frame rectangle
intersection is sufficient. But you may not get the effect you want if you have convex
or very pointy shapes as SKSpriteNode objects, because the frame boundaries for the
node might be far away from the pixels that the player sees. In that case, you can
use the CGRectIntersectsRect() function to compare the two node frame rectangles
directly and use CGRectInset() to inset, or decrease, the node frames to give the illusion
to the player that the pointy parts of the node touch.

CGRect obstacleFrame = obstacle.frame;
CGRect obstacleCollisionFrame = CGRectInset(obstacleFrame, 10, 10);
CGRect shipFrame = ship.frame;
CGRect shipCollisionFrame = CGRectInset(shipFrame, 10, 10);

if (CGRectIntersectsRect(shipCollisionFrame, obstacleCollisionFrame)) {
// ...

}

This code calculates new rectangles that are 10 points smaller (or inset) from the
original node frames. Then, instead of asking the nodes whether they intersect with
each other, we use CGRectIntersectsRect() to check whether the two smaller frame rectan-
gles intersect. You can adjust these inset values to taste.

We’ll also go over how to do collision detection with more precise shapes in Detecting
Collisions Between Bodies, on page 144, but checking for rectangle intersection is fast
and easy, and it meets the needs of our game for now.

02-Actions/step05/SpaceRun/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

if (self.lastUpdateTime == 0) {
self.lastUpdateTime = currentTime;

}
NSTimeInterval timeDelta = currentTime - self.lastUpdateTime;
if (self.shipTouch) {

[self moveShipTowardPoint:[self.shipTouch locationInNode:self]
byTimeDelta:timeDelta];

if (currentTime - self.lastShotFireTime > 0.5) {
[self shoot];
self.lastShotFireTime = currentTime;

}
}
if (arc4random_uniform(1000) <= 15) {

[self dropThing];➤

}
[self checkCollisions];
self.lastUpdateTime = currentTime;

}

Chapter 2. Actions: Go, Sprite, Go! • 24

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step05/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Instead of calling -dropAsteroid, we’re calling the -dropThing method, which we
build to choose whether to drop an enemy ship or an asteroid given a certain
probability.

02-Actions/step05/SpaceRun/RCWMyScene.m
- (void)dropThing {

u_int32_t dice = arc4random_uniform(100);
if (dice < 15) {

[self dropEnemyShip];
} else {

[self dropAsteroid];
}

}

Remember that the arc4random_uniform() function returns a uniformly random
integer from 0 to the upper bound parameter. The game reads this if statement
to mean that an enemy ship will be dropped onto the scene 15 percent of the
time; otherwise, an asteroid will drop. This method is now the key place to
play with the probabilities of all the things that interact with the player. We’ll
tweak this more soon.

The -dropAsteroid method is already done. Let’s begin to implement the -dropEne-
myShip method next.

02-Actions/step05/SpaceRun/RCWMyScene.m
- (void)dropEnemyShip {

CGFloat sideSize = 30;
CGFloat startX = arc4random_uniform(self.size.width-40) + 20;
CGFloat startY = self.size.height + sideSize;
SKSpriteNode *enemy = [SKSpriteNode spriteNodeWithImageNamed:@"enemy"];
enemy.size = CGSizeMake(sideSize, sideSize);
enemy.position = CGPointMake(startX, startY);
enemy.name = @"obstacle";
[self addChild:enemy];
// ...

}

As with our asteroids before, we’re choosing a random starting point on the
screen. In this case, we want it to start anywhere at the top, within 20-pixel
margins on either side. We create the enemy ship SKSpriteNode, position it, and
name it “obstacle” like we did with our asteroid nodes.

To make the node move, Sprite Kit gives us a special action that will follow a
Bézier curve,2 a kind of mathematical equation that uses control points to
define how the curve of the path is formed. Here’s an image illustrating the
curve we want the ship to follow:

2. http://en.wikipedia.org/wiki/Bezier_curve

report erratum • discuss

Moving Nodes on a Path • 25

www.allitebooks.com

http://media.pragprog.com/titles/pssprite/code/02-Actions/step05/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/02-Actions/step05/SpaceRun/RCWMyScene.m
http://en.wikipedia.org/wiki/Bezier_curve
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite
http://www.allitebooks.org

Figure 11—The path an enemy ship travels

We’ll get to how we construct this path in a moment. For now, let’s assume
we can call a method, -buildEnemyShipMovementPath, that will return the path we
want. We then create the path-following action and run it on the enemy ship.

02-Actions/step05/SpaceRun/RCWMyScene.m
// ...
CGPathRef shipPath = [self buildEnemyShipMovementPath];
SKAction *followPath = [SKAction followPath:shipPath

asOffset:YES
orientToPath:YES

duration:7];
SKAction *remove = [SKAction removeFromParent];
SKAction *all = [SKAction sequence:@[followPath, remove]];
[enemy runAction:all];

The -followPath:asOffset:orientToPath:duration takes four arguments. The first is a
CGPathRef, a Core Graphics data structure that holds the definition of the
Bézier curve we’ll create in a moment.

The second parameter, asOffset, lets us treat the actual point values of the
path as offsets from the node’s starting points or absolute positions on the
screen. We’re passing in YES because we don’t want the points of our path to
be interpreted absolutely. We’re setting the starting point of this ship randomly
and want the path to be interpreted as offsets treating the starting point as
the origin.

The third parameter, orientToPath:, is the most beautiful part of Sprite Kit’s
path-following action. By passing in YES, the enemy ship will turn to face the
direction of the path automatically. If you’ve ever tried to do this on your own
in other game frameworks, you’re certainly shedding tears of joy right now.

Chapter 2. Actions: Go, Sprite, Go! • 26

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step05/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

And the fourth parameter, duration, is the same as with all the other time-based
actions we’ve used. We’re saying that the ship should move over the course
of seven seconds, following the path as an offset from its starting point, and
orient itself to face the direction the path is currently pointing.

We then build a -removeFromParent action, join these two actions together in a
sequence action, and finally run that on the enemy ship.

Creating CGPathRefs with PaintCode
So, we’ve put off the discussion about where this CGPathRef comes from for
long enough. Let’s implement the -buildEnemyShipMovementPath method and return
the proper shape that describes the path our enemy ship will follow.

02-Actions/step05/SpaceRun/RCWMyScene.m
- (CGPathRef)buildEnemyShipMovementPath
{

UIBezierPath* bezierPath = [UIBezierPath bezierPath];
[bezierPath moveToPoint: CGPointMake(0.5, -0.5)];
[bezierPath addCurveToPoint: CGPointMake(-2.5, -59.5)

controlPoint1: CGPointMake(0.5, -0.5)
controlPoint2: CGPointMake(4.55, -29.48)];

[bezierPath addCurveToPoint: CGPointMake(-27.5, -154.5)
controlPoint1: CGPointMake(-9.55, -89.52)
controlPoint2: CGPointMake(-43.32, -115.43)];

[bezierPath addCurveToPoint: CGPointMake(30.5, -243.5)
controlPoint1: CGPointMake(-11.68, -193.57)
controlPoint2: CGPointMake(17.28, -186.95)];

[bezierPath addCurveToPoint: CGPointMake(-52.5, -379.5)
controlPoint1: CGPointMake(43.72, -300.05)
controlPoint2: CGPointMake(-47.71, -335.76)];

[bezierPath addCurveToPoint: CGPointMake(54.5, -449.5)
controlPoint1: CGPointMake(-57.29, -423.24)
controlPoint2: CGPointMake(-8.14, -482.45)];

[bezierPath addCurveToPoint: CGPointMake(-5.5, -348.5)
controlPoint1: CGPointMake(117.14, -416.55)
controlPoint2: CGPointMake(52.25, -308.62)];

[bezierPath addCurveToPoint: CGPointMake(10.5, -494.5)
controlPoint1: CGPointMake(-63.25, -388.38)
controlPoint2: CGPointMake(-14.48, -457.43)];

[bezierPath addCurveToPoint: CGPointMake(0.5, -559.5)
controlPoint1: CGPointMake(23.74, -514.16)
controlPoint2: CGPointMake(6.93, -537.57)];

[bezierPath addCurveToPoint: CGPointMake(-2.5, -644.5)
controlPoint1: CGPointMake(-5.2, -578.93)
controlPoint2: CGPointMake(-2.5, -644.5)];

return bezierPath.CGPath;
}

report erratum • discuss

Moving Nodes on a Path • 27

http://media.pragprog.com/titles/pssprite/code/02-Actions/step05/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Phew! Yes, that’s a lot of Objective-C code. We’re using Apple’s UIBezierPath
class to construct an object that adds point after point to build the path, and
specifies control points along the way that curve the line segments according
to the Bézier curve rules. Once constructed, we call the CGPath property to
retrieve the necessary CGPathRef structure and return it from the method.

Don’t worry, though; there’s no need to be a Bézier curve maven. Many tools
out there today will let you draw shapes by hand and give you the Objective-
C code that you need. For this particular path, PaintCode was used to draw
and copy the source you see in the -buildEnemyShipMovementPath method. PaintCode
is a marvelous standalone application that does far more than convert draw-
ings into code.3 You can import Photoshop PSD files and export complete
Core Graphics drawing routines to drop right into a UIView, if you wish. Because
we’re in Sprite Kit, we’re not drawing with Core Graphics, but we can still use
PaintCode to generate the Objective-C for just a UIBezierPath object.

In the 02-Actions/step05/assets directory, you’ll find the enemypath.pcvd file, which
is the PaintCode file used to generate the path. It has a custom origin with a
flipped y-axis to match Sprite Kit’s coordinate system, and the origin is set
to be the top middle of the canvas, as shown in Figure 12, Building a Bézier
curve with PaintCode, on page 29.

This isn’t supposed to be a thorough tutorial on Bézier curves or PaintCode.
It’s just enough to show you a simple way to build Bézier curves with a visual
tool and use them. If you want, you can make up several curves and then
choose between them in the -buildEnemyShipMovementPath method based on
whatever rules suit your needs. Bézier curves pop up in other places in Sprite
Kit, such as in the physics engine and SKShapeNode objects, so having a tool
like PaintCode will come in handy.

SKAction objects provide excellent building blocks for all sorts of enemies and
challenges. Just send the nodes on their way, check for collisions, and have
them clean themselves up when they are finished.

But Sprite Kit actions aren’t just for visual effects. While we provide a great
challenge for the player, the experience is a bit bland. We need the excitement
of sound effects, which we’ll add next!

Playing Sound Effects in the Scene
When you’re ready to implement one-shot sound effects in your game, there’s
no need to reach for the iOS audio APIs. Sprite Kit gives us everything we

3. http://www.paintcodeapp.com

Chapter 2. Actions: Go, Sprite, Go! • 28

report erratum • discuss

http://www.paintcodeapp.com
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 12—Building a Bézier curve with PaintCode

need with a special sound action. Let’s add some shooting and explosion
effects for the collisions.

First, we need to make sure the sound files are in the Xcode project. If you’re
creating the project yourself on the fly, drag the obstacleExplode.m4a, shipEx-
plode.m4a, and shoot.m4a files into the Xcode file sidebar. Make sure the
SpaceRun target checkbox is checked, like in Figure 7, Dragging and dropping
files into the Xcode project, on page 14. Xcode doesn’t always check that box
for you for some file types.

Next, we need three properties on our scene object to hold the sound actions.
Let’s add these property definitions to the class extension of RCWMyScene.m.

02-Actions/step06/SpaceRun/RCWMyScene.m
@interface RCWMyScene ()
@property (nonatomic, weak) UITouch *shipTouch;
@property (nonatomic) NSTimeInterval lastUpdateTime;
@property (nonatomic) NSTimeInterval lastShotFireTime;
@property (nonatomic, strong) SKAction *shootSound;➤

@property (nonatomic, strong) SKAction *shipExplodeSound;➤

@property (nonatomic, strong) SKAction *obstacleExplodeSound;➤

@end

report erratum • discuss

Playing Sound Effects in the Scene • 29

http://media.pragprog.com/titles/pssprite/code/02-Actions/step06/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We’re creating these properties because loading a sound file into an action
takes a moment and can introduce a brief pause in the gameplay the first
time the sound is loaded and cached. We want to preload the sounds ourselves
to get the delay out of the way up front during initialization, and we’ll keep a
strong reference to the actions so they aren’t purged from Sprite Kit’s sound
cache for any reason. We know we always need these sounds available for
this scene.

With the properties in place, create the sound actions and assign them to the
properties in the -initWithSize: method.

02-Actions/step06/SpaceRun/RCWMyScene.m
- (id)initWithSize:(CGSize)size
{

if (self = [super initWithSize:size]) {
self.backgroundColor = [SKColor blackColor];
NSString *name = @"Spaceship.png";
SKSpriteNode *ship = [SKSpriteNode spriteNodeWithImageNamed:name];
ship.position = CGPointMake(size.width/2, size.height/2);
ship.size = CGSizeMake(40, 40);
ship.name = @"ship";
[self addChild:ship];

self.shootSound =➤

[SKAction playSoundFileNamed:@"shoot.m4a" waitForCompletion:NO];➤

self.obstacleExplodeSound =➤

[SKAction playSoundFileNamed:@"obstacleExplode.m4a"➤

waitForCompletion:NO];➤

self.shipExplodeSound =➤

[SKAction playSoundFileNamed:@"shipExplode.m4a" waitForCompletion:NO];➤

}
return self;

}

The -playSoundFileName:waitForCompletion: method takes a name for a sound file in
the bundle for the first parameter. This can be any file that the iOS sound
APIs understand, such as MP3, M4A, AIF, CAF, WAV, and more. While there
are performance considerations when choosing sound-file types for the low-
level iOS APIs, we don’t have to worry about that for short one-shot sounds.
M4A files are small, high quality, and quite sufficient for our use.

Notice how we set the waitForCompletion: parameter to NO for all these actions.
This controls how the action fits in with the rest of the actions playing on the
node. In this particular case, it doesn’t really matter because we’re just
playing the sounds by themselves. But if they were part of an action sequence,
then setting waitForCompletion: to YES would pause the sequence until the sound
file stopped playing. That can be useful if you are chaining sounds together

Chapter 2. Actions: Go, Sprite, Go! • 30

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step06/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

one after the other for effect. But for self-contained sound actions like this,
we set the parameter to NO so that Sprite Kit knows we just want to trigger
the sound and move on immediately.

With the sound actions initialized and ready to go, we’ll add two lines to our
-checkCollisions method to run the sound actions on the scene when either the
ship or an obstacle explodes.

02-Actions/step06/SpaceRun/RCWMyScene.m
[self
enumerateChildNodesWithName:@"obstacle"
usingBlock:^(SKNode *obstacle, BOOL *stop) {

if ([ship intersectsNode:obstacle]) {
self.shipTouch = nil;
[ship removeFromParent];
[obstacle removeFromParent];
[self runAction:self.shipExplodeSound];➤

}
[self
enumerateChildNodesWithName:@"photon"
usingBlock:^(SKNode *photon, BOOL *stop) {

if ([photon intersectsNode:obstacle]) {
[photon removeFromParent];
[obstacle removeFromParent];
[self runAction:self.obstacleExplodeSound];➤

*stop = YES;
}

}];
}];

We’re passing the sound action we want to play to the -runAction: method on
the scene. That’s all it takes to play a sound!

Notice that we’re playing the sounds on the scene itself, and not on the other
nodes. That’s because we’re removing those nodes from the scene, and any
node that doesn’t belong on an active scene doesn’t run its actions.

Let’s do the same thing to play a sound every time we shoot our photon
torpedoes.

02-Actions/step06/SpaceRun/RCWMyScene.m
- (void)shoot
{

SKNode *ship = [self childNodeWithName:@"ship"];

SKSpriteNode *photon = [SKSpriteNode spriteNodeWithImageNamed:@"photon"];
photon.name = @"photon";
photon.position = ship.position;

[self addChild:photon];

report erratum • discuss

Playing Sound Effects in the Scene • 31

http://media.pragprog.com/titles/pssprite/code/02-Actions/step06/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/02-Actions/step06/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

SKAction *fly = [SKAction moveByX:0
y:self.size.height+photon.size.height

duration:0.5];
SKAction *remove = [SKAction removeFromParent];
SKAction *fireAndRemove = [SKAction sequence:@[fly, remove]];
[photon runAction:fireAndRemove];

[self runAction:self.shootSound];➤

}

We’re passing the sound action stored in the self.shootSound property to the
-runAction: method on the scene.

Playing simple one-shot sounds is so easy with Sprite Kit. You can find out
more about supported file formats in Apple’s documentation.4

You’re almost finished learning about node actions. For our last trick, we’ll
implement power-ups for the player’s weapon.

Implementing Weapon Power-Ups with Actions
To finish out this chapter, we’ll give the player a power-up advantage to help
him clear a path through the obstacles. If the player collects the power-up,
the ship shoots faster for a short time. Collect more power-ups, and the timer
keeps resetting to give more time. Sprite Kit’s code-block actions make this
sequence of steps easy to do.

First, we need our power-up sprite texture, so drag powerup.png into the Xcode
sidebar and make sure it is added to the target, as you did in Figure 7,
Dragging and dropping files into the Xcode project, on page 14.

Next, we need to create a property that we will use to keep track of the current
firing rate.

02-Actions/step07/SpaceRun/RCWMyScene.m
@interface RCWMyScene ()

@property (nonatomic, weak) UITouch *shipTouch;
@property (nonatomic) NSTimeInterval lastUpdateTime;
@property (nonatomic) NSTimeInterval lastShotFireTime;
@property (nonatomic) CGFloat shipFireRate;➤

@property (nonatomic, strong) SKAction *shootSound;
@property (nonatomic, strong) SKAction *shipExplodeSound;
@property (nonatomic, strong) SKAction *obstacleExplodeSound;
@end

4. https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/Usin-
gAudio.html

Chapter 2. Actions: Go, Sprite, Go! • 32

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step07/SpaceRun/RCWMyScene.m
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

This shipFireRate property will be altered when the player collects a power-up
and restored after the power-up timer runs out. Let’s initialize this property
in the -initWithSize: method.

02-Actions/step07/SpaceRun/RCWMyScene.m
self.shipFireRate = 0.5;

We’re setting it to 0.5 photons per second because that’s what we originally
started with when we first wrote the -update: method to calculate when to shoot.
Let’s update that method so it uses this property instead of the hard-coded
value.

02-Actions/step07/SpaceRun/RCWMyScene.m
if (currentTime - self.lastShotFireTime > self.shipFireRate) {➤

[self shoot];
self.lastShotFireTime = currentTime;

}

This will call the -shoot method to launch a photon torpedo only after the dif-
ference between the last fire time and now is greater than the value in the
shipFireRate property.

Now that we’ve added the ability to adjust the firing rate on the fly, we’ll add
the probability that a power-up will be dropped onto the scene by tweaking
the -dropThing method so that we call the -dropPowerup every so often.

02-Actions/step07/SpaceRun/RCWMyScene.m
- (void)dropThing {

u_int32_t dice = arc4random_uniform(100);

if (dice < 5) {➤

[self dropPowerup];➤

} else if (dice < 20) {➤

[self dropEnemyShip];
} else {

[self dropAsteroid];
}

}

This change means that a power-up will appear 5 percent of the time, an
enemy ship 15 percent of the time, and an asteroid 80 percent of the time.
Each of these probabilities is cumulative, which is why we first check to see
whether the dice variable is less than five, followed by an else clause for less
than twenty.

Now, we’ll implement the power-up dropping method to create the node at a
random starting point and travel down the screen.

report erratum • discuss

Implementing Weapon Power-Ups with Actions • 33

http://media.pragprog.com/titles/pssprite/code/02-Actions/step07/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/02-Actions/step07/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/02-Actions/step07/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

02-Actions/step07/SpaceRun/RCWMyScene.m
- (void)dropPowerup
{

CGFloat sideSize = 30;
CGFloat startX = arc4random_uniform(self.size.width-60) + 30;
CGFloat startY = self.size.height + sideSize;
CGFloat endY = 0 - sideSize;

SKSpriteNode *powerup = [SKSpriteNode spriteNodeWithImageNamed:@"powerup"];
powerup.name = @"powerup";
powerup.size = CGSizeMake(sideSize, sideSize);
powerup.position = CGPointMake(startX, startY);
[self addChild:powerup];

SKAction *move = [SKAction moveTo:CGPointMake(startX, endY) duration:6];
SKAction *spin = [SKAction rotateByAngle:-1 duration:1];
SKAction *remove = [SKAction removeFromParent];

SKAction *spinForever = [SKAction repeatActionForever:spin];
SKAction *travelAndRemove = [SKAction sequence:@[move, remove]];
SKAction *all = [SKAction group:@[spinForever, travelAndRemove]];
[powerup runAction:all];

}

Nothing surprising here. It’s an SKSpriteNode instance spinning and moving in
a straight line from the top to the bottom of the screen. We’re naming all these
nodes “powerup” so we can find them at the top of the -checkCollisions method.

02-Actions/step07/SpaceRun/RCWMyScene.m
- (void)checkCollisions
{

SKNode *ship = [self childNodeWithName:@"ship"];

[self➤

enumerateChildNodesWithName:@"powerup"➤

usingBlock:^(SKNode *powerup, BOOL *stop) {➤

if ([ship intersectsNode:powerup]) {➤

[powerup removeFromParent];➤

self.shipFireRate = 0.1;➤

}➤

}];➤

// ...
}

Just like we did with the obstacles, if the ship bumps into a power-up, we
remove it from the scene. Then we set the shipFireRate property to 0.1 photons
a second. Now when the player collects these power-ups, the ship shoots
faster!

Chapter 2. Actions: Go, Sprite, Go! • 34

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step07/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/02-Actions/step07/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Powering Down After a Few Seconds
The power-ups work, but they don’t quite serve the game mechanics we’re
striving for. The ship needs to power down back to the normal shooting rate
after five seconds. This is where Sprite Kit action blocks come in handy.
Change the top of the -checkCollisions method to create an action sequence to
restore the ship’s fire rate.

02-Actions/step08/SpaceRun/RCWMyScene.m
- (void)checkCollisions
{

SKNode *ship = [self childNodeWithName:@"ship"];
[self
enumerateChildNodesWithName:@"powerup"
usingBlock:^(SKNode *powerup, BOOL *stop) {

if ([ship intersectsNode:powerup]) {
[powerup removeFromParent];
self.shipFireRate = 0.1;

SKAction *powerdown = [SKAction runBlock:^{➤

self.shipFireRate = 0.5;➤

}];➤

SKAction *wait = [SKAction waitForDuration:5];➤

SKAction *waitAndPowerdown = [SKAction sequence:@[wait, powerdown]];➤

[ship runAction:waitAndPowerdown];➤

}
}];
// ...

}

We use a -runBlock: action to create an Objective-C block of code that can run
whatever we want. In this case, we set the shipFireRate property back to 0.5
seconds. We make a -waitForDuration: action and combine the two with a sequence
action to delay that code by five seconds. Finally, we run it on the ship node
itself, and boom—we’ve got temporary power-ups!

Well, we almost have the temporary power-ups we are trying to achieve. What
happens if our ship touches another power-up before the previous one runs
out? The way it’s written now, the first power-down action block will run and
restore the ship fire rate too soon, even though the player collected another
one and we queued up another power-down action.

Instead, we want to stop the previous countdown and add a new one. That’s
where action keys come in. Sprite Kit lets us run actions with a key we can
use to identify and remove them before they’ve had a chance to run. Let’s use
that by giving our power-down action the key waitAndPowerdown.

report erratum • discuss

Implementing Weapon Power-Ups with Actions • 35

www.allitebooks.com

http://media.pragprog.com/titles/pssprite/code/02-Actions/step08/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite
http://www.allitebooks.org

02-Actions/step09/SpaceRun/RCWMyScene.m
- (void)checkCollisions
{

SKNode *ship = [self childNodeWithName:@"ship"];

[self
enumerateChildNodesWithName:@"powerup"
usingBlock:^(SKNode *powerup, BOOL *stop) {

if ([ship intersectsNode:powerup]) {
[powerup removeFromParent];
self.shipFireRate = 0.1;

SKAction *powerdown = [SKAction runBlock:^{
self.shipFireRate = 0.5;

}];
SKAction *wait = [SKAction waitForDuration:5];
SKAction *waitAndPowerdown = [SKAction sequence:@[wait, powerdown]];
[ship removeActionForKey:@"waitAndPowerdown"];➤

[ship runAction:waitAndPowerdown withKey:@"waitAndPowerdown"];➤

}
}];
// ...

}

We first call -removeActionForKey: to remove any existing power-down action that
might be there under that key. Nothing happens if there isn’t already an
action with that key. Then we call -runAction:withKey: to apply the action and give
it the key as an identifier so we can remove it if the player collects another
power-up.

The net result is that collecting power-ups resets any countdown back to five
seconds and gives the player a strong incentive to find power-ups on the
screen whenever they show up. For the win!

You’ve finished diving deep into a very important piece of the Sprite Kit toolbox.
Actions let you manipulate nodes on the screen over time and free you up
from managing the size, shape, and other properties on your own. You can
mix and match simple actions to create marvelously complex behaviors,
identify them with keys, and apply them as granularly or as broadly as you
see fit. Sprite Kit actions are a very powerful tool! Check out Apple’s documen-
tation for a complete list.5

This game is quite playable now, but there are still some simple frills we can
add to make it more exciting. Next up, we’re going to build explosions and
fire with the amazing Sprite Kit particle emitters.

5. https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKAction_Ref/Reference/Reference.html

Chapter 2. Actions: Go, Sprite, Go! • 36

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/02-Actions/step09/SpaceRun/RCWMyScene.m
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKAction_Ref/Reference/Reference.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 3

Explosions and Particle Effects
Our game is developing nicely. We have single-finger game control, projectiles,
enemies to avoid, and power-ups to collect. But a game’s mechanics aren’t
the only things that make it fun. Many 2D games today add flair and polish
in the form of particle effects. We, too, can give players a delightful experience
with these special effects to catch their eye and stimulate their palate.

Sprite Kit makes it easy to implement many kinds of particle effects. We’ll
explore two different techniques based on the kind of feel we want to evoke
in our game. You’re going to learn the basics of particle emitting by rolling
your own parallax star-field background that gives the illusion of zooming
quickly through space. Once you understand how particle emitting works,
we’ll start using Apple’s specialized SKEmitterNode to implement the ship
thrusters and explosions.

Ready? Let’s go!

Generating a Parallax Field of Stars
If we put this game in players’ hands today, they’d think the ship was just
sitting still while the dangerous asteroids and enemy ships flew past. But the
ship is actually zooming ahead at full speed, trying to reach the destination.
We need some sort of visual effect to evoke this feeling, and a fast-moving
parallax star field will do the trick nicely.

We will implement this by creating our own particle system, which means
that we’ll generate and move nodes representing particles around on the
screen based on a set of rules. For this effect, our particles are stars, and the
rules are that they should travel from the top of the screen to the bottom,
some faster than others to give the illusion of depth.

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

For simplicity, we will implement this particle system as a completely self-
contained node that we add to our scene underneath all the other nodes.
Let’s call it RCWStarField. We’ll create a new Objective-C class interface file named
RCWStarField.h with these simple contents:

03-Particles/step01/SpaceRun/RCWStarField.h
#import <SpriteKit/SpriteKit.h>

@interface RCWStarField : SKNode
@end

We don’t need to expose any methods on this SKNode subclass because it will
be completely self-contained and run automatically when added to the scene.

Next, we’ll create an Objective-C class implementation file named RCWStarField.m
with this initialization method:

03-Particles/step01/SpaceRun/RCWStarField.m
#import "RCWStarField.h"
@implementation RCWStarField
- (instancetype)init
{

if (self = [super init]) {
__weak RCWStarField *weakSelf = self;
SKAction *update =[SKAction runBlock:^{

if (arc4random_uniform(10) < 3) {
[weakSelf launchStar];

}
}];
SKAction *delay = [SKAction waitForDuration:0.01];
SKAction *updateLoop = [SKAction sequence:@[delay, update]];
[self runAction:[SKAction repeatActionForever:updateLoop]];

}
return self;

}
@end

In the initializer, we are creating and running an action sequence that will
repeat every tenth of a second for as long as the node is in the scene. Unlike
SKScene objects that have an -update: method that is called by Sprite Kit on
every frame, SKNode objects don’t have that luxury. We could add a publicly
visible -update: method and call it explicitly from the scene, but that defeats
the purpose of having a self-contained particle system. Using our own private
update loop will work better.

Note that because we need to call a method on self from inside the block, we
must to create a weak reference to it. This is what we’re doing with the weakSelf
variable. The action holds a strong reference to the block, and the node holds

Chapter 3. Explosions and Particle Effects • 38

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/03-Particles/step01/SpaceRun/RCWStarField.h
http://media.pragprog.com/titles/pssprite/code/03-Particles/step01/SpaceRun/RCWStarField.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

a strong reference to the action. If the block held a strong reference to self (the
node in this case), then the action, the block, and the node would form a
retain cycle and never get deallocated. This weak-self setup is Apple’s way of
protecting against that cycle and stopping memory leaks. For a good
refresher on retain cycles and blocks, check out Apple’s documentation.1

Now, every time this update action is run, we throw the dice and execute the
-launchStar method only 30 percent of the time. Let’s implement that method
next.

03-Particles/step01/SpaceRun/RCWStarField.m
- (void)launchStar
{

CGFloat randX = arc4random_uniform(self.scene.size.width);
CGFloat maxY = self.scene.size.height;
CGPoint randomStart = CGPointMake(randX, maxY);

SKSpriteNode *star = [SKSpriteNode spriteNodeWithImageNamed:@"shootingstar"];
star.position = randomStart;
star.size = CGSizeMake(2, 10);
star.alpha = 0.1 + (arc4random_uniform(10) / 10.0f);
[self addChild:star];

CGFloat destY = 0 - self.scene.size.height - star.size.height;
CGFloat duration = 0.1 + arc4random_uniform(10) / 10.0f;
SKAction *move = [SKAction moveByX:0 y:destY duration:duration];
SKAction *remove = [SKAction removeFromParent];
[star runAction:[SKAction sequence:@[move, remove]]];

}

We’re calculating a random starting point at the top of the screen and traveling
to the bottom, just like we did when we sent the asteroids and power-ups on
their path. Once a node is a child of the scene, the node can either walk up
the parent nodes all the way to the scene object itself or simply use the scene
property, as we’re doing here, to get the scene’s size for the calculations. This
makes our star field reusable anywhere, and it will adjust to a scene’s
dimensions automatically.

We’re creating an SKSpriteNode for the star with the shootingstar image texture,
but we don’t have that in our project yet. Drag the file shootingstar.png into the
Xcode project sidebar and make sure you copy the file into the project direc-
tory, as in Figure 7, Dragging and dropping files into the Xcode project, on
page 14. Note how we’re randomly adjusting the size of the node and setting

1. https://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Working-
withBlocks/WorkingwithBlocks.html#//apple_ref/doc/uid/TP40011210-CH8-SW16

report erratum • discuss

Generating a Parallax Field of Stars • 39

http://media.pragprog.com/titles/pssprite/code/03-Particles/step01/SpaceRun/RCWStarField.m
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/WorkingwithBlocks/WorkingwithBlocks.html#//apple_ref/doc/uid/TP40011210-CH8-SW16
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/WorkingwithBlocks/WorkingwithBlocks.html#//apple_ref/doc/uid/TP40011210-CH8-SW16
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

a random alpha to vary the transparency. For the alpha, we want to guarantee
that the star isn’t invisible, so we’re adding 0.1 to make sure it shows up.
Little tweaks like this help add to the effect of deep space. Feel free to play
with the values to adjust to taste.

At the end of the method, we create the move-and-remove action sequence
that makes the star travel down the screen and leave the scene when done.
By using a random duration value for the move action, we get stars with dif-
ferent speeds. This gives the illusion of parallax, where things that are closer
appear to pass by more quickly than things that are farther away, as you can
see in the following figure.

Figure 13—The parallax star effect

Our star-field particle system is complete! All we have to do now is add it to
our scene. At the top of the RCWMyScene.m file, we’ll import the interface.

03-Particles/step01/SpaceRun/RCWMyScene.m
#import "RCWStarField.h"

Then we’ll create the node and add it to the scene at the very top of the
-initWithSize: method.

03-Particles/step01/SpaceRun/RCWMyScene.m
- (id)initWithSize:(CGSize)size
{

if (self = [super initWithSize:size]) {
self.backgroundColor = [SKColor blackColor];

RCWStarField *starField = [RCWStarField node];
[self addChild:starField];
// ...

Chapter 3. Explosions and Particle Effects • 40

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/03-Particles/step01/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/03-Particles/step01/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

That’s it! No, really, it is! Our RCWStarField node is a self-contained particle
system with its own update loop. As soon as we add it to the scene, the loop
begins and the stars start flying. Because the stars remove themselves when
they reach the bottom of the screen, there’s nothing else we need to do.

This is the basic idea behind a particle emitter. It’s a node representing a
particle system that you add to a scene for a certain effect. Our emitter is a
star field with specific rules for moving stars in a parallax fashion.

Rolling your own particle emitters is a great way to have fine-grained control
over how the particles behave. But for many kinds of effects, such as explo-
sions and fire, we don’t have to roll our own. In fact, Sprite Kit comes with a
visual editor to make up almost any kind of particle-spraying effect you can
imagine! Let’s dive into that next.

Building Thruster Fire with Xcode’s Particle Editor
We’re going to walk through how to use the Sprite Kit particle editor that
comes with Xcode to add some exciting thruster fire to our valiant spaceship.
First, choose File > New > File in Xcode. In the template picker, make sure
iOS Resource is selected in the sidebar, select SpriteKit Particle File, and click
Next, as shown in the following figure.

Figure 14—Creating a new particle file

report erratum • discuss

Building Thruster Fire with Xcode’s Particle Editor • 41

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

When asked to choose a particle template, use the default Spark and click
Next. Then name the file thrust.sks. You’ll notice that the thrust.sks file and an
accompanying spark.png texture file are now in the Xcode sidebar. Select thrust.sks
in Xcode, and you’ll see a flurry of activity in the live particle editor, as in the
following figure.

Figure 15—Xcode’s new particle editor

On the left side, we see the particle emitter animation exactly as it will appear
when added to our scene. On the right, we see a panel with all sorts of settings
(Figure 16, The thrust particle emitter settings, on page 43). In fact, we are
editing an instance of SKEmitterNode, and all these parameters line up with the
properties on that node class. Feel free to browse that class’s documentation
to understand how they work. Here, we’re going to aim for a particular kind
of effect, and together we’ll walk through the parameter settings to achieve
it.

Notice how small the effect is, with a very slight trail out the bottom. We’ll
add this effect to the bottom of our ship node, which will give the appearance
of a continuously firing thruster. Here’s how each of the parameters works
together:

• Particle Texture—This is set by the template you picked when creating the
file. You don’t have to use the default spark.png; you can substitute any
image you want for the particles, but what comes out of the box will work
fine for us.

Chapter 3. Explosions and Particle Effects • 42

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 16—The thrust particle emitter settings

• Particles—We don’t need a lot of nodes to achieve the small rocket-thrust
effect, so a birthrate of 100 particles per second is fast enough. We’re
setting the maximum particle count to zero because the emitter stops
once it reaches the set limit. We don’t want it to stop yet. We’ll control
when the emitter stops in the game code itself.

• Lifetime—This controls how long the particles will live on the scene. In
the star field we built, the lifetime of the particle was determined by how
long it took to move to the bottom of the screen. Here, we’re setting the
starting lifetime to 0.3 seconds, after which the particles are removed.
We can optionally set a range to control random variation of this value.
That would make some particles appear to live longer than others, but it
won’t really matter here because of the tightly packed nature of this effect.

report erratum • discuss

Building Thruster Fire with Xcode’s Particle Editor • 43

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

• Position Range—This controls the random starting distance from the
emitter center for any new particle. By setting x to 5 and y to 0, we’ll have
a tightly confined birthplace that only varies horizontally a little bit.

• Angle—This controls the direction that the particles start to travel after
they are born. Just like with the lifetime controls, you can specify a range
to make it look like the collection of particles fans out, but in this case
we want them flowing straight down, so we’ll set the angle to 270 and the
range to 0.

• Speed—This controls the starting speed of the particle, along with a random
range. For our purposes, 300 is fast enough to stream away from the birth-
place but not too fast to spread out. It makes for a tight flickering effect.

• Acceleration—Once the sprites are in motion, their speed can be affected
by this acceleration vector. We’ll make use of these when we get to
explosions, but for the moment we’ll set them to zero.

• Alpha—This controls the transparency of the particle over time. We’re
saying that the particles must start at fully opaque with an alpha of 1,
give or take a 0.2 range. By using a speed of –15, we’re making them
disappear rapidly, again adding to the tightly packed effect.

• Scale—This does the same kind of manipulation as alpha but on the xScale
and yScale properties of the node. We want the nodes to shrink away and
disappear quickly, giving the effect of an efficient and clean burn.

• Rotation—This parameter has the effect you’d expect on the particle tex-
ture, but since the spark.png image is round, the rotation parameters don’t
matter for us. We’re setting them to zero.

• Color Blend—This works together with the following Color Ramp and Blend
Mode parameters to change the color of the particle over time. The color
is set to red, and the rest of the parameters are left at the default values
because we’re changing the scale and alpha parameters to achieve the
effect we want.

Those are the basics of the particle editor. It’s easy to get lost fiddling with it
to get it just right. This powerful particle system gives you the raw materials
for all sorts of special effects. Our settings give us the specific effect we want
—a tightly confined and flickering thrust effect that will add to the illusion of
a thrilling space chase.

Now that we have this particle emitter, how do we add it to our ship? Let’s
look into loading emitter files.

Chapter 3. Explosions and Particle Effects • 44

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Loading Particle Emitter Files
Unfortunately, loading particle emitter files into memory isn’t as straightfor-
ward as loading sound files into actions, as we saw in Playing Sound Effects
in the Scene, on page 28. For the moment, the Sprite Kit API doesn’t give us
a single method call to load and cache the file for later reuse. But that doesn’t
mean we can’t implement it ourselves!

The *.sks files are archived SKEmitterNode instances. When we manipulate what
we see in the Xcode particle editor, we’re actually manipulating the real
properties on this kind of node. When Xcode writes the particle emitter to
disk, it uses the NSKeyedArchiver mechanism.

We can retrieve a copy of that node by loading it from the app bundle. To
mimic the similar API that Apple uses for sound actions, we’re going to build
an Objective-C category to add a new method onto the SKEmitterNode class.2

Create a new file in Xcode named SKEmitterNode+RCWExtensions.h with the following
contents:

03-Particles/step02/SpaceRun/SKEmitterNode+RCWExtensions.h
#import <SpriteKit/SpriteKit.h>

@interface SKEmitterNode (RCWExtensions)

+ (SKEmitterNode *)rcw_nodeWithFile:(NSString *)filename;

@end

It’s conventional to name object category files this way with the name of the
extended class, a + symbol, and then the custom category name to describe
what we’re doing. In our category interface, we’re naming the method
rcw_nodeWithFile: with the rcw_ prefix because that’s Apple’s recommended way
of ensuring that we don’t clash with existing method names or other categories
also extending this class.

It also makes it easy to search for in our code if Apple ever does implement
this functionality in Sprite Kit and we want to deprecate or remove our method
and use the official one.

Next, we’ll create a file named SKEmitterNode+RCWExtensions.m with this initial
implementation:

2. http://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Cus-
tomizingExistingClasses/CustomizingExistingClasses.html

report erratum • discuss

Loading Particle Emitter Files • 45

www.allitebooks.com

http://media.pragprog.com/titles/pssprite/code/03-Particles/step02/SpaceRun/SKEmitterNode+RCWExtensions.h
http://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/CustomizingExistingClasses/CustomizingExistingClasses.html
http://developer.apple.com/library/ios/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/CustomizingExistingClasses/CustomizingExistingClasses.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite
http://www.allitebooks.org

03-Particles/step02/SpaceRun/SKEmitterNode+RCWExtensions.m
#import "SKEmitterNode+RCWExtensions.h"

@implementation SKEmitterNode (RCWExtensions)

+ (SKEmitterNode *)rcw_nodeWithFile:(NSString *)filename
{

NSString *basename = [filename stringByDeletingPathExtension];
NSString *extension = [filename pathExtension];
if ([extension length] == 0) {

extension = @"sks";
}
NSString *path = [[NSBundle mainBundle] pathForResource:basename ofType:@"sks"];
SKEmitterNode *node = (id)[NSKeyedUnarchiver unarchiveObjectWithFile:path];
return node;

}

@end

We first check the file base name and extension, setting the extension to sks
if there isn’t one there. Apple’s other class methods to load files permit you
to leave off the extension if you want, so we should do that here, too. Then
we grab the main bundle, ask it to give us the string path for a resource with
the given name and file extension, and use the NSKeyedUnarchiver class to extract
the SKEmitterNode. We’re casting the result from the NSKeyedUnarchiver to id to tell
the compiler not to complain, because it is expecting to return a more general
NSObject.

Now, let’s use this method to load our thrust effect and add it to the ship. In
the RCWMyScene.m file, we’ll add this line to import the category interface:

03-Particles/step02/SpaceRun/RCWMyScene.m
#import "SKEmitterNode+RCWExtensions.h"

And then, we’ll add these lines to the -initWithSize: method after we add the ship
to the scene:

03-Particles/step02/SpaceRun/RCWMyScene.m
- (id)initWithSize:(CGSize)size
{

if (self = [super initWithSize:size]) {
// ...
[self addChild:ship];

SKEmitterNode *thrust = [SKEmitterNode rcw_nodeWithFile:@"thrust.sks"];➤

thrust.position = CGPointMake(0, -20);➤

[ship addChild:thrust];➤

//...

Chapter 3. Explosions and Particle Effects • 46

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/03-Particles/step02/SpaceRun/SKEmitterNode+RCWExtensions.m
http://media.pragprog.com/titles/pssprite/code/03-Particles/step02/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/03-Particles/step02/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We’re calling the -rcw_nodeWithFile: we just wrote on SKEmitterNode to get an instance
of our thrust effect. We’re setting the position using coordinates based on the
ship node’s own coordinate space and then adding it to the ship node.
Remember from our discussion back in Chapter 1, Introduction to Sprite Kit,
on page 1, that the nodes make up a tree. Children nodes act as part of their
parent. By adding the thrust emitter node as a child of the ship at {0,-20}, the
particle effect appears to be coming out of the back of the ship image as we
see in the following figure.

Figure 17—The thrust emitter node as a child of the ship node

That’s all it takes to add prefabricated SKEmitterNode particle effects to your
game!

We’re almost finished with particle systems for this level. Let’s add the
explosions next.

Spewing Particles Briefly for Explosions
We want to add explosions to the two collisions in our game: when the ship
either shoots or collides with an obstacle. We’ll build these particle emitters
the same way we built the thrust emitter. Adding them to the scene is easy,
but we have a problem. We don’t want these emitters to keep running indefi-
nitely. How do we make them die out and remove them from the scene after
a short duration?

We use Sprite Kit actions, of course! Specifically, we’ll use an action sequence
to pause for a short duration, and then set the particle birthrate property to
zero and wait for all the particles to die before removing the node. Because
this is such a common operation for our emitters in this game and we already
have a category to extend SKEmitterNode, let’s add a new method that does this
for us.

report erratum • discuss

Spewing Particles Briefly for Explosions • 47

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

03-Particles/step03/SpaceRun/SKEmitterNode+RCWExtensions.m
- (void)rcw_dieOutInDuration:(NSTimeInterval)duration
{

SKAction *firstWait = [SKAction waitForDuration:duration];
__weak SKEmitterNode *weakSelf = self;
SKAction *stop = [SKAction runBlock:^{

weakSelf.particleBirthRate = 0;
}];
SKAction *secondWait = [SKAction waitForDuration:self.particleLifetime];
SKAction *remove = [SKAction removeFromParent];
SKAction *dieOut = [SKAction sequence:@[firstWait, stop, secondWait, remove]];
[self runAction:dieOut];

}

We have two waiting periods because once we set the birthrate to zero, we
still need to wait before the particles die out. Otherwise, the particles will
vanish from the screen immediately, which isn’t the effect we’re looking for.

We need to add this method to the SKEmitterNode+RCWExtensions.h file so that our
scene can call it:

03-Particles/step03/SpaceRun/SKEmitterNode+RCWExtensions.h
@interface SKEmitterNode (RCWExtensions)

+ (SKEmitterNode *)rcw_nodeWithFile:(NSString *)filename;
- (void)rcw_dieOutInDuration:(NSTimeInterval)duration;➤

@end

Now we need to create the collision explosions. Create new particle emitter
files named obstacleExplode.sks and shipExplode.sks and set the parameters to look
like Figure 18, The obstacle and ship explosion emitter settings, on page 49.

Take some time to play with both of the .sks files in the 03-Particles/step03 project
to note the differences and similarities. We’re using the same spark.png particle
texture. Because these are explosions, we’re making the particles spread out
in all directions, and we’re giving the particles a slight downward acceleration
to add to the illusion that we’re zooming through space.

When a photon torpedo strikes and destroys an obstacle, the explosion should
disperse and die out quickly because it will happen a lot during the game,
and we don’t want to obscure the player’s vision. By contrast, when an
obstacle strikes the ship, the explosion is slower and takes longer for the
particles to shrink and fade away. Because that signals the end of the player’s
time in this round, we’re taking our time to give it a majestic feel. Think of it
like a moment of pause for the player to regroup and try again.

Chapter 3. Explosions and Particle Effects • 48

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/03-Particles/step03/SpaceRun/SKEmitterNode+RCWExtensions.m
http://media.pragprog.com/titles/pssprite/code/03-Particles/step03/SpaceRun/SKEmitterNode+RCWExtensions.h
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 18—The obstacle and ship explosion emitter settings

report erratum • discuss

Spewing Particles Briefly for Explosions • 49

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Now we’re ready to load these files into the game. Because we’re going to be
using particle emitters over and over, we don’t want to load them from their
files every time we need one. Instead, we will cache them in properties on the
scene object like we did with sound actions in Playing Sound Effects in the
Scene, on page 28. Let’s add two properties for the emitter nodes in the class
extension.

03-Particles/step03/SpaceRun/RCWMyScene.m
@interface RCWMyScene ()
@property (nonatomic, weak) UITouch *shipTouch;
@property (nonatomic) NSTimeInterval lastUpdateTime;
@property (nonatomic) NSTimeInterval lastShotFireTime;
@property (nonatomic) CGFloat shipFireRate;
@property (nonatomic, strong) SKAction *shootSound;
@property (nonatomic, strong) SKAction *shipExplodeSound;
@property (nonatomic, strong) SKAction *obstacleExplodeSound;
@property (nonatomic, strong) SKEmitterNode *shipExplodeTemplate;➤

@property (nonatomic, strong) SKEmitterNode *obstacleExplodeTemplate;➤

@end

We’re calling them “templates” because we’re going to use these nodes to
make more nodes when we need them on the fly. Set these properties in the
-initWithSize: method so they are ready when the scene is initialized.

03-Particles/step03/SpaceRun/RCWMyScene.m
self.shipExplodeTemplate = [SKEmitterNode rcw_nodeWithFile:@"shipExplode.sks"];
self.obstacleExplodeTemplate =

[SKEmitterNode rcw_nodeWithFile:@"obstacleExplode.sks"];

Just like we did with the thruster particle emitter, we’re using the category
extension method on SKEmitterNode that we wrote to pull the data out of the
particle emitter file in the app bundle.

Now we’re ready to play these effects on the scene when the collisions happen
in -checkCollisions. First, let’s add the ship explosion right after running the
sound-effect action.

03-Particles/step03/SpaceRun/RCWMyScene.m
// ...
[self runAction:self.shipExplodeSound];

SKEmitterNode *explosion = [self.shipExplodeTemplate copy];➤

explosion.position = ship.position;➤

[explosion rcw_dieOutInDuration:0.3];➤

[self addChild:explosion];➤

Notice how we’re calling -copy on the node in the shipExplodeTemplate property.
Nodes can only be added to a scene once. If we try to add a node again that
already exists in the scene, then the game will crash with an error message.

Chapter 3. Explosions and Particle Effects • 50

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/03-Particles/step03/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/03-Particles/step03/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/03-Particles/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We must add copies of particle emitter nodes, and we’re using the emitter
node in our cached properties as templates from which to make these copies.

Once we have our emitter-node copy, we set the position to where the obstacle
was, tell it to start fading away after a tenth of a second with -rcw_dieOutInDuration:,
and then add it to the scene. Let’s do the same thing for the obstacle collisions.

03-Particles/step03/SpaceRun/RCWMyScene.m
[self runAction:self.obstacleExplodeSound];

SKEmitterNode *explosion = [self.obstacleExplodeTemplate copy];➤

explosion.position = obstacle.position;➤

[explosion rcw_dieOutInDuration:0.1];➤

[self addChild:explosion];➤

*stop = YES;

Build and run the game. Houston, we have explosions!

And that’s it for particle emitters. You started out learning how they work by
creating your own emitter for stars in your deep-space star-field effect. Then
we used the canned SKEmitterNode instances, courtesy of Xcode’s particle editor,
to complete the illusion of thrust and collisions.

If it’s this simple to use the visual editor to create and load these particle
systems, then why go to the trouble of building our own particle emitter for
the star field? It all comes down to the rules that you want the particles to
follow. SKEmitterNode instances are better for random and controlled spraying
effects. Our star field had different needs that were more straightforward to
achieve in custom code.

Still, SKEmitterNode objects offer a serious performance advantage. Drawing
nodes on the screen doesn’t come for free; the more nodes there are to manage,
the more work Sprite Kit has to do, and the bigger potential for a drop in
frame rate. SKEmitterNodes are fine tuned in a way that we can’t achieve ourselves
with the SKNode subclasses available to us. The particles are represented by
private lightweight nodes that are very fast and let you run dense particle
effects before you’ll notice a slowdown on a device.

You’ll make these kinds of tradeoffs quite often in game development. Try
something to see whether it works. If you need more performance, try
swtiching strategies.

This level of our game functions and looks great. Now let’s figure out how to
get the player into and out of the game with menus and cutscenes.

report erratum • discuss

Spewing Particles Briefly for Explosions • 51

http://media.pragprog.com/titles/pssprite/code/03-Particles/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 4

Menus and Cutscenes
Most games don’t just dive into the action. Often, they start at a menu of
some kind that lets you fiddle with settings, or connect and review details on
social game services, such as Game Center. Our game needs to let the player
choose a difficulty level, so we’ll need a menu, too. Also, many games have
cutscenes that aren’t part of the actual gameplay but show the backstory or
build up tension with new details between levels. We need a chance to tell
the story of our game, too, so we’ll add an opening scene that scrolls the
narrative past the player’s eyes and out into space.

Sprite Kit has a lot of what we need but is still a relatively new technology.
Building a menu with buttons and navigation can be quite complicated with
just SKScene and SKNode objects. It would be nice if we could use bits and pieces
of UIKit, Apple’s standard iOS application development framework, which
has solved a lot of these problems already. Things like UIButton, UISegmentedControl,
UINavigationController, and gesture recognizers would come in handy.

Well, we’re in luck! Sprite Kit and UIKit can play together in quite useful ways.
This will give us a chance to explore how to use both to achieve our goals.
Apple already gives us an interface editor for UIKit. Why not use it when it
makes sense? We’ll start by building a menu in the iOS application Story-
boards. Then we’ll learn about how Sprite Kit transitions work to build an
opening scene introducing the player to the narrative of the game. Finally,
we’ll use a custom node to show the "Game Over" message and tell the player
how to continue. By the end of this chapter, you’ll have all the tricks you need
to guide players in and out as they immerse themselves in your game.

Ready? Let’s go!

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Crafting a Basic Menu with UIKit’s Interface Builder
For our first task, we’re going to build a simple menu that lets the player
choose either Easy or Hard mode. This mode setting will determine how often
the obstacles appear on the screen. We’ll provide a Play button that will
transition the player immediately into the game. And as soon as the ship is
destroyed, we’ll send the player back out to the menu.

Up to this point we’ve been engrossed in Sprite Kit. It’s a powerful and
self-contained engine in its own right. But we don’t have to abandon Apple’s
time-tested UIKit, especially with useful tools such as Interface Builder to
help with layout and navigation. While we could build controls in Sprite Kit
by laying out nodes and manually checking for touches, we’d be reinventing
the wheel. For the purposes of this simple game, we can make excellent use
of UIKit and get Sprite Kit to play along with it.

Sprite Kit runs entirely inside a special SKView object. It’s a subclass of UIView,
which means we can mix and match it at the bottom of a view hierarchy any way
we want. In fact, we’re already doing that. The storyboard that came with the
Sprite Kit app template sets up an SKView instance as the view of the root view
controller. We first noticed this back in Chapter 1, Introduction to Sprite Kit, on
page 1, but ignored it up to this point. Now is the time to learn how it all works!

Customizing the Storyboard
Storyboards are Apple’s way of letting the app developer build user interfaces
and navigation flows in iOS applications. You use the Interface Builder tool
as part of Xcode to set up view controllers and wire up the segues between
them in response to different events.

This isn’t a book about Storyboards, so we’re going to gloss over a lot of things
and assume you are starting with the baseline from the sample project that
comes with the book. If you need a good refresher on Storyboards, check out
the excellent book by Daniel Steinberg—iOS Storyboards: An Animated Tour
for iPhone and iPad Developers [Ste14]—or Apple’s documentation.1

If you’ve been building the app yourself as you follow along, you’ll want to
copy the Main.storyboard file from the 04-Menus/step01/SpaceRun/Base.lproj directory
into your project, replacing what is there. We’ll start with this file and walk
through wiring up the outlets and actions in Interface Builder together.

Open the Main.storyboard file, and you’ll see a layout like the following figure.

1. https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/SecondTutorial.html

Chapter 4. Menus and Cutscenes • 54

report erratum • discuss

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/SecondTutorial.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 19—Storyboard for Space Run

The navigation controller is set up with a root view controller acting as our
menu to get the player into the game. I’ve added the game title, a segmented
control to choose game difficulty, and a button for transitioning to the original
view controller that came with the Sprite Kit template—the view controller
owning our game’s SKView instance.

All the layout, colors, and font styling you see were set directly in Interface
Builder using the sidebar inspectors. At the moment, Apple doesn’t provide
tools to visually manipulate Sprite Kit objects, other than the particle editor
we met back in Chapter 3, Explosions and Particle Effects, on page 37. It’s
obvious that Apple will improve the state of Sprite Kit tools, but for now
Storyboards will serve us well as a design tool and will let us use the best of
what UIKit has to offer.

We’re ready to write the supporting code behind this interface. The storyboard
is expecting the root view controller to be an instance of RCWMenuViewController,
which doesn’t exist yet. In the project, let’s create a new file named RCWMenu-
ViewController.h with these contents:

04-Menus/step01/SpaceRun/RCWMenuViewController.h
#import <UIKit/UIKit.h>

@interface RCWMenuViewController : UIViewController

@end

report erratum • discuss

Crafting a Basic Menu with UIKit’s Interface Builder • 55

http://media.pragprog.com/titles/pssprite/code/04-Menus/step01/SpaceRun/RCWMenuViewController.h
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

And then let’s create a file named RCWMenuViewController.m with the following
contents to start:

04-Menus/step01/SpaceRun/RCWMenuViewController.m
#import "RCWMenuViewController.h"

@interface RCWMenuViewController ()
@end

@implementation RCWMenuViewController
@end

If we were to build and launch the game right now, we’d see our menu, but
tapping the Play button wouldn’t do anything. Let’s wire up the game view
controller to the button by holding down the C key while dragging from the
Play button over to the view controller on the right, as you see here:

Figure 20—Wiring up the Play button

Chapter 4. Menus and Cutscenes • 56

report erratum • discusswww.allitebooks.com

http://media.pragprog.com/titles/pssprite/code/04-Menus/step01/SpaceRun/RCWMenuViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite
http://www.allitebooks.org

Choose Push from the pop-up menu after you release the mouse button.
You’ve now wired up a segue to push the game view controller on the stack
when the button is tapped. Run the game, and you’ll see the nifty new menu.
Tap the button, and the game will start, just as we expect.

Returning to the Menu When the Game Is Over
Everything works great to get us into the game, but alas the game doesn’t
bring us back to the menu when the ship explodes and the game is over. Let’s
work on that next.

Popping the navigation controller stack once we know the game has ended
is the easy part. But how do we communicate to the game view controller
that the game is over? In our code, the RCWMyScene class knows the state of
the game and knows when our game ends. Let’s create a public property in
the header file for an Objective-C block that we’ll invoke when the ship
explodes. In RCWMyScene.h, let’s add the following line:

04-Menus/step02/SpaceRun/RCWMyScene.h
@interface RCWMyScene : SKScene
@property (nonatomic, copy) dispatch_block_t endGameCallback;➤

@end

With the endGameCallback property declared, we need to call it at the right time.
In RCWMyScene.m, we’ll change the part of the -checkCollisions method where we
check for a ship intersecting with an obstacle and add this line:

04-Menus/step02/SpaceRun/RCWMyScene.m
[self
enumerateChildNodesWithName:@"obstacle"
usingBlock:^(SKNode *obstacle, BOOL *stop) {

if ([ship intersectsNode:obstacle]) {
self.shipTouch = nil;
// ...
[self endGame];➤

}
// ...

We’ll use this -endGame method as the place to do all the cleanup when the
ship is destroyed. Right now, we just need to invoke the endGameCallback block.

04-Menus/step02/SpaceRun/RCWMyScene.m
- (void)endGame
{

NSAssert(self.endGameCallback, @"Forgot to set the endGameCallback");
self.endGameCallback();

}

report erratum • discuss

Crafting a Basic Menu with UIKit’s Interface Builder • 57

http://media.pragprog.com/titles/pssprite/code/04-Menus/step02/SpaceRun/RCWMyScene.h
http://media.pragprog.com/titles/pssprite/code/04-Menus/step02/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step02/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We have to check to see whether the endGameCallback property is set before we
call it. All properties are nil by default. Sending messages to nil objects is fine
because of the way the Objective-C message passing works, but trying to
invoke a nil block will cause a memory access error and crash the game with
a vague and unhelpful error message. Using an NSAssert() like this will ensure
that the app fails with a more helpful error message if we try to end the game
without setting this property.

Then, in the RCWViewController class that is responsible for setting up the Sprite
Kit view for our game, we need to set the endGameCallback property so we can
pop the navigation stack. Let’s change the -viewDidLoad method in RCWViewCon-
troller.m to look like this:

04-Menus/step02/SpaceRun/RCWViewController.m
- (void)viewDidLoad
{

[super viewDidLoad];

SKView *skView = (SKView *)self.view;
skView.showsFPS = YES;
skView.showsNodeCount = YES;

RCWMyScene *scene = [RCWMyScene sceneWithSize:skView.bounds.size];➤

scene.scaleMode = SKSceneScaleModeAspectFill;

__weak RCWViewController *weakSelf = self;➤

scene.endGameCallback = ^{➤

[weakSelf.navigationController popViewControllerAnimated:YES];➤

};➤

[skView presentScene:scene];
}

There’s a lot more going on here in this code block than we’re ready to discuss
yet. The -viewDidLoad method was generated for us by the Sprite Kit template
back in Chapter 1, Introduction to Sprite Kit, on page 1. We’ll talk more about
the details behind setting up the SKView object in Showing the Star Field
Underneath UIKit, on page 62. For now, just note the highlighted section where
we set the endGameCallback property to a block that calls -popViewControllerAnimated:
on the navigation controller. Also note that we’re playing it safe and using a
weak reference to self inside the block. For a refresher about why we need to
do that, refer back to Generating a Parallax Field of Stars, on page 37.

And that’s it! Since our view controller pops the navigation stack when the
endGameCallback block is invoked, the player will return to the main menu when
the game ends. Alas, this isn’t quite what we want yet, because the player

Chapter 4. Menus and Cutscenes • 58

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step02/SpaceRun/RCWViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

doesn’t get a chance to see the ship explosion. It’s abrupt, but we’ve solved
the current problem of ending the game and returning to the main menu.
We’ll tackle the end-game sequence soon in Building a Game-Ending Sequence,
on page 72.

Setting Up Player Difficulty
We want the player’s difficulty level choice in the menu to affect the game, so
we need to figure out how to communicate the value of the difficulty control
down to our game scene. UISegmentedControl lives in RCWMenuViewController’s view.
Our SKMyScene scene lives in the original RCWViewController that came with the
Sprite Kit template. How do we get the choice from the segmented control
down to our game code?

We pass it along, of course! First, let’s give ourselves access to the control
itself. We’ll create a property in RCWMenuViewController.h as an outlet for the
storyboard.

04-Menus/step03/SpaceRun/RCWMenuViewController.m
@interface RCWMenuViewController ()
@property (nonatomic, strong) IBOutlet UISegmentedControl *difficultyChooser;➤

@end

Now let’s go to the Storyboards file, select the menu view controller, and then
in the left scene browser sidebar, C-drag from the Menu View Controller to
the segmented control and choose the difficultyChooser property outlet that we
just created, as shown:

Figure 21—Wiring up the difficulty control

The menu view controller doesn’t have a reference to the game scene, so we
have to pass the choice the player made to the game’s view controller first.

report erratum • discuss

Crafting a Basic Menu with UIKit’s Interface Builder • 59

http://media.pragprog.com/titles/pssprite/code/04-Menus/step03/SpaceRun/RCWMenuViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Then we’ll be able to pass that down into our game scene. In the RCWViewCon-
troller.h file, let’s add this property definition:

04-Menus/step03/SpaceRun/RCWViewController.h
@interface RCWViewController : UIViewController
@property (nonatomic) BOOL easyMode;➤

@end

Because our game has only two modes, Easy and Hard, we’re using a Boolean
value to keep track of whether we’re supposed to be in Easy mode.

Back in RCWMenuViewController.m, import the RCWViewController.h header file.

04-Menus/step03/SpaceRun/RCWMenuViewController.m
#import "RCWViewController.h"

Then we’ll implement the -prepareForSegue:sender: method.

04-Menus/step03/SpaceRun/RCWMenuViewController.m
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{

if ([segue.identifier isEqualToString:@"PlayGame"]) {
RCWViewController *gameController = segue.destinationViewController;
gameController.easyMode = self.difficultyChooser.selectedSegmentIndex == 0;

} else {
NSAssert(false, @"Unknown segue identifier %@", segue.identifier);

}
}

The -prepareForSegue:sender: method is Apple’s way of letting us do important
work as a storyboard segues between view controllers. Each segue can have
an identifier to distinguish which one is about to execute. In this case, we’re
checking for the name matching the string “PlayGame”, and if we have a
match then we grab the RCWViewController out of the destinationViewController prop-
erty and set the easyMode property based on the value of the difficultyChooser
control. If the selected segment index is zero, then the first segment is
selected, and we should be in Easy mode. Otherwise, we should be in Hard
mode.

If this -prepareForSegue:sender: method doesn’t recognize the segue identifier, then
we should assume that we mistyped something into the storyboard. That’s
why we’re throwing an assertion error with NSAssert(). It causes the app to
crash and burn with a useful error message in the log to figure out what went
wrong, rather than silently ignoring it, which could be a difficult bug to find.

Of course, this means we need to name the segue that begins the game. In
the storyboard, click on the segue between the menu and gameplay view

Chapter 4. Menus and Cutscenes • 60

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step03/SpaceRun/RCWViewController.h
http://media.pragprog.com/titles/pssprite/code/04-Menus/step03/SpaceRun/RCWMenuViewController.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step03/SpaceRun/RCWMenuViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

controllers. In the right storyboard sidebar, choose the Attributes Inspector
icon and set the identifier to PlayGame, as shown:

We’re almost finished wiring up the difficulty chooser. We’ve set the easyMode
property on the game’s view controller, but we still need to pass that value
down into the scene. Let’s create the same easyMode property in the RCWMyScene.h
header file.

04-Menus/step03/SpaceRun/RCWMyScene.h
@interface RCWMyScene : SKScene
@property (nonatomic, copy) dispatch_block_t endGameCallback;
@property (nonatomic) BOOL easyMode;➤

@end

And then in the RCWViewController.m file, we’ll set the scene’s easyMode property
to the controller’s easyMode property in the -viewDidLoad method.

04-Menus/step03/SpaceRun/RCWViewController.m
// ...
scene.easyMode = self.easyMode;➤

__weak RCWViewController *weakSelf = self;
scene.endGameCallback = ^{

[weakSelf.navigationController popViewControllerAnimated:YES];
};
// ...

Our scene now has the correct easyMode value. All that’s left is to change our
game logic to react appropriately. In the -update: method of the RCWMyScene.m
file, we’ll change how we call the -dropThing method to pick a probability.

04-Menus/step03/SpaceRun/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

// ...

NSInteger thingProbability;➤

if (self.easyMode) {➤

thingProbability = 15;➤

} else {➤

thingProbability = 30;➤

}➤
➤

report erratum • discuss

Crafting a Basic Menu with UIKit’s Interface Builder • 61

http://media.pragprog.com/titles/pssprite/code/04-Menus/step03/SpaceRun/RCWMyScene.h
http://media.pragprog.com/titles/pssprite/code/04-Menus/step03/SpaceRun/RCWViewController.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

if (arc4random_uniform(1000) <= thingProbability) {➤

[self dropThing];➤

}➤

[self checkCollisions];

self.lastUpdateTime = currentTime;
}

As we discussed back in Chapter 2, Actions: Go, Sprite, Go!, on page 13,
increasing the frequency that obstacles and power-ups drop onto the scene
is a good way to increase the difficulty.

Phew! That was a lot of work, but it’s the standard way of passing information
from one view controller to the next with Storyboards. Run the game and
enjoy the two difficulty levels. See how far you get in the Hard mode!

Storyboards are the way to visually build and design navigation flows in iOS.
There’s no reason we can’t use them for our Sprite Kit games, too. Because we’re
using standard UIKit controls, we have all their power available to us to cus-
tomize them using the storyboard inspectors and the UIAppearance protocols.

We’ve built a simple menu and difficulty chooser for our game to give players
some control over their experience. Next, you’re going to learn how to do some
more fancy integration with UIKit by embedding Sprite Kit animations
underneath your UIKit controls!

Showing the Star Field Underneath UIKit
Our menu is done, but it’s bland. It would be nice if we could play some ani-
mations from our game underneath the menu, like our star field. Well, with
Sprite Kit, we can!

All of the Sprite Kit magic in an SKScene object gets rendered in a special UIView
subclass called an SKView. Because it’s a member of the view hierarchy, we
can put an SKView anywhere we want on any iOS interface. Note that normal
controls and views cannot interact directly with Sprite Kit nodes because
nodes exist entirely within the Sprite Kit world. Also, Sprite Kit views are
always opaque, so you can’t overlay nodes on top of a standard user interface.
But still, this gives us a lot of power to use Sprite Kit for visualizations
underneath UIKit.

Let’s use this to our advantage by inserting an SKView instance with a scene
that displays our star field. First, we’ll begin by importing the RCWStarField.h
header file and adding a new property to the RCWMenuViewController.m class
extension.

Chapter 4. Menus and Cutscenes • 62

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

04-Menus/step04/SpaceRun/RCWMenuViewController.m
#import "RCWMenuViewController.h"
#import "RCWViewController.h"
#import "RCWStarField.h"➤

@interface RCWMenuViewController ()
@property (nonatomic, strong) IBOutlet UISegmentedControl *difficultyChooser;
@property (nonatomic, strong) SKView *demoView;➤

@end

Next, we’ll build up an SKView and its corresponding scene in the -viewDidAppear:
method of the RCWMenuViewController. There’s no need to subclass; we can just
create the objects we need on the fly.

04-Menus/step04/SpaceRun/RCWMenuViewController.m
- (void)viewDidAppear:(BOOL)animated
{

[super viewDidAppear:animated];

self.demoView = [[SKView alloc] initWithFrame:self.view.bounds];

SKScene *scene = [[SKScene alloc] initWithSize:self.view.bounds.size];

scene.backgroundColor = [SKColor blackColor];
scene.scaleMode = SKSceneScaleModeAspectFill;

SKNode *starField = [RCWStarField node];
[scene addChild:starField];

[self.demoView presentScene:scene];

[self.view insertSubview:self.demoView atIndex:0];
}

In this method we first create a new SKView instance that is the same size as
the view controller’s view bounds. Then we create a plain vanilla SKScene with
a black background color and aspect fill scale mode. The scale mode doesn’t
matter for our game because it’s meant to be played in portrait orientation.
We’re just using the same scale mode that Apple supplied for us in the tem-
plate. If your game allows players to rotate their device to a different orientation
while playing, or if you want to scale up an iPhone game to a larger iPad
screen, then you might want to investigate the different modes to fit your
needs.

We then create an instance of the RCWStarField node and add it to the scene.
Remember that we created this node back in Chapter 3, Explosions and Par-
ticle Effects, on page 37, and because it’s a self-contained SKNode subclass,
we can reuse it here easily.

report erratum • discuss

Showing the Star Field Underneath UIKit • 63

http://media.pragprog.com/titles/pssprite/code/04-Menus/step04/SpaceRun/RCWMenuViewController.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step04/SpaceRun/RCWMenuViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Finally, we tell the SKView subclass we’re holding in the demoView property to
present the scene, which tells the Sprite Kit world to start doing its magic.
We add that demo view to the bottom of the view hierarchy by telling the view
controller’s view to -insertSubview:atIndex: with an index of zero.

Before we can try this out, we need to clean up after ourselves in the -viewDid-
Disappear: method.

04-Menus/step04/SpaceRun/RCWMenuViewController.m
- (void)viewDidDisappear:(BOOL)animated
{

[super viewDidDisappear:animated];

[self.demoView removeFromSuperview];
self.demoView = nil;

}

By removing the demo view when the view controller is no longer visible and
releasing it, we’re getting rid of the Sprite Kit rendering context so it doesn’t
take up precious CPU cycles or battery power. It will be re-created when the
view controller is presented after the game ends anyway.

Run the game, and you’ll see the magic of the fast-moving parallax star field
behind the UIKit controls!

The fact that Sprite Kit’s views are just a UIView subclass means that we have
tremendous power to use Sprite Kit as background glitter for anything. You
can even use this to display animations and demonstrations in plain old iOS
applications. It’s not just for games! Remember the limitations, though. Sprite
Kit nodes don’t interact with anything outside their scene or the SKView. The
SKView objects are always opaque. If you want UIKit to talk to things living in
Sprite Kit (and vice versa), you’ll have to provide the conduit and pass mes-
sages around yourself.

Next up, you will learn about Sprite Kit scene transitions to make a cutscene
that tells the origin story behind the game!

Custom Scenes and Gesture Recognizers
A common way to tell the backstory of a game to players is with a cutscene
—a pause in the gameplay to prepare players for the next task. Some games
use videos or very complex productions to get the point across. For our
streamlined game, we’re going to use a separate SKScene with scrolling text to
tell players why their ship is traveling at breakneck speeds through space.
Here’s the effect we’re going for. You might recognize it from an obscure 1970s
sci-fi movie.

Chapter 4. Menus and Cutscenes • 64

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step04/SpaceRun/RCWMenuViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 22—The opening Star Wars–style text crawl

To implement this, you’ll need to learn a lot more about how SKScene objects
work and how to control their containing SKView object on the fly. We’ll
implement the paragraphs of text with a UITextView and use a UITapGestureRecog-
nizer object to let us know if the player taps to skip the cutscene and jump
straight into the game.

Let’s start by writing a special SKScene class for our opening scene. Create an
RCWOpeningScene.h interface header file with these contents:

04-Menus/step05/SpaceRun/RCWOpeningScene.h
#import <SpriteKit/SpriteKit.h>

@interface RCWOpeningScene : SKScene
@property (nonatomic, copy) dispatch_block_t sceneEndCallback;
@end

We’re adding a sceneEndCallback block property because we need some way for
this scene to communicate to the outside world that the opening scene ani-
mation is finished. The object that is responsible for transitioning to the next
scene will provide the block.

report erratum • discuss

Custom Scenes and Gesture Recognizers • 65

http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWOpeningScene.h
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Next, we’ll begin the class implementation in a new file named RCWOpeningScene.m.

04-Menus/step05/SpaceRun/RCWOpeningScene.m
#import "RCWOpeningScene.h"
#import "RCWStarField.h"

@implementation RCWOpeningScene

- (void)didMoveToView:(SKView *)view
{

self.backgroundColor = [SKColor blackColor];

RCWStarField *starField = [RCWStarField node];
[self addChild:starField];

}

The first order of business is to set the background color to black and then
add the star-field node. We’re getting a lot of mileage out of this node, both
here and in the demo view under our menu. Keep this in mind as you structure
your own games. Break common things out into nodes so you can reuse them.

When presenting SKScene objects in an SKView, this -didMoveToView: method gets
called, similar to the view controller lifecycle methods like -viewDidAppear: and
the others. We know for certain that by the time this method is called, our
scene has settled within an SKView, and we can do whatever special initialization
we need. Yes, we could have set up the star field in the -initWithSize: method
like we do in the RCWMyScene object, but we’ll keep all the initialization code
together here for simplicity.

Next, we want to create the slow, slanted text-crawl effect. Let’s define two
view properties in the class definition of RCWOpeningScene above the implemen-
tation.

04-Menus/step05/SpaceRun/RCWOpeningScene.m
@interface RCWOpeningScene ()
@property (nonatomic, strong) UIView *slantedView;
@property (nonatomic, strong) UITextView *textView;
@end

Why are we using UIKit views here? While Sprite Kit provides special text-
label nodes (which we’ll get to use soon), it doesn’t support line-wrapping
paragraphs of text. Also, Core Animation makes it absurdly simple to trans-
form UIView objects in the three-dimensional way we want. Basically, using
these two view properties and UIKit is the easiest way to pull off the effect
we’re going for.

At the end of the -didMoveToView: method, let’s add this nice chunk of verbose
Objective-C:

Chapter 4. Menus and Cutscenes • 66

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWOpeningScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWOpeningScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

04-Menus/step05/SpaceRun/RCWOpeningScene.m
// ...
// Create a superview that will do the perspective tilt.
self.slantedView = [[UIView alloc] initWithFrame:self.view.bounds];
self.slantedView.opaque = NO;
self.slantedView.backgroundColor = [UIColor clearColor];
[self.view addSubview:self.slantedView];

// Tilt the superview
CATransform3D transform = CATransform3DIdentity;
transform.m34 = -1.0 / 500.0;
transform = CATransform3DRotate(transform, 45.0f * M_PI / 180.0f, 1.0f,

0.0f, 0.0f);
[self.slantedView.layer setTransform:transform];

We start by creating a superview slanted with a 3D transform to give it depth.
Again, this is a book focusing specifically on Sprite Kit, so we’re only briefly
mentioning what’s going on here. If you’re new to iOS development and want
some more backstory on UIKit and Core Animation, remember to check out
the book iOS SDK Development [AD12].

Next, we create a text view with the right styles and text of our backstory
positioned below the visible region of the superview.

04-Menus/step05/SpaceRun/RCWOpeningScene.m
// ...
// Use a textview to display our back story
self.textView = [[UITextView alloc] initWithFrame:

CGRectInset(self.view.bounds, 30, 0)];
self.textView.opaque = NO;
self.textView.backgroundColor = [UIColor clearColor];
self.textView.textColor = [UIColor yellowColor];
self.textView.font = [UIFont fontWithName:@"AvenirNext-Medium" size:20];

self.textView.text = @"A distress call comes in from thousands of light "
"years away. The colony is in jeopardy and needs "
"your help. Enemy ships and a meteor shower "
"threaten the work of the galaxy's greatest "
"scientific minds.\n\n"
"Will you be able to reach "
"them in time to save the research?\n\n"
"Or has the galaxy lost it's only hope?";

self.textView.userInteractionEnabled = NO;
self.textView.center = CGPointMake(self.size.width / 2 + 15,

self.size.height + (self.size.height / 2));
[self.slantedView addSubview:self.textView];

Next we add a special gradient layer mask on top to make up the fadeaway
effect as the text scrolls upward and out into space.

report erratum • discuss

Custom Scenes and Gesture Recognizers • 67

http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWOpeningScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWOpeningScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

04-Menus/step05/SpaceRun/RCWOpeningScene.m
// ...
// Add a fading mask so it vanishes out of sight
CAGradientLayer *gradient = [CAGradientLayer layer];
gradient.frame = view.bounds;
gradient.colors = @[(id)[[UIColor clearColor] CGColor],

(id)[[UIColor whiteColor] CGColor]];
gradient.startPoint = CGPointMake(0.5, 0.0);
gradient.endPoint = CGPointMake(0.5, 0.20);
[self.slantedView.layer setMask:gradient];

Last, we run the animation over the span of twenty seconds to move the text
view slowly upward in the coordinate space of the slanted view.

04-Menus/step05/SpaceRun/RCWOpeningScene.m
// ...
[UIView
animateWithDuration:20
delay:0
options:UIViewAnimationOptionCurveLinear
animations:^{

self.textView.center = CGPointMake(self.size.width / 2,
0 - (self.size.height / 2));

} completion:^(BOOL finished) {
NSAssert(self.sceneEndCallback, @"Scene end callback not set.");
self.sceneEndCallback();

}];

This will create a linear animation that will appear to send the text view out
into space because of the 3D transformation on its superview. After the ani-
mation completes, we invoke the sceneEndCallback block using the same NSAssert()
check we used before to make sure a block is set.

Because we are manipulating the SKView from within this scene, we’ll want to
put that view back the way it was when the scene is done. That’s why we
should implement the -willMoveFromView: method as follows.

04-Menus/step05/SpaceRun/RCWOpeningScene.m
- (void)willMoveFromView:(SKView *)view
{

[self.slantedView removeFromSuperview];
self.slantedView = nil;
self.textView = nil;

}

We remove the slanted subview from the SKView and set both properties to nil
to release them. The SKView is now pristine and ready to complete the transition
to the next SKScene object.

Chapter 4. Menus and Cutscenes • 68

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWOpeningScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWOpeningScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWOpeningScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Phew! That’s a lot of code to get our effect. Alas, that’s the price of quality
animation. At least it’s all self-contained here in this class. All we have to do
is present this scene in our SKView instance.

Let’s rearrange our game’s view controller to control how the opening scene
appears. First, we’ll import the opening scene file at the top of RCWViewController.m.

04-Menus/step05/SpaceRun/RCWViewController.m
#import "RCWViewController.h"
#import "RCWMyScene.h"
#import "RCWOpeningScene.h"➤

Then, we’ll change the -viewDidLoad method to present a blank scene with a
black background.

04-Menus/step05/SpaceRun/RCWViewController.m
- (void)viewDidLoad
{

[super viewDidLoad];

SKView *skView = (SKView *)self.view;
skView.showsFPS = YES;
skView.showsNodeCount = YES;

SKScene *blackScene = [[SKScene alloc] initWithSize:skView.bounds.size];➤

blackScene.backgroundColor = [SKColor blackColor];➤

[skView presentScene:blackScene];➤

}

By starting with this black scene, we can fade in the opening scene as we
transition to it in the -viewDidAppear: method.

04-Menus/step05/SpaceRun/RCWViewController.m
- (void)viewDidAppear:(BOOL)animated
{

[super viewDidAppear:animated];

SKView *skView = (SKView *)self.view;

RCWOpeningScene *scene = [RCWOpeningScene sceneWithSize:skView.bounds.size];
scene.scaleMode = SKSceneScaleModeAspectFill;
SKTransition *transition = [SKTransition fadeWithDuration:1];
[skView presentScene:scene transition:transition];

// ...

As soon as the view appears, we create the RCWOpeningScene instance and transi-
tion to it by passing an SKTransition effect to the -presentScene:transition: method on
SKView. You can use all kinds of slick (and sometimes cheesy) transition effects.
Read up on the SKTransition class documentation for more info.

report erratum • discuss

Custom Scenes and Gesture Recognizers • 69

http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWViewController.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWViewController.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Once the scene is presented, we need to set the sceneEndCallback property to a
block that does the original work to start the game.

04-Menus/step05/SpaceRun/RCWViewController.m
// ...
__weak RCWViewController *weakSelf = self;
scene.sceneEndCallback = ^{

RCWMyScene *scene = [RCWMyScene sceneWithSize:skView.bounds.size];
scene.scaleMode = SKSceneScaleModeAspectFill;
scene.easyMode = weakSelf.easyMode;
scene.endGameCallback = ^{

[weakSelf.navigationController popViewControllerAnimated:YES];
};
SKTransition *transition = [SKTransition fadeWithColor:[SKColor blackColor]

duration:1];
[skView presentScene:scene transition:transition];

};
}

Inside the block, we create our RCWMyScene game class that we’ve been using
all along, set the easyMode property and endGameCallback like before, and then
transition to it by fading through black.

It’s finally ready to test! Give it a whirl. Build and run the game. When you
tap the Play button, you’ll see the opening scene animation. After the text
finishes crawling over twenty seconds, the scenes will transition and the game
will start.

Using Gesture Recognizers from Within a Scene
We can’t quite check this game off as completed, though. At the moment,
every time players start a new game, they have to wait for the full twenty
seconds of opening animation to complete. It would be nice to let users skip
it if they want to by, say, tapping anywhere on the screen.

A tap gesture recognizer would be perfect for this use case, but we can’t apply
gesture recognizers to scenes or nodes. Gesture recognizers only work with
UIView subclasses, but because we can access the SKView from within the scene,
we can add and remove the recognizer on the fly!

First, we need a property to keep track of the gesture recognizer. We’ll add
the following line to the class extension at the top of the file.

04-Menus/step06/SpaceRun/RCWOpeningScene.m
@interface RCWOpeningScene ()
@property (nonatomic, strong) UIView *slantedView;
@property (nonatomic, strong) UITextView *textView;
@property (nonatomic, strong) UITapGestureRecognizer *tapGesture;➤

@end

Chapter 4. Menus and Cutscenes • 70

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step05/SpaceRun/RCWViewController.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step06/SpaceRun/RCWOpeningScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Next, at the very end of the -didMoveToView: method, we’ll create a tap gesture
recognizer for the SKView and have it call a method on our scene.

04-Menus/step06/SpaceRun/RCWOpeningScene.m
// ...
self.tapGesture = [[UITapGestureRecognizer alloc]

initWithTarget:self action:@selector(endScene)];
[self.view addGestureRecognizer:self.tapGesture];

This will call the -endScene method on this class as soon as a tap is detected.
We’ll move all the work to end the scene into this method in a moment.

We need to undo our alterations to the SKView and remove the gesture recog-
nizer in the -willMoveFromView: method.

04-Menus/step06/SpaceRun/RCWOpeningScene.m
- (void)willMoveFromView:(SKView *)view
{

[self.view removeGestureRecognizer:self.tapGesture];➤

self.tapGesture = nil;➤

[self.slantedView removeFromSuperview];
self.slantedView = nil;
self.textView = nil;

}

And we need to change the completion block to call the -endScene method as
well.

04-Menus/step06/SpaceRun/RCWOpeningScene.m
[UIView
animateWithDuration:20
delay:0
options:UIViewAnimationOptionCurveLinear
animations:^{

self.textView.center = CGPointMake(self.size.width / 2,
0 - (self.size.height / 2));

} completion:^(BOOL finished) {
if (finished) {➤

[self endScene];➤

}➤

}];

Notice that we’re first checking to see whether the finished flag passed into the
completion block is true. We need to do this because we will be canceling this
scrolling animation if we detect a tap early. A canceled animation will pass
in a NO to our block, and if that’s the case, then we already know that we’ve
triggered the end of the scene. We’ll just leave the completion block without
doing anything else.

report erratum • discuss

Custom Scenes and Gesture Recognizers • 71

http://media.pragprog.com/titles/pssprite/code/04-Menus/step06/SpaceRun/RCWOpeningScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step06/SpaceRun/RCWOpeningScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step06/SpaceRun/RCWOpeningScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Now, let’s write the -endScene method.

04-Menus/step06/SpaceRun/RCWOpeningScene.m
- (void)endScene
{

[UIView animateWithDuration:0.3 animations:^{
self.textView.alpha = 0;

} completion:^(BOOL finished) {
[self.textView.layer removeAllAnimations];
NSAssert(self.sceneEndCallback, @"Scene end callback not set.");
self.sceneEndCallback();

}];
}

Even though our SKScene object will transition with a fade to the game scene,
the textView that we added to the SKView won’t fade away automatically. We
need to fade it away first. After it vanishes, we’re removing all animations
that could still be running on the textView’s layer. This will stop the scrolling
if need be and call that animation’s completion block with NO so we don’t
trigger this -endScene method again.

Finally, we call the sceneEndCallback, which tells the view controller to present
the game scene, and the game begins.

As you can see, using gesture recognizers with Sprite Kit isn’t quite as
straightforward as with the standard UIKit components. Sprite Kit is optimized
for low-level touch handling. But we are still able to use gesture recognizers
to some degree by manipulating a scene’s SKView when the scene is presented
and when it leaves.

Those are the basics of building custom scenes and using gesture recognizers.
We’ve got our narrative cutscene to prepare players before they dive into the
game. Now we just need to give them a consoling pat on the back when the
game ends!

Building a Game-Ending Sequence
Remember when we first implemented the -endGame method on our game’s
RCWMyScene class? As soon as the ship explodes, we immediately transition
back to the menu. That’s too abrupt. Instead, let’s show a consoling “Game
Over” on the screen as the explosion particle emitter dies out and the obstacles
continue falling.

While we could build a whole new cutscene to display to the player, that would
replace everything going on in the SKView. We’re not going to present a new
SKScene instance, because we want the activity that the player left behind on

Chapter 4. Menus and Cutscenes • 72

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step06/SpaceRun/RCWOpeningScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

the game scene to continue behind the end-game message. Let’s build a self-
contained node that will display the “Game Over” text, animate it into place,
and then display some instructions for the user to tap the screen to play
again. We’ll add this node to our game scene at the appropriate moment and
make it wait for a tap to continue.

First, let’s create a new header file named RCWGameOverNode.h with these
contents:

04-Menus/step07/SpaceRun/RCWGameOverNode.h
#import <SpriteKit/SpriteKit.h>

@interface RCWGameOverNode : SKNode
@end

Next, we’ll start the implementation of this node in a new file named
RCWGameOverNode.m with this -init method:

04-Menus/step07/SpaceRun/RCWGameOverNode.m
#import "RCWGameOverNode.h"

@implementation RCWGameOverNode

- (instancetype)init
{

if (self = [super init]) {
SKLabelNode *label = [SKLabelNode

labelNodeWithFontNamed:@"AvenirNext-Heavy"];
label.fontSize = 32;
label.fontColor = [SKColor whiteColor];
label.text = @"Game Over";
[self addChild:label];

}
return self;

}

@end

Here we are meeting the SKLabelNode for the first time. This special node displays
text in whatever font we want.2 Alas, the label nodes don’t support line breaks
or word wrapping, so we’d have to handle those things ourselves. That’s why
it was easier to use a UITextView for the paragraphs of text we slowly crawled
across the screen in the opening animation. Still, for single lines of text that
need to be shown among other nodes in a scene, SKLabelNode instances do just
fine.

2. View http://iosfonts.com for a list of font names that come bundled with iOS.

report erratum • discuss

Building a Game-Ending Sequence • 73

http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWGameOverNode.h
http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWGameOverNode.m
http://iosfonts.com
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Next, let’s animate this node by making it fade in and scale up to full size.

04-Menus/step07/SpaceRun/RCWGameOverNode.m
// ...
label.alpha = 0;
label.xScale = 0.2;
label.yScale = 0.2;

SKAction *fadeIn = [SKAction fadeAlphaTo:1 duration:2];
SKAction *scaleIn = [SKAction scaleTo:1 duration:2];
SKAction *fadeAndScale = [SKAction group:@[fadeIn, scaleIn]];
[label runAction:fadeAndScale];

We’re setting the starting properties for alpha, xScale, and yScale and then using
the familiar SKAction objects to run the animations.

Now we can add and animate the instructions for the user to tap the screen.

04-Menus/step07/SpaceRun/RCWGameOverNode.m
// ...
SKLabelNode *instructions = [SKLabelNode

labelNodeWithFontNamed:@"AvenirNext-Medium"];
instructions.fontSize = 14;
instructions.fontColor = [SKColor whiteColor];
instructions.text = @"Tap to try again.";
instructions.position = CGPointMake(0, -45);
[self addChild:instructions];

instructions.alpha = 0;
SKAction *wait = [SKAction waitForDuration:4];
SKAction *appear = [SKAction fadeAlphaTo:1 duration:0.2];
SKAction *popUp = [SKAction scaleTo:1.1 duration:0.1];
SKAction *dropDown = [SKAction scaleTo:1 duration:0.1];
SKAction *pauseAndAppear = [SKAction sequence:@[wait, appear, popUp, dropDown]];
[instructions runAction:pauseAndAppear];

Just like before, we create an SKLabelNode with the text to instruct the user,
but this time we use an action to delay for a moment before showing it, for
effect.

Our RCWGameOverNode is finished! It’s a fully self-contained node. All we have
to do is bring it into our RCWMyScene and display it at the right time.

At the top of the RCWMyScene.m file, we’ll add the import statement for the
RCWGameOverNode.h header file.

04-Menus/step07/SpaceRun/RCWMyScene.m
#import "RCWGameOverNode.h"

Chapter 4. Menus and Cutscenes • 74

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWGameOverNode.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWGameOverNode.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Because we want to listen for a tap gesture when the end of the game is
reached, we’ll add a property to the class extension to hold the gesture
recognizer.

04-Menus/step07/SpaceRun/RCWMyScene.m
@interface RCWMyScene ()
@property (nonatomic, weak) UITouch *shipTouch;
@property (nonatomic) NSTimeInterval lastUpdateTime;
@property (nonatomic) NSTimeInterval lastShotFireTime;
@property (nonatomic) CGFloat shipFireRate;

@property (nonatomic, strong) SKAction *shootSound;
@property (nonatomic, strong) SKAction *shipExplodeSound;
@property (nonatomic, strong) SKAction *obstacleExplodeSound;

@property (nonatomic, strong) SKEmitterNode *shipExplodeTemplate;
@property (nonatomic, strong) SKEmitterNode *obstacleExplodeTemplate;

@property (nonatomic, strong) UITapGestureRecognizer *tapGesture;➤

@end

We’ll replace the -endGame method to instead register the tap gesture recognizer
and add our RCWGameOverNode to the scene.

04-Menus/step07/SpaceRun/RCWMyScene.m
- (void)endGame
{

self.tapGesture = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(tapped)];

[self.view addGestureRecognizer:self.tapGesture];
RCWGameOverNode *node = [RCWGameOverNode node];
node.position = CGPointMake(self.size.width / 2, self.size.height / 2);
[self addChild:node];

}

Once this method is called, the recognizer will be immediately registered on
the scene’s view and will call the -tapped method to let us know the player is
ready to continue. We don’t need to do anything special when we add the
RCWGameOverNode object to the scene. It will automatically run the animation
actions.

Now, we’ll implement the -tapped method to do what the -endGame method used
to do.

04-Menus/step07/SpaceRun/RCWMyScene.m
- (void)tapped
{

NSAssert(self.endGameCallback, @"Forgot to set the endGameCallback");
self.endGameCallback();

}

report erratum • discuss

Building a Game-Ending Sequence • 75

http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We’re checking the endGameCallback property and then invoking the block to
signal that the player is finished with the game and we can return to the
menu.

But we’re not finished yet! Remember that adding a gesture recognizer to a
scene’s view needs to be undone when the scene is removed from the view.
We’ll add this -willMoveFromView: method at the end of the scene implementation.

04-Menus/step07/SpaceRun/RCWMyScene.m
- (void)willMoveFromView:(SKView *)view
{

[self.view removeGestureRecognizer:self.tapGesture];
self.tapGesture = nil;

}

Figure 23—The end of the game

Now we have a game-over sequence that
plays when the ship explodes, and the
game listens for the player’s tap to return
to the main menu. Go ahead, try out the
game and see how it works!

We’ve explored a few different ways to
build menus and cutscenes in our games.
By leveraging the tried-and-true UIKit
tools, we can use Storyboards to build up
a navigation flow to let the player config-
ure and enter the game. This gives us a
lot of flexibility to lay out what we want.
When we’re ready for more fine-grained
control within Sprite Kit, we can drop
down to SKScene objects and handle labels,
animations, transitions, and touches
manually—whatever it takes to achieve
the effects we want. The sky—even the
galaxy—is the limit.

Up next, we’ll complete this game by
talking a bit about strategies for keeping track of a player’s score and how to
lay out nodes on the screen for a heads-up display.

Chapter 4. Menus and Cutscenes • 76

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/04-Menus/step07/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 5

Keeping Score with a Heads-Up Display
Our Space Run game is quite fun to play, but we’re missing an important
element—bragging rights! We need to display the score during gameplay in
a way that the player can glance at during the heat of the action. That’s a
great use case for a stationary heads-up display (HUD).

First conceived for aircraft pilots to have important status information dis-
played on a transparent window so they could keep their “heads up” during
flight, a heads-up display is now a staple of game design. We’re going to build
a custom node that acts as this kind of stationary display within our game.
This node will be responsible for laying out its children nodes within the
scene. It will keep track of the score and the elapsed game time. We’ll even
throw in a visible countdown for power-ups and a high-score display on the
main menu of the game at the end.

Ready? Let’s go!

Planning the Node Layout
Before we get started in code, let’s take a step back and imagine what we
want to achieve. Otherwise, we could get lost trying to keep our brains orga-
nized as we calculate the position of everything we need to display. Figure
24, Sketching out the heads-up display, on page 78 shows a sketch represent-
ing what we’re aiming for.

We’re using two labels as “titles” to describe what we’re displaying, and two
labels as “values” underneath. We’ll need to lay them out on the left and right
sides of the screen and remember to use number formatters so we get all the
standard goodies, such as the thousands separators and proper decimal
rounding.

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 24—Sketching out the heads-up display

To help us lay all this out, we’re going to create a special HUD node for our
heads-up display that will hold everything. Once this node is added to the
scene, we’ll tell it to lay out its children nodes. But these children nodes won’t
be the labels. Instead, we’ll use blank nodes as group containers and lay out
the label nodes within them like in the following figure.

Figure 25—Breaking up the display into groups

These group nodes are not anything special, just simple SKNode objects with
the label nodes as children. By themselves, plain SKNode objects don’t display
anything on the screen. But when they contain child nodes, they all behave
like a unit. Change the position of one of these SKNode objects that we’re using

Chapter 5. Keeping Score with a Heads-Up Display • 78

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

as a group, and everything inside moves along with it. This is the same
mechanism we used to add the ship thruster particle emitter to the ship node
back in Building Thruster Fire with Xcode's Particle Editor, on page 41. For a
refresher on the node scene graph, review Figure 5, Nodes laid out in a scene
graph, on page 5.

Organizing our label nodes into groups like this simplifies our layout. We’ll
left-align the score title and value labels and right-align the time title and
value. These parent group nodes are then easily positioned on the left and
right sides of the scene. Because the labels are properly aligned and anchored
within their respective groups, there’s nothing else we need to do. Even if the
scene size were to differ—say, on an iPad—the code that moves the groups
to the corners would just work.

Let’s prepare the HUD node and add it to our scene so we’ll be ready to start
building this node hierarchy. We’ll create a new file named RCWHUDNode.h in
the Xcode project to define the interface for our HUD node like this:

05-HUD/step01/SpaceRun/RCWHUDNode.h
#import <SpriteKit/SpriteKit.h>

@interface RCWHUDNode : SKNode
@end

We’ll fill in this interface as we realize what methods we’ll need. Next, we’ll
create a new file named RCWHUDNode.m with an empty implementation.

05-HUD/step01/SpaceRun/RCWHUDNode.m
#import "RCWHUDNode.h"

@interface RCWHUDNode ()
@end

@implementation RCWHUDNode
@end

Now that we’ve created the RCWHUDNode class, we can use it in the RCWMyScene
object. Let’s import the header file at the top of the RCWMyScene.m file.

05-HUD/step01/SpaceRun/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWStarField.h"
#import "SKEmitterNode+RCWExtensions.h"
#import "RCWGameOverNode.h"
#import "RCWHUDNode.h"➤

And then we’ll initialize and add the RCWHUDNode as the last setup step in the
-initWithSize: method.

report erratum • discuss

Planning the Node Layout • 79

http://media.pragprog.com/titles/pssprite/code/05-HUD/step01/SpaceRun/RCWHUDNode.h
http://media.pragprog.com/titles/pssprite/code/05-HUD/step01/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step01/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

05-HUD/step01/SpaceRun/RCWMyScene.m
RCWHUDNode *hudNode = [RCWHUDNode node];
hudNode.name = @"hud";
hudNode.zPosition = 100;
hudNode.position = CGPointMake(size.width/2, size.height/2);
[self addChild:hudNode];

We’re creating the node and naming it so we can find it later. But this time,
we’re setting the zPosition property to some number greater than zero. By
default, nodes overlap according to the order they were added to the scene.
This HUD node is one of the first to be made a child, so if we don’t set the
zPosition property, it will appear to be beneath everything else added later.
That’s not what we want, because enemies and asteroids will cover it up as
they are added to the scene and fly down. We’re arbitrarily choosing 100 as
the value here, but in practice you would use this property to make sure all
the visual components are layered the way you expect in the scene. At this
point, we just want to guarantee that our HUD is always on top.

We’re also setting the position of the node to the dead center of the scene. This
is important because all the child nodes of our HUD will be positioned relative
to the node’s origin at the center. Because we know the HUD node is at the
center of the scene and we know the scene size, we can use this information to
calculate where the labels need to appear in the top corners of the scene.

Running the game right now won’t show anything new on the screen, but
we’ve got the raw scaffolding in place so we can start experimenting with the
design next.

Aligning Label Nodes Within Groups
To match the design of our HUD, we need two parent nodes as groups to hold
the title and value labels for the score and the elapsed time. Let’s start by
building the first group, and you’ll learn how to align text label nodes inside
it. We’ll create an empty node as the score group and then add the two label
nodes as children. We’ll add an -init method to the top of the implementation
in RCWHUDNode.m.

05-HUD/step02/SpaceRun/RCWHUDNode.m
- (instancetype)init
{

if (self = [super init]) {
SKNode *scoreGroup = [SKNode node];
scoreGroup.name = @"scoreGroup";
SKLabelNode *scoreTitle =

[SKLabelNode labelNodeWithFontNamed:@"AvenirNext-Medium"];
scoreTitle.fontSize = 12;

Chapter 5. Keeping Score with a Heads-Up Display • 80

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step01/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step02/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

scoreTitle.fontColor = [SKColor whiteColor];
scoreTitle.horizontalAlignmentMode = SKLabelHorizontalAlignmentModeLeft;
scoreTitle.verticalAlignmentMode = SKLabelVerticalAlignmentModeBottom;
scoreTitle.text = @"SCORE";
scoreTitle.position = CGPointMake(0, 4);
[scoreGroup addChild:scoreTitle];

// ...
}
return self;

}

This initializer will be called when the RCWHUDNode is created. Inside, we build
an empty SKNode as our first containing group and naming it scoreGroup so we
can find it later when we lay it out in the scene. Then we create an SKLabelNode
object for the scoreTitle with a font size and color that matches the look we are
going for.

We set the vertical and horizontal alignment modes in such a way to help us
lay out the two labels inside this group node. Because we want this score title
to be on top, we are saying that it should be vertically aligned along the bottom
of the text and four points above the origin. And because this title is on the
left side of the scene, we are also left-justifying it horizontally.

To help visualize what’s going on, take a look at the following figure.

Figure 26—Aligning and laying out labels around the group origin

Remember that child nodes are positioned relative to the parent node’s origin.
By using bottom vertical alignment, left horizontal alignment, and positioning
the title label at {0, 4}, we now have a parent node, scoreGroup, that we can
position on the left side of the scene, and we know the labels will align the
way we want.

We have the title label node, but we need to complete this group by adding
the value label node.

report erratum • discuss

Aligning Label Nodes Within Groups • 81

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

05-HUD/step02/SpaceRun/RCWHUDNode.m
SKLabelNode *scoreValue =

[SKLabelNode labelNodeWithFontNamed:@"AvenirNext-Bold"];
scoreValue.fontSize = 20;
scoreValue.fontColor = [SKColor whiteColor];
scoreValue.horizontalAlignmentMode = SKLabelHorizontalAlignmentModeLeft;
scoreValue.verticalAlignmentMode = SKLabelVerticalAlignmentModeTop;
scoreValue.name = @"scoreValue";
scoreValue.text = @"0";
scoreValue.position = CGPointMake(0, -4);
[scoreGroup addChild:scoreValue];

It’s a very similar setup to the title label node we just created, but this time
it is vertically aligned along the top. When this node is positioned at {0, -4},
that places it four points below the center of this scoreGroup node, and the net
effect is that the alignment makes it look as if these two labels are flush left
and separated by eight points vertically between them.

Next, we add the scoreGroup node to the RCWHUDNode.

05-HUD/step02/SpaceRun/RCWHUDNode.m
[self addChild:scoreGroup];

This RCWHUDNode is now a grandparent! It has a child node we are using as a
container to group its child nodes that display the text for the score title and
value. We need to do the same thing for the game elapsed time. Let’s create
the elapsedGroup node and the two label children.

05-HUD/step02/SpaceRun/RCWHUDNode.m
SKNode *elapsedGroup = [SKNode node];
elapsedGroup.name = @"elapsedGroup";
SKLabelNode *elapsedTitle =

[SKLabelNode labelNodeWithFontNamed:@"AvenirNext-Medium"];
elapsedTitle.fontSize = 12;
elapsedTitle.fontColor = [SKColor whiteColor];
elapsedTitle.horizontalAlignmentMode = SKLabelHorizontalAlignmentModeRight;
elapsedTitle.verticalAlignmentMode = SKLabelVerticalAlignmentModeBottom;
elapsedTitle.text = @"TIME";
elapsedTitle.position = CGPointMake(0, 4);
[elapsedGroup addChild:elapsedTitle];
SKLabelNode *elapsedValue =

[SKLabelNode labelNodeWithFontNamed:@"AvenirNext-Bold"];
elapsedValue.fontSize = 20;
elapsedValue.fontColor = [SKColor whiteColor];
elapsedValue.horizontalAlignmentMode = SKLabelHorizontalAlignmentModeRight;
elapsedValue.verticalAlignmentMode = SKLabelVerticalAlignmentModeTop;
elapsedValue.name = @"elapsedValue";
elapsedValue.text = @"0.0s";
elapsedValue.position = CGPointMake(0, -4);
[elapsedGroup addChild:elapsedValue];

Chapter 5. Keeping Score with a Heads-Up Display • 82

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step02/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step02/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step02/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We name this group node elapsedGroup so we can find it later and build the title
and value label nodes just like we did for the score. Because this set of nodes
will be on the right side of the screen, we’re using SKLabelHorizontalAlignmentMod-
eRight horizontal alignment mode to make sure they line up flush to the right
—the mirror opposite of what we did for the score labels on the left.

Next, we’ll add this elapsedGroup label to the RCWHUDNode.

05-HUD/step02/SpaceRun/RCWHUDNode.m
[self addChild:elapsedGroup];

At the moment, we have all the labels properly laid out within their respective
parent nodes, but both of these group nodes are centered within the HUD by
default. We want to trigger some sort of layout method so that these group
nodes are properly positioned to the top left and right when this HUD is added
to the scene.

SKNode instances don’t know when they’re added to a scene, so we need to
build an explicit method on this RCWHUDNode object to do the layout work, and
we’ll call it at the right time. Let’s call this method -layoutForScene. We’ll put this
line in the RCWHUDNode.h file to expose this method to anyone using this class.

05-HUD/step02/SpaceRun/RCWHUDNode.h
@interface RCWHUDNode : SKNode
- (void)layoutForScene;➤

@end

And we’ll write this method in the RCWHUDNode.m file to find our group nodes
and position them in the top corners of the scene.

05-HUD/step02/SpaceRun/RCWHUDNode.m
- (void)layoutForScene
{

NSAssert(self.scene, @"Cannot be called unless added to a scene");
CGSize sceneSize = self.scene.size;
CGSize groupSize = CGSizeZero;
SKNode *scoreGroup = [self childNodeWithName:@"scoreGroup"];
groupSize = [scoreGroup calculateAccumulatedFrame].size;
scoreGroup.position = CGPointMake(0 - sceneSize.width/2 + 20,

sceneSize.height/2 - groupSize.height);
SKNode *elapsedGroup = [self childNodeWithName:@"elapsedGroup"];
groupSize = [elapsedGroup calculateAccumulatedFrame].size;
elapsedGroup.position = CGPointMake(sceneSize.width/2 - 20,

sceneSize.height/2 - groupSize.height);
}

When a node exists in the scene graph, it can get access to the scene through
its scene property. That property is nil if the node doesn’t belong to a scene yet,
and this method isn’t very useful until the node is added to a scene. So we’re

report erratum • discuss

Aligning Label Nodes Within Groups • 83

http://media.pragprog.com/titles/pssprite/code/05-HUD/step02/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step02/SpaceRun/RCWHUDNode.h
http://media.pragprog.com/titles/pssprite/code/05-HUD/step02/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

using the NSAssert() macro to cause a fatal error if the self.scene property is nil.
This will give us instant feedback while developing if we try to call this method
without a scene. The game will crash with the given error message in the log.

Once we guarantee that this node is in a scene, we grab the scene’s size and
store it off in the sceneSize variable for use in our calculations. We also create
a groupSize variable initialized to CGSizeZero that we’ll reuse to help us calculate
the precise position of each group.

We look up our scoreGroup node by its string name that we gave it when we
created it. We call -calculateAccumulatedFrame on that group node to have it check
all of its children and grandchildren and add up their frames to give us the
enclosing frame around this node. That provides enough information to cal-
culate how far down from the top of the scene this node should be.

Remember that child nodes are positioned relative to their parent node’s origin.
Because the RCWHUDNode will be at the center of the scene, we do all our calcu-
lations on these labels moving them to the left or the right of the center of
this HUD node. That’s why we set the scoreGroup.position property so the
x-coordinate is 0 - sceneSize.width/2 + 20. That says that we want this score group
node to be half the scene width to the left, and we add 20 points to nudge it
back to the right to create a margin.

We also set the y-coordinate to sceneSize.height/2 - groupSize.height because we want
it to be half the scene height up minus the full height of this score group.

Phew! I know that sounds like a lot of work, but it’s the best way to lay out
a lot of nodes within a scene. Building up our layout with smaller groups and
then positioning those groups according to their size and the scene’s size
helps to make our layouts flexible and easy to adapt to different screen sizes
and orientations.

All that’s left to do is call this -layoutForScene method after it is added to the
scene in the -initWithSize: method of the RCWMyScene.m file.

05-HUD/step02/SpaceRun/RCWMyScene.m
RCWHUDNode *hudNode = [RCWHUDNode node];
hudNode.name = @"hud";
hudNode.zPosition = 100;
hudNode.position = CGPointMake(size.width/2, size.height/2);
[self addChild:hudNode];

[hudNode layoutForScene];➤

Our HUD is dynamically positioning its child nodes. So if we ever choose to
build an iPad version, the HUD will lay out with the wider scene size without

Chapter 5. Keeping Score with a Heads-Up Display • 84

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step02/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

any problem at all. A good rule of thumb: Lay things out on paper first to get
the feel for what should be grouped together and how they are aligned. Then
lay out the groups. Build up your design piece by piece, and everything will
fall into place.

Next, let’s talk about updating this HUD during gameplay.

Updating the Display
The HUD is looking great on the screen, but it’s not useful until we can update
it with the proper information in real time. We need to be able to add points
to the score, start some sort of timer that updates the display of elapsed time,
and stop the timer when the game ends. We’ll implement methods for each
of these behaviors and call them at the appropriate time in the scene.

Let’s declare these three behaviors as public methods in the RCWHUDNode.h
header file.

05-HUD/step03/SpaceRun/RCWHUDNode.h
@interface RCWHUDNode : SKNode
- (void)layoutForScene;

- (void)addPoints:(NSInteger)points;➤

- (void)startGame;➤

- (void)endGame;➤
➤

@end

These methods will let us command and control this node from the scene.
Because this node will be accumulating the points for the score and keeping
track of time, let’s also expose two public properties in this interface so we
can ask for this information later.

05-HUD/step03/SpaceRun/RCWHUDNode.h
@property (nonatomic) NSTimeInterval elapsedTime;
@property (nonatomic) NSInteger score;

Remember back in Drawing Scenes and Sprite Nodes, on page 3, when we
discussed how nodes act as both the data model of the game and the mecha-
nism for display? Well, we’re seeing that play out here. This HUD node displays
and serves as the final authority of the current score as well as the player’s
clock.

We’re ready to start building the implementations of these methods in the
RCWHUDNode.m file. We’ll start by building the method that adds new points to
the score.

report erratum • discuss

Updating the Display • 85

http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.h
http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.h
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

05-HUD/step03/SpaceRun/RCWHUDNode.m
- (void)addPoints:(NSInteger)points
{

self.score += points;

SKLabelNode *scoreValue =
(SKLabelNode *)[self childNodeWithName:@"scoreGroup/scoreValue"];

scoreValue.text = [NSString stringWithFormat:@"%@",
[self.scoreFormatter stringFromNumber:@(self.score)]];

SKAction *scale = [SKAction scaleTo:1.1 duration:0.02];
SKAction *shrink = [SKAction scaleTo:1 duration:0.07];
SKAction *all = [SKAction sequence:@[scale, shrink]];
[scoreValue runAction:all];

}

We increment the score property to add in the new points. Then, we look up
the scoreValue label node by its name using a special search syntax. Remember
that the score value label is not a child node of RCWHUDNode. It’s a child node
of our scoreGroup node that we are using to group and lay out the score title
and value labels. We can look up this grandchild node by using the “score-
Group/scoreValue” search syntax. This says to first find the scoreGroup child
within this node and then find the node named scoreValue as a child of that
node. This way we don’t have to keep references to subnodes. Finding
grandchildren is as simple as using a name path.

Because we want the scores to be formatted with the thousands separator,
we’re using an NSNumberFormatter object that we’ll cache in the self.scoreFormatter
property. Let’s define that property in the class extension at the top of
RCWHUDNode.m.

05-HUD/step03/SpaceRun/RCWHUDNode.m
@property (nonatomic, strong) NSNumberFormatter *scoreFormatter;

And then at the end of the -init method, let’s initialize the number formatter
with decimal style.

05-HUD/step03/SpaceRun/RCWHUDNode.m
self.scoreFormatter = [[NSNumberFormatter alloc] init];
self.scoreFormatter.numberStyle = NSNumberFormatterDecimalStyle;

Formatting objects, such as what we use for dates and numbers, are expensive
to create but cheap to use. They do a lot of internal setup to prepare them-
selves for the styles we request, and caching them like this is important—
especially because we’ll be formatting numbers quite often while updating
the display.

Chapter 5. Keeping Score with a Heads-Up Display • 86

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Our score method is finished. Let’s implement the method to start the game
timer.

05-HUD/step03/SpaceRun/RCWHUDNode.m
- (void)startGame
{

NSTimeInterval startTime = [NSDate timeIntervalSinceReferenceDate];
SKLabelNode *elapsedValue =

(SKLabelNode *)[self childNodeWithName:@"elapsedGroup/elapsedValue"];

__weak RCWHUDNode *weakSelf = self;
SKAction *update = [SKAction runBlock:^{

NSTimeInterval now = [NSDate timeIntervalSinceReferenceDate];
NSTimeInterval elapsed = now - startTime;
weakSelf.elapsedTime = elapsed;
elapsedValue.text = [NSString stringWithFormat:@"%@s",

[weakSelf.timeFormatter stringFromNumber:@(elapsed)]];
}];

SKAction *delay = [SKAction waitForDuration:0.05];
SKAction *updateAndDelay = [SKAction sequence:@[update, delay]];
SKAction *timer = [SKAction repeatActionForever:updateAndDelay];
[self runAction:timer withKey:@"elapsedGameTimer"];

}

Remember back in Generating a Parallax Field of Stars, on page 37, when we
needed a recurring update loop to build our star-field particle emitter? Well,
we’re using the same mechanism here to continually update our elapsed time
label so players know how long they’ve been playing the game.

We first calculate the timestamp when we started the timer in the startTime
variable. We look up the elapsedValue label using the same kind of grandchild
search path we did for the score value label. Then we build a sequence of
actions that make our clock tick. Every 0.05 seconds, we’ll run a block that
updates the elapsedTime property to be the difference between the startTime
timestamp and the current timestamp.

Note that we’re running this action with the key, elapsedGameTimer. We’ll get
back to that in a moment.

When we update the elapsed time value label, we want a number formatter
that always displays the tenths decimal place, even if it is zero. Let’s do the
same thing we did for the scoreFormatter and set it up as a property.

05-HUD/step03/SpaceRun/RCWHUDNode.m
@property (nonatomic, strong) NSNumberFormatter *timeFormatter;

Then we’ll initialize that number formatter at the end of the -init method.

report erratum • discuss

Updating the Display • 87

http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

05-HUD/step03/SpaceRun/RCWHUDNode.m
self.timeFormatter = [[NSNumberFormatter alloc] init];
self.timeFormatter.numberStyle = NSNumberFormatterDecimalStyle;
self.timeFormatter.minimumFractionDigits = 1;
self.timeFormatter.maximumFractionDigits = 1;

This number formatter uses the decimal style like our score formatter, but
we’re forcing it to always show the tenths decimal place by setting minimumFrac-
tionDigits and maximumFractionDigits to one.

With our -startGame method complete, we now turn our attention to the -endGame
method, which will stop the timer.

05-HUD/step03/SpaceRun/RCWHUDNode.m
- (void)endGame
{

[self removeActionForKey:@"elapsedGameTimer"];
}

That’s all it takes. Remember that we ran the repeating sequence of actions
with the key, elapsedGameTimer. To stop the timer sequence, we just need to
remove the action for that key.

Our HUD behavior methods are complete. Let’s use them in the scene! Back
in RCWMyScene.m, at the end of the -initWithSize: method, add the call to tell the
HUD node that the game has started.

05-HUD/step03/SpaceRun/RCWMyScene.m
[hudNode layoutForScene];
[hudNode startGame];➤

This tells the HUD node to create and run the timer action sequence that
both calculates the elapsed time and updates the display.

We then need to tell the HUD node that the game is over in the scene’s -endGame
method.

05-HUD/step03/SpaceRun/RCWMyScene.m
- (void)endGame
{

self.tapGesture = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(tapped)];

[self.view addGestureRecognizer:self.tapGesture];

RCWGameOverNode *node = [RCWGameOverNode node];
node.position = CGPointMake(self.size.width / 2, self.size.height / 2);
[self addChild:node];
RCWHUDNode *hud = (RCWHUDNode *)[self childNodeWithName:@"hud"];➤

[hud endGame];➤

}

Chapter 5. Keeping Score with a Heads-Up Display • 88

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We look up the RCWHUDNode by name and tell it that the game has ended. This
will remove the action that updates the elapsed time.

All that’s left is to update the score. Scoring is a fascinating topic of game
design that could take up many pages all by itself. For our purposes, we can
keep it simple. To reward the player for staying alive, we’re going to make the
points the player earns for every destroyed obstacle increase as a multiple of
the elapsed time. And we’ll also double the points for each obstacle again if
the game is played on Hard mode. More player effort brings more reward.

In the collision detection where a photon node intersects with an obstacle
node, let’s add these three lines to calculate and increase the score:

05-HUD/step03/SpaceRun/RCWMyScene.m
[self
enumerateChildNodesWithName:@"photon"
usingBlock:^(SKNode *photon, BOOL *stop) {

if ([photon intersectsNode:obstacle]) {
[photon removeFromParent];
[obstacle removeFromParent];
[self runAction:self.obstacleExplodeSound];
SKEmitterNode *explosion = [self.obstacleExplodeTemplate copy];
explosion.position = obstacle.position;
[explosion rcw_dieOutInDuration:0.1];
[self addChild:explosion];
RCWHUDNode *hud = (RCWHUDNode *)[self childNodeWithName:@"hud"];➤

NSInteger score = 10 * hud.elapsedTime * (self.easyMode ? 1 : 2);➤

[hud addPoints:score];➤

*stop = YES;
}

}];

We find the RCWHUDNode in the scene by name, compute the score as a function
of elapsed time and the difficulty level, and then tell the node to add those
points to the score it already has.

Go ahead and play the game. Fun, eh? Let’s add some extra panache next
and show a countdown timer so players know how long they have left when
the weapon is powered up.

Pulsing Power-Up Countdowns for the Win
At the moment, players have no idea how much time they have left when they
collect a power-up to temporarily enhance their weapon. While the authors
originally thought this was an important game mechanic, we realized when
play testing this behavior that it was more frustrating for players than we’d

report erratum • discuss

Pulsing Power-Up Countdowns for the Win • 89

http://media.pragprog.com/titles/pssprite/code/05-HUD/step03/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

like. Let’s add more information to see whether it aids players’ strategy and
helps their sense of progress.

Figure 27—Showing a power-
up countdown in the center

Because we already have a heads-up display, let’s
add a red, pulsing countdown timer that shows
players how long until their current power-up
runs out. The figure here shows what we’re look-
ing for.

The hypothesis is that this gives players enough
information to decide when to collect other power-
ups they see on the screen, or avoid them altogeth-
er if they think they have enough time left and
there is too much in the way.

Adding this to the game is easy because we’ve
separated out the responsibility into the
RCWHUDNode object.

First, we want to add a new method in the
RCWHUDNode.h header so we can tell the node that
the player collected a power-up.

05-HUD/step04/SpaceRun/RCWHUDNode.h
@interface RCWHUDNode : SKNode
- (void)layoutForScene;
- (void)addPoints:(NSInteger)points;
- (void)startGame;
- (void)endGame;
- (void)showPowerupTimer:(NSTimeInterval)time;➤

@property (nonatomic) NSTimeInterval elapsedTime;
@property (nonatomic) NSInteger score;
@end

Now that we have a public interface for our scene to interact with, next we
need a new group of nodes to hold the title and value labels for the power-up
timer in the -init method, just like we did for the score and elapsed time.

05-HUD/step04/SpaceRun/RCWHUDNode.m
// ...
SKNode *powerupGroup = [SKNode node];
powerupGroup.name = @"powerupGroup";

SKLabelNode *powerupTitle = [SKLabelNode labelNodeWithFontNamed:@"AvenirNext-Bold"];
powerupTitle.fontSize = 14;
powerupTitle.fontColor = [SKColor redColor];
powerupTitle.verticalAlignmentMode = SKLabelVerticalAlignmentModeBottom;

Chapter 5. Keeping Score with a Heads-Up Display • 90

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.h
http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

powerupTitle.text = @"Power-up!";
powerupTitle.position = CGPointMake(0, 4);
[powerupGroup addChild:powerupTitle];

SKLabelNode *powerupValue = [SKLabelNode labelNodeWithFontNamed:@"AvenirNext-Bold"];
powerupValue.fontSize = 20;
powerupValue.fontColor = [SKColor redColor];
powerupValue.verticalAlignmentMode = SKLabelVerticalAlignmentModeTop;
powerupValue.name = @"powerupValue";
powerupValue.text = @"0s left";
powerupValue.position = CGPointMake(0, -4);
[powerupGroup addChild:powerupValue];

[self addChild:powerupGroup];

// ...

We build the powerupGroup node, name it so we can find it later, and add the
powerupTitle and powerupValue label nodes with similar settings as we used for
the other labels. Note that we’re not setting the horizontal alignment at all.
We’re relying on the default centered horizontal alignment, which will anchor
these labels properly since we’re displaying this powerupGroup node in the
middle of the HUD.

But we don’t want this group to display when the game begins. We need to
hide it until it is ready, so right after the code we typed in a moment ago, we’ll
set the alpha to zero.

05-HUD/step04/SpaceRun/RCWHUDNode.m
[self addChild:powerupGroup];

powerupGroup.alpha = 0;➤

The powerupGroup node is ready to use, but it still needs to be laid out within
the RCWHUDNode’s coordinate space like we did for the score and the elapsed
time. Let’s add these calculations in the -layoutForScene method.

05-HUD/step04/SpaceRun/RCWHUDNode.m
- (void)layoutForScene
{

NSAssert(self.scene, @"Cannot be called unless added to a scene");
CGSize sceneSize = self.scene.size;
CGSize groupSize = CGSizeZero;

SKNode *scoreGroup = [self childNodeWithName:@"scoreGroup"];
groupSize = [scoreGroup calculateAccumulatedFrame].size;
scoreGroup.position = CGPointMake(0 - sceneSize.width/2 + 20,

sceneSize.height/2 - groupSize.height);

report erratum • discuss

Pulsing Power-Up Countdowns for the Win • 91

http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

SKNode *powerupGroup = [self childNodeWithName:@"powerupGroup"];➤

groupSize = [powerupGroup calculateAccumulatedFrame].size;➤

powerupGroup.position = CGPointMake(0,➤

sceneSize.height/2 - groupSize.height);➤

SKNode *elapsedGroup = [self childNodeWithName:@"elapsedGroup"];
groupSize = [elapsedGroup calculateAccumulatedFrame].size;
elapsedGroup.position = CGPointMake(sceneSize.width/2 - 20,

sceneSize.height/2 - groupSize.height);
}

Just like with the scoreGroup and the elapsedGroup, we look up the powerupGroup
node that contains the labels and set the position, taking the scene size into
account. In this case we’re setting the x-coordinate to zero, which is dead
center of the node, and the y-coordinate to the top of the scene minus the
calculated height of the group node.

With the power-up labels positioned and ready, we can fetch them at the start
of the -showPowerupTimer: method.

05-HUD/step04/SpaceRun/RCWHUDNode.m
- (void)showPowerupTimer:(NSTimeInterval)time
{

SKNode *powerupGroup = [self childNodeWithName:@"powerupGroup"];
SKLabelNode *powerupValue =

(SKLabelNode *)[powerupGroup childNodeWithName:@"powerupValue"];

[powerupGroup removeActionForKey:@"showPowerupTimer"];

// ...
}

We look up the powerupGroup node by its name and then find the powerupValue
label by its name as a child of the powerupGroup. We could have used the
child/grandchild lookup syntax with the RCWHUDNode’s -childNodeWithName:
method, but this works just as well, and we need both of the nodes anyway
because we are updating the value label and running all the actions on the
group node.

We’re removing any existing action with the key named showPowerupTimer because
we want to restart the timer if we’re calling this method as a result of the
player nabbing another power-up. Remember back in Implementing Weapon
Power-Ups with Actions, on page 32, where we did the same thing? We’re
going to run the whole power-up countdown action with this key so we can
restart it on the fly.

Let’s continue by building the actions that form the countdown sequence.

Chapter 5. Keeping Score with a Heads-Up Display • 92

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

05-HUD/step04/SpaceRun/RCWHUDNode.m
// ...

NSTimeInterval start = [NSDate timeIntervalSinceReferenceDate];

__weak RCWHUDNode *weakSelf = self;
SKAction *block = [SKAction runBlock:^{

NSTimeInterval elapsed = [NSDate timeIntervalSinceReferenceDate] - start;
NSTimeInterval left = time - elapsed;
if (left < 0) {

left = 0;
}
powerupValue.text = [NSString stringWithFormat:@"%@s left",

[weakSelf.timeFormatter stringFromNumber:@(left)]];
}];
SKAction *blockPause = [SKAction waitForDuration:0.05];
SKAction *countdownSequence = [SKAction sequence:@[block, blockPause]];
SKAction *countdown = [SKAction repeatActionForever:countdownSequence];

// ...

This countdown action repeats a sequence that runs the block of code every
0.05 seconds to update the text in the powerupValue label. We’re reusing the
self.timeFormatter property that we created for displaying the elapsed game time,
which is why we need to use the weakSelf variable to ensure that the block
does not retain self, which would lead to a retain cycle. Refer back to Generating
a Parallax Field of Stars, on page 37, for more details about why this is
necessary.

Now we can finish the -showPowerupTimer: method with the actions to fade in,
fade out, and stop.

05-HUD/step04/SpaceRun/RCWHUDNode.m
// ...

SKAction *fadeIn = [SKAction fadeAlphaTo:1 duration:0.1];

SKAction *wait = [SKAction waitForDuration:time];
SKAction *fadeOut = [SKAction fadeAlphaTo:0 duration:1];
SKAction *stopAction = [SKAction runBlock:^{

[powerupGroup removeActionForKey:@"showPowerupTimer"];
}];

SKAction *visuals = [SKAction sequence:@[fadeIn, wait, fadeOut, stopAction]];

[powerupGroup runAction:[SKAction group:@[countdown, visuals]]
withKey:@"showPowerupTimer"];

report erratum • discuss

Pulsing Power-Up Countdowns for the Win • 93

http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Here we are building the visual actions. First we cause the whole powerupGroup
to appear by fading in the alpha to one. Then we wait for the duration of time
passed in as a method parameter. After that delay, we fade out the alpha to
zero, and an action with an Objective-C block stops the entire collection of
actions by calling -removeActionForKey:.

The final action run on powerupGroup is a combination of the countdown and
visual actions performed in parallel. By running this action with the key
showPowerupTimer, we are able to remove the action when it’s done or when we
need to restart the clock.

Phew! That’s a lot of code. But it’s nothing we haven’t seen before. In the end,
we’re able to show the power-up countdown timer with a single method call.
We can call it over and over again to restart the clock, and everything cleans
up after itself when finished.

As one last piece of visual flourish, let’s make the title of the power-up
countdown pulse in size. Back in the -initWithSize: method, after we create the
powerupGroup node and add it to the scene, we’ll run this sequence of actions
to make the title pulse:

05-HUD/step04/SpaceRun/RCWHUDNode.m
// ...

SKAction *scaleUp = [SKAction scaleTo:1.3 duration:0.3];
SKAction *scaleDown = [SKAction scaleTo:1 duration:0.3];

SKAction *pulse = [SKAction sequence:@[scaleUp, scaleDown]];
SKAction *pulseForever = [SKAction repeatActionForever:pulse];

[powerupTitle runAction:pulseForever];

We create a repeating sequence of actions that scales the node up and down
by 30 percent forever. Notice that we’re running this on the title itself and
not the group, like we did with the actions created in the -showPowerupTimer:
method. And we’re never stopping it. Once we run this action on the title
when the HUD is initialized, it will keep going until the node no longer exists
in a scene.

We have one special scenario to consider, though. If the player collects a
power-up and then immediately collides with an obstacle, the game will end,
but the power-up timer will continue to show on the screen until the time is
up. So in the -endGame method of the RCWHUDNode, we should remove this
countdown action and fade out the timer to get rid of it.

Chapter 5. Keeping Score with a Heads-Up Display • 94

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

05-HUD/step04/SpaceRun/RCWHUDNode.m
- (void)endGame
{

[self removeActionForKey:@"elapsedGameTimer"];

SKNode *powerupGroup = [self childNodeWithName:@"powerupGroup"];➤

[powerupGroup removeActionForKey:@"showPowerupTimer"];➤
➤

SKAction *fadeOut = [SKAction fadeAlphaTo:0 duration:0.3];➤

[powerupGroup runAction:fadeOut];➤

}

We create a fade-out action that transitions the alpha of the powerupGroup to
zero over 0.3 seconds. If the node is already invisible when this is called, then
nothing happens. But if the game ends shortly after the ship acquired a
power-up, the message will fade away. The player won’t be fooled into thinking
that something is going to happen when the countdown timer is up.

All the details for animating the display are right here, and we merely have
to call this method when the user collects a power-up in the RCWMyScene colli-
sion detection.

05-HUD/step04/SpaceRun/RCWMyScene.m
if ([ship intersectsNode:powerup]) {

RCWHUDNode *hud = (RCWHUDNode *)[self childNodeWithName:@"hud"];➤

[hud showPowerupTimer:5];➤

// ...

We find the RCWHUDNode by name as a child of the scene, call the -showPowerup-
Timer: with the duration to count down, and that’s it! This fades in the display,
counts down, fades out, and cleans itself up. All the work is nicely tucked
away inside this special node subclass.

Next we’re going to record the player’s high score for posterity!

Showing the High Score
We’re finished building the heads-up display, but because this is all part of
showing the score to the player, we need a quick and simple high-score system.
Nothing fancy, just enough to display the highest score on the main menu
screen so the player can brag.

We could keep track of high scores in many ways. We could place them in a
plist file in the game’s documents directory or keep track of them entirely
within Apple’s Game Center service. To keep things simple, we’ll use
NSUserDefaults, where an iOS application can store preferences or configurations
that should be backed up and restored along with the app.

report erratum • discuss

Showing the High Score • 95

http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step04/SpaceRun/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Because the RCWHUDNode is the sole authority about the player’s score, let’s
update the -endGame method in our RCWMyScene.m file to ask it for the score and
store the value into a standard NSUserDefaults object.

05-HUD/step05/SpaceRun/RCWMyScene.m
- (void)endGame
{

self.tapGesture = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(tapped)];

[self.view addGestureRecognizer:self.tapGesture];

RCWGameOverNode *node = [RCWGameOverNode node];
node.position = CGPointMake(self.size.width / 2, self.size.height / 2);
[self addChild:node];

RCWHUDNode *hud = (RCWHUDNode *)[self childNodeWithName:@"hud"];
[hud endGame];

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];➤

NSNumber *highScore = [defaults valueForKey:@"highScore"];➤

if (highScore.integerValue < hud.score) {➤

[defaults setValue:@(hud.score) forKey:@"highScore"];➤

}➤

}

The +standardUserDefaults class method on the NSUserDefaults returns the single
instance that contains configuration data available to the game. We access
it just like a dictionary, storing and retrieving values with keys. Here we’re
retrieving any existing high score, and if the current score in the RCWHUDNode
at the end of the game is greater than the existing score, we set the new score
value for the key highScore.

To show this to the player, we need to tweak the RCWMenuViewController so we
have a label we can change to display the score.

05-HUD/step05/SpaceRun/RCWMenuViewController.m
@interface RCWMenuViewController ()
@property (nonatomic, strong) IBOutlet UISegmentedControl *difficultyChooser;
@property (nonatomic, strong) SKView *demoView;
@property (nonatomic, strong) IBOutlet UILabel *highScoreLabel;➤

@end

Declaring this property as an IBOutlet makes it available in the storyboard. If
you’re familiar with Storyboards, wire it up to this outlet. If you’d like to use
the storyboard that came with the book’s sample code, grab the Main.storyboard
file from the 05-HUD/step05/SpaceRun directory and replace the file in your project.
For more info about Storyboards, refer back to Customizing the Storyboard,
on page 54.

Chapter 5. Keeping Score with a Heads-Up Display • 96

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/05-HUD/step05/SpaceRun/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/05-HUD/step05/SpaceRun/RCWMenuViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

All that’s left is to update the label every time the view controller is about to
display by adding this method to RCWMenuViewController.m:

05-HUD/step05/SpaceRun/RCWMenuViewController.m
- (void)viewWillAppear:(BOOL)animated
{

[super viewWillAppear:animated];

NSNumberFormatter *scoreFormatter = [[NSNumberFormatter alloc] init];
scoreFormatter.numberStyle = NSNumberFormatterDecimalStyle;

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
[defaults registerDefaults:@{@"highScore": @0}];
NSNumber *score = [defaults valueForKey:@"highScore"];
NSString *scoreText = [NSString stringWithFormat:@"High Score: %@",

[scoreFormatter stringFromNumber:score]];

self.highScoreLabel.text = scoreText;
}

As a view controller subclass, the -viewWillAppear: method will be invoked just
before the menu shows up on the screen, both at game launch and after the
game ends. We use an NSNumberFormatter to display the score with proper for-
matting rules, like we did in the RCWHUDNode object, and build a string for the
high-score message to set on the text property of the label.

That’s it! The player’s scores now live on indefinitely—well, at least on his or
her iPhone.

Displaying scores is just one of many uses for heads-up displays in games.
We are also displaying the elapsed time within the game and the countdown
until the end of a weapon power-up. Heads-up displays could be used to
display health meters or distances to destinations—anything that helps
players understand their progress and reach their goals. Our game is pretty
simple, like the arcade games of old.

We used forethought and math to get the nodes laid out correctly within the
scene. By thinking through how you organize your node graph, you can group
nodes together and lay them out relative to each other, and then lay those
groups out relative to each other all the way up to the scene. Break each
layout task into smaller parts, and you’ll be doing awesome stuff in no time.

Our work with Space Run is finished. We’ve built a fun little game over the
course of these chapters. We’ll now move on to our next adventure—diving
deep into the Sprite Kit physics engine and creating a pinball game!

report erratum • discuss

Showing the High Score • 97

http://media.pragprog.com/titles/pssprite/code/05-HUD/step05/SpaceRun/RCWMenuViewController.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 6

Pinball Physics 101
Pinball is a classic game genre that uses gravity and ricochets to delight fans
all over the world. As we paper prototyped back in Physics Ball, on page ix,
we want to build a pinball game, and we want it to share some of the charac-
teristics of its real-world counterpart. Simulating physics used to require the
power of a computer the size of a small building. Sprite Kit’s built-in physics
engine brings this power to your pocket.

If you’ve never messed with a game physics engine before, have no fear. Sprite
Kit’s is quite powerful, yet simple enough for beginners to grasp. It integrates
seamlessly with the scene graph. Any node can participate and respond to
the physics calculations to give the illusion of weight, heft, bounciness, and
more.

We’re going to explore the Sprite Kit physics engine step by step. We’ll start
with a simple ball and a surface for it to bounce on. We’ll slowly build up the
capability to launch the ball from a plunger and restrict it to bounce around
within curved walls. Because we want the pinball table to be taller than the
screen and automatically scroll around, we’ll also sneak in a trick to give the
impression that there is a camera fixed on the ball. By the end, you’ll have
the basic vocabulary of the Sprite Kit physics engine and a worthy start to a
fun pinball game.

Ready? Let’s go!

Follow the Bouncing Ball
In this section, we’re going to experiment to build a ball and plunger and then
extract the nodes for the plunger and pinball into their own special SKNode
subclasses.

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Building any kind of physics game is a bit of a challenge. If you picked up
this book and jumped in right here, you might want to at least skim the pre-
vious chapters to understand Sprite Kit’s vocabulary first. You’ll be leaning
on a lot of accumulated knowledge and accumulating more as you go.

Download the source code for the book by following the instructions back in
How to Get the Most out of This Book, on page xii. We’ll be starting with the
Xcode project in 06-Physics/step01. This is similar to the project you created when
you followed the instructions to create a new project based on the Sprite Kit
template back in Setting Up a Sprite Kit Project, on page 2. Except this one
comes with all the graphics and sound files that we’ll need for the pinball
game ready to go. Here we’ll focus on the physics engine, not setting up the
Xcode project. Starting with the code in the 06-Physics/step01 directory will help
you jump right into the fun stuff.

In the RCWMyScene.m file, you’ll find that the -initWithSize: method used to construct
the scene delegates to a second method to do the actual setup.

06-Physics/step01/PhysicsBall/RCWMyScene.m
- (id)initWithSize:(CGSize)size
{

if (self = [super initWithSize:size]) {
[self setUpScene];

}
return self;

}

Because there is so much setup to do for this game, it’s easier to break it out
into the -setUpScene method so we don’t have so much indentation inside the
if statement of -initWithSize:. For the remainder of this section, we’ll be doing all
our work in the -setUpScene method.

Creating a Physics Body for the Ball
Let’s put a ball on a white screen. In the -setUpScene method, we’ll set the
background color and create a sprite node with the pinball.png image positioned
in the center.

06-Physics/step01/PhysicsBall/RCWMyScene.m
- (void)setUpScene
{

self.backgroundColor = [SKColor whiteColor];
SKSpriteNode *ball = [SKSpriteNode spriteNodeWithImageNamed:@"pinball.png"];
ball.position = CGPointMake(self.size.width/2, self.size.height/2);
ball.size = CGSizeMake(20, 20);
[self addChild:ball];

}

Chapter 6. Pinball Physics 101 • 100

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step01/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step01/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We first set the background color to [SKColor whiteColor], which will give good
contrast to the fast-moving action of the ball. Then we create a sprite node
with the pinball image texture and position it at the center of the scene’s
coordinates. Remember that, by default, a scene has the {0,0} origin in the
bottom left of the device screen. For a refresher on Sprite Kit’s coordinate
system, refer back to Figure 8, Comparing Sprite Kit and UIKit coordinates,
on page 16.

To engage the physics engine, we need to assign a physics body to the ball.

06-Physics/step01/PhysicsBall/RCWMyScene.m
- (void)setUpScene
{

self.backgroundColor = [SKColor whiteColor];
SKSpriteNode *ball = [SKSpriteNode spriteNodeWithImageNamed:@"pinball.png"];
ball.position = CGPointMake(self.size.width/2, self.size.height/2);
ball.size = CGSizeMake(20, 20);
[self addChild:ball];

ball.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:10];➤

}

The SKPhysicsBody objects define physics bodies within the physics world of the
scene. Any node can participate in the physics simulation, but it must have
a physics body assigned to it. Here we are using the +bodyWithCircleOfRadius:
constructor method to create a specific physics body that is a circle with a
10-point radius centered around the ball.

This physics body happens to be the same size and shape as the texture of
the sprite node. That’s because we want a ball, after all, and it wouldn’t make
sense if the body were larger or smaller than what is visible.

Figure 28—The ball falling off the
screen

But you can create bodies of any shape or
size you want. If, say, you wanted a body
that was a little smaller than the visible
sprite texture, then it would give the
appearance of overlapping other bodies.
That’s not what we want here for these
nodes, but it’s a useful technique to consider
for your own ideas.

Build and run the game and watch what
happens. The ball falls off the screen as if
affected by gravity, similar to the figure
shown here. But where did this gravity come
from? Don’t we have to set up a physics

report erratum • discuss

Follow the Bouncing Ball • 101

http://media.pragprog.com/titles/pssprite/code/06-Physics/step01/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

world for this to work first? That’s the beauty of Sprite Kit. You have all you
need to get started tinkering with the physics engine right away. Every Sprite
Kit game has a physics world ready to go, yet dormant until physics bodies
are assigned to nodes to start the calculations churning.

The physics world starts with a default gravity of 9.8 meters per second
squared (m/s2) in the downward direction. But we don’t have to settle for
that. In fact, let’s change it to make the ball appear to fall slower.

06-Physics/step02/PhysicsBall/RCWMyScene.m
- (void)setUpScene
{

self.backgroundColor = [SKColor whiteColor];
self.physicsWorld.gravity = CGVectorMake(0, -2);➤

SKSpriteNode *ball = [SKSpriteNode spriteNodeWithImageNamed:@"pinball.png"];
ball.position = CGPointMake(self.size.width/2, self.size.height/2);
ball.size = CGSizeMake(20, 20);
[self addChild:ball];
ball.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:10];

}

The self.physicsWorld property is always present on every SKScene object and
contains an instance of SKPhysicsWorld. The gravity property on that world takes
a vector, or a direction and magnitude, that determines the force of gravity.
A CGVector is kind of like a CGPoint in that it has an x and a y component. This
is saying that we want the gravity to be 2 m/s2 in the negative, or downward,
direction. Build and run the game, and you’ll see the ball accelerate downward
more slowly.

But we don’t have to make gravity fall down. We can also make it fall diago-
nally up! Change the line to look like this:

self.physicsWorld.gravity = CGVectorMake(1, 2);

Now the vector says that the force of gravity should accelerate 1 m/s2 to the
right and 2 m/s2 upward. Run the game now, and you’ll see the ball “fall” up
and to the right. This might seem counterintuitive at first. Shouldn’t gravity
always fall down? Remember, though, that games often present different
points of view. Space Run doesn’t use the physics engine and doesn’t have
gravity (it’s in space, after all), but it uses a top-down view of the playing field.
Maybe there could be a nearby planet that exerts gravity on all the nodes.
Maybe gravity changes according to the tilt of the device as a game mechanic.

But this is pinball, of course. The table is supposed to be slightly slanted to
allow the ball to drift toward the bottom, and you’re not supposed to be able

Chapter 6. Pinball Physics 101 • 102

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step02/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

to tilt it. To establish these rules, we’ll just keep the gravity fixed at 3.8 m/s2

downward.

06-Physics/step03/PhysicsBall/RCWMyScene.m
self.physicsWorld.gravity = CGVectorMake(0, -3.8);

Why -3.8? What do meters per second squared mean in this world? Welcome
to the esoteric side of physics engines. We’re making this all up as we go! The
physics engine tries its best to calculate how the bodies interact with each
other and the world, but the result depends a lot on tinkering. All the details
such as friction, mass, bounciness, and gravity come into play, and you’ll
find yourself tweaking values while searching for the illusion you want. When
we, the authors, were experimenting with pinball physics, we came up with
some reasonable numbers that made sense for the game as we saw it. (Of
course, you are free to tinker away and make the pinball physics as zany as
you want.)

While knowing a bit about physics in the real world would certainly be helpful,
leave your PhD in physics at the door. Remember, this is an approximation
for a game engine. As you’ll see while we build our pinball game, we’ll run
into all sorts of problems that we’ll have to work around and for which we’ll
bend the rules. Sprite Kit may bring delight to your players, but your thesis
advisor might not be as impressed.

Bouncing the Ball on Another Physics Body
Let’s add another body to the physics world so we can watch them interact.
At the end of the -setUpScene method, we’ll create a new sprite node to represent
the plunger and position it below.

06-Physics/step04/PhysicsBall/RCWMyScene.m
- (void)setUpScene
{

self.backgroundColor = [SKColor whiteColor];
self.physicsWorld.gravity = CGVectorMake(0, -3.8);
SKSpriteNode *ball = [SKSpriteNode spriteNodeWithImageNamed:@"pinball.png"];
ball.position = CGPointMake(self.size.width/2, self.size.height/2);
ball.size = CGSizeMake(20, 20);
[self addChild:ball];
ball.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:10];

SKSpriteNode *plunger = [SKSpriteNode spriteNodeWithImageNamed:@"plunger.png"];➤

plunger.position = CGPointMake(self.size.width/2, self.size.height/2 - 140);➤

plunger.size = CGSizeMake(25, 100);➤

[self addChild:plunger];➤

}

report erratum • discuss

Follow the Bouncing Ball • 103

http://media.pragprog.com/titles/pssprite/code/06-Physics/step03/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step04/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We’re creating a sprite node with the plunger.png image texture and adding it
to the scene below the ball. Run the game and watch what happens.

Figure 29—Ball falling through plunger

Whoops! The ball falls through the plunger. Remember that a node only par-
ticipates in the physics simulation when it has a physics body assigned to it.
Let’s set that up for the plunger now.

06-Physics/step05/PhysicsBall/RCWMyScene.m
- (void)setUpScene
{

self.backgroundColor = [SKColor whiteColor];

self.physicsWorld.gravity = CGVectorMake(0, -3.8);

SKSpriteNode *ball = [SKSpriteNode spriteNodeWithImageNamed:@"pinball.png"];
ball.position = CGPointMake(self.size.width/2, self.size.height/2);
ball.size = CGSizeMake(20, 20);
[self addChild:ball];

ball.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:10];

SKSpriteNode *plunger = [SKSpriteNode spriteNodeWithImageNamed:@"plunger.png"];
plunger.position = CGPointMake(self.size.width/2, self.size.height/2 - 140);
plunger.size = CGSizeMake(25, 100);
[self addChild:plunger];

plunger.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:plunger.size];➤

}

Here we are creating a rectangular physics body of the same size as the
plunger and assigning it to the plunger’s physicsBody property. Rectangular
bodies created in this manner are centered on the node’s position. Run the
game now and watch.

Chapter 6. Pinball Physics 101 • 104

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step05/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 30—The plunger falls off the screen, too.

This time, both the plunger and the ball fall off the screen. Our plunger is
now participating in the physics simulation, but it is affected by gravity, which
isn’t what we want. We need it to be fixed in some way. Many options exist
for pinning or fixing physics body in a world, depending on the effect you’re
going for. For this example, let’s just tell the physics body not to be affected
by gravity by adding this line:

06-Physics/step06/PhysicsBall/RCWMyScene.m
plunger.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:plunger.size];
plunger.physicsBody.affectedByGravity = NO;➤

Now when you run the game, you’ll see the plunger start out stationary, but
then the ball will fall and push it off the screen. It’s a very strange effect and
demonstrates how odd and unnatural physics engines are. We have two
bodies, both with density and heft, but only one of them is affected by gravity
and has weight.

Figure 31—The ball pushes the plunger off the screen.

report erratum • discuss

Follow the Bouncing Ball • 105

http://media.pragprog.com/titles/pssprite/code/06-Physics/step06/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

This isn’t what we want. We need the plunger to be completely immovable by
the ball. We can do that by telling Sprite Kit that this is not a dynamic body.
We’ll replace the line where we set the affectedByGravityProperty to instead look
like this:

06-Physics/step07/PhysicsBall/RCWMyScene.m
plunger.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:plunger.size];
plunger.physicsBody.dynamic = NO;➤

This tells the physics engine that the plunger’s physics body should participate
in the physics world as something that other bodies can bump into, but it
should not be moved. It acts like a permanent fixture, screwed into the
tabletop, and only participates as a place for other bodies to bounce off of.
Now when you run the game, you’ll see the ball fall and bounce on the top of
the plunger node.

Debugging Physics Bodies

Debugging physics bodies can take some trial and error. You have to see the interac-
tion to know whether you got it wrong. Thankfully, Sprite Kit offers some extra visual
debugging aides. You can tell the SKView to highlight all the physics bodies on the
screen by setting a special property in the -viewDidLoad method of the RCWViewController.m
file.

SKView * skView = (SKView *)self.view;
skView.showsFPS = YES;
skView.showsNodeCount = YES;
skView.showsPhysics = YES;➤

This serves the same purpose as the node count and frame per section display, which
we first saw back in What Just Happened?, on page 4. By setting the showsPhysics
property to YES, you’ll see bounding boxes and circles drawn around all the bodies
on the screen.

Adjusting Body Properties for Some More Bounce
Physics bodies according to Sprite Kit have many properties you can tweak
to get the illusion you want. Let’s try making the ball bounce higher, as if its
core is made out of rubber. We can do that by changing the restitution of the
ball’s physics body.

06-Physics/step08/PhysicsBall/RCWMyScene.m
ball.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:10];
ball.physicsBody.restitution = 0.9;➤

Restitution is a fancy way of saying how much force should be given or
restored to the body when it collides with something else. Think of it like a

Chapter 6. Pinball Physics 101 • 106

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step07/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step08/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

percentage of the original force. Here we are saying that 90 percent of the
force of collision should be the rebounding force. When you run the game,
you’ll see the ball bounce much, much higher—roughly 90 percent as high
as it started. If you set the restitution to 1.0, then you have a perfectly elastic
collision, as the physicists say, and the ball will bounce just as high as where
you dropped it.

Of course, you don’t have to restrict yourself to just numbers less than or
equal to 1.0. Try changing the restitution to 1.5 and see what happens. The
ball will bounce higher and higher with each collision. Eventually, the ball
will bounce off the screen and take quite a while to come down for the next
bounce. We’ve just invented Flubber!1

It may seem odd that we’d want to increase energy of a body with a collision,
but that’s a useful mechanic in pinball. Bumpers and targets are supposed
to shove the ball when hit. Old-school pinball tables use levers or springs to
make that happen, but here we can achieve the illusion by increasing the
restitution of a physics body. We’ll make use of this later in Chapter 7, More
Physics: Paddles and Collisions, on page 127.

Using Node Subclasses to Separate Responsibility
Before we move on to play more with the physics engine, let’s take a quick
moment to clean up after ourselves. Yes, we could build up the nodes and
physics bodies for the rest of the game right inside the scene-implementation
code, like we did for most of Space Run. But as the game gets more complicat-
ed, it will be harder to follow and difficult to change.

Instead, we want to break out all the components of this game into separate
SKNode subclasses, each built with its own knowledge and responsibilities.
They will be like black boxes that expose methods in their header files so we
know how to make them talk to each other. Let’s practice that now with
subclasses for our ball and plunger.

Create a file named RCWPinballNode.h with these contents:

06-Physics/step09/PhysicsBall/RCWPinballNode.h
#import <SpriteKit/SpriteKit.h>

@interface RCWPinballNode : SKSpriteNode
+ (instancetype)ball;
@end

1. http://en.wikipedia.org/wiki/The_Absent-Minded_Professor#Plot

report erratum • discuss

Follow the Bouncing Ball • 107

http://media.pragprog.com/titles/pssprite/code/06-Physics/step09/PhysicsBall/RCWPinballNode.h
http://en.wikipedia.org/wiki/The_Absent-Minded_Professor#Plot
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Our ball node won’t be doing very much during the course of the game. The
main reason we want a separate subclass is so that we can isolate all the
physics set up in one place. We’re exposing a class method, +ball, to construct
a ready-made ball node for us. Now let’s build the implementation in
RCWPinballNode.m.

06-Physics/step09/PhysicsBall/RCWPinballNode.m
#import "RCWPinballNode.h"

@implementation RCWPinballNode

+ (instancetype)ball
{

CGFloat sideSize = 20;
RCWPinballNode *node = [self spriteNodeWithImageNamed:@"pinball.png"];

node.size = CGSizeMake(sideSize, sideSize);

node.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:sideSize/2];
node.physicsBody.restitution = 0.2;

return node;
}

@end

Just as Apple exposes convenience class methods to construct nodes quickly,
like the +spriteNodeWithImageNamed: method, we are writing the +ball method to
build the ball with all the parameters set for us. We are setting the restitution
property to a low number to decrease the bouncing. We want the ball to come
to rest quickly to give the illusion that it is made out of solid metal.

In the same way, let’s build the interface to a plunger node. We’ll create a
new file named RCWPlungerNode.h with these contents:

06-Physics/step09/PhysicsBall/RCWPlungerNode.h
#import <SpriteKit/SpriteKit.h>

@interface RCWPlungerNode : SKNode
@property (nonatomic) CGSize size;
+ (instancetype)plunger;
@end

Just like the +ball convenience constructor method on the RCWPinballNode class,
we have a +plunger convenience constructor for this class. But we are also
adding a special size property and making this a subclass of SKNode and not
like SKSpriteNode before. To see why, create a new file named RCWPlungerNode.m
with the implementation:

Chapter 6. Pinball Physics 101 • 108

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step09/PhysicsBall/RCWPinballNode.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step09/PhysicsBall/RCWPlungerNode.h
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

06-Physics/step09/PhysicsBall/RCWPlungerNode.m
#import "RCWPlungerNode.h"

@implementation RCWPlungerNode

+ (instancetype)plunger
{

RCWPlungerNode *plunger = [self node];
plunger.size = CGSizeMake(20, 100);

SKSpriteNode *stick = [SKSpriteNode spriteNodeWithImageNamed:@"plunger.png"];
stick.name = @"stick";
stick.size = plunger.size;
stick.position = CGPointMake(0, 0);

stick.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:plunger.size];
stick.physicsBody.dynamic = NO;
stick.physicsBody.restitution = 0;

[plunger addChild:stick];

return plunger;
}

@end

The plunger node is a container node with an inner sprite node representing
the stick that will be moved. And notice that we’re giving the inner stick node
the physics body and not the actual RCWPlungerNode itself. It won’t make sense
yet, but breaking things out this way helps us make this node act like a simple
control that players can manipulate with their thumb. The RCWPlungerNode is a
black box that promises to display a plunger. We’ll add methods for grabbing
and releasing the plunger when the time comes. All that responsibility will be
here.

Notice that we’re setting the restitution of the plunger stick’s physics body to
zero. When two bodies collide, the physics world takes both bodies’ restitution
values into account to determine the rebounding force. In this game, we want
to make sure that the plunger does not affect the ball at all.

To use these in the scene, we need to add imports for the header files in the
top of RCWMyScene.m.

06-Physics/step09/PhysicsBall/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWPinballNode.h"➤

#import "RCWPlungerNode.h"➤

And then we’ll rewrite the -setUpScene method.

report erratum • discuss

Follow the Bouncing Ball • 109

http://media.pragprog.com/titles/pssprite/code/06-Physics/step09/PhysicsBall/RCWPlungerNode.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step09/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

06-Physics/step09/PhysicsBall/RCWMyScene.m
- (void)setUpScene
{

self.backgroundColor = [SKColor whiteColor];

self.physicsWorld.gravity = CGVectorMake(0, -3.8);

RCWPinballNode *ball = [RCWPinballNode ball];
ball.name = @"ball";
ball.position = CGPointMake(self.size.width/2, self.size.height/2);
[self addChild:ball];

RCWPlungerNode *plunger = [RCWPlungerNode plunger];
plunger.name = @"plunger";
plunger.position = CGPointMake(self.size.width/2, self.size.height/2 - 140);
[self addChild:plunger];

}

Much cleaner! If you ran the game now, it would behave exactly as before,
with the ball dropping to rest on the top of the plunger. This is a much better
separation of responsibilities within the scene graph. The RCWMyScene object
is responsible for instantiating and positioning the ball and plunger, but those
respective nodes are responsible for setting up their own physics bodies.

Now you see how building a physics game is like playing with clay. We’re
experimenting one step at a time to achieve the kind of effect we want. You’ll
find yourself going back over the physics bodies properties, tweaking the
numbers to see how things work in your own games. While the authors of
this book have worked out some useful numbers for this pinball game ahead
of time, tinkering in this way is how you do it.

Next, let’s bring the plunger to life and follow the player’s thumb.

Moving the Plunger with a Touch
Now that we have two dedicated node instances—one for the ball and one for
the plunger—we can start imagining how we want to control them with the
player’s finger. We’ll use the same kind of mechanism we did back in Following
the Finger Around, on page 6, for Space Run. We need to add a dedicated
property to remember the touch object when the finger is down at the top of
the RCWMyScene.m file.

06-Physics/step10/PhysicsBall/RCWMyScene.m
@interface RCWMyScene ()
@property (nonatomic, weak) UITouch *plungerTouch;
@end

Chapter 6. Pinball Physics 101 • 110

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step09/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We’re declaring the property as weak because we don’t want to hold a strong
reference to the touch. Since the touch-management system takes care of the
touch objects, it will release them when the fingers leave the screen, and by
using a weak reference our property will be set to nil automatically.

Next, we’ll add the -touchesBegan:withEvent: method to interpret any touches and
start grabbing on to the stick of the plunger.

06-Physics/step10/PhysicsBall/RCWMyScene.m
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

RCWPinballNode *ball = (id)[self childNodeWithName:@"ball"];
RCWPlungerNode *plunger = (id)[self childNodeWithName:@"plunger"];
if (self.plungerTouch == nil && [plunger isInContactWithBall:ball]) {

UITouch *touch = [touches anyObject];
self.plungerTouch = touch;
[plunger grabWithTouch:touch];

}
}

First, we look up the ball and the plunger in the scene graph by the names
given to them when they were created and added back in the -setUpScene
method. Note that we’re casting the return type of the -childNodeWithName: method
to id to make it easier to assign the result to the ball and plunger variables. The
-childNodeWithName: method returns an object of type SKNode *. We could’ve written
the lines more explicitly to cast the return values like this:

RCWPinballNode *ball = (RCWPinballNode *)[self childNodeWithName:@"ball"];
RCWPlungerNode *plunger = (RCWPlungerNode *)[self childNodeWithName:@"plunger"];

But because we will be using the -childNodeWithName: method a lot while building
this game, we’ll use the id casting shortcut to satisfy the compiler so we don’t
get a warning.

Once we have the ball and plunger, we check to see whether we’ve already
assigned a touch to the self.plungerTouch property. No need to continue if we’ve
already grabbed the plunger’s stick. We also check whether the plunger is in
contact with the ball by calling the -isInContactWithBall: method on RCWPlungerNode.
We’ll write that method in a moment. This is an example of higher-level dia-
logue between objects. We want this plunger object to expose methods as
questions and commands that are part of its responsibility.

Assuming both of those conditions are true, we assign a touch to the
self.plungerTouch property so the scene can keep track of it. Then we tell the plunger
about the touch with the -grabWithTouch: method, which we’ll write shortly. Again,
we are planning the methods we want to write on our nodes by thinking about
how our scene needs to talk to them to accomplish the goals.

report erratum • discuss

Moving the Plunger with a Touch • 111

http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Because we’re in a static language with header files, we need to declare these
two new methods in the RCWPlungerNode.h file so the compiler knows what to
expect. Let’s do that now.

06-Physics/step10/PhysicsBall/RCWPlungerNode.h
#import <SpriteKit/SpriteKit.h>
#import "RCWPinballNode.h"➤

@interface RCWPlungerNode : SKNode
@property (nonatomic) CGSize size;
+ (instancetype)plunger;

- (BOOL)isInContactWithBall:(RCWPinballNode *)ball;➤

- (void)grabWithTouch:(UITouch *)touch;➤

@end

We’re importing the RCWPinballNode.h header file here because we’ll need access
to the RCWPinballNode class in our method definitions. With these declarations
in place, switch to RCWPlungerNode.m and implement the -isInContactWithBall: method.

06-Physics/step10/PhysicsBall/RCWPlungerNode.m
- (BOOL)isInContactWithBall:(RCWPinballNode *)ball
{

SKNode *stick = [self childNodeWithName:@"stick"];
NSArray *contactedBodies = stick.physicsBody.allContactedBodies;
return [contactedBodies containsObject:ball.physicsBody];

}

While we could do some position and frame rectangle mathematics to check
to see whether the ball and the stick intersect, instead we’ll use a physics
engine shortcut that foreshadows our work with collisions in Chapter 7, More
Physics: Paddles and Collisions, on page 127. Every physics body has an array
of all bodies touching it through the allContactedBodies property. We first look
up the stick node inside the plunger and then call -containsObject: and pass in
the ball’s physics body to see whether it is present. If so, then the objects are
touching, and we return YES.

With that method out of the way, we add the implementation of the -grabWith-
Touch: method.

06-Physics/step10/PhysicsBall/RCWPlungerNode.m
- (void)grabWithTouch:(UITouch *)touch
{

CGPoint touchPoint = [touch locationInNode:self];
SKNode *stick = [self childNodeWithName:@"stick"];

self.yTouchDelta = stick.position.y - touchPoint.y;
}

Chapter 6. Pinball Physics 101 • 112

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWPlungerNode.h
http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWPlungerNode.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWPlungerNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We need the touch to give us the location within this plunger node’s coordinate
system. That’s why we passed the touch into this method, so we can call
-locationInNode:. Once we have the touch point, we find the stick node and note
the y distance of the stick’s position from the touch location. We don’t want
the stick to snap to the location of the thumb on the screen. We want to let
the user grab anywhere, and the plunger to follow the relative downward
motion.

To keep track of this coordinate delta, we need to create the yTouchDelta prop-
erty in the class extension at the top of the RCWPlungerNode.m file.

06-Physics/step10/PhysicsBall/RCWPlungerNode.m
@interface RCWPlungerNode ()
@property (nonatomic) CGFloat yTouchDelta;
@end

To recap, when the touches begin, we check first to see whether the plunger
is in contact with the ball. If so, then we save one of the touches in the scene’s
self.plungerTouch property. We tell the plunger node that it was grabbed with
that touch, and the plunger calculates and saves the relative distance of the
touch from the stick’s current position.

Moving the Plunger in the -didSimulatePhysics Method
We’re ready to write the code to actually move the plunger with the touch.
Remember back in Following the Finger Around, on page 6, that we did not
use the -touchesMoved:withEvent: callback to track motion. Because we are saving
a reference of the touch object for the life of the touch, we updated the location
of the spaceship in the -update: method that Sprite Kit calls on the scene once
before every frame is drawn.

We want to do the same kind of thing here, but we’re not supposed to update
the position of nodes with physics bodies in the -update: method. Instead, we
must implement the -didSimulatePhysics method in the RCWMyScene.m file, like this:

06-Physics/step10/PhysicsBall/RCWMyScene.m
- (void)didSimulatePhysics
{

if (self.plungerTouch) {
RCWPlungerNode *plunger = (id)[self childNodeWithName:@"plunger"];
[plunger translateToTouch:self.plungerTouch];

}
}

Like the -update: method, this method is also called once per frame. The differ-
ence is that this method is called after the physics simulation completes all
of its calculations for this frame. We want to alter the position of the plunger

report erratum • discuss

Moving the Plunger with a Touch • 113

http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWPlungerNode.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

after that step; otherwise, the physics simulation might compete with any
changes we make in the -update: method. Apple has excellent documentation
describing all the steps that take place every frame.2 First the -update: method
is called, then actions are run, the physics engine does its thing, and then
-didSimulatePhysics is called for us to do any extra special work to adjust the
position and properties of physics bodies before the frame is drawn.

Here we are first checking to see whether the self.plungerTouch property is set.
If so, then we look up the plunger and pass that touch into the -translateToTouch:
method so the plunger knows to adjust the stick to the new thumb position.
We’ll declare that method in the RCWPlungerNode.h header file.

06-Physics/step10/PhysicsBall/RCWPlungerNode.h
@interface RCWPlungerNode : SKNode
@property (nonatomic) CGSize size;
+ (instancetype)plunger;

- (BOOL)isInContactWithBall:(RCWPinballNode *)ball;
- (void)grabWithTouch:(UITouch *)touch;
- (void)translateToTouch:(UITouch *)touch;➤

@end

And then we’ll implement the method in RCWPlungerNode.m.

06-Physics/step10/PhysicsBall/RCWPlungerNode.m
- (void)translateToTouch:(UITouch *)touch
{

CGPoint point = [touch locationInNode:self];
SKNode *stick = [self childNodeWithName:@"stick"];
CGFloat newY = point.y + self.yTouchDelta;
CGFloat plungerHeight = self.size.height;
CGFloat upperY = 0;
CGFloat lowerY = upperY - plungerHeight + 30;
if (newY > upperY) {

newY = upperY;
} else if (newY < lowerY) {

newY = lowerY;
}
stick.position = CGPointMake(0, newY);

}

This computes the touch location within the RCWPlungerNode’s local coordinate
system and calculates the newY value to reposition the plunger’s visible stick
based on where the thumb is. Notice how we’re adding the self.yTouchDelta to

2. https://developer.apple.com/library/mac/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/
KeepingUptoDate/KeepingUptoDate.html

Chapter 6. Pinball Physics 101 • 114

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWPlungerNode.h
http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWPlungerNode.m
https://developer.apple.com/library/mac/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/KeepingUptoDate/KeepingUptoDate.html
https://developer.apple.com/library/mac/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/KeepingUptoDate/KeepingUptoDate.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

the point.y value to get newY. This is taking into account that initial distance
from the thumb to the position of the stick.

We’re also clamping to make sure the newY value doesn’t go too far above or
below. We don’t want the player to be able to pull the plunger’s stick up and
out of its track or too far down so it vanishes. Once we’ve properly clamped
the newY value, we assign the new position to the stick node.

To recap, we give the illusion that the player is moving the plunger by
checking the touch location and moving the plunger relative to the player’s
thumb, but only within a certain upper and lower bound.

Letting Go and Snapping the Plunger
The plunger follows the finger, but we also want it to snap in place when the
touch ends. We’ll switch back to RCWMyScene.m and implement the -touchesEnded:with-
Event: method.

06-Physics/step10/PhysicsBall/RCWMyScene.m
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{

if ([touches containsObject:self.plungerTouch]) {
RCWPlungerNode *plunger = (id)[self childNodeWithName:@"plunger"];
[plunger letGoAndLaunchBall];

}
}

Like the analogous -touchesBegan:withEvent: method, this is called on the scene by
the system when touches end. We ask the touches set if it happens to contain
the object in the self.plungerTouch property. If so, then we find the plunger and call
the method -letGoAndLaunchBall. We’ll declare that method in the RCWPlungerNode.h
file.

06-Physics/step10/PhysicsBall/RCWPlungerNode.h
- (BOOL)isInContactWithBall:(RCWPinballNode *)ball;
- (void)grabWithTouch:(UITouch *)touch;
- (void)translateToTouch:(UITouch *)touch;
- (void)letGoAndLaunchBall;➤

And then we implement that method in the RCWPlungerNode.m file.

06-Physics/step10/PhysicsBall/RCWPlungerNode.m
- (void)letGoAndLaunchBall
{

SKNode *stick = [self childNodeWithName:@"stick"];
SKAction *move = [SKAction moveToY:0 duration:0.02];
[stick runAction:move];

}

report erratum • discuss

Moving the Plunger with a Touch • 115

http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWPlungerNode.h
http://media.pragprog.com/titles/pssprite/code/06-Physics/step10/PhysicsBall/RCWPlungerNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We look up the stick node and run a simple action to move the stick back to
where it started over the span of 0.02 seconds. It’s fast enough to give the
kind of snap effect we want.

Phew! That took a lot of work just to get the plunger to appear to be controlled
by the thumb, but it was worth it. The plunger acts like a black box that we
talk to through the public methods. It knows how to start with a touch object’s
location, update as the touch changes, and then return the stick when we
tell it that the player let go.

It’s time to give this a try. Build and run the game, grab the plunger’s stick,
and watch it work. You’ll see the ball follow the stick! As you pull it down,
the ball will fall and land on top. Lift the stick up, and the ball raises up, too.
You are manipulating the physics bodies in real time, and Sprite Kit is keeping
up!

However, pull down the stick and watch what happens when you let go. When
the action runs to snap the plunger’s stick back in place, the ball snaps off
to the side and falls down the screen, pulled by gravity as shown in the fol-
lowing figure. You can cause the same behavior if you grab the stick, pull it
down, and raise it very quickly by hand.

Figure 32—Moving too fast for the physics engine to keep up

What you’re experiencing is one of the great frustrations of physics simulations
and physics engines in general. This simulation uses discrete time steps and
an ever-advancing clock to calculate where each physics body should be.
Many things happen as each frame is rendered, and it is possible to confuse
the physics by moving things too quickly.

When the player pulls down the plunger, the ball falls and lands on top,
resting and waiting. The moment the plunger is released, the action to snap
the plunger back into place kicks in and moves the plunger a large distance

Chapter 6. Pinball Physics 101 • 116

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

upward for this frame. Then the physics engine is given control and starts
calculating what should happen to the physics bodies.

At this point, the physics engine sees that the plunger and the ball overlap!
What is the physics engine to do? In this case the engine decides to shove
the ball off to the side so that the bodies don’t overlap anymore. The frame
is drawn, and the next frame begins. But this time, when it is the physics
engine’s turn to run its calculations for the next frame, the ball is no longer
on the top of the plunger. The engine then continues to plot the course of the
ball as gravity takes over and it falls out of the bottom of the screen.

You’ll run into this a lot as you experiment with physics engines. Sprite Kit
is no exception. But it’s not the end of the world. You can use the physics
engine to your advantage! You just need to learn a bit about fixed joints to
stick the ball to the top of the plunger until you let go.

Using a Fixed Joint to Stick the Ball to the Plunger
Physics bodies don’t just have to drift around on their own. They can also be
joined together in a variety of ways. Here, we’re going to change our RCWPlungerNode
so that it joins the ball to the top of the plunger when the touch begins. That
joint will hold the ball in place no matter how fast the plunger moves. When the
action runs to snap the plunger back in place, we will break the joint and then
launch the ball by manually applying a force to it, depending on how far the
player pulled down the plunger.

First, we need to change our method declarations in RCWPlungerNode.h. The
plunger needs to know more details to do its new job. We have to pass it the
ball and the physics world.

06-Physics/step11/PhysicsBall/RCWPlungerNode.h
@interface RCWPlungerNode : SKNode
@property (nonatomic) CGSize size;
+ (instancetype)plunger;

- (BOOL)isInContactWithBall:(RCWPinballNode *)ball;
- (void)grabWithTouch:(UITouch *)touch➤

holdingBall:(RCWPinballNode *)ball➤

inWorld:(SKPhysicsWorld *)world;➤

- (void)translateToTouch:(UITouch *)touch;
- (void)letGoAndLaunchBallInWorld:(SKPhysicsWorld *)world;➤

@end

We need the ball node and the physics world in the -grabWithTouch:holding-
Ball:inWorld: method because we need to create a joint between the ball and the
stick, and we need to add that joint to the physics world. We also need the

report erratum • discuss

Using a Fixed Joint to Stick the Ball to the Plunger • 117

http://media.pragprog.com/titles/pssprite/code/06-Physics/step11/PhysicsBall/RCWPlungerNode.h
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

physics world in the -letGoAndLaunchBallInWorld: method so we can break the joint
when it’s time to let go of the ball.

Let’s switch to RCWPlungerNode.m and replace the old -grabWithTouch: method with
the new -grabWithTouch:holdingBall:inWorld: method.

06-Physics/step11/PhysicsBall/RCWPlungerNode.m
- (void)grabWithTouch:(UITouch *)touch

holdingBall:(RCWPinballNode *)ball
inWorld:(SKPhysicsWorld *)world

{
CGPoint touchPoint = [touch locationInNode:self];
SKNode *stick = [self childNodeWithName:@"stick"];

self.yTouchDelta = stick.position.y - touchPoint.y;

CGPoint jointPoint = [self convertPoint:stick.position toNode:self.scene];

self.jointToBall = [SKPhysicsJointFixed jointWithBodyA:stick.physicsBody
bodyB:ball.physicsBody

anchor:jointPoint];

[world addJoint:self.jointToBall];
}

Where before we just set the self.yTouchDelta property, now we have to do much
more. The jointPoint must be in scene coordinates, which is why we are calcu-
lating it using the -convertPoint:toNode: to take the stick’s current position and
return it in scene coordinates.

At the end of the method, we create an SKPhysicsJointFixed object to combine the
stick.physicsBody and ball.physicsBody, anchoring them at jointPoint. We save that
joint in a self.jointToBall property so we have it for later and then add that joint
to the physics world with the -addJoint: method.

We don’t yet have the self.jointToBall property, so we’ll add it in the class extension
at the top of the file.

06-Physics/step11/PhysicsBall/RCWPlungerNode.m
@interface RCWPlungerNode ()

@property (nonatomic) CGFloat yTouchDelta;
@property (nonatomic, strong) SKPhysicsJointFixed *jointToBall;➤

@end

And now we can implement the -letGoAndLaunchBallInWorld: method to replace the
old -letGoAndLaunchBall method.

Chapter 6. Pinball Physics 101 • 118

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step11/PhysicsBall/RCWPlungerNode.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step11/PhysicsBall/RCWPlungerNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

06-Physics/step11/PhysicsBall/RCWPlungerNode.m
- (void)letGoAndLaunchBallInWorld:(SKPhysicsWorld *)world
{

SKNode *stick = [self childNodeWithName:@"stick"];

CGFloat returnY = 0;
CGFloat distancePulled = returnY - stick.position.y;
CGFloat forceToApply = MAX(4, distancePulled / 2);

SKAction *move = [SKAction moveToY:returnY duration:0.02];
SKAction *launchBall = [SKAction runBlock:^{

[world removeJoint:self.jointToBall];
SKPhysicsBody *ballBody = self.jointToBall.bodyB;
[ballBody applyImpulse:CGVectorMake(0, forceToApply)];
self.jointToBall = nil;

}];

SKAction *all = [SKAction sequence:@[move, launchBall]];
[stick runAction:all];

}

Unlike before, where we just found the stick node and ran the action to move
it in place over 0.02 seconds, we have more work to do here. We first calculate
the distancePulled so we can come up with some kind of forceToApply that we will
use to send the ball on its way. For this particular example, we’re just using
distancePulled / 2 and making sure that it is at least 4. Feel free to adjust this to
taste.

Once we have the forceToApply, we build an action out of a code block that will
run after the plunger stick finishes moving. This action first breaks the joint
with the world’s -removeJoint: method and then grabs the ball’s physics body
off the joint and calls -applyImpulse:, passing it a CGVector constructed with force-
ToApply as an upward force. Then we run this sequence of actions on the stick
to move the stick back and then launch the ball.

This gives the illusion that the stick is snapping back into place and launching
the ball. Because manually moving a physics body quickly can confuse the
physics engine and knock the ball off, we had to improvise and bind the ball
to the stick while the player’s thumb is down. When the thumb lets go, we
move the plunger back where it should be, break the joint, and then apply a
made-up force to complete the illusion that the stick snapped into place and
shoved the ball fast enough to launch it.

We still need to switch back to RCWMyScene.m and update our -touchesBegan:with-
Event: and -touchesEnded:withEvent: methods to use these new method calls.

report erratum • discuss

Using a Fixed Joint to Stick the Ball to the Plunger • 119

http://media.pragprog.com/titles/pssprite/code/06-Physics/step11/PhysicsBall/RCWPlungerNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

06-Physics/step11/PhysicsBall/RCWMyScene.m
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

RCWPinballNode *ball = (id)[self childNodeWithName:@"ball"];
RCWPlungerNode *plunger = (id)[self childNodeWithName:@"plunger"];

if (self.plungerTouch == nil && [plunger isInContactWithBall:ball]) {
UITouch *touch = [touches anyObject];
self.plungerTouch = touch;
[plunger grabWithTouch:touch holdingBall:ball inWorld:self.physicsWorld];➤

}
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{

if ([touches containsObject:self.plungerTouch]) {
RCWPlungerNode *plunger = (id)[self childNodeWithName:@"plunger"];
[plunger letGoAndLaunchBallInWorld:self.physicsWorld];➤

}
}

And that’s it. Run the game to see how it behaves. No matter how fast you
move the plunger, the ball stays attached like a magnet. When you let go, the
plunger launches the ball into the sky.

Pretty slick, eh? You’ll be using tricks like this all the time when doing physics
games. Take time to get to know how physics bodies, joints, and the world
all interact together. If you run into a problem, use other rules of the physics
world to help you solve it. Play along with the rules, and you won’t pull your
hair out in frustration.

Next, we’ll build a table taller than the screen with an edge body to contain
the ball and have the game automatically follow the ball like a camera moving
over the table!

Building a Scrolling Table with an Edge Body
Pinball wouldn’t be pinball without the familiar curved table design that
guides the launched ball up and around. We want to have that same feel, so
we’re going to build a special kind of physics body, called an edge body, that
will act as the walls of the table.

But more than that, we want this table to be taller than the screen and scroll
to keep the ball centered. That means we need a node to contain the ball, the
plunger, and all the other nodes that belong to the game. We’ll reposition that
special node representing the table to give the illusion of a camera following
the ball.

Chapter 6. Pinball Physics 101 • 120

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step11/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We’ll start by creating a new file named RCWTableNode.h with this class interface:

06-Physics/step12/PhysicsBall/RCWTableNode.h
#import <SpriteKit/SpriteKit.h>
#import "RCWPinballNode.h"

@interface RCWTableNode : SKNode
+ (instancetype)table;
- (void)followPositionOfBall:(RCWPinballNode *)ball;
@end

We have a convenience constructor in the +table method, just like we’ve done
for other nodes. But we also plan to write a special method, -followPositionOfBall:,
that will determine where to change the position of this table node within the
scene. Again, we’re building a black box with all the smarts inside—we just
call methods to make it do the work.

We’ll add this implementation to a new file named RCWTableNode.m to start
defining our constructor.

06-Physics/step12/PhysicsBall/RCWTableNode.m
#import "RCWTableNode.h"

@implementation RCWTableNode

+ (instancetype)table
{

RCWTableNode *table = [self node];

SKShapeNode *bounds = [SKShapeNode node];
bounds.strokeColor = [SKColor blackColor];
[table addChild:bounds];

// ...

return table;
}

We first create an empty instance of the RCWTableNode class. Then we start
setting up an SKShapeNode to use as the boundaries of the table. Shape nodes
will render whatever path you give them. Here we want to use a shape node
as the visual boundaries with a black color.

Next, we’ll build a UIBezierPath object that will give us the shape we need.

06-Physics/step12/PhysicsBall/RCWTableNode.m
// ...
UIBezierPath* bezierPath = [UIBezierPath bezierPath];
[bezierPath moveToPoint: CGPointMake(0.5, -10)];

report erratum • discuss

Building a Scrolling Table with an Edge Body • 121

http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWTableNode.h
http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWTableNode.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWTableNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

[bezierPath addCurveToPoint:CGPointMake(1, 700)
controlPoint1:CGPointMake(0.5, -10)
controlPoint2:CGPointMake(1, 620)];

[bezierPath addCurveToPoint:CGPointMake(160.5, 880)
controlPoint1:CGPointMake(1, 780)
controlPoint2:CGPointMake(45.86, 880)];

[bezierPath addCurveToPoint:CGPointMake(319, 700)
controlPoint1:CGPointMake(275.14, 880)
controlPoint2:CGPointMake(319, 780)];

[bezierPath addCurveToPoint:CGPointMake(319.5, -10)
controlPoint1:CGPointMake(319, 620)
controlPoint2:CGPointMake(319.5, -10)];

bounds.path = bezierPath.CGPath;
// ...

Remember back in Creating CGPathRefs with PaintCode, on page 27, when
we used PaintCode to build a UIBezierPath object for the enemy ship to follow?
We’re doing the same kind of thing here. This path will give us a nice
boundary that is about 900 points tall and curves around at the top. If you’d
like to take a look at it, the PaintCode document used to generate this is
available in 06-Physics/step12/assets/edge-path.pcvd.

The lovely thing about building this path for the SKShapeNode is that we can
reuse this path for the edge body.

06-Physics/step12/PhysicsBall/RCWTableNode.m
// ...
bounds.physicsBody = [SKPhysicsBody bodyWithEdgeChainFromPath:bezierPath.CGPath];
// ...

By calling +bodyWithEdgeChainFromPath:, we build an edge body that is like an
open-ended wall. Edge bodies are different from other kinds of bodies in that
they are never dynamic, or move within the simulation. You can move them
around by changing their coordinates manually, of course, but they only
participate in the physics simulation as an immovable object and never budge
in response to something bumping into them. They can be open ended, as
we are using here, and because they allow physics bodies to move around
inside of them, they make great walls or uncrossable boundaries.

Before we can use the table node in the scene, we have to import the header
file at the top of the RCWMyScene.m file.

06-Physics/step12/PhysicsBall/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWPinballNode.h"
#import "RCWPlungerNode.h"
#import "RCWTableNode.h"➤

Chapter 6. Pinball Physics 101 • 122

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWTableNode.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Then, we’ll start rewriting the -setUpScene method.

06-Physics/step12/PhysicsBall/RCWMyScene.m
- (void)setUpScene
{

self.backgroundColor = [SKColor whiteColor];
self.physicsWorld.gravity = CGVectorMake(0, -3.8);

RCWTableNode *table = [RCWTableNode table];➤

table.name = @"table";➤

table.position = CGPointMake(0, 0);➤

[self addChild:table];➤

// ...

After setting up the background color and gravity like before, we now create
an instance of our RCWTableNode, name it so we can find it later, and position
it at the scene’s origin at {0,0}. Next we need to change how we were setting
up the plunger and ball and add them to this table node instead of the scene
itself.

06-Physics/step12/PhysicsBall/RCWMyScene.m
RCWPlungerNode *plunger = [RCWPlungerNode plunger];
plunger.name = @"plunger";
plunger.position = CGPointMake(self.size.width - plunger.size.width/2 - 4,

plunger.size.height / 2);
[table addChild:plunger];
RCWPinballNode *ball = [RCWPinballNode ball];
ball.name = @"ball";
ball.position = CGPointMake(plunger.position.x,

plunger.position.y + plunger.size.height);
[table addChild:ball];

Instead of calling -addChild: on the scene object, we call it on the table. Anything
that needs to scroll with the table while the game plays needs to be a child
of the table. While we’re at it, we’re also moving the position of the plunger
so it is flush on the right side of the screen, where it should be, and we position
the ball so it starts out right above the plunger.

If you were to run the game right now, you’d see the thin black outline drawn
on both sides of the screen where the table’s boundaries are, but you wouldn’t
be able to control the plunger. What happened? Aren’t we looking up the
plunger node in the touch methods?

Well, we were looking them up correctly. That is, before we made the plunger
and ball children of the table node. To find them as grandchildren of the scene,
we either need to find the table node and then look for them as children of
that node, or use the //nodeName syntax.

report erratum • discuss

Building a Scrolling Table with an Edge Body • 123

http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

06-Physics/step12/PhysicsBall/RCWMyScene.m
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

RCWPinballNode *ball = (id)[self childNodeWithName:@"//ball"];➤

RCWPlungerNode *plunger = (id)[self childNodeWithName:@"//plunger"];➤

if (self.plungerTouch == nil && [plunger isInContactWithBall:ball]) {
UITouch *touch = [touches anyObject];
self.plungerTouch = touch;
[plunger grabWithTouch:touch holdingBall:ball inWorld:self.physicsWorld];

}
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{

if ([touches containsObject:self.plungerTouch]) {
RCWPlungerNode *plunger = (id)[self childNodeWithName:@"//plunger"];➤

[plunger letGoAndLaunchBallInWorld:self.physicsWorld];
}

}

This means we are asking the scene, which is self in this case, to find any
descendant that has the given name. Think of it like an XPath or a CSS
selector. We’re not quite done yet because we have to change the -didSimu-
latePhysics method, too.

06-Physics/step12/PhysicsBall/RCWMyScene.m
- (void)didSimulatePhysics
{

RCWTableNode *table = (id)[self childNodeWithName:@"table"];➤

RCWPinballNode *ball = (id)[table childNodeWithName:@"ball"];➤

RCWPlungerNode *plunger = (id)[table childNodeWithName:@"plunger"];➤

if (self.plungerTouch) {
[plunger translateToTouch:self.plungerTouch];

}
[table followPositionOfBall:ball];➤

}

We’re handling this a bit differently. This time we are looking up the table
node and then looking up the ball and plunger as direct children of the table.
Because we need to find the table node anyway to tell it the new position of
the ball, there’s no need to tell the scene to use the grandchildren selection
syntax.

Next, we need switch back to RCWTableNode.m to implement the -followPositionOfBall:
method.

06-Physics/step12/PhysicsBall/RCWTableNode.m
- (void)followPositionOfBall:(RCWPinballNode *)ball
{

CGRect frame = [self calculateAccumulatedFrame];

Chapter 6. Pinball Physics 101 • 124

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWTableNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CGFloat sceneHeight = self.scene.size.height;
CGFloat cameraY = ball.position.y - sceneHeight/2;
CGFloat maxY = frame.size.height - sceneHeight;
CGFloat minY = 0;
if (cameraY < minY) { cameraY = minY; }
else if (cameraY > maxY) { cameraY = maxY; }
self.position = CGPointMake(0, 0-cameraY);

}

Because this is called during the -didSimulatePhysics phase of rendering the frame,
we know the precise position of the ball. We calculate the frame of this table
node (which includes the frame of the drawn SKShapeNode we are using to represent
the boundary) and calculate the cameraY value as measured from the center of
the scene to the ball’s current y position. We then clamp the cameraY value to
make sure the camera effect doesn’t scroll past the top or bottom of the table
and update the position property of this RCWTableNode to simulate a camera.

That’s it! When you run the game, you’ll see the ball ready and waiting on
the plunger. Pull it down and let it go. The ball will scream up the side of the
table, the table will change position to give the illusion of a camera following
the ball, and the ball will whip around the curve at the top and then plunge
down the left side on its way off into the abyss. Now that’s magic.

As a minor point of concern, you’ll notice that the ball picks up a lot of spin
as it skids across the edge body of the table. High angular velocity drastically
affects how the body ricochets off other bodies, and it won’t work well for the
kind of effect we’re going for in a pinball game. Our ball is made of metal, and
while it will spin a bit from friction generated by the wall, we want to dampen
this effect to make it act more like we want.

Back in RCWPinballNode.m, let’s add these lines to configure the ball’s physics
body to spin less:

06-Physics/step12/PhysicsBall/RCWPinballNode.m
+ (instancetype)ball
{

CGFloat sideSize = 20;
RCWPinballNode *node = [self spriteNodeWithImageNamed:@"pinball.png"];

node.size = CGSizeMake(sideSize, sideSize);
node.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:sideSize/2];
node.physicsBody.restitution = 0.2;
node.physicsBody.friction = 0.01;➤

node.physicsBody.angularDamping = 0.5;➤

return node;
}

report erratum • discuss

Building a Scrolling Table with an Edge Body • 125

http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWPinballNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

The friction property does what you expect: it reduces the friction of the ball
itself. The angular damping property controls how fast the ball slows down
over time. These two values came from experimentation as the game pro-
gressed. Feel free to adjust to taste.

Resetting the Ball
While we’re developing the game, it would be helpful if the ball would return
to its rightful place at the top of the plunger once it falls off the screen. That’s
quite easy to check for at the end of the -didSimulatePhysics method.

06-Physics/step12/PhysicsBall/RCWMyScene.m
if (ball.position.y < -500) {

ball.position = CGPointMake(plunger.position.x,
plunger.position.y + plunger.size.height);

ball.physicsBody.velocity = CGVectorMake(0, 0);
ball.physicsBody.angularVelocity = 0;

}

We’re checking to see whether the y-coordinate of the ball’s position is less
than -500. That gives a nice, natural delay between the ball falling off screen
and this if statement returning true. After the ball falls past that point, we
immediately put it back at the top of the plunger.

We also set the linear and angular velocity of the ball’s physics body to zero.
This is a must because even though we changed its position to be on top of
the plunger, it still has the momentum it gathered as it fell off the screen.
Setting these properties to zero brings this body back to the starting state,
ready to begin a new turn.

Give it a run and try it out. Perfect. Now the ball spins only slightly as it skids
along the edge of the table’s physics body before returning to the top of the
plunger. We’re playing with physics now!

And that concludes our introduction to the Sprite Kit physics engine. We’ve
covered how to assign dynamic physics bodies to nodes, adjust their proper-
ties, push them around, attach them with joints, and constrain them within
edge physics bodies. This is just the beginning. Your mind is surely spinning
with ideas to try yourself. Before you head off on your own, check out the
next chapter to learn how to build paddles and earn points with collisions!

Chapter 6. Pinball Physics 101 • 126

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/06-Physics/step12/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 7

More Physics: Paddles and Collisions
Our pinball game is starting to take shape, but there’s a lot more we need to
add before it feels like the real thing. In the previous chapter, we worked out
the basics of the physics world by building a ball, the player-controlled
plunger, and a table edge body that the ball rolls around.

In this chapter, we’re going to build paddles as complex yet self-contained
nodes combining physics bodies, joints, and forces. We’ll add bumpers and
targets to the scene and keep score with a heads-up display. We’ll cover the
ins and outs of physics body collision detection to add sound effects and
animations. And we’ll finish with some special adjustments to the physics of
the ball in real time to keep the game playable. It’s a physics extravaganza!

Ready? Let’s go!

Building Paddles with Bodies, Pins, and Torque
Let’s face it: we can’t call this a pinball game without paddles. It’s the player’s
sole point of control in the game (after launching the ball, of course), and we
want to make it feel just right. We want paddles that appear to have weight
as they snap up when triggered and fall back in place when let go. Let’s think
through the way a paddle is designed and see what we can use from the Sprite
Kit physics toolbox to implement it.

In essence, a paddle is a bar attached to an anchor, forming a pin joint that
allows it to spin around, yet it’s limited in range of motion. The paddle rests
at a certain angle until flipped by an angular force, causing the box to swivel
around the pin to its maximum angle, as shown in the following figure.

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 33—How paddles work

Sprite Kit includes all we need to implement this kind of mechanism using
two nodes, one representing the anchor and another for the bar, and using
a pin joint in the world to stick them together. We apply torque, or a twisting
force, to the bar in an attempt to spin it. Because the bar will be pinned to
the anchor node’s location, the bar will appear to rotate around the anchor.
We can then set properties on the pin joint to limit the range of motion. We
can do this once for the left side and again for the right, and boom! We have
two game paddles.

We are faced with a similar dilemma as we had back in Chapter 6, Pinball
Physics 101, on page 99, when building the plunger. Several components will
make up these paddles, but we want to hide them within a single node,
exposing a clear interface for us to use from the scene. We must build a
paddle node that can be reused on the left and right sides of the table, and
provide a method to flip the paddles that does all the dirty work with the
physics behind the scenes.

Setting Up the Paddle Node
We’ll begin by creating the header file, RCWPaddleNode.h, with the following
declarations:

07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.h
#import <SpriteKit/SpriteKit.h>

typedef NS_ENUM(NSInteger, RCWPaddleSide) {
RCWPaddleLeftSide,
RCWPaddleRightSide

};

@interface RCWPaddleNode : SKNode
+ (instancetype)paddleForSide:(RCWPaddleSide)paddleSide;
@end

Chapter 7. More Physics: Paddles and Collisions • 128

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.h
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

First, we declare an enumerated type to let us specify whether this paddle
will be for the right side or the left side of the table. Enumerated types are
how you specify a list of options for the compiler to choose from. The typedef
NS_ENUM(...) statement is Apple’s preferred way to do this in Objective-C. We’re
saying that we want a custom variable type definition, RCWPaddleSide, to be an
alias of the NSInteger type, and it can be either of these two options. Because
we’re not explicitly initializing them, the Objective-C compiler automatically
assigns 0 to the RCWPaddleLeftSide constant and 1 to RCWPaddleRightSide.

We then use that custom type in the +paddleForSide: constructor. We could have
just declared the paddleSide parameter as an NSInteger and used 0 and 1 manu-
ally. But using enumerated types like this gives the compiler more hints about
what we want and helps Xcode autocomplete while we type. For more infor-
mation about the NS_ENUM mechanism, check out Apple’s documentation.1

Now we’ll create the implementation file, RCWPaddleNode.m, with the following
contents:

07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
#import "RCWPaddleNode.h"
@interface RCWPaddleNode ()
@property (nonatomic) RCWPaddleSide paddleSide;
@end

CGFloat const PaddleWidth = 120;
CGFloat const PaddleHeight = 20;

@implementation RCWPaddleNode
@end

We declare a private property, paddleSide, to keep track of which side this
paddle was created for. We also declare a couple of CGFloat constants for the
width and height of the paddle. We’ll use these throughout the class definition.

Next, we’ll begin writing the +paddleForSide: method to construct a new paddle.

07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
+ (instancetype)paddleForSide:(RCWPaddleSide)paddleSide
{

RCWPaddleNode *paddle = [RCWPaddleNode node];
paddle.paddleSide = paddleSide;
// ...

return paddle;
}

1. https://developer.apple.com/library/ios/releasenotes/ObjectiveC/ModernizationObjC/AdoptingModernObjective-
C/AdoptingModernObjective-C.html#//apple_ref/doc/uid/TP40014150-CH1-SW6

report erratum • discuss

Building Paddles with Bodies, Pins, and Torque • 129

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
https://developer.apple.com/library/ios/releasenotes/ObjectiveC/ModernizationObjC/AdoptingModernObjective-C/AdoptingModernObjective-C.html#//apple_ref/doc/uid/TP40014150-CH1-SW6
https://developer.apple.com/library/ios/releasenotes/ObjectiveC/ModernizationObjC/AdoptingModernObjective-C/AdoptingModernObjective-C.html#//apple_ref/doc/uid/TP40014150-CH1-SW6
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Just like we’ve done before in Chapter 6, Pinball Physics 101, on page 99, we
use the standard node constructor to give us a blank instance of RCWPaddleNode
that we set up and return in this constructor. Because we need to keep track
of the paddle side, we assign it to the paddleSide property.

But of course, this node doesn’t show anything yet. Next we add the two child
sprite nodes for the bar and the anchor.

07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
SKSpriteNode *bar = [SKSpriteNode spriteNodeWithImageNamed:@"paddle-box"];
bar.name = @"bar";
bar.size = CGSizeMake(PaddleWidth, PaddleHeight);
[paddle addChild:bar];

SKSpriteNode *anchor = [SKSpriteNode spriteNodeWithImageNamed:@"paddle-anchor"];
anchor.name = @"anchor";
anchor.size = CGSizeMake(PaddleHeight, PaddleHeight);
[paddle addChild:anchor];

We build two sprite nodes with their image textures and appropriate sizes
before adding them to the paddle as child nodes. We haven’t set their positions
yet. That’s because it depends on whether this paddle node will be used for
the left or the right side.

07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
if (paddle.paddleSide == RCWPaddleRightSide) {

bar.position = CGPointMake(0-PaddleWidth/2, 0);
anchor.position = CGPointMake(bar.position.x + bar.size.width/2, 0);

} else {
bar.position = CGPointMake(PaddleWidth/2, 0);
anchor.position = CGPointMake(bar.position.x - bar.size.width/2, 0);

}

If the paddleSide property is equal to the RCWPaddleRightSide constant, then we
place the bar so it sticks out to the left with the anchor positioned over the
right end of the bar. Otherwise, we do the opposite for the left paddle.

We finish the method by building the physics bodies for the box and anchor.

07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
CGFloat anchorRadius = anchor.size.width/2;
anchor.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:anchorRadius];
anchor.physicsBody.dynamic = NO;

bar.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:bar.size];
bar.physicsBody.mass = 0.05;
bar.physicsBody.restitution = 0.1;
bar.physicsBody.angularDamping = 0;
bar.physicsBody.friction = 0.02;

Chapter 7. More Physics: Paddles and Collisions • 130

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step01/PhysicsBall/RCWPaddleNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We build a circular physics body for the anchor by calculating the radius
based on the size, and we make sure to set the dynamic property to NO because
we do not want this anchor to move or be moved in the scene.

The bar’s physics body has a mass of 0.05 to make it light and easy to push
by the player. A low restitution ensures the ball won’t bounce much. Angular
damping controls how much the rotation of an object slows down over time.
We don’t want that at all, so we’re setting it to zero. And finally, we set the
friction of the bar to 0.02 to make sure that flicking the ball doesn’t impart
too much spin. This is for the same reason we reduced the friction of the
table’s edge body back in Building a Scrolling Table with an Edge Body, on
page 120.

Let’s now add two paddle nodes to the scene. Switch over to the RCWMyScene.m
file and import the header file at the top.

07-MorePhysics/step01/PhysicsBall/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWPinballNode.h"
#import "RCWPlungerNode.h"
#import "RCWTableNode.h"
#import "RCWPaddleNode.h"➤

Then we’ll add the paddles to the scene at the bottom of the -setUpScene method.

07-MorePhysics/step01/PhysicsBall/RCWMyScene.m
RCWPaddleNode *leftPaddle = [RCWPaddleNode paddleForSide:RCWPaddleLeftSide];
leftPaddle.name = @"leftPaddle";
leftPaddle.position = CGPointMake(9, 100);
[table addChild:leftPaddle];

RCWPaddleNode *rightPaddle = [RCWPaddleNode paddleForSide:RCWPaddleRightSide];
rightPaddle.name = @"rightPaddle";
rightPaddle.position = CGPointMake(plunger.position.x -

plunger.size.width - 1, 100);
[table addChild:rightPaddle];

We create one paddle for the left and one for the right, remembering to use
the proper RCWPaddleSide enumerated type constants in the constructor. We
name them to find them later, position them on the left and right sides, and
add them as children to the RCWTableNode.

If you build and run the game right now, you’ll see the paddles start on the
table in the right spot, but then the boxes fall while pulled by gravity. We
need to set up the pin joint to fix the boxes at the position of the anchor nodes.
We’ll switch back to RCWPaddleNode.h and add a method definition we can call
to make that happen.

report erratum • discuss

Building Paddles with Bodies, Pins, and Torque • 131

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step01/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step01/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

07-MorePhysics/step02/PhysicsBall/RCWPaddleNode.h
@interface RCWPaddleNode : SKNode
+ (instancetype)paddleForSide:(RCWPaddleSide)paddleSide;
- (void)createPinJointInWorld;➤

@end

Then we’ll begin implementing the method in the RCWPaddleNode.m file.

07-MorePhysics/step02/PhysicsBall/RCWPaddleNode.m
- (void)createPinJointInWorld
{

NSAssert(self.scene, @"Can only create joint when placed in scene.");

SKNode *bar = [self childNodeWithName:@"bar"];
SKNode *anchor = [self childNodeWithName:@"anchor"];

// ...

}

The first line asserts that the scene property of this node is not nil, similar to
what we did in the -layoutForScene method back in Aligning Label Nodes Within
Groups, on page 80. This method can only do its work after the paddle has
been added to the scene. This NSAssert() call is a sanity check during develop-
ment. If we ever forget, then the app will crash and complain about it loudly.

Now we’ll build the pin joint between the bar and anchor node physics bodies
in the scene.

07-MorePhysics/step02/PhysicsBall/RCWPaddleNode.m
- (void)createPinJointInWorld
{

NSAssert(self.scene, @"Can only create joint when placed in scene.");

SKNode *bar = [self childNodeWithName:@"bar"];
SKNode *anchor = [self childNodeWithName:@"anchor"];

CGPoint positionInScene = [self convertPoint:anchor.position toNode:self.scene];➤

SKPhysicsJointPin *pin = [SKPhysicsJointPin jointWithBodyA:bar.physicsBody➤

bodyB:anchor.physicsBody➤

anchor:positionInScene];➤

pin.shouldEnableLimits = YES;➤

pin.lowerAngleLimit = -0.5;➤

pin.upperAngleLimit = 0.5;➤
➤

[self.scene.physicsWorld addJoint:pin];➤

}

Similar to how we built the fixed joint back in Using a Fixed Joint to Stick the
Ball to the Plunger, on page 117, we look up the anchor’s position in the scene’s

Chapter 7. More Physics: Paddles and Collisions • 132

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step02/PhysicsBall/RCWPaddleNode.h
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step02/PhysicsBall/RCWPaddleNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step02/PhysicsBall/RCWPaddleNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

coordinates and construct an instance of SKPhysicsJointPin, passing in the two
bodies and the scene anchor point. A pin joint allows the bodies to be locked
together, yet rotate around a common point. But since the anchor node has its
dynamic property set to NO, only the bar will rotate. We want to limit the range
of motion, so we set the shouldEnableLimits property on the pin joint to YES and
then set the upper and lower angle limits in radians.

We have the joint object; now we need to add it to the world. If you remember
back in Using a Fixed Joint to Stick the Ball to the Plunger, on page 117, we
passed the physics world into the method that set up the plunger’s joint.
That’s a perfectly valid way to do it, but we’re doing it differently here. Every
node has access to the scene it belongs to with the scene property. And the
scene exposes the ever-present world in the physicsWorld property. Here we are
reaching through the scene to the physics world and adding the joint directly.

Why would you choose to do one over the other? As with all programming, it
helps to be explicit. While reaching through the scene to get access to the
physics world is convenient, it can also obscure the intent. When you are
trying to debug joint problems in the scene, can you glance at the method
names and figure out what’s happening? In the case of the plunger, passing
in the physics world explicitly helps communicate that we are going to use it
to add the joint. In this -createPinJointInWorld method, we named it such that
anyone who sees it knows that it does something with joints in the physics
world. Whichever means you choose, make sure you name your methods and
parameters in a way that helps you discern what’s going on as you read them.
It helps keep you organized as the code grows.

We’ll switch back to the RCWMyScene.m file and change where we add the paddles
to the scene in the -setUpScene method to now call the -createPinJointInWorld method.

07-MorePhysics/step02/PhysicsBall/RCWMyScene.m
RCWPaddleNode *leftPaddle = [RCWPaddleNode paddleForSide:RCWPaddleLeftSide];
leftPaddle.name = @"leftPaddle";
leftPaddle.position = CGPointMake(9, 100);
[table addChild:leftPaddle];

[leftPaddle createPinJointInWorld];➤

RCWPaddleNode *rightPaddle = [RCWPaddleNode paddleForSide:RCWPaddleRightSide];
rightPaddle.name = @"rightPaddle";
rightPaddle.position = CGPointMake(plunger.position.x -

plunger.size.width - 1, 100);
[table addChild:rightPaddle];

[rightPaddle createPinJointInWorld];➤

report erratum • discuss

Building Paddles with Bodies, Pins, and Torque • 133

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step02/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Build and run the application now, and you’ll see the paddles properly pinned
and gracefully fall to their resting angle as gravity pulls them down at the
start of the game!

Flipping the Paddles with Torque
Obviously, these paddles are useless until players can control them by touch.
Let’s switch back to the RCWPaddleNode.h file and add a method definition in
the header for a simple flip.

07-MorePhysics/step03/PhysicsBall/RCWPaddleNode.h
@interface RCWPaddleNode : SKNode

+ (instancetype)paddleForSide:(RCWPaddleSide)paddleSide;
- (void)createPinJointInWorld;
- (void)flip;➤

@end

Then, we’ll switch to RCWPaddleNode.m and add the method definition that applies
torque to make the paddle spin.

07-MorePhysics/step03/PhysicsBall/RCWPaddleNode.m
- (void)flip
{

SKNode *bar = [self childNodeWithName:@"bar"];
CGFloat torque = 3;
if (self.paddleSide == RCWPaddleRightSide) {

torque *= -1;
}
[bar.physicsBody applyTorque:torque];

}

We fetch the bar node as a child by its name. Then we mark the amount of
torque we want to apply in the torque variable. If the paddle is on the right
side, then we multiply torque by –1 to make it negative, since the force would
need to spin the paddle in the other direction. Then we spin the paddle box’s
physics body with the -applyTorque: method. Because the body is pinned, it will
spin around the anchor point in the scene. Because we set the upper angle
limit, it will stop at just the right spot no matter how much force we apply.

Let’s switch back to the RCWMyScene.m file. We want to track whether the user
is holding his finger down on the left and right sides of the screen, so we’ll
handle this similarly to the way we controlled the spaceship’s movement back
in Chapter 1, Introduction to Sprite Kit, on page 1. We’ll add two new touch
properties to the scene’s class extension.

Chapter 7. More Physics: Paddles and Collisions • 134

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step03/PhysicsBall/RCWPaddleNode.h
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step03/PhysicsBall/RCWPaddleNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

07-MorePhysics/step03/PhysicsBall/RCWMyScene.m
@interface RCWMyScene ()
@property (nonatomic, weak) UITouch *plungerTouch;
@property (nonatomic, weak) UITouch *leftPaddleTouch;➤

@property (nonatomic, weak) UITouch *rightPaddleTouch;➤

@end

Then we need to set these properties in the -touchesBegan:withEvent: method, but
only if we’re not already handling touches for the plunger.

07-MorePhysics/step03/PhysicsBall/RCWMyScene.m
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

RCWPinballNode *ball = (id)[self childNodeWithName:@"//ball"];
RCWPlungerNode *plunger = (id)[self childNodeWithName:@"//plunger"];

if (self.plungerTouch == nil && [plunger isInContactWithBall:ball]) {
UITouch *touch = [touches anyObject];
self.plungerTouch = touch;
[plunger grabWithTouch:touch holdingBall:ball inWorld:self.physicsWorld];

} else {➤

for (UITouch *touch in touches) {➤

CGPoint where = [touch locationInNode:self];➤

if (where.x < self.size.width/2) {➤

self.leftPaddleTouch = touch;➤

} else {➤

self.rightPaddleTouch = touch;➤

}➤

}➤

}➤

}

We’ve added everything for the paddles under the else clause so that the
paddles respond only if the plunger isn’t active. We loop over all the touches
on the screen, because we need to handle touches that count for the right
and left side at the same time. For each touch we check to see whether it is
on the left half of the scene or the right, and assign the touch objects to their
respective properties.

We’ve kept track of the touches; now we have to do the work to actually flip.
Because we want to apply the forces to the paddle before the rest of the physics
engine runs its calculations for the frame, we’ll add an -update: method.

07-MorePhysics/step03/PhysicsBall/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

if (self.leftPaddleTouch) {
RCWPaddleNode *leftPaddle = (id)[self childNodeWithName:@"//leftPaddle"];
[leftPaddle flip];

}

report erratum • discuss

Building Paddles with Bodies, Pins, and Torque • 135

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step03/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step03/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step03/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

if (self.rightPaddleTouch) {
RCWPaddleNode *rightPaddle = (id)[self childNodeWithName:@"//rightPaddle"];
[rightPaddle flip];

}
}

If the left or right paddle touch properties are set, we’ll find that respective
paddle in the scene using the //nodeName grandchild syntax and tell the paddle
to flip. Boom.

Remember back in Moving the Plunger in the -didSimulatePhysics Method, on
page 113, when we talked about the order of operations that Sprite Kit performs
for every frame? The -update: method is called first; the physics engine runs
calculations for the frame and then calls the -didSimulatePhysics method. Here
we want the flipping force to matter in this frame’s physics calculations. That’s
why we must do this work in the -update: method instead.

Build and run the game. Try to keep the ball up and in the air!

We built our paddles out of two nodes with physics bodies and a pin joint
anchoring them. We flipped the box nodes with a torque force, which forces
them to rotate around the pin joint, and we limited the range of motion with
the upper and lower angle limits on the pin. We ended up with a node that
we can reuse and position on both sides of the table.

Whacking the ball around in an empty space is kind of boring. Let’s add targets
and bumpers next!

Loading Targets and Bumpers from a Layout File
It’s time to build the other elements of classic pinball games: rectangular
bumpers that block and repel the ball when hit, and circular targets that also
repel the ball but add points to the player’s score.

Up to this point, we’ve been hard-coding all of our node positions. For a pinball
game, you might want to have different layouts for the player to choose from
—each with its own unique challenge. Let’s solve that by giving the table node
the power to load layouts of targets and bumpers from configuration files.

Specifically, we’re going to use the property list, or plist, format which is Apple’s
standard storage mechanism for simple arrays and dictionaries of values.
Xcode includes a nice plist editor, which will come in handy for us.

Let’s start by building the bumper and target node classes. We’ll create a file
named RCWBumperNode.h with these contents:

Chapter 7. More Physics: Paddles and Collisions • 136

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

07-MorePhysics/step04/PhysicsBall/RCWBumperNode.h
#import <SpriteKit/SpriteKit.h>

@interface RCWBumperNode : SKSpriteNode
+ (instancetype)bumperWithSize:(CGSize)size;
@end

Our bumper is a subclass of SKSpriteNode with a constructor method to build
a bumper of arbitrary size that stretches the texture to fit. Let’s create the
corresponding RCWBumperNode.m file.

07-MorePhysics/step04/PhysicsBall/RCWBumperNode.m
#import "RCWBumperNode.h"

@implementation RCWBumperNode

+ (instancetype)bumperWithSize:(CGSize)size
{

RCWBumperNode *bumper = [self spriteNodeWithImageNamed:@"bumper"];
bumper.size = size;
bumper.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:size];
bumper.physicsBody.dynamic = NO;
bumper.physicsBody.restitution = 2;

return bumper;
}
@end

We build the node by calling the -spriteNodeWithImageNamed: method with the
image texture we want and set the size to the size parameter passed into this
constructor. When building the physics body, we set the dynamic property to
NO to make this a static body because we don’t ever want the bumper to move
when hit by the ball.

We also set the restitution to 2 because we want the bumper to impart more
bounce to the ball when hit. We first discussed this back in Adjusting Body
Properties for Some More Bounce, on page 106. Any value greater than 1 gives
more energy to the moving bodies after a collision. This mimics the behavior
of real pinball bumpers that use levers to propel the ball when struck.

Next, we’ll create the RCWTargetNode.h header file for the target nodes.

07-MorePhysics/step04/PhysicsBall/RCWTargetNode.h
#import <SpriteKit/SpriteKit.h>

@interface RCWTargetNode : SKSpriteNode
+ (instancetype)targetWithRadius:(CGFloat)radius;
@property (nonatomic) NSInteger pointValue;
@end

report erratum • discuss

Loading Targets and Bumpers from a Layout File • 137

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWBumperNode.h
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWBumperNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWTargetNode.h
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

This is almost the same as what we did for the RCWBumperNode class, but we’re
creating targets with a radius to make them circular, and we are adding a
pointValue property that we’ll set when we load the target from the configuration
file. Once we cover scoring for this game in Responding to Collisions, on page
148, we’ll use this point value property to add to the player’s score.

Now let’s implement the class constructor in a new file named RCWTargetNode.m.

07-MorePhysics/step04/PhysicsBall/RCWTargetNode.m
#import "RCWTargetNode.h"

@implementation RCWTargetNode

+ (instancetype)targetWithRadius:(CGFloat)radius
{

RCWTargetNode *target = [self spriteNodeWithImageNamed:@"target"];
target.size = CGSizeMake(radius*2, radius*2);

target.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:radius];
target.physicsBody.dynamic = NO;
target.physicsBody.restitution = 2;

return target;
}

@end

This is similar to the bumpers. We create the node instance with an image
texture, set the size based on the radius, and build a static physics body with
a restitution of two so the ball bounces off with more force.

We want to add these to the table. To make it easy to load different configura-
tions, let’s start by changing the table node’s interface header in RCWTableNode.h
to add the method that will load a layout from a filename in the app bundle.

07-MorePhysics/step04/PhysicsBall/RCWTableNode.h
@interface RCWTableNode : SKNode
+ (instancetype)table;
- (void)followPositionOfBall:(RCWPinballNode *)ball;
- (void)loadLayoutNamed:(NSString *)name;➤

@end

Then we’ll import the target and bumper node class headers in RCWTableNode.m.

07-MorePhysics/step04/PhysicsBall/RCWTableNode.m
#import "RCWTableNode.h"
#import "RCWBumperNode.h"➤

#import "RCWTargetNode.h"➤

Chapter 7. More Physics: Paddles and Collisions • 138

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWTargetNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWTableNode.h
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWTableNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Now let’s begin to implement the -loadLayoutNamed: method in the RCWTableNode.m
file.

07-MorePhysics/step04/PhysicsBall/RCWTableNode.m
- (void)loadLayoutNamed:(NSString *)name
{

NSURL *layoutPath = [[NSBundle mainBundle] URLForResource:name
withExtension:@"plist"];

NSDictionary *layout = [NSDictionary dictionaryWithContentsOfURL:layoutPath];
// ...

}

In similar fashion to the way we loaded particle emitter files back in Loading
Particle Emitter Files, on page 45, we’re fetching the full path to the layout file
in the application bundle. Then we use the [NSDictionary dictionaryWithContentsOfURL:]
method to construct a simple NSDictionary from the data in the file.

What do these files look like? They are XML files that define arrays and dic-
tionaries of simple values such as numbers, strings, and dates. While you
follow along, we are using the plist file at 07-MorePhysics/step04/PhysicsBall/layout.plist
in the source code that comes with the book. The beginning of it looks like
this when you view it as XML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN">
<plist version="1.0">
<dict>

<key>bumpers</key>
<array>

<dict>
<key>x</key>
<integer>90</integer>
<key>y</key>
<integer>780</integer>
<key>width</key>
<integer>70</integer>
<key>height</key>
<integer>10</integer>
<key>degrees</key>
<integer>-18</integer>

</dict>
<!- ... ->

But Xcode offers a nice editor for property list files. If you open the file in
Xcode, it will look like the following figure:

report erratum • discuss

Loading Targets and Bumpers from a Layout File • 139

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWTableNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 34—Xcode’s property list editor

This editor lets you easily tweak values. For more information about property
lists and how to edit them, check out Apple’s documentation.2 Throughout
the rest of this chapter, you can get access to the property list files in each
step of the sample code.

Back in the -loadLayoutNamed: method in the RCWTableNode.m file, we have the
layout loaded into an NSDictionary. All we have to do is access the array of
bumpers, loop over them, and create the proper nodes.

07-MorePhysics/step04/PhysicsBall/RCWTableNode.m
for (NSDictionary *bumperConfig in layout[@"bumpers"]) {

CGSize size = CGSizeMake([bumperConfig[@"width"] floatValue],
[bumperConfig[@"height"] floatValue]);

CGPoint position = CGPointMake([bumperConfig[@"x"] floatValue],
[bumperConfig[@"y"] floatValue]);

RCWBumperNode *bumper = [RCWBumperNode bumperWithSize:size];
bumper.position = position;
bumper.zRotation = [bumperConfig[@"degrees"] floatValue] * M_PI / 180;
[self addChild:bumper];

}

The root of the plist file defines a dictionary with the keys bumpers and targets
that both contain arrays of dictionaries defining the properties we’ll set on
the respective nodes. For each of the bumper configuration dictionaries, we
access the different values within and create the proper size, position, and
rotation to set up a bumper node. The width, height, x, and y coordinates are
simple floating-point values, and we use the -floatValue method on NSNumber to
get the CGFloat results that CGSizeMake() and CGPointMake() require.

2. https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduc-
tion.html#//apple_ref/doc/uid/10000048i

Chapter 7. More Physics: Paddles and Collisions • 140

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWTableNode.m
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html#//apple_ref/doc/uid/10000048i
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html#//apple_ref/doc/uid/10000048i
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Note that we’re taking the value in degrees and multiplying it by M_PI/180 to
convert it into radians. The angle in the plist file is specified in degrees because
it’s easier for humans to work with, but the zRotation property requires radians.

Next, we’ll add a for loop to build the RCWTargetNode objects from the layout.

07-MorePhysics/step04/PhysicsBall/RCWTableNode.m
for (NSDictionary *targetConfig in layout[@"targets"]) {

CGFloat radius = [targetConfig[@"radius"] floatValue];
CGPoint position = CGPointMake([targetConfig[@"x"] floatValue],

[targetConfig[@"y"] floatValue]);
RCWTargetNode *target = [RCWTargetNode targetWithRadius:radius];
target.position = position;
target.pointValue = [targetConfig[@"pointValue"] floatValue];
[self addChild:target];

}

This is the same process we went through for the bumpers, except that instead
of assigning an angle of rotation, we retrieve the point value from the dictionary
and assign it to the target’s pointValue property.

The scene object needs to call this method, so let’s switch back to RCWMyScene.m
and add this line after adding the table.

07-MorePhysics/step04/PhysicsBall/RCWMyScene.m
RCWTableNode *table = [RCWTableNode table];
table.name = @"table";
table.position = CGPointMake(0, 0);
[self addChild:table];

[table loadLayoutNamed:@"layout"];➤

Build the game and run it to see how it works. We have a fully populated
level with targets and bumpers!

Property list files are a very simple way to store configuration information for
all sorts of parts in your games. You could include many different level layouts
and even build more kinds of nodes that the ball can bump into. Your imagi-
nation is the only limit.

Showing the Score in a Heads-Up Display
The targets are on the table, but we’re not tracking or displaying the score
anywhere. Let’s add a simple heads-up display, similar to what we did for the
Space Run game back in Chapter 5, Keeping Score with a Heads-Up Display,
on page 77. We don’t need nearly as much complexity as we did then. There’s
no timer. We just need to show and increase the score.

Let’s create a file named RCWHUDNode.h with the following header:

report erratum • discuss

Loading Targets and Bumpers from a Layout File • 141

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWTableNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

07-MorePhysics/step04/PhysicsBall/RCWHUDNode.h
#import <SpriteKit/SpriteKit.h>
@interface RCWHUDNode : SKNode
@property (nonatomic) NSInteger score;
+ (instancetype)hud;
- (void)layoutForScene;
- (void)addPoints:(NSInteger)points;
@end

We’re declaring a property to keep track of the score, a constructor method,
a method to lay out the internal label nodes once in the scene, and a method
to add points to the score. Now we’ll create a file named RCWHUDNode.m with
the class implementation and constructor.

07-MorePhysics/step04/PhysicsBall/RCWHUDNode.m
#import "RCWHUDNode.h"
@interface RCWHUDNode ()
@property (nonatomic, strong) NSNumberFormatter *scoreFormatter;
@end
@implementation RCWHUDNode
+ (instancetype)hud
{

RCWHUDNode *hud = [self node];
SKNode *scoreGroup = [SKNode node];
scoreGroup.name = @"scoreGroup";
SKLabelNode *scoreTitle =

[SKLabelNode labelNodeWithFontNamed:@"AvenirNext-Medium"];
scoreTitle.fontSize = 12;
scoreTitle.fontColor = [SKColor blackColor];
scoreTitle.verticalAlignmentMode = SKLabelVerticalAlignmentModeBottom;
scoreTitle.text = @"SCORE";
scoreTitle.position = CGPointMake(0, 4);
[scoreGroup addChild:scoreTitle];

SKLabelNode *scoreValue =
[SKLabelNode labelNodeWithFontNamed:@"AvenirNext-Bold"];

scoreValue.fontSize = 20;
scoreValue.fontColor = [SKColor blackColor];
scoreValue.verticalAlignmentMode = SKLabelVerticalAlignmentModeTop;
scoreValue.name = @"scoreValue";
scoreValue.text = @"0";
scoreValue.position = CGPointMake(0, -4);

[scoreGroup addChild:scoreValue];
[hud addChild:scoreGroup];
hud.scoreFormatter = [[NSNumberFormatter alloc] init];
hud.scoreFormatter.numberStyle = NSNumberFormatterDecimalStyle;
return hud;

}
@end

Chapter 7. More Physics: Paddles and Collisions • 142

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWHUDNode.h
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWHUDNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Again, it’s very similar to the process we went through to create the Space
Run game heads-up display. We have a node acting as a group for the score
title and score value, and we’re using a number formatter for all the thousands
separator goodies.

These nodes need to be positioned once the HUD is added to the scene, so
let’s build the -layoutForScene method next.

07-MorePhysics/step04/PhysicsBall/RCWHUDNode.m
- (void)layoutForScene
{

NSAssert(self.scene, @"Cannot be called unless added to a scene");
CGSize sceneSize = self.scene.size;
SKNode *scoreGroup = [self childNodeWithName:@"scoreGroup"];
CGSize groupSize = [scoreGroup calculateAccumulatedFrame].size;
scoreGroup.position = CGPointMake(0, sceneSize.height/2 - groupSize.height);

}

We assert that the scene property is set because this method is useless other-
wise. Then we find the score group and position it in the middle of the scene.

Next, let’s write the method to add points to the score.

07-MorePhysics/step04/PhysicsBall/RCWHUDNode.m
- (void)addPoints:(NSInteger)points
{

self.score += points;
SKLabelNode *scoreValue = (id)[self childNodeWithName:@"scoreGroup/scoreValue"];
scoreValue.text = [self.scoreFormatter stringFromNumber:@(self.score)];
SKAction *scale = [SKAction scaleTo:1.5 duration:0.02];
SKAction *shrink = [SKAction scaleTo:1 duration:0.07];
SKAction *all = [SKAction sequence:@[scale, shrink]];
[scoreValue runAction:all];

}

We first add the points to the score property, then we find the scoreValue label
node using the “scoreGroup/scoreValue” grandchild search syntax. We update
the text of the label with the new score and then run a quick scaling action
for some visual flourish.

We’re ready to add and use the HUD, so let’s switch back over the RCWMyScene.m
file and import the RCWHUDNode.h header at the top.

07-MorePhysics/step04/PhysicsBall/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWPinballNode.h"
#import "RCWPlungerNode.h"
#import "RCWTableNode.h"
#import "RCWPaddleNode.h"
#import "RCWHUDNode.h"➤

report erratum • discuss

Loading Targets and Bumpers from a Layout File • 143

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWHUDNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Then, at the bottom of the -setUpScene method, we’ll add the code to create and
position the HUD.

07-MorePhysics/step04/PhysicsBall/RCWMyScene.m
RCWHUDNode *hud = [RCWHUDNode hud];
hud.name = @"hud";
hud.position = CGPointMake(self.size.width/2, self.size.height/2);
[self addChild:hud];
[hud layoutForScene];

We build the HUD node, name it so we can find it later, position it in the
center, and add it to the scene. Note that we’re adding it to the scene and not
to the table node, like the rest of the elements of the game. Remember that
the table node pans around like a camera following the ball. We don’t want
that to happen with the HUD. We want it fixed at the top.

We have the HUD node in the top of the scene, ready to display the points.
But we have a problem: how do we know if the ball hit a target? We must
turn our attention to the power of Sprite Kit’s collision detection!

Detecting Collisions Between Bodies
Up to this point, the physics engine has been handling collisions and contact
between the bodies for us on its own. We haven’t needed to intervene in any
way. But now we have to. We want to be notified when the ball hits a target
so we can increase the score. We also want to know when the ball hits either
a target or a bumper so we can display some special effects and play sounds.

That’s where the category bitmasks and the contact delegate comes in. By
the end of this section, you’ll know how to tell Sprite Kit which collisions you
care about.

First, let’s register our scene object as the contact delegate to get told when
physics bodies collide with each other. In the RCWMyScene.m file, change the class
extension to declare that this class implements the SKPhysicsContactDelegate protocol.

07-MorePhysics/step05/PhysicsBall/RCWMyScene.m
@interface RCWMyScene ()
<SKPhysicsContactDelegate>➤

@property (nonatomic, weak) UITouch *plungerTouch;
@property (nonatomic, weak) UITouch *leftPaddleTouch;
@property (nonatomic, weak) UITouch *rightPaddleTouch;
@end

The delegate pattern is used all over Apple’s frameworks. Delegates let you
extend a class’s normal behavior. In this case, the physics world handles
contacts between physics bodies for us, but we want to extend that behavior

Chapter 7. More Physics: Paddles and Collisions • 144

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step04/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step05/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

and do extra things. For our scene to play that role, it must declare to the
compiler that it implements the SKPhysicsContactDelegate protocol.

Now let’s change the -setUpScene method to assign the scene as the contact
delegate of the physics world.

07-MorePhysics/step05/PhysicsBall/RCWMyScene.m
- (void)setUpScene
{

self.backgroundColor = [SKColor whiteColor];
self.physicsWorld.gravity = CGVectorMake(0, -3.8);
self.physicsWorld.contactDelegate = self;➤

// ...

Our scene is ready to receive the -didBeginContact: method call from the physics
world. Let’s implement that method:

07-MorePhysics/step05/PhysicsBall/RCWMyScene.m
- (void)didBeginContact:(SKPhysicsContact *)contact
{

NSLog(@"In -didBeginContact:");
NSLog(@"bodyA: %@", contact.bodyA);
NSLog(@"bodyB: %@", contact.bodyB);

}

This method is called by the physics world to tell us when two physics bodies
come into contact with each other. The SKPhysicsContact parameter gives useful
information that you can learn about the contact, such as fetching the first
and second bodies through the bodyA and bodyB properties, respectively. For
the moment, we’re just printing the description of these bodies to the console
in Xcode so we can observe what happens as we go.

If you were to play the game right now, you would see nothing printed in the
console yet. That’s because we need to set an appropriate bitmask to categorize
the bodies we want to watch for collisions.

To illustrate how bitmasks work, let’s make two small changes. First, we’ll
add this line to the bumper constructor in the RCWBumperNode.m file.

07-MorePhysics/step05/PhysicsBall/RCWBumperNode.m
bumper.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:size];
bumper.physicsBody.contactTestBitMask = 1;➤

The contactTestBitMask property is how we flag this physics body so that the physics
world knows what kind of bodies we want to be notified about when the ball
collides with them. In this case, we are saying that we want to know about all
bodies with the category 1. That number will become more clear shortly.

report erratum • discuss

Detecting Collisions Between Bodies • 145

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step05/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step05/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step05/PhysicsBall/RCWBumperNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Next, in the RCWPinballNode.m file, let’s add this line to the constructor method
after creating the ball physics body.

07-MorePhysics/step05/PhysicsBall/RCWPinballNode.m
RCWPinballNode *node = [self spriteNodeWithImageNamed:@"pinball.png"];
node.size = CGSizeMake(sideSize, sideSize);
node.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:sideSize/2];
node.physicsBody.categoryBitMask = 1;➤

// ...

The categoryBitMask property is our way of telling the physics world what
categories this body belongs to. Here we are saying that the physics body
representing the ball should have a category of 1. Combined with the contactTest-
BitMask on the bumper’s physics body, this tells the physics world to let us
know every time the ball comes into contact with the bumper.

When we build and run the game now, we’ll see a flurry of activity in the log
console of Xcode as the ball bounces into bumpers. Our log statements are
telling us every time a contact begins.

But also note how we are not told about the ball colliding with anything else
in the scene. This is the power of the physics body category bitmasks. We
can choose what kinds of collisions we need to be told about and just let the
physics engine handle the rest on its own if we don’t care.

A Quick Overview of Bitmasks
Bitmasks are a special computer science-y way to pack a lot of information
into one property. The categoryBitMask property on the SKPhysicsBody objects is of
type uint32_t, a 32-bit integer. In our experiment, we assigned the integer 1 to
this property. But because we want each bit in the mask to represent a cate-
gory, we need different integers to pick them:

00000000000000000000000000000000 is the integer 0 (no category)
00000000000000000000000000000001 is the integer 1 (category 1)
00000000000000000000000000000010 is the integer 2 (category 2)
00000000000000000000000000000100 is the integer 4 (category 3)
00000000000000000000000000001000 is the integer 8 (category 4)
... and so on

When a bit is on, or set to 1, that tells the physics world what category the
body belongs to. The world then uses a bitwise and operation with the other
bodies’ contactTestBitMask values. If two bodies touch and the same bits in one
body’s category are turned on in the other body’s contact-test bitmask, then
the physics world knows that we want to be told about that contact.

Chapter 7. More Physics: Paddles and Collisions • 146

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step05/PhysicsBall/RCWPinballNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Manually specifying integer values for bitmasks is a pain, though. That’s
where we will use a special enumerated type to name specific bits. Let’s create
a new RCWCategoriesMask.h file with these contents:

07-MorePhysics/step06/PhysicsBall/RCWCategoriesMask.h
typedef NS_OPTIONS(uint32_t, RCWCollisionCategory) {

RCWCategoryBall = 1 << 0,
RCWCategoryBumper = 1 << 1,
RCWCategoryTarget = 1 << 2,

};

Remember back when we used enumerated types for the left and right paddles
in Building Paddles with Bodies, Pins, and Torque, on page 127? We didn’t care
what values the compiler assigned for us; we just wanted it to make up distinct
values and name them so we could use them. Here, we want the compiler to
use specific values for each of these constants, and we want the type of each
to be uint32_t. NS_OPTIONS is similar to NS_ENUM in effect, but it gives the compiler
the hint that this list of constants is part of a bitmask and not just a list of
plain old integers.

That strange syntax for the RCWCategoryBall constant, the 1 << 0, is our way of
telling the compiler that we want this number to start as the integer 1, which
means that only the first bit is set, and then we want it to bit shift that bit to
the left by zero spaces. In this case that means nothing happens, and we
could leave the << 0 off and it would remain just “1”. But it introduces you
to the pattern and is essential to the next constant, RCWCategoryBumper, which
shifts the bit over by one space, giving us the integer 2. We follow the pattern
again for the RCWCategoryTarget constant. We could continue this pattern to
build more categories, up to 32, and each constant would represent one bit
in the bitmask.

To use this for the pinball game, let’s import this header file at the top of the
RCWPinballNode.h file.

07-MorePhysics/step06/PhysicsBall/RCWPinballNode.m
#import "RCWPinballNode.h"
#import "RCWCategoriesMask.h"➤

And then we’ll set the category of the ball.

07-MorePhysics/step06/PhysicsBall/RCWPinballNode.m
node.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:sideSize/2];
node.physicsBody.categoryBitMask = RCWCategoryBall;➤

By assigning the RCWCategoryBall constant to the categoryBitMask, we are signaling
to the physics world what category bit belongs to this body.

report erratum • discuss

Detecting Collisions Between Bodies • 147

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step06/PhysicsBall/RCWCategoriesMask.h
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step06/PhysicsBall/RCWPinballNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step06/PhysicsBall/RCWPinballNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Now, let’s switch to the RCWBumperNode.m file and import the same RCWCategories-
Mask.h header file.

07-MorePhysics/step06/PhysicsBall/RCWBumperNode.m
#import "RCWBumperNode.h"
#import "RCWCategoriesMask.h"➤

In the +bumperWithSize: method, we’ll set up the category information on the
physics body.

07-MorePhysics/step06/PhysicsBall/RCWBumperNode.m
bumper.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:size];
bumper.physicsBody.categoryBitMask = RCWCategoryBumper;➤

bumper.physicsBody.contactTestBitMask = RCWCategoryBall;➤

Instead of hard-coding an integer value, we are setting the category bitmask
to the appropriate constant representing the bit for the bumper. Instead of
hard-coding the ball’s body for the contact-test bitmask, we’re using the
constant for that bit. Let’s do the same thing for the target. We’ll import the
RCWCategoriesMask.h header file at the top of RCWTargetNode.m.

07-MorePhysics/step06/PhysicsBall/RCWTargetNode.m
#import "RCWTargetNode.h"
#import "RCWCategoriesMask.h"➤

And then we’ll assign the proper category constant in the +targetWithRadius:
method, like we did with the bumper.

07-MorePhysics/step06/PhysicsBall/RCWTargetNode.m
target.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:radius];
target.physicsBody.categoryBitMask = RCWCategoryTarget;➤

target.physicsBody.contactTestBitMask = RCWCategoryBall;➤

All this activity to set up bitmask constants may seem like overkill for such
a simple example, but it’s a critical organizational skill as the physics
simulations in your games grow in complexity. We now have a clear way to
categorize bodies and test for collisions between only what we care about.

To recap, we set the categoryBitMask property to the bit that categorizes a partic-
ular physics body. Then we set the contactTestBitMask to mark which categories
we care about. Then the physics world takes over and only notifies us in the
-didBeginContact: method for the categories that pass the contact test and whose
bits are set to 1.

Responding to Collisions
Great, so we get notified every time the ball collides with targets and bumpers.
But how do we tell them apart? We want to do special animations and sound

Chapter 7. More Physics: Paddles and Collisions • 148

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step06/PhysicsBall/RCWBumperNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step06/PhysicsBall/RCWBumperNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step06/PhysicsBall/RCWTargetNode.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step06/PhysicsBall/RCWTargetNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

effects for both kinds of bodies, but we only want to increase the user’s score
when the ball hits a target.

Let’s go back and revisit the current state of the -didBeginContact: method in the
RCWMyScene.m file.

07-MorePhysics/step05/PhysicsBall/RCWMyScene.m
- (void)didBeginContact:(SKPhysicsContact *)contact
{

NSLog(@"In -didBeginContact:");
NSLog(@"bodyA: %@", contact.bodyA);
NSLog(@"bodyB: %@", contact.bodyB);

}

When two bodies contact each other, how do we know which one is bodyA and
which one is bodyB? Unfortunately, we don’t know, and Apple explicitly says
that we should check both bodies to see which one of them is the ball.

To tell the difference, we’ll introduce an if statement to check the category on
both bodies and then call a separate method once we know for sure.

07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
- (void)didBeginContact:(SKPhysicsContact *)contact
{

if (contact.bodyA.categoryBitMask == RCWCategoryBall) {
[self ballBody:contact.bodyA didContact:contact withBody:contact.bodyB];

} else if (contact.bodyB.categoryBitMask == RCWCategoryBall) {
[self ballBody:contact.bodyB didContact:contact withBody:contact.bodyA];

}
}

Here we are checking to see whether the categoryBitMask of bodyA is the same as
the RCWCategoryBall. If it is, then we call a new method, ballPhysicsBody:didContact-
PhysicsBody:, with bodyA, which we know for a fact is the ball. If bodyB’s category
bitmask matches the ball, then we call the same method with bodyB as the
first parameter instead.

The scene doesn’t know about these category constants until we import the
RCWCategoriesMask.h header, so let’s do that now.

07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWPinballNode.h"
#import "RCWPlungerNode.h"
#import "RCWTableNode.h"
#import "RCWPaddleNode.h"
#import "RCWHUDNode.h"
#import "RCWCategoriesMask.h"➤

#import "RCWTargetNode.h"➤

report erratum • discuss

Responding to Collisions • 149

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step05/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Now let’s write the -ballBody:didContact:withBody: method to play sounds and add
points to the score.

07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
- (void)ballBody:(SKPhysicsBody *)ballBody

didContact:(SKPhysicsContact *)contact
withBody:(SKPhysicsBody *)otherBody

{
if (otherBody.categoryBitMask == RCWCategoryBumper) {

[self playRandomBumperSound];
} else if (otherBody.categoryBitMask == RCWCategoryTarget) {

[self playRandomTargetSound];
RCWTargetNode *target = (RCWTargetNode *)otherBody.node;
[self addPoints:target.pointValue];

}
}

By the time this method is run, there’s no ambiguity. We know exactly which
physics body is the ball. We just need to figure out what that other body is
and act on it. That’s where the categoryBitMask comes in handy again. Because
we have only a handful of categories and they don’t overlap, we are comparing
the category bitmask value of the other body directly to the RCWCategoryBumper
and RCWCategoryTarget constants, respectively.

For the bumpers, we just play a random bumper sound. For the target, we
play a random target sound but also find the target node and pass its pointValue
to a method we’ll write to add points to the player’s score. Remember that we
set this pointValue property when we loaded the targets into the table from the
property list configuration file back in Loading Targets and Bumpers from a
Layout File, on page 136.

Let’s write the two sound-playing methods.

07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
- (void)playRandomBumperSound
{

NSInteger soundCount = [self.bumperSounds count];
NSInteger randomSoundIndex = arc4random_uniform((u_int32_t)soundCount);
SKAction *sound = self.bumperSounds[randomSoundIndex];
[self runAction:sound];

}

- (void)playRandomTargetSound
{

NSInteger soundCount = [self.targetSounds count];
NSInteger randomSoundIndex = arc4random_uniform((u_int32_t)soundCount);
SKAction *sound = self.targetSounds[randomSoundIndex];
[self runAction:sound];

}

Chapter 7. More Physics: Paddles and Collisions • 150

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We’re using a fun auditory trick to delight the player and randomly picking
from similar sets of sounds for the bumper and target. In this case we have
two array properties: self.bumperSounds and self.targetSounds. Each of these methods
respectively picks a random sound action from these arrays and runs it on
the scene. The effect gives a more natural feel to the game because the same
hit doesn’t necessarily sound the same way every time.

We need to add those two array properties to the class extension at the top
of the file.

07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
@interface RCWMyScene ()
<SKPhysicsContactDelegate>
@property (nonatomic, weak) UITouch *plungerTouch;
@property (nonatomic, weak) UITouch *leftPaddleTouch;
@property (nonatomic, weak) UITouch *rightPaddleTouch;

@property (nonatomic, strong) NSArray *bumperSounds;➤

@property (nonatomic, strong) NSArray *targetSounds;➤

@end

And then we need to initialize them at the end of the -setUpScene method.

07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
self.bumperSounds = @[

[SKAction playSoundFileNamed:@"bump1.aif" waitForCompletion:NO],
[SKAction playSoundFileNamed:@"bump2.aif" waitForCompletion:NO],
[SKAction playSoundFileNamed:@"bump3.aif" waitForCompletion:NO]];

self.targetSounds = @[
[SKAction playSoundFileNamed:@"target1.aif" waitForCompletion:NO],
[SKAction playSoundFileNamed:@"target2.aif" waitForCompletion:NO],
[SKAction playSoundFileNamed:@"target3.aif" waitForCompletion:NO]];

Each property holds an array of sound actions with slightly different sounds
from the app bundle. The two sound methods pick random sounds to play
from these arrays every time. Let’s grab the files themselves from the 07-More-
Physics/step07 directory of the book’s sample code.

Next, we’ll implement the -addPoints: method to find the RCWHUDNode and increase
the score.

07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
- (void)addPoints:(NSUInteger)points
{

RCWHUDNode *hud = (RCWHUDNode *)[self childNodeWithName:@"hud"];
[hud addPoints:points];

}

report erratum • discuss

Responding to Collisions • 151

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step07/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We find the node by name and then call its -addPoints: method to update the
display.

Go ahead and play the game for a bit and enjoy!

We’ve walked through the basics of taking the SKPhysicsContact object given to
us in the -didBeginContact: method and making sounds depending on what the
ball collided with. We figured out which contact body was which and then
played the appropriate sounds and animations.

But we’re not finished with collision detection yet. We need to make some
minor adjustments to the ball’s velocity to make sure it doesn’t continue to
accelerate out of control as it runs into bumpers and targets.

Slowing Down the Ball on Rebound
You’ve surely noticed that as the ball bounces back and forth between the
obstacles, it quickly zooms out of control. The high restitution values on the
bumpers and targets increase the speed of the ball with every hit. As the ball
ricochets around long enough, it picks up speed that even the best human
couldn’t handle. We want the restitution to increase the speed of the ball, but
we want to cap the ball’s rebound speed to keep the game playable.

More trigonometry to the rescue! Let’s write a method named capPhysics-
Body:atSpeed: that we can call to slow down any physics body we want in the
scene.

07-MorePhysics/step08/PhysicsBall/RCWMyScene.m
- (void)capPhysicsBody:(SKPhysicsBody *)body atSpeed:(CGFloat)maxSpeed
{

CGFloat speed = sqrt(pow(body.velocity.dx, 2) +
pow(body.velocity.dy, 2));

if (speed > maxSpeed) {
speed = maxSpeed;
CGFloat angle = atan2(body.velocity.dy, body.velocity.dx);
CGVector limitedVelocity = CGVectorMake(speed*cos(angle), speed*sin(angle));
body.velocity = limitedVelocity;

}
}

We find the current speed of the body by calculating the hypotenuse of the
right triangle made up of the body’s x and y velocity components. If we see
that the speed is greater than the maxSpeed, we compose a capped velocity and
assign it to the body. No matter how fast the body was going to go after the
rebound, its velocity will be limited to this speed before the physics engine
runs calculations for the next frame.

Chapter 7. More Physics: Paddles and Collisions • 152

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step08/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Let’s tweak the ballBody:didContact:withBody: method to call this method to cap the
speed of the ball.

07-MorePhysics/step08/PhysicsBall/RCWMyScene.m
- (void)ballBody:(SKPhysicsBody *)ballBody

didContact:(SKPhysicsContact *)contact
withBody:(SKPhysicsBody *)otherBody

{
if (otherBody.categoryBitMask == RCWCategoryBumper) {

[self playRandomBumperSound];
} else if (otherBody.categoryBitMask == RCWCategoryTarget) {

[self playRandomTargetSound];
RCWTargetNode *target = (RCWTargetNode *)otherBody.node;
[self addPoints:target.pointValue];

}

if (otherBody.categoryBitMask & (RCWCategoryBumper | RCWCategoryTarget)) {➤

[self capPhysicsBody:ballBody atSpeed:1150];➤

}➤

}

We need to call this new capPhysicsBody:atSpeed: method for both the target and
bumper collisions. Although we could repeat this method call twice in each
conditional clause we already had, adding this new conditional clause illus-
trates how powerful the category bitmasks can be.

We are saying that if the otherBody category is either a bumper or a target, then
call the capPhysicsBody:atSpeed: method. The logical-or (|) operator combines the
bits of the RCWCategoryBumper and RCWCategoryTarget constants together, and the
logical-and (&) operator tests to see whether both bits are set in the otherBody.cat-
egoryBitMask property.

This lets us mix and match any combination of bits in our bitmask to represent
the different categories of bodies and how they interact. In this case, we have
some behaviors we want to exhibit on contact with either the target or the
bumper, and we have some behaviors we want to exhibit on contact with
both. Check out Wikipedia for more information about logical operations and
bitmasks.3

Let’s use this moment to add another behavior when either a target or a
bumper is hit. We’ll add a method on the scene that takes a node and runs
some animation actions to make it briefly flash a red color.

3. http://en.wikipedia.org/wiki/Bitmask

report erratum • discuss

Slowing Down the Ball on Rebound • 153

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step08/PhysicsBall/RCWMyScene.m
http://en.wikipedia.org/wiki/Bitmask
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

07-MorePhysics/step08/PhysicsBall/RCWMyScene.m
- (void)flashNode:(SKNode *)node
{

SKAction *scaleUp = [SKAction scaleTo:1.1 duration:0.05];
SKAction *scaleDown = [SKAction scaleTo:1 duration:0.1];
SKAction *colorize = [SKAction colorizeWithColor:[SKColor redColor]

colorBlendFactor:200
duration:0];

SKAction *uncolorize = [SKAction colorizeWithColorBlendFactor:0 duration:0];

SKAction *all = [SKAction sequence:@[colorize, scaleUp, scaleDown, uncolorize]];

[node runAction:all];
}

Running a sequence of actions on a node is a familiar process that you learned
back in Chapter 2, Actions: Go, Sprite, Go!, on page 13, but here we meet a
couple of new actions: -colorizeWithColor:colorBlendFactor:duration: and -colorizeWithCol-
orBlendFactor:duration. Those two actions let us make a red tint fade overtop of
the node and then fade away. Combined with the quick scale-up and scale-
down effect, it gives the impression that the node got bumped.

Now let’s change the ballBody:didContact:withBody: method to also flash bumpers
and targets.

07-MorePhysics/step08/PhysicsBall/RCWMyScene.m
if (otherBody.categoryBitMask & (RCWCategoryBumper | RCWCategoryTarget)) {

[self capPhysicsBody:ballBody atSpeed:1150];
[self flashNode:otherBody.node];➤

}

Wonderful! As the ball hits the bumpers and targets, it can’t rebound too fast.
And when it hits bumpers and targets, they quickly flash to add to the fun
visual frenzy on the screen.

Phew! That’s a lot to wade through. Although it’s easy to start with, the physics
engine is marvelously rich and complex. We’ve only scratched the surface.
We’ll be touching more on physics in the next chapter as we polish up the
pinball game, but we still won’t cover all the possibilities. Check out Apple’s
adventure game sample code for another excellent example.4

Our pinball game is quite functional at this point, but we can put more polish
on it while leveraging more goodies in the Sprite Kit toolbox. Let’s tackle that
next.

4. https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/
AdventureArchitecture/AdventureArchitecture.html

Chapter 7. More Physics: Paddles and Collisions • 154

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step08/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/07-MorePhysics/step08/PhysicsBall/RCWMyScene.m
https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/AdventureArchitecture/AdventureArchitecture.html
https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/AdventureArchitecture/AdventureArchitecture.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 8

Polishing the Pinball Game
The pinball game works great so far, but we’re not quite finished yet. We’re
going to use a few more deep Sprite Kit tricks to polish it up. We’ll build an
animated cue for the player when the game begins and the plunger is ready
to be pulled. We’ll add a new target that gives a 3X score bonus while it spins.
We’ll show puffs of smoke every time the ball bounces off a target or bumper.
And we’ll cover the pinball table with a partially transparent node to give the
scene texture and depth.

By the end of this eclectic set of steps, you’ll have even more understanding
of the deeper parts of Sprite Kit, such as non-colliding body contact, frame-
based sprite animations, texture atlases, and fixing the game so it stays in
portrait orientation.

Ready? Let’s go!

Cueing the Player to Pull the Plunger with Sprite
Animations
When the game begins, the ball comes to rest on the plunger but nothing else
happens. What kind of cue can we give to the player on how to launch it? For
this example, we’re going to play an animated series of triangles moving down
over the ball (think of a marquee) that gives a visual hint of what to do. See
Figure 35, Frame-based animation cue to pull the plunger down, on page 156
for an example of each of the frames.

To implement this, you must learn about frame-based animations and texture
atlases. Each image of the marching triangles will exist as an individual texture
that we play in sequence on a sprite node with a special SKAction. Because we
don’t want to get bogged down in details we’ve already covered about adding
image assets and managing the Xcode project, we’re going to start with the

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 35—Frame-based animation cue to pull the plunger down

code as it is in the 08-Polish/step01 directory of the sample code that accompanies
the book. Refer back to Preface, on page vii, if you don’t have it yet.

Playing Frames of Animation in a Sprite Node
As we’ve done throughout the pinball game, we’re going to create a custom
SKNode subclass for our animation node that knows how to set itself up and
gives us a simple pair of methods to activate and deactivate it.

Let’s create a new file in Xcode named RCWPullHintNode.h with these contents
for the header:

08-Polish/step02/PhysicsBall/RCWPullHintNode.h
#import <SpriteKit/SpriteKit.h>

@interface RCWPullHintNode : SKNode
+ (instancetype)pullHint;
- (void)showHint;
- (void)hideHint;
@end

We have the constructor method and two utility methods we will call to show
and hide the hint animation. Now let’s create the corresponding implementa-
tion file, RCWPullHintNode.m, and start building the constructor implementation.

08-Polish/step02/PhysicsBall/RCWPullHintNode.m
#import "RCWPullHintNode.h"
@implementation RCWPullHintNode
+ (instancetype)pullHint
{

RCWPullHintNode *hint = [self node];
SKSpriteNode *animation = [SKSpriteNode node];
animation.name = @"animation";

Chapter 8. Polishing the Pinball Game • 156

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWPullHintNode.h
http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWPullHintNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

[hint addChild:animation];
animation.size = CGSizeMake(12, 62);

// ...

return hint;
}
@end

In the +pullHint method, we first construct an empty node with the +node method
on this subclass. Then we construct a child sprite node that will actually hold
the animation. We’re using a child node here because that gives us more
flexibility to animate its position with actions relative to the parent node’s
fixed position on the table. This is similar to why we built a container node
to make it easy to position the visible part of the plunger as it moves in Using
Node Subclasses to Separate Responsibility, on page 107.

Notice how the animation sprite node is constructed with the +node method and
not the usual +spriteNodeWithImageNamed: method. That’s because we don’t need
it to start off with an image. Instead, we want to immediately play a series of
textures on this node as an animation. We’ll add this code to the constructor
next, just above the return statement.

08-Polish/step02/PhysicsBall/RCWPullHintNode.m
NSArray *frames = @[[SKTexture textureWithImageNamed:@"pull-hint-0"],➤

[SKTexture textureWithImageNamed:@"pull-hint-1"],➤

[SKTexture textureWithImageNamed:@"pull-hint-2"],➤

[SKTexture textureWithImageNamed:@"pull-hint-3"],➤

[SKTexture textureWithImageNamed:@"pull-hint-4"]];➤

SKAction *play = [SKAction animateWithTextures:frames timePerFrame:0.2];➤

SKAction *playForever = [SKAction repeatActionForever:play];➤

[animation runAction:playForever];➤

return hint;

Here we meet SKTexture for the first time. Every time we create a sprite node,
we’re using SKTexture objects under the hood, but they’re hidden away from
us by the simple interface with the sprite nodes. In this case, we need to load
the textures directly to create an array of them. We then take that array of
frames and pass them to the +animateWithTextures:timePerFrame: action to play them
back with 0.2 seconds between each frame. We pass that action to the
+repeatActionForever: method to get a repeating action and then run the final
action on the animation node.

The net effect is that this node contains an animation that constantly flips
through all the textures to give the illusion that we have an animated marquee
of triangles.

report erratum • discuss

Cueing the Player to Pull the Plunger with Sprite Animations • 157

http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWPullHintNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We need to fade this effect in on cue, so next let’s start building the -showHint
method.

08-Polish/step02/PhysicsBall/RCWPullHintNode.m
- (void)showHint
{

if (self.alpha == 1 || [self actionForKey:@"showAction"]) {
return;

}
[self removeActionForKey:@"hideAction"];

// ...

}

We first use some conditional guard clauses to make this method more robust.
If we call this method more than once while the animation is showing, it will
just return and ignore the request since there’s nothing to do. We are checking
for two situations: if the alpha is 1, then we are already visible. Or, if there
is an action with the key showAction, then we’re in the process of showing the
node. In either case, the method should not continue.

Once we get past the guard statement, we immediately remove any action
that might have been run with the key hideAction. As you can probably guess,
we’re using this key for the action that does the reverse of this method’s work.
If the hide action was already running, we want to stop it so that we can run
the show action instead. Refer back to Powering Down After a Few Seconds,
on page 35, for a refresher on how action keys work.

Next we finish the method by running all the actions that make the sprite
node fade and swoop in to cue the player.

08-Polish/step02/PhysicsBall/RCWPullHintNode.m
- (void)showHint
{

if (self.alpha == 1 || [self actionForKey:@"showAction"]) {
return;

}
[self removeActionForKey:@"hideAction"];

SKAction *fadeIn = [SKAction fadeAlphaTo:1 duration:0.6];➤

SKAction *slide = [SKAction moveToY:0 duration:0.2];➤

SKAction *slideChild = [SKAction runAction:slide onChildWithName:@"animation"];➤

SKAction *zoom = [SKAction scaleTo:1 duration:0.2];➤

SKAction *zoomChild = [SKAction runAction:zoom onChildWithName:@"animation"];➤
➤

SKAction *showAction = [SKAction group:@[slideChild, zoomChild, fadeIn]];➤

[self runAction:showAction withKey:@"showAction"];➤

}

Chapter 8. Polishing the Pinball Game • 158

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWPullHintNode.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWPullHintNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

The fadeIn action runs on this RCWPullHintNode instance, but notice how the slide
and zoom actions are run on the child node. We build two new actions, slideChild
and zoomChild, that perform the actions on child nodes with specific names,
even though they are run on the parent node. While we could run these
actions on the child node directly, using the +runAction:onChildWithName: action
lets us group all these related actions together under one key so we can
cancel the whole lot without trying to look them up individually.

We build the showAction group that slides, zooms, and fades all at once. Finally,
we run the action on the RCWPullHintNode object with the key showAction.

Now, let’s build the sister method to hide the hint.

08-Polish/step02/PhysicsBall/RCWPullHintNode.m
- (void)hideHint
{

if (self.alpha == 0 || [self actionForKey:@"hideAction"]) {
return;

}
[self removeActionForKey:@"showAction"];
SKAction *fadeOut = [SKAction fadeAlphaTo:0 duration:0.1];
SKAction *slide = [SKAction moveToY:30 duration:0.2];
SKAction *slideChild = [SKAction runAction:slide onChildWithName:@"animation"];
SKAction *zoom = [SKAction scaleTo:1.3 duration:0.2];
SKAction *zoomChild = [SKAction runAction:zoom onChildWithName:@"animation"];
SKAction *hideAction = [SKAction group:@[fadeOut, slideChild, zoomChild]];
[self runAction:hideAction withKey:@"hideAction"];

}

This just reverses what we did in the -showHint method. We first check to see
whether we’re already hidden or in the process of hiding. Then we remove the
show action if it is already running so we can take over. Then we build the
fadeout, slide, and zoom to get the effect we want and run the action on this
node with the key hideAction.

We end up with two methods that undo each other. Time to put them to use.
Let’s switch over to the RCWMyScene.m file and add the header import at the top
of the file so we can use it in the scene.

08-Polish/step02/PhysicsBall/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWPinballNode.h"
#import "RCWPlungerNode.h"
#import "RCWTableNode.h"
#import "RCWPaddleNode.h"
#import "RCWHUDNode.h"
#import "RCWCategoriesMask.h"
#import "RCWTargetNode.h"
#import "RCWPullHintNode.h"➤

report erratum • discuss

Cueing the Player to Pull the Plunger with Sprite Animations • 159

http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWPullHintNode.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Then, in the -setUpScene method, right after we create the plunger, we’ll create
and position this pull hint and immediately hide it.

08-Polish/step02/PhysicsBall/RCWMyScene.m
// ...

RCWPlungerNode *plunger = [RCWPlungerNode plunger];
plunger.name = @"plunger";
plunger.position = CGPointMake(self.size.width - plunger.size.width/2 - 4,

plunger.size.height / 2);
[table addChild:plunger];

RCWPullHintNode *pullHint = [RCWPullHintNode pullHint];➤

pullHint.name = @"pullHint";➤

pullHint.position = CGPointMake(plunger.position.x,➤

plunger.position.y + plunger.size.height + 30);➤

[pullHint hideHint];➤

[table addChild:pullHint];➤

// ...

We place the hint just above the plunger so the player knows what the anima-
tion is meant for, name the node so we can find it later, tell it to hide itself,
and then add it to the table.

To use this during gameplay, we’ll change the -update: method to continually
check to see whether the plunger is in contact with the ball.

08-Polish/step02/PhysicsBall/RCWMyScene.m
- (void)update:(NSTimeInterval)currentTime
{

RCWPinballNode *ball = (id)[self childNodeWithName:@"//ball"];➤

RCWPlungerNode *plunger = (id)[self childNodeWithName:@"//plunger"];➤

RCWPullHintNode *hint = (id)[self childNodeWithName:@"//pullHint"];➤

if ([plunger isInContactWithBall:ball]) {➤

[hint showHint];➤

} else {➤

[hint hideHint];➤

}➤

if (self.leftPaddleTouch) {
RCWPaddleNode *leftPaddle = (id)[self childNodeWithName:@"//leftPaddle"];
[leftPaddle flip];

}

if (self.rightPaddleTouch) {
RCWPaddleNode *rightPaddle = (id)[self childNodeWithName:@"//rightPaddle"];
[rightPaddle flip];

}
}

Chapter 8. Polishing the Pinball Game • 160

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step02/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We look up the ball, the plunger, and the hint node. If the -isInContactWithBall:
method on the plunger returns true, then we call -showHint on the hint node.
Otherwise, we call -hideHint. Notice that this means we are calling these methods
over and over every frame while we check to see whether the ball is resting
on the plunger. That’s why we wrote the hint methods to check to see whether
their work had already been completed. This makes them very fast, and we
can call them over and over again without worrying about performance at
this point.

That’s all it takes for the animation! Run the game now, and you’ll see the
triangle marquee fade and swoop into view whenever the ball comes to rest
on the plunger.

Moving Textures into a Texture Atlas for Great Performance
Now that you’ve been introduced to the idea of SKTexture objects, it’s time to
briefly talk about texture atlases. The games we are working on in this book
are quite simple. There are very few graphics and relatively few nodes at work
in the scene. But as your games get more complex, your graphics demands
will put increasing pressure on the GPU of these remarkably small devices.
Indeed, most of the processing power used up by your game could be from
Sprite Kit loading and shoving pixels around on the screen.

That’s where texture atlases come in. The way we’ve been building these
games so far, we’ve added separate PNG files for each image texture to the
Xcode project. Because they are part of the game target, they are automatically
optimized and copied into the app bundle on build. We don’t have to do any-
thing special to use them in an SKSpriteNode or an SKTexture instance. We just
need to refer to them by filename.

But loading these files takes time. And, by default, each file takes up a sepa-
rate OpenGL texture in the GPU memory. While fast for these simple games,
it is very slow for a game with a lot of frame-based animations. It’s common
for 2D games to have thousands of individual textures that are referenced
throughout the sprites on the screen.

What we want is a way to combine individual image files into a single texture
atlas that is efficiently reused by OpenGL under the hood. When finally
compiled, a texture atlas looks like Figure 36, Texture atlas of pinball sprites,
on page 162.

Everything is rotated and positioned to get the sprites as tightly packed as
possible. This single texture is then loaded in the GPU, and when you want

report erratum • discuss

Cueing the Player to Pull the Plunger with Sprite Animations • 161

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 36—Texture atlas of pinball sprites

to use a specific slice out of this atlas, you specify boundaries and rotation
of the one you want.

In most other game frameworks, you have to build these texture atlases
yourself with a separate process or build tool. But Sprite Kit, in combination
with Xcode, does all the work for you automatically! You don’t even have to
change your existing code to make it work. All you have to do is put your
images in a special .atlas directory in the project, as in the following figure.

Figure 37—Images files in an .atlas directory

Take a look at the Xcode project in the 08-Polish/step03 directory of the sample
code that came with this book. You’ll see a sprites.atlas directory with all the
game sprites inside of it. If you name a directory with the extension .atlas and

Chapter 8. Polishing the Pinball Game • 162

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

drag it into the Xcode sidebar, then Xcode will automatically compile any
images in that directory for you, even if you add more later. You don’t have
to do anything else!

The SKSpriteNode and SKTexture classes will check first for a reference in a texture
atlas that matches the original filename. If it sees what you want in an atlas,
it will automatically use it. Otherwise, it will fall back to looking for a stand-
alone image file in your bundle.

This is a powerful feature made incredibly easy by Sprite Kit’s API and
integration with Xcode. It’s tough to beat. Find out more by reading Apple’s
documentation.1

Next up, let’s use physics contact detection to build a special target that the
ball passes through to turn on bonus scoring!

Adding Bonus Points with a Spinner
Bumpers and bouncy targets are fun, but we’d like to add another kind of
element to the pinball table for the player. We’re going to build a spinner that
is activated when the ball passes through it. While the spinner is rotating,
targets are worth three times their normal point value—it’s a bonus mode!
As the spinner slows to a stop, the bonus mode deactivates. If the player can
keep the spinner in motion, the points will just keep piling up.

To do this we’ll need to build a new node subclass and lay it out on the table
in the property list configuration file we set up back in Loading Targets and
Bumpers from a Layout File, on page 136. We’ll also use a new technique when
detecting body contact with the physics engine. Bodies don’t have to be solid.
We’re going to allow the ball to pass through the spinner node yet still detect
the collision so we can give it a spin.

First, we’ll create a new file in the Xcode project named RCWBonusSpinnerNode.h
to hold the class header.

08-Polish/step04/PhysicsBall/RCWBonusSpinnerNode.h
#import <SpriteKit/SpriteKit.h>

@interface RCWBonusSpinnerNode : SKSpriteNode
+ (instancetype)bonusSpinnerNode;
- (void)spin;
@property (nonatomic, readonly) BOOL stillSpinning;
@end

1. https://developer.apple.com/library/ios/recipes/xcode_help-texture_atlas/AboutTextureAtlases/AboutTextureAt-
lases.html

report erratum • discuss

Adding Bonus Points with a Spinner • 163

http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWBonusSpinnerNode.h
https://developer.apple.com/library/ios/recipes/xcode_help-texture_atlas/AboutTextureAtlases/AboutTextureAtlases.html
https://developer.apple.com/library/ios/recipes/xcode_help-texture_atlas/AboutTextureAtlases/AboutTextureAtlases.html
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We’re going to implement a constructor method, build an instance method
to tell it to spin, and use a read-only property to find out whether the node
is still spinning. Remember that we’re doing our best to build nodes as self-
contained black boxes with well-defined APIs.

Let’s create a file named RCWBonusSpinnerNode.m and start it with the constructor
implementation.

08-Polish/step04/PhysicsBall/RCWBonusSpinnerNode.m
#import "RCWBonusSpinnerNode.h"
#import "RCWCategoriesMask.h"
@implementation RCWBonusSpinnerNode
+ (instancetype)bonusSpinnerNode
{

RCWBonusSpinnerNode *spinner = [self spriteNodeWithImageNamed:@"bonus-spinner"];
spinner.size = CGSizeMake(6, 40);
spinner.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:spinner.size];
spinner.physicsBody.affectedByGravity = NO;
spinner.physicsBody.angularDamping = 0.8;
spinner.physicsBody.categoryBitMask = RCWCategoryBonusSpinner;
spinner.physicsBody.contactTestBitMask = RCWCategoryBall;
spinner.physicsBody.collisionBitMask = 0;
return spinner;

}
@end

We first create a RCWBonusSpinnerNode as a sprite node with the image named
bonus-spinner.png and size it so it looks nice. Then we set up the physics body
to ignore gravity and set the angularDamping property to 0.8 to cause the body
to slow down quickly when it spins. We give it a new category in the category-
BitMask property and set the contactTestBitMask property so that the physics world
knows we want to be told when it comes in contact with the ball. For a
refresher on all of this, refer back to Chapter 7, More Physics: Paddles and
Collisions, on page 127.

Then things get interesting. We set the collisionBitMask property to zero, which
is the cue to the physics world that we don’t want the physics engine to make
this body appear solid to any other body category. Anything that comes in
contact with this body should just pass through it.

The collisionBitMask property is a bitmask just the same as the contactTestBitMask
property. The bits in that 32-bit integer are cues to the physics world about
which bodies should appear solid to each other. By setting this property to
zero, we are saying that this body should be a ghost. It will certainly participate
in the collision detection, but we don’t want the physics engine to act on it.
We want to do special work with it instead.

Chapter 8. Polishing the Pinball Game • 164

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWBonusSpinnerNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We must add this new RCWCategoryBonusSpinner constant to the list of categories
in RCWCategoriesMask.h so the compiler knows about the bit constant.

08-Polish/step04/PhysicsBall/RCWCategoriesMask.h
typedef NS_OPTIONS(uint32_t, RCWCollisionCategory) {

RCWCategoryBall = 1 << 0,
RCWCategoryBumper = 1 << 1,
RCWCategoryTarget = 1 << 2,
RCWCategoryBonusSpinner = 1 << 3,➤

};

Notice how we’re continuing the pattern we started before saying that the
RCWCategoryBonusSpinner constant represents the fourth bit from the right of a
32-bit integer. We’d keep going if we had more categories to keep track of.

But we’ve set only one side of the equation. To truly make sure this body isn’t
a hard surface for the ball, we have to clear the bit on the ball’s physics body
for the bonus spinner. Switch to RCWPinballNode.m and add an extra line after
setting up the categoryBitMask property.

08-Polish/step04/PhysicsBall/RCWPinballNode.m
node.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:sideSize/2];
node.physicsBody.categoryBitMask = RCWCategoryBall;
node.physicsBody.collisionBitMask ^= RCWCategoryBonusSpinner;➤

// ...

That funny ^= syntax is how we tell the C compiler to toggle specific bit
positions of the property and then reassign the result to the property. The ^
operator is called bitwise exclusive-or, which is just a fancy way of saying that
we are flipping bits from what they used to be. Refer back to Slowing Down
the Ball on Rebound, on page 152, for more discussion about these bitwise
math operations.

By default, the collisionBitMask property has all bits turned on, or set to 1. By
using this ^= operator, we are telling the compiler to turn off the category bit
for the RCWCategoryBonusSpinner. Because we turned all the bits off for the spinner
node’s collisionBitMask property, and the spinner node category bit is off for the
ball’s collisionBitMask property, they will effectively pass through each other.

Because this spinner is a ghost in the scene, when the ball comes in contact
we need to spin it manually. That’s why we have to implement our own -spin
method back in RCWBonusSpinnerNode.m.

08-Polish/step04/PhysicsBall/RCWBonusSpinnerNode.m
- (void)spin
{

[self.physicsBody applyAngularImpulse:0.003];
}

report erratum • discuss

Adding Bonus Points with a Spinner • 165

http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWCategoriesMask.h
http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWPinballNode.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWBonusSpinnerNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

All this does is reach into the physics body and apply a slight angular impulse.
It’s fast enough to cause this body to spin wildly. And it will slow down rela-
tively quickly because of how we set the angularDamping in the constructor. We
can adjust these values to taste.

Because we need to find out whether this node is spinning, we need to add
the getter for the stillSpinning property.

08-Polish/step04/PhysicsBall/RCWBonusSpinnerNode.m
- (BOOL)stillSpinning
{

return self.physicsBody.angularVelocity > 0.9;
}

We reach into the physics body and check to see whether the angularVelocity at
this moment is greater than a certain threshold. Again, we can adjust these
values to taste.

This node will be positioned using the property list configuration file, just like
all of the other elements on the pinball table. Refer back to Loading Targets
and Bumpers from a Layout File, on page 136, for more details about how we
set that up. Because it’s the table node’s responsibility to read that file and
load everything, we’ll switch to RCWTableNode.m and add an import for the
RCWBonusSpinnerNode.h header file at the top.

08-Polish/step04/PhysicsBall/RCWTableNode.m
#import "RCWTableNode.h"
#import "RCWBumperNode.h"
#import "RCWTargetNode.h"
#import "RCWBonusSpinnerNode.h"➤

Then we’ll add this bit of code to the end of the -loadLayoutNamed: to read config-
uration information from the dictionary that is pulled from the property list
file.

08-Polish/step04/PhysicsBall/RCWTableNode.m
- (void)loadLayoutNamed:(NSString *)name
{

// ...

NSDictionary *spinnerConfig = layout[@"bonusSpinner"];
RCWBonusSpinnerNode *spinner = [RCWBonusSpinnerNode bonusSpinnerNode];
spinner.name = @"spinner";
spinner.position = CGPointMake([spinnerConfig[@"x"] floatValue],

[spinnerConfig[@"y"] floatValue]);
[self addChild:spinner];

}

Chapter 8. Polishing the Pinball Game • 166

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWBonusSpinnerNode.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWTableNode.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWTableNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Similar to what we did with the targets and bumpers, we pull the spinner
configuration from the bonusSpinner key in the layout dictionary. We set the
spinner’s name so we can find it later, and then set its position to the floating-
point values in the configuration dictionary before adding it to the table. You
can find the updated layout.plist file with the values for the bonusSpinner key in
the 08-Polish/step04 directory of the book’s sample code.

Let’s switch to RCWMyScene.m and add an import for the RCWBonusSpinnerNode.h
header file.

08-Polish/step04/PhysicsBall/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWPinballNode.h"
#import "RCWPlungerNode.h"
#import "RCWTableNode.h"
#import "RCWPaddleNode.h"
#import "RCWHUDNode.h"
#import "RCWCategoriesMask.h"
#import "RCWTargetNode.h"
#import "RCWPullHintNode.h"
#import "RCWBonusSpinnerNode.h"➤

Then, in the -ballBody:didContact:withBody: method, we’ll add the code to spin the
spinner if the ball touches it.

08-Polish/step04/PhysicsBall/RCWMyScene.m
- (void)ballBody:(SKPhysicsBody *)ballBody

didContact:(SKPhysicsContact *)contact
withBody:(SKPhysicsBody *)otherBody

{
if (otherBody.categoryBitMask == RCWCategoryBumper) {

[self playRandomBumperSound];
} else if (otherBody.categoryBitMask == RCWCategoryTarget) {

[self playRandomTargetSound];
RCWTargetNode *target = (RCWTargetNode *)otherBody.node;
[self addPoints:target.pointValue];

}

if (otherBody.categoryBitMask & (RCWCategoryBumper | RCWCategoryTarget)) {
[self capPhysicsBody:ballBody atSpeed:1150];
[self flashNode:otherBody.node];

}

if (otherBody.categoryBitMask == RCWCategoryBonusSpinner) {➤

RCWBonusSpinnerNode *spinner = (RCWBonusSpinnerNode *)otherBody.node;➤

[spinner spin];➤

}➤

}

report erratum • discuss

Adding Bonus Points with a Spinner • 167

http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

If the body that the ball touches has the same category as the bonus spinner,
then we can grab the node that the body belongs to and tell it to spin. All
that’s left to do is change the -addPoints: method so it multiplies points by three
when the node is spinning.

08-Polish/step04/PhysicsBall/RCWMyScene.m
- (void)addPoints:(NSUInteger)points
{

RCWHUDNode *hud = (RCWHUDNode *)[self childNodeWithName:@"hud"];
RCWBonusSpinnerNode *spinner = (id)[self childNodeWithName:@"//spinner"];➤

if (spinner.stillSpinning) {➤

[hud addPoints:points * 3];➤

} else {➤

[hud addPoints:points];➤

}➤

}

We look up the spinner node and check to see whether the stillSpinning property
returns true. If so, then we tell the RCWHUDNode instance to add three times
the points.

That’s it! If players can skillfully maneuver the ball to pass through the
spinner node, they’ll be rewarded with a temporary boost in point value.
Because the bonus mode is dependent on the spinning momentum of the
physics body, and because the body naturally slows down, we don’t have to
do anything to turn if off. It’s a bonus mode controlled entirely by the physics
world!

Next up, we’ll add some extra visual heft by showing puffs of smoke when
the ball strikes targets and bumpers.

Showing Puffs of Smoke When Hitting Targets and
Bumpers
The particle emitters we added to Space Run were so much fun that we just
can’t leave them out of our pinball game. We’re going to add little puffs of
smoke everywhere the ball hits a target or bumper, but to make it look more
realistic we need to figure out the angle of that puff.

That’s where the SKPhysicsContact object comes in. It exposes a contactPoint prop-
erty that gives us the precise position of the collision between the two bodies
in scene coordinates. Once we convert those coordinates into the table nodes
coordinate system, then we can place quick particle emitters into the scene
at that point. It also exposes the collisionImpulse property to tell us how hard

Chapter 8. Polishing the Pinball Game • 168

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/08-Polish/step04/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

the hit was. This gives us enough information to give the player the impression
of speed!

We went in depth with particle emitters back in Chapter 3, Explosions and
Particle Effects, on page 37—how to create them and how to load them. Here
we’re going to start with the Xcode project as it is in 08-Polish/step05 in the
sample code for this chapter. That already has a small particle emitter and
the helper category to load and play the emitter briefly in the scene. Starting
at this point will keep us from getting distracted by details we’ve already
covered.

Because we want to use our special SKEmitterNode category in the scene, we’ll
import the header file at the top of the RCWMyScene.m file.

08-Polish/step06/PhysicsBall/RCWMyScene.m
#import "RCWMyScene.h"
#import "RCWPinballNode.h"
#import "RCWPlungerNode.h"
#import "RCWTableNode.h"
#import "RCWPaddleNode.h"
#import "RCWHUDNode.h"
#import "RCWCategoriesMask.h"
#import "RCWTargetNode.h"
#import "RCWPullHintNode.h"
#import "RCWBonusSpinnerNode.h"
#import "SKEmitterNode+RCWExtensions.h"➤

As we did with the explosion particle emitters in Space Run, we need to create
a property that will hold a single particle emitter to use as a template and
copy it when ready.

08-Polish/step06/PhysicsBall/RCWMyScene.m
@interface RCWMyScene ()
<SKPhysicsContactDelegate>
@property (nonatomic, weak) UITouch *plungerTouch;
@property (nonatomic, weak) UITouch *leftPaddleTouch;
@property (nonatomic, weak) UITouch *rightPaddleTouch;
@property (nonatomic, strong) NSArray *bumperSounds;
@property (nonatomic, strong) NSArray *targetSounds;
@property (nonatomic, strong) SKEmitterNode *sparkTemplate;➤

@end

And we must initialize this template at the end of the -setUpScene method.

08-Polish/step06/PhysicsBall/RCWMyScene.m
self.targetSounds = @[

[SKAction playSoundFileNamed:@"target1.aif" waitForCompletion:NO],
[SKAction playSoundFileNamed:@"target2.aif" waitForCompletion:NO],
[SKAction playSoundFileNamed:@"target3.aif" waitForCompletion:NO]];

self.sparkTemplate = [SKEmitterNode rcw_nodeWithFile:@"Spark"];➤

report erratum • discuss

Showing Puffs of Smoke When Hitting Targets and Bumpers • 169

http://media.pragprog.com/titles/pssprite/code/08-Polish/step06/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step06/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step06/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Now we have an emitter node as a template that we’ll be able to efficiently
copy when we need it.

We want to display these puffs as the ball bounces into a bumper or a target.
It just so happens that we already have a check for those categories of physics
bodies in our -ballBody:didContact:withBody: method. Let’s add a call to a method
that will play the puff for that physics contact.

08-Polish/step06/PhysicsBall/RCWMyScene.m
- (void)ballBody:(SKPhysicsBody *)ballBody

didContact:(SKPhysicsContact *)contact
withBody:(SKPhysicsBody *)otherBody

{
if (otherBody.categoryBitMask == RCWCategoryBumper) {

[self playRandomBumperSound];
} else if (otherBody.categoryBitMask == RCWCategoryTarget) {

[self playRandomTargetSound];
RCWTargetNode *target = (RCWTargetNode *)otherBody.node;
[self addPoints:target.pointValue];

}

if (otherBody.categoryBitMask & (RCWCategoryBumper | RCWCategoryTarget)) {
[self capPhysicsBody:ballBody atSpeed:1150];
[self flashNode:otherBody.node];
[self playPuffForContact:contact withVelocity:ballBody.velocity];➤

}

if (otherBody.categoryBitMask == RCWCategoryBonusSpinner) {
RCWBonusSpinnerNode *spinner = (RCWBonusSpinnerNode *)otherBody.node;
[spinner spin];

}
}

As we set up back in Slowing Down the Ball on Rebound, on page 152, we
already have the conditional check to see whether the body the ball bumped
into is categorized as either RCWCategoryBumper or RCWCategoryTarget. We pass
along the contact object and the ball’s current velocity because we need to
determine the angle at which to play the particle emitter.

Next, let’s write the -playPuffForContact:withVelocity: method to do the work.

08-Polish/step06/PhysicsBall/RCWMyScene.m
- (void)playPuffForContact:(SKPhysicsContact *)contact

withVelocity:(CGVector)velocity
{

SKNode *table = [self childNodeWithName:@"table"];

SKEmitterNode *spark = [self.sparkTemplate copy];

spark.position = [self convertPoint:contact.contactPoint toNode:table];

Chapter 8. Polishing the Pinball Game • 170

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/08-Polish/step06/PhysicsBall/RCWMyScene.m
http://media.pragprog.com/titles/pssprite/code/08-Polish/step06/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

spark.xAcceleration = self.physicsWorld.gravity.dx;
spark.yAcceleration = self.physicsWorld.gravity.dy;
spark.emissionAngle = atan2(velocity.dy, velocity.dx);
spark.particleSpeed = contact.collisionImpulse;

[spark rcw_dieOutInDuration:0.05];

[table addChild:spark];
}

We first look up the table node so we can compute the proper coordinates.
We also create a copy of the spark node, which is much faster than loading
it again from the app bundle. We set the spark’s position to the contact.contactPoint
after converting it to the coordinate system of the table node. We need to do
the conversion because the table is larger than the scene. (Remember that
we’re using it to pan around and simulate a camera following the ball.)

After the spark is positioned, we alter some of the properties of the emitter
node in real time to complete the illusion of the spark in response to the col-
lision. The xAcceleration and yAcceleration properties are set to the physics world’s
current gravity. The emissionAngle is computed from the velocity of the ball using
trigonometry with the atan2() function. That velocity is after the collision is
processed so the particles will spray in the opposite direction of the ball’s
initial collision. We also set the particleSpeed of the emitter based on the collision-
Impulse property of the SKPhysicsContact object. That makes the particles spray
out farther in the few moments they emit if the ball hits the body harder.

We then call the custom category method on the spark, -rcw_dieOutInDuration:,
that we wrote back in Chapter 3, Explosions and Particle Effects, on page 37,
to make it easy to play particle emitters and remove them. Finally, we add
the spark to the table.

That’s it! The net effect is that a collision by the ball sprays out a brief puff
of smoke based on the angle and how hard it hit. It’s a small detail that adds
to the frenzy and visual fullness of an action game like this. Give it a play
and see what happens for yourself!

Next, let’s finish the visual polish by adding a texture overlay on top of the
table to cover up the dull bits and make it look more complete.

Covering the Table with a Textured Overlay
Yeah, skeuomorphism is passé for normal user interfaces. But for games,
bring it on! We want to overlay a texture around the edges of the table to give
a sense of depth and complete the illusion for the player.

report erratum • discuss

Covering the Table with a Textured Overlay • 171

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Because SKSpriteNode objects can easily contain sprites with transparent areas,
using one as an overlay is a snap. The graphics processor in modern iOS
devices has more than enough horsepower to composite the overlay on top
of the action going on underneath. This is the final effect that we’ll get:

Figure 38—How the table overlay will look

We’ll start by loading up the project at step 08-Polish/step07, which has the table-
overlay.png file all ready to go in Xcode. Then let’s open the RCWTableNode.m file
and add these lines at the end of the +table method after the edge body is set
up.

08-Polish/step08/PhysicsBall/RCWTableNode.m
bounds.path = bezierPath.CGPath;
bounds.physicsBody = [SKPhysicsBody bodyWithEdgeChainFromPath:bezierPath.CGPath];

SKSpriteNode *overlay = [SKSpriteNode spriteNodeWithImageNamed:@"table-overlay"];➤

overlay.size = CGSizeMake(320, 1246);➤

overlay.anchorPoint = CGPointMake(0, 0);➤

overlay.position = CGPointMake(0, 0);➤

overlay.zPosition = 50;➤

[table addChild:overlay];➤

return table;

Chapter 8. Polishing the Pinball Game • 172

report erratum • discuss

http://media.pragprog.com/titles/pssprite/code/08-Polish/step08/PhysicsBall/RCWTableNode.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

We create a new sprite node, overlay, with the image named table-overlay.png.
After setting the size to fit properly over the table, we set the anchor point to
{0,0}. Sprite nodes offer a special capability to let you shift their contents
around with the anchorPoint property, relative to the value of the position property.
The default value for anchorPoint is {0.5,0.5}, which means the sprite texture is
centered on the position property. By setting the value to {0,0}, we shift the
sprite texture so the position property is the bottom-left corner of the texture.

We also set the zPosition property of the node to 50 because we want this node
to appear over all other nodes, except the score heads-up display. Remember
that normally the node z-order is based on when you add nodes to the scene.
Later nodes appear over earlier nodes. Because we want to override this, we
explicitly set a zPosition. Anything over 1 would be sufficient; we just happen
to be using 50 here. Pick a number that fits your use case.

If we were to run the game now, the heads-up display for the score would
appear under the table when it scrolls as the ball skims up the side. We don’t
want that. We need to force the HUD to be drawn on top of everything else
when we create it in the -setUpScene method.

08-Polish/step08/PhysicsBall/RCWMyScene.m
RCWHUDNode *hud = [RCWHUDNode hud];
hud.name = @"hud";
hud.position = CGPointMake(self.size.width/2, self.size.height/2);
hud.zPosition = 100;➤

[self addChild:hud];
[hud layoutForScene];

Here we are setting the zPosition property to 100. Even though the RCWHUDNode
and the SKSpriteNode for the image overlay are in different places in the child-
node hierarchy, setting this zPosition property overrides any other ordering
rules. This score heads-up display will always be on top.

Believe it or not, that’s it! Because the table node contains all the action,
adding this overlay is all we need to do. Run the game and see how beautiful
it looks.

Depending on whether you tried it out on the simulator or a device, you might
be doing a double-take right now. Running the game in the simulator with
the table overlay will feel sluggish and a bit jerky. The frame rate drops as
the simulated graphics hardware tries to keep up. Alas, that’s the biggest
limitation of the simulator. While most operations seem to go faster than on
an actual device because of the Mac’s more impressive hardware, graphics
operations are actually slower than on a real device. An iPhone’s native

report erratum • discuss

Covering the Table with a Textured Overlay • 173

http://media.pragprog.com/titles/pssprite/code/08-Polish/step08/PhysicsBall/RCWMyScene.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

graphics pipeline has no trouble compositing this overlay on top of the fast-
moving elements of the game.

This is a great moment to pause and reflect on how you go about game
development. Tools like the simulator are a fine resource to get started
quickly and whip up an idea. But when the time comes to do actual perfor-
mance testing, do it on a real device. Ideally, you’ll test on every device that
you’ll support, especially older models. The simple games like we’ve been
building don’t push the little machines very much, but when you start
building your magnum opus and have hundreds (thousands?) of sprites flying
around, you’ll want to make sure that you’re not causing frame drops and
giving the player a sluggish experience. Test your game on older devices you
plan to support, and adjust your strategy to remove unneeded nodes or cache
things as much as possible when necessary.

That’s it for the visual polish of the game. Before we wrap up the chapter,
though, we need to quickly touch on some final adjustments to the UIKit
portions of the app.

Locking the Game to Portrait and Removing the Status Bar
As you know, this is a book about Sprite Kit. We’ve talked about UIKit out of
necessity to integrate with the rest of Apple’s ecosystem for iOS applications.
Before we can wrap up our discussion of the pinball game, we should make
two minor changes to the app to get it ready for players.

First, the pinball game should not allow auto-rotation to landscape mode. It’s
meant to be played in portrait. But if the device is rotated while playing, the
game will also rotate with it and look weird because of the way the scene
scales to fill the width. It scales up because the scene’s scaleMode property is
set to SKSceneScaleModeAspectFill in the RCWViewController.m file by default. The
scaling doesn’t really matter for this particular game. We want to force the
app to stay in portrait orientation.

Second, the iOS status bar is always visible, which doesn’t make sense for a
full-screen application like we have here. The process to hide the status bar
changed from iOS 6 to iOS 7, so we have to tweak the Info.plist file and add a
quick method call in the app delegate to make it go away.

In Xcode, we’ll click on the top-level project item in the left-hand file list
sidebar. Then we’ll uncheck all the device-orientation checkboxes except
Portrait, as shown in the following figure. That’s all we need to do to force the
app into portrait mode.

Chapter 8. Polishing the Pinball Game • 174

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 39—Checkboxes to remove landscape auto-rotation

Then, let’s click on the Info tab in the top center of the window pane to view
the Info.plist settings. We’ll select one of the rows in the Custom iOS Target
Properties list, and + and - buttons will show up. We’ll click the + button to
create a new key-value pair. Let’s start typing the phrase “View controller-
based status bar appearance” and choose it once the auto-complete figures
out what we mean. We’ll change the value column to NO, as in Figure 40,
Controlling status bar appearance, on page 176.

That sets up the Info.plist file for this app with the right configuration in the
bundle. But we still have to tell the status bar to hide when the app launches.
Let’s switch over to the RCWAppDelegate.m file and change the -application:didFinish-
LaunchingWithOptions: method to look like this:

08-Polish/step09/PhysicsBall/RCWAppDelegate.m
- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

[application setStatusBarHidden:YES];➤

return YES;
}

That method call does the actual work to make the status bar go away. Now
the game is truly full screen and an immersive experience.

Throughout this chapter, we’ve dabbled in a wide variety of techniques: detect-
ing contact without triggering a collision, playing frame-based animations

report erratum • discuss

Locking the Game to Portrait and Removing the Status Bar • 175

http://media.pragprog.com/titles/pssprite/code/08-Polish/step09/PhysicsBall/RCWAppDelegate.m
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Figure 40—Controlling status bar appearance

efficiently, and using overlays to give the effect of depth and weight. At each
point, we had a specific goal to achieve and looked into the Sprite Kit toolbox
to find out how to solve it. It’s the same process you’ll repeat for your own
games!

That’s it for the coding examples in this book. You could do so many things
to this game, such as adding an opening menu like we did for Space Run back
in Chapter 4, Menus and Cutscenes, on page 53; giving the player only a
limited number of balls; or maybe even using wacky physics and bumpers to
give this pinball game a different feel. You’ve got the tools. Now run with your
ideas!

Chapter 8. Polishing the Pinball Game • 176

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

CHAPTER 9

Where to Go Next
Congratulations! You’ve made it through the projects in this book. You’ve
grown your knowledge step by step and built two games with distinct
mechanics. You’ve learned your way around the Sprite Kit APIs with the scene
graph, actions, and many different node types. And you’ve seen some of the
tradeoffs you have to make each step of the way to bring ideas to life.

We’ve barely scratched the surface of what is possible with Sprite Kit, but
our goal (as your humble authors) wasn’t to rehash Apple’s excellent docu-
mentation. We wanted to help lead you through the thought process of
building games. Given an idea, what would it take to get there? What compro-
mises need to be made along the way?

We’ve got a few last points to leave with you before you venture off on your
own. Take this as advice, not strict rules.

Reviewing the Game-Development Process
Now that you have two working Sprite Kit–based games running on the small
device in your pocket, it can be easy to forget how it all started. Let’s take a
moment to review what we did in these pages, starting with the paper
prototypes.

Prototype, Prototype, Prototype!
Back in Preface, on page vii, we first sketched out the ideas of Space Run and
our pinball game. We drew rough images of what we wanted to see and listed
key features we thought were most important for fun.

Note that these were not high-quality drawings. They were hastily scribbled
on paper, just enough to get the point across. It’s useful to get your ideas
down in a sketched and temporary form that you’re not attached to and that

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

is easy to throw away. If you just sit down and start typing code but you
discover later that the game idea isn’t fun, the temptation to keep typing
grows fierce. Indeed, we’ve all heard of (or lived through) projects that failed
miserably because the team chose to ignore the signs of doom and kept going,
hoping it would work out in the end.

The bottom line is that you can’t type your way to fun. Draw the game out
first. Set it in front of your friends, family, and colleagues and see what they
think. Crinkle up the paper and draw it again. Try to get the essence of the
game in front of them. It won’t tell you everything, but you’ll be amazed at
the kinds of feedback and questions you can get from these quick sessions.

Take that feedback and start developing a larger plan of attack. Just because
someone doesn’t get it when you try to show the idea on paper, that doesn’t
mean you should abandon it. Being understood is just as important as the
other person’s ability to understand. Often, the push-back we get when we
show prototypes helps us hone our ideas for the next time we ask for feedback.
It helps us focus our efforts for when we actually start building.

What Are Your Goals?
So, the paper prototypes are finished, and other people like the idea. It’s time
to start building. Fire up Xcode and type, right? Well, not yet. Noodling around
with Sprite Kit for fun is a great idea, but when you are ready to build a game,
you need goals. In fact, so do your players!

Do you know who your audience is? Are they young? Old? Do they have fast
reflexes? Think through the cognitive complexity of your game. Fast-moving
shapes that you have to touch accurately with a finger don’t work well for
small children or older adults. The amount of information on the screen affects
how much “fun” the player is having.

Does the game have a specific ending or goal for the player? Space Run and
our pinball game are what are commonly called “infinite runner” games, where
the goal is to get farther (either in distance or in points) than you did the last
time. They don’t necessarily have an ending. These games were chosen
specifically to make it easy to discuss the technical parts of Sprite Kit without
getting bogged down by narrative or character development.

Other games have a storyline where a character makes a progression through
a series of challenges before facing the final challenge, or “boss” in a character-
based game. These kinds of games are much more demanding to create
because they are driven by the story and illustration.

Chapter 9. Where to Go Next • 178

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

You should definitely read Apple’s discussion of an app definition statement.1

Take time to decide what the game should do, and use that definition as a
map to keep you from getting lost.

You Don’t Have to Be an Artist
See the graphic assets and sound effects that came with the sample code for
the book? The authors made those! Neither of us has much experience with
illustration, but that doesn’t matter. While you are working out the mechanics
of your games, you don’t need to perfect the visual parts. For most games,
the mechanics are more important than the visuals.

The visuals do come into play, especially when it comes to characters and
storyline, but as the recent spate of Flappy Bird clones has shown, the atti-
tudes of players are fickle. Spending hours on your pixel-perfect rendering
and awesome storyline does not guarantee a payoff.

That said, the visual element is important. At its core, Angry Birds is a physics
game where you are throwing circles and triangles at squares and rectangles.
It wouldn’t be what it is without the comic characters. There is certainly a
point where the visual and audible components contribute significantly to a
game’s feel.

Finding artists can be a complicated process. Start by looking through the
variety of work and visual styles at sites such as Dribbble or deviantART.2,3

These are great places to browse and find someone who might fit the style of
game you’re going for.

You can also go to Meetup and look up local illustration or game design
groups.4 Or go to a local college design department and ask around. Hang
out with them and see what you find.

Bottom line, if you meet someone that you’d like to hire to work on your game
art, treat that person like a professional. Those people are making a living off
of what they are doing, just like you. Take them seriously.

For sound effects, it’s hard to beat GarageBand as a fun tool to play with.
The preset electronic instruments offer bloops and blips that are great to
experiment with in your game. And as a bonus, GarageBand comes with
gigabytes of royalty-free, liberally licensed music loops. Yes, it’s easy to make

1. https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Process.html
2. http://dribbble.com
3. http://www.deviantart.com
4. http://www.meetup.com

report erratum • discuss

Reviewing the Game-Development Process • 179

https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Process.html
http://dribbble.com
http://www.deviantart.com
http://www.meetup.com
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

really cheesy audio tracks with them. But at the very least you can use them
as filler to get the emotional effect you want from the music and replace them
with something custom when you’re ready.

We hope you are noticing a theme here. Don’t fret about the graphics and
music. It’s very rare that they play a critical part of the game mechanics.
Work out the details of gameplay first, using whatever you have around you.
Polish it later.

Other Resources
We suggest some further reading to help round out your ideas in other areas.
Game development isn’t just about programming or sprites. Communicating
visually is a fascinating and well-developed discipline, as you’ll see in the
following resources.

Apple’s Documentation
When Apple introduced Sprite Kit, it included the most complete and useful
set of documentation at launch day of any developer-focused product the
company has ever shipped. Not only are their developer’s guide and API refer-
ence excellent sources of information,5,6 but there’s an entire demo adventure
game that you can try to explore novel uses of the API.7

That adventure game is quite advanced—far too advanced for a beginner to
sit down and browse through without getting lost. But now that you’ve com-
pleted the process of growing your own games from idea to device through
the Sprite Kit API, you’ve got enough experience to see what they’ve done and
incorporate those ideas into your own games.

And, of course, don’t forget to check out Apple’s impressive library of videos.8 The
Sprite Kit introductions at WWDC 2013 are quite well done and show off special
effects features, such as SKEffectNode and SKCropNode, that we didn’t cover here.

The Big Picture
Because you want to build games, you must read this seminal work on game
design and its impact on society, Reality Is Broken: Why Games Make Us

5. https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/
Introduction.html

6. https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SpriteKitFramework_Ref/_index.html
7. https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/

AdventureArchitecture/AdventureArchitecture.html
8. https://developer.apple.com/videos/

Chapter 9. Where to Go Next • 180

report erratum • discuss

https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SpriteKitFramework_Ref/_index.html
https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/AdventureArchitecture/AdventureArchitecture.html
https://developer.apple.com/library/ios/documentation/GraphicsAnimation/Conceptual/CodeExplainedAdventure/AdventureArchitecture/AdventureArchitecture.html
https://developer.apple.com/videos/
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Better and How They Change the World [McG11], by Jane McGonigal. She
focuses on the academic side of games, treating them as performance art with
positive social impact and not just as something that neurotic people use to
escape from reality.

McGonigal’s core thesis is that the components of games that make them fun
and engaging can teach us a lot about how we could structure the challenges
we face in our day-to-day lives. Whether it be home, business, politics, science,
or religion, the way we state the problems we face has meaning. Games can
help us frame our participation cooperatively with friendly competition to
help us push each other in fun ways.

We, the authors, have seen this play out in our own work. Much of our recent
work with games involves applications that help people with cognitive
impairment. These are not consumer games with an in-app purchase. They
are used in a variety of medical and research settings. But they affect people’s
lives by helping them cope with stress or injury and strengthen their mental
muscles. Not every game needs happy birds or angry pigs to make a difference.
We’d encourage you to reach outside of the normal commercial frenzy to see
how games can improve the world around you.

Whether or not you agree with the specific prognosis McGonigal makes based
on her research, it’s a great starting point to see how games can make a
positive impact.

The Design Process Itself
When you’re ready to get down to the nitty-gritty parts of game design, you
often need to look for inspiration and ideas. Or you can even walk through a
process to generate those ideas for yourself! That’s where these books can
come in handy.

Level Up!: The Guide to Great Video Game Design [Rog10], by Scott Rogers,
and The Art of Game Design: A Book of Lenses [Sch08], by Jesse Schell, are
great places to see how game designers organize their thoughts. Often we just
need to put our finger on some vague idea in our mind. These books are chock
full of vocabulary, examples, and more to help you firm up your idea into
something you can describe to others and prototype.

When you are ready to break out of your shell and experiment with others,
check out Game Design Workshop: A Playcentric Approach to Creating
Innovative Games [Ful14], by Tracy Fullerton. It helps kickstart the creative
process in a group to help you with prototyping, play testing, and working
with your tools.

report erratum • discuss

Other Resources • 181

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Data Visualization
When thinking about how to display things in games, such as statistics for
heads-up displays, or meters and puzzles, we recommend starting with books
like The Wall Street Journal Guide to Information Graphics [Won13], by Dona
Wong, and The Visual Display of Quantitative Information [Tuf01], by Edward
Tufte.

These are not marketed toward game developers and designers, but the
concepts are still useful. There’s a lot of overlap between game design and
informatics. Using well-researched resources like this can help you understand
what your player experiences during your game and can give you ideas to
present information in ways that communicate clearly and quickly.

Just Plain Fun
How can we suggest resources to help you build games without having a little
fun? In case you didn’t know, we are contractually obligated by the terms of
the geek cards we carry to suggest the novel Ready Player One [Cli12], by
Ernest Cline. It’s a fun read set in the future, where all commerce, entertain-
ment, and even government takes place within an MMORPG.9 When the creator
of that MMORPG passes away, it triggers a quest with a grand prize for anyone
who can decipher clues about the creator’s life and obsessions.

The creator grew up in the 1980s and 1990s, so the only way to complete the
quest is to know even the smallest detail of all the video games of that era.
While the story is great on its own, the best part is the nostalgic trip down
memory lane as Ernest recounts the experience of firing up the old 8-bit
games—except this time, playing them has epic consequences that even your
parents could get behind. If you were at all a fan of old video games, you’ll
enjoy this book.

Oh, and you’d better brush up on your Joust.10

Will I Hit It Big?
So, why are you trying to write games? The casual gaming market is fiercely
competitive. We recommend that you leave your desires to get rich at the
door. Game development is a rewarding process of creative action and collab-
oration. Enjoy it as you move through it.

9. http://en.wikipedia.org/wiki/Massively_multiplayer_online_role-playing_game
10. http://en.wikipedia.org/wiki/Joust_(video_game)

Chapter 9. Where to Go Next • 182

report erratum • discuss

http://en.wikipedia.org/wiki/Massively_multiplayer_online_role-playing_game
http://en.wikipedia.org/wiki/Joust_(video_game)
http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

But if you really do want to try to make money building games, then think
about another related creative industry: music. Millions of musicians are very
skilled at what they do and perform regularly. They live on meager incomes,
but they love what they do.

The most successful indie musicians know how to build a fan base. Folk
wisdom in the indie crowd often says that all you need is 1,000 devoted fans
to make an average living. These aren’t just fans who say, "Oh, that’s nice."
These are the fans who go to all your shows when you’re anywhere in a 75-mile
radius. These are the fans who buy every piece of merchandise, from T-shirts
to socks. They want the LP. They want to see you succeed.

How do you build a fan base like that? Ah, now you’re asking the right ques-
tion! If you want to make a living at building games, you need to think like
an artist who balances personal creative vision with the whims of fans. It’s
hard work.

Bootsy Collins, one of the founders of funk music, told a story about his
bandleader, James Brown, who once said that making music is 70 percent
about the business and 30 percent about the music. We’d say the same thing
about game development. If you want to succeed, plan to spend 30 percent
of your time actually building and the other 70 percent working on the busi-
ness side, promotion, shoulder-rubbing, and finances.

There’s no guarantee of success, but focusing on the parts that generate buzz
(making friends, building fans) increases your exposure. No one cares about
the genius masterpiece crafted on a deserted island. Get your game out in
front of people. Build up the momentum of a crowd so heavy with desire to
see you win that they push you through the hardest of times.

Don’t Forget to Play!
Sprite Kit is a great, ready-to-use framework for taking the ideas in your head
and moving them around on iOS devices in two dimensions. We hope this
little book helped you wrap your mind around how to apply it.

Don’t just stop with this specific technical part of game development. Keep
going and explore the world of game design and game theory. There’s so much
to learn as humanity grows and explores what technology can do to enrich
society and give everyone opportunities. This is an unprecedented time when
you have the opportunity to build amazing games on the small devices that
live in our pockets.

Above all, have fun and don’t forget to play!

report erratum • discuss

Don’t Forget to Play! • 183

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Bibliography
[AD12] Chris Adamson and Bill Dudney. iOS SDK Development. The Pragmatic

Bookshelf, Raleigh, NC and Dallas, TX, 2012.

[Cli12] Ernest Cline. Ready Player One: A Novel. Broadway Books, New York, NY,
2012.

[Ful14] Tracy Fullerton. Game Design Workshop: A Playcentric Approach to Creating
Innovative Games. CRC Press, Boca Raton, FL, Third, 2014.

[McG11] Jane McGonigal. Reality Is Broken: Why Games Make Us Better and How
They Can Change the World. Penguin, New York, NY, 2011.

[Rog10] Scott Rogers. Level Up!: The Guide to Great Video Game Design. John Wiley
& Sons, New York, NY, 2010.

[Sch08] Jesse Schell. The Art of Game Design: A Book of Lenses. CRC Press, Boca
Raton, FL, 2008.

[Ste14] Daniel H. Steinberg. iOS Storyboards: An Animated Tour for iPhone and
iPad Developers. Dim Sum Thinking, http://dimsumthinking.com/, 2014.

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT, Second, 2001.

[Won13] Dona M. Wong. The Wall Street Journal Guide to Information Graphics: The
Dos and Don’ts of Presenting Data, Facts, and Figures. W. W. Norton &
Company, New York, NY, 2013.

report erratum • discuss

http://pragprog.com/titles/pssprite/errata/add
http://forums.pragprog.com/forums/pssprite

Index
SYMBOLS
& operator, 153

<< operator, 147

^= syntax, 165

| operator, 153

DIGITS
32-bit integers, bitmasks,

146, 164

3D transforms, scrolling text
cutscene, 67

A
acceleration

gravity, 102
particles, 44, 171

action keys
game timer, 87–88
hint animation, 158
power-down action, 35
power-ups, 35, 92, 94
removing actions, 88, 94

actions
about, 16
explosion effects, 47–51
hiding, 159
moving on a path, 23–28
parallax star field, 38, 40
plotting random trajecto-

ries, 17–21
simple motion, 13–23
sliding and zooming, 159
sound effects, 28–32
weapon power-ups, 32–

36

Adamson, Chris, xiii

-addJoint: method, 118

-addPoints: method
bonus spinner, 168
bumpers and targets,

142–143, 151
creating heads-up dis-

play, 85

adventure game sample code,
154, 180

affectedByGravityProperty, 106

aligning heads-up display
(HUD), 80–85, 91

allContactedBodies property, 112

alpha
game over sequence, 74
particles, 39, 44
power-up timer, 91, 94–

95

anchor points
scenes, 132
table overlay, 173

anchors
paddle creation, 127–134
paddle flipping, 134–136

and operator, bitmasks, 146,
153

angle, particle, 44, 170

Angry Birds, 179

angular dampening, 125,
131, 164, 166

angular velocity
bonus spinner, 166
resetting ball, 126

+animateWithTextures:timePerFrame:
method, 157

animations
cueing player with frame-

based, 155–161
flashing colors, 153

game over sequence, 72–
76

hiding, 159
menu, 62–64
particle editor, 42

app definition statement, 179

Apple
actions documentation,

36
adventure game sample

code, 154, 180
app definition statement,

179
Game Center, 95
iOS development docu-

mentation, xiii
NS_ENUM documentation,

129
plist documentation, 140
retain cycles documenta-

tion, 38
sound file format docu-

mentation, 32
Sprite Kit documentation,

180
texture atlases documen-

tation, 163
updating physics bodies

documentation, 113

-application:didFinishLaunchingWithOp-
tions: method, 175

-applyImpulse: method, 119

arc4random_uniform() method,
18, 25

The Art of Game Design: A
Book of Lenses, 181

asOffset variable, 26

assigning physics bodies, 101

asteroids
collision detection, 21–23
drop probabilities, 23, 33
plotting random trajecto-

ries, 17–21
setup, 13, 17–21
simple motion actions,

13–17

atan2() function, 11, 171

atlases, texture, 161–163

audience and game develop-
ment, 178

auto-rotation, locking out,
174

B
background color

bouncing ball, 100
scrolling table, 123
scrolling text cutscene,

66, 69
spaceship, 3

backstory, see cutscenes

-ballBody:didContact:withBody:
method

bonus spinner, 167
controlling rebound, 153
smoke effect, 170
sound effects, 150

ballPhysicsBody:didContactPhysics-
Body: method, 149

balls
adding to table node, 123
bouncing against another

body, 103–110
collision detection, 144–

154
controlling rebound, 152–

154
creating bouncing, 99–

103
fixing joints, 117–120
launching, 115–120
resetting, 126
separating responsibility,

107–110

bars
paddle creation, 127–134
paddle flipping, 134–136

Bézier curves, 25–28, 121

birthrate, particle, 43, 47

bit shift, 147

bitmasks, 144–148, 150,
153, 164

bitwise operations, 146, 153,
165

blend mode parameter, 44

bodies, physics, see physics
bodies

bodyA property, collision detec-
tion, 145, 149

bodyB property, collision detec-
tion, 145, 149

+bodyWithCircleOfRadius: method,
101

+bodyWithEdgeChainFromPath:
method, 122

bonus spinner, 163–168

bouncing, see also restitution
against other bodies,

103–110
controlling rebound, 152–

154
creating, 99–103

boundaries
setting table with shape

nodes, 121
texture atlases, 161

Brown, James, 183

-buildEnemyShipMovementPath
method, 26

+bumperWithSize: method, 148

bumpers
collision detection, 144–

154, 168–171
controlling rebound, 152–

154
creating, 136
flashing, 154
increasing bounce with

restitution, 107, 137
loading from layout file,

136–141
smoke effect, 168–171
sound effects, 150

C
caching

number formatters, 86
particle emitter files, 50
sound effects, 30

-calculateAccumulatedFrame
method, 84

calculating
accumulated frame, 84
distance pulled, 119
distance to travel per

frame, 10–11
emission angle, 171
floating-point values, 10
speed, 152
table frame, 125

time delta, 9
timestamp, 87

camera panning for Physics
Ball, 120, 124

cameraY value, 125

capPhysicsBody:atSpeed: method,
153

Cartesian coordinates, 16

categoryBitMask property, 146,
164

centering
nodes in heads-up dis-

play (HUD) layout, 80,
91

with position property, 3

CGAffineTransform, 4

CGFloat, 129, 140

CGPathRef, 26–27, 122

CGPointMake(), 140

CGRectInset(), 24

CGRectIntersectsRect(), 24

CGSizeZero, 84

CGVector, 102, 119

character development, 178

-checkCollisions method
explosion effects, 50
implementing, 21
sound effects, 31

child nodes
grouping in heads-up

display (HUD), 78, 80–
85, 143

scrolling table, 123
searching, 7, 92
searching grandchild

nodes, 86, 123
sliding and zooming, 159
sprite nodes as, 4
thuster fire as, 47
zPosition property, 80

clamping
camera, 125
plunger, 115

class prefix, 2

cleanup, separating responsi-
bility, 107–110

Cline, Ernest, 182

Cocoa, 5

Cocoa Touch, 5

code
converting drawings into,

28

Index • 188

downloading, xii
sample adventure game,

154, 180

cognitive complexity, xii

cognitive impairment, 181

Collins, Bootsy, 183

collision detection, see al-
so restitution

between bodies, 144–154
controlling rebound, 152–

154
explosion effects, 50
frame-based, 21–23
ghosts, 164
scoring points, 89, 148–

152, 163–168
smoke effect, 168–171
sound effects, 28–32,

148–152
without rectangles, 24

collisionBitMask property, 164

collisionImpulse property, 168,
171

color
bouncing ball, 100
flashing, 153
heads-up display (HUD),

81
particles, 44
scrolling table, 123
scrolling text cutscene,

66, 69
spaceship for Space Run,

3

color blend
flashing animation, 154
particles, 44

color ramp parameter, 44

-colorizeWithColor:colorBlendFactor:du-
ration: method, 154

-colorizeWithColorBlendFactor:duration
method, 154

configuration data, high score
display, 96

contact delegates, collision
detection, 144–148

contactPoint property, 168, 171

contactTestBitMask property,
145, 164

container nodes, 109

-containsObject: method, 112

-convertPoint:toNode: method, 118

converting
coordinates, 7, 11, 118,

171

degrees into radians, 141
drawings into code, 28

coordinates
bouncing ball creation,

101
calculating distance to

travel per frame, 11
converting, 7, 11, 118,

171
fixed joints, 118
heads-up display (HUD)

layout, 84, 92
motion actions, 16
plunger, 113–114
smoke effect, 171
thruster fire, 47
UIKit, 16

-copy method, 50

Core Animation, 66

Core Graphics, 27, 122

countdown timers, see timers

-createPinJointInWorld method,
132–133

CSizeMake(), 140

cueing player with anima-
tions, 155–161

currentTime parameter
calculating time delta, 10
smoothing motion and, 9
timing torpedo launch,

15

curves, Bézier, see Bézier
curves

cutscenes
creating, 64–70
defined, 53
skipping, 65, 70–72

D
dampening spin, 125, 131,

164, 166

data visualization resources,
182

debugging, see errors

decimal style, 86–87

degrees, converting into radi-
ans, 141

delays
explosion effects, 48
game over sequence, 74
resetting ball, 126

delegates
about, 144

collision detection, 144–
148

hiding status bar, 174–
175

demoView property, 64

depth
3D transforms, 67
textured table overlay,

171–174

designated initializers, 3

deviantart.com, 179

dice variable, 33

dictionaries, loading from
layout file, 139–141, 167

-didBeginContact: method, 145,
148

-didMoveToView: method, 66

-didSimulatePhysics method
paddle flipping, 136
plunger, 113, 124
resetting ball, 126

-dieOutInDuration: method, 47,
171

difficulty level, menu, 54, 59–
62

difficultyChooser property, 59

direction
gravity, 102
paddle flipping, 134
particle effects, 48

dispatch point, creating
single, 17

distance
calculating for plunger

control, 119
calculating travel per

frame, 10–11

distanceLeft variable, 10

distancePulled variable, 119

distanceToTravel variable, 11

documentation, see also re-
sources

actions, 36
iOS development, xiii
NS_ENUM, 129
plists, 140
retain cycles, 38
sound file formats, 32
Sprite Kit, 180
texture atlases, 163
updating physics bodies,

113

dragging and dropping from
Xcode, 13

Index • 189

drawing scenes, 3–6

drawings, converting into
code, 28

Dribbble.com, 179

-dropAsteroid method, 18–19

-dropEnemyShip method, 25

-dropPowerup method, 33

-dropThing method, 23, 33, 61

Dudney, Bill, xiii

duration
color blend, 154
explosion effects, 47, 51
movement along a path,

27
parallax star field, 40
particles, 43, 47, 51, 171
random, 18, 20, 40
smoke effect, 171
weapons power-down, 35

dynamic property, immovable
objects, 106, 122, 131, 137

E
Easy mode menu, 54, 59–62

edge bodies, scrolling table
for Physics Ball, 120–126

elapsedGameTimer key, 87–88

elapsedGroup node, 82

elapsedTime property, 87

elapsedValue label, 87

elastic collisions, 106, 176,
see also restitution

else clause
paddle flipping, 135
probabilities and

weapons power-ups, 33

emissionAngle, 171

emitter nodes, see also parti-
cle emitters

particle editor, 42
tree structure, 5

end points, random, 18

end sequence, resetting
menu, 57–59, 72–76

-endGame method
game timer, 88
high score display, 96–97
menu reset, 57, 72–76
power-up timer, 94

endGameCallback property, 57

-endScene method, 71

endX variable, 19

endY variable, 19

enemy ships, moving on a
path, 23–28

-enumerateChildNodesWithName:us-
ingBlock: method, 22

enumerated types, 129, 147

errors
adding nodes, 50
inserting nodes into

scenes, 83
nil blocks, 58
physics bodies, 106
segues, 60
showFPS and showsNodeCount

properties, 6

exclusive or (^=) operator,
165

explosion effects
sound effects, 28–32
spewing particles, 47–51

extensions, loading particle
emitter files and, 46

F
fadeIn action, 159

fadeOut action, 159

fading
explosion effects, 51
flashing color animation,

154
game over sequence, 74,

159
hint animation, 158–159
power-up timer, 93, 95
scrolling text cutscene,

67
skipping cutscenes, 72

falling rate and gravity, 101–
102

fan base, 183

feedback and game develop-
ment, 178

finger controls
paddle flipping in Physics

Ball, 134–136
plunger touch controls in

Physics Ball, 110–120
spaceship in Space Run

game, 6–11

finished flag, skipping
cutscenes, 71

firing rate
powering down, 35–36
tracking, 32

fixing
joints, 117–120
physics bodies, 105

Flappy Bird, 179

flashing animation, 153

flickering effect, 44

flipped y-axis, 16

flippers, see paddles

flipping paddles, 128, 134–
136

-floatValue method, 140

floating-point values
bonus spinner, 167
bumpers, 140
spaceship movement, 10

Flubber, 107

-followPath:asOffset:orientToPath:du-
ration method, 26

-followPositionOfBall: method,
121, 124

fonts
heads-up display (HUD),

81
SKLabelNode, 73

forceToApply variable, 119

formatting objects
about, 86
scores, 86, 97, 143
timers, 87, 93

frame intersection, 21

frame rate
hint animations, 157
particle emitters, 51
table overlay, 173

frame-based animation, 155–
161

frame-based collision detec-
tion, 21–24

frames
calculating distance trav-

eled, 10–11
heads-up display (HUD)

layout, 84
order of operations, 113,

136
table node and camera

panning, 125
update loop, 8, 11

friction, spin and, 125, 131

Fullerton, Tracy, 181

fun and game development,
177–178, 181–183

funnel effect, dropping ob-
jects, 18–19

Index • 190

G
Game Center, 95

Game Design Workshop: A
Playcentric Approach to
Creating Innovative Games,
181

game over sequence, resetting
menu, 57–59, 72–76

game view controller and
menu, 56–59

games, see also Physics Ball
game; Space Run game

cognitive complexity, xii
cognitive impairment,

181
development process,

177–180
development resources,

180–182
sample adventure game,

154, 180
testing, 174

GarageBand, 179

gesture recognizers
game over sequence, 74–

76
skipping cutscenes, 65,

70–72

ghosts, 164

gliding finger controls, 7–11

goals and game development,
178, 182

-grabWithTouch: method, 111

-grabWithTouch:holdingBall:inWorld:
method, 117

gradient layer mask, 67

grandchildren nodes, search-
ing, 86, 123

graphic artists, 179

graphics
game development and,

179
loading, 161
performance and, 161

gravity
bonus spinner, 164
bouncing balls, 101
default, 101–102
paddles, 131
plungers, 104–106
removing, 105
scrolling table, 123
smoke effect, 171

+group: action, 20

groupSize variable, 84

grouping
actions, 20, 159
nodes in heads-up dis-

play (HUD), 78, 80–85,
143

guard statement, hint anima-
tion, 158

H
Hard mode

menu, 54, 59–62
scoring, 89

heads-up display (HUD)
about, 77
layout, 77–85, 91, 141–

144, 173
power-ups countdown,

89–95
table overlay, 173
updating, 85–89, 143
uses, 97

height
asteroids, 19
bumpers, 140
paddles, 129

Hello, World template, 2

hideAction key, 158–159

-hideHint method, 161

hiding
hint animation, 159
power-up timer, 91, 95
status bar, 174–175

high score display, 95–97

high score label, 96

hint animation, 155–161

horizontal alignment, heads-
up display (HUD), 81–83,
91

I
IBOutlet, 96

id casting shortcut, 111

if statement, collision detec-
tion, 149

immovable objects, 106, 122,
131, 137

infinite runner games, 176,
178, see also Space Run
game

Info.plist file, hiding status bar,
174

informatics resources, 182

-initWithSize: method, 3

initializers, 3

-insertSubview:atIndex: method,
64

instructions, game over se-
quence, 74

integers
bitmasks, 146, 164
random, 25

Interface Builder, basic menu
building, 54–64

intersections
checking physics bodies,

112
frame, 21

-intersectsNode: method, 22

iOS
coordinates and develop-

ment, 16
resources, xiii

iOS SDK Development, xiii, 67

iOS Storyboards: An Animated
Tour for iPhone and iPad
Developers, 54

-isInContactWithBall: method
hint animation, 161
plunger touch controls,

111

J
jointPoint variable, 118

joints
fixing, 117–120
pin, 131–134

Joust, 182

K
keys, see action keys

L
label nodes

aligning within groups,
80–85

heads-up display (HUD),
77–85, 143

high score, 96
power-up timer, 90
text limitations, 73
tree structure, 5

landscape mode, locking out,
174

lastShotFireTime property, 15

lastUpdateTime property, 9

-launchStar method, 39

launching
ball, 115–120

Index • 191

stars in parallax field, 39
torpedoes, 14–17

layout, heads-up display
(HUD), 77–85, 91, 141–
144, 173

layout file
loading bonus spinner

from, 166
loading bumpers and tar-

gets from, 136–141

-layoutForScene method, 83–84,
91, 142–143

-letGoAndLaunchBall method, 115

-letGoAndLaunchBallInWorld:
method, 117

level of difficulty, see difficulty
level

Level Up!: The Guide to Great
Video Game Design, 181

lifetime, particle, 43, 47

line-wrapping text, 66, 73

linear velocity, resetting ball,
126

-loadLayoutNamed: method, 139–
140, 166

loading
bonus spinner, 166
bumpers and targets

from layout file, 136–
141

graphics, 161
particle emitter files, 45–

47, 50
sounds, 30

-locationInNode: method, 7, 113

locking orientation, 174

logical-and (&) operator, 153

logical-or (|) operator, 153

loops
frame update, 8, 11
frame-based collision de-

tection, 21–22
loading targets and

bumpers from layout
file, 141

music, 179
paddle flipping touch

controls, 135
private update, 38, 41, 87

M
masks, gradient layer, 67

mass, paddle bar, 131

maxSpeed variable, 152

maxX variable, 19

maximumFractionDigits, 88

McGonigal, Jane, 180

Meetup.com, 179

memory
avoiding leaks with weak-

self setup, 38
graphics, 161
loading particle emitter

files, 45
removing nodes, 17

menu view controller
basic menu setup, 55–59
difficulty menu, 59
high score display, 96

menus
basic for Space Run

game, 54–64
high score display, 96
need for, 53
resetting, 57–59, 72–76
star field animation, 62–

64

minimumFractionDigits, 88

MMORPG, 182

model-view-controller
paradigm, 5

models, nodes as, 5, 85

motion actions
moving on a path, 23–28
plotting random trajecto-

ries, 17–21
simple, 13–23
sound effects, 28–32
weapon power-ups, 32–

36

move action
asteroids, 20
parallax star field, 40

-moveByX:y:duration: method, 16

-moveShipTowardPoint:byTimeDelta:
method, 10

movement
edge bodies, 122
finger controls for Space

Run game, 6–11
limiting range of, 132
moving on a path, 23–28
paddle flipping, 134–136
parallax star field, 40
plotting random trajecto-

ries, 17–21
plunger touch controls in

Physics Ball, 110–120
smoothing, 9–11

music
industry compared to

game development, 183
resources, 179

MyScene, drawing scenes, 3–6

N
name property, setting, 7

naming
class prefix, 2
nodes, 7, 20, 22
object category files, 45
segues, 60

narratives, 178

navigation controller, story-
boards, 55

navigation stack, popping, 58

newY value, 114

nil blocks, 58

+node method, 157

nodes, see also motion ac-
tions

about, 5
as models and views, 5,

85
assigning physics bodies,

101
coordinates, 7
copying vs. adding, 50
custom for heads-up dis-

play (HUD), 77–85,
141–144

frame-based collision de-
tection, 21–23

group, 78, 80–85, 143
memory use, 17
moving on a path, 23–28
naming, 7, 20, 22
private update loops, 38,

41, 87
removing, 17, 20, 40, 47
reusing, 66
searching, 7, 86, 92, 123
separating responsibility,

107–111
shape, 121
spinning, 20
tree structure, 5

NS_ENUM, 129

NS_OPTIONS, 147

NSAssert() method
nil blocks, 58
paddles, 132
scene access, 83

Index • 192

scrolling text cutscene,
68

segues, 60

NSDictionary dictionaryWithContentsO-
fURL: method, 139

NSKeyedArchiver, 45

NSKeyedUnarchiver, 46

NSTimeInterval, 9
NSUserDefaults, 95

number formatter
scores, 86, 97, 143
timers, 87, 93

O
object category files, naming,

45

Objective-C resources, 45

obstacles, see also asteroids;
bumpers; targets

difficulty level, 62
explosion effects, 47–51
frame-based collision de-

tection, 21–23
moving on a path, 23–28
sound effects, 28–32

offsetting, path point values,
26

one-shot sound effects, 28–32

opacity, see also transparency
particles, 44
views, 62, 64

OpenGL texture atlases, 161

opening scenes
creating, 64–70
need for, 53
skipping, 70–72
transitions, 69

or operator, bitmasks, 153,
165

order of operations, physics
simulations, 113, 136

orientToPath: variable, 26

orientation
heads-up display (HUD)

layout, 84
locking, 174
to path, 26

overlay, textured table, 171–
174

P
packed effect, particles, 44

+paddleForSide: method, 129

paddleSide property, 129

paddles
creation, 127–134
flipping, 128, 134–136

PaintCode, creating CGPathRefs,
27–29, 122

parallax star field
creating, 37–41
menu underlay, 62–64
scrolling text cutscene,

66

parent nodes
grouping in heads-up

display (HUD), 78, 80–
85

scrolling table, 123
searching, 7, 86, 92, 123
sliding and zooming, 159

particle emitters
about, 41
birthrate, 43, 47
explosion effects, 47–51
loading files, 45–47, 50
parallax field of stars, 37–

41
smoke effect, 168–171
templates, 42, 169
thruster fire, 41–47
Xcode particle editor, 41–

47

particle texture parameter, 42

particleSpeed, 171

paths
layout file, 139
movement duration, 27
moving on, 23–28
offsetting point values, 26
orienting to, 26
shape nodes, 121

pausing sound effects, 30,
176, see also delays

performance
graphics, 161
hint animation, 161
particle emitters, 38, 45,

51
removing nodes, 17
removing views, 64
texture atlases, 161–163

photon torpedoes, see torpe-
does

Photoshop PSD, 28

physics, see also collision de-
tection

activating physics world,
101

bitmasks, 144–148

bonus spinner, 164
bouncing against bodies,

103–110
bouncing balls creation,

99–103
controlling rebound, 152–

154
fixing joints, 117–120
paddle creation, 127–134
paddle flipping, 128,

134–136
plunger touch controls,

110–120
resetting ball, 126
resources, 154
scrolling table, 120–126
separating responsibility,

107–111
speed and simulations,

116

Physics Ball game, see al-
so collision detection

about, ix–xi, 99
bonus mode, 163–168
bouncing ball against an-

other body, 103–110
bouncing ball creation,

99–103
controlling rebound, 152–

154
controlling spin, 125,

131, 164, 166
heads-up display (HUD),

141–144, 173
hiding status bar, 174–

175
hint animation, 155–161
loading bumpers and tar-

gets, 136–141
locking, 174
paddle creation, 127–134
paddle flipping, 128,

134–136
paper prototype, x
plunger touch controls,

110–120
resetting ball, 126
scoring points, 144–154,

163–168
scrolling table, 120–126
smoke effect, 168–171
sound effects, 148–152
table overlay, 171–174
texture atlases, 161–163

physics bodies
bitmasks, 145–148
bouncing ball against,

103–110

Index • 193

bouncing ball creation,
100–103

collision detection be-
tween, 144–148

controlling rebound, 152–
154

creating, 101
debugging, 106
edge bodies, 120–126
fixing, 105
fixing joints, 117–120
intersections, 112
paddle flipping, 134
paddles, 130
resetting ball, 126
restitution, 106, 108,

131, 137, 152–154
updating, 113

pin joints, paddle creation,
131–134

pinball game, see Physics Ball
game

pixels, sizing nodes, 4

Play button, Space Run basic
menu, 54, 56

-playPuffForContact:withVelocity:
method, 170

-playRandomBumperSound method,
150

-playRandomTargetSound method,
150

-playSoundFileName:waitForComple-
tion: method, 30

player difficulty, see difficulty
level

plists
hiding status bar, 174–

175
high scores, 95
loading bonus spinner,

166
loading bumpers and tar-

gets from layout file,
136, 139–141

plotting random trajectories,
17–21

plungers
adding to table node, 123
bouncing ball against,

103–110
checking intersection,

112
creating, 103
cueing player with hint

animation, 155–161
fixing joints, 117–120

separating responsibility,
107–111

snapping and letting go,
115–120

touch controls, 110–120

point values
moving plunger, 114
offsetting path, 26
targets, 138, 141, 150

point.y value, 114

pointValue property, 138, 141,
150

-popViewControllerAnimated:
method, 58

portrait mode, locking, 174

position property
bumpers, 140
camera, 125
explosion effects, 51
heads-up display (HUD)

layout, 84, 92
hint animation, 160
paddles, 130
spaceship, 3, 6–11
table overlay, 173
thruster fire, 47

position range, particle, 44

power-downs, 35–36

power-ups
difficulty level, 62
heads-up display (HUD),

89–95
implementing, 32–36

preloading sounds, 30

-prepareForSegue:sender: method,
60

-presentScene:transition: method,
69

private update loops, 38, 41,
87

probabilities
asteroid drops, 23
weapons power-up, 33

professionalism, 179

property lists, see plists

prototyping
Physics Ball game, x
Space Run game, viii
using, 177

+pullHint method, 157

pulsing effect, power-up
timer, 94

Pythagorean theorem, 10

Q
quarterX variable, 19

R
radians, converting degrees

to, 141

randomness
alpha to vary transparen-

cy, 39
duration, 18, 20, 40
enemy ships, 23
obstacles, 23
parallax star field, 39
particle emitters, 43, 51
size, 19
sound effects, 150
starting points, 18, 25,

33, 39
trajectories, 17–21
weapons power-ups, 33

Ready Player One, 182

Reality Is Broken: Why Games
Make Us Better and How
They Change the World, 180

rebound, controlling, 152–154

rectangular frame intersec-
tion, 22, 24

rectangular physics bodies,
plunger as, 104

releasing plunger, 115–120

-removeActionForKey: method,
36, 94

removeFromParent action
about, 17
asteroids, 20
enemy ships, 27
stars, 40
torpedoes, 17

-removeJoint: method, 119

removing
actions with keys, 35,

88, 92, 94, 158
asteroids, 20
enemy ships, 27
fixed joints, 119
gesture recognizers, 76
gravity, 105
nodes, 17, 20, 40, 47
power-ups, 36
slanted text from view, 68
stars, 40
torpedoes, 17
views, 64

+repeatActionForever: method,
20, 157

Index • 194

resetting
ball in Physics Ball, 126
menu, 57–59, 72–76

resources, see also documen-
tation

bitmasks, 153
code for book, xii
Core Animation, 67
game development, 179–

182
graphics, 179, 182
iOS development, xiii
Objective C, 45
physics, 154
sound effects, 179
storyboards, xiii, 54
UIKit, 67
Xcode, xiii

responsibility, separating,
107–111

restarting power-up timer, 92

restitution
balls, 106, 108, 152–154
bumpers, 137
controlling rebound, 152–

154
paddle, 131
plunger, 109
targets, 138, 152–154

retain cycles, 38, 93

reusing nodes, 66

Rogers, Scott, 181

root view controller, story-
boards, 55

+rotateByAngle:duration: action,
20

rotation
asteroids, 20
bumpers, 140
locking out, 174
particles, 44
screen, 63
texture atlases, 161

-runAction: method, 16, 31

-runAction:withKey: method, 36

-runBlock: action, 35

S
scaling

CGAffineTransform, 4
flashing color animation,

154
game over sequence, 74
locking out auto-rotation,

174
menu underlay, 63

particles, 44
pulsing effect, 94

scene graphs
searching, 7, 86, 92, 123
tree structure, 5

sceneEndCallback, 65, 68, 72

sceneSize variable, 84

scenes
access, 83
anchor points, 132
coordinates, 7, 118
drawing, 3–6
heads-up display (HUD),

143
opening, 53, 64–72
size and label layout, 84,

92
width, 19

Schell, Jesse, 181

scoreValue label, 86, 143

scoring
bonus points, 163–168
collision detection in

Physics Ball, 148–152,
163–168

heads-up display (HUD)
layout, 77–85, 141–144

heads-up display (HUD)
power-ups countdown,
89–95

heads-up display (HUD)
updating, 85–89, 143

high score display, 95–97

screen
coordinates, 7
rotation, 63

scrolling
table for Physics Ball,

120–126
text cutscene, 64–70

searching
child nodes, 7, 92
grandchildren nodes, 86,

123
scene graphs, 7

segues, 57, 60

self variable, retain cycles, 38

self.jointToBall property, 118

self.plungerTouch property, 111,
113–114

self.scene property, 83

self.shootSound property, 32

self.timeFormatter property, 93

separating, responsibility,
107–111

-setUpScene method
bouncing ball creation,

100
bouncing physics bodies,

103
contact delegates, 145
paddles, 131
scrolling table, 123

shape nodes, 121

shipFireRate property, 33, 35

shipSpeed variable, 10

shipTouch property
gliding movement, 8
timing torpedo launch,

14

-shoot method, 15, 17, 33

shooting
asteroids, 13–23
explosion effects, 47–51
sound effects, 28–32

shootingstar image texture, 39

shouldEnableLimits property, 132

showAction key, hint animation,
158

showFPS property, 6

-showHint method, 158, 161

-showPowerupTimer: method, 90–
95

showsNodeCount property, 6

showsPhysics property, 106

sideSize variable, 19

simulators, testing with, 173

single-finger games, viii, 14,
176, see also Space Run
game

size
asteroids, 19
bumpers, 137, 140
menu underlay, 63
plunger in Physics Ball

game, 108
pulsing effect, 94
scenes and label layout,

84, 92
spaceship for Space Run,

4
sprite nodes, 4, 39
stars and star field, 39
table overlay, 173
targets, 138

SKColor, 3
SKCropNode, 180

SKEffectNode, 180

Index • 195

SKEmitterNode
loading particle emitter

files, 45–47, 50
particle editor, 42
smoke effect, 169
uses, 51

skeuomorphism, 171

skipping opening scene, 70–
72

SKLabelNode, 73, 81, see also la-
bel nodes

SKNode, 4, 78, see also nodes

SKPhysicsContact, 168, 171

*.sks files
explosion effects, 48–51
loading, 45–47

SKScene
about, 3
scrolling text cutscene,

64–70
updating, 8

SKShapeNode, 121

SKSpriteNode, 4, see also sprite
nodes

SKTexture, 157, 161, 163

SKTransition, 69

SKView
debugging physics bod-

ies, 106
menu underlay, 62
project setup, 2
transitions, 69

slanted text-crawl, 66, 68

slanting table for Physics Ball,
102

slide action, 159

smoke effect, 168–171

smoothing movement, 9–11

snapping plunger, 115–120

sound effects
GarageBand, 179
Physics Ball game, 148–

152
Space Run game, 28–32

sound files, adding, 29

sound-file types, 30

Space Run game
about, viii–ix
asteroid and torpedo set-

up, 13–21
basic menu, 54–64
collision detection, 21–23
cutscenes, 64–72
explosion effects, 47–51

features list, ix
finger control setup, 6–11
game over sequence, 72–

76
high score display, 95–97
HUD node layout, 77–85
HUD power-ups count-

down, 89–95
HUD updating, 85–89
initial build, 1–11
moving enemy ships on a

path, 23–28
paper prototype, viii
parallax field of stars, 37–

41
particle effects, 37–51
showing star field under-

neath UIKit, 62–64
sound effects, 28–32
thruster fire with Xcode

particle editor, 41–47
weapon power-ups, 32–

36

spaceship
collision detection, 21–23
creating, 3
explosion effects, 47–51
finger controls, 6–11
sizing, 4
sound effects, 28–32
thruster fire effect, 41–47

speed
calculating, 152
capping, 152–154
controlling rebound, 152–

154
gravity, 102
parallax star field, 40
particles, 44, 171
physics simulations, 116
slanted text-crawl, 66
weapon power-ups, 32–

36

-spin method, 165

spinner, bonus, 163–168

spinning
asteroids, 20
dampening, 125, 131,

164, 166
manual, 165
nodes, 20
paddle flipping, 128,

134–136
particles, 44

spraying effects, 51

sprite nodes, see also nodes
creating, 3, 137

cueing player with anima-
tions, 155–161

defined, 4
sizing, 4, 39
texture atlases, 163
tree structure, 5

-spriteNodeWithImageNamed:
method, 137

+standardUserDefaults class, 96

star field, parallax
creating, 37–41
menu underlay, 62–64
scrolling text cutscene,

66

Star Wars scrolling text
cutscene, 64–70

“Start Developing iOS Applica-
tions Today”, xiii

-startGame method, 85, 87

startTime variable, 87

startX variable, 19

startY variable, 19

starting distance, particle, 44

starting points, random
asteroids, 18
enemy ships, 25
generating, 18, 25, 39
star field, 39
weapons power-ups, 33

status bar, hiding, 174–175

Steinberg, Daniel, xiii, 54

stick, see plungers

stillSpinning property, 166, 168

stopping
game timer, 88
power-up timer, 93

Storyboards, xiii

storyboards
about, 62
customizing, 54–57
difficulty menu, 59
high score display, 96
resources, xiii, 54
segues, 60

storyline, game, 178

strong properties, sound ef-
fects, 30

T
table for Physics Ball game

loading bonus spinner,
166

loading bumpers and tar-
gets, 138–141

scrolling, 120–126

Index • 196

slanting, 102
smoke effect, 171
textured overlay, 171–

174

+table method, 121, 172

-tapped method, 75

taps, see touch events

+targetWithRadius: method, 148

targets
collision detection, 144–

154, 168–171
controlling rebound, 152–

154
creating, 137
flashing, 154
increasing bounce with

restitution, 107, 138
loading from layout file,

136–141
smoke effect, 168–171
sound effects, 150

technical requirements, xiii

templates
explosion effects, 50
particle, 42, 169
setting up Sprite Kit

projects, 2
Space Run game, 2

testing, simulators vs. de-
vices, 173

text
line wrapping, 66, 73
scrolling text cutscene,

64–70
SKLabelNode, 73

texture atlases, 161–163

texture, particle, 42

textured images, see sprite
nodes

textured table overlay, 171–
174

thruster fire effect, 41–47

time delta
calculating, 9
calculating distance to

travel per frame, 11
need for, 15

timeFormatter, 87, 93

timers
heads-up display (HUD)

layout, 77–85
heads-up display (HUD)

power-ups countdown,
89–95

heads-up display (HUD)
updating, 85, 87–89

power-ups, 32–36, 89–95

timestamp, calculating, 87

timing
explosion effects, 48
torpedo launch, 14–17

title label
aligning within groups,

80–85
heads-up display (HUD),

77–85, 143
power-up timer, 90
pulsing effect, 94

torpedoes
collision detection, 21–23
power-ups, 32–36
setup, 13–17
simple motion actions,

13–17
sound effects, 31
timing launch, 14–17

torque, paddle flipping, 128,
134–136

touch events
paddle flipping, 134–136
plunger touch controls in

Physics Ball, 110–120
spaceship in Space Run

game setup, 6–11

-touchesBegan:withEvent: method
paddle flipping, 135
plunger touch controls,

111, 119
spaceship, 7–8

-touchesEnded:withEvent: method,
115–120

-touchesMoved:withEvent: method,
7

trajectories, plotting random,
17–21

transforms, 4, 67

transitions, opening scenes,
69

-translateToTouch: method, 114

transparency
particles, 39, 44
power-up timer, 91, 94–

95
textured table overlay,

171–174

travel, calculating distance
per frame, 10–11

travelAndRemove action, 20

tree structure, nodes, 5

trigonometry
calculating distance to

travel per frame, 10–11
calculating emission an-

gle, 171
controlling rebound, 152

U
UIBezierPath class, 28, 121

UIKit
basic menu with Interface

Builder, 54–64
coordinates, 16
resources, 67
scrolling text cutscene,

66
star field underneath, 62–

64

uint32_t, bitmasks, 146

UISegmentedControl, difficulty
menu, 59

UITapGestureRecognizer, skipping
cutscenes, 65, 70–72

UITextView, 65

UITouch
calculating time delta, 10
weak property, 8

underlay, star field, 62–64

-update: method
hint animation, 160
paddle flipping, 135
SKScene objects, 8

updating
frame loops, 8, 11
game timer for Space

Run, 87
heads-up display (HUD),

85–89, 143
paddle flipping, 135
parallax star field, 38, 41
physics bodies, 113
SKNode objects, 38, 41
SKScene objects, 8

user defaults, high scores, 95

V
value label

aligning within groups,
80–85

heads-up display (HUD),
77–85, 143

power-up timer, 90

vectors, gravity, 102, 119

velocity
bonus spinner, 166

Index • 197

controlling rebound, 152–
154

resetting ball, 126
smoke effect, 170

vertical alignment, heads-up
display (HUD), 81–83

-viewDidAppear: method, 63

-viewDidDisappear: method, 64

-viewDidLoad method
debug label, 6
debugging physics bod-

ies, 106
popping navigation stack,

58
scrolling text cutscene,

69

-viewWillAppear: method, 97

ViewController.m, debug label, 6

views
nodes as, 5, 85
opacity, 62, 64
removing, 64
segues, 60

The Visual Display of Quanti-
tative Information, 182

visuals, see graphics

W
waitAndPowerdown key, 35

waitForCompletion: parameter, 30

-waitForDuration: method, 35

waiting periods, see delays

The Wall Street Journal Guide
to Information Graphics,
182

weak properties
plunger touch controls,

111
popping navigation stack,

58
retain cycles, 38, 93
touch events, 8

weakSelf variable, 38, 93

weapon power-ups, 32–36, 62

width
asteroids, 19
bumpers, 140
paddles, 129
scene, 19

-willMoveFromView: method, 68,
71, 76

Wong, Dona, 182

wrapping text, 66, 73

WWDC 2013, 180

X
x value, starting/ending, 19

x-coordinate
bumpers, 140
gravity, 102
heads-up display (HUD)

layout, 84, 92

xAcceleration, 171

xScale
game over sequence, 74
particles, 44

Xcode
about, vii
adding sound files, 29

dragging and dropping
from, 13

forcing portrait mode,
174

particle editor, 41–47
physics for Physics Ball

game, 100
plist editor, 136, 139
resources, xiii
texture atlases, 162

XML files, 139

Y
y value, starting/ending, 19

y-axis, flipped, 16

y-coordinate
bumpers, 140
gravity, 102
heads-up display (HUD)

layout, 84, 92
plunger, 113–114
resetting ball, 126
torpedo movement, 16

yAcceleration, 171

yScale
game over sequence, 74
particles, 44

yTouchDelta property, 113–114

Z
zPosition property, 80, 173

zRotation property, 141

zoom action, 159

Index • 198

Test on iOS and add Sound
Learn how to do full-stack testing of your iOS apps and add live sound to all your apps.

Test iOS Apps with UI Automation
If you’re an iOS developer or QA professional tapping
through an app to reproduce bugs or performance is-
sues you thought were solved two releases ago, then
this is your book. Learn how to script the user inter-
face, assert correct behavior, stub external dependen-
cies, reproduce performance problems, organize test
code for the long haul, and automate the whole process
so the machine does the work. You’ll walk through a
comprehensive strategy with techniques using Apple’s
tools that you can apply to your own apps.

Jonathan Penn
(226 pages) ISBN: 9781937785529. $36
http://pragprog.com/book/jptios

Programming Sound with Pure Data
Sound gives your native, web, or mobile apps that extra
dimension, and it’s essential for games. Rather than
using canned samples from a sample library, learn
how to build sounds from the ground up and produce
them for web projects using the Pure Data program-
ming language. Even better, you’ll be able to integrate
dynamic sound environments into your native apps or
games—sound that reacts to the app, instead of
sounding the same every time. Start your journey as
a sound designer, and get the power to craft the sound
you put into your digital experiences.

Tony Hillerson
(196 pages) ISBN: 9781937785666. $36
http://pragprog.com/book/thsound

http://pragprog.com/book/jptios
http://pragprog.com/book/thsound

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/pssprite
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/pssprite

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/pssprite
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/pssprite
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Preface
	How Do We Get There?
	The Road Ahead
	How to Get the Most out of This Book
	Expectations and Technical Requirements
	Acknowledgments

	1. Introduction to Sprite Kit
	Setting Up a Sprite Kit Project
	Drawing Scenes and Sprite Nodes
	Following the Finger Around
	Making the Ship Glide

	2. Actions: Go, Sprite, Go!
	Shooting at Asteroids with Simple Motion Actions
	Moving Nodes on a Path
	Playing Sound Effects in the Scene
	Implementing Weapon Power-Ups with Actions

	3. Explosions and Particle Effects
	Generating a Parallax Field of Stars
	Building Thruster Fire with Xcode's Particle Editor
	Loading Particle Emitter Files
	Spewing Particles Briefly for Explosions

	4. Menus and Cutscenes
	Crafting a Basic Menu with UIKit's Interface Builder
	Showing the Star Field Underneath UIKit
	Custom Scenes and Gesture Recognizers
	Building a Game-Ending Sequence

	5. Keeping Score with a Heads-Up Display
	Planning the Node Layout
	Aligning Label Nodes Within Groups
	Updating the Display
	Pulsing Power-Up Countdowns for the Win
	Showing the High Score

	6. Pinball Physics 101
	Follow the Bouncing Ball
	Moving the Plunger with a Touch
	Using a Fixed Joint to Stick the Ball to the Plunger
	Building a Scrolling Table with an Edge Body

	7. More Physics: Paddles and Collisions
	Building Paddles with Bodies, Pins, and Torque
	Loading Targets and Bumpers from a Layout File
	Detecting Collisions Between Bodies
	Responding to Collisions
	Slowing Down the Ball on Rebound

	8. Polishing the Pinball Game
	Cueing the Player to Pull the Plunger with Sprite Animations
	Adding Bonus Points with a Spinner
	Showing Puffs of Smoke When Hitting Targets and Bumpers
	Covering the Table with a Textured Overlay
	Locking the Game to Portrait and Removing the Status Bar

	9. Where to Go Next
	Reviewing the Game-Development Process
	Other Resources
	Will I Hit It Big?
	Don't Forget to Play!

	Bibliography
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

