
www.allitebooks.com

http://www.allitebooks.org

Building Single-page Web Apps
with Meteor

Build real-time apps at lightning speed using the most
powerful full-stack JavaScript framework

Fabian Vogelsteller

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Building Single-page Web Apps with Meteor

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1210115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-812-9

www.packtpub.com

Cover image by Tyler Leavitt (tslclick@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Fabian Vogelsteller

Reviewers
Riccardo Mancinelli

Rohit Mukherjee

Isaac Strack

Commissioning Editor
Pramila Balan

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Priyanka Shah

Technical Editor
Ankita Thakur

Copy Editor
Vikrant Phadke

Project Coordinator
Neha Thakur

Proofreader
Lawrence A. Herman

Indexer
Hemangini Bari

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Fabian Vogelsteller became interested in web
technologies at the age of 14. He developed a skill set
ranging from graphic design to coding PHP to Python,
ActionScript, Objective C, HTML, and CSS, and fell
in love with JavaScript. He has worked as a freelance
web developer for over 14 years and is the creator of the
open source feindura Flat File CMS. Fabian is a strong
advocate of open source software and has built and
contributed to many open source libraries and projects.
In recent years, Meteor has become his passion and is

his primary tool of choice. He currently works for start-ups in Berlin, extending his
skills to web development for larger applications.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to thank Marjorie, my partner, for the strength in my life and my
beautiful son, Joschua, for being my son.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Riccardo Mancinelli acquired a degree in electronic engineering. He has more
than 9 years of experience in IT, specializing in frontend and backend software
development. He is currently working as an IT architect consultant and senior Java
developer. He loves any tool and programming language that will make achievement
of his goals easier and faster. Besides programming, his favorite hobby is reading.

Rohit Mukherjee is a final year student of computer engineering at the National
University of Singapore (NUS). He has spent some time in Zurich, Switzerland,
studying graduate courses in computer science at ETH, Zurich. He has worked in
financial and healthcare technologies and enjoys working his way through the stack.

I would like to thank my parents and Pratish Mondal for
their support.

Isaac Strack is an Adobe DPS solutions consultant, and has worked in MIS, web,
and app development for over 15 years. An inventor, author, and design technologist,
he currently specializes in cutting-edge web technologies, digital publications, and
mobile applications. Isaac is the co-captain of the Meteor SLC Meetup group, regularly
meeting other meteorites to discuss and share their passions and projects. He is a
volunteer for the board of directors of Wasatch Institute of Technology, Utah's first
computer science high school (http://wasatchinstitute.net). He is also a member
of the Adobe STEAM team, helping promote and foster STEM and Arts education for
students of Utah, preparing them for future jobs. As a father of four girls, his passion
and energy for technology education are seen through the various presentations,
events, and classes he participates in each year. He firmly believes that education is
the great equalizer, bringing confidence, prosperity, and joy to everyone, regardless
of background or ethnicity.

www.allitebooks.com

http://wasatchinstitute.net
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Meteor 7

The full-stack framework of Meteor 8
Meteor's requirements 9

Using Chrome's developer tools 9
Using Git and GitHub 9

Installing Meteor 10
Installing Git 10

Creating our first app 11
Creating a good folder structure 12
Preadd style files 13

Adding basic packages 13
Adding a core package 13
Adding a third-party package 14

Variable scopes 14
Meteor's folder conventions and loading order 15

Loading assets on the server 17
Meteor's command-line tool 18

Updating Meteor 18
Deploying Meteor 18

Summary 19
Chapter 2: Building HTML Templates 21

Writing templates in Meteor 22
Building the basic templates 24
Adding templates and partials 25
Displaying data with template helpers 26
Setting the data context for a template 28

Using the {{#with}} block helper 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

"this" in template helpers and template callbacks 29
Adding events 31
Block helpers 32
Listing posts 34
Spacebars syntax 38

Accessing parent data contexts 39
Passing data to helpers 39

Summary 41
Chapter 3: Storing Data and Handling Collections 43

Meteor and databases 44
Setting up a collection 45
Adding post examples 45
Querying a collection 48
Updating a collection 49
Database everywhere 50
Differences between client and server collections 51
Summary 51

Chapter 4: Controlling the Data Flow 53
Syncing data – the current Web versus the new Web 54
Removing the autopublish package 55
Publishing data 55
Publishing only parts of data 56
Publishing specific fields 58
Lazy loading posts 60
Switching subscriptions 62
Some notes on data publishing 64
Summary 65

Chapter 5: Making Our App Versatile with Routing 67
Adding the iron:router package 68
Setting up the router 68
Switching to a layout template 70
Adding another route 71
Moving the posts subscription to the Home route 72
Setting up the post route 74

Creating a single-post publication 74
Adding the post route 75
Linking the posts 77

Changing the website's title 78
Summary 79

Table of Contents

[iii]

Chapter 6: Keeping States with Sessions 81
Meteor's session object 81

A better way for simple reactivity 82
Using sessions in template helpers 83

Session and hot code pushes 84
Rerunning functions reactively 86

Stopping reactive functions 88
Using autorun in a template 88
The reactive session object 90
Summary 90

Chapter 7: Users and Permissions 93
Meteor's accounts packages 94
Adding the accounts packages 94
Adding admin functionality to our templates 95

Adding a link for new posts 95
Adding the link to edit posts 96
Adding the login form 96

Creating the template to edit posts 97
Creating the admin user 98

Adding permissions 98
A note on security 100

Creating routes for the admin 101
Preventing visitors from seeing the admin routes 103

Summary 104
Chapter 8: Security with the Allow and Deny Rules 105

Adding a function to generate slugs 106
Creating a new post 106

Saving a post 106
Editing posts 108

Updating the current post 108
Restricting database updates 109

Removing the insecure package 109
Adding our first allow rules 110

Adding a deny rule 111
Adding posts using a method call 113

Method stubs and latency compensation 113
Changing the button 113
Adding the method 114

Calling the method 116
Summary 117

Table of Contents

[iv]

Chapter 9: Advanced Reactivity 119
Reactive programming 120

The invalidating cycle 122
Building a simple reactive object 124

Rerunning functions 125
Creating an advanced timer object 126
Reactive computations 128

Stopping reactive functions 129
Preventing run at start 130
Advanced reactive objects 131

Summary 132
Chapter 10: Deploying Our App 133

Deploying on meteor.com 134
Deploying on meteor.com using a domain name 137
Backup and restore databases hosted on meteor.com 137

Deploying on other servers 138
Bundling our app 138
Deploying using Demeteorizer 140
Deploying using Meteor Up 140

Setting up the server 143
Deploying with mup 143

Outlook 144
Summary 144

Chapter 11: Building Our Own Package 145
The structure of a package 145
Creating our own package 147

Adding the package metadata 147
Adding the package 150

Releasing our package to the public 150
Publishing our package online 151
Updating our package 154

Summary 154
Chapter 12: Testing in Meteor 155

Types of tests 155
Testing packages 156

Adding package tests 157
Running the package tests 158

Testing our meteor app 160
Testing using Jasmine 160

Table of Contents

[v]

Adding unit tests to the server 161
Adding integration tests to the client 165

Acceptance tests 169
Nightwatch 169
Laika 169

Summary 170
Appendix 171

List of Meteor's command-line tool commands 171
The iron:router hooks 174

Index 175

Preface
Thank you for buying this book. You made a great choice for a new step in frontend
and JavaScript technology. The Meteor framework is not just another library that
aims to make things easier. It is a complete solution for a web server, client logic,
and templates. Additionally, it contains a complete build process, which will make
working for the Web by chunks faster. Thanks to Meteor, linking your scripts and
styles is a thing of the past, as the automatic build process takes care of everything
for you. Surely, this is a big change, but you will soon love it, as it makes extending
your app as fast as creating a new file.

Meteor aims to create single-page applications where real time is the default. It takes
care of the data synchronization and updating of the DOM. If data changes, your
screen will be updated. These two basic concepts make up a lot of the work we do
as web developers, and with Meteor this happens without any extra line of code.

In my opinion, Meteor is a complete game changer in modern web development.
It introduces the following patterns as defaults:

• Fat clients: All of the logic resides on the client. HTML is only sent on the
initial page load

• JavaScript and the same API are used on both the client and the server
• Real time: Data synchronizes automatically to all clients
• A "database everywhere" approach, allowing database queries on the

client side
• Publish/subscribe patterns for web server communication as the default

Once you have used all these new concepts, it is hard to go back to the old way
of doing things where so much time goes only into preparing the app's structure
while linking files or wrapping them into Require.js modules, writing endpoints,
and writing code to request and send data back and forth.

Preface

[2]

While reading this book, you will be introduced step by step to these concepts
and how they connect together. We will build a blog, with the backend to edit
posts. A blog is a good example, as it uses listings of posts, different routes for
each post, and an admin interface to add new posts, providing all we need to
fully understand Meteor.

What this book covers
Chapter 1, Getting Started with Meteor, describes the necessary steps to install and
run Meteor, while also going into details about the folder structure of a Meteor
project and, in particular, the Meteor project we will build.

Chapter 2, Building HTML Templates, shows how reactive templates are built using
handlebars such as syntax and how simple it is to display data in them.

Chapter 3, Storing Data and Handling Collections, covers database usage on the server
and the client sides.

Chapter 4, Controlling the Data Flow, gives an introduction to Meteor's publication/
subscription pattern, which is used to synchronize data between the server and
the clients.

Chapter 5, Making Our App Versatile with Routing, teaches us how to set up routes and
make our app behave and feel like a real website.

Chapter 6, Keeping States with Sessions, discusses the reactive Session object and how it
can be used.

Chapter 7, Users and Permissions, describes the creation of users and how the login
process works. At this time, we'll create the backend part for our blog.

Chapter 8, Security with the Allow and Deny Rules, covers how the data flow can be
limited to certain users to prevent everybody from making changes to our database.

Chapter 9, Advanced Reactivity, shows how we can build our own custom reactive
object that can rerun a function based on a time interval.

Chapter 10, Deploying Our App, covers how to deploy the app using Meteor's own
deploy service and also on your own infrastructure.

Chapter 11, Building Our Own Package, describes how to write a package and publicize
it on Atmosphere for everybody to use.

Preface

[3]

Chapter 12, Testing in Meteor, shows how packages can be tested using Meteor's own
tinytest package, as well as using third-party tools to test the Meteor application itself.

Appendix, contains a list of Meteor commands as well as iron:router hooks and
their descriptions.

What you need for this book
To follow the examples in the chapters, you will need a text editor to write the code.
I highly recommend Sublime Text as your IDE, as it has a wide range of plugins for
almost every task a web developer could think of.

You will also need a modern browser to see your results. As many examples use
the browser console to make changes to the database and to see the results of the
code snippets, I recommend Google Chrome. Its Developer tools web inspector
has everything a web developer needs to work and debug websites with ease.

Additionally, you can use Git and GitHub to store your success every step along
the way and in order to go back to the previous versions of your code.

The code examples for each chapter will also be available on GitHub at
https://github.com/frozeman/book-building-single-page-web-apps-with-
meteor, where each commit in this repository correlates with one chapter of the
book, giving you an easy way to see what was added and removed in each step
along the way.

Who this book is for
This book is for web developers who want to get into the new paradigm of
single-page, real-time applications. You don't need to be a JavaScript professional
to follow along, but certainly a good basic understanding will make this book a
valuable companion.

If you have heard about Meteor but haven't yet used it, this book is definitely for you.
It will teach you everything you need to understand and use Meteor successfully. If
you have used Meteor before but want to get a deeper insight, then the final chapter
will help you improve your understanding of custom reactive objects and writing
packages. Testing is probably the least covered topic in the Meteor community right
now, so by reading the final chapter, you will easily gain an understanding of how to
make your apps robust using automated tests.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and
explanations of their meanings.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"With Meteor, we never have to link files with the <script> tags in HTML."

A block of code is set as follows:

<head>
 <title>My Meteor Blog</title>
</head>
<body>
 Hello World
</body>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<div class="footer">
 <time datetime="{{formatTime timeCreated "iso"}}">Posted
 {{formatTime timeCreated "fromNow"}} by {{author}}</time>
</div>

Any command-line input or output is written as follows:

$ cd my/developer/folder
$ meteor create my-meteor-blog

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "However, now
when we go to our browser, we will still see Hello World."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.allitebooks.com

www.packtpub.com
www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Getting Started with Meteor
Welcome to this book on Meteor. Meteor is an exciting new JavaScript framework, and
we will soon see how easy it is to achieve real and impressive results with less code.

In this chapter, we will learn what the requirements are and what additional
tools we need to get started. We will see how simple it is to get our first Meteor
application running and what a good basic folder structure for a Meteor app could
be. We will also learn about Meteor's automatic build process and its specific way
of loading files.

We will also see how to add packages using Meteors official packaging system.
At the end of the chapter, we will take a short look at Meteor's command-line tool
and some of its functions.

To bring it together, we will cover the following topics:

• The full-stack framework of Meteor
• Meteor's requirements
• Installing Meteor
• Adding basic packages
• Meteor's folder conventions and loading order
• Meteor's command-line tool

Getting Started with Meteor

[8]

The full-stack framework of Meteor
Meteor is not just a JavaScript library such as jQuery or AngularJS. It's a full-stack
solution that contain frontend libraries, a Node.js-based server, and a command-line
tool. All this together lets us write large-scale web applications in JavaScript, on both
the server and client, using a consistent API.

Even with Meteor being quite young, already a few companies such as
https://lookback.io, https://respond.ly, and https://madeye.io
use Meteor in their production environment.

If you want to see for yourself what's made with Meteor, take a look at
http://madewith.meteor.com.

Meteor makes it easy for us to build web applications quickly and takes care of
the boring processes such as file linking, minifying, and concatenating of files.

Here are a few highlights of what is possible with Meteor:

• We can build complex web applications amazingly fast using templates that
automatically update themselves when data changes

• We can push new code to all clients on the fly while they are using our app
• Meteor core packages come with a complete account solution, allowing a

seamless integration of Facebook, Twitter, and more
• Data will automatically be synced across clients, keeping every client in the

same state in almost real time
• Latency compensation will make our interface appear super fast while the

server response happens in the background.

With Meteor, we never have to link files with the <script> tags in HTML. Meteor's
command-line tool automatically collects JavaScript or CSS files in our application's
folder and links them in the index.html file, which is served to clients on initial
page load. This makes structuring our code in separate files as easy as creating them.

Meteor's command-line tool also watches all files inside our application's folder for
changes and rebuilds them on the fly when they change.

Additionally, it starts a Meteor server that serves the app's files to the clients. When a
file changes, Meteor reloads the site of every client while preserving its state. This is
called a hot code reload.

In production, the build process also concatenates and minifies our CSS and
JavaScript files.

https://lookback.io
https://respond.ly
https://madeye.io
http://madewith.meteor.com

Chapter 1

[9]

By simply adding the less and coffee core packages, we can even write all styles
in LESS and code in CoffeeScript with no extra effort.

The command-line tool is also the tool for deploying and bundling our app so that
we can run it on a remote server.

Sounds awesome? Let's take a look at what's needed to use Meteor.

Meteor's requirements
Meteor is not just a JavaScript framework and server. As we saw earlier, it is also a
command-line tool that has a whole build process for us in place.

Currently, the operating systems that are officially supported are as follows:

• Mac OS X 10.6 and above
• Linux x86 and x86_64 systems
• Windows

The Windows installer is still in development at the time of writing
this book. Please follow the wiki page at https://github.com/
meteor/meteor/wiki/Preview-of-Meteor-on-Windows.

This book and all examples use Meteor 1.0.

Using Chrome's developer tools
We will also need Google Chrome or Firefox with the Firebug add-on installed to
follow examples that require a console. The examples, screenshots, and explanations
in this book will use Google Chrome's developer tools.

Using Git and GitHub
I highly recommend using GitHub when working with web projects, such as the one
we will work on in this book. Git and GitHub help us to back up our progress and let
us always go back to previous states while seeing what we've changed.

Git is a version control system, which was created in 2005 by the inventor of Linux,
Linus Torvalds.

https://github.com/meteor/meteor/wiki/Preview-of-Meteor-on-Windows
https://github.com/meteor/meteor/wiki/Preview-of-Meteor-on-Windows

Getting Started with Meteor

[10]

With Git, we can commit any state of our code and later go back to that exact state.
It also allows multiple developers to work on the same code base and merge
their results together in an automated process. If conflicts appear in this process,
the merging developer is able to resolve those merge conflicts by removing the
unwanted lines of code.

I also recommend registering an account at http://github.com, as this is the
easiest way to browse our code history. They have an easy to use interface as
well as a great Windows and Mac app.

To follow the code examples in this book, you can download all code examples for
each chapter from the book's web page at https://www.packtpub.com/books/
content/support/17713.

Additionally, you will be able to clone the book's code from http://github.com/
frozeman/book-building-single-page-web-apps-with-meteor. Every tag in
this repository equals to one chapter of the book and the commit history will help
you to see the changes, which were made in each chapter.

Installing Meteor
Installing Meteor is as easy as running the following command in the terminal:

$ curl https://install.meteor.com/ | sh

That's it! This will install the Meteor command-line tool ($ meteor), the Meteor
server, MongoDB database, and the Meteor core packages (libraries).

All command-line examples are run and tested on Mac OS X
and can differ on Linux or Windows systems.

Installing Git
To install Git, I recommend installing the GitHub app from https://mac.github.
com or https://windows.github.com. We can then simply go inside the app
to Preferences and click on the Install Command Line Tools button inside the
Advanced tab.

If we want to install Git manually and set it up via the command line, we can
download the Git installer from http://git-scm.com and follow this great
guide at https://help.github.com/articles/set-up-git.

http://github.com
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
http://github.com/frozeman/book-building-single-page-web-apps-with-meteor
http://github.com/frozeman/book-building-single-page-web-apps-with-meteor
https://mac.github.com
https://mac.github.com
https://windows.github.com
http://git-scm.com
https://help.github.com/articles/set-up-git

Chapter 1

[11]

Now, we can check whether everything was installed successfully by opening the
terminal and running the following command:

$ git

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

This should return us a list of Git options. If we get command not found: git,
we need to check whether the git binary was correctly added to our PATH
environment variable.

If everything is fine, we are ready to create our first Meteor app.

Creating our first app
To create our first app, we open the terminal, go to the folder where we want to
create our new project, and enter the following commands:

$ cd my/developer/folder
$ meteor create my-meteor-blog

Meteor will now create a folder named my-meteor-blog. The HTML, CSS, and
JavaScript files that Meteor created for us inside this folder are already a fully
working Meteor app. To see it in action, run the following commands:

$ cd my-meteor-blog
$ meteor

Meteor will now start a local server for us on port 3000. Now, we can open our web
browser and navigate to http://localhost:3000. We will see the app running.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started with Meteor

[12]

This app doesn't do much, except showing a simple reactive example. If you click on
the Click Me button, it will increase the counter:

For later examples, we will need Google Chrome's developer tools. To open the
console, we can press Alt + command + I on Mac OS X or click on the menu button
on the upper-right corner of Chrome, select More tools, and then Developer tools.

The Developer tools allow us to inspect the DOM and CSS of our website, as well
as having a console where we can interact with our website's JavaScript.

Creating a good folder structure
For this book, we will build our own app from scratch. This also means we have to
set up a sustainable folder structure, which helps us to keep our code organized.

With Meteor, we are very flexible concerning our folder structure. This means
we can put our files wherever we want, as long as they are inside the app's folder.
Meteor treats specific folders differently, allowing us to expose files only on the
client, the server, or both. We will take a look at those specific folders later.

But, first let's get our hands dirty by deleting all preadd files in our newly created
application folder and creating the following folder structure:

- my-meteor-blog
 - server
 - client
 - styles
 - templates

Chapter 1

[13]

Preadd style files
To fully focus on the Meteor code but still have a pretty-looking blog, I strongly
recommend to download the code that accompanies this chapter from the book's
web page at http://packtpub.com/books/content/support/17713. They will
contain already two drop-in-place style files (lesshat.import.less and styles.
less), which will let your example blog look pretty in the upcoming chapters.

You can also download these files directly from GitHub at https://github.
com/frozeman/book-building-single-page-web-apps-with-meteor/tree/
chapter1/my-meteor-blog/client/styles and copy them to the my-meteor-
blog/client/styles folder manually.

Next, we need to add some basic packages so that we can start building our app.

Adding basic packages
Packages in Meteor are libraries that can be added to our projects. The nice thing
about Meteor packages is that they are self-contained units, which run out of the box.
They mostly add either some templating functionality or provide extra objects in the
global namespace of our project.

Packages can also add features to Meteor's build process such as the stylus package,
which lets us write our app's style files with the stylus preprocessor syntax.

For our blog, we will need two packages at first:

less: This is a Meteor core package and will compile our style files on the
fly to CSS

jeeeyul:moment-with-langs: This is a third-party library for date parsing
and formatting

Adding a core package
To add the less package, we can simply open the terminal, go to our projects folder,
and enter the following command:

$ meteor add less

Now, we are able to use any *.less files in our project, and Meteor will
automatically compile them in its build process for us.

http://packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1/my-meteor-blog/client/styles
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1/my-meteor-blog/client/styles
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1/my-meteor-blog/client/styles

Getting Started with Meteor

[14]

Adding a third-party package
To add a third-party package, we can simply search for packages on either
https://atmospherejs.com, which is the frontend for Meteors packaging
system, or use the command-line tool, $ meteor search <package name>.

For our blog, we will need the jeeeyul:moment-with-langs package that
allows us later to simply manipulate and format dates.

Packages are namespaced with the authors name followed by a colon.

To add the moment package, we simply enter the following command:

$ meteor add jeeeyul:moment-with-langs

After the process is done, and we restarted our app using $ meteor, we will have
the moment object available in our app global namespace and we can make use of it
in the upcoming chapters.

Should we ever want to add only specific version of a package, we can use the
following command:

$ meteor add jeeeyul:moment-with-langs@=2.8.2

If you want a version in the 1.0.0 (but not the 2.0.0) range use the following command:

$ meteor add jeeeyul:moment-with-langs@1.0.0

To update only packages we can simply run the following command:

$ meteor update –-packages-only

Additionally, we can update only a specific package using the following command:

$ meteor update jeeeyul:moment-with-langs

That's it! Now we are fully ready to start creating our first templates. You can jump
right into the next chapter, but make sure you come back to read on, as we will now
talk about Meteor's build process in more detail.

Variable scopes
To understand Meteor's build process and its folder conventions, we need to take a
quick look at variable scopes.

https://atmospherejs.com

Chapter 1

[15]

Meteor wraps every code files in an anonymous function before serving it.
Therefore, declaring a variable with the var keyword will make it only available
in that file's scope, which means these variables can't be accessed in any other file
of your app. However, when we declare a variable without this keyword, we make
it a globally available variable, which means it can be accessed from any file in our
app. To understand this, we can take a look at the following example:

// The following files content
var myLocalVariable = 'test';
myGlobalVariable = 'test';

After Meteor's build process, the preceding lines of code will be as follows:

(function(){
 var myLocalVariable = 'test';
 myGlobalVariable = 'test';
})();

This way, the variable created with var is a local variable of the anonymous function,
while the other one can be accessed globally, as it could be created somewhere
else before.

Meteor's folder conventions and
loading order
Though Meteor doesn't impose restrictions concerning our folder names or structure,
there are naming conventions that help Meteor's build process to determine the
order in which the files need to be loaded.

The following table describes the folder and their specific loading order:

Folder name Load behavior
client This is loaded only on the client.

client/compatibility This will not be wrapped in an anonymous function.
This is made for libraries that declare top-level
variables with var. Additionally, files in this folder
will be loaded before other files on the client.

server Files in this folder will only be served on the server.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Meteor

[16]

Folder name Load behavior
public This folder can contain assets used on the client,

such as images, favicon.ico, or robots.
txt. Folders and files inside the public folder are
available on the client from root, /.

private This folder can contain assets that will only be
available on the server. These files are available
through Assets API.

lib Files and subfolders inside a lib folder will be
loaded before other files, where lib folders in
deeper folders will be loaded before the files in lib
folders of their parent folders.

tests Files inside this folder won't be touched or loaded
by Meteor at all.

packages When we want to use local packages, we can add
them to this folder and Meteor will use those
packages, even if one with the same name exists in
Meteor's official package system. (However, we still
have to add the packages using $ meteor add
....)

The following table describes filenames that have created a specific loading order:

Filename Load behavior
main.* Files with this name are loaded last, whereas files in deeper

folders are loaded before the files of their parent folders
. Files outside of the former mentioned folders in this table

are loaded on both the client and server

So, we see that Meteor gathers all files except the ones inside public, private,
and tests.

Additionally, files are always loaded in the alphabetical order, and files in subfolders
are loaded before the ones in parent folders.

If we have files outside the client or server folder and want to determine where
the code should be executed, we can use the following variables:

if(Meteor.isClient) {
 // Some code executed on the client
}

if(Meteor.isServer) {

Chapter 1

[17]

 // Some code executed on the server.
}

We also see that code inside a main.* file is loaded last. To make sure a specific code
only loads when all files are loaded and the DOM on the client is ready, we can use
the Meteor's startup() function:

Meteor.startup(function(){
 /*
 This code runs on the client when the DOM is ready,
 and on the server when the server process is finished starting.
 */
});

Loading assets on the server
To load files from inside the private folder on the server, we can use the Assets
API as follows:

Assets.getText(assetPath, [asyncCallback]);
// or
Assets.getBinary(assetPath, [asyncCallback])

Here, assetPath is a file path relative to the private folder, for example,
'subfolder/data.txt'.

If we provide a callback function as the second parameter, the Assets() method will
run asynchronously. So, we have two ways of retrieving the content of an assets file:

// Synchronously
var myData = Assets.getText('data.txt');

// Or asynchronously
Assets.getText('data.txt', function(error, result){
 // Do somthing with the result.
 // If the error parameter is not NULL, something went wrong
});

If the first example returns an error, our current server code will
fail. In the second example, our code will still work, as the error
is contained in the error parameter.

Now that we understand Meteor's basic folder structure, let's take a brief look at the
Meteor's command-line tool.

Getting Started with Meteor

[18]

Meteor's command-line tool
Now that we know already about Meteor's build process and folder structure,
we will take a closer look at what we can do with the command-line tool that
Meteor provides.

As we saw when using the meteor command, we need to be inside a Meteor project
so that all actions will be performed on this project. For example, when we run
meteor add xxx, we add a package to the project where we are currently in.

Updating Meteor
If Meteor releases a new version, we can simply update our project by running
the following command:

$ meteor update

If we want to go back to a previous version, we can do this by running the
following command:

$ meteor update –-release 0.9.1

This would set our project back to release version 0.9.1.

Deploying Meteor
Deploying our Meteor app to a public server is as easy as running the
following command:

$ meteor deploy my-app-name

This would ask us to register a Meteor developer account and deploy our
app at http://my-app-name.meteor.com.

For a full introduction on how to deploy a Meteor app, refer to Chapter 10,
Deploying Our App.

In the Appendix, you can find a full list of Meteor commands and their explanations.

http://my-app-name.meteor.com

Chapter 1

[19]

Summary
In this chapter, we learned what Meteor requires to run, how to create a Meteor
application, and how the build process works.

We understand that Meteor's folder structure is rather flexible, but that there are
special folders such as the client, server, and lib folder, which are loaded in
different places and order. We also saw how to add packages and how to use the
Meteor command-line tool.

If you want to dig deeper into what we've learned so far, take a look at the
following parts of the Meteor documentation:

• https://www.meteor.com/projects

• https://www.meteor.com/tool

• https://docs.meteor.com/#/full/whatismeteor

• https://docs.meteor.com/#/full/structuringyourapp

• https://docs.meteor.com/#/full/usingpackages

• https://docs.meteor.com/#/full/assets

• https://docs.meteor.com/#/full/commandline

You can find this chapter's code examples at https://www.packtpub.com/books/
content/support/17713 or on GitHub at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/chapter1.

Now that we've set up our project's basic folder structure, we are ready to start with
the fun part of Meteor—templates.

https://www.meteor.com/projects
https://www.meteor.com/tool
https://docs.meteor.com/#/full/whatismeteor
https://docs.meteor.com/#/full/structuringyourapp
https://docs.meteor.com/#/full/usingpackages
https://docs.meteor.com/#/full/assets
https://docs.meteor.com/#/full/commandline
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1

Building HTML Templates
After we successfully installed Meteor and set up our folder structure, we can now
start building the basic templates for our blog.

In this chapter, we will learn how templates are built. We will see how to display
data and how some parts can be altered using helper functions. We will take a look on
adding events, using conditions, and understanding data contexts, all in templates.

The following is an overview of what will be covered in this chapter:

• The basic template structure
• Displaying data
• Writing template helper functions
• Using conditions in templates
• Data contexts and how those can be set
• Nesting templates and data context inheritance
• Adding events
• Building block helpers

If you jump right into this chapter without setting up the folder
structure in the Chapter 1, Getting Started with Meteor, download the
previous chapter's code examples from either the book's web page at
https://www.packtpub.com/books/content/support/17713
or from the GitHub repository at https://github.com/frozeman/
book-building-single-page-web-apps-with-meteor/tree/
chapter1.
These code examples will also contain all the style files, so we don't
have to worry about adding CSS code along the way.

https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1

Building HTML Templates

[22]

Writing templates in Meteor
Normally when we build websites, we build the complete HTML on the server side.
This was quite straightforward; every page is built on the server, then it is sent to the
client, and at last JavaScript added some additional animation or dynamic behavior
to it.

This is not so in single-page apps, where every page needs to be already in the client's
browser so that it can be shown at will. Meteor solves this problem by providing
templates that exists in JavaScript and can be placed in the DOM at some point. These
templates can have nested templates, allowing for an easy way to reuse and structure
an app's HTML layout.

Since Meteor is so flexible in terms of folder and file structure, any *.html page can
contain a template and will be parsed during Meteor's build process. This allows us
to put all templates in the my-meteor-blog/client/templates folder, which we
created in the Chapter 1, Getting Started with Meteor. This folder structure is chosen
as it helps us organizing templates when our app grows.

Meteor's template engine is called Spacebars, which is a derivative of the handlebars
template engine. Spacebars is built on top of Blaze, which is Meteor's reactive DOM
update engine.

Blaze can generate reactive HTML directly using its API, though
it's more convenient to use Meteor's Spacebars or a third-party
template language built on top of Blaze such as Jade for Meteor.
For more detail about Blaze, visit https://docs.meteor.
com/#/full/blaze and https://github.com/mquandalle/
meteor-jade.

What makes Spacebars so exciting is its simplicity and reactivity. Reactive templates
mean that some parts of the template can automatically change when the underlying
data changes. There is no need of manual DOM manipulation and inconsistent
interfaces belong to the past. To get a better understanding of Meteor, we will start
with the basic HTML files for our app:

1. Let's create an index.html file in our my-meteor-blog/client folder with
the following lines of code:
<head>
 <title>My Meteor Blog</title>
</head>
<body>
 Hello World
</body>

https://docs.meteor.com/#/full/blaze
https://docs.meteor.com/#/full/blaze
https://github.com/mquandalle/meteor-jade
https://github.com/mquandalle/meteor-jade

Chapter 2

[23]

Note that our index.html file doesn't contain the <html>...</
html> tags, as Meteor gathers all <head> and <body> tags in any
file and builds up its own index.html file, which will be delivered
to the user. Actually, we can also name this file myapp.html.

2. Next, we run our Meteor app from the command line by typing the
following command:
$ cd my-meteor-blog
$ meteor

This will start a Meteor server with our app running.

3. That's it! We can open our browser, navigate to http://localhost:3000,
and we should see Hello World.

What happens here is that Meteor will look through all the HTML files available in
our app's folder, concatenating the content of all <head> and <body> tags, which it
finds and serve them to the clients as its index file.

If we take a look at the source code of our app, we will see that the <body> tag
is empty. This is because Meteor sees the content of the <body> tag as its own
templates, which will be injected with its corresponding JavaScript template
when the DOM is loaded.

To see the source code, don't use the Developer Tools' elements
panel, as this will show us the source code after the JavaScript
is executed. Right-click on the website instead and select View
page source in Chrome.

We will also see that Meteor already linked all kinds of JavaScript files in our <head>
tag. These are Meteor's core packages and our add third-party packages. In production,
these files will be concatenated into one. To see this in action, go to the terminal, quit
our running Meteor server using Ctrl + C, and run the following command:

$ meteor --production

If we now take a look at the source code, we will see that there is only one
cryptic-looking JavaScript file linked.

For the next steps, it is better to go back to our developer mode by simply quitting
Meteor and running the meteor command again, since this will reload the app
faster when file changes occur.

Building HTML Templates

[24]

Building the basic templates
Now, let's add the basic templates to our blog by creating a file called layout.html
in the my-meteor-blog/client/templates folder. This template will serve as the
wrapper template for our blog layout. To build the basic templates, perform the
following steps:

1. Add the following lines of code to layout.html, which we just created:
<template name="layout">
 <header>
 <div class="container">
 <h1>My Meteor Single Page App</h1>

 Home

 About

 </div>
 </header>

 <div class="container">
 <main>
 </main>
 </div>
</template>

2. Next, we will create the home page template, which will later list all our
blogs posts. In the same templates folder as layout.html, we will create
a file named home.html with the following lines of code:
<template name="home">
{{#markdown}}
Welcome to my Blog
Here I'm talking about my latest discoveries from the world of
JavaScript.
{{/markdown}}
</template>

3. The next file will be a simple About page and we save it as about.html with
the following code snippet:
<template name="about">
{{#markdown}}
About me

Chapter 2

[25]

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam,
quis nostrud **exercitation ullamco** laboris nisi ut aliquip ex
ea commodo
consequat.

Link to my facebook: [facebook.com][1]

[1]: http://facebook.com
{{/markdown}}
</template>

As you can see, we used a {{#markdown}} block helper to wrap our texts.
The curly braces are handlebars syntax, which Blaze uses to bring logic to
the HTML. The {{#markdown}}...{{/markdown}} block will transform
all markdown syntax inside into HTML when the template gets rendered.

The markdown text cannot be indented as we do with the HTML
tags because the markdown syntax interprets indentation as code.

4. To be able to use {{#markdown}} block helper, we need to first add the
markdown core package to our app. To do this, we quit our running app
in the terminal using Ctrl + C and type the following command:
$ meteor add markdown

5. Now we can run the meteor command again to start our server.

However, when we now go to our browser, we will still see Hello World. So how
can we make now our templates visible?

Adding templates and partials
To show the home template in the app, we need to open index.html, which we
created earlier, and perform the following steps:

1. We replace Hello World with the following template inclusion helper:
{{> layout}}

2. If we go back to our browser now, we see that the text is gone and the layout
template, which we created earlier, has appeared with its header and menu.

www.allitebooks.com

http://www.allitebooks.org

Building HTML Templates

[26]

3. To complete the page, we need to show the home template in the layout
template. We do this by simply adding another template inclusion helper to
the main section of the layout template in our layout.html file, as follows:
<main>
 {{> home}}
</main>

4. If we go back to the browser, we should see the following screenshot:

If we would now switch {{> home}} for {{> about}}, we would see our about
template instead.

Displaying data with template helpers
Each template can have functions, which are called template helpers, and they can
be used inside the template and child templates.

In addition to our custom helper functions, there are three callback functions that are
called when the template is created, rendered, and destroyed. To display data with
template helpers, perform the following steps:

1. To see the three callback functions in action, let's create a file called home.js
and save it to our my-meteor-blog/client/templates/ folder with the
following code snippet:
Template.home.created = function(){
 console.log('Created the home template');
};

Chapter 2

[27]

Template.home.rendered = function(){
 console.log('Rendered the home template');
};

Template.home.destroyed = function(){
 console.log('Destroyed the home template');
};

If we now open the console of our browser, we will see the first two
callbacks are being fired. The last one will only fire if we dynamically
remove the template.

2. To display data in the home template, we will create a helper function that
will return a simple string as follows:
Template.home.helpers({
 exampleHelper: function(){
 return 'This text came from a helper with some HTML</
strong>.';
 }
});

3. Now if we go to our home.html file, add the {{exampleHelper}} helper
after the {{markdown}} block helper, and save the file, we will see the string
appearing in our browser, but we will notice that the HTML is escaped.

4. To make Meteor render the HTML correctly, we can simply replace the
double curly braces with triple curly braces, as shown in the following
line of code, and Blaze won't let the HTML escape:
{{{exampleHelper}}}

Note that in most of our templates helper, we shouldn't use triple
stache {{{...}}} as this opens the door for XSS and other
attacks. Only use it if the HTML returned is safe to be rendered.

5. Additionally, we can return unescaped HTML using double curly braces,
but we need to return the string passed through the SpaceBars.SafeString
function, as shown in the following example:
Template.home.helpers({
 exampleHelper: function(){
 return new Spacebars.SafeString('This text came from a helper
with some HTML.');
 }
});

Building HTML Templates

[28]

Setting the data context for a template
Now that we've seen how we can display data using a helper, let's see how we can
set the whole data context of a template:

1. For the next examples, we will create a file called examples.html in our my-
meteor-blog/client/templates folder and add the following code snippet:
<template name="contextExample">
 <p>{{someText}}</p>
</template>

2. Now that we have our contextExample template, we can add it to our home
template by passing some data as follows:
{{> contextExample someText="I was set in the parent template's
helper, as an argument."}}

This will show the text in the contextExample template because we were
displaying it using {{someText}}.

Remember that filenames don't really matter as Meteor is collecting
and concatenating them anyway; however, the template name
matters since we use this to reference templates.

Setting the context in HTML is not very dynamic, as it is hardcoded. To be
able to dynamically change the context, it is better to set it using a template
helper function.

3. To do this, we must first add the helper to our home templates helpers,
which returns the data context, as follows:
Template.home.helpers({
 // other helpers ...
 dataContextHelper: function(){
 return {
 someText: 'This text was set using a helper of the parent
template.',
 someNested: {
 text: 'That comes from "someNested.text"'
 }
 };
 }
});

Chapter 2

[29]

4. Now we can add this helper as the data context to our contextExample
template inclusion helper, as follows:
{{> contextExample dataContextHelper}}

5. Also, to show the nested data object we return, we can use Blaze dot syntax
in the contextExample template by adding the following line of code to
the template:
<p>{{someNested.text}}</p>

This will now display both the someText and the someNested.text, which was
returned by our helper functions.

Using the {{#with}} block helper
Another way of setting the data context is by using the {{#with}} block helper.
The following code snippet has the same result as the former inclusion helper that
utilizes the helper function:

{{#with dataContextHelper}}
 {{> contextExample}}
{{/with}}

We would even get the same results in the browser when we don't use a subtemplate
and just add the content of the contextExample template inside the {{#with}}
block helper, as follows:

{{#with dataContextHelper}}
 <p>{{someText}}</p>
 <p>{{someNested.text}}</p>
{{/with}}

"this" in template helpers and template
callbacks
In Meteor, this in template helpers is used differently in template callbacks such as
created(), rendered(), and destroyed().

As already mentioned, templates have three callback functions that are fired in
different states of the template:

• created: This fires when the template gets initiated but is not yet in the DOM

Building HTML Templates

[30]

• rendered: This fires when the template and all its sub templates are attached
to the DOM

• destroyed: This fires when the template is removed from the DOM and
before the instance of the template gets destroyed

In these callback functions, this refers to the current template instance. The instance
object can access the templates DOM and comes with the following methods:

• this.$(selectorString): This method finds all elements that match
selectorString and returns a jQuery object from those elements.

• this.findAll(selectorString): This method finds all elements that
match selectorString, but returns the plain DOM elements.

• this.find(selectorString): This method finds the first element that
matches selectorString and returns a plain DOM element.

• this.firstNode: This object contains the first element in the template.
• this.lastNode: This object contains the last element in the template.
• this.data: This object contains the templates data context
• this.autorun(runFunc): A reactive Tracker.autorun() function that is

stopped when the template instance is destroyed.
• this.view: This object contains the Blaze.View instance for this template.

Blaze.View are the building blocks of reactive templates.

Inside helper functions, this refers only to the current data context.

To make these different behaviors visible, we will take a look at some examples:

• When we want to access the DOM of a template, we must do it in the
rendered callback because only at this point, the template elements will
be in the DOM. To see it in action, we edit our home.js file as follows:
Template.home.rendered = function(){
 console.log('Rendered the home template');

 this.$('p').html('We just replaced that text!');
};

This will replace the first p tag that is created by the {{#markdown}} block
helper, which we put there before, with the string we set. Now when we
check the browser, we will see that the first <p> tag that contained our
blog's introduction text has been replaced.

Chapter 2

[31]

• For the next example, we need to create an additional template JavaScript
file for our contextExample template. To do this, we create a new file called
examples.js in our templates folder and save it using the following
code snippet:
Template.contextExample.rendered = function(){
 console.log('Rendered Context Example', this.data);
};

Template.contextExample.helpers({
 logContext: function(){
 console.log('Context Log Helper', this);
 }
});

This will add the rendered callback as well as a helper called logContext
to our contextExample template helpers. To make this helper run, we also
need to add this helper to our contextExample template as follows:
<p>{{logContext}}</p>

When we now go back to the console of our browser, we see that the data context
object has been returned for all the rendered callbacks and helpers from our
rendered contextTemplates template. We can also see that helpers will run
before the rendered callback.

In case you need access to the templates instance from inside a
template helper, you can use Template.instance() to get it.

Now let's use make our template interactive using events.

Adding events
To make our template a bit more dynamic, we will add a simple event, which will
reactively rerun the logContext helper we created earlier.

First, however, we need to add a button to our contextExample template:

<button>Get some random number</button>

To catch the click event, open examples.js and add the following event function:

Template.contextExample.events({
 'click button': function(e, template){
 Session.set('randomNumber', Math.random(0,99));
 }
});

Building HTML Templates

[32]

This will set a session variable called randomNumber to a random number.

We will talk in depth about sessions in the next chapter. For now, we
only need to know that when a session variable changes, all functions
that get that session variable using Session.get('myVariable')
will run again.

To see this in action, we will add a Session.get() call to the logContext helper,
and return the former set's random number as follows:

Template.contextExample.helpers({
 logContext: function(){
 console.log('Context Log Helper',this);

 return Session.get('randomNumber');
 }
});

If we go to the browser, we will see the Get some random number button. When we
click on it, we see a random number appearing just above the button.

When we use the contextTemplates template multiple times in
our home template, we will see that each instance of that template
helper will display the same random number. This is because
the session object will rerun all its dependencies, all of which are
instances of the logHelper helper.

Now that we have covered template helpers, let's create a custom block helper.

Block helpers
Block helpers are templates that wrap the content of the block. They can be used to
show content in different ways depending on conditions, or they can be used to add
extra functionality to the blocks content, for example, some JavaScript calculation on
its DOM elements.

In the following example, we will build a simple block helper that will show content
based on a Boolean condition.

To do this, we will to add the following code snippet at the end of our example.html
file:

<template name="blockHelperExample">
 <div>

Chapter 2

[33]

 <h1>My Block Helper</h1>
 {{#if this}}
 <p>Content goes here: {{> Template.contentBlock}}</p>
 {{else}}
 <p>Else content here: {{> Template.elseBlock}}</p>
 {{/if}}
 </div>
</template>

The {{> Template.contentBlock}} is a predefined placeholder for the block's
content. The same applies for {{> Template.elseBlock}}.

When this (in this example, we use the template's context as a simple Boolean) is
true, it will show the given Template.contentBlock. Otherwise, it will show the
Template.elseBlock content.

To see how we can use the recently created template as a block helper, take a look
at the following example, which we can add to home template:

{{#blockHelperExample true}}
 Some Content
{{else}}
 Some Warning
{{/blockHelperExample}}

Now we should see the following screenshot:

Building HTML Templates

[34]

When we now change true, which we pass to {{#blockHelperExample}}, to false,
we should see the content after the {{else}} instead.

We can also use a helper function to replace the Boolean value, so that we can switch
the block helper dynamically. Additionally, we can pass key-value arguments and
access them by their key inside the block helper template, as shown in the following
code example:

{{#blockHelperExample myValue=true}}
...
{{/blockHelperExample}}

We can also access the given argument by its name in the block template as follows:

<template name="blockHelperExample">
 <div>
 <h1>My Block Helper</h1>
 {{#if myValue}}
 ...
 {{/if}}
 </div>
</template>

Note that the data context for the block's content will be the
one from the template in which the block appears, not the
one of the block helper template itself.

Block helpers are a powerful tool because they allow us to write self-contained
components that, when packed into a package, can be used as a drop-in-place
functionality by others. This feature has the potential to allow for a vibrant
marketplace, like the marketplace we see in jQuery plugins.

Listing posts
Now that we have walked through all ways of using helpers and data, I want
to introduce a block helper named {{#each}}, which we will probably find the
most useful.

If we go through all the examples completed up to now, we can see that it is better to
delete all the examples of data context from our home template, the examples.html
file, and its examples.js JavaScript file so that we can continue to build our blog
cleanly.

Chapter 2

[35]

The next step is to add a list of blog entries to our home page. For this, we need
to create a template for a post preview. This can be done by performing the
following steps:

1. We create a file called postInList.html in our my-meteor-blog/client/
templates folder and save it with the following code snippet:
<template name="postInList">
 <div class="postListItem">
 <h2>{{title}}</h2>
 <p>{{description}}</p>
 <div class="footer">
 Posted by {{author}}
 </div>
 </div>
</template>

This template will be used for each post we display in the home page.

2. To make it appear, we need to add a {{#each}} helper to the home template,
as follows:
{{#each postsList}}
 {{> postInList}}
{{/each}}

When the postsList helper, which we pass to the {{#each}} block helper,
returns an array, the content of {{#each}} will be repeated for each item in
the array, setting the array item as the data context.

3. To see this in action, we add the postsList helper in our home.js file to the
template helpers, as follows:
Template.home.helpers({
 // other helpers ...
 postsList: function(){
 return [
 {
 title: 'My Second entry',
 description: 'Borem sodum color sit amet, consetetur
sadipscing elitr.',
 author: 'Fabian Vogelsteller',
 timeCreated: moment().subtract(3, 'days').unix()
 },
 {
 title: 'My First entry',

www.allitebooks.com

http://www.allitebooks.org

Building HTML Templates

[36]

 description: 'Lorem ipsum dolor sit amet, consetetur
sadipscing elitr.',
 author: 'Fabian Vogelsteller',
 timeCreated: moment().subtract(7, 'days').unix()
 }
];
 }
});

4. As we can see, we return an array where each item is an object containing
our post's data context. For timeCreated, we use the moment function
of our previously added third-party package. This will generate dummy
timestamps of a few days in the past. If we now go to our browser, we will
see the two posts listed, as shown in the following screenshot:

Chapter 2

[37]

5. To display timeCreated from our post item in the correct format, we need to
create a helper function to format the timestamp. However, because we want
to use this helper in other templates later, we need to make it a global helper
that can be accessed by any template. To do this, we create a file named
template-helpers.js and save it to our my-meteor-blog/client folder,
as it doesn't belonging to any specific template.

6. To register a global helper, we can use Meteor's Template.registerHelper
function:
Template.registerHelper('formatTime', function(time, type){
 switch(type){
 case 'fromNow':
 return moment.unix(time).fromNow();
 case 'iso':
 return moment.unix(time).toISOString();
 default:
 return moment.unix(time).format('LLLL');
 }
});

7. Now, we only have to add the helper to our postInList template by
replacing the content of the footer with the following code snippet:
<div class="footer">
 <time datetime="{{formatTime timeCreated "iso"}}">Posted
 {{formatTime timeCreated "fromNow"}} by {{author}}</time>
</div>

Now, if we save both the files and go back to our browser, we will see a relative
date added to our blog post's footer. This works because we pass the time and a
type string to the helper, as follows:

{{formatTime timeCreated "fromNow"}}

The helper then returns the formatted date using a moment function.

With this global helper, we can now format any Unix timestamp, in any template to
relative times, ISO time strings, and a standard date format (using the LLLL format,
which converts to Thursday, September 4, 1986, 8:30 P.M.).

Now that we have already used the {{#with}} and {{#each}} block helpers,
let's take a look at the other default helpers and syntax that Blaze uses.

Building HTML Templates

[38]

Spacebars syntax
To wrap it all up, lets summarize the Spacebars syntax:

Helper Description
{{myProperty}} The template helper can be a property from the template's

data context or a template helper function. If a helper
function and a property with the same name exist, the
template helper will use the helper function instead.

{{> myTemplate}} The inclusion helper is for a template and always
expects a template object or null.

{{> Template.dynamic
template=templateName
[data=dataContext]}}

With the {{> Template.dynamic ...}} helper,
you can render a template dynamically by providing
a template helper returning a template name for the
template parameter. When the helper would rerun and
return a different template name, it will replace the
template on this position with the new one.

{{#myBlockHelper}}

...
{{/myBlockHelper}}

A block helper that contains both HTML and the
Spacebars syntax.

By default, Spacebars comes with the following four default block helpers:

• {{#if}}..{{/if}}

• {{#unless}}..{{/unless}}

• {{#with}}..{{/with}}

• {{#each}}..{{/each}}

The {{#if}} block helper allows us to create simple conditions, as follows:

{{#if myHelperWhichReturnsABoolean}}
 <h1>Show me this</h1>
{{else}}
 If not show this.
{{/if}}

The {{#unless}} block helper works the same as {{#if}}, but with swapped logic.

The {{#with}} block, as seen earlier, will set a new data context to its content and
containing templates, and the {{#each}} block helper will render multiple times,
setting a different data context for each iteration.

Chapter 2

[39]

Accessing parent data contexts
To complete our journey through the Spacebars syntax, let's take a closer look at the
template helper syntax that we used to display data. As we've already seen, we can
display data using the double curly braces syntax, as follows:

{{myData}}

Inside this helper, we can access the properties of an object using the dot syntax:

{{myObject.myString}}

We can also access a parent data context using a path-like syntax:

{{../myParentsTemplateProperty}}

Additionally, we can move more than just one context up:

{{../../someParentProperty}}

This feature allows us to be very flexible about the data context.

If we want to do the same from inside a template helper, we can
use the Template API Template.parentData(n), where n is the
number of steps up to access the data context of parent templates.
Template.parentData(0) is the same as Template.
currentData(), or this if we are in a template helper.

Passing data to helpers
Passing data to helpers can be done in two different ways. We can pass arguments to
a helper as follows:

{{myHelper "A String" aContextProperty}}

Then, we can access it in the helper as follows:

Template.myTemplate.helpers({
 myHelper: function(myString, myObject){
 // And we get:
 // myString = 'aString'
 // myObject = aContextProperty
 }
});

Building HTML Templates

[40]

Besides this, we can pass data in the form of key-values:

{{myHelper myString="A String" myObject=aDataProperty}}

This time, however, we need to access them as follows:

Template.myTemplate.helpers({
 myHelper: function(Parameters){
 // And we can access them:
 // Parameters.hash.myString = 'aString'
 // Parameters.hash.myObject = aDataProperty
 }
});

Be aware that block and inclusion helpers act differently because they always expect
objects or key-values as arguments:

{{> myTemplate someString="I will be available inside the template"}}

// Or

{{> myTemplate objectWithData}}

If we want to pass only a single variable or value to an inclusion or block helper,
Meteor would objectify the argument, as we can see with the following code snippet:

{{#myBlock "someString"}}
...
{{/myBlock}}

We would then need to typecast the passed argument if we want to use it in a helper
function as follows:

Template.myBlock.helpers({
 doSomethingWithTheString: function(){
 // Use String(this), to get the string
 return this;
 }
});

Beisdes, we can also simply display the string in our block helper template using
{{Template.contentBlock}} as follows:

<template name="myBlock">
 <h1>{{this}}</h1>
 {{Template.contentBlock}}
</template>

Chapter 2

[41]

We can also pass another template helper as an argument to an inclusion or block
helper, as shown in the following example:

{{> myTemplate myHelperWhichReturnsAnObject "we pass a string and a
number" 300}}

Though passing data to template helpers and inclusion/block helpers are slightly
different, arguments can be quite flexible when using helpers to generate them.

Summary
Reactive templates are one of the most impressive features of Meteor, and once we get
used to them, we probably won't look back to manual DOM manipulation anymore.

After reading this chapter, we should know how to write and use templates in
Meteor. We should also understand its basic syntax and how to add templates.

We saw how to access and set data in templates and how to use helpers. We learned
about different types of helpers, such as inclusion helpers and block helpers. We also
built our own custom block helpers and used Meteor's default helpers.

We learned that templates have three different callbacks, for when the template gets
created, rendered, and destroyed.

We learned how to pass data to helpers, and how this differs in normal helpers and
block helpers.

To dig deeper, take a look at the following documentations:

• https://docs.meteor.com/#/full/templates_api

• https://www.meteor.com/blaze

• https://docs.meteor.com/#/full/blaze

• https://atmospherejs.com/meteor/spacebars

• http://momentjs.com

You can find this chapter's code examples either at https://www.packtpub.com/
books/content/support/17713 or on GitHub at https://github.com/frozeman/
book-building-single-page-web-apps-with-meteor/tree/chapter2.

With all this new knowledge about templates, we are ready to add data to our
database and see how we can display it in our home page.

https://docs.meteor.com/#/full/templates_api
https://www.meteor.com/blaze
https://docs.meteor.com/#/full/blaze
https://atmospherejs.com/meteor/spacebars
http://momentjs.com
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter2
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter2

Storing Data and
Handling Collections

In the previous chapter, we learned how to build templates and display data in them.
We built the basic layout of our app and listed some post examples on the front page.

In this chapter, we will add post examples persistently to our database on the server.
We will learn how we can access this data later on the client and how Meteor syncs
data between clients and the server.

In this chapter, we'll cover the following topics:

• Storing of data in Meteor
• Cresting collections
• Adding data to a collection
• Querying data from a collection
• Updating data in a collection
• What "database everywhere" means
• The difference between the server's and the client's databases

If you've jumped right into the chapter and want to follow the examples,
download the previous chapter's code examples from either the book's
web page at https://www.packtpub.com/books/content/
support/17713 or from the GitHub repository at https://github.
com/frozeman/book-building-single-page-web-apps-with-
meteor/tree/chapter2.
These code examples will also contain all the style files, so we don't have
to worry about adding CSS code along the way.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter2
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter2
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter2

Storing Data and Handling Collections

[44]

Meteor and databases
Meteor currently uses MongoDB by default to store data on the server, although
there are drivers planned for use with relational databases too.

If you are adventurous, you can try one of the community-built
SQL drivers, such as the numtel:mysql package from
https://atmospherejs.com/numtel/mysql.

MongoDB is a NoSQL database. This means it is based on a flat document
structure instead of a relational table structure. Its document approach makes
it ideal for JavaScript as documents are written in BJSON, which is very similar
to the JSON format.

Meteor has a database everywhere approach, which means that we have the same
API to query the database on the client as well as on the server. Yet, when we
query the database on the client, we are only able to access the data that we
published to a client.

MongoDB uses a data structure called collection, which is the equivalent of a
table in a SQL database. Collections contain documents, where each document
has its own unique ID. These documents are JSON-like structures and can
contain properties with values, even with multiple dimensions, as follows:

{
 "_id": "W7sBzpBbov48rR7jW",
 "myName": "My Document Name",
 "someProperty": 123456,
 "aNestedProperty": {
 "anotherOne": "With another string"
 }
}

These collections are used to store data in the server's MongoDB as well as the client-
side minimongo collection, which is an in-memory database mimicking the behavior
of the real MongoDB.

We'll discuss more about minimongo at the end of this chapter.

The MongoDB API allows us to use a simple JSON-based query language to get
documents from a collection. We can pass additional options to only ask for specific
fields or sort the returned documents. These are very powerful features, especially
on the client side, to display data in various ways.

https://atmospherejs.com/numtel/mysql

Chapter 3

[45]

Setting up a collection
To see all this in action, let's get right on it by creating our first collection.

We create a file called collections.js inside our my-meteor-blog folder. We need
to create it in the root folder so that it will be available on both the client and the
server. Now let's add the following line of code to the collections.js file:

Posts = new Mongo.Collection('posts');

This will make the Posts variable globally available, as we haven't used the var
keyword, which would restrict it to the scope of this file.

Mongo.Collection is the API used to query the database and it comes with the
following basic methods:

• insert: This method is used to insert documents into the database
• update: This method is used to update documents or parts of them
• upsert: This method is used to insert or update documents or parts of them
• remove: This method is used to delete documents from the database
• find: This method is used to query the database for documents
• findOne: This method is used to return only the first matched document

Adding post examples
To query the database for posts, we need to add some post examples. This has to be
done on the server, as we want to add them persistently. To add an example post,
perform the following steps:

1. We create a file called main.js inside our my-meteor-blog/server folder.
Inside this file, we will use the Meteor.startup() function to execute the
code on the start of the server.

2. We then add the post example, but only when the collection is empty. So to
prevent this, we add them every time we restart the server, as follows:
Meteor.startup(function(){

 console.log('Server started');

 // #Storing Data -> Adding post examples
 if(Posts.find().count() === 0) {

 console.log('Adding dummy posts');

www.allitebooks.com

http://www.allitebooks.org

Storing Data and Handling Collections

[46]

 var dummyPosts = [
 {
 title: 'My First entry',
 slug: 'my-first-entry',
 description: 'Lorem ipsum dolor sit amet.',
 text: 'Lorem ipsum dolor sit amet...',
 timeCreated: moment().subtract(7,'days').unix(),
 author: 'John Doe'
 },
 {
 title: 'My Second entry',
 slug: 'my-second-entry',
 description: 'Borem ipsum dolor sit.',
 text: 'Lorem ipsum dolor sit amet...',
 timeCreated: moment().subtract(5,'days').unix(),
 author: 'John Doe'
 },
 {
 title: 'My Third entry',
 slug: 'my-third-entry',
 description: 'Dorem ipsum dolor sit amet.',
 text: 'Lorem ipsum dolor sit amet...',
 timeCreated: moment().subtract(3,'days').unix(),
 author: 'John Doe'
 },
 {
 title: 'My Fourth entry',
 slug: 'my-fourth-entry',
 description: 'Sorem ipsum dolor sit amet.',
 text: 'Lorem ipsum dolor sit amet...',
 timeCreated: moment().subtract(2,'days').unix(),
 author: 'John Doe'
 },
 {
 title: 'My Fifth entry',
 slug: 'my-fifth-entry',
 description: 'Korem ipsum dolor sit amet.',
 text: 'Lorem ipsum dolor sit amet...',
 timeCreated: moment().subtract(1,'days').unix(),
 author: 'John Doe'
 }
];

Chapter 3

[47]

 // we add the dummyPosts to our database
 _.each(dummyPosts, function(post){
 Posts.insert(post);
 });
 }
});

Now, when check out the terminal, we should see something similar to the
following screenshot:

We can also add dummy data using the Mongo console instead of
writing it in our code.
To use the Mongo console, we start the Meteor server using $ meteor,
and then in a second terminal we run $ meteor mongo, which brings
us to a Mongo shell.
Here, we can simply add documents using MongoDB's syntax:
db.posts.insert({title: 'My First entry',
 slug: 'my-first-entry',
 description: 'Lorem ipsum dolor sit amet.',
 text: 'Lorem ipsum dolor sit amet...',
 timeCreated: 1405065868,
 author: 'John Doe'
})

Storing Data and Handling Collections

[48]

Querying a collection
The server did restart when we saved our changes. At this point, Meteor added five
post examples to our database.

If the server didn't restart, it means that we made a mistake in
the syntax somewhere in our code. When we manually reload
our browser or check out the terminal, we will see the error that
Meteor gives us and we can fix it.
In case we messed up something in the database, we can always
reset it using the $ meteor reset command in the terminal.

We can see these posts by simply opening up the console in our browser and typing
the following command:

Posts.find().fetch();

This will return an array with five items, each of them being one of our example posts.

To list these newly inserted posts in our front page, we need to replace the content
of our postsList helper in the home.js file with the following lines of code:

Template.home.helpers({
 postsList: function(){
 return Posts.find({}, {sort: {timeCreated: -1}});
 }
});

As we can see, we returned the collections cursor directly in the helper. This return
value then gets passed to the {{#each}} block helper in our home template, which
will then iterate over each post while rendering the postInList template.

Note that Posts.find() returns a cursor, which is more efficient when
used in an {{#each}} block helper, whereas Posts.find().fetch()
will return an array with the document objects. Using fetch(), we can
manipulate the documents before returning them.

We pass an options object as the second parameter to the find() function. The option
we are passing will sort the result based on timeCreated and -1. The -1 value means
it will be sorted in descending order (1 means ascending order).

Chapter 3

[49]

Now, when we check out our browser, we will see that all of our five posts are listed,
as shown in the following screenshot:

Updating a collection
Now that we know how to insert and fetch data, let's take a look at how to update
data in our database.

As we've already seen before, we can use the console of our browser to play with
the database. For our next examples, we will use only the console to see how Meteor
reactively changes the templates when we change data.

To be able to edit a post in our database, we first need to know the _id field of its
entry. To find this out, we need to type the following command:

Posts.find().fetch();

Storing Data and Handling Collections

[50]

This will return us all the documents in the Posts collection, as we are not passing
any specific query object.

In the returned array, we need to take a look at the last item, with the My Fifth entry
title, and copy the _id field to the clipboard using Cmd + C (or Ctrl + C if we're on
Windows or Linux).

We can also simply use Posts.findOne(), which will give us
the first document it finds.

Now that we have _id, we can simply update the title of our fifth post by typing the
following command:

Posts.update('theCopied_Id', {$set: {title: 'Wow the title changed!'}});

As soon as we execute this command, we will notice that the title of the fifth post
has changed to our new title, and if we now reload the page we will see that the title
stays the same. This means the change was persistently made to the database.

To see Meteor's reactivity across clients, open up another browser window and
navigate to http://localhost:3000. When we now change our title again by
executing the following command, we will see that all the clients get updated
in real time:

Posts.update('theCopied_Id', {$set: {title: 'Changed the title again'}});

Database everywhere
In Meteor, we can use the browser console to update data, which means that we can
update the database from the client. This works because Meteor automatically syncs
these changes to the server and updates the database accordingly.

This happens because we have the autopublish and insecure core packages
added to our project by default. The autopublish package automatically publishes
all documents to every client, whereas the insecure package allows every client to
update database records by its _id field. Obviously, this works well for prototyping
but is infeasible for production, as every client can manipulate our database.

If we remove the insecure package, we will need to add "allow and deny" rules to
determine what a client is allowed to update and what they are not; otherwise, all
updates will get denied. We will take a look at setting these rules in a later chapter, but
for now this package serves us well, as we can immediately manipulate the database.

Chapter 3

[51]

In the next chapter, we will see how to manually publish only certain documents to a
client. We will start that by removing the autopublish package.

Differences between client and server
collections
Meteor has a database everywhere approach. This means it provides the same API on
the client as well as on the server. The data flow is controlled using a publication
subscription model.

On the server sits the real MongoDB database, which stores data persistently.
On the client, Meteor has a package called minimongo, which is a pure in-memory
database mimicking most of MongoDB's query and update functions.

Every time a client connects to its Meteor server, Meteor downloads the documents
that the client has subscribed to and stores them in its local minimongo database.
From here, they can be displayed in a template or processed by functions.

When the client updates a document, Meteor syncs it back to the server, where it
is passed through any allow/deny functions before being persistently stored in
the database. This also works the other way; when a document in the server-side
database changes, it will automatically sync to every client that is subscribed to it,
keeping every connected client up to date.

Summary
In this chapter, we learned how to store data persistently in Meteor's MongoDB
database. We also saw how we can query collections and update documents.
We understood what the "database everywhere" approach means and how
Meteor keeps every client up to date.

To dig deeper into MongoDB and to query and update collections, take a look at
the following resources:

• https://www.meteor.com/full-stack-db-drivers

• https://www.meteor.com/mini-databases

• https://docs.meteor.com/#/full/collections

• http://docs.mongodb.org/manual/core/crud-introduction/

• http://docs.mongodb.org/manual/reference/operator/query/

https://www.meteor.com/full-stack-db-drivers
https://www.meteor.com/mini-databases
https://docs.meteor.com/#/full/collections
http://docs.mongodb.org/manual/core/crud-introduction/
http://docs.mongodb.org/manual/reference/operator/query/

Storing Data and Handling Collections

[52]

You can find this chapter's code examples either at https://www.packtpub.com/
books/content/support/17713 or on GitHub at https://github.com/frozeman/
book-building-single-page-web-apps-with-meteor/tree/chapter3.

In the next chapter, we will see how to control the data flow using publications and
subscriptions so that we send only the necessary documents to the clients.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter3
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter3

Controlling the Data Flow
In the previous chapter, we learned how to store data in our database persistently.
In this chapter, we will take a look at how we can tell Meteor what to send to
the clients.

Until now, this all worked magically because we used the autopublish package,
which synced all of the data with every client. Now, we will control this flow
manually, sending only the necessary data to the client.

In this chapter, we'll cover the following topics:

• Synchronizing data with the server
• Publishing data to clients
• Publishing partial collections
• Publishing only the specific fields of documents
• Lazy loading more posts

If you want to jump right into the chapter and follow the examples,
download the previous chapter's code examples from either the
book's web page at https://www.packtpub.com/books/
content/support/17713, or from the GitHub repository at
https://github.com/frozeman/book-building-single-
page-web-apps-with-meteor/tree/chapter3.
These code examples will also contain all the style files, so we don't
have to worry about adding CSS code along the way.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter3
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter3

Controlling the Data Flow

[54]

Syncing data – the current Web versus
the new Web
In the current Web, most pages are either static files hosted on a server or
dynamically generated by a server on a request. This is true for most server-side-
rendered websites, for example, those written with PHP, Rails, or Django. Both of
these techniques required no effort besides being displayed by the clients; therefore,
they are called thin clients.

In modern web applications, the idea of the browser has moved from thin clients to
fat clients. This means most of the website's logic resides on the client and the client
asks for the data it needs.

Currently, this is mostly done via calls to an API server. This API server then returns
data, commonly in JSON form, giving the client an easy way to handle it and use
it appropriately.

Most modern websites are a mixture of thin and fat clients. Normal pages are
server-side-rendered, where only some functionality, such as a chat box or news
feed, is updated using API calls.

Meteor, however, is built on the idea that it's better to use the calculation power of
all clients instead of one single server. A pure fat client or a single-page app contains
the entire logic of a website's frontend, which is send down on the initial page load.

The server then merely acts as a data source, sending only the data to the clients.
This can happen by connecting to an API and utilizing AJAX calls, or as with Meteor,
using a model called publication/subscription. In this model, the server offers a
range of publications and each client decides which dataset it wants to subscribe to.

Compared with AJAX calls, the developer doesn't have to take care of any
downloading or uploading logic. The Meteor client syncs all of the data automatically
in the background as soon as it subscribes to a specific dataset. When data on the server
changes, the server sends the updated documents to the clients and vice versa, as
shown in the following diagram:

Client

Collection 1

Initial page load

Subscriptions
Collection 2

MongoDB

Server

Chapter 4

[55]

If this does sound insecure, be assured that we can set rules that filter
changes on the server side. We will take a look at these possibilities in
Chapter 8, Security with the Allow and Deny Rules.

Removing the autopublish package
To work with Meteor's publications/subscriptions, we need to remove the
autopublish package, which was added by default to our project.

This package is useful for rapid prototyping, but infeasible in production since
all of the data in our database would be synced to all the clients. This is not only
insecure but also slows down the data loading process.

We just run the following command from inside our my-meteor-blog folder on
the terminal:

$ meteor remove autopublish

Now we can run meteor again to start our server. When we check out the website,
we will see that all our posts from the previous chapter are gone.

They are not really gone, however. The current server just didn't publish any yet,
and the client just didn't subscribe to any; therefore, we can't see them.

Publishing data
In order to access the post on the client again, we need to tell the server to publish it
to subscribing clients.

To do so, we will create a file called publications.js inside the my-meteor-blog/
server folder and add the following lines of code:

Meteor.publish('all-posts', function () {
 return Posts.find();
});

The Meteor.publish function will create a publication called all-posts and return
a cursor with all the posts from the Post collection in that publication.

Now, we only have to tell the client to subscribe to this publication and we will see
our posts again.

www.allitebooks.com

http://www.allitebooks.org

Controlling the Data Flow

[56]

We create a file called subscriptions.js inside the my-meteor-blog/client folder
with the following content:

Meteor.subscribe('all-posts');

Now, when we check out our website, we can see that our blog posts have reappeared.

This happens because the client will subscribe to the all-posts publication when
the subsciptions.js file is executed, which happens right before the page is fully
loaded, as Meteor adds the subsciptions.js file automatically to the head of the
document for us.

This means that the Meteor server sends the website first and the JavaScript builds
the HTML on the client; then, all the subscriptions get synced, which populate the
client's collections, and the template engine, Blaze, can display the posts.

Now that we have our posts back, let's see how we can tell Meteor to send only
a subset of the documents from the collection.

Publishing only parts of data
To make our front page future-ready, we will need to limit the amount of posts shown
on it, as we will probably have a lot of posts added with time.

For this, we will create a new publication called limited-posts, where we can pass
a limit option to the posts' find() function and add it to our publications.js file,
as follows:

Meteor.publish('limited-posts', function () {
 return Posts.find({}, {
 limit: 2,
 sort: {timeCreated: -1}
 });
});

We add a sort option, with which we sort the posts in descending order on the
timeCreated field. This is necessary to ensure that we get the latest posts and then
limit the output. If we only sort the data on the client, it might happen that we leave
out newer posts, as the server publication would send only the first two documents
it found, regardless of whether they are the latest ones or not.

Now we just have to go to subscriptions.js and change the subscription to the
following line of code:

Meteor.subscribe('limited-posts');

Chapter 4

[57]

If we check out our browser now, we will see that only the last two posts appear on
our front page, since we only subscribed to two, as shown in the following screenshot:

We must be aware that if we keep the code for the old subscription
alongside the code for the new subscription, we will subscribe to both.
This means Meteor merges both subscriptions and therefore keeps all
the subscribed documents in our client-side collections.
We need to either comment out the old subscription or remove it before
adding the new one.

Controlling the Data Flow

[58]

Publishing specific fields
To improve publications, we can also determine which fields we want to publish
from the document. For example, we can only ask for the title and text properties
instead of all other properties.

This speeds up the synchronization of our subscriptions since we don't require the
whole post but only the necessary data and short descriptions when listing posts on
the front page.

Let's add another publication to our publications.js file:

Meteor.publish('specificfields-posts', function () {
 return Posts.find({}, {
 fields: {
 title: 1
 }
 });
});

As this is just an example, we pass an empty object as a query to find all the
documents, and as the second parameter to find(), we pass an options object
containing the fields object.

Every field that we give a value of 1 will be included in the returned document.
If we rather want to work by excluding fields, we can use the field name and set
the value to 0. However, we can't use both including and excluding fields, so we
need to choose what fits better, depending on the document size.

Now we can simply change the subscription in our subscriptions.js file to the
following line of code:

Meteor.subscribe('specificfields-posts');

Chapter 4

[59]

Now, when we open the browser, it will present us with a list of our posts. Only the
titles are present and the description, time, and author fields are empty:

Controlling the Data Flow

[60]

Lazy loading posts
Now that we've gone through these simple examples, let's put them all together and
add a nice lazy load feature to our posts' list on the front page.

Lazy loading is a technique that loads additional data only when the user desires it
or when they scroll to the end. This can be used to increase page load, since the data
to be loaded is limited. To do this, let's perform the following steps:

1. We need to add a lazy load button to the bottom of the list of posts on
the front page. We go to our home.html file and add the following button
at the end of our home template, right below the {{#each postsList}}
block helper:
<button class="lazyload">Load more</button>

2. Next, we will add the publication that will send a flexible number of posts
to our publications.js file, as follows:

Meteor.publish('lazyload-posts', function (limit) {
 return Posts.find({}, {
 limit: limit,
 fields: {
 text: 0
 },
 sort: {timeCreated: -1}
 });
});

Basically, it's a combination of what we learned earlier.

• We used the limit option, but instead of setting a fixed number, we used
the limit parameter, which we will later pass to this publication function.

• Previously, we used the fields option and excluded the text field.
• We can just include fields to get the same result. This will be safer, as

it ensures that we won't get any extra fields in case the documents get
extended:
fields: {
 title: 1,
 slug: 1,
 timeCreated: 1,
 description: 1,
 author: 1
}

• We sorted the output to make sure we are always returning the latest posts.

Chapter 4

[61]

Now that we have set our publication, let's add a subscription so that we can receive
its data.

Be aware that we need to remove any other subscription beforehand
so that we are not subscribing to any other publication.

To do this, we need to make use of Meteor's session object. This object can be
used on the client side to set variables reactively. This means every time we change
this session's variable, it will run every function that uses it again. In the following
example, we will use the session to increase our posts' lists' number when clicking
on the lazy load button:

1. First, in the subscription.js file, we add the following lines of code:
Session.setDefault('lazyloadLimit', 2);
Tracker.autorun(function(){
Meteor.subscribe('lazyload-posts', Session.get('lazyloadLimit'));
});

2. Then we set the lazyloadLimit session variable to 2, which will be the
initial number of posts shown on the front page.

3. Next, we create a Tracker.autorun() function. This function will run at
the start time and later at any time when we change the lazyloadLimit
session variable to another value.

4. Inside this function, we subscribe to lazyload-posts, giving the
lazyloadLimit value as a second parameter. This way, every time the
session variable changes, we change our subscription with a new value.

5. Now we only need to increase the session value by clicking on the lazy
load button and the subscription will change, sending us additional posts.
To do this, we add the following lines of code to our home.js file at the end:
Template.home.events({
 'click button.lazyload': function(e, template){
 var currentLimit = Session.get('lazyloadLimit');

 Session.set('lazyloadLimit', currentLimit + 2);
 }
});

This code will attach a click event to the lazy load button. Every time
we click on this button, we get the lazyloadLimit session and it increases
by two.

Controlling the Data Flow

[62]

6. When we check out our browser, we should be able to click on the lazy
load button at the bottom of our posts list and it should add two more
posts. This should happen every time we click on the button until we
reach our five example posts.

This doesn't make much sense when we have only five posts, but when there are
more than 50 posts, limiting the initially shown posts to 10 will noticeably speed up
page loading time.

We then need to change only the session's default value to 10 and increase it by 10,
and we have a nice lazy loading effect.

Switching subscriptions
Now that we have the nice logic of lazy loading in place, let's take a look at what
happens here under the hood.

The .autorun() function , which we created earlier, will run the first time the code
gets executed, subscribing us to the lazyload-posts publication. Meteor then sends
the first two documents of the Posts collection, as the limit we first sent is 2.

The next time we change the lazyloadLimit session, it changes the subscription by
changing the limit to the value we passed to the publication function.

Meteor then checks which documents exist in our client-side database in the
background and requests to download the missing ones.

This will also work the other way when we decrease the session value. Meteor removes
the documents that don't match the current subscription/subscriptions.

So, we can try this; we open the console of our browser and set the session limit to 5:

Session.set('lazyloadLimit', 5);

This will immediately display all five example posts in our list. When we now set it
back to a smaller value, we will see how they are removed:

Session.set('lazyloadLimit', 2);

To ensure that they are gone, we can query our local database to check, as follows:

Posts.find().fetch();

Chapter 4

[63]

This will return us an array of two items, showing that Meteor removed the posts
that we are not subscribing to anymore, as shown in the following screenshot:

Controlling the Data Flow

[64]

Some notes on data publishing
The publication and subscription model makes it fairly easy to receive and send
data to the client, but as with every call to the server, sending and requesting
data is expensive, as the server and the client both have to process the requests.
Therefore, keep a few things in mind when building an app:

• Subscribe only to the documents that are necessary to make up the screen.
• Avoid sending fields with large content when we don't need them. This keeps

our data stream leaner and faster.
• If we're using limit or skip in our publication, we need to make sure we're

sorting it on the server so that we get the required data first and not some
wrong tail of it.

You also should be aware that the Meteor.publish() function is not reactive.
This means you can't use make one cursor depending on the result of another one,
like you would mostly do on the client. For example, the following code snippet
will not work, as it will never rerun when the comment count in the Posts
collection changes:

Meteor.publish('comments', function (postId) {
 var post = Posts.find({_id: postId});

 return Comments.find({_id: {$in: post.comments}});
});

To solve this, you can either publish posts and comments separately and connect them
in the client or use a third-party package, which allows for reactive publications such
as the great reywood:publish-composite package at https://atmospherejs.com/
reywood/publish-composite.

Note that the only case where the Meteor.publish() function
reruns is when the current user changes so that this.userId
which is accessible in this function will change.

https://atmospherejs.com/reywood/publish-composite
https://atmospherejs.com/reywood/publish-composite

Chapter 4

[65]

Summary
In this chapter, we created a few publications and subscribed to them. We used the
fields and limit options to modify the number of published documents and created
a simple lazy load logic for the front page of our blog.

To dig deeper into what we learned, we can take a look at Chapter 3, Storing Data and
Handling Collections. While the following Meteor documentation will give us details
about the options we can use in the collections find() functions:

• https://www.meteor.com/livequery

• https://www.meteor.com/ddp

• https://docs.meteor.com/#/full/publishandsubscribe

• https://docs.meteor.com/#/full/collections

You can find this chapter's code examples at https://www.packtpub.com/books/
content/support/17713 or on GitHub at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/chapter4.

In the next chapter, we will give our app what makes a real app—different pages
and routes.

https://www.meteor.com/livequery
https://www.meteor.com/ddp
https://docs.meteor.com/#/full/publishandsubscribe
https://docs.meteor.com/#/full/collections
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter4
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter4

Making Our App Versatile
with Routing

Since we've made it to this chapter, we should already have a good understanding
of Meteor's template system and how data synchronization between a server and
clients works. After digesting this knowledge, let's get back to the fun part and make
our blog a real website with different pages.

You might ask, "What do pages do in a single-page app?" The term "single page" is a bit
confusing, as it doesn't mean that our app consists of only one page. It's rather a term
derived from the current way of doing things, as there is only one page sent down from
the server. After that, all the routing and paging happens in the browser. There aren't
any pages requested from the server itself anymore. A better term here would
be "client-side web application," though single page is the current used name.

In this chapter, we will cover the following topics:

• Writing routes for our static and dynamic pages
• Changing subscriptions based on routes
• Changing the title of the website for each page

So let's not waste time and get started by adding the iron:router package.

If you've jumped right into the chapter and want to follow the examples,
download the previous chapter's code examples from either the book's
web page at https://www.packtpub.com/books/content/
support/17713 or from the GitHub repository at https://github.
com/frozeman/book-building-single-page-web-apps-with-
meteor/tree/chapter4.
These code examples will also contain all the style files, so we don't have
to worry about adding CSS code along the way.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter4
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter4
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter4

Making Our App Versatile with Routing

[68]

Adding the iron:router package
Routes are the URLs of a specific page in our app. In a server-side-rendered app,
routes are defined either by the server's/framework's configuration or the folder
structure on the server.

In a client-side app, routes are simply paths that the app will use to determine
which pages to render.

The steps to perform inside the client are as follows:

1. The website is sent down to the client.
2. The JavaScript file (or files) is loaded and parsed.
3. The router code will check which current URL it is on and run the correct

route function, which will then render the right templates.

To use routes in our app, we will make use of the
iron:router package, a router specifically written
for Meteor, which makes it easy to set up routes and
combine them with subscriptions.

4. To add the package, we cancel any running Meteor instance, go to our
my-meteor-blog folder, and type the following command:
$ meteor add iron:router

5. If we are done with this, we can start Meteor again by running the
$ meteor command.

When we go back to the console of our browser, we will see an error saying: Error:
Oh no! No route found for path: "/". Don't worry; we will deal with this in
the next section.

Setting up the router
In order to use the router, we need to set it up. To keep our code organized, we will
create a file called routes.js directly in the root of our my-meteor-blog folder with
the following code:

Router.configure({
 layoutTemplate: 'layout'
});

Chapter 5

[69]

The router configuration allows you to define the following default templates:

layoutTemplate The layout template will be used as the main
wrapper. Here, subtemplates will be rendered in the
{{> yield}} placeholder, which has to be placed
somewhere in the template.

notFoundTemplate This template will be rendered if the current URL has
no defined route.

loadingTemplate This template will be shown when subscriptions for
the current route are loading.

For our blog, we will just define the layoutTemplate property for now.

Perform the following steps to set up the router:

1. To create our first route, we need to add the following lines of code to the
route.js file:
Router.map(function() {

 this.route('Home', {
 path: '/',
 template: 'home'
 });

});

You can also name the Home route as home (in lowercase). Then
we can leave the manual template definition out, as iron:router
will look automatically for a template called home for that route.
For simplicity, we define the template manually to keep all routes
consistent throughout the book.

2. If we now save this file and get back to our browser, we will see the layout
template rendered twice. This happens not because iron:router adds
layoutTemplate by default to the body of our app, but because we added
it manually as well as by using {{> layout}} in index.html, it gets
rendered twice.

To prevent the double appearance of the layout template, we need to remove the
{{> layout}} helper from the <body> tag inside our index.html file.

When we check out the browser, we will now see the layout template rendered
only once.

Making Our App Versatile with Routing

[70]

Switching to a layout template
Even though we passed a template to our Home route using template: home,
we are not rendering this template dynamically; we are just showing the layout
template with its hardcoded subtemplates.

To change this, we need to replace the {{> home}} inclusion helper inside our
layout template with {{> yield}}.

The {{> yield}} helper is a placeholder helper provided by iron:router,
where route templates get rendered.

After doing this, when we check out the browser, we shouldn't see any change,
as we are still rendering the home template, but this time dynamically. Then we
proceed as follows:

1. In order to see whether this is true, we will add a not found template to
our app, by adding the following template to our layout.html file after
the layout template:
<template name="notFound">
 <div class="center">
 <h1>Nothing here</h1>

 <h2>You hit a page which doesn't exist!</h2>
 </div>
</template>

2. Now we need to add the notFoundTemplate property to the Router.
configure() function of route.js:
Router.configure({
 layoutTemplate: 'layout',
 notFoundTemplate: 'notFound'
});

Chapter 5

[71]

When we now navigate to http://localhost:3000/doesntexist in our browser,
we will see the notFound template being rendered instead of our home template:

If we click on the Home link in the main menu, we will get back to our front page,
as this link was navigating to "/". We have successfully added our first route.
Now let's move on to create the second route.

Adding another route
Having a front page doesn't make a real website. Let's add a link to our About page,
which has been in our drawer since Chapter 2, Building HTML Templates.

To do this, just duplicate the Home route and change the values to create an About
route, as follows:

Router.map(function() {

 this.route('Home', {
 path: '/',
 template: 'home'
 });

Making Our App Versatile with Routing

[72]

 this.route('About', {
 path: '/about',
 template: 'about'
 });
});

That's it!

Now, when we go back to our browser, we can click on the two links in the
main menu to switch between our Home and About pages, and even typing
in http://localhost:3000/about will bring us straight to the corresponding
page, as shown in the following screenshot:

Moving the posts subscription to the
Home route
In order to load the right data for each page, we need to have the subscription in the
routes instead of keeping it in the separate subscriptions.js file.

The iron:router has a special function called subscriptions() , which is ideal for
that purpose. Using this function, we can reactively update subscriptions belonging
to a specific route.

Chapter 5

[73]

To see it in action, add the subscriptions() function to our Home route:

this.route('Home', {
 path: '/',
 template: 'home',

 subscriptions: function(){
 return Meteor.subscribe("lazyload-posts", Session.
get('lazyloadLimit'));
 }
});

The Session.setDefault('lazyloadLimit', 2) line from the
subscriptions.js file needs to be placed at the start of the routes.js
file and before the Router.configure() function:

if(Meteor.isClient) {
 Session.setDefault('lazyloadLimit', 2);
}

This has to wrapped inside the if(Meteor.isClient){} condition, as the session
object is only available on the client.

The subscriptions() function is reactive like the Tracker.autorun() function
we used before. This means it will rerun and change the subscription when the
lazyloadLimit session variable changes.

In order to see it working, we need to delete the my-meteor-blog/client/
subscriptions.js file, so there are not two points where we subscribe to the
same publication.

When we now check the browser and refresh the page, we will see the home template
still shows all the example posts. Clicking on the lazy-load button increases the
number of posts listed, though this time everything happens through our reactive
subscriptions() function.

The iron:router comes with more hooks, which you
can find as a short list in the Appendix.

To complete our routes, we only need to add the post routes, so we can click on a
post and read it in full detail.

Making Our App Versatile with Routing

[74]

Setting up the post route
To be able to show a full post page, we need to create a post template, which can be
loaded when the user clicks on a post.

We create a file called post.html inside our my-meteor-blog/client/templates
folder with the following template code:

<template name="post">
 <h1>{{title}}</h1>
 <h2>{{description}}</h2>

 <small>
 Posted {{formatTime timeCreated "fromNow"}} by {{author}}
 </small>

 <div class="postContent">
 {{#markdown}}
{{text}}
 {{/markdown}}
 </div>
</template>

This simple template displays all the information of a blog post and even reuses our
{{formatTime}} helper we created earlier in this book from our template-helper.
js file. We used this to format at the time the post was created.

We can't see this template yet, as we first have to create a publication and route for
this page.

Creating a single-post publication
In order to show the full post's data in this template, we need to create another
publication that will send the complete post document to the client.

To do so, we open our my-meteor-blog/server/publication.js file and add the
following publication:

Meteor.publish("single-post", function(slug) {
 return Posts.find({slug: slug});
});

The slug parameter, which has been used here, will be later provided from
our subscription method so that we can use the slug parameter to reference
the correct post.

Chapter 5

[75]

A slug is a document title, which is formatted in a way that is usable
in a URL. Slugs are better than just appending the document ID to the
URL, as they are readable and understandable by visitors. They are
also an important part of a good SEO.
So that we can use slugs, every slug has to be unique. We will take
care of that when we create the posts.

Assuming that we pass the right slug such as my-first-entry, this publication will
send down the post containing this slug.

Adding the post route
In order for this route to work, it needs to be dynamic because every linked URL has
to be different for each post.

We will also render a loading template until the post is loaded. To start, we add the
following template to our my-meteor-blog/client/templates/layout.html:

<template name="loading">
 <div class="center">
 <h1>Loading</h1>
 </div>
</template>

Additionally, we have to add this template as the default loading template to our
Router.configure() call in the routes.js:

Router.configure({
 layoutTemplate: 'layout',
 notFoundTemplate: 'notFound',
 loadingTemplate: 'loading',
 ...

We then add the following lines of code to our Router.map() function to create a
dynamic route:

this.route('Post', {
 path: '/posts/:slug',
 template: 'post',

 waitOn: function() {
 return Meteor.subscribe('single-post', this.params.slug);
 },

Making Our App Versatile with Routing

[76]

 data: function() {
 return Posts.findOne({slug: this.params.slug});
 }
});

The '/posts/:slug' path is a dynamic route, where :slug can be anything
and will be passed to the routes functions as this.params.slug. This way we
can simply pass the given slug to the single-post subscription and retrieve the
correct document for the post matching this slug.

The waitOn() function works like the subscriptions() function, though will
automatically render loadingTemplate, we set in the Router.configure()
until the subscriptions are ready.

The data() function in this route will set the data context of the post template.
We basically look in our local database for a post containing the given slug from
the URL.

The findOne() method of the Posts collection works like find(),
but returns only the first found result as a JavaScript object.

Let's sum up what happens here:

1. The route gets called (through a clicked link or by reloading of the page).
2. The waitOn() function will then subscribe to the right post identified by

the given slug parameter, which is a part of the URL.
3. Because of the waitOn() function, the loadingTemplate will be rendered

until the subscription is ready. Since this will happen very fast on our local
machine, so we probably won't see the loading template at all.

4. As soon as the subscription is synced, the template gets rendered.
5. The data() function will then rerun, setting the data context of the template

to the current post document.

Now that the publication and the route are ready, we can simply navigate to
http://localhost:3000/posts/my-first-entry and we should see the
post template appear.

Chapter 5

[77]

Linking the posts
Although we've set up the route and subscription, we can't see it work, as we need
the right links to the posts. As each of our previously added example posts already
contains a slug property, we just have to add them to the links to our posts in the
postInList template. Open the my-meteor-blog/client/templates/postInList.
html file and change the link as follows:

<h2>{{title}}</h2>

Finally, when we go to our browser and click on the title of a blog post, we get
redirected to a page that shows the full post entry, like the entry shown in the
following screenshot:

Making Our App Versatile with Routing

[78]

Changing the website's title
Now that we have the routes of our posts working, we are only missing the right
titles being displayed for each page.

Sadly, <head></head> is not a reactive template in Meteor, where we could let
Meteor do the work of changing titles and meta tags.

It is planned to make the head tag a reactive template,
but probably not before version 1.0.

To change the document title, we need to come up with a different way of changing
it, based on the current route.

Luckily, iron:router has the onAfterAction() function, which can also be used
in the Router.configure() function to run before every route. In this function, we
have access to the data context of the current route, so we can simply set the title
using native JavaScript:

Router.configure({
 layoutTemplate: 'layout',
 notFoundTemplate: 'notFound',

 onAfterAction: function() {
 var data = Posts.findOne({slug: this.params.slug});

 if(_.isObject(data) && !_.isArray(data))
 document.title = 'My Meteor Blog - '+ data.title;
 else
 document.title = 'My Meteor Blog - '+ this.route.
getName();
 }
});

Using Posts.findOne({slug: this.params.slug}), we get the current post
of the route. We then check whether it's an object; if so, we add the post title to the
title metatag. Otherwise, we just take the route name.

Doing this in Router.configure() will call the onAfterAction for every route.

Chapter 5

[79]

If we now take a look at our browser's tab, we will see that the title of our website
changes when we move throughout the website:

If we want to make our blog cooler, we can add the mrt:iron-
router-progress package. This will add a progress bar at the
top of our pages when changing routes. We just need to run the
following command from our app's folder:
$ meteor add mrt:iron-router-progress

Summary
That's it! Our app is now a fully working website with different pages and URLs.

In this chapter, we learned how to set up static and dynamic routes. We moved
our subscriptions to the routes so that they change automatically, based on the
route's needs. We also used slugs to subscribe to the right posts and displayed
them in the post template. Finally, we changed our website's title so that it
matches the current route.

To learn more about iron:router, take a look at its documentation at
https://github.com/EventedMind/iron-router.

You can find this chapter's code examples either at https://www.packtpub.com/
books/content/support/17713 or on GitHub at https://github.com/frozeman/
book-building-single-page-web-apps-with-meteor/tree/chapter5.

In the next chapter, we will take a deeper look at Meteor's session object.

https://github.com/EventedMind/iron-router
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter5
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter5

Keeping States with Sessions
We already used Meteor's session object when we implemented our lazy load
technique in an earlier chapter. In this chapter, we want to take a deeper look at
it and learn how it can be used to create template-specific reactive functions.

In this chapter, we will cover the following topics:

• What sessions are
• How hot code pushes affect sessions
• Rerunning template helpers using sessions
• Rerunning functions
• Creating template-specific reactive functions

If you've jumped right into the chapter and want to follow the
examples, download the previous chapter's code examples from
either the book's web page at https://www.packtpub.com/
books/content/support/17713 or from the GitHub repository
at https://github.com/frozeman/book-building-
single-page-web-apps-with-meteor/tree/chapter5.
These code examples will also contain all the style files, so we don't
have to worry about adding CSS code along the way.

Meteor's session object
The Session object provided by Meteor is a reactive data source and serves mainly
to preserve global states throughout hot code reloads, though it won't preserve its
data when the page is manually reloaded, making it different from PHP sessions.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter5
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter5

Keeping States with Sessions

[82]

A hot code reload happens when we upload new code
and the server pushes those updates to all clients.

The Session object is a reactive data source. This means wherever this session variable
is used in a reactive function, it will rerun that function when its value changes.

One use of the session variable can be to maintain global states of our app, for example,
to check whether the user has their sidebar visible or not.

The session object is not useful for simple data communication between templates
and other parts of the app, as maintaining this would quickly become a nightmare
and naming collisions could occur.

A better way for simple reactivity
If we wanted to use something for intra-app communication, it's better to use Meteors
reactive-var package, which comes with a Session like ReactiveVar object.

To use it, we can simply add it using $ meteor add reactive-var.

This object then needs to be instantiated and comes with a reactive get() and set()
function like the session object:

Var myReactiveVar = new ReactiveVar('my initial value');

// now we can get it in any reactive function
myReactiveVar.get();

// and set it, to rerun depending functions
myReactiveVar.set('my new value');

For more custom reactivity, we can build our own custom reactive object
using Meteor's Tracker package. To read more about this, refer to Chapter 9,
Advanced Reactivity.

For reactive variables that are tied to a specific template
instance, check out my frozeman:template-var
package at https://atmospherejs.com/frozeman/
template-var.

https://atmospherejs.com/frozeman/template-var
https://atmospherejs.com/frozeman/template-var

Chapter 6

[83]

Using sessions in template helpers
As all template helper functions are reactive functions, a good place to use a session
object is inside such a helper.

Reactive means that when we use a reactive object inside this function, that function
will rerun when the reactive object changes, additionally rerendering this part of
the template.

Template helpers are not the only reactive functions; we can also
create our own using Tracker.autorun(function(){…}),
as we saw in earlier chapters.

To demonstrate the usage of sessions in a template helper, perform the following steps:

1. Let's open our my-meteor-blog/client/templates/home.js file and
add the following helper code anywhere in the file:
Template.home.helpers({
 //...
 sessionExample: function(){
 return Session.get('mySessionExample');
 }
});

This creates the sessionExample helper, which returns the value of the
mySessionExample session variable.

2. Next, we need to add this helper to our home template itself by opening
the my-metepr-blog/client/templates/home.html file and adding
the helper above our {{#each postsList}} block helper:
<h2>This comes from our Session: {{sessionExample}}</
strong></h2>

3. Now, let's open up our browser at http://localhost:3000. We will see
the static text we add appearing in our blog's home page. Yet, to see Meteor's
reactive session at work, we need to open up the browser's console and type
the following line of code:
Session.set('mySessionExample', 'I just set this.');

Keeping States with Sessions

[84]

This is illustrated in the following screenshot:

Immediately after we pressed Enter, we saw the text added to our template. This is
because when we call Session.set('mySessionExample', ...), Meteor will rerun
every reactive function wherein we called Session.get('mySessionExample')
before. For template helpers, this will rerun only this specific template helper,
rerendering only this part of the template.

We can try this by setting different values for the mySessionExample session variable
so that we can see how the text will change at all times.

Session and hot code pushes
A hot code push is when we change files and the Meteor server pushes these changes
to the clients. Meteor is smart enough to reload the page, without losing the values
of HTML forms or sessions. Therefore, sessions can be used to keep user states
consistent over hot code pushes.

Chapter 6

[85]

In order to see this, we set the value of mySessionExample to anything we want and
see the website updating to this value.

When we now go to our home.html file and make a minor change, for example,
removing around the {{sessionExample}} helper and saving the file,
we see that our sessions state is kept, even though the page reloads with the new
changed template. This is demonstrated in the following screenshot:

If we manually reload the page using the browser's refresh button, the
session will not be able to persist the change and the text will disappear.
To overcome this limitation, there are many packages in Meteor's
package repository that reactively store data in the browser's
local storage to persist across page reloads. One of them is called
persistent-session and can be found at http://atmospherejs.
com/package/persistent-session.

http://atmospherejs.com/package/persistent-session
http://atmospherejs.com/package/persistent-session

Keeping States with Sessions

[86]

Rerunning functions reactively
To rerun functions based on session changes, Meteor provides the Tracker.autorun()
function, which we used before to change the lazy load subscription.

The Tracker.autorun() function will make every function we pass to it reactive.
To see a simple example, we will create a function that will alert a text every time
the function reruns.

The Tracker package is what the session uses under the hood to
make the reactivity work. In Chapter 9, Advanced Reactivity, we will
take a deeper look at this package.

Perform the following steps to rerun functions reactively:

1. Let's create a new file called main.js, but this time in the root of the my-
meteor-blog folder, with the following content:
if(Meteor.isClient) {

 Tracker.autorun(function(){
 var example = Session.get('mySessionExample');
 alert(example);
 });
}

We will need the main.js file in later chapters. Therefore, we created
it in the root folder, making it accessible on the client and the server.
However, as Meteor's session object is only available on the client,
we will use the if(Meteor.isClient) condition in order to execute
the code only on the client.

When we now check out our browser, we will see an alert that displays
undefined. This is because the function passed to Tracker.autorun()
will also run when the code is executed, at a time when we haven't set
our session.

2. To set a session variable's default value, we can use Session.
setDefault('mySessionExample', 'My Text'). This will set the session
without running any reactive functions, when the value of the session is
undefined. If the value of the session variable was already set, setDefault
won't change the variables at all.

Chapter 6

[87]

3. In our example, we probably don't want an alert window to appear when the
page is loaded. To prevent this first run, we can use the Tracker.Computation
object, which is passed as the first argument to our function and which
provides us with a property called firstRun. This property will be set to true
at the first run of the function. When we use this, we can prevent the display of
the alert at the start:
Tracker.autorun(function(c){
 var example = Session.get('mySessionExample');

 if(!c.firstRun) {
 alert(example);
 }
});

4. Now let's go to the browser's console and set the session to any value to see
the alert appear:
Session.set('mySessionExample','Hi there!');

The output of this code is demonstrated in the following screenshot:

When we run the same command again, we will not see the alert
window show up, as Meteor is smart enough to prevent reruns
when the session's value doesn't change. If we set it to another
value, the alert will appear again.

Keeping States with Sessions

[88]

Stopping reactive functions
The Tracker.Computation object, passed as the first argument, also gives us a way
to stop the function from being reactive at all. To try this, we will change the function
so that it stops its reactivity when we pass the stop string to the session:

Tracker.autorun(function(c){
 var example = Session.get('mySessionExample');

 if(!c.firstRun) {
 if(Session.equals('mySessionExample', 'stop')) {
 alert('We stopped our reactive Function');
 c.stop();
 } else {
 alert(example);
 }
 }
});

Now, when we go to our browser's console and run Session.
set('mySessionExample', 'stop'), the reactive function will stop being
reactive. To test this, we can try to run Session.set('mySessionExample',
'Another text') and we will see that the alert window won't appear.

If we make a code change and a hot code reload happens, the reactive
function will become reactive again, as the code was executed again.

The preceding example also uses a function called Session.equals(). This function
can compare two scalar values while preventing unnecessary recomputations,
compared to using Session.get('mySessionExample) === 'stop'. Using
Session.equals() would only rerun this function when the session variable
changes to or from that value.

In our example, however, this function doesn't make a difference,
as we called Session.get() before as well.

Using autorun in a template
Although it could be useful to use Tracker.autorun() globally in our app in some
cases, it can become quickly hard to maintain those global reactive functions as our
app grows.

Chapter 6

[89]

Therefore, it is good practice to bind reactive functions to the templates for which
they perform actions.

Luckily, Meteor offers a special version of Tracker.autorun() that is tied to a
template instance and stops automatically when the template gets destroyed.

To make use of this, we can start the reactive function in the created() or rendered
callback. To start, let's comment out our previous example from the main.js file so
that we won't get two alert windows.

Open our home.js file and add the following lines of code:

Template.home.created = function(){

 this.autorun(function(){
 alert(Session.get('mySessionExample'));
 });
};

This will create the reactive function when the home template is created. When we
go to the browser's console and set the mySessionExample session to a new value,
we will see the alert window appear, as shown in the following screenshot:

Keeping States with Sessions

[90]

Now, when we switch the templates by clicking on the About link in the menu
and we set the mySessionExample session variable again to another value using
the browsers console, we won't see the alert window appear as the reactive this.
autorun() was stopped when the template was destroyed.

Note that all Tracker.autorun() functions return a Tracker.
Computation object, which can be used to stop the reactivity of
the autorun at any time using Tracker.Computation.stop():

Var myReactiveFunction = Tracker.autorun(function()
{...});
// Do something which needs to stop the autorun
myReactiveFunction.stop();

The reactive session object
We've seen that the session object can rerun a function when its value is changed.
This is the same behavior as that of the find() and findOne() functions of collections,
which will rerun functions when the underlying data in the collection changes.

We can use sessions to keep user states across hot code pushes, such as states of
drop-down menus or pop-ups. However, keep in mind that without a clear naming
convention, these session variables can soon become hard to maintain.

For more specific reactive behavior, it is good to build a custom reactive object using
Meteor's Tracker core package, which we will cover in Chapter 9, Advanced Reactivity.

Summary
In this chapter, we learned what we can do with Meteor's reactive session object.
We used it to rerun template helpers and our own custom functions, and we made a
reactive function template specific using the created() and destroyed() callbacks.

To dig deeper, take a look at Meteor's documentation about sessions and reactivity at
the following resources:

• https://docs.meteor.com/#/full/reactivity

• https://docs.meteor.com/#/full/session

• https://docs.meteor.com/#/full/reactivevar_pkg

• https://www.meteor.com/tracker

https://docs.meteor.com/#/full/reactivity
https://docs.meteor.com/#/full/session
https://docs.meteor.com/#/full/reactivevar_pkg
https://www.meteor.com/tracker

Chapter 6

[91]

You can find this chapter's code examples at https://www.packtpub.com/books/
content/support/17713 or on GitHub at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/chapter6.

In the next chapter, we will create the admin user and backend for our blog, laying
down the foundation to create and edit posts.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter6
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter6

Users and Permissions
Having worked through the previous chapters, we should have a working blog by
now. We can click on all links and posts, and even lazy load more posts.

In this chapter, we will add our backend login and create the admin user. We will
also create the template to edit posts and make an edit button visible to the admin
user so that they can edit and add new content.

In this chapter, we will learn the following concepts:

• Meteor's accounts package
• Creating users and a log in
• How to restrict certain routes to only logged-in users

You can delete all the session examples from the previous chapter,
as we won't need them to progress with our app. Delete the
session's code from my-meteor-blog/main.js, my-meteor-
blog/client/templates/home.js, and my-meteor-blog/
client/templates/home.html, or download a fresh copy of
the previous chapter's code.
If you've jumped right into the chapter and want to follow the
examples, download the previous chapter's code examples from
either the book's web page at https://www.packtpub.com/
books/content/support/17713 or from the GitHub repository
at https://github.com/frozeman/book-building-
single-page-web-apps-with-meteor/tree/chapter6.
These code examples will also contain all the style files, so we don't
have to worry about adding CSS code along the way.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter6
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter6

Users and Permissions

[94]

Meteor's accounts packages
Meteor makes it very easy to add authentication to our web app using its accounts
package. The accounts package is a complete login solution tied to Meteor's core.
Created users can be identified by ID in many of Meteor's server-side functions,
for example, in a publication:

Meteor.publish("examplePublication", function () {
 // the current loggedin user id can be accessed via
 this.userId;
}

Additionally, we can add support for login via Facebook, GitHub, Google, Twitter,
Meetup, and Weibo by simply adding one or more of the accounts-* core packages.

Meteor also comes with a simple login interface, an extra template that can be added
using the {{> loginButtons}} helper.

All registered user profiles will be stored in a collection called Users, which Meteor
creates for us. All the processes in authentication and communication use the Secure
Remote Password (SRP) protocol and most external services use OAuth.

For our blog, we will simply create one admin user, which when logged in will be
able to create and edit posts.

If we want to use one of the third-party services to log in, we can
work through this chapter first, and then add one of the previously
mentioned packages.
After we add the additional packages, we can open up the Sign in
form. We will see a button where we can configure the third-party
services for use with our app.

Adding the accounts packages
To start using a login system, we need to add the accounts-ui and
accounts-password packages to our app, as follows:

1. To do so, we open up the terminal, navigate to our my-meteor-blog folder,
and type the following command:
$ meteor add accounts-ui accounts-password

2. After we have successfully added the packages, we can run our app again
using the meteor command.

Chapter 7

[95]

3. As we want to prevent the creation of additional user accounts by our
visitors, we need to disallow this functionality in our accounts package,
config. First, we need to open up our my-meteor-blog/main.js file,
which we created in the previous chapter, and remove all of the code,
as we won't need the session examples anymore.

4. Then add the following lines of code to this file, but make sure you don't
use if(Meteor.isClient), as we want to execute the code on both the
client and the server this time:
Accounts.config({
 forbidClientAccountCreation: true
});

This will forbid any call of Accounts.createUser() on the client and the
accounts-ui package will not show the Register button to our visitors.

This option doesn't seem to work for third-party services. So, when
using third-party services, everybody can sign up and edit posts.
To prevent this, we will need to create "deny" rules for user creation
on the server side, which is beyond the scope of this chapter.

Adding admin functionality to our
templates
The best way to allow editing of our post is to add an Edit post link to our post's
page, which can only be seen if we are logged in. This way, we save rebuilding a
similar infrastructure for an additional backend, and make it easy to use as there
is no strong separation between frontend and backend.

First, we will add a Create new post link to our home template, then add the Edit
post link to the post's pages template, and finally add the login buttons and form
to the main menu.

Adding a link for new posts
Let's begin by adding a Create new post link. Open the home template at my-meteor-
blog/clients/templates/home.html and add the following lines of code just
above the {{#each postsList}} block helper:

{{#if currentUser}}
 Create new post
{{/if}}

Users and Permissions

[96]

The {{currentUser}} helper comes with the accounts-base package, which
was installed when we installed our accounts packages. It will return the current
logged-in user, or return null if no user is logged in. Using it inside an {{#if}}
block helper allows us to show content only to logged-in users.

Adding the link to edit posts
To edit posts, we simply add an Edit post link to our post template. Open up
post.html from the same folder and add {{#if currentUser}}..{{/if}}
after {{author}}, as follows:

<small>
 Posted {{formatTime timeCreated "fromNow"}} by {{author}}

 {{#if currentUser}}
 | Edit post
 {{/if}}
</small>

Adding the login form
Now that we have both links to add and edit posts, let's add the login form. We can
create our own form, but Meteor already comes with a simple login form, which we
can style to fit our design.

Since we added the accounts-ui package previously, Meteor provides us with the
{{> loginButtons}} template helper, which works as a drop-in-place template.
To add this, we will open our layout.html template and add the following helper
inside our menu's tags, as follows:

<h1>My Meteor Single Page App</h1>

 Home

 About

{{> loginButtons}}

Chapter 7

[97]

Creating the template to edit posts
Now we are only missing the template to edit the posts. To add this, we will create
a file called editPost.html inside our my-meteor-blog/client/templates folder,
and fill it with the following lines of code:

<template name="editPost">
 <div class="editPost">
 <form>
 <label>
 Title
 <input type="text" name="title" placeholder="Awesome title"
value="{{title}}">
 </label>

 <label>
 Description
 <textarea name="description" placeholder="Short description
displayed in posts list" rows="3">{{description}}</textarea>
 </label>

 <label>
 Content
 <textarea name="text" rows="10" placeholder="Brilliant
content">{{text}}</textarea>
 </label>

 <button type="submit" class="save">Save Post</button>
 </form>
 </div>
</template>

As we can see, we have added the helpers for {{title}}, {{description}},
and {{text}}, which will come later from the post's data. This simple template,
with its three text fields, will allow us to edit and create new posts later.

If we now check out our browser, we will notice that we can't see any of the
changes we made so far, apart from the Sign in link in the corner of our website.
To be able to log in, we first need to add our admin user.

Users and Permissions

[98]

Creating the admin user
Since we deactivated the creation of users from the client, as a security measure
we will create the admin user on the server in the same way we created our
example posts.

Open the my-meteor-blog/server/main.js file and add the following lines of
code somewhere inside Meteor.startup(function(){...}):

if(Meteor.users.find().count() === 0) {

 console.log('Created Admin user');

 Accounts.createUser({
 username: 'johndoe',
 email: 'johndoe@example.com',
 password: '1234',
 profile: {
 name: 'John Doe'
 }
 });
}

If we now go to our browser, we should be able to log in using the user we just
created, and we immediately see that all the edit links appear.

However, when we click any of the edit links, we will see the notFound template
appearing because we didn't create any of our admin routes yet.

Adding permissions
Meteor's account package doesn't come by default with configurable permissions
for users.

To add permission control, we can add a third-party package such as the
deepwell:authorization package, which can be found on Atmosphere at
http://atmospherejs.com/deepwell/authorization and which comes with
a complex role model.

If we want to do it manually, we can add the simple roles properties to our user
document when we create the user, and then check for these roles in our allow/
deny roles when we create or update posts. We will learn about allow/deny rules
in the next chapter.

http://atmospherejs.com/deepwell/authorization

Chapter 7

[99]

If we create a user using the Accounts.createUser() function, we can't add a
custom property, so we need to update the user document after we have created
the user, as follows:

var userId = Accounts.createUser({
 username: 'johndoe',
 email: 'johndoe@example.com',
 password: '1234',
 profile: {
 name: 'John Doe'
 }
});
// add the roles to our user
Meteor.users.update(userId, {$set: {
 roles: {admin: true},
}})

By default, Meteor publishes the username, emails, and profile properties of the
currently logged-in user. To add additional properties, such as our custom roles
property, we need to add a publication, to access the roles property on the client
as well, as follows:

1. Open the my-meteor/blog/server/publictions.js file and add the
following publication:
Meteor.publish("userRoles", function () {
 if (this.userId) {
 return Meteor.users.find({_id: this.userId}, {fields: {roles:
1}});
 } else {
 this.ready();
 }
});

2. In the my-meteor-blog/main.js file, we add the subscription as follows:
if(Meteor.isClient){
 Meteor.subscribe("userRoles");
}

3. Now that we have the roles property available on the client, we can
change {{#if currentUser}}..{{/if}} in the home and post templates
to {{#if currentUser.roles.admin}}..{{/if}} so that only admins
can see the buttons.

Users and Permissions

[100]

A note on security
The user can only update their own profile property using the following command:

Meteor.users.update(ownUserId, {$set: {profiles:{myProperty: 'xyz'}}})

If we want to update the roles property, we will fail. To see this in action, we can
open up the browser's console and type the following command:

Meteor.users.update(Meteor.user()._id, {$set:{ roles: {admin: false}}});

This will give us an error stating: update failed: Access denied, as shown in the
following screenshot:

If we want to allow users to edit other properties such as their roles
property, we need to add a Meteor.users.allow() rule for that.

Chapter 7

[101]

Creating routes for the admin
Now that we have an admin user, we can add the routes, which lead to the editPost
template. Though in theory the editPost template is available to every client,
it doesn't create any risk, as the allow and deny rules are the real security layer,
which we will take a look at in the next chapter.

To add the route to create posts, let's open up our my-meteor-blog/routes.js file
and add the following route to the Router.map() function:

this.route('Create Post', {
 path: '/create-post',
 template: 'editPost'
});

This will simply show the editPost template as soon as we click on the Create new
post link on our home page, as shown in the following screenshot:

Users and Permissions

[102]

We see that the form is empty because we did not set any data context to the
template, and therefore the {{title}}, {{description}}, and {{text}}
placeholders in the template displayed nothing.

To make the edit post route work, we need to add subscriptions similar to those
we did for the Post route itself. To keep things DRY (which means Don't Repeat
Yourself), we can create a custom controller, which both routes will use, as follows:

1. Add the following lines of code after the Router.configure(...); call:
PostController = RouteController.extend({
 waitOn: function() {
 return Meteor.subscribe('single-post', this.params.slug);
 },

 data: function() {
 return Posts.findOne({slug: this.params.slug});
 }
});

2. Now we can simply edit the Post route, remove the waitOn() and data()
functions, and add PostController instead:
this.route('Post', {
 path: '/posts/:slug',
 template: 'post',
 controller: 'PostController'
});

3. Now we can also add the Edit Post route by just changing the path and the
template properties:
this.route('Edit Post', {
 path: '/edit-post/:slug',
 template: 'editPost',
 controller: 'PostController'
});

4. That's it! When we now go to our browser, we will be able to access any post
and click on the Edit button, and we will be directed to editPost template.

If you are wondering why the form is filled in with the post data, take a look at
PostController, which we just created. Here, we return the post document inside
the data() function, setting the data context of the template to the post's data.

Now that we have these routes in place, we should be done. Shouldn't we?

Not yet, because everybody who knows the /create-post and /edit-post/my-
title routes can simply see the editPost template, even if he or she is not an admin.

Chapter 7

[103]

Preventing visitors from seeing the admin
routes
To prevent visitors from seeing admin routes, we need to check whether the user is
logged in before we show them the routes. The iron:router comes with a Router.
onBeforeAction() hook, which can be run for all or some routes. We will use this
to run a function to check whether the user is logged in; if not, we will pretend that
the route doesn't exist and simply display the notFound template.

Add the following code snippet at the end of the routes.js file:

var requiresLogin = function(){
 if (!Meteor.user() ||
 !Meteor.user().roles ||
 !Meteor.user().roles.admin) {
 this.render('notFound');

 } else {
 this.next();
 }
};

Router.onBeforeAction(requiresLogin, {only: ['Create Post','Edit
Post']});

Here, first we create the requiresLogin() function, which will be executed before the
Create Post and Edit Post routes because we pass them as the second arguments to
the Router.onBeforeAction() function.

Inside the requiresLogin(), we check whether the user is logged in, which will
return the user document when calling Meteor.user(), and if they have the role
admin. If not, we simply render the notFound template and don't continue to the
route. Otherwise, we run this.next(), which will continue to render the current
route.

That's it! If we now log out and navigate to the /create-post route, we will see the
notfound template.

If we log in, the template will switch and immediately show the editPost template.

This happens because the requiresLogin() function becomes reactive as soon as we
pass it to Router.onBeforeAction(), and since Meteor.user() is a reactive object,
any change to the user's status will rerun this function.

Now that we have created the admin user and the necessary templates, we can move
on to actually creating and editing the posts.

Users and Permissions

[104]

Summary
In this chapter, we learned how to create and log in users, how we can show content
and templates only to logged-in users, and how routes can be altered depending on
the login status.

To learn more, take a look at the following links:

• https://www.meteor.com/accounts

• https://docs.meteor.com/#/full/accounts_api

• https://docs.meteor.com/#/full/meteor_users

• http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol

• https://github.com/EventedMind/iron-router/blob/devel/Guide.
md#using-hooks

You can find this chapter's code examples at https://www.packtpub.com/books/
content/support/17713 or on GitHub at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/chapter7.

In the next chapter, we will learn how we can create and update posts and how to
control updates to the database from the client side.

https://www.meteor.com/accounts
https://docs.meteor.com/#/full/accounts_api
https://docs.meteor.com/#/full/meteor_users
http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://github.com/EventedMind/iron-router/blob/devel/Guide.md#using-hooks
https://github.com/EventedMind/iron-router/blob/devel/Guide.md#using-hooks
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter7
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter7

Security with the Allow
and Deny Rules

In the previous chapter, we created our admin user and prepared the editPost
template. In this chapter, we will make this template work so that we can create
and edit posts using it.

To make it possible to insert and update documents in our database, we need to set
constraints so that not everybody can change our database. In Meteor, this is done
using the allow and deny rules. These functions will check documents before they
are inserted into the database.

In this chapter, you will cover the following topics:

• Adding and updating posts
• Using the allow and deny rules to control the updating of the database
• Using methods on the server for more flexibility
• Using method stubs to enhance user experience

If you've jumped right into the chapter and want to follow the examples,
download the previous chapter's code examples from either the book's
web page at https://www.packtpub.com/books/content/
support/17713 or from the GitHub repository at https://github.
com/frozeman/book-building-single-page-web-apps-with-
meteor/tree/chapter7.
These code examples will also contain all the style files, so we don't have
to worry about adding CSS code along the way.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter7
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter7
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter7

Security with the Allow and Deny Rules

[106]

Adding a function to generate slugs
In order to generate slugs from our post's titles, we will use the underscore-string
library, which comes with a simple slugify() function. Luckily, a wrapper package
for this library already exists on the Meteor package servers. To add it, we run the
following command from the terminal in our my-meteor-blog folder:

$ meteor add wizonesolutions:underscore-string

This will extend underscore, which is used by default in Meteor, with extra string
functions such as _.slugify(), to generate a slug from strings.

Creating a new post
Now that we can generate slugs for each created page, we can proceed to add the
saving process to the editPost template.

To do so, we need to create a JavaScript file for our editPost template by saving a
file called editPost.js to the my-meteor-blog/client/templates folder.
Inside this file, we will add an event for the Save button of the template:

Template.editPost.events({
 'submit form': function(e, template){
 e.preventDefault();
 console.log('Post saved');
 }
});

Now, if we go to the /create-post route and click on the Save Post button,
the Post saved log should appear in the browser's console.

Saving a post
In order to save the post, we will simply take the form's content and store it in the
database. Later, we'll redirect to the newly created post page. To do so, we extend
our click event with the following lines of code:

Template.editPost.events({
 'submit form': function(e, tmpl){
 e.preventDefault();
 var form = e.target,
 user = Meteor.user();

Chapter 8

[107]

We get the current user so that we can add him later as the post's author. We then
generate a slug from the post's title using our slugify() function:

 var slug = _.slugify(form.title.value);

Following this, we insert the post document into the Posts collection using all other
form fields. For the timeCreated property, we get the current Unix timestamp using
the moment package, which we added in Chapter 1, Getting Started with Meteor.

The owner field will later help us to determine by which user this post was created:

Posts.insert({
 title: form.title.value,
 slug: slug,
 description: form.description.value,
 text: form.text.value,
 timeCreated: moment().unix(),
 author: user.profile.name,
 owner: user._id

 }, function(error) {
 if(error) {
 // display the error to the user
 alert(error.reason);
 } else {
 // Redirect to the post
 Router.go('Post', {slug: slug});
 }
 });
 }
});

The second argument we pass to the insert() function is a callback function
provided by Meteor that will receive an error argument if something goes wrong.
If an error happens, we alert it, and if everything goes fine, we redirect to the
newly inserted post using our generated slug.

Since our route controller will then subscribe to a post with this slug, it will be able
to load our newly created post and display it in the post template.

Now, if we go to the browser, fill in the form, and click on the Save button, we
should have created our first own post!

Security with the Allow and Deny Rules

[108]

Editing posts
So saving works. What about editing?

When we click on the Edit button in the post, we will be shown the editPost
template again. This time, however, the form fields are filled with the data from
the post. So far so good, but if we press the Save button now, we will create another
post instead of updating the current one.

Updating the current post
Since we set the data context of the editPost template, we can simply use the
presence of the post's _id field as an indicator to update, instead of inserting
the post data:

Template.editPost.events({
 'submit form': function(e, tmpl){
 e.preventDefault();
 var form = e.target,
 user = Meteor.user(),
 _this = this; // we need this to reference the slug in the
callback

 // Edit the post
 if(this._id) {

 Posts.update(this._id, {$set: {
 title: form.title.value,
 description: form.description.value,
 text: form.text.value

 }}, function(error) {
 if(error) {
 // display the error to the user
 alert(error.reason);
 } else {
 // Redirect to the post
 Router.go('Post', {slug: _this.slug});
 }
 });

 // SAVE
 } else {

 // The insertion process ...

 }
 }
});

Chapter 8

[109]

Knowing the _id, we can simply update the current document using the $set
property. Using $set will only overwrite the title, description, and text
fields. The other fields will be left as they are.

Note that we now also need to create the _this variable on top of the function in
order to access the slug property of the current data context in the callback later.
This way, we can later redirect to our edited post page.

Now, if we save the file and go back to our browser, we can edit the post and
click on Save, and all changes will be saved as expected to our database.

Now, we can create and edit posts. In the next section, we will learn how to
restrict updates to the database by adding the allow and deny rules.

Restricting database updates
Until now, we simply added the insert and update functionality to our editPost
template. However, anybody can insert and update data if they just type an insert
statement into their browser's console.

To prevent this, we need to properly check for insertion and update rights on the
server side before updating the database.

Meteor's collections come with the allow and deny functions, which will be run
before every insertion or update to determine whether the action is allowed or not.

The allow rules let us allow certain documents or fields to be updated, whereas the
deny rules overwrite any allow rules and definitely deny any action on its collection.

To make this more visible, let's visualize an example where we define two allow
rules; one will allow certain documents' title fields to be changed and another
will allow only editing of the description fields, but an additional deny rule can
prevent one specific document to be edited in any case.

Removing the insecure package
To start using the allow and deny rules, we need to remove the insecure package
from our app so that no client can simply make changes to our database without
passing our allow and deny rules.

Quit the running meteor instance using Ctrl + C in the terminal and run the
following command:

$ meteor remove insecure

Security with the Allow and Deny Rules

[110]

After we have successfully removed the package, we can run Meteor again using
the meteor command.

When we now go to our browser and try to edit any post, we will see an alert
window stating Access denied. Remember that we added this alert() call before,
when an update or insert action failed?

Adding our first allow rules
In order to make our posts editable again, we need to add allow rules to enable
database updates again.

To do so, we will add the following allow rules to our my-meteor-blog/
collections.js file, but in this case we'll execute them only on the server side by
checking against Meteor's isServer variable, as follows:

if(Meteor.isServer) {

 Posts.allow({
 insert: function (userId, doc) {
 // The user must be logged in, and the document must be
owned by the user
 return userId && doc.owner === userId && Meteor.user().
roles.admin;
 },

In the insertion allow rule , we will insert the document only if the post owner
matches the current user and if the user is an admin, which we can determine
by the roles.admin property we added in the previous chapter.

If the allow rule returns false, the insertion of the document will be denied.
Otherwise, we will successfully add a new post. Updating works the same way,
just that we only check whether the current user is an admin:

 update: function (userId, doc, fields, modifier) {
 // User must be an admin
 return Meteor.user().roles.admin;
 },
 // make sure we only get this field from the documents
 fetch: ['owner']
 });
}

Chapter 8

[111]

The arguments passed to the update function are listed in the following table:

Field Description
userId The user ID of the current logged-in user, who performs that

update action
doc The document from the database, without the proposed changes
fields An array with field parameters that will be updated
modifier The modifier the user passed to the update function, such as

{$set: {'name.first': "Alice"}, $inc: {score: 1}}

The fetch property, which we specify last in the allow rule's object, determines
which fields of the current document should be passed to the update rule. In our
case, we only need the owner property for our update rule. The fetch property
exists for performance reasons, to prevent unnecessarily large documents from
being passed to the rule's functions.

Additionally, we can specify the remove() rule and the
transform() function. The remove() rule will get the
same arguments as the insert() rule and allow or prevent
removal of documents.
The transform() function can be used to transform the
document before being passed to the allow or deny rules, for
example, to normalize it. However, be aware that this won't
change the document that gets inserted into the database.

If we now try to edit a post in our website, we should be able to edit all posts as well
as create new ones.

Adding a deny rule
To improve security, we can fix the owner of the post and the time when it was
created. We can prevent changes to the owner and the timeCreated and slug
fields by adding an additional deny rule to our Posts collection, as follows:

if(Meteor.isServer) {

 // Allow rules

 Posts.deny({
 update: function (userId, docs, fields, modifier) {
 // Can't change owners, timeCreated and slug

Security with the Allow and Deny Rules

[112]

 return _.contains(fields, 'owner') || _.contains(fields,
'timeCreated') || _.contains(fields, 'slug');
 }
 });
}

This rule will simply check whether the fields argument contains one of the
restricted fields. If it does, we deny the update to this post. So, even if our previous
allow rules have passed, our deny rule ensures that the document doesn't change.

We can try the deny rule by going to our browser's console, and when we are at a
post page, typing the following commands:

Posts.update(Posts.findOne()._id, {$set: {'slug':'test'}});

This should give you an error stating update failed: Access denied, as shown in the
following screenshot:

Though we can add and update posts now, there is a better way of adding new posts
than simply inserting them into our Posts collection from the client side.

Chapter 8

[113]

Adding posts using a method call
Methods are functions that can be called from the client and will be executed on
the server.

Method stubs and latency compensation
The advantage of methods is that they can execute code on the server, having the
full database and a stub method on the client available.

For example, we can have a method do something on the server and simulate the
expected outcome in a stub method on the client. This way, the user doesn't have
to wait for the server's response. A stub can also invoke an interface change, such
as adding a loading indicator.

One native example of a method call is Meteor's Collection.insert() function,
which will execute a client-side function, inserting the document immediately into
the local minimongo database as well as sending a request executing the real insert
method on the server. If the insertion is successful, the client has the document
already inserted. If an error occurs, the server will respond and remove the inserted
document from the client again.

In Meteor, this concept is called latency compensation, as the interface reacts
immediately to the user's response and therefore compensates the latency,
while the server's round trip will happen in the background.

Inserting a post using a method call enables us to simply check whether the slug we
want to use for the post already exists in another post. Additionally, we can use the
server's time for the timeCreated property to be sure we are not using an incorrect
user timestamp.

Changing the button
In our example, we will simply use the method stub functionality to change the text
of the Save button to Saving… while we run the method on the server. To do so,
perform the following steps:

1. To start, let's first change the Save button's static text with a template helper
so that we can change it dynamically. Open up my-meteor-blog/client/
templates/editPost.html and replace the Save button code with the
following code:
<button type="submit" class="save">{{saveButtonText}}</button>

Security with the Allow and Deny Rules

[114]

2. Now open my-meteor-blog/client/templates/editPost.js and add the
following template helper function at the beginning of the file:
Session.setDefault('saveButton', 'Save Post');
Template.editPost.helpers({
 saveButtonText: function(){
 return Session.get('saveButton');
 }
});

Here, we return the session variable named saveButton, which we set to
the default value, Save Post, earlier.

Changing the session will allow us to change the text of the Save button later while
saving the document.

Adding the method
Now that we have a dynamic Save button, let's add the actual method to our app.
For this, we will create a new file called methods.js directly in our my-meteor-blog
folder. This way, its code will be loaded on the server and the client, which is necessary
to execute the method on the client as a stub.

Add the following lines of code to add a method:

Meteor.methods({
 insertPost: function(postDocument) {

 if(this.isSimulation) {
 Session.set('saveButton', 'Saving...');
 }
 }
});

This will add a method called insertPost. Inside this method, the stub functionality
is already added by making use of the isSimulation property, which is made
available in the this object of the function by Meteor.

The this object also has the following properties:

• unblock(): This is a function that when called will prevent the method from
blocking other method calls

• userId: This contains the current user's ID
• setUserId(): This a function to connect the current client with a certain user
• connection: This is the connection on the server through which this method

is called

Chapter 8

[115]

If isSimulation is set to true, the method is not run on the server side but as a stub
on the client. Inside this condition, we simply set the saveButton session variable to
Saving… so that the button text will change:

Meteor.methods({
 insertPost: function(postDocument) {

 if(this.isSimulation) {

 Session.set('saveButton', 'Saving...');

 } else {

To complete the method, we will add the server-side code for post insertion:

 var user = Meteor.user();

 // ensure the user is logged in
 if (!user)
 throw new Meteor.Error(401, "You need to login to write a
post");

Here, we get the current user to add the author name and owner ID.

We throw an exception with new Meteor.Error if the user is not logged in. This will
stop the execution of the method and return an error message we define.

We also search for a post with the given slug. If we find one, we prepend a random
string to the slug to prevent duplicates. This makes sure that every slug is unique,
and we can successfully route to our newly created post:

 if(Posts.findOne({slug: postDocument.slug}))
 postDocument.slug = postDocument.slug +'-'+ Math.random().
toString(36).substring(3);

Before we insert the newly created post, we add timeCreated using the moment
library and the author and owner properties:

 // add properties on the serverside
 postDocument.timeCreated = moment().unix();
 postDocument.author = user.profile.name;
 postDocument.owner = user._id;

 Posts.insert(postDocument);

Security with the Allow and Deny Rules

[116]

After we insert the document, we return the corrected slug, which will then be
received in the callback of the method call as the second argument:

 // this will be received as the second argument of the method
callback
 return postDocument.slug;
 }
 }
});

Calling the method
Now that we have created our insertPost method, we can change the code in the
submit event, where we inserted the post earlier in our editPost.js file, with a call
to our method:

var slug = _.slugify(form.title.value);

Meteor.call('insertPost', {
 title: form.title.value
 slug: slug,
 description: form.description.value
 text: form.text.value,

}, function(error, slug) {
 Session.set('saveButton', 'Save Post');

 if(error) {
 return alert(error.reason);
 }

 // Here we use the (probably changed) slug from the server side
method
 Router.go('Post', {slug: slug});
});

As we can see in the callback of the method call, we route to the newly created
post using the slug variable we received as the second argument in the callback.
This ensures that if the slug variable is modified on the server side, we use the
modified version to route to the post. Additionally, we reset the saveButton
session variable to change the text to Save Post again.

That's it! Now, we can create a new post and save it using our newly created
insertPost method. However, editing will still be done from the client side
using Posts.update(), as we now have allow and deny rules, which make
sure that only allowed data is modified.

Chapter 8

[117]

Summary
In this chapter, we learned how to allow and deny database updates. We set up
our own allow and deny rules and saw how methods can improve security by
moving sensitive processes to the server side. We also improved our procedure
of creating posts by checking whether the slug already exists and adding a simple
progress indicator.

If you want to dig deeper into the allow and deny rules or methods, take a look
at the following Meteor documentations:

• http://docs.meteor.com/#/full/allow

• http://docs.meteor.com/#/full/deny

• https://docs.meteor.com/#/full/methods_header

You can find this chapter's code examples at https://www.packtpub.com/books/
content/support/17713 or on GitHub at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/chapter8.

In the next chapter, we will make our interface real time by constantly updating the
post's timestamps.

http://docs.meteor.com/#/full/allow
http://docs.meteor.com/#/full/deny
https://docs.meteor.com/#/full/methods_header
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter8
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter8

Advanced Reactivity
Now our blog is basically complete, as we can create and edit entries. In this chapter,
we will make use of Meteor's reactive templates to make our interface timestamps
update itself. We will build a reactive object that will rerun the template helper,
which displays the time when the blog entries were created. This way, they will
always display the correct relative time.

In this chapter, we will cover the following topics:

• Reactive programming
• Rerunning functions manually
• Building a reactive object using the Tracker package
• Stopping reactive functions

If you've jumped right into the chapter and want to follow the
examples, download the previous chapter's code examples from
either the book's web page at https://www.packtpub.com/
books/content/support/17713 or from the GitHub repository
at https://github.com/frozeman/book-building-single-
page-web-apps-with-meteor/tree/chapter8.
These code examples will also contain all the style files, so we don't
have to worry about adding CSS code along the way.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter8
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter8

Advanced Reactivity

[120]

Reactive programming
As we already saw throughout the book, Meteor uses something called reactivity.

One problem that a developer has to solve when building a software application
is the consistency of the data represented in the interface. Most modern applications
use something called Model-View-Controller (MVC), where the controller of a view
makes sure that it always represents the current state of the model. The model is
mostly a server API or a JSON object in the browser memory.

The most common ways of keeping consistent interfaces are as follows
(courtesy: http://manual.meteor.com):

• Poll and diff: Periodically (for example, every second), fetch the current
value of the thing, see whether it's changed, and if so, perform the update.

• Events: The thing that can change emits an event when it changes. Another
part of the program (often called a controller) arranges to listen for this event,
gets the current value, and performs the update when the event fires.

• Bindings: Values are represented by objects that implement some
interface, such as BindableValue. Then, a "bind" method is used to tie
two BindableValues together so that when one value changes, the other
is updated automatically. Sometimes, as a part of setting up the binding, a
transformation function can be specified. For example, Foo can be bound to
Bar with the toUpperCase transformation function.

These patterns are good, but they still need a lot of code to maintain the consistency
of the data represented.

Another pattern, although not yet as commonly used, is reactive programming.
This pattern is a declarative way of binding data. It means when we use a reactive
data source such as a Session variable or Mongo.Collection, we can be sure that
reactive functions or template helpers that use these will rerun as soon as its value
changes, always keeping the interface or calculations based on these values updated.

http://manual.meteor.com

Chapter 9

[121]

The Meteor manual gives us an example use case where reactive programming
comes in handy:

Reactive programming is perfect for building user interfaces, because instead
of attempting to model all interactions in a single piece of cohesive code, the
programmer can express what should happen upon specific changes. The paradigm
of responding to a change is simpler to understand than modeling which changes
affect the state of the program explicitly.
For example, suppose that we are writing an HTML5 app with a table of items,
and the user can click on an item to select it or ctrl-click to select multiple items.
We might have an <h1> tag and want the contents of the tag to be equal to the
name of the currently selected item, capitalized, or else "Multiple selection" if
multiple items are selected. And we might have a set of <tr> tags and want the
CSS class on each <tr> tag to be "selected" if the items corresponding to that
row is in the set of selected items, or the empty string otherwise.

To make this example happen in the aforementioned patterns, we can quickly see
how complex it gets compared to reactive programming (courtesy: http://manual.
meteor.com):

• If we use poll and diff, the UI will be unacceptably laggy. After the user clicks,
the screen won't actually update until the next polling cycle. Also, we have
to store the old selection set and diff it against the new selection set, which
is a bit of a hassle.

• If we use events, we have to write some fairly tangled controller code to
manually map changes to the selection or to the name of the selected item,
onto updates to the UI. For example, when the selection changes, we have to
remember to update both the <h1> tag and (typically) two affected <tr> tags.
What's more, when the selection changes, we have to automatically register
an event handler on the newly selected item so that we can remember to
update <h1>. It is difficult to structure clean code and maintain it, especially
as the UI is extended and redesigned.

• If we use bindings, we will have to use a complex domain-specific language
(DSL) to express the complex relationships between the variables. The
DSL will have to include indirection (bind the contents of <h1> not to the
name of any fixed item, but to the item indicated by the current selection),
transformation (capitalize the name), and conditionals (if more than one
item is selected, show a placeholder string).

http://manual.meteor.com
http://manual.meteor.com

Advanced Reactivity

[122]

With Meteor's reactive template engine, Blaze, we can simply use the {{#each}}
block helper to iterate over a list of elements and add some conditions for each
element based on user interaction or on an item's property to add a selected class.

If the user now changes the data or the data coming in from the server changes,
the interface will update itself to represent the data accordingly, saving us a lot
of time and avoiding unnecessary complex code.

The invalidating cycle
One key part of understanding the reactive dependencies is the invalidate cycle.

When we use a reactive data source inside a reactive function, such as Tracker.
autorun(function(){…}), the reactive data source itself sees that it is inside
a reactive function and adds the current function as a dependency to its
dependency store.

Then, when the value of the data source changes, it invalidates (reruns) all its
dependent functions and removes them from its dependency store.

In the rerun of the reactive function, it adds the reactive function back to its
dependency store so that they will rerun on its next invalidation (value change) again.

This is the key to understand the reactive concept, as we will see in the
following example.

Imagine that we have two Session variables set to false:

Session.set('first', false);
Session.set('second', false);

Moreover, We have the Tracker.autorun() function, which uses both these variables:

Tracker.autorun(function(){
 console.log('Reactive function re-run');
 if(Session.get('first')){
 Session.get('second');
 }
});

We can now call Session.set('second', true), but the reactive function will
not rerun, because it was never called in the first run, as the first session variable
was set to false.

If we now call Session.set(first, true), the function will rerun.

Chapter 9

[123]

Additionally, if we now set Session.set('second', false), it will rerun as
well, as in the second rerun, Session.get('second') can add this reactive function
as a dependency.

Because the reactive data sources source will always remove all dependencies
from its store on every invalidation and add them back in the rerun of the
reactive function, we can set Session.set(first, false) and try to switch it to
Session.set('second', true). The function will not rerun again, as Session.
get('second') was never called in this run!

Once we understand this, we can make more fine-grained reactivity, keeping reactive
updates to a minimum. The console output of the explanation looks similar to the
following screenshot:

Advanced Reactivity

[124]

Building a simple reactive object
As we saw, a reactive object is an object that when used inside a reactive function,
will rerun the function when its value changes. The Meteor's Session object is one
example of a reactive object.

In this chapter, we will build a simple reactive object that will rerun our
{{formatTime}} template helper at time intervals so that all the relative times
are updated correctly.

Meteor's reactivity is made possible through the Tracker package. This package
is the core of all reactivity and allows us to track dependencies and rerun these
whenever we want.

Perform the following steps to build a simple reactive object:

1. To get started, let's add the following code to the my-meteor-blog/
main.js file:
if(Meteor.isClient) {
 ReactiveTimer = new Tracker.Dependency;
}

This will create a variable named ReactiveTimer on the client with a new
instance of Tracker.Dependency.

2. Below the ReactiveTimer variable, but still inside the if(Meteor.
isClient) condition, we will add the following code to rerun all
dependencies of our ReactiveTimer object every 10 seconds:
Meteor.setInterval(function(){
 // re-run dependencies every 10s
 ReactiveTimer.changed();
}, 10000);

The Meteor.setInterval will run the function every 10 seconds.

Meteor comes with its own implementation of setInterval
and setTimeout. Even though they work exactly as their native
JavaScript equivalents, Meteor needs these to reference the right
timeout/interval for a specific user on the server side.

Chapter 9

[125]

Meteor comes with its own implementation of setInterval and setTimeout.
Even though they work exactly as their native JavaScript equivalents, Meteor needs
these to reference the right timeout/interval for a specific user on the server side.

Inside the interval, we call ReactiveTimer.changed(). This will invalidate every
dependent function, causing it to rerun.

Rerunning functions
So far, we have no dependency created, so let's do that. Add the following code
below Meteor.setInterval:

Tracker.autorun(function(){
 ReactiveTimer.depend();
 console.log('Function re-run');
});

If we now get back to our browser console, we should see Function re-run every
10 seconds, as our reactive object reruns the function.

We can even call ReactiveTimer.changed() in our browser console and the
function will rerun as well.

These are good examples, but don't make our timestamps update automatically.

To do this, we need to open up my-meteor-blog/client/template-helpers.js
and add the following line at the top of our formatTime helper function:

ReactiveTimer.depend();

This will make every {{formatTime}} helper in our app rerun every 10 seconds,
updating the relative time while it passes. To see this, go to your browser and create
a new blog entry. If you save the blog entry now and watch the time created text,
you will see that it changes after a while:

Advanced Reactivity

[126]

Creating an advanced timer object
The previous example was a simple demonstration of a custom reactive object.
To make it more useful, it is better to create a separate object that hides the
Tracker.Dependency functions and adds additional functionality.

Meteor's reactivity and dependency tracking allows us to create dependencies
even when the depend() function is called from inside another function.
This dependency chain allows more complex reactive objects.

In the next example, we will take our timer object and add a start and stop
function to it. Additionally, we will also make it possible to choose a time interval
at which the timer will rerun:

1. First, let's remove the previous code examples from the main.js and
template-helpers.js files, which we added before, and create a new
file named ReactiveTimer.js inside my-meteor-blog/client with
the following content:
ReactiveTimer = (function () {

 // Constructor
 function ReactiveTimer() {
 this._dependency = new Tracker.Dependency;
 this._intervalId = null;
 };

 return ReactiveTimer;
})();

This creates a classic prototype class in JavaScript, which we can instantiate
using new ReactiveTimer(). In its constructor function, we instantiate a
new Tracker.Dependency and attach it to the function.

2. Now, we will create a start() function, which will start a self-chosen interval:
ReactiveTimer = (function () {

 // Constructor
 function ReactiveTimer() {
 this._dependency = new Tracker.Dependency;
 this._intervalId = null;
 };

Chapter 9

[127]

 ReactiveTimer.prototype.start = function(interval){
 var _this = this;
 this._intervalId = Meteor.setInterval(function(){
 // rerun every "interval"
 _this._dependency.changed();
 }, 1000 * interval);
 };

 return ReactiveTimer;
})();

This is the same code as we used before with the difference that we store the
interval ID in this._intervalId so that we can stop it later in our stop()
function. The interval passed to the start() function must be in seconds;

3. Next, we add the stop() function to the class, which will simply clear
the interval:
ReactiveTimer.prototype.stop = function(){
 Meteor.clearInterval(this._intervalId);
};

4. Now we only need a function that creates the dependencies:
ReactiveTimer.prototype.tick = function(){
 this._dependency.depend();
};

Our reactive timer is ready!

5. Now, to instantiate the timer and start it with whatever interval we like,
add the following code after the ReactiveTimer class at the end of the file:
timer = new ReactiveTimer();
timer.start(10);

6. At last, we need to go back to our {{formatTime}} helper in the
template-helper.js file, and add the time.tick() function,
and every relative time in the interface will update as time goes by.

7. To see the reactive timer in action, run the following code snippet in
our browser's console:
Tracker.autorun(function(){
 timer.tick();
 console.log('Timer ticked!');
});

Advanced Reactivity

[128]

8. We should now see Timer ticked! logged every 10 seconds. If we now run
time.stop(), the timer will stop running its dependent functions. If we call
time.start(2) again, we will see Timer ticked! now appearing every two
seconds, as we set the interval to 2:

As we can see, our timer object is now rather flexible, and we can create any number
of time intervals to be used throughout the app.

Reactive computations
Meteor's reactivity and the Tracker package is a very powerful feature, as it allows
event-like behavior to be attached to every function and every template helper.
This reactivity is what keeps our interface consistent.

Although we only touched the Tracker package until now, it has a few more
properties that we should take a look at.

Chapter 9

[129]

We already learned how to instantiate a reactive object. We can call new Tracker.
Dependency, which can create and rerun dependencies using depend()
and changed().

Stopping reactive functions
When we are inside a reactive function, we also have access to the current
computational object, which we can use to stop further reactive behavior.

To see this in action, we can use our already running timer and create the
following reactive function using Tracker.autorun() in our browser's console:

var count = 0;
var someInnerFunction = function(count){
 console.log('Running for the '+ count +' time');

 if(count === 10)
 Tracker.currentComputation.stop();
};
Tracker.autorun(function(c){
 timer.tick();

 someInnerFunction(count);

 count++;
});

timer.stop();
timer.start(2);

Here, we create someInnerFunction() to show how we can access the current
computation as well from nested functions. In this inner function, we get the
computation using Tracker.currentComputation, which gives us the current
Tracker.Computation object.

We use the count variable, we created before the Tracker.autorun() function,
to count up. When we reach 10, we call Tracker.currentComputation.stop(),
which will stop the dependency of the inner and the Tracker.autorun() functions,
making them nonreactive.

To see the results quicker, we stop and start the timer object with an interval of
two seconds at the end of the example.

Advanced Reactivity

[130]

If we copy and paste the previous code snippet into our browser's console and
run it, we should see Running for the xx time appearing 10 times:

The current computational object is useful to give us control over reactive
dependencies from inside the dependent functions.

Preventing run at start
The Tracker .Computation object also comes with the firstRun property,
which we have used in an earlier chapter.

Reactive functions, for example, when created using Tracker.autorun() also
run when they are parsed by JavaScript for the first time. If we want to prevent
this, we can simply stop the function before any code is executed when checking
whether firstRun is true:

Tracker.autorun(function(c){
 timer.tick();

 if(c.firstRun)
 return;

 // Do some other stuff
});

Chapter 9

[131]

We don't need to get the current computation here
using Tracker.currentComputation, as Tracker.
autorun() gets it already as its first argument.
Also, when we stop a Tracker.autorun() function,
as described in the following code, it will never create the
dependency for the session variable, as Session.get()
was never called in the first run:

Tracker.autorun(function(c){

 if(c.firstRun)

 return;

 Session.get('myValue');

}):

To make sure that we make the function depending on
the myValue session variable, we need to put it before
the return statement.

Advanced reactive objects
The Tracker package has a few more advanced properties and functions that
allow you to control when dependencies are invalidated (Tracker.flush() and
Tracker.Computation.invalidate()) and allow you to register additional
callbacks on it (Tracker.onInvalidate()).

These properties allow you to build complex reactive objects, which are out
of the scope of this book. If you want to get a deeper understanding of the
Tracker package, I recommend that you take a look at the Meteor manual
at http://manual.meteor.com/#tracker.

http://manual.meteor.com/#tracker

Advanced Reactivity

[132]

Summary
In this chapter, we learned how to build our own custom reactive object. We learned
about Tracker.Dependency.depend() and Tracker.Dependency.changed() and
saw how reactive dependencies have their own computational objects, which can be
used to stop its reactive behavior and prevent running at start.

To dig deeper, take a look at the documentation for the Tracker package and
see detailed property descriptions for the Tracker.Computation object at the
following resources:

• https://www.meteor.com/tracker

• https://docs.meteor.com/#/full/tracker

• https://docs.meteor.com/#/full/tracker_computation

• https://docs.meteor.com/#/full/tracker_dependency

You can find this chapter's code examples at https://www.packtpub.com/books/
content/support/17713 or on GitHub at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/chapter9.

Now that we have finalized our blog, we will take a look at how to deploy our app
on servers in the next chapter.

https://www.meteor.com/tracker
https://docs.meteor.com/#/full/tracker
https://docs.meteor.com/#/full/tracker_computation
https://docs.meteor.com/#/full/tracker_dependency
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter9
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter9

Deploying Our App
Our app is now ready to be deployed. In this chapter, we will see how we can deploy
our app on different servers to make it public and show the world what we built.

Meteor makes it easy to deploy applications on its own server infrastructure. It's
free and quick to do, but probably not the right place for a production environment.
Therefore, we will take a look at manual deployment as well as some great tools
built to deploy on any Node.js server.

In this chapter, we will cover the following topics:

• Registering a Meteor developer account
• Deploying on Meteor's own server infrastructure
• Bundling and deploying Meteor manually
• Deploying using Demeteorizer
• Deploying using Meteor Up

If you want to have the full app we've built in this book to deploy,
download the code from the book's web page at https://www.
packtpub.com/books/content/support/17713 or from the
GitHub repository at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/
chapter10.
This code won't have the part where dummy posts are created,
so you can have a clean blog to start with on your own server.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10

Deploying Our App

[134]

Deploying on meteor.com
Meteor provides its own hosting environment, where everybody can deploy apps
with a single command, for free. In order to deploy apps, Meteor creates a developer
account for us so that we can manage and deploy our apps later. To start, let's
perform the following steps to deploy our app on meteor.com:

1. Deploying on a subdomain of meteor.com is as simple as running the
following command in the terminal from our app's folder:
$ meteor deploy myCoolNewBlog

We can freely choose the subdomain we want to deploy on.
If myCoolNewBlog.meteor.com is already taken, Meteor will ask us to
log in to the owner's account to overwrite the currently deployed app,
or we will have to choose another name.

2. If the domain name is free, Meteor will ask us to provide an e-mail address
so that it can create a developer account for us. After entering the e-mail
address, we will receive an e-mail with a link to set up our Meteor Developer
account, as shown in the following screenshot:

http://www.meteor.com

Chapter 10

[135]

3. To create our account, we need to follow the link given by Meteor so that we
can fully set up our account by adding a username and a password, as shown
in the next screenshot:

4. After we have done that, we get access to our developer account's page,
where we can add e-mail addresses, check our last login, and authorize
other Meteor developers to log in to our apps (though we have to add the
accounts-meteor-developer package first).

5. Now, to finally deploy our app, we need to log in with our Meteor Developer
account in the terminal by using $ meteor login, entering our credentials,
and running the deploy command again:
$ meteor deploy myCoolNewBlog

Deploying Our App

[136]

6. Using the $ meteor authorized –add <username> command, we can
allow other Meteor developers to deploy to our app's subdomain, as shown
in the following screenshot:

7. If we want to update our deployed app, we can simply run $ meteor
deploy from inside our app's folder. Meteor will ask us for our credentials,
and we can then deploy our app.

If we're on a friend's computer and want to use our Meteor account, we can do so
using $ meteor login. Meteor will keep us logged in and everybody can redeploy
any of our apps. We need to make sure we use $ meteor logout when we're finished.

Chapter 10

[137]

Deploying on meteor.com using a
domain name
We can also host our app on meteor.com, but can define our own domain name.

To do this, we simply deploy using our domain name, as follows:

$ meteor deploy mydomain.com

This will host the app on meteor.com, but with no direct URL such as myapp.
meteor.com.

To point our domain to the app on the Meteor servers, we need to change the
A record of our domain to the IP address of origin.meteor.com (which is
107.22.210.133 at the time of writing this book), or the CNAME record to origin.
meteor.com. You can do this at the provider where you registered your domain
under the DNS configuration.

Meteor will then get a request from our domain and redirect internally to the server
where our app is located.

Backup and restore databases hosted
on meteor.com
If you ever need to back up your database or move it to another server, you can
get temporary Mongo database credentials for the deployed database using the
following command:

$ meteor mongo myapp.meteor.com –url

This will get something like the following credentials:

mongodb://client-ID:xyz@production-db-b1.meteor.io:27017/yourapp_meteor_
com

You can then use the credentials from the preceding output to back up your database
using mongodump:

$ mongodump -h production-db-b1.meteor.io --port 27017 --username client-
ID --password xyz --db yourapp_meteor_com

This will create a folder named dump/yourapp_meteor_com where you are and put
the dump files of the database inside.

http://www.meteor.com
http://www.myapp.meteor.com
http://www.myapp.meteor.com

Deploying Our App

[138]

To restore it to another server, use mongorestore, with the last argument being the
folder where you put the database dump:

$ mongorestore -h mymongoserver.com --port 27017 --username myuser
--password xyz --db my_new_database dump/yourapp_meteor_com

If you simply want to put the data into your local Meteor app's database, start the
Meteor server using $ meteor and run the following command:

$ mongorestore --port 3001

Deploying on other servers
Meteor's free hosting is great, but when it comes to using an app in production,
we want to be in control of the server we're using.

Meteor allows us to create a bundle of our application so that we can deploy
it on any Node.js server. The only downside to this is that we need to install
certain dependencies ourselves. Additionally, there are two packages out
there that make deploying apps almost as simple as Meteor itself, though
their configuration is still needed.

Bundling our app
In order to deploy our app on our own server, we need to have a Linux server with
the latest version of Node.js and NPM installed. The server should have the same
platform as our local machine on which we will create the bundle. If you want to
deploy your app on another platform, take a look at the next section. Now let's
build the app by performing the following steps:

1. If our server fits the aforementioned requirements, we can go to our
app's folder on our local machine and run the following command:
$ meteor build myAppBuildFolder

2. This will create myAppBuildFolder with a *.tar.gz file inside. We can
then upload this file to our server and extract it under ~/Sites/myApp
for example. Then we go to the extracted folder and run the following
commands:
$ cd programs/server
$ npm install

Chapter 10

[139]

3. This will install all the NPM dependencies. After they're installed, we set the
necessary environment variables:
$ export MONGO_URL='mongodb://user:password@host:port/
databasename'
$ export ROOT_URL='http://example.com'
$ export MAIL_URL='smtp://user:password@mailhost:port/'
$ export PORT=8080

The export commands will set the MONGO_URL, ROOT_URL, and MAIL_URL
environment variables.

4. As this manual deployment doesn't come with preinstalled MongoDB,
we need to either install it on our machine or use a hosted service such as
Compose (http://mongohq.com). If we rather want to install MongoDB
on our server ourselves, we can follow the guide at http://docs.mongodb.
org/manual/installation.

5. The ROOT_URL variable should be the URL of the domain pointing to our
server. If our app sends e-mails, we can additionally set our own SMTP
server or use a service such as Mailgun (http://mailgun.com) and change
the SMTP host in the MAIL_URL variable.
We can also specify the port on which we want our app to run using the
PORT environment variable. If we don't set the PORT variable, it will use
port 80 by default.

6. After we set these variables, we go to the root folder of our app and start the
server using the following command:
$ node main.js

If you want to make sure your application is restarted
in case it crashes or when the server is rebooted, take a
look at the forever NPM package, which is explained
at https://github.com/nodejitsu/forever.

If everything goes fine, our app should be reachable at <your server's ip>:8080.

In case we run into trouble by manually deploying our app, we can use the
next approach.

http://mongohq.com
http://docs.mongodb.org/manual/installation
http://docs.mongodb.org/manual/installation
http://mailgun.com
https://github.com/nodejitsu/forever

Deploying Our App

[140]

Deploying using Demeteorizer
The disadvantage of using $ meteor build is that most node modules are already
compiled, and therefore can cause problems in the server's environment. Hence comes
Demeteorizer, which is very similar to $ meteor build but will additionally unpack
the bundle and create a package.json file with all the node dependencies and the
correct node version for the project. Here is how we deploy using Demeteorizer:

1. Demeteorizer comes as an NPM package, which we can install using the
following command:
$ npm install -g demeteorizer

If the npm folder doesn't have the right permissions,
use sudo before the command.

2. Now we can go to our app's folder and type the following command:
$ demeteorizer -o ~/my-meteor-blog-converted

3. This will output the ready-to-distribute app to the my-meteor-blog-
converted folder. We just copy this folder to our server, set the same
environment variables as described earlier, and run the following command:
$ cd /my/server/my-meteor-blog-converted
$ npm install
$ node main.js

This should start our app on the port we specified.

Deploying using Meteor Up
The previous steps help us to deploy our app on our own server, but this method
still requires us to build, upload, and set the environment variables.

Meteor Up (mup) aims to make deploying as easy as running $ meteor deploy.
However, if we want to use Meteor Up, we need to have full admin rights on
the server.

Additionally, this allows us to auto-restart the app in case it crashes, using the
forever NPM package, as well as start the app when the server reboots, using the
upstart NPM package. We can also revert to the previously deployed version,
which gives us a good basis for deployment on the production environment.

Chapter 10

[141]

The next steps are for more advanced developers, as they require
setting up sudo rights on the server machine. Therefore, if you're
inexperienced in deployment, consider using a service such as
Modulus (http://modulus.io), which offers online Meteor
deployment using its own command-line tool, available at
https://modulus.io/codex/meteor_apps.

Meteor Up will set up the server and deploy our app as follows:

1. To install mup on our local machine, we type the following command:
$ npm install -g mup

2. Now we need to create a folder for our deployment configuration, which
could be in the same folder where our app is located:
$ mkdir ~/my-meteor-blog-deployment
$ cd ~/my-meteor-blog-deployment
$ mup init

3. Meteor Up creates a configuration file for us, which will look like
the following:
{
 "servers": [
 {
 "host": "hostname",
 "username": "root",
 "password": "password"
 // or pem file (ssh based authentication)
 //"pem": "~/.ssh/id_rsa"
 }
],
 "setupMongo": true,
 "setupNode": true,
 "nodeVersion": "0.10.26",
 "setupPhantom": true,
 "appName": "meteor",
 "app": "/Users/arunoda/Meteor/my-app",
 "env": {
 "PORT": 80,
 "ROOT_URL": "http://myapp.com",
 "MONGO_URL": "mongodb://arunoda:fd8dsjsfh7@hanso.mongohq.
com:10023/MyApp",
 "MAIL_URL": "smtp://postmaster%40myapp.mailgun.
org:adj87sjhd7s@smtp.mailgun.org:587/"
 },
 "deployCheckWaitTime": 15
}

http://modulus.io
https://modulus.io/codex/meteor_apps

Deploying Our App

[142]

4. Now we can edit this file to work for our server environment.
5. First, we will add the SSH server authentication. We can provide either

our RSA key file or a username and a password. If we want to use the latter,
we need to install sshpass, a tool used to provide SSH passwords without
using the command line:
"servers": [
 {
 "host": "myServer.com",
 "username": "johndoe",
 "password": "xyz"
 // or pem file (ssh based authentication)
 //"pem": "~/.ssh/id_rsa"
 }
],

To install sshpass for our environment, we can follow the steps at
https://gist.github.com/arunoda/7790979, or if you're on
Mac OS X, take a look at http://www.hashbangcode.com/blog/
installing-sshpass-osx-mavericks.

6. Next, we can set some options, such as choosing to install MongoDB on the
server. If we use a service such as Compose, we will set it to false:
"setupMongo": false,

If we already have Node.js installed on our server, we will also set the next
option to false:
"setupNode": false,

If we want to mention a specific Node.js version, we can set it as follows:
"nodeVersion": "0.10.25",

Meteor Up can also install PhantomJS for us, which is necessary if we
use Meteor's spiderable package, which makes our app crawlable by
search engines:
"setupPhantom": true,

In the next option, we will set the name of our app, which can be the same
as our app's folder name:
"appName": "my-meteor-blog",

Finally, we point to our local app folder so that Meteor Up knows what
to deploy:
"app": "~/my-meteor-blog",

https://gist.github.com/arunoda/7790979
http://www.hashbangcode.com/blog/installing-sshpass-osx-mavericks
http://www.hashbangcode.com/blog/installing-sshpass-osx-mavericks

Chapter 10

[143]

7. Meteor Up also lets us preset all the necessary environment variables,
such as the correct MONGO_URL variable:
"env": {
 "ROOT_URL": "http://myServer.com",
 "MONGO_URL": "mongodb://user:password@host:port/databasename",
 "PORT": 8080
},

8. The last option sets the time Meteor Up will wait for before checking whether
the app started successfully:
"deployCheckWaitTime": 15

Setting up the server
In order to set up the server using Meteor Up, we need a no-password access to
sudo. Perform the following steps to set up the server:

1. To enable no-password access, we need to add our current user to the
server's sudo group:
$ sudo adduser <username> sudo

2. Then add NOPASSWD to the sudoers file:
$ sudo visudo

3. Now replace the %sudo ALL=(ALL) ALL line with the following line:
%sudo ALL=(ALL) NOPASSWD:ALL

Deploying with mup
If everything has worked fine, we can set up our server. The following steps explain
how we can deploy with mup:

1. Run the following command from inside the local my-meteor-blog-
deployment folder:
$ mup setup

This will configure our server and install all requirements chosen in our
configuration file.

Once this process is done, we can deploy our app any time by running the
following command from the same folder:
$ mup deploy

Deploying Our App

[144]

This way, we can also create production and staging environments by creating two
separate Meteor Up configurations with two distinct app names, and deploy it to
the same server.

Outlook
Currently, Meteor limits native deployment to its own servers, with limited
control over the environment. Planned is an enterprise-grade server infrastructure
called Galaxy, which will make deploying and scaling Meteor apps as simple as
Meteor itself.

Nonetheless, with Meteor's simplicity and great community, we already have a rich
set of tools available to deploy to any Node.js-based hosting and PaaS environment.

For example, if we wanted to deploy on Heroku, we can take a
look at the build pack by Jordan Sissel at https://github.com/
jordansissel/heroku-buildpack-meteor.

Summary
In this chapter, we learned how to deploy Meteor and how simple deploying
on Meteor's own server infrastructure can be. We also used tools such as
Demeteorizer and Meteor Up to deploy on our own server infrastructure.

To read more about the specific deployment methods, take a look at the
following resources:

• https://www.meteor.com/services/developer-accounts

• https://docs.meteor.com/#/full/deploying

• https://www.meteor.com/services/build

• https://github.com/onmodulus/demeteorizer

• https://github.com/arunoda/meteor-up

You can find the full example code of this app, ready for deployment, at https://
www.packtpub.com/books/content/support/17713 or on GitHub at https://
github.com/frozeman/book-building-single-page-web-apps-with-meteor/
tree/chapter10.

In the next chapter, we will create a package of our previously created ReactiveTimer
object and publish it to Meteor's official package repository.

https://github.com/jordansissel/heroku-buildpack-meteor
https://github.com/jordansissel/heroku-buildpack-meteor
https://www.meteor.com/services/developer-accounts
https://docs.meteor.com/#/full/deploying
https://www.meteor.com/services/build
https://github.com/onmodulus/demeteorizer
https://github.com/arunoda/meteor-up
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10

Building Our Own Package
In this chapter, we will learn how to build our own package. Writing packages allows
us to create closed-functionality components that can be shared between many apps.
In the second half of the chapter, we will publish our app on Atmosphere, Meteor's
third-party package repository, at https://atmospherejs.com.

In this chapter, we will cover the following topics:

• Structuring a package
• Creating a package
• Publishing your own package

In this chapter, we will package the ReactiveTimer object that
we built in Chapter 9, Advanced Reactivity. To follow the examples in
this chapter, download the previous chapter's code examples from
either the book's web page at https://www.packtpub.com/
books/content/support/17713 or from the GitHub repository
at https://github.com/frozeman/book-building-single-
page-web-apps-with-meteor/tree/chapter10.

The structure of a package
A package is a bundle of JavaScript files that exposes only specific variables to
a Meteor app. Other than in a Meteor app, package files will get loaded in the
loading order we specify.

Every package needs a package.js file that contains the configuration of that
package. In such a file, we can add a name, description, and version, set the
loading order, and determine which variables should be exposed to the app.
Additionally, we can specify unit tests for our packages to test them.

https://atmospherejs.com
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10

Building Our Own Package

[146]

An example of a package.js file can look like this:

Package.describe({
 name: "mrt:moment",
 summary: "Moment.js, a JavaScript date library.",
 version: "0.0.1",
 git: "https://..."
});

Package.onUse(function (api, where) {
 api.export('moment');

 api.addFiles('lib/moment-with-langs.min.js', 'client');
});

Package.onTest(function(api){
 api.use(["mrt:moment", "tinytest"], ["client", "server"]);
 api.addFiles("test/tests.js", ["client", "server"]);
});

We can structure the files and folders in our package as we wish, but a good basis is
the following arrangement:

• tests: This contains the package's unit tests and the tests.js file
• lib: This contains third-party libraries used by the package
• README.md: This contains simple instructions on how to use the package
• package.js: This contains the package's metadata
• myPackage.js: These are one or more files that contain the package code

To test a package, we can use Meteor's tinytest package, which is a simple unit
testing package. If we have tests, we can run them using the following command:

$ meteor test-packages <my package name>

This will start a Meteor app at http://localhost:3000, which runs our package
tests. To see how to write a package, take a look at the next chapter.

Chapter 11

[147]

Creating our own package
To create our own package, we will use our ReactiveTimer object, which we built in
Chapter 9, Advanced Reactivity:

1. We go to our terminal, in our app's folder and run the following command:
$ meteor create --package reactive-timer

2. This will create a folder named packages with a reactive-timer folder
inside it. Inside the reactive-timer folder, Meteor has already created a
package.js file and some example package files.

3. Now we can delete all the files inside the reactive-timer folder, except the
package.js file.

4. Then we move the my-meteor-blog/client/ReactiveTimer.js file, which
we created in Chapter 9, Advanced Reactivity, to our newly created reactive-
timer package folder.

5. Lastly, we open the copied ReactiveTimer.js file and remove the
following lines:
timer = new ReactiveTimer();
timer.start(10);

Later, we'll instantiate the timer object inside the app itself and not in the
package file.

We should now have a simple folder with the default package.js file and our
ReactiveTimer.js file. This is almost it! We just need to configure our package
and we are ready to use it in our app.

Adding the package metadata
To add the package's metadata, we open the file called package.js and add the
following lines of code:

Package.describe({
 name: "meteor-book:reactive-timer",
 summary: "A simple timer object, which can re-run reactive functions
based on an interval",
 version: "0.0.1",
 // optional
 git: "https://github.com/frozeman/meteor-reactive-timer"
});

This adds a name to the package as well as a description and a version.

Building Our Own Package

[148]

Note that the package name is namespaced with the author's name. This exists so
that packages with the same name can be made distinct through the names of their
authors. In our case, we choose meteor-book, which is not a real username. To
publish the package, we need to use our real Meteor developer username.

After the Package.describe() function come the actual package dependencies:

Package.onUse(function (api) {
 // requires Meteor core packages 1.0
 api.versionsFrom('METEOR@1.0');

 // we require the Meteor core tracker package
 api.use('tracker', 'client');

 // and export the ReactiveTimer variable
 api.export('ReactiveTimer');

 // which we find in this file
 api.addFiles('ReactiveTimer.js', 'client');
});

Here, we define the version of the Meteor core packages this package should use:

• With api.use(), we define an additional package (or packages) this package
depends on. Note that these dependencies won't be accessible to the app
itself, which uses this package.

Additionally, there exists api.imply(), which not only makes
another package available in the package's files, but also adds it
to the Meteor app itself so that it can be accessed by the app's code.

• If we use a third-party package, we must specify the minimum package
version as follows:
api.use('author:somePackage@1.0.0', 'server');

We can also pass in a third parameter, {weak: true}, to specify
that the dependent package will only be used if it is already added
to the app by the developer. This can be used to enhance a package
when other packages are present.

Chapter 11

[149]

• In the second parameter of the api.use() function, we can specify whether
to load it on the client, server, or both, using an array:
api.use('tracker', ['client', 'server']);

We don't really need to import the Tracker package, as it's already a
part of Meteor's core meteor-platform package (added by default
to any Meteor app); we do this here for the sake of an example.

• We then use api.export('ReactiveTimer') to define which variable of the
package should be exposed to the Meteor app using this package. Remember
that we created the ReactiveTimer object inside the ReactiveTimer.js file
using the following lines of code:
ReactiveTimer = (function () {
 ...
})();

Note that we didn't use var to create the variable. This way,
it is accessible in all the other files of the package and can
also be exposed to the app itself.

• Lastly, we tell the package system which files belong to the package, using
api.addFiles(). We can have multiple calls of api.addFiles() one after
the other. This order will then specify the loading order of the files.
Here, we can again tell Meteor where to load the file—on the client,
the server, or both—using ['client', 'server'].
In this case, we only provide the ReactiveTimer object on the client,
as Meteor's reactive functions exist only on the client side.

If you want to see a full list of methods on the api
object, take a look at Meteor's documentation at
http://docs.meteor.com/#packagejs.

http://docs.meteor.com/#packagejs

Building Our Own Package

[150]

Adding the package
Copying a package folder to the my-meteor-blog/packages folder is not enough to
tell Meteor to use the package. There are additional steps that we need to follow:

1. To add the package, we need to go to our app's folder from the terminal, quit
any currently running meteor instance, and run the following command:
$ meteor add meteor-book:reactive-timer

2. We then need to instantiate the ReactiveTimer object in our app. To do this,
we add the following lines of code to our my-meteor-blog/main.js file:
if(Meteor.isClient) {
 timer = new ReactiveTimer();
 timer.start(10);
}

3. Now we can start the Meteor app again using $ meteor and open our
browser at http://localhost:3000.

We shouldn't see any difference, as we just replaced the ReactiveTimer object that
was already there in our app with the ReactiveTimer object from our meteor-
book:reactive-timer package.

To see the timer run, we can open our browser's console and run the following
code snippet:

Tracker.autorun(function(){
 timer.tick();
 console.log('timer run');
});

This should log timer run every 10 seconds, showing us that the package is
actually working.

Releasing our package to the public
It's very easy to release a package to the world, but for people to use our package,
we should add a readme file so they can know how to use our package.

Create a file called README.md in the package folder we created earlier and add the
following code snippet:

ReactiveTimer

This package can run reactive functions in a given interval.

Chapter 11

[151]

Installation

 $ meteor add meteor-book:reactive-timer

Usage

To use the timer, instantiate a new interval:

 var myTimer = new ReactiveTimer();

Then you can start an interval of 10 seconds using:

 myTimer.start(10);

To use the timer just call the following in any reactive function:

 myTimer.tick();

To stop the timer use:

 myTimer.stop();

As we can see, this file uses the markdown syntax. This way, it will look good
on GitHub and http://atmospherejs.com, which is the website where you can
browse all the available Meteor packages.

With this readme file, we will make it easy for other people to use the package and
appreciate our work.

Publishing our package online
After we have saved the readme file, we can push the package to GitHub or
any other online Git repository, and add the repository's URL to the Package.
describe({git: …}) variable of package.js. Keeping the code on GitHub
keeps it safe and allows others to fork and improve it. Let's perform the
following steps to push our package online:

1. To publish our package, we can simply run the following command from
inside the pages folder in the terminal:
$ meteor publish --create

This will build and bundle the package and upload it to Meteor's
package servers.

http://atmospherejs.com

Building Our Own Package

[152]

2. If everything goes fine, we should be able to find our package by typing the
following command:
$ meteor search reactive-timer

This is illustrated in the following screenshot:

3. We can then show all of the information about the found package using the
following command:
$ meteor show meteor-book:reactive-timer

This is illustrated in the following screenshot:

4. To use the package version from the Meteor server, we can simply move the
packages/reactive-timer folder somewhere else, remove the package
folder, and run $ meteor to start the app.
Now Meteor won't find any package with that name in the packages folder
and will look online for that package. Since we published it, it will be
downloaded and used in our app.

Chapter 11

[153]

5. Should we want to use a specific version of our package in the app, we can
run the following command from inside our app's folder in the terminal:
$ meteor add meteor-book:reactive-timer@=0.0.1

Now our package is released and we can see it on Atmosphere at
http://atmospherejs.com/meteor-book/reactive-timer, as shown
in the following screenshot:

Building Our Own Package

[154]

Note that this is just an example of a package and was never actually
released. However, a published version of this package under my
name can be found at http://atmospherejs.com/frozeman/
reactive-timer.

Updating our package
If we want to release a new version of our package, we can simply increase the
version number in the package.js file and publish a new version using the
following command from inside the packages folder:

$ meteor publish

To make our app use the latest version of our package (as long as we didn't
specify a fixed version), we can simply run the following command from inside
our app's folder:

$ meteor update meteor-book:reactive-timer

If we want to update all packages, we can run the following command:

$ meteor update –-packages-only

Summary
In this chapter, we created our own package from our ReactiveTimer object.
We also learned how simple it is to publish a package on Meteor's official
packaging system.

To dig deeper, read the documentations at the following resources:

• https://docs.meteor.com/#/full/writingpackages

• https://docs.meteor.com/#packagejs

• https://www.meteor.com/services/package-server

• https://www.meteor.com/isobuild

You can find this chapter's code examples at https://www.packtpub.com/books/
content/support/17713 or on GitHub at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/chapter11.

This code example contains only the package, so in order to add it to the app,
use the code example of the previous chapter.

In the next chapter, we will take a look at testing our app and package.

http://atmospherejs.com/frozeman/reactive-timer
http://atmospherejs.com/frozeman/reactive-timer
https://docs.meteor.com/#/full/writingpackages
https://docs.meteor.com/#packagejs
https://www.meteor.com/services/package-server
https://www.meteor.com/isobuild
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter11
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter11

Testing in Meteor
In this final chapter, we will discuss how we can test a Meteor app.

Testing is a comprehensive topic and it goes beyond the scope of this chapter.
To keep it simple, we will briefly cover two tools available, as they are certainly
different, and show a simple example for each.

In this chapter, we will cover the following topics:

• Testing the reactive-timer package
• Using Jasmine to conduct unit tests on our app
• Using Nightwatch to conduct acceptance tests on our app

If you want to jump right into the chapter and follow the examples,
download the code of Chapter 10, Deploying Our App, which contains the
finished example app, either from the book's web page at https://www.
packtpub.com/books/content/support/17713 or from the GitHub
repository at https://github.com/frozeman/book-building-
single-page-web-apps-with-meteor/tree/chapter10.

Types of tests
Tests are pieces of code that test other pieces of code or functionality of an app.

We can divide tests into four general groups:

• Unit test: In this test, we test only a small unit of our code. This can, for
example, be a function or a piece of code. Unit tests should not call other
functions, write to the hard disk or database, or access the network. If such
functionality is needed, one should write stubs, which are functions that
return the expected value without calling the real function.

https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter10

Testing in Meteor

[156]

• Integrations test: In this test, we combine multiple tests and run them in
different environments to make sure that they still work. The difference in
this test compared to the unit test is that we are actually running connected
functionalities, such as calling the database.

• Functional test: This can be a unit test or tests in the interface, but will only
test the functionality of a feature/function without checking for side effects,
such as whether or not variables were cleaned up properly.

• Acceptance test: This runs tests on the full system, which can, for example, be
a web browser. The idea is to mimic the actual user as much as possible. These
tests are very similar to user stories that define a feature. The downside is that
they make it hard to track down bugs, as the test occurs on a higher level.

In the following examples, we will mostly write functional tests for simplicity.

Testing packages
In the previous chapter, we built a package out of the ReactiveTimer object.
A good package should always contain unit tests so that people can run them
and be sure that changes to that package don't break its functionality.

Meteor provides a simple unit test tool for packages, called TinyTest, which we
will use to test our package:

1. To add tests, we need to copy the meteor-book:reactive-timer package,
which we built in the previous chapter, to the my-meteor-blog/packages
folder of our app. This way, we can make changes to the package, as Meteor
will prefer the package in the packages folder over one in its package servers.
If you removed the package, simply add it back using the following command:
$ meteor add meteor-book:reactive-timer

Additionally, we need to make sure we delete the
my-meteor-blog/client/ReactiveTimer.
js file, which we should have if we used the code
example from Chapter 10, Deploying Our App, as a basis.

2. Then we open the package.js file from our packages folder and add the
following lines of code to the end of the file:
Package.onTest(function (api) {
 api.use('meteor-book:reactive-timer', 'client');

Chapter 12

[157]

 api.use('tinytest', 'client');

 api.addFiles('tests/tests.js', 'client');
});

This will include our meteor-book:reactive-timer package and tinytest
when running tests. It will then run the tests.js file, which will contain our
unit tests.

3. Now, we can create the tests by adding a folder called tests to our package's
folder and create a file called tests.js inside.
Currently, the tinytest package is not documented by Meteor, but it is tiny,
which means it is very simple.
Basically, there are two functions, Tinytest.add(test) and Tinytest.
addAsync(test, expect). They both run a simple test function, which
we can pass or fail using test.equal(x, y), test.isTrue(x), or test.
isUndefined(x).
For our package tests, we will simply test whether ReactiveTimer._
intervalId is not null after we started the timer, and we will know
whether the timer runs or not.

Adding package tests
The test is built by first describing what will be tested.

To test for _intervalId, we add the following lines of code to our tests.js file:

Tinytest.add('The timer set the _intervalId property', function (test)
{
 var timer = new ReactiveTimer();
 timer.start(1);

 test.isTrue(timer._intervalId !== null);

 timer.stop();
});

Then we start a timer and test whether its _intervalId property is not null anymore.
At the end, we stop the timer again to clean up the test.

Testing in Meteor

[158]

The next test we will add to our tests.js file will be asynchronous, as we need to
wait for the timer to run at least once:

Tinytest.addAsync('The timer run', function (test, expect) {
 var run = false,
 timer = new ReactiveTimer();
 timer.start(1);

 Tracker.autorun(function(c){
 timer.tick();

 if(!c.firstRun)
 run = true;
 });

 Meteor.setTimeout(function(){
 test.equal(run, true);
 timer.stop();

 expect();
 }, 1010);
});

Let's take a look at what is happening in this asynchronous test:

• First, we started the timer again with an interval of 1 second and created
a variable called run. We then switched this variable to true only when
our reactive Tracker.autorun() function ran. Note that we used if(!c.
firstRun) to prevent the run variable from being set when the function
runs the first it's executed, as we only want the "tick" after 1 second to count.

• We then used the Meteor.setTimeout() function to check whether run
was changed to true. The expect() tells Tinytest.addAsync() that the
test is over and outputs the result. Note that we also stopped the timer,
as we always need to clean up after each test.

Running the package tests
To finally run the test, we can run the following command from our app's
root folder:

$ meteor test-packages meteor-book:reactive-timer

Chapter 12

[159]

This will start a Meteor app and run our package tests. To see them, we navigate to
http://localhost:3000:

We can also run a test for more than one package at the same
time by naming multiple packages separated by spaces:
$ meteor test-packages meteor-book:reactive-timer
iron:router

To see if the test works, we will deliberately make it fail by commenting out
Meteor.setInterval() in the my-meteor-book/packages/reactive-timer/
ReactiveTimer.js file, as shown in the following screenshot:

We should always try to make our test fail, as a test could also be written in a
way that it never succeeds or fails (for example, when expect() was never called).
This would stop the execution of other tests, as the current one could never finish.

Testing in Meteor

[160]

A good rule of thumb is to test functionality as if we are looking at a black box. If we
customize our tests too much depending on how a function is written, we will have a
hard time fixing tests as we improve our functions.

Testing our meteor app
To test the app itself, we can use Velocity Meteor's official testing framework.

Velocity itself doesn't contain tools for testing, but rather gives testing packages such
as Jasmine or Mocha a unified way to test Meteor apps and report their output in the
console or the apps interface itself using the velocity:html-reporter package.

Let's quote their own words:

Velocity watches your tests/ directory and sends test files to the correct testing
plugin. The testing plugin performs the tests and sends results for each test back to
Velocity as they complete. Velocity then combines the results from all of the testing
plugins and outputs them via one or more reporting plugins. When the app or tests
change, Velocity will rerun your tests and reactively update the results.

This is taken from http://velocity.meteor.com. Additionally, Velocity adds
features such as Meteor stubs and automatic stubbing. It can create mirror apps
for isolated testing and run setup code (fixtures).

We will now take a look at unit and integration tests using Jasmine and acceptance
tests using Nightwatch.

Testing using Jasmine
To use Jasmine with Velocity, we need to install the sanjo:jasmine package along
with the velocity:html-reporter package.

To do this, we'll run the following command from inside our apps folder:

$ meteor add velocity:html-reporter

Then we install Jasmine for Meteor using the following command:

$ meteor add sanjo:jasmine

In order that Velocity can find the tests, we need to create the following
folder structure:

- my-meteor-blog
 - tests

http://velocity.meteor.com

Chapter 12

[161]

 - jasmine
 - client
 - unit
 - integration
 - server
 - unit

Now, when we start the Meteor server using $ meteor, we will see that the Jasmine
package has already created two files in the /my-meteor-blog/tests/jasmine/
server/unit folder, which contains stubs for our packages.

Adding unit tests to the server
Now we can add unit tests to the client and the server. In this book, we will only add
a unit test to the server and later add integration tests to the client to stay within the
scope of this chapter. The steps to do so are as follows:

1. First, we create a file called postSpecs.js within the /my-meteor-blog/
tests/jasmine/server/unit folder and add the following command:
describe('Post', function () {

This will create a test frame describing what the test inside will be about.

2. Inside the test frame, we call the beforeEach() and afterEach() functions,
which will run before and after each test, respectively. Inside, we will create
stubs for all Meteor functions using MeteorStubs.install() and clean
them afterwards using MeteorStubs.uninstall():
beforeEach(function () {
 MeteorStubs.install();
});

afterEach(function () {
 MeteorStubs.uninstall();
});

A stub is a function or object that mimics its original function or
object, but doesn't run actual code. Instead, a stub can be used to
return a specific value that the function we test depends on.
Stubbing makes sure that a unit test tests only a specific unit of
code and not its dependencies. Otherwise, a break in a dependent
function or object would cause a chain of other tests to fail, making
it hard to find the actual problem.

Testing in Meteor

[162]

3. Now we can write the actual test. In this example, we will test whether the
insertPost method we created previously in the book inserts the post, and
makes sure that no duplicate slug will be inserted:
it('should be correctly inserted', function() {

 spyOn(Posts, 'findOne').and.callFake(function() {
 // simulate return a found document;
 return {title: 'Some Tite'};
 });

 spyOn(Posts, 'insert');

 spyOn(Meteor, 'user').and.returnValue({_id: 4321, profile:
{name: 'John'}});

 spyOn(global, 'moment').and.callFake(function() {
 // simulate return the moment object;
 return {unix: function(){
 return 1234;
 }};
 });

First, we create stubs for all the functions we are using inside the insertPost
method to make sure that they return what we want.
Especially, take a look at the spyOn(Posts, "findOne") call. As we can see,
we call a fake function and return a fake document with just a title. Actually,
we can return anything as the insertPost method only checks whether a
document with the same slug was found or not.

4. Next, we actually call the method and give it some post data:
 Meteor.call('insertPost', {
 title: 'My Title',
 description: 'Lorem ipsum',
 text: 'Lorem ipsum',
 slug: 'my-title'
 }, function(error, result){

5. Inside the callback of the method, we add the actual tests:
 expect(error).toBe(null);

 // we check that the slug is returned

Chapter 12

[163]

 expect(result).toContain('my-title');
 expect(result.length).toBeGreaterThan(8);

 // we check that the post is correctly inserted
 expect(Posts.insert).toHaveBeenCalledWith({
 title: 'My Title',
 description: 'Lorem ipsum',
 text: 'Lorem ipsum',
 slug: result,
 timeCreated: 1234,
 owner: 4321,
 author: 'John'
 });
 });
});

First, we check whether the error object is null. Then we check whether
the resultant slug of the method contains the 'my-title' string. Because
we returned a fake document in the Posts.findOne() function earlier,
we expect our method to add some random number to the slug such as
'my-title-fotvadydf4rt3xr'. Therefore, we check whether the length
is bigger than the eight characters of the original 'my-title' string.
At last, we check whether the Post.insert() function was called with
the expected values.

To fully understand how you can test Jasmine, take a look at
the documentation at https://jasmine.github.io/2.0/
introduction.html.
You can also find a good cheat sheet of Jasmine functions
at http://www.cheatography.com/citguy/cheat-
sheets/jasmine-js-testing.

6. Finally, we close the describe(... function at the beginning:

});

If we now start our Meteor app again using $ meteor, after a while we'll see a green
dot appearing in the top-right corner.

https://jasmine.github.io/2.0/introduction.html
https://jasmine.github.io/2.0/introduction.html
http://www.cheatography.com/citguy/cheat-sheets/jasmine-js-testing
http://www.cheatography.com/citguy/cheat-sheets/jasmine-js-testing

Testing in Meteor

[164]

Clicking on this dot gives us access to Velocity's html-reporter and it should show
us that our test has passed:

To make our test fail, let's go to our my-meteor-blog/methods.js file and comment
out the following lines:

if(Posts.findOne({slug: postDocument.slug}))
 postDocument.slug = postDocument.slug +'-'+ Math.random().
toString(36).substring(3);

Chapter 12

[165]

This will prevent the slug from getting changed, even if a document with the same
slug already exists, and fail our test. If we go back and check in our browser, we
should see the test as failed:

We can add more tests by just adding a new it('should be xyz', function()
{...}); function.

Adding integration tests to the client
Adding integration tests is as simple as adding unit tests. The difference is that all
the test specification files go to the my-meteor-blog/tests/jasmine/client/
integration folder.

Integration tests, unlike unit tests, run in the actual app environment.

Testing in Meteor

[166]

Adding a test for the visitors
In our first example test, we will test to ensure that visitors can't see the Create Post
button. In the second test, we will log in as an administrator and check whether we
are able to see it.

1. Let's create a file named postButtonSpecs.js in our my-meteor-blog/
tests/jasmine/client/integration folder.

2. Now we add the following code snippet to the file and save it:
describe('Vistors', function() {
 it('should not see the create posts link', function () {
 var div = document.createElement('DIV');
 Blaze.render(Template.home, div);

 expect($(div).find('a.createNewPost')[0]).not.
toBeDefined();
 });
});

Here we manually create a div HTML element and render the home template inside.
After that, we check whether the a.createNewPost link is present.

If we go back to our app, we should see the integration test added and passed:

Chapter 12

[167]

In case the test doesn't show up, just quit and restart the
Meteor app in the terminal again.

Adding a test for the admin
In the second test, we will first log in as administrator and then check again whether
the button is visible.

We add the following code snippet to the same postButtonSpecs.js file as the one
we used before:

describe('The Admin', function() {
 afterEach(function (done) {
 Meteor.logout(done);
 })

 it('should be able to login and see the create post link',
function (done) {
 var div = document.createElement('DIV');
 Blaze.render(Template.home, div);

 Meteor.loginWithPassword('johndoe@example.com', '1234',
function (err) {

 Tracker.afterFlush(function(){

 expect($(div).find('a.createNewPost')[0]).toBeDefined();
 expect(err).toBeUndefined();

 done();
 });

 });
 });
});

Here we add the home template to a div again, but this time we log in as an admin
user, using our admin credentials. After we have logged in, we call Tracker.
afterFlush() to give Meteor time to re-render the template and then check
whether the button is now present.

Because this test runs asynchronously, we need to call the done() function, which
we passed as an argument to the it() function, telling Jasmine that the test is over.

Testing in Meteor

[168]

Our credentials inside the test file are secure, as Meteor doesn't
bundle files in the tests directory.

If we now go back to our browser, we should see the two integration tests as passed:

After creating a test, we should always make sure we try to fail the test to
see whether it actually works. To do so, we can simply comment out the
a.createNewPost link in my-meteor-blog/client/templates/home.html.

You can run Velocity tests using PhantomJS as follows:
$ meteor run --test

You first need to install PhantomJS globally with $ npm install
-g phantomjs. Be aware that this feature is experimental at the
time of writing this book and might not run all your tests.

Chapter 12

[169]

Acceptance tests
Though we can test client and server code separately with these tests, we can't
test the interaction between the two. For this, we need acceptance tests, which,
if explained in detail, would go beyond the scope of this chapter.

At the time of this writing, there is no acceptance testing framework that is
implemented using Velocity, though there are two you can use.

Nightwatch
The clinical:nightwatch package allows you to run an acceptance test in a simple
way as follows:

"Hello World" : function (client) {
 client
 .url("http://127.0.0.1:3000")
 .waitForElementVisible("body", 1000)
 .assert.title("Hello World")
 .end();
}

Though the installation process is not as straightforward as installing a Meteor
package, you need to install and run MongoDB and PhantomJS yourself before
you can run the tests.

If you want to give it a try, check out the package on atmosphere-javascript website
at https://atmospherejs.com/clinical/nightwatch.

Laika
If you want to test the communication between the server and the client, you can
use Laika. Its installation process is similar to Nightwatch, as it requires separate
MongoDB and PhantomJS installations.

Laika spins up a server instance and connects multiple clients. You then can set up
subscriptions or insert and modify documents. You can also test their appearance in
the clients.

To install Laika, go to http://arunoda.github.io/laika/.

At the time of this writing, Laika is not compatible with
Velocity, which tries to run all the files in the test folder
in Laika's environment, causing errors.

https://atmospherejs.com/clinical/nightwatch
http://arunoda.github.io/laika/

Testing in Meteor

[170]

Summary
In this final chapter, we learned how to write simple unit tests using the
sanjo:jasmine package for Meteor's official testing framework, Velocity.
We also took a brief look at possible acceptance test frameworks.

If you want to dig deeper into testing, you can take a look at the following resources:

• http://velocity.meteor.com

• http://jasmine.github.io

• http://www.cheatography.com/citguy/cheat-sheets/jasmine-js-
testing

• http://doctorllama.wordpress.com/2014/09/22/bullet-proof-
internationalised-meteor-applications-with-velocity-unit-
testing-integration-testing-and-jasmine/

• http://arunoda.github.io/laika/

• https://github.com/xolvio/velocity

You can find this chapter's code files at https://www.packtpub.com/books/
content/support/17713 or on GitHub at https://github.com/frozeman/book-
building-single-page-web-apps-with-meteor/tree/chapter12.

Now that you have read the whole book, I assume you know a lot more
about Meteor than before and are as excited about this framework as I am!

If you have any questions concerning Meteor, you can always ask them at
http://stackoverflow.com, which has a great Meteor community.

I also recommend reading through all Meteor subprojects at
https://www.meteor.com/projects, and study the documentation at
https://docs.meteor.com.

I hope you had a great time reading this book and you're now ready to start
making great apps using Meteor!

http://velocity.meteor.com
http://jasmine.github.io
http://www.cheatography.com/citguy/cheat-sheets/jasmine-js-testing
http://www.cheatography.com/citguy/cheat-sheets/jasmine-js-testing
http://doctorllama.wordpress.com/2014/09/22/bullet-proof-internationalised-meteor-applications-with-velocity-unit-testing-integration-testing-and-jasmine/
http://doctorllama.wordpress.com/2014/09/22/bullet-proof-internationalised-meteor-applications-with-velocity-unit-testing-integration-testing-and-jasmine/
http://doctorllama.wordpress.com/2014/09/22/bullet-proof-internationalised-meteor-applications-with-velocity-unit-testing-integration-testing-and-jasmine/
http://arunoda.github.io/laika/
https://github.com/xolvio/velocity
https://www.packtpub.com/books/content/support/17713
https://www.packtpub.com/books/content/support/17713
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter12
https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter12
http://stackoverflow.com
https://www.meteor.com/projects
https://docs.meteor.com

Appendix
This appendix contains a list of Meteor's command-line tool commands and a short
description of iron:router hooks.

List of Meteor's command-line
tool commands

Option Description
run Using meteor run is the same as using meteor.

This will start a Meteor server for our app and
watch file changes.

create <name> This will initialize a Meteor project by creating
a folder with the same name with some initial
files.

update This will update our current Meteor app to the
latest release. We can also use meteor update
--release xyz to fix our Meteor app to a
specific release.

deploy <site name> This will deploy our Meteor app to
<site name>.meteor.com.

We can pass the --delete option to remove
a deployed app

build <folder_name> This will create a folder with our bundled
app(s) code ready to be deployed on our
own server.

Appendix

[172]

Option Description
add/remove <package name> This will add or remove a Meteor core package

to/from our project.
list This will list all Meteor packages our app is

using.
mongo This will give us access to our local MongoDB

shell. We need to also have our application
started with meteor run at the same time.

If we need access to the mongo database of a
app deployed on meteor.com, use $ meteor
mongo yourapp.meteor.com --url

But be aware that these credentials are only valid
for 1 minute.

reset This will reset our local development database
to a fresh state. This won't work when our
application is running. Be aware that this
will remove all our data stored in our local
database.

logs <site name> This will download and display the logs for an
app we deployed at <site name>.meteor.com

search This searches for Meteor packages and releases,
whose names contain the specified regular
expression.

show This shows more information about a specific
package or release: name, summary, the
usernames of its maintainers, and, if specified,
its home page and Git URL.

publish This publishes our packages. We must
before go to the package folder using the
cd command, log in to our Meteor account
using $ meteor login.

To publish a package for the first time, we use
$ meteor publish --create.

http://www.meteor.com

Appendix

[173]

Option Description
publish-for-arch This publishes a build of an existing

package version from a different architecture.
Our machine must have the right architecture to
be able to publish for a specific one.

Currently, the supported architectures for Meteor
are 32-bit Linux, 64-bit Linux, and Mac OS. The
servers for Meteor deploy run with a 64-bit Linux.

publish-release This publishes a release of Meteor. This takes in
a JSON configuration file.

For more detail, visit https://docs.meteor.
com/#/full/meteorpublishrelease.

claim This claims a site deployed with an old Meteor
version with our Meteor developer account.

login This logs us in to our Meteor developer
account.

logout This logs us out of our Meteor developer
account.

whoami This prints the username of our Meteor
developer account.

test-packages This will run tests for one or more packages.
For more information, refer to Chapter 12,
Testing with Meteor.

admin This catches for miscellaneous commands that
require authorization to use.

Some example uses of meteor admin include
adding and removing package maintainers
and setting a home page for a package. It also
includes various help functions for managing
a Meteor release.

https://docs.meteor.com/#/full/meteorpublishrelease
https://docs.meteor.com/#/full/meteorpublishrelease

Appendix

[174]

The iron:router hooks
The following table contains a list of router controller hooks:

action This function can overwrite the default behavior
of the route. If we define this function, we have
to manually render the template using this.
render().

onBeforeAction This function runs before the route gets rendered.
Here, we can put extra custom actions.

onAfterAction This function runs after the route gets rendered.
Here, we can put extra custom actions.

onRun This function runs once when the route is first
loaded. This function doesn't run again on a hot
code reloads or when the same URL is navigated
again.

onRerun This function will be called every time the route
is called.

onStop This function runs once when leaving the current
route to a new route.

subscriptions This function can return subscription(s) that affect
this.ready() in the action hooks

waitOn This function can return subscription(s), but will
automatically render the loadingTemplate until
those are ready.

data The return value of this function will be set as the
data context of this routes template.

A full explanation of these hooks can be found at the following resources:

• https://github.com/EventedMind/iron-router/blob/devel/Guide.
md#layouts

• https://github.com/EventedMind/iron-router/blob/devel/Guide.
md#hooks

• https://github.com/EventedMind/iron-router/blob/devel/Guide.
md#rendering-templates-with-data

https://github.com/EventedMind/iron-router/blob/devel/Guide.md#layouts
https://github.com/EventedMind/iron-router/blob/devel/Guide.md#layouts
https://github.com/EventedMind/iron-router/blob/devel/Guide.md#hooks
https://github.com/EventedMind/iron-router/blob/devel/Guide.md#hooks
https://github.com/EventedMind/iron-router/blob/devel/Guide.md#rendering-templates-with-data
https://github.com/EventedMind/iron-router/blob/devel/Guide.md#rendering-templates-with-data

Index
Symbols
{{#each}} block helper 34
{{#if}} block helper 38
{{/myBlockHelper}} helper 38
{{#myBlockHelper}} helper 38
{{myProperty}} helper 38
{{> myTemplate}} helper 38
{{#unless}} block helper 38
{{#with}} block helper

about 38
using 29

A
About route

creating 71, 72
acceptance test

about 156, 169
Laika 169
Nightwatch 169

accounts packages
about 94
adding 94, 95

admin functionality, adding to templates
about 95
link, adding for edit posts 96
link, adding for new posts 95, 96
login form, adding 96

admin routes
creating 101, 102
visitors, preventing from viewing 103

admin user
creating 98

permissions, adding 98, 99
routes, creating 101, 102
security 100

advanced reactive objects 131
advanced timer object

creating 126-128
allow rules

adding 110, 111
app

creating 11
deploying 133
deploying, on meteor.com 134
deploying, on other servers 138
drop-in-place style files 13
folder structure, creating 12
testing 155, 160

app deployment, on meteor.com
about 134-136
databases, backing up 137, 138
databases, restoring 137, 138
domain name, used 137

app deployment, on other servers
about 138
app, building 138, 139
Demeteorizer, using 140
Meteor Up (mup), using 140-143

Atmosphere
URL 145

autopublish package
removing 55

B
basic templates

building 24, 25

[176]

bindings 120
Blaze 22
block helpers

about 32
creating 32-34

blog entries
adding 34-37

C
callback functions, templates

created 29
destroyed 30
rendered 30

Chrome's developer tools
using 9

client collection
versus server collection 51

clinical:nightwatch package 169
collection

about 44
querying 48, 49
setting up 45
updating 49, 50

command-line tool, Meteor
about 8, 18
add/remove <package name> 172
admin 173
bundle <folder_name> 171
claim 173
create <name> 171
deploy <site name> 171
list 172
login 173
logout 173
logs <site name> 172
mongo 172
publish 172
publish-for-arch 173
publish-release 173
reset 172
run 171
search 172
show 172
test-packages 173
update 171
whoami 173

core package
adding 13

current Web
versus new Web 54

custom package
adding 150
creating 147
lib folder 146
myPackage.js file 146
package.js file 146
package metadata, adding 147-149
publishing online 151-153
README.md file 146
releasing, to public 150, 151
testing 146
tests folder 146
updating 154

D
data

displaying, with template helpers 26, 27
publishing 55, 56
syncing 54

database updates
allow rule, adding 110, 111
deny rule, adding 111, 112
insecure package, removing 109
performing 50
restricting 109

data context
setting, for template 28, 29

default templates
layoutTemplate 69
loadingTemplate 69
notFoundTemplate 69

Demeteorizer
used, for app deployment on

other servers 140
deny rule

adding 111, 112

E
events

about 120
adding, to templates 31, 32

[177]

F
fetch property 111
findOne() method 76
function

adding, for generating slugs 106
rerunning 86, 87

functional test 156

G
Galaxy 144
Git

installing 10
using 9

GitHub
using 9

H
hot code push

about 84
session object, using with 84

hot code reload 8
HTML templates

building 21

I
insecure package

removing 109
insert() rule 111
integrations test

about 156
adding, to client 165
test, adding for admin 167, 168
test, adding for visitors 166

invalidating cycle, reactive
dependencies 122, 123

iron:router package
adding 68

J
Jasmine

used, for testing app 160, 161

L
Laika

about 169
installing 169

latency compensation 113
layout template

switching to 70, 71
lazy loading

about 60
posts 60-62

less package
adding 13

M
Meteor

about 8
accounts packages 94
assets, loading 17
command-line tool 8
deploying 18
features 8
folder conventions and loading order 15, 16
full-stack framework 8
HTML templates, building 21
installing 10
MongoDB, using 44
reference link 8
requisites 9
updating 18
variable scopes 14

Meteor app. See app
meteor.com

app, deploying on 134-136
Meteor packages

about 13
core package, adding 13
jeeeyul:moment-with-langs 13
less package 13
third-party package 14

Meteor Up (mup)
about 140
deploying with 143, 144
used, for app deployment on

other servers 140-143
used, for setting up server 143

[178]

methods
about 113
adding 114, 115
advantages 113
calling 116
stub method 113

Mongo.Collection
find method 45
findOne method 45
insert method 45
remove method 45
update method 45
upsert method 45

MongoDB
using 44

N
Nightwatch

about 169
installing 169

P
package

about 145
structure 145, 146
testing 156, 157

package tests
adding 157, 158
running 158-160

partial data
publishing 56, 57

persistent-session
URL 85

poll and diff 120
post route

adding 75, 76
posts, linking 77
setting up 74
single-post publication, creating 74, 75

post examples
adding 45

posts
adding, method call used 113
creating 106
current post, updating 108, 109

editing 108
lazy loading 60-62
saving 106, 107
subscription, moving to Home route 72

publication/subscription model 54

R
reactive computations

about 128, 129
reactive functions, stopping 129, 130
run, preventing at start 130

reactive object 124
reactive programming

about 120, 121
invalidating cycle 122, 123

reactive session object 90
reactive templates 22
reactivity 120
remove() rule 111
requisites, Meteor

about 9
Chrome's developer tools 9
Git 9
GitHub 9

router
setting up 68, 69

router controller hooks, iron:router
action 174
data 174
onAfterAction 174
onBeforeAction 174
onRerun 174
onRun 174
onStop 174
subscriptions 174
waitOn 174

S
Secure Remote Password (SRP) protocol 94
server collection

versus client collection 51
session object 81, 82
sessions

using, in template helpers 83
using, with hot code push 84

[179]

simple reactive object
building 124
functions, rerunning 125

Spacebars 22
Spacebars syntax

about 38
data, passing to helpers 39-41
parent data contexts, accessing 39

specific fields
publishing 58, 59

subscriptions
switching 62, 63

T
template helpers

data, displaying with 26, 27
session object, using 83

templates
adding 25, 26
block helpers 32
callback functions 29
creating, for editing posts 97
data context, setting for 28, 29
events, adding 31, 32
writing 22, 23

testing 155
testing, with Jasmine

about 160, 161
integration tests, adding to client 165
unit tests, adding to server 161-165

tests
about 155
acceptance test 156
functional test 156
integrations test 156
unit test 155

third-party package
adding 14

this.$(selectorString) method 30
this.autorun(runFunc) object 30
this.data object 30
this.findAll(selectorString) method 30
this.find(selectorString) method 30
this.firstNode object 30

this in template helpers
about 29
examples 30, 31

this.lastNode object 30
this object

connection property 114
setUserId() property 114
unblock() property 114
userId property 114

this.view object 30
Tracker.Computation object 88
transform() function 111

U
unit test

about 155
adding, to server 161-165

V
variable scopes 14

W
website's title

changing 78

Thank you for buying
Building Single-page Web Apps

with Meteor

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with Meteor.js
JavaScript Framework
ISBN: 978-1-78216-082-3 Paperback: 130 pages

Develop modern web applications in Meteor, one of
the hottest new JavaScript platforms

1. Create dynamic, multiuser web applications
completely in JavaScript.

2. Use best practice design patterns including
MVC, templates, and data synchronization.

3. Create simple, effective user authentication
including Facebook and Twitter integration.

4. Learn the time-saving techniques of Meteor
to code powerful, lightning-fast web apps
in minutes.

Instant Meteor JavaScript
Framework Starter
ISBN: 978-1-78216-342-8 Paperback: 78 pages

Enjoy creating a multi-page site, using the exciting
new Meteor framework!

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Create multipage Meteor sites.

3. Learn best practices for structuring your app
for maximum efficiency.

4. Use and configure a NoSQL database.

Please check www.PacktPub.com for information on our titles

Node Security
ISBN: 978-1-78328-149-7 Paperback: 94 pages

Take a deep dive into the world of securing your Node
applications with Node Security

1. Examine security features and vulnerabilities
within JavaScript.

2. Explore the Node platform, including the event
loop and core modules.

3. Solve common security problems with available
npm modules.

Getting Started with Backbone
Marionette
ISBN: 978-1-78328-425-2 Paperback: 94 pages

Build large-scale JavaScript applications with
Backbone Marionette quickly and efficiently

1. Create scalable and highly interactive
web applications using one of the best
frameworks for Backbone.js.

2. Learn about controllers, views, modules,
events, commands, and regions.

3. Make the most out of Backbone Marionette by
understanding its philosophy and applying it
to real-life development tasks.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Meteor
	The full-stack framework of Meteor
	Meteor's requirements
	Using Chrome's developer tools
	Using Git and GitHub

	Installing Meteor
	Installing Git

	Creating our first app
	Creating a good folder structure
	Preadd style files

	Adding basic packages
	Adding a core package
	Adding a third-party package

	Variable scopes
	Meteor's folder conventions and
loading order
	Loading assets on the server

	Meteor's command-line tool
	Updating Meteor
	Deploying Meteor

	Summary

	Chapter 2: Building HTML Templates
	Writing templates in Meteor
	Building the basic templates
	Adding templates and partials
	Displaying data with template helpers
	Setting the data context for a template
	Using the {{#with}} block helper

	"this" in template helpers and template callbacks
	Adding events
	Block helpers
	Listing posts
	Spacebars syntax
	Accessing parent data contexts
	Passing data to helpers

	Summary

	Chapter 3: Storing Data and Handling Collections
	Meteor and databases
	Setting up a collection
	Adding post examples
	Querying a collection
	Updating a collection
	Database everywhere
	Differences between client and server collections
	Summary

	Chapter 4: Controlling the Data Flow
	Syncing data – the current Web versus the new Web
	Removing the autopublish package
	Publishing data
	Publishing only parts of data
	Publishing specific fields
	Lazy loading posts
	Switching subscriptions
	Some notes on data publishing
	Summary

	Chapter 5: Making Our App Versatile with Routing
	Adding the iron:router package
	Setting up the router
	Switching to a layout template
	Adding another route
	Moving the posts subscription to the Home route
	Setting up the post route
	Creating a single-post publication
	Adding the post route
	Linking the posts

	Changing the website's title
	Summary

	Chapter 6: Keeping States with Sessions
	Meteor's session object
	A better way for simple reactivity

	Using sessions in template helpers
	Session and hot code pushes

	Rerunning functions reactively
	Stopping reactive functions

	Using autorun in a template
	The reactive session object
	Summary

	Chapter 7: Users and Permissions
	Meteor's accounts packages
	Adding the accounts packages
	Adding admin functionality to our templates
	Adding a link for new posts
	Adding the link to edit posts
	Adding the login form

	Creating the template to edit posts
	Creating the admin user
	Adding permissions
	A note on security

	Creating routes for the admin
	Preventing visitors from seeing the admin routes

	Summary

	Chapter 8: Security with the Allow and Deny Rules
	Adding a function to generate slugs
	Creating a new post
	Saving a post

	Editing posts
	Updating the current post

	Restricting database updates
	Removing the insecure package
	Adding our first allow rules

	Adding a deny rule
	Adding posts using a method call
	Method stubs and latency compensation
	Changing the button
	Adding the method

	Calling the method
	Summary

	Chapter 9: Advanced Reactivity
	Reactive programming
	The invalidating cycle

	Building a simple reactive object
	Rerunning functions

	Creating an advanced timer object
	Reactive computations
	Stopping reactive functions
	Preventing run at start
	Advanced reactive objects

	Summary

	Chapter 10: Deploying Our App
	Deploying on meteor.com
	Deploying on meteor.com using a
domain name
	Backup and restore databases hosted
on meteor.com

	Deploying on other servers
	Bundling our app
	Deploying using Demeteorizer
	Deploying using Meteor Up
	Setting up the server
	Deploying with mup

	Outlook
	Summary

	Chapter 11: Building Our Own Package
	The structure of a package
	Creating our own package
	Adding the package metadata
	Adding the package

	Releasing our package to the public
	Publishing our package online
	Updating our package

	Summary

	Chapter 12: Testing in Meteor
	Types of tests
	Testing packages
	Adding package tests
	Running the package tests

	Testing our meteor app
	Testing using Jasmine
	Adding unit tests to the server
	Adding integration tests to the client

	Acceptance tests
	Nightwatch
	Laika

	Summary

	Appendix
	List of Meteor's command-line
tool commands
	The iron:router hooks

	Index

