
www.allitebooks.com

http://www.allitebooks.org

Building Web Applications
with Flask

Use Python and Flask to build amazing web
applications, just the way you want them!

Italo Maia

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Building Web Applications with Flask

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1240615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-615-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Italo Maia

Reviewers
Glenn ten Cate

Michel Henrique Aquino Santos

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Harsha Bharwani

Content Development Editor
Shubhangi Dhamgaye

Technical Editor
Shruti Rawool

Copy Editors
Stephen Copestake

Swati Priya

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Italo Maia is a full-stack developer with 10 years of experience in creating software
for the mobile, Web, and desktop environments, having dedicated most of the last
few years to development with Python and web technologies.

Author of Flask-Empty, a popular skeleton for Flask projects that aggregates
good practices and recipes for quick prototyping, he is active in the Brazilian
Python communities, having open source tools and libraries available in GitHub
and Bitbucket.

Building Web Applications with Flask is a book written with the
invaluable support of families—the Packt family, where I give
special thanks to Shubhangi for her dedication and patience with
puny little me, and my own family, who so tenderly have looked out
for me in my time of need.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Glenn ten Cate has over 10 years of experience in the field of security as a coder,
hacker, speaker, trainer, and security researcher. He is currently employed as a security
engineer at Schuberg Philis in the Netherlands, and has been a speaker at multiple
security conferences. His goal is to create an open source software development life
cycle approach with the tools and knowledge gathered over the years.

Michel Henrique Aquino Santos is a software engineer with Gravity4. A
Brazilian from Belo Horizonte, Minas Gerais, he is 26 years old. He graduated in
computer science from the Federal University of Lavras (UFLA) in 2012.

He worked with the research department at the university for 2 years, developing
artificial intelligence algorithms to solve optimization problems.

At the end of the course, he joined Tbit and started developing image processing
algorithms using C#.

After his graduation, he joined SYDLE and worked with ASP.NET Web Forms using
C#, JavaScript, and the MS SQL Server database. After that, he worked with Delphi
and the MS SQL server database at Sociedade Mineira de Cultura.

In January 2014, he joined Ezlike, a start-up focused on creating, managing, and
optimizing Facebook ads. In April 2015, Ezlike was acquired by the US-based
company Gravity4 in order to incorporate a number of other tools focused on digital
marketing. There, he works with ASP.NET MVC, JavaScript, AngularJS, KnockoutJS,
MongoDB, MS SQL Server, and Cassandra using the Facebook Ads API.

He is also about to begin some personal projects using Python and developing
for Android.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to my angel, my inspiration, and my light—my son,
Miguel—who never fails to amaze me in his endeavors to become a fine

young man or cheer up the family.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Flask in a Flask, I Mean, Book	 1

An introduction to Flask and its features	 1
Summary	 3

Chapter 2: First App, How Hard Could it Be?	 5
Hello World	 5
Prerequisites and tools	 5
Setting up a virtual environment	 6
Understanding the "Hello World" app	 6
Serving HTML pages	 9
Summary	 10

Chapter 3: Man, Do I Like Templates!	 11
What is Jinja2 and how is it coupled with Flask?	 11
What can you do with Jinja2?	 12

Control structures	 15
Macros	 20
Extensions	 22
Filters	 23
Messing with the template context	 25

Summary	 26
Chapter 4: Please Fill in This Form, Madam	 27

HTML forms for the faint of heart	 27
Handling forms	 29
WTForms and you	 30
Flask-WTF	 34

Integration with WTForms	 34
Securing forms with a CSRF token	 36

Table of Contents

[ii]

Challenges	 37
Summary	 37

Chapter 5: Where Do You Store Your Stuff?	 39
SQLAlchemy	 40

Concepts	 40
Hands on	 41
Flask-SQLAlchemy	 48

MongoDB	 50
MongoEngine	 52
Flask-MongoEngine	 54

Relational versus NoSQL	 56
Summary	 56

Chapter 6: But I Wanna REST Mom, Now!	 57
Beyond GET	 63
Flask-Restless	 66
Summary	 68

Chapter 7: If Ain't Tested, It Ain't Game, Bro!	 69
What kinds of test are there?	 70

Unit testing	 70
Behavior testing	 74
Flask-testing	 76

LiveServer	 77
Extra assertions	 80
JSON handle	 80

Fixtures	 81
Extra – integration testing	 84

Summary	 84
Chapter 8: Tips and Tricks or Flask Wizardry 101	 85

Overengineering	 86
Premature optimization	 86
Blueprints 101	 86
Oh God, please tell me you have the logs…	 94
Debugging, DebugToolbar, and happiness	 96

Flask-DebugToolbar	 97
Sessions or storing user data between requests	 99
Exercise	 101
Summary	 102

Table of Contents

[iii]

Chapter 9: Extensions, How I Love Thee	 103
How to configure extensions	 103
Flask-Principal and Flask-Login (aka Batman and Robin)	 105

Admin like a boss	 114
Custom pages	 119

Summary	 120
Chapter 10: What Now?	 121

You deploy better than my ex	 121
Placing your code in a server	 122
Setting up your database	 122
Setting up the web server	 125

StackOverflow	 129
Structuring your projects	 129
Summary	 130
Postscript	 130

Index	 131

[v]

Preface
One can hardly develop new applications in our "now world" without duct-taping
a lot of technologies together, be it new trend databases, messaging systems, or
languages of all kinds. When talking about web development, things might get
slightly more complicated as not only do you have to mix a lot of technologies
together, but they must also work well with the applications accessing them (also
known as web browsers). They should also be compatible with your deployment
server, which is another story in itself!

In the Python world, where people deliver amazing desktop software following
great guidelines such as the Zen of Python and PEP8, we have, at our disposal, a
wide range of libraries and frameworks for creating great web applications, each
with its own philosophy. Django, for example, is a bundle solution; it makes choices
for you on how your project should look, what should it have, and how things
should be done. Web2py is another framework solution that goes beyond and
bundles even the IDE with it. These are great concepts, but if you want to create
something simple, I would suggest you to do it somewhere else. They're usually
good choices, but sometimes they're just too much (the latest Django version seems
decisive in changing that; let's keep an eye on further developments).

Flask positions itself, not as a full-power out-of-the-box solution like both Django
and Web2py, but as a minimalistic solution where you're given the bare minimum to
work with and choose all the other stuff. That's very helpful when you want granular
control of your application, when you want to precisely pick your components, or
when your solution is simple (not simplistic, okay?).

Preface

[vi]

This book is a response to that scenario of beautiful code and many options in the
Web world. It tries to walk through the main concerns regarding web development,
from security to content delivery and from session management to REST services
and CRUD. Important modern concepts such as overengineering, quality and the
development process are covered, so as to achieve better results from day one. To
make the learning process smooth, subjects are presented without rush and followed
by commented examples. The book also sets out to give readers real-world advice on
how to prevent common problems with code.

Come learn how to create great Flask applications, delivering value to your projects
and customers!

What this book covers
Chapter 1, Flask in a Flask, I Mean, Book, introduces you to Flask, explaining what it is,
what it is not, and how it positions itself in the web framework world.

Chapter 2, First App, How Hard Could it Be?, covers the very first step toward Flask
development, including environment setup, your very own "Hello World" app, and
how templates enter into this equation. A fluffy chapter it is!

Chapter 3, Man, Do I Like Templates!, deals with face tags and filters progresses
through the Jinja2 template engine and how it integrates with Flask. Things start to
get a little serious from here!

Chapter 4, Please Fill in This Form, Madam, discusses how to handle forms (as forms
are a fact in the web development life) with all the care they need using WTForms in
all its glory!

Chapter 5, Where Do You Store Your Stuff?, introduces you to the concepts of relational
and non-relational databases, covering how to handle both cases, and also when to.

Chapter 6, But I Wanna REST Mom, Now!, is a chapter on creating REST services (as
the REST hype must be satisfied), manually and using the amazing Flask-Restless.

Chapter 7, If Ain't Tested, It Ain't Game, Bro!, is our quality-centric chapter where you
learn to deliver quality through proper testing, the TDD and BDD way!

Chapter 8, Tips and Tricks or Flask Wizardry 101, is a dense chapter covering good
practices, architecture, blueprints, debugging, and session management.

Preface

[vii]

Chapter 9, Extensions, How I Love Thee, covers all those great Flask extensions not
covered so far that will help you achieve the productivity the real world requires
from you.

Chapter 10, What Now?, ends our development trip covering all the basics for a
healthy deployment, and points you toward your next steps in the Flask world.

What you need for this book
To make the most of your reading experience, the reader is expected to have a
machine with Ubuntu 14.x or superior installed as the examples are designed
for this setup, a basic knowledge of Python (if you don't have this, refer to
http://learnxinyminutes.com/docs/python/ first), and a text editor with
highlights of your likings (LightTable, Sublime, Atom). Other required software will
be discussed through the chapters.

Who this book is for
This book targets Python developers, with some or no experience with web
development, who wish to create minimalistic web applications. It is focused on
those who want to become web developers as all the basics are covered to some
extent, and also on those who already are familiar with web development using
other frameworks, be it Python-based frameworks such as Django, Bottle, or
Pyramid, or frameworks from other languages.

It is also important that you have a basic understanding of web technologies used to
construct web pages, as is the case for CSS, JavaScript, and HTML. If that is not your
background, please check out the W3Schools website (http://w3schools.com/)
as it covers the basics of using these technologies. Also, if you're skilled with the
Linux terminal, your life will be much easier throughout the whole book; try the link
https://help.ubuntu.com/community/UsingTheTerminal if this is not the case.

Nonetheless, be assured that, if you have a basic knowledge of Python, you're more
than capable of understanding the examples and the chapters; at the end of the
book, you will be creating amazing web applications that perform well and are
easy to maintain.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

http://learnxinyminutes.com/docs/python/
http://w3schools.com/
https://help.ubuntu.com/community/UsingTheTerminal

Preface

[viii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Enter the new project folder and create the main.py file".

A block of code is set as follows:

coding:utf-8
from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

Any command-line input or output is written as follows:

sudo pip install virtualenvwrapper

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Have you
ever imagined what happens when you fill in a form on a website and click on that
fancy Send button at the end of it?".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[ix]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.allitebooks.org

[1]

Flask in a Flask,
I Mean, Book

What is Flask? It's a question that humanity has been pondering for millennia... well,
actually, since 2010, when Armin Ronacher first committed to the project. Flask is a
Web framework and is quite different from what most people are used to working
with. It is less presumptuous about how your application should look or what you
should use to make it available. The BSD licensed package has all this!

An introduction to Flask and its features
The Flask framework is actually a glue, a very nice one, that sticks together the
amazing Werkzeug and Jinja2 frameworks, responsible for answering requests
and presenting the output (HTML, maybe). In the MVC architecture, also known
as Model-View-Controller, Flask covers C and V. But where is M? Flask does not
provide you with an integrated model layer out-of-the-box as that is not actually
needed for a web application. If you do need to work with a database, just pick your
database solution from the many available and create your own model layer, which
is not hard, and be happy! The concept of a micro-framework, with good intentions
and made just for Flask, is all about giving you the the smallest (but also the most
useful) feature set you need, and one that won't get in the way.

Just what are the features that must be in the framework?

•	 A development server and debugger (sanity-friendly)
•	 Unicode support (Latin language-friendly)
•	 WSGI compliance (uWsgi-friendly)
•	 A unit-test client client (code with quality)
•	 URL routing (it brings tears to my eyes, it's so beautiful!)

Flask in a Flask, I Mean, Book

[2]

•	 Request dispatching
•	 Secure cookies
•	 Sessions
•	 Jinja2 templates (tags, filters, macros, and more)

With that much, you can handle Ajax requests, browser requests, and user sessions
between requests; route HTTP requests to your controllers; evaluate form data;
respond to HTML and JSON; and so on.

That is nice, but is Flask not an MVC framework? Well, that's arguable. If a web
framework does not implement an MVC antipattern, such as handling requests
in the view or mixing models and controllers, it could potentially facilitate an
MVC, which, in my opinion, is as good as it gets because it does not enforce your
application structure.

Flask is not an MVC framework as it does not implement the
model layer, although it does not restrict you in any way if you
wish to create your own.

If you need a simple, single-file web application that receives a form and gives
back an answer, HTML or not, Flask will help you with that, easily. If you need a
multilayer, high-depth modularized Facebook clone, Flask can also be there for you.

So, what did we learn so far?

•	 Flask was born in 2010
•	 Flask is a minimalistic web framework based on Jinja2 and Werkzeug
•	 Flask does not enforce a specific project architecture

Refer to Flask license details at http://flask.pocoo.org/
docs/0.10/license/.

Right now, you might be wondering which of your neat project ideas could be done
with Flask. That's the spirit! What about thinking together on this one?

Flask does not come with bundled functionality in terms of database integration, a
forms library, administration interface, or migration tools. You can have these through
extensions, which will be discussed soon enough, but they are all external to Flask. If
you need these extensions right at the beginning of your project and you don't want to
set it up (or can't spare the time to), you might do better with a full-fledged MVC all-in
one, low-cohesive, and high-coupling framework such as Django.

http://flask.pocoo.org/docs/0.10/license/
http://flask.pocoo.org/docs/0.10/license/

Chapter 1

[3]

Now, imagine you need to build a website with a single form, such as a
http://cashcash.cc/ clone, which receives a form and returns the current
currency trade values; Flask could help conclude your project really fast.

Let's think further. What if you need a specific set of libraries to work together
in your project and you don't want the web framework getting in the way; that's
another very good scenario for Flask as it gives you the bare minimum and lets you
put together everything else you may need. Some frameworks have such a high
level of coupling (read dependency) on their own components that you may have a
serious problem if you want to use a specific alternative.

For example, you may want to use a NoSQL database in your project; however, if
you do so, some components of your project may stop working (for example: an
administrative component).

Basically, if you have the time to spare, if you're doing something simple, if you want
to implement your own architecture solution, or if you need granular control of the
components used in your project, Flask is the web framework for you.

Summary
Now, let's talk about awesomeness, your awesomeness after reading this book—you
will be capable of handling HTTP and Ajax requests; creating fully featured web
applications with database integration (SQL and NoSQL) and REST services; using
Flask extensions (forms, caching, logging, debugging, auth, permissions, and so on);
and modularizing and unit- and feature-testing your applications.

I hope you enjoy this book and build great things with what you learn here

http://cashcash.cc/

[5]

First App, How Hard Could
it Be?

After a full chapter without a single line of code, you need this, right? In this chapter,
we will write our first app explained line by line; we will also cover how to set up
our environment, what tools to use for development, and how to work with HTML
in our app.

Hello World
The first app one writes when learning a new technology is usually a Hello World
app, which consists of the minimum possible code necessary to start a simple
application and show the text "Hello World!". Let's do exactly that using Flask.

This book is optimized for Python 2.x, so, that's the version I advise you to use from
now on. All the examples and code are aimed at that Python version, which is the
default in most Linux distributions.

Prerequisites and tools
First, let's make sure our environment is properly configured. For this course,
I assume you are using a Debian-like Linux distribution, such as Mint
(http://www.linuxmint.com/) or Ubuntu (http://ubuntu.com/). All the
instructions will be geared towards these systems.

Let's begin by installing the required Debian packages with apt-get as follows:

sudo apt-get install python-dev python-pip

http://www.linuxmint.com/
http://ubuntu.com/

First App, How Hard Could it Be?

[6]

This will install the Python development tools and libraries required for compiling
Python packages, and pip: a neat tool you can use to install Python packages from
the command line. On with it! Let's install our virtual environment managing tool:
sudo pip install virtualenvwrapper

echo "source /usr/local/bin/virtualenvwrapper.sh" >> ~/.bashrc

To explain what we just did: sudo tells our OS that we want administrative privileges
to run the next command, and pip is the default Python package management tool
and helps us install the virtualenvwrapper package. The second command statement
adds a command to load the virtualenvwrapper.sh script together with the console,
so that commands work inside your shell (we'll be using it, by the way).

Setting up a virtual environment
A virtual environment is the way Python isolates full package environments from
one another. This means you can easily manage dependencies. Imagine you want to
define the minimum necessary packages for a project; a virtual environment would
be perfect to let you test and export the list of needed packages. We will discuss it
later on. Now, create a new terminal pressing Ctrl + Shift + T on your keyboard and
create our hello world environment like this:
mkvirtualenv hello

pip install flask

The first line creates our environment with the name "hello". You will also
automatically load that environment into the current terminal. You can deactivate
your virtual environment by typing deactivate and you can load it again with the
following command:
workon hello # substitute hello with the desired environment name if
needed

The second line tells pip to install the Flask package in the current virtual
environment, hello in this case.

Understanding the "Hello World" app
Given the environment set, what should we use to write our beautiful code?
An editor or an IDE? If you're working on a low budget, try Light Table editor
(http://lighttable.com/). Free, fast, and easy to use (Ctrl + Spacebar gives you
access to all available options), it also has workspace support! Can't get any better
for the money. If you're a lucky one with $200 to spare (or if you have a free license
https://www.jetbrains.com/pycharm/buy/), just fork out for the PyCharm IDE
which is pretty much the best IDE for Python Web development. Now let's move on.

http://lighttable.com/
https://www.jetbrains.com/pycharm/buy/

Chapter 2

[7]

Create a folder that will hold your project files (you don't need to but people will like
you more if you do), as follows:

mkdir hello_world

Enter the new project folder and create the main.py file:

cd hello_world

touch main.py

The main.py file will have the whole "Hello World" application in it. Our main.py
content should be like this:

coding:utf-8
from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Wow! That took some typing, right? No? Yeah, I know. So, what did we just do?

The first line states that our main.py file should use utf-8 encoding. All the cool
kids do that so don't be mean to your non-English pals and use that in all your
Python files (doing so might help you avoid some nasty bugs in big projects).

In the second and third lines we import our Flask class and instantiate it. The name
of our application is "app". Pretty much everything is related to it: views, blueprints,
config, and so on. The argument, __name__ is required and is used to tell the
application where to look for resources such as static content or templates.

In order to create our "Hello World", we need to tell our Flask instance how to
respond when a user tries to access our Web application (using a browser or
whatever). For that purpose, Flask has routes.

First App, How Hard Could it Be?

[8]

Routes are the way Flask reads a request header and decides which view should
respond to that request. It does so by analyzing the path part of the requested URL
and finding which route is registered with that path.

In the hello world example, in line 5, we use the route decorator to register the hello
function to the path "/". Every time an app receives a request in which the path is
"/", hello will respond to that request. The following snippet shows how to check
the path part of a URL:

from urlparse import urlparse
parsed = urlparse("https://www.google.com/")
assert parsed.path == "/"

You could also have multiple routes mapped to the same function, like so:

@app.route("/")
@app.route("/index")
def hello():
 return "Hello World!"

In this case, both the "/" and "/index" paths would map to hello.

In lines 6 and 7 we have the function that will respond the request. Notice that it
receives no parameters and responds –with a familiar string. It receives no parameters
because the request data, like a submitted form, is accessed through a thread-safe
variable called request that we will see more about in upcoming chapters.

With regard to the response, Flask can respond to requests in numerous formats. In
our example, we respond with a plain string, but we could also respond with a JSON
or HTML string.

Lines 9 and 10 are simple. They check whether main.py is being called as a script or
as a module. If it is as a script, it will run the built-in development server that comes
bundled with Flask. Let's try that:

python main.py

Your terminal console will output something like this:

Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Just open http://127.0.0.1:5000/ in your browser to see your app working.

Running main.py as a script is usually a very simple and handy setup. Usually, you
have Flask-Script to handle calling the development server for you and other setups.

If you used main.py as a module, just import it as follows:

from main import what_I_want

Chapter 2

[9]

You would usually do something like this to import an app factory function in your
testing code.

That's pretty much all there is to know about our "Hello World" application. One thing
our world application lacks is a fun factor. So let's add that; let's make your application
fun! Maybe some HTML, CSS, and JavaScript could do the trick here. Let's try that!

Serving HTML pages
First, to make our hello function respond with HTML, all we have to do is change it
like this:

def hello():
 return "<html><head><title>Hi there!</title></head><body>Hello
World!</body></html>", 200

In the preceding example, hello is returning a HTML formatted string and a
number. The string will be parsed as HTML by default while 200 is an optional
HTTP code indicating a successful response. 200 is returned by default.

If you refresh your browser with F5, you'll notice that nothing has changed. That's
why the Flask development server is not reloading when the source changes. That
only happens when you run your application in debug mode. So let's do that:

app = Flask(__name__)
app.debug=True

Now go to the terminal where your application is running, type Ctrl + C then
restart the server. You will notice a new output besides the URL where your server
is running—something about "stat". That indicates your server will reload the code
on source modification. That's nice, but did you spot the crime we just committed:
defining our template inside the function that handles the response? Be careful, the
MVC gods might be watching. Let's separate where we define our view from where
we define our controller. Create a folder called templates and a file called index.
html inside it. The index.html file content should be like this:

<html>
<head><title>Hi there!</title></head>
<body>Hello World!</body>
</html>

Now change your code like this:

from flask import Flask, render_response
@app.route("/")
def hello():
 return render_template("index.html")

www.allitebooks.com

http://www.allitebooks.org

First App, How Hard Could it Be?

[10]

Did you see what we did there? render_response is capable of loading templates
from the templates/ folder (a default for Flask) and you can render it just by
returning the output.

Now let's add some JavaScript and CSS styles. By default, the Flask built-in
development server serves all files in your project folder that are in a subfolder
called static. Let's create ours and add some files to it. Your project tree should look
like this:

project/
-main.py
-templates/
--index.html
-static/
--js
---jquery.min.js
---foundation.min.js
---modernizr.js
--css
---styles.css
---foundation.min.css

Notice that I add files from the foundation.zurb framework, a nice CSS framework
available in http://foundation.zurb.com/. I advise you to do the same in order to
have a modern, good-looking site. The path to the static files in your template should
look like this:

<script src='/static/js/modernizr.js'></script>

The folder, /static before the real file path is a route served by default by Flask that
only works in debug mode. In production, you would have the HTTP server serving
your static files for you. See the attached code for this chapter for the full example.

Try improving the hello world example with some nice CSS styling!

Summary
Setting up a development environment is a very important task, and we just did this!
Creating a "Hello World" application is a great way to introduce a new technology
to someone. We also did that. At last, we learned how to serve an HTML page and
static files, which is pretty much what most Web applications do. You acquired all
these skills in this chapter, and I hope the process has been quite easy but fulfilling!

In the next chapter, we add a little sauce to our challenges by getting more
adventurous with templates. We'll learn how to use Jinja2 components to create
powerful templates that allow us to do more with less typing. See you there!

http://foundation.zurb.com/

[11]

Man, Do I Like Templates!
As stated previously, Flask gives you the VC of MVC out-of-the-box. In this chapter,
we will discuss what Jinja2 is, and how Flask uses Jinja2 to implement the View layer
and awe you. Be prepared!

What is Jinja2 and how is it coupled
with Flask?
Jinja2 is a library found at http://jinja.pocoo.org/; you can use it to produce
formatted text with bundled logic. Unlike the Python format function, which
only allows you to replace markup with variable content, you can have a control
structure, such as a for loop, inside a template string and use Jinja2 to parse it.
Let's consider this example:

from jinja2 import Template
x = """
<p>Uncle Scrooge nephews</p>

{% for i in my_list %}
{{ i }}
{% endfor %}

"""
template = Template(x)
output is an unicode string
print template.render(my_list=['Huey', 'Dewey', 'Louie'])

In the preceding code, we have a very simple example where we create a template
string with a for loop control structure ("for tag", for short) that iterates over a list
variable called my_list and prints the element inside a "li HTML tag" using curly
braces {{ }} notation.

http://jinja.pocoo.org/

Man, Do I Like Templates!

[12]

Notice that you could call render in the template instance as many times as needed
with different key-value arguments, also called the template context. A context
variable may have any valid Python variable name—that is, anything in the format
given by the regular expression [a-zA-Z_][a-zA-Z0-9_]*.

For a full overview on regular expressions (Regex for short)
with Python, visit https://docs.python.org/2/
library/re.html. Also, take a look at this nice online tool
for Regex testing http://pythex.org/.

A more elaborate example would make use of an environment class instance, which
is a central, configurable, extensible class that may be used to load templates in a
more organized way.

Do you follow where we are going here? This is the basic principle behind Jinja2 and
Flask: it prepares an environment for you, with a few responsive defaults, and gets
your wheels in motion.

What can you do with Jinja2?
Jinja2 is pretty slick. You can use it with template files or strings; you can use it to
create formatted text, such as HTML, XML, Markdown, and e-mail content; you can
put together templates, reuse templates, and extend templates; you can even use
extensions with it. The possibilities are countless, and combined with nice debugging
features, auto-escaping, and full unicode support.

Auto-escaping is a Jinja2 configuration where everything you
print in a template is interpreted as plain text, if not explicitly
requested otherwise. Imagine a variable x has its value set
to b. If auto-escaping is enabled, {{ x }} in a
template would print the string as given. If auto-escaping
is off, which is the Jinja2 default (Flask's default is on), the
resulting text would be b.

Let's understand a few concepts before covering how Jinja2 allows us to do our coding.

First, we have the previously mentioned curly braces. Double curly braces are
a delimiter that allows you to evaluate a variable or function from the provided
context and print it into the template:

from jinja2 import Template
create the template
t = Template("{{ variable }}")

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
http://pythex.org/

Chapter 3

[13]

– Built-in Types –
t.render(variable='hello you')
>> u"hello you"
t.render(variable=100)
>> u"100"
you can evaluate custom classes instances
class A(object):
 def __str__(self):
 return "__str__"
 def __unicode__(self):
 return u"__unicode__"
 def __repr__(self):
 return u"__repr__"
– Custom Objects Evaluation –
__unicode__ has the highest precedence in evaluation
followed by __str__ and __repr__
t.render(variable=A())
>> u"__unicode__"

In the preceding example, we see how to use curly braces to evaluate variables in
your template. First, we evaluate a string and then an integer. Both result in a unicode
string. If we evaluate a class of our own, we must make sure there is a __unicode__
method defined, as it is called during the evaluation. If a __unicode__ method is not
defined, the evaluation falls back to __str__ and __repr__, sequentially. This is easy.
Furthermore, what if we want to evaluate a function? Well, just call it:

from jinja2 import Template
create the template
t = Template("{{ fnc() }}")
t.render(fnc=lambda: 10)
>> u"10"
evaluating a function with argument
t = Template("{{ fnc(x) }}")
t.render(fnc=lambda v: v, x='20')
>> u"20"
t = Template("{{ fnc(v=30) }}")
t.render(fnc=lambda v: v)
>> u"30"

To output the result of a function in a template, just call the function as any regular
Python function. The function return value will be evaluated normally. If you're
familiar with Django, you might notice a slight difference here. In Django, you do
not need the parentheses to call a function, or even pass arguments to it. In Flask, the
parentheses are always needed if you want the function return evaluated.

Man, Do I Like Templates!

[14]

The following two examples show the difference between Jinja2 and Django function
call in a template:

{# flask syntax #}
{{ some_function() }}

{# django syntax #}
{{ some_function }}

You can also evaluate Python math operations. Take a look:

from jinja2 import Template
no context provided / needed
Template("{{ 3 + 3 }}").render()
>> u"6"
Template("{{ 3 - 3 }}").render()
>> u"0"
Template("{{ 3 * 3 }}").render()
>> u"9"
Template("{{ 3 / 3 }}").render()
>> u"1"

Other math operators will also work. You may use the curly braces delimiter to
access and evaluate lists and dictionaries:

from jinja2 import Template
Template("{{ my_list[0] }}").render(my_list=[1, 2, 3])
>> u'1'
Template("{{ my_list['foo'] }}").render(my_list={'foo': 'bar'})
>> u'bar'
and here's some magic
Template("{{ my_list.foo }}").render(my_list={'foo': 'bar'})
>> u'bar'

To access a list or dictionary value, just use normal plain Python notation. With
dictionaries, you can also access a key value using variable access notation, which
is pretty neat.

Besides the curly braces delimiter, Jinja2 also has the curly braces/percentage
delimiter, which uses the notation {% stmt %} and is used to execute statements,
which may be a control statement or not. Its usage depends on the statement, where
control statements have the following notation:

{% stmt %}
{% endstmt %}

Chapter 3

[15]

The first tag has the statement name, while the second is the closing tag, which has
the name of the statement appended with end in the beginning. You must be aware
that a non-control statement may not have a closing tag. Let's look at some examples:

{% block content %}
{% for i in items %}
{{ i }} - {{ i.price }}
{% endfor %}
{% endblock %}

The preceding example is a little more complex than what we have been seeing. It
uses a control statement for loop inside a block statement (you can have a statement
inside another), which is not a control statement, as it does not control execution
flow in the template. Inside the for loop you see that the i variable is being printed
together with the associated price (defined elsewhere).

A last delimiter you should know is {# comments go here #}. It is a multi-line
delimiter used to declare comments. Let's see two examples that have the same result:

{# first example #}
{#
second example
#}

Both comment delimiters hide the content between {# and #}. As can been seen,
this delimiter works for one-line comments and multi-line comments, what makes it
very convenient.

Control structures
We have a nice set of built-in control structures defined by default in Jinja2. Let's
begin our studies on it with the if statement.

{% if true %}Too easy{% endif %}
{% if true == true == True %}True and true are the same{% endif %}
{% if false == false == False %}False and false also are the same{%
endif %}
{% if none == none == None %}There's also a lowercase None{% endif %}
{% if 1 >= 1 %}Compare objects like in plain python{% endif %}
{% if 1 == 2 %}This won't be printed{% else %}This will{% endif %}
{% if "apples" != "oranges" %}All comparison operators work =]{%
endif %}
{% if something %}elif is also supported{% elif something_else %}^_^{%
endif %}

Man, Do I Like Templates!

[16]

The if control statement is beautiful! It behaves just like a python if statement.
As seen in the preceding code, you can use it to compare objects in a very easy
fashion. "else" and "elif" are also fully supported.

You may also have noticed that true and false, non-capitalized, were used
together with plain Python Booleans, True and False. As a design decision to avoid
confusion, all Jinja2 templates have a lowercase alias for True, False, and None.
By the way, lowercase syntax is the preferred way to go.

If needed, and you should avoid this scenario, you may group comparisons together
in order to change precedence evaluation. See the following example:

{% if 5 < 10 < 15 %}true{%else%}false{% endif %}
{% if (5 < 10) < 15 %}true{%else%}false{% endif %}
{% if 5 < (10 < 15) %}true{%else%}false{% endif %}

The expected output for the preceding example is true, true, and false. The first
two lines are pretty straightforward. In the third line, first, (10<15) is evaluated
to True, which is a subclass of int, where True == 1. Then 5 < True is evaluated,
which is certainly false.

The for statement is pretty important. One can hardly think of a serious Web
application that does not have to show a list of some kind at some point. The
for statement can iterate over any iterable instance and has a very simple,
Python-like syntax:

{% for item in my_list %}
{{ item }}{# print evaluate item #}
{% endfor %}
{# or #}
{% for key, value in my_dictionary.items() %}
{{ key }}: {{ value }}
{% endfor %}

In the first statement, we have the opening tag indicating that we will iterate over
my_list items and each item will be referenced by the name item. The name item
will be available inside the for loop context only.

In the second statement, we have an iteration over the key value tuples that form
my_dictionary, which should be a dictionary (if the variable name wasn't
suggestive enough). Pretty simple, right? The for loop also has a few tricks in
store for you.

Chapter 3

[17]

When building HTML lists, it's a common requirement to mark each list item
in alternating colors in order to improve readability or mark the first or/and
last item with some special markup. Those behaviors can be achieved in a Jinja2
for-loop through access to a loop variable available inside the block context. Let's see
some examples:

{% for i in ['a', 'b', 'c', 'd'] %}
{% if loop.first %}This is the first iteration{% endif %}
{% if loop.last %}This is the last iteration{% endif %}
{{ loop.cycle('red', 'blue') }}{# print red or blue alternating #}
{{ loop.index }} - {{ loop.index0 }} {# 1 indexed index – 0 indexed
index #}
{# reverse 1 indexed index – reverse 0 indexed index #}
{{ loop.revindex }} - {{ loop.revindex0 }}
{% endfor %}

The for loop statement, as in Python, also allow the use of else, but with a slightly
different meaning. In Python, when you use else with for, the else block is only
executed if it was not reached through a break command like this:

for i in [1, 2, 3]:
 pass
else:
 print "this will be printed"
for i in [1, 2, 3]:
 if i == 3:
 break
else:
 print "this will never not be printed"

As seen in the preceding code snippet, the else block will only be executed in a for
loop if the execution was never broken by a break command. With Jinja2, the else
block is executed when the for iterable is empty. For example:

{% for i in [] %}
{{ i }}
{% else %}I'll be printed{% endfor %}
{% for i in ['a'] %}
{{ i }}
{% else %}I won't{% endfor %}

As we are talking about loops and breaks, there are two important things to know:
the Jinja2 for loop does not support break or continue. Instead, to achieve the
expected behavior, you should use loop filtering as follows:

{% for i in [1, 2, 3, 4, 5] if i > 2 %}
value: {{ i }}; loop.index: {{ loop.index }}
{%- endfor %}

Man, Do I Like Templates!

[18]

In the first tag you see a normal for loop together with an if condition. You should
consider that condition as a real list filter, as the index itself is only counted per
iteration. Run the preceding example and the output will be the following:

value:3; index: 1
value:4; index: 2
value:5; index: 3

Look at the last observation in the preceding example—in the second tag, do you see
the dash in {%-? It tells the renderer that there should be no empty new lines before
the tag at each iteration. Try our previous example without the dash and compare
the results to see what changes.

We'll now look at three very important statements used to build templates from
different files: block, extends, and include.

block and extends always work together. The first is used to define "overwritable"
blocks in a template, while the second defines a parent template that has blocks, for
the current template. Let's see an example:

coding:utf-8
with open('parent.txt', 'w') as file:
 file.write("""
{% block template %}parent.txt{% endblock %}
===========
I am a powerful psychic and will tell you your past

{#- "past" is the block identifier #}
{% block past %}
You had pimples by the age of 12.
{%- endblock %}

Tremble before my power!!!""".strip())

with open('child.txt', 'w') as file:
 file.write("""
{% extends "parent.txt" %}

{# overwriting the block called template from parent.txt #}
{% block template %}child.txt{% endblock %}

{#- overwriting the block called past from parent.txt #}
{% block past %}
You've bought an ebook recently.
{%- endblock %}""".strip())
with open('other.txt', 'w') as file:
	 file.write("""

Chapter 3

[19]

{% extends "child.txt" %}
{% block template %}other.txt{% endblock %}""".strip())

from jinja2 import Environment, FileSystemLoader

env = Environment()
tell the environment how to load templates
env.loader = FileSystemLoader('.')
look up our template
tmpl = env.get_template('parent.txt')
render it to default output
print tmpl.render()
print ""
loads child.html and its parent
tmpl = env.get_template('child.txt')
print tmpl.render()
loads other.html and its parent
env.get_template('other.txt').render()

Do you see the inheritance happening, between child.txt and parent.txt?
parent.txt is a simple template with two block statements, called template and
past. When you render parent.txt directly, its blocks are printed "as is", because
they were not overwritten. In child.txt, we extend the parent.txt template and
overwrite all its blocks. By doing that, we can have different information in specific
parts of a template without having to rewrite the whole thing.

With other.txt, for example, we extend the child.txt template and overwrite
only the block-named template. You can overwrite blocks from a direct parent
template or from any of its parents.

If you were defining an index.txt page, you could have default blocks in it that
would be overwritten when needed, saving lots of typing.

Explaining the last example, Python-wise, is pretty simple. First, we create a Jinja2
environment (we talked about this earlier) and tell it how to load our templates,
then we load the desired template directly. We do not have to bother telling the
environment how to find parent templates, nor do we need to preload them.

The include statement is probably the easiest statement so far. It allows you to
render a template inside another in a very easy fashion. Let's look at an example:

with open('base.txt', 'w') as file:
 file.write("""
{{ myvar }}
You wanna hear a dirty joke?
{% include 'joke.txt' %}

www.allitebooks.com

http://www.allitebooks.org

Man, Do I Like Templates!

[20]

""".strip())
with open('joke.txt', 'w') as file:
 file.write("""
A boy fell in a mud puddle. {{ myvar }}
""".strip())

from jinja2 import Environment, FileSystemLoader

env = Environment()
tell the environment how to load templates
env.loader = FileSystemLoader('.')
print env.get_template('base.txt').render(myvar='Ha ha!')

In the preceding example, we render the joke.txt template inside base.txt.
As joke.txt is rendered inside base.txt, it also has full access to the base.txt
context, so myvar is printed normally.

Finally, we have the set statement. It allows you to define variables for inside the
template context. Its use is pretty simple:

{% set x = 10 %}
{{ x }}
{% set x, y, z = 10, 5+5, "home" %}
{{ x }} - {{ y }} - {{ z }}

In the preceding example, if x was given by a complex calculation or a database
query, it would make much more sense to have it cached in a variable, if it is to be
reused across the template. As seen in the example, you can also assign a value to
multiple variables at once.

Macros
Macros are the closest to coding you'll get inside Jinja2 templates. The macro
definition and usage are similar to plain Python functions, so it is pretty easy.
Let's try an example:

with open('formfield.html', 'w') as file:
 file.write('''
{% macro input(name, value='', label='') %}
{% if label %}
<label for='{{ name }}'>{{ label }}</label>
{% endif %}
<input id='{{ name }}' name='{{ name }}' value='{{ value }}'></input>
{% endmacro %}'''.strip())
with open('index.html', 'w') as file:

Chapter 3

[21]

 file.write('''
{% from 'formfield.html' import input %}
<form method='get' action='.'>
{{ input('name', label='Name:') }}
<input type='submit' value='Send'></input>
</form>
'''.strip())

from jinja2 import Environment, FileSystemLoader

env = Environment()
env.loader = FileSystemLoader('.')
print env.get_template('index.html').render()

In the preceding example, we create a macro that accepts a name argument and
two optional arguments: value and label. Inside the macro block, we define what
should be output. Notice we can use other statements inside a macro, just like a
template. In index.html we import the input macro from inside formfield.html,
as if formfield was a module and input was a Python function using the import
statement. If needed, we could even rename our input macro like this:

{% from 'formfield.html' import input as field_input %}

You can also import formfield as a module and use it as follows:

{% import 'formfield.html' as formfield %}

When using macros, there is a special case where you want to allow any named
argument to be passed into the macro, as you would in a Python function (for
example, **kwargs). With Jinja2 macros, these values are, by default, available in a
kwargs dictionary that does not need to be explicitly defined in the macro signature.
For example:

coding:utf-8
with open('formfield.html', 'w') as file:
 file.write('''
{% macro input(name) -%}
<input id='{{ name }}' name='{{ name }}' {% for k,v in kwargs.items()
-%}{{ k }}='{{ v }}' {% endfor %}></input>
{%- endmacro %}
'''.strip())with open('index.html', 'w') as file:
 file.write('''
{% from 'formfield.html' import input %}
{# use method='post' whenever sending sensitive data over HTTP #}
<form method='post' action='.'>
{{ input('name', type='text') }}

Man, Do I Like Templates!

[22]

{{ input('passwd', type='password') }}
<input type='submit' value='Send'></input>
</form>
'''.strip())

from jinja2 import Environment, FileSystemLoader

env = Environment()
env.loader = FileSystemLoader('.')
print env.get_template('index.html').render()

As you can see, kwargs is available even though you did not define a kwargs
argument in the macro signature.

Macros have a few clear advantages over plain templates, that you notice with the
include statement:

•	 You do not have to worry about variable names in the template using macros
•	 You can define the exact required context for a macro block through the

macro signature
•	 You can define a macro library inside a template and import only what

is needed

Commonly used macros in a Web application include a macro to render pagination,
another to render fields, and another to render forms. You could have others, but
these are pretty common use cases.

Regarding our previous example, it is good practice to use HTTPS
(also known as, Secure HTTP) to send sensitive information, such
as passwords, over the Internet. Be careful about that!

Extensions
Extensions are the way Jinja2 allows you to extend its vocabulary. Extensions are not
enabled by default, so you can enable an extension only when and if you need, and
start using it without much trouble:

env = Environment(extensions=['jinja2.ext.do',
 'jinja2.ext.with_'])

In the preceding code, we have an example where you create an environment
with two extensions enabled: do and with. Those are the extensions we will study
in this chapter.

Chapter 3

[23]

As the name suggests, the do extension allows you to "do stuff". Inside a do tag,
you're allowed to execute Python expressions with full access to the template
context. Flask-Empty, a popular Flask boilerplate available at https://github.com/
italomaia/flask-empty uses the do extension to update a dictionary in one of its
macros, for example. Let's see how we could do the same:

{% set x = {1:'home', '2':'boat'} %}
{% do x.update({3: 'bar'}) %}
{%- for key,value in x.items() %}
{{ key }} - {{ value }}
{%- endfor %}

In the preceding example, we create the x variable with a dictionary, then we update
it with {3: 'bar'}. You don't usually need to use the do extension but, when you
do, a lot of coding is saved.

The with extension is also very simple. You use it whenever you need to create block
scoped variables. Imagine you have a value you need cached in a variable for a brief
moment; this would be a good use case. Let's see an example:

{% with age = user.get_age() %}
My age: {{ age }}
{% endwith %}
My age: {{ age }}{# no value here #}

As seen in the example, age exists only inside the with block. Also, variables set
inside a with block will only exist inside it. For example:

{% with %}
{% set count = query.count() %}
Current Stock: {{ count }}
Diff: {{ prev_count - count }}
{% endwith %}
{{ count }} {# empty value #}

Filters
Filters are a marvelous thing about Jinja2! This tool allows you to process a constant
or variable before printing it to the template. The goal is to implement the formatting
you want, strictly in the template.

To use a filter, just call it using the pipe operator like this:

{% set name = 'junior' %}
{{ name|capitalize }} {# output is Junior #}

https://github.com/italomaia/flask-empty
https://github.com/italomaia/flask-empty

Man, Do I Like Templates!

[24]

Its name is passed to the capitalize filter that processes it and returns the capitalized
value. To inform arguments to the filter, just call it like a function, like this:

{{ ['Adam', 'West']|join(' ') }} {# output is Adam West #}

The join filter will join all values from the passed iterable, putting the provided
argument between them.

Jinja2 has an enormous quantity of available filters by default. That means we can't
cover them all here, but we can certainly cover a few. capitalize and lower were
seen already. Let's look at some further examples:

{# prints default value if input is undefined #}
{{ x|default('no opinion') }}
{# prints default value if input evaluates to false #}
{{ none|default('no opinion', true) }}
{# prints input as it was provided #}
{{ 'some opinion'|default('no opinion') }}

{# you can use a filter inside a control statement #}
{# sort by key case-insensitive #}
{% for key in {'A':3, 'b':2, 'C':1}|dictsort %}{{ key }}{% endfor %}
{# sort by key case-sensitive #}
{% for key in {'A':3, 'b':2, 'C':1}|dictsort(true) %}{{ key }}{%
endfor %}
{# sort by value #}
{% for key in {'A':3, 'b':2, 'C':1}|dictsort(false, 'value') %}{{ key
}}{% endfor %}
{{ [3, 2, 1]|first }} - {{ [3, 2, 1]|last }}
{{ [3, 2, 1]|length }} {# prints input length #}
{# same as in python #}
{{ '%s, =D'|format("I'm John") }}
{{ "He has two daughters"|replace('two', 'three') }}
{# safe prints the input without escaping it first#}
{{ '<input name="stuff" />'|safe }}
{{ "there are five words here"|wordcount }}

Try the preceding example to see exactly what each filter does.

After reading this much about Jinja2, you're probably thinking: "Jinja2 is cool but this
is a book about Flask. Show me the Flask stuff!". Ok, ok, I can do that!

Of what we have seen so far, almost everything can be used with Flask with no
modifications. As Flask manages the Jinja2 environment for you, you don't have to
worry about creating file loaders and stuff like that. One thing you should be aware
of, though, is that, because you don't instantiate the Jinja2 environment yourself,
you can't really pass to the class constructor, the extensions you want to activate.

Chapter 3

[25]

To activate an extension, add it to Flask during the application setup as follows:

from flask import Flask
app = Flask(__name__)
app.jinja_env.add_extension('jinja2.ext.do') # or jinja2.ext.with_
if __name__ == '__main__':
 app.run()

Messing with the template context
As seen in Chapter 2, First App, How Hard Could it Be?, you can use the
render_template method to load a template from the templates folder
and then render it as a response.

from flask import Flask, render_template
app = Flask(__name__)

@app.route("/")
def hello():
 return render_template("index.html")

If you want to add values to the template context, as seen in some of the examples in
this chapter, you would have to add non-positional arguments to render_template:

from flask import Flask, render_template
app = Flask(__name__)

@app.route("/")
def hello():
 return render_template("index.html", my_age=28)

In the preceding example, my_age would be available in the index.html context,
where {{ my_age }} would be translated to 28. my_age could have virtually any
value you want to exhibit, actually.

Now, what if you want all your views to have a specific value in their context, like a
version value—some special code or function; how would you do it? Flask offers you
the context_processor decorator to accomplish that. You just have to annotate a
function that returns a dictionary and you're ready to go. For example:

from flask import Flask, render_response
app = Flask(__name__)

@app.context_processor
def luck_processor():
 from random import randint
 def lucky_number():

Man, Do I Like Templates!

[26]

 return randint(1, 10)
 return dict(lucky_number=lucky_number)

@app.route("/")
def hello():
 # lucky_number will be available in the index.html context by
default
 return render_template("index.html")

Summary
In this chapter, we saw how to render templates using only Jinja2, how control
statements look and how to use them, how to write a comment, how to print
variables in a template, how to write and use macros, how to load and use
extensions, and how to register context processors. I don't know about you, but this
chapter felt like a lot of information! I strongly advise you to run the experiment with
the examples. Knowing your way around Jinja2 will save you a lot of headaches.

Next chapter, we will be studying forms with Flask. Expect a lot of examples and
complementary code, as forms are the doors you open from your Web application to
the Web. Most problems arise from the Web, as well as most of your data.

[27]

Please Fill in This Form,
Madam

Have you ever imagined what happens when you fill in a form on a website and click
on that fancy Send button at the end of it? Well, all the data you wrote—comment,
name, checkbox, or whatever—is encoded and sent through a protocol to the server,
which then routes that information to the Web application. The Web application
will validate the data origin, read the form, validate the data syntactically then
semantically, and then decide what to do with it. Do you see that long chain of events
where every link might be the cause of a problem? That's forms for you.

In any case, there is nothing to fear! Flask can help you in those steps but there are
also tools specifically designed for this purpose. In this chapter, we will learn:

•	 How to write and handle forms with Flask
•	 How to validate form data
•	 How to use WTForms to validate forms with Flask
•	 How to implement cross-site request forgery protection

This will actually be a fairly smooth chapter, with lots of new info but nothing
complex. Hope you enjoy it!

HTML forms for the faint of heart
HTML is, pretty much, the language in which the Web is written. With the help of
special markups called tags, it's possible to add meaning and context to plain text,
turning it into HTML. For us, HTML is a means to an end. So, if you want to learn
more about it, please open http://www.w3schools.com/html/ in your preferred
browser. We are not covering HTML syntax fully, nor all the beautiful magic
involved in the process.

http://www.w3schools.com/html/

Please Fill in This Form, Madam

[28]

Although we will not cover HTML extensively, we will cover HTML specifically; by
this, I refer to the <form> tag. Here is the deal: every time you open a webpage and
there are a few blank fields for you to fill in, you're most likely filling in an HTML
form. That's the plainest way to transfer data from your browser to a server. How
does that work? Let's see an example:

<!-- example 1 -->
<form method='post' action='.'>
<input type='text' name='username' />
<input type='password' name='passwd' />
<input type='submit' />
</form>

In the preceding example, we have a full login form. Its beginning is defined by the
<form> tag, which has two non-required attributes: method and action. The method
attribute defines how you want your form data to be sent to the server when it is
sent. Its value could be either get or post. You should use get, which is the default,
only when the form data is small (a few hundred characters), not sensitive (it doesn't
matter if someone else sees it) and there are no files in the form. These requirements
exist because when using get, all the form data will be appended to the current
URL as encoded parameters before being sent. In our example, the chosen method is
post because one of our input fields is a password and we don't want other people
looking into our password. A good use case for using the get method would be with
search forms. For example:

<!-- example 2 -->
<form action='.'>
<input type='search' name='search' />
</form>

In example 2, we have a simple search form. If we fill the name input with the search
term SearchItem and hit Enter, the URL will look like this:

http://mydomain.com/?search=SearchItem

The preceding URL would then be saved into the browser history and anyone with
access to it would be able to see what the previous user was searching for. In the case
of sensitive data, that's bad.

Anyway, back to example 1. The second attribute, action, is useful for telling the
browser which URL should receive and respond to the form data. We used '.' as
its value because we want the form data to be sent to the current URL.

http://mydomain.com/?search=SearchItem

Chapter 4

[29]

The next two lines are our input fields. Input fields are used to collect user data and,
contrary to what the name may suggest, an input field may be an input, textarea,
or select element. When using input fields, always remember to name them with
the attribute name as it facilitates handling them in the Web application.

In the third line we have a special input field, which does not necessarily have any
data to be sent, the Submit input button. By default, a form will be sent if you press
Enter while an input element has focus or when a Submit button is pressed. Our
example 1 is the latter.

Wow! Finally, our form is written and explained. For an extensive list of possible types
for an input field, take a look at http://www.w3schools.com/tags/tag_input.asp.

Handling forms
Now let's see how to integrate our form from example 1 with an application:

coding:utf-8

from flask import Flask, render_template, request

app = Flask(__name__)

@app.route('/', methods=['get', 'post'])
def login_view():
 # the methods that handle requests are called views, in flask
 msg = ''

 # form is a dictionary like attribute that holds the form data
 if request.method == 'POST':
 username = request.form["username"]
 passwd = request.form["passwd"]

 # static useless validation
 if username == 'you' and passwd == 'flask':
 msg = 'Username and password are correct'
 else:
 msg = 'Username or password are incorrect'
 return render_template('form.html', message=msg)

if __name__=='__main__':
 app.run()

www.allitebooks.com

http://www.w3schools.com/tags/tag_input.asp
http://www.allitebooks.org

Please Fill in This Form, Madam

[30]

In the preceding example, we define a view called login_view that accepts get or
post requests; when the request is post (we ignore the form if it was sent by a get
request), we fetch the values for username and passwd; then we run a very simple
validation and change the value of msg accordingly.

Beware: a view, in Flask, is not the same as a view in MVC.
In Flask, a view is the component that receives a request and
returns a response, which may be a function or a class.

Did you see the request variable we are handling in our example? That's a proxy
to the current active request context. That's why request.form points to the sent
form data.

Now, what if you're receiving a parameter encoded in the URL? How will you get it,
given that the request URL is http://localhost:5000/?page=10?

inside a flask view
def some_view():
 try:
 page = int(request.args.get('page', 1))
 assert page == 10
 except ValueError:
 page = 1
 ...

The preceding example is pretty common when paginating. Just as before, request.
args is related to the current user request only. Easy!

So far, we have handled form validation pretty poorly with inline validation.
No more! Let's try something fancier from now on.

WTForms and you
WTForms (https://github.com/wtforms/wtforms) is a standalone robust form
handling library that allows you to generate HTML forms from form-like classes,
implement fields and form validation, and include cross-source forgery protection
(a nasty vulnerability that crackers may try to exploit in your Web applications).
We certainly don't want that!

First, to install WTForms library, use the following:

pip install wtforms

https://github.com/wtforms/wtforms

Chapter 4

[31]

Now let's write some forms. A WTForms form is a class that extends the Form class.
As plain as that! Let's create a login form that could be used with our previous
login example:

from wtforms import Form, StringField, PasswordField
class LoginForm(Form):
 username = StringField(u'Username:')
 passwd = PasswordField(u'Password:')

In the preceding code, we have a form with two fields, username and passwd, with
no validation. It is just enough to build a form in a template, like this:

<form method='post'>
{% for field in form %}
 {{ field.label }}
 {{ field }}
 {% if field.errors %}
 {% for error in field.errors %}
 <div class="field_error">{{ error }}</div>
 {% endfor %}
 {% endif %}
{% endfor %}
</form>

As seen in the preceding code, you can iterate over the fields of a WTForms form
and each field has a few useful attributes you can use to make your HTML look good,
such as label and errors. {{ field }} will render a plain HTML input element
for you. There are cases where you may want to set special attributes for the input
element—for example, required, which tells your browser that the given field should
not be submitted if empty. Call field as a function in order to achieve that, like so:

{% if field.flags.required %}
{{ field(required='required') }}
{% endif %}

You could pass any desired argument, as placeholder or alt, in line with the
example. Flask-Empty (https://github.com/italomaia/flask-empty) has a nice
example within its macros.

WTForms uses a flag system in order to allow you to check when some validations
are applied to a field. If a field has a "required" validation rule, a required flag
would be set to true in the fields.flags attribute. But how does WTForms
validation work?

https://github.com/italomaia/flask-empty

Please Fill in This Form, Madam

[32]

In Flask, a validator is a callable you add to your validators field, or a class method
in the format validate_<field>(form, field). It allows you to validate that the
field data is as required or it raises a ValidationError explaining what went wrong.
Let's see how our nice login form example would look with some validation:

coding:utf-8
from wtforms import Form, ValidationError
from wtforms import StringField, PasswordField
from wtforms.validators import Length, InputRequired
from werkzeug.datastructures import MultiDict

import re

def is_proper_username(form, field):
 if not re.match(r"^\w+$", field.data):
 msg = '%s should have any of these characters only: a-z0-
 9_' % field.name
 raise ValidationError(msg)

class LoginForm(Form):
 username = StringField(
 u'Username:', [InputRequired(), is_proper_username,
 Length(min=3, max=40)])
 password = PasswordField(
 u'Password:', [InputRequired(), Length(min=5, max=12)])

 @staticmethod
 def validate_password(form, field):
 data = field.data
 if not re.findall('.*[a-z].*', data):
 msg = '%s should have at least one lowercase
 character' % field.name
 raise ValidationError(msg)
 # has at least one uppercase character
 if not re.findall('.*[A-Z].*', data):
 msg = '%s should have at least one uppercase
 character' % field.name
 raise ValidationError(msg)
 # has at least one number
 if not re.findall('.*[0-9].*', data):
 msg = '%s should have at least one number' %
 field.name
 raise ValidationError(msg)
 # has at least one special character

Chapter 4

[33]

 if not re.findall('.*[^ a-zA-Z0-9].*', data):
 msg = '%s should have at least one special character'
 % field.name
 raise ValidationError(msg)

testing our form
form = LoginForm(MultiDict([('username', 'italomaia'),
 ('password', 'lL2m@msbb')]))
print form.validate()
print form.errors

In the preceding code, we have a full form example, with validation, using classes,
methods and functions as validators and a simple test. The first argument for each of
our fields is the field label. The second argument is a list of validators you want run
when the form.validate method is called (that's pretty much what form.validate
does). Each field validator is run sequentially, raising a ValidationError (and
stopping the validation chain call) if an error is found.

Each validator receives the form and field as arguments and must do the validating
thing with them. As seen with validate_password, which is called for the field
password because of the naming convention. field.data holds the field input, so
you can just validate that most of the time.

Let's understand each validator:

•	 Length: This validates that the input value length is within a given range
(min, max).

•	 InputRequired: This validates that the field received a value, any value.
•	 is_proper_username: This validates that the field value matches a given

regex. (There is also a built-in validator to match a regex to a given value,
called Regexp. You should try it.)

•	 validate_password: This validates that the field value matches a given
group of regex rules.

In our example test, you may have noticed the use of a special dictionary-like
class called MultiDict from the werkzeug library. It is used because the formdata
parameter, which may receive your request.form or request.args, must be a
multidict-type. It pretty much means you can't use a plain dictionary here.

When form.validate is called, all the validators are called. First the field validators,
then the class method field validators; form.errors is a dictionary populated with
all the field errors found after validate is called. You can then iterate over it to show
what you found in your templates, console, and so on.

Please Fill in This Form, Madam

[34]

Flask-WTF
Flask uses extensions in order to integrate transparently with third party libraries.
WTForms with Flask-WTF is a good example of that as we will soon see. And, by the
way, a Flask extension is a piece of code that integrates its configuration, context, and
usage with Flask in a predictable way. That means extension usage is pretty similar.
Now make sure Flask-WTF is installed in your virtual environment before continuing:

oh god, so hard... not!

pip flask-wtf

From http://flask-wtf.readthedocs.org/, the project website, we have the
following list of features offered by Flask-WTF:

•	 Integration with WTForms
•	 Secure form with a CSRF token
•	 File upload that works with Flask-Uploads
•	 Global CSRF protection
•	 Recaptcha support
•	 Internationalization integration

We'll see the first two features in this chapter while the third will be discussed in
Chapter 10, What Now?. The last three features will not be covered in this book. We
advise you to explore them as homework.

Integration with WTForms
Flask-WTF uses a little trick regarding request in order to integrate. As request
implements a proxy to your current request and request data, and it is available
whenever you're inside a request context, the extension Form will just grab the
request.form data by default, saving you some typing.

Our login_view example could be rewritten taking into account what was discussed
so far, like this:

make sure you're importing Form from flask_wtf and not wtforms
from flask_wtf import Form

--//--
@app.route('/', methods=['get', 'post'])
def login_view():
 # the methods that handle requests are called views, in flask
 msg = ''

http://flask-wtf.readthedocs.org/

Chapter 4

[35]

 # request.form is passed implicitly; implies POST
 form = LoginForm()
 # if the form should also deal with form.args, do it like
 this:
 # form = LoginForm(request.form or request.args)

 # checks that the submit method is POST and form is valid
 if form.validate_on_submit():
 msg = 'Username and password are correct'
 else:
 msg = 'Username or password are incorrect'
 return render_template('form.html', message=msg)

We could go even further, as we are, obviously, perfectionists:

flash allows us to send messages to the user template without
altering the returned context
from flask import flash
from flask import redirect
@app.route('/', methods=['get', 'post'])
def login_view():
 # msg is no longer necessary. We will use flash, instead
 form = LoginForm()

 if form.validate_on_submit():
 flash(request, 'Username and password are correct')
 # it's good practice to redirect after a successful form
 submit
 return redirect('/')
 return render_template('form.html', form=form)

In the template, exchange {{ message }} by:

{#
beautiful example from
http://flask.pocoo.org/docs/0.10/patterns/flashing/#simple-flashing
#}
{% with messages = get_flashed_messages() %}
 {% if messages %}
 <ul class='messages'>
 {% for message in messages %}
 {{ message }}
 {% endfor %}

 {% endif %}
{% endwith %}

Please Fill in This Form, Madam

[36]

get_flashed_messages is available in the template context by default and gives you
all the flashed messages for the current user that have not yet been shown. We then
cache it with with, check whether it is not empty, then iterate over it.

Flashed messages are especially useful when redirecting,
because they are not bound to the response context.

Securing forms with a CSRF token
Cross Site Request Forgery (CSRF) happens when a site tries to exploit the trust
another site has on your browser (given you're the user). Basically, a site you're
visiting will try to get, or alter information of, a site you have already visited and
authenticated. Imagine you're visiting a website and that website has an image that
loads a URL from another website you've already authenticated with; imagine that
the given URL requests an action of the former website and that action changes
something from your account—for example, its status is amended to inactive.
Well, that's a simple case of a CSRF attack. Another common case is when a JSONP
request is sent. If the attacked site, the one you're not visiting, accepts JSONP form
substitution (JSONP is used for cross-domain requests) and does not have CRSF
protection, well, then you'll have an even nastier attack.

WTForms come with its own CSRF protection; Flask-WTF just glues the whole thing
together with Flask, making your life easier. In order to have CSRF protection while
using the extension, you need to have secret_key set, and that's it:

app.secret_key = 'some secret string value' # ex: import os;
 os.urandom(24)

Then, whenever you write a form that should have CSRF protection, just make sure
to add the CSRF token to it, like this:

<form method='post'>{{ form.csrf_token }}
{% for field in form if field.name != 'csrf_token' %}
 <div class="field">
 {{ field.label }} {{ field }}
 </div>
 {% if field.errors %}
 {% for error in field.errors %}
 <div class="field_error">{{ error }}</div>
 {% endfor %}
 {% endif %}
{% endfor %}
<input type='submit' />
</form>

Chapter 4

[37]

When the form is received, the CSRF token is checked against what is registered in
the user session. If they match, the form's source is good. This is a safe approach
because a website cannot read a cookie set by another website.

In cases when you don't want CSRF protection in a form, do not add the token.
You will have to turn off the CSRF protection for the form if you wish to unprotect it,
like this:

form = Form(csrf_enabled=False)

You may need to unprotect a form in the case of search fields that use the get method
but are also validated with a Form.

Challenges
Create a Web application that receives a name and then answers: "Hello <NAME>".
If the form is sent empty, an error message should be displayed. If the name given is
"Chuck Norris", the answer should be "Roundhouse KICK!".

Create a Web application that shows an image and asks the user what he sees.
The application should then validate if the answer is correct. If it is not, show the
user an error message. Otherwise, congratulate the user and show a new image.
Use Flask-WTF.

Create a calculator with the four operations. It should have all the numbers and
operators for the user to click on. Make sure it looks like a calculator (because we are
perfectionists!) and complains if the user tries something evil, such as dividing 0 by 0.

Summary
So much learned... What can I say! No harm trying, right? Well, we have seen how
to write HTML forms; read forms with Flask; write WTForms forms; validate form
data with plain Python and form validators; and write custom validators. We also
saw how to use Flask-WTF to write and validate our forms and how to protect our
applications against CSRF attacks.

In the next chapter, we'll look at how to store our Web application data in relational
and non-relational databases using great, easy-to-use libraries and how to integrate
them with Flask. A brief overview on databases will also take place to make for
smoother knowledge absorption.

[39]

Where Do You Store
Your Stuff?

I'm like a squirrel. Once in a while, I leave money in secret stashes around the house
in case I get mugged or just spend too much in a month. I truly forget where all my
stashes are, and that is kind of funny and sad (for me).

Now, imagine you're storing something equally important or even more important
than money, for instance, client data or even your company data. Could you allow
yourself to store it in places that could later be lost or accessible to someone who could
meddle with your "stash"? We are in the information era; information is power!

In the web application world, we have two big players for data storage: relational
databases and NoSQL databases. The first is the traditional way where your data is
stored inside tables and columns and where transactions matter, ACID is expected
and normalization is the key (pun intended)! It uses SQL to store and retrieve data.
In the second way, things get a little wild. Your data may be stored in different
structures such as documents, graphs, key value mappings, and others. Writing and
consulting languages are vendor-specific, and you may have to give up on ACID too
in a tradeoff for speed, lots of speed!

You have probably guessed it already! This chapter is all about the M layer of MVC,
that is, how to store and access your data in a transparent way with Flask! We'll look
at the examples of how to use query and write to both the database types, and when
to choose which one to use.

ACID is the acronym for atomicity, consistency, isolation,
and durability. Refer to http://en.wikipedia.org/
wiki/ACID for a cozy definition and overview.

www.allitebooks.com

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
http://www.allitebooks.org

Where Do You Store Your Stuff?

[40]

SQLAlchemy
SQLAlchemy is an amazing library for working with relational databases. It was
made by the Pocoo Team, the same folks that brought you Flask, and is considered
"The Facto" Python SQL library. It works with SQLite, Postgres, MySQL, Oracle,
and all SQL databases, which comes with compatible drivers.

SQLite describes itself as a self-contained, serverless, zero-configuration, and
transactional SQL database engine (https://sqlite.org/about.html). One of
its main goals is to be a great embeddable database solution for applications and
small devices, which it is! It is also very easy to use and that makes it perfect for our
learning purposes.

Though all the examples will be given and tested with SQLite in mind, they should
work in the other databases with little to no changes. Database-specific tips will be
given from time to time whenever appropriate.

Refer to http://www.w3schools.com/sql/default.asp
for an extensive SQL reference.

Before our first example, should we review a few relational database concepts?

Concepts
Tables are low-level abstraction structures where your data is stored. It is made up
of columns and rows, where each column represents a part of your data and each
row represents a full record. Usually, each table represents a low-level abstraction of
a class model.

Rows are individual records of a given class model. You may need to scatter
multiple row records across different tables to record a full piece of information.
A good example is an MxN relationship.

Columns represent the stored data itself. Each column has a specific type, and
accepts only that type as input data. You may think of it as an abstraction of a class
model attribute.

Transactions are how you group the operations you want to be executed together.
It is used mainly to achieve atomicity. This way, no operations are done halfway.

Primary key is a database concept where part of a record's data is used to identify
the given record across the database table. It is usually implemented by the database
through constraints.

https://sqlite.org/about.html
http://www.w3schools.com/sql/default.asp

Chapter 5

[41]

Foreign key is a database concept where a set of data is used to identify a given
record across tables. Its main use is to construct relationships between rows in
different tables. It is usually implemented by the database through constraints.

One main concern when working with relational databases is data normalization.
In relational databases, related data is stored across different tables. You may have
a table to hold a person's data, a table for the person's address, another for his/her
cars, and so on.

Each table is isolated from one another and the related data may be retrievable, thanks
to the relations established by the foreign keys! The data normalization techniques are
a set of rules used to allow proper scattering of the data across the tables so that the
related tables are easily fetched and redundancy is kept to a minimum.

Please, refer to http://en.wikipedia.org/wiki/Database_
normalization for an overview of database normalization.
For an overview of the normal forms, please refer to the
following links:
http://en.wikipedia.org/wiki/First_normal_form

http://en.wikipedia.org/wiki/Second_normal_form

http://en.wikipedia.org/wiki/Third_normal_form

We may now proceed!

Hands on
Let's begin by installing the library into our environment and trying out a
few examples:

pip install sqlalchemy

On to our first example! Let's create a simple employee database for a company
(maybe yours?):

from sqlalchemy import create_engine
db = create_engine('sqlite:///employees.sqlite')
echo output to console
db.echo = True

conn = db.connect()

conn.execute("""
CREATE TABLE employee (

http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/First_normal_form
http://en.wikipedia.org/wiki/Second_normal_form
http://en.wikipedia.org/wiki/Third_normal_form

Where Do You Store Your Stuff?

[42]

 id INTEGER PRIMARY KEY,
 name STRING(100) NOT NULL,
 birthday DATE NOT NULL
)""")

conn.execute("INSERT INTO employee VALUES (NULL, 'marcos mango',
 date('1990-09-06'));")
conn.execute("INSERT INTO employee VALUES (NULL, 'rosie rinn',
 date('1980-09-06'));")
conn.execute("INSERT INTO employee VALUES (NULL, 'mannie moon',
 date('1970-07-06'));")
for row in conn.execute("SELECT * FROM employee"):
 print row
give connection back to the connection pool
conn.close()

The preceding example is pretty simple. We create a SQLAlchemy engine, grab a
connection from the connection pool (engine handles that for you) and then we
execute the SQL command to create a table, insert a few rows and query to see
whether everything occurred as expected.

Visit http://en.wikipedia.org/wiki/
Connection_pool for the connection pool pattern
overview. (This is important, really!)

In our insertion, we provided the value NULL to the primary key id. Be aware that
SQLite will not populate the primary key with NULL; instead, it will ignore the
NULL value and set the column with a new, unique, across the table integer. That's
SQLite- specific behavior. Oracle, for example, would require you to insert a
sequence's next value explicitly in order to set a new unique column value for the
primary key.

Our preceding example uses a feature called autocommit. It means each execute
method call commits to the database immediately. In this way, you could not execute
multiple statements at once, a common scenario in real world applications.

To execute multiple statements at once, we should use transactions. We could
rewrite our previous example with transactions in order to make sure all three
insertions are either committed together or not at all (grim look...):

we start our transaction here
all actions now are executed within the transaction context
trans = conn.begin()

try:

http://en.wikipedia.org/wiki/Connection_pool
http://en.wikipedia.org/wiki/Connection_pool

Chapter 5

[43]

 # we are using a slightly different insertion syntax for
convenience, here;
 # id value is not explicitly provided
 conn.execute("INSERT INTO employee (name, birthday) VALUES
 ('marcos mango', date('1990-09-06'));")
 conn.execute("INSERT INTO employee (name, birthday) VALUES
 ('rosie rinn', date('1980-09-06'));")
 conn.execute("INSERT INTO employee (name, birthday) VALUES
 ('mannie moon', date('1970-07-06'));")
 # commit all
 trans.commit()
except:
 # all or nothing. Undo what was executed within the transaction
 trans.rollback()
 raise

Nothing fancy so far. In our example, we create a transaction from the connection,
execute a few statements and then commit it to finish the transaction. If an error occurs
between the beginning and end of a transaction, the except block will be reached and
all the statements executed within the transaction will rollback or "undone".

We can make our example complete by creating a relation among the tables. Imagine
our employee has one or more addresses registered with his/her company profile.
We will create a 1xN relation, where an employee may have one, or more addresses.

coding:utf-8
from sqlalchemy import create_engine

engine = create_engine('sqlite:///employees.sqlite')
engine.echo = True

conn = engine.connect()

conn.execute("""
CREATE TABLE employee (
 id INTEGER PRIMARY KEY,
 name STRING(100) NOT NULL,
 birthday DATE NOT NULL
)""")

conn.execute("""
CREATE TABLE address(
 id INTEGER PRIMARY KEY,
 street STRING(100) NOT NULL,
 number INTEGER,
 google_maps STRING(255),
 id_employee INTEGER NOT NULL,

Where Do You Store Your Stuff?

[44]

 FOREIGN KEY(id_employee) REFERENCES employee(id)
)""")

trans = conn.begin()
try:
 conn.execute("INSERT INTO employee (name, birthday) VALUES
 ('marcos mango', date('1990-09-06'));")
 conn.execute("INSERT INTO employee (name, birthday) VALUES
 ('rosie rinn', date('1980-09-06'));")
 conn.execute("INSERT INTO employee (name, birthday) VALUES
 ('mannie moon', date('1970-07-06'));")
 # insert addresses for each employee
 conn.execute(
 "INSERT INTO address (street, number, google_maps,
 id_employee) "
 "VALUES ('Oak', 399, '', 1)")
 conn.execute(
 "INSERT INTO address (street, number, google_maps,
 id_employee) "
 "VALUES ('First Boulevard', 1070, '', 1)")
 conn.execute(
 "INSERT INTO address (street, number, google_maps,
 id_employee) "
 "VALUES ('Cleveland, OH', 10,
 'Cleveland,+OH,+USA/@41.4949426,-81.70586,11z', 2)")
 trans.commit()
except:
 trans.rollback()
 raise

get marcos mango addresses
for row in conn.execute("""
 SELECT a.street, a.number FROM employee e
 LEFT OUTER JOIN address a
 ON e.id = a.id_employee
 WHERE e.name like '%marcos%';
 """):
 print "address:", row
conn.close()

In our new and updated, awesome example, we record some addresses of our
employees, making sure to use the correct value for the foreign keys (id_employee)
and then we look out for the addresses of an employee called 'marcos mango' using
LEFT JOIN.

Chapter 5

[45]

We have seen how to create tables and relations, run statements to consult and
insert data, and use transactions with SQLAlchemy; we're yet to explore much of the
library power within SQLAlchemy.

SQLAlchemy has a built-in ORM, which allows you to work with database tables
as if they were native object instances. Imagine reading a column value as if it was
an instance attribute or consulting a complex table relation through a method, that's
SQLAlchemy's ORM.

Let's see how our example will look using the built-in ORM:

coding:utf-8

from sqlalchemy import create_engine
from sqlalchemy import Column, Integer, String, Date, ForeignKey
from sqlalchemy.orm import sessionmaker, relationship, backref
from sqlalchemy.ext.declarative import declarative_base

from datetime import datetime

engine = create_engine('sqlite:///employees.sqlite')
engine.echo = True

base class for our models
Base = declarative_base()

we create a session binded to our engine
Session = sessionmaker(bind=engine)

and then the session itself
session = Session()

our first model
class Address(Base):
 # the table name we want in the database
 __tablename__ = 'address'

 # our primary key
 id = Column(Integer, primary_key=True)
 street = Column(String(100))
 number = Column(Integer)
 google_maps = Column(String(255))
 # our foreign key to employee
 id_employee = Column(Integer, ForeignKey('employee.id'))

Where Do You Store Your Stuff?

[46]

 def __repr__(self):
 return u"%s, %d" % (self.street, self.number)

class Employee(Base):
 __tablename__ = 'employee'

 id = Column(Integer, primary_key=True)
 name = Column(String(100))
 birthday = Column(Date)
 # we map
 addresses = relationship("Address", backref="employee")

 def __repr__(self):
 return self.name

create our database from our classes
Base.metadata.create_all(engine)

execute everything inside a transaction
session.add_all([
 Employee(name='marcos mango',
 birthday=datetime.strptime('1990-09-06', '%Y-%m-%d')),
 Employee(name='rosie rinn',
 birthday=datetime.strptime('1980-09-06', '%Y-%m-%d')),
 Employee(name='mannie moon',
 birthday=datetime.strptime('1970-07-06', '%Y-%m-%d'))
])
session.commit()

session.add_all([
 Address(street='Oak', number=399, google_maps='',
 id_employee=1),
 Address(street='First Boulevard', number=1070, google_maps='',
 id_employee=1),
 Address(street='Cleveland, OH', number=10,
 google_maps='Cleveland,+OH,+USA/@41.4949426,-
 81.70586,11z', id_employee=2)
])
session.commit()

get marcos, then his addresses
marcos = session.query(Employee).filter
 (Employee.name.like(r"%marcos%")).first()
for address in marcos.addresses:
 print 'Address:', address

Chapter 5

[47]

The preceding example has quite a few concepts to be introduced. First, we create
our engine, the SQLAlchemy engine used in the first example, then we create our
base model class. While Employee will be mapped into a table called employee by
create_all, each defined Column attribute will be mapped into a column of the
given table in the database with the proper constraints. For the id field, for example,
it is defined as a primary key, so it will have the primary key constraint created for it.
The id_employee is a foreign key, which is a reference to the primary key of another
table, so it will have a foreign key constraint, and so on.

All of our class models should inherit from it. Then we create a session. A session is
how you work with the SQLAlchemy ORM models.

Sessions have an internal ongoing transaction, so it's very simple for it to have a
transaction-like behavior. It also maps your models to the correct engine in case you're
using more than one; but wait, there's more! It also keeps track of all the model
instances loaded in/from it. For example, if you add a model instance to it and then
modify that very instance, the session is smart enough to acknowledge the change of
one of its objects. It will, thus, mark itself as dirty (stuff was changed) until a commit
or rollback is called.

In the example, after finding marcos, we could change "Marcos Mango's" name to
something else, such as "marcos tangerine", like this:

marcos.name = "marcos tangerine"
session.commit()

Now, comment the whole code after Base.metadata and add the following:

marcos = session.query(Employee).
 filter(Employee.name.like(r"%marcos%")).first()
marcos_last_name = marcos.name.split(' ')[-1]
print marcos_last_name

Now, re-execute the example. Marcos new last name now is "tangerine". Magical!

For an amazing, super duper, mega power reference
on querying with SQLAlchemy ORM, please visit
http://docs.sqlalchemy.org/en/rel_0_9/orm/
tutorial.html#querying.

After so much talk about SQLAlchemy, could you please wake up as we'll talk about
Flask-SQLAlchemy, the extension that integrates the library with Flask.

http://docs.sqlalchemy.org/en/rel_0_9/orm/tutorial.html#querying
http://docs.sqlalchemy.org/en/rel_0_9/orm/tutorial.html#querying

Where Do You Store Your Stuff?

[48]

Flask-SQLAlchemy
Flask-SQLAlchemy is a thin extension that wraps SQLAlchemy around Flask. It
allows you to configure the SQLAlchemy engine through your configuration file and
binds a session to each request, giving you a transparent way to handle transactions.
Let's see how to do all that. First, let's make sure we have all the necessary packages
installed. With the virtual environment loaded, run:

pip install flask-wtf flask-sqlalchemy

Our code should look like this:

coding:utf-8
from flask import Flask, render_template, redirect, flash
from flask_wtf import Form
from flask.ext.sqlalchemy import SQLAlchemy

from wtforms.ext.sqlalchemy.orm import model_form

app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret'
app.config['SQLALCHEMY_DATABASE_URI'] =
 'sqlite:////tmp/employees.sqlite'
app.config['SQLALCHEMY_ECHO'] = True

initiate the extension
db = SQLAlchemy(app)

define our model
class Employee(db.Model):
 __tablename__ = 'employee'

 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(100), nullable=False)
 birthday = db.Column(db.Date, nullable=False)

 def __repr__(self):
 return 'employee %s' % self.name

create the database
db.create_all()

auto-generate form for our model
EmployeeForm = model_form(Employee, base_class=Form, field_args={

Chapter 5

[49]

 'name': {
 'class': 'employee'
 }
})

@app.route("/", methods=['GET', 'POST'])
def index():
 # as you remember, request.POST is implicitly provided as argument
 form = EmployeeForm()

 try:
 if form.validate_on_submit():
 employee = Employee()
 form.populate_obj(employee)
 db.session.add(employee)
 db.session.commit()
 flash('New employee add to database')
 return redirect('/')
 except Exception, e:
 # log e
 db.session.rollback()
 flash('An error occurred accessing the database. Please,
 contact administration.')

 employee_list=Employee.query.all()
 return render_template('index.html', form=form,
 employee_list=employee_list)

if __name__ == '__main__':
 app.debug = True
 app.run()

The preceding example is pretty complete. It has a form validation, CSRF protection,
auto-generated form from model, and database integration. Let's focus only on what
we have not mentioned so far.

The auto form generation is pretty handy. Using model_form, you're able to
introspect the defined model class and generate a form class fit for that model.
You may also provide arguments to the fields through the model_form parameter
field_args, which is pretty useful for adding element classes or extra validators.

You may have also noticed that Employee extends db.Model which is your ORM
model base class. All your models should extend it in order to be known by db,
which encapsulates our engine and holds our request aware session.

www.allitebooks.com

http://www.allitebooks.org

Where Do You Store Your Stuff?

[50]

Inside the index function, we instantiate the form, then check whether it was
submitted through POST and is valid. Inside the if block, we instantiate our
employee model and use populate_obj to put the values of the form inside the
model instance. We could also do it field by field, like this:

employee.name = form.name.data
employee. birthday = form.birthday.data

The populate_obj is just more convenient. After populating the model, we add it to
the session to keep track of it and commit the session. In case of any exception in this
block, we have it inside a try/except block with a rollback prepared.

Note that we use Employee.query to consult which employees are stored in our
database. Each model class comes with a query attribute that allows you to fetch
and filter results from the database. Each filter call to query will return a BaseQuery
instance, which allows you to stack your filters, like this:

queryset = Employee.query.filter_by(name='marcos mango')
queryset = queryset.filter_by(birthday=datetime.strptime('1990-09-06',
'%Y-%m-%d'))
queryset.all() # <= returns the result of both filters applied
together

The possibilities here are many. Why don't you try a few examples on your own now?

The most common security problem related to web
applications and databases is the SQL Injection Attack,
where an attacker injects SQL instructions into your queries
to the database, gaining privileges he/she should not have.
The SQLAlchemy's engine object "auto-magically" escapes
special characters in your consults; so, unless you explicitly
bypass its quoting mechanism, you should be safe.

MongoDB
MongoDB is a widely used, powerful NoSQL database. It allows you to store your
data inside documents; a mutable, dictionary-like, object-like structure where
your data may be stored without you worrying about things such as "is my data
normalized to the third normal form?" or "do I have to create another table to store
my relation?", and others.

MongoDB documents are actually BSON documents, a superset of JSON with
extended data type support. If you know how to handle JSON documents, you
should have no problem.

Chapter 5

[51]

If JSON means nothing to you, just take a look at
http://www.w3schools.com/json/.

Let's install MongoDB locally in order to try out some examples:

sudo apt-get install mongodb

Now, from console, type:

mongo

You'll enter the MongoDB interactive console. From it, you may execute commands,
add documents to your database, query, update, or remove. Anything you can
achieve grammatically, you may also achieve through the console. Now, let's
understand the two important MongoDB concepts: databases and collections.

Inside MongoDB, your documents are grouped inside collections, while collections
are grouped inside databases. So, after connecting to MongoDB, the first thing you
should do is to choose which database you plan to use. You do not need to create the
database, connecting to it is enough to create the database. The same case is applicable
for the collections. You also do not need to define your document structure prior to
using it, nor are you required to implement complex altering commands if you decide
your documents structure should change. Here's an example:

> use example
switched to db example
> db.employees.insert({name: 'marcos mango', birthday: new
 Date('Sep 06, 1990')})
WriteResult({ "nInserted" : 1 })
> db.employees.find({'name': {$regex: /marcos/}})

In the preceding code, we switch to the example database, then we insert a new
document into the employees collection (we do not need to create it before use) and
eventually, we search for it using a regular expression. The MongoDB console is
actually a JavaScript console, so new Date is actually the JavaScript class Date being
instantiated. It's very simple.

If you're not familiar with JavaScript, visit http://www.
w3schools.com/js/default.asp for a nice overview.

We can store inside any JSON-type documents, also a few others. Visit
http://docs.mongodb.org/manual/reference/bson-types/ for the full list.

http://www.w3schools.com/json/
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp
http://docs.mongodb.org/manual/reference/bson-types/

Where Do You Store Your Stuff?

[52]

Regarding proper usage of MongoDB, just keep a few golden rules in mind:

•	 Avoid keeping data from one collection to another as MongoDB does
not like joins

•	 Having document values as lists is OK in MongoDB, even expected
•	 Proper document indexes (not covered in this book) are key to good

performance in MongoDB
•	 Writes are much slower than reads and may affect overall performance

MongoEngine
MongoEngine is a terrific Python library to access and manipulate MongoDB
documents and uses PyMongo, the MongoDB recommended Python library
underneath.

As PyMongo does not have a Document-object Mapper
(DOM), we are not using it directly. Nonetheless, there will
be cases where the MongoEngine API will not be enough and
you'll need to use PyMongo to achieve your goal.

It has its own consulting API and document to class mapper that allows you to work
with the documents in a similar way you would work with SQLAlchemy ORM.
That's a good thing because MongoDB is schema-less. It does not enforce the schema
as a relational database would do. That way you don't have to declare how your
document should look like before using it. MongoDB just doesn't care!

In actual daily development, knowing exactly what kind of information you're
supposed to store in a document is a great anti-madness feature and MongoEngine
gives it to you out of the box.

As you already have MongoDB on your machine, just install the MongoEngine
library to start coding with it:

pip install mongoengine pymongo==2.8

Let's add "Rosie Rinn" to the database using our new library:

coding:utf-8

from mongoengine import *
from datetime import datetime

as the mongo daemon, mongod, is running locally, we just need the
database name to connect

Chapter 5

[53]

connect('example')

class Employee(Document):
 name = StringField()
 birthday = DateTimeField()

 def __unicode__(self):
 return u'employee %s' % self.name

employee = Employee()
employee.name = 'rosie rinn'
employee.birthday = datetime.strptime('1980-09-06', '%Y-%m-%d')
employee.save()

for e in Employee.objects(name__contains='rosie'):
 print e

Understanding our example: first, we create a MongoDB connection with the
example database, then define our employee document just like we did with
SQLAlchemy, and eventually, we insert our employee "Rosie" and query to see
whether everything is OK.

When declaring our Employee class, you may have noticed we had to define each
field with its proper field type. If MongoDB is schema-less, why is that? MongoEngine
enforces the type of each model field. If you had IntField defined for your model and
provided it a string value, MongoEngine would raise a validation error as that is not a
proper field value. Also, we defined a __unicode__ method for Employee in order to
have it print the employee's name in our loop. The __repr__ will not work here.

As MongoDB does not support transactions (MongoDB is not ACID, remember?),
neither does MongoEngine, every operation we do is atomic. As we create our
"Rosie" and call the save method, "Rosie" is inserted in the database at once; there
is no need to commit the changes or anything like that.

At last, we have the database consult where we search for "Rosie". To query a chosen
collection, you should use the objects handler available in every MongoEngine
document. It exposes a Django-like interface for querying with support to
operations such as contains, icontains, ne, lte, and others. For a full list of query
operators, visit https://mongoengine-odm.readthedocs.org/guide/querying.
html#query-operators.

https://mongoengine-odm.readthedocs.org/guide/querying.html#query-operators
https://mongoengine-odm.readthedocs.org/guide/querying.html#query-operators

Where Do You Store Your Stuff?

[54]

Flask-MongoEngine
MongoEngine is pretty easy by itself, but someone thought things could go better,
and there we have Flask-MongoEngine. It gives you three main features:

•	 Flask-DebugToolbar Integration (weeee!)
•	 Django-like querysets (get_or_404, first_or_404, paginate,

paginate_field)
•	 Connection management

Flask-DebugToolbar is a neat Flask extension inspired by the Django-DebugToolbar
extension that keeps track of what is happening inside your application behind
the hood, such as HTTP headers used in a request, CPU time, number of active
MongoDB connections, and others.

The Django-like queries are a helpful feature as they allow you to avoid some boring
coding here and there. The get_or_404(*args, **kwargs) query method will
raise a 404 HTTP page if the document being looking for is not found (it uses a get,
internally). In case you're building a blog, you might like to use this little fellow
while loading a specific post entry. The first_or_404() query method is similar,
but works with the collection. If the collection is empty, it raises a 404 HTTP page.
The paginate(page, per_page) query is actually a very helpful query method. It
provides you with a pagination interface out of the box. It will not work well with
huge collections because MongoDB requires a different strategy in these cases, but
most of the time, it will be all you need. The paginate_field(field_name, doc_
id, page, per_page) is a more specific version of paginate as you'll be paginating
through a single document field and not a collection. It is very useful when you have
a document where one of the fields is a huge list.

Now, let's look at a full example with flask-mongoengine. First, let's install the
library in our virtual environment:
pip install flask-mongoengine

Now on to coding:
coding:utf-8

from flask import Flask, flash, redirect, render_template
from flask.ext.mongoengine import MongoEngine
from flask.ext.mongoengine.wtf import model_form
from flask_wtf import Form

app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret'
app.config['MONGODB_SETTINGS'] = {
 # 'replicaset': '',

Chapter 5

[55]

 'db': 'example',
 # 'host': '',
 # 'username': '',
 # 'password': ''
}
db = MongoEngine(app)

class Employee(db.Document):
 name = db.StringField()
 # mongoengine does not support datefield
 birthday = db.DateTimeField()

 def __unicode__(self):
 return u'employee %s' % self.name

auto-generate form for our model
EmployeeForm = model_form(Employee, base_class=Form, field_args={
 'birthday': {
 # we want to use date format, not datetime
 'format': '%Y-%m-%d'
 }
})

@app.route("/", methods=['GET', 'POST'])
def index():
 # as you remember, request.POST is implicitly provided as argument
 form = EmployeeForm()

 try:
 if form.validate_on_submit():
 employee = Employee()
 form.populate_obj(employee)
 employee.save()
 flash('New employee add to database')
 return redirect('/')
 except:
 # log e
 flash('An error occurred accessing the database. Please,
 contact administration.')

 employee_list=Employee.objects()
 return render_template('index.html', form=form,
 employee_list=employee_list)

if __name__ == '__main__':
 app.debug = True
 app.run()

Where Do You Store Your Stuff?

[56]

Our Flask-MongoEngine example is pretty similar to our Flask-SQLAlchemy
example. Besides differences in the imports, there is the MongoDB configuration,
as MongoDB requires different parameters; we have the birthday field type as
MongoEngine does not support DateField; there is birthday format overwrite as
the default string format for datetimefield is different than what we want; and we
have the changes in the index method.

As we do not have to handle sessions with Flask-MongoEngine, we just remove all
references to it. We also change how employee_list is built.

As MongoDB does not parse the data you send to it in an
attempt to figure out what the query is about, you do not
have SQL injection-like problems with it.

Relational versus NoSQL
You might be wondering when to use relational and when to use NoSQL. Well,
given the techniques and technologies in existence today, I would recommend you
work with the type you feel better working with. NoSQL brags about being schema-
less, scalable, fast, and so on, but relational databases are also quite fast for most of
your needs. A few relational databases, such as Postgres, even support documents.
What about scaling? Well, most projects do not need to scale as they will never be big
enough. Others, just scale with their relational database.

If there is no important reason to pick one or the other for native schema-less support
or full ACID support, either of them will be good enough. Even security-wise,
there are no big differences worth mentioning. MongoDB has its own authorization
scheme as most relational databases do, and, if properly configured, both are just as
secure. Usually, the application layer is more troublesome in this matter.

Summary
This chapter was pretty intense! We had an overview of relational and NoSQL
databases, we learned about MongoDB and MongoEngine, SQLite and SQLAlchemy,
and how to use extensions to integrate Flask with each. Knowledge is stacking up
fast! You're now capable of creating more complex web applications with database
support, custom validation, CSRF protection, and user communication.

In the next chapter, we'll learn about REST, its advantages, and how to create
services to be consumed by your app.

[57]

But I Wanna REST
Mom, Now!

REST is an architectural style that has been gaining momentum these last few years
due to its many features and architectural constraints such as cacheability, stateless
behavior, and its interface requirement.

For a nice overview of REST architecture, refer to
http://www.drdobbs.com/Web-development/
restful-Web-services-a-tutorial/240169069
and http://en.wikipedia.org/wiki/
Representational_state_transfer.

Our focus in this chapter will be on RESTful Web Services and APIs—that is, Web
services and Web APIs following the REST architecture. Let's start at the beginning:
what is a Web service?

A Web service is a Web application that can be consulted by your application as if
it was an API, improving the user experience. If your RESTful Web service does not
need to be called from a traditional UI interface, and may be used standalone, then
what you have is a RESTful Web Service API, "RESTful API" for short, that works
just like a regular API, but through a Web server.

A call to a Web service could, for example, start a batch process, update the
database, or just retrieve some data. There is no restriction imposed on what
a service may perform.

http://www.drdobbs.com/Web-development/restful-Web-services-a-tutorial/240169069
http://www.drdobbs.com/Web-development/restful-Web-services-a-tutorial/240169069
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

But I Wanna REST Mom, Now!

[58]

RESTful Web services should be accessible through a URI (like a URL) and may be
accessed by any Web protocol, although HTTP is the king here. Because of that, we'll
focus on HTTP. Our Web service response, also called a resource, may have any
desired format; as TXT, XML, or JSON, but the most common format is JSON, as it is
very simple to use. We'll also focus on JSON. When using HTTP with Web services,
a common practice is to use the HTTP default methods (GET, POST, PUT, DELETE, and
OPTIONS) to give more information to the server about what we want to achieve. This
technique allows us to have different functionality within the same service.

A service call to http://localhost:5000/age could return the user's age through
a GET request, or remove its value through a DELETE request.

Let's see what each usually used method is usually used for:

•	 GET: This is used to retrieve a resource. You want information? No database
update? Use GET!

•	 POST: This is used to insert new data into the server, such as adding a new
employee in your database.

•	 PUT: This is used to update data on the server. You have an employee that
decided to change his nickname in the system? Use PUT to do that!

•	 DELETE: This is your best method for getting rid of data on your server!
•	 OPTIONS: This is used to ask a service which methods it supports.

Lots of theory so far; let's put it into practice with a Flask-powered REST Web
Service example.

First, install the required library for the example:

pip install marshmallow

Now, on to the example:

coding:utf-8

from flask import Flask, jsonify
from flask.ext.sqlalchemy import SQLAlchemy

from marshmallow import Schema

app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret'
app.config['SQLALCHEMY_DATABASE_URI'] =
 'sqlite:////tmp/articles.sqlite'

Chapter 6

[59]

db = SQLAlchemy(app)

class Article(db.Model):
 __tablename__ = 'articles'

 id = db.Column(db.Integer, primary_key=True)
 title = db.Column(db.String(100), nullable=False)
 content = db.Column(db.Text(), nullable=False)

 def __unicode__(self):
 return self.content

we use marshmallow Schema to serialize our articles
class ArticleSchema(Schema):
 """
 Article dict serializer
 """
 class Meta:
 # which fields should be serialized?
 fields = ('id', 'title', 'content')

article_schema = ArticleSchema()
many -> allow for object list dump
articles_schema = ArticleSchema(many=True)

@app.route("/articles/", methods=["GET"])
@app.route("/articles/<article_id>", methods=["GET"])
def articles(article_id=None):
 if article_id:
 article = Article.query.get(article_id)

 if article is None:
 return jsonify({"msgs": ["the article you're looking
 for could not be found"]}), 404

 result = article_schema.dump(article)
 return jsonify({'article': result})
 else:
 # never return the whole set! As it would be very slow
 queryset = Article.query.limit(10)
 result = articles_schema.dump(queryset)

 # jsonify serializes our dict into a proper flask response

But I Wanna REST Mom, Now!

[60]

 return jsonify({"articles": result.data})

db.create_all()

let's populate our database with some data; empty examples are not
that cool
if Article.query.count() == 0:
 article_a = Article(title='some title', content='some
 content')
 article_b = Article(title='other title', content='other
 content')

 db.session.add(article_a)
 db.session.add(article_b)
 db.session.commit()

if __name__ == '__main__':
 # we define the debug environment only if running through command
line
 app.config['SQLALCHEMY_ECHO'] = True
 app.debug = True
 app.run()

In the preceding example, we create a Web service to consult articles using a
GET request. The jsonify function is introduced, as it is used to serialize Python
objects into Flask JSON responses. We also use the marshmallow library to serialize
SQLAlchemy results into Python dictionaries, as there is no native API for such.

Let's discuss the example, step-by-step:

First, we create our app and configure our SQLAlchemy extension. We then define
the Article model, which will hold our article data, and an ArticleSchema, which
allows marshmallow to serialize our articles. We have to define in the Schema Meta,
which fields should be serialized. article_schema is our schema instance used to
serialize single articles while articles_schema serializes article collections.

Our articles view has two routes defined, one for article listing and another for article
detail, which returns a single article.

Inside it, if article_id is provided, we serialize and return the requested article.
If article_id does not have a corresponding record in the database, we return a
message with the given error and the HTTP code 404, indicating a "not found" status.
If article_id is None, we serialize and return 10 articles. You might ask, Why not
return all the articles in the database? If we have 10,000 articles in the database
and try to return that many, our server will certainly have a problem; thus, avoid
returning everything from the database.

Chapter 6

[61]

This kind of service is usually consumed by Ajax requests made using JavaScript
such as jQuery or PrototypeJS. When sending Ajax requests, these libraries add a
special header that allows us to identify whether the given request is actually an Ajax
request. In our preceding example, we serve the JSON response to all GET requests.

Don't know Ajax? Visit http://www.w3schools.com/Ajax/
ajax_intro.asp.

We could be more selective and only send JSON responses to Ajax requests. Regular
requests will receive plain HTML responses. To do that, we would have to make a
slight change in our view, like this:

from flask import request
…

@app.route("/articles/", methods=["GET"])
@app.route("/articles/<article_id>", methods=["GET"])
def articles(article_id=None):
 if article_id:
 article = Article.query.get(article_id)

 if request.is_xhr:
 if article is None:
 return jsonify({"msgs": ["the article you're
 looking for could not be found"]}), 404

 result = article_schema.dump(article)
 return jsonify({'article': result})
 else:
 if article is None:
 abort(404)

 return render_template('article.html',
 article=article)
 else:
 queryset = Article.query.limit(10)

 if request.is_xhr:
 # never return the whole set! As it would be very slow
 result = articles_schema.dump(queryset)

 # jsonify serializes our dict into a proper flask response
 return jsonify({"articles": result.data})
 else:
 return render_template('articles.html',
 articles=queryset)

http://www.w3schools.com/Ajax/ajax_intro.asp
http://www.w3schools.com/Ajax/ajax_intro.asp

But I Wanna REST Mom, Now!

[62]

The request object has an attribute called is_xhr that you can check to see if the
request is actually an Ajax request. Our preceding code will probably look better if we
have it split into a few functions, such as a function to respond to Ajax requests and
another to respond to plain HTTP requests. Why don't you try refactoring the code?

Our last example could also have a different approach; we could render the HTML
template without adding context variables to it but by loading all of our data through
Ajax requests. In this scenario, the following changes to the code would be required:

from marshmallow import Schema, fields
class ArticleSchema(Schema):
 """
 Article dict serializer
 """
 url = fields.Method("article_url")
 def article_url(self, article):
 return article.url()

 class Meta:
 # which fields should be serialized?
 fields = ('id', 'title', 'content', 'url')

@app.route("/articles/", methods=["GET"])
@app.route("/articles/<article_id>", methods=["GET"])
def articles(article_id=None):
 if article_id:
 if request.is_xhr:
 article = Article.query.get(article_id)
 if article is None:
 return jsonify({"msgs": ["the article you're looking
for could not be found"]}), 404

 result = article_schema.dump(article)
 return jsonify({'article': result})
 else:
 return render_template('article.html')
 else:
 if request.is_xhr:
 queryset = Article.query.limit(10)
 # never return the whole set! As it would be very slow
 result = articles_schema.dump(queryset)

 # jsonify serializes our dict into a proper flask response
 return jsonify({"articles": result.data})
 else:
 return render_template('articles.html')

Chapter 6

[63]

We added a new field url to our schema in order to access the path to the article
page from within the JavaScript code, as we return a JSON document to the template,
and not an SQLAlchemy object, and, therefore, cannot access the model methods.

The articles.html file will look like this:

<!doctype html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Articles</title>
</head>
<body>
<ul id="articles">

<script type="text/javascript"
 src="https://code.jquery.com/jquery-2.1.3.min.js"></script>
<script type="text/javascript">
 // only execute after loading the whole HTML
 $(document).ready(function(){
 $.ajax({
 url:"{{ url_for('.articles') }}",
 success: function(data, textStatus, xhr){
 $(data['articles']).each(function(i, el){
 var link = "" + el['title'] +
 "";
 $("#articles").append("" + link + "");
 });}});}); // don't do this in live code
</script>
</body>
</html>

In our template, our article list is empty; we then populate it after calling our service
with Ajax. If you test the full example, the Ajax request is so fast you might not even
notice the page was loaded empty before being populated with Ajax.

Beyond GET
So far we've had a few cozy examples with Ajax and RESTful Web services but we
have yet to record data in our database using a service. How about trying that now?

But I Wanna REST Mom, Now!

[64]

Recording to the database using Web services is not much different from what we
have done in the previous chapter. We'll receive data from an Ajax request, we
will check which HTTP method was used in order to decide what to do, then we'll
validate the sent data and save everything if no error was found. In Chapter 4, Please
Fill in This Form, Madam, we talked about CSRF protection and its importance. We'll
keep validating our data against CSRF with our Web service. The trick is to add the
CSRF token to the form data being submitted. See the attached code provided with
the eBook for the example HTML.

This is how our view looks like with POST, PUT, and REMOVE method support:

@app.route("/articles/", methods=["GET", "POST"])
@app.route("/articles/<int:article_id>", methods=["GET", "PUT",
 "DELETE"])
def articles(article_id=None):
 if request.method == "GET":
 if article_id:
 article = Article.query.get(article_id)

 if request.is_xhr:
 if article is None:
 return jsonify({"msgs": ["the article you're
 looking for could not be found"]}), 404

 result = article_schema.dump(article)
 return jsonify({': result.data})

 return render_template('article.html',
 article=article, form=ArticleForm(obj=article))
 else:
 if request.is_xhr:
 # never return the whole set! As it would be very slow
 queryset = Article.query.limit(10)
 result = articles_schema.dump(queryset)

 # jsonify serializes our dict into a proper flask
response
 return jsonify({"articles": result.data})
 elif request.method == "POST" and request.is_xhr:
 form = ArticleForm(request.form)

 if form.validate():
 article = Article()
 form.populate_obj(article)

Chapter 6

[65]

 db.session.add(article)
 db.session.commit()
 return jsonify({"msgs": ["article created"]})
 else:
 return jsonify({"msgs": ["the sent data is not
 valid"]}), 400

 elif request.method == "PUT" and request.is_xhr:
 article = Article.query.get(article_id)

 if article is None:
 return jsonify({"msgs": ["the article you're looking
 for could not be found"]}), 404

 form = ArticleForm(request.form, obj=article)

 if form.validate():
 form.populate_obj(article)
 db.session.add(article)
 db.session.commit()
 return jsonify({"msgs": ["article updated"]})
 else:
 return jsonify({"msgs": ["the sent data was not
 valid"]}), 400
 elif request.method == "DELETE" and request.is_xhr:
 article = Article.query.get(article_id)

 if article is None:
 return jsonify({"msgs": ["the article you're looking
 for could not be found"]}), 404

 db.session.delete(article)
 db.session.commit()
 return jsonify({"msgs": ["article removed"]})

 return render_template('articles.html', form=ArticleForm())

Ok, it's true, we can't hide it any longer; dealing with Web services and plain HTML
rendering in the same page can be kind of messy, as seen in the preceding example.
Even if you split the function between other functions, by method, things might not
look that good. The usual pattern is to have a view serving your Ajax requests and
another serving your "normal" requests. You only mix both of them if convenient.

But I Wanna REST Mom, Now!

[66]

Flask-Restless
Flask-Restless is an extension capable of auto-generating a whole RESTful API for
your SQLAlchemy models with support for GET, POST, PUT, and DELETE. Most Web
services won't need more than that. Another advantage to using Flask-Restless is the
chance to extend the auto-generated methods with authentication validation, custom
behavior, and custom queries. This is a must-learn extension!

Let's see how our Web service would look with Flask-Restless. We'll also have to
install a new library for this example:

pip install Flask-Restless

And then:

coding:utf-8

from flask import Flask, url_for
from flask.ext.restless import APIManager
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret'
app.config['SQLALCHEMY_DATABASE_URI'] =
 'sqlite:////tmp/employees.sqlite'

db = SQLAlchemy(app)

class Article(db.Model):
 __tablename__ = 'articles'

 id = db.Column(db.Integer, primary_key=True)
 title = db.Column(db.String(100), nullable=False)
 content = db.Column(db.String(255), nullable=False)

 def __unicode__(self):
 return self.content

 def url(self):
 return url_for('.articles', article_id=self.id)

create the Flask-Restless API manager
manager = APIManager(app, flask_sqlalchemy_db=db)

Chapter 6

[67]

create our Article API at /api/articles
manager.create_api(Article, collection_name='articles',
methods=['GET', 'POST', 'PUT', 'DELETE'])

db.create_all()

if __name__ == '__main__':
 # we define the debug environment only if running through command
line
 app.config['SQLALCHEMY_ECHO'] = True
 app.debug = True
 app.run()

In the preceding example, we create our model, as before; then we create a
Flask-Restless API to hold all our model APIs; and then we create a Web service
API for Article with the prefix articles and support for the methods GET, POST,
PUT, and DELETE, each with the expected behavior: GET for consulting, POST for new
records, PUT for updates, and DELETE for deletes.

In your console, type the following command to send a GET request to the API and
test that your example is working:

curl http://127.0.0.1:5000/api/articles

As the Flask-Restless API is pretty extensive, we'll discuss briefly, a few common
options that come in handy for most projects.

The serializer/deserializer parameters for create_api are useful whenever
you need custom serialization/deserialization for your models. The usage is simple:

manager.create_api(Model, methods=METHODS,
 serializer=my_serializer,
 deserializer=my_deserializer)
def my_serializer(instance):
 return some_schema.dump(instance).data

def my_deserializer(data):
 return some_schema.load(data).data

You could use marshmallow to generate the schema, as in the preceding example.

But I Wanna REST Mom, Now!

[68]

Another useful set of options for create_api are include_columns and exclude_
columns. They allow you to control how much data you want returned by your API
and prevent sensitive data from being returned. When include_columns is set, only
the fields defined in it are returned by GET requests. When exclude_columns is set,
only the fields that are not defined in it are returned by GET requests. For example:

both the statements below are equivalents
manager.create_api(Article, methods=['GET'],
 include_columns=['id', 'title'])
manager.create_api(Article, methods=['GET'],
 exclude_columns=['content'])

Summary
In this chapter, we learned what REST is, its advantages, how to create Flask RESTful
Web Services and APIs, and how to use Flask-RESTless to make the whole thing
work well. We also had an overview on what jQuery is and how to use it to send
Ajax requests to consult our services. These chapter examples were pretty intense.
Try to code the examples yourself, to assimilate them better.

In the next chapter, we'll be talking about the one way in which you can assure
software quality: tests! We'll learn how to test our Web applications in the many
ways that they may be tested and how to integrate these tests into our very coding
routines. See you there!

[69]

If Ain't Tested,
It Ain't Game, Bro!

Does the software you write have quality? How do you attest that?

Software is usually written according to certain requested needs, be it bug reports,
feature and enhancement tickets, or whatever. To have quality, the software must
satisfy these needs wholly and precisely; that is, it should do what is expected of it.

Just as you would push a button to know what it does (given you do not have a
manual), you have to test your code to know what it does or to attest what it should
do. That's how you assure software quality.

During the course of a software development, it is usual to have many features that
share some code base or library. You could, for example, change a piece of code to fix
a bug and create another bug in another point in your code. Software tests also help
with that as they assure that your code does what it should do; if you change a piece
of broken code and break another piece of code, you'll also be breaking a test. In
this scenario, if you make use of continuous integration, the broken code will never
reach your production environment.

Don't know what continuous integration is? Refer to http://www.
martinfowler.com/articles/continuousIntegration.
html and https://jenkins-ci.org/.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://jenkins-ci.org/

If Ain't Tested, It Ain't Game, Bro!

[70]

Tests are so important that there is a software development process called Test
Driven Development (TDD), which states that the test should be written before
the actual code, and that the actual code is only ready when the test itself is satisfied.
TDD is quite common among senior developers and beyond. Just for the fun of it,
we'll be using TDD in this chapter, from top to toe.

What kinds of test are there?
We want tests, and we want them now; but what kind of test do we want?

There are two major classifications for tests, based on how much access to the
internal code you have: black-box and white-box tests.

Black-box tests are where the testers do not have knowledge of, and/or access to,
the actual code he/she is testing. In these cases, the test consists of checking whether
the system states before and after the code execution are as expected or whether the
given output corresponds to the given input.

White-box tests are a little different as you will have access to the actual code
internals that you're testing as well as the system expected states before and after
code execution and the expected output for a given input. This kind of test has a
stronger subjective goal, usually related to performance and software quality.

In this chapter, we will cover how to implement black-box tests as they are more
accessible to others and easier to implement. On the other hand, we'll overview the
tools for executing white-box tests.

There are many ways a code base may be tested. We'll focus our efforts on two
types of automated tests (we will not cover manual testing techniques), each with a
different goal: unit testing and behavior testing. Each of these tests has a different
purpose and complements the other. Let's take a look at what these tests are, when to
use them, and how to run them with Flask.

Unit testing
Unit testing is a technique where you test the smallest piece of code that has
meaningful functionality (called a unit) against an input and the expected output.
You usually run unit tests against functions and methods in your code base that do
not rely on other functions and methods that you've also written.

In a sense, testing is actually the art of stacking unit tests together (first test a
function, then functions that interact with each other, then functions that interact
with other systems) in a way that the whole system eventually becomes fully tested.

Chapter 7

[71]

For unit testing with Python, we may use the doctest or unittest built-in modules.
The doctest module is useful for running embedded interactive code examples from
an object documentation as test cases. Doctests are a nice complement to Unittest,
which is a more robust module focused on helping you write unit tests (as the name
implies), and should, preferably, not be used alone. Let's see an example:

coding:utf-8

"""Doctest example"""

import doctest
import unittest

def sum_fnc(a, b):
 """
 Returns a + b

 >>> sum_fnc(10, 20)
 30
 >>> sum_fnc(-10, -20)
 -30
 >>> sum_fnc(10, -20)
 -10
 """
 return a + b

class TestSumFnc(unittest.TestCase):
 def test_sum_with_positive_numbers(self):
 result = sum_fnc(10, 20)
 self.assertEqual(result, 30)

 def test_sum_with_negative_numbers(self):
 result = sum_fnc(-10, -20)
 self.assertEqual(result, -30)

 def test_sum_with_mixed_signal_numbers(self):
 result = sum_fnc(10, -20)
 self.assertEqual(result, -10)

if __name__ == '__main__':
 doctest.testmod(verbose=1)
 unittest.main()

If Ain't Tested, It Ain't Game, Bro!

[72]

In the preceding example, we define a simple sum_fnc function, which receives two
parameters and returns its sum. The sum_fnc function has a docstring explaining
itself. In this docstring, we have an interactive code example of the function call
and output. This code example is invoked by doctest.testmod(), which checks
whether the given output is correct for the function called.

Next, we have a TestCase called TestSumFnc, which defines three test methods
(test_<test_name>) and does almost exactly what our docstring test does. The
difference of this approach is that we are capable of discovering what is wrong
without the test result, if something is wrong. If we wished, for both our docstring
and test case, to do exactly the same, we would have used the assert Python
keyword to compare the result with the expected result in the test methods. Instead,
we used the assertEqual method, which not only tells us that something is wrong
with the result if something is wrong, but also informs us that the problem is that
both the result and the expected values are not equal.

If we wished to check whether our result is, for example, larger than a certain value,
we would have used the method assertGreater or assertGreaterEqual so that an
assertion error would have also told us what kind of error we had.

Good tests are independent from each other so that a failed
test may never prevent another test from running. Importing
the test dependencies from within the test and cleaning the
database are common ways to do that.

The preceding case is common when writing scripts or desktop applications.
A web application has different needs regarding the tests. A web application
code usually runs in response to user interaction through a browser request and
returns a response as the output. To test in this kind of environment, we have to
simulate requests and properly test the response content, which is usually not
as straightforward as the output of our sum_fnc. A response may be any kind of
document and it may have different sizes and content, and you even have to worry
about the response HTTP code, which holds a lot of contextual meaning.

To help you test your views and simulate user interaction with your web application,
Flask gives you a test client tool through which you can send requests in any valid
HTTP method to your application. For example, You may consult a service through a
PUT request, or a regular view through GET. Here's an example:

coding:utf-8

from flask import Flask, url_for, request
import unittest

Chapter 7

[73]

def setup_database(app):
 # setup database ...
 pass

def setup(app):
 from flask import request, render_template

 # this is not a good production setup
 # you should register blueprints here
 @app.route("/")
 def index_view():
 return render_template('index.html',
 name=request.args.get('name'))

def app_factory(name=__name__, debug=True):
 app = Flask(name)
 app.debug = debug
 setup_database(app)
 setup(app)
 return app

class TestWebApp(unittest.TestCase):
 def setUp(self):
 # setUp is called before each test method
 # we create a clean app for each test
 self.app = app_factory()
 # we create a clean client for each test
 self.client = self.app.test_client()

 def tearDown(self):
 # release resources here
 # usually, you clean or destroy the test database
 pass

 def test_index_no_arguments(self):
 with self.app.test_request_context():
 path = url_for('index_view')
 resp = self.client.get(path)
 # check response content
 self.assertIn('Hello World', resp.data)

 def test_index_with_name(self):
 with self.app.test_request_context():
 name = 'Amazing You'

If Ain't Tested, It Ain't Game, Bro!

[74]

 path = url_for('index_view', name=name)
 resp = self.client.get(path)
 # check response content
 self.assertIn(name, resp.data)

if __name__ == '__main__':
 unittest.main()

The preceding example is a complete one. We use the app_factory pattern to create
our application, then we create an app and client inside setUp, which is run before
every test method, and we create two tests, one for when the request receives a
name parameter and another for when it doesn't. As we do not create any persistent
resources, our tearDown method is empty. If we had we a database connection with
fixtures of any kind, we would have to reset the database state inside tearDown or
even drop the database.

Also, be aware of test_request_context, which is used to create a request context
inside our tests. We create this context so that url_for, which requires a request
context if SERVER_NAME config is not set, is able to return our view path.

Set the SERVER_NAME config if your website uses a subdomain.

Behavior testing
In unit testing, we tested the output of functions against an expected result. If that
result was not what we were waiting for, an assertion exception would be raised
to notify a problem. It's a simple black-box test. Now, some weird questions: did
you notice your test is written in a way different from how a bug report or feature
request is written? Did you notice that your test cannot be read by nontech people
because it is, actually, code?

I would like to introduce you to lettuce (http://lettuce.it/), a tool capable of
converting the Gherkin language tests into actual tests.

For an overview on the Gherkin language, visit
https://github.com/cucumber/cucumber/wiki/Gherkin.

Lettuce helps you translate the actual user-written features into test method calls.
This way, a feature request like:

Feature: compute sum

http://lettuce.it/
https://github.com/cucumber/cucumber/wiki/Gherkin

Chapter 7

[75]

In order to compute a sum

As student

Implement sum_fnc

•	 Scenario: Sum of positives
°° Given I have the numbers 10 and 20
°° When I sum them
°° Then I see the result 30

•	 Scenario: Sum of negatives
°° Given I have the numbers -10 and -20
°° When I sum them
°° Then I see the result -30

•	 Scenario: Sum with mixed signals

°° Given I have the numbers 10 and -20
°° When I sum them
°° Then I see the result -10

The feature could be translated into the actual code that will test our software. Make
sure lettuce is properly installed:

pip install lettuce python-Levenshtein

Create a features directory and place a steps.py (or any other Python filename
you like) there with the following code:

coding:utf-8
from lettuce import *
from lib import sum_fnc

@step('Given I have the numbers (\-?\d+) and (\-?\d+)')
def have_the_numbers(step, *numbers):
 numbers = map(lambda n: int(n), numbers)
 world.numbers = numbers

@step('When I sum them')
def compute_sum(step):
 world.result = sum_fnc(*world.numbers)

@step('Then I see the result (\-?\d+)')

If Ain't Tested, It Ain't Game, Bro!

[76]

def check_number(step, expected):
 expected = int(expected)
 assert world.result == expected, "Got %d; expected %d" %
 (world.result, expected)

What did we just do now? We defined three test functions, have_the_numbers,
compute_sum and check_number, where each receives as first argument a step
instance and other parameters for the actual test. The step decorator, used to
decorate our functions, is used to map a string pattern parsed from our Gherkin
text into the function itself. Another responsibility for our decorator is to parse the
arguments mapped from the step argument to the function as a parameter.

For example, the step for have_the_numbers has a regular expression pattern
(\-?\d+) and (\-?\d+), which maps two numbers to the numbers parameter of
our function. These values are fetched from our Gherkin input text. For the given
scenarios, these numbers would be [10, 20], [-10, -20], and [10, -20], respectively. At
last, world is a global variable you may use to share values between the steps.

Using features to describe behavior is very healthy for the development process
because it brings business people closer to what is being created, though it is
quite verbose. Also, because it is verbose, its use is not advised for testing isolated
functions as we did in our preceding example. As behavior should be written
preferably by business people, it should also test behavior the person writing
can visually attest. For example, "If I click on a button, I get the lowest price for
something" or "Given I access a certain page, I see some message or some links".

"Click here, and something happens there". Checking rendered request responses is
kind of tricky, if you ask me. Why? In our second example, we verify if a given string
value is inside our resp.data, and that was OK because our response is returned
complete. We do not use JavaScript to render anything after the page is loaded or
to show messages. If this had been the case, our verification would have probably
returned a wrong result because the JavaScript code would not have been executed.

To correctly render and verify a view response, we may use a headless browser
such as Selenium or PhantomJS (refer to https://pythonhosted.org/Flask-
Testing/#testing-with-liveserver). The Flask-testing extension will be of help too.

Flask-testing
Like most Flask extensions, Flask-testing does not do much, but what it does, it does
beautifully! We will discuss some very useful features that Flask-testing gives you
out of the box: LiveServer setup, extra assertions, and the JSON response handle.
Make sure it is installed before continuing:
pip install flask-testing blinker

https://pythonhosted.org/Flask-Testing/#testing-with-liveserver
https://pythonhosted.org/Flask-Testing/#testing-with-liveserver

Chapter 7

[77]

LiveServer
LiveServer is a Flask-testing tool that allows you to connect to headless browsers,
a browser that do not render the content visually (such as Firefox or Chrome) but
executes all scripts and styling and simulates user interaction. Use LiveServer
whenever you need to evaluate the page content after JavaScript interaction. We'll
use PhantomJS as our headless browser. My advice to you is that you install the old
browser, like our ancestors did, compiling it from source. Follow these instructions at
http://phantomjs.org/build.html (you may have to install a few extra libraries
in order to get full functionality from phantom). The build.sh file will advise you to
install it when necessary).

After compiling PhantomJS, make sure it is found
in by your PATH by moving the binary bin/
phantomjs to /usr/local/bin.

Make sure Selenium is installed:

pip install selenium

And our code will look like this:

coding:utf-8

"""
Example adapted from https://pythonhosted.org/Flask-Testing/#testing-
with-liveserver
"""

import urllib2
from urlparse import urljoin
from selenium import webdriver
from flask import Flask, render_template, jsonify, url_for
from flask.ext.testing import LiveServerTestCase
from random import choice

my_lines = ['Hello there!', 'How do you do?', 'Flask is great, ain't
it?']

def setup(app):
 @app.route("/")
 def index_view():
 return render_template('js_index.html')

 @app.route("/text")

http://phantomjs.org/build.html

If Ain't Tested, It Ain't Game, Bro!

[78]

 def text_view():
 return jsonify({'text': choice(my_lines)})

def app_factory(name=None):
 name = name or __name__
 app = Flask(name)
 setup(app)
 return app

class IndexTest(LiveServerTestCase):
 def setUp(self):
 self.driver = webdriver.PhantomJS()

 def tearDown(self):
 self.driver.close()

 def create_app(self):
 app = app_factory()
 app.config['TESTING'] = True
 # default port is 5000
 app.config['LIVESERVER_PORT'] = 8943
 return app

 def test_server_is_up_and_running(self):
 resp = urllib2.urlopen(self.get_server_url())
 self.assertEqual(resp.code, 200)

 def test_random_text_was_loaded(self):
 with self.app.test_request_context():
 domain = self.get_server_url()
 path = url_for('.index_view')
 url = urljoin(domain, path)

 self.driver.get(url)
 fillme_element =
 self.driver.find_element_by_id('fillme')
 fillme_text = fillme_element.text
 self.assertIn(fillme_text, my_lines)

if __name__ == '__main__':
 import unittest
 unittest.main()

Chapter 7

[79]

The templates/js_index.html file should look like this:

<html>
<head><title>Hello You</title></head>
<body>

<!-- Loading JQuery from CDN -->
<!-- what's a CDN? http://www.rackspace.com/knowledge_center/article/
what-is-a-cdn --
 >
<script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.3.min.js"></script>
<script type="text/javascript">
 $(document).ready(function(){
 $.getJSON("{{ url_for('.text_view') }}",
 function(data){
 $('#fillme').text(data['text']);
 });
 });
</script>
</body></html>

The preceding example is quite simple. We define our factory, which creates our app
with the two views attached. One returns a js_index.html that has a script that
consults our second view for a phrase and populates the fillme HTML element,
and the second view returns a phrase in JSON format, chosen randomly from a
predefined list.

We then define IndexTest that extends LiveServerTestCase, a special class we use
to run our live server tests. We set our live server to run on a different port from the
default, but that's not required.

Inside setUp, we create a driver with selenium WebDriver. The driver is something
similar to a browser. We'll use it to access and inspect our application through
the LiveServer. The tearDown makes sure our driver is closed after each test and
resources are released.

test_server_is_up_and_running is self explanatory and not actually necessary in
real-world tests.

Then we have test_random_text_was_loaded, which is a pretty busy test. We use
test_request_context in order to create a request context to generate our URL
paths with url_open. get_server_url, which will return us our live server URL;
we join this with our view path and load it into our driver.

If Ain't Tested, It Ain't Game, Bro!

[80]

With the URL loaded (be aware that the URL was not only loaded, but the scripts were
also executed), we use find_element_by_id to look for the element fillme and assert
that its text context has one of the expected values. This is a simple example. You can,
for example, test for whether a button is in the expected place; submit a form; and
trigger a JavaScript function. Selenium plus PhantomJS is a powerful combination.

When your development is driven by feature testing, you're
actually not using TDD, but Behavior Driven Development
(BDD). A mix of both techniques is, usually, what you want.

Extra assertions
When testing your code, you'll notice a few tests are kind of repetitive. To handle this
scenario, one would create a custom TestCases with specific routines and extend the
tests accordingly. With Flask-testing, you still have to do that, but will have to code a
little less to test your Flask views as flask.ext.testing.TestCase is bundled with
common assertions, many found in frameworks such as Django. Let's see the most
important (in my opinion, of course) assertions:

•	 assert_context(name, value): This asserts that a variable is in the
template context. Use it to verify that a given response context has the right
values for a variable.

•	 assert_redirects(response, location): This asserts that the response is
a redirect and gives its location. It's a good practice to redirect after writing to
storage, like after a successful POST, which is a good use case for this assertion.

•	 assert_template_used(name, tmpl_name_attribute='name'): This
asserts that a given template is used in the request (tmpl_name_attribute is
only needed if you're not using Jinja2; not in our case); use it whenever you
render an HTML template, really!

•	 assert404(response, message=None): This asserts that the response
has the 404 HTTP code; it is useful for "rainy day" scenarios; that is, when
someone is trying to access something that does not exist. It is very useful.

JSON handle
Here is a lovely trick Flask-testing has for you. Whenever you return a JSON
response from your views, your response will have an extra attribute called json.
That's your JSON-converted response! Here is an example:

example from https://pythonhosted.org/Flask-Testing/#testing-json-
responses
@app.route("/ajax/")

Chapter 7

[81]

def some_json():
 return jsonify(success=True)

class TestViews(TestCase):
 def test_some_json(self):
 response = self.client.get("/ajax/")
 self.assertEquals(response.json, dict(success=True))

Fixtures
Good tests are always executed considering a predefined, reproducible application
state; that is, whenever you run a test in the chosen state, the result will always be
equivalent. Usually, this is achieved by setting your database data yourself and
clearing your cache and any temporary files (if you make use of external services,
you should mock them) for each test. Clearing cache and temporary files is not hard,
while setting your database data, on the other hand, is.

If you're using Flask-SQLAlchemy to hold your data, you would need to hardcode,
somewhere in your tests as follows:

attributes = { … }
model = MyModel(**attributes)
db.session.add(model)
db.session.commit()

This approach does not scale as it is not easily reusable (when you define this as a
function and a method, define it for each test). There are two ways to populate your
database for testing: fixtures and pseudo-random data.

Using pseudo-random data is usually library-specific and produces better test data
as the generated data is context-specific, not static, but it may require specific coding
now and then, just like when you define your own fields or need a different value
range for a field.

Fixtures are the most straightforward way as you just have to define your data in a
file and load it at each test. You can do that by exporting your database data, editing
at your convenience, or writing it yourself. The JSON format is quite popular for this.
Let's take a look on how to implement both:

coding:utf-8
== USING FIXTURES ===
import tempfile, os
import json

from flask import Flask

If Ain't Tested, It Ain't Game, Bro!

[82]

from flask.ext.testing import TestCase
from flask.ext.sqlalchemy import SQLAlchemy

db = SQLAlchemy()

class User(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(255))
 gender = db.Column(db.String(1), default='U')

 def __unicode__(self):
 return self.name

def app_factory(name=None):
 name = name or __name__
 app = Flask(name)
 return app

class MyTestCase(TestCase):
 def create_app(self):
 app = app_factory()
 app.config['TESTING'] = True
 # db_fd: database file descriptor
 # we create a temporary file to hold our data
 self.db_fd, app.config['DATABASE'] = tempfile.mkstemp()
 db.init_app(app)
 return app

 def load_fixture(self, path, model_cls):
 """
 Loads a json fixture into the database
 """
 fixture = json.load(open(path))

 for data in fixture:
 # Model accepts dict like parameter
 instance = model_cls(**data)
 # makes sure our session knows about our new instance
 db.session.add(instance)

Chapter 7

[83]

 db.session.commit()

 def setUp(self):
 db.create_all()
 # you could load more fixtures if needed
 self.load_fixture('fixtures/users.json', User)

 def tearDown(self):
 # makes sure the session is removed
 db.session.remove()

 # close file descriptor
 os.close(self.db_fd)

 # delete temporary database file
 # as SQLite database is a single file, this is equivalent to a
drop_all
 os.unlink(self.app.config['DATABASE'])

 def test_fixture(self):
 marie =
 User.query.filter(User.name.ilike('Marie%')).first()
 self.assertEqual(marie.gender, "F")

if __name__ == '__main__':
 import unittest
 unittest.main()

The preceding code is simple. We create a SQLAlchemy model, link it to our app,
and, during the setup, we load our fixture. In tearDown, we make sure our database
and SQLAlchemy session are brand new for the next test. Our fixture is written using
JSON format because it is fast enough and readable.

Were we to use pseudo-random generators to create our users, (look up Google
fuzzy testing for more on the subject), we could do it like this:

def new_user(**kw):
 # this way we only know the user data in execution time
 # tests should consider it
 kw['name'] = kw.get('name', "%s %s" % (choice(names),
 choice(surnames)))
 kw['gender'] = kw.get('gender', choice(['M', 'F', 'U']))
 return kw
user = User(**new_user())
db.session.add(user)
db.session.commit()

If Ain't Tested, It Ain't Game, Bro!

[84]

Be aware that our tests would also have to change as we are not testing against a
static scenario. As a rule, fixtures will be enough in most cases, but pseudo-random
test data is better in most cases as it forces your application to handle real scenarios,
which are, usually left out.

Extra – integration testing
Integration testing is a very widely used term/concept with a very narrow meaning.
It is used to refer to the act of testing multiple modules together to test their
integration. As testing multiple modules together from the same code base with
Python is usually trivial and transparent (an import here, a call there, and some
output checking), you'll usually hear people using the term integration testing while
referring to testing their code against a different code base, an application they did
not create or maintain, or when a new key functionality was added to the system.

Summary
Whoa! We just survived a chapter about testing software! That's something to be
proud of. We learned a few concepts such as TDD, white-box, and black-box testing.
We also learned how to create unit tests; test our views; write features using the
Gherkin language and test them using lettuce; use Flask-testing, Selenium with
PhantomJS to test a HTML response from the user perspective; also how to use
fixtures to control our application state for proper reproducible testing. Now you are
capable of testing Flask applications in different ways using the correct techniques
for different scenarios and needs.

In the next chapter, things are gonna go wild really fast as our subject of study will
be tricks with Flask. Blueprints, sessions, logging, debugging, and so on, will be
covered in the next chapter, allowing you to create even more robust software.
See you there!

[85]

Tips and Tricks or
Flask Wizardry 101

Can you wait any longer before trying more advanced topics on Flask? I certainly
can't! In this chapter, we'll study techniques and modules essential to work better
and more efficiently with Flask.

What good is high-quality software that takes forever to code or low-quality
software delivered in a jiffy? Real Web development, the one you get paid for at the
end of the month, requires maintainability, productivity, and quality to be feasible.

As we discussed earlier, software quality is closely related to testing. One way to
measure software quality is verifying how close its features are to what is expected
of it. This kind of measuring does not take into account the subjective side of quality
evaluation. A client, per example, may believe the design of his latest project is ugly
and consider a well tested, feature-adherent Web project crappy. The most you can do
in these cases is charge a few extra bucks for a design refactory.

Bring your client closer to the development process in order
to avoid this kind of situation, if it ever happens to you. Try
searching for "scrum" in Google or DuckDuckGo.

When talking about productivity and maintainability, the approaches are many!
You may purchase a nice Integrated Development Environment (IDE) such as
PyCharm or WingIDE to improve your productivity or hire third-party services to
help you test your code or control your development schedule, but these can do just
so much. Good architecture and task automation will be your best friend in most
projects. Before discussing suggestions on how to organize you code and which
modules will help you save some typing here and there, let's discuss premature
optimization and overengineering, two terrible symptoms of an anxious developer/
analyst/nosy manager.

Tips and Tricks or Flask Wizardry 101

[86]

Overengineering
Making software is like making a condo, in a few ways. You'll plan ahead what
you want to create before starting so that waste is kept to a minimum. Contrary
to a condo, where it's advisable to plan the whole project before you start, you
do not have to plan out your software because it will most likely change during
development, and a lot of the planning may just go to waste.

The problem with this "plan just enough" approach is that you don't know what to
expect in the future, which may transform the little bit of paranoia we all have inside
into something big. One may end up coding against total system failure or complex
software requirement scenarios that may never happen. You don't need a multilayer
architecture, with cache, database integration, signaling system, and so on, to create a
hello world, nor do you need less than this to create a Facebook clone.

The message here is: do not make your product more robust or complex than you
know it needs to be and do not waste time planning for what may, most likely,
never happen.

Always plan for reasonable levels of safety, complexity,
and performance.

Premature optimization
Is your software fast enough? Don't know? Then why are you optimizing that code,
my friend? When you spend time optimizing software that you're not sure needs
optimization, if no one complained about it being slow or you do not notice it to be
slow in daily use, you're probably wasting time with premature optimization.

And so, on to Flask.

Blueprints 101
So far, our applications have all been flat: beautiful, single-file Web applications
(templates and static resources not considered). In some cases, that's a nice approach;
a reduced need for imports, easy to maintain with simple editors and all but…

As our applications grow, we identify the need to contextually arrange our code.
Flask Blueprints allow you to modularize your project, sharding your views in "app-
like" objects called blueprints that can be later loaded and exposed by your Flask
application. Large applications benefit deeply from the use of blueprints, as the code
gets more organized.

Chapter 8

[87]

Feature-wise, it also helps you configure the registered view access and resource
lookup in a more monolithic way. Tests, models, templates and static resources can be
sorted by blueprint, making your code so much more maintainable. If you're familiar
with Django, think of blueprints as Django apps. This way, a registered blueprint has
access to the application config and may be registered with different routes.

Unlike Django apps, blueprints do not enforce a specific structure, just like the Flask
application itself. You may have a blueprint structured as a module, for example,
which is kind of convenient, once in a while.

An example always helps, right? Let's see a good example of blueprints. First, we
installed the required library for the example in our virtual environment:

library for parsing and reading our HTML

pip install lxml

our test-friendly library

pip install flask-testing

And then we defined our tests (because we love TDD!):

coding:utf-8
runtests.py

import lxml.html

from flask.ext.testing import TestCase
from flask import url_for
from main import app_factory
from database import db

class BaseTest(object):
 """
 Base test case. Our test cases should extend this class.
 It handles database creation and clean up.
 """

 def create_app(self):
 app = app_factory()
 app.config['TESTING'] = True
 return app

 def setUp(self):
 self.app.config['SQLALCHEMY_DATABASE_URI'] =
 'sqlite:////tmp/ex01_test.sqlite'
 db.create_all()

Tips and Tricks or Flask Wizardry 101

[88]

 def tearDown(self):
 db.session.remove()
 db.drop_all()

class PostDetailTest(BaseTest, TestCase):
 def add_single_post(self):
 from blog import Post

 db.session.add(Post(title='Some text', slug='some-text',
 content='some content'))
 db.session.commit()

 assert Post.query.count() == 1

 def setUp(self):
 super(PostDetailTest, self).setUp()
 self.add_single_post()

 def test_get_request(self):
 with self.app.test_request_context():
 url = url_for('blog.posts_view', slug='some-text')
 resp = self.client.get(url)
 self.assert200(resp)
 self.assertTemplateUsed('post.html')
 self.assertIn('Some text', resp.data)

class PostListTest(BaseTest, TestCase):
 def add_posts(self):
 from blog import Post

 db.session.add_all([
 Post(title='Some text', slug='some-text',
 content='some content'),
 Post(title='Some more text', slug='some-more-text',
 content='some more content'),
 Post(title='Here we go', slug='here-we-go',
 content='here we go!'),
])
 db.session.commit()

 assert Post.query.count() == 3

 def add_multiple_posts(self, count):
 from blog import Post

Chapter 8

[89]

 db.session.add_all([
 Post(title='%d' % i, slug='%d' % i, content='content
 %d' % i) for i in range(count)
])
 db.session.commit()

 assert Post.query.count() == count

 def test_get_posts(self):
 self.add_posts()

 # as we want to use url_for ...
 with self.app.test_request_context():
 url = url_for('blog.posts_view')
 resp = self.client.get(url)

 self.assert200(resp)
 self.assertIn('Some text', resp.data)
 self.assertIn('Some more text', resp.data)
 self.assertIn('Here we go', resp.data)
 self.assertTemplateUsed('posts.html')

 def test_page_number(self):
 self.add_multiple_posts(15)

 with self.app.test_request_context():
 url = url_for('blog.posts_view')
 resp = self.client.get(url)

 self.assert200(resp)

 # we use lxml to count how many li results were returned
 handle = lxml.html.fromstring(resp.data)
 self.assertEqual(10, len(handle.xpath("//ul/li")))

if __name__ == '__main__':
 import unittest
 unittest.main()

In the preceding code, we test a single view, blog.posts_view, that has two routes,
one for post detail and another for post listing. If our view receives a slug parameter,
it should return only the first Post that has the attribute value of slug; if not, it
returns up to 10 results.

Tips and Tricks or Flask Wizardry 101

[90]

We may now create a view, using blueprints that satisfy our tests:

coding:utf-8
blog.py

from flask import Blueprint, render_template, request
from database import db

app is usually a good name for your blueprint instance
app = Blueprint(
 'blog', # our blueprint name and endpoint prefix
 # template_folder points out to a templates folder in the current
module directory
 __name__, template_folder='templates'
)

class Post(db.Model):
 __tablename__ = 'posts'

 id = db.Column(db.Integer, primary_key=True)
 title = db.Column(db.String(100), nullable=False)
 slug = db.Column(db.String(100), nullable=False, unique=True)
 content = db.Column(db.Text(), nullable=False)

 def __unicode__(self):
 return self.title

@app.route("/")
@app.route("/<slug>")
def posts_view(slug=None):
 if slug is not None:
 post = Post.query.filter_by(slug=slug).first()
 return render_template('post.html', post=post)

 # lets paginate our result
 page_number = into(request.args.get('page', 1))
 page = Post.query.paginate(page_number, 10)

 return render_template('posts.html', page=page)

Chapter 8

[91]

Creating a blueprint is pretty simple: we provide the blueprint name, which is also used
as an endpoint prefix to all the blueprint views, the import name (usually __name__),
and any extra arguments we see fit. In the example, we pass template_folder as the
argument because we want to make use of templates. If you were coding a service, you
could skip this parameter. Another very useful parameter is url_prefix, which allows
us to define a default URL prefix for all our paths.

If our blueprint name is blog and we register a method
index_view, our endpoint to that view will be blog.
index_view. An endpoint is a "name reference" to your
view you may translate into its URL path.

The next step is to register our blueprint to our Flask application in order to make
the views we wrote accessible. A database.py module is also created to hold our db
instance.

Be warned that our Post model will be recognized by db.create_all because it was
defined in blog.py; thus it becomes visible when the module is imported.

If you have a model class defined in a module that is not
imported anywhere, its tables may not be created because
SQLAlchemy will not know of it. One way to avoid this
situation is to have all your models imported by the
module where the blueprint is defined.

coding:utf-8
database.py
from flask.ext.sqlalchemy import SQLAlchemy

db = SQLAlchemy()
database.py END

coding:utf-8
main.py
from flask import Flask
from database import db
from blog import app as blog_bp

def app_factory(name=None):
 app = Flask(name or __name__)
 app.config['SQLALCHEMY_DATABASE_URI'] =
 'sqlite:////tmp/ex01.db'

Tips and Tricks or Flask Wizardry 101

[92]

 db.init_app(app)

 # let Flask know about blog blueprint
 app.register_blueprint(blog_bp)
 return app

running or importing?
if __name__ == '__main__':
 app = app_factory()
 app.debug = True

 # make sure our tables are created
 with app.test_request_context():
 db.create_all()

 app.run()

What have we here? An app_factory that creates our Flask application sets the
default database in /tmp/, a common Linux folder for temporary files; initiates
our database manager, defined in database.py; and registers our blueprint using
register_blueprint.

We set a routine to verify if we're running or importing the given module (useful for
runtests.py as it imports from main.py); if we're running it, we create an app, set
it to debug mode (because we're developing), create the database inside a temporary
test context (create_all will not run outside a context), and run the app.

The templates (post.html and posts.html) still need to be written. Can you write
them in order to make the tests pass? I leave it as a job for you!

Our current example project structure should look like this:

Chapter 8

[93]

Well, our project is still flat; all modules on the same level, contextually arranged,
but flat. Let's try moving our blog blueprint into its own module! We probably want
something like this:

Blog templates inside a templates folder inside the blog package, our models inside
models.py, and our views inside views.py (much like a Django app, right?).

It's possible to make that change without much effort. Mostly, create a blog folder
and put an __init__.py file with the following content inside:

coding:utf-8
from views import *

Move the Post class definition and db import into models.py and move blog-
specific templates, post.html and posts.html, into a templates folder inside the
package. As template_folder is relative to the current module directory, there is no
need to change our blueprint instantiation. Now, run your tests. They should work
without modification.

Take a sip, put on your war helmet, and let's move on to the next topic: logging!

Tips and Tricks or Flask Wizardry 101

[94]

Oh God, please tell me you have the
logs…
You never know how much logging is important until you face a mysterious
problem you can't quite figure out. Understanding why something wrong happened
is the first, and probably main, reason why people add logging to their projects. But,
hey, what's logging?

Logging is the act of storing records about events for further later analysis. An
important concept about logging is related to the logging level, which allows you to
categorize the information type and relevance.

The Python standard library comes bundled with a logging library that is actually
pretty powerful and allows you, through handlers and messages, to log to streams,
files, e-mail, or any other solution you believe will fit. Let's try a few useful logging
examples, shall we?

coding:utf-8
from flask import Flask
import logging
from logging.handlers import RotatingFileHandler

app = Flask(__name__)

default flask logging handler pushes messages into the console
works DEBUG mode only
app.config['LOG_FILENAME'] = '/var/tmp/project_name.log'
log warning messages or higher
app.config['LOG_LEVEL'] = logging.WARNING
app.config['ADMINS'] = ['you@domain.com']
app.config['ENV'] = 'production'

def configure_file_logger(app, filename, level=logging.DEBUG):
 # special file handler that overwrites logging file after
 file_handler = RotatingFileHandler(
 filename=filename,
 encoding='utf-8', # cool kids use utf-8
 maxBytes=1024 * 1024 * 32, # we don't want super huge log
 files ...
 backupCount=3 # keep up to 3 old log files before rolling
 over
)

 # define how our log messages should look like

Chapter 8

[95]

 formatter = logging.Formatter(u"%(asctime)s %(levelname)s\t:
 %(message)s")
 file_handler.setFormatter(formatter)
 file_handler.setLevel(level)

 app.logger.addHandler(file_handler)

def configure_mail_logger(app, level=logging.ERROR):
 """
 Notify admins by e-mail in case of error for immediate action
 based on from http://flask.pocoo.org/docs/0.10/
errorhandling/#error-mails
 """

 if app.config['ENV'] == 'production':
 from logging.handlers import SMTPHandler

 mail_handler = SMTPHandler(
 '127.0.0.1',
 'server-error@domain.com',
 app.config['ADMINS'], 'YourApplication Failed')

 mail_handler.setLevel(level)
 app.logger.addHandler(mail_handler)

if __name__ == '__main__':
 app.debug = True
 configure_file_logger(app, '/var/tmp/project_name.dev.log')
 configure_mail_logger(app)
 app.run()

In our example, we create two common logging setups: logging to a file and logging
to mail. Both are very useful in their own way. In configure_file_logger we
define a function that registers a RotatingFileHandler to hold all log messages
with the given level or above. Here, we do not use a regular FileHandler
class because we want to keep our log files manageable (also known as: small).
RotatingFileHandler allows us to define a max size for our log files and, when the
log file size is close to the maxBytes limit, the handler "rotates" to a brand new log
file (or overwrites an old one).

Tips and Tricks or Flask Wizardry 101

[96]

Logging to file is pretty straightforward and is used mostly to follow execution flows
in applications (INFO, DEBUG, and WARN logs, mostly). Basically, file logging
should be used whenever you have messages that should be recorded but should
not be immediately read or even read at all (you might want to read a DEBUG log
if something unexpected happens, but not otherwise). That way, in the case of a
problem, you just dig out your log files and see what went wrong. Mail logging has
another goal ...

To configure our mail logger, we define a function called configure_mail_logger.
It creates and registers a SMTPHandler to our logger at the given log level; that way,
whenever a message with that log level or higher is logged, an e-mail message is sent
to the registered ADMINS.

Mail logging has one main purpose: to notify someone (or a lot of people) ASAP
that something important has happened, such as an error that may compromise the
application. You probably don't want a logging level below ERROR set for this kind
of handler, as there would be just too many mails to keep up with.

As a last piece of advice on logging, sane projects have good logging. It's usual to
trace back a user issue report or even a mailed error message. Define good logging
policies and follow them, build tools to analyze your logs, and set logging rotation
parameters appropriate to the project needs. Projects that produce a lot of logging
may need larger files while projects that do not have much logging could live well
with a high value of backupCount. Always give it some thought.

Debugging, DebugToolbar, and
happiness
When running your Flask project in debug mode (app.debug = True), whenever
Flask detects that your code has changed it will restart your application. If the given
change breaks your application, Flask will display an error message in the console
that is actually very simple to analyze. You start reading from the bottom up until
you find the first line that mentions a file you wrote; that's where the error was
generated. Now, read from the top down until you find a line telling you exactly
what the error was. If this approach is not sufficient and if you need to read a
variable value—for example, to better understand what is going on—you may use
pdb, the standard Python debugging library, like this:

coding:utf-8
from flask import Flask

app = Flask(__name__)

Chapter 8

[97]

@app.route("/")
def index_view(arg=None):
 import pdb; pdb.set_trace() # @TODO remove me before commit
 return 'Arg is %s' % arg

if __name__ == '__main__':
 app.debug = True
 app.run()

Whenever pdb.set_trace is called, a pdb console, which is much like a Python
console, will be opened. Thus you may consult the value of any values you need or
even make code evaluations.

Using pdb is nice but, if you just want to keep up with what is happening with
your requests—for example, the template used, CPU time (this can catch you out!),
logged messages, and so on—Flask-DebugToolbar may be a very handy extension
at your disposal.

Flask-DebugToolbar
Imagine you could see the CPU time of your requests directly in your rendered
template, and may be verify which template was used to render that page or even
edit it on-the-fly. Would that be nice? Would you like to see it come true? Then try
the following example:

First, make sure the extension is installed:

pip install flask-debugtoolbar

And on to some fine code:

coding:utf-8
from flask import Flask, render_template
from flask_debugtoolbar import DebugToolbarExtension

app = Flask(__name__)
configure your application before initializing any extensions
app.debug = True
app.config['SECRET_KEY'] = 'secret' # required for session cookies to
work
app.config['DEBUG_TB_TEMPLATE_EDITOR_ENABLED'] = True
toolbar = DebugToolbarExtension(app)

@app.route("/")

Tips and Tricks or Flask Wizardry 101

[98]

def index_view():
 # please, make sure templates/index.html exists ;)
 return render_template('index.html')

if __name__ == '__main__':
 app.run()

Using Flask-DebugToolbar has no mysteries. Set debug to True, add a secret_key,
and initialize the extension. When you open http://127.0.0.1:5000/ in your
browser, you should see something like this:

The collapsible panel on the right is a bit of HTML the debug toolbar inserts in each
HTML response that allows you to introspect your response without the need to use a
debugger such as pdb. In the example, we set DEBUG_TB_TEMPLATE_EDITOR_ENABLED
to True; this option tells DebugToolbar we wish to edit the rendered template right
from the browser. Just navigate to Templates | Edit Templates to try it out.

Chapter 8

[99]

Sessions or storing user data between
requests
Sometimes you'll have a scenario in your application where data has to be
kept between requests, but there is no need to persist it in the database, like an
authentication token that identifies a logged user or which items a user added to his
shopping cart. At those times of peril, use Flask sessions.

Flask sessions are a solution for transient storage between requests implemented
using browser cookies and cryptography. Flask uses the secret key value to encrypt
any values you set in the session before setting it in the cookies; this way, even if a
malicious person has access to the victim's browser, it won't be possible to read the
cookie's content.

Because the secret key is used to encrypt the session data,
it is important to have a strong value for your secret key.
os.urandom(24) will likely create a strong secret key for
the deploy environment.

The data stored in the session is transient because there is no guarantee it will be
there at any time, as the user may clean the browser cookies or the cookie might
just expire, but it will most likely be there if you set it. Always take that piece of
information into account while developing.

One big advantage of a Flask session is its simplicity; you use it as if it was a regular
dictionary, like this:

coding:utf-8

from flask import Flask, render_template, session, flash
from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)
strong secret key!!
app.config['SECRET_KEY'] = '\xa6\xb5\x0e\x7f\xd3}\x0b-\xaa\x03\x03\
x82\x10\xbe\x1e0u\x93,{\xd4Z\xa3\x8f'
app.config['SQLALCHEMY_DATABASE_URI'] =
 'sqlite:////tmp/ex05.sqlite'
db = SQLAlchemy(app)

class Product(db.Model):
 __tablename__ = 'products'

Tips and Tricks or Flask Wizardry 101

[100]

 id = db.Column(db.Integer, primary_key=True)
 sku = db.Column(db.String(30), unique=True)
 name = db.Column(db.String(255), nullable=False)

 def __unicode__(self):
 return self.name

@app.route("/cart/add/<sku>")
def add_to_cart_view(sku):
 product = Product.query.filter_by(sku=sku).first()

 if product is not None:
 session['cart'] = session.get('cart') or dict()
 item = session['cart'].get(product.sku) or dict()
 item['qty'] = item.get('qty', 0) + 1
 session['cart'][product.sku] = item
 flash(u'%s add to cart. Total: %d' % (product,
 item['qty']))

 return render_template('cart.html')

def init():
 """
 Initializes and populates the database
 """
 db.create_all()

 if Product.query.count() == 0:
 db.session.add_all([
 Product(sku='010', name='Boots'),
 Product(sku='020', name='Gauntlets'),
 Product(sku='030', name='Helmets'),
])
 db.session.commit()

if __name__ == '__main__':
 app.debug = True

 with app.test_request_context():
 init()

 app.run()
== END
cart.html

Chapter 8

[101]

<html><head>
 <title>Cart</title>
</head><body>
{% with messages = get_flashed_messages() %}
 {% if messages %}

 {% for message in messages %}
 {{ message }}
 {% endfor %}
 {% endif %}

{% endwith %}
</body></html>

In the example, we define a very simple Product model, with ID, name, a sku
(a special field used to identify a product in a store), and a view that adds the
requested product to a cart in the user session. As you can see, we make no
assumption that there is any data in the session, always playing it safe. We also do not
need to "save" the session after changing it, because Flask is smart enough to notice
your session was changed and saves it auto-magically… Actually, there is a catch
here. Flask sessions can only detect the session was modified if you modify its first
level values. Example:

session['cart'] = dict() # new cart
modified tells me if session knows it was changed
assert session.modified == True
session.modified = False # we force it to think it was not meddled
with
session['cart']['item'] = dict()
session does not know that one of its children was modified
assert session.modified == False
we tell it, forcing a update
session.modified =True
session will be saved, now

Now run your project and open the URL http://localhost:5000/cart/add/010
in your browser. See how the counter goes up each time you reload? Well, that's the
session working!

Exercise
How about putting our knowledge to work? Try making a shop web application,
such as an online pet shop. It should have pet services, for example bathing and vet
consultations, and also a small store with pet accessories. It should be easy enough
(lots of work! but easy).

Tips and Tricks or Flask Wizardry 101

[102]

Summary
This was a dense chapter. We overviewed important concepts—such as performance
and maintainability, productivity, and quality—had a quick discussion about
premature optimization and overengineering, and focused our efforts on learning
how to write better code with Flask.

Blueprints, which allow you to create robust large projects with Flask, were
discussed with a full-range example; we learned about logging to file and mail and
the importance of each, had a lovely time with Flask-DebugToolbar (so handy!) and
took the default session setup and usage to heart.

You're now a capable Flask developer. I'm so proud!

As one first learns to drive before trying out drifting, we will begin our Flask drifting
next chapter. Our focus will be on using the wide extension ecosystem available to
Flask in order to create amazing projects. It will be lots of fun! See you there!

[103]

Extensions, How I Love Thee
We have been using extensions to amplify our examples for a few chapters now;
Flask-SQLAlchemy was used to connect to a relational database, Flask-MongoEngine
to connect to MongoDB, Flask-WTF to create flexible reusable forms, and so on.
Extensions are a great way to add functionality to your projects without adding
anything in the way of your code and, if you like what we've done so far, you're going
to love this chapter because it is dedicated to extensions!

In this chapter, we'll learn about a few very popular extensions we have neglected so
far. Shall we begin?

How to configure extensions
Flask extensions are modules you import, (usually) initialize, and use to
integrate with third-party libraries. They're (also) usually imported from flask.
ext.<extension_name> (which is part of the extension pattern) and should be
available in the PyPi repository under the BSD, MIT, or another less restrictive license.

It's good practice for an extension to have two states: uninitialized and initialized.
This is good practice because your Flask application may not be available at the time
you instantiate your extension. Our example in the previous chapter only initializes
Flask-SQLAlchemy after it is imported in the main module. Ok, nice to know but
how is the initialization process important?

Well, it's through the initialization that the extension fetches its configuration from
the application. For example:

from flask import Flask
import logging

set configuration for your Flask application or extensions
class Config(object):

Extensions, How I Love Thee

[104]

 LOG_LEVEL = logging.WARNING

app = Flask(__name__)
app.config.from_object(Config)
app.run()

In the previous code, we create a configuration class and loaded it with
config.from_object. This way, LOG_LEVEL became available to all extensions
with a hold on the app instance through:

app.config['LOG_LEVEL']

Another way to load a configuration into app.config is using environment
variables. This approach is especially useful in deployment environments, because
you don't want to store a sensitive deployment configuration in your version control
repository (it's unsafe!). It works like this:

…
app.config.from_envvar('PATH_TO_CONFIGURATION')

If PATH_TO_CONFIGURATION is set to a Python file path such as /home/youruser/
someconfig.py then someconfig.py will be loaded into config. Do it like this:

in the console

export PATH_TO_CONFIGURATION=/home/youruser/someconfig.py

Then create the configuration:

someconfig.py
import logging
LOG_LEVEL = logging.WARNING

Both the earlier configuration schemes have the same result.

Be warned that from_envvar will load the environment
variable from the user running the project. If you export
the environment variable to your user and run your
project as another, like www-data, it may not be able to
find your configuration.

Chapter 9

[105]

Flask-Principal and Flask-Login
(aka Batman and Robin)
As described in the project page (https://pythonhosted.org/Flask-Principal/),
Flask-Principal is a permission extension. It manages who can access what and to
what extent. You usually should use it with an authentication and session manager,
as is the case of Flask-Login, another extension we'll learn in this section.

Flask-Principal handles permissions through four simple entities: Identity,
IdentityContext, Need, and Permission.

•	 Identity: This implies the way Flask-Principal identifies a user.
•	 IdentityContext: This implies the context of a user tested against Permission.

It is used to verify whether the user has the right to do something. It can
be used as a decorator (block unauthorized access) or as a context manager
(only execute).
A Need is a criterion you need (aha moment!) to satisfy in order to do
something, such as having a role or a permission. There are a few preset
needs available with Principal, but you may create your own easily, as a
Need is just a named tuple such as this one:
from collections import namedtuple
 namedtuple('RoleNeed', ['role', 'admin'])

•	 Permission: This is a group of needs that should be satisfied in order to allow
something. Interpret it as a guardian of resources.

Given that we have our authorization extension all set, we need to authorize against
something. A usual scenario is to restrict access to an administrative interface to
administrators (don't say anything). To do that, we need to identify who is an
administrator and who isn't. Flask-Login can be of help here by providing us with
user session management (login and logout). Let's try an example. First, we make
sure the required dependencies are installed:

pip install flask-wtf flask-login flask-principal flask-sqlalchemy

And then:

coding:utf-8
this example is based in the examples available in flask-login and
flask-principal docs

from flask_wtf import Form

from wtforms import StringField, PasswordField, ValidationError

https://pythonhosted.org/Flask-Principal/

Extensions, How I Love Thee

[106]

from wtforms import validators

from flask import Flask, flash, render_template, redirect, url_for,
request, session, current_app
from flask.ext.login import UserMixin
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.login import LoginManager, login_user, logout_user,
 login_required, current_user
from flask.ext.principal import Principal, Permission, Identity,
 AnonymousIdentity, identity_changed
from flask.ext.principal import RoleNeed, UserNeed, identity_loaded

principal = Principal()
login_manager = LoginManager()
login_manager.login_view = 'login_view'
you may also overwrite the default flashed login message
login_manager.login_message = 'Please log in to access this page.'
db = SQLAlchemy()

Create a permission with a single Need
we use it to see if an user has the correct rights to do something
admin_permission = Permission(RoleNeed('admin'))

As our example now is just too big, we'll understand it piecemeal. First, we make the
necessary imports and create our extension instances. We set the login_view for the
login_manager so that it knows where to redirect our user if he tries to access a page
that requires user authentication. Be aware that Flask-Principal does not handle or
keep track of logged users. That is Flask-Login abracadabra!

We also create our admin_permission. Our admin permission has only one need:
the role admin. This way, we are defining that, for our permission to accept a user,
this user needs to have the Role admin.

UserMixin implements some of the methods required by Flask-Login
class User(db.Model, UserMixin):
 __tablename__ = 'users'

 id = db.Column(db.Integer, primary_key=True)
 active = db.Column(db.Boolean, default=False)
 username = db.Column(db.String(60), unique=True,
 nullable=False)
 password = db.Column(db.String(20), nullable=False)
 roles = db.relationship(
 'Role', backref='roles', lazy='dynamic')

Chapter 9

[107]

 def __unicode__(self):
 return self.username

 # flask login expects an is_active method in your user model
 # you usually inactivate a user account if you don't want it
 # to have access to the system anymore
 def is_active(self):
 """
 Tells flask-login if the user account is active
 """
 return self.active

class Role(db.Model):
 """
 Holds our user roles
 """
 __tablename__ = 'roles'
 name = db.Column(db.String(60), primary_key=True)
 user_id = db.Column(db.Integer, db.ForeignKey('users.id'))

 def __unicode__(self):
 return self.name

We have two models here, one to hold our user information and another to hold our
user roles. A role is usually used to categorize users, like admin; you may have three
admins in your system and all of them will have the role admin. As a result, they will
all be able to do "admin stuff", if the permissions are properly configured. Notice we
define an is_active method for User. That method is required and I advise you to
always overwrite it, even though UserMixin already provides an implementation.
is_active is used to tell login whether the user is active or not; if not active, he
may not log in.

class LoginForm(Form):
 def get_user(self):
 return User.query.filter_by(username=self.username.data).
first()

 user = property(get_user)

 username = StringField(validators=
 [validators.InputRequired()])
 password = PasswordField(validators=
 [validators.InputRequired()])

Extensions, How I Love Thee

[108]

 def validate_username(self, field):
 "Validates that the username belongs to an actual user"
 if self.user is None:
 # do not send a very specific error message here,
 otherwise you'll
 # be telling the user which users are available in
 your database
 raise ValidationError('Your username and password did
 not match')

 def validate_password(self, field):
 username = field.data
 user = User.query.get(username)

 if user is not None:
 if not user.password == field.data:
 raise ValidationError('Your username and password
 did not match')

Here we write the LoginForm ourselves. You could say: "Why not use model_form,
dude?" Well, to use model_form here, you would have to initialize your database
with your app (that you do not have yet) and set up a context. Just too much trouble.

We also define two custom validators, one to check if the username is valid and
another to check if the password and username match.

Notice we give very broad error messages for this particular
form. We do this in order to avoid giving too much info to a
possible attacker.

class Config(object):
 "Base configuration class"
 DEBUG = False
 SECRET_KEY = 'secret'
 SQLALCHEMY_DATABASE_URI = 'sqlite:////tmp/ex03.db'

class Dev(Config):
 "Our dev configuration"
 DEBUG = True
 SQLALCHEMY_DATABASE_URI = 'sqlite:////tmp/dev.db'

def setup(app):
 # initializing our extensions ;)

Chapter 9

[109]

 db.init_app(app)
 principal.init_app(app)
 login_manager.init_app(app)

 # adding views without using decorators
 app.add_url_rule('/admin/', view_func=admin_view)
 app.add_url_rule('/admin/context/', view_func=admin_only_view)
 app.add_url_rule('/login/', view_func=login_view,
 methods=['GET', 'POST'])
 app.add_url_rule('/logout/', view_func=logout_view)

 # connecting on_identity_loaded signal to our app
 # you may also connect using the
 @identity_loaded.connect_via(app) decorator
 identity_loaded.connect(on_identity_loaded, app, False)

our application factory
def app_factory(name=__name__, config=Dev):
 app = Flask(name)
 app.config.from_object(config)
 setup(app)
 return app

Here we define our configuration objects, our app setup, and application factory.
I would say the tricky part is the setup, as it registers views using an app method
and not a decorator (yes, the same result as using @app.route) and we connect our
identity_loaded signal to our app, so that the user identity is loaded and available
in each request. We could also register it as a decorator, like this:

@identity_loaded.connect_via(app)

we use the decorator to let the login_manager know of our load_user
userid is the model id attribute by default
@login_manager.user_loader
def load_user(userid):
 """
 Loads an user using the user_id

 Used by flask-login to load the user with the user id stored in
session
 """
 return User.query.get(userid)

def on_identity_loaded(sender, identity):
 # Set the identity user object
 identity.user = current_user

Extensions, How I Love Thee

[110]

 # in case you have resources that belong to a specific user
 if hasattr(current_user, 'id'):
 identity.provides.add(UserNeed(current_user.id))

 # Assuming the User model has a list of roles, update the
 # identity with the roles that the user provides
 if hasattr(current_user, 'roles'):
 for role in current_user.roles:
 identity.provides.add(RoleNeed(role.name))

The load_user function is required by Flask-Login to load the user using the userid
stored in the session storage. It should return None, if the userid was not found. Do
not throw an exception here.

on_identity_loaded is registered with the identity_loaded signal and is used to
load identity needs stored in your models. This is required because Flask-Principal is
a generic solution and has no idea of how you have your permissions stored.

def login_view():
 form = LoginForm()

 if form.validate_on_submit():
 # authenticate the user...
 login_user(form.user)

 # Tell Flask-Principal the identity changed
 identity_changed.send(
 # do not use current_app directly
 current_app._get_current_object(),
 identity=Identity(form.user.id))
 flash("Logged in successfully.")
 return redirect(request.args.get("next") or
 url_for("admin_view"))

 return render_template("login.html", form=form)

@login_required # you can't logout if you're not logged
def logout_view():
 # Remove the user information from the session
 # Flask-Login can handle this on its own =]
 logout_user()

 # Remove session keys set by Flask-Principal
 for key in ('identity.name', 'identity.auth_type'):
 session.pop(key, None)

Chapter 9

[111]

 # Tell Flask-Principal the user is anonymous
 identity_changed.send(
 current_app._get_current_object(),
 identity=AnonymousIdentity())

 # it's good practice to redirect after logout
 return redirect(request.args.get('next') or '/')

login_view and logout_view are just what is expected of them: a view to authenticate
and another to unauthenticate the user. In both cases, you just have to make sure to call
the appropriate Flask-Login functions (login_user and logout_user) and send an
adequate Flask-Principal signal (and clean the session in the logout).

I like this approach better ...
@login_required
@admin_permission.require()
def admin_view():
 """
 Only admins can access this
 """
 return render_template('admin.html')

Meh ...
@login_required
def admin_only_view():
 """
 Only admins can access this
 """
 with admin_permission.require():
 # using context
 return render_template('admin.html')

Finally, we have our actual views: admin_view and admin_only_view. Both of them
do the exact same thing, they check whether the user is logged with Flask-Login and
then check if they have adequate permission to access the view. The difference here
is that, in the first scenario, admin_view uses permission as a decorator to verify the
user's credentials and as a context in the second scenario.

def populate():
 """
 Populates our database with a single user, for testing ;)

 Why not use fixtures? Just don't wanna ...
 """

Extensions, How I Love Thee

[112]

 user = User(username='student', password='passwd',
 active=True)
 db.session.add(user)
 db.session.commit()
 role = Role(name='admin', user_id=user.id)
 db.session.add(role)
 db.session.commit()

if __name__ == '__main__':
 app = app_factory()

 # we need to use a context here, otherwise we'll get a runtime
error
 with app.test_request_context():
 db.drop_all()
 db.create_all()
 populate()

 app.run()

populate is used to add a proper user and role to our database in case you want
to test it.

A word of caution about our earlier example: we used plain
text for the user database. In actual live code, you don't want
to do that because it is common practice for users to use the
same password for multiple sites. If the password is in plain
text, anyone with access to the database will be able know
it and test it against sensitive sites. The solution provided in
http://flask.pocoo.org/snippets/54/ might help
you avoid this scenario.

Now here is an example base.html template you could use with the preceding code:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>{% block title %}{% endblock %}</title>

 <link rel="stylesheet" media="screen,projection"
 href="https://cdnjs.cloudflare.com/ajax/libs/materialize/0.96.1/
css/materialize.min.css" />

http://flask.pocoo.org/snippets/54/

Chapter 9

[113]

 <meta name="viewport" content="width=device-width, initial-
 scale=1.0, maximum-scale=1.0, user-scalable=no"/>
 <style type="text/css">
 .messages{
 position: fixed;
 list-style: none;
 margin:0px;
 padding: .5rem 2rem;
 bottom: 0; left: 0;
 width:100%;
 background-color: #abc;
 text-align: center;
 }
 </style>
</head>
<body>
 {% with messages = get_flashed_messages() %}
 {% if messages %}
 <ul class='messages'>
 {% for message in messages %}
 {{ message }}
 {% endfor %}

 {% endif %}
 {% endwith %}

 <header>
 <nav>
 <div class="container nav-wrapper">
 {% if current_user.is_authenticated() %}
 Welcome to the admin interface, {{
 current_user.username }}
 {% else %}Welcome, stranger{% endif %}

 <ul id="nav-mobile" class="right hide-on-med-and-down">
 {% if current_user.is_authenticated() %}
 <a href="{{ url_for('logout_view')
 }}?next=/admin/">Logout
 {% else %}
 <a href="{{ url_for('login_view')
 }}?next=/admin/">Login
 {% endif %}

 </div>
 </nav>

Extensions, How I Love Thee

[114]

 </header>
 <div class="container">
 {% block content %}{% endblock %}
 </div>
 <script type="text/javascript"
 src="https://code.jquery.com/jquery-2.1.1.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/
 libs/materialize/0.96.1/js/materialize.min.js"></script>
</body>
</html>

Notice we use current_user.is_authenticated() to check if the user is
authenticated in the template as current_user is available in all templates.
Now, try writing login.html and admin.html on your own, extending base.html.

Admin like a boss
One of the reasons why Django got so famous is because it has a nice and flexible
administrative interface and we want one too!

Just like Flask-Principal and Flask-Login, Flask-Admin, the extension we'll use
to build our administrative interface, does not require a particular database to
work with. You may use MongoDB as a relational database (with SQLAlchemy or
PeeWee), or another database you happen to like.

Contrary to Django, where the admin interface is focused in the apps/models, Flask-
Admin is focused in page/models. You cannot (without some heavy coding) load a
whole blueprint (the Flask equivalent of a Django app) into the admin interface, but
you can create a page for your blueprint and register the blueprint models with it.
One advantage of this approach is that you may pick where all your models will be
listed with ease.

In our previous example, we created two models to hold our user and role
information, so, let's create a simple admin interface for these two models. We make
sure our dependency is installed:

pip install flask-admin

And then:

coding:utf-8

from flask import Flask
from flask.ext.admin import Admin
from flask.ext.admin.contrib.sqla import ModelView
from flask.ext.login import UserMixin

Chapter 9

[115]

from flask.ext.sqlalchemy import SQLAlchemy

db = SQLAlchemy()

class User(db.Model, UserMixin):
 __tablename__ = 'users'

 id = db.Column(db.Integer, primary_key=True)
 active = db.Column(db.Boolean, default=False)
 username = db.Column(db.String(60), unique=True,
 nullable=False)
 password = db.Column(db.String(20), nullable=False)
 roles = db.relationship(
 'Role', backref='roles', lazy='dynamic')

 def __unicode__(self):
 return self.username

 # flask login expects an is_active method in your user model
 # you usually inactivate a user account if you don't want it
 # to have access to the system anymore
 def is_active(self):
 """
 Tells flask-login if the user account is active
 """
 return self.active

class Role(db.Model):
 """
 Holds our user roles
 """
 __tablename__ = 'roles'
 name = db.Column(db.String(60), primary_key=True)
 user_id = db.Column(db.Integer, db.ForeignKey('users.id'))

 def __unicode__(self):
 return self.name

Flask and Flask-SQLAlchemy initialization here
admin = Admin()
admin.add_view(ModelView(User, db.session, category='Profile'))
admin.add_view(ModelView(Role, db.session, category='Profile'))

Extensions, How I Love Thee

[116]

def app_factory(name=__name__):
 app = Flask(name)
 app.debug = True
 app.config['SECRET_KEY'] = 'secret'
 app.config['SQLALCHEMY_DATABASE_URI'] =
 'sqlite:////tmp/ex04.db'

 db.init_app(app)
 admin.init_app(app)
 return app

if __name__ == '__main__':
 app = app_factory()

 # we need to use a context here, otherwise we'll get a runtime
error
 with app.test_request_context():
 db.drop_all()
 db.create_all()

 app.run()

In this example, we create and initialize the admin extension and then register our
models with it using ModelView, a special class that creates a CRUD for our model.
Run this code and try to access http://127.0.0.1:5000/admin/; you'll see a nice
administrative interface with a Home link at the top followed by a Profile drop-down
with two links, User and Role, that point to our model CRUDs. That's a very basic
example that does not amount to much, as you cannot have an administrative interface
like that, open to all users.

One way to add authentication and permission verification to our admin views
is by extending ModelView and IndexView. We'll also use a cool design pattern
called mixin:

coding:utf-8
permissions.py

from flask.ext.principal import RoleNeed, UserNeed, Permission
from flask.ext.principal import Principal

principal = Principal()

admin permission role
admin_permission = Permission(RoleNeed('admin'))

END of FILE

Chapter 9

[117]

coding:utf-8
admin.py

from flask import g
from flask.ext.login import current_user, login_required
from flask.ext.admin import Admin, AdminIndexView, expose
from flask.ext.admin.contrib.sqla import ModelView

from permissions import *

class AuthMixinView(object):
 def is_accessible(self):
 has_auth = current_user.is_authenticated()
 has_perm = admin_permission.allows(g.identity)
 return has_auth and has_perm

class AuthModelView(AuthMixinView, ModelView):
 @expose()
 @login_required
 def index_view(self):
 return super(ModelView, self).index_view()

class AuthAdminIndexView(AuthMixinView, AdminIndexView):
 @expose()
 @login_required
 def index_view(self):
 return super(AdminIndexView, self).index_view()

admin = Admin(name='Administrative Interface',
 index_view=AuthAdminIndexView())

What are we doing here? We overwrite the is_accessible method, so that users
without permission will receive a forbidden-access message, and overwrite the index_
view for AdminIndexView and ModelView, adding the login_required decorator that
will redirect unauthenticated users to the login page. admin_permission verifies that
the given identity has the required set of permissions—RoleNeed('admin'), in our case.

If you're wondering what a mixin is, try this link
http://stackoverflow.com/questions/533631/
what-is-a-mixin-and-why-are-they-useful.

http://stackoverflow.com/questions/533631/what-is-a-mixin-and-why-are-they-useful
http://stackoverflow.com/questions/533631/what-is-a-mixin-and-why-are-they-useful

Extensions, How I Love Thee

[118]

As our model already has Create, Read, Update, Delete (CRUD) and permission
control access, how could we modify our CRUD to show just certain fields, or
prevent the addition of other fields?

Just like Django Admin, Flask-Admin allows you to change your ModelView
behavior through setting class attributes. A few of my personal favorites are these:

•	 can_create: This allows the user to create the model using CRUD.
•	 can_edit: This allows the user to update the model using CRUD.
•	 can_delete: This allows the user to delete the model using CRUD.
•	 list_template, edit_template, and create_template: These are default

CRUD templates.
•	 list_columns: This implies thats columns show in the list view.
•	 column_editable_list: This indicates columns that can be edited in the

list view.
•	 form: This is the form used by CRUD to edit and create views.
•	 form_args: This is used to pass form field arguments. Use it like this:

form_args = {'form_field_name': {'parameter': 'value'}} #
parameter could be name, for example

•	 form_overrides: use it to override a form field like this:
form_overrides = {'form_field': wtforms.SomeField}

•	 form_choices: allow you to define choices for a form field. Use it like this:
form_choices = {'form_field': [('value store in db', 'value
display in the combo box')]}

An example would look like this:

class AuthModelView(AuthMixinView, ModelView):
 can_edit= False
 form = MyAuthForm

 @expose()
 @login_required
 def index_view(self):
 return super(ModelView, self).index_view()

Chapter 9

[119]

Custom pages
Now, were you willing to add a custom reports page to your administrative
interface, you certainly would not use a model view for the task. For these cases,
add a custom BaseView like this:

coding:utf-8
from flask import Flask
from flask.ext.admin import Admin, BaseView, expose

class ReportsView(BaseView):
 @expose('/')
 def index(self):
 # make sure reports.html exists
 return self.render('reports.html')

app = Flask(__name__)
admin = Admin(app)
admin.add_view(ReportsView(name='Reports Page'))

if __name__ == '__main__':
 app.debug = True
 app.run()

Now you have an admin interface with a nice Reports Page link at the top. Do not
forget to write a reports.html page in order to make the preceding example work.

Now, what if you don't want the link to be shown in the navigation bar, because you
have it somewhere else? Overwrite the BaseView.is_visible method as it controls
whether the view will appear in the navigation bar. Do it like this:

class ReportsView(BaseView):
…
 def is_visible(self):
 return False

Extensions, How I Love Thee

[120]

Summary
In this chapter, we just learned some tricks with regard to user authorization and
authentication, and even had a go at creating an administrative interface. That
was quite a lot of knowledge that will help you extensively in your daily coding,
as security (and making sure people just interact with what they can and should
interact with) is a quite common need.

Rejoice, my friend, as now you know how to develop robust Flask applications,
using MVC, TDD, relational, and NoSQL databases integrated with permissions and
authentication control: forms; how to implement cross site forgery protection; and
even how to use an administrative tool out-of-the-box.

The focus of our studies was on knowing all the most useful tools (in my opinion, of
course) in the Flask development world and how to use them to some extent. We did
not explore any of them in greater depth, because of scope restrictions, but the basics
were certainly shown.

Now, it is left for you to improve your understanding of each of the presented
extensions and libraries and to for new ones. The next and final chapter tries to
enlighten you in this journey, suggesting reading material, articles, and tutorials
(among other things).

I hope you've enjoyed the book so far and take great pleasure in the final notes.

[121]

What Now?
Flask is quite the most popular Web framework nowadays, so finding online
reading material for it is not that hard. For instance, a quick search on Google will
surely give you one or two good articles on most subjects you might be interested
in. Nonetheless, subjects such as deployment, even though much discussed on the
Internet, yet raise doubt in our fellow web warriors' hearts. For that reason, we
have stashed a nice step-by-step "deploy your Flask app like a boss" recipe in our
last chapter. Along with it, we'll advise you on a few very special places where
knowledge is just there, thick and juicy, lying around waiting for you to pinch
wisdom. With this chapter, you'll be capable of delivering your products from code
to server, and maybe, just maybe, fetching some well-deserved high fives! Welcome
to this chapter, where code meets the server and you meet the world!

You deploy better than my ex
Deployment is not a term everyone is familiar with; if you were not a web developer
until recently, you would have been, probably, unfamiliar with it. In a rough Spartan
way, one could define deployment as the act of preparing and presenting your
application to the world, assuring the required resources are available, and tuning
it, as a configuration suitable for the development phase is not the same as one
appropriate for deployment. In a web development context, we are talking about a
few very specific actions:

•	 Placing your code in a server
•	 Setting up your database
•	 Setting up your HTTP server
•	 Setting up other services you may use
•	 Tying everything together

What Now?

[122]

Placing your code in a server
First of all, what is a server? We refer to as server a computer with server-like features
such as high reliability, availability, and serviceability (RAS). These features grant
the application running in the server a certain level of trust that the server will keep
running, even after any environment problem, such as a hardware failure.

In the real world, where people have budgets, a normal computer (one of those you
buy in the closest store) would most likely be the best choice for running a small
application because "real servers" are very expensive. With small project budgets
(nowadays, also the big ones), a robust solution called server virtualization was
created where expensive, high-RAS physical servers have their resources (memory,
CPU, hard-drive, and so on) virtualized into virtual machines (VM), which act
just like smaller (and cheaper) versions of the real hardware. Companies such as
DigitalOcean (https://digitalocean.com/), Linode (https://www.linode.com/),
and RamNode (https://www.ramnode.com/) have whole businesses focused in
providing cheap, reliable virtual machines to the public.

Now, given that we have our web application ready (I mean, our Minimum
Viable Product is ready), we must run the code somewhere accessible to our target
audience. This usually means we need a web server. Pick two cheap virtual machines
from one of the companies mentioned in the preceding paragraph, set up with
Ubuntu, and let's begin!

Setting up your database
With respect to databases, one of the most basic things you should know during
deployment is that it is a good practice to have your database and web application
running on different (virtual) machines. You don't want them to compete for the
same resources, believe me. That's why we hired two virtual servers—one will run
our HTTP server and the other our database.

Let's begin our database server setup; first, we add our SSH credentials to our remote
server so that we may authenticate without the need to type the remote server user
password every time. Before this, generate your SSH keys if you do not have them,
like this:

ref: https://help.github.com/articles/generating-ssh-keys/

type a passphrase when asked for one

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

https://digitalocean.com/
https://www.linode.com/
https://www.ramnode.com/

Chapter 10

[123]

Now, given that your virtual machine provider provided you with an IP address
to your remote machine, a root user, and password, we create a passwordless SSH
authentication with our server as follows:

type the root password when requested

ssh-copy-id root@ipaddress

Now, exit your remote terminal and try to SSH root@ipaddress. The password will
no longer be requested.

Here's the second step! Get rid of the non-database stuff such as Apache and install
Postgres (http://www.postgresql.org/), the most advanced open source database
to date:

as root

apt-get purge apache2-*

apt-get install postgresql

type to check which version of postgres was installed (most likely 9.x)

psql -V

Now we set up the database.

Connect the default user Postgres with the role postgres:

sudo -u postgres psql

Create a database for our project called mydb:

CREATE DATABASE mydb;

Create a new user role to access our database:

CREATE USER you WITH PASSWORD 'passwd'; # please, use a strong password

We now make sure "you" can do whatever you want with mydb

You don't want to keep this setup for long, be warned

GRANT ALL PRIVILEGES ON DATABASE mydb TO you;

So far, we've accomplished quite a lot. First, we removed unnecessary packages
(just a few); installed the latest supported version of our database, Postgres; created
a new database and a new "user"; and granted full permissions to our user over our
new database. Let's understand each step.

http://www.postgresql.org/

What Now?

[124]

We begin by removing Apache2 and the likes because this is a database server
setup and so there is no need to keep the Apache2 packages. Depending on the
installed Ubuntu version, you will even need to remove other packages as well. The
golden rule here is: the fewer packages installed, the fewer packages we have to pay
attention to. Keep only the minimum.

Then we install Postgres. Depending on your background, you might ask—Why
Postgres and why not MariaDB/MySQL? Well, well, fellow reader, Postgres is a
complete solution with ACID support, document (JSONB) storage, key-value storage
(with HStore), indexing, text searching, server-side programming, geolocalization
(with PostGIS), and so on. If you know how to install and use Postgres, you have
access to all these functionalities in a single solution. I also like it more than other
open source/free solutions, so we'll stick with it.

After installing Postgres, we have to configure it. Unlike SQLite, which we have used
so far as our relational database solution, Postgres has a robust permissions system
based on roles that controls which resources may be accessed or modified, and by
whom. The main concept here is that roles are a very particular kind of group, which
may have permissions called privileges, or other groups associated with or containing
it. For example, the command CREATE USER run inside the psql console (the Postgres
interactive console, just like Python's) is not actually creating a user; it is, in reality,
creating a new role with the login privilege, which is similar to the user concept. The
following command is equivalent to the create user command inside psql:

CREATE ROLE you WITH LOGIN;

Now, toward our last sphinx, there is the GRANT command. To allow roles to do stuff,
we grant them privileges, such as the login privilege that allows our "user" to log in.
In our example, we grant you all available privileges to the database mydb. We do
that so that we're able to create tables, alter tables, and so on. You usually don't want
your production web application database user (whoa!) to have all these privileges
because, in the event of a security breach, the invader would be able to do anything
to your database. As one usually (coff coff never!) does not alter the database
structure on user interaction, using a less privileged user with the web application is
not a problem.

PgAdmin is an amazing, user-friendly, Postgres management
application. Just use it with SSH tunneling (http://www.
pgadmin.org/docs/dev/connect.html), and be happy!

Now test that your database setup is working. Connect to it from the console:

psql -U user_you -d database_mydb -h 127.0.0.1 -W

http://www.pgadmin.org/docs/dev/connect.html
http://www.pgadmin.org/docs/dev/connect.html

Chapter 10

[125]

Enter your password when asked for it. Our preceding command is actually a
trick we use with Postgres as we are connecting to the database through a network
interface. By default, Postgres assumes you're trying to connect with a role and
database of the same name as your system username. You cannot even connect as
a role whose name is different than your system username, unless you do it from a
network interface as we did.

Setting up the web server
Setting up your web server is a little more complex as it involves modifying more files
and making sure the configuration is solid across them, but we'll make it, you'll see.

First, we make sure our project code is in our web server (that is not the same server
as the database server, right?). We may do this in one of many ways: using FTP
(please don't), plain fabric plus rsync, version control, or version plus fabric (happy
face!). Let's see how to do the latter.

Given you already created a regular user in your web server virtual machine called
myuser, make sure you have fabric installed:
sudo apt-get install python-dev

pip install fabric

And, a file called fabfile.py in your project root:
coding:utf-8

from fabric.api import *
from fabric.contrib.files import exists

env.linewise = True
forward_agent allows you to git pull from your repository
if you have your ssh key setup
env.forward_agent = True
env.hosts = ['your.host.ip.address']

def create_project():
 if not exists('~/project'):
 run('git clone git://path/to/repo.git')

def update_code():
 with cd('~/project'):
 run('git pull')
def reload():
 "Reloads project instance"
 run('touch --no-dereference /tmp/reload')

What Now?

[126]

With the preceding code and fabric installed, given you have your SSH key copied
to the remote server with ssh-copy-id and have it set up with your version control
provider (for example, github or bitbucket), create_project and update_code
become available to you. You may use them, like this:

fab create_project # creates our project in the home folder of our
remote web server

fab update_code # updates our project code from the version control
repository

It's very easy. The first command gets your code in the repository, while the second
updates it to your last commit.

Our web server setup will use some very popular tools:

•	 uWSGI: This is used for application server and process management
•	 Nginx: This is used as our HTTP server
•	 UpStart: This is used to manage our uWSGI life cycle

UpStart comes with Ubuntu out-of-the-box, so we'll remember it for later. For
uWSGI, we need to install it, like this:

pip install uwsgi

Now, inside your virtualenv bin folder, there will be a uWSGI command. Keep track
of where it is as we'll need it soon.

Create a wsgi.py file inside your project folder with the following content:

coding:utf-8
from main import app_factory

app = app_factory(name="myproject")

A uWSGI uses the app instance from the file above to connect to our application. An
app_factory is a factory function that creates our application. We have seen a few so
far. Just make sure the app instance it returns is properly configured. Application-wise,
this is all we have to do. Next, we move on to connecting uWSGI to our application.

We may call our uWSGI binary with all the parameters necessary to load our wsgi.
py file directly from command line or we can create an ini file, with all the necessary
configuration, and just provide it to the binary. As you may guess, the second
approach is usually better, so create an ini file that looks like this:

[uwsgi]
user-home = /home/your-system-username
project-name = myproject

Chapter 10

[127]

project-path = %(user-home)/%(myproject)

make sure paths exist
socket = %(user-home)/%(project-name).sock
pidfile = %(user-home)/%(project-name).pid
logto = /var/tmp/uwsgi.%(prj).log
touch-reload = /tmp/reload
chdir = %(project-path)
wsgi-file = %(project-path)/wsgi.py
callable = app
chmod-socket = 664

master = true
processes = 5
vacuum = true
die-on-term = true
optimize = 2

The user-home, project-name, and project-path are aliases we use to make
our work easier. The socket option points to the socket file our HTTP server
will use to communicate with our application. We'll not discuss all the given
options as this is not an overview on uWSGI, but a few more important options,
such as touch-reload, wsgi-file, callable, and chmod-socket, will receive a
detailed explanation. Touch-reload is particularly useful; the file you specify as an
argument to it will be watched by uWSGI and, whenever it is updated/touched,
your application will be reloaded. After some code update, you certainly want to
reload your app. Wsgi-file specifies which file has our WSGI-compatible application,
while callable tells uWSGI the name of the instance in the wsgi file (app, usually).
Finally, we have chmod-socket, which changes our socket permission to -rw-
rw-r--, aka read/write permission to the owner and group; others may but read
this. We need this as we want our application in the user scope and our sockets to be
read from the www-data user, which is the server user. This setup is quite secure as
the application cannot mess with anything beyond the system user resources.

We may now set up our HTTP server, which is quite an easy step. Just install Nginx
as follows:

sudo apt-get install nginx-full

Now, your http server is up-and-running on port 80. Let's make sure Nginx knows
about our application. Write the following code to a file called project inside /etc/
nginx/sites-available:

server {
 listen 80;
 server_name PROJECT_DOMAIN;

What Now?

[128]

 location /media {
 alias /path/to/media;
 }
 location /static {
 alias /path/to/static;
 }

 location / {
 include /etc/nginx/uwsgi_params;
 uwsgi_pass unix:/path/to/socket/file.sock;
 }
}

The preceding configuration file creates a virtual server running at port 80, listening
to the domain server_name, serving static and media files from the provided paths
through /static and /media, and listening to the path directing all access to / to be
handled using our socket. We now turn on our configuration and turn off the default
configuration for nginx:

sudo rm /etc/nginx/sites-enabled/default

ln -s /etc/nginx/sites-available/project /etc/nginx/sites-enabled/project

What have we just done? The configuration files for virtual servers live inside /
etc/nginx/sites-available/ and, whenever we want a configuration to be seen
by nginx, we symlink it to the enabled sites. In the preceding configuration, we just
disabled default and enabled project by symlinking it. Nginx does not notice and
load what we just did on its own; we need to tell it to reload its configuration. Let's
save this step for later.

We need to create one last file inside /etc/init that will register our uWSGI process
as a service with upstart. This part is really easy; just create a file called project.
conf (or any other meaningful name) with the following content:

description "uWSGI application my project"

start on runlevel [2345]
stop on runlevel [!2345]

setuid your-user
setgid www-data

exec /path/to/uwsgi --ini /path/to/ini/file.ini

Chapter 10

[129]

The preceding script runs uWSGI using our project ini file (we created it earlier)
as parameter as the user "your-user" and group www-data. Replace your-user
with your user (…) but, do not replace the www-data group as it is a required
configuration. The preceding runlevel configuration just tells upstart when to start
and stop this service. You don't have to intervene.

Run the following command line to start your service:

start project

Next reload Nginx configuration like this:

sudo /etc/init.d/nginx reload

If everything went fine, the media path and static path exist, the project database
settings point to the remote server inside the private network, and the gods are
smiling on you, your project should be accessible from your registered domain.
Gimme a high-five!!

StackOverflow
StackOverflow is the new Google term for hacking and software development. A lot
of people use it, so there are a lot of common questions and great answers at your
disposal. Just spend a few hours reading the latest trends on http://stackoverflow.
com/search?q=flask, and you're sure to have learned much!

Structuring your projects
As Flask does not enforce a project structure, you've quite a lot of freedom to try out
what best suits you. Large one-file projects work, Django-like structured projects
work, flat architectures also work; the possibilities are many! Because of this, many
projects emerge with their own suggested architecture; these projects are called
boilerplates or skeletons. They focus on giving you a recipe to quickly start a new
Flask project, taking advantage of their suggested way of organizing the code.

If you plan to create a large web application with Flask, you're strongly advised to
take a look at at least one of these projects because they've probably already faced a
few problems you could face and have come up with a solution:

•	 Flask-Empty (https://github.com/italomaia/flask-empty)
•	 Flask-Boilerplate (https://github.com/mbr/flask-bootstrap)
•	 Flask-Skeleton (https://github.com/sean-/flask-skeleton)

http://stackoverflow.com/search?q=flask
http://stackoverflow.com/search?q=flask
https://github.com/italomaia/flask-empty
https://github.com/mbr/flask-bootstrap
https://github.com/sean-/flask-skeleton

What Now?

[130]

Summary
I must confess, I wrote this book for myself. It is so hard to find all the knowledge
one needs to build a web application in just one place, that I had to place my notes
somewhere, condensed. I hope that, if you reached this paragraph, you also feel like
me, that this book was written for you. It was a nice challenging ride.

You're now capable of building full-featured Flask applications with secure forms,
database integration, tests, and making use of extensions, which allow you to create
robust software in no time. I'm so proud! Now, go tell your friends how awesome
you are. See you around!

Postscript
As a personal challenge, take that project you have always dreamed of coding,
but never had the spirit to do it, and make an MVP (minimum viable product) of
it. Create a very simple implementation of your idea and publish it (http://bit.
ly/1I0ehDB) to the world to see; then, leave me a message about it. I'd love to take a
look at your work!

http://bit.ly/1I0ehDB
http://bit.ly/1I0ehDB

[131]

Index
A
ACID

about 39
reference link 39

Ajax
reference link 61

application deployment
about 121
code, placing in server 122
database, setting up 122-124
web server, setting up 125-129

assertions
assert404() 80
assert_context() 80
assert_redirects() 80
assert_template_used() 80

autocommit 42
auto-escaping 12
automated tests

behavior testing 70
unit testing 70

B
Behavior Driven Development (BDD) 80
behavior testing

about 70-75
example 75, 76

black-box tests 70
block statement 18
blueprints

about 86, 87
creating 91-93
example 87
using 90

BSON Types
reference link 51

C
columns 40
connection pool

about 42
reference link 42

continuous integration
about 69
reference link 69

control structures
about 15
block statement 18
extends statement 18
for statement 16
if statement 15
include statement 18, 19
set statement 20

Create, Read, Update, Delete (CRUD) 118
Cross Site Request Forgery (CSRF)

about 36
used, for securing forms 36

custom pages
adding 119

D
database

setting up 122-124
database normalization

reference link 41
debugging

about 96
with Flask-DebugToolbar 97

[132]

development environment
prerequisites 5, 6
tools, using 5, 6

DigitalOcean
URL 122

Document-object Mapper (DOM) 52
do extension 23

E
entities, Flask-Principal

Identity 105
IdentityContext 105
Need 105
Permission 105

extends statement 18
extensions

about 22, 23
configuring 103, 104
do extension 23
with extension 23

F
filters 23, 24
fixtures

about 81
example 81-83
integration testing 84

Flask
about 1
features 1
overview 2, 3
URL, for license 2

Flask-Admin
about 114
example 114-118

Flask-Boilerplate
URL 129

Flask-DebugToolbar
about 54, 97
used, for debugging 97, 98

Flask-Empty
about 23
URL 23

Flask-Login
about 105

example 105-114
Flask-MongoEngine

about 54
example 54, 56
features 54

Flask-Principal
about 105
custom pages, adding 119
entities 105
example 105-114
Flask-Admin 114-118
URL 105

Flask-Restless
about 66
example 66-68

Flask-Skeleton
URL 129

Flask-SQLAlchemy
about 48, 81
example 48-50

Flask-testing
about 76
assertions 80
JSON handle 80
LiveServer 77-80
URL 76

Flask-WTF
about 34
challenges 37
features 34
forms, securing with CSRF 36
integrating, with WTForms 34, 35
URL 34

foreign key 41
forms

handling 29, 30
securing, with CSRF 36

for statement 16
foundation.zurb framework

URL 10
fuzzy testing 83

G
Gherkin language

about 74
URL 74

[133]

H
"Hello World" app

about 5
creating 6-8

HTML
about 27
reference link 27

HTML forms
about 27-29
example 28

HTML pages
serving 9, 10

HTTP
about 58
DELETE method 58
GET method 58
OPTIONS method 58
POST method 58
PUT method 58

I
if statement 16
include statement 18, 19
input field

reference link 29
integration testing 84

J
JavaScript

reference link 51
Jinja2

about 11, 12
control structures 15-20
extensions 22, 23
filters 23, 24
macros 20-22
template context, modifying 25
URL 11
using 12-15

JSON
reference link 51

L
lettuce

URL 74
Light Table editor

URL 6
Linode

URL 122
LiveServer 77-80
logging

about 94
example 94, 95
purpose 96

M
macros

about 20, 21
advantages 22

Mint
URL 5

mixin
reference link 117

MongoDB
about 50
example 51
Flask-MongoEngine 54-56
installing 51
MongoEngine 52, 53
rules 52

MongoEngine
about 52
example 53
installing 52
reference link 53

MVC 39
MxN relationship 40

N
Nginx

using 126
normal forms

reference link 41
NoSQL database

about 39
versus relational database 56

O
Oracle 42

[134]

overengineering 86

P
PgAdmin

about 124
URL 124

PhantomJS
about 76, 77
URL 77

Postgres
URL, for installing 123

premature optimization 86
primary key 40
privileges 124
projects

structuring 129
pseudo-random data 81
PyCharm IDE

about 85
URL 6

PyMongo 52
Python 2.x 5

R
RamNode

URL 122
regular expressions (Regex)

references 12
relational database

about 39
versus NoSQL database 56

REST
about 57
references 57

RESTful Web Service API
about 57
data, recording to database 64, 65
example 58-63

rows 40

S
Selenium 76
server

about 122
code, placing 122

sessions
about 99
example 101
using 101

set statement 20
software quality 69
SQL

about 39
reference link 40

SQLAlchemy
about 40
concepts 40, 41
example 42-47
Flask-SQLAlchemy 48-50
installing 41
reference link 47

SQL Injection Attack 50
SQLite

about 40
URL 40

StackOverflow
about 129
URL 129

T
tables 40
tags 27
template context

modifying 25
Test Driven Development (TDD) 70
tests

about 70
black-box tests 70
white-box tests 70

tools
using 5, 6

transactions 40-42

U
Ubuntu

URL 5
unit 70
unit testing

about 70
example 71-74

[135]

UpStart
using 126

URI 58
user data

storing, between requests 99-101
uWSGI

using 126

V
virtual environment

setting up 6
virtual machines (VM) 122

W
web server

setting up 125-129
Web service 57
white-box tests 70
WingIDE 85
with extension 23
WTForms

about 30, 31
example 32, 33
Flask-WTF, integrating 34, 35
URL 30

Thank you for buying
Building Web Applications with Flask

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Rapid Flask [Video]
ISBN: 978-1-78355-425-6 Duration: 00:42 hours

Get your web applications up and running in no time
with Flask

1.	 Build a web app using Flask from beginning to
end – never touch PHP again!.

2.	 Not just "hello, world"- create a fully functional
web app that includes web services, HTML
forms, and more.

3.	 Your apps won't look like they came out of
the '90s – learn how to integrate basic styles
and icons.

4.	 Go further – Get a glimpse of how to utilize
Flask's more popular extensions.

Flask Framework Cookbook
ISBN: 978-1-78398-340-7 Paperback: 258 pages

Over 80 hands-on recipes to help you create
small-to-large web applications using Flask

1.	 Get the most out of the powerful Flask
framework while remaining flexible with
your design choices.

2.	 Build end-to-end web applications, right from
their installation to the post-deployment stages.

3.	 Packed with recipes containing lots of sample
applications to help you understand the
intricacies of the code.

Please check www.PacktPub.com for information on our titles

Instant Flask Web Development
ISBN: 978-1-78216-962-8 Paperback: 78 pages

Tap into Flask to build a complete application in a
style that you control

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Build a small but complete web application
with Python and Flask.

3.	 Explore the basics of web page layout using
Twitter Bootstrap and jQuery.

4.	 Get to know how to validate data entry using
HTML forms and WTForms.

Web Development with Django
Cookbook
ISBN: 978-1-78328-689-8 Paperback: 294 pages

Over 70 practical recipes to create multilingual,
responsive, and scalable websites with Django

1.	 Improve your skills by developing models,
forms, views, and templates.

2.	 Create a rich user experience using Ajax and
other JavaScript techniques.

3.	 A practical guide to writing and using APIs to
import or export data.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Flask in a Flask,
I Mean, Book
	Summary

	Chapter 2: First App, How Hard Could
it Be?
	Hello World
	Prerequisites and tools
	Setting up a virtual environment
	Understanding the "Hello World" app
	Serving HTML pages
	Summary

	Chapter 3: Man, Do I Like Templates!
	What is Jinja2 and how is it coupled
with Flask?
	What can you do with Jinja2?
	Control structures
	Macros
	Extensions
	Filters
	Messing with the template context

	Summary

	Chapter 4: Please Fill in This Form, Madam
	HTML forms for the faint of heart
	Handling forms
	WTForms and you
	Flask-WTF
	Integration with WTForms
	Securing forms with a CSRF token
	Challenges

	Summary

	Chapter 5: Where Do You Store
Your Stuff?
	SQLAlchemy
	Concepts
	Hands on
	Flask-SQLAlchemy

	MongoDB
	MongoEngine
	Flask-MongoEngine

	Relational versus NoSQL
	Summary

	Chapter 6: But I Wanna REST
Mom, Now!
	Beyond GET
	Flask-Restless
	Summary

	Chapter 7: If Ain't Tested,
It Ain't Game, Bro!
	What kinds of test are there?
	Unit testing
	Behavior testing
	Flask-testing
	LiveServer
	Extra assertions
	JSON handle

	Fixtures
	Extra – integration testing

	Summary

	Chapter 8: Tips and Tricks or
Flask Wizardry 101
	Overengineering
	Premature optimization
	Blueprints 101
	Oh God, please tell me you have the logs…
	Debugging, DebugToolbar, and happiness
	Flask-DebugToolbar

	Sessions or storing user data between requests
	Exercise
	Summary

	Chapter 9: Extensions, How I Love Thee
	How to configure extensions
	Flask-Principal and Flask-Login
(aka Batman and Robin)
	Admin like a boss
	Custom pages

	Summary

	Chapter 10: What Now?
	You deploy better than my ex
	Placing your code in a server
	Setting up your database
	Setting up the web server

	StackOverflow
	Structuring your projects
	Summary
	Postscript

	Index

