
www.allitebooks.com

http://www.allitebooks.org

Clojure High Performance
Programming

Understand performance aspects and write high
performance code with Clojure

Shantanu Kumar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Clojure High Performance Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1131113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-560-6

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Shantanu Kumar

Reviewers
Jan Borgelin

Mimmo Cosenza aka Magomimmo

Paul Stadig

Miki Tebeka

Acquisition Editors
Sam Birch

Andrew Duckworth

Commissioning Editors
Priyanka Shah

Meeta Rajani

Llewellyn Rozario

Technical Editors
Jalasha D'costa

Monica John

Copy Editors
Alisha Aranha

Roshni Banerjee

Tanvi Gaitonde

Alfida Paiva

Lavina Pereira

Project Coordinator
Amey Sawant

Proofreader
Paul Hindle

Indexers
Hemangini Bari

Mehreen Deshmukh

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.allitebooks.com

http://www.allitebooks.org

About the Author

Shantanu Kumar is a software developer living in Bangalore, India, with his
wife. He started learning programing in 1991, using BASIC on MS DOS when
he was at school. There, he developed a keen interest in the x86 hardware and
assembly language, and he dabbled in it for a good while. Later, he programmed
professionally in various business domains and technologies while working with
the Indian Air Force and several IT companies.

In recent years, Shantanu has worked on high performance and distributed systems.
Having used Java for a long time, he discovered Clojure in early 2009 and has been
a fan ever since. Clojure's pragmatism and fine-grained orthogonality continues to
amaze him, and he believes he is a better developer because of this.

When not busy with programming or reading up on technical subjects, he enjoys
reading non-fiction, riding his bike, and occasionally just lazing in his free time.
Shantanu is an active participant in the Bangalore Clojure users group and
develops several open source Clojure projects on GitHub.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to thank Rich Hickey for creating Clojure and making it available as
open source, and for his awesome talk videos. I would also like to thank Alex Miller
for arranging so many Clojure talks and for making their videos accessible to all;
and Alex Ott, Michael Klishin, and others from the Clojure community for their
hard work in making Clojure documentation aggregated and available.

While I was working at the Bangalore office of Runa (now Staples Lab) earlier,
several colleagues shared valuable input about Clojure performance. Most notably,
Zach Tellman shared his insight about Clojure and JVM performance, Isaac Praveen
and Abhijith Gopal shared a great deal of information about Clojure application
behavior under load, and Philippe Hanrigou shared his ideas about high performance
API design and queue systems. I want to thank all of them.

This book would not have become a reality without the fine people at Packt
Publishing. I would like to thank Ashvini Sharma for contacting me and
convincing me to take up writing this book, Anish Ramchandani and Amey
Sawant for coordinating the writing process, and the Commissioning
Editors Meeta Rajani, Llewellyn Rozario, and Priyanka Shah for shaping
up this book as I engaged in my debut writing. Technical Editors Jalasha
D'costa and Monica John helped me disambiguate and refine the language
in this book. I also owe my gratitude to the technical reviewers Jan Borgelin,
Mimmo Cosenza, Paul Stadig, and Miki Tebeka – their feedback made the
content so much better. Any errors or omissions, however, are only due to me.

Writing this book has been an arduous task. I want to thank my wife Binita for putting
up with me while I was immersed far too many days, nights, and weekends into the
book. If not for her support, I would not have been able to do justice to this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jan Borgelin is the co-founder and CTO of BA Group Ltd., a Finnish IT consultancy
providing services for global enterprise clients. With over 10 years of professional
software development experience, Jan has had the chance to work with different
technologies and programming languages in international projects where performance
requirements have always been critical to the success of the project.

Mimmo Cosenza aka Magomimmo is a programmer and entrepreneur
living in Milan, Italy. In the eighties, after graduating in Philosophy of Language,
he worked for Rank Xerox and IBM. Then, he joined the Artificial Intelligence lab
of ENI S.p.A, the Italian national oil company.

He designed and developed very successful LISP-based applications for the
exploration and production departments of ENI. In 1995, after having been
in Los Angeles during the rise of the Internet, he founded Sinapsi—an Italian
software boutique. In his own country, he is very well known for his involvement
in open source communities. In 2012, he founded SmartRM Inc., a startup that
applies the Digital Right Management technology for protecting privacy to share
confidential information without losing the control of their circulation.

He loves to teach the art of programming. He is the author of Modern-cljs, an open
source book on the Clojure and ClojureScript programming languages. The book is
hosted on https://github.com/magomimmo/modern-cljs.

Currently, he is applying machine learning techniques to Big Data by using Clojure
on the server-side and ClojureScript on the client-side.

www.allitebooks.com

http://www.allitebooks.org

Paul Stadig is a professional software developer living in Crozet, VA, with his
wife and three children. He has a B.S. and an M.S. in Computer Science from
George Mason University, and he has 16 years of software development experience.
He has an insatiable curiosity about the world in general and about programming
languages in particular.

He has been involved in the Clojure community since 2008, he was a reveiwer for
the first edition of Programming Clojure, and he is also a contributor to the language.
Since 2010, he has been employed at Sonian, where he builds cloud-based distributed
systems in Clojure.

Miki Tebeka has been shipping software for more than 10 years. He has developed
a wide variety of products from assemblers and linkers to news trading systems and
cloud infrastructures. Miki currently works on the data pipeline at Demand Media.
In his free time, Miki is active in several open source communities.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Performance by Design	 5

Usecase classification	 5
User-facing software	 6
Computational and data-processing tasks	 6

CPU bound	 6
Memory bound	 7
Cache bound	 7
Input/Output (I/O) bound	 7

Online transaction processing (OLTP)	 8
Online analytical processing (OLAP)	 8
Batch processing	 9
Structured approach for performance	 9

Performance vocabulary	 10
Latency	 10
Throughput	 11
Bandwidth	 11
Baseline and benchmark	 12
Profiling	 12
Performance optimization	 13
Concurrency and parallelism	 13
Resource utilization	 14
Workload	 14

Latency numbers every programmer should know	 14
Summary	 15

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Clojure Abstractions	 17
Non-numeric scalars and interning	 18
Identity, value, and epochal time model	 19

Variables and mutation	 20
Collection types	 21

Persistent data structures	 21
Constructing less-used data structures	 22
Complexity guarantee	 23
Concatenation of persistent data structures	 24

Sequences and laziness	 25
Laziness	 25

Laziness in data structure operations	 26
Constructing lazy sequences	 27

Transients	 29
Fast repetition	 30

Performance miscellanea	 31
Disabling assertions in production	 31
Destructuring	 31
Recursion and tail-call optimization (TCO)	 32

Premature end in reduce	 33
Multimethods versus protocols	 33
Inlining	 33

Summary	 34
Chapter 3: Leaning on Java	 35

Inspect the equivalent Java source for Clojure code	 35
Create a new project	 36
Compile Clojure sources into Java bytecode	 36
Decompile the .class files into Java source	 36

Numerics, boxing, and primitives	 38
Arrays	 39
Reflection and type hints	 42

Array of primitives	 43
Primitives	 43
Macros and metadata	 44
Miscellaneous	 44

Using array/numeric libraries for efficiency	 45
HipHip	 45
primitive-math	 48

Resorting to Java and native code	 48
Proteus – mutable locals in Clojure	 49

Table of Contents

[iii]

Summary	 50
Chapter 4: Host Performance	 51

The hardware	 51
Processors	 52

Branch prediction	 52
Instruction scheduling	 52
Threads and cores	 53

Memory systems	 54
Cache	 55
Interconnect	 55

Storage and networking	 56
The Java Virtual Machine	 56

The just-in-time (JIT) compiler	 56
Memory organization	 58
HotSpot heap and garbage collection	 60
Measuring memory (heap/stack) usage	 60

Measuring latency with Criterium	 62
Criterium and Leiningen	 63

Summary	 64
Chapter 5: Concurrency	 65

Low-level concurrency	 65
Hardware memory barrier instructions	 66
Java support and its Clojure equivalent	 66

Atomic updates and state	 68
Atomic updates in Java	 68
Clojure's support for atomic updates	 69

Asynchronous agents and state	 70
Asynchrony, queuing, and error handling	 72
Advantages of agents	 73
Nesting	 74

Coordinated transactional ref and state	 74
Ref characteristics	 75
Ref history and intransaction deref operations	 76
Transaction retries and barging	 77
Upping transaction consistency with ensure	 77
Fewer transaction retries with commutative operations	 78
Agents can participate in transactions	 78
Nested transactions	 79
Performance considerations	 80

Dynamic var binding and state	 80

Table of Contents

[iv]

Validating and watching the reference types	 81
Java concurrent data structures	 82

Concurrent maps	 83
Concurrent queues	 84
Clojure support for concurrent queues	 86

Concurrency with threads	 86
JVM support for threads	 87
Thread pools in the JVM	 87
Clojure concurrency support	 88

Asynchronous execution with Futures	 88
Anticipated asynchronous execution result with promises	 90

Clojure parallelization and the JVM	 90
Moore's law	 90
Amdahl's law	 91
Clojure support for parallelization	 91

pmap	 91
pcalls	 92
pvalues	 92

Java 7's fork/join framework	 92
Parallelism with reducers	 93

Reducible, reducer function, reduction transformation	 93
Realizing reducible collections	 94
Foldable collections and parallelism	 94

Summary	 95
Chapter 6: Optimizing Performance	 97

A tiny statistics terminology primer	 98
Median, first quartile, and third quartile	 98
Percentile	 99
Variance and standard deviation	 100
Understanding criterium output	 101
Guided performance objectives	 102

Performance testing	 102
Test environment	 102
What to test	 103
Measuring latency	 103
Measuring throughput	 104
Load, stress, and endurance tests	 104

Performance monitoring	 105
Introspection	 105

JVM instrumentation via JMX	 106

Table of Contents

[v]

Profiling	 106
OS and CPU-cache-level profiling	 108
I/O profiling	 108

Performance tuning	 108
JVM tuning	 109
I/O tuning and backpressure	 110

Summary	 110
Chapter 7: Application Performance	 111

Data sizing	 111
Reduced serialization	 112
Chunking to reduce memory pressure	 113

Sizing for file/network operations	 113
Sizing for JDBC query results	 114

Resource pooling	 115
JDBC resource pooling	 116

I/O batching and throttling	 116
JDBC batch operations	 117
Batch support at API level	 118
Throttling requests to services	 119

Precomputing and caching	 119
Concurrent pipelines	 120

Distributed pipelines	 121
Applying back pressure	 121

Thread pool queues	 122
Servlet containers like Tomcat and Jetty	 122
HTTP Kit	 123

Performance and queuing theory	 123
Little's Law	 124

Summary	 124
Index	 125

Preface
Clojure is a remarkably high-performance language despite its dynamic nature.
What really strikes you though is the fact that it combines performance with
fundamental simplicity and pragmatism, which makes it such a joy to program
in. Over the last six years since its first public release, Clojure has been heavily
tested and deployed in production by many people and organizations across
various domains. Its user base has grown rapidly during this period.

Clojure High Performance Programming is all about Clojure running on the Java Virtual
Machine. The JVM has a reputation of being a robust platform to develop and deploy
applications on. In this book, we take a deeper look at the performance characteristics
of various features of Clojure and the underlying environment. We also explore what it
takes to build well-performing software. We begin with the performance fundamentals
and gradually proceed over to Clojure and other matters you may have to deal with
while writing high-performance applications.

Understanding and achieving performance is both an art and a science, just like
writing good software. Remember the big picture in the back of your mind but
also be prepared to get into the details with measurement tools. More importantly,
know how the software works and keenly study the environment in which it runs.
I hope this book will help you on that path.

What this book covers
Chapter 1, Performance by Design, classifies the various use cases with respect to
performance and analyzes how to interpret their performance aspects and needs.

Chapter 2, Clojure Abstractions, is a guided tour of various Clojure data structures,
abstractions (persistent data structures, vars, macros, and so on), and their
performance characteristics.

Preface

[2]

Chapter 3, Leaning on Java, discusses how to enhance performance by using Java
interoperability and features from Clojure.

Chapter 4, Host Performance, discusses how the host stack impacts performance.
Clojure being a hosted language, its performance is directly related to the host.

Chapter 5, Concurrency, is an advanced chapter that discusses concurrency and
parallelism features in Clojure and the JVM. Concurrency is an increasingly
significant way to derive performance.

Chapter 6, Optimizing Performance, discusses the systematic steps that need to be
taken in order to obtain good performance.

Chapter 7, Application Performance, discusses building applications. This involves
dealing with external subsystems and factors that impact the overall performance.

What you need for this book
You should acquire Java Development Kit Version 7 or higher for your operating
system to work through all examples. This book discusses the Oracle HotSpot JVM
in specific situations, so you may want to get Oracle JDK or OpenJDK if possible.
You should also get the latest Leiningen version (Version 2.3.3 as of the time of
writing) from http://leiningen.org/ and JD-GUI from http://jd.benow.ca/.

Who this book is for
This book is for intermediate Clojure programmers who are interested to learn how
to write high-performance code. If you are an absolute beginner in Clojure, you
should learn the basics of the language first and then come back later to this book.
You need not be well-versed in performance engineering or Java. However, some prior
knowledge of Java would make it much easier to understand the Java-related chapters.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "If you want Criterium to be available
only in the REPL and not as a project dependency, add the following entry to the
~/.lein/profiles.clj file."

Preface

[3]

A block of code is set as follows:

(import 'java.util.concurrent.Callable)
(import 'java.util.concurrent.Future)
(def ^ExecutorService e (Executors/newSingleThreadExecutor))
(def ^Future f (.submit e (cast Callable #(reduce + (range
10000000)))))
(.get f) ; blocks until result is processed, then returns it

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Clicking on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Performance by Design
Clojure is a functional programming language that brings great power and simplicity
to the user. Clojure is also dynamically typed and has very good performance
characteristics. Naturally, every activity performed in a computer has an associated
cost. What constitutes acceptable performance varies from one use case and workload
to another. In today's world, performance is the determining factor for several kinds of
applications. We will discuss Clojure (which runs on the Java Virtual Machine) and its
runtime environment in the context of performance, which is the goal of this book.

The performance of Clojure applications depends on various factors. For a given
application, understanding its use cases, design and implementation, algorithms,
resource requirements and alignment with the hardware, and underlying software
capabilities are essential. In this chapter, we will study the basics of performance
analysis which includes the following:

•	 A whirlwind tour of how the application stack impacts performance
•	 Classifying performance anticipations by use cases types
•	 Outlining the structured approach to analyze performance
•	 A glossary of terms commonly used to discuss performance aspects
•	 Performance numbers every programmer should know

Use case classification
Performance requirements and priority vary across different kinds of use cases.
We need to determine what constitutes acceptable performance for various
kinds of use cases. Hence, we classify them to identify their performance model.
When it comes to details, there is no sure fire performance recipe for any kind of
use case, but it certainly helps to study their general nature. Note that in real life,
the use cases listed in this section may overlap each other.

www.allitebooks.com

http://www.allitebooks.org

Performance by Design

[6]

User-facing software
The performance of user-facing applications is strongly linked to the user's
anticipation. The difference of a good number of milliseconds may not be
perceptible by the user, but at the same time, a wait of more than a few seconds
may not be taken kindly. One important element to normalize the anticipation
is to engage the user by providing duration-based feedback. A good idea to deal
with such a scenario would be to start the task asynchronously in the background
and poll it from the UI layer to generate duration-based feedback for the user.
Another way could be to incrementally render the results to the user to even out
the anticipation.

Anticipation is not the only factor in user-facing performance. Common techniques
such as staging or pre-computation of data and other general optimization techniques
can go a long way to improve the user experience with respect to performance.
Bear in mind that all kinds of user-facing interfaces fall into this use case category:
web, mobile web, GUI, command-line, touch, voice-operated, and gestures.

Computational and data-processing tasks
Non-trivial compute-intensive tasks demand a proportional amount of computational
resources. All of the CPU, cache, memory, efficiency, and parallelizability of the
computation algorithms would be involved in determining the performance.
When the computation is combined with distribution over a network, or when
reading from / staging to disk, I/O bound factors come into play. This class of
workloads can be further subclassified into more specific use cases.

CPU bound
A CPU bound computation is limited by the CPU cycles spent on executing it.
Processing arithmetic in a loop, small matrix multiplication, determining whether a
number is Mersenne Prime, and so on would be considered CPU bound jobs. If the
algorithm complexity is linked to N, such as O(N) and O(N2), then performance
depends on how big N is and how many CPU cycles each step takes. For parallelizable
algorithms, performance of such tasks may be enhanced by assigning multiple CPU
cores to the task. On virtual hardware, performance may be impacted if CPU cycles
are available in bursts.

Chapter 1

[7]

Memory bound
A memory bound task is limited by the availability and bandwidth of a computer
memory; examples include large text processing, list processing, and so on. Note that
higher CPU resources cannot help when memory is in the bottleneck and vice versa.
Lack of availability of memory may force you to process smaller chunks of data at
a time, even if you have enough CPU resources at your disposal. If the maximum
speed of your memory is X and your algorithm on single CPU-core accesses memory
at a speed of X/3, the multicore performance of your algorithm cannot exceed 3
times the current performance, no matter how many CPU cores you assign to it.
Memory architecture, for example SMP and NUMA, contributes to the memory
bandwidth in multicore computers. Performance with respect to memory is also
subject to page faults.

Cache bound
A task is cache bound when its speed is constrained by the amount of cache
available. When a task retrieves values from a small number of repeated
memory locations, for example small matrix multiplication, the values may
be cached and fetched from there.

Typically, CPUs have multiple layers of cache, and the
performance will be at its best when the processed data
fits in the cache. Processing will still happen, albeit slower,
when the data does not fit into the cache . These will be
covered in greater details in Chapter 4, Host Performance.

It is possible to make the most of the cache using cache-oblivious algorithms. A higher
number of concurrent cache / memory bound threads than CPU cores is likely to flush
the instruction pipeline, as well as the cache, at the time of a context switch.

Input/Output (I/O) bound
An I/O bound task would go faster if the I/O subsystem it depends on goes faster.
Disk or storage as well as network are the most commonly used I/O subsystems in
data processing. Other I/O devices are serial ports, a USB-connected card readers,
and so on. An I/O bound task may consume very few CPU cycles. Depending on the
speed of the device, connection pooling, data compression, asynchronous handling,
caching, and so on may help in performance. One notable aspect of I/O bound tasks
is that the performance is usually dependent on the time spent waiting for
connection (or disk seek) and the amount of serialization we do, but hardly on the
other resources.

Performance by Design

[8]

In practice, many data processing workloads are usually a combination of CPU
bound, memory bound, cache bound, and I/O bound tasks. The performance of
such mixed workloads effectively depends on the even distribution of CPU, cache,
memory, and I/O resources over the duration of the operation. While all system
resources are finite, some I/O resources may be particularly limited in bandwidth
and latency. A bottleneck situation arises only when one resource gets too busy to
make way for another.

Online transaction processing (OLTP)
OLTP systems process business transactions on demand. It could work as a backend
system for a user-facing ATM machine, a point-of-sale terminal, a network-connected
ticket counter, an ERP system, and so on. OLTP systems are characterized by low
latency, availability, and data integrity. OLTP systems run day-to-day business
transactions. Any interruption or outage is likely to have a direct and immediate
impact on the sales or service. Such systems are expected to be designed for resiliency
rather than delayed recovery from failures. When the performance objective is
unspecified, you may want to consider graceful degradation as a strategy.

It is a common mistake to ask OLTP systems to answer analytical queries,
something that they are not optimized for. It is desirable of an informed
programmer to know the capability of the system and suggest design
changes as per the requirements.

Online analytical processing (OLAP)
OLAP systems are designed to answer analytical queries in a short time.
They typically get data from OLTP operations and their data model is
optimized for querying. OLAP systems basically provide for consolidation
(roll-up), drill-down, and slicing and dicing of data for analytical purposes.
They often use specialized data stores that can optimize ad-hoc analytical
queries on the fly. It is important for such databases to provide pivot-table-like
capability. Often, an OLAP cube is used to get faster access to analytical data.

Feeding OLTP data into OLAP systems may entail workflows and multistage
batch processing. The performance concern of such systems is to efficiently
deal with large quantities of data while also dealing with inevitable failures
and recovery.

Chapter 1

[9]

Batch processing
Batch processing is the automated execution of predefined jobs. These are typically
bulk jobs and are executed during off-peak hours. Batch processing may involve one
or more stages of job processing. Often, batch processing is clubbed with workflow
automation, where some workflow steps are executed offline. Many of the batch
processing tasks work on staging and preparing data for the next stage of processing
to pick up.

Batch jobs are generally optimized for the utmost utilization of computing resources.
Since there is little to moderate demand to lower latencies of particular subtasks,
these systems tend to optimize for throughput. A lot of batch jobs involve large
I/O processing, and they are often distributed over a cluster. Due to distribution,
data locality is preferred when processing the jobs; that is, data and processing
should be local in order to avoid network latency in reading/writing data.

Structured approach for performance
In practice, the performance of non-trivial applications is rarely a function of
coincidence or prediction. For many projects, performance is not an option but rather
compulsory, which is why this is even more important today. Capacity planning,
determining performance objectives, performance modeling, measurement,
and monitoring are crucial to achieving performance..

Tuning a poorly-designed system to perform as well as a system that is a
well-designed system from the ground up is significantly hard, if not practically
impossible. In order to meet a performance goal, performance objectives should
be known before the application is designed. Performance objectives are stated in
terms of latency, throughput, resource utilization, and workload. These terms are
discussed in the Performance vocabulary section in this chapter.

The resource cost can be identified in terms of application scenarios, such as browsing
of products, adding products to the shopping cart, and checkout. Creating workload
profiles that represent users performing various operations is usually helpful.

Performance modeling is a reality check of whether the application design
would support the performance objectives. It includes performance objectives,
application scenarios, constraints, measurements (benchmark result),
workload objectives, and, if available, the performance baseline. It is not a
replacement of measurement and load testing, rather, the model is validated
using these. The performance model may include performance test cases to
assert the performance characteristics of the application scenarios.

Performance by Design

[10]

Deploying an application to production almost always needs some form of capacity
planning. It has to take into account the performance objectives for today and the
foreseeable future. It requires an idea of application architecture and an understanding
of how the external factors translate into internal workload. It also requires informed
expectations about the responsiveness and the level of service to be provided by
the system. Often, capacity planning is done early in a project to mitigate the risk of
provisioning delays.

Performance vocabulary
There are several technical terms that are heavily used in performance engineering.
It is important to understand them as they form the cornerstone of performance
related discussions. Collectively, these terms form a performance vocabulary.
Performance is usually measured in terms of several parameters where every
parameter has roles to play; such parameters are part of the vocabulary.

Latency
Latency is the time taken by an individual unit of work to complete a task. It does
not imply successful completion of a task. Latency is not collective; it is linked
to a particular task. If two similar jobs, j1 and j2, took 3ms and 5ms respectively,
their latencies would be treated as such. If j1 and j2 were dissimilar tasks, it would
have made no difference. In many cases, average latency of similar jobs is used in
performance objectives, measuring, and monitoring results.

Latency is an important indicator of the health of a system. A high performance
system often thrives on low latency. Higher than normal latency can be caused
due to load or a bottleneck. It helps to measure the latency distribution during a
load test. For example, if more than 25 percent of similar jobs under a similar load
have significantly higher latency than others, it may be an indicator of a bottleneck
scenario worth investigating.

When a task, j1, consists of smaller tasks, say j2, j3, and j4, the latency of j1 is not
necessarily the sum of latencies of each of the j2, j3, and j4 tasks. If any of the subtasks
of j1 are concurrent with another, the latency of j1 will turn out to be less than the
sum of the latencies of j2, j3, and j4. I/O bound tasks are generally more prone to
higher latency. In network systems, latency is commonly based on the roundtrip to
another host, including latency from source to destination and then back to source.

Chapter 1

[11]

Throughput
Throughput is the number of successful tasks or operations performed in a unit
of time. The top-level operations performed in a unit of time are usually of a
similar kind but with potentially different latencies. So, what does throughput
tell us about the system? It is the rate at which the system is performing. When you
perform load testing, you can determine the maximum rate at which a particular
system can perform. However, this is not a guarantee of conclusive overall
maximum rate of performance.
Throughput is one of the factors that determine the scalability of a system.
Throughput of a higher level task depends on the capacity to spawn off
multiple such tasks in parallel and also depends on average latency of the
tasks. Throughput should be measured during load testing and performance
monitoring to determine peak measured throughput and maximum sustained
throughput. These factors contribute to the scale and performance of a system.

Bandwidth
Bandwidth is the raw data rate over a communication channel measured in a certain
number of bits per second. This includes not only the payload but all the overhead
necessary to carry out the communication. A few examples are Kbits/sec, Mbits/
sec, and so on. An uppercase B in KB/sec denotes 'Bytes', as in Kilo Bytes per second.
Bandwidth is often compared to throughput. While bandwidth is the raw capacity,
throughput for the same system is the successful task completion rate that usually
involves a roundtrip. Note that throughput is for an operation which involves latency.
To achieve maximum throughput for a given bandwidth, the communication/protocol
overhead and operational latency should be minimal.

For storage systems (such as hard disks and solid-state drives), the predominant
way to measure performance is IOPS (Input-output per second), which is multiplied
by the transfer-size and represented as Bytes-per-second, or further into MB/sec,
GB/sec, and so on. IOPS is usually derived for sequential and random workloads
for read/write operations.

Mapping the throughput of a system to the bandwidth of another may lead to
dealing with the impedance mismatch between the two. For example, an order
processing system may transact to the database on disk and post results over
the network to an external system.

Depending on the bandwidth of the disk subsystem, the bandwidth of the network,
and the execution model of the order, processing the throughput may depend
not only on the bandwidth of the disk subsystem and network, but also on how
loaded they currently are. Parallelism and pipelining are common ways to increase
throughput over a given bandwidth.

Performance by Design

[12]

Baseline and benchmark
Performance baseline, or simply baseline, is the reference point including
measurements of well characterized and understood performance parameters
for a known configuration. Baseline is used to collect performance measurements
for the same parameters which we may benchmark later for another configuration.
For example, collecting "throughput distribution over 10 minutes at a load of 50
concurrent threads" is one such performance parameter we can use for baseline
and benchmarking. A baseline is recorded together with the hardware, network,
OS, and system configuration.

Performance benchmark, or simply benchmark, is the recording of performance
parameter measurements under various test conditions. A benchmark can be
composed as a performance test suite. A benchmark may collect a small to large
amount of data, and may take a varying duration depending on use cases,
scenarios, and environment characteristics.

Baseline is a result of a benchmark that was conducted at one point of time;
however, benchmark is independent of baseline.

Profiling
Performance profiling, or simply profiling, is the analysis of the execution of a
program at its runtime. A program can perform poorly for a variety of reasons.
A profiler can analyze and find out the execution time of various parts of the
program. It is possible to interleave statements in a program manually to print
execution time of blocks of code, but this gets very cumbersome as you try to
refine the code iteratively. A profiler is of great assistance to the developer.

Going by how profilers work, they are of three major kinds: instrumenting,
sampling, and event-based. The event-based profilers work only for selected
language platforms, and they provide a good balance between overhead and
results; for example, Java supports event-based profiling via the JVMTI interface.
Instrumenting profilers modify code at either compile time or runtime to inject
performance counters. They are intrusive by nature and add significant performance
overhead. However, you can profile regions of code very selectively using
instrumenting profilers. Sampling profilers pause the runtime and collect its state
at 'sampling intervals'. By collecting enough samples, it gets to know where the
program spends most of its time. For example, at a sampling interval of 1ms,
the profiler would have collected 1000 samples in a second. A sampling profiler
also works for code that executes faster than the sampling interval, as the frequency
of pausing and sampling is proportional to the overall execution time of any code.

Chapter 1

[13]

Profiling is not meant only for measuring execution time. Capable profilers can
provide a view of memory analysis, garbage collection, threads, and so on.
A combination of such tools is helpful to find memory leaks, garbage collection
issues, and so on.

Performance optimization
Simply put, optimization is minimizing a program's resource consumption after
performance analysis. The symptoms of a poorly performing program are
observed in terms of high latency, low throughput, unresponsiveness, instability,
high memory consumption, and high CPU consumption. During performance
analysis, you may profile the program in order to identify bottlenecks and tune
the performance incrementally by observing performance parameters.

Better and suitable algorithms are an all-round good way to optimize code.
CPU bound code can be optimized with computationally cheaper operations.
Cache bound code can try using less memory lookups to keep a good hit ratio.
Memory bound code can use adaptive memory usage and conservative data
representation to store in memory for optimization. I/O bound code can attempt
to serialize as little data as possible, and can batch operations to make the operation
less chatty for better performance. Parallelism and distribution are other overall
good ways to increase performance.

Concurrency and parallelism
Most of the computer hardware and operating systems we use today provide
concurrency. On the x86 architecture, hardware support for concurrency can be
traced as far back as the 80286 chip. Concurrency is the simultaneous execution of
more than one process on the same computer. In older processors, concurrency was
implemented using a context switch by the operating system kernel. When concurrent
parts are executed in parallel by the hardware instead of merely switching context,
it is called parallelism. Parallelism is the property of the hardware, though the software
stack must support it in order for you to leverage it in your programs. You must write
your program in a concurrent way to exploit the parallelism features of the hardware.

While concurrency is a natural way to exploit hardware parallelism and speed up
operations, it is worth bearing in mind that having significantly higher concurrency
than the parallelism your hardware can support is likely to schedule tasks to varying
processor cores, thereby lowering branch prediction and increasing cache misses.

Performance by Design

[14]

Low level processes/threads, mutexes, semaphores, locking, shared memory,
and inter-process/thread communication are used for concurrency. The JVM has
excellent support for these concurrency primitives and inter-thread communication.
Clojure builds upon the JVM features to provide both low and higher level
concurrency primitives that we will discuss in the concurrency chapter.

Resource utilization
Resource utilization is the measure of the server, network, and storage
resources consumed by an application. Resources include CPU, memory,
disk I/O, network I/O, and so on. The application can be analyzed in
terms of CPU bound, memory bound, cache bound, and I/O bound
tasks. Resource utilization can be derived by means of benchmarking
by measuring the utilization at a given throughput.

Workload
Workload is the quantification of how much work there is in hand to be carried
out by the application. It is measured in total numbers of users, concurrent active
users, transaction volume, and data volume. Processing a workload should take
into account the load conditions, such as how much data the database currently
holds, how filled up are the message queues, and the backlog of I/O tasks after
which the new load will be processed.

Latency numbers every programmer
should know
Hardware and software have progressed over the years. Latencies for various
operations put things into perspective. The latency numbers for 2013 are as shown
in the following table. (Reproduced with the permission of Aurojit Panda and Colin
Scott of Berkeley University: http://www.eecs.berkeley.edu/~rcs/research/
interactive_latency.html)

Operation Time taken as of 2013
L1 cache reference 1 ns (nano second)
Branch mis-predict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns

Chapter 1

[15]

Operation Time taken as of 2013
Compress 1KB with Zippy
(http://code.google.com/p/snappy/)

2 μs (1000 ns = 1 μs : micro second)

Send 2000 bytes over commodity network 500 ns (that is, 0.5 μs)
SSD random read 16 μs

Roundtrip in same datacenter 500 μs
Read 1,000,000 bytes sequentially from SSD 200 μs
Disk seek 4 ms (1000 μs = 1 ms)
Read 1,000,000 bytes sequentially from disk 2 ms
Packet roundtrip CA to Netherlands 150 ms

Summary
We learned about the basics of what it is like to think deeper about performance.
We saw the common performance vocabulary and also saw the use cases by which
performance aspects might vary. We concluded by looking at the performance
numbers of different hardware components, which is how the performance benefits
reach our applications. In the next chapter, we will dive into performance aspects of
various Clojure abstractions.

www.allitebooks.com

http://www.allitebooks.org

Clojure Abstractions
Clojure has four founding ideas. Firstly, Clojure was set out to be a functional
language. It is not pure (as in purely functional), but it emphasizes immutability.
Secondly, Clojure is a dialect of Lisp; Clojure is malleable enough that users can
extend the language without waiting for the language implementers to add new
features and constructors. Thirdly, Clojure was built to leverage concurrency for a
new generation of challenges. Fourthly, Clojure is designed to be a hosted language.
As of today, Clojure implementations exist for the JVM, CLR, JavaScript, Python,
Ruby, and Scheme. Clojure blends seamlessly with its host language.

Clojure is rich in abstractions. Though the syntax itself is very minimal,
the abstractions are finely grained, mostly composable, and precise to
tackle a wide variety of concerns in the least complicated way. In this
chapter, we will discuss the following topics:

•	 Performance characteristics of non-numeric scalars
•	 Immutability and the epochal time model, paving the way for

performance by isolation
•	 Persistent data structures and their performance characteristics
•	 Laziness and its impact on performance
•	 Transients as a high-performance, short-term escape hatch
•	 Other abstractions, such as tail recursion, protocols/types,

multimethods, and many more

Clojure Abstractions

[18]

Non-numeric scalars and interning
Strings and characters in Clojure are the same as in Java. String literals are implicitly
interned. Interning is a way of storing only unique values in the heap and sharing
the reference wherever required. Depending on the provider and the version of Java
you use, the interned data may be stored in a string pool, Permgen, ordinary heap,
or some special area in the heap marked for interned data. Interned data is subject
to garbage collection when not in use, just like ordinary objects. Take a look at the
following code:

user=> (identical? "foo" "foo") ; literals are automatically interned

true

user=> (identical? (String. "foo") (String. "foo")) ; created string is not interned

false

user=> (identical? (.intern (String. "foo")) (.intern (String. "foo")))

true

user=> (identical? (str "f" "oo") (str "f" "oo")) ; str creates string

false

user=> (identical? (str "foo") (str "foo")) ; str does not create string for 1 arg

true

user=> (identical? (read-string "\"foo\"") (read-string "\"foo\"")) ; not interned

false

user=> (require '[clojure.edn :as edn]) ; introduced in Clojure 1.5

nil

user=> (identical? (edn/read-string "\"foo\"") (edn/read-string "\"foo\""))

false

Note that identical? in Clojure is the same as == in Java. The benefit of interning
a string is that there is no memory allocation overhead for duplicate strings.
Commonly, applications on the JVM spend quite some time on string processing.
So, it makes sense to have them interned whenever there is a chance of duplicate
strings being simultaneously processed. Most of the JVM implementations today
have an extremely fast intern operation; however, you should measure the
overhead for your JVM if you have an older version.

Another benefit of string interning is that when you know that two string tokens
are interned, you can compare them for equality faster using identical? than
non-interned string tokens. The equivalence function = first checks for identical
references before conducting a content check.

Chapter 2

[19]

Symbols in Clojure always contain interned string references within them,
so generating a symbol from a given string is nearly as fast as interning a string.
However, two symbols created from the same string will not be identical:

user=> (identical? (.intern "foo") (.intern "foo"))
true
user=> (identical? (symbol "foo") (symbol "foo"))
false
user=> (identical? (symbol (.intern "foo")) (symbol (.intern "foo")))
false

Keywords are, on the basis of their implementation, built on top of symbols and
are designed to work with the identical? function for equivalence. So, comparing
keywords for equality using identical? would be faster, just like with interned
string tokens.

Clojure is increasingly being used for large volume data processing that includes text
and composite data structures. In many cases, the data is either stored as JSON or
EDN (http://edn-format.org). When processing such data, you can save memory
by interning strings or using symbols/keywords. Remember that string tokens
read from such data would not be automatically interned, whereas the symbols and
keywords read from EDN data would invariably be interned. You may come across
such situations when dealing with relational or NoSQL databases, web services,
CSV or XML files, log parsing, and so on.

Interning is linked to JVM Garbage Collection (GC), which, in turn, is closely linked
to performance. When you do not intern the string data and let duplicates exist,
they end up being allocated on the heap. More heap usage leads to GC overhead.
Interning a string has a tiny, but measurable and upfront performance overhead,
whereas GC is often unpredictable and unclear. GC performance, in most JVM
implementations, has not increased in a similar proportion to the performance
advances in hardware. So, often, effective performance depends on preventing the
GC from becoming the bottleneck, which in most cases means minimizing it.

Identity, value, and epochal time model
One of the principal virtues of Clojure is its simple design which results in malleable,
beautiful composability. Using symbols in place of pointers is a programming
practice that has existed for several decades now. It has found widespread adoption
in several imperative languages. Clojure dissects that notion in order to uncover the
core concerns that need to be addressed. The following subsections illustrate this
aspect of Clojure.

Clojure Abstractions

[20]

We program using logical entities to represent values. For example, a value, 30,
means nothing unless it is associated with a logical entity, let us say age. The logical
entity age is the identity here. Now, even though age represents a value, the value may
change with time; this brings us to the notion of state, which represents the value of
the identity at a certain time. Hence, state is a function of time and is causally related
to what we do in the program. Clojure's power lies in binding an identity with its
value that holds true at the time and the identity remains isolated from any new value
it may represent later. We will discuss state management in Chapter 5, Concurrency.

Variables and mutation
If you have previously worked with an imperative language (C/C++, Java, and so
on), you may be familiar with the concept of a variable. A variable is a reference
to a block of memory. When we update its value, we essentially update the place in
memory where the value is stored. The variable continues to point to the place where
the older version of the value was stored. So, essentially a variable is an alias for the
place of storage of values.

A little analysis would reveal that variables are strongly linked to the processes
that read or mutate their values. Every mutation is a state transition. The processes
that read/update the variable should be aware of the possible states of the variable
to make sense of the state. Can you see a problem here? It conflates identity and
state! It is impossible to refer to a value or a state in time when dealing with a
variable—the value could change at any time unless you have complete control
over the process accessing it. The mutability model does not accommodate the
concept of time that causes its state transition.

The issues with mutability do not stop here. When you have a composite data
structure containing mutable variables, the entire data structure becomes mutable.
How can we mutate it without potentially undermining the other processes that
might be observing it? How can we share this data structure with concurrent
processes? How can we use this data structure as a key in a hash-map? This data
structure does not convey anything. Its meaning could change with mutation!
How do we send such a thing to another process without also compensating for
the time, which can mutate it in different ways?

Immutability is an important tenet of functional programming. It not only simplifies
the programming model, but also paves the way for safety and concurrency.
Clojure supports immutability throughout the language. Clojure also supports
fast, mutation-oriented data structures as well as thread-safe state management
via concurrency primitives. We will discuss these topics in the forthcoming sections
and chapters.

Chapter 2

[21]

Collection types
There are a few types of collections in Clojure categorized based on their properties.
The following Venn diagram (adapted with permission from Tim McCormack from
http://www.brainonfire.net/files/seqsandcolls/main.html) depicts this
categorization on the basis of whether the collections are counted (so that counted?
returns true) or associative (so that associative? returns true) or sequential (so that
sequential? returns true):

list
queue

(seq a-map)
(seq an-array)
(seq
a-charsequence)

String
StringBuilder
StringBuffer

CharSequence

Sequential
lazy seq

Associative

vector

map

set

Counted

Persistent data structures
As we've noticed in the previous section, Clojure's data structures are not only
immutable, but can also produce new values without impacting the old version.
Operations produce these new values in such a way that old values remain accessible;
the new version is produced in compliance with the complexity guarantees of that
data structure and both the old and new versions continue to meet the complexity
guarantees. The operations can be recursively applied to nested data structures and
can still meet the complexity guarantees. Such immutable data structures as the ones
provided by Clojure are called persistent data structures. They are persistent in that
when a new version is created, both the old and new versions persist in terms of
both the value and complexity guarantee. They have nothing to do with storage or
durability of data. Making changes to the old version doesn't impede working with
the new version and vice versa. Both versions persist in a similar way.

Clojure Abstractions

[22]

Among the publications that have inspired the implementation of Clojure's persistent
data structures, two of them are well known. Chris Okasaki's Purely Functional Data
Structures has influenced the implementation of persistent data structures and lazy
sequences/operations. Clojure's persistent queue implementation is adapted from
Okasaki's Batched Queues. Phil Bagwell's Ideal Hash Tries, though meant for mutable
and imperative data structures, was adapted to implement Clojure's persistent
map/vector/set.

Constructing less-used data structures
Clojure supports a well-known literal syntax for lists, vectors, sets, and maps.
Shown in the following list are some less-used methods for creating other
data structures:

•	 Map (PersistentArrayMap and PersistentHashMap):
{:a 10 :b 20} ; array-map up to 8 pairs, try (class {:a 10 :b 20})
{:a 1 :b 2 :c 3 :d 4 :e 5 :f 6 :g 7 :h 8 :i 9} ; hash-map for 9
or more pairs

•	 Sorted map (PersistentTreeMap):
(sorted-map :a 10 :b 20 :c 30) ; (keys ..) should return sorted

•	 Sorted set (PersistentTreeSet):
(sorted-set :a :b :c)

•	 Queue (PersistentQueue):

(import 'clojure.lang.PersistentQueue)
(reduce conj PersistentQueue/EMPTY [:a :b :c :d]) ; add to queue
(peek queue) ; read from queue
(pop queue) ; remove from queue

As you can see, abstractions such as TreeMap (sorted by key), TreeSet (sorted by
element), and Queue should be instantiated by calling their respective APIs.

Chapter 2

[23]

Complexity guarantee
The following tables give a summary of the complexity guarantees (using the big
O notation; all logarithms have base 2 unless mentioned otherwise) of various kinds
of persistent data structures in Clojure:

Operation PersistentList PersistentHashMap PersistentArrayMap

count O(1) O(1) O(1)
conj O(1)
first O(1)
rest O(1)
doseq O(n) O(n) O(n)
nth O(n)
last O(n)
get O(<7) O(1)
assoc O(<7) O(1)
dissoc O(<7) O(1)
peek

pop

Operation PersistentVector PersistentQueue PersistentTreeMap

count O(1) O(1) O(1)
conj O(1) O(1)
first O(<7) O(<7)
rest O(<7) O(<7)
doseq O(n) O(n)
nth O(<7) O(<7)
last O(n) O(n)
get O(<7) O(<7) O(log n)
assoc O(<7) O(log n)
dissoc O(<7) O(log n)
peek O(1) O(1)
pop O(<7) O(1)

Clojure Abstractions

[24]

A list is a sequential data structure. It provides constant time operation for everything
regarding the first element only. For example, conj adds the element to the head and
guarantees O(1) complexity. Similarly, first and rest provide O(1) guarantee too.
Everything else provides O(n) complexity guarantee.

Persistent hash-maps and vectors use the bit-partitioned trie data structure with a
branching factor of 32 under the hood. So, even though the complexity is O(log32 N),
only 232 hash-codes can fit into the trie nodes. Hence, log32 232, which turns out
to be 6.4 and is less than 7, is the worst-case complexity and can be considered
near-constant time. As the trie grows large, the portion to copy gets tiny in
proportion due to structure sharing. Persistent hash-set implementation is also
based on hash-maps; hence, the hash-sets share the characteristics of the hash-maps.
In a persistent vector, the last incomplete node is placed at the tail, which is always
directly accessible from the root. This makes using conj to the end to be a constant
time operation.

Persistent tree-map and tree-set are basically sorted maps and sets respectively.
Their implementation uses red-black trees and is generally more expensive than
hash-maps and hash-sets. Persistent queue uses a persistent vector under the hood
for adding new elements. Removing an element from a persistent queue takes off the
head from a seq, which is created from the vector where new elements are added.

The complexity of an algorithm over a data structure is not an absolute measure
of its performance. For example, working with hash-maps involves computing the
hash-code, which is not included in the complexity guarantee. Our choice of data
structures should be based on the actual use case. For example, when should we
use a list instead of a vector? Probably when we need sequential or last-in-first-out
(LIFO) access, or when constructing an abstract-syntax-tree (AST) for a function call.

Concatenation of persistent data structures
While persistent data structures have excellent performance characteristics,
the concatenation of two persistent data structures has been a linear time O(N)
operation, except for some recent developments. The concat function, as of Clojure
1.5, still provides linear time concatenation. Experimental work on Relaxed Radix
Balanced (RRB) trees is going on in the core.rrb-vector contrib project (https://
github.com/clojure/core.rrb-vector) that may provide logarithmic time O(log N)
concatenation. Readers interested in the details should refer to the following links:

•	 The RRB-trees paper at http://infoscience.epfl.ch/record/169879/
files/RMTrees.pdf

•	 Phil Bagwel's talk at http://www.youtube.com/watch?v=K2NYwP90bNs
•	 Tiark Rompf's talk at http://skillsmatter.com/podcast/scala/fast-

concatenation-immutable-vectors

Chapter 2

[25]

Sequences and laziness
"A seq is like a logical cursor."

—Rich Hickey

Sequences (commonly known as seqs) are a way to sequentially consume a succession
of data. Like Java iterators, they let a user begin consuming elements from the head
and proceed realizing one element after another. However, unlike Java iterators,
sequences are immutable. Also, since sequences are only a view of the underlying
data, they do not modify the storage structure of the data.

What makes sequences stand apart is they are not data structures per se; rather,
they are a data abstraction over a stream of data. The data may be produced by an
algorithm or a data source connected to an I/O operation. For example, the function
resultset-seq accepts a JDBC java.sql.ResultSet instance as an argument and
produces lazily-realized rows of data as a seq.

Clojure data structures can be turned into sequences using the seq function.
For example, (seq [:a :b :c :d]) returns a sequence. Calling seq over an
empty collection returns nil.

Sequences can be consumed by the following functions:

•	 first: returns the head of the sequence
•	 rest: returns the remaining sequence, even if it's empty, after removing

the head
•	 next: returns the remaining sequence or nil, if it's empty, after removing

the head

Laziness
Clojure is a mostly strict (as in, the opposite of lazy) language where one can can
choose to explicitly make use of laziness when required. Anybody can create a
lazily-evaluated sequence using the lazy-seq macro. Some Clojure operations
over collections, such as map, filter, and more, are intentionally lazy.

Laziness simply means that the value is not computed until actually required.
Once the value is computed, it is cached so that any future reference to the
value need not re-compute it. The caching of the value is called memoization.
Laziness and memoization often go hand in hand.

www.allitebooks.com

http://www.allitebooks.org

Clojure Abstractions

[26]

Laziness in data structure operations
Laziness and memoization together form an extremely useful combination to
keep the single-threaded performance of functional algorithms comparable to its
imperative counterparts. For an example, consider the following Java code:

List<String> titles = getTitles();
int goodCount = 0;
for (String each: titles) {
 String checksum = computeChecksum(each);
 if (verifyOK(checksum)) {
 goodCount++;
 }
}

As is clear from the preceding snippet, it has a linear time complexity, that is, O(N),
and the whole operation is performed in a single pass. The comparable Clojure code
is as follows:

(->> (get-titles)
 (map compute-checksum)
 (filter verify-ok?)
 count)

Now, since we know map and filter are lazy, we can deduce that the Clojure version
also has linear time complexity, that is, O(N), and finishes the task in one pass with
no significant memory overhead. Imagine for a moment that map and filter are
not lazy—what would be the complexity then? How many passes would it make?
It's not just that map and filter both would have taken one pass, that is, O(N), each;
they would each have taken as much memory as the original collection in the worst
case due to storing the intermediate results.

It is important to know the value of laziness and memoization in an
immutability-emphasizing functional language such as Clojure. They form a basis
for amortization in persistent data structures, which is about focusing on the overall
performance of a composite operation instead of microanalyzing the performance of
each operation in it; the operations are tuned to perform faster in those operations
that matter the most.

Another important bit of detail is that when a lazy sequence is realized, the data
is memoized and stored. On the JVM, all the heap references that are reachable in
some way are not garbage collected. So, as a consequence, the entire data structure
is kept in memory unless you lose the head of the sequence. When working with
lazy sequences using local bindings, make sure you don't keep referring to the
lazy sequence from any of the locals. When writing functions that may accept
lazy sequence(s), take care that any reference to the lazy seq does not outlive
the execution of the function in the form of a closure or such.

Chapter 2

[27]

Constructing lazy sequences
Now that we know what lazy sequences are, let us try to create a retry counter that
should return true only as many times as the retry can be performed. This is shown
in the following code:

(defn retry? [n]
 (if (<= n 0)
 (cons false (lazy-seq (retry? 0)))
 (cons true (lazy-seq (retry? (dec n))))))

The lazy-seq macro makes sure that the stack is not used for recursion. We can see
that this function would return endless values. Hence, in order to inspect what it
returns, we should limit the number of elements as shown in the following code:

user=> (take 7 (retry? 5))
(true true true true true false false)

Now, let us try using it in a mock fashion:

(loop [r (retry? 5)]
 (if-not (first r)
 (println "No more retries")
 (do
 (println 'Retrying)
 (recur (rest r)))))

As expected, the output should print Retrying five times before printing No more
retries and exiting as follows:

Retrying
Retrying
Retrying
Retrying
Retrying
No more retries
nil

Let us take another simpler example of constructing a lazy sequence, which gives
us a countdown from a specified number to zero:

(defn count-down [n]
 (if (<= n 0)
 '(0)
 (cons n (lazy-seq (count-down (dec n))))))

Clojure Abstractions

[28]

We can inspect the values it returns as follows:

user=> (count-down 8)
(8 7 6 5 4 3 2 1 0)

Lazy sequences can loop indefinitely without exhausting the stack and can come in
handy when working with other lazy operations. To maintain a balance between
space-saving and performance, consuming lazy sequences results in the chunking
of elements by a factor of 32. That means lazy seqs are realized in a chunk-size of 32,
even though they are consumed sequentially.

Custom chunking
The default chunk size 32 may not be optimum for all lazy sequences—you can
override the chunking behavior when you need. Consider the snippet below
(adapted from Kevin Downey's public gist here: https://gist.github.com/
hiredman/324145):

(defn chunked-line-seq
 "Returns the lines of text from rdr as a chunked[size] sequence of
 strings. rdr must implement java.io.BufferedReader."
 [^java.io.BufferedReader rdr size]
 (lazy-seq
 (when-let [line (.readLine rdr)]
 (chunk-cons
 (let [buffer (chunk-buffer size)]
 (chunk-append buffer line)
 (dotimes [i (dec size)]
 (when-let [line (.readLine rdr)]
 (chunk-append buffer line)))
 (chunk buffer))
 (chunked-line-seq rdr size)))))

As per the previous snippet, the user is allowed to pass a chunk size that is used to
produce a lazy sequence of text. A larger chunk size may be useful when processing
large text files, such as when processing CSV or logfiles.

Macros and closures
Often times, we define a macro so as to turn the parameter body of code into a
closure and delegate it to a function. See the following example:

(defmacro do-something
 [& body]
 `(do-something* (fn [] ~@body)))

Chapter 2

[29]

When using such code, if the body binds a local to a lazy sequence it may be retained
longer than necessary, likely with bad consequences on memory consumption and
performance. Fortunately, this can be easily fixed:

(defmacro do-something
 [& body]
 `(do-something* (^:once fn [] ~@body)))

Notice the ^:once hint, which makes the Clojure compiler clear the
closed-over references, thus avoiding the problem. Readers interested
in the details should refer to http://cljme.cgrand.net/2013/09/11/
macrosclosuresandunexpectedobjectretention/.

Transients
Earlier in this chapter, we discussed the virtues of immutability and the pitfalls of
mutability. However, even though unguarded mutability is fundamentally unsafe,
it also has very good single-threaded performance. Now, what if there was a way to
restrict the mutable operation in a local context in order to provide safety guarantees?
That would be equivalent to combining the performance advantage and local safety
guarantees. This can be done with the abstraction called transients, which is provided
by Clojure.

First, let us verify that it is safe:

user=> (let [t (transient [:a])]
 @(future (conj! t :b)))
IllegalAccessError Transient used by non-owner thread clojure.lang.
PersistentVector$TransientVector.ensureEditable (PersistentVector.
java:463)

As we can see, a transient created in one thread cannot be accessed by another:

user=> (let [t (transient [:a])] (seq t))

IllegalArgumentException Don't know how to create ISeq from: clojure.
lang.PersistentVector$TransientVector clojure.lang.RT.seqFrom (RT.
java:505)

Clojure Abstractions

[30]

So, transients cannot be converted to seqs. Hence, they cannot participate in the
birthing of new persistent data structures and leak out of the scope of execution.
Consider the following code:

(let [t (transient [])]
 (conj! t :a)
 (persistent! t)
 (conj! t :b))
IllegalAccessError Transient used after persistent! call
clojure.lang.PersistentVector$TransientVector.ensureEditable
(PersistentVector.java:464)

The persistent! function permanently converts a transient into an equivalent
persistent data structure. Effectively, transients are for one-time use only.

Conversion between persistent and transient data structures (functions transient
and persistent!) is constant time, that is, an O(1) operation. Transients can be
created from unsorted maps, vectors, and sets only. The functions that mutate
transients are: conj!, disj!, pop!, assoc!, and dissoc!. Read-only operations such
as get, nth, count, and many more work as usual on transients, but functions such
as contains? and those that imply seqs, such as first, rest, and next, do not.

Fast repetition
The function clojure.core/repeatedly lets us execute a function many times and
produce a lazy sequence of results. Peter Taoussanis, in his open source serialization
library Nippy (https://github.com/ptaoussanis/nippy), wrote a transient-aware
variant that performs significantly better. It is reproduced, as shown, with his
permission (note that the arity of the function is not the same as repeatedly):

(defn repeatedly*
 "Like `repeatedly` but faster and returns given collection type."
 [coll n f]
 (if-not (instance? clojure.lang.IEditableCollection coll)
 (loop [v coll idx 0]
 (if (>= idx n)
 v
 (recur (conj v (f)) (inc idx))))
 (loop [v (transient coll) idx 0]
 (if (>= idx n)
 (persistent! v)
 (recur (conj! v (f)) (inc idx))))))

Chapter 2

[31]

Performance miscellanea
Besides the major abstractions we saw earlier in the chapter, there are other
smaller, but nevertheless very performance-critical, parts of Clojure that we
will see in this section.

Disabling assertions in production
Assertions are very useful to catch logical errors in the code during development,
but they impose a runtime overhead that you may like to avoid in production
environment. Since clojure.core/*assert* is a compile time var, the assertions can
be silenced either by binding *assert* to false or by using alter-var-root before
the code is loaded. Unfortunately, both the techniques are cumbersome to use.
Paul Stadig's library called assertions (https://github.com/pjstadig/assertions)
helps with this exact use case by enabling or disabling assertions via command-line
argument -ea to the Java Runtime. You must include it in your Leiningen project.
clj file as a dependency to use it:

:dependencies [;; other dependencies…
 [pjstadig/assertions "0.1.0"]]

You must use this library's assert macro instead of Clojure's own, so each ns block
in the application should look something like this:

(ns example.core
 (:refer-clojure :exclude [assert])
 (:require [pjstadig.assertions :refer [assert]]))

When running the application, you should include the -ea argument to the JRE to
enable assertions, whereas its exclusion implies no assertion at runtime:

$ JVM_OPTS=-ea lein run -m example.core
$ java -ea -jar example.jar

Note that this usage will not automatically avoid assertions in the other code and
dependency libraries that use clojure.core/assert.

Destructuring
Destructuring is one of Clojure's built-in mini languages and, arguably, a top
productivity booster during development. This feature leads to the parsing of
values to match the left-hand side of the binding forms. The more complicated
the binding form is, the more work needs to be done. Not surprisingly, this has
a little bit of performance overhead.

Clojure Abstractions

[32]

It is easy to avoid this overhead by using explicit functions to unravel data in the
tight loops and other performance-critical code. After all, it all boils down to making
the program work less and do more.

Recursion and tail-call optimization (TCO)
Functional languages have this concept of tail-call optimization related to recursion.
So, the idea is that when a recursive call is at the tail position, it does not take up
space on the stack for recursion. Clojure supports a form of user-assisted recursive
call to make sure the recursive calls do not blow the stack. This is kind of an
imperative looping, but it is extremely fast.

When carrying out computations, it may make a lot of sense to use loop-recur
in the tight loops instead of iterating over synthetic numbers. For example, let's say
we want to add all odd integers from zero through 1,000,000. Let's compare the code:

(defn oddsum-1 [n] ; using iteration
 (->> (range (inc n))
 (filter odd?)
 (reduce +)))
(defn oddsum-2 [n] ; using loop-recur
 (loop [i 1 s 0]
 (if (> i n)
 s
 (recur (+ i 2) (+ s i)))))

When we run the code we get interesting results:

user=> (time (oddsum-1 1000000))
"Elapsed time: 109.314908 msecs"

250000000000
user=> (time (oddsum-2 1000000))
"Elapsed time: 42.18116 msecs"

250000000000

The time macro is far from perfect as the performance benchmarking tool, but the
relative numbers indicate a trend—in the subsequent chapters, we will look at the
Criterium library for more scientific benchmarking. Here, we use loop-recur not
only to iterate faster, but we are also able to change the algorithm itself by iterating
only about half as many times as we did in the other example.

Chapter 2

[33]

Premature end in reduce
When accumulating over a collection, in some cases, we may want to end
it prematurely. Prior to Clojure 1.5, loop-recur was the only way to do it.
When using reduce, we can do just that using the reduced function
introduced in Clojure 1.5 as shown:

;; let coll be a collection of numbers
(reduce (fn ([x] x)
 ([x y] (if (or (zero? x) (zero? y))
 (reduced 0)
 (* x y))))
 coll)

Here, we multiply all numbers in a collection and, upon finding any of the numbers
as zero, immediately return the result zero instead of continuing till the last element.

Multimethods versus protocols
Multimethods are a fantastic expressive abstraction for a polymorphic dispatch
on a dispatch function's return value. The dispatch functions associated with
a multimethod are maintained at runtime and looked up whenever a multimethod
call is invoked. While multimethods provide a lot of flexibility in determining
the dispatch, the performance overhead is simply too high compared to that
of protocol implementations.

Protocols (defprotocol) are implemented using reify, records (defrecord),
and types (deftype, extend-type) in Clojure. This is a big discussion topic—since
we are discussing the performance characteristics, it should suffice to say that
protocol implementations dispatch on polymorphic types and are significantly
faster than multimethods. Protocols and types are generally the implementation
detail of an API, so they are usually fronted by functions.

Due to the multimethods' flexibility, they still have a place. However, in performance
critical code, it is advisable to use protocols, records, and types instead.

Inlining
It is well known that macros are expanded inline at the call site and avoid a function
call. As a consequence, there is a small performance benefit. There is also a definline
macro that lets you write a function just like a normal macro. It creates an actual
function that gets inlined at the call site:

(def PI Math/PI)
(definline circumference [radius]
 `(* 2 PI ~radius))

Clojure Abstractions

[34]

Note that the JVM also analyzes the code it runs and does its own inlining
of code at runtime. While you may choose to inline the hot functions, this
technique is known to give only a modest performance boost.

When we define a var object, its value is looked up each time it is used. When we
define a var object using a :const meta pointing to a long or double value, it is
inlined from wherever it is called.

(def ^:const PI Math/PI)

This is known to give a decent performance boost when applicable. See the
following example:

user=> (def a 10)
user=> (def ^:const b 10)
user=> (def ^:dynamic c 10)
user=> (time (dotimes [_ 100000000] (inc a)))
"Elapsed time: 1023.745014 msecs"
nil
user=> (time (dotimes [_ 100000000] (inc b)))
"Elapsed time: 226.732942 msecs"
nil
user=> (time (dotimes [_ 100000000] (inc c)))
"Elapsed time: 1094.527193 msecs"
nil

Summary
Performance is one of the cornerstones of Clojure's design. Abstractions in Clojure
are designed for simplicity, power, and safety with performance firmly in mind.
We saw the performance characteristics of various abstractions and also how to
make decisions about abstractions depending on performance use cases.

In the next chapter, we will see how Clojure interoperates with Java and how we
can extract Java's power to derive optimum performance.

Leaning on Java
Being hosted on the Java Virtual Machine (JVM), there are several aspects of
Clojure in which it really helps to know about the Java language and platform.
The need is not only due to interoperability with Java or understanding its
implementation, but also for performance reasons. In certain cases, Clojure may
not generate optimized JVM bytecode by default; in some other cases, you may
want to go beyond the performance Clojure data structures offer — you can use
the Java alternatives via Clojure to get better performance. This chapter discusses
those aspects of Clojure. In this chapter, we will discuss:

•	 Inspecting Java generated from Clojure source
•	 Numerics and primitives
•	 Working with arrays
•	 Reflection and type hinting

Inspect the equivalent Java source for
Clojure code
Inspecting the equivalent Java source for a given Clojure code provides a great
insight into how that might impact its performance. However, Clojure generates
only Java bytecodes at runtime unless we compile a namespace out to disk.
When developing with Leiningen, only selected namespaces under the :aot
vector in the project.clj file are output as the compiled .class files containing
bytecodes. Fortunately, an easy and quick way to know the equivalent Java source
for Clojure code is to ahead-of-time (AOT) compile namespaces and then decompile
the bytecodes into equivalent Java sources using a Java bytecode decompiler.

www.allitebooks.com

http://www.allitebooks.org

Leaning on Java

[36]

There are several commercial and open source Java bytecode decompilers available.
One of the open source decompilers we will discuss here is JD-GUI, which you can
download from its website (http://jd.benow.ca/#jd-gui). Use a version suitable
for your operating system.

Create a new project
Let us see how exactly to arrive at the equivalent Java source code from Clojure.
Create a new project using Leiningen: lein new foo. Then edit the src/foo/core.
clj file with a mul function to find out the product of two numbers:

(ns foo.core)

(defn mul [x y]
 (* x y))

Compile Clojure sources into Java bytecode
To compile Clojure sources into bytecodes and output them as .class files,
run the lein compile :all command. This will create the .class files in the
target/classes directory of the project as follows:

target/classes/
`-- foo
 |-- core$fn__18.class
 |-- core__init.class
 |-- core$loading__4910__auto__.class
 `-- core$mul.class

You can see that the foo.core namespace has been compiled into three .class files.

Decompile the .class files into Java source
Assuming that you have already installed JD-GUI, decompiling the .class files is as
simple as opening them using the JD-GUI application. Open the JD-GUI application
and then open a compiled class file using the menu option:

Chapter 3

[37]

On inspection, the code for the foo.core/mul function looks as follows:

package foo;

import clojure.lang.AFunction;
import clojure.lang.Numbers;
import clojure.lang.RT;
import clojure.lang.Var;

public final class core$mul extends AFunction
{
 public static final Var const__0 = (Var)RT.var("clojure.core", "*");

 public Object invoke(Object x, Object y) { x = null; y = null;
return Numbers.multiply(x, y);
 }
}

It is easy to understand from the decompiled Java source that the foo.core/mul
function is an instance of the core$mul class in the foo package extending the
clojure.lang.AFunction class. We can also see that the argument types are of the
Object type, which implies the numbers will be boxed. In a similar fashion, you can
decompile class files of any Clojure code to inspect the equivalent Java code. If you
can combine this with knowledge about Java types and potential reflection and boxing,
you can find the suboptimal spots in code and focus on what to improve upon.

Leaning on Java

[38]

Numerics, boxing, and primitives
Numerics are scalars. The discussion on numerics was deferred until this chapter
for the sole reason that the numerics implementation in Clojure has strong Java
underpinnings. Since Version 1.3, Clojure has settled with 64-bit numerics as the
default. Now, long and double are idiomatic and are the default numeric types.
Note that these are primitive Java types, not objects. Primitives in Java lead to high
performance and have several optimizations associated with them at compiler and
runtime levels. A local primitive is created on the stack (hence does not contribute
to heap allocation and GC) and can be accessed directly without any kind of
dereferencing. In Java, there also exist object equivalents of the numeric primitives,
known as boxed numerics — these are regular objects that are allocated on the heap.
The boxed numerics are also immutable objects, which mean not only does the JVM
need to dereference the stored value when reading it, but also needs to create a new
boxed object when a new value needs to be created.

It should be obvious that boxed numerics are slower than their primitive equivalents.
The Oracle HotSpot JVM, when started with the -server option, aggressively inlines
those functions (on frequent invocation) that contain a call to primitive operations.
Clojure automatically uses primitive numerics at several levels. In the let blocks,
loop blocks, arrays, and arithmetic operations (+, -, *, /, inc, dec, <, <=, >, >=),
primitive numerics are detected and retained. The following table describes the
primitive numerics with their boxed equivalents:

Primitive numeric type Boxed equivalent
byte (1 byte) java.lang.Byte

short (2 bytes) java.lang.Short

int (4 bytes) java.lang.Integer

float (4 bytes) java.lang.Float

long (8 bytes) java.lang.Long

double (8 bytes) java.lang.Double

In Clojure, sometimes you may find that numerics are passed or returned as boxed
objects to or from functions due to the lack of type information at runtime. Even if
you have no control over such functions, you can coerce the values to be treated as
primitives. The byte, short, int, float, long, and double functions create
primitive equivalents from given boxed numeric values.

Chapter 3

[39]

One of the Lisp traditions is to provide correct (http://en.wikipedia.org/wiki/
Numerical_tower) arithmetic implementation. A lower type should not truncate
values when overflow or underflow happens, but rather should be promoted to
construct a higher type to maintain correctness. Clojure follows this constraint
and provides autopromotion via prime (http://en.wikipedia.org/wiki/
Prime_(symbol)) functions: +', -', *', inc', and dec'. Autopromotion provides
correctness at the cost of some performance.

There are also arbitrary length or precision numeric types in Clojure that let us
store unbounded numbers but have poorer performance compared to primitives.
The bigint and bigdec functions let us create numbers of arbitrary length
and precision.

If we try to carry out any operations with primitive numerics that may result in
a number beyond its maximum capacity, the operation maintains correctness
by throwing an exception. On the other hand, when we use the prime functions,
they autopromote to provide correctness. There is another set of operations called
unchecked operations which do not check for overflow or underflow and can
potentially return incorrect results. In some cases, they may be faster than regular
and prime functions. Such functions are unchecked-add, unchecked-subtract,
unchecked-multiply, unchecked-divide, unchecked-inc, unchecked-dec,
unchecked-negate, and unchecked-remainder. We can also enable unchecked
math behavior for regular arithmetic functions using the *unchecked-math* var;
simply include the following in your source code file:

(set! *unchecked-math* true)

One of the common needs in arithmetic is division that is used to find out the
quotient and remainder after a natural number division. Clojure's / function
provides a rational number division yielding a ratio and the mod function provides
a true modular arithmetic division. These functions are slower than the quot and
rem functions that compute the division quotient and the remainder respectively.

Arrays
Beside objects and primitives, Java has a special type of collection storage structure
called arrays. Once created, arrays cannot be grown or shrunk without copying
data and creating another array to hold the result. Array elements are always
homogeneous in type. Array elements are like places that you can mutate to hold
new values. Unlike collections such as list and vector, arrays can contain primitive
elements, which make them a very fast storage mechanism without Garbage
Collection (GC) overhead.

Leaning on Java

[40]

Arrays often form a basis for mutable data structures. For example, Java's java.
lang.ArrayList implementation uses arrays internally. In Clojure, arrays can
be used for fast numeric storage and processing, efficient algorithms, and so on.
Unlike collections, arrays can have one or more dimensions. So, you could lay out
data in an array such as a matrix or cube. Let us see Clojure's support for arrays:

Description Example Notes
Create array (make-array Integer 20) Array of type

(boxed) integer
(make-array Integer/TYPE 20) Array of primitive

type integer
(make-array Long/TYPE 20 10) Two-dimensional

array of primitive
long

Create
array of
primitives

(int-array 20) Array of primitive
integer of size 20

(int-array [10 20 30 40]) Array of primitive
integer created from
a vector

Create array
from coll

(to-array [10 20 30 40]) Array from sequable

(to-array-2d [[10 20 30][40 50 60]]) Two-dimensional
array from
collection

Clone an
array

(aclone (to-array [:a:b:c]))

Get array
element

(aget array-object 0 3) Get element at index
[0][3] in a 2-D array

Mutate
array
element

(aset array-object 0 3:foo) Set obj :foo at index
[0][3] in a 2-D array

Mutate
primitive
array
element

(aset-int int-array-object 2 6 89) Set value 89 at index
[2][6] in 2-D array

Find length
of array

(alength array-object) alength is
significantly faster
than count

Chapter 3

[41]

Description Example Notes
Map over
an array

(def a (int-array [10 20 30 40 50 60]))

(seq

 (amap a idx ret

 (do (println idx (seq ret))

 (inc (aget a idx)))))

Unlike map, amap
returns a non-lazy
array, which is
significantly faster
over array elements.
Note that amap is
faster only when
properly type
hinted. See next
section for more on
type hinting.

Reduce over
an array

(def a (int-array [10 20 30 40 50 60]))

(areduce a idx ret 0

 (do (println idx ret)

 (+ ret idx)))

Unlike reduce,
areduce is
significantly faster
over array elements.
Note that reduce
is faster only when
properly type
hinted. See next
section for more on
type hinting.

Cast to
primitive
arrays

(ints int-array-object) Used with
type hinting
(see next section)

Like int-array and ints, there are functions for other types as well:

Array
construction
function

Primitive-array
casting function

Type hinting (does not
work for vars)

Generic array
type hinting

boolean-array booleans ^booleans ^"[Z"

byte-array bytes ^bytes ^"[B"

short-array shorts ^shorts ^"[S"

char-array chars ^chars ^"[C"

int-array ints ^ints ^"[I"

long-array longs ^longs ^"[J"

float-array floats ^floats ^"[F"

double-array doubles ^doubles ^"[D"

object-array –– ^objects ^"[Ljava.lang.
Object"

Leaning on Java

[42]

Arrays are favored over other data structures mainly due to performance and
sometimes due to interop. Take extreme care to type hint the arrays and use the
appropriate functions to work with them.

Reflection and type hints
Sometimes, as Clojure is dynamically typed, the Clojure compiler is unable
to figure out the type of object to invoke a certain method. In such cases,
Clojure uses reflection, which is considerably slower than direct method
dispatch. Clojure's solution to this is something called type hints. Type hints
are a way to annotate arguments and objects with static types so that the
Clojure compiler can emit bytecodes for efficient dispatch.

The easiest way to know where to put type hints is to turn on reflection warning in
the code. Consider this code that determines the length of a string:

user=> (set! *warn-on-reflection* true)
true
user=> (def s "Hello, there")
#'user/s
user=> (.length s)
Reflection warning, NO_SOURCE_PATH:1 - reference to field length can't
be resolved.
12
user=> (defn str-len [^String s] (.length s))
#'user/str-len
user=> (str-len s)
12
user=> (.length ^String s) ; type hint when passing argument
12
user=> (def ^String s "Hello, there") ; type hint at var level
#'user/s
user=> (.length s) ; no more reflection warning
12

When working on a project, you may want reflection warning to be turned on for
all files. You can do this easily in Leiningen. Just put the following entry in your
project.clj file:

:profiles {:dev {:global-vars {*warn-on-reflection* true}}}

This will automatically turn on reflection warning every time you begin any kind of
invocation via Leiningen in the dev workflow such as REPL and test.

Chapter 3

[43]

Array of primitives
Recall the examples on amap and areduce from the previous section. If we run them
with reflection warning on, we'd be warned that it uses reflection. Let's type hint them:

(def a (int-array [10 20 30 40 50 60]))
;; amap example
(seq
 (amap ^ints a idx ret
 (do (println idx (seq ret))
 (inc (aget ^ints a idx)))))
;; areduce example
(areduce ^ints a idx ret 0
 (do (println idx ret)
 (+ ret idx)))

Note that the primitive array hint ^ints does not work at the var level. So, it would
not work if you defined the var a like the following:

(def ^ints a (int-array [10 20 30 40 50 60])) ; wrong, will complain
later	
(def ^"[I" a (int-array [10 20 30 40 50 60])) ; correct

This notation is for an array of integers. Other primitive array types have similar type
hints. Refer to the previous section for type hinting for various primitive array types.

Primitives
Type hinting of primitive locals is neither required nor allowed. However, you can
type hint function arguments as primitives. Clojure allows up to four arguments in
functions to be type hinted:

(defn do-something
 [^long a ^long b ^long c ^long d]
 ..)

Boxing may result in something not always being a primitive. In those
cases, you can coerce those using respective primitive types.

Leaning on Java

[44]

Macros and metadata
In macros, type hinting does not work the way it does in other parts of the code.
Since macros are about transforming the Abstract Syntax Tree (AST) , we need
to have a mental map of the transformation and we should add type hints as
metadata in the code. For example, if str-len is a macro to find the length of a
string, we make use of the following code:

(defmacro str-len
 [s]
 `(.length ~(with-meta s {:tag String})))

In the preceding code, we alter the metadata of the symbol s by tagging it with the
type String, which happens to be the java.lang.String class in this case. For array
types, we can use "[Ljava.lang.String" for an array of string objects and similarly
for others.

Type hinting via metadata also works with functions, albeit in a different notation:

(defn foo [] "Hello")
(defn ^String foo [] "Hello")
(defn ^{:tag String} foo [] "Hello")

Except for the first example in the preceding snippet, they are type hinted to return
the java.lang.String type.

Miscellaneous
In a type (as in deftype), the mutable instance variables can be optionally annotated
as ^:volatile-mutable or ^:unsynchronized-mutable for concurrent behavior,
covered in Chapter 5, Concurrency. For example:

(deftype Counter [^:volatile-mutable ^long now]
 ..)

Unlike defprotocol, the definterface macro lets us provide a return type hint
for methods:

(definterface Foo
 (^long doSomething [^long a ^double b]))

Chapter 3

[45]

The proxy-super macro (which is used inside the proxy macro) is a special case
where you cannot directly apply a type hint. The reason being that it relies on the
implicit this object that is automatically created by the proxy macro. In this case,
you must explicitly bind this to a type:

(proxy [Object][]
 (equals [other]
 (let [^Object this this]
 (proxy-super equals other))))

Type hinting is quite important for performance in Clojure. Fortunately, we need to
type hint only when required, and it's easy to find out when. In many cases, a gain
from type hinting overshadows the gains from code inlining.

Using array/numeric libraries for
efficiency
You may have noticed in the previous sections that, when working with numerics,
performance depends a lot on whether the data is based on arrays and primitives.
It may take a lot of meticulousness on the programmer's part to correctly coerce
data into primitives and arrays at all stages of the computation in order to achieve
optimum efficiency. Fortunately, the high performance enthusiasts from the Clojure
community realized this issue early on and created some dedicated open source
libraries to mitigate the problem.

HipHip
HipHip is a Clojure library built to work with arrays of primitive types. It provides
a safety net; that is, it strictly accepts only primitive array arguments to work with.
As a result, passing silently boxed primitive arrays as arguments always results in
an exception. HipHip macros and functions rarely need the programmer to type hint
anything during the operations. It supports arrays of primitive types such as int,
long, float, and double.

The HipHip project is available at https://github.com/Prismatic/hiphip.

www.allitebooks.com

http://www.allitebooks.org

Leaning on Java

[46]

As of the time of writing, HipHip's most recent version is 0.1.0. This version supports
Clojure 1.5.x and is tagged as an Alpha release. There is a standard set of operations
provided by HipHip for arrays of all of the four primitive types: integer array
operations are in the namespace hiphip.int, double precision array operations in
hiphip.double, and so on. The operations are all type hinted for the respective types.
All of the operations for int, long, float, and double in respective namespaces are
essentially the same except for the array type:

Category Function/macro Description
Core functions aclone Like clojure.core/aclone for primitives

alength Like clojure.core/alength
for primitives

aget Like clojure.core/aget for primitives
aset Like clojure.core/aset for primitives
ainc Increments an array element by specified value

Equiv hiphip.
array operations

amake Makes a new array and fills values computed
by expression

areduce Like clojure.core/areduce with HipHip
array bindings

doarr Like clojure.core/doseq with HipHip
array bindings

amap Like clojure.core/for but it creates a
new array

afill! Like preceding amap but it overwrites an
 array argument

Mathy operations asum Compute sum of array elements
using expression

aproduct Compute product of array elements
using expression

amean Compute mean over the array elements
dot-product Compute dot product of two arrays

Finding minimum/
maximum, Sorting

amax-index Find maximum value in array and return
the index

amax Find maximum value in an array and return it
amin-index Find minimum value in an array and return

the index
amin Find minimum value in an array and return it
apartition! Three-way partition of array: less, equal, greater

than pivot
aselect! Gather smallest k elements at the beginning

of an array

Chapter 3

[47]

Category Function/macro Description
asort! Sort array in-place using Java's

built-in implementation
asort-max! Sort array in-place gathering top k elements

to the end
asort-min! Sort array in-place gathering top k elements

to the top
apartition-
indices!

Like apartition! but mutates index-array
instead of values

aselect-
indices!

Like aselect! but mutates index-array
instead of values

asort-
indices!

Like asort! but mutates index-array instead
of values

amax-indices Get index-array; last k indices pointing to
max k values

amin-indices Get index-array; first k indices pointing to
min k values

To include HipHip as a dependency in your Leiningen project, specify it
in project.clj:

:dependencies [;; other dependencies
 [prismatic/hiphip "0.1.0"]]

As an example of how to use HipHip, let us see how to compute normalized
values of an array:

(require '[hiphip.double :as hd])

(def xs (double-array [12.3 23.4 34.5 45.6 56.7 67.8]))

(let [s (hd/asum xs)] (hd/amap [x xs] (/ x s)))

Unless we make sure that xs is an array of primitive doubles, HipHip will throw
ClassCastException when the type is incorrect and IllegalArgumentException
in other cases. I recommend exploring the HipHip project for more insight into
using it effectively.

Leaning on Java

[48]

primitive-math
We can set *warn-on-reflection* to true to let Clojure warn us when reflection
is used at invocation boundaries. However, when Clojure has to implicitly use
reflection to perform math, the only resort is to either use a profiler or compile
the Clojure source down to bytecode and analyze boxing and reflection with a
decompiler. This is where the primitive-math library helps by producing extra
warnings and throwing exceptions.

The primitive-math library is available at https://github.com/ztellman/
primitive-math.

As of the time of writing, primitive-math is at Version 0.1.3; you can include it as a
dependency in your Leiningen project by editing project.clj as follows:

:dependencies [;; other dependencies
 [primitive-math "0.1.3"]]

The following code is how it can be used (recall the example from the Decompile the
.class files into Java source section):

;; enable reflection warnings for extra warnings from primitive-math
(set! *warn-on-reflection* true)
(require '[primitive-math :as pm])
(defn mul [x y] (pm/* x y)) ; produces reflection warning
(mul 10.3 2) ; throws exception
(defn mul [^long x ^long y] (pm/* x y)) ; no warning after type hint
(mul 10.3 2) ; returns 20

The math operations in primitive-math (like HipHip) are implemented
via macros. Therefore, they cannot be used as higher order functions and
as a consequence, may not compose well with other code. I recommend
exploring the project to see what suits your program use case.

Resorting to Java and native code
In a handful of cases, where the lack of imperative, stack-based, mutable variables
in Clojure may make the code not perform as well as Java, we may need to evaluate
alternatives to make it faster. I would advise that you consider writing such code
directly in Java for better performance.

Chapter 3

[49]

Another consideration is to use native OS capabilities, such as memory-mapped
buffers (http://docs.oracle.com/javase/7/docs/api/java/nio/
MappedByteBuffer.html) or files and unsafe operations (http://highlyscalable.
wordpress.com/2012/02/02/direct-memory-access-in-java/). Note that
unsafe operations are potentially hazardous and are not recommended in general.
Such times are also an opportunity to consider writing performance-critical pieces
of code in C or C++ and accessing them via Java Native Interface (JNI).

Proteus – mutable locals in Clojure
Proteus is an open source Clojure library that lets you treat a local like a local variable,
thereby allowing its unsynchronized mutation within the local scope only. Note that
this library depends on the internal implementation structure of Clojure as of Clojure
1.5.1. The Proteus project is available at https://github.com/ztellman/proteus.

You can include Proteus as a dependency in the Leiningen project by editing
project.clj:

:dependencies [;;other dependencies
 [proteus "0.1.4"]]

Using Proteus in code is straightforward, as shown in the following code snippet:

(require '[proteus :as p])
(p/let-mutable [a 10]
 (println a)
 (set! a 20)
 (println 20))
;; Output below:
;; 10
;; 20

Since Proteus allows mutation only in the local scope, the following throws
an exception:

(p/let-mutable [a 10 add2! (fn [x] (set! x (+ 2 x)))]
 (add2! a)
 (println a))

The mutable locals are very fast and may be quite useful in tight loops. Proteus is
unconventional by Clojure idioms, but it may give the required performance boost
without having to write Java code.

Summary
Clojure has strong Java interoperability and underpinning, and due to
which, programmers can leverage the performance benefits nearing Java.
For performance-critical code, sometimes it is necessary to know how
Clojure interacts with Java and how to turn the right knobs. Numerics is
a key area where Java interoperability is required to get optimum performance.
Type hinting is another important performance trick that is frequently useful.
There are several open source Clojure libraries that make such activities easier
for the programmer.

In the next chapter, we will dig deeper below Java and see how the hardware and the
JVM stack play a key role to offer the performance we get, what their constraints are,
and how to use the understanding to get better performance.

Host Performance
In the previous chapters, we noted how Clojure interoperates with Java. In this chapter
we will go a bit deeper to understand the internals better. We will touch upon several
layers of the entire stack, but our major focus will be the Java Virtual Machine (JVM),
in particular the Oracle HotSpot JVM, though there are several JVM vendors to choose
from (http://en.wikipedia.org/wiki/List_of_Java_virtual_machines). At the
time of writing, Oracle JDK 1.7 is the latest stable release, and early OpenJDK 1.8
milestones are available. In this chapter we will discuss:

•	 How the hardware subsystems function from a performance viewpoint
•	 Organization of the JVM internals and how that is related to performance
•	 How to measure the amount of space occupied by various objects in the heap
•	 How to profile Clojure code for latency using Criterium

The hardware
There are various hardware components that may impact the performance of software
in different ways. The processors, caches, memory subsystem, I/O subsystems, and so
on, all have varying degrees of performance impact depending upon the use cases.
In the following sections we will look into each of those aspects.

Host Performance

[52]

Processors
Since about the late 1980s, microprocessors have been employing pipelining and
instruction-level parallelism to speed up their performance. Processing an instruction
at the CPU level consists of typically four cycles: fetch, decode, execute, and writeback.
Modern processors optimize the cycles by running them in parallel—while one
instruction is executed, the next instruction is being decoded and the one after that is
being fetched, and so on. This style is called instruction pipelining.

In practice, in order to speed up execution even further, the stages are subdivided
into many shorter stages, thus leading to deeper super-pipeline architecture.
The length of the longest stage in the pipeline limits the clock speed of the CPU.
By splitting stages into substages, the processor can be run at a higher clock speed
where more cycles are required for each instruction, but the processor still completes
one instruction per cycle. Since there are more cycles per second now, we get better
performance in terms of throughput per second even though the latency of each
instruction is now higher.

Branch prediction
The processor must fetch and decode instructions in advance even when it
encounters instructions of the conditional if-then form. Consider an equivalent
of the (if (test a) (foo a) (bar a)) Clojure expression. The processor must
choose a branch to fetch and decode; the question is, should it fetch the if branch
or the else branch? Here, the processor makes a guess as to which instruction to
fetch/decode. If the guess turns out to be correct, it is a performance gain as usual;
otherwise, the processor has to throw away the result of the fetch/decode process
and start on the other branch afresh.

Processors deal with branch prediction using an on-chip branch prediction table.
It contains recent code branches and two bits per branch indicating whether or not
the branch was taken, while also accommodating one-off not-taken occurrences.

Today, branch prediction is extremely important in processors for performance,
so modern processors dedicate hardware resources and special predication instructions
to improve the prediction accuracy and lower the cost of mispredict penalties.

Instruction scheduling
High-latency instructions and branching usually lead to empty cycles in the instruction
pipeline known as stalls or bubbles. These cycles are often used to do other work
by the means of instruction reordering. Instruction reordering is implemented at the
hardware level via out of order execution and at the compiler level via compile time
instruction scheduling (also called static instruction scheduling).

Chapter 4

[53]

The processor needs to remember the dependencies between instructions when
carrying out the out-of-order execution. This cost is somewhat mitigated by using
renamed registers, wherein register values are stored into / loaded from memory
locations, potentially on different physical registers, so that they can be executed in
parallel. This necessitates that out-of-order processors always maintain a mapping of
instructions and corresponding registers they use, which makes their design complex
and power hungry. With a few exceptions, almost all high-performance CPUs today
have out-of-order designs.

Good compilers are usually extremely aware of processors, and they are capable of
optimizing the code by rearranging processor instructions in a way that there are fewer
bubbles in the processor instruction pipeline. A few high-performance CPUs still rely
on only static instruction reordering instead of out-of-order instruction reordering and
in turn save chip area due to simpler design—the saved area is used to accommodate
extra cache or CPU cores. Low-power processors, such as those from the ARM and
Atom family, use in-order design. Unlike most CPUs, modern GPUs use in-order
design with deep pipelines that are compensated by very fast context switching.
This leads to high latency and high throughput on GPUs.

Threads and cores
Concurrency and parallelism via context switches, hardware threads, and cores are
very common today, and we have accepted them as a norm to implement in our
programs. However, we should know why we needed such a design in the first place.
Most of the real-world code we write today does not have more than a modest scope
for instruction-level parallelism. Even with hardware-based, out-of-order execution
and static instruction reordering, no more than two instructions per cycle are truly
parallel. Hence, another potential source of instructions that can be pipelined and
executed in parallel are the programs other than the currently running one.

The empty cycles in a pipeline can be dedicated to other running programs which
assume there are other currently running programs that need the processor's
attention. Simultaneous multithreading (SMT) is a hardware design that enables
such kinds of parallelism. Intel implements SMT named HyperThreading in some
of its processors. While SMT presents a single physical processor as two or more
logical processors, a true multiprocessor system executes one thread per processor,
thus achieving simultaneous execution. A multicore processor includes two or more
processors per chip, but has the properties of a multiprocessor system.

Host Performance

[54]

In general, multicore processors significantly outperform SMT processors.
Performance on SMT processors can vary by the use case. It peaks in those
cases where code is highly variable or where threads do not compete for the
same hardware resources, and dips when the threads are cache-bound on
the same processor. What is also important is that some programs are simply
not inherently parallel. In such cases it may be hard to make them go faster
without explicit use of threads in the program.

Memory systems
It is important to understand the memory performance characteristics to know
the likely impact on the programs we write. Data-intensive programs that are also
inherently parallel, such as audio/video processing and scientific computation,
are largely limited by memory bandwidth, not by the processor. Adding processors
would not make them faster unless the memory bandwidth is also increased.
Consider another class of programs, such as 3D graphics rendering or database
systems, that are limited mainly by memory latency but not the memory bandwidth.
SMT can be highly-suitable for such programs where threads do not compete for the
same hardware resources.

Memory access roughly constitutes a quarter of all instructions executed by a
processor. A code block typically begins with memory load instructions and the
remaining portion depends on the loaded data. This stalls the instructions and
prevents large-scale, instruction-level parallelism. As if that was not bad enough,
even superscalar processors (which can issue more than one instruction per clock
cycle) can issue at most two memory instructions per cycle. Building fast memory
systems is limited by natural factors such as the speed of light. This impacts the
signal round trip to the RAM. This is a natural hard limit and any optimization
can only work around it.

Data transfer between the processor and motherboard chipset is one of the factors
that induce memory latency. This is countered using a faster front-side bus (FSB).
Nowadays, most modern processors fix this problem better by integrating the
memory controller directly at the chip level. The significant difference between the
processor versus memory latencies is known as memory wall. This has plateaued
in recent times due to processor clock speeds hitting power and heat limits, but still
this memory latency continues to be a significant problem.

Unlike CPUs, the GPUs typically realize a sustained high memory bandwidth.
Due to latency hiding, they utilize the bandwidth even during a high number
crunching workload.

Chapter 4

[55]

Cache
To overcome the memory latency, modern processors employ a special type of
very fast memory placed onto the processor chip or close to the chip. The purpose
of the cache is to store the most recently used data from the memory. Caches are of
different levels: the L1 cache is located on the processor chip, while the L2 cache is
bigger and located farther away from the processor compared to L1. There is often
an L3 cache, which is even bigger and located farther from the processor than L2.
In Intel's Haswell processor, as of October 2013, the L1 cache is generally 64 kilobytes
(32 KB instruction plus 32 KB data) in size, L2 is 256 KB per core, and L3 is 8 MB.

In cases where memory latency is bad, fortunately caches seem to work very well.
The L1 cache is many times faster than accessing the main memory. The reported
cache hit rates in real-world programs is 90 percent, which makes a strong case for
caches. A cache works like a dictionary of memory address to a block of data values.
Since the value is a block of memory, caching of adjacent memory locations has
mostly no additional overhead. Note that L2 is slower and bigger than L1, and L3
is slower and bigger than L2. On Intel Sandybridge processors, register lookup is
instantaneous; the L1 cache lookup takes three clock cycles, L2 takes nine, L3 takes
21, and main memory access takes 150 to 400 clock cycles.

Interconnect
A processor communicates with the memory and other processors via an interconnect,
which are generally of two types of architecture: symmetric multiprocessing (SMP)
and non-uniform memory access (NUMA). In SMP, a bus interconnects processors
and memory with the help of bus controllers. The bus acts as a broadcast device for
the end points. The bus often becomes a bottleneck with a large number of processors
and memory banks. SMP systems are cheaper to build and harder to scale to a large
number of cores compared to NUMA. In a NUMA system, collections of processors
and memory are connected point to point to other such groups of processors and
memory. Every such group is called a node. Local memory of a node is accessible
by other nodes and vice versa. Intel's HyperTransport and QuickPath interconnect
technologies support NUMA.

www.allitebooks.com

http://www.allitebooks.org

Host Performance

[56]

Storage and networking
Storage and networking are the most commonly-used hardware components besides
the processor, cache, and memory. Many real-world applications are more often
I/O-bound than execution-bound. Such I/O technologies are continuously advancing,
and there is a wide variety of components available on the market. The consideration
of such devices should be based on the exact performance and reliability characteristics
for the use case. Another important criterion is to know how well they are supported
by the target operating system drivers. Current day storage technologies mostly build
upon hard disks and solid state drives. Applicability of network devices and protocols
vary widely as per the business use case. A detailed discussion of I/O hardware is out
of the scope of this book.

The Java Virtual Machine
The Java Virtual Machine is a bytecode-oriented, garbage-collected virtual machine
that specifies its own instruction set. The instructions have equivalent bytecodes that
are interpreted and compiled to the underlying OS and hardware by the Java Runtime
Environment (JRE). Objects are referred to using symbolic references. The data types
in the JVM are fully standardized as a single spec across all JVM implementations
on all platforms and architectures. The JVM also follows the network byte order,
which means communication between Java programs on different architectures can
happen using the big-endian byte order. Jvmtop (https://code.google.com/p/
jvmtop/) is a handy JVM monitoring tool like the top command in Unix-like systems.

The just-in-time (JIT) compiler
The JIT compiler is part of the JVM. When the JVM starts up, the JIT compiler knows
hardly anything about the running code, so it simply interprets the JVM bytecodes.
As the program keeps running, the JIT compiler starts profiling the code by collecting
statistics and analyzing the call and bytecode patterns. When a method call count
exceeds a certain threshold, the JIT compiler applies a number of optimizations to
the code. The most common optimizations are inlining and native code generation.
The final and static methods and classes are great candidates for inlining.
JIT compilation does not come without a cost; it occupies memory to store the
profiled code and sometimes it has to revert wrong speculative optimization.
However, JIT compilation is almost always amortized over the long duration of
code execution. In rare cases, turning off JIT compilation may be useful if either the
code is too large or there are no hotspots in the code due to infrequent execution.

Chapter 4

[57]

A JRE has typically two kinds of JIT compilers: client and server. Which JIT compiler is
used by default depends on the type of hardware and platform. The client JIT compiler
is meant for client programs such as command-line and desktop applications. We can
start the JRE with the -server option to invoke the server JIT compiler, which is really
meant for long running programs on a server. The threshold for JIT compilation is
higher in the server than the client. The difference in the two kinds of JIT compilers
is that the client targets upfront, visible lower latency and the server is assumed to be
running on a high-resource hardware and tries to optimize for throughput.

The JIT compiler in Oracle HotSpot JVM observes the code execution to determine
the most frequently invoked methods, which are hotspots. Such hotspots are
usually just a fraction of the entire code that can be cheap to focus on and optimize.
The HotSpot JIT compiler is lazy and adaptive. Lazy, because it compiles only
those methods to native code that have crossed a certain threshold, and not all
the code that it encounters. Compiling to native code is a time consuming process
and compiling all code would be wasteful. It is adaptive at gradually increasing
the aggressiveness of its compilation on frequently called code, which implies
that the code is not optimized only once but many times over as the code gets
executed repeatedly. After a method call crosses the first JIT compiler threshold,
 it is optimized and the counter is reset to zero. At the same time, the optimization
count for the code is set to one. When the call exceeds the threshold yet again,
the counter is reset to zero and the optimization count is incremented; this time,
a more aggressive optimization is applied. This cycle continues until the code
cannot be optimized anymore.

The HotSpot JIT compiler does a whole bunch of optimizations. Some of the most
prominent ones are as follows:

•	 Inlining: Inlining of methods—very small methods, the static and final
methods, methods in final classes, and small methods involving only
primitive numerics are prime candidates for inlining.

•	 Lock elimination: Locking is a performance overhead. Fortunately, if the lock
object monitor is not reachable from other threads, the lock is eliminated.

•	 Virtual call elimination: Often, there is only one implementation for an
interface in a program. The JIT compiler eliminates the virtual call and
replaces that with a direct method call on the class implementation object.

•	 Non-volatile memory write elimination: The nonvolatile data members
and references in an object are not guaranteed to be visible by the threads
other than the current thread. This criterion is utilized not to update such
references in memory, but rather to use hardware registers or the stack
via native code.

Host Performance

[58]

•	 Native code generation: The JIT compiler generates native code for
frequently invoked methods together with the arguments. The generated
native code is stored in the code cache.

•	 Control flow and local optimizations: The JIT compiler frequently reorders
and splits the code for better performance. It also analyzes the branching of
control and optimizes code based on that.

There should rarely be any reason to disable JIT compilation, but it can be done by
passing the -Djava.compiler=NONE parameter when starting the JRE. The default
compile threshold can be changed by passing -XX:CompileThreshold=9800 to the
JRE executable where 9800 is the example threshold. The XX:+PrintCompilation
and -XX:-CITime options make the JIT compiler print the JIT statistics and time
spent on JIT.

Memory organization
The memory used by the JVM is divided into several segments. JVM being a
stack-based execution model, one of the memory segments is the stack area.
Every thread is given a stack where the stack frames are stored in Last-in-First-out
(LIFO) order. The stack includes a program counter (PC) that points to the instruction
in the JVM memory currently being executed. When a method is called, a new stack
frame is created containing the local variable array and the operand stack. Contrary to
conventional stacks, the operand stack holds instructions to load local variable/field
values and computation results—a mechanism that is also used to prepare method
parameters before a call and to store the return value. The stack frame itself may
be allocated on the heap. The easiest way to inspect the order of stack frames in
the current thread is to execute the following code:

(require 'clojure.repl)
(clojure.repl/pst (Throwable.))

When a thread requires more stack space than what the JVM can provide,
StackOverflowError is thrown.

Chapter 4

[59]

The heap is the main memory area where the object and array allocations are done. It is
shared across all JVM threads. The heap may be of fixed size or expanding depending
on the arguments passed to the JRE on startup. Trying to allocate more heap space
than what the JVM can make room for results in OutOfMemoryError being thrown.
The allocations in the heap are subject to garbage collection. When an object is no more
reachable via any reference it is garbage collected, with the notable exception of weak,
soft, and phantom references. Objects pointed to by nonstrong references take longer
to GC.

The method area is logically a part of the heap memory and contains per-class
structures such as the field and method information, the runtime constant pool,
the code for methods, and constructor bodies. It is shared across all JVM threads.
In the Oracle HotSpot JVM (up to Version 7), the method area is found in a memory
area called the permanent generation. In HotSpot Java 8, the permanent generation
is replaced by a native memory area called Metaspace.

Program Counter

Native method stack

JVM Stack

Thread

JVM Memory

Heap

Method Area

Runtime
Constant
Pool

The JVM contains the native code and the Java bytecode to be provided to the Java
API implementation and the JVM implementation. The native code call stack is
maintained separately for each thread stack. The JVM stack contains the Java method
calls. Please note that the JVM spec for Java SE 7 does not imply a native method
stack, but it does for Java SE 5 and 6.

Host Performance

[60]

HotSpot heap and garbage collection
The Oracle HotSpot JVM uses a generational heap. The three main generations are
young, tenured (old), and permanent (till HotSpot JDK 1.7 only) generations. As objects
survive garbage collection, they move from Eden to Survivor and from Survivor
to Tenured spaces. The new instances are allocated in the Eden segment, which is
a very cheap operation (as cheap as a pointer bump, faster than a C malloc call)
if it already has sufficient free space. When the Eden area does not have enough
free space, a minor GC is triggered. This copies the live objects from Eden into
the Survivor space. In the same operation, live objects are checked in Survivor-1
and copied over to Survivor-2, thus keeping the live objects only in Survivor-2.
This scheme keeps Eden and Survivor-1 empty and unfragmented to make new
allocations, and this is known as copy collection.

Ed
en

S
ur

vi
vo

r

Young Tenured

Pe
rm

S
ur

vi
vo

r

Perm

After a certain survival threshold in the young generation, the objects are moved
to the tenured/old generation. If it is not possible to do a minor GC, a major GC is
attempted. The major GC does not use copying, but rather relies on mark-and-sweep
algorithms. We can use throughput collectors (Serial, Parallel, and ParallelOld)
or low-pause collectors (Concurrent and G1) for the old generation.

Sometimes due to running full GC multiple times, the Tenured space may have
become so fragmented that it may not be feasible to move objects from Survivor to
Tenured space. In those cases, a full GC with compaction is triggered. During this
period, the application may appear unresponsive due to the full GC in action.

Measuring memory (heap/stack) usage
One of the prime reasons for performance hit in the JVM is garbage collection.
It certainly helps to know how heap memory is used by the objects we create
and how to reduce the impact on GC by means of lower footprint. Let us inspect
how the representation of an object may lead to heap space.

Chapter 4

[61]

Every (uncompressed) object or array reference on a 64-bit JVM is 16 bytes long.
On a 32-bit JVM, every reference is 8 bytes long. As the 64-bit architecture is
becoming more commonplace now, the 64-bit JVM is more likely to be used on
servers. Fortunately, for a heap size of up to 32 GB, the JVM can use compressed
pointers (default behavior) that are only 4 bytes in size.

Uncompressed Compressed 32-bit
Reference (pointer) 8 4 4
Object header 16 12 8
Array header 24 16 12
Superclass padding 8 4 4

This table illustrated pointer sizes in different modes (reproduced with permission
from Attila Szegedi: http://www.slideshare.net/aszegedi/everything-i-
ever-learned-about-jvm-performance-tuning-twitter/20).

We saw in the previous chapter how many bytes each primitive type takes. Let us
see how the memory consumption of the composite types looks with compressed
pointers (a common case) on a 64-bit JVM with heap size smaller than 32 GB:

Java Expression 64-bit memory
usage

Description (b = bytes, padding toward
memory word size in approximate
multiples of 8)

new Object() 16 bytes 12 b header + 4 b padding
new byte[0] 16 bytes 12 b obj header + 4 b int length = 16 b

array header
new String("foo") 40 bytes

(interned for
literals)

12 b header + (12 b array header + 6 b
char-array content + 4 b length + 2 b
padding = 24 b) + 4 b hash

new Integer(3) 16 bytes
(boxed integer)

12 b header + 4 b int value

new Long(4) 24 bytes
(boxed long)

12 b header + 8 b long value + 4 b
padding

class A { byte x; }

new A();

16 bytes 12 b header + 1 b value + 3 b padding

class B extends A
{byte y;}

new B();

24 bytes
(subclass
padding)

12 b reference + (1 b value + 7 b padding
= 8 b) for A + 1 b for value of y + 3 b
padding

Host Performance

[62]

Java Expression 64-bit memory
usage

Description (b = bytes, padding toward
memory word size in approximate
multiples of 8)

clojure.lang.Symbol.
intern("foo")

// clojure 'foo

104 bytes (40
bytes interned)

12 b header + 12 b ns reference + (12 b
name reference + 40 b interned chars) + 4
b int hash + 12 b meta reference + (12 b
_str reference + 40 b interned chars) – 40
b interned str

clojure.lang.Keyword.
intern("foo")

// clojure :foo

184 bytes
(fully interned
by factory
method)

12 b reference + (12 b symbol reference +
104 b interned value) + 4 b int hash + (12
b _str reference + 40 b interned char)

A comparison of the space taken up by a symbol and a keyword created from the
same given string demonstrates that even though a keyword has slight overhead
over a symbol, the keyword is fully interned and would provide better guard against
memory consumption and thus GC over time. Moreover, the keyword is interned
as a weak reference, which ensures that it is garbage collected when no keyword in
memory is pointing to the interned value anymore.

Measuring latency with Criterium
Clojure has a neat little macro called time that evaluates the body of code
passed to it and then prints out the time it took and simply returns the value.
However, we can note that often the time taken to execute the code varies
quite a bit across various runs.

user=> (time (reduce + (range 100000)))
"Elapsed time: 112.480752 msecs"
4999950000
user=> (time (reduce + (range 1000000)))
"Elapsed time: 387.974799 msecs"
499999500000

There are several reasons associated to this variance in behavior. When cold started,
the JVM has its heap segments empty and is unaware of the code path. As the JVM
keeps running, the heap fills up and the GC patterns start becoming noticeable.
The JIT compiler gets a chance to profile the different code paths and optimize
them. Only after quite some GC and JIT compilation rounds does the JVM
performance get less unpredictable.

Chapter 4

[63]

Criterium (https://github.com/hugoduncan/criterium) is a Clojure library to
scientifically measure the latency of Clojure expressions on a machine. A summary
of how it works can be found at the Criterium project page. The easiest way to use
Criterium is to use it with Leiningen. If you want Criterium to be available only in
the REPL and not as a project dependency, add the following entry to the ~/.lein/
profiles.clj file:

{:user {:plugins [[criterium "0.3.1"]]}}

Another way is to include Criterium in your project in the project.clj file:

:dependencies [[org.clojure/clojure "1.5.1"]
 [criterium "0.3.1"]]

Once done with the editing of the file, launch REPL using lein repl:

user=> (require '[criterium.core :as c])
nil
user=> (c/bench (reduce + (range 100000)))
Evaluation count : 1980 in 60 samples of 33 calls.
 Execution time mean : 31.627742 ms
 Execution time std-deviation : 431.917981 us
 Execution time lower quantile : 30.884211 ms (2.5%)
 Execution time upper quantile : 32.129534 ms (97.5%)
nil

Now we can see that on average, the expression took 31.6 ms on a certain test machine.

Criterium and Leiningen
By default, Leiningen starts the JVM in a low-tiered compilation mode, which causes
it to start up faster, but impacts the optimizations that the JRE can perform at runtime.
To get best effects when running tests with Criterium and Leiningen for a server-side
use case, be sure to override the defaults in project.clj as follows:

:jvm-opts ^:replace ["-server"]

The ^:replace hint causes Leiningen to replace its own defaults with what is
provided under the :jvm-opts key. You may like to add more parameters as
needed, such as minimum and maximum heap size to run the tests.

Summary
The performance of a software system is directly impacted by its hardware
components, so understanding how the hardware works is crucial. The processor,
caches, memory, and I/O subsystems have different performance behaviors.
With Clojure being a hosted language, understanding the performance properties
of the host, that is, the JVM, is equally important. The Criterium library is useful
to measure the latency of the Clojure code—we will discuss Criterium again in
Chapter 6, Optimizing Performance. In the next chapter we will look at the concurrency
primitives in Clojure and their performance characteristics.

Concurrency
Concurrency was one of the chief design goals of Clojure. Considering the concurrent
programming model in Java, it is not only too low level but also so tricky to get
right that without strictly following patterns, you are more likely to shoot yourself
in the foot. Locks, synchronization, and unguarded mutation—these are recipes for
concurrency pitfalls unless exercised with extreme caution. Clojure's design choices
deeply influence the way concurrency patterns can be achieved in a safe and functional
manner. In this chapter we will discuss:

•	 Low-level concurrency support at the hardware and JVM levels
•	 The concurrency primitives of Clojure—atoms, agents, refs, and vars
•	 The built-in concurrency features in Java that are safe and useful for

use with Clojure
•	 Parallelization with Clojure features and reducers

Low-level concurrency
Non-cooperative concurrency and parallelism cannot be achieved without explicit
hardware support. We discussed SMT and multicore processors in Chapter 4,
Host Performance. Recall that every processor core has its own L1 cache and several
cores share the L2 cache. The shared L2 cache provides a fast mechanism to the
processor cores to coordinate their cache access, eliminating the comparatively
expensive memory access. Additionally, a processor buffers the writes to memory
into something known as a dirty write-buffer. This helps the processor issue a batch
of memory update requests, reorders the instructions, and then determines the final
value to write to memory, known as write absorption.

Concurrency

[66]

Hardware memory barrier instructions
Memory access reordering is great for a sequential (single-threaded) program
performance, but it is hazardous for concurrent programs where the order of
memory access in one thread may disrupt the expectations in another thread.
The processor needs a means of synchronizing the access. This should be such
that memory reordering is either compartmentalized in code segments where it
does not matter or is prevented where it might have undesirable consequences.
The hardware supports such a safety measure in terms of a memory barrier,
also known as a fence.

There are several kinds of memory barrier instructions found on different
architectures with potentially different performance characteristics. The compiler,
or the JIT compiler in the case of the JVM, usually knows about the fence instructions
on the architectures it runs on. The common fence instructions are read barrier,
write barrier, acquire barrier, and release barrier. The barriers do not guarantee latest
data; rather, they only control relative ordering of memory access. Barriers cause the
write-buffer to be flushed after all writes are issued, before the barrier is visible to the
processor that issued it.

Read and write barriers control the order of reads and writes respectively.
Writes happen via a write-buffer, but reads may happen out of order or
from the write-buffer. To guarantee correct ordering, acquire and release
blocks/barriers are used. Acquire and release are considered as half barriers;
both of them together form a full barrier. A full barrier is more expensive
than a half barrier.

Java support and its Clojure equivalent
In Java, the memory barrier instructions are inserted by the higher-level coordination
primitives. Even though fence instructions are expensive to run (taking hundreds
of CPU cycles), they provide a safety net that makes accessing shared variables safe
within critical sections. In Java, the synchronized keyword marks a critical section
which can be executed by only one thread at a time, thus making a tool for "mutual
exclusion". In Clojure, the equivalent of Java's synchronized is the locking macro:

// Java example
synchronized (someObject) {
 // do something
}
;; Clojure example
(locking some-object
 ;; do something
)

Chapter 5

[67]

The locking macro builds upon two special forms: monitor-enter and
monitor-exit. Note that the locking macro is a low-level and imperative
solution, just like Java's synchronized. Their use is not considered idiomatic
in Clojure. The special forms monitor-enter and monitor-exit respectively
enter and exit the lock object's monitor. They are even lower level and not
recommended for direct use.

Someone measuring the performance of code that uses such locking should be aware
of its single-threaded versus multithreaded latencies. Locking in a single thread is
cheap; however, the performance penalty starts kicking in when there are two or
more threads contending for a lock on the same object monitor. A lock is acquired on
the monitor of an object, called intrinsic or monitor lock. Object equivalence (that is,
when the = function returns true) is never used for the purpose of locking—make
sure the object references are the same (that is, when identical? returns true) when
locking from different threads.

Acquiring a monitor lock by a thread entails a read barrier, which invalidates
the thread-local cached data and corresponding processor registers and cache
lines. This forces a re-read from memory. On the other hand, releasing a monitor
lock results in a write barrier, which flushes all changes to memory. These are
expensive operations that impact parallelism, but they ensure consistency of
data for all threads.

Java supports a volatile keyword for data members in a class, which guarantees
that read and write to the attribute outside of a synchronized block would not be
reordered. It is interesting to note that unless an attribute is declared volatile, it is
not guaranteed visibility in all the threads accessing it. The Clojure equivalent of
Java's volatile is the metadata ^:volatile-mutable that we discussed in Chapter
2, Clojure Abstractions. An example of volatile in Java and Clojure is as follows:

// Java example
public class Person {
 volatile long age;
}
;; Clojure example
(deftype Person [^:volatile-mutable ^long age])

Reading and writing a volatile data requires read-acquire or write-release fence
respectively, which means we need only a half barrier to individually read or write
the value. Note that due to the half barrier, read-followed-by-write operations are
not guaranteed to be atomic. For example, the expression age++ first reads the value,
then increments and sets it. This makes it two memory operations, which means it's
not a half barrier any more.

Concurrency

[68]

Atomic updates and state
It is a common use case to read a data element, execute some logic, and update
with a new value. For single-threaded programs, it bears no consequences, but for
concurrent scenarios, the entire operation must be carried out in a lockstep as an
atomic operation. This case is so common that many processors support this at the
hardware level using a special Compare-and-swap (CAS) instruction, which is
much cheaper than locking. On x86/x64 architectures, the instruction is called
CompareExchange (CMPXCHG).

Unfortunately, it is possible that another thread updates the variable with the same
value that the thread working on the atomic update is going to compare the old value
against. This is known as the ABA problem. The set of instructions load-linked (LL)
and store-conditional (SC), which are found in some other architectures, provide
an alternative to CAS without the ABA problem. After the LL instruction reads the
value from an address, the SC instruction to update the address with a new value goes
through only if the address was not updated after the LL instruction was successful.

Atomic updates in Java
Java has a bunch of built-in, lock free, atomic, thread-safe, compare-and-swap
abstractions for state management. They live in the java.util.concurrent.
atomic package. For primitive types such as boolean, integer, and long, there are
AtomicBoolean, AtomicInteger, and AtomicLong classes respectively. The latter
two classes support additional atomic add/subtract operations. For atomic
reference updates, there are the AtomicReference, AtomicMarkableReference,
and AtomicStampedReference classes for arbitrary objects. There is also support for
arrays where the array elements can be updated atomically—AtomicIntegerArray,
AtomicLongArray, and AtomicReferenceArray. They are easy to use:

(def ^AtomicReference x (AtomicReference. "foo"))
(.compareAndSet x "foo" "bar")
(def ^AtomicInteger y (AtomicInteger. 10))
(.getAndAdd y 5)

However, where and how to use them is entirely subjective to the update points
and logic in the code. The atomic updates are not guaranteed to be nonblocking.
Atomic updates are not a substitute for locking in Java, but rather a convenience
only when the scope is limited to a compare-and-swap operation for one mutable
state and you need to squeeze in more cycles in concurrent programming.

Chapter 5

[69]

Clojure's support for atomic updates
Clojure's atomic update abstraction is called atom. It uses AtomicReference under
the hood. An operation on AtomicInteger or AtomicLong may be slightly faster
than on the Clojure atom because the former uses primitives, but neither of them is
too cheap due to the compare-and-swap instruction they use in the CPU. The speed
really depends on how frequently the mutation happens and how the JIT compiler
optimizes the code. The benefit of speed may not be seen until the code is run several
hundred thousand times, and having an atom mutated very frequently will increase
the latency due to retries. Measuring the latency under actual (or similar to actual)
load can explain this better. An example of using an atom is given as follows:

user=> (def a (atom 0))
#'user/a
user=> (swap! a inc)
1
user=> @a
1
user=> (compare-and-set! a 1 5)
true
user=> (reset! a 20)
20

The swap! function provides a notably different style of carrying out atomic updates
than the compareAndSwap(oldval, newval) method. While compareAndSwap()
compares and sets the value returning true on success and false on failure, swap! keeps
on trying to update in an endless loop until it succeeds. This style is a popular pattern
that is even followed by Java developers. However, there is also a potential pitfall
associated with the update-in-loop style. As the concurrency of updaters gets higher,
the performance of an update may gradually degrade. Then again, high concurrency
on atomic updates raises a question as to whether uncoordinated updates were a good
idea at all for the use case. compare-and-set! and reset! are pretty straightforward.

The function passed to swap! is required to be pure (as in side-effect free) because
it is retried several times in a loop during contention. If the function is not pure,
the side effect may happen as many times as the retries.

Concurrency

[70]

It is noteworthy that atoms are not coordinated. This means that when an atom is
used concurrently by different threads, we cannot predict the order in which the
operations work on it, and as a consequence, we cannot guarantee the end result.
The code we write around atoms should be designed with this constraint in mind.
In many scenarios, atoms may not be a good fit due to lack of coordination—watch
out for this during program design. Atoms support metadata and basic validation
mechanisms via extra arguments. The following examples illustrate those features:

user=> (def a (atom 0 :meta {:foo :bar}))
user=> (meta a)
{:foo :bar}
user=> (def age (atom 0 :validator (fn [x] (<= x 200))))
user=> (swap! age 200)
200
user=> (swap! age inc)
IllegalStateException Invalid reference state clojure.lang.ARef.
validate (ARef.java:33)

The second important thing that atoms support is adding and removing watches on
them. We will discuss watches later in this chapter.

Asynchronous agents and state
While atoms are synchronous, agents are the asynchronous mechanism in Clojure
that affect any change in state. Every agent is associated with a mutable state. We pass
a function (known as action) to an agent with optional additional arguments—this
function gets queued for processing in another thread by the agent. All agents share
two common thread pools: one for low-latency (potentially CPU-bound, cache-bound,
or memory-bound) jobs and one for blocking (potentially I/O-related or lengthy
processing) jobs. Clojure provides the send function for low-latency actions, send-off
for blocking actions, and send-via to have the action executed on the user-specified
thread pool instead of either of the preconfigured thread pools. All of send, send-off,
and send-via return immediately. The following is how we can use them:

(def a (agent 0))
(send a inc) ; invokes (inc 0) in another thread, sets a to result
@a ; returns 1 (only if the `inc` action is done ; also see `await)
(send a + 2 3) ; invokes (+ 1 2 3) in another thread, sets a = result
@a ; returns 6
(def key nil)
(send-off event poll-network "DXUHCGE663GU")

Chapter 5

[71]

(shutdown-agents) ; shuts down the thread-pools
(send a inc) ; does not execute action anymore, so no result update
@a ; returns 6

On inspection of the Clojure 1.5.1 source code, we can find that the thread pool for
low-latency actions is named pooledExecutor (a bounded thread pool initialized
to a maximum of "2 + number of hardware processors" threads) and the thread
pool for high-latency actions is named soloExecutor (an unbounded thread pool).
The premise of this default configuration is that the CPU-, cache-, or memory-bound
actions run most optimally on a bounded thread pool with the default number of
threads. The I/O-bound tasks do not consume CPU resources. Hence, a relatively
larger number of such tasks can execute at the same time without significantly
affecting the performance of CPU-, cache-, or memory-bound jobs. The following
is how you can access and override the thread pools:

(import 'clojure.lang.Agent)
Agent/pooledExecutor ; thread pool for low-latency actions
Agent/soloExecutor ; thread pool for I/O actions
(import 'java.util.Executors)
(def a-pool (Executors/newFixedThreadPool 10)) ; 10 threads
(def b-pool (Executors/newFixedThreadPool 100)) ; 100 threads
(def a (agent 0))
(send-via a-pool a inc) ; use a-pool for the action
(set-agent-send-executor! a-pool ; set default pool for send
(set-agent-send-off-executor! b-pool ; set default for send off

If a program carries out a large number of I/O or blocking operations through
agents, it probably makes sense to limit the number of threads dedicated for
such actions. Overriding the send-off thread pool using set-agent-send-off-
executor! is the easiest way to limit the thread pool size. A more granular way
to isolate and limit the I/O actions on agents is to use send-via with thread pools
of appropriate sizes for various kinds of I/O and blocking operations.

Concurrency

[72]

Asynchrony, queuing, and error handling
Sending an action to an agent returns immediately without blocking. If the agent
is not already busy executing any action, it reacts by submitting the action to the
respective thread pool. If the agent is busy executing another action, the new action
is simply en-queued. Once an action is executed from the action queue, the queue is
checked for more entries and triggers the next action if entries are found. This whole
reactive mechanism of triggering actions obviates the need for polling the queue.
This is possible only because the entry points to an agent's queue are controlled.

Actions are executed asynchronously on agents, which raises the question of how
errors are handled. The error cases need to be handled with explicit predefined
functions. When using the default agent construction, such as (agent :foo),
the agent is created without any error handler and gets suspended on any exception.
It caches the exception and refuses to accept any more actions—it throws the cached
exception upon sending any action until the agent is restarted. A suspended agent
can be reset using the restart-agent function. The objective of such a suspension
is safety and supervision. When asynchronous actions are executed on an agent and
suddenly an error occurs, it requires attention.

(def g (agent 0))
(send g (partial / 10)) ; ArithmeticException due to divide by zero
@g ; returns 0, because the error did not change the old state
(send g inc) ; throws the cached ArithmeticException
(agent-error g) ; returns (doesn't throw) the exception object
(restart-agent g @g) ; clears the suspension of the agent
(agent-error g) ; returns nil
(send g inc) ; works now because we cleared the cached error
@g ; returns 1
(dotimes [_ 1000] (send-off g long-task))
(await-for 100 g) ; block for 100ms or until all actions over
(whichever earlier)
(await g) ; block until all actions dispatched till now are over

There are two optional parameters :error-handler and :error-mode that we can
configure on an agent to have finer control over error handling and suspension.

;; incorrect arity for error handler function below
(def g (agent 0 :error-handler (fn [x] (println "Found:" x))))
;; no error will be encountered because error-handler arity is wrong
(send g (partial / 10))
;; correct arity below
(def g (agent 0 :error-handler (fn [ag x] (println "Found:" x))))

Chapter 5

[73]

(send g (partial / 10)) ; prints the message
;; we can set error-handler after constructing an agent
(set error-handler! g (fn [ag x] (println "Found:" x)))
;; we can define agents to ignore errors and continue
(def h (agent 0 :error-mode :continue))
(send h (partial / 10)) ; error encountered, but agent not suspended
(send h inc)
@h ; returns 1
;; we can set the error-mode later, other possible value :fail
(set-error-mode! h : continue)

Advantages of agents
Just as the atom implementation uses only compare-and-swap instead of locking,
the underlying agent-specific implementation uses mostly compare-and-swap
operations. The agent implementation uses locks only when dispatching an action in
a transaction (discussed in the next section) or when restarting an agent. All actions
are queued and dispatched serially in the agents, regardless of the concurrency
level. Their serial nature makes it possible to execute actions in an independent and
contention-free manner. On one agent, there can never be more than one action being
executed. Since there is no locking, reads (deref or @) on agents are never blocked
due to writes. However, all actions are independent of each other—there is no
overlap in their execution.

The implementation goes so far as to ensure that the execution of an action blocks
the other actions behind it in the queue. Even though the actions are executed in a
thread pool, actions for the same agent are never executed concurrently. This is an
excellent ordering guarantee that also extends a natural coordination mechanism
due to its serial nature. However, note that this ordering coordination is limited to
only a single agent. If an agent action sends actions to two other agents, they are not
automatically coordinated. You may want to use transactions (discussed in the next
section) for such a situation.

Since agents distinguish between low-latency and blocking jobs, the jobs are executed
in appropriate thread pools. Actions on different agents may execute concurrently,
thereby making optimum use of threading resources. Unlike atoms, the performance
of agents is not impeded by high contention. In fact, in many cases, agents make
a lot of sense due to the serial buffering of actions. In general, agents are great
for high volume I/O tasks or where the ordering of operations provides a win
in high-contention scenarios.

Concurrency

[74]

Nesting
When an agent action sends another action to the same agent, that is a case of nesting.
This would have been nothing special if agents didn't participate in STM transactions
(covered in the next section). However, agents do participate in STM transactions and
that places certain constraints on agent implementation, which warrants a second-layer
buffering of actions. For now, it should suffice to say that the nested sends are queued
in a thread-local queue instead of the regular queue in the agent. The thread-local
queue is visible to only the thread in which the action is executed. Upon executing
an action, unless there was an error, the agent implicitly calls the equivalent of the
release-pending-sends function, which transfers the actions from a second-level,
thread-local queue to the normal action queue. Note that nesting is simply an
implementation detail of agents and has no other impact.

Coordinated transactional ref and state
We saw in an earlier section that an atom provides an atomic read-and-update
operation. What if we need to perform an atomic read-and-update operation
across two or even more atoms? This clearly poses a coordination problem.
Some entity has to be watching over the process of reading and updating so
that the values are not corrupted. This is what a ref provides—a system based
on software transactional memory (STM). This takes care of concurrent atomic
read-and-update operations across multiple refs such that either all updates go
through or, in the case of failure, none do. Like atoms, on failure, refs retry the
whole operation from scratch with new values.

Clojure's STM implementation is coarse grained—it works on the application
level's objects and aggregates (references to aggregates), which are scoped to
just all the refs in a program constituting Ref world. Any update to a ref can only
happen synchronously in a transaction in a dosync block of code within the same
thread—it cannot span beyond the current thread. The implementation detail
reveals that a thread-local transaction context is maintained during the lifetime
of a transaction. The same context is no longer available the moment the control
reaches another thread.

Like the other reference types in Clojure, reads on a ref are never blocked by the
updates and vice versa. However, unlike the other reference types, the implementation
of ref does not depend on lock-free spinning (that is, retrying in a loop until success);
rather, it uses locks, low-level wait/notify, deadlock detection, and age-based barging
(that is, arbitration between concurrent older and younger transactions) internally.

Chapter 5

[75]

The alter function is used to read and update the value of a ref, and ref-set is
used to reset the value. Roughly, alter and ref-set for refs are analogous to swap!
and reset! for atoms. Just like swap!, alter accepts a function (and arguments)
with no side effects and may be retried several times during contention.
However, unlike atoms, not only alter, but also ref-set and a simple deref
may cause a transaction to be retried during contention. The following is a very
simple example of how we may use a transaction:

(def r1 (ref [:a :b :c]))
(def r2 (ref [1 2 3]))
(alter r1 conj :d) ; IllegalStateException No transaction running...
(dosync (let [v (last @r1)] (alter r1 pop) (alter r2 conj v)))
@r1 ; returns [:a :b]
@r2 ; returns [1 2 3 :c]
(dosync (ref-set r1 (conj @r1 (last @r2))) (ref-set r2 (pop @r2)))
@r1 ; returns [:a :b :c]
@r2 ; returns [1 2 3]

Ref characteristics
Clojure maintains atomicity, consistency, and isolation (ACI) characteristics in a
transaction. This overlaps with A, C, and I of the Atomicity, Consistency, Isolation,
and Durability (ACID) guarantee that many databases provide. Atomicity implies
that either all of the updates in a transaction are completed successfully or none of
them are completed. Consistency means that the transaction must maintain general
correctness and should honor constraints set by validation—any exception or
validation error should rollback the transaction. Unless a shared state is guarded,
concurrent updates on it may lead to a multistep transaction seeing different values
at different steps. Isolation implies that all steps in a transaction will see the same
value no matter how concurrent the updates are.

Clojure refs use something called Multiversion concurrency control (MVCC) to
provide Snapshot Isolation to transactions. In MVCC, instead of locking (which could
block transactions), queues are maintained so that each transaction can occur using
its own snapshot copy taken at its read point, independent of other transactions.
The main benefit of this approach is that the read-only, out-of-transaction operations
can go through without any contention. Transactions without ref contention go
through concurrently. In a rough comparison to the database systems, the Clojure
ref isolation level is Read-Committed for reading a ref outside a transaction and
Repeatable-Read by default when inside the transaction.

Concurrency

[76]

Ref history and intransaction deref operations
We discussed earlier that both read and update operations on a ref may cause a
transaction to be retried. The reads in a transaction can be configured to use ref
history such that the snapshot isolation instances are stored in history queues and
are used by the read operations in transactions. The default uses a small history
that conserves heap space.

Using ref history reduces the likelihood of transaction retries caused by read
contention, thereby providing weak consistency. Therefore, it is a tool for
performance optimization at the cost of consistency. In many scenarios,
programs do not need strong consistency—we can choose appropriately
if we know the trade-off and what we need. The snapshot isolation mechanism
in Clojure's ref implementation is backed by adaptive history queues. The history
queues grow dynamically to meet the read requests and do not overshoot the
maximum limit set for the ref. By default, the min-history and max-history
values are set to 0 and 10 respectively. The following is an example of how to
use history:

(def r (ref 0 :min-history 5 :max-history 10))
(ref-history-count r) ; returns 0, no snapshot instances queued yet
(ref-min-history r) ; returns 5
(ref-max-history r) ; returns 10
(future (dosync (println "Sleeping 20 sec") (Thread/sleep 20000)
 (ref-set r 10)))
(dosync (alter r inc)) ; execute within few seconds after last expr
;; message "Sleeping 20 sec" appears twice due to transaction retry
(ref-history-count r) ; returns 2, count of snapsho history entries
(.trimHistory ^clojure.lang.Ref r)
(ref-history-count r) ; returns 0 because we wiped the history
(ref-min-history r 10) ; reset the min history
(ref-max-history r 20) ; reset the max history count

Chapter 5

[77]

Minimum/maximum history limits are proportional to the length of the staleness
window of data. They also depend on the relative latency difference of update and
read operations to see what range of min-history and max-history works well on
a given host system. It may take some amount of trial and error to get the range right.
As a ballpark figure, read operations need only as many min-history elements to
avoid transaction retries as many updates can go through during one read operation.
The max-history elements can be a multiple of min-history to cover for any history
overrun or underrun. If the relative latency difference is unpredictable, we have to
either plan min-history for the worst case scenario or consider other approaches.

Transaction retries and barging
A transaction can internally be in one of the five distinct states—running,
committing, retry, killed, and committed. A transaction can be killed for various
reasons. Exceptions are a common reason for killing a transaction. But let's
consider the corner case where a transaction is retried many times but it does
not appear to commit successfully—what is the resolution? Clojure supports
age-based barging, wherein an older transaction automatically tries to abort a
younger transaction so that the younger transaction is retried later. If barging
still doesn't work, as a last resort, the transaction is killed after a hard limit of
10,000 retry attempts and an exception is thrown.

Upping transaction consistency with ensure
Clojure's transactional consistency is a good balance between performance and
safety. However, at times, we may need serializable consistency in order to
preserve the correctness of a transaction. Concretely, in the face of transaction
retries, when a transaction's correctness depends on the state of a ref in the
transaction wherein the ref is updated simultaneously in another transaction,
we have a condition called write skew.

For example, let us say a ref process-order points to a flag that when true implies
that order processing can take place. Transaction t1 carries out the order processing
steps after reading process-order while simultaneously another transaction t2
checks stock and wants to update process-order—f. How can we isolate t1 and t2
to stop them from overlapping each other? The logical inconsistency following from
overlaps is write skew. Imagine a scenario where the transactions touch several refs
to do their job—how can we keep the ref world in a logically consistent state?

Concurrency

[78]

write skew can be solved using the ensure function that essentially prevents a ref
from modification by other transactions. It is like a locking operation, but in practice
it provides better concurrency than explicit read-and-update operations and does not
cause a deadlock. Using ensure is quite simple: (ensure ref-object). It holds locks
during the transaction but may still offer better performance as it avoids abort and
retry. In the example from the previous paragraph, each of t1 should call (ensure
process-order) in order to avoid write skew.

Fewer transaction retries with commutative
operations
Commutative operations are independent of the order in which they are applied.
For example, incrementing a counter ref c1 from transactions t1 and t2 would have
the same effect irrespective of the order in which t1 and t2 commit their changes.
Refs have a special optimization for change functions that are commutative for
transactions—the commute function, which is like alter (same syntax) but with
different semantics. Like alter, commute functions are applied atomically during
a transaction commit. However, unlike alter, commute does not cause a transaction
retry on contention and there is no guarantee about the order in which commute
functions are applied. This effectively makes commute nearly useless for returning
a meaningful value as a result of the operation. All commute functions in a transaction
are reapplied with the final in-transaction ref values during a transaction commit.

As we can see, commute reduces contention thereby optimizing the performance
of overall transaction throughput. Once we know that an operation is commutative
and we are not going to use its return value in a meaningful way, there is hardly
any trade-off deciding on whether to use commute—just go ahead and use it.
In fact, a program design with respect to ref transactions with commute in mind
is not a bad idea.

Agents can participate in transactions
In the previous section on agents, we discussed how agents work with queued
change functions. Agents can also participate in ref transactions, thereby making
it possible to combine the use of refs and agents in transactions. However, agents
are not included in the Ref world; hence, a transaction scope is not extended till the
execution of the change function in an agent. Rather, transactions only make sure
that changes sent to agents are queued until a transaction commit happens.

Chapter 5

[79]

The Nesting subsection in the earlier section on agents discusses a second-layer
thread-local queue. That thread-local queue is used during a transaction to hold the
sent changes to an agent until commit. The thread-local queue does not block the other
changes being sent to an agent. The out-of-transaction changes are never buffered in
the thread-local queue; rather, they are added to the regular queue in the agent.

Participation of agents in transactions provides an interesting angle of design,
where coordinated and independent/sequential operations can be pipelined as
a workflow for better throughput and performance.

Nested transactions
Clojure transactions are nesting-aware and they compose well. But, why would you
need a nested transaction? Often independent units of code may have their own
low-granularity transactions that a higher-level code can make use of. When the
higher-level caller itself needs to wrap actions in a transaction, nested transactions
occur. Nested transactions do not have their own life cycle and run-state; rather,
they are absorbed into the outer transaction without introducing deadlocks or
inconsistencies. However, an outer transaction can abort an inner transaction on
detection of failure.

The ref world snapshot ensures and commutes are shared among all (that is,
outer and inner) levels of a nested transaction. Due to this, the inner transaction
is treated as any other ref change operation (such as alter, ref-set, and many
more) within an outer transaction. The watches and internal lock implementation
are handled at the respective nesting level. Detection of contention in the inner
transactions causes a restart of not only the inner, but also the outer transaction.
Commits at all levels are carried out together finally when the outermost transaction
commits. The watches, even though tracked at each individual transaction level,
are finally enforced during the commit. A closer look at a nested transaction
implementation shows that nesting has little or no impact on the performance
of transactions.

Concurrency

[80]

Performance considerations
Clojure ref is perhaps the most complex reference type implemented yet. Due to
its characteristics, especially due to its transaction retry mechanism, it may not be
immediately apparent how such a system would have good performance during
high-contention scenarios. Understanding its nuances and the best ways of using
it should help:

•	 We do not use changes with side effects in a transaction, except for
sending I/O changes to agents where the changes are buffered until
commit. So, by definition, we do not carry out any expensive I/O work
in a transaction. Hence, a retry of that work would be cheap as well.

•	 A change function for a transaction should be as small as possible.
This lowers the latency and hence the retries will also be cheaper.

•	 Any ref that is not updated along with at least one more ref simultaneously
need not be a ref—an atom would do just fine in that case. Now that refs
make sense only in a group, their contention is directly proportional to the
group size. Small groups of refs used in transactions lead to low contention,
lower latency, and higher throughput.

•	 Commutative functions provide a good opportunity to enhance transaction
throughput without any penalty. Identifying such cases and designing with
commute in mind can help performance significantly.

•	 Refs are very coarse grained—they work at the application-aggregate level.
Often a program may need to have finer grained control over transaction
resources. This can be enabled by ref striping (in the same vein as lock
striping) refer to http://cljme.cgrand.net/2011/10/06/aworldinaref/
for more details.

•	 In high-contention scenarios, where the ref group size in a transaction cannot
be small, consider using agents as they have no contention due to their serial
nature. Agents may not be a replacement for transactions, but rather you
can employ a pipeline consisting of atoms, refs, and agents to ease out the
contention versus latency concerns.

Refs and transactions have an intricate implementation. Fortunately, we can inspect
the source code and browse through available online and offline resources.

Dynamic var binding and state
The fourth kind of Clojure reference type is the dynamic var. Since Clojure 1.3,
all vars are static by default. A var must be explicitly declared in order to be dynamic.
Once declared, a dynamic var can be bound to new values on a per-thread basis.

Chapter 5

[81]

Bindings on different threads do not block each other. An example is as follows:

(def ^:dynamic *foo* "bar")
(println *foo*) ; prints bar
(binding [*foo* "baz"] (println *foo*)) ; prints baz
(binding [*foo* "bar"] (set! *foo* "quux") (println *foo*)) ; prints quux

As dynamic binding is thread-local, it may be tricky to use in multithreaded scenarios.
Dynamic vars have been long abused by libraries and applications as a means to
pass in a common argument to be used by several functions. However, that style
is acknowledged to be an antipattern and is discouraged. Typically, in antipattern,
dynamic vars are wrapped by a macro to contain the dynamic thread-local binding in
the lexical scope. This causes problems with multithreading and lazy sequences.

So, how can dynamic vars be used effectively? A dynamic var lookup is more
expensive than looking up a static var. Even passing a function argument is
performance-wise much cheaper than looking up a dynamic var. Binding a dynamic
var incurs additional cost. Clearly, in performance-sensitive code, dynamic vars
are best not used at all. However, dynamic vars may prove to be useful to hold
temporary thread-local state in a complex or recursive call-graph scenario where
performance does not matter significantly, without being advertised or leaked into
the public API. Dynamic var bindings can nest and unwind like a stack, which makes
them attractive and suitable for such tasks.

Validating and watching the reference
types
Vars (both static and dynamic), atoms, refs, and agents provide a way to validate the
value being set as state—a validator function that accepts a new value as argument
and returns a logical true on success, or throws exception/returns a logical false
(false and nil values) on error. They all honor what the validator function returns.
On success, the update goes through and on encountering an error, an exception is
thrown instead. The following is the syntax of how validators can be declared and
associated with the reference types:

(def t (atom 1 :validator pos?))
(def g (agent 1 :validator pos?))
(def r (ref 1 :validator pos?))
(swap! t inc) ; ; goes through, value after increment (2) is positive
(swap! t (constantly -3)) ; throws exception
(def v 10)
(set-validator! (var v) pos?)
(set-validator! t #(>= % 10))
(set-validator! g #(>= % 10))
(set-validator! r #(>= % 10))

Concurrency

[82]

Validators cause actual failure within a reference type while updating them.
For vars and atoms, they simply prevent the update by throwing an exception.
In an agent, a validation failure causes agent failure and needs a restart of the
agent. Inside a ref, validation failure causes the transaction to rollback and
throws the exception once more.

Another mechanism to observe the changes to reference types is a watcher.
Unlike validators, a watcher is passive—it is notified of the update after the fact.
Hence, a watcher cannot prevent updates from going through because it is only
a notification mechanism. For transactions, a watcher is invoked only after the
transaction commit. While only one validator can be set on a reference type, it is
possible to associate multiple watchers to a reference type. Secondly, when adding
a watch, we can specify a key, so that notifications can be identified by the key and
dealt with accordingly by the watcher. The following is how to use watchers:

(def t (atom 1))
(defn w [key iref oldv newv] (println "Key:" key "Old:" oldv "New:"
newv))
(add-watch t :foo w)
(swap! t inc) ; prints "Key: :foo Old: 1 New: 2"

Like validators, watchers are executed synchronously in the thread of the reference
type. For atoms and refs, this may be fine, since while the notification to watchers
goes on, other threads may proceed with their updates. However, in agents,
the notification happens in the same thread where the update happens—this
makes the update latency higher and the throughput potentially lower.

Java concurrent data structures
Java has a number of mutable data structures that are meant for concurrency and
thread-safety, which implies multiple callers can safely access these data structures
at the same time without blocking each other. When we need only highly concurrent
access without state management, these data structures may be a very good fit.
(several of these employ lock-free algorithms). We discussed Java atomic state
classes in the Atomic updates and state section, so we will not repeat them here.
Rather, we will only discuss the concurrent queues and other collections. All these
data structures live in the java.util.concurrent package. These concurrent
data structures are tailored to leverage the JSR 133 Java Memory Model and Thread
Specification Revision implementation that first appeared in Java 5.

Chapter 5

[83]

Concurrent maps
Java has a mutable concurrent hash-map, java.util.concurrent.
ConcurrentHashMap (CHM for short). The concurrency level can be optionally
specified when instantiating the class, which is 16 by default. The CHM
implementation internally partitions the map entries into hash buckets and uses
multiple locks to reduce contention on each bucket. Reads are never blocked by
writes; therefore, they may be stale or inconsistent. This is countered by a built-in
detection of such situations and by issuing a lock in order to read the data again in a
synchronized fashion. This is an optimization for scenarios where reads significantly
outnumber writes. In CHM, all individual operations are near constant time unless
stuck in a retry loop due to lock contention.

In contrast with Clojure's persistent map, CHM cannot accept null (nil) as a key or
value. Clojure's immutable scalars and collections are automatically well suited for
use with CHM. An important thing to note is that only the individual operations in
CHM are atomic and exhibit strong consistency. As CHM operations are concurrent,
the aggregate operations provide rather weak consistency than true operation-level
consistency. The following code shows how we can use CHM. The individual
operations in CHM that provide better consistency are safe to use, and aggregate
operations should be reserved for when we know its consistency characteristics
and the related trade-off:

(import 'java.util.concurrent.ConcurrentHashMap)
(def ^ConcurrentHashMap m (ConcurrentHashMap.))
(.put m :english "hi") ; individual operation
(.get m :english) ; individual operation
(.putIfAbsent m :spanish "alo") ; individual operation
(.replace m :spanish "hola") ; individual operation
(.replace m :english "hi" "hello") ; individual CAS atomic operation
(.remove m :english) ; individua l operation
(.clear m) ; aggregate operation
(.size m) ; aggregate operation
(count m) ; internally uses the .size() method
(.putAll {:french "bonjour" :italian "buon giorno"}) ; aggregate op
(.keySet m) ; aggregate operation
(keys m) ; -> CHM.entrySet(), eachpair -> java.util.Map.Entry.getKey()
(vals m) ; -> CHM.entrySet(), pair -> java.util.Map.Entry.getValue()

Concurrency

[84]

The java.util.concurrent.ConcurrentSkipListMap class (CSLM for short) is
another concurrent mutable map data structure in Java. The difference between CHM
and CSLM is that CSLM offers a sorted view of the map at all times with O(log N)
time complexity. The sorted view has the natural order of keys by default, which can
be overridden by specifying a comparator implementation when instantiating
CSLM. The implementation of CSLM is based on the skip list and provides
navigation operations.

The java.util.concurrent.ConcurrentSkipListSet class (CSLS for short) is a
concurrent mutable set based on the CSLM implementation. While CSLM offers the
map API, CSLS behaves as a set data structure while borrowing features of CSLM.

Concurrent queues
Java has built-in implementation of several kinds of mutable and concurrent
in-memory queues. The queue data structure is a useful tool for buffering,
producer-consumer style implementation, and for pipelining such units together
to form high-performance workflows. We should not confuse them with durable
queues that are used for similar purposes in batch jobs for high throughput.
Java's in-memory queues are not transactional, but they provide atomicity
and strong consistency guarantee for the individual queue operations only.
Aggregate operations offer weaker consistency.

The java.util.concurrent.ConcurrentLinkedQueue (CLQ) class is a lock-free,
wait-free unbounded First-In-First-Out (FIFO) queue. FIFO implies that the order of
queue elements will not change once added to the queue. CLQ's size() method is
not a constant time operation; it depends on the concurrency level. A few examples
of using CLQ are as follows:

(import 'java.util.concurrent.ConcurrentLinkedQueue)
(def ^ConcurrentLinkedQueue q (ConcurrentLinkedQueue.))
(.add q :foo)
(.add q :bar)
(.poll q) ; returns :foo
(.poll q) ; returns :bar

Chapter 5

[85]

A summary of concurrent queues is listed in the following table:

Queue Blocking? Bounded? FIFO? Fairness? Notes

CLQ No No Yes No Wait-free, but size() is not
constant-time

ABQ Yes Yes Yes Optional Capacity is fixed at instantiation

DQ Yes No No No Elements implement the
Delayed interface

LBQ Yes Optional Yes No Capacity flexible, but no
fairness option

PBQ Yes No No No Elements are consumed in
priority order

SQ Yes – – Optional No capacity; serves as a channel

In the java.util.concurrent package, ArrayBlockingQueue (ABQ),
DelayQueue (DQ), LinkedBlockingQueue (LBQ), PriorityBlockingQueue (PBQ),
and SynchronousQueue (SQ) implement the BlockingQueue (BQ) interface—its
Javadoc describes the characteristics of its method calls. ABQ is a fixed-capacity,
FIFO queue backed by an array. LBQ is also a FIFO queue backed by linked nodes,
and it is optionally bounded (default Integer.MAX_VALUE). ABQ and LBQ generate
back pressure by blocking the enqueue operations on full capacity. ABQ supports
optional fairness (with performance overhead) in the order of threads that access it.

DQ is an unbounded queue that accepts elements associated with the delay.
The queue elements cannot be null and must implement the java.util.
concurrent.Delayed interface. Elements are available for removal from the
queue only after the delay has expired. DQ can be very useful for scheduling
the processing of elements at different times.

PBQ is unbounded and blocking while letting elements to be consumed from
the queue as per priority. Elements have natural ordering by default which can
be overridden by specifying a comparator implementation when instantiating
the queue.

Concurrency

[86]

SQ is not really a queue at all. Rather, it's just a barrier for a producer or a consumer
thread. The producer forms a block until a consumer removes the element and
vice versa. SQ does not have a capacity. However, SQ supports optional fairness
(with performance overhead) in the order in which threads access it.

There are some new concurrent queue types introduced after Java 5. Since JDK
1.6, in the java.util.concurrent package Java has BlockingDeque (BD) with
LinkedBlockingDeque (LBD) as the only available implementation. BD builds
on BQ by adding Deque (double-ended queue) operations, that is, the ability to
add elements to and to consume elements from both ends of the queue. LBD can
be instantiated with optional capacity (bounded) to block on overflow. JDK 1.7
introduced TransferQueue (TQ) with LinkedTransferQueue (LTQ) as the only
implementation. TQ extends the concept of SQ such that producers and consumers
block on a queue of elements—this would help utilize producer and consumer
threads better by keeping them busy. LTQ is an unbounded implementation of
TQ, where the size() method is not a constant time operation.

Clojure support for concurrent queues
We discussed persistent queues in Chapter 2, Clojure Abstractions. Clojure has a
built-in seque function that builds over a BQ implementation (LBQ by default)
to expose a write-ahead sequence. The sequence is potentially lazy and the
write-ahead buffer throttles how many elements can be realized. As opposed
to chunked sequences (of chunk size 32), the size of the write-ahead buffer is
controllable and potentially populated at all times until the source sequence
is exhausted. Unlike chunked sequences, the realization doesn't happen
suddenly for a chunk of 32 elements. It does so gradually and smoothly.

Clojure's seque function uses an agent under the hood to backfill data into the
write-ahead buffer. In the arity-2 variant of seque, the first argument should
either be a positive integer or an instance of BQ (ABQ, LBQ, and so on) that
is preferably bounded.

Concurrency with threads
On the JVM, threads are the de-facto, fundamental instrument of concurrency.
Multiple threads live in the same JVM; they share the heap space and compete
for resources.

Chapter 5

[87]

JVM support for threads
JVM threads are the operating system threads. Java wraps an underlying OS thread
as an instance of the java.lang.Thread class and builds up an API around it to work
with threads. A thread on the JVM has a number of states: New, Runnable, Blocked,
Waiting, Timed_Waiting, and Terminated. A thread is instantiated by overriding
the run() method of the Thread class or by passing an instance of the java.lang.
Runnable interface to the constructor of the Thread class. Invoking the start()
method of a Thread instance starts its execution in a new thread. Even when just
a single thread is running in the JVM, the JVM would not shut down. Calling the
setDaemon(boolean) method of a thread with the argument true tags the thread
as a daemon that can be automatically shut down if no other non-daemon thread
is running.

All Clojure functions implement the java.lang.Runnable interface.
Therefore, invoking a function in a new thread is very easy:

(defn foo [] (dotimes [_ 5] (println "Foo")))
(defn bar [n] (dotimes [_ n] (println "Bar")))
(.start (Thread. foo)) ; prints "Foo" 5 times
(.start (Thread. (partial bar 3))) ; prints "Bar" 3 times

The run() method does not accept any argument. We can work around that by
creating a higher-order function that needs no arguments but internally applies
the argument 3.

Thread pools in the JVM
Creating threads leads to operating system API calls, which is not always a cheap
operation. The general practice is to create a pool of threads that can be recycled for
different tasks. Java has a built-in support for threads pools. The interface java.
util.concurrent.ExecutorService represents the API for a thread pool. The most
common way to create a thread pool is to use a factory method in the java.util.
concurrent.Executors class:

((import 'java.util.concurrent.Executors)
(import 'java.util.concurrent.ExecutorService)
(def ^ExecutorService a (Executors/newSingleThreadExecutor)) ;bounded
(def ^ExecutorService b (Executors/newCachedThreadPool)) ; unbounded
(def ^ExecutorService c (Executors/newFixedThreadPool 5)) ; bounded
(.execute b #(dotimes [_ 5] (println "Foo"))) ; prints "Foo" 5 times

Concurrency

[88]

The preceding example is equivalent to the examples with raw threads, which we saw
in the previous subsection. Thread pools are also capable of tracking the completion
and return value of a function executed in a new thread. An ExecutorService
element accepts an instance of the java.util.concurrent.Callable instance as
argument to several methods that launch a task and return a java.util.concurrent.
Future instance to track the final result. All Clojure functions also implement the
Callable interface, so we can use them as follows:

(import 'java.util.concurrent.Callable)
(import 'java.util.concurrent.Future)
(def ^ExecutorService e (Executors/newSingleThreadExecutor))
(def ^Future f (.submit e (cast Callable #(reduce + (range
10000000)))))
(.get f) ; blocks until result is processed, then returns it

The thread pools described here are the same as the ones we saw briefly in the
agents section earlier. Thread pools need to be shut down by calling the shutdown()
method when they are no longer required.

Clojure concurrency support
Clojure has some nifty built-in features to deal with concurrency. We already discussed
agents and how they use the thread pools in an earlier section. There are some more
concurrency features in Clojure to deal with various use cases.

Asynchronous execution with Futures
We saw earlier in this chapter how we can use the Java API to launch a new
thread to execute a function and also how to get the result back. Clojure has
built-in support, called Futures, to do those things in a much smoother and
integrated manner. The basis of Futures are the future-call function (take a
no-arg function as argument) and the future macro (take the body of code as
argument) which builds on the former. Both of them immediately start a thread
to execute the supplied code. The following snippet illustrates the functions
that work with Futures and how to use them:

;; runs body in new thread
(def f (future (println "Calculating") (reduce + 1e7)))
;; takes no-arg fn
(def g (futurecall # (do (println "Calculating") (reduce + 1e7))))
(future? f) ; returns true
;; cancels execution unless already over (can stop mid-way)
(future-cancel g)

Chapter 5

[89]

;; returns true if canceled due to request, or due to exception
(future-cancelled? g)
;; returns true if terminated successfully, or canceled
(future-done? f)
;; same as future-done? for futures
(realized? f)
;; blocks if computation not yet over (use deref for timeout)

One of the interesting aspects of future-cancel is that it can sometimes not
only cancel tasks that haven't started yet, but may abort those that are half way
through execution:

(let [f (future (println "[f] Before sleep")
 (Thread/sleep 2000)
 (println "[f] After sleep")
 2000)]
 (Thread/sleep 1000)
 (future-cancel f)
 (future-cancelled? f))
;; [f] Before sleep printed message (second message is never printed)
;; true returned value (due to future-cancelled?)

The preceding scenario happens because Clojure's future-cancel function cancels
a Future in such a way that if the execution has already started, it may be interrupted
causing InterruptedException, which if not explicitly caught would simply abort
the block of code. In order for an executing Future task to be canceled cleanly via
future-cancel, it must support catching of InterruptedException and logically
cancel the task if Object.wait() or Thread.join() or Thread.sleep() are invoked;
also, it must check Thread/interrupted for any cancel requests. Beware of exceptions
arising from the code executed in a Future, because they are not verbosely reported by
default! Clojure Futures use the solo thread pool (used to execute potentially blocking
actions) that we discussed earlier with respect to agents.

Concurrency

[90]

Anticipated asynchronous execution result
with promises
A promise is a placeholder for the result of a computation that may or may
not have occurred. A promise is not directly associated with any computation.
By definition, a promise does not imply when the computation might occur.

Typically, a promise originates from one place in the code and is realized by some
other portion of the code that knows when and how to realize the promise. Very often,
this happens in multithreaded code. If a promise is not realized yet, any attempt to
read the value blocks all callers. If a promise is realized, all callers can read the value
without being blocked. As with Futures, a promise can be read with a timeout using
deref. The following is a very simple example showing how to use promises:

(def p (promise))
(realized? p) ; returns false
@p ; will block until another thread delivers the promise
(deliver p :foo)
@p ; returns :foo (for timeout use deref)

A promise is a very powerful tool that can be passed around as function arguments,
stored in a reference type, or simply used for high-level coordination.

Clojure parallelization and the JVM
We observed in Chapter 1, Performance by Design, that parallelism is a function of the
hardware, whereas concurrency is a function of the software assisted by hardware
support. Except for algorithms that are purely sequential by nature, concurrency
is the favored means to facilitate parallelism and achieve better performance.
Immutable and stateless data is a catalyst to concurrency as there is no contention
between threads due to the absence of mutable data.

Moore's law
In 1965, Intel's co-founder Gordon Moore made an observation that the number of
transistors per square inch on integrated circuits doubles every 24 months. He also
predicted that the trend would continue for 10 years, but in practice, it has continued
till now, marking almost half a century. More transistors resulted in more computing
power. With a larger number of transistors in the same area, we need higher clock
speed to transmit signals to all of the transistors. Secondly, transistors need to
get smaller to fit in. Around 2006 to 2007, the clock speed that the circuitry could
work with topped out at about 2.8 GHz due to heating issues and laws of physics.
Then multicore processors were born.

Chapter 5

[91]

Amdahl's law
Multicore processors naturally require splitting up computation in order to achieve
parallelization. Here begins a conflict—a program that was made to be run
sequentially cannot make use of the parallelization features of multicore processors.
The program must be altered to find the opportunity to split up computation at
every step while keeping the cost of coordination in mind. This results in a limitation
that a program can be no faster than its longest sequential part and the coordination
overhead. This characteristic is described by Amdahl's law.

Clojure support for parallelization
A program that relies on mutation cannot parallelize its parts without creating
contention on the mutable state. It requires coordination overhead, which makes
the situation worse. Clojure's immutable nature is better suited to parallelize parts
of a program. Clojure also has some constructs that are suited for parallelism by the
virtue of Clojure's consideration of available hardware resources. The result is that
the operations executed are optimized for certain use case scenarios.

pmap
The function pmap (like map) accepts as arguments a function and one or more
collections of data elements. The function is applied to each of the data elements
in such a way that some of the elements are processed by the function in parallel.
The parallelism factor is chosen at runtime by the pmap implementation as two
greater than the total number of available processors. It still processes the
elements lazily, but the realization factor is the same as the parallelism factor:

(pmap (partial reduce +)
 [(range 1000000)
 (range 1000001 2000000)
 (range 2000001 3000000)])

To use pmap effectively, it is imperative that we understand what it is meant for.
As the documentation says, it is meant for computationally-intensive functions. It is
optimized for CPU-bound and cache-bound jobs. High-latency, low-CPU tasks such
as blocking I/O is a gross misfit for pmap. Another pitfall to be aware of is whether
the function used in pmap performs a lot of memory operations. Since the same
function will be applied across all threads, all processors (or cores) may compete
for the memory interconnect and subsystem bandwidth. If parallel memory access
becomes a bottleneck, pmap cannot make the operation truly parallel due to the
contention on memory access.

Concurrency

[92]

Another concern is what happens when several pmap operations are running
concurrently? Clojure does not attempt to detect multiple pmaps running
concurrently. The developer is responsible to ensure the performance
characteristics and response time of the program resulting from concurrent
pmap executions. Usually, when latency reasons are paramount, it is advisable
to limit the concurrent instances of pmap running in the program.

pcalls
The pcalls function is built using pmap, so it borrows properties from the latter.
However, the pcalls function accepts zero or more functions as arguments and
executes them in parallel, returning the result values of the calls as a list.

pvalues
The pvalues macro is built using pcalls, so it transitively shares the properties
of pmap. Its behavior is like pcalls, but instead of functions, it accepts zero or
more S-expressions that are evaluated in parallel using pmap.

Java 7's fork/join framework
Java 7 introduced a new framework for parallelism called fork/join based on
divide-and-conquer and work-stealing scheduler algorithms. The basic idea of
how to use the fork/join framework is fairly simple: if the work is small enough,
do it directly in the same thread; otherwise, split the work in to two pieces and
invoke them in a fork/join thread pool and wait for the results to combine.
This way, the job gets recursively split into smaller parts like an inverted
tree until the smallest part can be carried out in just a single thread. When the
leaf/subtree jobs return, the parent combines the result of all children and
returns the results.

The fork/join framework is implemented in Java 7 in terms of a special kind of
thread pool; see java.util.concurrent.ForkJoinPool. The specialty of this
thread pool is that it accepts jobs of the type java.util.concurrent.ForkJoinTask,
and whenever these jobs block waiting for the child jobs to finish, the threads
used by the waiting jobs are allocated to the child jobs. When the child finishes its
work, the thread is allocated back to the blocked parent jobs in order to continue.
This style of dynamic thread allocation is described as work-stealing. The fork/
join framework can be used from within Clojure. The interface ForkJoinTask has
two implementations—RecursiveAction and RecursiveTask in the java.util.
concurrent package. Concretely, RecursiveTask may be more useful with Clojure
as RecursiveAction is designed to work with mutable data and does not return
any value from its operation.

Chapter 5

[93]

Using the fork/join framework entails choosing the batch size to split a job into,
which is a crucial factor in parallelizing a long job. Too large a batch size may not
utilize all CPU cores enough. On the other hand, a small batch size may lead to
longer overhead coordinating across parent-child batches. As we would see in the
next section, Clojure integrates with the fork/join framework to parallelize the
reducer's implementation.

Parallelism with reducers
Reducers are a new abstraction introduced in Clojure 1.5 and are likely to have a wider
impact on the rest of the Clojure implementation in future versions. They depict a
different way of thinking about processing collections in Clojure—the key concept is
to break down the notion that collections can be processed only sequentially, or only
lazily, or only producing a seq, and so on. Moving away from such behavior guarantee
raises the potential for eager and parallel operations on one hand while incurring
constraints on the other hand. Reducers are compatible with the existing collections.

For an example, an observation of the regular map function reveals that its classic
definition is tied to the mechanism (recursion), order (sequential), laziness (often),
and representation (list/seq/other) aspects of producing the result. Most of this
actually defines "how" the operation is performed rather than "what" needs to be
done. In the case of map, the "what" is all about applying a function to each element
of its collection arguments; but since collection types can be of various types
(tree-structured, sequence, iterator, and so on), the operating function would
not know how to navigate the collection. Reducers decouple the "what" and
"how" parts of the operation.

Reducible, reducer function, reduction
transformation
Collections are of various kinds, and hence only a collection knows how to navigate
itself. In the reducer's model at a fundamental level, an internal "reduce" operation
in each collection type has access to its properties and behavior, and access to what it
returns. This makes all collection types essentially "reducible". All operations that work
with collections can be modeled in terms of the internal "reduce" operation—the new
modeled form of such operations is a reducing function, which is typically a function
of two arguments; the first argument being the accumulator and the second being
the new input.

Concurrency

[94]

How does it work when we need to layer several functions one upon another
over elements of a collection? For example, let us say first we need to filter,
then map, and then reduce. In such cases, a "transformation function" is used
to model a reducer function (for example, for filter) as another reducer function
(for map) such that it adds the functionality during transformation. This is called
reduction transformation.

Realizing reducible collections
While reducer functions retain the purity of the abstraction, they are not useful all by
themselves. Reducer operations in the namespace clojure.core.reducers, such
as map and filter, return a reducible collection that embeds the reducer functions
within themselves. A reducible collection is not realized, not even lazily realized—it
is rather just a recipe ready to be realized. In order to realize a reducible collection,
we must use one of the reduce or fold operations.

The reduce operation that realizes a reducible collection is strictly sequential,
albeit with performance gains compared to clojure.core/reduce due to reduced
object allocations on the heap. The fold operation that realizes a reducible
collection is potentially parallel and uses a "reduce-combine" approach over the
fork/join framework. Unlike the traditional map-reduce style of using fork/join,
the reduce-combine approach reduces at the bottom and subsequently combines by
means of reduction again. This makes the fold implementation less wasteful and
better performing.

Foldable collections and parallelism
Parallel reduction by fold puts certain constraints on collections and operations.
The tree-based collection types (persistent map, persistent vector, and persistent
set) are amenable to parallelization. At the same time, sequences may not be
parallelized by fold. Secondly, fold requires that the individual reducer functions
should be "associative", that is, the order of the input arguments applied to the
reducer function should not matter. The reason is that fold can segment the
elements of the collection to process in parallel and the order in which they
may be combined is not known in advance.

Chapter 5

[95]

The fold function accepts a few extra arguments, such as the combine function and
the partition batch size (default being 512) for parallel processing. Choosing the
optimum partition size depends on the jobs, host capabilities, and performance
benchmarking. There are certain functions that are foldable (that is, parallelizable by
fold), and there are others that are not, as shown below. They live in the clojure.
core.reducers namespace:

•	 Foldable: map, mapcat, filter, remove, and flatten
•	 Non-foldable: take-while, take, and drop
•	 Combine functions: cat, foldcat, and monoid

A notable aspect of Reducers is that they are foldable in parallel only when
the collection is a tree-type collection. That implies the entire data set must be
loaded in the heap when folding over them. This has the downside of memory
consumption during high load on a system. On the other hand, a lazy sequence
is a perfectly reasonable solution for such scenarios. When processing a large
amount of data, it may make sense to use a combination of lazy sequences and
Reducers for performance.

Summary
Concurrency and parallelism are extremely important for performance in this
multicore age. Effective use of concurrency requires substantial understanding of
the underlying principles and details. Fortunately, Clojure provides safe and elegant
ways to deal with concurrency and state. Clojure's new feature "Reducers" provides
a way to achieve granular parallelism. In the coming years, we are likely to see
more and more processor cores and an increasing demand to write code that takes
advantage of those. Clojure places us in the right spot to meet such challenges.

In the next chapter, we will look at performance analysis and optimization,
and we will briefly touch upon performance tuning.

Optimizing Performance
Depending on the degree of mismatch between expected and actual performance
and the lack or presence of measuring systems in place, performance analysis and
tuning can be a fairly elaborate process. In this chapter, we will discuss analysis of
performance characteristics and the opportunities for performance optimization.
The elements involved in such activities are not specific to Clojure, so it should be
possible to apply these concepts to other JVM systems too. In this chapter, we will
discuss the following topics:

•	 How to measure performance and understand the measurement results
•	 What performance tests to carry out for different purposes
•	 Monitoring performance and obtaining metrics
•	 Profiling Clojure code to identify performance bottlenecks
•	 Tuning performance measurement and statistics

Measuring performance is the stepping stone to performance analysis. Often, where we
think the code underperforms is not where the problem lies. So much so that it is rarely
advisable to start optimizing performance until we measure it. As we’ve noted earlier
in this book, there are several performance parameters to measure under various
scenarios. Clojure’s built-in time macro is a tool to measure the amount of time elapsed
while executing a body of code. Measuring performance factors is a much more
involved process. The measured performance numbers may be linked with each other
that we need to analyze. It is a common practice to use statistical concepts to establish
the linkage factors. We will discuss some basic statistical concepts in this section and
use them to explain how the measured data gives us the bigger picture.

Optimizing Performance

[98]

A tiny statistics terminology primer
When we have a series of quantitative data, such as latency in milliseconds, for the
same operation (measured over a number of executions), we can observe a number
of things. First, and the most obvious, are the minimum and maximum values in the
data. Let us take an example data set to analyze further:

23 19 21 24 26 20 22 21 25 168 23 20 29 172 22 24 26

Median, first quartile, and third quartile
We can see that the minimum latency here is 19 ms, whereas the maximum latency is
172 ms. We can also observe that the average latency here is about 40 ms. Let us sort
this data in ascending order:

19 20 20 21 21 22 22 23 23 24 24 25 26 26 29 168 172

The center element of the preceding data set, that is, the ninth element (value 23),
is considered the median of the data set. It is noteworthy that the median is a better
representative of the center of the data than the average or mean. The center element
of the left-half of the table, that is, the fifth element (value 21), is considered the first
quartile. Similarly, the center element of the right-half of the table, that is, the 13th
element (value 26), is considered the third quartile of the data set. The difference
between the third quartile and the first quartile is called the Inter Quartile Range
(IQR), which is five in this case. This can be illustrated with a boxplot as follows:

Chapter 6

[99]

A boxplot highlights the first quartile, median, and third quartile of a data set. As you
can see, the two outlying latency numbers (168 and 172) are unusually higher than the
others. The median does not represent outliers in a data set, whereas the mean does.
The same data can be depicted as a histogram:

A histogram (as shown in the preceding diagram) is another way to display a data
set, where we batch the data elements into periods and expose the frequency of such
periods. A period contains the elements in a certain range. All periods in a histogram
are generally of the same size; however, it is common to omit certain periods when
there is no data.

Percentile
A percentile is expressed with a parameter, such as 99th percentile or 95th percentile,
and so on. The percentile is the value below which all the specified percentage of data
elements exist. For example, the 95th percentile indicates the value N in a data set,
such that 95 percent of the elements in the data set are below N in value. As a concrete
example, the 85th percentile in the data set of latency numbers we’ve discussed earlier
in this section is 29; because, out of the 17 total elements, 14 (that is, 85 percent of 17)
other elements in the data set have a value less than 29. A quartile splits a data set
into chunks, each comprising 25 percent of its elements. Therefore, the first quartile
is actually the 25th percentile, the median is the 50th percentile, and the third quartile
is the 75th percentile.

Optimizing Performance

[100]

Variance and standard deviation
The spread of the data in a data set, that is, how far the data elements are from
the mean, gives us further insight into the data. Consider the ith deviation as the
difference between the ith data set element value (in statistical terms, a variable
value) and its mean; we can represent it as follows:

We can express its variance and standard deviation as follows:

()
()

() ()
()

2

1

2

1

Variance
1

Standard Deviation
1

n
ii

n
ii

x x
n

x x
Variance

n
σ

=

=

−
=

−

−
= =

−

∑

∑

Standard deviation is shown as the Greek letter σ (sigma) or simply s. Consider the
following Clojure code to determine variance and standard deviation:

(def tdata [23 19 21 24 26 20 22 21 25 168 23 20 29 172 22 24 26])

(defn var-std-dev
 “Return variance and standard deviation in a vector”
 [data]
 (let [size (count data)
 mean (/ (reduce + data) size)
 sum (->> data
 (map #(let [v (- % mean)] (* v v)))
 (reduce +))
 variance (double (/ sum (dec size)))]
 [variance (Math/sqrt variance)]))

user=> (println (var-std-dev tdata))
[2390.345588235294 48.89116063497873]

You can use the Clojure-based platform Incanter (http://incanter.org/) for
statistical computations. For example, you can find standard deviation using
(incanter.stats/sd tdata) in Incanter.

The empirical rule states the relationship between the elements of a data set and
the standard deviation (SD) in a normal distribution. It says that 68.3 percent of all
elements in a data set lie in the range of one (positive or negative) SD from the mean,
95.5 percent of all elements lie in the range of two SDs from the mean, and 99.7 percent
of all data elements lie in the range of three SDs from the mean.

Chapter 6

[101]

Looking at the latency data set we started out with, one SD from mean is 40 ± 49
(range -9 to 89) containing 88 percent of all elements. Two SDs from the mean
is 40 ± 98 (range -58 to 138) containing the same 88 percent of all elements.
However, three SDs from the mean is 40 ± 147 (range -107 to 187) containing
100 percent of all elements. There is a mismatch between what the empirical rule
states and the results we’ve found because the empirical rule applies generally to
uniformly distributed data sets with a large number of elements.

Understanding criterium output
In Chapter 4, Host Performance, we introduced the Clojure library criterium to measure
the latency of Clojure expressions. A sample benchmarking result is as follows:

user=> (bench (reduce + (range 1000)))
Evaluation count : 162600 in 60 samples of 2710 calls.
 Execution time mean : 376.756518 us
 Execution time std-deviation : 3.083305 us
 Execution time lower quantile : 373.021354 us (2.5%)
 Execution time upper quantile : 381.687904 us (97.5%)

Found 3 outliers in 60 samples (5.0000 %)
 low-severe 2 (3.3333 %)
 low-mild 1 (1.6667 %)
 Variance from outliers : 1.6389 % Variance is slightly inflated by
outliers

We can see that the result has some familiar terms we’ve discussed earlier in this
section. A high mean and low standard deviation indicate that there is not a lot
of variation in the execution times. Likewise, the lower (first) and upper (third)
quartiles indicate that the values are not too far away from the mean. This result
implies that the body of code is more or less stable in terms of response time.
Criterium repeats the execution many times to collect the latency numbers.

However, why does criterium attempt to do a statistical analysis of the execution
time? What would be amiss if we simply calculated the mean? It turns out that the
response times of all executions are not always stable and there is often disparity
between how the response times show up. Only upon running criterium a sufficient
number of times under correctly simulated load can we get complete data and get
other indicators about latency. A statistical analysis gives us an insight into whether
there is something wrong with the benchmark.

Optimizing Performance

[102]

Guided performance objectives
We discussed performance objectives only briefly in Chapter 1, Performance by Design.
Detail discussion of performance objectives needs to refer to statistical concepts such
as standard deviation, and percentile. Let us say we’ve identified the functional
scenarios and the corresponding response times. Should the response times remain
fixed? Can we constrain throughput in order to prefer a stipulated response time?

The performance objective should specify the worst-case response time, that is,
the maximum latency, average response time, and maximum standard deviation.
Similarly, the performance objective should also mention the worst-case
throughput, maintenance window throughput, average throughput, and
maximum standard deviation.

Performance testing
Testing for performance requires that we know what we are going to test, how we
want to test it, and what environment to set up for the tests to execute. There are
several pitfalls to be aware of, such as a lack of near-real hardware and resources
of production use, similar OS and software environments, diversity of representative
data for test cases, and so on. Lack of diversity in test inputs may lead to monotonic
branch prediction, which introduces bias in test results. Collecting enough
performance test samples is a significant criterion to obtain a statistically
meaningful data set and prevent skewing.

Test environment
Concerns about the test environment begin with the hardware representative of
the production environment. Traditionally, the test environment hardware has
been a scaled-down version of the production environment. A performance
analysis done on a non-representative hardware is almost certain to skew the
results. Fortunately, in recent times, thanks to the commodity hardware and
Cloud systems, providing test environment hardware that is similar to the
production environment is not too difficult.

The network and storage bandwidth, OS, and software used for performance testing
should, of course, be the same as those in the production environment.. What is also
important is to have a load representative of the test scenarios. The load comes in
different combinations, including the concurrency of requests, the throughput and
standard deviation of requests, the current population level in the database or in
the message queue, CPU and heap usage, and so on. It is important to simulate a
representative load.

Chapter 6

[103]

Testing often requires quite some work on the part of the piece of code that carries out
the test. Be sure to keep its overhead minimal so that it does not impact the benchmark
results. When possible, use a system other than the test target to generate requests.

What to test
Any implementation of a non-trivial system typically involves many hardware
and software components. Performance testing a certain feature or service in the
entire system needs to account for the way it interacts with the various subsystems;
a break-down of the time spent across subsystems gives us quicker insight into
the potential bottlenecks. For example, a web service call may touch multiple
layers, such as the web server (request/response marshaling and unmarshaling),
URL-based routing, service handler, application-database connector, the database
layer, logger component, and so on. Testing only the service handler would be a
terrible mistake because that does not depict exactly the performance that the web
client will experience. The performance test should test at the perimeter of a system,
for example at the HTTP layer in the case of a web service, to keep the results
realistic. To test a network traffic it is preferable to have a third-party observer
that incurs little overhead on the client or the server.

The performance objectives state the criteria for testing. It would be useful not to test
what is not required by the objective, especially when the tests are run concurrently.
Running meaningful performance tests may require a certain level of isolation.

Measuring latency
The latency obtained by executing a body of code may vary slightly on each run.
This necessitates that we execute the code many times and collect samples.
The latency numbers may be impacted by the JVM warm-up time, GC, and the JIT
compiler having not yet kicked in. So, the test and sample collection should ensure
that these conditions do not impact the results. Criterium follows such methods
while capturing samples. When we test a very small piece of code this way, it is
called a Micro-benchmark.

As the latency of some operations may vary during runs, it is useful to collect all
samples and segregate them into periods and frequencies, forming a histogram.
The maximum latency is an important metric when measuring latency; it indicates
the worst-case latency. Besides the maximum, the 99th percentile and 95th percentile
latency numbers help to put things in perspective. It’s crucial to actually collect the
latency numbers instead of inferring them from the standard deviation, as we’ve
noted earlier that the empirical rule works only for normal distributions without
significant outliers.

Optimizing Performance

[104]

The outliers are an important data point when measuring latency. A proportionately
higher count of outliers indicates the possibility of degradation of service.

Measuring throughput
Throughput is expressed per unit of time. Coarse-grained throughput, that is,
the throughput number collected over a long period of time, may hide facts about
instances when the throughput is actually delivered in bursts instead of a uniform
distribution. Granularity of the throughput test is subject to the nature of the
operation. A batch process may process bursts of data, whereas a web service
may deliver uniformly distributed throughput.

Load, stress, and endurance tests
One of the characteristics of tests is that each run only represents the slice of time it
is executed through. Repeated runs establish their general behavior. But, how many
runs should be enough? There may be several anticipated load scenarios for an
operation. So, there is a need to repeat the tests in the various load scenarios.
Simple test runs may not always exhibit the long term behavior and response of
the operation. Running the tests under varying high load for a longer duration allows
us to observe them for any odd behavior that may not show up in a short test cycle.
Often, performance issues crop up in specific scenarios and corner cases, all of
which may be difficult to frame in example-based testing. For the rigorous testing
of various use cases, you may like to consider simulation testing using tools such
as Simulant available at https://github.com/Datomic/simulant.

When we test an operation at a load far beyond its anticipated latency and throughput
objectives, that is called stress testing. The intent of a stress test is to ascertain a
reasonable behavior exhibited by the operation beyond the maximum load it was
developed for. Another way to observe the behavior of an operation is to see how it
behaves when it’s run for a very long duration, typically for several days or weeks.
Such prolonged tests are called endurance tests. While a stress test checks the graceful
behavior of the operation, an endurance test checks the consistent behavior of the
operation over a long period.

There are several tools that may help with load and stress testing. Engulf (http://
engulf-project.org/) is a distributed HTTP-based load generation tool written
in Clojure. JMeter (http://jmeter.apache.org/) and Grinder (http://grinder.
sourceforge.net/) are Java-based load generation tools. Grinder can be scripted
using Clojure. Apache Bench (http://httpd.apache.org/docs/2.4/programs/
ab.html) is a load testing tool for web systems. Tsung (http://tsung.erlang-
projects.org/) is an extensible, high-performance load testing tool written
in Erlang.

Chapter 6

[105]

Performance monitoring
During prolonged testing or after the application has gone to production,
we need to monitor its performance to make sure the application continues
to meet the performance objectives. There may be infrastructural or operational
issues impacting the performance or availability of the application, occasional
spikes in latency, or dips in throughput. Generally, monitoring alleviates such
risk by generating a continuous feedback stream.

Roughly, there are three kinds of components used to build a monitoring stack.
A collector sends the numbers from each host that needs to be monitored.
Usually we explicitly make calls in code to periodically send performance data
or events to the collector. The collector gets host information and the performance
numbers and sends them to the aggregator. An aggregator receives the data sent
by the collector and persists them until asked by a visualizer on behalf of the
user– the visualizer displays the data in a suitable format.

The project metrics-clojure (https://github.com/sjl/metrics-clojure) is
a Clojure wrapper over the Metrics (http://metrics.codahale.com/) Java
framework, which acts as a collector. Statsd (https://github.com/etsy/statsd/)
is a well-known aggregator that does not persist data by itself, but passes it on to
a variety of servers. One of the popular visualizer projects is Graphite (http://
graphite.wikidot.com/), which stores the data as well as produces graphs for
requested periods. There are several other alternatives to these, notably Riemann
(http://riemann.io/), which is written in Clojure and Ruby. Riemann is an
event-processing-based aggregator.

Introspection
Both Oracle JDK and OpenJDK provide two GUI tools called JConsole (executable
name jconsole) and JVisualVM (executable name jvisualvm) that we can use to
explore running JVMs for instrumentation data. There are also some command-line
tools (http://docs.oracle.com/javase/7/docs/technotes/tools/) in the JDK
to peek into the inner details of the running JVMs.

A common way to introspect a running Clojure application is to have an nREPL
(https://github.com/clojure/tools.nrepl) service running so that we can
connect to it later using an nREPL client. Interactive introspection over nREPL using
the Emacs editor (an embedded nREPL client) is popular among some, whereas some
others prefer to script an nREPL client to carry out tasks. However, leaving the nREPL
server exposed to the outside world poses a severe security threat; be sure to restrict it
for authorized use only.

Optimizing Performance

[106]

JVM instrumentation via JMX
The JVM has a built-in mechanism to introspect managed resources via the extensible
Java Management Extensions (JMX) API. It provides a way for application
maintainers to expose manageable resources as MBeans. Clojure has an easy-to-use
contrib library called java.jmx (https://github.com/clojure/java.jmx) to
access JMX. There is a decent amount of open source tooling for visualization of JVM
instrumentation data via JMX, such as jmxtrans and jmxetric which integrate with
Ganglia and Graphite.

Getting quick memory stats of the JVM is pretty easy using Clojure:

(let [^Runtime r (Runtime/getRuntime)]
 (println “Maximum memory” (.maxMemory r))
 (println “Total memory” (.totalMemory r))
 (println “Free memory” (.freeMemory r)))
Output:
Maximum memory 704643072
Total memory 291373056
Free memory 160529752

Profiling
We’ve briefly discussed profiler types in Chapter 1, Performance by Design.
The JVisualVM tool we discussed with respect to introspection in the
previous section is also a CPU and memory profiler that comes bundled
with the JDK. Let us see them in action. Consider the following two
Clojure functions that stress on the CPU and memory respectively:

(defn cpu-work []
 (reduce + (range 100000000)))

(defn mem-work []
 (->> (range 1000000)
 (map str)
 vec
 (map keyword)
 count))

Chapter 6

[107]

Using JVisualVM is pretty easy; open the Clojure JVM process from the left-pane.
It has the sampler and regular profiler styles for profiling. Start profiling for CPU
or memory use when the code is running and wait for it to collect enough data to
plot on the screen. The following screenshot shows CPU profiling in action:

The following screenshot shows memory profiling in action:

JVisualVM is a very simple, entry-level profiler. There are several commercial JVM
profilers on the market for sophisticated needs.

Optimizing Performance

[108]

OS and CPU-cache-level profiling
Profiling only the JVM may not always tell the whole story. Getting down to OS- and
hardware-level profiling often provides a better insight into what is going on with
the application. On Unix-like operating systems, command-line tools, such as top,
htop, perf, iostat, netstat, vmstat, mpstat, and pidstat can help. On Linux,
MSR tools such as cpuid, rdmsr, and wrmsr can provide additional information.
Profiling the CPU for cache misses and other information is a useful way of catching
performance issues. Among open source tools for Linux, Likwid (http://code.
google.com/p/likwid/) is small, yet effective for Intel and AMD processors; i7z
(https://code.google.com/p/i7z/) is specifically for Intel processors. There are
also dedicated commercial tools such as Intel VTune Analyzer for elaborate needs.

I/O profiling
Profiling I/O may require special tools too. Besides iostat and blktrace,
ioping (https://code.google.com/p/ioping/) is useful to measure real-time
I/O latency on Linux/Unix systems. The vnStat tool is useful to monitor and log
network traffic on Linux. The IOPS of a storage device may not tell the whole truth
unless it is accompanied by latency information for different operations and how
many reads and writes can happen simultaneously.

In an I/O-bound workload, you have to look for the read and write IOPS over time
and set a threshold to achieve optimum performance. The application should throttle
I/O access so that the threshold is not crossed.

Performance tuning
Once we get an insight into the code via test and profiling results, we need to analyze
the bottlenecks worth considering for optimization. A better approach is to find the
most underperforming portion and optimize it, thereby eliminating the weakest
link. We discussed performance aspects of hardware and JVM/Clojure in previous
chapters. Optimization and tuning requires rethinking the design and code in light
of those aspects and refactoring for performance objectives.

Once we establish the performance bottlenecks, we have to pinpoint the root
cause and experiment with improvisations, one step at a time, to see what
works. Tuning for performance is an iterative process backed by measurement,
monitoring, and experimentation.

Chapter 6

[109]

Identifying the nature of the performance bottleneck helps a lot in order to experiment
with the right aspects of the code. The key is to determine the origin of cost and
whether the cost is reasonable. As a general rule, we have to see if the type hints are
applied in order to avoid reflection and boxing and whether or not we are performing
unnecessary computation inside loops. If the code in question is CPU-bound, we have
to see whether or not we are using the data types that can fit well in CPU registers and
whether or not we can reduce branch mispredictions. For cache- and memory-bound
code, we have to know whether or not there are cache misses, and the reason is that,
often, the data might be too large to fit in a cache line. Knowing the memory layout
(for example, in primitive arrays) can help us prefetch spatial and sequential data in
adjacent cache lines. For memory-bound code, we have to care about data locality,
whether the code is hitting the interconnect too often, page size versus the cost of
paging, and whether or not memory representation of data can be slimmed down.

JVM tuning
Often, Clojure applications might inherit bloat from Clojure/Java libraries
or frameworks, which causes poor performance. Hunting down unnecessary
abstractions and layers of code may bring decent performance gains.
Reasoning with the performance of dependency libraries/frameworks
before their inclusion in the project is a good approach.

The JIT compiler, GC, and Safepoint (in Oracle HotSpot JVM) have significant impact
on the performance of applications. We discussed the JIT compiler and GC in Chapter
4, Host Performance. When the HotSpot JVM reaches a point when it cannot carry out
concurrent, incremental GC anymore, it needs to suspend the JVM safely in order to
carry out a full GC. This is also called the stop-the-world GC pause, and it may run
up to several minutes while the JVM appears frozen.

The Oracle and OpenJDK JVMs accept many command-line options, when invoked,
to tune and monitor the way components in the JVM behave. Tuning GC is common
among people who want to extract optimum performance from the JVM. On the Java
6 HotSpot JVM, the Concurrent Mark and Sweep (CMS) garbage collector is well
regarded for its GC performance. On the Java 7 HotSpot JVM, the recommended way
forward for GC is by using the G1 garbage collector.

The JVM GC can be tuned for different objectives; hence,
the same exact configuration for one application may not
work well for another.

Optimizing Performance

[110]

I/O tuning and backpressure
I/O-bound tasks could be limited by bandwidth or IOPS/latency. Any I/O
bottleneck usually manifests in chatty I/O calls or unconstrained data
serialization. Restricting I/O to only the minimum required data is a common
opportunity to minimize serialization and reduce latency. I/O operations can
often be batched for higher throughput; for example, the SpyMemcached library
employs an asynchronous batched operation for high throughput.

It is not uncommon to see applications behaving poorly under load. Typically,
the application server simply appears unresponsive, which is often a combined
result of high resource utilization, GC pressure, more threads that lead to busier
thread scheduling, cache misses, and CPU stalls. If the capacity of a system is
known, the solution is to apply backpressure by denying services after capacity
is reached. Note that backpressure cannot be applied optimally until the system
is load-tested for optimum capacity. The capacity threshold that triggers
backpressure may or may not be directly associated with individual services,
but can be defined as load criteria.

Summary
Delivering high-performance applications requires not only care for performance,
but also systematic effort to measure, test, monitor, and optimize the performance
of various components and subsystems. The key is to first measure, then optimize,
and subsequently repeat the process during the application life cycle. These activities
often require the right skill and experience. Sometimes, performance considerations
may even bring system design and architecture back to the drawing board.
Early structured steps taken to achieve performance go a long way in ensuring
that the performance objectives are being continuously met.

In the next chapter, we will see how to address performance concerns when
building applications. Our focus will be the several common patterns that
impact performance.

Application Performance
As opposed to performance analysis and optimization at a smaller component level,
it takes a holistic approach for the same at the application level. Higher level concerns,
such as serving a certain threshold of users in a day or handling an identified quantum
of load through a multilayered system, require us to think about how the components
fit together and how the load is designed to flow through the application. In this
chapter, we will discuss such high level concerns. Like the previous chapter, by and
large this chapter applies to applications written in any JVM language, but it is written
with a special focus on Clojure. In this chapter, we will discuss the following topics:

•	 General performance techniques that apply to all layers of the code
•	 Data sizing
•	 Resource pooling
•	 Fetching and computing in advance
•	 Staging and batching
•	 Little's law

Data sizing
The cost of abstractions in terms of data size plays an important role. For example,
whether or not a data element can fit into a processor cache line depends directly upon
its size. On a Linux system, we can find out the cache line size and other parameters
by inspecting the values in the files under /sys/devices/system/cpu/cpu0/cache/.
Refer to Chapter 4, Host Performance, where we discussed how to compute the size of
primitives, objects, and data elements.

Application Performance

[112]

Another concern we generally find with data sizing is how much data we are
holding at a time in the heap. As we noted in earlier chapters, GC has direct
consequences on the application's performance. While processing data, often we
do not really need all the data we hold on to. Consider the example of generating
a summary report of sold items for a certain period (months) of time. After the
subperiod (month wise), summary data is computed. We do not need the item
details anymore, hence it's better to remove the unwanted data while we add the
summaries. This is shown in the following example:

(defn summarize [daily-data] ; daily-data is a map
 (let [s (items-summary (:items daily-data))]
 (-> daily-data
 (select-keys [:digest :invoices]) ; we keep only the required key/val pairs
 (assoc :summary s))))

;; now inside report generation code
(-> (fetch-items period-from period-to :interval-day)
 (map summarize)
 generate-report)

Had we not used select-keys in the preceding summarize function, it would have
returned a map with extra summary data along with all the other existing keys in the
map. Now, such a thing is often combined with lazy sequences. So, for this scheme
to work, it is important not to hold on to the head of the lazy sequence. Recall that in
Chapter 2, Clojure Abstractions, we discussed the danger of holding on to the head of
a lazy sequence.

Reduced serialization
We discussed in earlier chapters that serialization over an I/O channel is a common
source of latency. The perils of over-serialization cannot be overstated. Whether we
read or write data from a data source over an I/O channel, all of that data needs to
be prepared, encoded, serialized, de-serialized, and parsed before being worked on.
It is better for every step to have less data involved in order to lower the overhead.
Where there is no I/O involved, such as in-process communication, it generally
makes no sense to serialize.

Chapter 7

[113]

A common example of over-serialization is encountered while working with SQL
databases. Often, there are common SQL query functions that fetch all columns
of a table or a relation—they are called by various functions that implement the
business logic. Fetching data that we do not need is wasteful and detrimental to
the performance for the same reason that we discussed in the preceding paragraph.
While it may seem more work to write one SQL statement and one database query
function for each use case, it pays off with better performance. Code that uses
NoSQL databases is also subject to this anti-pattern—we have to take care to
fetch only what we need even though it may lead to additional code.

There's a pitfall to be aware of when reducing serialization. Often, some information
needs to be inferred in absence of the serialized data. In such cases where some
of the serialization is dropped so that we can infer other information, we must
compare the cost of inference versus the serialization overhead. The comparison
may not be necessarily done per operation, but rather on the whole. Then, we can
consider the resources we can allocate in order to achieve capacities for various parts
of our systems.

Chunking to reduce memory pressure
What happens when we slurp a text file regardless of its size? The contents of the
entire file will sit in the JVM heap. If the file is larger than the JVM heap capacity,
the JVM will terminate by throwing OutOfMemoryError. If the file is large but not
large enough to force the JVM into an OOM error, it leaves a relatively smaller JVM
heap space for other operations in the application to continue. A similar situation
takes place when we carry out any operation disregarding the JVM heap capacity.
Fortunately, this can be fixed by reading data in chunks and processing them before
reading further. In Chapter 3, Leaning on Java, we briefly discussed memory mapped
buffers, which is another complementary solution that you may like to explore.

Sizing for file/network operations
Let us take the example of a data ingestion process where a semi-automated job
uploads large Comma Separated File (CSV) files via the File Transfer Protocol
(FTP) to a file server, and another automated job, which is written in Clojure,
runs periodically to detect the arrival of files via the Network File System (NFS).
After detecting a new file, the Clojure program processes the file, updates the result
in a database, and archives the file. The program detects and processes several
files concurrently. The size of the CSV files is not known in advance, but the
format is predefined.

Application Performance

[114]

As per the preceding description, one potential problem is that since there could
be multiple files being processed concurrently, how do we distribute the JVM heap
among the concurrent file-processing jobs? Another issue could be that the operating
system imposes a limit on how many files can be opened at a time; on Unix-like
systems, you can use the ulimit command to extend the limit. We cannot arbitrarily
slurp the CSV file contents—we must limit each job to a certain amount of memory
and also limit the number of jobs that can run concurrently. At the same time,
we cannot read a very small number of rows from a file at a time because this
may impact performance.

(def ^:const K 1024)

;; create the buffered reader using custom 128K buffer-size
(-> filename
 java.io.FileInputStream
 java.io.InputStreamReader
 (java.io.BufferedReader (* K 128)))

Fortunately, we can specify the buffer size when reading from a file or even from
a network stream so as to tune the memory usage and performance as appropriate.
In the preceding code example, we explicitly set the buffer size of the reader to
facilitate the same.

Sizing for JDBC query results
Java's interface standard for SQL databases, JDBC (which is technically not an
acronym), supports fetch-size for fetching query results via JDBC drivers.
The default fetch size depends on the JDBC driver. Most JDBC drivers keep a low
default value so as to avoid high memory usage and attain internal performance
optimization. A notable exception to this norm is the MySQL JDBC driver that
completely fetches and stores all rows in memory by default.

(require '[clojure.java.jdbc :as jdbc])

;; using prepare-statement directly (we rarely use it directly, shown
just for demo)
(with-open
 [stmt (jdbc/prepare-statement conn sql :fetch-size 1000 max-rows
9000)
 rset (resultset-seq (.executeQuery stmt))]

Chapter 7

[115]

 (vec rset))

;; using query
(query db [{:fetch-size 1000} "SELECT empno FROM emp WHERE country=?"
1])

When using the Clojure Contrib library java.jdbc (https://github.com/clojure/
java.jdbc as of Version 0.3.0), the fetch size can be set while preparing a statement
as shown in the preceding example.

The fetch size does not guarantee proportional latency;
however, it can be used safely for memory sizing.

We must test any performance-impacting latency changes due to fetch size at different
loads and use cases for the particular database and JDBC driver. Besides fetch-size,
we can also pass the max-rows argument to limit the maximum rows to be returned
by a query. However, this implies that the extra rows will be truncated from the result,
not that the database will internally limit the number of rows to realize.

Resource pooling
There are several types of resources on the JVM that are rather expensive to initialize.
Examples are HTTP connections, execution threads, JDBC connections, and so on.
The Java API recognizes such resources and has built-in support for creating a pool
of some of those resources so that the consumer code borrows a resource from a pool
when required and at the end of the job simply returns it to the pool. Java's thread
pools (discussed in Chapter 6, Optimizing Performance) and JDBC data sources are
prominent examples. The idea is to preserve the initialized objects for reuse.
Even when Java does not support pooling of a resource type directly, you can
always create a pool abstraction around custom expensive resources.

The pooling technique is common in I/O activities, but it can be equally
applicable to non-I/O purposes where the initialization cost is high.

Application Performance

[116]

JDBC resource pooling
Java supports the obtaining of JDBC connections via the javax.sql.DataSource
interface, which can be pooled. A JDBC connection pool implements this interface.
Typically, a JDBC connection pool is implemented by third-party libraries or a
JDBC driver itself. Generally, very few JDBC drivers implement a connection
pool, so open source third-party JDBC resource pooling libraries such as Apache
DBCP, c3p0, and BoneCP are popular. They also support validation queries for the
eviction of stale connections that might result from network timeouts or firewalls
and guard against connection leaks. Apache DBCP and BoneCP are accessible
from Clojure via their respective Clojure wrapper libraries Clj-DBCP (https://
github.com/kumarshantanu/clj-dbcp) and Clj-BoneCP (https://github.com/
opiskelijarekisteri-devel/clj-bonecp), and there are Clojure examples that
describe how to construct c3p0 pools.

Connections are not the only JDBC resources that need to be pooled. Every time
we create a new JDBC prepared statement, depending on the JDBC driver
implementation, often the entire statement template is sent to the database server
in order to obtain a reference to the prepared statement. As database servers are
generally deployed on separate hardware, there may be network latency involved.
Hence, pooling of prepared statements is a very desirable property of JDBC resource
pooling libraries. Apache DBCP, c3p0, and BoneCP support statement pooling,
and the Clj-DBCP wrapper enables pooling of prepared statements out of the box
for better performance.

I/O batching and throttling
It is well known that chatty I/O calls generally lead to poor performance. The solution
is to batch together several messages and send them in one payload. In databases and
network calls, batching is a common useful technique to improve throughput. On the
other hand, large batch sizes may actually harm throughput as they tend to incur
memory overhead and components may not be ready to handle a large batch at once.
Hence, sizing the batches and throttling are just as important as batching. I would
strongly advise conducting your own tests to determine the optimum batch size under
representative load.

Chapter 7

[117]

JDBC batch operations
JDBC has batch-update support in its API, which includes the INSERT, UPDATE,
and DELETE statements. The Clojure Contrib library java.jdbc supports JDBC
batch operations via its own API as shown in the following code snippet:

(require '[clojure.java.jdbc :as jdbc])

;; multiple SQL statements
(db-do-commands
 db true
 ["INSERT INTO emp (name, countrycode) VALUES ('John Smith', 3)"
 "UPDATE emp SET countrycode=4 WHERE empid=1379"])

;; similar statements with only different parameters
(db-do-prepared
 db true
 "UPDATE emp SET countrycode=? WHERE empid=?"
 [4 1642]
 [9 1186]
 [2 1437])

Besides batch updates, we can also batch JDBC queries. One of the most common
techniques is to use the SQL WHERE clause to avoid the N+1 selects issue. The N+1
issue indicates the situation where we execute one query in another child table
for every row in a row set from the master table. A similar technique can be used
to combine several similar queries on the same table into just one query and then
segregate the data in the program afterwards. Consider the following example that
uses clojure.java.jdbc 0.3.0-alpha5 and a MySQL database:

(require '[clojure.java.jdbc :as j])

(def db {:subprotocol "mysql"
 :subname "//127.0.0.1:3306/clojure_test"
 :user "clojure_test" :password "clojure_test"})

;; the following snippet uses N+1 selects (typically characterized by
SELECT in a loop)
(def rq "select order_id from orders where status=?")
(def tq "select * from items where fk_order_id=?")
(doseq [order (j/query db [rq "pending"])]
 (let [items (j/query db [tq (:order_id order)])]

Application Performance

[118]

 ;; do something with items
 …))

;; the following snippet avoids N+1 selects, but requires fk_order_id
to be indexed
(def jq "select t.* from orders r, items t
 where t.fk_order_id=r.order_id and r.status=? order by t.fk_order_
id")
(let [all-items (group-by :fk_order_id (j/query db [jq "pending"]))]
 (doseq [[order-id items] all-items]
 ;; do something with items
 ...))

In the preceding example, there are two tables: orders and items. The first
snippet reads all order IDs from the orders table then iterates through them
to query corresponding entries in the items table in a loop. This is the N+1
selects performance antipattern that you should keep an eye on. The second
snippet avoids the N+1 selects by issuing a single SQL query, but it may not
perform very well unless the fk_order_id column is indexed.

Batch support at API level
When designing any service, it is very useful to provide an API for batch operations.
This builds flexibility in the API so that batch sizing and throttling can be controlled
in a fine-grained manner. Not surprisingly, it is also an effective recipe for building
high performance services. A common overhead we encounter when implementing
batch operations is the identification of each item in the batch and their correlation
across requests and responses. The problem becomes more prominent when requests
are asynchronous.

The solution to the item identification issue is resolved in one of the
following manners:

•	 Assigning a canonical or global ID to each item in the request (batch)
•	 Assigning a unique ID to every request (batch) and an ID local to the batch

for each item in the request

The choice of the exact solution usually depends on the implementation details.
When requests are synchronous, you can do away with the identification of each
request item. Look at the Facebook API for reference: http://developers.
facebook.com/docs/reference/api/batch/). Here, the items in response follow
the same order as in the request. However, in asynchronous requests, items may
have to be tracked via status-check or callbacks. The desired tracking granularity
typically guides the appropriate item identification strategy.

Chapter 7

[119]

Throttling requests to services
As every service can handle only a certain capacity, the rate at which we send
requests to a service is important. The expectations about the service behavior
are generally in terms of both throughput and latency. This requires us to send
requests at a specified rate, as a rate lower than this may lead to under-utilization
of the service and a higher rate may overload the service or result in failure,
thus leading to client side under-utilization.

Let us say a third-party service can accept 100 requests per second. However, we may
not know how robustly the service is implemented. Though sometimes it is not exactly
specified, sending 100 requests at once (within 20ms, let's say) during each second may
lead to lower throughput than expected. Evenly distributing the requests across the
one second duration, that is, sending one request every 10ms (1000ms/100 = 10ms),
may increase the chance of attaining the optimum throughput.

Throttling at a very fine-grained level requires that we buffer the items so that
we can maintain a uniform rate. Buffering consumes memory and often requires
ordering; queues (discussed in Chapter 5, Concurrency), pipeline, and persistent
storage usually serve that purpose well. Again, buffering and queuing may be
subject to back pressure due to system constraints. We will discuss pipelines,
back pressure, and buffering in a later section in this chapter.

Precomputing and caching
While processing data, we usually come across instances where a few common
computation steps precede several kinds of subsequent steps. That is to say some
amount of computation is common and the remaining is different. For high latency
common computations (I/O to access the data and memory/CPU to process it),
it makes a lot of sense to compute them once and then store them in a digest form.
Then, the subsequent steps can simply use the digest data and proceed from that
point onwards, thus resulting in reduced overall latency. This is also known as
staging of semi-computed data, and it is a common technique to optimize
processing of nontrivial amount of data.

Clojure has decent support for caching. The built-in clojure.core/memoize
function perform basic caching of computed results with no flexibility in using
specific caching strategies and pluggable backends. The Clojure Contrib library
core.memoize (https://github.com/clojure/core.memoize) offsets the
lack of flexibility in memoize by providing several configuration options.
Interestingly, the features in core.memoize are also useful as a separate caching
library, so the common portion is factored out as a Clojure Contrib library called
core.cache (https://github.com/clojure/core.cache) on the top of which
core.memoize is implemented.

Application Performance

[120]

As many applications are deployed on multiple servers for availability, scaling,
and maintenance reasons, they need distributed caching that is fast and space efficient.
The open source memcached project is a popular in-memory, distributed key-value
/object store that can act as a caching server for web applications. It hashes the keys
to identify the server to store the value on and has no out of the box replication or
persistence. It is used to cache database query results, computation results, and so on.
For Clojure, there is a memcached client library called SpyGlass (https://github.
com/clojurewerkz/spyglass). Of course, memcached is not limited to just web
applications and can be used for other purposes too.

Concurrent pipelines
Imagine a situation where we have to carry out jobs at a certain throughput, such
that each job includes the same sequence of a differently sized I/O task (task A),
a memory-bound task (task B), and again an I/O task (task C). A naive approach
would be to create a thread pool and run each job off it, but soon we realize that this
is not optimum because we cannot ascertain the utilization of each I/O resource due
to unpredictability of the threads being scheduled by the OS. We also observe that
even though several concurrent jobs have similar I/O tasks, we are unable to batch
them in our first approach.

As the next iteration, we split each job in to stages (A, B, and C) such that each stage
corresponds to one task. Since the tasks are well known, we create one thread pool
of appropriate size per stage and execute tasks in them. The result of task A is required
by task B, and B's result is required by task C—we enable this communication via
queues. Now, we can tune the thread pool size for each stage, batch the I/O tasks,
and throttle them for an optimum throughput. This kind of arrangement is a
concurrent pipeline. Some readers may find this feebly resembling the actor model
or Staged Event Driven Architecture (SEDA) model, which are more refined models
for this kind of approach. Recall that we discussed several kinds of in-process queues
in Chapter 5, Concurrency.

Chapter 7

[121]

Distributed pipelines
With this approach, it is possible to scale out the job execution to multiple hosts
in a cluster using network queues, thereby offloading memory consumption,
durability, and delivery to the queue infrastructure. For example, in a given scenario,
there could be several nodes in a cluster, all of them running the same code and
exchanging messages (requests and intermediate result data) via network queues.
The following figure depicts how a simple invoice generation system might be
connected to network queues:

Node A Node B Node C

Billing Queue Invoice Queue

Queue Server

RabbitMQ, HornetQ, ActiveMQ, Kestrel, and Kafka are some well-known open
source queue systems. Once in a while, the jobs may require distributed state and
coordination. The Avout (http://avout.io/) project implements the distributed
version of Clojure's atom and ref, which can be used for this purpose. The Storm
(http://storm-project.net/) project is a distributed, real-time stream processing
system implemented partly using Clojure.

Applying back pressure
We discussed back pressure briefly in the previous chapter. Without back pressure,
we cannot build a reasonable load-tolerant system with predictable stability and
performance. In this section, we will look at how to apply back pressure in different
scenarios in an application. At a fundamental level, we should have a threshold of
the maximum number of concurrent jobs in the system, and based on that threshold,
we should reject new requests above a certain arrival rate. The rejected messages
may either be retried by the client or ignored if there is no control over the client.
When applying back pressure to user-facing services, it may be useful to detect
system load and at first deny auxiliary services in order to conserve capacity and
degrade gracefully in the face of high load.

Application Performance

[122]

Thread pool queues
JVM thread pools are backed by a queue, which means that when we submit a
job into a thread pool that already has the maximum number of jobs running,
the new job lands in the queue. The queue is by default an unbounded queue,
which is not suitable for applying back pressure. So, we have to create a thread
pool backed by a bounded queue.

(import 'java.util.concurrent.LinkedBlockingDequeue)
(import 'java.util.concurrent.TimeUnit)
(import 'java.util.concurrent.ThreadPoolExecutor)
(import 'java.util.concurrent.ThreadPoolExecutor$AbortPolicy)
(def tpool
 (let [q (LinkedBlockingDeque. 100)
 p (ThreadPoolExecutor$AbortPolicy.)]
 (ThreadPoolExecutor. 1 10 30 TimeUnit/SECONDS q p)))

Now, whenever there is an attempt on this pool to add more jobs than the capacity
of the queue, it will throw an exception. The caller should treat the exception as a
buffer-full condition and wait until the buffer has idle capacity again by periodically
polling the java.util.concurrent.BlockingQueue.remainingCapacity() method.

Servlet containers like Tomcat and Jetty
In the synchronous Tomcat and Jetty versions, each HTTP request is given
a dedicated thread from a common thread pool that a user can configure.
The number of simultaneous requests being served is limited by the thread
pool size. A common way to control the arrival rate is to set the thread pool
size of the server. The Ring library uses an embedded Jetty server by default
in the development mode. The embedded Jetty adapter (in Ring) can be
programmatically configured with a thread pool size.

In the asynchronous (Async Servlet 3.0) versions of Tomcat and Jetty, besides the
thread pool size, it is also possible to specify the timeout for processing each request.
However, note that the thread pool size does not limit the number of requests in
asynchronous versions in the way it does in synchronous versions. The request
processing is transferred to an ExecutorService (thread pool) that may buffer
requests until a thread is available. This buffering behavior is tricky because this may
cause system overload—you can override the default behavior by defining your own
thread pool instead of using the servlet container's thread pool to return an HTTP
error at a certain threshold of waiting requests.

Chapter 7

[123]

HTTP Kit
HTTP Kit (http://http-kit.org/) is a high performance, asynchronous web
server for Clojure. It has built-in support for applying back pressure to requests
over a specified queue length.

(require '[org.httpkit.server :as hk])

;; handler is a typical Ring handler
(hk/run-server handler {:port 3000 :queue-size 600})

In the preceding code snippet, the maximum queue length is specified as
600. When not specified, 20480 is the default maximum queue length for
applying back pressure.

Performance and queuing theory
If we observe the performance benchmark numbers across a number of runs,
even though the hardware, load, OS, and so on remain the same, the numbers
are rarely exactly the same. The difference between each run may be upto as
much as ±8 percent for no apparent reason. This may seem surprising, but the
deep-rooted reason is that the performances of computer systems are stochastic
by nature. There are many small factors in a computer system that make
performance unpredictable at any given point of time. At best, the performance
variations can be explained by a series of probabilities over random variables.

The basic premise is that each subsystem is more or less like a queue where requests
await their turn to be served. The CPU has an instruction queue with unpredictable
fetch/decode/branch-predict timings; the memory access again depends on the cache
hit ratio and whether it needs to be dispatched via the interconnect, I/O subsystem
works using interrupts that may again depend on mechanical factors of the I/O device.
The OS schedules threads that wait while not executing. The software built on the top
of all this basically waits in various queues to get the job done. These variations can be
studied using queuing theory, something that interested readers may like to explore.

Application Performance

[124]

Little's Law
Little's law is a rather important theorem, which is commonly used to relate
the mean number of jobs in any system with the mean time spent on each job.
Little's law states the following:

And also says that:

This is a rather important law that gives us an insight into the system capacity as it is
independent of other factors.

For example, if the average time to satisfy a request is 200ms and the service rate
is about 70 per second, then the mean number of requests being served is:

70 req/second x 0.2 second = 14 requests

Summary
Designing an application for performance should be based on the use cases and
patterns of anticipated system load and behavior. Measuring performance is
extremely important to guide optimization in the process. Fortunately, there are
several well-known optimization patterns to tap into, such as resource pooling,
data sizing, prefetch and precompute, staging, and batching. As it turns out,
application performance is not only a function of the use cases and patterns—the
system as a whole is a continuous stochastic turn of events that can be assessed
statistically and guided by probability.

Clojure is a fun language to do high performance programming. This book
prescribes many pointers and practices for performance, but there is no
mantra that can solve everything. The devil is in the details. Know the idioms
and patterns, experiment to see what works for your applications, and learn
which rules you can bend for performance.

Index
Symbols
 σ (sigma) 100

A
ABA problem 68
action 70
ActiveMQ 121
aggregator 105
alter function 75, 78
Amdahl 's law 91
amortization 26
application performance

back pressure, applying 121
caching 120
concurrent pipelines 120
data sizing 111
I/O batching 116
I/O throttling 116
precomputing 119
queuing theory 123
resource pooling 115

ArrayBlockingQueue (ABQ) 85
array construction function

boolean-array 41
byte-array 41
char-array 41
double-array 41
float-array 41
int-array 41
long-array 41
object-array 41
short-array 41

array/numeric libraries
using, for efficiency 45-47

arrays
about 39
types 40, 41

asynchronous agents
about 70, 71
asynchrony 72
error handling 72
nesting 74
queuing 72
using, reasons 73

atom 69
AtomicBoolean class 68
AtomicIntegerArray 68
AtomicInteger class 68
atomicity, consistency,

and isolation (ACI) 75
Atomicity, Consistency, Isolation,

and Durability (ACID) 75
AtomicLongArray 68
AtomicLong class 68
AtomicMarkableReference class 68
AtomicReferenceArray 68
AtomicReference class 68
AtomicStampedReference class 68
atomic updates

about 68
Clojure, supporting 69, 70

atomic updates, Java 68
atom implementation 73
Avout

URL 121

B
bandwidth 11
batch operations, at API level 118

[126]

batch processing 9
bigdec function 39
bigint function 39
Blocked state 87
BlockingDeque (BD) 86
BlockingQueue (BQ) interface 85
boxed numerics

java.lang.Byte 38
java.lang.Double 38
java.lang.Float 38
java.lang.Integer 38
java.lang.Long 38
java.lang.Short 38

boxplot 98
branch prediction table 52
bubbles cycle 52

C
cache bound task 7
Callable interface 88
capacity planning 10
CAS 68
CHM 83
class files

decompiling, into Java source 36, 37
Clojure

about 5
abstractions 17
performance vocabulary 10
use case classification 5

Clojure abstractions
about 17
collection types 21
destructuring 31
inlining 33
laziness 25
multimethods, versus protocols 33
persistent data structures 21
sequences 25
tail-call Optimization (TCO) 32
transients 29
variable 20

Clojure code
equivalent Java source, inspecting for 35-37

Clojure concurrency support
about 88

Futures used, for asynchronous
execution 88, 89

promise used, for asynchronous
execution result 89

Clojure. JMeter
URL 104

clojure.lang.AFunction class 37
Clojure parallelization

Amdahl's law 91
and JVM 90
Java 7's fork/join framework 92, 93
Moore's law 90
supporting 91, 92

Clojure sources
compiling, into Java bytecode 36

CLQ 84
collection types 21
collector 105
Combine functions

cat function 95
foldcat function 95
monoid function 95

commutative operations
used, for transaction retries minimizing 78

commute function 78
Compare-and-swap instruction. See CAS
compareAndSwap(oldval, newval)

method 69
CompareExchange (CMPXCHG) 68
compile time instruction scheduling 52
complexity guarantees 23
computational tasks

about 6
batch processing 9
cache bound 7
CPU bound computation 6
I/O bound task 7
memory bound task 7
OLAP 8
OLTP 8

concurrency 13
concurrent maps

about 83
CHM 83
CSLM 84
CSLS 84

[127]

Concurrent Mark and Sweep (CMS)
garbage collector 109

concurrent pipelines 120
concurrent queues

about 84
ABQ 85
Clojure support 86
CLQ 84
DQ 85
LBQ 85
PBQ 85
SQ 85

copy collection 60
core$mul class 37
core.rrb-vector contrib project 24
CPU bound computation task 6
Criterium

URL 63
used, for latency measuring 62, 63

criterium output 101
CSLM 84
CSLS 84

D
data sizing

about 112
chunking 113
file/network operations, sizing 113
JDBC query results, sizing 114
serialization, reducing 113

decode cycle 52
definterface macro 44
DelayQueue (DQ) 85
Deque (double-ended queue) 86
destructuring 31
dirty write-buffer 65
distributed pipelines 121
dynamic var

about 80
binding 80, 81

E
EDN

URL 19
empirical rule 100

endurance tests 104
ensure function

used, for raising transaction consistency 78
equivalent Java source

inspecting, for Clojure code 35-37
execute cycle 52
ExecutorService element 88

F
fence. See memory barrier
fetch cycle 52
final method 56
First-In-First-Out (FIFO) 84
first quartile 98
foldable collections

about 94
and parallelism 94

foldable functions
filter function 95
flatten function 95
mapcat function 95
map function 95
remove function 95

fold implementation 94
fold operation 94
foo.core/mul function 37
ForkJoinTask interface 92
frequency 99
front-side bus (FSB) 54
future-call function 88
future-cancel function 89
future macro 88
Futures

about 88
functions, working with 88

G
Garbage Collection (GC) 39, 60
Graphite

URL 105

H
hardware components

about 51
memory systems 54, 55

[128]

networking 56
processors 52, 53
storage 56

HipHip
about 45
URL 45

HornetQ 121
HotSpot heap 60
HotSpot JIT compiler

about 57
optimizations 57

HotSpot JIT compiler optimizations
control flow generation 58
inlining 57
local optimizations 58
lock elimination 57
native code generation 58
non-volatile memory write elimination 57
virtual call elimination 57

HTTP kit
about 123
URL 123

HyperThreading 53
HyperTransport 55

I
i7z

URL 108
immutability 20
Incanter

URL 100
inlining 33
instruction pipelining 52
instruction reordering

about 52
implementation 52

Intel VTune Analyzer 108
interning 18
Inter Quartile Range (IQR) 98
InterruptedException exception 89
in-transaction deref operations 76, 77
intrinsic lock 67
introspection

about 105
JVM instrumentation, via JMX 106

I/O
backpressure 110
tuning 110

I/O batching 116
I/O bound task 7
ioping

URL 108
IOPS (Input-output per second) 11
I/O throttling 116

J
Java

resorting to 48, 49
Java 7 fork/join framework

about 92
using 93

Java bytecode
Clojure sources, compiling into 36

Java concurrent data structures
about 82
concurrent maps 83, 84
concurrent queues 84-86
concurrent queues, Clojure support 86

java.lang.ArrayList implementation 40
java.lang.Runnable interface 87
java.lang.String class 44
java.lang.Thread class 87
Java Management Extensions. See JMX
Java Native Interface (JNI) 49
Java, resorting

Proteus 49
Java Runtime Environment (JRE) 56
Java source

.class files, decompiling into 36, 37
java support

and Clojure equivalent 66, 67
java.util.concurrent.atomic package 68
java.util.concurrent.Callable instance 88
java.util.concurrent.ConcurrentHashMap.

See CHM
java.util.concurrent.ConcurrentLinked-

Queue class. See CLQ
java.util.concurrent.ConcurrentSkipList-

Map class. See CSLM
java.util.concurrent.ConcurrentSkipListSet

class. See CSLS

[129]

java.util.concurrent.Delayed interface 85
java.util.concurrent.Executors class 87
java.util.concurrent.ExecutorService

interface 87
java.util.concurrent.Future instance 88
java.util.concurrent package 82, 85, 86, 92
Java Virtual Machine. See JVM
JDBC batch operations 117, 118
JDBC query results

sizing 114
JDBC resource pooling 116
JD-GUI

URL 36
Jetty servlet containers 122
JIT compiler

about 56
working 57

JMX
using, for JVM instrumentation 106

just-in-time compiler. See JIT compiler
JVisualVM tool 106
JVM

about 35, 51, 56
garbage collection 60
HotSpot heap 60
JIT compiler 56, 57
memory organization 58, 59
memory usage, measuring 60-62
thread pools 87, 88
threads, supporting 87
tuning 109

JVM Garbage Collection (GC) 19
JVM instrumentation

via JMX 106
Jvmtop

URL 56

K
Kafka 121
Kestrel 121

L
Last-in-First-out (LIFO) order 58
latency

average latency 10

latency distribution 10
measuring 103, 104
measuring, Criterium used 62, 63
roundtrip 10

latency numbers 14
laziness

about 25
in data structure operations 26

lazy sequences
constructing 27, 28

lein compile :all command 36
Likwid

URL 108
LinkedBlockingDeque (LBD) 86
LinkedBlockingQueue (LBQ) 85
LinkedTransferQueue (LTQ) 86
list 24
Little's law 124
load-linked instruction (LL instruction) 68
load testing 104
locking macro 66
lock striping 80
low-level concurrency

about 65
Clojure equivalent 67
Java support 66, 67
memory barrier instructions 66

M
MBeans 106
mean 98
median 98
memoization 25
memory

organizing 58, 59
memory barrier 66
memory bound task 7
memory systems

about 54
accessing 54
cache 55
interconnect 55

memory usage
measuring 60-62

memory wall 54
Metaspace 59

[130]

Metrics
URL 105

metrics-clojure
URL 105

Micro-benchmark 103
mispredict penalty 52
mod function 39
monitor-enter form 67
monitor-exit form 67
monitor lock 67
Moore 's law 90
mul functions 36
multimethods 33
Multiversion concurrency

control (MVCC) 75
mutability 20

N
native code

resorting to 48, 49
nested transactions 79
nesting 74
networking 56
no-arg function 88
node 55
non-foldable functions

drop function 95
take function 95
take-while function 95

Non-uniform memory access. See NUMA
normal distribution 100
nREPL

URL 105
NUMA 55
numerics

about 38
boxed numerics 38
primitive numeric types 38
using 39

O
Object.wait() mehtod 89
online analytical processing (OLAP) 8
online transaction processing (OLTP) 8
outlying latency numbers 99

OutOfMemoryError 59
out of order execution 52

P
parallelism 13
pcalls function 92
percentile 99
performance

monitoring 105, 106
testing 102-104
tuning 108-110

performance and queuing theory 123
performance baseline 12
performance benchmark 12
performance modeling 9
performance, monitoring

introspection 105
performance objectives 9
performance optimization 13
performance profiling 12
performance, testing

endurance tests 104
latency measurement 103, 104
load tests 104
stress tests 104
test environment 102, 103
throughput measurement 104

performance tuning
I/O back-pressure 110
I/O, tuning 110
JVM, tuning 109

performance vocabulary
bandwidth 11
baseline 12
benchmark 12
concurrency 13
latency 10
parallelism 13
performance optimization 13
profiling 12
resource utilization 14
throughput 11
workload 14

periods 99
permanent generation 59

[131]

persistent data structures
about 21
complexity guarantees 23
concatenation 24
less-used data structures, constructing 22

persistent! function 30
pmap function 91
pooledExecutor action 71
primitive-math library 48
primitive numeric types

byte 38
double 38
float 38
int 38
long 38
short 38

PriorityBlockingQueue (PBQ) 85
processors

about 52
branch prediction 52
cores 53
instruction, scheduling 52, 53
threads 53

profiling
about 106, 107
CPU/cache level profiling 108
I/O profiling 108
OS level profiling 108
screenshot 107

program counter (PC) 58
project

creating 36
promise

about 89
using, for asynchronous execution result 89

Proteus 49
protocols 33
proxy macro 45
proxy-super macro 45
pvalues macro 92

Q
QuickPath 55
quot function 39

R
RabbitMQ 121
RecursiveAction implementation 92
RecursiveTask implementation 92
reduce operation 94
Reducers parallelism

about 93
foldable collections 94
reducer function 93
Reducible 93
reducible collections, realizing 94
reduction transformation 93

reducible collections
about 93
realizing 94

reducing function 93
reduction transformation 94
ref characteristics

 75
ref, coordinated transactional

about 74, 75
agents participation 78
characteristics 75
commutative operations 78
history 76
in-transaction deref operations 76
nested transactions 79
performance considerations 80
transaction, bargaining 77
transaction consistency, upping 77
transaction retries 77

reference types
validating 81, 82
watching 81, 82

ref history
about 76
using 76
using, example 76

reflection 42
ref performance

considering 80
ref-set function 75
ref world snapshot 79
Relaxed Radix Balanced (RRB) trees 24
release-pending-sends function 74

[132]

rem function 39
requests

throttling, to services 119
resource pooling 115
resource utilization 14
restart-agent function 72
Riemann

URL 105
run() method 87
Runnable state 87

S
SC instruction 68
SD

about 100
calculating 101
expressing 100

send function 70
send-off function 70
send-via function 70
seq function 25
seque function 86
sequences 25
serializable consistency 77
setDaemon(boolean) method 87
shutdown() method 88
Simultaneous multithreading. See SMT
size() method 84, 86
SMP 55
SMT 53
software transactional memory. See STM
soloExecutor action 71
solo thread pool 89
SpyGlass

URL 120
StackOverflowError 58
Staged Event Driven Architecture

(SEDA) model 120
stalls cycle 52
Standard deviation. See SD
start() method 87
static instruction scheduling. See compile

time instruction scheduling
static method 56

statistics terminology primer
about 98
criterium output 101
deviation 100, 101
first quartile 98, 99
guided performance objectives 102
median 98, 99
percentile 99
third quartile 98, 99
variance 100, 101

Statsd
URL 105

STM 74
storage 56
store-conditional instruction. See SC in-

struction
Storm

URL 121
stress testing 104
string interning 18
str-len macro 44
structured approach, to performance

capacity planning 10
performance modeling 9
performance objectives 9

swap! function 69
Symmetric multiprocessing. See SMP
synchronized block 67
synchronized keyword 66
SynchronousQueue (SQ) 85

T
tail-call Optimization (TCO) 32
terminated state 87
test environment 102, 103
third quartile 98
Thread class 87
Thread.join() method 89
thread pool queues 122
threads

JVM support 87
threads concurrency

Clojure concurrency support 88, 90
JVM thread pools 87
JVM threads 87

[133]

Thread.sleep() method 89
throughput

about 11
maximum sustained throughput 11
measuring 104
peak measured throughput 11

Timed_Waiting state 87
Tomcat servlet containers 122
top command 56
transaction

agents, participating in 78
barging 77
nested transactions 79
retrying 77

transaction consistency
upping, ensure used 77

transaction retries
minimizing, commutative operations

used 78
TransferQueue (TQ) 86
transients 29, 30
type hints

about 42
macros 44
metadata 44
miscellaneous 44
primitive array types 43
primitive locals 43

U
use case classification

about 5
user-facing software 6

V
variables 20
variance

about 100
determining 100, 101
expressing 100

Vars 81
visualizer 105
vnStat tool 108
volatile keyword 67

W
Waiting state 87
watcher 82
workload 14
work-stealing 92
write absorption 65
writeback cycle 52
write skew condition 78

Thank you for buying
Clojure High Performance Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Clojure for Domain-specific
Languages
ISBN: 978-1-78216-650-4 Paperback: 372 pages

Learn how to use Clojure language with examples
and develop domain-specific languages on the go

1.	 Explore DSL concepts from existing Clojure
DSLs and libraries

2.	 Bring Clojure into your Java applications
as Clojure can be hosted on a Java platform

3.	 A tutorial-based guide to develop custom
domain-specific languages

Clojure Data Analysis Cookbook
ISBN: 978-1-78216-264-3 Paperback: 342 pages

Over 110 recipes to help you dive into the world of
practical data analysis using Clojure

1.	 Get a handle on the torrent of data the
modern Internet has created

2.	 Recipes for every stage from collection
to analysis

3.	 A practical approach to analyzing data to
help you make informed decisions

Please check www.PacktPub.com for information on our titles

Open Text Metastorm ProVision®
6.2 Strategy Implementation
ISBN: 978-1-84968-252-7 Paperback: 260 pages

Create and implement a successful business statergy for
improved performance throughout the whole enterprise

1.	 Fully understand the key benefits of
implementing a business strategy

2.	 Utilize features like the integrated repository
and ProVision® frameworks

3.	 Obtain real insights from practitioners in the
field on the best strategic approaches

Java EE 7 Developer Handbook
ISBN: 978-1-84968-794-2 Paperback: 634 pages

Develop professional applications in Java EE 7 with
this essential refrence guide

1.	 Learn about local and remote service endpoints,
containers, architecture, synchronous and
asynchronous invocations, and remote
communications in a concise reference

2.	 Understand the architecture of the Java EE
platform and then apply the new Java EE 7
enhancements to benefit your own
business-critical applications

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Performance by Design
	Use-case classification
	User facing software
	Computational and data-processing tasks
	CPU bound
	Memory bound
	Cache bound
	Input/Output (I/O) bound

	Online transaction processing (OLTP)
	Online analytical processing (OLAP)
	Batch processing
	Structured approach to performance

	Performance vocabulary
	Latency
	Throughput
	Bandwidth
	Baseline and benchmark
	Profiling
	Performance optimization
	Concurrency and parallelism
	Resource utilization
	Workload

	Latency numbers every programmer should know
	Summary

	Chapter 2:
Clojure Abstractions
	Non-numeric scalars and interning
	Identity, value, and epochal time model
	Variables and mutation
	Collection types

	Persistent data structures
	Constructing less-used data structures
	Complexity guarantee
	Concatenation of persistent data structures

	Sequences and laziness
	Laziness
	Laziness in data structure operations
	Constructing lazy sequences

	Transients
	Fast repetition

	Performance miscellanea
	Disabling assertions in production
	Destructuring
	Recursion and tail-call optimization (TCO)
	Premature end in reduce

	Multimethods versus protocols
	Inlining

	Summary

	Chapter 3:
Leaning on Java
	Inspect the equivalent Java source for Clojure code
	Create a new project
	Compile Clojure sources into Java bytecode
	Decompile the .class files into Java source

	Numerics, boxing, and primitives
	Arrays
	Reflection and type hints
	Array of primitives
	Primitives
	Macros and metadata
	Miscellaneous

	Using array/numeric libraries for efficiency
	HipHip
	primitive-math

	Resorting to Java and native code
	Proteus – mutable locals in Clojure

	Summary

	Chapter 4:
Host Performance
	The hardware
	Processors
	Branch prediction
	Instruction scheduling
	Threads and cores

	Memory systems
	Cache
	Interconnect

	Storage and networking

	The Java Virtual Machine
	The just-in-time (JIT) compiler
	Memory organization
	HotSpot heap and garbage collection
	Measuring memory (heap/stack) usage

	Measuring latency with Criterium
	Criterium and Leiningen

	Summary

	Chapter 5:
Concurrency
	Low-level concurrency
	Hardware memory barrier instructions
	Java support and its Clojure equivalent

	Atomic updates and state
	Atomic updates in Java
	Clojure's support for atomic updates

	Asynchronous agents and state
	Asynchrony, queuing, and error handling
	Why use agents?
	Nesting

	Coordinated transactional ref and state
	Ref characteristics
	Ref history and in-transaction deref operations
	Transaction retries and barging
	Upping transaction consistency with ensure
	Fewer transaction retries with commutative operations
	Agents can participate in transactions
	Nested transactions
	Performance considerations

	Dynamic var binding and state
	Validating and watching the reference types
	Java concurrent data structures
	Concurrent maps
	Concurrent queues
	Clojure support for concurrent queues

	Concurrency with threads
	JVM support for threads
	Thread pools in the JVM
	Clojure concurrency support
	Asynchronous execution with Futures
	Anticipated asynchronous execution result with promises

	Clojure parallelization and the JVM
	Moore's law
	Amdahl's law
	Clojure support for parallelization
	pmap
	pcalls
	pvalues

	Java 7's fork/join framework

	Parallelism with reducers
	Reducible, reducer function, reduction transformation
	Realizing reducible collections
	Foldable collections and parallelism

	Summary

	Chapter 6:
Optimizing Performance
	A tiny statistics terminology primer
	Median, first quartile, and third quartile
	Percentile
	Variance and standard deviation
	Understanding criterium output
	Guided performance objectives

	Performance testing
	Test environment
	What to test
	Measuring latency
	Measuring throughput
	Load, stress, and endurance tests

	Performance monitoring
	Introspection
	JVM instrumentation via JMX

	Profiling
	OS and CPU/cache level profiling
	I/O profiling

	Performance tuning
	JVM tuning
	I/O tuning and back-pressure

	Summary

	Chapter 7:
Application Performance
	Data sizing
	Reduced serialization
	Chunking to reduce memory pressure
	Sizing for file/network operations
	Sizing for JDBC query results

	Resource pooling
	JDBC resource pooling

	I/O batching and throttling
	JDBC batch operations
	Batch support at API level
	Throttling requests to services

	Precomputing and caching
	Concurrent pipelines
	Distributed pipelines

	Applying back pressure
	Thread pool queues
	Servlet containers like Tomcat and Jetty
	HTTP Kit

	Performance and queuing theory
	Little's Law

	Summary

	Index

