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Preface
Clojure is a remarkably high-performance language despite its dynamic nature.  
What really strikes you though is the fact that it combines performance with 
fundamental simplicity and pragmatism, which makes it such a joy to program  
in. Over the last six years since its first public release, Clojure has been heavily  
tested and deployed in production by many people and organizations across  
various domains. Its user base has grown rapidly during this period.

Clojure High Performance Programming is all about Clojure running on the Java Virtual 
Machine. The JVM has a reputation of being a robust platform to develop and deploy 
applications on. In this book, we take a deeper look at the performance characteristics 
of various features of Clojure and the underlying environment. We also explore what it 
takes to build well-performing software. We begin with the performance fundamentals 
and gradually proceed over to Clojure and other matters you may have to deal with 
while writing high-performance applications.

Understanding and achieving performance is both an art and a science, just like 
writing good software. Remember the big picture in the back of your mind but  
also be prepared to get into the details with measurement tools. More importantly, 
know how the software works and keenly study the environment in which it runs.  
I hope this book will help you on that path.

What this book covers
Chapter 1, Performance by Design, classifies the various use cases with respect to 
performance and analyzes how to interpret their performance aspects and needs.

Chapter 2, Clojure Abstractions, is a guided tour of various Clojure data structures, 
abstractions (persistent data structures, vars, macros, and so on), and their 
performance characteristics.
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Chapter 3, Leaning on Java, discusses how to enhance performance by using Java 
interoperability and features from Clojure.

Chapter 4, Host Performance, discusses how the host stack impacts performance. 
Clojure being a hosted language, its performance is directly related to the host.

Chapter 5, Concurrency, is an advanced chapter that discusses concurrency and 
parallelism features in Clojure and the JVM. Concurrency is an increasingly 
significant way to derive performance.

Chapter 6, Optimizing Performance, discusses the systematic steps that need to be  
taken in order to obtain good performance.

Chapter 7, Application Performance, discusses building applications. This involves 
dealing with external subsystems and factors that impact the overall performance.

What you need for this book
You should acquire Java Development Kit Version 7 or higher for your operating 
system to work through all examples. This book discusses the Oracle HotSpot JVM  
in specific situations, so you may want to get Oracle JDK or OpenJDK if possible. 
You should also get the latest Leiningen version (Version 2.3.3 as of the time of 
writing) from http://leiningen.org/ and JD-GUI from http://jd.benow.ca/.

Who this book is for
This book is for intermediate Clojure programmers who are interested to learn how  
to write high-performance code. If you are an absolute beginner in Clojure, you  
should learn the basics of the language first and then come back later to this book.  
You need not be well-versed in performance engineering or Java. However, some prior 
knowledge of Java would make it much easier to understand the Java-related chapters.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "If you want Criterium to be available 
only in the REPL and not as a project dependency, add the following entry to the 
~/.lein/profiles.clj file."
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A block of code is set as follows:

(import 'java.util.concurrent.Callable)
(import 'java.util.concurrent.Future)
(def ^ExecutorService e (Executors/newSingleThreadExecutor))
(def ^Future f (.submit e (cast Callable #(reduce + (range 
10000000)))))
(.get f)  ; blocks until result is processed, then returns it

New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes for example, appear in the text like this: 
"Clicking on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do  
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,  
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Performance by Design
Clojure is a functional programming language that brings great power and simplicity 
to the user. Clojure is also dynamically typed and has very good performance 
characteristics. Naturally, every activity performed in a computer has an associated 
cost. What constitutes acceptable performance varies from one use case and workload 
to another. In today's world, performance is the determining factor for several kinds of 
applications. We will discuss Clojure (which runs on the Java Virtual Machine) and its 
runtime environment in the context of performance, which is the goal of this book.

The performance of Clojure applications depends on various factors. For a given 
application, understanding its use cases, design and implementation, algorithms, 
resource requirements and alignment with the hardware, and underlying software 
capabilities are essential. In this chapter, we will study the basics of performance 
analysis which includes the following:

•	 A whirlwind tour of how the application stack impacts performance
•	 Classifying performance anticipations by use cases types
•	 Outlining the structured approach to analyze performance
•	 A glossary of terms commonly used to discuss performance aspects
•	 Performance numbers every programmer should know

Use case classification
Performance requirements and priority vary across different kinds of use cases.  
We need to determine what constitutes acceptable performance for various  
kinds of use cases. Hence, we classify them to identify their performance model. 
When it comes to details, there is no sure fire performance recipe for any kind of  
use case, but it certainly helps to study their general nature. Note that in real life,  
the use cases listed in this section may overlap each other.

www.allitebooks.com

http://www.allitebooks.org


Performance by Design

[ 6 ]

User-facing software
The performance of user-facing applications is strongly linked to the user's 
anticipation. The difference of a good number of milliseconds may not be  
perceptible by the user, but at the same time, a wait of more than a few seconds  
may not be taken kindly. One important element to normalize the anticipation  
is to engage the user by providing duration-based feedback. A good idea to deal  
with such a scenario would be to start the task asynchronously in the background 
and poll it from the UI layer to generate duration-based feedback for the user. 
Another way could be to incrementally render the results to the user to even out  
the anticipation.

Anticipation is not the only factor in user-facing performance. Common techniques 
such as staging or pre-computation of data and other general optimization techniques 
can go a long way to improve the user experience with respect to performance.  
Bear in mind that all kinds of user-facing interfaces fall into this use case category:  
web, mobile web, GUI, command-line, touch, voice-operated, and gestures.

Computational and data-processing tasks
Non-trivial compute-intensive tasks demand a proportional amount of computational 
resources. All of the CPU, cache, memory, efficiency, and parallelizability of the 
computation algorithms would be involved in determining the performance.  
When the computation is combined with distribution over a network, or when  
reading from / staging to disk, I/O bound factors come into play. This class of 
workloads can be further subclassified into more specific use cases.

CPU bound
A CPU bound computation is limited by the CPU cycles spent on executing it. 
Processing arithmetic in a loop, small matrix multiplication, determining whether a 
number is Mersenne Prime, and so on would be considered CPU bound jobs. If the  
algorithm complexity is linked to N, such as O(N) and O(N2), then performance 
depends on how big N is and how many CPU cycles each step takes. For parallelizable 
algorithms, performance of such tasks may be enhanced by assigning multiple CPU 
cores to the task. On virtual hardware, performance may be impacted if CPU cycles  
are available in bursts.
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Memory bound
A memory bound task is limited by the availability and bandwidth of a computer 
memory; examples include large text processing, list processing, and so on. Note that 
higher CPU resources cannot help when memory is in the bottleneck and vice versa. 
Lack of availability of memory may force you to process smaller chunks of data at 
a time, even if you have enough CPU resources at your disposal. If the maximum 
speed of your memory is X and your algorithm on single CPU-core accesses memory 
at a speed of X/3, the multicore performance of your algorithm cannot exceed 3 
times the current performance, no matter how many CPU cores you assign to it. 
Memory architecture, for example SMP and NUMA, contributes to the memory 
bandwidth in multicore computers. Performance with respect to memory is also 
subject to page faults.

Cache bound
A task is cache bound when its speed is constrained by the amount of cache 
available. When a task retrieves values from a small number of repeated  
memory locations, for example small matrix multiplication, the values may  
be cached and fetched from there.

Typically, CPUs have multiple layers of cache, and the 
performance will be at its best when the processed data 
fits in the cache. Processing will still happen, albeit slower, 
when the data does not fit into the cache . These will be 
covered in greater details in Chapter 4, Host Performance.

It is possible to make the most of the cache using cache-oblivious algorithms. A higher 
number of concurrent cache / memory bound threads than CPU cores is likely to flush 
the instruction pipeline, as well as the cache, at the time of a context switch.

Input/Output (I/O) bound
An I/O bound task would go faster if the I/O subsystem it depends on goes faster. 
Disk or storage as well as network are the most commonly used I/O subsystems in 
data processing. Other I/O devices are serial ports, a USB-connected card readers,  
and so on. An I/O bound task may consume very few CPU cycles. Depending on the 
speed of the device, connection pooling, data compression, asynchronous handling, 
caching, and so on may help in performance. One notable aspect of I/O bound tasks  
is that the performance is usually dependent on the time spent waiting for 
connection (or disk seek) and the amount of serialization we do, but hardly on the 
other resources.
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In practice, many data processing workloads are usually a combination of CPU 
bound, memory bound, cache bound, and I/O bound tasks. The performance of 
such mixed workloads effectively depends on the even distribution of CPU, cache, 
memory, and I/O resources over the duration of the operation. While all system 
resources are finite, some I/O resources may be particularly limited in bandwidth 
and latency. A bottleneck situation arises only when one resource gets too busy to 
make way for another.

Online transaction processing (OLTP)
OLTP systems process business transactions on demand. It could work as a backend 
system for a user-facing ATM machine, a point-of-sale terminal, a network-connected 
ticket counter, an ERP system, and so on. OLTP systems are characterized by low 
latency, availability, and data integrity. OLTP systems run day-to-day business 
transactions. Any interruption or outage is likely to have a direct and immediate 
impact on the sales or service. Such systems are expected to be designed for resiliency 
rather than delayed recovery from failures. When the performance objective is 
unspecified, you may want to consider graceful degradation as a strategy.

It is a common mistake to ask OLTP systems to answer analytical queries,  
something that they are not optimized for. It is desirable of an informed  
programmer to know the capability of the system and suggest design  
changes as per the requirements.

Online analytical processing (OLAP)
OLAP systems are designed to answer analytical queries in a short time.  
They typically get data from OLTP operations and their data model is  
optimized for querying. OLAP systems basically provide for consolidation  
(roll-up), drill-down, and slicing and dicing of data for analytical purposes.   
They often use specialized data stores that can optimize ad-hoc analytical  
queries on the fly. It is important for such databases to provide pivot-table-like 
capability. Often, an OLAP cube is used to get faster access to analytical data.

Feeding OLTP data into OLAP systems may entail workflows and multistage  
batch processing. The performance concern of such systems is to efficiently  
deal with large quantities of data while also dealing with inevitable failures  
and recovery.
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Batch processing
Batch processing is the automated execution of predefined jobs. These are typically 
bulk jobs and are executed during off-peak hours. Batch processing may involve one 
or more stages of job processing. Often, batch processing is clubbed with workflow 
automation, where some workflow steps are executed offline. Many of the batch 
processing tasks work on staging and preparing data for the next stage of processing 
to pick up.

Batch jobs are generally optimized for the utmost utilization of computing resources. 
Since there is little to moderate demand to lower latencies of particular subtasks, 
these systems tend to optimize for throughput. A lot of batch jobs involve large  
I/O processing, and they are often distributed over a cluster. Due to distribution, 
data locality is preferred when processing the jobs; that is, data and processing 
should be local in order to avoid network latency in reading/writing data.

Structured approach for performance
In practice, the performance of non-trivial applications is rarely a function of 
coincidence or prediction. For many projects, performance is not an option but rather 
compulsory, which is why this is even more important today. Capacity planning, 
determining performance objectives, performance modeling, measurement,  
and monitoring are crucial to achieving performance..

Tuning a poorly-designed system to perform as well as a system that is  a  
well-designed system from the ground up is significantly hard, if not practically 
impossible. In order to meet a performance goal, performance objectives should  
be known before the application is designed. Performance objectives are stated in 
terms of latency, throughput, resource utilization, and workload. These terms are 
discussed in the Performance vocabulary section in this chapter.

The resource cost can be identified in terms of application scenarios, such as browsing 
of products, adding products to the shopping cart, and checkout. Creating workload 
profiles that represent users performing various operations is usually helpful.

Performance modeling is a reality check of whether the application design  
would support the performance objectives. It includes performance objectives, 
application scenarios, constraints, measurements (benchmark result),  
workload objectives, and, if available, the performance baseline. It is not a 
replacement of measurement and load testing, rather, the model is validated  
using these. The performance model may include performance test cases to  
assert the performance characteristics of the application scenarios.
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Deploying an application to production almost always needs some form of capacity 
planning. It has to take into account the performance objectives for today and the 
foreseeable future. It requires an idea of application architecture and an understanding 
of how the external factors translate into internal workload. It also requires informed 
expectations about the responsiveness and the level of service to be provided by 
the system. Often, capacity planning is done early in a project to mitigate the risk of 
provisioning delays.

Performance vocabulary
There are several technical terms that are heavily used in performance engineering.  
It is important to understand them as they form the cornerstone of performance 
related discussions. Collectively, these terms form a performance vocabulary. 
Performance is usually measured in terms of several parameters where every 
parameter has roles to play; such parameters are part of the vocabulary.

Latency
Latency is the time taken by an individual unit of work to complete a task. It does 
not imply successful completion of a task. Latency is not collective; it is linked 
to a particular task. If two similar jobs, j1 and j2, took 3ms and 5ms respectively, 
their latencies would be treated as such. If j1 and j2 were dissimilar tasks, it would 
have made no difference. In many cases, average latency of similar jobs is used in 
performance objectives, measuring, and monitoring results.

Latency is an important indicator of the health of a system. A high performance 
system often thrives on low latency. Higher than normal latency can be caused 
due to load or a bottleneck. It helps to measure the latency distribution during a 
load test. For example, if more than 25 percent of similar jobs under a similar load 
have significantly higher latency than others, it may be an indicator of a bottleneck 
scenario worth investigating.

When a task, j1, consists of smaller tasks, say j2, j3, and j4, the latency of j1 is not 
necessarily the sum of latencies of each of the j2, j3, and j4 tasks. If any of the subtasks 
of j1 are concurrent with another, the latency of j1 will turn out to be less than the 
sum of the latencies of j2, j3, and j4. I/O bound tasks are generally more prone to 
higher latency. In network systems, latency is commonly based on the roundtrip to 
another host, including latency from source to destination and then back to source.
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Throughput
Throughput is the number of successful tasks or operations performed in a unit  
of time. The top-level operations performed in a unit of time are usually of a 
similar kind but with potentially different latencies. So, what does throughput  
tell us about the system? It is the rate at which the system is performing. When you 
perform load testing, you can determine the maximum rate at which a particular 
system can perform. However, this is not a guarantee of conclusive overall 
maximum rate of performance.
Throughput is one of the factors that determine the scalability of a system. 
Throughput of a higher level task depends on the capacity to spawn off  
multiple such tasks in parallel and also depends on average latency of the  
tasks. Throughput should be measured during load testing and performance 
monitoring to determine peak measured throughput and maximum sustained 
throughput. These factors contribute to the scale and performance of a system.

Bandwidth
Bandwidth is the raw data rate over a communication channel measured in a certain 
number of bits per second. This includes not only the payload but all the overhead 
necessary to carry out the communication. A few examples are Kbits/sec, Mbits/
sec, and so on. An uppercase B in KB/sec denotes 'Bytes', as in Kilo Bytes per second. 
Bandwidth is often compared to throughput. While bandwidth is the raw capacity, 
throughput for the same system is the successful task completion rate that usually 
involves a roundtrip. Note that throughput is for an operation which involves latency. 
To achieve maximum throughput for a given bandwidth, the communication/protocol 
overhead and operational latency should be minimal.

For storage systems (such as hard disks and solid-state drives), the predominant  
way to measure performance is IOPS (Input-output per second), which is multiplied 
by the transfer-size and represented as Bytes-per-second, or further into MB/sec, 
GB/sec, and so on. IOPS is usually derived for sequential and random workloads  
for read/write operations.

Mapping the throughput of a system to the bandwidth of another may lead to 
dealing with the impedance mismatch between the two. For example, an order 
processing system may transact to the database on disk and post results over  
the network to an external system.

Depending on the bandwidth of the disk subsystem, the bandwidth of the network, 
and the execution model of the order, processing the throughput may depend 
not only on the bandwidth of the disk subsystem and network, but also on how 
loaded they currently are. Parallelism and pipelining are common ways to increase 
throughput over a given bandwidth.
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Baseline and benchmark
Performance baseline, or simply baseline, is the reference point including 
measurements of well characterized and understood performance parameters  
for a known configuration. Baseline is used to collect performance measurements 
for the same parameters which we may benchmark later for another configuration. 
For example, collecting "throughput distribution over 10 minutes at a load of 50 
concurrent threads" is one such performance parameter we can use for baseline  
and benchmarking. A baseline is recorded together with the hardware, network,  
OS, and system configuration.

Performance benchmark, or simply benchmark, is the recording of performance 
parameter measurements under various test conditions. A benchmark can be 
composed as a performance test suite. A benchmark may collect a small to large 
amount of data, and may take a varying duration depending on use cases,  
scenarios, and environment characteristics.

Baseline is a result of a benchmark that was conducted at one point of time;  
however, benchmark is independent of baseline.

Profiling
Performance profiling, or simply profiling, is the analysis of the execution of a 
program at its runtime. A program can perform poorly for a variety of reasons.  
A profiler can analyze and find out the execution time of various parts of the 
program. It is possible to interleave statements in a program manually to print 
execution time of blocks of code, but this gets very cumbersome as you try to  
refine the code iteratively. A profiler is of great assistance to the developer.

Going by how profilers work, they are of three major kinds: instrumenting, 
sampling, and event-based. The event-based profilers work only for selected 
language platforms, and they provide a good balance between overhead and 
results; for example, Java supports event-based profiling via the JVMTI interface. 
Instrumenting profilers modify code at either compile time or runtime to inject 
performance counters. They are intrusive by nature and add significant performance 
overhead. However, you can profile regions of code very selectively using 
instrumenting profilers. Sampling profilers pause the runtime and collect its state 
at 'sampling intervals'. By collecting enough samples, it gets to know where the 
program spends most of its time. For example, at a sampling interval of 1ms,  
the profiler would have collected 1000 samples in a second. A sampling profiler  
also works for code that executes faster than the sampling interval, as the frequency 
of pausing and sampling is proportional to the overall execution time of any code.
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Profiling is not meant only for measuring execution time. Capable profilers can 
provide a view of memory analysis, garbage collection, threads, and so on.  
A combination of such tools is helpful to find memory leaks, garbage collection 
issues, and so on.

Performance optimization
Simply put, optimization is minimizing a program's resource consumption after 
performance analysis. The symptoms of a poorly performing program are  
observed in terms of high latency, low throughput, unresponsiveness, instability, 
high memory consumption, and high CPU consumption. During performance 
analysis, you may profile the program in order to identify bottlenecks and tune  
the performance incrementally by observing performance parameters.

Better and suitable algorithms are an all-round good way to optimize code.  
CPU bound code can be optimized with computationally cheaper operations.  
Cache bound code can try using less memory lookups to keep a good hit ratio. 
Memory bound code can use adaptive memory usage and conservative data 
representation to store in memory for optimization. I/O bound code can attempt  
to serialize as little data as possible, and can batch operations to make the operation 
less chatty for better performance. Parallelism and distribution are other overall  
good ways to increase performance.

Concurrency and parallelism
Most of the computer hardware and operating systems we use today provide 
concurrency. On the x86 architecture, hardware support for concurrency can be  
traced as far back as the 80286 chip. Concurrency is the simultaneous execution of 
more than one process on the same computer. In older processors, concurrency was 
implemented using a context switch by the operating system kernel. When concurrent 
parts are executed in parallel by the hardware instead of merely switching context,  
it is called parallelism. Parallelism is the property of the hardware, though the software 
stack must support it in order for you to leverage it in your programs. You must write 
your program in a concurrent way to exploit the parallelism features of the hardware.

While concurrency is a natural way to exploit hardware parallelism and speed up 
operations, it is worth bearing in mind that having significantly higher concurrency 
than the parallelism your hardware can support is likely to schedule tasks to varying 
processor cores, thereby lowering branch prediction and increasing cache misses.
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Low level processes/threads, mutexes, semaphores, locking, shared memory, 
and inter-process/thread communication are used for concurrency. The JVM has 
excellent support for these concurrency primitives and inter-thread communication. 
Clojure builds upon the JVM features to provide both low and higher level 
concurrency primitives that we will discuss in the concurrency chapter.

Resource utilization
Resource utilization is the measure of the server, network, and storage  
resources consumed by an application. Resources include CPU, memory,  
disk I/O, network I/O, and so on. The application can be analyzed in  
terms of CPU bound, memory bound, cache bound, and I/O bound  
tasks. Resource utilization can be derived by means of benchmarking  
by measuring the utilization at a given throughput.

Workload
Workload is the quantification of how much work there is in hand to be carried  
out by the application. It is measured in total numbers of users, concurrent active 
users, transaction volume, and data volume. Processing a workload should take  
into account the load conditions, such as how much data the database currently 
holds, how filled up are the message queues, and the backlog of I/O tasks after 
which the new load will be processed.

Latency numbers every programmer 
should know
Hardware and software have progressed over the years. Latencies for various 
operations put things into perspective. The latency numbers for 2013 are as shown 
in the following table. (Reproduced with the permission of Aurojit Panda and Colin 
Scott of Berkeley University: http://www.eecs.berkeley.edu/~rcs/research/
interactive_latency.html)

Operation Time taken as of 2013
L1 cache reference 1 ns (nano second)
Branch mis-predict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns
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Operation Time taken as of 2013
Compress 1KB with Zippy  
(http://code.google.com/p/snappy/)

2 μs (1000 ns = 1 μs : micro second)

Send 2000 bytes over commodity network 500 ns (that is, 0.5 μs)
SSD random read 16 μs

Roundtrip in same datacenter 500 μs
Read 1,000,000 bytes sequentially from SSD 200 μs
Disk seek 4 ms (1000 μs = 1 ms)
Read 1,000,000 bytes sequentially from disk 2 ms
Packet roundtrip CA to Netherlands 150 ms

Summary
We learned about the basics of what it is like to think deeper about performance. 
We saw the common performance vocabulary and also saw the use cases by which 
performance aspects might vary. We concluded by looking at the performance 
numbers of different hardware components, which is how the performance benefits 
reach our applications. In the next chapter, we will dive into performance aspects of 
various Clojure abstractions.
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Clojure Abstractions
Clojure has four founding ideas. Firstly, Clojure was set out to be a functional 
language. It is not pure (as in purely functional), but it emphasizes immutability. 
Secondly, Clojure is a dialect of Lisp; Clojure is malleable enough that users can 
extend the language without waiting for the language implementers to add new 
features and constructors. Thirdly, Clojure was built to leverage concurrency for a 
new generation of challenges. Fourthly, Clojure is designed to be a hosted language. 
As of today, Clojure implementations exist for the JVM, CLR, JavaScript, Python, 
Ruby, and Scheme. Clojure blends seamlessly with its host language.

Clojure is rich in abstractions. Though the syntax itself is very minimal,  
the abstractions are finely grained, mostly composable, and precise to  
tackle a wide variety of concerns in the least complicated way. In this  
chapter, we will discuss the following topics:

•	 Performance characteristics of non-numeric scalars
•	 Immutability and the epochal time model, paving the way for  

performance by isolation
•	 Persistent data structures and their performance characteristics
•	 Laziness and its impact on performance
•	 Transients as a high-performance, short-term escape hatch
•	 Other abstractions, such as tail recursion, protocols/types,  

multimethods, and many more
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Non-numeric scalars and interning
Strings and characters in Clojure are the same as in Java. String literals are implicitly 
interned. Interning is a way of storing only unique values in the heap and sharing 
the reference wherever required. Depending on the provider and the version of Java 
you use, the interned data may be stored in a string pool, Permgen, ordinary heap, 
or some special area in the heap marked for interned data. Interned data is subject 
to garbage collection when not in use, just like ordinary objects. Take a look at the 
following code:

user=> (identical? "foo" "foo")  ; literals are automatically interned

true

user=> (identical? (String. "foo") (String. "foo"))  ; created string is not interned

false

user=> (identical? (.intern (String. "foo")) (.intern (String. "foo")))

true

user=> (identical? (str "f" "oo") (str "f" "oo"))  ; str creates string

false

user=> (identical? (str "foo") (str "foo"))  ; str does not create string for 1 arg

true

user=> (identical? (read-string "\"foo\"") (read-string "\"foo\""))  ; not interned

false

user=> (require '[clojure.edn :as edn])  ; introduced in Clojure 1.5

nil

user=> (identical? (edn/read-string "\"foo\"") (edn/read-string "\"foo\""))

false

Note that identical? in Clojure is the same as == in Java. The benefit of interning 
a string is that there is no memory allocation overhead for duplicate strings. 
Commonly, applications on the JVM spend quite some time on string processing.  
So, it makes sense to have them interned whenever there is a chance of duplicate 
strings being simultaneously processed. Most of the JVM implementations today 
have an extremely fast intern operation; however, you should measure the  
overhead for your JVM if you have an older version.

Another benefit of string interning is that when you know that two string tokens  
are interned, you can compare them for equality faster using identical? than  
non-interned string tokens. The equivalence function = first checks for identical 
references before conducting a content check.
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Symbols in Clojure always contain interned string references within them,  
so generating a symbol from a given string is nearly as fast as interning a string. 
However, two symbols created from the same string will not be identical:

user=> (identical? (.intern "foo") (.intern "foo"))
true
user=> (identical? (symbol "foo") (symbol "foo"))
false
user=> (identical? (symbol (.intern "foo")) (symbol (.intern "foo")))
false

Keywords are, on the basis of their implementation, built on top of symbols and 
are designed to work with the identical? function for equivalence. So, comparing 
keywords for equality using identical? would be faster, just like with interned 
string tokens.

Clojure is increasingly being used for large volume data processing that includes text 
and composite data structures. In many cases, the data is either stored as JSON or 
EDN (http://edn-format.org). When processing such data, you can save memory 
by interning strings or using symbols/keywords. Remember that string tokens 
read from such data would not be automatically interned, whereas the symbols and 
keywords read from EDN data would invariably be interned. You may come across 
such situations when dealing with relational or NoSQL databases, web services,  
CSV or XML files, log parsing, and so on.

Interning is linked to JVM Garbage Collection (GC), which, in turn, is closely linked 
to performance. When you do not intern the string data and let duplicates exist, 
they end up being allocated on the heap. More heap usage leads to GC overhead. 
Interning a string has a tiny, but measurable and upfront performance overhead, 
whereas GC is often unpredictable and unclear. GC performance, in most JVM 
implementations, has not increased in a similar proportion to the performance 
advances in hardware. So, often, effective performance depends on preventing the 
GC from becoming the bottleneck, which in most cases means minimizing it.

Identity, value, and epochal time model
One of the principal virtues of Clojure is its simple design which results in malleable, 
beautiful composability. Using symbols in place of pointers is a programming 
practice that has existed for several decades now. It has found widespread adoption 
in several imperative languages. Clojure dissects that notion in order to uncover the 
core concerns that need to be addressed. The following subsections illustrate this 
aspect of Clojure.
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We program using logical entities to represent values. For example, a value, 30,  
means nothing unless it is associated with a logical entity, let us say age. The logical 
entity age is the identity here. Now, even though age represents a value, the value may 
change with time; this brings us to the notion of state, which represents the value of  
the identity at a certain time. Hence, state is a function of time and is causally related  
to what we do in the program. Clojure's power lies in binding an identity with its  
value that holds true at the time and the identity remains isolated from any new value  
it may represent later. We will discuss state management in Chapter 5, Concurrency.

Variables and mutation
If you have previously worked with an imperative language (C/C++, Java, and so 
on), you may be familiar with the concept of a variable. A variable is a reference 
to a block of memory. When we update its value, we essentially update the place in 
memory where the value is stored. The variable continues to point to the place where 
the older version of the value was stored. So, essentially a variable is an alias for the 
place of storage of values.

A little analysis would reveal that variables are strongly linked to the processes 
that read or mutate their values. Every mutation is a state transition. The processes 
that read/update the variable should be aware of the possible states of the variable 
to make sense of the state. Can you see a problem here? It conflates identity and 
state! It is impossible to refer to a value or a state in time when dealing with a 
variable—the value could change at any time unless you have complete control 
over the process accessing it. The mutability model does not accommodate the 
concept of time that causes its state transition.

The issues with mutability do not stop here. When you have a composite data 
structure containing mutable variables, the entire data structure becomes mutable. 
How can we mutate it without potentially undermining the other processes that 
might be observing it? How can we share this data structure with concurrent 
processes? How can we use this data structure as a key in a hash-map? This data 
structure does not convey anything. Its meaning could change with mutation!  
How do we send such a thing to another process without also compensating for  
the time, which can mutate it in different ways?

Immutability is an important tenet of functional programming. It not only simplifies 
the programming model, but also paves the way for safety and concurrency.  
Clojure supports immutability throughout the language. Clojure also supports  
fast, mutation-oriented data structures as well as thread-safe state management  
via concurrency primitives. We will discuss these topics in the forthcoming sections 
and chapters.
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Collection types
There are a few types of collections in Clojure categorized based on their properties. 
The following Venn diagram (adapted with permission from Tim McCormack from 
http://www.brainonfire.net/files/seqsandcolls/main.html) depicts this 
categorization on the basis of whether the collections are counted (so that counted? 
returns true) or associative (so that associative? returns true) or sequential (so that 
sequential? returns true):

list
queue

(seq a-map)
(seq an-array)
(seq
a-charsequence)

String
StringBuilder
StringBuffer

CharSequence

Sequential
lazy seq

Associative

vector

map

set

Counted

Persistent data structures
As we've noticed in the previous section, Clojure's data structures are not only 
immutable, but can also produce new values without impacting the old version. 
Operations produce these new values in such a way that old values remain accessible; 
the new version is produced in compliance with the complexity guarantees of that 
data structure and both the old and new versions continue to meet the complexity 
guarantees. The operations can be recursively applied to nested data structures and 
can still meet the complexity guarantees. Such immutable data structures as the ones 
provided by Clojure are called persistent data structures. They are persistent in that 
when a new version is created, both the old and new versions persist in terms of 
both the value and complexity guarantee. They have nothing to do with storage or 
durability of data. Making changes to the old version doesn't impede working with 
the new version and vice versa. Both versions persist in a similar way.
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Among the publications that have inspired the implementation of Clojure's persistent 
data structures, two of them are well known. Chris Okasaki's Purely Functional Data 
Structures has influenced the implementation of persistent data structures and lazy 
sequences/operations. Clojure's persistent queue implementation is adapted from 
Okasaki's Batched Queues. Phil Bagwell's Ideal Hash Tries, though meant for mutable 
and imperative data structures, was adapted to implement Clojure's persistent  
map/vector/set.

Constructing less-used data structures
Clojure supports a well-known literal syntax for lists, vectors, sets, and maps.  
Shown in the following list are some less-used methods for creating other  
data structures:

•	 Map (PersistentArrayMap and PersistentHashMap):
{:a 10 :b 20}  ; array-map up to 8 pairs, try (class {:a 10 :b 20})
{:a 1 :b 2 :c 3 :d 4 :e 5 :f 6 :g 7 :h 8 :i 9}  ; hash-map for 9 
or more pairs

•	 Sorted map (PersistentTreeMap):
(sorted-map :a 10 :b 20 :c 30)  ; (keys ..) should return sorted

•	 Sorted set (PersistentTreeSet):
(sorted-set :a :b :c)

•	 Queue (PersistentQueue):

(import 'clojure.lang.PersistentQueue)
(reduce conj PersistentQueue/EMPTY [:a :b :c :d])  ; add to queue
(peek queue)  ; read from queue
(pop queue)  ; remove from queue

As you can see, abstractions such as TreeMap (sorted by key), TreeSet (sorted by 
element), and Queue should be instantiated by calling their respective APIs.
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Complexity guarantee
The following tables give a summary of the complexity guarantees (using the big  
O notation; all logarithms have base 2 unless mentioned otherwise) of various kinds 
of persistent data structures in Clojure:

Operation PersistentList PersistentHashMap PersistentArrayMap

count O(1) O(1) O(1)
conj O(1)
first O(1)
rest O(1)
doseq O(n) O(n) O(n)
nth O(n)
last O(n)
get O(<7) O(1)
assoc O(<7) O(1)
dissoc O(<7) O(1)
peek

pop

Operation PersistentVector PersistentQueue PersistentTreeMap

count O(1) O(1) O(1)
conj O(1) O(1)
first O(<7) O(<7)
rest O(<7) O(<7)
doseq O(n) O(n)
nth O(<7) O(<7)
last O(n) O(n)
get O(<7) O(<7) O(log n)
assoc O(<7) O(log n)
dissoc O(<7) O(log n)
peek O(1) O(1)
pop O(<7) O(1)
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A list is a sequential data structure. It provides constant time operation for everything 
regarding the first element only. For example, conj adds the element to the head and 
guarantees O(1) complexity. Similarly, first and rest provide O(1) guarantee too. 
Everything else provides O(n) complexity guarantee.

Persistent hash-maps and vectors use the bit-partitioned trie data structure with a 
branching factor of 32 under the hood. So, even though the complexity is O(log32 N),  
only 232 hash-codes can fit into the trie nodes. Hence, log32 232, which turns out  
to be 6.4 and is less than 7, is the worst-case complexity and can be considered  
near-constant time. As the trie grows large, the portion to copy gets tiny in 
proportion due to structure sharing. Persistent hash-set implementation is also  
based on hash-maps; hence, the hash-sets share the characteristics of the hash-maps. 
In a persistent vector, the last incomplete node is placed at the tail, which is always 
directly accessible from the root. This makes using conj to the end to be a constant 
time operation.

Persistent tree-map and tree-set are basically sorted maps and sets respectively.  
Their implementation uses red-black trees and is generally more expensive than  
hash-maps and hash-sets. Persistent queue uses a persistent vector under the hood 
for adding new elements. Removing an element from a persistent queue takes off the 
head from a seq, which is created from the vector where new elements are added.

The complexity of an algorithm over a data structure is not an absolute measure 
of its performance. For example, working with hash-maps involves computing the 
hash-code, which is not included in the complexity guarantee. Our choice of data 
structures should be based on the actual use case. For example, when should we 
use a list instead of a vector? Probably when we need sequential or last-in-first-out 
(LIFO) access, or when constructing an abstract-syntax-tree (AST) for a function call.

Concatenation of persistent data structures
While persistent data structures have excellent performance characteristics,  
the concatenation of two persistent data structures has been a linear time O(N) 
operation, except for some recent developments. The concat function, as of Clojure 
1.5, still provides linear time concatenation. Experimental work on Relaxed Radix 
Balanced (RRB) trees is going on in the core.rrb-vector contrib project (https://
github.com/clojure/core.rrb-vector) that may provide logarithmic time O(log N)  
concatenation. Readers interested in the details should refer to the following links:

•	 The RRB-trees paper at http://infoscience.epfl.ch/record/169879/
files/RMTrees.pdf

•	 Phil Bagwel's talk at http://www.youtube.com/watch?v=K2NYwP90bNs
•	 Tiark Rompf's talk at http://skillsmatter.com/podcast/scala/fast-

concatenation-immutable-vectors
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Sequences and laziness
"A seq is like a logical cursor."

—Rich Hickey

Sequences (commonly known as seqs) are a way to sequentially consume a succession 
of data. Like Java iterators, they let a user begin consuming elements from the head 
and proceed realizing one element after another. However, unlike Java iterators, 
sequences are immutable. Also, since sequences are only a view of the underlying  
data, they do not modify the storage structure of the data.

What makes sequences stand apart is they are not data structures per se; rather, 
they are a data abstraction over a stream of data. The data may be produced by an 
algorithm or a data source connected to an I/O operation. For example, the function 
resultset-seq accepts a JDBC java.sql.ResultSet instance as an argument and 
produces lazily-realized rows of data as a seq.

Clojure data structures can be turned into sequences using the seq function.  
For example, (seq [:a :b :c :d]) returns a sequence. Calling seq over an  
empty collection returns nil.

Sequences can be consumed by the following functions:

•	 first: returns the head of the sequence
•	 rest: returns the remaining sequence, even if it's empty, after removing  

the head
•	 next: returns the remaining sequence or nil, if it's empty, after removing  

the head

Laziness
Clojure is a mostly strict (as in, the opposite of lazy) language where one can can 
choose to explicitly make use of laziness when required. Anybody can create a  
lazily-evaluated sequence using the lazy-seq macro. Some Clojure operations  
over collections, such as map, filter, and more, are intentionally lazy.

Laziness simply means that the value is not computed until actually required.  
Once the value is computed, it is cached so that any future reference to the  
value need not re-compute it. The caching of the value is called memoization. 
Laziness and memoization often go hand in hand.
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Laziness in data structure operations
Laziness and memoization together form an extremely useful combination to 
keep the single-threaded performance of functional algorithms comparable to its 
imperative counterparts. For an example, consider the following Java code:

List<String> titles = getTitles();
int goodCount = 0;
for (String each: titles) {
    String checksum = computeChecksum(each);
    if (verifyOK(checksum)) {
        goodCount++;
    }
}

As is clear from the preceding snippet, it has a linear time complexity, that is, O(N), 
and the whole operation is performed in a single pass. The comparable Clojure code 
is as follows:

(->> (get-titles)
  (map compute-checksum)
  (filter verify-ok?)
  count)

Now, since we know map and filter are lazy, we can deduce that the Clojure version 
also has linear time complexity, that is, O(N), and finishes the task in one pass with  
no significant memory overhead. Imagine for a moment that map and filter are  
not lazy—what would be the complexity then? How many passes would it make?  
It's not just that map and filter both would have taken one pass, that is, O(N), each; 
they would each have taken as much memory as the original collection in the worst 
case due to storing the intermediate results.

It is important to know the value of laziness and memoization in an  
immutability-emphasizing functional language such as Clojure. They form a basis 
for amortization in persistent data structures, which is about focusing on the overall 
performance of a composite operation instead of microanalyzing the performance of 
each operation in it; the operations are tuned to perform faster in those operations  
that matter the most.

Another important bit of detail is that when a lazy sequence is realized, the data  
is memoized and stored. On the JVM, all the heap references that are reachable in 
some way are not garbage collected. So, as a consequence, the entire data structure  
is kept in memory unless you lose the head of the sequence. When working with  
lazy sequences using local bindings, make sure you don't keep referring to the  
lazy sequence from any of the locals. When writing functions that may accept  
lazy sequence(s), take care that any reference to the lazy seq does not outlive  
the execution of the function in the form of a closure or such.
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Constructing lazy sequences
Now that we know what lazy sequences are, let us try to create a retry counter that 
should return true only as many times as the retry can be performed. This is shown 
in the following code:

(defn retry? [n]
  (if (<= n 0)
    (cons false (lazy-seq (retry? 0)))
    (cons true (lazy-seq (retry? (dec n))))))

The lazy-seq macro makes sure that the stack is not used for recursion. We can see 
that this function would return endless values. Hence, in order to inspect what it 
returns, we should limit the number of elements as shown in the following code:

user=> (take 7 (retry? 5))
(true true true true true false false)

Now, let us try using it in a mock fashion:

(loop [r (retry? 5)]
  (if-not (first r)
    (println "No more retries")
    (do
      (println 'Retrying)
      (recur (rest r)))))

As expected, the output should print Retrying five times before printing No more 
retries and exiting as follows:

Retrying
Retrying
Retrying
Retrying
Retrying
No more retries
nil

Let us take another simpler example of constructing a lazy sequence, which gives  
us a countdown from a specified number to zero:

(defn count-down [n]
  (if (<= n 0)
    '(0)
    (cons n (lazy-seq (count-down (dec n))))))
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We can inspect the values it returns as follows:

user=> (count-down 8)
(8 7 6 5 4 3 2 1 0)

Lazy sequences can loop indefinitely without exhausting the stack and can come in 
handy when working with other lazy operations. To maintain a balance between 
space-saving and performance, consuming lazy sequences results in the chunking 
of elements by a factor of 32. That means lazy seqs are realized in a chunk-size of 32, 
even though they are consumed sequentially.

Custom chunking
The default chunk size 32 may not be optimum for all lazy sequences—you can 
override the chunking behavior when you need. Consider the snippet below 
(adapted from Kevin Downey's public gist here: https://gist.github.com/
hiredman/324145):

(defn chunked-line-seq
  "Returns the lines of text from rdr as a chunked[size] sequence of
  strings. rdr must implement java.io.BufferedReader."
  [^java.io.BufferedReader rdr size]
  (lazy-seq
   (when-let [line (.readLine rdr)]
     (chunk-cons
      (let [buffer (chunk-buffer size)]
        (chunk-append buffer line)
        (dotimes [i (dec size)]
          (when-let [line (.readLine rdr)]
            (chunk-append buffer line)))
        (chunk buffer))
      (chunked-line-seq rdr size)))))

As per the previous snippet, the user is allowed to pass a chunk size that is used to 
produce a lazy sequence of text. A larger chunk size may be useful when processing 
large text files, such as when processing CSV or logfiles.

Macros and closures
Often times, we define a macro so as to turn the parameter body of code into a 
closure and delegate it to a function. See the following example:

(defmacro do-something
  [& body]
  `(do-something* (fn [] ~@body)))
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When using such code, if the body binds a local to a lazy sequence it may be retained 
longer than necessary, likely with bad consequences on memory consumption and 
performance. Fortunately, this can be easily fixed:

(defmacro do-something
  [& body]
  `(do-something* (^:once fn [] ~@body)))

Notice the ^:once hint, which makes the Clojure compiler clear the 
closed-over references, thus avoiding the problem. Readers interested 
in the details should refer to http://cljme.cgrand.net/2013/09/11/
macrosclosuresandunexpectedobjectretention/.

Transients
Earlier in this chapter, we discussed the virtues of immutability and the pitfalls of 
mutability. However, even though unguarded mutability is fundamentally unsafe, 
it also has very good single-threaded performance. Now, what if there was a way to 
restrict the mutable operation in a local context in order to provide safety guarantees? 
That would be equivalent to combining the performance advantage and local safety 
guarantees. This can be done with the abstraction called transients, which is provided 
by Clojure.

First, let us verify that it is safe:

user=> (let [t (transient [:a])]
  @(future (conj! t :b)))
IllegalAccessError Transient used by non-owner thread  clojure.lang.
PersistentVector$TransientVector.ensureEditable (PersistentVector.
java:463)

As we can see, a transient created in one thread cannot be accessed by another:

user=> (let [t (transient [:a])] (seq t))

IllegalArgumentException Don't know how to create ISeq from: clojure.
lang.PersistentVector$TransientVector  clojure.lang.RT.seqFrom (RT.
java:505)
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So, transients cannot be converted to seqs. Hence, they cannot participate in the 
birthing of new persistent data structures and leak out of the scope of execution. 
Consider the following code:

(let [t (transient [])]
  (conj! t :a)
  (persistent! t)
  (conj! t :b))
IllegalAccessError Transient used after persistent! call  
clojure.lang.PersistentVector$TransientVector.ensureEditable 
(PersistentVector.java:464)

The persistent! function permanently converts a transient into an equivalent 
persistent data structure. Effectively, transients are for one-time use only.

Conversion between persistent and transient data structures (functions transient 
and persistent!) is constant time, that is, an O(1) operation. Transients can be 
created from unsorted maps, vectors, and sets only. The functions that mutate 
transients are: conj!, disj!, pop!, assoc!, and dissoc!. Read-only operations such 
as get, nth, count, and many more work as usual on transients, but functions such 
as contains? and those that imply seqs, such as first, rest, and next, do not.

Fast repetition
The function clojure.core/repeatedly lets us execute a function many times and 
produce a lazy sequence of results. Peter Taoussanis, in his open source serialization 
library Nippy (https://github.com/ptaoussanis/nippy), wrote a transient-aware  
variant that performs significantly better. It is reproduced, as shown, with his 
permission (note that the arity of the function is not the same as repeatedly):

(defn repeatedly*
  "Like `repeatedly` but faster and returns given collection type."
  [coll n f]
  (if-not (instance? clojure.lang.IEditableCollection coll)
    (loop [v coll idx 0]
      (if (>= idx n)
        v
        (recur (conj v (f)) (inc idx))))
    (loop [v (transient coll) idx 0]
      (if (>= idx n)
        (persistent! v)
        (recur (conj! v (f)) (inc idx))))))
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Performance miscellanea
Besides the major abstractions we saw earlier in the chapter, there are other  
smaller, but nevertheless very performance-critical, parts of Clojure that we  
will see in this section.

Disabling assertions in production
Assertions are very useful to catch logical errors in the code during development, 
but they impose a runtime overhead that you may like to avoid in production 
environment. Since clojure.core/*assert* is a compile time var, the assertions can 
be silenced either by binding *assert* to false or by using alter-var-root before  
the code is loaded. Unfortunately, both the techniques are cumbersome to use.  
Paul Stadig's library called assertions (https://github.com/pjstadig/assertions) 
helps with this exact use case by enabling or disabling assertions via command-line 
argument -ea to the Java Runtime. You must include it in your Leiningen project.
clj file as a dependency to use it:

:dependencies [;; other dependencies…
              [pjstadig/assertions "0.1.0"]]

You must use this library's assert macro instead of Clojure's own, so each ns block 
in the application should look something like this:

(ns example.core
  (:refer-clojure :exclude [assert])
  (:require [pjstadig.assertions :refer [assert]]))

When running the application, you should include the -ea argument to the JRE to 
enable assertions, whereas its exclusion implies no assertion at runtime:

$ JVM_OPTS=-ea lein run -m example.core
$ java -ea -jar example.jar

Note that this usage will not automatically avoid assertions in the other code and 
dependency libraries that use clojure.core/assert.

Destructuring
Destructuring is one of Clojure's built-in mini languages and, arguably, a top 
productivity booster during development. This feature leads to the parsing of  
values to match the left-hand side of the binding forms. The more complicated  
the binding form is, the more work needs to be done. Not surprisingly, this has  
a little bit of performance overhead.
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It is easy to avoid this overhead by using explicit functions to unravel data in the 
tight loops and other performance-critical code. After all, it all boils down to making 
the program work less and do more.

Recursion and tail-call optimization (TCO)
Functional languages have this concept of tail-call optimization related to recursion. 
So, the idea is that when a recursive call is at the tail position, it does not take up 
space on the stack for recursion. Clojure supports a form of user-assisted recursive 
call to make sure the recursive calls do not blow the stack. This is kind of an 
imperative looping, but it is extremely fast.

When carrying out computations, it may make a lot of sense to use loop-recur  
in the tight loops instead of iterating over synthetic numbers. For example, let's say 
we want to add all odd integers from zero through 1,000,000. Let's compare the code:

(defn oddsum-1 [n]  ; using iteration
  (->> (range (inc n))
    (filter odd?)
    (reduce +)))
(defn oddsum-2 [n]  ; using loop-recur
  (loop [i 1 s 0]
    (if (> i n)
      s
      (recur (+ i 2) (+ s i)))))

When we run the code we get interesting results:

user=> (time (oddsum-1 1000000))
"Elapsed time: 109.314908 msecs"

250000000000
user=> (time (oddsum-2 1000000))
"Elapsed time: 42.18116 msecs"

250000000000

The time macro is far from perfect as the performance benchmarking tool, but the 
relative numbers indicate a trend—in the subsequent chapters, we will look at the 
Criterium library for more scientific benchmarking. Here, we use loop-recur not 
only to iterate faster, but we are also able to change the algorithm itself by iterating 
only about half as many times as we did in the other example.
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Premature end in reduce
When accumulating over a collection, in some cases, we may want to end  
it prematurely. Prior to Clojure 1.5, loop-recur was the only way to do it.  
When using reduce, we can do just that using the reduced function  
introduced in Clojure 1.5 as shown:

;; let coll be a collection of numbers
(reduce (fn ([x] x)
            ([x y] (if (or (zero? x) (zero? y))
                     (reduced 0)
                     (* x y))))
        coll)

Here, we multiply all numbers in a collection and, upon finding any of the numbers 
as zero, immediately return the result zero instead of continuing till the last element.

Multimethods versus protocols
Multimethods are a fantastic expressive abstraction for a polymorphic dispatch  
on a dispatch function's return value. The dispatch functions associated with  
a multimethod are maintained at runtime and looked up whenever a multimethod 
call is invoked. While multimethods provide a lot of flexibility in determining  
the dispatch, the performance overhead is simply too high compared to that  
of protocol implementations.

Protocols (defprotocol) are implemented using reify, records (defrecord),  
and types (deftype, extend-type) in Clojure. This is a big discussion topic—since  
we are discussing the performance characteristics, it should suffice to say that 
protocol implementations dispatch on polymorphic types and are significantly  
faster than multimethods. Protocols and types are generally the implementation 
detail of an API, so they are usually fronted by functions.

Due to the multimethods' flexibility, they still have a place. However, in performance 
critical code, it is advisable to use protocols, records, and types instead.

Inlining
It is well known that macros are expanded inline at the call site and avoid a function 
call. As a consequence, there is a small performance benefit. There is also a definline 
macro that lets you write a function just like a normal macro. It creates an actual 
function that gets inlined at the call site:

(def PI Math/PI)
(definline circumference [radius]
  `(* 2 PI ~radius))
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Note that the JVM also analyzes the code it runs and does its own inlining 
of code at runtime. While you may choose to inline the hot functions, this 
technique is known to give only a modest performance boost.

When we define a var object, its value is looked up each time it is used. When we 
define a var object using a :const meta pointing to a long or double value, it is 
inlined from wherever it is called.

(def ^:const PI Math/PI)

This is known to give a decent performance boost when applicable. See the  
following example:

user=> (def a 10)
user=> (def ^:const b 10)
user=> (def ^:dynamic c 10)
user=> (time (dotimes [_ 100000000] (inc a)))
"Elapsed time: 1023.745014 msecs"
nil
user=> (time (dotimes [_ 100000000] (inc b)))
"Elapsed time: 226.732942 msecs"
nil
user=> (time (dotimes [_ 100000000] (inc c)))
"Elapsed time: 1094.527193 msecs"
nil

Summary
Performance is one of the cornerstones of Clojure's design. Abstractions in Clojure 
are designed for simplicity, power, and safety with performance firmly in mind.  
We saw the performance characteristics of various abstractions and also how to 
make decisions about abstractions depending on performance use cases.

In the next chapter, we will see how Clojure interoperates with Java and how we  
can extract Java's power to derive optimum performance.



Leaning on Java
Being hosted on the Java Virtual Machine (JVM), there are several aspects of  
Clojure in which it really helps to know about the Java language and platform.  
The need is not only due to interoperability with Java or understanding its 
implementation, but also for performance reasons. In certain cases, Clojure may  
not generate optimized JVM bytecode by default; in some other cases, you may  
want to go beyond the performance Clojure data structures offer — you can use  
the Java alternatives via Clojure to get better performance. This chapter discusses 
those aspects of Clojure. In this chapter, we will discuss:

•	 Inspecting Java generated from Clojure source
•	 Numerics and primitives
•	 Working with arrays
•	 Reflection and type hinting

Inspect the equivalent Java source for 
Clojure code
Inspecting the equivalent Java source for a given Clojure code provides a great 
insight into how that might impact its performance. However, Clojure generates  
only Java bytecodes at runtime unless we compile a namespace out to disk.  
When developing with Leiningen, only selected namespaces under the :aot 
vector in the project.clj file are output as the compiled .class files containing 
bytecodes. Fortunately, an easy and quick way to know the equivalent Java source 
for Clojure code is to ahead-of-time (AOT) compile namespaces and then decompile 
the bytecodes into equivalent Java sources using a Java bytecode decompiler.

www.allitebooks.com

http://www.allitebooks.org
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There are several commercial and open source Java bytecode decompilers available. 
One of the open source decompilers we will discuss here is JD-GUI, which you can 
download from its website (http://jd.benow.ca/#jd-gui). Use a version suitable 
for your operating system.

Create a new project
Let us see how exactly to arrive at the equivalent Java source code from Clojure. 
Create a new project using Leiningen: lein new foo. Then edit the src/foo/core.
clj file with a mul function to find out the product of two numbers:

(ns foo.core)

(defn mul [x y]
  (* x y))

Compile Clojure sources into Java bytecode
To compile Clojure sources into bytecodes and output them as .class files,  
run the lein compile :all command. This will create the .class files in the 
target/classes directory of the project as follows:

target/classes/
`-- foo
    |-- core$fn__18.class
    |-- core__init.class
    |-- core$loading__4910__auto__.class
    `-- core$mul.class

You can see that the foo.core namespace has been compiled into three .class files.

Decompile the .class files into Java source
Assuming that you have already installed JD-GUI, decompiling the .class files is as 
simple as opening them using the JD-GUI application. Open the JD-GUI application 
and then open a compiled class file using the menu option:
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On inspection, the code for the foo.core/mul function looks as follows:

package foo;

import clojure.lang.AFunction;
import clojure.lang.Numbers;
import clojure.lang.RT;
import clojure.lang.Var;

public final class core$mul extends AFunction
{
  public static final Var const__0 = (Var)RT.var("clojure.core", "*");

  public Object invoke(Object x, Object y) { x = null; y = null; 
return Numbers.multiply(x, y);
  }
}

It is easy to understand from the decompiled Java source that the foo.core/mul 
function is an instance of the core$mul class in the foo package extending the 
clojure.lang.AFunction class. We can also see that the argument types are of the 
Object type, which implies the numbers will be boxed.  In a similar fashion, you can 
decompile class files of any Clojure code to inspect the equivalent Java code.  If you 
can combine this with knowledge about Java types and potential reflection and boxing, 
you can find the suboptimal spots in code and focus on what to improve upon.
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Numerics, boxing, and primitives
Numerics are scalars. The discussion on numerics was deferred until this chapter 
for the sole reason that the numerics implementation in Clojure has strong Java 
underpinnings. Since Version 1.3, Clojure has settled with 64-bit numerics as the 
default. Now, long and double are idiomatic and are the default numeric types. 
Note that these are primitive Java types, not objects. Primitives in Java lead to high 
performance and have several optimizations associated with them at compiler and 
runtime levels. A local primitive is created on the stack (hence does not contribute 
to heap allocation and GC) and can be accessed directly without any kind of 
dereferencing. In Java, there also exist object equivalents of the numeric primitives, 
known as boxed numerics — these are regular objects that are allocated on the heap. 
The boxed numerics are also immutable objects, which mean not only does the JVM 
need to dereference the stored value when reading it, but also needs to create a new 
boxed object when a new value needs to be created.

It should be obvious that boxed numerics are slower than their primitive equivalents. 
The Oracle HotSpot JVM, when started with the -server option, aggressively inlines 
those functions (on frequent invocation) that contain a call to primitive operations. 
Clojure automatically uses primitive numerics at several levels. In the let blocks, 
loop blocks, arrays, and arithmetic operations (+, -, *, /, inc, dec, <, <=, >, >=), 
primitive numerics are detected and retained. The following table describes the 
primitive numerics with their boxed equivalents:

Primitive numeric type Boxed equivalent
byte (1 byte) java.lang.Byte

short (2 bytes) java.lang.Short

int (4 bytes) java.lang.Integer

float (4 bytes) java.lang.Float

long (8 bytes) java.lang.Long

double (8 bytes) java.lang.Double

In Clojure, sometimes you may find that numerics are passed or returned as boxed 
objects to or from functions due to the lack of type information at runtime. Even if  
you have no control over such functions, you can coerce the values to be treated as  
primitives. The byte, short, int, float, long, and double functions create 
primitive equivalents from given boxed numeric values.
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One of the Lisp traditions is to provide correct (http://en.wikipedia.org/wiki/
Numerical_tower) arithmetic implementation. A lower type should not truncate 
values when overflow or underflow happens, but rather should be promoted to 
construct a higher type to maintain correctness. Clojure follows this constraint 
and provides autopromotion via prime (http://en.wikipedia.org/wiki/
Prime_(symbol)) functions: +', -', *', inc', and dec'. Autopromotion provides 
correctness at the cost of some performance.

There are also arbitrary length or precision numeric types in Clojure that let us  
store unbounded numbers but have poorer performance compared to primitives. 
The bigint and bigdec functions let us create numbers of arbitrary length  
and precision.

If we try to carry out any operations with primitive numerics that may result in 
a number beyond its maximum capacity, the operation maintains correctness 
by throwing an exception. On the other hand, when we use the prime functions, 
they autopromote to provide correctness. There is another set of operations called 
unchecked operations which do not check for overflow or underflow and can 
potentially return incorrect results. In some cases, they may be faster than regular 
and prime functions. Such functions are unchecked-add, unchecked-subtract, 
unchecked-multiply, unchecked-divide, unchecked-inc, unchecked-dec, 
unchecked-negate, and unchecked-remainder. We can also enable unchecked 
math behavior for regular arithmetic functions using the *unchecked-math* var; 
simply include the following in your source code file:

(set! *unchecked-math* true)

One of the common needs in arithmetic is division that is used to find out the 
quotient and remainder after a natural number division. Clojure's / function 
provides a rational number division yielding a ratio and the mod function provides  
a true modular arithmetic division. These functions are slower than the quot and  
rem functions that compute the division quotient and the remainder respectively.

Arrays
Beside objects and primitives, Java has a special type of collection storage structure 
called arrays. Once created, arrays cannot be grown or shrunk without copying 
data and creating another array to hold the result. Array elements are always 
homogeneous in type. Array elements are like places that you can mutate to hold 
new values. Unlike collections such as list and vector, arrays can contain primitive 
elements, which make them a very fast storage mechanism without Garbage 
Collection (GC) overhead.
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Arrays often form a basis for mutable data structures. For example, Java's java.
lang.ArrayList implementation uses arrays internally. In Clojure, arrays can  
be used for fast numeric storage and processing, efficient algorithms, and so on. 
Unlike collections, arrays can have one or more dimensions. So, you could lay out 
data in an array such as a matrix or cube. Let us see Clojure's support for arrays:

Description Example Notes
Create array (make-array Integer 20) Array of type 

(boxed) integer
(make-array Integer/TYPE 20) Array of primitive 

type integer
(make-array Long/TYPE 20 10) Two-dimensional 

array of primitive 
long

Create 
array of 
primitives

(int-array 20) Array of primitive 
integer of size 20

(int-array [10 20 30 40]) Array of primitive 
integer created from 
a vector

Create array 
from coll

(to-array [10 20 30 40]) Array from sequable

(to-array-2d [[10 20 30][40 50 60]]) Two-dimensional 
array from 
collection

Clone an 
array

(aclone (to-array [:a:b:c]))

Get array 
element

(aget array-object 0 3) Get element at index 
[0][3] in a 2-D array

Mutate 
array 
element

(aset array-object 0 3:foo) Set obj :foo at index 
[0][3] in a 2-D array

Mutate 
primitive 
array 
element

(aset-int int-array-object 2 6 89) Set value 89 at index 
[2][6] in 2-D array

Find length 
of array

(alength array-object) alength is 
significantly faster 
than count
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Description Example Notes
Map over 
an array

(def a (int-array [10 20 30 40 50 60]))

(seq

  (amap a idx ret

    (do (println idx (seq ret))

      (inc (aget a idx)))))

Unlike map, amap 
returns a non-lazy 
array, which is 
significantly faster 
over array elements. 
Note that amap is 
faster only when 
properly type 
hinted. See next 
section for more on 
type hinting.

Reduce over 
an array

(def a (int-array [10 20 30 40 50 60]))

(areduce a idx ret 0

  (do (println idx ret)

    (+ ret idx)))

Unlike reduce, 
areduce is 
significantly faster 
over array elements. 
Note that reduce 
is faster only when 
properly type 
hinted. See next 
section for more on 
type hinting.

Cast to 
primitive 
arrays

(ints int-array-object) Used with  
type hinting  
(see next section)

Like int-array and ints, there are functions for other types as well:

Array 
construction 
function

Primitive-array 
casting function

Type hinting (does not 
work for vars)

Generic array  
type hinting

boolean-array booleans ^booleans ^"[Z"

byte-array bytes ^bytes ^"[B"

short-array shorts ^shorts ^"[S"

char-array chars ^chars ^"[C"

int-array ints ^ints ^"[I"

long-array longs ^longs ^"[J"

float-array floats ^floats ^"[F"

double-array doubles ^doubles ^"[D"

object-array    –– ^objects ^"[Ljava.lang.
Object"
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Arrays are favored over other data structures mainly due to performance and 
sometimes due to interop. Take extreme care to type hint the arrays and use the 
appropriate functions to work with them.

Reflection and type hints
Sometimes, as Clojure is dynamically typed, the Clojure compiler is unable  
to figure out the type of object to invoke a certain method. In such cases,  
Clojure uses reflection, which is considerably slower than direct method  
dispatch. Clojure's solution to this is something called type hints. Type hints  
are a way to annotate arguments and objects with static types so that the  
Clojure compiler can emit bytecodes for efficient dispatch.

The easiest way to know where to put type hints is to turn on reflection warning in 
the code. Consider this code that determines the length of a string:

user=> (set! *warn-on-reflection* true)
true
user=> (def s "Hello, there")
#'user/s
user=> (.length s)
Reflection warning, NO_SOURCE_PATH:1 - reference to field length can't 
be resolved.
12
user=> (defn str-len [^String s] (.length s))
#'user/str-len
user=> (str-len s)
12
user=> (.length ^String s)  ; type hint when passing argument
12
user=> (def ^String s "Hello, there")  ; type hint at var level
#'user/s
user=> (.length s)  ; no more reflection warning
12

When working on a project, you may want reflection warning to be turned on for 
all files. You can do this easily in Leiningen. Just put the following entry in your 
project.clj file:

:profiles {:dev {:global-vars {*warn-on-reflection* true}}}

This will automatically turn on reflection warning every time you begin any kind of 
invocation via Leiningen in the dev workflow such as REPL and test.
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Array of primitives
Recall the examples on amap and areduce from the previous section. If we run them 
with reflection warning on, we'd be warned that it uses reflection. Let's type hint them:

(def a (int-array [10 20 30 40 50 60]))
;; amap example
(seq
  (amap ^ints a idx ret
    (do (println idx (seq ret))
      (inc (aget ^ints a idx)))))
;; areduce example
(areduce ^ints a idx ret 0
  (do (println idx ret)
    (+ ret idx)))

Note that the primitive array hint ^ints does not work at the var level. So, it would 
not work if you defined the var a like the following:

(def ^ints a (int-array [10 20 30 40 50 60]))  ; wrong, will complain 
later	
(def ^"[I" a (int-array [10 20 30 40 50 60]))  ; correct

This notation is for an array of integers. Other primitive array types have similar type 
hints. Refer to the previous section for type hinting for various primitive array types.

Primitives
Type hinting of primitive locals is neither required nor allowed. However, you can 
type hint function arguments as primitives. Clojure allows up to four arguments in 
functions to be type hinted:

(defn do-something
  [^long a ^long b ^long c ^long d]
  ..)

Boxing may result in something not always being a primitive. In those 
cases, you can coerce those using respective primitive types.
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Macros and metadata
In macros, type hinting does not work the way it does in other parts of the code.  
Since macros are about transforming the Abstract Syntax Tree (AST) , we need  
to have a mental map of the transformation and we should add type hints as 
metadata in the code. For example, if str-len is a macro to find the length of a 
string, we make use of the following code:

(defmacro str-len
  [s]
  `(.length ~(with-meta s {:tag String})))

In the preceding code, we alter the metadata of the symbol s by tagging it with the 
type String, which happens to be the java.lang.String class in this case. For array 
types, we can use "[Ljava.lang.String" for an array of string objects and similarly 
for others.

Type hinting via metadata also works with functions, albeit in a different notation:

(defn foo [] "Hello")
(defn ^String foo [] "Hello")
(defn ^{:tag String} foo [] "Hello")

Except for the first example in the preceding snippet, they are type hinted to return 
the java.lang.String type.

Miscellaneous
In a type (as in deftype), the mutable instance variables can be optionally annotated 
as ^:volatile-mutable or ^:unsynchronized-mutable for concurrent behavior, 
covered in Chapter 5, Concurrency. For example:

(deftype Counter [^:volatile-mutable ^long now]
  ..)

Unlike defprotocol, the definterface macro lets us provide a return type hint  
for methods:

(definterface Foo
  (^long doSomething [^long a ^double b]))
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The proxy-super macro (which is used inside the proxy macro) is a special case 
where you cannot directly apply a type hint. The reason being that it relies on the 
implicit this object that is automatically created by the proxy macro. In this case, 
you must explicitly bind this to a type:

(proxy [Object][]
  (equals [other]
    (let [^Object this this]
      (proxy-super equals other))))

Type hinting is quite important for performance in Clojure. Fortunately, we need to 
type hint only when required, and it's easy to find out when. In many cases, a gain 
from type hinting overshadows the gains from code inlining.

Using array/numeric libraries for 
efficiency
You may have noticed in the previous sections that, when working with numerics, 
performance depends a lot on whether the data is based on arrays and primitives. 
It may take a lot of meticulousness on the programmer's part to correctly coerce 
data into primitives and arrays at all stages of the computation in order to achieve 
optimum efficiency. Fortunately, the high performance enthusiasts from the Clojure 
community realized this issue early on and created some dedicated open source 
libraries to mitigate the problem.

HipHip
HipHip is a Clojure library built to work with arrays of primitive types. It provides 
a safety net; that is, it strictly accepts only primitive array arguments to work with. 
As a result, passing silently boxed primitive arrays as arguments always results in 
an exception. HipHip macros and functions rarely need the programmer to type hint 
anything during the operations. It supports arrays of primitive types such as int, 
long, float, and double.

The HipHip project is available at https://github.com/Prismatic/hiphip.
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As of the time of writing, HipHip's most recent version is 0.1.0. This version supports 
Clojure 1.5.x and is tagged as an Alpha release. There is a standard set of operations 
provided by HipHip for arrays of all of the four primitive types: integer array 
operations are in the namespace hiphip.int, double precision array operations in 
hiphip.double, and so on. The operations are all type hinted for the respective types. 
All of the operations for int, long, float, and double in respective namespaces are 
essentially the same except for the array type:

Category Function/macro Description
Core functions aclone Like clojure.core/aclone for primitives

alength Like clojure.core/alength  
for primitives

aget Like clojure.core/aget for primitives
aset Like clojure.core/aset for primitives
ainc Increments an array element by specified value

Equiv hiphip. 
array operations

amake Makes a new array and fills values computed  
by expression

areduce Like clojure.core/areduce with HipHip 
array bindings

doarr Like clojure.core/doseq with HipHip 
array bindings

amap Like clojure.core/for but it creates a  
new array

afill! Like preceding amap but it overwrites an  
 array argument

Mathy operations asum Compute sum of array elements  
using expression

aproduct Compute product of array elements  
using expression

amean Compute mean over the array elements
dot-product Compute dot product of two arrays

Finding minimum/
maximum, Sorting

amax-index Find maximum value in array and return  
the index

amax Find maximum value in an array and return it
amin-index Find minimum value in an array and return  

the index
amin Find minimum value in an array and return it
apartition! Three-way partition of array: less, equal, greater 

than pivot
aselect! Gather smallest k elements at the beginning  

of an array
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Category Function/macro Description
asort! Sort array in-place using Java's  

built-in implementation
asort-max! Sort array in-place gathering top k elements  

to the end
asort-min! Sort array in-place gathering top k elements  

to the top
apartition-
indices!

Like apartition! but mutates index-array 
instead of values

aselect-
indices!

Like aselect! but mutates index-array 
instead of values

asort-
indices!

Like asort! but mutates index-array instead 
of values

amax-indices Get index-array; last k indices pointing to  
max k values

amin-indices Get index-array; first k indices pointing to  
min k values

To include HipHip as a dependency in your Leiningen project, specify it  
in project.clj:

:dependencies [;; other dependencies
                [prismatic/hiphip "0.1.0"]]

As an example of how to use HipHip,  let us see how to compute normalized  
values of an array:

(require '[hiphip.double :as hd])

(def xs (double-array [12.3 23.4 34.5 45.6 56.7 67.8]))

(let [s (hd/asum xs)] (hd/amap [x xs] (/ x s)))

Unless we make sure that xs is an array of primitive doubles, HipHip will throw 
ClassCastException when the type is incorrect and IllegalArgumentException 
in other cases. I recommend exploring the HipHip project for more insight into  
using it effectively.
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primitive-math
We can set *warn-on-reflection* to true to let Clojure warn us when reflection 
is used at invocation boundaries. However, when Clojure has to implicitly use 
reflection to perform math, the only resort is to either use a profiler or compile 
the Clojure source down to bytecode and analyze boxing and reflection with a 
decompiler. This is where the primitive-math library helps by producing extra 
warnings and throwing exceptions.

The primitive-math library is available at https://github.com/ztellman/
primitive-math.

As of the time of writing, primitive-math is at Version 0.1.3; you can include it as a 
dependency in your Leiningen project by editing project.clj as follows:

:dependencies [;; other dependencies
                [primitive-math "0.1.3"]]

The following code is how it can be used (recall the example from the Decompile the 
.class files into Java source section):

;; enable reflection warnings for extra warnings from primitive-math
(set! *warn-on-reflection* true)
(require '[primitive-math :as pm])
(defn mul [x y] (pm/* x y))  ; produces reflection warning
(mul 10.3 2)                        ; throws exception
(defn mul [^long x ^long y] (pm/* x y))  ; no warning after type hint
(mul 10.3 2)  ; returns 20

The math operations in primitive-math (like HipHip) are implemented 
via macros. Therefore, they cannot be used as higher order functions and 
as a consequence, may not compose well with other code. I recommend 
exploring the project to see what suits your program use case.

Resorting to Java and native code
In a handful of cases, where the lack of imperative, stack-based, mutable variables 
in Clojure may make the code not perform as well as Java, we may need to evaluate 
alternatives to make it faster. I would advise that you consider writing such code 
directly in Java for better performance.
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Another consideration is to use native OS capabilities, such as memory-mapped  
buffers (http://docs.oracle.com/javase/7/docs/api/java/nio/
MappedByteBuffer.html) or files and unsafe operations (http://highlyscalable.
wordpress.com/2012/02/02/direct-memory-access-in-java/). Note that  
unsafe operations are potentially hazardous and are not recommended in general. 
Such times are also an opportunity to consider writing performance-critical pieces  
of code in C or C++ and accessing them via Java Native Interface (JNI).

Proteus – mutable locals in Clojure
Proteus is an open source Clojure library that lets you treat a local like a local variable, 
thereby allowing its unsynchronized mutation within the local scope only. Note that 
this library depends on the internal implementation structure of Clojure as of Clojure 
1.5.1. The Proteus project is available at https://github.com/ztellman/proteus.

You can include Proteus as a dependency in the Leiningen project by editing 
project.clj:

:dependencies [;;other dependencies
                [proteus "0.1.4"]]

Using Proteus in code is straightforward, as shown in the following code snippet:

(require '[proteus :as p])
(p/let-mutable [a 10]
  (println a)
  (set! a 20)
  (println 20))
;; Output below:
;; 10
;; 20

Since Proteus allows mutation only in the local scope, the following throws  
an exception:

(p/let-mutable [a 10 add2! (fn [x] (set! x (+ 2 x)))]
  (add2! a)
  (println a))

The mutable locals are very fast and may be quite useful in tight loops. Proteus is 
unconventional by Clojure idioms, but it may give the required performance boost 
without having to write Java code.



Summary
Clojure has strong Java interoperability and underpinning, and due to  
which, programmers can leverage the performance benefits nearing Java.  
For performance-critical code, sometimes it is necessary to know how  
Clojure interacts with Java and how to turn the right knobs. Numerics is  
a key area where Java interoperability is required to get optimum performance.  
Type hinting is another important performance trick that is frequently useful.  
There are several open source Clojure libraries that make such activities easier  
for the programmer.

In the next chapter, we will dig deeper below Java and see how the hardware and the 
JVM stack play a key role to offer the performance we get, what their constraints are, 
and how to use the understanding to get better performance.



Host Performance
In the previous chapters, we noted how Clojure interoperates with Java. In this chapter 
we will go a bit deeper to understand the internals better. We will touch upon several 
layers of the entire stack, but our major focus will be the Java Virtual Machine (JVM), 
in particular the Oracle HotSpot JVM, though there are several JVM vendors to choose 
from (http://en.wikipedia.org/wiki/List_of_Java_virtual_machines). At the  
time of writing, Oracle JDK 1.7 is the latest stable release, and early OpenJDK 1.8 
milestones are available. In this chapter we will discuss:

•	 How the hardware subsystems function from a performance viewpoint
•	 Organization of the JVM internals and how that is related to performance
•	 How to measure the amount of space occupied by various objects in the heap
•	 How to profile Clojure code for latency using Criterium

The hardware
There are various hardware components that may impact the performance of software 
in different ways. The processors, caches, memory subsystem, I/O subsystems, and so 
on, all have varying degrees of performance impact depending upon the use cases.  
In the following sections we will look into each of those aspects.
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Processors
Since about the late 1980s, microprocessors have been employing pipelining and 
instruction-level parallelism to speed up their performance. Processing an instruction 
at the CPU level consists of typically four cycles: fetch, decode, execute, and writeback. 
Modern processors optimize the cycles by running them in parallel—while one 
instruction is executed, the next instruction is being decoded and the one after that is 
being fetched, and so on. This style is called instruction pipelining.

In practice, in order to speed up execution even further, the stages are subdivided 
into many shorter stages, thus leading to deeper super-pipeline architecture.  
The length of the longest stage in the pipeline limits the clock speed of the CPU. 
By splitting stages into substages, the processor can be run at a higher clock speed 
where more cycles are required for each instruction, but the processor still completes 
one instruction per cycle. Since there are more cycles per second now, we get better 
performance in terms of throughput per second even though the latency of each 
instruction is now higher.

Branch prediction
The processor must fetch and decode instructions in advance even when it 
encounters instructions of the conditional if-then form. Consider an equivalent 
of the (if (test a) (foo a) (bar a)) Clojure expression. The processor must 
choose a branch to fetch and decode; the question is, should it fetch the if branch 
or the else branch? Here, the processor makes a guess as to which instruction to 
fetch/decode. If the guess turns out to be correct, it is a performance gain as usual; 
otherwise, the processor has to throw away the result of the fetch/decode process 
and start on the other branch afresh.

Processors deal with branch prediction using an on-chip branch prediction table.  
It contains recent code branches and two bits per branch indicating whether or not 
the branch was taken, while also accommodating one-off not-taken occurrences.

Today, branch prediction is extremely important in processors for performance,  
so modern processors dedicate hardware resources and special predication instructions 
to improve the prediction accuracy and lower the cost of mispredict penalties.

Instruction scheduling
High-latency instructions and branching usually lead to empty cycles in the instruction 
pipeline known as stalls or bubbles. These cycles are often used to do other work 
by the means of instruction reordering. Instruction reordering is implemented at the 
hardware level via out of order execution and at the compiler level via compile time 
instruction scheduling (also called static instruction scheduling).
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The processor needs to remember the dependencies between instructions when 
carrying out the out-of-order execution. This cost is somewhat mitigated by using 
renamed registers, wherein register values are stored into / loaded from memory 
locations, potentially on different physical registers, so that they can be executed in 
parallel. This necessitates that out-of-order processors always maintain a mapping of 
instructions and corresponding registers they use, which makes their design complex 
and power hungry. With a few exceptions, almost all high-performance CPUs today 
have out-of-order designs.

Good compilers are usually extremely aware of processors, and they are capable of 
optimizing the code by rearranging processor instructions in a way that there are fewer 
bubbles in the processor instruction pipeline. A few high-performance CPUs still rely 
on only static instruction reordering instead of out-of-order instruction reordering and 
in turn save chip area due to simpler design—the saved area is used to accommodate 
extra cache or CPU cores. Low-power processors, such as those from the ARM and 
Atom family, use in-order design. Unlike most CPUs, modern GPUs use in-order 
design with deep pipelines that are compensated by very fast context switching.  
This leads to high latency and high throughput on GPUs.

Threads and cores
Concurrency and parallelism via context switches, hardware threads, and cores are 
very common today, and we have accepted them as a norm to implement in our 
programs. However, we should know why we needed such a design in the first place. 
Most of the real-world code we write today does not have more than a modest scope 
for instruction-level parallelism. Even with hardware-based, out-of-order execution 
and static instruction reordering, no more than two instructions per cycle are truly 
parallel. Hence, another potential source of instructions that can be pipelined and 
executed in parallel are the programs other than the currently running one.

The empty cycles in a pipeline can be dedicated to other running programs which 
assume there are other currently running programs that need the processor's 
attention. Simultaneous multithreading (SMT) is a hardware design that enables 
such kinds of parallelism. Intel implements SMT named HyperThreading in some 
of its processors. While SMT presents a single physical processor as two or more 
logical processors, a true multiprocessor system executes one thread per processor, 
thus achieving simultaneous execution. A multicore processor includes two or more 
processors per chip, but has the properties of a multiprocessor system.
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In general, multicore processors significantly outperform SMT processors. 
Performance on SMT processors can vary by the use case. It peaks in those  
cases where code is highly variable or where threads do not compete for the  
same hardware resources, and dips when the threads are cache-bound on  
the same processor. What is also important is that some programs are simply  
not inherently parallel. In such cases it may be hard to make them go faster  
without explicit use of threads in the program.

Memory systems
It is important to understand the memory performance characteristics to know 
the likely impact on the programs we write. Data-intensive programs that are also 
inherently parallel, such as audio/video processing and scientific computation,  
are largely limited by memory bandwidth, not by the processor. Adding processors 
would not make them faster unless the memory bandwidth is also increased. 
Consider another class of programs, such as 3D graphics rendering or database 
systems, that are limited mainly by memory latency but not the memory bandwidth. 
SMT can be highly-suitable for such programs where threads do not compete for the 
same hardware resources.

Memory access roughly constitutes a quarter of all instructions executed by a 
processor. A code block typically begins with memory load instructions and the 
remaining portion depends on the loaded data. This stalls the instructions and 
prevents large-scale, instruction-level parallelism. As if that was not bad enough, 
even superscalar processors (which can issue more than one instruction per clock 
cycle) can issue at most two memory instructions per cycle. Building fast memory 
systems is limited by natural factors such as the speed of light. This impacts the 
signal round trip to the RAM. This is a natural hard limit and any optimization  
can only work around it.

Data transfer between the processor and motherboard chipset is one of the factors 
that induce memory latency. This is countered using a faster front-side bus (FSB). 
Nowadays, most modern processors fix this problem better by integrating the 
memory controller directly at the chip level. The significant difference between the 
processor versus memory latencies is known as memory wall. This has plateaued  
in recent times due to processor clock speeds hitting power and heat limits, but still 
this memory latency continues to be a significant problem.

Unlike CPUs, the GPUs typically realize a sustained high memory bandwidth.  
Due to latency hiding, they utilize the bandwidth even during a high number 
crunching workload.
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Cache
To overcome the memory latency, modern processors employ a special type of 
very fast memory placed onto the processor chip or close to the chip. The purpose 
of the cache is to store the most recently used data from the memory. Caches are of 
different levels: the L1 cache is located on the processor chip, while the L2 cache is 
bigger and located farther away from the processor compared to L1. There is often  
an L3 cache, which is even bigger and located farther from the processor than L2.  
In Intel's Haswell processor, as of October 2013, the L1 cache is generally 64 kilobytes 
(32 KB instruction plus 32 KB data) in size, L2 is 256 KB per core, and L3 is 8 MB.

In cases where memory latency is bad, fortunately caches seem to work very well. 
The L1 cache is many times faster than accessing the main memory. The reported 
cache hit rates in real-world programs is 90 percent, which makes a strong case for 
caches. A cache works like a dictionary of memory address to a block of data values. 
Since the value is a block of memory, caching of adjacent memory locations has 
mostly no additional overhead. Note that L2 is slower and bigger than L1, and L3 
is slower and bigger than L2. On Intel Sandybridge processors, register lookup is 
instantaneous; the L1 cache lookup takes three clock cycles, L2 takes nine, L3 takes 
21, and main memory access takes 150 to 400 clock cycles.

Interconnect
A processor communicates with the memory and other processors via an interconnect, 
which are generally of two types of architecture: symmetric multiprocessing (SMP) 
and non-uniform memory access (NUMA). In SMP, a bus interconnects processors 
and memory with the help of bus controllers. The bus acts as a broadcast device for 
the end points. The bus often becomes a bottleneck with a large number of processors 
and memory banks. SMP systems are cheaper to build and harder to scale to a large 
number of cores compared to NUMA. In a NUMA system, collections of processors 
and memory are connected point to point to other such groups of processors and 
memory. Every such group is called a node. Local memory of a node is accessible 
by other nodes and vice versa. Intel's HyperTransport and QuickPath interconnect 
technologies support NUMA.
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Storage and networking
Storage and networking are the most commonly-used hardware components besides 
the processor, cache, and memory. Many real-world applications are more often  
I/O-bound than execution-bound. Such I/O technologies are continuously advancing, 
and there is a wide variety of components available on the market. The consideration 
of such devices should be based on the exact performance and reliability characteristics 
for the use case. Another important criterion is to know how well they are supported 
by the target operating system drivers. Current day storage technologies mostly build 
upon hard disks and solid state drives. Applicability of network devices and protocols 
vary widely as per the business use case. A detailed discussion of I/O hardware is out 
of the scope of this book.

The Java Virtual Machine
The Java Virtual Machine is a bytecode-oriented, garbage-collected virtual machine 
that specifies its own instruction set. The instructions have equivalent bytecodes that 
are interpreted and compiled to the underlying OS and hardware by the Java Runtime 
Environment (JRE). Objects are referred to using symbolic references. The data types 
in the JVM are fully standardized as a single spec across all JVM implementations  
on all platforms and architectures. The JVM also follows the network byte order,  
which means communication between Java programs on different architectures can 
happen using the big-endian byte order. Jvmtop (https://code.google.com/p/
jvmtop/) is a handy JVM monitoring tool like the top command in Unix-like systems.

The just-in-time (JIT) compiler
The JIT compiler is part of the JVM. When the JVM starts up, the JIT compiler knows 
hardly anything about the running code, so it simply interprets the JVM bytecodes. 
As the program keeps running, the JIT compiler starts profiling the code by collecting 
statistics and analyzing the call and bytecode patterns. When a method call count 
exceeds a certain threshold, the JIT compiler applies a number of optimizations to  
the code. The most common optimizations are inlining and native code generation. 
The final and static methods and classes are great candidates for inlining.  
JIT compilation does not come without a cost; it occupies memory to store the  
profiled code and sometimes it has to revert wrong speculative optimization. 
However, JIT compilation is almost always amortized over the long duration of  
code execution. In rare cases, turning off JIT compilation may be useful if either the 
code is too large or there are no hotspots in the code due to infrequent execution.
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A JRE has typically two kinds of JIT compilers: client and server. Which JIT compiler is 
used by default depends on the type of hardware and platform. The client JIT compiler 
is meant for client programs such as command-line and desktop applications. We can  
start the JRE with the -server option to invoke the server JIT compiler, which is really 
meant for long running programs on a server. The threshold for JIT compilation is 
higher in the server than the client. The difference in the two kinds of JIT compilers 
is that the client targets upfront, visible lower latency and the server is assumed to be 
running on a high-resource hardware and tries to optimize for throughput.

The JIT compiler in Oracle HotSpot JVM observes the code execution to determine 
the most frequently invoked methods, which are hotspots. Such hotspots are  
usually just a fraction of the entire code that can be cheap to focus on and optimize. 
The HotSpot JIT compiler is lazy and adaptive. Lazy, because it compiles only  
those methods to native code that have crossed a certain threshold, and not all  
the code that it encounters. Compiling to native code is a time consuming process 
and compiling all code would be wasteful. It is adaptive at gradually increasing  
the aggressiveness of its compilation on frequently called code, which implies  
that the code is not optimized only once but many times over as the code gets 
executed repeatedly. After a method call crosses the first JIT compiler threshold, 
 it is optimized and the counter is reset to zero. At the same time, the optimization 
count for the code is set to one. When the call exceeds the threshold yet again,  
the counter is reset to zero and the optimization count is incremented; this time,  
a more aggressive optimization is applied. This cycle continues until the code  
cannot be optimized anymore.

The HotSpot JIT compiler does a whole bunch of optimizations. Some of the most 
prominent ones are as follows:

•	 Inlining: Inlining of methods—very small methods, the static and final 
methods, methods in final classes, and small methods involving only 
primitive numerics are prime candidates for inlining.

•	 Lock elimination: Locking is a performance overhead. Fortunately, if the lock 
object monitor is not reachable from other threads, the lock is eliminated.

•	 Virtual call elimination: Often, there is only one implementation for an 
interface in a program. The JIT compiler eliminates the virtual call and 
replaces that with a direct method call on the class implementation object.

•	 Non-volatile memory write elimination: The nonvolatile data members 
and references in an object are not guaranteed to be visible by the threads 
other than the current thread. This criterion is utilized not to update such 
references in memory, but rather to use hardware registers or the stack  
via native code.
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•	 Native code generation: The JIT compiler generates native code for 
frequently invoked methods together with the arguments. The generated 
native code is stored in the code cache.

•	 Control flow and local optimizations: The JIT compiler frequently reorders 
and splits the code for better performance. It also analyzes the branching of 
control and optimizes code based on that.

There should rarely be any reason to disable JIT compilation, but it can be done by 
passing the -Djava.compiler=NONE parameter when starting the JRE. The default 
compile threshold can be changed by passing -XX:CompileThreshold=9800 to the 
JRE executable where 9800 is the example threshold. The XX:+PrintCompilation 
and -XX:-CITime options make the JIT compiler print the JIT statistics and time 
spent on JIT.

Memory organization
The memory used by the JVM is divided into several segments. JVM being a  
stack-based execution model, one of the memory segments is the stack area.  
Every thread is given a stack where the stack frames are stored in Last-in-First-out 
(LIFO) order. The stack includes a program counter (PC) that points to the instruction 
in the JVM memory currently being executed. When a method is called, a new stack 
frame is created containing the local variable array and the operand stack. Contrary to 
conventional stacks, the operand stack holds instructions to load local variable/field 
values and computation results—a mechanism that is also used to prepare method 
parameters before a call and to store the return value. The stack frame itself may  
be allocated on the heap. The easiest way to inspect the order of stack frames in  
the current thread is to execute the following code:

(require 'clojure.repl)
(clojure.repl/pst (Throwable.))

When a thread requires more stack space than what the JVM can provide, 
StackOverflowError is thrown.
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The heap is the main memory area where the object and array allocations are done. It is 
shared across all JVM threads. The heap may be of fixed size or expanding depending 
on the arguments passed to the JRE on startup. Trying to allocate more heap space 
than what the JVM can make room for results in OutOfMemoryError being thrown. 
The allocations in the heap are subject to garbage collection. When an object is no more 
reachable via any reference it is garbage collected, with the notable exception of weak, 
soft, and phantom references. Objects pointed to by nonstrong references take longer 
to GC.

The method area is logically a part of the heap memory and contains per-class 
structures such as the field and method information, the runtime constant pool,  
the code for methods, and constructor bodies. It is shared across all JVM threads.  
In the Oracle HotSpot JVM (up to Version 7), the method area is found in a memory 
area called the permanent generation. In HotSpot Java 8, the permanent generation 
is replaced by a native memory area called Metaspace.

Program Counter

Native method stack

JVM Stack

Thread

JVM Memory

Heap

Method Area

Runtime
Constant
Pool

The JVM contains the native code and the Java bytecode to be provided to the Java 
API implementation and the JVM implementation. The native code call stack is 
maintained separately for each thread stack. The JVM stack contains the Java method 
calls. Please note that the JVM spec for Java SE 7 does not imply a native method 
stack, but it does for Java SE 5 and 6.
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HotSpot heap and garbage collection
The Oracle HotSpot JVM uses a generational heap. The three main generations are 
young, tenured (old), and permanent (till HotSpot JDK 1.7 only) generations. As objects 
survive garbage collection, they move from Eden to Survivor and from Survivor 
to Tenured spaces. The new instances are allocated in the Eden segment, which is 
a very cheap operation (as cheap as a pointer bump, faster than a C malloc call) 
if it already has sufficient free space. When the Eden area does not have enough 
free space, a minor GC is triggered. This copies the live objects from Eden into 
the Survivor space. In the same operation, live objects are checked in Survivor-1 
and copied over to Survivor-2, thus keeping the live objects only in Survivor-2. 
This scheme keeps Eden and Survivor-1 empty and unfragmented to make new 
allocations, and this is known as copy collection.
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After a certain survival threshold in the young generation, the objects are moved 
to the tenured/old generation. If it is not possible to do a minor GC, a major GC is 
attempted. The major GC does not use copying, but rather relies on mark-and-sweep 
algorithms. We can use throughput collectors (Serial, Parallel, and ParallelOld) 
or low-pause collectors (Concurrent and G1) for the old generation.

Sometimes due to running full GC multiple times, the Tenured space may have 
become so fragmented that it may not be feasible to move objects from Survivor to 
Tenured space. In those cases, a full GC with compaction is triggered. During this 
period, the application may appear unresponsive due to the full GC in action.

Measuring memory (heap/stack) usage
One of the prime reasons for performance hit in the JVM is garbage collection.  
It certainly helps to know how heap memory is used by the objects we create  
and how to reduce the impact on GC by means of lower footprint. Let us inspect  
how the representation of an object may lead to heap space.
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Every (uncompressed) object or array reference on a 64-bit JVM is 16 bytes long.  
On a 32-bit JVM, every reference is 8 bytes long. As the 64-bit architecture is 
becoming more commonplace now, the 64-bit JVM is more likely to be used on 
servers. Fortunately, for a heap size of up to 32 GB, the JVM can use compressed 
pointers (default behavior) that are only 4 bytes in size.

Uncompressed Compressed 32-bit
Reference (pointer) 8 4 4
Object header 16 12 8
Array header 24 16 12
Superclass padding 8 4 4

This table illustrated pointer sizes in different modes (reproduced with permission 
from Attila Szegedi: http://www.slideshare.net/aszegedi/everything-i-
ever-learned-about-jvm-performance-tuning-twitter/20).

We saw in the previous chapter how many bytes each primitive type takes. Let us 
see how the memory consumption of the composite types looks with compressed 
pointers (a common case) on a 64-bit JVM with heap size smaller than 32 GB:

Java Expression 64-bit memory 
usage

Description (b = bytes, padding toward 
memory word size in approximate 
multiples of 8)

new Object() 16 bytes 12 b header + 4 b padding
new byte[0] 16 bytes 12 b obj header + 4 b int length = 16 b 

array header
new String("foo") 40 bytes 

(interned for 
literals)

12 b header + (12 b array header + 6 b 
char-array content + 4 b length + 2 b 
padding = 24 b) + 4 b hash

new Integer(3) 16 bytes 
(boxed integer)

12 b header + 4 b int value

new Long(4) 24 bytes 
(boxed long)

12 b header + 8 b long value + 4 b 
padding

class A { byte x; }

new A();

16 bytes 12 b header + 1 b value + 3 b padding

class B extends A 
{byte y;}

new B();

24 bytes 
(subclass 
padding)

12 b reference + (1 b value + 7 b padding 
= 8 b) for A + 1 b for value of y + 3 b 
padding
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Java Expression 64-bit memory 
usage

Description (b = bytes, padding toward 
memory word size in approximate 
multiples of 8)

clojure.lang.Symbol.
intern("foo")

// clojure 'foo

104 bytes (40 
bytes interned)

12 b header + 12 b ns reference + (12 b 
name reference + 40 b interned chars) + 4 
b int hash + 12 b meta reference + (12 b 
_str reference + 40 b interned chars) – 40 
b interned str

clojure.lang.Keyword.
intern("foo")

// clojure :foo

184 bytes 
(fully interned 
by factory 
method)

12 b reference + (12 b symbol reference + 
104 b interned value) + 4 b int hash + (12 
b _str reference + 40 b interned char)

A comparison of the space taken up by a symbol and a keyword created from the 
same given string demonstrates that even though a keyword has slight overhead 
over a symbol, the keyword is fully interned and would provide better guard against 
memory consumption and thus GC over time. Moreover, the keyword is interned 
as a weak reference, which ensures that it is garbage collected when no keyword in 
memory is pointing to the interned value anymore.

Measuring latency with Criterium
Clojure has a neat little macro called time that evaluates the body of code  
passed to it and then prints out the time it took and simply returns the value. 
However, we can note that often the time taken to execute the code varies  
quite a bit across various runs.

user=> (time (reduce + (range 100000)))
"Elapsed time: 112.480752 msecs"
4999950000
user=> (time (reduce + (range 1000000)))
"Elapsed time: 387.974799 msecs"
499999500000

There are several reasons associated to this variance in behavior. When cold started, 
the JVM has its heap segments empty and is unaware of the code path. As the JVM 
keeps running, the heap fills up and the GC patterns start becoming noticeable.  
The JIT compiler gets a chance to profile the different code paths and optimize  
them. Only after quite some GC and JIT compilation rounds does the JVM 
performance get less unpredictable.
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Criterium (https://github.com/hugoduncan/criterium) is a Clojure library to 
scientifically measure the latency of Clojure expressions on a machine. A summary 
of how it works can be found at the Criterium project page. The easiest way to use 
Criterium is to use it with Leiningen. If you want Criterium to be available only in 
the REPL and not as a project dependency, add the following entry to the ~/.lein/
profiles.clj file:

{:user {:plugins [[criterium "0.3.1"]]}}

Another way is to include Criterium in your project in the project.clj file:

:dependencies [[org.clojure/clojure "1.5.1"]
                         [criterium "0.3.1"]]

Once done with the editing of the file, launch REPL using lein repl:

user=> (require '[criterium.core :as c])
nil
user=> (c/bench (reduce + (range 100000)))
Evaluation count : 1980 in 60 samples of 33 calls.
             Execution time mean : 31.627742 ms
    Execution time std-deviation : 431.917981 us
   Execution time lower quantile : 30.884211 ms ( 2.5%)
   Execution time upper quantile : 32.129534 ms (97.5%)
nil

Now we can see that on average, the expression took 31.6 ms on a certain test machine.

Criterium and Leiningen
By default, Leiningen starts the JVM in a low-tiered compilation mode, which causes  
it to start up faster, but impacts the optimizations that the JRE can perform at runtime. 
To get best effects when running tests with Criterium and Leiningen for a server-side 
use case, be sure to override the defaults in project.clj as follows:

:jvm-opts ^:replace ["-server"]

The ^:replace hint causes Leiningen to replace its own defaults with what is 
provided under the :jvm-opts key. You may like to add more parameters as 
needed, such as minimum and maximum heap size to run the tests.



Summary
The performance of a software system is directly impacted by its hardware 
components, so understanding how the hardware works is crucial. The processor, 
caches, memory, and I/O subsystems have different performance behaviors.  
With Clojure being a hosted language, understanding the performance properties  
of the host, that is, the JVM, is equally important. The Criterium library is useful  
to measure the latency of the Clojure code—we will discuss Criterium again in 
Chapter 6, Optimizing Performance. In the next chapter we will look at the concurrency 
primitives in Clojure and their performance characteristics.



Concurrency
Concurrency was one of the chief design goals of Clojure. Considering the concurrent 
programming model in Java, it is not only too low level but also so tricky to get 
right that without strictly following patterns, you are more likely to shoot yourself 
in the foot. Locks, synchronization, and unguarded mutation—these are recipes for 
concurrency pitfalls unless exercised with extreme caution. Clojure's design choices 
deeply influence the way concurrency patterns can be achieved in a safe and functional 
manner. In this chapter we will discuss:

•	 Low-level concurrency support at the hardware and JVM levels
•	 The concurrency primitives of Clojure—atoms, agents, refs, and vars
•	 The built-in concurrency features in Java that are safe and useful for  

use with Clojure
•	 Parallelization with Clojure features and reducers

Low-level concurrency
Non-cooperative concurrency and parallelism cannot be achieved without explicit 
hardware support. We discussed SMT and multicore processors in Chapter 4,  
Host Performance. Recall that every processor core has its own L1 cache and several 
cores share the L2 cache. The shared L2 cache provides a fast mechanism to the 
processor cores to coordinate their cache access, eliminating the comparatively 
expensive memory access. Additionally, a processor buffers the writes to memory 
into something known as a dirty write-buffer. This helps the processor issue a batch 
of memory update requests, reorders the instructions, and then determines the final 
value to write to memory, known as write absorption.
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Hardware memory barrier instructions
Memory access reordering is great for a sequential (single-threaded) program 
performance, but it is hazardous for concurrent programs where the order of 
memory access in one thread may disrupt the expectations in another thread.  
The processor needs a means of synchronizing the access. This should be such  
that memory reordering is either compartmentalized in code segments where it  
does not matter or is prevented where it might have undesirable consequences.  
The hardware supports such a safety measure in terms of a memory barrier,  
also known as a fence.

There are several kinds of memory barrier instructions found on different 
architectures with potentially different performance characteristics. The compiler,  
or the JIT compiler in the case of the JVM, usually knows about the fence instructions 
on the architectures it runs on. The common fence instructions are read barrier,  
write barrier, acquire barrier, and release barrier. The barriers do not guarantee latest 
data; rather, they only control relative ordering of memory access. Barriers cause the 
write-buffer to be flushed after all writes are issued, before the barrier is visible to the 
processor that issued it.

Read and write barriers control the order of reads and writes respectively.  
Writes happen via a write-buffer, but reads may happen out of order or  
from the write-buffer. To guarantee correct ordering, acquire and release  
blocks/barriers are used. Acquire and release are considered as half barriers;  
both of them together form a full barrier. A full barrier is more expensive  
than a half barrier.

Java support and its Clojure equivalent
In Java, the memory barrier instructions are inserted by the higher-level coordination 
primitives. Even though fence instructions are expensive to run (taking hundreds 
of CPU cycles), they provide a safety net that makes accessing shared variables safe 
within critical sections. In Java, the synchronized keyword marks a critical section 
which can be executed by only one thread at a time, thus making a tool for "mutual 
exclusion". In Clojure, the equivalent of Java's synchronized is the locking macro:

// Java example
synchronized (someObject) {
    // do something
}
;; Clojure example
(locking some-object
  ;; do something
  )
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The locking macro builds upon two special forms: monitor-enter and  
monitor-exit. Note that the locking macro is a low-level and imperative  
solution, just like Java's synchronized. Their use is not considered idiomatic  
in Clojure. The special forms monitor-enter and monitor-exit respectively  
enter and exit the lock object's monitor. They are even lower level and not 
recommended for direct use.

Someone measuring the performance of code that uses such locking should be aware 
of its single-threaded versus multithreaded latencies. Locking in a single thread is 
cheap; however, the performance penalty starts kicking in when there are two or 
more threads contending for a lock on the same object monitor. A lock is acquired on  
the monitor of an object, called intrinsic or monitor lock. Object equivalence (that is,  
when the = function returns true) is never used for the purpose of locking—make 
sure the object references are the same (that is, when identical? returns true) when 
locking from different threads.

Acquiring a monitor lock by a thread entails a read barrier, which invalidates  
the thread-local cached data and corresponding processor registers and cache  
lines. This forces a re-read from memory. On the other hand, releasing a monitor  
lock results in a write barrier, which flushes all changes to memory. These are 
expensive operations that impact parallelism, but they ensure consistency of  
data for all threads.

Java supports a volatile keyword for data members in a class, which guarantees 
that read and write to the attribute outside of a synchronized block would not be 
reordered. It is interesting to note that unless an attribute is declared volatile, it is  
not guaranteed visibility in all the threads accessing it. The Clojure equivalent of 
Java's volatile is the metadata ^:volatile-mutable that we discussed in Chapter 
2, Clojure Abstractions. An example of volatile in Java and Clojure is as follows:

// Java example
public class Person {
    volatile long age;
}
;; Clojure example
(deftype Person [^:volatile-mutable ^long age])

Reading and writing a volatile data requires read-acquire or write-release fence 
respectively, which means we need only a half barrier to individually read or write 
the value. Note that due to the half barrier, read-followed-by-write operations are 
not guaranteed to be atomic. For example, the expression age++ first reads the value, 
then increments and sets it. This makes it two memory operations, which means it's 
not a half barrier any more.
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Atomic updates and state
It is a common use case to read a data element, execute some logic, and update  
with a new value. For single-threaded programs, it bears no consequences, but for  
concurrent scenarios, the entire operation must be carried out in a lockstep as an 
atomic operation. This case is so common that many processors support this at the 
hardware level using a special Compare-and-swap (CAS) instruction, which is  
much cheaper than locking. On x86/x64 architectures, the instruction is called 
CompareExchange (CMPXCHG).

Unfortunately, it is possible that another thread updates the variable with the same 
value that the thread working on the atomic update is going to compare the old value 
against. This is known as the ABA problem. The set of instructions load-linked (LL) 
and store-conditional (SC), which are found in some other architectures, provide 
an alternative to CAS without the ABA problem. After the LL instruction reads the 
value from an address, the SC instruction to update the address with a new value goes 
through only if the address was not updated after the LL instruction was successful.

Atomic updates in Java
Java has a bunch of built-in, lock free, atomic, thread-safe, compare-and-swap 
abstractions for state management. They live in the java.util.concurrent. 
atomic package. For primitive types such as boolean, integer, and long, there are  
AtomicBoolean, AtomicInteger, and AtomicLong classes respectively. The latter  
two classes support additional atomic add/subtract operations. For atomic  
reference updates, there are the AtomicReference, AtomicMarkableReference, 
and AtomicStampedReference classes for arbitrary objects. There is also support for 
arrays where the array elements can be updated atomically—AtomicIntegerArray, 
AtomicLongArray, and AtomicReferenceArray. They are easy to use:

(def ^AtomicReference x (AtomicReference. "foo"))
(.compareAndSet x "foo" "bar")
(def ^AtomicInteger y (AtomicInteger. 10))
(.getAndAdd y 5)

However, where and how to use them is entirely subjective to the update points  
and logic in the code. The atomic updates are not guaranteed to be nonblocking. 
Atomic updates are not a substitute for locking in Java, but rather a convenience  
only when the scope is limited to a compare-and-swap operation for one mutable 
state and you need to squeeze in more cycles in concurrent programming.
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Clojure's support for atomic updates
Clojure's atomic update abstraction is called atom. It uses AtomicReference under 
the hood. An operation on AtomicInteger or AtomicLong may be slightly faster 
than on the Clojure atom because the former uses primitives, but neither of them is 
too cheap due to the compare-and-swap instruction they use in the CPU. The speed 
really depends on how frequently the mutation happens and how the JIT compiler 
optimizes the code. The benefit of speed may not be seen until the code is run several 
hundred thousand times, and having an atom mutated very frequently will increase 
the latency due to retries. Measuring the latency under actual (or similar to actual) 
load can explain this better. An example of using an atom is given as follows:

user=> (def a (atom 0))
#'user/a
user=> (swap! a inc)
1
user=> @a
1
user=> (compare-and-set! a 1 5)
true
user=> (reset! a 20)
20

The swap! function provides a notably different style of carrying out atomic updates 
than the compareAndSwap(oldval, newval) method. While compareAndSwap() 
compares and sets the value returning true on success and false on failure, swap! keeps 
on trying to update in an endless loop until it succeeds. This style is a popular pattern 
that is even followed by Java developers. However, there is also a potential pitfall 
associated with the update-in-loop style. As the concurrency of updaters gets higher, 
the performance of an update may gradually degrade. Then again, high concurrency 
on atomic updates raises a question as to whether uncoordinated updates were a good 
idea at all for the use case. compare-and-set! and reset! are pretty straightforward.

The function passed to swap! is required to be pure (as in side-effect free) because  
it is retried several times in a loop during contention. If the function is not pure,  
the side effect may happen as many times as the retries.
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It is noteworthy that atoms are not coordinated. This means that when an atom is 
used concurrently by different threads, we cannot predict the order in which the 
operations work on it, and as a consequence, we cannot guarantee the end result. 
The code we write around atoms should be designed with this constraint in mind. 
In many scenarios, atoms may not be a good fit due to lack of coordination—watch 
out for this during program design. Atoms support metadata and basic validation 
mechanisms via extra arguments. The following examples illustrate those features:

user=> (def a (atom 0 :meta {:foo :bar}))
user=> (meta a)
{:foo :bar}
user=> (def age (atom 0 :validator (fn [x] (<= x 200))))
user=> (swap! age 200)
200
user=> (swap! age inc)
IllegalStateException Invalid reference state  clojure.lang.ARef.
validate (ARef.java:33)

The second important thing that atoms support is adding and removing watches on 
them. We will discuss watches later in this chapter.

Asynchronous agents and state
While atoms are synchronous, agents are the asynchronous mechanism in Clojure 
that affect any change in state. Every agent is associated with a mutable state. We pass 
a function (known as action) to an agent with optional additional arguments—this 
function gets queued for processing in another thread by the agent. All agents share 
two common thread pools: one for low-latency (potentially CPU-bound, cache-bound, 
or memory-bound) jobs and one for blocking (potentially I/O-related or lengthy 
processing) jobs. Clojure provides the send function for low-latency actions, send-off 
for blocking actions, and send-via to have the action executed on the user-specified 
thread pool instead of either of the preconfigured thread pools. All of send, send-off, 
and send-via return immediately. The following is how we can use them:

(def a (agent 0))
(send a inc)  ; invokes (inc 0) in another thread, sets a to result
@a  ; returns 1 (only if the `inc` action is done ; also see `await)
(send a + 2 3)  ; invokes (+ 1 2 3) in another thread, sets a = result
@a  ; returns 6
(def key nil)
(send-off event poll-network "DXUHCGE663GU")
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(shutdown-agents)  ; shuts down the thread-pools
(send a inc)  ; does not execute action anymore, so no result update
@a  ; returns 6

On inspection of the Clojure 1.5.1 source code, we can find that the thread pool for 
low-latency actions is named pooledExecutor (a bounded thread pool initialized  
to a maximum of "2 + number of hardware processors" threads) and the thread  
pool for high-latency actions is named soloExecutor (an unbounded thread pool). 
The premise of this default configuration is that the CPU-, cache-, or memory-bound 
actions run most optimally on a bounded thread pool with the default number of 
threads. The I/O-bound tasks do not consume CPU resources. Hence, a relatively 
larger number of such tasks can execute at the same time without significantly 
affecting the performance of CPU-, cache-, or memory-bound jobs. The following  
is how you can access and override the thread pools:

(import  'clojure.lang.Agent)
Agent/pooledExecutor ; thread pool for low-latency actions
Agent/soloExecutor ; thread pool for I/O actions
(import 'java.util.Executors)
(def  a-pool (Executors/newFixedThreadPool 10)) ; 10 threads
(def  b-pool (Executors/newFixedThreadPool 100)) ; 100 threads
(def  a (agent  0))
(send-via  a-pool a inc) ; use a-pool for the action
(set-agent-send-executor! a-pool ; set default pool for send
(set-agent-send-off-executor! b-pool ; set default for send off

If a program carries out a large number of I/O or blocking operations through 
agents, it probably makes sense to limit the number of threads dedicated for 
such actions. Overriding the send-off thread pool using set-agent-send-off-
executor! is the easiest way to limit the thread pool size. A more granular way  
to isolate and limit the I/O actions on agents is to use send-via with thread pools  
of appropriate sizes for various kinds of I/O and blocking operations.
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Asynchrony, queuing, and error handling
Sending an action to an agent returns immediately without blocking. If the agent 
is not already busy executing any action, it reacts by submitting the action to the 
respective thread pool. If the agent is busy executing another action, the new action 
is simply en-queued. Once an action is executed from the action queue, the queue is 
checked for more entries and triggers the next action if entries are found. This whole 
reactive mechanism of triggering actions obviates the need for polling the queue.  
This is possible only because the entry points to an agent's queue are controlled.

Actions are executed asynchronously on agents, which raises the question of how 
errors are handled. The error cases need to be handled with explicit predefined 
functions. When using the default agent construction, such as (agent :foo),  
the agent is created without any error handler and gets suspended on any exception. 
It caches the exception and refuses to accept any more actions—it throws the cached 
exception upon sending any action until the agent is restarted. A suspended agent 
can be reset using the restart-agent function. The objective of such a suspension 
is safety and supervision. When asynchronous actions are executed on an agent and 
suddenly an error occurs, it requires attention.

(def g (agent 0))
(send g (partial / 10)) ; ArithmeticException due to divide by zero
@g ; returns 0, because the error did not change the old state
(send g inc) ; throws the cached ArithmeticException
(agent-error g) ; returns (doesn't throw) the exception object
(restart-agent g @g) ; clears the suspension of the agent
(agent-error g) ; returns nil
(send g inc) ; works now because we cleared the cached error
@g ; returns 1
(dotimes [_ 1000] (send-off g long-task))
(await-for 100 g) ; block for 100ms or until all actions over 
(whichever earlier)
(await g) ; block until all actions dispatched till now are over

There are two optional parameters :error-handler and :error-mode that we can 
configure on an agent to have finer control over error handling and suspension.

;; incorrect arity for error handler function below
(def g (agent 0 :error-handler (fn [x] (println "Found:" x)))) 
;; no error will be encountered because error-handler arity is wrong
(send g (partial / 10))
;; correct arity below
(def g (agent 0 :error-handler (fn [ag x] (println "Found:" x))))
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(send g (partial / 10)) ; prints the message
;; we can set error-handler after constructing an agent
(set error-handler! g (fn [ag x] (println "Found:" x)))
;; we can define agents to ignore errors and continue
(def h (agent 0 :error-mode :continue))
(send h (partial / 10)) ; error encountered, but agent not suspended
(send h inc)
@h ; returns 1
;; we can set the error-mode later, other possible value :fail
(set-error-mode! h : continue)

Advantages of agents
Just as the atom implementation uses only compare-and-swap instead of locking, 
the underlying agent-specific implementation uses mostly compare-and-swap 
operations. The agent implementation uses locks only when dispatching an action in 
a transaction (discussed in the next section) or when restarting an agent. All actions 
are queued and dispatched serially in the agents, regardless of the concurrency 
level. Their serial nature makes it possible to execute actions in an independent and 
contention-free manner. On one agent, there can never be more than one action being 
executed. Since there is no locking, reads (deref or @) on agents are never blocked 
due to writes. However, all actions are independent of each other—there is no 
overlap in their execution.

The implementation goes so far as to ensure that the execution of an action blocks 
the other actions behind it in the queue. Even though the actions are executed in a 
thread pool, actions for the same agent are never executed concurrently. This is an 
excellent ordering guarantee that also extends a natural coordination mechanism 
due to its serial nature. However, note that this ordering coordination is limited to 
only a single agent. If an agent action sends actions to two other agents, they are not 
automatically coordinated. You may want to use transactions (discussed in the next 
section) for such a situation.

Since agents distinguish between low-latency and blocking jobs, the jobs are executed 
in appropriate thread pools. Actions on different agents may execute concurrently, 
thereby making optimum use of threading resources. Unlike atoms, the performance 
of agents is not impeded by high contention. In fact, in many cases, agents make  
a lot of sense due to the serial buffering of actions. In general, agents are great  
for high volume I/O tasks or where the ordering of operations provides a win  
in high-contention scenarios.
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Nesting
When an agent action sends another action to the same agent, that is a case of nesting. 
This would have been nothing special if agents didn't participate in STM transactions 
(covered in the next section). However, agents do participate in STM transactions and 
that places certain constraints on agent implementation, which warrants a second-layer  
buffering of actions. For now, it should suffice to say that the nested sends are queued 
in a thread-local queue instead of the regular queue in the agent. The thread-local 
queue is visible to only the thread in which the action is executed. Upon executing 
an action, unless there was an error, the agent implicitly calls the equivalent of the 
release-pending-sends function, which transfers the actions from a second-level,  
thread-local queue to the normal action queue. Note that nesting is simply an 
implementation detail of agents and has no other impact.

Coordinated transactional ref and state
We saw in an earlier section that an atom provides an atomic read-and-update 
operation. What if we need to perform an atomic read-and-update operation  
across two or even more atoms? This clearly poses a coordination problem.  
Some entity has to be watching over the process of reading and updating so  
that the values are not corrupted. This is what a ref provides—a system based  
on software transactional memory (STM). This takes care of concurrent atomic  
read-and-update operations across multiple refs such that either all updates go 
through or, in the case of failure, none do. Like atoms, on failure, refs retry the  
whole operation from scratch with new values.

Clojure's STM implementation is coarse grained—it works on the application  
level's objects and aggregates (references to aggregates), which are scoped to  
just all the refs in a program constituting Ref world. Any update to a ref can only 
happen synchronously in a transaction in a dosync block of code within the same 
thread—it cannot span beyond the current thread. The implementation detail  
reveals that a thread-local transaction context is maintained during the lifetime  
of a transaction. The same context is no longer available the moment the control 
reaches another thread.

Like the other reference types in Clojure, reads on a ref are never blocked by the 
updates and vice versa. However, unlike the other reference types, the implementation 
of ref does not depend on lock-free spinning (that is, retrying in a loop until success); 
rather, it uses locks, low-level wait/notify, deadlock detection, and age-based barging 
(that is, arbitration between concurrent older and younger transactions) internally.
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The alter function is used to read and update the value of a ref, and ref-set is 
used to reset the value. Roughly, alter and ref-set for refs are analogous to swap! 
and reset! for atoms. Just like swap!, alter accepts a function (and arguments) 
with no side effects and may be retried several times during contention.  
However, unlike atoms, not only alter, but also ref-set and a simple deref  
may cause a transaction to be retried during contention. The following is a very 
simple example of how we may use a transaction:

(def r1 (ref [:a :b :c]))
(def r2 (ref [1 2 3]))
(alter r1 conj :d)  ; IllegalStateException No transaction running...
(dosync (let [v (last @r1)] (alter r1 pop) (alter r2 conj v)))
@r1  ; returns [:a :b]
@r2  ; returns [1 2 3 :c]
(dosync (ref-set r1 (conj @r1 (last @r2))) (ref-set r2 (pop @r2)))
@r1  ; returns [:a :b :c]
@r2  ; returns [1 2 3]

Ref characteristics
Clojure maintains atomicity, consistency, and isolation (ACI) characteristics in a 
transaction. This overlaps with A, C, and I of the Atomicity, Consistency, Isolation, 
and Durability (ACID) guarantee that many databases provide. Atomicity implies 
that either all of the updates in a transaction are completed successfully or none of 
them are completed. Consistency means that the transaction must maintain general 
correctness and should honor constraints set by validation—any exception or 
validation error should rollback the transaction. Unless a shared state is guarded, 
concurrent updates on it may lead to a multistep transaction seeing different values 
at different steps. Isolation implies that all steps in a transaction will see the same 
value no matter how concurrent the updates are.

Clojure refs use something called Multiversion concurrency control (MVCC) to 
provide Snapshot Isolation to transactions. In MVCC, instead of locking (which could 
block transactions), queues are maintained so that each transaction can occur using 
its own snapshot copy taken at its read point, independent of other transactions.  
The main benefit of this approach is that the read-only, out-of-transaction operations 
can go through without any contention. Transactions without ref contention go 
through concurrently. In a rough comparison to the database systems, the Clojure 
ref isolation level is Read-Committed for reading a ref outside a transaction and 
Repeatable-Read by default when inside the transaction.
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Ref history and intransaction deref operations
We discussed earlier that both read and update operations on a ref may cause a 
transaction to be retried. The reads in a transaction can be configured to use ref 
history such that the snapshot isolation instances are stored in history queues and 
are used by the read operations in transactions. The default uses a small history  
that conserves heap space.

Using ref history reduces the likelihood of transaction retries caused by read 
contention, thereby providing weak consistency. Therefore, it is a tool for 
performance optimization at the cost of consistency. In many scenarios,  
programs do not need strong consistency—we can choose appropriately  
if we know the trade-off and what we need. The snapshot isolation mechanism  
in Clojure's ref implementation is backed by adaptive history queues. The history 
queues grow dynamically to meet the read requests and do not overshoot the 
maximum limit set for the ref. By default, the min-history and max-history  
values are set to 0 and 10 respectively. The following is an example of how to  
use history:

(def r (ref 0 :min-history 5 :max-history 10))
(ref-history-count r) ; returns 0, no snapshot instances queued yet
(ref-min-history r) ; returns 5
(ref-max-history r) ; returns 10
(future (dosync (println "Sleeping 20 sec") (Thread/sleep 20000)
                (ref-set r 10)))
(dosync (alter r inc)) ; execute within few seconds after last expr
;; message "Sleeping 20 sec" appears twice due to transaction retry
(ref-history-count r) ; returns 2, count of snapsho  history entries
(.trimHistory ^clojure.lang.Ref r)
(ref-history-count r) ; returns 0 because we wiped the history
(ref-min-history r 10) ; reset the min history
(ref-max-history r 20) ; reset the max history count
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Minimum/maximum history limits are proportional to the length of the staleness 
window of data. They also depend on the relative latency difference of update and 
read operations to see what range of min-history and max-history works well on  
a given host system. It may take some amount of trial and error to get the range right. 
As a ballpark figure, read operations need only as many min-history elements to 
avoid transaction retries as many updates can go through during one read operation. 
The max-history elements can be a multiple of min-history to cover for any history 
overrun or underrun. If the relative latency difference is unpredictable, we have to 
either plan min-history for the worst case scenario or consider other approaches.

Transaction retries and barging
A transaction can internally be in one of the five distinct states—running,  
committing, retry, killed, and committed. A transaction can be killed for various  
reasons. Exceptions are a common reason for killing a transaction. But let's  
consider the corner case where a transaction is retried many times but it does  
not appear to commit successfully—what is the resolution? Clojure supports  
age-based barging, wherein an older transaction automatically tries to abort a 
younger transaction so that the younger transaction is retried later. If barging  
still doesn't work, as a last resort, the transaction is killed after a hard limit of  
10,000 retry attempts and an exception is thrown.

Upping transaction consistency with ensure
Clojure's transactional consistency is a good balance between performance and 
safety. However, at times, we may need serializable consistency in order to 
preserve the correctness of a transaction. Concretely, in the face of transaction 
retries, when a transaction's correctness depends on the state of a ref in the 
transaction wherein the ref is updated simultaneously in another transaction,  
we have a condition called write skew.

For example, let us say a ref process-order points to a flag that when true implies 
that order processing can take place. Transaction t1 carries out the order processing 
steps after reading process-order while simultaneously another transaction t2 
checks stock and wants to update process-order—f. How can we isolate t1 and t2 
to stop them from overlapping each other? The logical inconsistency following from 
overlaps is write skew. Imagine a scenario where the transactions touch several refs 
to do their job—how can we keep the ref world in a logically consistent state?
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write skew can be solved using the ensure function that essentially prevents a ref 
from modification by other transactions. It is like a locking operation, but in practice 
it provides better concurrency than explicit read-and-update operations and does not 
cause a deadlock. Using ensure is quite simple: (ensure ref-object). It holds locks 
during the transaction but may still offer better performance as it avoids abort and 
retry. In the example from the previous paragraph, each of t1 should call (ensure 
process-order) in order to avoid write skew.

Fewer transaction retries with commutative 
operations
Commutative operations are independent of the order in which they are applied. 
For example, incrementing a counter ref c1 from transactions t1 and t2 would have 
the same effect irrespective of the order in which t1 and t2 commit their changes. 
Refs have a special optimization for change functions that are commutative for 
transactions—the commute function, which is like alter (same syntax) but with 
different semantics. Like alter, commute functions are applied atomically during  
a transaction commit. However, unlike alter, commute does not cause a transaction 
retry on contention and there is no guarantee about the order in which commute 
functions are applied. This effectively makes commute nearly useless for returning  
a meaningful value as a result of the operation. All commute functions in a transaction 
are reapplied with the final in-transaction ref values during a transaction commit.

As we can see, commute reduces contention thereby optimizing the performance  
of overall transaction throughput. Once we know that an operation is commutative 
and we are not going to use its return value in a meaningful way, there is hardly 
any trade-off deciding on whether to use commute—just go ahead and use it.  
In fact, a program design with respect to ref transactions with commute in mind  
is not a bad idea.

Agents can participate in transactions
In the previous section on agents, we discussed how agents work with queued 
change functions. Agents can also participate in ref transactions, thereby making 
it possible to combine the use of refs and agents in transactions. However, agents 
are not included in the Ref world; hence, a transaction scope is not extended till the 
execution of the change function in an agent. Rather, transactions only make sure 
that changes sent to agents are queued until a transaction commit happens.
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The Nesting subsection in the earlier section on agents discusses a second-layer  
thread-local queue. That thread-local queue is used during a transaction to hold the 
sent changes to an agent until commit. The thread-local queue does not block the other 
changes being sent to an agent. The out-of-transaction changes are never buffered in 
the thread-local queue; rather, they are added to the regular queue in the agent.

Participation of agents in transactions provides an interesting angle of design,  
where coordinated and independent/sequential operations can be pipelined as  
a workflow for better throughput and performance.

Nested transactions
Clojure transactions are nesting-aware and they compose well. But, why would you 
need a nested transaction? Often independent units of code may have their own  
low-granularity transactions that a higher-level code can make use of. When the 
higher-level caller itself needs to wrap actions in a transaction, nested transactions 
occur. Nested transactions do not have their own life cycle and run-state; rather, 
they are absorbed into the outer transaction without introducing deadlocks or 
inconsistencies. However, an outer transaction can abort an inner transaction on 
detection of failure.

The ref world snapshot ensures and commutes are shared among all (that is,  
outer and inner) levels of a nested transaction. Due to this, the inner transaction 
is treated as any other ref change operation (such as alter, ref-set, and many 
more) within an outer transaction. The watches and internal lock implementation 
are handled at the respective nesting level. Detection of contention in the inner 
transactions causes a restart of not only the inner, but also the outer transaction. 
Commits at all levels are carried out together finally when the outermost transaction 
commits. The watches, even though tracked at each individual transaction level, 
are finally enforced during the commit. A closer look at a nested transaction 
implementation shows that nesting has little or no impact on the performance  
of transactions.
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Performance considerations
Clojure ref is perhaps the most complex reference type implemented yet. Due to 
its characteristics, especially due to its transaction retry mechanism, it may not be 
immediately apparent how such a system would have good performance during 
high-contention scenarios. Understanding its nuances and the best ways of using  
it should help:

•	 We do not use changes with side effects in a transaction, except for  
sending I/O changes to agents where the changes are buffered until  
commit. So, by definition, we do not carry out any expensive I/O work  
in a transaction. Hence, a retry of that work would be cheap as well.

•	 A change function for a transaction should be as small as possible.  
This lowers the latency and hence the retries will also be cheaper.

•	 Any ref that is not updated along with at least one more ref simultaneously 
need not be a ref—an atom would do just fine in that case. Now that refs 
make sense only in a group, their contention is directly proportional to the 
group size. Small groups of refs used in transactions lead to low contention, 
lower latency, and higher throughput.

•	 Commutative functions provide a good opportunity to enhance transaction 
throughput without any penalty. Identifying such cases and designing with 
commute in mind can help performance significantly.

•	 Refs are very coarse grained—they work at the application-aggregate level. 
Often a program may need to have finer grained control over transaction 
resources. This can be enabled by ref striping (in the same vein as lock 
striping) refer to http://cljme.cgrand.net/2011/10/06/aworldinaref/ 
for more details.

•	 In high-contention scenarios, where the ref group size in a transaction cannot 
be small, consider using agents as they have no contention due to their serial 
nature. Agents may not be a replacement for transactions, but rather you 
can employ a pipeline consisting of atoms, refs, and agents to ease out the 
contention versus latency concerns.

Refs and transactions have an intricate implementation. Fortunately, we can inspect 
the source code and browse through available online and offline resources.

Dynamic var binding and state
The fourth kind of Clojure reference type is the dynamic var. Since Clojure 1.3,  
all vars are static by default. A var must be explicitly declared in order to be dynamic. 
Once declared, a dynamic var can be bound to new values on a per-thread basis. 
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Bindings on different threads do not block each other. An example is as follows:

(def ^:dynamic *foo* "bar")
(println *foo*)  ; prints bar
(binding [*foo* "baz"] (println *foo*))  ; prints baz
(binding [*foo* "bar"] (set! *foo* "quux") (println *foo*))  ; prints quux

As dynamic binding is thread-local, it may be tricky to use in multithreaded scenarios. 
Dynamic vars have been long abused by libraries and applications as a means to 
pass in a common argument to be used by several functions. However, that style 
is acknowledged to be an antipattern and is discouraged. Typically, in antipattern, 
dynamic vars are wrapped by a macro to contain the dynamic thread-local binding in 
the lexical scope. This causes problems with multithreading and lazy sequences.

So, how can dynamic vars be used effectively? A dynamic var lookup is more 
expensive than looking up a static var. Even passing a function argument is 
performance-wise much cheaper than looking up a dynamic var. Binding a dynamic 
var incurs additional cost. Clearly, in performance-sensitive code, dynamic vars 
are best not used at all. However, dynamic vars may prove to be useful to hold 
temporary thread-local state in a complex or recursive call-graph scenario where 
performance does not matter significantly, without being advertised or leaked into 
the public API. Dynamic var bindings can nest and unwind like a stack, which makes 
them attractive and suitable for such tasks.

Validating and watching the reference 
types
Vars (both static and dynamic), atoms, refs, and agents provide a way to validate the 
value being set as state—a validator function that accepts a new value as argument 
and returns a logical true on success, or throws exception/returns a logical false 
(false and nil values) on error. They all honor what the validator function returns. 
On success, the update goes through and on encountering an error, an exception is 
thrown instead. The following is the syntax of how validators can be declared and 
associated with the reference types:

(def t (atom 1 :validator pos?))
(def g (agent 1 :validator pos?))
(def r (ref 1 :validator pos?))
(swap! t inc) ; ; goes through, value after increment (2) is positive
(swap! t (constantly -3))  ; throws exception
(def v 10)
(set-validator! (var v) pos?)
(set-validator! t #(>= % 10))
(set-validator! g #(>= % 10))
(set-validator! r #(>= % 10))
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Validators cause actual failure within a reference type while updating them.  
For vars and atoms, they simply prevent the update by throwing an exception.  
In an agent, a validation failure causes agent failure and needs a restart of the 
agent. Inside a ref, validation failure causes the transaction to rollback and  
throws the exception once more.

Another mechanism to observe the changes to reference types is a watcher.  
Unlike validators, a watcher is passive—it is notified of the update after the fact. 
Hence, a watcher cannot prevent updates from going through because it is only 
a notification mechanism. For transactions, a watcher is invoked only after the 
transaction commit. While only one validator can be set on a reference type, it is 
possible to associate multiple watchers to a reference type. Secondly, when adding 
a watch, we can specify a key, so that notifications can be identified by the key and 
dealt with accordingly by the watcher. The following is how to use watchers:

(def t (atom 1))
(defn w [key iref oldv newv] (println "Key:" key "Old:" oldv "New:" 
newv))
(add-watch t :foo w)
(swap! t inc)  ; prints "Key: :foo Old: 1 New: 2"

Like validators, watchers are executed synchronously in the thread of the reference 
type. For atoms and refs, this may be fine, since while the notification to watchers  
goes on, other threads may proceed with their updates. However, in agents,  
the notification happens in the same thread where the update happens—this  
makes the update latency higher and the throughput potentially lower.

Java concurrent data structures
Java has a number of mutable data structures that are meant for concurrency and 
thread-safety, which implies multiple callers can safely access these data structures 
at the same time without blocking each other. When we need only highly concurrent 
access without state management, these data structures may be a very good fit. 
(several of these employ lock-free algorithms). We discussed Java atomic state 
classes in the Atomic updates and state section, so we will not repeat them here. 
Rather, we will only discuss the concurrent queues and other collections. All these 
data structures live in the java.util.concurrent package. These concurrent 
data structures are tailored to leverage the JSR 133 Java Memory Model and Thread 
Specification Revision implementation that first appeared in Java 5.



Chapter 5

[ 83 ]

Concurrent maps
Java has a mutable concurrent hash-map, java.util.concurrent.
ConcurrentHashMap (CHM for short). The concurrency level can be optionally 
specified when instantiating the class, which is 16 by default. The CHM 
implementation internally partitions the map entries into hash buckets and uses 
multiple locks to reduce contention on each bucket. Reads are never blocked by 
writes; therefore, they may be stale or inconsistent. This is countered by a built-in 
detection of such situations and by issuing a lock in order to read the data again in a 
synchronized fashion. This is an optimization for scenarios where reads significantly 
outnumber writes. In CHM, all individual operations are near constant time unless 
stuck in a retry loop due to lock contention.

In contrast with Clojure's persistent map, CHM cannot accept null (nil) as a key or 
value. Clojure's immutable scalars and collections are automatically well suited for 
use with CHM. An important thing to note is that only the individual operations in 
CHM are atomic and exhibit strong consistency. As CHM operations are concurrent, 
the aggregate operations provide rather weak consistency than true operation-level  
consistency. The following code shows how we can use CHM. The individual 
operations in CHM that provide better consistency are safe to use, and aggregate 
operations should be reserved for when we know its consistency characteristics  
and the related trade-off:

(import 'java.util.concurrent.ConcurrentHashMap)
(def ^ConcurrentHashMap m (ConcurrentHashMap.))
(.put m :english "hi") ; individual operation
(.get m :english) ; individual operation
(.putIfAbsent m :spanish "alo") ; individual operation
(.replace m :spanish "hola") ; individual operation
(.replace m :english "hi" "hello") ; individual CAS atomic operation
(.remove m :english) ; individua l operation
(.clear  m) ; aggregate operation
(.size  m) ; aggregate operation
(count  m ) ; internally uses the .size() method
(.putAll {:french "bonjour" :italian "buon giorno"}) ; aggregate op
(.keySet m) ; aggregate operation
(keys  m) ; -> CHM.entrySet(), eachpair -> java.util.Map.Entry.getKey()
(vals m) ; -> CHM.entrySet(), pair -> java.util.Map.Entry.getValue()
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The java.util.concurrent.ConcurrentSkipListMap class (CSLM for short) is 
another concurrent mutable map data structure in Java. The difference between CHM 
and CSLM is that CSLM offers a sorted view of the map at all times with O(log N) 
time complexity. The sorted view has the natural order of keys by default, which can  
be overridden by specifying a comparator implementation when instantiating  
CSLM. The implementation of CSLM is based on the skip list and provides  
navigation operations.

The java.util.concurrent.ConcurrentSkipListSet class (CSLS for short) is a 
concurrent mutable set based on the CSLM implementation. While CSLM offers the 
map API, CSLS behaves as a set data structure while borrowing features of CSLM.

Concurrent queues
Java has built-in implementation of several kinds of mutable and concurrent  
in-memory queues. The queue data structure is a useful tool for buffering,  
producer-consumer style implementation, and for pipelining such units together  
to form high-performance workflows. We should not confuse them with durable 
queues that are used for similar purposes in batch jobs for high throughput.  
Java's in-memory queues are not transactional, but they provide atomicity  
and strong consistency guarantee for the individual queue operations only. 
Aggregate operations offer weaker consistency.

The java.util.concurrent.ConcurrentLinkedQueue (CLQ) class is a lock-free, 
wait-free unbounded First-In-First-Out (FIFO) queue. FIFO implies that the order of 
queue elements will not change once added to the queue. CLQ's size() method is 
not a constant time operation; it depends on the concurrency level. A few examples 
of using CLQ are as follows:

(import 'java.util.concurrent.ConcurrentLinkedQueue)
(def ^ConcurrentLinkedQueue q (ConcurrentLinkedQueue.))
(.add q :foo)
(.add q :bar)
(.poll q)  ; returns :foo
(.poll q)  ; returns :bar
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A summary of concurrent queues is listed in the following  table:

Queue Blocking? Bounded? FIFO? Fairness? Notes

CLQ No No Yes No Wait-free, but size() is not 
constant-time

ABQ Yes Yes Yes Optional Capacity is fixed at instantiation

DQ Yes No No No Elements implement the  
Delayed interface

LBQ Yes Optional Yes No Capacity flexible, but no  
fairness option

PBQ Yes No No No Elements are consumed in 
priority order

SQ Yes – – Optional No capacity; serves as a channel

In the java.util.concurrent package, ArrayBlockingQueue (ABQ),  
DelayQueue (DQ), LinkedBlockingQueue (LBQ), PriorityBlockingQueue (PBQ), 
and SynchronousQueue (SQ) implement the BlockingQueue (BQ) interface—its 
Javadoc describes the characteristics of its method calls. ABQ is a fixed-capacity, 
FIFO queue backed by an array. LBQ is also a FIFO queue backed by linked nodes, 
and it is optionally bounded (default Integer.MAX_VALUE). ABQ and LBQ generate 
back pressure by blocking the enqueue operations on full capacity. ABQ supports 
optional fairness (with performance overhead) in the order of threads that access it.

DQ is an unbounded queue that accepts elements associated with the delay.  
The queue elements cannot be null and must implement the java.util.
concurrent.Delayed interface. Elements are available for removal from the  
queue only after the delay has expired. DQ can be very useful for scheduling  
the processing of elements at different times.

PBQ is unbounded and blocking while letting elements to be consumed from  
the queue as per priority. Elements have natural ordering by default which can  
be overridden by specifying a comparator implementation when instantiating  
the queue.
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SQ is not really a queue at all. Rather, it's just a barrier for a producer or a consumer 
thread. The producer forms a block until a consumer removes the element and  
vice versa. SQ does not have a capacity. However, SQ supports optional fairness 
(with performance overhead) in the order in which threads access it.

There are some new concurrent queue types introduced after Java 5. Since JDK 
1.6, in the java.util.concurrent package Java has BlockingDeque (BD) with 
LinkedBlockingDeque (LBD) as the only available implementation. BD builds 
on BQ by adding Deque (double-ended queue) operations, that is, the ability to 
add elements to and to consume elements from both ends of the queue. LBD can 
be instantiated with optional capacity (bounded) to block on overflow. JDK 1.7 
introduced TransferQueue (TQ) with LinkedTransferQueue (LTQ) as the only 
implementation. TQ extends the concept of SQ such that producers and consumers 
block on a queue of elements—this would help utilize producer and consumer 
threads better by keeping them busy. LTQ is an unbounded implementation of  
TQ, where the size() method is not a constant time operation.

Clojure support for concurrent queues
We discussed persistent queues in Chapter 2, Clojure Abstractions. Clojure has a  
built-in seque function that builds over a BQ implementation (LBQ by default)  
to expose a write-ahead sequence. The sequence is potentially lazy and the  
write-ahead buffer throttles how many elements can be realized. As opposed 
to chunked sequences (of chunk size 32), the size of the write-ahead buffer is 
controllable and potentially populated at all times until the source sequence  
is exhausted. Unlike chunked sequences, the realization doesn't happen  
suddenly for a chunk of 32 elements. It does so gradually and smoothly.

Clojure's seque function uses an agent under the hood to backfill data into the 
write-ahead buffer. In the arity-2 variant of seque, the first argument should  
either be a positive integer or an instance of BQ (ABQ, LBQ, and so on) that  
is preferably bounded.

Concurrency with threads
On the JVM, threads are the de-facto, fundamental instrument of concurrency. 
Multiple threads live in the same JVM; they share the heap space and compete  
for resources.



Chapter 5

[ 87 ]

JVM support for threads
JVM threads are the operating system threads. Java wraps an underlying OS thread 
as an instance of the java.lang.Thread class and builds up an API around it to work 
with threads. A thread on the JVM has a number of states: New, Runnable, Blocked, 
Waiting, Timed_Waiting, and Terminated. A thread is instantiated by overriding 
the run() method of the Thread class or by passing an instance of the java.lang.
Runnable interface to the constructor of the Thread class. Invoking the start() 
method of a Thread instance starts its execution in a new thread. Even when just 
a single thread is running in the JVM, the JVM would not shut down. Calling the 
setDaemon(boolean) method of a thread with the argument true tags the thread  
as a daemon that can be automatically shut down if no other non-daemon thread  
is running.

All Clojure functions implement the java.lang.Runnable interface.  
Therefore, invoking a function in a new thread is very easy:

(defn foo [] (dotimes [_ 5] (println "Foo")))
(defn bar [n] (dotimes [_ n] (println "Bar")))
(.start (Thread. foo)) ; prints "Foo" 5 times
(.start (Thread. (partial bar 3))) ; prints "Bar" 3 times

The run() method does not accept any argument. We can work around that by 
creating a higher-order function that needs no arguments but internally applies  
the argument 3.

Thread pools in the JVM
Creating threads leads to operating system API calls, which is not always a cheap 
operation. The general practice is to create a pool of threads that can be recycled for 
different tasks. Java has a built-in support for threads pools. The interface java.
util.concurrent.ExecutorService represents the API for a thread pool. The most 
common way to create a thread pool is to use a factory method in the java.util.
concurrent.Executors class:

((import 'java.util.concurrent.Executors)
(import 'java.util.concurrent.ExecutorService)
(def ^ExecutorService a (Executors/newSingleThreadExecutor)) ;bounded
(def ^ExecutorService b (Executors/newCachedThreadPool)) ; unbounded
(def ^ExecutorService c (Executors/newFixedThreadPool 5)) ; bounded
(.execute b #(dotimes [_ 5] (println "Foo"))) ; prints "Foo" 5 times
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The preceding example is equivalent to the examples with raw threads, which we saw 
in the previous subsection. Thread pools are also capable of tracking the completion 
and return value of a function executed in a new thread. An ExecutorService 
element accepts an instance of the java.util.concurrent.Callable instance as 
argument to several methods that launch a task and return a java.util.concurrent.
Future instance to track the final result. All Clojure functions also implement the 
Callable interface, so we can use them as follows:

(import 'java.util.concurrent.Callable)
(import 'java.util.concurrent.Future)
(def ^ExecutorService e (Executors/newSingleThreadExecutor))
(def ^Future f (.submit e (cast Callable #(reduce + (range 
10000000)))))
(.get f)  ; blocks until result is processed, then returns it

The thread pools described here are the same as the ones we saw briefly in the 
agents section earlier. Thread pools need to be shut down by calling the shutdown() 
method when they are no longer required.

Clojure concurrency support
Clojure has some nifty built-in features to deal with concurrency. We already discussed 
agents and how they use the thread pools in an earlier section. There are some more 
concurrency features in Clojure to deal with various use cases.

Asynchronous execution with Futures
We saw earlier in this chapter how we can use the Java API to launch a new  
thread to execute a function and also how to get the result back. Clojure has  
built-in support, called Futures, to do those things in a much smoother and 
integrated manner. The basis of Futures are the future-call function (take a  
no-arg function as argument) and the future macro (take the body of code as 
argument) which builds on the former. Both of them immediately start a thread  
to execute the supplied code. The following snippet illustrates the functions  
that work with Futures and how to use them:

;; runs body in new thread
(def f (future (println "Calculating") (reduce + 1e7)))
;; takes no-arg fn
(def g (futurecall # (do (println "Calculating") (reduce + 1e7))))
(future? f) ; returns true
;; cancels execution unless already over (can stop mid-way)
(future-cancel g)
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;; returns true if canceled due to request, or due to exception
(future-cancelled? g)
;; returns true if terminated successfully, or canceled
(future-done? f)
;; same as future-done? for futures
(realized? f)
;; blocks if computation not yet over (use deref for timeout)

One of the interesting aspects of future-cancel is that it can sometimes not  
only cancel tasks that haven't started yet, but may abort those that are half way 
through execution:

(let [f (future (println "[f] Before sleep")
                (Thread/sleep 2000)
                (println "[f] After sleep")
                2000)]
  (Thread/sleep 1000)
  (future-cancel f)
  (future-cancelled? f))
;; [f] Before sleep printed message (second message is never printed)
;; true    returned value (due to future-cancelled?)

The preceding scenario happens because Clojure's future-cancel function cancels 
a Future in such a way that if the execution has already started, it may be interrupted 
causing InterruptedException, which if not explicitly caught would simply abort 
the block of code. In order for an executing Future task to be canceled cleanly via 
future-cancel, it must support catching of InterruptedException and logically 
cancel the task if Object.wait() or Thread.join() or Thread.sleep() are invoked; 
also, it must check Thread/interrupted for any cancel requests. Beware of exceptions 
arising from the code executed in a Future, because they are not verbosely reported by 
default! Clojure Futures use the solo thread pool (used to execute potentially blocking 
actions) that we discussed earlier with respect to agents.
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Anticipated asynchronous execution result  
with promises
A promise is a placeholder for the result of a computation that may or may  
not have occurred. A promise is not directly associated with any computation.  
By definition, a promise does not imply when the computation might occur.

Typically, a promise originates from one place in the code and is realized by some 
other portion of the code that knows when and how to realize the promise. Very often, 
this happens in multithreaded code. If a promise is not realized yet, any attempt to 
read the value blocks all callers. If a promise is realized, all callers can read the value 
without being blocked. As with Futures, a promise can be read with a timeout using 
deref. The following is a very simple example showing how to use promises:

(def p (promise))
(realized? p) ; returns false
@p ; will block until another thread delivers the promise
(deliver p :foo)
@p ; returns :foo (for timeout use deref)

A promise is a very powerful tool that can be passed around as function arguments, 
stored in a reference type, or simply used for high-level coordination.

Clojure parallelization and the JVM
We observed in Chapter 1, Performance by Design, that parallelism is a function of the 
hardware, whereas concurrency is a function of the software assisted by hardware 
support. Except for algorithms that are purely sequential by nature, concurrency 
is the favored means to facilitate parallelism and achieve better performance. 
Immutable and stateless data is a catalyst to concurrency as there is no contention 
between threads due to the absence of mutable data.

Moore's law
In 1965, Intel's co-founder Gordon Moore made an observation that the number of 
transistors per square inch on integrated circuits doubles every 24 months. He also 
predicted that the trend would continue for 10 years, but in practice, it has continued 
till now, marking almost half a century. More transistors resulted in more computing 
power. With a larger number of transistors in the same area, we need higher clock 
speed to transmit signals to all of the transistors. Secondly, transistors need to  
get smaller to fit in. Around 2006 to 2007, the clock speed that the circuitry could 
work with topped out at about 2.8 GHz due to heating issues and laws of physics. 
Then multicore processors were born.
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Amdahl's law
Multicore processors naturally require splitting up computation in order to achieve  
parallelization. Here begins a conflict—a program that was made to be run 
sequentially cannot make use of the parallelization features of multicore processors. 
The program must be altered to find the opportunity to split up computation at 
every step while keeping the cost of coordination in mind. This results in a limitation 
that a program can be no faster than its longest sequential part and the coordination 
overhead. This characteristic is described by Amdahl's law.

Clojure support for parallelization
A program that relies on mutation cannot parallelize its parts without creating 
contention on the mutable state. It requires coordination overhead, which makes 
the situation worse. Clojure's immutable nature is better suited to parallelize parts 
of a program. Clojure also has some constructs that are suited for parallelism by the 
virtue of Clojure's consideration of available hardware resources. The result is that 
the operations executed are optimized for certain use case scenarios.

pmap
The function pmap (like map) accepts as arguments a function and one or more 
collections of data elements. The function is applied to each of the data elements  
in such a way that some of the elements are processed by the function in parallel.  
The parallelism factor is chosen at runtime by the pmap implementation as two 
greater than the total number of available processors. It still processes the  
elements lazily, but the realization factor is the same as the parallelism factor:

(pmap (partial reduce +)
        [(range 1000000)
         (range 1000001 2000000)
         (range 2000001 3000000)])

To use pmap effectively, it is imperative that we understand what it is meant for.  
As the documentation says, it is meant for computationally-intensive functions. It is 
optimized for CPU-bound and cache-bound jobs. High-latency, low-CPU tasks such 
as blocking I/O is a gross misfit for pmap. Another pitfall to be aware of is whether 
the function used in pmap performs a lot of memory operations. Since the same 
function will be applied across all threads, all processors (or cores) may compete 
for the memory interconnect and subsystem bandwidth. If parallel memory access 
becomes a bottleneck, pmap cannot make the operation truly parallel due to the 
contention on memory access.
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Another concern is what happens when several pmap operations are running 
concurrently? Clojure does not attempt to detect multiple pmaps running 
concurrently. The developer is responsible to ensure the performance  
characteristics and response time of the program resulting from concurrent  
pmap executions. Usually, when latency reasons are paramount, it is advisable  
to limit the concurrent instances of pmap running in the program.

pcalls
The pcalls function is built using pmap, so it borrows properties from the latter. 
However, the pcalls function accepts zero or more functions as arguments and 
executes them in parallel, returning the result values of the calls as a list.

pvalues
The pvalues macro is built using pcalls, so it transitively shares the properties  
of pmap. Its behavior is like pcalls, but instead of functions, it accepts zero or  
more S-expressions that are evaluated in parallel using pmap.

Java 7's fork/join framework
Java 7 introduced a new framework for parallelism called fork/join based on 
divide-and-conquer and work-stealing scheduler algorithms. The basic idea of  
how to use the fork/join framework is fairly simple: if the work is small enough, 
do it directly in the same thread; otherwise, split the work in to two pieces and 
invoke them in a fork/join thread pool and wait for the results to combine.  
This way, the job gets recursively split into smaller parts like an inverted  
tree until the smallest part can be carried out in just a single thread. When the  
leaf/subtree jobs return, the parent combines the result of all children and  
returns the results.

The fork/join framework is implemented in Java 7 in terms of a special kind of  
thread pool; see java.util.concurrent.ForkJoinPool. The specialty of this  
thread pool is that it accepts jobs of the type java.util.concurrent.ForkJoinTask, 
and whenever these jobs block waiting for the child jobs to finish, the threads 
used by the waiting jobs are allocated to the child jobs. When the child finishes its 
work, the thread is allocated back to the blocked parent jobs in order to continue. 
This style of dynamic thread allocation is described as work-stealing. The fork/
join framework can be used from within Clojure. The interface ForkJoinTask has 
two implementations—RecursiveAction and RecursiveTask in the java.util.
concurrent package. Concretely, RecursiveTask may be more useful with Clojure 
as RecursiveAction is designed to work with mutable data and does not return  
any value from its operation.
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Using the fork/join framework entails choosing the batch size to split a job into, 
which is a crucial factor in parallelizing a long job. Too large a batch size may not 
utilize all CPU cores enough. On the other hand, a small batch size may lead to 
longer overhead coordinating across parent-child batches. As we would see in the 
next section, Clojure integrates with the fork/join framework to parallelize the 
reducer's implementation.

Parallelism with reducers
Reducers are a new abstraction introduced in Clojure 1.5 and are likely to have a wider 
impact on the rest of the Clojure implementation in future versions. They depict a 
different way of thinking about processing collections in Clojure—the key concept is 
to break down the notion that collections can be processed only sequentially, or only 
lazily, or only producing a seq, and so on. Moving away from such behavior guarantee 
raises the potential for eager and parallel operations on one hand while incurring 
constraints on the other hand. Reducers are compatible with the existing collections.

For an example, an observation of the regular map function reveals that its classic 
definition is tied to the mechanism (recursion), order (sequential), laziness (often),  
and representation (list/seq/other) aspects of producing the result. Most of this 
actually defines "how" the operation is performed rather than "what" needs to be  
done. In the case of map, the "what" is all about applying a function to each element  
of its collection arguments; but since collection types can be of various types  
(tree-structured, sequence, iterator, and so on), the operating function would  
not know how to navigate the collection. Reducers decouple the "what" and  
"how" parts of the operation.

Reducible, reducer function, reduction 
transformation
Collections are of various kinds, and hence only a collection knows how to navigate 
itself. In the reducer's model at a fundamental level, an internal "reduce" operation 
in each collection type has access to its properties and behavior, and access to what it 
returns. This makes all collection types essentially "reducible". All operations that work 
with collections can be modeled in terms of the internal "reduce" operation—the new 
modeled form of such operations is a reducing function, which is typically a function 
of two arguments; the first argument being the accumulator and the second being  
the new input.
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How does it work when we need to layer several functions one upon another  
over elements of a collection? For example, let us say first we need to filter,  
then map, and then reduce. In such cases, a "transformation function" is used  
to model a reducer function (for example, for filter) as another reducer function 
(for map) such that it adds the functionality during transformation. This is called 
reduction transformation.

Realizing reducible collections
While reducer functions retain the purity of the abstraction, they are not useful all by 
themselves. Reducer operations in the namespace clojure.core.reducers, such 
as map and filter, return a reducible collection that embeds the reducer functions 
within themselves. A reducible collection is not realized, not even lazily realized—it 
is rather just a recipe ready to be realized. In order to realize a reducible collection, 
we must use one of the reduce or fold operations.

The reduce operation that realizes a reducible collection is strictly sequential, 
albeit with performance gains compared to clojure.core/reduce due to reduced 
object allocations on the heap. The fold operation that realizes a reducible 
collection is potentially parallel and uses a "reduce-combine" approach over the 
fork/join framework. Unlike the traditional map-reduce style of using fork/join, 
the reduce-combine approach reduces at the bottom and subsequently combines by 
means of reduction again. This makes the fold implementation less wasteful and 
better performing.

Foldable collections and parallelism
Parallel reduction by fold puts certain constraints on collections and operations.  
The tree-based collection types (persistent map, persistent vector, and persistent  
set) are amenable to parallelization. At the same time, sequences may not be 
parallelized by fold. Secondly, fold requires that the individual reducer functions 
should be "associative", that is, the order of the input arguments applied to the 
reducer function should not matter. The reason is that fold can segment the 
elements of the collection to process in parallel and the order in which they  
may be combined is not known in advance.



Chapter 5

[ 95 ]

The fold function accepts a few extra arguments, such as the combine function and  
the partition batch size (default being 512) for parallel processing. Choosing the 
optimum partition size depends on the jobs, host capabilities, and performance 
benchmarking. There are certain functions that are foldable (that is, parallelizable by 
fold), and there are others that are not, as shown below. They live in the clojure.
core.reducers namespace:

•	 Foldable: map, mapcat, filter, remove, and flatten
•	 Non-foldable: take-while, take, and drop
•	 Combine functions: cat, foldcat, and monoid

A notable aspect of Reducers is that they are foldable in parallel only when 
the collection is a tree-type collection. That implies the entire data set must be 
loaded in the heap when folding over them. This has the downside of memory 
consumption during high load on a system. On the other hand, a lazy sequence  
is a perfectly reasonable solution for such scenarios. When processing a large 
amount of data, it may make sense to use a combination of lazy sequences and 
Reducers for performance.

Summary
Concurrency and parallelism are extremely important for performance in this 
multicore age. Effective use of concurrency requires substantial understanding of 
the underlying principles and details. Fortunately, Clojure provides safe and elegant 
ways to deal with concurrency and state. Clojure's new feature "Reducers" provides 
a way to achieve granular parallelism. In the coming years, we are likely to see 
more and more processor cores and an increasing demand to write code that takes 
advantage of those. Clojure places us in the right spot to meet such challenges.

In the next chapter, we will look at performance analysis and optimization,  
and we will briefly touch upon performance tuning.





Optimizing Performance
Depending on the degree of mismatch between expected and actual performance 
and the lack or presence of measuring systems in place, performance analysis and 
tuning can be a fairly elaborate process. In this chapter, we will discuss analysis of 
performance characteristics and the opportunities for performance optimization. 
The elements involved in such activities are not specific to Clojure, so it should be 
possible to apply these concepts to other JVM systems too. In this chapter, we will 
discuss the following topics:

•	 How to measure performance and understand the measurement results
•	 What performance tests to carry out for different purposes
•	 Monitoring performance and obtaining metrics
•	 Profiling Clojure code to identify performance bottlenecks
•	 Tuning performance measurement and statistics

Measuring performance is the stepping stone to performance analysis. Often, where we 
think the code underperforms is not where the problem lies. So much so that it is rarely 
advisable to start optimizing performance until we measure it. As we’ve noted earlier 
in this book, there are several performance parameters to measure under various 
scenarios. Clojure’s built-in time macro is a tool to measure the amount of time elapsed 
while executing a body of code. Measuring performance factors is a much more 
involved process. The measured performance numbers may be linked with each other 
that we need to analyze. It is a common practice to use statistical concepts to establish 
the linkage factors. We will discuss some basic statistical concepts in this section and 
use them to explain how the measured data gives us the bigger picture.



Optimizing Performance

[ 98 ]

A tiny statistics terminology primer
When we have a series of quantitative data, such as latency in milliseconds, for the 
same operation (measured over a number of executions), we can observe a number 
of things. First, and the most obvious, are the minimum and maximum values in the 
data. Let us take an example data set to analyze further:

23 19 21 24 26 20 22 21 25 168 23 20 29 172 22 24 26

Median, first quartile, and third quartile
We can see that the minimum latency here is 19 ms, whereas the maximum latency is 
172 ms. We can also observe that the average latency here is about 40 ms. Let us sort 
this data in ascending order:

19 20 20 21 21 22 22 23 23 24 24 25 26 26 29 168 172

The center element of the preceding data set, that is, the ninth element (value 23),  
is considered the median of the data set. It is noteworthy that the median is a better 
representative of the center of the data than the average or mean. The center element 
of the left-half of the table, that is, the fifth element (value 21), is considered the first 
quartile. Similarly, the center element of the right-half of the table, that is, the 13th 
element (value 26), is considered the third quartile of the data set. The difference 
between the third quartile and the first quartile is called the Inter Quartile Range 
(IQR), which is five in this case. This can be illustrated with a boxplot as follows:
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A boxplot highlights the first quartile, median, and third quartile of a data set. As you 
can see, the two outlying latency numbers (168 and 172) are unusually higher than the 
others. The median does not represent outliers in a data set, whereas the mean does.
The same data can be depicted as a histogram:

A histogram (as shown in the preceding diagram) is another way to display a data 
set, where we batch the data elements into periods and expose the frequency of such 
periods. A period contains the elements in a certain range. All periods in a histogram 
are generally of the same size; however, it is common to omit certain periods when 
there is no data.

Percentile
A percentile is expressed with a parameter, such as 99th percentile or 95th percentile, 
and so on. The percentile is the value below which all the specified percentage of data 
elements exist. For example, the 95th percentile indicates the value N in a data set, 
such that 95 percent of the elements in the data set are below N in value. As a concrete 
example, the 85th percentile in the data set of latency numbers we’ve discussed earlier 
in this section is 29; because, out of the 17 total elements, 14 (that is, 85 percent of 17) 
other elements in the data set have a value less than 29. A quartile splits a data set  
into chunks, each comprising 25 percent of its elements. Therefore, the first quartile  
is actually the 25th percentile, the median is the 50th percentile, and the third quartile 
is the 75th percentile.
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Variance and standard deviation
The spread of the data in a data set, that is, how far the data elements are from 
the mean, gives us further insight into the data. Consider the ith deviation as the 
difference between the ith data set element value (in statistical terms, a variable 
value) and its mean; we can represent it as follows:

We can express its variance and standard deviation as follows:
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Standard deviation is shown as the Greek letter σ (sigma) or simply s. Consider the 
following Clojure code to determine variance and standard deviation:

(def tdata [23 19 21 24 26 20 22 21 25 168 23 20 29 172 22 24 26])

(defn var-std-dev
  “Return variance and standard deviation in a vector”
  [data]
  (let [size (count data)
        mean (/ (reduce + data) size)
        sum (->> data
                 (map #(let [v (- % mean)] (* v v)))
                 (reduce +))
        variance (double (/ sum (dec size)))]
    [variance (Math/sqrt variance)]))

user=> (println (var-std-dev tdata))
[2390.345588235294 48.89116063497873]

You can use the Clojure-based platform Incanter (http://incanter.org/) for 
statistical computations. For example, you can find standard deviation using 
(incanter.stats/sd tdata) in Incanter.

The empirical rule states the relationship between the elements of a data set and 
the standard deviation (SD) in a normal distribution. It says that 68.3 percent of all 
elements in a data set lie in the range of one (positive or negative) SD from the mean, 
95.5 percent of all elements lie in the range of two SDs from the mean, and 99.7 percent 
of all data elements lie in the range of three SDs from the mean.
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Looking at the latency data set we started out with, one SD from mean is 40 ± 49 
(range -9 to 89) containing 88 percent of all elements. Two SDs from the mean  
is 40 ± 98 (range -58 to 138) containing the same 88 percent of all elements.  
However, three SDs from the mean is 40 ± 147 (range -107 to 187) containing  
100 percent of all elements. There is a mismatch between what the empirical rule 
states and the results we’ve found because the empirical rule applies generally to 
uniformly distributed data sets with a large number of elements.

Understanding criterium output
In Chapter 4, Host Performance, we introduced the Clojure library criterium to measure 
the latency of Clojure expressions. A sample benchmarking result is as follows:

user=> (bench (reduce + (range 1000)))
Evaluation count : 162600 in 60 samples of 2710 calls.
             Execution time mean : 376.756518 us
    Execution time std-deviation : 3.083305 us
   Execution time lower quantile : 373.021354 us ( 2.5%)
   Execution time upper quantile : 381.687904 us (97.5%)

Found 3 outliers in 60 samples (5.0000 %)
    low-severe   2 (3.3333 %)
    low-mild   1 (1.6667 %)
 Variance from outliers : 1.6389 % Variance is slightly inflated by 
outliers

We can see that the result has some familiar terms we’ve discussed earlier in this 
section. A high mean and low standard deviation indicate that there is not a lot 
of variation in the execution times. Likewise, the lower (first) and upper (third) 
quartiles indicate that the values are not too far away from the mean. This result 
implies that the body of code is more or less stable in terms of response time. 
Criterium repeats the execution many times to collect the latency numbers.

However, why does criterium attempt to do a statistical analysis of the execution 
time? What would be amiss if we simply calculated the mean? It turns out that the 
response times of all executions are not always stable and there is often disparity 
between how the response times show up. Only upon running criterium a sufficient 
number of times under correctly simulated load can we get complete data and get 
other indicators about latency. A statistical analysis gives us an insight into whether 
there is something wrong with the benchmark.
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Guided performance objectives
We discussed performance objectives only briefly in Chapter 1, Performance by Design. 
Detail discussion of performance objectives needs to refer to statistical concepts such 
as standard deviation, and percentile. Let us say we’ve identified the functional 
scenarios and the corresponding response times. Should the response times remain 
fixed? Can we constrain throughput in order to prefer a stipulated response time?

The performance objective should specify the worst-case response time, that is, 
the maximum latency, average response time, and maximum standard deviation. 
Similarly, the performance objective should also mention the worst-case 
throughput, maintenance window throughput, average throughput, and  
maximum standard deviation.

Performance testing
Testing for performance requires that we know what we are going to test, how we 
want to test it, and what environment to set up for the tests to execute. There are 
several pitfalls to be aware of, such as a lack of near-real hardware and resources  
of production use, similar OS and software environments, diversity of representative 
data for test cases, and so on. Lack of diversity in test inputs may lead to monotonic 
branch prediction, which introduces bias in test results. Collecting enough 
performance test samples is a significant criterion to obtain a statistically  
meaningful data set and prevent skewing.

Test environment
Concerns about the test environment begin with the hardware representative of  
the production environment. Traditionally, the test environment hardware has 
been a scaled-down version of the production environment. A performance 
analysis done on a non-representative hardware is almost certain to skew the 
results. Fortunately, in recent times, thanks to the commodity hardware and  
Cloud systems, providing test environment hardware that is similar to the 
production environment is not too difficult.

The network and storage bandwidth, OS, and software used for performance testing 
should, of course, be the same as those in the production environment.. What is also 
important is to have a load representative of the test scenarios. The load comes in 
different combinations, including the concurrency of requests, the throughput and 
standard deviation of requests, the current population level in the database or in 
the message queue, CPU and heap usage, and so on. It is important to simulate a 
representative load.
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Testing often requires quite some work on the part of the piece of code that carries out 
the test. Be sure to keep its overhead minimal so that it does not impact the benchmark 
results. When possible, use a system other than the test target to generate requests.

What to test
Any implementation of a non-trivial system typically involves many hardware  
and software components. Performance testing a certain feature or service in the 
entire system needs to account for the way it interacts with the various subsystems;  
a break-down of the time spent across subsystems gives us quicker insight into  
the potential bottlenecks. For example, a web service call may touch multiple  
layers, such as the web server (request/response marshaling and unmarshaling),  
URL-based routing, service handler, application-database connector, the database 
layer, logger component, and so on. Testing only the service handler would be a 
terrible mistake because that does not depict exactly the performance that the web 
client will experience. The performance test should test at the perimeter of a system,  
for example at the HTTP layer in the case of a web service, to keep the results 
realistic. To test a network traffic it is preferable to have a third-party observer  
that incurs little overhead on the client or the server.

The performance objectives state the criteria for testing. It would be useful not to test 
what is not required by the objective, especially when the tests are run concurrently. 
Running meaningful performance tests may require a certain level of isolation.

Measuring latency
The latency obtained by executing a body of code may vary slightly on each run.  
This necessitates that we execute the code many times and collect samples.  
The latency numbers may be impacted by the JVM warm-up time, GC, and the JIT 
compiler having not yet kicked in. So, the test and sample collection should ensure 
that these conditions do not impact the results. Criterium follows such methods 
while capturing samples. When we test a very small piece of code this way, it is 
called a Micro-benchmark.

As the latency of some operations may vary during runs, it is useful to collect all 
samples and segregate them into periods and frequencies, forming a histogram.  
The maximum latency is an important metric when measuring latency; it indicates 
the worst-case latency. Besides the maximum, the 99th percentile and 95th percentile 
latency numbers help to put things in perspective. It’s crucial to actually collect the 
latency numbers instead of inferring them from the standard deviation, as we’ve 
noted earlier that the empirical rule works only for normal distributions without 
significant outliers.
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The outliers are an important data point when measuring latency. A proportionately 
higher count of outliers indicates the possibility of degradation of service.

Measuring throughput
Throughput is expressed per unit of time. Coarse-grained throughput, that is,  
the throughput number collected over a long period of time, may hide facts about 
instances when the throughput is actually delivered in bursts instead of a uniform 
distribution. Granularity of the throughput test is subject to the nature of the 
operation. A batch process may process bursts of data, whereas a web service  
may deliver uniformly distributed throughput.

Load, stress, and endurance tests
One of the characteristics of tests is that each run only represents the slice of time it  
is executed through. Repeated runs establish their general behavior. But, how many 
runs should be enough? There may be several anticipated load scenarios for an 
operation. So, there is a need to repeat the tests in the various load scenarios.  
Simple test runs may not always exhibit the long term behavior and response of  
the operation. Running the tests under varying high load for a longer duration allows 
us to observe them for any odd behavior that may not show up in a short test cycle.  
Often, performance issues crop up in specific scenarios and corner cases, all of  
which may be difficult to frame in example-based testing. For the rigorous testing  
of various use cases, you may like to consider simulation testing using tools such  
as Simulant available at https://github.com/Datomic/simulant.

When we test an operation at a load far beyond its anticipated latency and throughput 
objectives, that is called stress testing. The intent of a stress test is to ascertain a 
reasonable behavior exhibited by the operation beyond the maximum load it was 
developed for. Another way to observe the behavior of an operation is to see how it 
behaves when it’s run for a very long duration, typically for several days or weeks. 
Such prolonged tests are called endurance tests. While a stress test checks the graceful 
behavior of the operation, an endurance test checks the consistent behavior of the 
operation over a long period.

There are several tools that may help with load and stress testing. Engulf (http://
engulf-project.org/) is a distributed HTTP-based load generation tool written 
in Clojure. JMeter (http://jmeter.apache.org/) and Grinder (http://grinder.
sourceforge.net/) are Java-based load generation tools. Grinder can be scripted 
using Clojure. Apache Bench (http://httpd.apache.org/docs/2.4/programs/
ab.html) is a load testing tool for web systems. Tsung (http://tsung.erlang-
projects.org/) is an extensible, high-performance load testing tool written  
in Erlang.
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Performance monitoring
During prolonged testing or after the application has gone to production,  
we need to monitor its performance to make sure the application continues  
to meet the performance objectives. There may be infrastructural or operational  
issues impacting the performance or availability of the application, occasional  
spikes in latency, or dips in throughput. Generally, monitoring alleviates such  
risk by generating a continuous feedback stream.

Roughly, there are three kinds of components used to build a monitoring stack.  
A collector sends the numbers from each host that needs to be monitored.  
Usually we explicitly make calls in code  to periodically send performance data  
or events to the collector. The collector gets host information and the performance 
numbers and sends them to the aggregator. An aggregator receives the data sent  
by the collector and persists them until asked by a visualizer on behalf of the  
user– the visualizer displays the data in a suitable format.

The project metrics-clojure (https://github.com/sjl/metrics-clojure) is 
a Clojure wrapper over the Metrics (http://metrics.codahale.com/) Java 
framework, which acts as a collector. Statsd (https://github.com/etsy/statsd/) 
is a well-known aggregator that does not persist data by itself, but passes it on to 
a variety of servers. One of the popular visualizer projects is Graphite (http://
graphite.wikidot.com/), which stores the data as well as produces graphs for 
requested periods. There are several other alternatives to these, notably Riemann 
(http://riemann.io/), which is written in Clojure and Ruby. Riemann is an  
event-processing-based aggregator.

Introspection
Both Oracle JDK and OpenJDK provide two GUI tools called JConsole (executable 
name jconsole) and JVisualVM (executable name jvisualvm) that we can use to 
explore running JVMs for instrumentation data. There are also some command-line 
tools (http://docs.oracle.com/javase/7/docs/technotes/tools/) in the JDK 
to peek into the inner details of the running JVMs.

A common way to introspect a running Clojure application is to have an nREPL 
(https://github.com/clojure/tools.nrepl) service running so that we can 
connect to it later using an nREPL client. Interactive introspection over nREPL using 
the Emacs editor (an embedded nREPL client) is popular among some, whereas some  
others prefer to script an nREPL client to carry out tasks. However, leaving the nREPL 
server exposed to the outside world poses a severe security threat; be sure to restrict it 
for authorized use only.
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JVM instrumentation via JMX
The JVM has a built-in mechanism to introspect managed resources via the extensible 
Java Management Extensions (JMX) API. It provides a way for application 
maintainers to expose manageable resources as MBeans. Clojure has an easy-to-use 
contrib library called java.jmx (https://github.com/clojure/java.jmx) to 
access JMX. There is a decent amount of open source tooling for visualization of JVM 
instrumentation data via JMX, such as jmxtrans and jmxetric which integrate with 
Ganglia and Graphite.

Getting quick memory stats of the JVM is pretty easy using Clojure:

(let [^Runtime r (Runtime/getRuntime)]
  (println “Maximum memory” (.maxMemory r))
  (println “Total memory” (.totalMemory r))
  (println “Free memory” (.freeMemory r)))
Output:
Maximum memory 704643072
Total memory 291373056
Free memory 160529752

Profiling
We’ve briefly discussed profiler types in Chapter 1, Performance by Design.  
The JVisualVM tool we discussed with respect to introspection in the  
previous section is also a CPU and memory profiler that comes bundled  
with the JDK. Let us see them in action. Consider the following two  
Clojure functions that stress on the CPU and memory respectively:

(defn cpu-work []
  (reduce + (range 100000000)))

(defn mem-work []
  (->> (range 1000000)
       (map str)
       vec
       (map keyword)
       count))
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Using JVisualVM is pretty easy; open the Clojure JVM process from the left-pane.  
It has the sampler and regular profiler styles for profiling. Start profiling for CPU  
or memory use when the code is running and wait for it to collect enough data to 
plot on the screen. The following screenshot shows CPU profiling in action:

The following screenshot shows memory profiling in action:

JVisualVM is a very simple, entry-level profiler. There are several commercial JVM 
profilers on the market for sophisticated needs.
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OS and CPU-cache-level profiling
Profiling only the JVM may not always tell the whole story. Getting down to OS- and 
hardware-level profiling often provides a better insight into what is going on with 
the application. On Unix-like operating systems, command-line tools, such as top, 
htop, perf, iostat, netstat, vmstat, mpstat, and pidstat can help. On Linux, 
MSR tools such as cpuid, rdmsr, and wrmsr can provide additional information. 
Profiling the CPU for cache misses and other information is a useful way of catching 
performance issues. Among open source tools for Linux, Likwid (http://code.
google.com/p/likwid/) is small, yet effective for Intel and AMD processors; i7z 
(https://code.google.com/p/i7z/) is specifically for Intel processors. There are 
also dedicated commercial tools such as Intel VTune Analyzer for elaborate needs.

I/O profiling
Profiling I/O may require special tools too. Besides iostat and blktrace,  
ioping (https://code.google.com/p/ioping/) is useful to measure real-time  
I/O latency on Linux/Unix systems. The vnStat tool is useful to monitor and log 
network traffic on Linux. The IOPS of a storage device may not tell the whole truth 
unless it is accompanied by latency information for different operations and how 
many reads and writes can happen simultaneously.

In an I/O-bound workload, you have to look for the read and write IOPS over time 
and set a threshold to achieve optimum performance. The application should throttle 
I/O access so that the threshold is not crossed.

Performance tuning
Once we get an insight into the code via test and profiling results, we need to analyze 
the bottlenecks worth considering for optimization. A better approach is to find the 
most underperforming portion and optimize it, thereby eliminating the weakest 
link. We discussed performance aspects of hardware and JVM/Clojure in previous 
chapters. Optimization and tuning requires rethinking the design and code in light  
of those aspects and refactoring for performance objectives.

Once we establish the performance bottlenecks, we have to pinpoint the root  
cause and experiment with improvisations, one step at a time, to see what 
works. Tuning for performance is an iterative process backed by measurement, 
monitoring, and experimentation.
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Identifying the nature of the performance bottleneck helps a lot in order to experiment 
with the right aspects of the code. The key is to determine the origin of cost and 
whether the cost is reasonable. As a general rule, we have to see if the type hints are 
applied in order to avoid reflection and boxing and whether or not we are performing 
unnecessary computation inside loops. If the code in question is CPU-bound, we have 
to see whether or not we are using the data types that can fit well in CPU registers and 
whether or not we can reduce branch mispredictions. For cache- and memory-bound 
code, we have to know whether or not there are cache misses, and the reason is that, 
often, the data might be too large to fit in a cache line. Knowing the memory layout 
(for example, in primitive arrays) can help us prefetch spatial and sequential data in 
adjacent cache lines. For memory-bound code, we have to care about data locality, 
whether the code is hitting the interconnect too often, page size versus the cost of 
paging, and whether or not memory representation of data can be slimmed down.

JVM tuning
Often, Clojure applications might inherit bloat from Clojure/Java libraries 
or frameworks, which causes poor performance. Hunting down unnecessary 
abstractions and layers of code may bring decent performance gains.  
Reasoning with the performance of dependency libraries/frameworks  
before their inclusion in the project is a good approach.

The JIT compiler, GC, and Safepoint (in Oracle HotSpot JVM) have significant impact 
on the performance of applications. We discussed the JIT compiler and GC in Chapter 
4, Host Performance. When the HotSpot JVM reaches a point when it cannot carry out 
concurrent, incremental GC anymore, it needs to suspend the JVM safely in order to 
carry out a full GC. This is also called the stop-the-world GC pause, and it may run 
up to several minutes while the JVM appears frozen.

The Oracle and OpenJDK JVMs accept many command-line options, when invoked, 
to tune and monitor the way components in the JVM behave. Tuning GC is common 
among people who want to extract optimum performance from the JVM. On the Java 
6 HotSpot JVM, the Concurrent Mark and Sweep (CMS) garbage collector is well 
regarded for its GC performance. On the Java 7 HotSpot JVM, the recommended way 
forward for GC is by using the G1 garbage collector.

The JVM GC can be tuned for different objectives; hence, 
the same exact configuration for one application may not 
work well for another.
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I/O tuning and backpressure
I/O-bound tasks could be limited by bandwidth or IOPS/latency. Any I/O  
bottleneck usually manifests in chatty I/O calls or unconstrained data  
serialization. Restricting I/O to only the minimum required data is a common 
opportunity to minimize serialization and reduce latency. I/O operations can  
often be batched for higher throughput; for example, the SpyMemcached library 
employs an asynchronous batched operation for high throughput.

It is not uncommon to see applications behaving poorly under load. Typically,  
the application server simply appears unresponsive, which is often a combined  
result of high resource utilization, GC pressure, more threads that lead to busier 
thread scheduling, cache misses, and CPU stalls. If the capacity of a system is  
known, the solution is to apply backpressure by denying services after capacity  
is reached. Note that backpressure cannot be applied optimally until the system  
is load-tested for optimum capacity. The capacity threshold that triggers  
backpressure may or may not be directly associated with individual services,  
but can be defined as load criteria.

Summary
Delivering high-performance applications requires not only care for performance, 
but also systematic effort to measure, test, monitor, and optimize the performance 
of various components and subsystems. The key is to first measure, then optimize, 
and subsequently repeat the process during the application life cycle. These activities 
often require the right skill and experience. Sometimes, performance considerations 
may even bring system design and architecture back to the drawing board.  
Early structured steps taken to achieve performance go a long way in ensuring  
that the performance objectives are being continuously met.

In the next chapter, we will see how to address performance concerns when 
building applications. Our focus will be the several common patterns that  
impact performance.



Application Performance
As opposed to performance analysis and optimization at a smaller component level,  
it takes a holistic approach for the same at the application level. Higher level concerns, 
such as serving a certain threshold of users in a day or handling an identified quantum 
of load through a multilayered system, require us to think about how the components 
fit together and how the load is designed to flow through the application. In this 
chapter, we will discuss such high level concerns. Like the previous chapter, by and 
large this chapter applies to applications written in any JVM language, but it is written 
with a special focus on Clojure. In this chapter, we will discuss the following topics:

•	 General performance techniques that apply to all layers of the code
•	 Data sizing
•	 Resource pooling
•	 Fetching and computing in advance
•	 Staging and batching
•	 Little's law

Data sizing
The cost of abstractions in terms of data size plays an important role. For example, 
whether or not a data element can fit into a processor cache line depends directly upon 
its size. On a Linux system, we can find out the cache line size and other parameters 
by inspecting the values in the files under /sys/devices/system/cpu/cpu0/cache/. 
Refer to Chapter 4, Host Performance, where we discussed how to compute the size of 
primitives, objects, and data elements.
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Another concern we generally find with data sizing is how much data we are 
holding at a time in the heap. As we noted in earlier chapters, GC has direct 
consequences on the application's performance. While processing data, often we 
do not really need all the data we hold on to. Consider the example of generating 
a summary report of sold items for a certain period (months) of time. After the 
subperiod (month wise), summary data is computed. We do not need the item 
details anymore, hence it's better to remove the unwanted data while we add the 
summaries. This is shown in the following example:

(defn summarize [daily-data]  ; daily-data is a map
  (let [s (items-summary (:items daily-data))]
    (-> daily-data
    (select-keys [:digest :invoices])  ; we keep only the required key/val pairs
    (assoc :summary s))))

;; now inside report generation code
(-> (fetch-items period-from period-to :interval-day)
  (map summarize)
  generate-report)

Had we not used select-keys in the preceding summarize function, it would have 
returned a map with extra summary data along with all the other existing keys in the 
map. Now, such a thing is often combined with lazy sequences. So, for this scheme 
to work, it is important not to hold on to the head of the lazy sequence. Recall that in 
Chapter 2, Clojure Abstractions, we discussed the danger of holding on to the head of  
a lazy sequence.

Reduced serialization
We discussed in earlier chapters that serialization over an I/O channel is a common 
source of latency. The perils of over-serialization cannot be overstated. Whether we 
read or write data from a data source over an I/O channel, all of that data needs to 
be prepared, encoded, serialized, de-serialized, and parsed before being worked on. 
It is better for every step to have less data involved in order to lower the overhead. 
Where there is no I/O involved, such as in-process communication, it generally 
makes no sense to serialize.
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A common example of over-serialization is encountered while working with SQL 
databases. Often, there are common SQL query functions that fetch all columns 
of a table or a relation—they are called by various functions that implement the 
business logic. Fetching data that we do not need is wasteful and detrimental to 
the performance for the same reason that we discussed in the preceding paragraph. 
While it may seem more work to write one SQL statement and one database query 
function for each use case, it pays off with better performance. Code that uses 
NoSQL databases is also subject to this anti-pattern—we have to take care to  
fetch only what we need even though it may lead to additional code.

There's a pitfall to be aware of when reducing serialization. Often, some information 
needs to be inferred in absence of the serialized data. In such cases where some  
of the serialization is dropped so that we can infer other information, we must 
compare the cost of inference versus the serialization overhead. The comparison 
may not be necessarily done per operation, but rather on the whole. Then, we can 
consider the resources we can allocate in order to achieve capacities for various parts 
of our systems.

Chunking to reduce memory pressure
What happens when we slurp a text file regardless of its size? The contents of the 
entire file will sit in the JVM heap. If the file is larger than the JVM heap capacity, 
the JVM will terminate by throwing OutOfMemoryError. If the file is large but not 
large enough to force the JVM into an OOM error, it leaves a relatively smaller JVM 
heap space for other operations in the application to continue. A similar situation 
takes place when we carry out any operation disregarding the JVM heap capacity. 
Fortunately, this can be fixed by reading data in chunks and processing them before 
reading further. In Chapter 3, Leaning on Java, we briefly discussed memory mapped 
buffers, which is another complementary solution that you may like to explore.

Sizing for file/network operations
Let us take the example of a data ingestion process where a semi-automated job 
uploads large Comma Separated File (CSV) files via the File Transfer Protocol 
(FTP) to a file server, and another automated job, which is written in Clojure,  
runs periodically to detect the arrival of files via the Network File System (NFS). 
After detecting a new file, the Clojure program processes the file, updates the result 
in a database, and archives the file. The program detects and processes several  
files concurrently. The size of the CSV files is not known in advance, but the  
format is predefined.
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As per the preceding description, one potential problem is that since there could 
be multiple files being processed concurrently, how do we distribute the JVM heap 
among the concurrent file-processing jobs? Another issue could be that the operating 
system imposes a limit on how many files can be opened at a time; on Unix-like 
systems, you can use the ulimit command to extend the limit. We cannot arbitrarily 
slurp the CSV file contents—we must limit each job to a certain amount of memory 
and also limit the number of jobs that can run concurrently. At the same time,  
we cannot read a very small number of rows from a file at a time because this  
may impact performance.

(def ^:const K 1024)

;; create the buffered reader using custom 128K buffer-size
(-> filename
  java.io.FileInputStream
  java.io.InputStreamReader
  (java.io.BufferedReader (* K 128)))

Fortunately, we can specify the buffer size when reading from a file or even from  
a network stream so as to tune the memory usage and performance as appropriate. 
In the preceding code example, we explicitly set the buffer size of the reader to 
facilitate the same.

Sizing for JDBC query results
Java's interface standard for SQL databases, JDBC (which is technically not an 
acronym), supports fetch-size for fetching query results via JDBC drivers.  
The default fetch size depends on the JDBC driver. Most JDBC drivers keep a low 
default value so as to avoid high memory usage and attain internal performance 
optimization. A notable exception to this norm is the MySQL JDBC driver that 
completely fetches and stores all rows in memory by default.

(require '[clojure.java.jdbc :as jdbc])

;; using prepare-statement directly (we rarely use it directly, shown 
just for demo)
(with-open
  [stmt (jdbc/prepare-statement conn sql :fetch-size 1000 max-rows 
9000)
   rset (resultset-seq (.executeQuery stmt))]
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  (vec rset))

;; using query
(query db [{:fetch-size 1000} "SELECT empno FROM emp WHERE country=?" 
1])

When using the Clojure Contrib library java.jdbc (https://github.com/clojure/
java.jdbc as of Version 0.3.0), the fetch size can be set while preparing a statement 
as shown in the preceding example.

The fetch size does not guarantee proportional latency; 
however, it can be used safely for memory sizing.

We must test any performance-impacting latency changes due to fetch size at different 
loads and use cases for the particular database and JDBC driver. Besides fetch-size,  
we can also pass the max-rows argument to limit the maximum rows to be returned 
by a query. However, this implies that the extra rows will be truncated from the result, 
not that the database will internally limit the number of rows to realize.

Resource pooling
There are several types of resources on the JVM that are rather expensive to initialize. 
Examples are HTTP connections, execution threads, JDBC connections, and so on. 
The Java API recognizes such resources and has built-in support for creating a pool 
of some of those resources so that the consumer code borrows a resource from a pool 
when required and at the end of the job simply returns it to the pool. Java's thread  
pools (discussed in Chapter 6, Optimizing Performance) and JDBC data sources are 
prominent examples. The idea is to preserve the initialized objects for reuse.  
Even when Java does not support pooling of a resource type directly, you can  
always create a pool abstraction around custom expensive resources.

The pooling technique is common in I/O activities, but it can be equally 
applicable to non-I/O purposes where the initialization cost is high.
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JDBC resource pooling
Java supports the obtaining of JDBC connections via the javax.sql.DataSource 
interface, which can be pooled. A JDBC connection pool implements this interface. 
Typically, a JDBC connection pool is implemented by third-party libraries or a 
JDBC driver itself. Generally, very few JDBC drivers implement a connection 
pool, so open source third-party JDBC resource pooling libraries such as Apache 
DBCP, c3p0, and BoneCP are popular. They also support validation queries for the 
eviction of stale connections that might result from network timeouts or firewalls 
and guard against connection leaks. Apache DBCP and BoneCP are accessible 
from Clojure via their respective Clojure wrapper libraries Clj-DBCP (https://
github.com/kumarshantanu/clj-dbcp) and Clj-BoneCP (https://github.com/
opiskelijarekisteri-devel/clj-bonecp), and there are Clojure examples that 
describe how to construct c3p0 pools.

Connections are not the only JDBC resources that need to be pooled. Every time  
we create a new JDBC prepared statement, depending on the JDBC driver 
implementation, often the entire statement template is sent to the database server 
in order to obtain a reference to the prepared statement. As database servers are 
generally deployed on separate hardware, there may be network latency involved. 
Hence, pooling of prepared statements is a very desirable property of JDBC resource 
pooling libraries. Apache DBCP, c3p0, and BoneCP support statement pooling,  
and the Clj-DBCP wrapper enables pooling of prepared statements out of the box  
for better performance.

I/O batching and throttling
It is well known that chatty I/O calls generally lead to poor performance. The solution 
is to batch together several messages and send them in one payload. In databases and 
network calls, batching is a common useful technique to improve throughput. On the  
other hand, large batch sizes may actually harm throughput as they tend to incur 
memory overhead and components may not be ready to handle a large batch at once. 
Hence, sizing the batches and throttling are just as important as batching. I would 
strongly advise conducting your own tests to determine the optimum batch size under 
representative load.
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JDBC batch operations
JDBC has batch-update support in its API, which includes the INSERT, UPDATE,  
and DELETE statements. The Clojure Contrib library java.jdbc supports JDBC  
batch operations via its own API as shown in the following code snippet:

(require '[clojure.java.jdbc :as jdbc])

;; multiple SQL statements
(db-do-commands
  db true
  ["INSERT INTO emp (name, countrycode) VALUES ('John Smith', 3)"
   "UPDATE emp SET countrycode=4 WHERE empid=1379"])

;; similar statements with only different parameters
(db-do-prepared
  db true
  "UPDATE emp SET countrycode=? WHERE empid=?"
  [4 1642]
  [9 1186]
  [2 1437])

Besides batch updates, we can also batch JDBC queries. One of the most common 
techniques is to use the SQL WHERE clause to avoid the N+1 selects issue. The N+1 
issue indicates the situation where we execute one query in another child table 
for every row in a row set from the master table. A similar technique can be used 
to combine several similar queries on the same table into just one query and then  
segregate the data in the program afterwards. Consider the following example that 
uses clojure.java.jdbc 0.3.0-alpha5 and a MySQL database:

(require '[clojure.java.jdbc :as j])

(def db {:subprotocol "mysql"
               :subname "//127.0.0.1:3306/clojure_test"
               :user "clojure_test" :password "clojure_test"})

;; the following snippet uses N+1 selects (typically characterized by 
SELECT in a loop)
(def rq "select order_id from orders where status=?")
(def tq "select * from items where fk_order_id=?")
(doseq [order (j/query db [rq "pending"])]
  (let [items (j/query db [tq (:order_id order)])]
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    ;; do something with items
    …))

;; the following snippet avoids N+1 selects, but requires fk_order_id 
to be indexed
(def jq "select t.* from orders r, items t
  where t.fk_order_id=r.order_id and r.status=? order by t.fk_order_
id")
(let [all-items (group-by :fk_order_id (j/query db [jq "pending"]))]
  (doseq [[order-id items] all-items]
    ;; do something with items
    ...))

In the preceding example, there are two tables: orders and items. The first  
snippet reads all order IDs from the orders table then iterates through them  
to query corresponding entries in the items table in a loop. This is the N+1  
selects performance antipattern that you should keep an eye on. The second  
snippet avoids the N+1 selects by issuing a single SQL query, but it may not  
perform very well unless the fk_order_id column is indexed.

Batch support at API level
When designing any service, it is very useful to provide an API for batch operations. 
This builds flexibility in the API so that batch sizing and throttling can be controlled 
in a fine-grained manner. Not surprisingly, it is also an effective recipe for building 
high performance services. A common overhead we encounter when implementing 
batch operations is the identification of each item in the batch and their correlation 
across requests and responses. The problem becomes more prominent when requests 
are asynchronous.

The solution to the item identification issue is resolved in one of the  
following manners:

•	 Assigning a canonical or global ID to each item in the request (batch)
•	 Assigning a unique ID to every request (batch) and an ID local to the batch 

for each item in the request

The choice of the exact solution usually depends on the implementation details. 
When requests are synchronous, you can do away with the identification of each 
request item. Look at the Facebook API for reference: http://developers.
facebook.com/docs/reference/api/batch/). Here, the items in response follow 
the same order as in the request. However, in asynchronous requests, items may 
have to be tracked via status-check or callbacks. The desired tracking granularity 
typically guides the appropriate item identification strategy.
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Throttling requests to services
As every service can handle only a certain capacity, the rate at which we send 
requests to a service is important. The expectations about the service behavior  
are generally in terms of both throughput and latency. This requires us to send 
requests at a specified rate, as a rate lower than this may lead to under-utilization  
of the service and a higher rate may overload the service or result in failure,  
thus leading to client side under-utilization.

Let us say a third-party service can accept 100 requests per second. However, we may 
not know how robustly the service is implemented. Though sometimes it is not exactly 
specified, sending 100 requests at once (within 20ms, let's say) during each second may 
lead to lower throughput than expected. Evenly distributing the requests across the 
one second duration, that is, sending one request every 10ms (1000ms/100 = 10ms), 
may increase the chance of attaining the optimum throughput.

Throttling at a very fine-grained level requires that we buffer the items so that 
we can maintain a uniform rate. Buffering consumes memory and often requires 
ordering; queues (discussed in Chapter 5, Concurrency), pipeline, and persistent 
storage usually serve that purpose well. Again, buffering and queuing may be 
subject to back pressure due to system constraints. We will discuss pipelines,  
back pressure, and buffering in a later section in this chapter.

Precomputing and caching
While processing data, we usually come across instances where a few common 
computation steps precede several kinds of subsequent steps. That is to say some 
amount of computation is common and the remaining is different. For high latency 
common computations (I/O to access the data and memory/CPU to process it),  
it makes a lot of sense to compute them once and then store them in a digest form.  
Then, the subsequent steps can simply use the digest data and proceed from that 
point onwards, thus resulting in reduced overall latency. This is also known as 
staging of semi-computed data, and it is a common technique to optimize  
processing of nontrivial amount of data.

Clojure has decent support for caching. The built-in clojure.core/memoize 
function perform basic caching of computed results with no flexibility in using 
specific caching strategies and pluggable backends. The Clojure Contrib library 
core.memoize (https://github.com/clojure/core.memoize) offsets the  
lack of flexibility in memoize by providing several configuration options. 
Interestingly, the features in core.memoize are also useful as a separate caching 
library, so the common portion is factored out as a Clojure Contrib library called 
core.cache (https://github.com/clojure/core.cache) on the top of which 
core.memoize is implemented.
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As many applications are deployed on multiple servers for availability, scaling,  
and maintenance reasons, they need distributed caching that is fast and space efficient. 
The open source memcached project is a popular in-memory, distributed key-value 
/object store that can act as a caching server for web applications. It hashes the keys 
to identify the server to store the value on and has no out of the box replication or 
persistence. It is used to cache database query results, computation results, and so on. 
For Clojure, there is a memcached client library called SpyGlass (https://github.
com/clojurewerkz/spyglass). Of course, memcached is not limited to just web 
applications and can be used for other purposes too.

Concurrent pipelines
Imagine a situation where we have to carry out jobs at a certain throughput, such 
that each job includes the same sequence of a differently sized I/O task (task A), 
a memory-bound task (task B), and again an I/O task (task C). A naive approach 
would be to create a thread pool and run each job off it, but soon we realize that this 
is not optimum because we cannot ascertain the utilization of each I/O resource due 
to unpredictability of the threads being scheduled by the OS. We also observe that 
even though several concurrent jobs have similar I/O tasks, we are unable to batch 
them in our first approach.

As the next iteration, we split each job in to stages (A, B, and C) such that each stage 
corresponds to one task. Since the tasks are well known, we create one thread pool  
of appropriate size per stage and execute tasks in them. The result of task A is required 
by task B, and B's result is required by task C—we enable this communication via 
queues. Now, we can tune the thread pool size for each stage, batch the I/O tasks,  
and throttle them for an optimum throughput. This kind of arrangement is a 
concurrent pipeline. Some readers may find this feebly resembling the actor model  
or Staged Event Driven Architecture (SEDA) model, which are more refined models 
for this kind of approach. Recall that we discussed several kinds of in-process queues 
in Chapter 5, Concurrency.
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Distributed pipelines
With this approach, it is possible to scale out the job execution to multiple hosts 
in a cluster using network queues, thereby offloading memory consumption, 
durability, and delivery to the queue infrastructure. For example, in a given scenario, 
there could be several nodes in a cluster, all of them running the same code and 
exchanging messages (requests and intermediate result data) via network queues. 
The following figure depicts how a simple invoice generation system might be 
connected to network queues:

Node A Node B Node C

Billing Queue Invoice Queue

Queue Server

RabbitMQ, HornetQ, ActiveMQ, Kestrel, and Kafka are some well-known open 
source queue systems. Once in a while, the jobs may require distributed state and 
coordination. The Avout (http://avout.io/) project implements the distributed 
version of Clojure's atom and ref, which can be used for this purpose. The Storm 
(http://storm-project.net/) project is a distributed, real-time stream processing 
system implemented partly using Clojure.

Applying back pressure
We discussed back pressure briefly in the previous chapter. Without back pressure, 
we cannot build a reasonable load-tolerant system with predictable stability and 
performance. In this section, we will look at how to apply back pressure in different 
scenarios in an application. At a fundamental level, we should have a threshold of 
the maximum number of concurrent jobs in the system, and based on that threshold, 
we should reject new requests above a certain arrival rate. The rejected messages 
may either be retried by the client or ignored if there is no control over the client. 
When applying back pressure to user-facing services, it may be useful to detect 
system load and at first deny auxiliary services in order to conserve capacity and 
degrade gracefully in the face of high load.
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Thread pool queues
JVM thread pools are backed by a queue, which means that when we submit a  
job into a thread pool that already has the maximum number of jobs running,  
the new job lands in the queue. The queue is by default an unbounded queue,  
which is not suitable for applying back pressure. So, we have to create a thread  
pool backed by a bounded queue.

(import 'java.util.concurrent.LinkedBlockingDequeue)
(import 'java.util.concurrent.TimeUnit)
(import 'java.util.concurrent.ThreadPoolExecutor)
(import 'java.util.concurrent.ThreadPoolExecutor$AbortPolicy)
(def tpool
  (let [q (LinkedBlockingDeque. 100)
          p (ThreadPoolExecutor$AbortPolicy.)]
    (ThreadPoolExecutor. 1 10 30 TimeUnit/SECONDS q p)))

Now, whenever there is an attempt on this pool to add more jobs than the capacity  
of the queue, it will throw an exception. The caller should treat the exception as a 
buffer-full condition and wait until the buffer has idle capacity again by periodically 
polling the java.util.concurrent.BlockingQueue.remainingCapacity() method.

Servlet containers like Tomcat and Jetty
In the synchronous Tomcat and Jetty versions, each HTTP request is given  
a dedicated thread from a common thread pool that a user can configure.  
The number of simultaneous requests being served is limited by the thread  
pool size. A common way to control the arrival rate is to set the thread pool  
size of the server. The Ring library uses an embedded Jetty server by default  
in the development mode. The embedded Jetty adapter (in Ring) can be 
programmatically configured with a thread pool size.

In the asynchronous (Async Servlet 3.0) versions of Tomcat and Jetty, besides the 
thread pool size, it is also possible to specify the timeout for processing each request. 
However, note that the thread pool size does not limit the number of requests in 
asynchronous versions in the way it does in synchronous versions. The request 
processing is transferred to an ExecutorService (thread pool) that may buffer 
requests until a thread is available. This buffering behavior is tricky because this may 
cause system overload—you can override the default behavior by defining your own 
thread pool instead of using the servlet container's thread pool to return an HTTP 
error at a certain threshold of waiting requests.



Chapter 7

[ 123 ]

HTTP Kit
HTTP Kit (http://http-kit.org/) is a high performance, asynchronous web  
server for Clojure. It has built-in support for applying back pressure to requests  
over a specified queue length.

(require '[org.httpkit.server :as hk])

;; handler is a typical Ring handler
(hk/run-server handler {:port 3000 :queue-size 600})

In the preceding code snippet, the maximum queue length is specified as  
600. When not specified, 20480 is the default maximum queue length for  
applying back pressure.

Performance and queuing theory
If we observe the performance benchmark numbers across a number of runs,  
even though the hardware, load, OS, and so on remain the same, the numbers  
are rarely exactly the same. The difference between each run may be upto as  
much as ±8 percent for no apparent reason. This may seem surprising, but the  
deep-rooted reason is that the performances of computer systems are stochastic  
by nature. There are many small factors in a computer system that make 
performance unpredictable at any given point of time. At best, the performance 
variations can be explained by a series of probabilities over random variables.

The basic premise is that each subsystem is more or less like a queue where requests 
await their turn to be served. The CPU has an instruction queue with unpredictable 
fetch/decode/branch-predict timings; the memory access again depends on the cache 
hit ratio and whether it needs to be dispatched via the interconnect, I/O subsystem 
works using interrupts that may again depend on mechanical factors of the I/O device. 
The OS schedules threads that wait while not executing. The software built on the top 
of all this basically waits in various queues to get the job done. These variations can be 
studied using queuing theory, something that interested readers may like to explore.
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Little's Law
Little's law is a rather important theorem, which is commonly used to relate  
the mean number of jobs in any system with the mean time spent on each job.  
Little's law states the following:

And also says that:

This is a rather important law that gives us an insight into the system capacity as it is 
independent of other factors.

For example, if the average time to satisfy a request is 200ms and the service rate  
is about 70 per second, then the mean number of requests being served is:

70 req/second x 0.2 second = 14 requests

Summary
Designing an application for performance should be based on the use cases and 
patterns of anticipated system load and behavior. Measuring performance is 
extremely important to guide optimization in the process. Fortunately, there are 
several well-known optimization patterns to tap into, such as resource pooling,  
data sizing, prefetch and precompute, staging, and batching. As it turns out, 
application performance is not only a function of the use cases and patterns—the 
system as a whole is a continuous stochastic turn of events that can be assessed 
statistically and guided by probability.

Clojure is a fun language to do high performance programming. This book 
prescribes many pointers and practices for performance, but there is no  
mantra that can solve everything. The devil is in the details. Know the idioms  
and patterns, experiment to see what works for your applications, and learn  
which rules you can bend for performance.
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