
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Stuart Sierra and Luke VanderHart

ClojureScript: Up and Running

www.allitebooks.com

http://www.allitebooks.org

ISBN: 978-1-449-32743-9

[LSI]

ClojureScript: Up and Running

by Stuart Sierra and Luke VanderHart

Copyright © 2013 Stuart Sierra, Luke VanderHart. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette

Production Editor: Rachel Steely

Proofreader: Kara Ebrahim

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Rebecca Demarest

Revision History for the First Edition:

2012-10-24 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449327439 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. ClojureScript: Up and Running, the image of a yellow-back duiker, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449327439
http://www.allitebooks.org

Table of Contents

Preface. vii

1. Introduction: Why ClojureScript?. 1
The Rise of Browser Applications 1
The Rise of JavaScript 2
The Need for a Better Language 2
Introducing ClojureScript 3

2. Hello World. 5
Leiningen 6

Installing Leiningen on OS X and Linux 6
Installing Leiningen on Windows 7

Using lein-cljsbuild 7
Getting Started with the REPL 8
Compiling a ClojureScript File to JavaScript 9
Running ClojureScript in the Browser 11
Other Capabilities of lein-cljsbuild 11

3. The Compilation Process. 13
Architecture 13

Google Closure Compiler 13
The Google Closure Library 15
ClojureScript and Google Closure 16
The Compilation Pipeline 16

How to Compile 17
Compiling ClojureScript 17

Compilation in Depth 19
Compilation Sources 19
Compilation and Optimization Options 19
Other Compilation Options 23

iii

www.allitebooks.com

http://www.allitebooks.org

Summary 23

4. ClojureScript Basics. 25
ClojureScript versus Clojure 25
Expressions and Side Effects 26
Syntax and Data Structures 26

Symbols and Keywords 27
Data Structures 27

Special Forms and Definitions 28
Functions 29

Multi-Arity Functions 30
Variadic Functions 30

Local Bindings 30
Destructuring 31

Closures 31
Flow Control 32

Conditional Branching 32
JavaScript Interop 35

The js Namespace 35
Methods and Fields 36
Constructor Functions 36
Scope of this 37
Exceptions 38

Summary 38

5. Data and State. 39
Primitives 39

Strings 40
Keywords 40
Symbols 40
Characters 41
Numbers 41
Booleans 41
Functions 41
nil 42

Data Structures 42
Collection Types 43
Immutability 46
Persistence 47

Identity and State 48

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Atoms 48

6. Sequences. 51
The Sequence Abstraction 51
Lazy Sequences 52

Letting Go of the Head 53
The Sequence API 54

map 54
reduce 54
filter 55
Other Useful Sequence Functions 55

7. Namespaces, Libraries, and Google Closure. 57
Namespaces 57

Using Namespaces 58
Using Namespaces Effectively 59
The Implementation of Namespaces 60

Advanced Compilation Mode 61
Consuming Libraries 62

ClojureScript Libraries 62
JavaScript Libraries 63

Creating Libraries 66
For Consumption by ClojureScript 67
For Consumption by JavaScript 68

8. Macros. 69
Code as Data 69
Writing Macros 69

Syntax-Quote 71
Auto-Gensyms 71

Using Macros 72
When to Write Macros 72
Summary 73

9. Development Process and Workflow. 75
Installing ClojureScript 75

Checking Out from Source Control 76
Downloading a Compressed Archive 76
Installing Dependencies 77

The Built-In Tools 77
Command-Line Compilation 77
Clojure REPL 78

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

ClojureScript REPL 78
The Browser REPL 78

Setting Up the Browser REPL 79
Additional lein-cljsbuild Features 82

Launching a Browser REPL 82
Custom bREPL Launch Commands 83
Hooking Into Default Leiningen Tasks 83
Testing ClojureScript Code 84
Including ClojureScript in JAR Files 85
Compiling the Same Code as Clojure and ClojureScript 85

10. Integration with Clojure. 87
AJAX 87
The Reader and Printer 88
Example Client-Server Application 89
Extending the Reader 93

User-Defined Tagged Literals 93
Sharing Code 94
Summary 95

A. Libraries. 97

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Who Should Read This Book
This book is for software developers who want to learn how to get started using Clo‐
jureScript to build web browser applications. This book will not assume any prior
knowledge of ClojureScript. We do assume that you have at least a basic working knowl‐
edge of the core JavaScript language. For the sections of this book that deal with
ClojureScript in a web browser, we assume you are familiar with HTML, CSS, the DOM,
and how they are manipulated in JavaScript.

While this book will not assume any prior knowledge of Clojure, it is not designed to
be a comprehensive reference to the Clojure programming language. We will explain
Clojure language concepts in ClojureScript as they become important, but we also rec‐
ommend picking up a book on Clojure for a more thorough guide to the language. The
authors of this book wrote Practical Clojure (Apress, 2010) and O’Reilly has released
Clojure Programming by our friends Chas Emerick, Brian Carper, and Christophe
Grand.

How to Use This Book
This book is both a how-to guide for using ClojureScript and a tutorial on the language
itself. We have arranged the chapters in what we felt was the best order for someone
who is completely new to the language but wants to get started quickly. If you already
know Clojure or ClojureScript and just want advice on development tools and workflow,
focus on Chapters 2, 3, 7, 9, and 10. If you want to dive into the language right away,
start with Chapters 4 through 6 before reading about the development process.

vii

www.allitebooks.com

http://oreil.ly/Clojure_Programming
http://www.allitebooks.org

Chapter 1, Introduction: Why ClojureScript?
In this chapter, we lay out the motivation for ClojureScript: why it exists and what
role it is designed to fill.

Chapter 2, Hello World
In this chapter, we work through a complete, albeit trivial, ClojureScript application.
We introduce Leiningen, the lein-cljsbuild plug-in, and how to use ClojureScript in
an HTML page. We save explanation for later chapters, but this chapter should be
enough to get your first ClojureScript code “up and running.”

Chapter 3, The Compilation Process
This chapter goes into the ClojureScript compiler in detail, explaining how it works,
most of the configuration options it supports, and how it integrates with the Google
Closure Compiler.

Chapters 4 through 6 cover the basics of the ClojureScript language itself. Although not
a complete guide to every corner of the language, they cover most of the features that
are required for everyday programming. Because ClojureScript and Clojure are so sim‐
ilar, we recommend books about Clojure to learn more about the language.

Chapter 4, ClojureScript Basics
This chapter introduces the essential syntax and control structures of the Clojure‐
Script language including functions, bindings, scope, and interoperation with
JavaScript.

Chapter 5, Data and State
This chapter covers the primitive and composite data structures of ClojureScript,
and shows how to work with them in programs. In particular, it explains Clojure‐
Script’s approach to immutability and state management.

Chapter 6, Sequences
This chapter introduces Lazy Sequences, an important data structure in Clojure‐
Script that makes up a substantial portion of the standard library.

Chapter 7, Namespaces, Libraries, and Google Closure
This chapter covers namespaces as a feature of the ClojureScript language and also
explains how files are organized in ClojureScript projects. We go into detail about
how the Google Closure Compiler affects the use of libraries in ClojureScript
projects, and provide a detailed flowchart for determining how best to use any
particular library.

Chapter 8, Macros
This chapter introduces macros, an advanced language feature provided by
ClojureScript.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

Chapter 9, Development Process and Workflow
This chapter covers a variety of alternative methods for working with ClojureScript
code apart from the workflow we have used elsewhere in the book. We demonstrate
some tools packaged with ClojureScript itself, including command-line compila‐
tion scripts and the ClojureScript Browser REPL (bREPL).

Chapter 10, Integration with Clojure
This chapter briefly demonstrates what can be achieved by combining Clojure and
ClojureScript in the same application.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permis‐
sion unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.

Preface | ix

Selling or distributing a CD-ROM of examples from O’Reilly books does require per‐
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “ClojureScript: Up and Running by Stuart
Sierra and Luke VanderHart (O’Reilly). Copyright 2013 Stuart Sierra and Luke Van‐
derHart, 978-1-449-32743-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/ClojureScript.

To comment or ask technical questions about this book, send email to bookques

tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank everyone involved in the development of ClojureScript as an
open-source project, especially its creator, Rich Hickey. Thanks also to our technical
reviewers Brenton Ashworth, Michael Fogus, and David Nolen, and to all our readers
who sent in notes and corrections on early drafts. Finally, a big thank you to Justin
Gehtland and Stuart Halloway, founders of Relevance, Inc., for creating a unique work‐
place that gives us the freedom to explore new technologies and contribute to the open-
source community.

Preface | xi

http://oreil.ly/ClojureScript
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction: Why ClojureScript?

This book aims to get you up and running with ClojureScript, a dialect of the Clojure
programming language that compiles to JavaScript. To begin, this chapter will provide
some motivation for why ClojureScript exists.

The Rise of Browser Applications
Web applications have come a long way from simple CGI scripts, but they have always
been constrained by the stateless request-response model of HTTP. As the “pages” in a
web application become more elaborate, the cost in time and bandwidth of reloading
an entire page just to update a single piece of information becomes prohibitively high.

One of the first major uses of JavaScript on the web was to ameliorate the cost of small
updates, but “web applications” remained primarily server applications for a long time,
and for good reason. Deploying an application to a web server is much easier than
distributing it to diverse client machines: the server is a controlled environment, with
many more options for programming languages and frameworks. But by treating web
browsers like dumb terminals, applications were severely limited by how quickly they
could push updates to a client.

Recent years have witnessed the rise of what one might call browser applications. These
applications typically still have server-side components, but a significant part of their
logic runs client-side, in a web browser. The web browser acts like a virtual machine,
executing JavaScript code to communicate with a server, render a graphical user inter‐
face, and make all the local decisions that do not require a server. The result is a more
responsive, more fluid style of interaction for client applications. While the original
World Wide Web of hyperlinked documents will likely remain for many years to come,
it seems probable that web server applications will be largely supplanted by web browser
applications.

1

The Rise of JavaScript
Browser applications were made possible by dramatic improvements in the JavaScript
execution environments packaged with web browsers. High-performance JavaScript
engines such as WebKit’s SquirrelFish, Mozilla’s TraceMonkey, and Google’s V8 proved
that JavaScript could be fast and launched the browser performance wars. JavaScript
began to succeed as a general-purpose application platform where other in-browser
execution environments had failed. It was a historical accident that no one could have
predicted, least of all the early developers of JavaScript.

Although JavaScript has many flaws, it has a few strengths that allowed it to succeed:

1. It is a small language. Core JavaScript has a limited number of keywords, concepts,
and built-in features. This makes it easy to embed in different environments.

2. It is flexible. Features missing from core JavaScript, such as namespaces or classes,
can be added using the language itself.

3. JavaScript functions are first-class. Although JavaScript is not a “functional” pro‐
gramming language in the usual sense, the ability to create and compose functions
as values grants it immense power.

4. It’s there. Every web browser has had JavaScript built-in since the mid-1990s. Beyond
that, the ease of embedding JavaScript in other applications has led to its inclusion
in products as diverse as databases and television set-top boxes.

The Need for a Better Language
Despite JavaScript’s overwhelming success, it still has many flaws (see Douglas Crock‐
ford’s excellent book, JavaScript: The Good Parts (O’Reilly)). It was a product of unpre‐
dictable evolution, not a carefully thought-out design process. And the vast reach and
diversity of JavaScript runtimes is both a blessing and a curse: it will be difficult to create
a new and improved version of the language that can replace all of the “legacy” versions
deployed around the world.

So JavaScript is here to stay, probably in its current form, for some time. Some have gone
so far as to say that “JavaScript is the assembly language of the web” (see Scott Hansel‐
man’s article, “JavaScript is Assembly Language for the Web”). So now we are beginning
to see the rise of tools and languages that treat JavaScript as a compilation target, much
like bytecode on a virtual machine or object code in a traditional compiler. For example,
the Google Web Toolkit compiles a subset of the Java language to JavaScript. We even
have entirely new languages, such as CoffeeScript and Dart, designed to target JavaScript
compilation directly.

2 | Chapter 1: Introduction: Why ClojureScript?

http://shop.oreilly.com/product/9780596517748.do
http://bit.ly/OtWURd
http://bit.ly/W0zaqU
http://coffeescript.org/
http://www.dartlang.org/

Any cross-language compiler has to make decisions about where to draw boundaries
between the source language and the target language. CoffeeScript, for example, is de‐
liberately designed to have semantics very close to those of JavaScript, adding only a
cleaner syntax and protection from some of JavaScript’s more egregious flaws. Google
Web Toolkit, on the other hand, is designed to hide JavaScript from developers who
want to work exclusively with the Java language.

Introducing ClojureScript
ClojureScript is a version of the Clojure programming language, which compiles to
JavaScript. Its primary target is web browser applications, but it is also applicable to any
environment where JavaScript is the only programmable technology available.

Clojure is a powerful, expressive, Lisp-like language developed for the Java Virtual Ma‐
chine (there is also a community-maintained port of Clojure to the .NET Common
Language Runtime (CLR)). ClojureScript is more than Clojure syntax layered on top of
JavaScript: it supports the full semantics of the Clojure language, including immutable
data structures, lazy sequences, first-class functions, and macros. Explaining how to use
these features in ClojureScript will be the subject of this book.

Clojure was designed to have a symbiotic relationship with the JVM: it does not try to
hide all the details of its host platform. In the same vein, ClojureScript does not try to
hide all the details of JavaScript or the browser execution environment. ClojureScript
uses the same native types as JavaScript, such as strings and numbers, and can call
JavaScript functions directly without any special “wrapper” or “foreign-function” code.
ClojureScript is also designed to work closely with best-of-breed JavaScript optimization
tools such as the Google Closure Compiler. These relationships will be explored in
Chapter 3.

In summary, ClojureScript provides developers with a language that is more powerful
than JavaScript, which can reach all the same places JavaScript can, with fewer of Java‐
Script’s shortcomings.

Introducing ClojureScript | 3

CHAPTER 2

Hello World

The next chapter will explain in detail how the ClojureScript compiler works, and its
various options and their applications. But for now, you probably want to jump right in
and get started.

Due to the relative youth of ClojureScript as a technology, there aren’t any highly stand‐
ardized ways of working or best practices yet. What conventions there are tend to change
frequently, and the built-in tools that ClojureScript ships with are somewhat low-level
and labor-intensive to use.

Therefore, in the spirit of the Up and Running title of this book, we will recommend
Leiningen and lein-cljsbuild as tools for getting started, and these will be introduced in
this chapter and used throughout the rest of the book. They are more mature than other
tools currently available, are relatively easy to use, work on all three major platforms
(Windows, Linux, and OS X), and are likely to be around for some time.

Instructions for installing ClojureScript from source and running its lower-level, more
primitive tools will also be included in Chapter 9. However, for most users, Leiningen
should prove more than sufficient for both learning and real-world production use.

Java Development Kit

Clojure, ClojureScript, and Leiningen all run on top of the Java Virtual Machine (JVM),
which is provided by a Java Development Kit (JDK). Many operating systems come pre‐
packaged with a JDK. For those that don’t, you can download one for free here. Get the
latest version of the Java Standard Edition (SE) JDK available for your operating system.
Clojure requires at least version 5.

There are other JDKs available but these are not as thoroughly tested with Clojure and
ClojureScript, so we recommend the Oracle JDK as the easiest way to get started.

5

http://bit.ly/TEA7iC

Leiningen
Leiningen is a build system for Clojure, named to highlight its opposition to the ven‐
erable but labor-intensive Ant build system for Java (see the short story Leiningen Versus
the Ants by Carl Stephenson). It is the de facto standard for building Clojure projects in
the Clojure community, and has a wide array of useful features.

It utilizes Maven for dependency resolution, and can seamlessly connect to any Maven
repository to acquire dependencies. However, it features an original build system opti‐
mized for Clojure workflows, and can also compile Java source code. In addition, it
exposes integration points for third-party plug-ins, enabling its use with a wide variety
of other programming languages, including ClojureScript via the lein-cljsbuild plug-in
discussed below.

This book describes Leiningen version 2, which is much more featureful than previous
versions and is recommended for new projects at the time of writing. If you do need to
use ClojureScript with existing versions of Leiningen, don’t worry: lein-cljsbuild is fully
compatible with Leiningen 1.7.0 and up. However, you’ll need to read the legacy Lei‐
ningen documentation, as the examples included here use new configuration properties
introduced in 2.0.0.

Don’t worry if some things described in this chapter don’t make sense, or if you don’t
understand some of the syntax or terms used. Everything covered here will be elaborated
in much greater detail throughout the rest of the book.

Installing Leiningen on OS X and Linux

1. Download the latest version of the lein script from the Leiningen GitHub page,
and save it to a location on your system’s PATH (typically ~/bin or /usr/local/
bin).

2. Set the script to be executable (e.g., chmod +x ./lein).

3. Run the script (e.g., ./lein). Leiningen will automatically download everything it
needs to function properly.

That’s it! You’re now ready to use Leiningen.

Git and GitHub

Git is a powerful source code management system that is extremely popular among open
source developers and is used for most open source projects. If you’re not already using
it, you can install it and learn about how it works from its website.

6 | Chapter 2: Hello World

www.allitebooks.com

http://maven.apache.org/
https://github.com/technomancy/leiningen
http://git-scm.com/
http://www.allitebooks.org

You will probably also see frequent references to GitHub, a featureful and easy-to-use Git
hosting service that is free for open source projects. ClojureScript itself is hosted on Git‐
Hub, as are practically all ClojureScript tools and libraries.

Installing Leiningen on Windows

1. Download the lein.bat file from the Leiningen GitHub page, and save it to your
hard drive.

2. Install either wget or curl. These are programs that the Leiningen batch script can
use to automatically download the rest of its dependencies.

3. Run lein.bat, passing it the self-install argument (.\lein.bat self-

install). Leiningen will download the rest of its dependencies and finish installing
itself.

That’s all! Leiningen is now installed on your Windows system.

Using lein-cljsbuild
Leiningen does not yet support building ClojureScript code on its own. Fortunately,
thanks to its plug-in system, using the lein-cljsbuild plug-in for ClojureScript develop‐
ment is easy: just reference it in the :plugins key of your project.clj build configu‐
ration (demonstrated below).

Before you can use lein-cljsbuild, you’ll need to create a Leiningen project (if you don’t
have one already). In your command console, switch to a directory of your choice, then
type:

lein new hello-world

This will generate a new directory prepopulated with some default files. It should contain
a project.clj file, which initially will look something like this:

(defproject hello-world "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.4.0"]])

To enable lein-cljsbuild, you’ll need to add two lines: a :plugins key adding lein-
cljsbuild to the project, and a :cljsbuild key containing build configurations (which
will start out empty). Once you’ve added them, your project.clj should look some‐
thing like the following:

(defproject hello-world "0.1.0-SNAPSHOT"
 :description "FIXME: write description"

Using lein-cljsbuild | 7

https://github.com/technomancy/leiningen
http://gnuwin32.sourceforge.net/packages/wget.htm
http://curl.haxx.se/

 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.4.0"]
 [org.clojure/clojurescript "0.0-1450"]]
 :plugins [[lein-cljsbuild "0.2.7"]]
 :cljsbuild {:builds []})

Note that on a new project, you should specify whichever versions of Clojure, Clojure‐
Script, and lein-cljsbuild are most recent (at the time of writing, this is 1.4.0, 0.0-1450,
and 0.2.7, respectively, as shown in the example project.clj).

Getting Started with the REPL
The fastest way to start writing ClojureScript code is to fire up the REPL. For those not
already familiar with the concept of a REPL from Clojure or another Lisp, REPL stands
for Read Eval Print Loop, and is similar to a shell console in other languages because it
can be used to program interactively. It works by successively reading text input into
Lisp data structures, evaluating them in the running environment (via compilation to
JavaScript, in ClojureScript’s case), printing the results of the expression back to the
console, and looping back and waiting for more input.

To start a basic REPL in a lein-cljsbuild project, type the following at the command line
from anywhere in the project’s directory structure:

lein trampoline cljsbuild repl-rhino

This statement deserves some unpacking:

• lein invokes the Leiningen build system.

• trampoline is some ceremony Leiningen requires for running tasks with interactive
user input in the console.

• cljsbuild invokes the lein-cljsbuild plug-in.

• repl-rhino specifies that you’ll use the Rhino REPL. Rhino is a headless JavaScript
engine that runs on the JVM, which is convenient for basic experimentation with
ClojureScript.

Once the REPL starts up, you should see the ClojureScript REPL prompt:

ClojureScript:cljs.user>

Type a ClojureScript expression (for example, the println function to print to standard
out in Rhino), and press Enter to evaluate it:

ClojureScript:cljs.user> (println “Hello, world!”)
Hello, world!
nil

8 | Chapter 2: Hello World

You will immediately see the string you specified printed, and the return value of the
expression (which is nil, in the case of println).

You can use the Rhino REPL like this to explore any of ClojureScript’s basic syntax and
standard libraries.

Rhino REPL versus the Browser REPL

ClojureScript actually ships with two REPLs: the Rhino REPL and the Browser REPL. The
Rhino REPL is much simpler and easier to use, but runs in a sandboxed, headless JavaScript
instance, implemented using Rhino. For basic exploration of ClojureScript and its syntax,
it works great.

However, one major use case for ClojureScript is browser programming, and for that,
ideally, one wants a REPL that actually runs against a real browser JavaScript environment
with full access to the DOM (Document Object Model) and the ability to see changes
reflected in a running browser. ClojureScript supports this, but out of necessity the model
is slightly more complicated.

The Browser REPL runs as two components: a client, which runs as ClojureScript in a
browser, and a server, which is a separate Java process that runs on the developer’s machine
and exposes an interactive console. The browser client maintains a long polling connection
to the server, and whenever the developer enters an expression at the REPL console, it is
compiled to JavaScript and sent to the browser, which evaluates the expression and sends
back the result.

Full instructions for configuring and using the Browser REPL are included in Chapter 9.

Compiling a ClojureScript File to JavaScript

Structuring the Leiningen project

To add a ClojureScript file to your Leiningen project, you’ll want to make a few tweaks
to your project directory layout. Initially, your project layout will look something like
this:

- hello-world/
 - README.md
 - project.clj
 - src/
 - hello_world/
 - core.clj

(Note that test files and folders are omitted for clarity, but you should definitely write
unit tests wherever appropriate.)

Using lein-cljsbuild | 9

http://www.mozilla.org/rhino/

Since this default structure is designed around having only one type of source code
(Clojure), you’ll want to modify the directory structure slightly, to match the following:

- hello-world/
 - README.md
 - project.clj
 - src/
 - clj/
 - hello_world/
 - core.clj
 - cljs/
- hello_world
 - resources/
 - public/

As you can see, the src folder now has two subfolders, one for each type of source code.
You’ll need to add a :source-paths configuration key to your project.clj file to reflect
the new location of the Clojure source code (see the example below for what the new
project.clj file will look like). You will also need to create a folder in which to place
the compiled JavaScript: resources/public is a common choice.

Updating the project configuration

Then, you must add a build entry in the :cljsbuild configuration map in project.clj:

(defproject hello-world "0.1.0-SNAPSHOT"
 :plugins [[lein-cljsbuild "0.2.7"]]
 :dependencies [[org.clojure/clojure "1.4.0"]
 [org.clojure/clojurescript "0.0-1450"]]
 :source-paths ["src/clj"]
 :cljsbuild {
 :builds [{
 :source-path "src/cljs"
 :compiler {
 :output-to "resources/public/hello.js"
 :optimizations :whitespace
 :pretty-print true}}]})

The :source-path key specifies where the build looks for ClojureScript source files,
and the :output-to key of the :compiler option map specifies where the ClojureScript
compiler will emit compiled JavaScript files. Other compiler options will be explained
in more detail in the next chapter: for now, just use the ones provided.

Writing a ClojureScript file

Finally, write a ClojureScript file! You can start with something very simple, intended
to be run in a browser. The following ClojureScript file just declares a namespace, and
then prints out “Hello World” using the document.write JavaScript function. Place it
in a file named hello.cljs in the src/cljs/hello_world/ folder (named to match the

namespace you declared) in your ClojureScript source folder.

10 | Chapter 2: Hello World

(ns hello-world.hello)
(.write js/document "<p>Hello, world!</p>")

Compiling

Your Leiningen project is now fully configured to compile ClojureScript. Try compiling
your ClojureScript by invoking the lein cljsbuild once command from the com‐
mand line, anywhere inside your Leiningen project folder. You should see a status mes‐
sage about successfully compiling resources/public/hello.js. If you like, you can
inspect the emitted JavaScript file: Be aware, though, that it also includes the core Clo‐
jureScript runtime and parts of the standard library, so it’s quite long. See the next
chapter for details of how this process works.

You might also want to try running lein cljsbuild auto. This will keep a process
open that will watch all the *.cljs files in the specified source directories, and whenever
one is saved, it will recompile it automatically and replace the output file.

You should also be aware of the lein cljsbuild clean command, which will delete
all the compiled JavaScript files. By default, lein-cljsbuild will not recompile a file unless
it detects that the file has been changed by comparing timestamps. Sometimes, however,
it’s useful to force a recompile by wiping all the compiler output and restarting with a
clean slate.

Running ClojureScript in the Browser
If you’ve written a ClojureScript file as described in the previous section, all you need
to do to see it run in a browser is to write an HTML file that includes the emitted JS files
in the standard way. It is common practice to place static HTML files in resources/
public.

<html>
<head><title>ClojureScript Hello World</title></head>
<body>
 <script type="text/javascript" src="hello.js"></script>
</body>
</html>

Open this file in the browser, and you should see your greeting, as coded in your hel
lo.cljs file. If you’re running lein-cljsbuild in automatic mode, simply edit the message
in hello.cljs, save the file, and refresh the browser to see your change.

Other Capabilities of lein-cljsbuild
Note that in addition to this basic compilation, lein-cljsbuild provides several other use‐
ful development tools and options. These include:

Using lein-cljsbuild | 11

• Multiple ClojureScript builds with different options.

• Launching the browser REPL.

• Cross compiling the same code as both Clojure and ClojureScript (provided it meets
certain requirements).

See Chapter 9 for full instructions on all the configuration options and features available.

12 | Chapter 2: Hello World

CHAPTER 3

The Compilation Process

ClojureScript has a tight symbiotic relationship with other tools. This chapter will ex‐
plain how all the different parts fit together and then demonstrate the ClojureScript
compilation process.

Architecture
ClojureScript is a compiler—that is, a program that takes a “source” representation as
input and emits a “target” representation as output. The source representation of the
ClojureScript compiler is the ClojureScript language, and the target representation is
JavaScript.

Unlike some JavaScript-generation tools and frameworks, ClojureScript itself does not
do any “minification” or other optimizations to reduce the size of the JavaScript code it
emits. Instead, ClojureScript is designed to work with the Google Closure Compiler to
produce optimized JavaScript.

Google Closure Compiler
The Google Closure Compiler is a free, open-source compiler that uses JavaScript as
both source and target representations. That is, it compiles JavaScript into JavaScript.
Along the way, it can perform sophisticated optimizations to reduce the size and improve
the runtime performance of JavaScript code.

The fact that “Clojure” and “Closure” are homophones is an unfortunate
historical accident. The owners/authors of the two projects have no re‐
lationship to one another. In this book, we will always refer to the
“Google Closure Compiler” and the “Google Closure Library” by their
full names.

13

The Google Closure Compiler can run in three different modes:

Whitespace Only
This mode removes only comments and unnecessary whitespace from JavaScript
source code. The target JavaScript is functionally identical to the source JavaScript.
This is similar to some simple JavaScript “minifiers.”

Simple Optimizations
This mode does all the same optimizations as Whitespace Only mode and further
reduces the size of target JavaScript by renaming local variables and function pa‐
rameters to shorter names.

Advanced Optimizations
This mode does all the same optimizations as the previous two modes and also
performs aggressive whole-program optimizations of JavaScript code. It will com‐
pletely remove “dead” or unreachable code, rename functions and global variables
to shorter names, and even rename inline function bodies when doing so will save
space.

While the more aggressive optimization modes of the compiler can dramatically reduce
the size of JavaScript source code, they come with a few caveats. In order to perform the
optimizations in Simple and Advanced modes, the Google Closure Compiler must make
certain assumptions about the source JavaScript. If the source JavaScript code violates
these assumptions, the Google Closure Compiler will produce target JavaScript code
that does not work as intended.

For example, Simple Optimizations mode will break JavaScript code that uses JavaScript’s
with operator, eval function, or any string representation of function or parameter
names. Advanced Optimizations mode is even more restrictive: because it renames global
variables and functions to shorten their names, it will break any code that depends on
names being stable. For example, code that refers to object property names as strings
(like user["name"] instead of user.name) will sometimes break under Advanced mode.

The documentation for the Google Closure Compiler explains all the effects of Advanced
Optimizations mode in detail. Essentially, using the Google Closure Compiler in Ad‐
vanced mode requires that developers follow strict conventions for how their JavaScript
code is structured. The JavaScript code that results from following these conventions
often looks “unnatural” to developers accustomed to writing optimized JavaScript code
by hand, but the final result produced by the Google Closure Compiler is generally just
as or more efficient than hand-optimized JavaScript run through a “minifier.”

Google makes a Closure Compiler demo application available for de‐
velopers to experiment with the effects of different compilation modes.

14 | Chapter 3: The Compilation Process

http://closure-compiler.appspot.com/

The Google Closure Library
The Google Closure Compiler is distributed along with an extensive collection of free
and open-source libraries, written in JavaScript, which follow all the conventions re‐
quired by the compiler in Advanced Optimizations mode. These libraries include data
structures, common algorithms, abstractions over browser quirks, and even a GUI tool‐
kit. Because of the Advanced-mode conventions, the source code of these libraries may
look “unnatural” to a JavaScript developer. The Google Closure Library code is written
to target the Google Closure Compiler, so it is more verbose than most JavaScript written
to target web browsers directly. Common by-hand JavaScript optimizations, such as
using short names for common functions, do not matter in Advanced mode, because
the compiler will rename everything anyway.

The Google Closure Library is much larger than most JavaScript libraries—several
megabytes as opposed to a few hundred kilobytes. Again, a JavaScript developer accus‐
tomed to hand-optimized code would think this is grossly inefficient. But the Google
Closure Compiler’s Advanced-mode optimizations ensure the actual code delivered in
a production application is much smaller. Any “dead” library code not actually used by
the application will be eliminated during compilation. In short, you only pay (in down‐
load size) for what you use.

A Few Words on Caching

The Google Closure Compiler is designed to reduce the overall download size of your
application, but it does not facilitate re-use of JavaScript libraries across different appli‐
cations in the same client. Experienced JavaScript developers may be more accustomed
to fetching popular JavaScript libraries from Content Delivery Networks (CDNs) and
relying on browser caches to reduce the overall download size. But caching is not a panacea
(see Sam Saffron’s article, “Stop paying your jQuery tax”):

• Many users will not have the library in their cache.

• Even if a library is in the cache, web browsers will still perform an HTTP request to
make sure the cache is up to date.

• Parsing and executing a large JavaScript library takes time, even in the fastest
browsers.

As with any performance optimization problem, only exhaustive testing can prove which
method is more efficient overall. Using the Google Closure Compiler, you can still utilize
CDNs and client-side caching for the application code itself. Given the growing diversity
of JavaScript libraries and applications, this seems like a good approach. Google itself has
used this technique to deploy large, complex browser applications such as GMail and
Google Docs.

Architecture | 15

http://samsaffron.com/archive/2012/02/17/stop-paying-your-jquery-tax

ClojureScript and Google Closure
ClojureScript is designed to work with the Google Closure Compiler and Library. The
ClojureScript compiler emits JavaScript code that is fully compatible with the Advanced
Optimizations mode of the Google Closure Compiler. As a result, when programming
in ClojureScript you rarely need to think about the JavaScript conventions required by
Advanced mode. Many of the core libraries included with ClojureScript make use of
functions in the Google Closure Library.

Using ClojureScript does not mean that you are restricted to using code only in the
Google Closure Library. ClojureScript can make use of any JavaScript library with a little
additional configuration. However, most hand-optimized JavaScript libraries are not
written with the Google Closure Compiler in mind, so they will not be compatible with
Advanced Optimizations mode. ClojureScript can still use libraries such as jQuery or
Prototype, but the libraries themselves will not receive the benefit of Advanced-mode
compilation. Chapter 7 will cover using third-party JavaScript libraries in ClojureScript.

The Compilation Pipeline
The final picture of ClojureScript compilation looks like Figure 3-1.

Figure 3-1. ClojureScript Compilation Process

The entire compilation process happens inside a Java Virtual Machine (JVM), presum‐
ably running on a server or developer’s machine. The ClojureScript compiler is written
in the Clojure language, which runs on the JVM. The Google Closure Compiler is written
in the Java language.

The ClojureScript compiler takes ClojureScript source code and compiles it into unop‐
timized JavaScript, which it passes to the Google Closure Compiler along with JavaScript
libraries. The Google Closure Compiler takes in all the unoptimized JavaScript and emits
a single optimized JavaScript source file.

The JavaScript output by the Google Closure Compiler in Advanced Optimizations mode
is intended for consumption by JavaScript execution engines, not humans. It is not
readable and not very suitable for JavaScript debugging tools. When developing your

16 | Chapter 3: The Compilation Process

www.allitebooks.com

http://www.allitebooks.org

application, it is more common to omit the Google Closure Compiler from the compi‐
lation process, which will result in readable JavaScript. Function and variable names in
the emitted JavaScript can easily be correlated with sources in ClojureScript. Debugging
support in ClojureScript still has room for improvement, but the process is already
usable. In addition, ClojureScript has some unique debugging tools such as the browser-
connected Read-Eval-Print-Loop (REPL), which we will cover in Chapter 9.

How to Compile
In this section, we will walk through the ClojureScript compilation process in detail,
showing how the parts interact.

The Java Classpath

Most programming language implementations assume that source code libraries will be
installed in some standard location, accessible system-wide. Java is different. Every time
you launch the JVM, you must explicitly specify a classpath, a list of directories and files
to search when loading code. The classpath is fixed when the JVM starts and cannot be
changed while it is running. (Technically, it is possible to manipulate the classpath using
classloaders, an esoteric JVM feature that is far outside the scope of this book.)

Most Java libraries are published as Java Archive (JAR) files. JAR files are simply com‐
pressed files in the ZIP format with some additional metadata. The Clojure runtime, the
ClojureScript compiler, and the Google Closure Compiler are all distributed as JAR files.
(You can find links to download the JAR files at the Central Maven Repository, the most
widely-used repository of JAR files. Search for “clojurescript” or “google closure” to find
the latest releases.) In addition, the ClojureScript authors have packaged and distributed
a version of the Google Closure Library as a JAR file for convenience.

Although it is possible to launch the Java Virtual Machine and specify the classpath directly
from the command line, this is rarely done in practice. Managing the classpath is one of
the principal concerns of build tools, IDEs, and application servers targeting the Java
language. Clojure has its own such tool, Leiningen, which was introduced in Chapter 2
and will be covered further in Chapter 9.

Compiling ClojureScript
The entire ClojureScript build chain, including the ClojureScript compiler and the
Google Closure Compiler, can be invoked as a single function in Clojure. In this section,
we will use the Clojure REPL to explore the various options of the ClojureScript com‐
piler. We’ll use a variant of the “Hello, World” example from Chapter 2. Instead of using

How to Compile | 17

http://search.maven.org/

lein-cljsbuild, this example will invoke the ClojureScript compiler directly. This process
is unlikely to become part of your day-to-day development workflow, but it is helpful
to understand how the parts work. You can also use this section as a guide to incorpo‐
rating ClojureScript into customized builds.

Hello, Compiler

Create a new project like this:

lein new ch03-hello-compiler

Then modify the project.clj file to look like this:

(defproject ch03-hello-compiler "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.4.0"]
 [org.clojure/clojurescript "0.0-1450"]]
 :source-paths ["src/clj"])

Create the src/clj and src/cljs directories as in Chapter 2, then put the following
ClojureScript source file in src/cljs/hello_compiler/hello.cljs:

(ns hello-compiler.hello)

(defn ^:export main []
 (.write js/document "<p>Hello, ClojureScript compiler!</p>"))

Finally, create an HTML file at public/resources/index.html:

<!DOCTYPE html>
<html>
<head><title>ClojureScript Hello Compiler</title></head>
<body>
 <script src="hello.js" type="text/javascript"></script>
 <script>hello_compiler.hello.main()</script>
</body>
</html>

The Clojure REPL

Both Clojure and ClojureScript have their own REPLs. In this chapter, we are going to
invoke the ClojureScript compiler, which is implemented in Clojure, so we will be using
the Clojure REPL. In your new project, you can launch the Clojure REPL by running:

lein repl

Then type the following to load the ClojureScript compiler:

(require 'cljs.closure)

Then type the following (long) expression to compile your project with the Google
Closure Compiler in Advanced Mode:

(cljs.closure/build "src/cljs"
 {:output-to "resources/public/hello.js"
 :optimizations :advanced})

18 | Chapter 3: The Compilation Process

The Advanced Mode optimizations are time-consuming: this simple build may take 20
seconds or more. When it finishes, you will have an optimized JavaScript source file at
resources/public/hello.js. Compare the size of this file with the unoptimized file
you created in Chapter 2—the optimized JavaScript emitted by the Google Closure
Compiler is much smaller.

Compilation in Depth
When you type (cljs.closure/build ...) in the Clojure REPL you are invoking a
function. The entire function call is wrapped in parentheses. The cljs.closure/
build function takes two arguments, a source and a map of options:

(cljs.closure/build source options-map)

Compilation Sources
The source argument tells the compiler where to find our ClojureScript source files.
Typically, it is the name of a directory, given as a string. The compiler will find all files
with the .cljs extension in that directory and compile them together.

The source argument can also be the name of a single file to be compiled. This might be
useful during development, when you only want to recompile part of a project.

Compilation and Optimization Options
The options are passed to the cljs.closure/build function in a Clojure map, written
as a series of pairs inside curly braces.

In the previous example, we passed two options:

:output-to "resources/public/hello.js"
:optimizations :advanced

The words that begin with colons are keywords, a special kind of literal data in Clojure
and ClojureScript. For our purposes, they act like constants.

:optimizations

We have already seen two possible values for the :optimizations option, in this and
the previous chapter. This option controls the optimization mode in which to run the
Google Closure Compiler.

:optimizations Value Google Closure Compiler Mode

:none (disabled)

:whitespace Whitespace-Only

:simple Simple Optimizations

:advanced Advanced Optimizations

Compilation in Depth | 19

With an :optimizations value of :none, the Google Closure Compiler will not be in‐
voked at all, and the build will write out the JavaScript produced by the ClojureScript
compiler directly. This mode is useful for development and debugging. However, the
JavaScript output will be split across many individual files, requiring slightly different
handling in a browser (more on this later).

Where do the files go?

The ClojureScript compiler produces one JavaScript file for each ClojureScript source
file. These files go in a directory controlled by the :output-dir option, which defaults
to a directory named out in the current working directory. The current working direc‐
tory is whatever directory the Java (or Leiningen) process was started in. The JVM does
not support changing the current working directory once a program has started.

The Google Closure Compiler is designed to optimize JavaScript for delivery over slow
networks. As a consequence, it always produces a single JavaScript file for the entire
compiled application. When any one of the optimization modes is enabled, the output
of cljs.closure/build will always be a single JavaScript file.

Compiling with optimizations

Figure 3-2 shows the behavior of the cljs.closure/build function when compiling
with optimizations. The :output-dir option controls where the ClojureScript compiler
writes intermediate files. The :output-to option specifies the file location of the final
output from the Google Closure Compiler. When you are compiling your application
for production use, this is the JavaScript file you would put on your web server and
reference in HTML pages.

Figure 3-2. Compiler inputs and outputs with optimization

If you do not specify an output file, the cljs.closure/build function simply returns
the compiled JavaScript source code as one giant string. This might be interesting if you
want to understand how the compiler works, but it’s still going to be a big blob of your
entire application, so it’s probably not useful.

20 | Chapter 3: The Compilation Process

Loading optimized code in a browser

To run your optimized code in a browser, simply include the :output-to file in a
<script> tag, like this:

<script src="hello.js" type="text/javascript"></script>

ClojureScript programs usually do not act like “scripts” in the conventional sense. Load‐
ing the compiled JavaScript does not do anything except define functions. You typically
launch your application with a “main” or “start” function invoked in a separate <script>
tag, like this:

<script>
 hello_compiler.hello.main();
</script>

The details of how the ClojureScript function names translate to JavaScript object names
will be covered in more detail in Chapter 7, but the short version is that hyphens become
underscores.

Compiling without optimizations

When you specify :optimizations :none the Google Closure Compiler does not run
at all (Figure 3-3). But the :output-to option is still important.

Figure 3-3. Compiler inputs and outputs without optimization

The Google Closure Library includes a dependency-resolution feature that makes it
possible to split a JavaScript application across many source files and automatically load
the right files in a web browser. This mechanism will be covered in detail in Chapter 7.
For now, just know that the dependency resolution mechanism requires a special file
that declares all the dependency relationships in your source code. When compiling
without optimizations, the ClojureScript compiler writes this information to the file
specified by the :output-to option.

Compilation in Depth | 21

In order for a browser to load the individual files, the :output-dir option must be set
to a directory that you can reference in the <script> tag of an HTML file. In our ex‐
amples, the convention is "resources/public/js".

Loading unoptimized code in a browser

To run your application in a browser without optimizations, you need four <script>
tags in your HTML, in precisely this order:

<script src="js/goog/base.js"></script>
<script src="hello.js"></script>
<script> goog.require('hello_compiler.hello'); </script>
<script> hello_compiler.hello.main(); </script>

The first <script> tag loads the Google Closure Library from goog/base.js, which will
be found in the directory specified by the :output-dir option.

The second <script> tag loads the dependency information for your application from
the file specified by the :output-to option.

The third <script> tag uses the Google Closure Library function goog.require to load
your application. The argument to goog.require is a JavaScript string naming the pri‐
mary namespace of your application. Namespaces will be fully covered in Chapter 7, but
you have already seen them in all of the code examples. The ClojureScript expression
(ns hello-compiler.hello) declares a namespace named hello-compiler.hello.
Once again, hyphens become underscores in JavaScript, yielding hello_compiler.hel
lo.

The fourth <script> tag launches your application, the same as in the optimized case.
Because of the way goog.require works, the code to launch your application must be
in a separate <script> tag coming after the <script> that calls goog.require.

An alternative: pretty-printing

In general, you will compile your ClojureScript application for production with :opti
mizations :advanced, and for development with :optimizations :none. But there is
a third way, which is to use :optimizations :whitespace and also add the :pretty-
print true option. This combination will still combine all of your JavaScript into a
single source file and invoke the Google Closure Compiler, but it will reformat the
JavaScript code for maximum readability.

The compilation process with :optimizations :whitespace and :pretty-print
true takes slightly longer than with :optimizations :none, but it has the advantage of
being simpler to use. You can use the exact same HTML <script> tags that you would
use for fully-optimized production code, but you can still read and debug the JavaScript
code directly in the browser.

22 | Chapter 3: The Compilation Process

1. http://nodejs.org/

The pretty-printing feature is provided by the Google Closure Compiler, so it has no
effect with :optimizations :none.

Other Compilation Options
The default target for the ClojureScript compiler is web browsers. The compiler can also
be used to emit JavaScript code for other execution environments, such as Node.js.1

Passing the option :target :nodejs to cljs.closure/build will tell the ClojureScript
compiler to emit code, which is compatible with Node.js. Compiling ClojureScript for
Node.js is still an experimental feature and not widely used, so we do not cover it in this
book.

The :libs, :foreign-libs, and :externs options control access to external JavaScript
libraries; these will be covered in Chapter 7.

Summary
All the compilation options to cljs.closure/build are summarized in Table 3-1.

Table 3-1. Compilation options

Option Possible Values

:output-to file path as a string

:output-dir directory path as a string

:optimizations :none, :whitespace, :advanced

:pretty-print false (default), true

:target (browsers by default), :nodejs

:libs See Chapter 7.

:foreign-libs See Chapter 7.

:externs See Chapter 7.

This chapter explained the high-level architecture ClojureScript compiler and its rela‐
tionship with the Google Closure Compiler. We showed how to launch the Clojure and
ClojureScript REPLs and how to invoke the ClojureScript compiler.

In subsequent chapters we will delve into the ClojureScript language itself. The Clojure/
ClojureScript REPL shown in Chapter 2 and Chapter 3 should be sufficient to follow
along with the examples that follow. After covering the language, we will circle back to
compilation and development workflow in more detail.

Summary | 23

http://nodejs.org/

CHAPTER 4

ClojureScript Basics

ClojureScript is a simple language, which is to say that it is based on a small number of
fundamental concepts. If you have only written programs in imperative, object-oriented
languages such as Java, C++, and JavaScript, then some of these concepts may be un‐
familiar to you at first. However, by learning those concepts, you will be rewarded with
a powerful new programming tool.

ClojureScript versus Clojure
At the language level, ClojureScript is designed to mimic Clojure as much as possible.
However, neither ClojureScript nor Clojure makes any attempt to hide operational de‐
tails of the underlying host platform, JavaScript or the JVM, respectively. As a result,
there will be differences between the two languages wherever their host platforms are
involved:

• Calls to host methods or classes

• Built-in types such as strings and numbers

• Built-in operations such as arithmetic

• Concurrency and threading (JavaScript is single-threaded)

• Performance

At this time, ClojureScript does not implement all of the Clojure language. In particular,
ClojureScript does not include most of the concurrency features for which Clojure is so
well known; because JavaScript VMs are single-threaded, these features are less impor‐
tant. There are also features of Clojure that have not yet been implemented in Clojure‐
Script simply because work has not yet been completed.

25

Clojure itself is a young programming language (first released in 2007) but it has grown
rapidly in stability, ease of use, and performance. ClojureScript is even younger (first
released in 2011) and is consequentially less mature. You can expect to find rough edges,
bugs, and undocumented features. While we hope that this book will help to ameliorate
the latter, nothing can take the place of experience that comes from building real-world
applications.

This book does not attempt to fully document all the features of the Clojure language,
or even all of the features currently implemented in ClojureScript. Instead, we will at‐
tempt to provide enough to get you started and working productively in ClojureScript.
When you are ready to learn more, there are many books available on the Clojure lan‐
guage: most of their material will apply equally well to ClojureScript.

Expressions and Side Effects
Most mainstream programming languages, including JavaScript, have both statements
and expressions. In JavaScript, statements end with a semicolon (usually) and are typi‐
cally related to flow control: for, if, while, and so on. JavaScript expressions include
literals (numbers, strings, regexes), function calls, and arithmetic operations. The key
difference is that expressions always have a value whereas statements do not. Expressions
can be nested: you can place a function call expression inside an if statement, but not
the other way around.

In ClojureScript, everything is an expression and everything has a value, even the control
structures. (Sometimes that value is null, but it’s still a value.) You can even define your
own flow-control expressions using macros, which we will cover in Chapter 8. The pro‐
cess of going from an expression to its value is called evaluating the expression.

Some expressions can have side effects, things that happen when they are evaluated other
than simply returning a value. Printing output to the screen or manipulating an HTML
document in a web browser are both side effects. ClojureScript favors a “functional”
style of programming in which most code consists of “pure” expressions that return a
value with no side effects. Of course, a program entirely without side effects cannot
produce any output at all, so ClojureScript allows you to break out of the functional style
when you need to.

Syntax and Data Structures
As we said, everything in ClojureScript is an expression, including the primitive data
types, which “evaluate” to themselves. Comments begin with a semicolon and continue
to the end of a line.

26 | Chapter 4: ClojureScript Basics

www.allitebooks.com

http://www.allitebooks.org

42, 3.14159 ; Numbers
"Hello, World!" ; String
#"\d{3}-\d{3}-\d{4}" ; RegExp
true, false ; Boolean
nil ; null

ClojureScript numbers and strings are the same as JavaScript Number and String objects,
with essentially the same syntax. ClojureScript regular expressions evaluate to JavaScript
RegExp but have slightly different syntax.

Symbols and Keywords
map, +, swap! ; Symbols
:meta, :my-id ; Keywords

ClojureScript has symbols, which are just bare words in your program. Symbols evaluate
to other values, such as functions, and also serve a role similar to local variables, although
they are not really variables. The name of a symbol can contain almost any character,
including hyphens and other punctuation. Things that are typically special operators in
other languages, such as the arithmetic operators +, -, *, and /, are just symbols in
ClojureScript, which evaluate to the built-in arithmetic functions.

ClojureScript also has keywords, written as symbols with a leading colon. Keywords
always evaluate to themselves. Unlike symbols, they never stand in for anything else. In
JavaScript, strings are often used for constants or identifiers in code; keywords fill the
same role in ClojureScript.

Data Structures
(1 2 3), (print "Hello") ; Lists
[:a :b :c 1 2 3] ; Vector
{:a 1, "b" 2} ; Map
#{3 7 :z} ; Set

Finally, there are the four basic data structures. Vectors, maps, and sets evaluate to
themselves: they are literal data structures similar to JavaScript’s arrays and objects.
Individual elements in a data structure must be separated by whitespace. In Clojure‐
Script, commas count as whitespace in addition to the usual space, tab, and line break.
We will talk more about these data structures in the next chapter.

Lists can be used as literal data, but more often they are used to construct expressions.
When the ClojureScript compiler encounters a list, it examines the first element of the
list and tries to invoke it. The first element is the function position of the list. It is usually
a symbol naming a function, but it could also be a macro or special operator, which we
will define later.

Syntax and Data Structures | 27

Even operators like + and * are functions, so they must appear in function position.
ClojureScript code therefore uses prefix notation instead of the more common algebraic
notation used by most programming languages. In ClojureScript, the parentheses are
always required, but there are no “operator precedence” rules to remember:

(+ 9 (* 10 5)) ; 9 + 10 * 5 in algebraic notation

As for syntax, that’s (almost) all there is to it! Everything in ClojureScript is composed
from these simple parts.

The following expression contains two lists, one nested inside the other:

(println (+ 3 4))

The outer list contains two elements: the symbol println in function position and the
inner list. The inner list has the symbol + in function position, followed by two numbers.

Expressions are evaluated from the inside out, so this example will compile into Java‐
Script code, which adds 3 to 4 and then prints the result. Printing is a side effect; the
whole expression evaluates to nil, which is the value returned by the println function.
If you type this expression into the ClojureScript REPL, you will see 7 printed on one
line and nil on the following line.

Special Forms and Definitions
As we mentioned in the previous section, the symbol in the function position of a list
may be a function, macro, or special operator. Special operators are symbols that are
defined by the ClojureScript compiler. These are the “primitives” of the language, and
there are only a handful you will encounter, such as if, def, and do. Most of the standard
operators in ClojureScript, such as arithmetic and control flow, are handled by functions
and macros.

One special operator you will use often is def, which defines a new binding from a symbol
to a value. After a new binding is created with def, evaluating the symbol will return its
value.

For example, here we bind the symbol my-name to a string:

(def my-name "Leslie Q. Coder")

Symbol bindings created with def compile into JavaScript var declarations, but you
should think of them as constants, not local variables. In particular, def expressions are
not intended to be used inside functions, nor should they be used to rebind symbols to
new values (except during interactive development at the REPL).

28 | Chapter 4: ClojureScript Basics

Functions
ClojureScript functions are very much like JavaScript functions. The fn macro creates
unnamed, anonymous functions, like JavaScript’s function operator.

The fn symbol appears in function position of a list, followed by the parameters (argu‐
ments) to the function as a vector of symbols, followed by one or more expressions
comprising the body of the function. Here is a simple function:

(fn [name] (str "Hello, " name))

This function takes one argument, called name, and calls the str function, which con‐
catenates strings, in its body. It compiles to JavaScript that looks something like this:

function(name) { return cljs.core.str("Hello, " name); }

A function isn’t very useful unless we can call it. Remember that the first element of a
list is evaluated as a function, so we can place a literal fn at the front of a list to invoke
it. The arguments we want to pass to the function are the remaining elements of the list:

((fn [name] (str "Hello, " name)) "ClojureScript")
;;=> "Hello, ClojureScript"

This example compiles to JavaScript that creates an anonymous function and immedi‐
ately invokes it, like this:

(function(name) {
 return cljs.core.str("Hello, " name);
})("ClojureScript");

Even this is not very practical, so we usually want to give our functions names. Functions
are values like any other, so we can use the def macro to bind them to symbols. Here
we bind the symbol greeting to a function and then call it by name:

(def greeting
 (fn [name] (str "Hello, " name)))

(greeting "functions!")
;;=> "Hello, functions!"

Binding symbols to functions is so common that ClojureScript has a macro to make it
easier. The defn macro takes a symbol to define, followed by the parameter vector and
function body as with fn.

(defn greeting [name]
 (str "Hello, " name))

We will explore macros further in Chapter 8. For now, just know that they can control
the way things are evaluated.

Functions | 29

Multi-Arity Functions
In JavaScript, any function can be called with any number of arguments, and those
arguments can be accessed via the arguments array. ClojureScript allows functions to
be defined with several arities, or numbers of arguments. Each arity of the function can
have different behavior. A multi-arity function looks like this:

(defn greeting
 ([] (greeting "Hello" "world"))
 ([name] (greeting "Hello" name))
 ([salutation name] (str salutation ", " name "!")))

Each arity of the function is its own list inside the function definition. The first element
of each list is the argument vector, followed by the function body. This example dem‐
onstrates a common use of multi-arity functions: to provide default values for some or
all of the parameters. Multi-arity functions may feel similar to “function overloading”
in languages such as C and Java, with the difference that they are overloaded only on
the number, not the type, of their arguments.

Variadic Functions
In addition to having multiple arities, a ClojureScript function can be defined to take
any number of arguments: this is called a variadic function. A variadic function has the
special symbol & (ampersand) before the last symbol in its argument vector, as in the
following:

(defn average
 ([x] x)
 ([x y] (/ (+ x y) 2))
 ([x y & extra] (/ (reduce + (+ x y) extra)
 (+ 2 (count extra)))))

This example defines a function with three arities, the last of which is variadic. If the
average function is called with one argument, it returns that argument. If it is called
with two arguments, it adds them together and divides by 2. If it is called with three or
more arguments, it computes their average using the reduce and count functions, which
we will cover in Chapter 6. Notice that a function can be both multi-arity and variadic
at the same time, but only one of a function’s arities can be variadic.

Local Bindings
ClojureScript does not have variables like JavaScript because all data is immutable, but
it does permit you to create a local binding between a symbol and a value with the let
expression, as shown below:

(let [binding-form value-expr
 ...]
 ... expressions ...)

30 | Chapter 4: ClojureScript Basics

The let expression begins with a vector of bindings. Each binding is a pair: first a binding
form, usually a symbol, then a value expression. When evaluated, the let evaluates the
value expressions, in order, and binds them to the symbols in the binding forms. This
creates a local binding within the body of the let. For example:

(let [x 4
 y (+ x 3)]
 (println "The product of" x "and" y "is")
 (println (* x y)))
;; The product of 4 and 7 is
;; 28
;;=> nil

Notice that the value expressions can include references to the symbols created in earlier
bindings.

Destructuring
In addition to symbols, binding forms can include data structures such as vectors and
maps. The result of the value expression will be destructured to match the binding form.
For example:

(def nums (list 2 3 5 8 13 21))

(let [[a b c & the-rest] nums]
 (println "a is" a)
 (println "b is" b)
 (println "c is" c)
 (println "the-rest is" the-rest))
;; a is 2
;; b is 3
;; c is 5
;; the-rest is (8 13 21)

In this example, the binding form is the vector [a b c & the-rest]. It destructures the
list nums and assigns a to 2, b to 3, and so on. The special symbol & collects all the
remaining elements into a list and binds it to the following symbol, the-rest.

The full syntax of destructuring is a rich and powerful mini-language of its own; refer
to the Clojure language documentation for more details and examples.

Closures
Like JavaScript, ClojureScript supports lexical closures. A function can refer to symbols
defined in the lexical scope in which it was created. Function arguments and the let
form create lexical scopes. For example:

(defn make-adder [n]
 (fn [x] (+ x n)))

Closures | 31

(def add4 (make-adder 4))
(def add7 (make-adder 7))

(add4 10)
;;=> 14

(add7 10)
;;=> 17

In this example, the make-adder function returns another function which “closes over”
the value of n in its scope. We can use make-adder to define new functions add4 and
add7, which “remember” the binding of n that was in effect when they were created.

Flow Control
As we said at the start of this chapter, everything is an expression in ClojureScript. That
includes the control-flow expressions. For our purposes, a flow-control expression is
one that controls how its components are evaluated. For example, an if expression is
only going to evaluate one branch. This is what makes if different from a function call,
which always evaluates all of its arguments.

This section introduces some of the most common flow-control expressions in Clo‐
jureScript. Some of them are special forms defined in the compiler, and some are macros
defined in the core library, but the difference doesn’t matter at this point.

Conditional Branching
In ClojureScript, the basic conditional branch is represented by an if expression:

(if test-expr
 then-expr
 else-expr)

The if expression takes three subexpressions. First, it will evaluate the test-expr. If
the result of the test-expr is logical true (see the sidebar on “Truthiness”), then it will
evaluate the then-expr, otherwise it will evaluate the else-expr. For example:

(if (even? 42)
 (println "42 is even")
 (println "42 is odd"))

Truthiness

What is logical true? In ClojureScript, nil, false, and the undefined value (written js/
undefined) are logical false, and anything else is logical true. This is different from Java‐
Script, which also considers 0, NaN, and the empty string to be logical false.

32 | Chapter 4: ClojureScript Basics

(if false :truthy :falsey) ;=> :falsey
(if nil :truthy :falsey) ;=> :falsey
(if js/undefined :truthy :falsey) ;=> :falsey

(if true :truthy :falsey) ;=> :truthy
(if 0 :truthy :falsey) ;=> :truthy
(if "" :truthy :falsey) ;=> :truthy
(if js/NaN :truthy :falsey) ;=> :truthy
(if [] :truthy :falsey) ;=> :truthy

Different programming languages have different ideas of truth. In C, 0 is false and any
other number is true. Java has the primitive boolean type, which can be either true or
false. ClojureScript’s definition of logical truth is consistent with Clojure (except js/
undefined, which has no equivalent in Clojure). Using nil as a logical false value is useful
in the context of sequences, which are covered in Chapter 6.

The js/NaN value is JavaScript’s “not a number,” resulting from calculations like zero divi‐
ded by zero. js/NaN is never equal to anything, including itself:

(if (= js/NaN js/NaN) :yes :no) ;=> :no

cond

It is possible to create multiple branches with nested if expressions, but it is more concise
to use the cond macro instead:

(cond test-expr-1 body-expr-1
 test-expr-2 body-expr-2
 ...
 :else else-expr)

The cond macro contains matched pairs of test and body expressions. It evaluates each
test expression in order. If one of the test expressions returns logical true, then cond
evaluates the matching body expression and returns. If none of the test expressions
returns logical true, then cond returns nil.

It is possible to add a “default” case to a cond expression by using the keyword :else as
a test expression. Since :else is a keyword, it evaluates to itself, and because it is neither
nil nor false, it is always logical true. In fact, any logical true value would work, but it
is conventional to use the keyword :else.

As an example, here is a conditional written first with nested if expressions and then
with cond:

(if (<= x 10)
 "x is a small number"
 (if (<= 11 x 100)
 "x is a medium-sized number"
 (if (<= 101 x 1000)
 "x is a big number"
 "x is a REALLY big number")))

Flow Control | 33

(cond (<= x 10)
 "x is a small number"
 (<= 11 x 100)
 "x is a medium-sized number"
 (<= 101 x 1000)
 "x is a big number"
 :else
 "x is a REALLY big number")

The < and >= functions are the numeric less-than and greater-than-or-equal-to com‐
parisons. Like all other functions in ClojureScript, they must be in function position,
so the expression (< x 10) can be read “is x less than 10?” The expression (< 100 x
10000) can be read “is 100 less than x and x less than 10,000?”

Remember that whitespace is never significant in ClojureScript. The test and body ex‐
pressions in the cond macro can be on the same line or on different lines. All that matters
is the order in which they appear.

do

Each body inside an if or cond expression is limited to a single expression. Most of the
time, when writing “pure” functions without side effects, this is sufficient. But sometimes
side effects are necessary. ClojureScript’s do expression allows multiple expressions to
be used in the place of one:

(do
 ... expressions ...
)

The do form contains any number of expressions. When evaluated, it evaluates each
expression in order. It is similar to JavaScript’s curly braces {}, except that it also returns
a value. The return value of the last expression inside the do block is the return value of
the entire do expression.

You can use a do expression to write multiple expressions in a place that normally only
takes one expression. This is commonly used when you need to write expressions that
have side effects:

(cond (< x 10)
 (do (println "x is a small number")
 :small)
 (< 100 x 1000)
 (do (println "x is a big number")
 :big)
 (>= x 10000)
 (do (println "x is a REALLY big number")
 :huge)
 :else
 (do (println "x is just a medium-sized number")
 :medium))

34 | Chapter 4: ClojureScript Basics

If the value of x is less than 10, this expression will print “x is a small number” and then
return the keyword :small; if x is between 100 and 10,000, it will print “x is a big number”
and then return the keyword :big; and so on.

when

ClojureScript provides several built-in macros that combine conditional expressions
with an implicit do form. This includes the defn macro for defining functions. As another
example, the when macro combines the if and do expressions:

(when condition
 ... expressions ...)

;; is the same as
(if condition
 (do ... expressions ...))

JavaScript Interop
ClojureScript, like Clojure, is designed to stay as close as possible to the semantics of its
host platform, only adding to them where necessary. So ClojureScript strings are Java‐
Script String objects, ClojureScript numbers are JavaScript Number objects, and Clo‐
jureScript functions are JavaScript Function objects. You can call JavaScript functions,
methods, and constructors just like calling any other function in ClojureScript.

The js Namespace
JavaScript, regrettably, has no concept of namespaces. Every function or variable defined
in a JavaScript program lives in the same global scope. When two libraries want to use
the same name, they often clash. Workarounds exist, such as using JavaScript objects as
“modules” and defining things within the scope of anonymous functions, but they are
just workarounds.

ClojureScript has built-in support for namespaces at the language level: this is one of
the places where it extends the semantics of the host platform to provide a better de‐
veloper experience. We will cover namespaces more completely in Chapter 7 but one
namespace deserves special attention: the js namespace. ClojureScript uses the js
namespace to refer to the global scope of a JavaScript program. Core JavaScript con‐
structors such as String and Date are accessed through this namespace, as are browser-
defined objects such as window. The following sections show examples of these.

JavaScript Interop | 35

Methods and Fields
ClojureScript can access methods and fields of JavaScript objects directly. A JavaScript
method invocation is written in ClojureScript as a list beginning with the method name,
prefixed with a . (period). A field access is written similarly but prefixed with a .-
(period and hyphen):

// JavaScript
var message = "Hello, World!"
var msg_length = message.length;
var insult = message.replace(/World/, "idiots");

;; ClojureScript
(def message "Hello, World!")
(def msg-length (.-length message))
(def insult (.replace message #"World" "idiots"))

In Clojure on the JVM, the same (.name object) syntax was used for
both method calls and field accesses. Since the Java language does not
allow a method and a field in the same class to have the same name,
there was never any ambiguity as to which was intended. But in Java‐
Script, methods are also fields with functions as values. To prevent am‐
biguity when calling methods from ClojureScript, the (.-field ob
ject) syntax was added for fields. This syntax was later backported to
Clojure on the JVM, first appearing in release 1.4.0. Clojure on the JVM
still accepts the (.name object) syntax for both fields and methods,
but ClojureScript always treats (.name object) as a method call and
(.-name object) as a field access.

Notice that the syntaxes for field access and method calls are unified with ClojureScript’s
syntax for function calls. The “target object” on which a method or field is called no
longer has a special position before the method or field name; it becomes just another
argument in the function call. Method and field names are not given a namespace
qualifier like js/ because they are already scoped within an object.

Constructor Functions
JavaScript constructor functions are also written as lists, but with a . (period or full stop)
appended to the name of the function:

// JavaScript
var today = new Date(2012, 6, 16);

;; ClojureScript
(def today (js/Date. 2012 6 16))

36 | Chapter 4: ClojureScript Basics

www.allitebooks.com

http://www.allitebooks.org

1. http://raphaeljs.com/

Notice that the Date constructor is accessed through the js namespace, written js/
Date. The period in js/Date. (with no space in between the period and the function
name) tells the ClojureScript compiler that this expression should compile to JavaScript’s
new operator.

Some built-in JavaScript functions, such as Number and Date, can be called as either a
constructor function or an ordinary function. Without the trailing period, the same
function can be invoked as an ordinary function, without the new operator:

// JavaScript
var today = Date();

;; ClojureScript
(def today (js/Date))

Scope of this
Because of JavaScript’s lack of namespaces, it is common practice to attach global func‐
tions to “module objects.” These functions can be invoked using either the namespace-
qualified syntax or method call syntax. For example, if you were using the RaphaelJS
library, 1 you could call its color function like this:

// JavaScript
var green = Raphael.color("#00ff00");

;; ClojureScript
(def green (Raphael/color "#00ff00"))

You could also invoke the color function as a method on the Raphael object in the
global JavaScript scope, like this:

(defn green (.color js/Raphael "#00ff00"))

The difference comes in the handling of JavaScript’s this. The namespace-style syntax
(Raphael/color) will compile to code that calls the color function with this bound to
null. The method-style syntax (.color) will invoke the color function with this bound
to the Raphael object. The former is more natural in ClojureScript code, but some
JavaScript libraries depend on methods being invoked with this bound to the “module”
object.

Functions defined in JavaScript’s global scope, such as web browsers’ built-in alert()
function, are accessed through the js namespace, as shown below. (Note that this ex‐
ample may not work in Microsoft Internet Explorer, because IE’s JavaScript implemen‐
tation defines alert as a special syntactic form, not a normal JavaScript function.)

// JavaScript
alert("Hello, World!");

JavaScript Interop | 37

http://raphaeljs.com/

;; ClojureScript
(js/alert "Hello, World!")

Exceptions
ClojureScript has try/catch/finally and throw forms that behave similarly to their
JavaScript equivalents. The try/catch/finally form looks like this:

(try
 ;; ... body expressions ...
 (catch ErrClass err
 ;; ... handle an exception of type ErrClass ...
 ;; ... the exception object is bound to err ...
)
 (catch js/Error err
 ;; ... handle an exception of type Error ...
)
 (finally
 ;; ... always execute this ...
))

Both the catch and finally blocks are optional. Note that catch in ClojureScript takes
a “class” (constructor function) and only handles exceptions of that class. You can have
multiple catch blocks to handle different types of exceptions. This mimics the
exception-handling behavior of Clojure on the JVM.

The throw form takes an exception object and throws it:

(throw (js/Error. "Houston, we have a problem."))

Although JavaScript and ClojureScript both permit you to throw primitives such as
strings, this is not recommended. When using JavaScript exception types such as
Error, you will need to qualify them in both throw and catch expressions as js/Error.

Summary
This chapter covered the essential syntax of the ClojureScript language. Most of this
material is identical to Clojure on the JVM. We have not covered every kind of expression
possible in ClojureScript, but any documentation written for Clojure on the JVM should
apply equally well to ClojureScript.

JavaScript is already a dynamically-typed language with first-class functions, so some
of these features may not be as unfamiliar to JavaScript programmers as they are for
programmers accustomed to statically-typed languages such as Java.

There are many more features of the ClojureScript language that we did not have time
to cover in this book. For example, multimethods, protocols, and records provide pow‐
erful mechanisms for polymorphism. These features are the same in both ClojureScript
and Clojure, and there are many resources for them both online and in print.

38 | Chapter 4: ClojureScript Basics

CHAPTER 5

Data and State

As discussed earlier, ClojureScript is a member of the functional family of programming
languages, meaning that the function is the primary unit of abstraction and composi‐
tion. You can view any ClojureScript program as a collection of functions, and interpret
its structure by observing the function call graph.

However, with only a very slight shift in viewpoint, you can also understand any func‐
tional program in terms of the data that it manipulates and how that data flows through
the system. Every function takes some data as arguments and returns data when it is
complete. Usually, the end goal of a program is not to invoke certain execution paths,
but to create, retrieve, or transform data in one form or another. Functions are simply
the tool for doing so. In a very real sense, one could say that “data-oriented programing”
is a synonym for “functional programming.”

Clojure and ClojureScript recognize this, and therefore provide a carefully-designed set
of data primitives and composite data structures that are both easy to use and philo‐
sophically aligned with basic theories about what data is. It is a common remark among
experienced Clojure programmers that they came to Clojure for the concurrency, but
stayed for the data structures. ClojureScript brings these data structures and their as‐
sociated mindset to the browser, where they have proven to be an equally good fit.

Primitives
ClojureScript provides a small set of primitive data types. Each type maps directly to
one of JavaScript’s native types. As in JavaScript, all of ClojureScript’s primitives are
immutable, meaning that each is a value unto itself and cannot be changed. Immutability
is an important feature of ClojureScript, and will be discussed in much greater detail
later on.

39

Strings
Strings represent textual data, as a sequence of characters. They can be entered as literals
in a ClojureScript program using double quotes. Although they are primitives, it is also
possible to obtain a sequence view of a string as a sequence of characters (see the next
chapter).

Under the hood, ClojureScript strings are JavaScript strings, and may be freely passed
to (or received from) JavaScript functions and libraries that expect (or return) strings.

Keywords
Keywords are very similar to strings in that they are sequences of characters. Actually,
in ClojureScript, they are nearly identical to strings except for their intended use. Typ‐
ically keywords are used as keys in maps, for constants, or for enumerated sets of values.
As a rule of thumb, it is idiomatic to use a keyword wherever the value is of interest to
the program or programmer, rather than data for the user.

In Clojure, keywords are guaranteed to be interned (that is, all instances of the same
keyword will always refer to the same object in memory, making them very efficient).
This is not the case in ClojureScript, since at the JavaScript level keywords are imple‐
mented as plain old JavaScript strings. Still, it is good practice to create keywords only
for a constrained, finite set of values.

Keywords may optionally be namespace qualified, meaning that they have a separate
namespace component to them, and are logically associated with a particular namespace
(namespaces are discussed in Chapter 7). To create a namespace-qualified keyword as
a literal, include a slash in the keyword. For example, :my-ns/foo creates a keyword
with a name of “foo” in a namespace called “my-ns.” You can also use a double leading
colon to create a namespace-qualified keyword in the current namespace (e.g., ::foo).

Keywords also support some additional operations; for example, they can be used as
functions that know how to look themselves up in maps, which we will see later.

Symbols
Symbols are also very similar to strings, and like keywords, they can be namespace-
qualified. In ClojureScript they are used almost exclusively as named bindings (i.e.,
“variable” names, even though ClojureScript doesn’t really have variables as such). The
literal form of a symbol is simply the raw text (foo), with a slash if it is namespace-
qualified (foo/bar).

There is typically no reason to create or use symbols as data in your program, unless
you’re working with macros (discussed in Chapter 8). Although they’re a key part of the
data that represents your program itself (remember, Lisp code is data), keywords or
strings are usually better choices for the data your program actually manipulates.

40 | Chapter 5: Data and State

In ClojureScript, symbols are also implemented as JavaScript strings.

Characters
Characters are a single textual character, and can be expressed as literals with a leading
backslash (e.g., \a for the character “a”).

Since JavaScript doesn’t have a native character type, ClojureScript characters are im‐
plemented as single-character strings, and behave identically to strings.

Numbers
ClojureScript’s numbers are the same as JavaScript numerics and can be either integers
or floating-point numbers. They are expressed literally as numerals (for example, 42 or
3.14). Conversions and coercions between integer and floating point happen automat‐
ically; ClojureScript has the same arithmetic semantics as JavaScript.

You can pass a ClojureScript numeric value to any JavaScript function that expects a
numeric, and receive them the same way.

Unlike Clojure, ClojureScript does not currently support additional numeric types such
as Ratio, BigDecimal, or BigInteger.

Booleans
Boolean values are always one of two values, true or false, representing logical truth
and falsehood, respectively. ClojureScript Booleans, like strings and numerics, are im‐
plemented directly as JavaScript Boolean values and may be used accordingly in interop
scenarios.

Note that although the basic values for Boolean true and false are the
same in ClojureScript and JavaScript, the semantics of what constitutes
truth can be different. For example, the number zero, when used in a
Boolean expression, is false in JavaScript but true in ClojureScript.
See the sidebar on “Truthiness” in Chapter 4.

To use a Boolean as a literal, just type one of the special symbols true or false.

Functions
In ClojureScript (like JavaScript), functions are first-class entities and, as befits a func‐
tional programming language, are themselves data. They can be created using the syntax
discussed in the previous chapter, and once created can be passed around and added to
composite data structures like any other data.

Primitives | 41

Importantly, ClojureScript functions are implemented as plain old JavaScript functions.
This means that they can be passed to any JavaScript library that takes a function as a
callback (for example), and given a JavaScript function, you can invoke it using Clo‐
jureScript syntax. (Unless, of course, the JavaScript function contains a reference to
this. Internally, ClojureScript always invokes functions using their call method and
passes in nil as the value for this.)

nil
ClojureScript’s nil is identical to null in JavaScript; it is used where a value is logically
absent, empty, or meaningless. To use it as a literal, just use the special symbol nil.
ClojureScript does not use JavaScript’s undefined value, but you can refer to it as js/
undefined.

Table 5-1. Quick reference for primitive data types

ClojureScript type literal example(s) JS type

string double quotes “string” string

symbol plain characters symbol string

keyword leading colon :keyword string

character leading backslash \c string

number literal number 42, 3.14 numeric

boolean ‘true’ or ‘false’ true, false boolean

function (fn ...) or #(...) #(* 2 %) function

nil ‘nil’ nil null

Data Structures
ClojureScript also provides a full complement of composite collection types. These col‐
lections can contain ClojureScript’s primitive types or other collections, as well as any
other object that JavaScript itself supports. However, using non-ClojureScript objects
as values in ClojureScript collections may invalidate some of the guarantees Clojure‐
Script can make regarding equality semantics and serializability.

ClojureScript collections that contain only primitives or other ClojureScript collections
do make certain guarantees:

Equality
Collections with the same semantics containing the same values are considered
equal for all purposes, even if they are different instances in the JavaScript VM.
ClojureScript equality is always value-dependent, and the value of a collection is

42 | Chapter 5: Data and State

defined in terms of its contents. Note that this is true even across implementations,
as long as the semantics of the collection are the same. For example, a map can only
be equal to another map, but that map may be any of the alternative map imple‐
mentations (see the section on maps below).

Serializability
Obtaining the string value of a collection always results in a string that, when read
back using the ClojureScript reader, will be equal to the original. This is extremely
useful for simple cases of storing and transmitting data.

Clojure compatibility
The serialized string representation of ClojureScript objects and collections is fully
compatible with that of Clojure. Objects printed in ClojureScript can be read in
Clojure, and vice versa. This makes development Clojure on the server side and
ClojureScript in the browser client very easy. We will demonstrate this technique
in Chapter 10.

JSON and ClojureScript

Because ClojureScript has such good string serialization for its own object types, using
JSON in a ClojureScript program is not encouraged unless needed to interact with a third-
party or legacy API. Just as JSON stands for “JavaScript Object Notation” and is useful
precisely because it matches JavaScript’s syntax, Clojure’s collection literal strings can be
thought of as “Clojure Collection Notation” and match ClojureScript’s syntax and se‐
mantics, with baked-in language support. Therefore, they are usually more suitable for
the Clojure and ClojureScript environment. However, JSON parsers and serializers are
still available via the Google Closure Library or built-in browser functions.

Efforts are underway to create a formal specification for Clojure/ClojureScript data under
the name “Extensible Data Notation.” Details are at https://github.com/edn-format/edn.

Collection Types

Lists

Lists are ordered collections of items, implemented as singly-linked lists. As such, they
support fast lookups and insertions at the head of the list and O(n) reads in the general
case.

The literal syntax for writing lists is simply parentheses around the items (e.g., (1 2
3)). However, lists are also used in ClojureScript code to indicate a form that should be
evaluated, meaning that if you try to enter a list that you don’t want evaluated (such as
the one above), you’ll get an error as it tries to execute something it shouldn’t.

Data Structures | 43

https://github.com/edn-format/edn

To avoid this and create a list literal, you can quote the form using either the quote special
form or the single quote reader macro, which prevent evaluation of the forms to which
they are applied. They are completely equivalent: '(1 2 3) is identical to (quote (1 2
3)), and both will evaluate to a list consisting of the numbers 1, 2, and 3 without at‐
tempting to evaluate 1 as a function.

To prepend an item to a list, use the conj function, which takes a collection as its first
argument and any number of additional items to add. The items will be added at the
beginning of the list. To retrieve items from a list, use the sequence functions (described
in “Vectors”).

Vectors

Vectors are also ordered collections of items, and should generally be preferred to lists
in most ClojureScript code. They fill the role played by arrays in JavaScript and most
other programming languages, having near-constant lookup, update, and append op‐
erations. Technically, the computational complexity of a vector lookup is O(log32(n)),

but this is so close to constant time that the distinction is practically meaningless on any
data structure that will fit in memory on a modern computer.

The literal syntax for a vector is square brackets surrounding the items, such as [1 2
3] or [:a :b :c]. You’ve already seen literal vectors: they are used for specifying func‐
tion parameters.

To append an item to a vector, use the conj function as you would for a list. However,
in the case of a vector, the item(s) will be appended rather than prepended (conj works
differently depending on the type of collection).

You can retrieve items from a vector using the sequence functions. The nth function
will efficiently retrieve the item at a particular index. Vectors themselves can also be
invoked as functions, passing an integer as the argument will return the item stored at
that index (e.g., ([:a :b :c] 1) returns :b). To return a vector with an updated value
at a particular index, use the assoc function (which takes a vector, an index, and a value)
and returns a vector with the update applied.

Maps

Maps are associative collections; that is, they associate keys with values, and allow effi‐
cient retrieval of a value by its key. They are similar to Hashes in Ruby, HashTables in
Java, or associative arrays (i.e., objects) in JavaScript.

The literal syntax for a map is alternating key/value pairs surrounded by curly braces,
such as {:key1 :val1 :key2 :val2}. Because commas are whitespace in ClojureScript,
some people like to add them to maps for greater visual distinction between key/value
pairs like {:k1 :v1, :k2 :v2}, but this is strictly optional.

44 | Chapter 5: Data and State

Note that keys can be any primitive or data type that supports proper equality. Keywords
are idiomatic and efficient, but strings and integers are also commonly used as map
keys. It is even perfectly acceptable to use other data structures as keys if they support
good equality semantics (as ClojureScript’s do).

Maps may actually be implemented in a number of different ways, using different al‐
gorithms. ClojureScript includes array maps (backed by arrays), hash maps (backed by
hash tables), and tree maps (backed by red-black balanced binary search trees). There
are no semantic differences between these implementations, although they do have
different performance characteristics. (The sorted tree map does actually make one
additional guarantee that other implementations don’t: when iterating over its entry set,
the entries will be returned in the specified sort order of the keys.) Typically, however,
you don’t need to worry about them. When you create a map using a literal, ClojureScript
chooses the best algorithm based on the size of the map, and will swap out the type to
keep it efficient as it grows. If you wish, however, you can create a particular type of map
using the array-map, hash-map, or sorted-map/sorted-map-by functions (for array
maps, hash maps, and tree maps, respectively).

There are several techniques for retrieving values from a map:

• The get function, which takes a map and a key value, and returns the value mapped
to the key.

• The map itself can be invoked as a function. Passing it a key will return the value
mapped to that key.

• If the key is a keyword, you can invoke it as a function, passing the map as an
argument. When used as a function, keywords can look themselves up in the map
they are provided and return the associated value.

To obtain a map with an inserted or updated value at a particular field, use the assoc
function, passing a map and a series of alternating keys and values. This will return the
map, but with the specified keys mapped to the specified values. If the map previously
contained values associated with the keys, they will be replaced.

Sets

Sets are unordered collections of unique items, meaning that the same item cannot be
duplicated in the set (similar to the mathematical notion of a set). If you add an item to
a set that is equal to an item the set already contains, the set is unaffected. Sets can also
be thought of as maps with only keys and no values. They support fast insertion, removal,
and membership checks.

The literal syntax for a set is a pound sign followed by members enclosed in curly braces,
like #{:a :b :c}.

Data Structures | 45

To add an item to a set, use the conj function, passing the set and the item to add. Sets
also support disj, which does the opposite of conj and returns a set with the item
removed. To test if an item is a member of a set, use the contains? function, which takes
a set and an item and returns true if the item is a member of the set.

ClojureScript also provides the clojure.set namespace containing dedicated set op‐
erations such as union, intersection, and difference.

Immutability
An important feature of all of ClojureScript’s collections is that they are immutable,
meaning that they can’t be changed. Functions that “modify” collections don’t actually
ever change them, but instead create and return a new one based on the original with
the specified differences in place.

This is highly nonintuitive to most programmers who don’t have prior experience with
purely functional languages. However, it becomes clearer once you understand Clo‐
jure(Script)’s concept of value.

Values don’t change. Consider the number 3. If you add 3 + 1, you haven’t changed the
value of 3 (which would wreak havoc with math and physics everywhere). Instead, you’ve
acquired a new value. The same is true of words: if you use the word “good” together
with the word “morning” to say “good morning,” you haven’t changed the global mean‐
ing of the word “good,” you’ve used it to create a new utterance. In ClojureScript, the
very definition of a value means that it can’t change—if it does, it’s no longer the same
value.

ClojureScript’s collections are all values. If I take the vector [1 2] and append the value
4, I haven’t changed the meaning of [1 2]. I can’t change it. By definition, it can only
ever mean “the two element vector consisting of the integers 1 and 2.” If I could literally
change it, it would no longer meet its own definition. But what I can do is create an
entirely new vector, using [1 2] as a base: [1 2 4].

The same thing is true of all ClojureScript’s other collection types. When you add a
member to a set, you’re creating a different set with different members (which, inci‐
dentally, conforms to the mathematical definition of a set). When you add an item to
the front of a list, you create a new list consisting of both the old list and the new item.
When you add a new key to a map, you’re creating a new map, with a different set of
keys.

Why immutability?

In Clojure, concurrency is always listed as a compelling reason to use immutable col‐
lections: preventing unexpected changes to data goes a long way towards preventing
race conditions. HTML 5 WebWorkers do allow concurrent execution in modern

46 | Chapter 5: Data and State

www.allitebooks.com

http://www.allitebooks.org

browsers. However, they sidestep many of the difficulties associated with concurrent
programming by forbidding shared state between threads, instead operating solely on
the basis of message passing. But what about ClojureScript, which always runs in a
single-threaded JavaScript environment?

There are two possible answers to this question. First, there is a sense in which treating
collections as values is philosophically correct, irrespective of performance or design
implications. It makes programs easier to formalize and reason about. For example,
having a firm concept of collections as values also allows a rigorous notion of equality
(which can greatly simplify programs), and allows functions dealing with collections to
remain formally pure.

Second, there are indeed practical benefits to having immutable objects besides full
concurrency. Even though JavaScript is single-threaded, code is often structured in
terms of asynchronous callbacks and event loops, and it isn’t always easy to reconstruct
the exact sequence of execution a program might take. With immutable values, you can
rely on the fact that once you have obtained a collection, you can save it (either explicitly
or by closing over it) and use it later without any risk that it will have changed. Having
immutable objects means never having to worry about mentally keeping track of what’s
going on—all value changes are explicit and apparent in the code.

Persistence
One question that almost invariably follows a discussion of immutability is that of the
performance implications. No matter what the benefits are, isn’t cloning an entire data
structure every time it’s updated prohibitively wasteful of computational resources?

The answer would be yes, if that were what actually happens. Fortunately, ClojureScript
provides some extremely sophisticated data structure implementations that utilize the
concept of persistence to provide objects that are logically immutable, but share structure
with previous versions of themselves to minimize their computational overhead.

A full discussion of the implementation of persistent data structures is beyond the scope
of this book, but essentially what happens is that when a data structure is modified, the
new value is not a full clone of the original one. Instead, it incorporates the original
(which it can safely do, because the old one is immutable) plus the changes, and then
exposes a unified view of the whole package in a way that hides the internal structure.

In practical terms, persistence means that while using immutable objects does incur
some small overhead compared with mutating traditional objects, it (hopefully) falls
well within the realm of acceptable cost relative to the benefit provided. Typically, unless
you’re writing extremely performance-sensitive code (which is rare in JavaScript to be‐
gin with), ClojureScript’s immutable collections are more than fast enough. And if you
ever do need to eke out every last drop of performance, ClojureScript’s interop syntax
makes it easy to drop down to native JavaScript objects and arrays.

Data Structures | 47

Identity and State
Having data structures be immutable values is all very well, but it opens another ques‐
tion: if values are immutable, then how does ClojureScript model state and change over
time? After all, not every program can be a purely functional transformation of inputs
to outputs. Most of the time, programs need to store and change values.

The answer lies in ClojureScript’s (and Clojure’s) conceptual distinctions among value,
identity, and state.

• A value is, as the name implies, an immutable value. As discussed above, values can’t
change, by definition.

• Identity refers to a named entity in the system that may refer to different values at
different points in time.

• State refers to the value of an identity at a particular point in time.

Most languages don’t make a clear distinction between these concepts—for example, a
variable in JavaScript has bits of all three. It is a named thing, but it has a value, and its
value can change.

By teasing apart these concepts, ClojureScript makes state management explicit. Iden‐
tities are clearly visible as the only things that can change, and state transitions to new
values are clearly intentional.

This leads to a unique program structure in large ClojureScript programs. Rather than
having state smeared thinly across the whole program, it is isolated from the main bulk
of the code. Only a few functions update state, the rest remain pure functions of values.
When done correctly, this makes ClojureScript programs much easier to reason about
than those written in object-oriented or imperative paradigms.

Atoms
In Clojure, there are several constructs for creating identities, including atoms, refs, and
agents. The different types of identities differ in the concurrency semantics they support.
In ClojureScript, which doesn’t need to support shared-memory concurrency, there is
only one type: atoms.

Atoms are identities that refer to a single value (though that value, of course, may be
one of Clojure’s collections). All updates to the state of an atom are atomic, that is, they
occur in a single operation.

To create an atom, just use the atom function, passing a value for the initial state. For
example:

(def my-atom (atom {}))

48 | Chapter 5: Data and State

This constructs an atom with an initial state of an empty map, and binds it to a var called
my-atom.

To retrieve the current value of an atom, use the deref function, which also has a short‐
ened syntax using the reader macro @. The following two expressions are equivalent:

(deref my-atom) ;=> {}
@my-atom ;=> {}

There are two ways to update the state of an atom, swap! and reset!. swap! is used to
update the atom’s state in terms of the previous state, reset! sets the state without regard
for the previous state. Both functions return the value of the atom’s new state.

swap! always takes at least two arguments; the first is the atom, the second is the update
function. The update function will be applied with the value of the atom as its first
argument, with any additional arguments to swap! used as additional arguments.

So, for example, to add a new entry to the map that is the current value of my-atom, you
could invoke swap! like so:

(swap! my-atom assoc :a "1") ;=> {:a 1}

Subsequently, retrieving the value of the atom returns the new value:

@my-atom ;=> {:a 1}

Or, you can use reset!, passing the atom and the new value to update the state:

(reset! my-atom {:x 42}) ;=> {:x 42}
@my-atom ;=> {:x 42}

Initially, this might seem like too much ceremony to do something as easy as changing
some state. But the ceremony is (almost) the whole point. State should not be something
implicit in a program, quietly multiplying complexity exponentially with each new vari‐
able. Instead, it should be carefully, knowingly managed. In ClojureScript, atoms provide
this capability.

Identity and State | 49

CHAPTER 6

Sequences

One of the key features of the Lisp family of languages is their orientation around lists
—not just as data structures, but as a structural metaphor for algorithms and execution
flow. Recursive algorithms, for example, can be very cleanly structured around lists in
Lisp variants.

Unfortunately, in most Lisps, this metaphor is tightly bound to the actual implementa‐
tion of a singly-linked list, which has performance characteristics that make it unsuitable
for many purposes.

To resolve this problem, Clojure introduced a new abstraction around the concept of a
list, called a sequence, which is shared by ClojureScript. A sequence is a logical list, similar
to those in most Lisps, with a well-defined set of operations. However, Clojure sequences
are not a concrete type, but rather an abstract contract that may be satisfied concretely
by a variety of different types of objects. All of ClojureScript’s collections, as well as many
other types of logical collections in JavaScript, can be used as sequences. This allows
ClojureScript code to be constructed in an idiomatic list-based Lisp style, while using
whatever data structure is actually most appropriate for the job.

Many common operations in ClojureScript are part of the sequence API. Functions from
the sequence API are used to select items from sequences, add items to sequences, and
produce, consume, and transform sequences. Understanding how sequences work will
give you a major leg up in understanding and writing idiomatic ClojureScript code and,
once you get the hang of it, will help you write functions of your own that are highly
general and composable with other sequence functions.

The Sequence Abstraction
The basic definition of a sequence is very simple. All sequences have two elements: a
first, which is the first element, and a rest, a sequence of the remaining elements. An

51

empty first and rest in ClojureScript are directly analogous to the car and cdr of older
Lisps. They are renamed to be clearer and to emphasize that they are abstract concepts,
not inherently bound to any particular implementation of a sequence. A nil rest signals
the end of the sequence. You can obtain the first or rest of a sequence by using the first
or rest functions.

Anything that can be represented as a first and a rest can be a sequence. The seq function
is used to polymorphically obtain a sequence view of any object that supports it. Calling
seq explicitly to convert a collection is rarely necessary, however, since sequence func‐
tions (including first and rest) call seq on their argument for you.

Lists and vectors are the most obvious sequences, being naturally ordered collections of
elements:

(first [:a :b :c]) ;=> :a
(rest [:a :b :c]) ;=> (:b :c)

(first '(1 2 3)) ;=> 1
(rest '(1 2 3)) ;=> (2 3)

Sets are also sequences. Although they are unordered, you can still use sequence func‐
tions on them; the elements will just be cast into an arbitrary (though consistent, for the
same set) order:

(first #{:b :c :a}) ;=> :a
(rest #{:b :c :a}) ;=> (:b :c)

Maps are also sequences of key-value pairs, represented as two-element vectors and
returned in arbitrary order:

(first {:b 2 :a 1 :c 3}) ;=> [:a 1]
(rest {:b 2 :a 1 :c 3}) ;=> ([:c 3] [:b 2])

Other items which can be viewed as a sequence (sequable objects) include native Java‐
Script arrays and strings (as sequences of their constituent characters).

Lazy Sequences
Despite their obvious utility for working with data structures, one of the advantages of
sequences is that they don’t need to be backed by an actual data structure in memory.
All they have to do is implement first and rest meaningfully.

This leads to an interesting and extremely useful feature: it is possible to have sequences
with a rest that isn’t actually created until you call the rest function. Sequences with a
nonrealized rest are known as lazy sequences. Because lazy sequences don’t have to fully
exist in memory all at once, they can be arbitrarily large, even infinite.

52 | Chapter 6: Sequences

For example, in ClojureScript, it is possible to construct an infinite sequence of every
positive integer using the iterate function:

(do
 (def i (iterate inc 0))
 nil)

As an aside, note that the def is wrapped in a do, which returns nil. This is only to
prevent the value of the i symbol from being printed back at the REPL, which Clojure‐
Script does by default. i can exist as a lazy sequence using hardly any memory, but if
you try to print it, it will try to print the entire thing to the REPL. Obviously, this is
impossible. This is one thing to be careful of when using infinite lazy sequences: don’t
do something that would cause them to be printed! This will almost certainly crash your
process and force you to restart.

iterate is a higher-order function that takes two arguments, a function and an initial
value. It returns a lazy sequence with a first element of the initial value. Its rest sequence
is lazily constructed, and in turn has an first value of the function applied to the initial
value. Its rest, also lazy, is the result of applying the function to the previous value, and
so on.

So, by starting with the inc function and an initial value of 0, the above expression
constructs a sequence where each successive element is constructed by incrementing
the previous element; this is a sequence of the positive integers. But the calculation is
only performed when the sequence is actually realized, so it doesn’t end up using an
infinite amount of memory.

Letting Go of the Head
Lazy sequences are cached, so each element is realized only once, and then stored instead
of being recalculated. This means that expensive computations won’t be run unneces‐
sarily. It also means that it’s safe to have sequence generating functions with side effects
—they may not happen at all, if the sequence is never realized, but they’ll never be
executed repeatedly.

The downside is that lazy sequences do consume memory, once they’ve been realized.
For this reason, if you’re processing a very large or infinite sequence, it’s important not
to maintain a reference to the head of the sequence as you iterate over it. That way, the
earlier parts of the sequence can be garbage collected each time you move forward on
the sequence. But if you maintain a reference to the entire sequence, its elements will be
cached, not garbage collected, and you’re likely to get out-of-memory errors.

Lazy Sequences | 53

The Sequence API
ClojureScript has a large library of functions that operate on sequences. Although you
don’t have to know them all, familiarity with the basic ones covered here is critical to
writing idiomatic functional code. In particular, you should become very comfortable
with map, reduce, and filter if you’re not already; these are the staples of the functional
programming style.

map
map is a higher order function that takes a function (which takes a single argument) and
a sequence, and returns a sequence of items resulting from applying the function to each
item in the input sequence. It is lazy; the input sequence is only consumed and the
mapping function applied when the resulting sequence is realized. As such, it can be
used on an infinite sequence to return a new infinite sequence.

For example, the following expression applies a function to obtain the square of every
number in the input sequence:

(map (fn [n] (* n n)) [1 2 3 4 5]) ;=> (1 4 9 16 25)

map can also take more than one sequence. In this case, the function provided must take
the same number of arguments as there are sequences, and the function is applied to
the first member of each sequence, then the second, third, and so on. Processing stops
at the end of the shortest sequence. For example:

(map (fn [a b] (+ a b)) [1 2 3] [10 20 30 40]) ;=> (11, 22, 33)

reduce
reduce is a function that takes a function and a sequence and uses the provided function
to consume the entire sequence and return a single value. As such, it is not lazy and
should not be used on infinite sequences.

The supplied function must take two arguments; it is first invoked on the first two
elements of the sequence, then invoked again with the resulting value and the third item,
then with the result of that and the fourth item, and so on until the sequence is consumed.

The following example uses the + function to obtain a sum of the numbers in a sequence:

(reduce + [1 2 3 4]) ;=> 10

You can also invoke reduce with three arguments, supplying an initial value as the
second argument to reduce. It will be used along with the first element from the sequence
in the first function invocation, instead of using the first two values from the sequence.

54 | Chapter 6: Sequences

filter
filter takes a function and a sequence, and returns a sequence consisting only of the
items for which applying the function to items in the input sequence returns logical true.
It is fully lazy, although consuming a single item in the resulting sequence may “jump”
forward in the input sequence until it finds one that meets the specified criteria.

The following example uses the built-in integer? function to return a filtered sequence
only of numbers that are integers:

(filter integer? [1 2.71 3.14 5 42]) ;=> (1 5 42)

Other Useful Sequence Functions
Although there are a great many other sequence functions you’ll want to explore, here
are some of the most frequently used:

cons
Takes an item and a sequence, and returns a new sequence with the item as its first
and the sequence as its rest.

count
Takes a sequence as its argument, and returns the length of a sequence. It must
realize the entire sequence to do so, so don’t call it on an infinite sequence as it will
never return.

nth
Takes a sequence and an index (starting from zero), and returns the item at that
location in the sequence. For example, (nth x 5) returns the sixth item in x.

take
Takes a number n and a sequence, and returns a new sequence consisting of the first
n items in the input sequence. It is fully lazy; it will only realize the input sequence
when and if the returned sequence is realized.

drop
Takes a number n and a sequence, and returns a new sequence of all the items in
the input sequence except for the first n items. It is also lazy.

concat
Takes any number of sequences as arguments, and returns a single sequence con‐
taining all the items in each of the input sequences. It is lazy.

reverse
Takes a single sequence and returns a sequence of its items in reverse order. It cannot
be lazy, since it needs to realize the entire input sequence in order to get its last item.

The Sequence API | 55

Finally, there is a special sequence generator that’s actually a macro, not a function:

lazy-seq
This is the basic, low-level way to create lazy sequences. It is a macro that takes any
number of forms as its body. The body, when evaluated, should return a sequence
or nil. However, the body isn’t evaluated right away. Instead, it’s stored in a closure,
and lazy-seq returns an unrealized lazy sequence. Only if the sequence is eventually
realized will the body be invoked, returning the result of the body as the realized
sequence.

By making recursive function calls in the body of lazy-seq, it’s possible to construct
lazy sequences of arbitrary or infinite length.

Normally, it’s not necessary to use lazy-seq directly; usually, one of the provided
sequence-generating functions is more suitable. iterate, in particular, is very flexible.
However, when you need it, lazy-seq can be a powerful tool to create arbitrary lazy
sequences.

56 | Chapter 6: Sequences

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7

Namespaces, Libraries, and Google Closure

So far, we’ve talked mostly about basic features of the language such as syntax, semantics,
and the compilation process. ClojureScript also offers compelling features at a higher
structural level to facilitate code organization and sharing libraries.

In ClojureScript, as in Clojure, the highest level of code organization is namespaces,
used to scope global definitions. However, despite superficial similarities, namespaces
in ClojureScript are implemented completely differently than they are in Clojure because
it runs in a different environment. This chapter will cover what these differences are
and how to use namespaces effectively in ClojureScript.

Additionally, this chapter will describe how to create and utilize libraries. Unfortunately,
one of the negative effects of ClojureScript’s reliance on the Google Closure Compiler
is the fact that creating and consuming libraries is not always straightforward, partic‐
ularly in light of Google Closure’s Advanced Optimizations mode.

Namespaces
To avoid name collisions, ClojureScript symbols and keywords have a namespace com‐
ponent. Each *.cljs file has its own namespace, and every REPL session has a current
namespace (cljs.user by default). Whenever you define a symbol using def or one of
its derivatives (such as defn), the namespace of the symbol is set to the current name‐
space. Symbols with the same name in different namespaces are completely different,
and will not clash.

In addition to name disambiguation, namespaces are also ClojureScript’s unit of code
dependency management. A namespace may require or use other namespaces as de‐
pendencies, and dependent namespaces are always loaded before the namespace that
required them when the program is run. ClojureScript does not support circular refer‐
ences between namespaces.

57

One very important difference between namespaces in ClojureScript and Clojure is that
while Clojure namespaces are first-class entities that can be dynamically created and
loaded at runtime, ClojureScript namespaces are statically resolved at compile time
only. You can’t create or load a namespace during program execution.

Using Namespaces
As you have already seen, if you refer to a symbol without specifying a namespace,
ClojureScript will attempt to resolve the symbol in the current namespace. To specify a
namespace, use a slash between the namespace and the name. For example, foo.bar/
hello references a symbol named hello in the foo.bar namespace, which is distinct
from a symbol named hello in any other namespace.

To specify a namespace for a source file, use the ns special form as the first form in the
file. (Unlike Clojure, ns is not just a macro wrapping more primitive functions (such as
load and require) but built in to the language directly.) In its most basic form, declaring
a namespace called foo.bar looks like this:

(ns foo.bar)

In ClojureScript, as in Clojure, the namespace of a file needs to match its location on
the Java classpath. In the case of ClojureScript, this is the classpath of the compiler.
Each . (period or full stop) in the namespace translates to a subdirectory on the class‐
path. For example, the namespace foo.bar.baz should be in a file with the path
foo/bar/baz.cljs, relative to the classpath. This is necessary for the ClojureScript
compiler to find the file that corresponds to a namespace.

To specify that a namespace depends on another namespace, add a :require form in
the ns form, containing any number of specifications:

(ns application
 (:require [foo.bar :as bar]
 [foo.baz :as baz]))

This will force loading of the foo.bar and foo.baz namespaces before application
itself is loaded. Labeling the namespaces with the :as clause means that within the foo
namespace, you can reference the symbols in foo.bar via a shorter “alias” bar. In this
example, the symbol foo.bar/function can be written bar/function. ClojureScript,
unlike Clojure, does not permit “bare” namespaces in a :require clause. The compiler
will throw an exception if you specify a :require without :as.

You may also reference namespaces with :use instead of :require, like so:

(ns application
 (:use [foo.bar :only [hello goodbye]]))

The :use form also causes the specified namespace(s) to be loaded, but differs
from :require in that, for each of the symbols specified in the :only vector, it establishes

58 | Chapter 7: Namespaces, Libraries, and Google Closure

a synonym in the current namespace so you can refer to symbols in the used namespace
without explicitly qualifying them. For example, given the above ns declaration, you can
now use the symbols hello and goodbye directly in the foo namespace to refer to
foo.bar/hello and foo.bar/goodbye.

Again, the use of :only in a :use specification is mandatory in ClojureScript, and will
cause a compile error if missing. Additionally, unlike Clojure, :require and :use are
the only forms allowed within an ns declaration. Clojure’s :import, :refer, etc., are not
supported. Therefore, although a valid ClojureScript ns declaration is also always a valid
Clojure ns declaration, the inverse is not true: ClojureScript has much narrower re‐
quirements for validity.

Using namespaces at the REPL

The ns form will not work in the ClojureScript REPL (either the Rhino REPL or the
browser REPL). To switch the current namespace in the REPL, you can use the in-ns
special form, passing it the quoted namespace:

ClojureScript:cljs.user> (in-ns 'foo.bar)

This switches the REPL’s current namespace to be foo.bar.

Note that in-ns is a special tool for REPL development, and doesn’t actually exist in
ClojureScript’s standard library. It is implemented as a special case in the REPL’s reader.
As such, it won’t work at all in *.cljs source files, or anywhere else except in a REPL
session.

Also, because ClojureScript namespaces can be defined only at compile time, using in-
ns to switch to a namespace does not implicitly create the namespace (as it does in
Clojure). If you specify a namespace that isn’t already loaded, the REPL will switch to
it, but almost everything you try to do will fail with a “namespace is not defined” error.

Using Namespaces Effectively
Fundamentally, namespaces are just a tool to prevent name clashes, but they also help
structure your code into logical units. They function a bit like modules or packages in
other languages. Here are a few hints to use namespaces effectively:

1. Group similar or related functions together in the same namespace.

2. Try to minimize the number of dependencies (:require and :use expressions) in
each namespace, except for one main namespace that ties together everything in
your application.

3. Never have circular dependencies between two namespaces (namespace A depends
on B, which depends on A).

Namespaces | 59

The Implementation of Namespaces
To really understand how ClojureScript namespaces work, it’s helpful to know some‐
thing about their implementation.

Namespaces and *.js files

When you compile a directory containing *.cljs files, the compiler emits a directory with
the same structure containing compiled *.js files; each input *.cljs file has exactly one
output *.js file with the same name and path.

Each emitted *.js file contains code allowing it to participate in the namespace system
provided by the Google Closure Library. You can read about the Google Closure Li‐
brary’s dependency management system here. Note that as a user of ClojureScript, you
don’t have to worry about writing a deps.js file, or using the ClojureBuilder or DepsWriter
scripts described in the Google Closure documentation. The ClojureScript compiler
performs those functions internally. This is the mechanism by which ClojureScript ac‐
tually resolves namespace dependencies: under the hood, ClojureScript’s namespace
dependency system is that of Google Closure.

In the Google Closure Library, dependency management is handled by two functions:
goog.provide() and goog.require(). The goog.provide() function is intended to be
called once per file, and passes the namespace the file contains. The goog.require()
function may be called multiple times, each time with a dependency of the file. Both are
emitted directly by ClojureScript when compiling an ns form. The mapping is very
straightforward:

(ns application
 (:require [foo.bar :as bar]
 [foo.baz :as baz]))

It is compiled to:

goog.provide("application");
goog.require("foo.bar");
goog.require("foo.baz");

What happens next depends on what :optimizations mode the ClojureScript compiler
is running in.

When using :optimizations :none, the ClojureScript compiler will write a list of calls
to goog.addDependency() to the specified :output-to file. These serve to create map‐
pings between namespace names, dependencies, and relative paths, and are necessary
to inform Google Closure of the location of dependencies (unlike ClojureScript, Google
Closure has no convention regarding source file location). After you include this de‐
pendencies file in your web page, calls to goog.require() will dynamically add new
<script> tags to the page using the provided relative path.

60 | Chapter 7: Namespaces, Libraries, and Google Closure

https://developers.google.com/closure/library/

It follows, then, that when using :optimizations :none you must also make the com‐
piler output directory (specified with :output-dir) publicly available on a relative path
appropriate to the URL of the page. This is necessary because the page will end up
loading each of the needed *.js files directly. You must also manually include goog/
base.js first in your HTML, to bootstrap the Google Closure Library, as we showed in
Chapter 3.

On the other hand, when using any :optimizations mode other than :none, the com‐
piler will concatenate all the required files into one gigantic JavaScript file, in depend‐
ency order, and write it out as the :output-to file. This is the only *.js file you need to
include on your HTML page, since it contains a full copy of every dependency, even the
core Google Closure library. Therefore, in this case, it isn’t necessary to expose the output
directory like it is with :optimizations :none.

Namespaces and variable names

Because vanilla JavaScript has no built-in namespace support, it’s standard practice to
use objects as a poor man’s namespace system, nesting all the variables a library uses
under a single top-level object.

The ClojureScript compiler does exactly the same thing, when compiling ClojureScript
symbols to JavaScript variables. Each dot-separated level of the namespace becomes a
nested object, with the symbol’s name as the final name. For example, the symbol
my.cool.new-project/some-data in ClojureScript will be my.cool.new_project.
some_data in JavaScript. (Hyphens in ClojureScript symbols become underscores in
JavaScript.)

For pure ClojureScript applications, this is just an implementation detail. However, it
does become important when you want to call a ClojureScript function from JavaScript,
since you must refer to it by its fully qualified (i.e., nested) name.

Advanced Compilation Mode
For the subsequent sections on consuming and producing libraries, one of the major
challenges is working with the implications of the Google Closure Compiler’s Advanced
Optimizations mode. Before moving on, it will help to have a complete idea of what
Advanced mode actually does.

Advanced mode’s blessing, and its curse, is that it deeply and radically transforms your
program. It does so in very beneficial ways, decreasing both code size and execution
time, sometimes drastically. Advanced mode can and does:

• Rename variables and functions to shorter names (sometimes called munging)

• Flatten object nesting

• Eliminate unused code

Advanced Compilation Mode | 61

• Create inline functions

• Optimize performance based on known characteristics of JavaScript runtimes

Essentially, there is nothing that advanced mode might not do to your code, while
maintaining the same semantics. Consider the following example:

function print_sum(sum) {
 alert('The sum is ' + sum);
}
print_sum(3 + 4);

Advanced mode can convert this to the following:

alert("The sum is 7");

The level of sophistication evident in this transformation speaks for itself.

But Advanced mode’s power comes at a price. Specifically, it imposes two major re‐
quirements:

1. It must operate on the entire program, as a whole, at once. Otherwise, it cannot
safely rename variables or enact other transformations.

2. It only works on a subset of JavaScript. The exact restrictions can be found here.
You don’t have to worry about this for ClojureScript code, since the ClojureScript
compiler only emits compatible JavaScript. However, there are frequently issues
with third-party libraries not designed with Google Closure in mind.

Consuming Libraries
A compelling feature of ClojureScript is that it is capable of utilizing any JavaScript
library. Unfortunately, because of its reliance on Google Closure dependency manage‐
ment and advanced mode compilation, doing so is admittedly difficult. There are several
different techniques, and choosing the wrong one will result in errors, or worse, subtle
bugs in your application’s behavior.

Fortunately, it is possible to import and use any library safely, as explained below. See
the flowchart at the end of the section for a high-level overview of the options you have.

ClojureScript Libraries
If the library you want to use is written in ClojureScript, your task is done. All you need
to do is make sure the *.cljs files for the library are available on the classpath either as a
JAR dependency or a source folder, depending on how the library is distributed.

62 | Chapter 7: Namespaces, Libraries, and Google Closure

https://developers.google.com/closure/compiler/docs/limitations

Once the source files are on the classpath, you can :require or :use them exactly the
same way you would a namespace that you wrote—in fact, from the point of view of the
system, there isn’t any difference. They will be compiled and optimized along with your
code.

JavaScript Libraries
You can also use libraries not originally intended for use with ClojureScript by using
interop forms in your code to reference JavaScript variables (see Chapter 4).

How exactly to go about including such a library depends on the characteristics of the
library in question. The procedure is different for libraries that were written with Google
Closure in mind. For those that weren’t, there is another choice: compiling them in
Advanced mode along with your application, or leaving them completely external.

Google Closure libraries

These are files that include a call to goog.provide(), allowing them to participate in
Google Clojure’s dependency management system, and by extension, ClojureScript’s. A
JS file that invokes goog.provide('x.y.z') effectively has the namespace x.y.z.

Unless you work at Google, you aren’t likely to see many libraries that fit into this cat‐
egory, as Google Closure doesn’t have a particularly large uptake in the JavaScript com‐
munity. However, if you’re using a mixed JavaScript/ClojureScript codebase, and you’d
like anyone to have the freedom to modify the library, you can consider making your
JavaScript compatible with Google Closure to make it easier to use with ClojureScript.

First, to use them, you must start by putting the *.js files on the classpath so they are
accessible to the compiler (just like ClojureScript files).

Second, you must tell the ClojureScript compiler where on the classpath the files are
located. Unlike ClojureScript file paths, *.js pathnames don’t necessary have any rela‐
tionship to the namespaces they provide. To indicate this to the compiler, use
the :libs compiler option, which is a vector of *.js pathnames relative to the classpath.
The compiler will inspect these files for calls to goog.provide() and handle them
appropriately.

For example, to include a library in a file located at jslib/magic.js, the compiler op‐
tions map might look something like this:

{:output-to "resources/public/js/main.js"
 :optimizations :advanced
 :libs ["jslib/magic.js"]}

Finally, to use these libraries in your ClojureScript code, :require or :use their name‐
spaces in your ns declaration form. This will ensure that the library is available. Then,

Consuming Libraries | 63

use ClojureScript’s JS interop to reference the JavaScript vars. Note that the namespace
of a Google Closure library doesn’t always match the names of the variables it declares;
that’s another ClojureScript convention that is stricter than what Google Closure alone
requires.

Because libraries built for Google Clojure should already be compatible with Ad‐
vanced mode compilation, you shouldn’t need to worry about preserving variable names
against munging: Advanced-mode processing will be consistent across the entire code‐
base, including the required libraries.

Plain old JavaScript libraries

This is likely the most common type of library you might wish to use in ClojureScript:
a normal, possibly popular JavaScript library that wasn’t written with ClojureScript or
Google Closure in mind.

With these libraries, there is just one major choice to make: do you want to attempt to
use the Google Closure Compiler’s Advanced Optimizations mode to compile the library
together with your code, or include it separately on the HTML page? When you use
Advanced mode, the Google Closure Compiler will perform whole-program optimiza‐
tion across both the library and your code. When you leave it separate, your program
will still be compiled, but the external library will be loaded and run without any
transformations.

As discussed above, compiling in Advanced mode has many benefits in emitted code
size and runtime speed. Also, as you will see below, it’s slightly easier to use with Clo‐
jureScript. However, the fact is that most JavaScript code written without Advanced
mode in mind probably doesn’t meet its rather stringent requirements.

If you do want to compile an existing library in Advanced mode, you should do a careful
audit of the library’s code to make sure it meets the restrictions of Advanced mode. Be
cautious: this is the one area where it is possible to go badly wrong. Sometimes incom‐
patibilities don’t manifest in an obvious way until they’ve caused you serious trouble.

With Advanced mode. Compiling a library into your application with Advanced mode is

fairly easy, given the major caveat that the library’s code is Advanced-mode compatible.
The process is very similar to including a library that is built for Google Closure, the
only difference being that instead of just telling the compiler the location of the file, it
is necessary to tell it the location and the namespace it provides using the :foreign-
libs compiler option.

:foreign-libs must be a sequence of maps, each containing a :file and a :pro
vides key. The :file value is a path or URL indicating the absolute or classpath-relative
location of the file. The :provides key is a vector of strings naming the namespaces that
the file provides. Put together, it looks like this:

64 | Chapter 7: Namespaces, Libraries, and Google Closure

{:output-to "resources/public/js/main.js"
 :optimizations :advanced
 :foreign-libs [{:file "http://foo.com/foobar.js"
 :provides ["foo.bar"]}]}

This will tell the ClojureScript compiler that when it’s concatenating all the sources prior
to running them through the Google Closure Compiler, it should also include the source
of the given file, and it should inject a call to goog.provide() in the source for each of
the given namespaces.

The effect is the same as if the library had included a goog.provide() call on its own,
and been included using the :libs option.

Again, this will only work if the library’s code conforms to the standards required by
Advanced mode. Be especially aware that any nonconformities might not show up at
compile time, although Google Closure will do its best to give warnings.

Without Advanced mode. This is likely to be the most common case: you have a library

you want to use, but it wasn’t built for ClojureScript or Google Clojure, and you’re not
confident it is compatible with advanced-mode compilation.

The basic premise for using such a library is very simple: just include it on your HTML
page using a separate <script> tag, which will load it into the JavaScript runtime en‐
vironment. Since your ClojureScript program has access to the root environment
through its interop forms, you can directly reference any of the variables the external
library has created using interop forms (such as the js/ pseudo-namespace).

Unfortunately, although this is fine for Whitespace Only or Simple Optimizations com‐
pilation, Advanced mode will cause errors without some extra work. The reason for this
is variable munging. Advanced mode will potentially rename every symbol or property
name mentioned in your ClojureScript code. If you’re compiling everything together
with Advanced mode, the renaming will be consistent and everything will work. But if
you’re only compiling your ClojureScript code and not the library, then things will be
renamed with no way to match them back up, and you’ll end up with errors like “X is
not a function” or “no such property X” errors.

For a real-world example, consider the following snippet of ClojureScript, which draws
a circle using the excellent Raphael.js vector graphics library:

(let [image (js/Raphael. 10 50 320 200)]
 (.circle image 50 50 50))

This works great with Whitespace Only or Simple compilation. It uses the js/ namespace
to call the global Raphael function as a constructor, which creates a Raphael drawing
object of the specified dimensions. It then invokes the circle method on that object to
draw a circle.

Consuming Libraries | 65

http://raphaeljs.com/][http://raphaeljs.com/

But try it in Advanced mode, and you’ll get a cryptic error, something like new
Raphael(10, 50, 320, 200)).K is not a function. Initially, this doesn’t make sense:
what is the K function it’s trying to invoke?

In this case, K is the munged name of circle. Google Closure doesn’t know that cir
cle is a name that needs to be preserved. It has no knowledge of the Raphael library at
all, since that wasn’t included in its compilation pass.

What’s needed is a way to inform the Google Closure Compiler that circle is an external
reference, and should be left alone when compiling. Fortunately, Google provides such
a mechanism: it allows you to create an externs file.

An externs file is just a JavaScript file that contains a JavaScript variable and property
declarations. Any variable or property referenced in the externs file will not be munged.
It isn’t actually compiled itself, so the variable references don’t have to be meaningful,
they just have to be present to signal the compiler not to munge them. A very simple
externs file that would make the Raphael code work would be something like this:

var Raphael = {};
Raphael.circle = function() {};

Of course, Raphael has many more functions than just circle, but you only need to
declare the ones you want to consume from ClojureScript.

Finally, you need to tell the ClojureScript compiler about the externs file using
the :externs compiler options, which is a sequence of strings of the classpath-relative
paths of extern files. For example, to include this externs file for Raphael:

{:output-to "resources/public/js/main.js"
 :optimizations :advanced
 :externs ["raphael_externs.js"]}

That’s it! If you’ve included the necessary references in an externs file, then you can
reference variables and properties from an outside context without munging, and suc‐
cessfully consume any JavaScript library you like.

Creating Libraries
It’s fairly straightforward to use ClojureScript to write libraries for distribution and
consumption by other applications. You will need to package it differently, however,
depending on whether you intend clients of your library to consume it using Clojure‐
Script or JavaScript (Figure 7-1).

66 | Chapter 7: Namespaces, Libraries, and Google Closure

Figure 7-1. Flowchart for determining how to use a library in ClojureScript

For Consumption by ClojureScript
The best way to distribute a ClojureScript library for use by ClojureScript is to distribute
the *.cljs source files directly, either by giving clients a directory full of source code or
distributing a JAR file containing the *.cljs files. In either case, the clients will need to
add the directory or JAR to their compiler classpath so the ClojureScript compiler can
find them.

All the client has to do to use the library is to consume it as described in the section
above on consuming ClojureScript libraries.

Creating Libraries | 67

For Consumption by JavaScript
If you want JavaScript applications to be able to call your ClojureScript code, you’ll need
to distribute the compiled version of your app. Typically, the easiest way to do this is to
compile your library to a single *.js file using the Google Closure Compiler and give that
file to your clients. They can then reference that file in a <script> tag on their page,
and start using it.

Fortunately, actually using the library should be fairly easy. ClojureScript functions are
just JavaScript functions, and namespaces are just nested objects (following the Java‐
Script convention). So, for example, if you have a ClojureScript function foo.bar/
hello-world, your JavaScript clients can easily call it using foo.bar.hello_world().

You will have to be careful not to expect arguments or return objects they won’t be able
to use easily, such as ClojureScript vectors or maps. If you really intend your library to
be used extensively from JavaScript, you’ll probably want to create a set of public API
functions that accept and return more familiar types. For example, you might convert
ClojureScript maps to JavaScript objects, sequences to JavaScript arrays, and keywords
to strings before returning them.

^:export metadata

If you want to compile your libraries with Advanced mode, you’ll need to make one small
additional change. JavaScript libraries can reference ClojureScript vars by name, but
Advanced mode compilation munges all the var names. If you want to be able to reference
a var from external JavaScript, you’ll need to mark it specifically for preservation.

To do this, tag the vars whose names you want to preserve using the :export metadata
tag. ClojureScript metadata is data that can be attached to any ClojureScript object, and
since it can be inspected by the compiler it can be used to alter the emitted JavaScript.
In the case of :export, it indicates that the tagged var should not be munged.

Adding the :export metadata tag to a function using the metadata reader macro looks
like this:

(ns foo)

(defn ^:export hello [name]
 (js/alert (str "Hello, " name)))

This code defines a very simple function called hello in the foo namespace, but tags it
with :export so that it won’t be munged during advanced compilation. This means that
a JavaScript caller can invoke it directly: foo.hello("Luke") would result in an alert
box popping up that says “Hello, Luke”.

68 | Chapter 7: Namespaces, Libraries, and Google Closure

CHAPTER 8

Macros

ClojureScript, like Clojure, uses macros to extend the syntax of the language. Funda‐
mentally, a macro is just a function that manipulates data structures. What makes mac‐
ros special is that they are invoked during the compilation process, to manipulate the
data structures representing ClojureScript source code. Many of ClojureScript’s core
flow-control operators are implemented as macros, and you can write your own macros
to extend the language.

Code as Data
Remember from Chapter 4 that all ClojureScript code is composed of data structures:
lists, vectors, symbols, and so on. For example:

(println "Three plus four is" (+ 3 4))

We can read this expression as a list containing a symbol, a string, and another list. But
to the ClojureScript compiler, that list represents a function call.

Macros allow you to manipulate the data structures in your code before they get to the
compiler. This is very powerful: a macro can effectively rewrite code before it gets to the
compiler.

Writing Macros
Macros are applied during the compilation process. They do not exist at runtime. Because
the ClojureScript compiler is implemented in Clojure, ClojureScript macros must be
written in Clojure, not ClojureScript. Fortunately, Clojure and ClojureScript are almost
identical when it comes to manipulating data structures, so switching between the two
languages is not difficult.

As an example, consider the when macro introduced in Chapter 4:

69

(when condition
 ;; ... expressions ...
)

;; which expands to:
(if condition
 (do
 ;; ... expressions ...
))

The when macro is simply a way to avoid the extra do block when we want multiple
expressions in an if expression. Usually this happens when the code inside the when
macro is performing side effects.

To write a macro, first think about the expression you want to be able to write in your
code. Second, think about what you want it to become. Finally, write a function that
converts the first into the second. Here is a simple version of the when macro:

(defmacro when [condition & body]
 (list 'if condition
 (cons 'do body)))

Notice that a macro definition looks just like a function definition, but it starts with
defmacro instead of defn. This function is variadic: it takes one argument called condi
tion followed by any number of arguments that will be collected into the list called
body. It then constructs a list starting with the symbol if, followed by the condition,
followed by body with the do symbol inserted at the head.

Applying a macro is called macroexpansion, and it happens at the beginning of the
ClojureScript compilation process. You can test it at the REPL with the macroexpand-1
function at the Clojure REPL. Remember, macros are written in Clojure, not Clojure‐
Script, so you must write and test them at the Clojure REPL.

user=> (macroexpand-1 '(when (even? 2) (println "2 is even")))
(if (even? 2) (do (println "2 is even")))

Notice that we are calling the macroexpand-1 function on a quoted form. We don’t want
to evaluate the when expression; we want to see what it will expand to during compilation.
The macroexpand-1 function performs one round of macroexpansion. However, a mac‐
ro can expand to code, which begins with another macro. To see the final result of all
the expansions, you can call the macroexpand function, which keeps expanding macros
until it reaches an expression that is not a macro.

There is also macroexpand-all, which recursively expands all the macros anywhere
in an expression. It is available in the Clojure namespace clojure.walk. This
macroexpand-all is not entirely correct because it doesn’t recognize special forms such
as let, but it is usually adequate for debugging macro expressions.

70 | Chapter 8: Macros

Syntax-Quote
Macros manipulate data structures that represent code. However, as the code they pro‐
duce grows more complex, it becomes tedious to manually construct the data structures
to represent it. To help, Clojure has the syntax-quote operator to construct “templates”
for expansion. Syntax-quote is written using the backtick (`) symbol. It behaves like the
normal single quote in that it prevents evaluation, but syntax-quote also allows values
to be unquoted.

Here is a version of when written with syntax-quote:

(defmacro [condition & body]
 `(if ~condition (do ~@body)))

Notice that we don’t have to do any manual construction, such as invoking list, as in
the previous example. Instead, the syntax-quoted form looks similar to the form we
ultimately want to produce. Within that form, we have unquoted the condition symbol
by prefixing it with a tilde (~). We have used a variant of unquote called unquote-
splicing on the body symbol. The unquote-splicing operator (~@) operates on lists by
inserting the contents of the list at the expansion point, without the enclosing paren‐
theses of the list itself. Unquote-splicing is like “unwrapping” a list before placing it in
the expansion.

Auto-Gensyms
It is often necessary to create new symbols in the body of a macro, such as let bindings.
To prevent these symbols from clashing with symbols already in use elsewhere around
the code, Clojure’s macros provide auto-gensyms, or automatically-generated symbols,
guaranteed to have unique names. These symbols are generated by placing a hash sign
(#) after the symbol name. Auto-gensyms are only available within a syntax-quoted
expression.

For example, here is a macro that expands to some debugging code:

(defmacro debug [expr]
 `(let [result# ~expr]
 (println "Evaluating:" '~expr)
 (println "Result:" result#)
 result#))

In this example, the debug macro takes a single expression and uses it twice. To avoid
evaluating expr more than once, it has to create an intermediate let binding. The
result# symbol will expand to an auto-gensym, which is guaranteed to have a unique
name that doesn’t clash with any other symbols. Macroexpansion shows the result:

user=> (macroexpand-1 '(debug (println "hello")))
(clojure.core/let [result__6__auto__ (println "hello")]
 (clojure.core/println "Evaluating:" (quote (println "hello")))
 (clojure.core/println "Result:" result__6__auto__))

Writing Macros | 71

1. Technically, you can prevent evaluation of function arguments by wrapping each argument in an anonymous
function, but this is syntactically cumbersome.

The debug macro also contains a clever trick: the “quote-unquote” in '~expr. This allows
the expansion to print the literal code of expr without evaluating it.

Using Macros
Because macros are written in Clojure, they must be loaded differently in the Clojure‐
Script compiler. To reference a macro from another namespace, add it to the ns decla‐
ration using the :require-macros form. For example:

(ns my-project.main
 (:require-macros [my-project.foo :as foo]))

(foo/my-macro)

This assumes that a Clojure source file is available on the classpath at my_project/
foo.clj containing defmacro foo.

With the exception of the ns declaration, you generally do not need to think about
whether you are calling a function or a macro in ClojureScript code. Many of the core
flow-control structures of ClojureScript are implemented as macros (many of the core
ClojureScript macros are actually the same as the core Clojure macros, invoked directly
by the ClojureScript compiler!). The flow-control macros do not behave exactly like
functions, because they can cause some of their arguments not to be evaluated. But well-
written macros generally follow the behavior you expect: for example, ClojureScript’s
and and or macros are “short-circuiting” just like the Boolean operators in JavaScript.

When to Write Macros
The first answer to “When should I write a macro?” is usually “Don’t!” Macros are the
most powerful feature of a Lisp-like language, and the easiest to misuse. In general, you
should always use functions and values as the primary units of abstraction in your code.
Typically you only need macros in three cases:

1. To do things functions cannot do. For example, the and conditional operation can‐
not be written as a function, because it needs to prevent evaluation of some of its
arguments. Macros can control when and how their arguments are evaluated.1

2. To add a layer of syntactic sugar. For example, the when macro doesn’t do anything
different from what you can already accomplish with if and do, but it makes the
syntax shorter and easier to read.

72 | Chapter 8: Macros

3. To improve performance. Because macros are evaluated during compilation, they
can potentially convert an expression into a more-efficient form before it reaches
the compiler. The ClojureScript compiler uses macros internally to produce more
efficient code, but you are unlikely to encounter this situation in everyday
programming.

Summary
Macros are an extremely powerful language tool, so powerful that they are rarely needed
in everyday programming. However, for advanced tasks, such as defining new control
structures or embedding domain-specific languages, they can be invaluable. This chap‐
ter has barely scratched the surface of what macros can do. For more examples, refer to
books about Clojure. For even deeper exploration of macros, look to books on Common
Lisp, such as Paul Graham’s classic On Lisp, available free online. Note that most other
Lisps use the comma character instead of tilde for unquote.

Summary | 73

http://www.paulgraham.com/onlisptext.html

CHAPTER 9

Development Process and Workflow

At the beginning of the book, we introduced Leiningen with lein-cljsbuild as an easy way
to get started with ClojureScript. However, it is far from being the only way to work with
ClojureScript.

This chapter will give a brief overview of some alternative means of installing Clojure‐
Script (including the cutting-edge development branch), as well as instructions on how
to use the more low-level tools included with ClojureScript to compile manually or script
your own personal workflow. It will also include some pointers to more advanced fea‐
tures of Leiningen that you may find useful for particular tasks.

Most importantly, perhaps, it also includes a discussion of the ClojureScript browser
REPL, which you can use for interactive coding in a live browser environment.

Installing ClojureScript
Leiningen works by referencing the ClojureScript JAR file directly from a public Maven
repository (via a local cache on your computer, of course). The Maven release, however,
does not include some of the command-line tools and tests included in the source re‐
lease.

In addition, the source release includes cutting-edge features from the master Git
branch, whereas the Maven repository will only contain the latest milestone releases.
For most production or educational work, the milestone releases are desirable, but bug
fixes are often available much sooner on the master branch. If you’re developing a Clo‐
jureScript library or tools for working with ClojureScript, you should consider testing
your code on the master branch frequently for advance warning of any incompatibilities,
so you can have them sorted out before the next milestone release.

There are two ways of obtaining the ClojureScript source code: checking out directly
from Git, and downloading a zip or tar archive from GitHub.

75

Checking Out from Source Control
Start up a command line, and navigate to the directory where you would like to install
ClojureScript. Then, just execute the following Git command to clone the repository:

git clone https://github.com/clojure/clojurescript.git

By default, Git will check out the most recent code from the master branch into a di‐
rectory called clojurescript. If you want to run the bleeding-edge development ver‐
sion of ClojureScript, nothing else is required. However, you might wish to use a tagged
milestone release, for greater reliability. (Although broken code is rarely checked in to
master, it can happen on occasion).

To see a list of available tags, just use the git tag command. At the time of this writing,
the most recent tag is r1450. To check out the tagged code, run a Git checkout on the
tag. For example:

git checkout r1450

Your “clojurescript” directory will now contain the r1450 version of ClojureScript.

Downloading a Compressed Archive
GitHub provides the capability to download the repository as a zip or tar file, which
does not require you to install the git program itself. The easiest place to do this is from
the GitHub tags view, located here. This page lists all the tagged versions of ClojureScript;
each is a hyperlink to a zip file. Hovering over the link will also reveal a link to a tar
archive. Click the most recent tag to download that version. If you wish to download
the latest master branch, visit this page and click “download as zip” or “download as
tar.gz”.

Extracting the downloaded file will create a directory that contains the entire Clojure‐
Script repository, which is everything you need to get started using ClojureScript. You
may wish to rename the directory to something simpler (such as “clojurescript”), instead
of the default name, which includes the full repository name and commit hash ID.

Whether you installed via Git or archive, you should have ended up with a directory
somewhere on your system containing the ClojureScript distribution. A common prac‐
tice is to set up a CLOJURESCRIPT_HOME environment variable pointing to this directory,
for convenience. The installation directory will be referred to as CLOJURESCRIPT_HOME
throughout the rest of this chapter.

76 | Chapter 9: Development Process and Workflow

https://github.com/clojure/clojurescript/tags
https://github.com/clojure/clojurescript/downloads

1. At the time of this writing, the command-line ClojureScript tools have not been tested on the Cygwin Unix
environment for Windows. We recommend either running a Linux virtual machine or following the Windows
installation instructions.

Installing Dependencies
Before you can use ClojureScript, you will need to download and install ClojureScript’s
dependencies.

For Unix-based systems (including OS X), ClojureScript provides a script that makes
the process easy. Just navigate to the CLOJURESCRIPT_HOME directory you just set up, and
run the bootstrap script:

./script/bootstrap

This will automatically download and install everything else ClojureScript needs to run.

Unfortunately there is no automatic bootstrap script for Windows users. Instead, you
must install ClojureScript’s dependencies yourself.1

These instructions may change over time as features are added to ClojureScript, so rather
than committing them to print, you should look them up on the Windows installation
wiki page on the ClojureScript GitHub site.

The Built-In Tools

Command-Line Compilation
ClojureScript includes a command-line tool for compiling *.cljs files to *.js files: the
cljsc or cljsc.bat script (depending on platform) located in ClOJURESCRIPT_HOME/
bin. It is a common practice to add CLOJURESCRIPT_HOME/bin to your system’s exe‐
cutable PATH, so you can easily run cljsc from anywhere.

The command takes two arguments. The first is the path of either a single *.cljs file or
a directory containing *.cljs files (in which case they will all be compiled together). The
second argument is a string representation of the ClojureScript compiler options map,
and should be enclosed in single quotes. Invoking cljsc looks something like this:

cljsc my/src/dir '{:optimizations :advanced, :output-to "out.js"}'

Note that you’ll definitely want to specify an :output-to key in the compiler options;
if you don’t, the entire compiled output will be dumped to standard out, which in most
cases is not what you want (although it can be useful, on occasion, as part of a longer
scripted compilation chain).

The Built-In Tools | 77

https://github.com/clojure/clojurescript/wiki/Windows-Setup

Clojure REPL
If you just want to get started with a Clojure REPL, but with all the ClojureScript classes
loaded on the classpath and ready to go, you can use the script/repl (or script/
repl.bat for Windows) script in CLOJURESCRIPT_HOME. Launching it will start a basic
Clojure REPL, but with everything you need to use ClojureScript already loaded into
the classpath.

ClojureScript REPL
If all you want to do is run ClojureScript itself in a headless (nonbrowser) REPL, the
fastest way to get started is to run the script/repljs script (script/repljs.bat for
Windows), which launches straight into a ClojureScript REPL running in the headless
Rhino JavaScript interpreter. You won’t have access to any browser-specific features, but
will be able to experiment freely with the language itself, as well as its standard libraries.

The Browser REPL
One of the main benefits of using a language from the Lisp family is the dynamic, highly
interactive development workflow. However, since ClojureScript does not natively sup‐
port the eval function, it requires the support of a Clojure runtime running the Clo‐
jureScript compiler to compile forms for execution in a REPL.

For local REPLs (such as the Rhino REPL), this is easy: the REPL just runs in the same
JVM/Clojure process as the ClojureScript compiler and hands off forms for compilation.
To achieve the same effect in the browser, however, requires that there be some sort of
communication channel between the browser’s JavaScript runtime environment, and
the ClojureScript compiler running in a JVM.

Therefore, there are two parts to the ClojureScript browser REPL (often abbreviated
bREPL), which operate in a client/server configuration. The bREPL server runs in the
same JVM process as the ClojureScript compiler and exposes a REPL for developer
interaction. The bREPL client runs in ClojureScript in the browser itself, and maintains
a long-poll connection to the server so it can receive push messages (Figure 9-1).

Whenever you type a form in the bREPL, the server feeds it to the ClojureScript compiler
and pushes the emitted JavaScript code to the client. There, it is evaluated in the browser’s
JavaScript context, where it may cause side effects that will be visible in the browser
window. The return value of the expression is stringified (using the ClojureScript pr-str
function) and sent back to the bREPL, where it is printed out as the expression’s return
value.

78 | Chapter 9: Development Process and Workflow

Figure 9-1. The ClojureScript Browser REPL

Setting Up the Browser REPL
Needless to say, this does require a bit of configuration—not only is it necessary to start
the bREPL server, but you must also initiate the bREPL on the client side to establish
the client/server connection.

Unfortunately, there is also one more requirement to use the browser REPL. Due to the
restrictions browsers enforce to prevent cross-site scripting attacks, and the fact that the
bREPL runs on localhost, the client page must also run on localhost. This means
that, unlike the examples presented earlier in this book, you can’t just create a static
HTML page referencing your ClojureScript code and load it from a file: URL. Instead,
you must serve the client page from an actual HTTP server running on localhost.

The most straightforward way to do this is to set up your Leiningen project to include
a Ring application running on an embedded Jetty web server, and use Compojure to
configure it to serve HTML files from the resources/public directory. Ring is a low-
level HTTP web application library with wide adoption in the Clojure community. It is
used as the foundation for most Clojure web applications. You can learn about it on its
GitHub page. Compojure is a popular web routing library for Ring that makes it easy to
configure web routes. Its page is here.

Although any technique for serving resources from a localhost address will work, we
will use Ring and Compojure since they are relatively easy to set up, and are by far the
most popular ways to set up a Clojure web app.

Once you’re set up to serve resources, all you need to do is start the Ring server at the
beginning of your development session, and you can serve up the HTML files as you
work on them just as you did when referencing the files statically.

The Browser REPL | 79

http://bit.ly/QTxucf
http://bit.ly/PP4gQU

Serving your HTML via Ring and Compojure

Modify your Leiningen project (or create a new one) so the project.clj includes
Compojure and the Ring-Jetty adapter as dependencies. It should look something like
the following:

(defproject brepl-hello "0.1.0-SNAPSHOT"
 :plugins [[lein-cljsbuild "0.2.7"]]
 :dependencies [[org.clojure/clojure "1.4.0"]
 [org.clojure/clojurescript "0.0-1450"]
 [compojure "1.1.0"]
 [ring/ring-jetty-adapter "1.1.1"]]
 :source-paths ["src/clj"]
 :cljsbuild {
 :builds [{
 :source-path "src/cljs"
 :compiler {
 :output-to "resources/public/brepl-hello.js"
 :optimizations :whitespace
 :pretty-print true}}]})

Then, at a Clojure REPL, you can start a Ring server configured to serve resources from
the resources/public directory on port 3000:

(use 'ring.adapter.jetty)
(use 'compojure.route)
(run-jetty (resources "/") {:port 3000 :join? false})

You can verify that the server is working by placing a file (for example, test.html) in
resources/public, then hitting http://localhost:3000/test.html in your browser.
You should see the contents of test.html served correctly.

If you don’t want to start a Clojure REPL every time you start a server, you can use the
lein-ring Leiningen plug-in, which allows you to add a server configuration directly to
your project.clj, and start it by running lein ring server on the command line.
See the lein-ring GitHub page for configuration instructions.

Starting the bREPL server

Next, you must start the server component of the bREPL. This can be done from within
a Clojure REPL (which you should already have open, after starting the Ring server).
lein-cljsbuild also provides some convenience functions for starting a browser REPL
server, which are covered later in “Additional lein-cljsbuild Features” (page 82).

From the Clojure REPL, run the following forms to start the browser REPL:

(require 'cljs.repl)
(require 'cljs.repl.browser)
(cljs.repl/repl (cljs.repl.browser/repl-env))

80 | Chapter 9: Development Process and Workflow

https://github.com/weavejester/lein-ring/

This will drop you into a ClojureScript REPL. Note that if you try to evaluate a form at
this point, rather than returning a response, the REPL will simply hang. This is because
we haven’t yet configured the client side of the bREPL, which is required to actually
evaluate the compiled JavaScript.

By default, the bREPL server runs on port 9000. If for some reason you need to run it
on a different port, you can specify a :port key and value when creating a bREPL
environment with the repl-env function:

(cljs.repl/repl (cljs.repl.browser/repl-env :port 8888))

Configuring the bREPL client

To connect to the bREPL server from within a browser, you must invoke the clo
jure.browser.repl/connect ClojureScript function in your client-side code. Typically,
the easiest way to do this is to add an invocation to it as a top-level form in a ClojureScript
namespace.

You can add it to an existing namespace, or create a new one as shown:

(ns brepl-hello
 (:require [clojure.browser.repl :as repl]))

(repl/connect "http://localhost:9000/repl")

If you changed the port on which you’re running the bREPL server, you’ll need to reflect
that change in the URL passed to the connect function.

At the command line, compile the file with lein cljsbuild once. If your project.clj
is configured like the example given above, this will emit a resources/public/brepl-
hello.js file. Include it on an HTML page:

<!DOCTYPE html>
<html>
<head><title>ClojureScript bREPL Hello World</title></head>
<body>
 <script type="text/javascript" src="brepl-hello.js"></script>
</body>
</html>

If your Ring server and bREPL server are running, you can visit localhost:3000/
brepl-hello.html in your browser, and upon loading, the bREPL client will establish
a connection to the bREPL server and you can start evaluating forms. If you had already
entered a form prior to starting the bREPL client, the REPL should have come “unstuck”
as soon as you started the client and an execution environment became available.

To see an example of a live update to the HTML page, enter the following form at the
browser REPL:

ClojureScript:cljs.user> (js/alert "Hello from bREPL!")

The Browser REPL | 81

You should see a JavaScript alert box pop up from the web page. Congratulations! You
now have a live REPL running against a real web page.

If you like, you can start your browser’s debugging console and watch the bREPL send
messages back and forth via AJAX requests as you type forms at the REPL.

Stability of the bREPL

Unfortunately, the browser REPL isn’t as stable as it could be, although it is getting better.
If it hangs, it’s easy enough to restart, usually by refreshing the browser, but this can get
annoying if you’ve already established state in the browser environment that you’re work‐
ing with.

A few tips to help you avoid bREPL crashes and lockups:

• Always start the bREPL server before loading the HTML page containing the bREPL
client.

• Don’t enter any expressions that return something that’s not easily printable. These
include infinite or very long sequences, very large data structures, and native browser
objects that don’t have a reasonable string representation.

• Don’t enter any expressions that wipe the contents of the page (such as docu
ment.write). If you erase the page, it will also remove all scripts on the page and the
bREPL client will disappear, causing the bREPL to hang.

• Try not to enter any expressions that will take longer than a few seconds to process.
Some browsers will assume that the script has become unresponsive and will behave
erratically, or prompt you to terminate it.

Additional lein-cljsbuild Features
lein-cljsbuild provides several features beyond the basic functionality we have covered
so far.

Launching a Browser REPL
As you may have noticed while working through the browser REPL section above,
starting up a Clojure REPL just to start a bREPL server can be annoying, and tedious if
you have to do it often.

To alleviate this problem, lein-cljsbuild includes the repl-listen task, which will start
a bREPL server and drop you into a ClojureScript REPL in a single step. Run it using
this command:

lein trampoline cljsbuild repl-listen

82 | Chapter 9: Development Process and Workflow

(Recall that the trampoline task is necessary for Leiningen to receive interactive input.)

This command will start the bREPL server and a ClojureScript REPL in your current
console. Note that you will still need to configure the bREPL client side as discussed
above—the REPL started with repl-listen will not be functional until you’ve loaded
a browser page with the client side code to establish the client-server connection.

Custom bREPL Launch Commands
lein-cljsbuild also offers a repl-launch command which, in addition to starting the
bREPL server, also launches a browser for the bREPL client.

repl-launch does essentially the same thing as repl-listen, but also executes shell
commands defined in the :repl-launch-commands key in the :cljsbuild configura‐
tion of project.clj. By specifying a vector representing a shell command that launches
a browser, you can launch both the bREPL client and server with the same command.
For example:

(defproject my-project "1.0.0-SNAPSHOT"
 ;; other leiningen configuration items
 :cljsbuild {
 ;; other configuration items & build configurations
 :repl-launch-commands {"firefox" ["firefox" "page.html"]}})

If you have the “firefox” binary on your system’s PATH, you can run lein trampoline
cljsbuild repl-launch firefox. The final parameter, firefox, will be looked up in
the :repl-launch-commands map, and the associated command (firefox page.html)
will be executed, launching Firefox and opening the specified page.

Of course, you are still responsible for ensuring that the page you specified (in this case,
page.html) calls the clojure.browser.repl/connect function to launch the client side
of the bREPL.

Hooking Into Default Leiningen Tasks
Normally, ClojureScript-specific build actions are triggered using the lein

cljsbuild command, which pertains exclusively to ClojureScript code. However, for
some projects, it’s desirable to set up Leiningen to build everything at once.

To do this, it is necessary to add hooks to Leiningen’s default tasks so that when you run
lein compile, lein clean, or lein jar, the appropriate lein-cljsbuild plug-in task is
also executed. lein-cljsbuild already includes these hooks; all you have to do is add them
to the :hooks configuration key at the root of your project.clj:

(defproject my-project "1.0.0-SNAPSHOT"
 ;; ...
 :hooks [leiningen.cljsbuild])

Additional lein-cljsbuild Features | 83

Once you’ve added this line, invoking lein compile will kick off a ClojureScript com‐
pilation (the same as lein cljsbuild once). lein clean will also run lein cljsbuild
clean, and lein jar will add ClojureScript source to the JAR if it’s configured for that
cljs build (see “Including ClojureScript in JAR Files” (page 85)).

Testing ClojureScript Code
There are a variety of ways to test ClojureScript code. lein-cljsbuild does not attempt to
dictate a particular testing methodology or tools, but instead provides a generic hook
for executing tests. By specifying a map of test configurations in a :test-commands key
in the :cljsbuild configuration map, you can set up lein-cljsbuild to invoke any
command-line sequence after compilation by invoking lein cljsbuild test.

For example, if you have ClojureScript tests that compile to a file called resources/
test/test.js, you might wish to run the script in a headless browser such as Phan‐
tomJS. At the command line, you would run them by executing phantomjs resources/
test/test.js. To set up the same script to run within Leiningen, do something like
this:

(defproject my-project "1.0.0-SNAPSHOT"
 ;; other leiningen configuration items
 :cljsbuild {
 ;; other configuration items & build configurations
 :test-commands {"unit" ["phantomjs" "resources/test/test.js"]}})

This will create a test configuration (named “unit”), so that when you run lein
cljsbuild test it will first compile the ClojureScript, then execute the phantomjs
resources/test/test.js shell command in a single step. Because the test command
is just a system shell invocation, you can replace it with any command you like, making
it flexible enough to use any testing runtime or framework you might choose. The
downside is, of course, that you’ll have to set up the test execution code yourself. But as
long as you can run the tests from the command line, you can add them to the Leiningen
test cycle using this technique.

The :test-commands configuration also supports capturing the stdout and stderr
output streams from commands that it runs. To do this, add :stdout or :stderr key/
value pairs after the command sequence:

(defproject my-project "1.0.0-SNAPSHOT"
 ;; ... other leiningen configuration items ...
 :cljsbuild {
 ;; ... other configuration items & build configurations ...
 :test-commands {"unit" ["phantomjs" "test.js" :stdout "test.out.txt"
 :stderr "test.err.txt"]}})

With this configuration, output from the phantomjs process will be redirected to the
test.out.txt and test.out.err files.

84 | Chapter 9: Development Process and Workflow

http://phantomjs.org/
http://phantomjs.org/

Note that you can also capture the output of :repl-launch-commands in the same way.

Including ClojureScript in JAR Files
If you’re creating a ClojureScript library that you’d like to be available for other projects,
it’s a good idea to bundle it as a JAR file so that your clients can just add the JAR to their
ClojureScript compiler classpath and start referencing your namespaces in their Clo‐
jureScript code.

By default, however, Leiningen does not include *.cljs files when creating a JAR file. To
tell it to do so, you must first enable the lein-cljsbuild Leiningen hooks as described
above.

Then, you must add the :jar true key to the ClojureScript build configurations you
want included in the JAR file. When added, your project.clj looks something like
this:

(defproject my-project "1.0.0-SNAPSHOT"
 ;; ... other leiningen configuration items ...
 :hooks [leiningen.cljsbuild]
 :cljsbuild {
 ;; ... other cljsbuild configuration items ...
 :builds [{:source-path "src/cljs"
 ;; ... other build options ...
 :jar true}]})

Once you’ve added these configuration items, you can build a JAR like you normally
would in Leiningen, with lein jar. The emitted JAR file will contain all the *.cljs files
specified in the build configuration, making them available on the classpath for any
program that includes the JAR.

Compiling the Same Code as Clojure and ClojureScript
If you have code that is both valid Clojure and ClojureScript, lein-cljsbuild supports
cross-compiling the code using its crossovers feature. Obviously, such code must consist
only of the subset of Clojure that is also valid ClojureScript, and vice versa. It must not
use any of the interop forms from either language, nor can it rely on any platform-specific
features.

To use crossovers, specify a :crossovers key in the :cljsbuild configuration map. The
value should be a vector of Clojure namespaces, which will then also be compiled as
ClojureScript.

So, for example, if you have a namespace called myapp.shared that you want to be
available as both Clojure and ClojureScript code, your project.clj might look some‐
thing like this:

Additional lein-cljsbuild Features | 85

(defproject myapp "1.0.0-SNAPSHOT"
 ;; ... other leiningen configuration items ...
 :cljsbuild {
 ;; ... other cljsbuild configuration items & builds ...
 :crossovers [myapp.shared]})

Under the hood, lein-cljsbuild implements this feature by literally copying the *.clj files
containing the specified namespaces, giving them a *.cljs extension, and placing them
in a interim directory, which is added to the ClojureScript source path. By default, it
is .crossover-cljs. If you wish to use a different directory for this purpose, you may do so
by specifying the desired path as the value of a :crossover-path key in
the :cljsbuild configuration map. If you set :crossover-jar to true, the copied cross‐
over *.cljs files will also be added when building JAR files (if lein-cljsbuild is configured
to do so, as described in the previous section).

There is one additional caveat when using crossovers: code that contains macros. Be‐
cause ClojureScript macros are actually written in Clojure, it isn’t possible to simply
copy Clojure files that contain macros to ClojureScript, and thus they won’t work as
crossover code as outlined above. lein-cljsbuild does provide some (arcane) tools for
resolving this situation. Refer to lein-cljsbuild’s documentation on the feature here.

86 | Chapter 9: Development Process and Workflow

https://github.com/emezeske/lein-cljsbuild/blob/master/doc/CROSSOVERS.md

CHAPTER 10

Integration with Clojure

ClojureScript, as we have seen, is targeted primarily at web browsers. Although this
makes it possible to design complete applications that run in a browser, it is even more
powerful when combined with a web server running Clojure on the JVM. Clojure’s literal
data structures provide a rich data format for communication between a client and
server, and with a little care you can even share code between the two languages.

AJAX
In spite of its original definition, Asynchronous JavaScript and XML, AJAX has become
a catch-all term for rich client applications running in web browsers, communicating
with a web server. The Google Closure Library provides the goog.net.XhrIo class to
support asynchronous HTTP requests to a server across many different browser
implementations.

Here is a simple example function that performs an HTTP POST request to a server:

(ns example
 (:require [goog.net.XhrIo :as xhr]))

(defn receiver [event]
 (let [response (.-target event)]
 (.write js/document (.getResponseText response))))

(defn post [url content]
 (xhr/send url receiver "POST" content))

The goog.net.XhrIo/send function takes a URL, a callback function, a method name,
and an optional request body. When the server responds to the request, it will invoke
the callback function on an object from which you can retrieve the status code, headers,
and response body sent by the server.

87

1. http://bit.ly/TdqTtU

The goog.net.XhrIo class and the associated goog.net.XhrManager class provide many
more options for controlling HTTP server requests. Covering all of them is outside the
scope of this book, but for more information you can consult the Google Closure
Library1 or Chapter 7 of Michael Bolin’s Closure: The Definitive Guide (O’Reilly). In
addition, some ClojureScript libraries are growing to support easier access to the HTTP
features in the Google Closure Library; see Appendix A for details.

The Reader and Printer
Although they started with XML, many web browser applications now use JSON (Java‐
Script Object Notation) for communication between client and server. You can use JSON
in ClojureScript as well: the Google Closure Library class goog.json.Serializer can
serialize data to and from JSON, and there are several JSON libraries for Clojure.

However, JSON is a feeble data format when compared with Clojure’s own literal syntax.
It cannot distinguish between strings and keywords, and its maps (objects) only support
strings as keys. Almost any application using JSON as a data format will eventually need
to translate between native application data structures and their “lossy” JSON repre‐
sentations.

Clojure’s data structures, on the other hand, are rich enough to represent almost any
application domain, and they have a string representation that is just as compact as
JSON. Furthermore, Clojure’s literal data syntax is extensible, which we will explore later
in this chapter.

Table 10-1 highlights the differences between JSON and Clojure data.

Table 10-1. JSON and Clojure data differences

Feature JSON Clojure

Numbers Yes Yes

Strings Yes Yes

Symbols - Yes

Keywords - Yes

Lists (Arrays) Yes Yes

Maps with string keys Yes Yes

Maps with arbitrary keys - Yes

Sets - Yes

Metadata - Yes

Extensibility - Yes

88 | Chapter 10: Integration with Clojure

http://bit.ly/TdqTtU

Like any LISP-like language, both Clojure and ClojureScript have a reader, a function
that transforms a stream of characters into data structures such as lists, maps, and sets.
The ClojureScript compiler uses the same reader as the Clojure language runtime. The
Clojure reader (invoked through the functions read and read-string) is implemented
in the Java language, so it is not available to ClojureScript programs. But ClojureScript
has its own reader, implemented in ClojureScript, which is designed to be fully com‐
patible with the Clojure reader.

The ClojureScript reader is invoked through the function cljs.reader/read-string.
As the name suggests, it takes a string argument and returns a single data structure read
from that string:

(ns example (:require [cljs.reader :as reader]))

(reader/read-string "{:a 1 :b 2}")
;;=> {:a 1, :b 2}

The opposite of read-string is the built-in ClojureScript function pr-str, or “print to
string,” which takes a data structure and returns its string representation:

(pr-str {:language "ClojureScript"})
;;=> "{:language \"ClojureScript\"}"

Notice that pr-str automatically escapes special characters and places strings in double
quotes, which the print and println functions do not:

(println {:language "ClojureScript"})
;; {:language ClojureScript}
;;=> nil

In general, the print, println, and str functions are used for human-readable output,
whereas the pr, prn, and pr-str functions are used for machine-readable output.

Example Client-Server Application
Building a complete client-server application in Clojure and ClojureScript requires some
knowledge of Clojure web libraries, which are outside the scope of this book. But the
following example should give you an idea of how easy it is to communicate between
the two languages.

This simple application will allow you to type Clojure expressions into a web form,
evaluate them on the server, and display the result back in the web page.

Create a new project directory with the following project.clj file:

(defproject client-server "0.1.0-SNAPSHOT"
 :plugins [[lein-cljsbuild "0.2.7"]]
 :dependencies [[org.clojure/clojure "1.4.0"]
 [org.clojure/clojurescript "0.0-1450"]
 [domina "1.0.0"]
 [compojure "1.1.0"]

Example Client-Server Application | 89

2. http://bit.ly/QiaNjY

3. http://bit.ly/QiaS7h

4. http://bit.ly/SQL6sZ

 [ring/ring-jetty-adapter "1.1.1"]]
 :source-paths ["src/clj"]
 :main client-server.server
 :cljsbuild {
 :builds [{
 :source-path "src/cljs"
 :compiler {
 :output-to "resources/public/client.js"
 :optimizations :whitespace
 :pretty-print true}}]})

Our application will use the Clojure libraries Ring2 and Compojure3 for the server side
of the application, and the ClojureScript library Domina4 for the client. Here is the server
implementation, in the file src/clj/client_server/server.clj:

(ns client-server.server
 (:require [compojure.route :as route]
 [compojure.core :as compojure]
 [ring.util.response :as response]
 [ring.adapter.jetty :as jetty]))

(defn eval-clojure [request]
 (try
 (let [expr (read-string (slurp (:body request)))]
 (pr-str (eval expr)))
 (catch Throwable t
 (str "ERROR: " t))))

(compojure/defroutes app
 (compojure/POST "/eval" request (eval-clojure request))
 (compojure/GET "/" request
 (response/resource-response "public/index.html"))
 (route/resources "/"))

(defn -main []
 (prn "View the example at http://localhost:4000/")
 (jetty/run-jetty app {:join? true :port 4000}))

Next, the client side, at src/cljs/client_server/client.cljs:

(ns client-server.client
 (:require [goog.net.XhrIo :as xhr]
 [domina :as d]
 [domina.events :as events]))

(def result-id "eval-result")
(def expr-id "eval-expr")

90 | Chapter 10: Integration with Clojure

http://bit.ly/QiaNjY
http://bit.ly/QiaS7h
http://bit.ly/SQL6sZ

(def button-id "eval-button")
(def url "/eval")

(defn receive-result [event]
 (d/set-text! (d/by-id result-id)
 (.getResponseText (.-target event))))

(defn post-for-eval [expr-str]
 (xhr/send url receive-result "POST" expr-str))

(defn get-expr []
 (.-value (d/by-id expr-id)))

(defn ^:export main []
 (events/listen! (d/by-id button-id)
 :click
 (fn [event]
 (post-for-eval (get-expr))
 (events/stop-propagation event)
 (events/prevent-default event))))

Finally, we need an HTML page to contain the application:

<html>
 <head>
 <title>ClojureScript Client-Server Example</title>
 </head>
 <body>
 <h1>ClojureScript Client-Server Example</h1>
 <form id="eval-form">
 <p><label for="eval-expr">
 Enter a Clojure expression to evaluate on the server:
 </label></p>
 <p><input id="eval-expr" name="eval-expr" type="text" size="70" /></p>
 <p><input id="eval-button" type="button" value="Eval" /></p>
 </form>
 <p>The result:</p>
 <pre id="eval-result">
 </pre>
 <script src="/client.js" language="javascript"></script>
 <script type="text/javascript" language="javascript">
 client_server.client.main()
 </script>
 </body>
</html>

This example is slightly different from most of the HTML in this book: the <script>
tags are at the bottom of the file rather than in the <head>. This is necessary because the
main function we defined in ClojureScript depends on the DOM elements for the form
already being available. If the script tags were at the top of the file, there would be no
reported errors but the event handler would never get attached to the Eval button and
the application wouldn’t work.

Example Client-Server Application | 91

5. This was discussed in a thread on the Google Closure Library mailing list.

The Google Closure Library does not have an “on DOM ready” event as is commonly
found in other JavaScript libraries. This was a deliberate choice for performance reasons:
web browsers load JavaScript synchronously, blocking other rendering tasks. If you have
a large <script> at the top of your HTML file, the browser will not render anything
until that JavaScript has been downloaded, parsed, and evaluated. The Google Closure
development team actually advocates placing <script> tags inline with HTML, just
after the elements they depend on.5 This approach yields maximum responsiveness but
is complicated to implement. Placing <script> tags at the end of the document is an
easier alternative that works consistently and is fast enough for most applications.

Once you have created the files for this application, you can compile it with lein
cljsbuild once and run it with lein run. Visit http://localhost:4000/ in your web
browser and you should see an application page like Figure 10-1.

Figure 10-1. Screen shot of the demo application for this chapter

You can type an expression into the text box and click the Eval button to evaluate it. The
result will appear below the form. Remember these expressions are being evaluated on
the server, so they are in Clojure, not ClojureScript. You can see that by evaluating
expressions that are only valid on the JVM, such as a BigInteger calculation:

(.pow (BigInteger. "2") 128)

Obviously this is a naïve implementation, and completely insecure. But it presents an
idea of the possibilities of communicating between a client and server written in the
same language, using the native data structures of that language as the data format.

92 | Chapter 10: Integration with Clojure

http://bit.ly/SXAKth

You can even send ClojureScript expressions to the server, compile them with the
ClojureScript compiler, and return JavaScript source code back to the browser for eval‐
uation. ClojureScript’s browser-attached REPL uses this technique, as do some experi‐
mental hybrid development environments.

Session is an experimental browser-based REPL by Kovas Boguta;
source code and a demo video are available. Himera, by Michael Fogus,
presents the ClojureScript compiler as a web service; source code and
a demo application are available.

Extending the Reader
Clojure 1.4.0 added extensibility to the reader in the form of tagged literals. A tagged
literal is written as a hash (#) sign, followed by a symbol, followed by any other Clojure
data structure. When the reader encounters a tagged literal, it looks up the tag in a table
to find its associated reader function, then invokes that function to the following data
structure as an argument. User code can define new tags and override the behavior of
existing tags.

Clojure has a few built-in reader literals already, with more likely to come. For example,
the #inst tag specifies an instant in time as a string in RFC 3339 format, like this:

#inst "2012-07-19T18:46:35.886-00:00"

The key feature of tagged literals is that they specify a precise literal representation but
allow for different in-memory representations. The string after #inst must conform to
RFC 3339, but Clojure on the JVM can parse it into one of several classes, such as
java.util.Date or java.util.Calendar. The ClojureScript reader will parse the same
instant literal into a JavaScript Date. When constructing a client-server application using
both Clojure and ClojureScript, you no longer need to worry about converting dates to
and from strings: you can print and read dates like any other native Clojure data
structure.

User-Defined Tagged Literals
You can define your own reader literals as well. User-defined tags must be namespace-
qualified symbols; all non-qualified symbols are reserved for future Clojure language
extensions.

In Clojure on the JVM, the special file data_readers.clj contains a map from tag
symbols to the fully-qualified names of functions that read them. You can also locally
override the tagged literal functions by rebinding *data-readers*. In ClojureScript,
you can add tagged literal functions with the cljs.reader/register-tag-parser!
function, which takes a tag symbol and a function.

Extending the Reader | 93

http://bit.ly/RUcLZ7
http://bit.ly/W1in7n
http://bit.ly/SVk1jP
http://bit.ly/RiBTG9
http://bit.ly/W1ib87

Keep in mind that tagged literal readers do not have access to the raw character stream.
The Clojure(Script) reader will read in the characters that follow the tag, interpret them
as a normal Clojure data structure, then invoke the tagged literal function on the data
structure. The function should return a value, which replaces the tagged data structure
in the final result.

Tagged literals are still a new feature in the Clojure language ecosystem, and support is
evolving. Right now there is no well-defined API for printing tagged literals (in Clojure
on the JVM, you can extend print-method to new types).

Sharing Code
As we have mentioned several times throughout this book, one of ClojureScript’s
strengths is that it is the same language as Clojure. As a result, you can share code
between Clojure and ClojureScript. This is particularly powerful for client-server ap‐
plications on the web. The same code can run on the client, compiled into JavaScript, as
on the server, compiled into JVM bytecode.

As we have also stated repeatedly, shared code has to conform to a common subset of
the features available in both environments. Code that does any of the following will
not be shareable:

• Calls methods or classes of the host environment

• Interacts with host-environment resources such as the DOM

• Uses features that are only implemented in one host environment (such as Clojure’s
refs and vars, which ClojureScript does not support)

• Depends on behavior peculiar to the host environment (such as JavaScript’s auto‐
matic conversion between strings and numbers)

Again, the point of ClojureScript is not to simulate Clojure and the JVM in a web browser.
Clojure and ClojureScript are the same language, ported to different platforms. Clojure
has been ported to other platforms, such as the .NET Common Language Runtime.
Intrepid developers have even started modifying the ClojureScript compiler to emit code
for other target languages including Scheme, Lua, and Objective C.

Techniques for sharing code between Clojure and ClojureScript are still evolving. In the
simplest case, one can simply copy or symlink code in two directories. The lein-
cljsbuild plug-in has a feature called crossovers to facilitate cross-language copying, as
described in Chapter 9. If you want more precise control over how your code is compiled,
you can invoke the ClojureScript compiler directly from Clojure. Future versions of
Clojure and ClojureScript will likely include some kind of conditional evaluation or
“feature expressions,” making it possible to maintain a single source file that targets
multiple host environments.

94 | Chapter 10: Integration with Clojure

In any case, the possibilities of having a unified language across servers and web browsers
are exciting. Consider some examples:

• The classic Model-View-Controller pattern, in which the Model can be mirrored
on both client and server

• Unit-testing client and server code in the same process

• Debugging client code before running it in a browser

Summary
Being able to work in the same language and data model in both web browsers and web
servers is the most compelling feature of ClojureScript. With a little care, most algo‐
rithmic or data-centric code can be made to work identically in Clojure and Clojure‐
Script. As both languages continue to develop, they will converge towards a common
core, making it even easier to write code that targets both environments.

Summary | 95

APPENDIX A

Libraries

Hopefully, this book has helped you to understand the basics of ClojureScript and how
it works. But in order to build a real ClojureScript application, you’ll need more than
the basics. You’ll need to manipulate the DOM. You’ll need to send and receive AJAX
requests and long-poll messages. You’ll need to do drawing and visualizations.

Any one of these topics can be (and is) the subject of its own book, and unfortunately
there isn’t room to cover them all adequately here. However, you already have all the
tools you need: with ClojureScript’s capability to interoperate with JavaScript, you can
access any JavaScript browser API, and consume any JavaScript library.

Additionally, despite the relative youth of ClojureScript, there is already a healthy crop
of libraries designed not only to be compatible with ClojureScript, but to follow Clo‐
jureScript idioms and fit seamlessly into your application. Here, we will briefly introduce
several of them to help give you an idea of the landscape.

ClojureScript’s Standard Library
Lots of things you might want to do are actually already included in ClojureScript. There
are many library namespaces available besides just cljs.core.

cljs.reader
We covered the reader in Chapter 10. Unlike Clojure’s reader, the ClojureScript
reader lives in a separate namespace.

clojure.set
Contains set manipulation functions such as union, intersection, difference,
etc.

97

clojure.string
Contains a variety of useful string manipulation functions, including split, join,
and replace.

clojure.walk
Contains tools for recursively walking and manipulating nested data structures in
a functional style.

clojure.zip
Contains an efficient implementation of zippers, a useful data structure for fully-
functional yet performant tree navigation and manipulation.

Google Closure Library
Although the Google Closure library isn’t itself written in ClojureScript, it is still ex‐
tremely easy to use from ClojureScript. In fact, it’s bundled with the ClojureScript dis‐
tribution, and ClojureScript’s standard library itself uses it. All you need to use it is
to :require the namespace you want—it’s already on your project’s compile classpath.

The library itself is quite large. It contains over 50 namespaces, ranging from basic low-
level functionality all the way up to elaborate UI widgets. Documentation can be found
here.

For ClojureScript, some pieces of the library are more useful than others. Components
written in a functional style (such as most of string, math, dom, and crypt) fit into any
ClojureScript application seamlessly.

Others, like most of the UI code, are written in a very object-oriented style that, while
completely usable from ClojureScript, are less convenient. These libraries will require a
bit more work to fit into a ClojureScript program cleanly, but can provide powerful
capabilities that would be extremely time-consuming to rewrite in pure ClojureScript.

Domina
Domina is a DOM manipulation library for ClojureScript aiming to provide basic DOM
manipulation capabilities in a convenient and idiomatic way. It is cross-browser, wrap‐
ping the DOM component of the Google Closure library.

It is loosely inspired by jQuery in that it supports easy querying to retrieve sets of nodes,
and its operations usually accept and return node sets. The major difference from JQuery
is that the concept of a “NodeSet” (called “DomContent” in Domina) is not a reified
object, but a polymorphic abstraction over a variety of native concrete types including
HTML NodeLists, individual nodes, arrays of nodes, XPath or CSS selections, etc.

In theory, this allows it to be more composable, allowing other libraries to supply new
operations on DomContent, or create implementations of it against new concrete types.

98 | Appendix A: Libraries

http://closure-library.googlecode.com/svn/docs/index.html
https://github.com/levand/domina

Enfocus
Enfocus is another excellent DOM manipulation and templating library. It focuses on
higher-level manipulations such as transformations, events, and animation effects, and
is heavily influenced by the popular Enlive templating library for Clojure.

Enfocus is intended to be complimentary to Domina—in fact, Enfocus builds its high-
level transformations on top of the lower-level features Domina provides.

Jayq
Jayq is a thin but quite complete wrapper for the extremely popular JQuery library for
JavaScript. It allows users to leverage JQuery’s DOM manipulation capabilities, cross-
browser compatibility, and large mindshare in ClojureScript.

If you are familiar and comfortable with JQuery, then Jayq is likely to be a good choice
for you.

C2
C2 is a powerful data visualization library for ClojureScript inspired by the excellent D3
JavaScript library. It provides mechanisms for making declarative mappings from your
ClojureScript data to interactive, dynamic visualizations such as charts, graphs, and
maps.

It supports a heavily data-driven approach, meaning that once a data binding is estab‐
lished between ClojureScript data structures and visual elements, the visual elements
can watch the data and update automatically based on changes.

If you intend to do any charting, graphing, or other graphical data representation in
ClojureScript, C2 is worth a very close look.

core.logic
Originally built for Clojure, core.logic is an extremely powerful logic/relational/declar‐
ative programming system that now supports ClojureScript as well. It is based on
miniKanren, a logic programming system for Scheme invented by Daniel Friedman,
William Byrd, and Oleg Kiselyov and explained in the wonderful book The Reasoned
Schemer (MIT Press).

Logic programming allows users to express a problem declaratively, letting the imple‐
mentation worry about the actual steps required to compute a solution. For certain
classes of problems, this approach can be extremely concise and elegant.

Enfocus | 99

http://ckirkendall.github.com/enfocus-site/
https://github.com/ibdknox/jayq
http://keminglabs.com/c2/
https://github.com/clojure/core.logic/

Although the learning curve for logic programming can be steep, exploring core.logic
is well worth it not just for the practical benefit to your programs, but as an educational
tool to help you think about software development itself in new ways.

100 | Appendix A: Libraries

About the Authors
Stuart Sierra and Luke VanderHart are Clojure/ClojureScript developers, members of
Clojure/core, and the authors of Practical Clojure (Apress, 2010). Stuart lives in New
York City. Luke lives in Maryland.

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	How to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction: Why ClojureScript?
	The Rise of Browser Applications
	The Rise of JavaScript
	The Need for a Better Language
	Introducing ClojureScript

	Chapter 2. Hello World
	Leiningen
	Installing Leiningen on OS X and Linux
	Installing Leiningen on Windows

	Using lein-cljsbuild
	Getting Started with the REPL
	Compiling a ClojureScript File to JavaScript
	Running ClojureScript in the Browser
	Other Capabilities of lein-cljsbuild

	Chapter 3. The Compilation Process
	Architecture
	Google Closure Compiler
	The Google Closure Library
	ClojureScript and Google Closure
	The Compilation Pipeline

	How to Compile
	Compiling ClojureScript

	Compilation in Depth
	Compilation Sources
	Compilation and Optimization Options
	Other Compilation Options

	Summary

	Chapter 4. ClojureScript Basics
	ClojureScript versus Clojure
	Expressions and Side Effects
	Syntax and Data Structures
	Symbols and Keywords
	Data Structures

	Special Forms and Definitions
	Functions
	Multi-Arity Functions
	Variadic Functions

	Local Bindings
	Destructuring

	Closures
	Flow Control
	Conditional Branching

	JavaScript Interop
	The js Namespace
	Methods and Fields
	Constructor Functions
	Scope of this
	Exceptions

	Summary

	Chapter 5. Data and State
	Primitives
	Strings
	Keywords
	Symbols
	Characters
	Numbers
	Booleans
	Functions
	nil

	Data Structures
	Collection Types
	Immutability
	Persistence

	Identity and State
	Atoms

	Chapter 6. Sequences
	The Sequence Abstraction
	Lazy Sequences
	Letting Go of the Head

	The Sequence API
	map
	reduce
	filter
	Other Useful Sequence Functions

	Chapter 7. Namespaces, Libraries, and Google Closure
	Namespaces
	Using Namespaces
	Using Namespaces Effectively
	The Implementation of Namespaces

	Advanced Compilation Mode
	Consuming Libraries
	ClojureScript Libraries
	JavaScript Libraries

	Creating Libraries
	For Consumption by ClojureScript
	For Consumption by JavaScript

	Chapter 8. Macros
	Code as Data
	Writing Macros
	Syntax-Quote
	Auto-Gensyms

	Using Macros
	When to Write Macros
	Summary

	Chapter 9. Development Process and Workflow
	Installing ClojureScript
	Checking Out from Source Control
	Downloading a Compressed Archive
	Installing Dependencies

	The Built-In Tools
	Command-Line Compilation
	Clojure REPL
	ClojureScript REPL

	The Browser REPL
	Setting Up the Browser REPL

	Additional lein-cljsbuild Features
	Launching a Browser REPL
	Custom bREPL Launch Commands
	Hooking Into Default Leiningen Tasks
	Testing ClojureScript Code
	Including ClojureScript in JAR Files
	Compiling the Same Code as Clojure and ClojureScript

	Chapter 10. Integration with Clojure
	AJAX
	The Reader and Printer
	Example Client-Server Application
	Extending the Reader
	User-Defined Tagged Literals

	Sharing Code
	Summary

	Appendix A. Libraries
	ClojureScript’s Standard Library
	Google Closure Library
	Domina
	Enfocus
	Jayq
	C2
	core.logic

	About the Authors

