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Preface

Have you ever wondered why the way we count differs greatly from the 
way modern-day electronic computers do? Or why there are 24 hours 
in a day, 60 minutes in an hour, etc.? How about who invented numbers 
and when they were invented, as well as why there are different kinds of 
numbers. Did you know that secret writings and cryptography date back 
to ancient civilizations? You will find the answers to these questions, and 
many more, in just the first few chapters of this book.

The primary purpose of this book is to serve as a supplementary text-
book for a mid- to upper-level university undergraduate course offered to 
science and engineering majors. The book contents are self-explanatory, 
and no prior knowledge of advanced mathematics or computer science is 
needed. While some chapters require much deeper reading and analysis 
than others, the book’s primary purpose is to expose the reader to the vast 
array of topics related to computation. This includes purely historical as 
well as the technical aspects of ancient and modern-day computing. The 
organization of the 31 chapters follows the historical timeline. Therefore, 
while from chapter to chapter the topics may appear to be quite unrelated, 
each chapter is “stand-alone” and does not have to be read in sequence. 
The book’s primary value is as a historical reference source in the field, 
together with brief technical explanations and examples.

The first 10 chapters address what might be considered historical accounts 
of counting and computing. It might surprise the reader to find that the 
ancient Greeks knew of the existence of numbers that cannot be measured. 
Also, it turns out that the modern-day numbers we call Arabic numerals 
actually have their origins in India. These and a number of historically 
interesting facts are discussed and explained, including examples from 
the original works of such renowned scholars as Pythagoras, Diophantus, 
Fibonacci, and many others.
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Subsequent chapters include the early computing devices, such as the 
abacus, Schickard’s calculating clock, the Pascaline, Babbage’s mechanical 
computers (the difference engine and the analytical engine), etc. Various 
parallel developments in mathematics are listed as well. These include 
solutions to algebraic equations, real and complex numbers, and Cantor’s 
unexpected result addressing the cardinalities of sets and the fact that 
there is more than one “infinity,” and not only that, but also the number 
of these infinities itself is infinite.

The last portion of the book tends to focus on the notion of comput-
ability, its capabilities as well as its limitations. It is quite interesting from 
a historical perspective that the formal model of computation was intro-
duced by Turing some 15 years before the first electronic computers were 
built. An even more surprising fact is that there must exist problems for 
which no computer solutions exist. While Turing’s halting problem was 
the first of such problems, it turns out the set of problems that cannot be 
computed far outnumbers that which can (keeping in mind that both sets 
are infinite).

Additional important computational topics such as numerical methods, 
information and coding theory, automata and formal languages, and arti-
ficial intelligence are but a few of the computer science–related chapters 
that follow. Also included are some practical issues within this area, such 
as computational complexity, parallel computation, computer networks, 
and public-key cryptography. The last chapter of the book is a brief intro-
duction to quantum computation, an area of computer science still in its 
infancy, but showing a great deal of potential.

While the reader can find a great deal of information about the book’s 
topics on the Internet, we hope that by organizing it here, a historical per-
spective will allow the reader not only to gain insight into each individual 
topic, but also to develop a deep appreciation for the long evolutionary 
processes over the millennia. During many cultures, innumerable indi-
viduals have contributed their talents and creativity to formulate what 
has become our mathematical and computing heritage. Since each of the 
chapters has been written more or less independently, it is noteworthy 
that we have actually learned a significant amount while researching our 
assigned topics, and especially when proofreading each other’s chapters.
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1

C h a p t e r  1

The Dawn of Counting

The origin of abstract numbers is lost forever in the mists of time. To 
know what lies behind that thick curtain of mist we call human history, 
we must sift through what has been excavated archeologically or decipher 
clues in what remains in the written record of civilizations, also long gone. 
In doing so, we may catch a glimpse of what first motivated us to invent 
numbers. It is important to remember that the invention of numbers was 
not a spontaneous act, but rather the result of a long evolutionary process.

Animal behaviorists have observed that birds have some awareness of 
the size of a collection of objects in terms of the number of eggs in a nest 
and can detect changes in that number. Wasps have been observed to feed 
a set number of caterpillars to male eggs and twice as many to female eggs. 
It is likely that, in the case of human evolution, a similar ability to dis-
criminate variation in the size of a collection is what eventually, through 
trial and error, led to the ability to conceive of abstract numbers. Let’s look 
at what evidence we have, sketchy though it may be.

1.1 � ARCHEOLOGICAL EVIDENCE: PALEOLITHIC ART
The dramatic discovery of cave art in the south of France has changed 
forever our understanding of the Homo sapiens we know as Cro-Magnon 
and who lived there during the Paleolithic era, or about 30,000 years 
ago. As spelunkers cast their lantern light on the walls of caves left her-
metically sealed for thousands of years, wild horses, buffalo, and other 
extinct animals thundered across the stone face of the walls in a breath-
taking panorama! Here was a clear effort by gifted Paleolithic artists to 
represent the large herds of wild animals with which these communities 
shared their environment, among which they foraged for food, and that 
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inspired them with both fear and reverence. Surreal red handprints on 
the cave walls reach out from the past into the present, while collections 
of red-ochre dots may represent some sort of calendar—perhaps counting 
the phases of the moon. In one cave, a mural depicts hunters posing with 
bows and arrows, lined up in a neat one-to-one correspondence with deer 
as their prey. All of these paintings tell the tale of a human awareness of 
numbers—not necessarily the abstract concept of numbers or words that 
represent our understanding of numbers—but surely the awareness of the 
size of a collection, the ability to represent a succession of events as in the 
use of a simple calendar, and the ability to make a one-to-one correspon-
dence between different sets. We were well on our way to counting!

It is highly unlikely that Paleolithic humans had numbers as we know 
them today. One possible explanation is that the invention of abstract 
numbers is a product of social necessity. Since the earliest humans prob-
ably roamed seasonally over their environment and had few possessions, 
there was little need for creating specific words for large, abstract numbers; 
sets or groups of objects (e.g., herds of animals, fish in the river, etc.) were 
simply referred to as very many in some primitive cultures, and the ability 
to count was limited to three words: one, two, and many.

1.2 � FINGERS FOR COUNTING
Although there is no definitive proof, many evolutionists think that the 
first tools humans used for counting were their fingers. With a naïve 
ability to make a one-to-one correspondence, the use of fingers seems 
almost inevitable. The word digit in English indicates how natural this 
tendency is among humans. Digit derives from the Latin word digitus, 
which in that language means “finger.” In English, however, the word digit 
not only means finger, but also a discrete number.

Various ancient civilizations devised clever methods for expanding the 
count by using finger joints, whole fingers, or including other parts of the 
body as well. While using fingers (or other body parts) can be very con-
venient, this method has one serious drawback: fingers leave no record 
of what is counted unless some other tool is added to the technique. 
Inevitably, humans, compelled by need, sought better methods.

1.3 � THE USE OF TALLY STICKS AND REPRESENTATIONAL 
SYMBOLS: THE FIRST INFORMATION REVOLUTION

Carving notches on bones or stones has been called by some the first infor-
mation revolution. Alexander Marshack (1918–2004), in his seminal work 
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The Roots of Civilizations (1972) [2], demonstrated that Upper Paleolithic 
carvings on bones, dating back some 32,000 years, represented lunar 
calendars. The ability to make meaningful observations and record them 
on a surface constitutes a significant step in human evolution and rep-
resents man’s first attempt at data storage and retrieval. While many 
similar artifacts have been excavated from Cro-Magnon settlements, 
Neanderthals living during the same period did not seem to be able to 
employ representational symbols. It has been suggested by some that this 
may explain in part why Neanderthals eventually died out.

Other important Paleolithic evidence of techniques for counting comes 
to us from South Africa. A long piece of bone, known as the Lebombo 
stick, named after the cave in which it was found, dates back about 
35,000 years. This bone has 29 tally marks on it, indicating that it was used 
as a means of keeping a count. Whether it was objects being counted or 
was used as a sort of calendar, no one knows. Here again we see the ability 
to make a one-to-one correspondence between the objects or events being 
counted and the marks on the bone. Each notch represents one object. 
From such evidence, however, we can draw the conclusion that humans 
had the ability and desire to keep a running tally of something from the 
very dawn of the species.

The Ishango bone from the head of the Nile River in the East Africa area 
dates from around 20,000 years ago. It is an interesting artifact because 
its notches are arranged in groups, which may indicate an attempt to 
further facilitate counting by creating a higher level of multiples. In other 
words, there may have been one word in the language for a single unit and 
another word representing grouped units. All of this is conjecture, but 
clearly this was another possible step in the evolution of numbers as we 
know them today.

Tally sticks have been widely used not only in Africa but also throughout 
Europe. Paper, as invented by the Chinese, was not introduced in Europe 
until the 14th century. Until then, manuscripts were written on parchment. 
Even with the introduction of paper, however, few could read or write, 
making the continued use of tally sticks an important method for ordinary 
people to keep track of transactions, whether buying bread in a bakery, 
paying taxes, or recording the amount of milk produced by a herd of cows.

A later adjustment was the introduction of the split tally stick, which, 
once notched, could be divided lengthwise to allow both parties in a 
transaction to hold a record of it. Eventually, the longer portion of the 
stick became known as the stock and was kept by the person who had 
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lent money or sold goods (and from which we get the term stockholder), 
and the shorter portion, given to the customer, was known as the foil. It is 
from this custom that we get the expression “the short end of the stick,” 
indicating the less admirable end of a deal.

Tally marks and tally sticks remain in use to the present day. Keeping 
a tally is a remarkably simple way of performing addition without using 
numbers at all. By carving notches into the bone or stick, it becomes, at the 
same time, a lasting record of the items being counted.

1.4 � COUNTING BY PEBBLES
In addition to tally sticks, early humans—again without the use of abstract 
numbers—probably used pebbles to count the number of objects in a 
collection by way of one-to-one correspondence. One advantage of this 
system over the use of fingers is that, besides being able to count past 10, 
it does leave a physical record of the count.

As the size of human settlements increased, and people became more 
sedentary, it was also possible to own more objects. This provided the 
impetus to invent better systems for counting. Many researchers have 
given the example of a shepherd counting his sheep as they are led out to 
pasture by dropping a pebble for each animal as it leaves the corral. Upon 
their return at some later point, the shepherd uses the pebbles from the 
previous count to do a recount. If more sheep return than he has pebbles, 
he knows his flock has somehow increased, and conversely, if fewer return 
than the number of pebbles used when they departed, he knows he has 
lost some sheep and must go in search of them. This is a very simple, 
but accurate, means of keeping a count, requiring neither concrete nor 
abstract numbers. Such a method can be applied to bags of grain, jars of 
oil, and other objects used in everyday life.

As quantities being counted grew in size, pebbles could be differen-
tiated such that varying colors or sizes might represent multiples, thus 
obviating the need for carrying about increasingly heavy bags of pebbles. 
This is similar to the practice of making groups of notches on a tally stick 
to represent a multiple. The principle of one-to-one correspondence still 
applies since one type of pebble represents one size of a group of objects. 
The use of both tally sticks and pebbles, precursors of numbers, was an 
important step in the evolution of counting that eventually led to the 
formation of abstract numbers.

The word calculate in English, which means “to count,” indicates the 
importance of the use of pebbles as a means of counting. The word is 
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derived from the Latin word calculus, which means “pebble” or “stone.” 
The same Latin word is also the root of the word calcium in English, which 
is a mineral. In other words, in English, the Latin root word calculus is used 
to form words meaning both count and a kind of mineral. Here again, like 
the word digit, the use of the Latin root word in English demonstrates the 
close association of two completely different concepts as a result of a com-
mon practice such as using pebbles to count objects.

1.5 � THE USE OF TOKENS AND 
THE SECOND INFORMATION REVOLUTION

It took several millennia for humans to move from the use of fingers to 
tally sticks and pebbles. Such practices remain in human societies even 
today. With the development of agriculture and the establishment of 
cities by the first civilizations, however, these common practices, critical 
steps in the evolution of numbers, finally gave way to more sophisticated 
techniques. The ability to plant and raise cereal crops allowed for rapid 
population growth. Archeological excavations in the Middle East, where 
the earliest cites were established, have discovered large numbers of small 
clay objects of various shapes and sizes that served as tokens for counting. 
Different shapes represented different types of goods.

As products were traded at increasingly long distances, clay tokens 
were used as bills of lading. Eventually loose clay tokens were pressed into 
clay tablets, to make an impression. According to archeologist Denise 
Schmandt-Besserat (1933–) [4], this represents a movement from the use of 
three-dimensional objects to a two-dimensional record, and the impetus 
behind the second information revolution, the replacement of objects for 
symbols in a representational system.

Michael Rothschild (1942–) has written about the eventual adapta-
tion of clay tablets in Sumerian civilization about 5,000 years ago and 
the appearance of the first writing system [1]. The vast majority of tablets 
excavated in Sumeria are documents related to accounting. With the rise 
of civilization and the need to collect taxes, maintain a bureaucracy, and 
have the ability to produce, import, and export increasingly larger quanti
ties of goods came a simultaneous need to keep and maintain records and 
employ larger-and-larger-scale numbers. Humans had moved into the 
world of abstract numbers, and the archeological record suggests that it 
was the compelling need to keep accounts that stimulated the rise of the 
first counting and writing systems.



6    ◾    Computing﻿

REFERENCES
	 1.	 M. Rothschild, Cro-Magnon’s Secret Weapon, Forbes ASAP: A Technology 

Supplement, September 13, 1993.
	 2.	 A. Marshack, The Roots of Civilizations: The Cognitive Beginnings of Man’s 

First Art, Symbol and Notation, McGraw Hill, New York, 1991.
	 3.	 J. MacLeish, The Story of Numbers, Fawcett Columbine, New York, 1991.
	 4.	 D. Schmandt-Besserat, How Writing Came About, University of Texas Press, 

Austin, 1996.
	 5.	 E. Ascalone, Mesopotamia, University of California Press, Berkeley, 2005.
	 6.	 H. Blohm, S. Beer, and D. Suzuki, Pebbles to Computers: The Thread, Oxford 

University Press, Toronto, 1986.



7

C h a p t e r  2

Representation 
of Numbers

In simple societies, tally sticks and clay tokens served adequately for thou-
sands of years to represent and record objects counted. As the number 
of these objects increased, however, various methods appeared to group 
the notches on sticks or bones or to designate tokens of higher orders in 
order to facilitate the process of counting and recording. With the advent 
of agriculture and the division of labor, increased population growth, and 
the formation of centralized bureaucracies, simple tools like tally sticks 
and clay tokens no longer sufficed.

It is believed that the earliest forms of written numbers evolved when the 
spoken names for numbers became associated with their recorded tallies. 
In addition, the process of going from a simple one-to-one correspondence 
type of tally to one in which tally marks or symbols are grouped is an 
important cognitive step that led eventually to the formation of number 
systems. Forming groups of various sizes and ordering them in progres-
sion led to the creation of the earliest number symbols and systems [8].

For example, in ancient Egypt, a simple one-stroke hieroglyphic tally 
recorded on papyrus evolved into a grouped tally, which then further 
evolved into a hieratic code system of abstract symbols. Similarly, the 
ancient Sumerians and Babylonians at first recorded wedge-shaped tallies 
on clay tablets. These cuneiform (from the Latin word cuneus for wedge) 
symbols were later grouped for recording speed and convenience, and 
then eventually made into graduated abstract numerals that formed the 
basis of a base-60 number system [7].
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In most cultures it is clear that the words used to represent numbers 
evolved quite separately from their written representations. While the words 
for numbers evolved for the most part within societies and are directly 
linked to specific languages or language groups, the written Hindu-Arabic 
numerals we use today spread from country to country to become what 
Karl Menninger (1898–1963) referred to as “the most significant symbol of 
mankind’s universality” [8].

2.1 � POSITIONAL NUMBER SYSTEMS
According to the principle of position, also known as place-value, the 
value assigned to any given numeral depends on the position in which 
the numeral appears. For example, in our decimal number system, the 
numeral 5 appears three times in the number 555; however, each 5 has 
a different value because each 5 holds a different position. Reading from 
the right, the first 5 means 5 units of one, the next 5 to the left repre-
sents 5 tens or 50, and the next 5 to the left represents 5 hundreds or 
500. We have become so accustomed to this written convention that it 
seems second nature; however, in actual fact, only a few civilizations ever 
invented this practice. Their invention proved so convenient and practi-
cal that positional notation spread throughout the world and is now the 
standard used everywhere.

The Babylonians were the first to invent a place-value number system. 
Evidence shows that as early as 2000 BC Babylonian scholars employed a 
written place-value base-60 or sexagesimal number system, carrying out 
quite advanced mathematical calculations for astronomical research and 
other forms of record keeping required by their bureaucracy. While their 
discovery of the principle of positional notation is the earliest known, their 
number system is not the one used in the modern world. Some cultural 
vestiges of their sexagesimal number system can be found in our conven-
tion of measuring 60 seconds per minute and 60 minutes per hour, and 
in calculations for angles and geographic longitude. The importance of 
this Babylonian invention can hardly be overstated, for without positional 
notation, different powers of a base required the use of different symbols, 
making calculation extremely difficult [1, 2].

The Chinese were the next to invent a positional number system around 
the second century BC. Unlike the Babylonians, theirs was a base-10 
number system, with calculations performed on a precursor of the 
modern Chinese abacus, called suan zi, meaning “calculating with rods.” 
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While there were written symbols for the numbers from 1 to 9 and for the 
powers of 10 (10, 100, 1000, and so on), these symbols were not used for 
calculation. Instead, the Chinese used bamboo or ivory rods on a checker
board table. The columns on the table represented the powers of 10. This 
abacus allowed them to perform all arithmetic operations with rods, 
becoming a de facto positional notation system. Once calculations had 
been performed, the results were transcribed in written numerals, exactly 
paralleling the position of the rods on the table [1].

We come then, at last, to ancient India, which gave birth not only to the 
numerals used around the world today, but also to the positional number 
system and the concept of zero with which we are most familiar. The evolu-
tion of the nine numeral symbols is long and complicated. By the beginning 
of the fifth century BC, we find the units 1 to 9 represented by nine abstract 
Brahmi numerals in India [9]. At this time, Indian mathematicians 
employed a decimal place-value number system and had also invented the 
concept of zero. However, their zero was not a written numeral, but only 
a Sanskrit word.

The change to a decimal place-value number system with nine numer-
als came about as result of the use of a sand or dust abacus. The columns 
of this abacus corresponded to the powers of 10, and Brahmi numerals 
were used in the columns. Transcribing the results of calculation on the 
abacus into Sanskrit number words, Indian mathematicians mirrored the 
abacus format, arriving at a decimal place-value arrangement. After some 
time, mathematicians realized that the use of Brahmi numerals would 
be a much more efficient writing scheme and did away with writing out 
number words in Sanskrit. This evolution marks the birth of the numerals 
from 1 to 9 we use today.

The column format of a dust abacus allowed Indian mathematicians to 
calculate without a numeral for zero by just leaving the appropriate column 
blank. This became a problem, however, when transcribing calculations 
from the abacus to written notation. The Indians had a Sanskrit word for 
zero based on the concept of the sky or space. They took this word-symbol, 
usually either a circle or half-circle, and adapted it to represent their concept 
of zero. This came about sometime during the fourth century AD. It is at 
this point we find that the Indians used nine abstract numerals, employed 
a fully operational decimal place-value number system, and had invented 
a true zero. Although the numerals 0 to 9 are now commonly known as 
Arabic numerals, they are, as we have seen, Hindu-Arabic in origin [1].
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2.2 � MORE ABOUT NUMBER SYSTEMS
The decimal or base-10 number system was used in various ancient civili-
zations. It was most likely motivated by the common use of 10 fingers to 
count. Nondecimal systems, as we have seen in the previous section, have 
also occurred in various civilizations and in different eras. One example 
is the base-12 or duodecimal number system of the ancient Egyptians. 
Rather than counting fingers, they used finger joints or phalanxes for 
enumeration, a technique called phalanx counting. With the thumb as 
a pointer, each hand could be used to count up to 12, or up to a total 
of 24. The Egyptians used their duodecimal number system to divide a 
day into 24 periods, a custom that we continue to observe in our 24-hour 
day. Phalanx counting is still in use today in Egypt, Syria, Iraq, and some 
parts of South Asia.

The sexagesimal or base-60 system of the ancient Sumerians did 
not have unique symbols for the units from 1 to 59. Remembering that 
many unique symbols would have been burdensome, they subdivided 
the numbers into an auxiliary base of 10, with each group of 10 having a 
name. For example, one cuneiform represents 10, two cuneiforms repre-
sent 20, three cuneiforms represent 30, and so on.

Another example we might consider is Roman numerals. These numerals 
were used throughout the Roman Empire from ancient times. They domi-
nated as the common numeric symbols of medieval Europe and continued 
in use into the 17th century. They are still used today for primarily decora-
tive purposes. In fact, Romans numerals were not invented by the Romans, 
but date back to the Etruscans, a civilization found on the Italian peninsula 
between the seventh and fourth centuries BC, disappearing with the rise 
of the Roman Empire. The oldest of the Roman numerals, the symbols I, 
V, and X (1, 5, and 10), are probably prehistoric in origin and stem from 
the custom of cutting notches on tally sticks [1]. Some Roman numerals 
are given in Table 2.1, and an example of the multiplication process using 
Roman numerals is given in Table 2.2.

2.3 � FURTHER DISCUSSIONS OF ZERO
The idea of numbers such as 1, 2, and 3 developed long before the concept 
of zero. This was largely because of a lack of need in early human societies. 
Consider, for instance, the case for counting fruit. While it is common-
place to say we have three apples, it is unlikely we would say we have zero 
apples. In such a case, we would say we do not have any apples. From 
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this vantage point, it is easy to see how societies got along for millennia 
without ever developing the concept zero. Even with the development of 
number systems, the concept of zero proved to be elusive.

The early Babylonians, despite their positional number system, did 
not invent the concept of zero, but rather represented an empty value by 
a blank space. Successive blank spaces on a clay tablet were ambiguous, 
and individual writing idiosyncrasies could also be misleading as to the 
presence or absence of a blank space between cuneiform wedges.

From the second century BC, the Babylonians finally decided to elimi-
nate the blank space ambiguity by creating a symbol that served as a space 
holder for empty powers of the base. The symbol, never considered a 
numeral in itself, was two small slanted wedges.

TABLE 2.1  Roman Numerals

Decimal Roman Decimal Roman Decimal Roman

1 I 8 VIII 15 XV
2 II 9 IX 16 XVI
3 III 10 X 17 XVII
4 IV 11 XI 50 L
5 V 12 XII 100 C
6 VI 13 XIII 500 D
7 VII 14 XIV 1000 M

TABLE 2.2  A Multiplication Using Roman Numerals (CCLXV × XXXVIII)

Roman Notation Decimal Notation

CCLXV 100 + 100 + 50 + 10 + 5 = 265
XXXVIII 10 + 10 + 10 + 5 + 3 = 38
CCLXV × XXXVIII 265 × 38
CCLXV × III = CCCCCC LLL XXX VVV 265 × 38

= 265 × 30 + 265 × 8
= 7950 + 2120 = 10,070

	 = D CC L XXXX V	 … (1)
CCLXV × V = CCCCCCCCCC LLLLL XXXXX VVVVV
	 = M CCC XX V	 … (2)
CCLXV × XXX = MMMMMM DDD CCC LLL	 … (3)
CCLXV × XXXVIII = (1) + (2) + (3)
= MMMMMMM DDDD CCCCCCCC LLLL XXXXXX VV
= MMMMMMMMMMLXX
=
=
=
=

VMMMM D CCC CC L XX
VMMMM DD L XX
VMMMMM L XX
X L XX
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The use of zero as a real value probably first appeared in India around 
the fifth century. Lokavibhaga, or “The Parts of the Universe,” is the oldest 
known text to use a decimal place-value system that included a zero. This 
Jain cosmological text, dated 458 AD, uses Sanskrit words for numerals, 
including the word shunya for zero, meaning “void” or “empty” [5].

Aryabhata (476–550) was a renowned Indian mathematician and 
the author of several treatises on mathematics and astronomy. His best 
known work is Aryabhatiya, a text that summarizes Indian mathematical 
knowledge during the fifth and sixth centuries. Around 498 AD, Aryabhata 
used the letters of the traditional Sanskrit alphabet to record numbers. 
Some historians and mathematicians believe that his place-value system 
might be the origin of the modern decimal-based place-value notation, 
and that while he did not use a symbol zero, he certainly understood the 
concept [1, 6].

The appearance of a symbol for the digit zero, a small circle, was found 
on a stone inscription at the Chaturbhuja Temple at Gwalior in India, 
dated 876 AD. There are also many documents on copper plates, with a 
similar small circle in them, dated as far back as the sixth century AD, but 
some historians doubt their authenticity or true meaning.

While the Chinese had a positional number system that dated back to 
at least the second century BC, it was only much later, around the eighth 
century AD, when Buddhist missionaries brought the use of zero to 
China. Until that time, the Chinese left empty squares on their shunya zi 
to designate zero.

Before the rise of the Arab (Islamic) Empire, the decimal place-value 
number system, which originated in India, had already begun moving 
westward from the seventh century AD. As a result of the great wealth 
accumulated through their conquests, the Arabs, trading far and wide, 
became “cultural middlemen” throughout the Middle East, setting up 
Islamic centers in great cities such as Baghdad. They were eager to absorb 
the learning of other great cultures such as the Chinese, Indians, and 
Persians, as well as the Greeks and Romans.

In the year 773 AD, an Indian brought writings on astronomy to the 
court of the caliph of Baghdad. The book was translated from Sanskrit 
to Arabic. One of the Persian scholars to read this book was the famous 
Al-Khwarizmi, perhaps the greatest mathematician of his time. Based on 
his studies of Indian mathematics, he wrote a book entitled Algorithmus 
around the year 830, explaining the use of Indian numerals. In this way, 
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the Indian place-value number system and the concept of zero was intro-
duced to the Arabic world.

As Islamic and Christian cultures collided in the West, what had become 
known as Arab numbers gradually supplanted the use of Roman numerals 
and the abacus around the time the Renaissance era had begun in Europe. 
The place-value decimal number system we use today can therefore be 
traced directly to India. The positional number system and the concept of 
zero were the groundbreaking work of ancient Indian mathematicians [1, 2].

There is another story about the invention of zero. The oldest zero in 
the New World was found in Mayan civilization, dating back at least to the 
first century BC. The numeral is part of their vigesimal positional nota-
tion and was an independent invention. One prominent example of the 
Mayan zero is the Mesoamerican or Mayan Long Count Calendar devel-
oped by several pre-Colombian civilizations. The oldest known example 
of the calendar dates from 36 BC and comes from Mexico. The calendar 
used zero as a placeholder within its vigesimal (base-20) and base-18 
place-value number systems. The Long Count Calendar identifies a date by 
counting the number of days since a mythical creation date corresponding 
to August 11, 3114 BC, in the Gregorian calendar [3]. In Mesoamerican 
numerals, a dot represented a 1, a bar represented a 5, and a snail shell-like 
symbol was used to represent the zero [4].

The numerals of the Long Count Calendar were no longer in use after the 
Spanish conquered the Yucatan Peninsula. Although early in its appear-
ance, the Mayan zero did not spread to any location in the Old World, and 
consequently, the Mayan number system and zero did not influence the 
development of number systems elsewhere [3].

Over the millennia, cultures all around the world have experimented 
with number representation in many various ways trying to represent 
numbers. Many converge in their adoption of the decimal system, no 
doubt heavily influenced by the use of our 10 finger-digits to count in an 
earlier age. In those societies where positional notation was invented, one 
condition they share in common was the use of an abacus-like counting 
device, which seems to have predisposed them to adopting place-value in 
their written notation. It was in India that all of the factors came together 
to allow their mathematicians to invent a number system that was not 
only positional, but also had zero as a number. It was a long journey to 
get there, and the road was not straightforward, but this number system 
opened the door to the world of modern mathematics.
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C h a p t e r  3

Rational and 
Irrational Numbers

3.1 � APPEARANCE OF FRACTIONS
Counting is the simplest and most fundamental operation using numbers. 
However, just counting was insufficient and inconvenient for people even 
in ancient civilizations. People at some early stage of their civilizations 
realized that arithmetic operations such as addition, subtraction, multi-
plication, and division were necessary and very important. It is probably 
more than 4000 years ago that people in Egypt, Mesopotamia, and other 
ancient civilized regions could already manipulate arithmetic operations 
using their number systems, although it is difficult to specify when and 
where people first discovered such techniques for calculations.

Among the four arithmetic operations, multiplication and division 
were difficult compared with addition and subtraction. People invented 
doubling and halving operations a long time ago. These and similar opera-
tions were convenient for their lives, and made multiplication and division 
easier. Consequently, the fractions 1/2, 1/4, 1/8, 1/16, and so on became 
commonly used numbers in addition to natural numbers. Furthermore, 
the use of reciprocals of integers, such as 1/2, 1/3, 1/4, 1/5, 1/6, and so 
on, also became common and of great importance. The reciprocal of each 
nonzero natural number is called a unit fraction. They noticed that multi-
plications of unit fractions by integers were also useful for calculations. In 
this way, fractions appeared in ancient civilizations [7].
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Ancient Egyptians used special symbols representing fundamental 
unit fractions and some other fractions (e.g., 2/3). These symbols appeared 
in several mathematical tablets and papyri found in Egypt [10]. Akhmim 
wooden tablets and Cairo wooden tablets are two ancient Egyptian doc-
uments that contain, for example, descriptions about multiplications 
by fractions 1/3, 1/7, 1/10, 1/11, and 1/13. The following calculation of 
fractions also appeared in the tablets:

	 1/2 + 1/4 + 1/8 + 1/16 + 1/64 + 5/320 = 1

Historians suggest that these tablets were probably inscribed at the 
beginning of the Egyptian Middle Kingdom around 1950 BC [3]. These 
are now held in the Egyptian Museum in Cairo.

In the British Museum in London, the Rhind Papyrus (also called Rhind 
Mathematical Papyrus) is displayed. It is approximately 5 m long and 33 cm 
wide, one of the oldest existing texts of Egyptian mathematics. A Scottish 
lawyer, Alexander H. Rhind (1833–1863), purchased it in 1858 in Egypt 
[8]. It was named the Rhind Papyrus after him. It was copied by a scribe 
named Ahmes around 1650 BC. In the first paragraph of the papyrus, 
Ahmes presents that it is copied from an ancient copy made during the 
12th dynasty of Upper and Lower Egypt (c. 1985–1795 BC) [3, 8].

The first part of the Rhind Papyrus contains a list of the fractions 2/n 
for odd n from 3 to 101. The following are examples in the list:

	 2/3 = 1/2 + 1/6

	 2/5 = 1/3 + 1/28

	 2/7 = 1/4 + 1/28

	 2/9 = 1/6 + 1/18

	 2/15 = 1/10 + 1/30

	 2/101 = 1/101 + 1/202 + 1/303 + 1/606

The second and third parts of the Rhind Papyrus consist of geometry 
problems, and 84 problems with the solutions, respectively. Below is an 
example in the third part:
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Problem 3.1

Let the sum of 2/3 and 1/10 of an unknown quantity be 10. Calculate 
the unknown quantity.

SOLUTION
Using modern notation, (2/3 + 1/10)x = 10, where x is the unknown 
quantity. Then x = 300/23.

The Moscow Papyrus (also called Moscow Mathematical Papyrus) is 
now held in the Puskin State Museum of Fine Arts in Moscow [9]. It is 
approximately 5.5 m long and 3 ~ 7.7 cm wide, one of the oldest Egyptian 
mathematical texts in existence. The Moscow Papyrus probably dates 
to the 11th dynasty of Upper and Lower Egypt (c. 1850 BC). It contains 
25  problems of arithmetic, algebra, and geometry. The following are 
examples of the problems:

Problem 3.2

Let the sum of 1 and a half of an unknown quantity and 4 be 10. 
Calculate the unknown quantity.

SOLUTION
Using modern notation, (1 + 1/2)x + 4 = 10, where x is the unknown 
quantity. Then x = 4.

Problem 3.3

Let 1/2 + 1/4 of the square of an unknown quantity be 12. Calculate 
the unknown quantity.

SOLUTION
Using modern notation, (3/4)(3/4)x2 = 12(3/4), where x is the unknown 
quantity. Then x = 4.

3.2 � RATIONAL NUMBERS
The set of rational numbers is usually denoted by Q, and the elements 
of this set have the property that they can be represented as a ratio 
of two integers (hence the name rational). These numbers are, in a 
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sense, measurable, and they include whole integers, fractions, and their 
together negative counterparts. The set of rational numbers is equiva-
lent to the set of multiplications of unit fractions and integers. That is, 
we can write

	 Q = {p/q | p is an integer and 1/q is a unit fraction}

A rational number is one that can be named number, in that we can say 
seven, three-fourths, 0.3. With this, any rational number can be placed in 
its exact (measured) position on the real number line (see also Chapter 13). 
Rational numbers can be represented using decimal notation where the 
representation is either finite (e.g., two-fifths is 0.40) or infinite, but repeat-
ing (e.g., three and two-sevenths is 3.285714285714285714…). Historically 
the decimal fraction notation (e.g., 3.285714285714285714…) appeared 
much later than fraction notation (e.g., 3 + 2/7 or 23/7). The use of deci-
mal fraction notation became common in the 16th century (see more in 
Chapter 10). Since a repeating decimal can be written algebraically as a 
fraction, it follows that any repeating decimal must be a rational number. 
Specifically, to prove that any repeating decimal represents a fraction of 
two integers, let us examine a number x whose decimal representation 
is of the form i i i d d d abcdabcdabcdk m1 2 1 2� � �. , where the digits i and d 
represent the integer part, and the nonrepeating portion of x and abcd is the 
repeating pattern. Algebraically, x = r + y, where r i i i d d dk m

m= 1 2 1 2 10� � / , 
which already is a ratio of two integers, is a rational number. So, we just 
have to show that the number y = 0.00…0abcdabcdabcd… is also a ratio of 
two integers. We multiply assign to g the repeating pattern value of abcd, 
and pick the smallest h such that 10h > abcd; i.e., h is the pattern length. 
Now, y = abcd/(10h – 1) is a ratio of two integers; hence, it must be rational. 
Since the set of rational numbers is closed under addition (i.e., a sum of 
two fractions is a fraction), the original number x is rational.

Let us examine the above formula on the repeating decimal 0.999…. The 
pattern length here is just one digit. Therefore, we have 9.0/(101 – 1) = 1.0. 
This is unexpected, because it implies that there are two different repre-
sentations for the same number, that is, 1. The first is 1.0 and the second 
is 0.999…. Intuitively, we know that 0.999… is three times 0.333… = 1/3. 
So the fact that 0.999… = 1.0 is, at least, not counterintuitive. However, it is 
concerning that the same (rational) number can have two representations. 
We can prove that 0.999… = 1.0 in another way. Let us solve the following 
system of equation(s), 0.999… = x, with one equation and one unknown. 
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Algebraically, we can multiply the two sides of an equation by a number 
and maintain equality. In this case, let the multiplier be 10. So, we have 
9.999… = 10x. Now, if we subtract the first equation from the second, we 
have 9.0 = 9x, so we get our final answer: x = 1.0.

3.3 � IRRATIONAL NUMBERS
Pythagoras (c. 570–540 BC) is one of the most famous Greek philosophers 
and mathematicians. The Pythagorean theorem is a relation among the 
side lengths of a right triangle. Let a, b, and c be the side lengths of a 
right triangle, where c is the length of the side opposed to the right angle. 
The Pythagorean theorem can be expressed as the following equation:

	 a2 + b2 = c2.

The Pythagorean theorem was probably known much before Pythagoras 
[14], but it is said that Pythagoras first proved the theorem. There exist 
many different proofs of the Pythagorean theorem. It can be proved 
algebraically or geometrically, e.g., by using the drawings in Figure 3.1.

From the Pythagorean theorem, the Greek mathematicians, probably 
including Pythagoras, realized that there exist numbers that cannot be 
measured by a rational number. The most obvious example was the length 
of the diagonal of a one-by-one square, which is 2  from the Pythagorean 
theorem. More generally, if n is a positive integer and not a square 
number, then n  is not a rational number. The proof of this fact is given 
in Theaetetus (c. 360 BC) written by the Greek philosopher and math-
ematician Plato (427–347 BC). They noticed that these numbers cannot 
be represented by a ratio of two integers. Arabic mathematicians treated 
these numbers as algebraic objects. Hindu and other mathematicians were 
also aware of the existence of such numbers and that they are much more 
mysterious than the rational numbers, but none of the early mathemati-
cians grasped the full meaning and magnitude of this set.

Pythagoras wanted to believe that all numbers were rational (could be 
written as a fraction or be measured). Hippasus (fifth century BC), who 
was Pythagoras’s student, actually showed that the square root of 2 cannot 
be a ratio of two integers. It is believed that he used a geometrical (and not 
an algebraic) argument. Pythagoras was caught in a dilemma: what to do 
with a number that was not rational, i.e., irrational. Despite Hippasus’s 
proof, he would not accept the existence of irrational numbers. Since 
Pythagoras could not disprove the existence of irrational numbers, he had 
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Hippasus thrown overboard and drowned! An unfortunate footnote to 
this is that 2  is often called Pythagoras’s constant.

Let us present a simple (non-constructive [6]) proof that there can exist 
no rational number x whose square is 2. Suppose such a number existed, 
i.e., x = m/n, where n is not 0, m/n is simplified to the lowest terms (i.e., m/n 
is an irreducible fraction), and x2 = 2. It follows that (mm)/(nn) = 2. Therefore, 
both m and n cannot be even numbers—at least one of them must be odd 
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since m/n is irreducible. From the equation, we can derive n2 = 2m2, which is 
an even number. This implies that m must be an even number, e.g., m = 2k, 
where k is one-half of m. Now, let us substitute for m. We have (mm)/(nn) = 
2 = (2k)2/(nn) = 4k2/(nn). So, 2nn = 4k2, or equivalently, nn = 2k2. Therefore, 
nn must be even, which makes n even. But both m  and n could not be 
even (since m/n is irreducible), and so we have a contradiction. This means 
that our assumption that 2  is a ratio of two integers (rational number) 
is not correct.

While the majority of tasks of daily life involve rational numbers, the 
irrational numbers are just as important, and as will be shown later, there 
are much more irrational numbers than we can count (see Chapters 13 
and 14).
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C h a p t e r  4

Prime Numbers

Prime numbers, defined as natural numbers (also called counting num-
bers), divisible by themselves and 1 only, have long enjoyed a special place 
of mystery for both advanced mathematicians and school children alike. 
The smallest prime number is 2, and it is the only even prime number. For 
it seems that the moment, as a civilization, we could perform the arithme-
tic operation of division, the primes have presented themselves as special, 
and to this day, many questions of primes are yet to be answered.

For instance, can we consider the primes “building blocks” of the 
natural numbers (as Jon Keating, professor of mathematical physics at 
the University of Bristol, asked)? Can we say that from primes all other 
numbers can be constructed? How many, and in what way? Consider that 
a typical layperson, given the task of identifying a large prime, will likely 
do so by first producing a guess and dividing it by all the prior prime 
numbers less than or equal to its square root. Depending on the size of 
the provided prime (and the memory of the individual), this operation 
can be quite daunting. For centuries now, mathematicians, called number 
theoreticians, have sought to answer exactly these questions.

In the following sections, we will examine what progress we have made 
over time with understanding primes. We will also see that there are ques-
tions for which we have answers, and there are many which remain open 
and are under study even today.

4.1 � THE STORY OF PRIME
The story of prime numbers likely begins in unrecorded history, when 
the idea of groups being broken into smaller groups first occurred to 
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mankind. We can see written accounting for prime numbers in an ancient 
mathematical papyrus that appeared in Egypt around 1650 BC. Ancient 
Egyptians demonstrated perhaps some awareness of primality. It is about 
that time that a scribe named Ahmes recorded a possible understand-
ing of the significance of primes within what is now known as the Rhind 
Mathematical Papyrus [7] (see also Chapter 3). Within the papyrus, an 
exercise of sorts is performed listing a table of fractions as composites of 
factors, and it is within this table the notable separation of prime-based 
fractions is done.

While the exact implication of the separation and the extent of the 
Egyptians’ knowledge of primes at the time are difficult to ascertain from 
this evidence, the archeological finding is fascinating. It is sometime later, 
about 500 to 300 BC, that the first formal descriptions of primes and per-
fect numbers surface within a group known as the Pythagoreans, follow-
ers of Pythagoras, who is famous for the Pythagorean theorem: a2 + b2 = c2.

Perfect numbers are numbers that are the sum of their proper factors. For 
example, 6 is a perfect number, as its factors 3, 2, and 1 add to 6. Euclid 
provided a more proper definition in a subsequent paragraph ([6] Book 7, 
Definition 22).

An interesting note on the Pythagoreans: while we are perhaps familiar 
with their early interest in mathematics, it is not entirely secular or 
academic in nature. In fact, the Pythagoreans seemed to be of the opinion 
that numbers were entities unto themselves, and worthy of consciousness 
and even divinity. Although the Pythagoreans may be our earliest docu-
mented description of primes, it was not until Euclid’s Elements at the 
end of that period that we are given a more comprehensive understanding 
(complete with definitions, propositions, and proofs).

Euclid’s Elements is widely regarded as the single most important 
ancient contribution to the whole of mathematics, engineering, and 
science. Its codification and format are outstanding, where definitions 
are used axiomatically, and propositions grow from those definitions and 
earlier propositions. It consists of 13 books (volumes) that are a collection 
of the known mathematics at that time. It had been the standard textbook 
for mathematics education for some time (see also Chapter 5).

It is also worth noting that it is of contentious authorship: it is attrib-
uted to Euclid, but it is presumed to contain the contemporary sum of 
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mathematics for his time. While how much of the content can be attrib-
uted to Euclid himself is a moot point, the existence of such well-organized 
documentation is of interest to us.

We can begin by giving the Elements’ definition of prime: “A prime num-
ber is that which is measured by a unit alone” ([6] Book 7, Definition 11). 
Euclid’s definition is characteristically Greek, harkening from the Pythago-
reans in the reference of the unit. Euclid states earlier in the Elements that a 
number is comprised of units, and the unit is simply that which by its exis-
tence is “called one” ([6] Book 7, Definitions 1 and 2). Simply put, a prime 
number has only 1 as its natural divisor, without a remainder. With this 
definition, Euclid makes three important propositions:

	 1.	If a number is a product of two numbers and has a factor of a prime, 
then one of the two numbers has a factor of the prime.

	 2.	Any nonprime number has a prime number as its factor.

	 3.	Any number is either prime or divisible by a prime.

Summarized, these statements become: “any integer can be expressed 
as a unique ordered product of primes,” which is typically known and 
understood to be the fundamental theorem of arithmetic. Although Euclid 
proposes a proof, it is worth deferring until later. Euclid makes one fur-
ther celebrated contribution to primes with a proof that there are infinitely 
many prime numbers.

Proof by Contradiction

Consider a set of primes, a a an0 1 , ,� , and m ai
n

i=∏ =0 .
For a number m + 1 two cases are considered against the proposi-

tions that lead to the fundamental theorem of arithmetic:

If m + 1 is prime, then there are at least n + 2 primes (since it 
would be m + 1 in the set).

If m + 1 is not prime, then there are at least n + 1 primes, as some 
prime must be a factor within it, as a a an0 1 , ,�  are factors of m 
(and not m + 1, as division by any of the set a a an0 1 , ,�  would 
leave a remainder of 1).
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Another definition of scholarly interest is that of so-called perfect 
numbers (whose significance will soon be revealed). In the ancient times, 
only the first few perfect numbers were known. As of 2013, there are only 
48 known perfect numbers, and it is still unknown whether the set of 
even perfect numbers is finite or infinite, or if there exist any odd perfect 
numbers. The following numbers are examples of perfect numbers:

	 6 = 3 + 2 + 1

	 28 = 14 + 7 + 4 + 2 + 1

	 496 = 248 + 124 + 62 + 31 + 16 + 8 + 4 + 2 + 1

As should be expected, Elements provides a relationship between 
primes and perfect numbers, specifically that 2n (2n+1 – 1) is a perfect 
number if 2n+1 – 1 is a prime. Considering the limits of the computational 
techniques available at the time, this relationship is remarkable and will 
figure predominantly in mathematical works to come.

The Pythagoreans again enter history when Nicomachus (c. 60–c. 120 AD) 
reported a technique from the third century BC by a scholar named 
Eratosthenes (276–194 BC). The technique is called (appropriately enough) 
the sieve of Eratosthenes. Eratosthenes, a contemporary of Archimedes, 
developed an iterative and mechanical technique for sieving the natu-
ral numbers for primes (the term mechanical is used purposely, in con-
sideration of a famous letter from Archimedes to Eratosthenes arguing 
that certain mathematical problems are better handled mechanically, 
i.e., without thinking too much).

Eratosthenes is perhaps best known for calculating the circumference 
of the earth, its tilt (relative to the sun), and its distance from the moon. 
He was also a noteworthy playwright and a poet, and furthered (if not 
founded the modern form of) the subject of geography. Unfortunately, we 
only know of his life and works through other sources, the originals lost 
to history.

From Nicomachus’s description, however, it is possible to accurately 
reconstruct his simple solution to the problem of finding prime numbers.

Table  4.1 demonstrates the algorithm for primes between 1 and 
100. The procedure is to sieve the numbers less than or equal to 100 by 
first eliminating multiples of 2 ( ), then 3 ( ), 5 ( ), and 7 ( ). The 
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maximum necessary step to consider is = 10, and the numbers 4, 6, 8, 9, 
and 10 were eliminated by earlier factors (2 and 3).

It was about 1650 that our next pioneer of prime numbers, Pierre de 
Fermat (1601–1665), stated that for a prime p and an integer a such that 
p and a are relatively prime, a pp− ≡1 1 (mod ) or ap− −1 1 is divisible by p. 
It was left to Euler to formulate the proof, but this, his “little” theorem, 
would become the basis for public-key cryptography—an essential tool of 
modern life. Fermat has been called the greatest amateur mathematician, 
although a number of his theorems were stated with no proof [1].

Relatively prime: Two numbers are considered relatively prime (also called 
coprime) if their greatest common divisor is 1.

The sieve of Eratosthenes has two basic steps:

	 1.	List all the natural numbers from 1 to n within which the primes of inter-
est must lie.

	 2.	Then, starting at 2, eliminate all multiples within the list. Repeat this step 
for all numbers from 2 to n .

When the process is complete, the numbers that remain in the list are prime.

TABLE 4.1  Finding Primes by the Sieve of Eratosthenes

2 3 4 5 6 7 8 9 10
1211 13 14 15 16 17 18 19 20
2221 23 24 25 26 27 28 29 30
3231 33 34 35 36 37 38 39 40
4241 43 44 45 46 47 48 49 50
5251 53 54 55 56 57 58 59 60
6261 63 64 65 66 67 68 69 70
7271 73 74 75 76 77 78 79 80
8281 83 84 85 86 87 88 89 90
9291 93 94 95 96 97 98 99 100
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In 1736 Leonhard Paul Euler (1707–1783) was the first to document a 
proof of Fermat’s little theorem. Here we give a proof of Fermat’s little 
theorem using modern algebra [2].

Proof

First, we define Euler’s totient function (also called the Euler phi-function). 
For n within positive natural numbers, φ(n) is the number of integers k 
coprime to n such that 1 ≤ k ≤ n. This is equivalent to p – 1 if n is a prime 
p. Let Zn* = {k | k is a positive integer coprime to n and less than n}, and 
let the multiplication of any pair of elements of Zn* be the multiplication 
of the elements modulo n. Then Zn* is a multiplicative group of order φ(n), 
and for any a in Zn*, φ(n) is divisible by the order of a (from Lagrange’s 
theorem), where the order of a is the smallest positive integer m such that 
am = 1 in Zn* [2, 5]. If n is prime (say n = p), then φ(n) is p – 1. Hence, 
a pp− ≡1 1 (mod ).

As alluded to within the explanation of Fermat’s little theorem, Euler’s 
proof (essentially the same as the proof above) gives the mathematical 
blueprint for the public-key encryption. If n is the product of two primes 
p1 and p2, then φ( ) ( )( )n p p= − −1 21 1  and you have an interesting function 
dependent on the prime factors of n. Given two large primes p1 and p2, 
it is easy to multiply p1 and p2, but given only the number n, it is extremely 
difficult to factor for the primes (see also Chapter 30).

Euler went on to contribute two other conjectures regarding prime 
numbers. The first result, later proven by Pafnuty Chebyshev (1821–1894), 
is that for any integer greater than or equal to 2, there exists a prime 
between itself and twice itself. The second is drawn from an equation from 
the Pythagoreans to generate primes, Euler’s own x x2 41− + . The discov-
ery of other polynomials capable of generating primes continued with the 
work by Legendre and many others.

A few years later we turned our attention to the idea that numbers 
can be represented by sums of primes, similar to the building block idea 
in the introduction to this chapter. In a letter from Christian Goldbach 
(1690–1764) to Euler in 1742 is written what is now known as Goldbach’s 
conjecture, considered one of the great open problems remaining in prime 
number theory. Simply stated in its modern form, it is that every even 
integer greater than 2 can be expressed as the sum of two primes.
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4.2 � THE PRIME NUMBER THEOREM
It is at this point in history where things get a little more contentious, as 
two great mathematicians work toward a common problem, that of π(n), 
or the prime number theorem.

In 1796 Adrien-Marie Legendre (1752–1833) published a book, Essay on 
the Theory of Numbers, within which he conjectured the distribution of 
primes could be described as

	 π( )~
ln

n n
n B−

for some value B (Figure 4.1).
This remarkable result, however, would be overshadowed by a young 

Gauss (Johann Carl Friedrich Gauss, 1777–1855), and it would not be the 
first time Gauss claimed a better or earlier discovery.

Two stories, perhaps more legend than fact, attempt to hint at the genius 
that was to come in Gauss. It is said that at the age of 3, Gauss noted an 
error in wages paid to workers by his father, and at the age of 7, tasked to 
sum the numbers 1 to 100 by his instructor, he added them by summing 
pairs ({1, 100}, {2, 99}, …, {50, 51}), although this story is also attributed to 
the great Albert Einstein (1879–1955).

There is no doubt, however, that as a teenager, Gauss had demonstrated 
extraordinary abilities. Following Euclid’s techniques of geometry (using 
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only a straightedge and a compass for construction), he constructed a 
17-sided heptadecagon, well past the known constructions for polygons 
with sides of multiples of 2, 3, and 5. He went on to add many other simi-
lar geometries to his repertoire, all of the form 2 12n

+  (which we know as 
Fermat primes). From about ages 15 to 18, during his study at the Brunswick 
Collegium Carolinum, Gauss began to think about the distribution of 
primes. Similarly to Legendre, Gauss began his study observationally—he 
is said to have spent an idle 15 minutes counting the primes in blocks of a 
thousand, and when his survey neared a million, he proposed what would 
later be known as the prime number theorem, a bounding function for the 
distribution of primes:

	 π( )~
ln

n n
n

which was then later revised to

	 π( ) ( ), ( )
ln

n n where n dn
n

n

= = ∫Li Li
2

Two numbers, x and y, are said to be congruent modulo z if their differ-
ence, specifically x – y, is divisible by another number z. The notation for 
the above is

	 x ≡ y  (mod  z)

Gauss would go on to make many other contributions to mathematics 
and science, but another of his works, this one at age 24, is of great interest 
to the study of primes. In fact, it would unify number theory at his time. 
The principle Gauss introduced is called congruence.

The problem he set out to solve was stated, although not proven, by 
Legendre, and is known as the quadratic reciprocity theorem. Briefly, the 
theorem states if p and q are distinct odd primes, not both congruent to 
3 modulo 4 (both don’t have a remainder 3 when divided by 4), then either 
both x p q2 ≡ (mod )  and x q p2 ≡ (mod )  are solvable, i.e., have a solution, 
or neither is solvable [2].

In 1831 August Ferdinand Möbius (1790–1868), famous for the later 
invention of the Möbius strip, invented a function, μ(n), called the Möbius 
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function, formulated as follows: it will produce the value 0 for any n that is 
a multiple of squares such as 4, 9, 16, and 25; the value 1 for an n with an 
even number of distinct primes as its factors or n = 1; and –1 for integers 
that have an odd number of distinct primes as its factors.

While its usefulness is not readily apparent, it demonstrates the breadth 
of the participants involved in solving problems related to primes. This 
function, paired with another one called Marten’s function, proves useful 
as an alternate path of proving the Riemann hypothesis.

In 1859 Georg Friedrich Bernhard Riemann (1826–1866) introduced 
what is today worth a million dollars (if proved correctly), the so-called 
Riemann hypothesis. It is considered one of the greatest problems math-
ematics has yet to solve [3, 4].

First, it is worth knowing a bit about Riemann. Like Gauss, Riemann 
demonstrated a keen ability in his teenage years. One of his notable feats 
in his youth was responding to the challenge of one of his instructors by 
reading Legendre’s 859-page book, Theory of Numbers; not only did he read 
it in a week, but he was able to answer questions regarding its contents 
2 years later.

While in Riemann’s short life he offered a great deal to mathematics 
(much of it only known from his private papers after his death), it is the 
Riemann hypothesis, a brief remark made in a paper regarding an attempt 
to solve the question of the distribution of primes from another direction, 
specifically from an infinite series. The hypothesis progresses as such:

	 1
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First, consider an infinite series, familiar from Euler, called by Riemann 
the zeta function:

	 ζ( )s
ns

n

=
=

∞

∑ 1

1

From here, two techniques can be used to understand its progression to 
our more common zeta function form for the Riemann hypothesis. Should 
the reader be familiar with infinite geometric series, it requires only sub-
stituting infinite products producing a series of the form (it converges to 
1/(1 – p–s)):
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	 1 1 1 1
2+ + + + +

p p ps s ks� �

For the second technique, consider algebraic manipulation by dividing both 
sides by the terms within the series, performing an operation analogous to 
the sieve of Eratosthenes. The result of both will be a series of the form:
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We then produce the zeta function of interest:

	 ζ( ) ( )s pp
s=∏ − − −1 1

The hypothesis, then, is this: the roots of the zeta function would deter-
mine the magnitude of the difference between Gauss’s bounding function 
Li(x) and the true π(x). Proof of this hypothesis is therefore both figura-
tively and literally the million dollar question within mathematics.

There have been interesting developments within the study of primes 
in the last century as well. For example, in 1919 Viggo Brun (1885–1978) 
proved that when the reciprocals of successive twin primes are added, 
their sum converges to a specific value called Brun’s constant. While it is 
known that the sum of all the reciprocals of primes diverges, it is interest-
ing that for twin primes it converges. It is known that twin primes, with 
the exception of the first ({3, 5}), are of the form (6n − 1,  6n + 1).

In 1960, a Polish mathematician, Waclaw Franciszek Sierpiński (1882–
1969), proved there are infinitely many nonprime odd integers k such that 
k n× +2 1 is composite. The smallest known Sierpiński number is 78,557, 
for which all numbers of the form are divisible by 3, 5, 7, 13, 19, 37, or 73, 
and work is currently under way with a distributed computing project to 
attempt to prove it the smallest [8].

Three years later, another Polish-born mathematician, Stanislaw Marcin 
Ulam (1909–1984), famous primarily for his work on the Manhattan 
Project, the Monte Carlo method, and many other contributions, was bored 
at the reading of a paper and created a doodle uncovering what is perhaps 
a remarkable pattern to certain primes—specifically, that when natural 
numbers are written in a spiral from the number 1, prime numbers tend 
to appear on diagonals with one another.
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There continues to be research performed on primes, twin primes, and 
perfect numbers. Ever faster and more powerful computers continue to 
hint at mysteries locked within primes. From Dorin Andrica’s 1985 con-
jecture that the gap between two prime numbers is p pn n+ − <1 1  to 
Andrew Granville’s (1962–) 2008 paper on prime number distribution 
patterns, the study of primes goes on [9].
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C h a p t e r  5

Euclid’s Elements

Euclid (also called Eukleides or Euclid of Alexandria, c. 330–c. 260 BC) is 
one of the most prominent Greek mathematicians. He is best known as the 
author of Elements, which is the most influential treatise in the history of 
mathematics. However, there are no known records of the exact date and 
place of Euclid’s birth, and little is known about his personal life. During 
the reign of the Pharaoh Ptolemy I Soter (323–283 BC) Euclid taught 
mathematics at Alexandria Library (the Mouseion) in Alexandria, Egypt. 
Euclid’s Elements is considered the most comprehensive compilation of 
geometry, arithmetic, and number theory based on the ancient Greek 
works of Thales (c. 624–c. 546 BC), Pythagoras (c. 582–c. 497 BC), Plato 
(c. 427–c. 347 BC), Theaetetus (c. 417–369 BC), Eudoxus (c. 408–c. 347 BC), 
Aristotle (384–322 BC), Manaechmus (380–320 BC), and others [2, 4, 6, 9].

Euclid is often referred to as the father of geometry. It is thought that he 
received mathematical training in Plato’s Academy in Athens. Then, he 
came to Alexandria in Egypt, which had been the Hellenistic center for 
some centuries. Many scholars worked and taught at the great library in 
Alexandria, and Euclid wrote Elements there, which was the most widely 
used textbook of all time until the 20th century. This treatise influenced 
the development of Western mathematics for more than 2000 years. 
Proclus (412–485 AD), another Greek philosopher, wrote an influential 
commentary on Euclid’s Elements. According to this commentary, to the 
Pharaoh Ptolemy I Soter’s request for an easy way of learning mathemat-
ics, Euclid replied, “There is no royal way to geometry” [2, 4, 5, 6].

Elements consists of 13 books. It is a collection of definitions, postu-
lates, common notions, propositions, and mathematical proofs of the 
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propositions. Books 1 through 4 are on plane geometry. Book 1 begins 
with 23 definitions, 5 postulates, and 5 common notions, and contains 
48  propositions. We may consider that both postulates and common 
notions are axioms. The following are the postulates given in Book 1 [1]:

	 1.	We can draw a straight line from any point to any point.

	 2.	We can produce a finite straight line continuously in a straight line.

	 3.	We can draw a circle with any center and radius.

	 4.	All right angles are equal to one another.

	 5.	One and only one line can be drawn through a point parallel to a 
given line.

(In the 19th century non-Euclidean geometry was introduced, in which 
the fifth postulate was removed.)

The following are common notions that are also given in Book 1. 
These are not specific geometrical properties, but general assumptions 
used in mathematics:

	 1.	Things equal to the same thing are also equal to one another.

	 2.	If equals are added to equals, the whole are equal.

	 3.	 If equals are subtracted from equals, the whole are equal.

	 4.	Things that coincide with one another are equal to one another.

	 5.	The whole is greater than the part.

All propositions in Books 1 through 4 are proved by graphical con-
structions using axioms or propositions proved earlier in the books. For 
example, Proposition 1 of Book 1 shows a graphical construction of an 
equilateral triangle on a given finite straight line. Proposition 47 of Book 
1 is the Pythagorean theorem. Specifically, in Proposition 47, it is proved 
by a graphical construction that in any right-angled triangle, the area 
of the square whose side is the hypotenuse is equal to the sum of the 
squares whose sides are the two other sides. Since most of the proposi-
tions in Book 2 can be considered geometric interpretations of algebraic 
identities, Book 2 is called the book of geometric algebra. For example, 
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Proposition 5 of Book  2 is a geometric interpretation of the algebraic 
equation (x + y)(x – y) = x2 – y2.

Proposition 5 (of Book 2)

Let a straight line AB be cut into equal segments at C and into unequal 
segments at D, as shown below:

	 A____C__D_B

Then the sum of the space of the rectangle whose side lengths are AD and 
DB, and the space of the square whose side length is CD, is equal to the 
space of the square whose side length is AC.

Book 3 begins with 11 definitions and contains 37 propositions. It studies 
the properties of circles. For example, Proposition 1 of Book 3 states how 
to find the center of a given circle, and Proposition 5 shows the property 
that if two circles cut one another, then they will not have the same center. 
Book 4 deals with problems about circles, including constructions of 
regular polygons with 4, 5, 6, and 15 sides. Book 5 begins with 18 defi-
nitions followed by 25 propositions about magnitudes, multiples, ratios, 
and proportions of numbers and line segment lengths. Book 6 contains 
33 propositions. There are some applications of the results of Book 5 to 
plane geometry.

Book 7 deals with elementary number theory. It includes divisibility, 
prime numbers, and algorithms for finding the greatest common divisor 
(GCD). The Euclidean algorithm, which shows an efficient method for 
finding the GCD of two integers, is given in Propositions 1 and 2 of Book 7 
and in Propositions 2 and 3 of Book 10. In Book 7, the algorithm is formu-
lated for integers, whereas in Book 10, it is formulated for lengths of line 
segments. The Euclidean algorithm starts with a pair of numbers (positive 
integers) and forms a new pair of numbers that consists of the smaller 
number and the difference between the larger and smaller numbers. This 
process repeats until the numbers become equal. The resulting number 
is the GCD of the original pair of numbers. Euclid also gave a method 
(Proposition 34 of Book 7) for finding the least common multiple (LCM) 
of two integers.



38    ◾    Computing﻿

In a modern textbook on elementary number theory or computer algo-
rithms, the Euclidean algorithm is usually described in the following way.

Let r0 and r1 be a given pair of positive integers, where r0 > r1. The 
algorithm consists of performing the following sequence of divisions:

	 r0 = q1r1 + r2,  0 < r2 < r1

	 r1 = q2r2 + r3,  0 < r3 < r2

	 �

	 rm–2 = qm–1rm–1 + rm, 0 < rm < rm–1

	 rm–1 = qmrm

Then it is not hard to show that

	 gcd(r0, r1) = gcd(r1, r2) = … = gcd(rm–1, rm) = rm

where gcd(a, b) means the GCD of a and b. Hence, it follows that 
gcd(r0, r1) = rm.

The Euclidean algorithm was probably not discovered by Euclid. As D. 
E. Knuth states in his book [7], some scholars believe that the method 
was known up to 200 years earlier, and it was almost certainly known to 
Eudoxus [7]. B. L. van der Waerden suggested that Book 7 was derived 
from a textbook written by mathematicians in the School of Pythagoras [9]. 
Centuries later, the Euclidean algorithm was discovered independently in 
India and in China to solve Diophantine equations (see Chapter 6). Knuth 
calls the Euclidean algorithm the granddaddy of all algorithms, because it 
is the oldest nontrivial algorithm that has survived to the present day [7].

The original Euclidean algorithm was described only for natural 
numbers and geometric lengths, but in the 19th century it was gener-
alized to other types of numbers such as modular arithmetic numbers 
and polynomials in one variable. Although the Euclidean algorithm is 
one of the oldest algorithms, it is still commonly used. The algorithm 
has many theoretical and practical applications. It is an important part 
of the construction of the RSA cryptography, a public-key cryptosystem 
most widely used in the security of electronic commerce on the Internet 
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(see Chapter 30). It is also used as a basic tool for proving certain theorems 
in modern number theory. For example, it has been used to find multipli-
cative inverses in a finite field.

Propositions 30 and 32 of Book 7 together are equivalent to the funda-
mental theorem that every positive integer can be written as a product of 
primes in an essentially unique way. These propositions are given as follows:

Proposition 30 (of Book 7)

If a number is a product of two numbers and if a prime number is a factor 
of the product, then the prime number is also a factor of one of the original 
two numbers.

Proposition 32 (of Book 7)

Any number is either of a prime number or a multiple of prime numbers.

Book 8 deals with numbers in geometrical sequences as well as with 
number theory. Proposition 20 of Book 9 proves the infinitude of prime 
numbers. The construction of perfect numbers is given in Proposition 36 
of Book 9.

Book 10 deals with commensurable numbers and incommensurable 
numbers. The definitions of commensurable and incommensurable 
are given at the beginning of Book 10. Commensurable numbers can 
be considered to be rational, whereas incommensurable numbers can 
be considered to be irrational. Books 11 through to 13 deal with solid 
geometry. Book 11 generalizes the results of Books 1 through 6 to solids 
(i.e., figures of three dimensions). Book 12 studies volumes of cones, pyra-
mids, cylinders, and spheres. For example, Proposition 10 of Book 12 shows 
that the volume of a cone is one-third of the volume of the corresponding 
cylinder. Elements ends with Book 13, which discusses the properties of the 
five regular polyhedrons. Book 13 is largely based on an earlier treatise by an 
Athenian mathematician, Teaetetus, who first proved that there can be only 
five regular polyhedrons (i.e., regular tetrahedron, regular hexahedron, 
regular octahedron, regular dodecahedron, and regular icosahedron).
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Theon of Alexandria (c. 335–c. 405 AD) was a Greco-Egyptian scholar 
and a mathematician in the fourth century. He edited and arranged Euclid’s 
Elements. His edition was widely used and had become the only surviv-
ing Greek source until the 19th-century discovery of another source in the 
Vatican Library [10]. The Arabs received Elements from Byzantine around 
760 AD. This version was translated into Arabic around 800 AD. Although 
some Western scholars probably knew that Elements existed in Byzantine, 
there is no existing record of Euclid’s Elements having been translated into 
Latin before the 12th century. It was lost to West Europe until c. 1120, when 
an English monk translated it into Latin from the Arabic translation.

The first printed edition of Euclid’s Elements appeared in 1492 in 
Venice. Since then it has been translated into many languages and pub-
lished in many different editions. Theon’s Greek edition was recovered in 
1533. Some of the Greek old texts still survive and can be found in the 
Vatican Library and in the Bodleian Library, the main research library at 
the University of Oxford.

As a mathematical textbook, Elements is a masterpiece. It has been very 
influential in many areas of science. For example, Nicolaus Copernicus 
(1473–1543), Johannes Kepler (1571–1630), Galileo Galilei (1564–1642), 
and Isaac Newton (1642–1727) were all strongly influenced by its axiomatic 
deductions, logical approach, and rigorous proofs. At around age 40, Abraham 
Lincoln studied Elements for training in reasoning as a lawyer. His law part-
ner Bill Herndon (1818–1891), the biographer of Abraham Lincoln, tells how 
late at night Lincoln would lie on the floor studying Euclidean geometry. 
Lincoln’s logical speeches and some of his phrases, such as “dedicated to 
the proposition that all men are created equal” in the Gettysburg Address 
(November 19, 1863), are attributed to his reading of Euclid’s Elements [4].

The following story by Bertrand Russell (1872–1970), a famous British 
philosopher, logician, and mathematician, is also well known. It is written 
in his autography: “At the age of eleven, I began ‘Euclid’, with my brother as 
my tutor. This was one of the great events of my life, as dazzling as first love. 
I had not imagined that there was anything so delicious in the world” [8].
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C h a p t e r  6

Diophantus of Alexandria 
and Arithmetica

Diophantus of Alexandria was a Greek mathematician who lived in 
Alexandria, Egypt, probably from sometime between 200 and 214 AD to 
sometime between 284 and 298 AD. Diophantus’s age of 84 years can be 
determined from the solution to a linear equation given in an inscription 
(a mathematical poem) on his tomb. The English translation is as follows:

God vouchsafed that he should be a boy for sixth part of his life; 
when a twelfth was added, his cheeks acquired a beard; He kindled 
for him the light of marriage after a seventh, and in the fifth years 
after his marriage he granted him a son. Alas! Late-begotten and 
miserable child, when he had reached the measure of half his 
father’s life, the chill grave took him. After consoling his grief by 
his science of numbers for four years, he reached the end of his life.

Diophantus is often referred to as the Father of Algebra, and is best known 
as the author of a series of books called Arithmetica. These books were a work 
on the solution of algebraic equations and on various aspects of number 
theory. However, there is little biographical information about Diophantus.

Arithmetica is the major work of Diophantus. It is a collection of prob-
lems on both determinate and indeterminate algebraic equations with 
their numerical solutions. Unfortunately, of the original 13 volumes, only 6 
have survived: volumes I to III and volumes VIII to X of the original text. 
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Besides these Greek original volumes, four volumes of Arabic translations 
were discovered in the Astan Quds Library in Meshed, Iran, in 1970 [2]: 
volumes IV, V, VI, and VII of the original text [2]. These 10 volumes 
(6 Greek original volumes and 4 volumes of Arabic translations) contain 
about 200 problems with their numerical solutions. Diophantus considered 
only rational numbers in his books. Here, we list several examples of the 
problems from Arithmetica, where Problem I-1 means the first problem in 
volume I, Problem I-2 means the second problem of volume I, and so on:

Problem I-1

The sum of two numbers is 100, and the difference between these 
numbers is 40. Find these numbers.

SOLUTION
Let x be the smaller number. Then the larger number is x + 40. Hence, 
2x + 40 = 100. The required numbers are 30 and 70.

Problem I-2

The sum of two numbers is 60, and the ratio of the two numbers is 
3:1. Find these numbers.

SOLUTION
Let the smaller one be x. Then the larger one is 3x. Then x + 3x = 60. 
Hence, the required numbers are 15 and 45.

Problem I-27

Find two numbers such that their sum and product are given numbers.
Necessary condition: The square of half the sum must exceed the 

product by a square number.
Suppose that the sum and product of two numbers are 20 and 96, 

respectively. Find the two numbers.

SOLUTION
Let 2x be the difference of the required numbers. Then the two num-
bers are 10 – x and 10 + x. Hence, (10 + x)(10 – x) = 100 – x2 = 96. 
Therefore, x = 2, and the required numbers are 8 and 12.
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(Note that given two numbers a and b, ((a + b)/2)2 – ab = ((a – b)/2)2. 
The necessary condition of this problem is derived from this equation.)

Problem II-6

Find two numbers having a given difference and a number such that the 
difference of their squares exceeds their difference by a given number.

Necessary condition: The square of their difference must be less 
than the sum of the said difference and the given excess of the differ-
ence of the squares over the difference of the numbers.

Let the two numbers be x and y. Suppose that the given difference 
is x – y = 2 and the given excess x2 – y2 – (x – y) = 20. Find the two 
numbers x and y.

SOLUTION
The necessary condition is symbolically (x – y)2 < (x – y) + x2 – y2 – 
(x – y) = x2 – y2. Since x – y > 0, the necessary condition means x > y > 0.

Then 4y + 4 = 22. It follows that the required numbers are y = 9/2 
and x = 13/2.

Problem II-8

Divide a given square number into two square numbers. Let the 
given square number be 16.

SOLUTION
Let x2 be one of the required squares. Then, 16 – x2 must be equal to 
a square. Take a square of the form (mx – 4)2, where m is any integer 
and 4 is from the square root of 16. For example, take (2x – 4)2, and 
equate it to 16 – x2. Hence, 4x2 – 16 x + 16 = 16 – x2, or 5x2 = 16x, and 
then x = 16/5. Therefore, the required squares are 256/25 and 144/25.

Problem IV-3

Find two square numbers such that their sum is a cubic number.

SOLUTION
Let x2 and 4x2 be a smaller square number and a larger square number, 
respectively. Let x2 + 4x2 = x3. Then x = 5. Therefore, 25 and 100 are 
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two square numbers satisfying the condition of the problem. We 
can find other pairs of such square numbers in a similar way. For 
example, let such a pair of square numbers be x2 and 9x2, and let 
x2 + 9x2 = x3. Then x = 10. Therefore, 100 and 900 are also a pair of 
two square numbers satisfying the condition.

Problem V-7

Find two numbers such that the sum of the numbers is 20 and 
the sum of the cube of the first and the cube of the second is 2240 
(i.e., x + y = 20 and x3 + y3 = 2240).

SOLUTION
Let x = 20×1/2 + s and y = 20×1/2 – s. Then x3 + y3 = (x + y)((x + y)2 – 3xy) 
= 20(400 – 3(100 – s2)) = 20(100 + 3s2) = 2240. Hence, 100 + 3s2 = 112 
and s = 2. Therefore, x = 12 and y = 8.

Problem VIII-15

Find three numbers such that the sum of any two multiplied by the other 
is a given number. Let (first + second) × third = 35, (second + third) × 
first = 27, and (third + first) × second = 32.

SOLUTION
Let the third be x. Then (first + second) = 35/x. Assume first = 10/x 
and second = 25/x. Then we have

	 250/x2 + 10 = 27 and 250/x2 + 25 = 32

These equations are inconsistent, but they would not be if 25 – 10 
were equal to 32 – 27 = 5. From this observation we have to divide 
35 into two parts, replacing 25 and 10, such that their difference 
is 5. The parts are 15 and 20. Therefore, we may take 15/x as the first 
number, 20/x as the second, and we now have

	 300/x2 + 15 = 27 and 300/x2 + 20 = 32

Then the third = x = 5, the first = 3, and the second = 4.
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A Diophantine equation is an indeterminate polynomial equation 
that allows integer solutions only. Diophantus made a study of such 
equations in his books. He was one of the first mathematicians who used 
symbolism in algebra. The following are some examples of Diophantine 
equations, where x, y, and z are unknown variables, and n and k are 
given integers:

	 1.	ax + by = k: A linear Diophantine equation.

	 2.	xn + yn = zn: For n = 2, there are infinitely many solutions for x, y, and 
z. The integer solutions are called Pythagorean triples.

	 3.	x2 – ny2 = +1 or –1: Pell’s equation. It is named after English mathema-
tician John Pell (1611–1685). It was also studied by Indian mathema-
tician Brahmagupta (598–c. 668) in the 7th century as well as French 
mathematician Pierre de Fermat (1601–1665) in the 17th century.

	 4.	4xyz = n (xy + xz + yz), equivalently 4/n = 1/x + 1/y + 1/z: The 
Erdös-Straus conjecture states that for every integer n ≥ 2, there exists 
a solution in x, y, z, all as positive integers. Paul Erdös (1913–1996) 
and Ernst G. Straus (1922–1983) formulated the conjecture in 1948. 
Computer searches have verified the truth of the conjecture up to 
n ≤ 1014, but proving it for all integers n remains an open problem.

Diophantus wrote several other books in addition to Arithmetica, but 
very few of them have survived. Diophantus referred to his book called 
The Porisms, but this book has not been found. It is not known whether 
The Porisms is one of the lost volumes of Arithmetica.

A polygonal number is a number represented as dots or pebbles arranged 
in the shape of a regular polygon. For example, triangular numbers are 1, 
3, 6, 10, 15, …, and square numbers are 1, 4, 9, 16, 25, …, and pentagonal 
numbers are 1, 5, 12, 22, 35, …. These are examples of polygonal numbers. 
Diophantus is also known to have written on polygonal numbers.

In Western Europe, Diophantus was forgotten until the 15th century, 
though a portion of Arithmetica, like other ancient Greek texts, was known 
to some medieval Byzantine scholars and Arabic scholars. In 1463 a German 
mathematician, Johannes Müller von Königsberg (1436–1476), wrote that 
no one had yet translated the 13 volumes of Arithmetica from Greek into 
Latin. In 1570 an Italian mathematician, Rafael Bombelli (1526–1572), trans-
lated a portion of the original Greek text of Arithmetica, but it was never 
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published. The best-known Latin translation of Arithmetica was made by 
the French mathematician Claude-Gospar Bachet de Meziriac (1581–1638) 
in 1621. That translation was widely available in Western Europe.

Pierre de Fermat, a French lawyer and mathematician, owned a copy of 
the 1621 edition of the Latin translation of Arithmetica. Around 1637 he 
wrote a memo, so called Fermat’s last theorem, in the margin of his copy 
as follows:

If an integer n is greater than 2, then xn + yn = zn has no solutions 
in non-zero integers x, y, and z. I have a truly marvelous proof of 
the proposition, but this margin is too narrow to contain the proof.

Example 6.1

Find a solution for the following linear Diophantine equation:

	 2072x + 1665y = 37

By the Euclidean algorithm, we have the following sequence of 
divisions:

	

2072 1 1665 407

1665 4 407 37

407 11 37 0

= × +

= × +

= × +

,

,

.

Hence, we find gcd (2072, 1665) = 37. Tracing backward the second 
and first equations above, we obtain the following equations:

	

37 1665 4 407

1665 4 2072 1665

4 2072 5 1665

= − ×

= − × −

= − × + ×

( )

..

Thus, we find x = −4,  y = 5 to the given linear Diophantine 
equation.

More generally, x = −4 − 1665t,  y = 5 + 2072t is also a solution 
to the linear Diophantine equation for any integer t.
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Fermat’s claimed proof for his proposition was never found. It is 
believed that Fermat did not have the proof. The problem of finding a 
proof for Fermat’s last theorem had been an unsolved problem for more 
than 350 years. A proof for the theorem was finally found in 1994 by the 
British mathematician Andrew John Wiles (1953–) after working on the 
problem for 7 years.

In mathematics, the modularity theorem (also called the Taniyama–
Shimura–Weil conjecture) states that elliptic curves over the field of 
rational numbers are related to modular forms. Wiles proved that the 
modularity theorem for semistable elliptic curves was sufficient to imply 
Fermat’s last theorem. He realized that a proof of a limited form of the 
modularity theorem might be in reach. He decided to devote all of his 
research time to this problem. In 1993, he presented his proof to the public 
for the first time at a conference. However, it turned out that the proof 
contained a fundamental gap. The crucial idea for circumventing the gap 
came to him in 1994. Together with his former student Richard Taylor 
(1962–), he published a second paper that circumvented the gap and com-
pleted the proof of Fermat’s last theorem. Both the first paper by Wiles and 
the second paper by Taylor and Wiles appeared in 1995 in the Annals of 
Mathematics published by Princeton University [7, 8].

Hilbert’s problems form a list of 23 problems in mathematics pub-
lished by the German mathematician David Hilbert (1862–1943) in 
1900. He presented 10 problems among them at the Paris conference of 
International Congress of Mathematicians. Hilbert’s 10th problem asked 
to find an algorithm for determining whether an arbitrary Diophantine 
equation has a solution. The Russian mathematician Yuri Vladimirovich 
Matiyasevich (1947–) proved that no such algorithm is possible in 1970. 
That is, he proved the impossibility of obtaining a general algorithm for 
Hilbert’s 10th problem, making it unsolvable (see Chapter 16).

Diophantus’s Arithmetica has been, over the centuries, the source for 
many algebraic theorems and has influenced significantly the develop-
ment of number theory, mathematical notation, and the use of symbolism 
in algebra.
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C h a p t e r  7

Secret Writing 
in Ancient Civilization

7.1 � STEGANOGRAPHY
It is difficult to specify when secret writing started in ancient civilization. 
Some of the earliest accounts of secret writing date back to Herodotus 
(c. 484–c. 425 BC), who in his text Histories describes the conflict between 
Greece and Persia in the fifth century BC. According to Histories, secret 
writing by a Spartan saved Greece from being conquered by Xerxes I 
(the Great) of Persia, who reigned from 485 to 465 BC. Herodotus was 
an ancient Greek historian and was regarded as the Father of History in 
Western culture. The Greek word historia passed into Latin and took on 
its modern meaning of history. Histories was divided into nine books by 
Alexandrian editors and was structured as a dynastic history of ancient 
Persian kings. The following story was recorded in Book 7 of Histories:

Xerxes the Great spent about 5 years secretly assembling the great-
est fighting force to launch an attack on Greece. However, the 
Persian military buildup was discovered by Demaratus when he 
lived in a Persian city, Susa, after having been expelled from Sparta. 
Before his exile, he had been the king of Sparta from 515 to 491 BC. 
Demaratus wanted to send a secret message to warn the Spartans 
of Xerxes’s invasion plan to Greece. He wrote his secret message 
on a wooden tablet, and then covered it over with wax. When the 



52    ◾    Computing﻿

wooden tablet reached its destination, the Spartans scraped off the 
wax and found the message written on the wood underneath. As 
a result of this warning, Greeks began to construct 200 warships.

On September 23, 480 BC, when the Persian fleet approached the 
Bay of Salamis near Athens, they found the Greek navy prepared for 
battle. Within a day, the Persian fleet was defeated by the Greeks.

Secret communication achieved by hiding the existence of a message 
is known as steganography. Demaratus’s strategy for secret communica-
tion is an example of steganography. It is the combination of Greek origin 
words, steganos meaning “covered or protected” and graphein meaning 
“to write.”

The first recorded use of the term steganography was in 1499 by a German 
scholar, Johannes Trithemius (1462–1516), in his book Steganographia 
(published in Frankfurt). Another example of ancient steganography 
described by Herodotus in Histories is a tattooed message on the shaved 
head of a trusted slave. After his hair had grown, the slave was dispatched 
to the desired destination with the message hidden in his hair (i.e., at the 
time of dispatch it is unreadable).

In ancient China, secret messages were often written on fine silk. They 
were first scrunched into tiny balls and then covered by a layer of wax. The 
messenger would then swallow the waxed ball and carry it in his stomach 
to its destination.

7.2 � CRYPTOGRAPHY
Steganography suffers from a serious weakness. If the messenger is 
searched and the hidden message is discovered, its contents are revealed 
at once. Another strategy to hide a message is via cryptography, which 
had also been developed in ancient civilization. The term cryptography 
originates from the combination of Greek origin words krypts, mean-
ing “hidden,” and graphein, meaning “writing.” Cryptography hides the 
meaning of a message by a process known as encryption [2, 4]. It is not an 
attempt to hide the existence of the message. Cryptography was concerned 
with message confidentiality by converting the message from a compre-
hensible form into an incomprehensible one so that the interceptors or 
eavesdroppers could not understand the encrypted message without 
secret knowledge of how to decrypt it.
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In cryptography, a secret protocol called a secret key is agreed to 
beforehand between the sender and a legitimate receiver. The receiver can 
reverse the converted message by using the secret key to make it com-
prehensible. Cryptosystems can be classified into systems of transposition 
and substitution.

In transposition, the letters of a message are rearranged. The specific 
arrangement protocol of letters needs an agreement between the sender 
and the receiver beforehand, but the agreement is kept secret from the 
enemy. A typical example of transposition can be seen in the Spartan mili-
tary cryptographic device called scytale, dating back to the fifth century 
BC. The scytale is a wooden cudgel around which a strip of parchment is 
wound, as shown in Figure 7.1. The sender writes the message along the 
length of the scytale, and then unwinds the strip, which now looks like 
a sequence of meaningless letters. To recover the message, the receiver 
wraps the parchment strip around a scytale of the same diameter as used 
by the sender. By doing so, the receiver can read the original message 
along the length of the scytale.

T A

A

N
N

V
Y
S
H

H
E
S
P
A
R
T

O
U
L
D
B
E
P
R

E
P
A
R
E
D
F
O

FIGURE 7.1  An example of a message written on the scytale.
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As an example, we show the message “The Spartan navy should be 
prepared for the attack by the Persian fleet” written on a parchment strip 
that is wound around a scytale (Figure  7.1). Although we have spaces 
between words and some punctuation marks in plaintexts, these are 
usually omitted in cryptotexts.

For very short messages such as single words, transposition cryptog-
raphy is relatively insecure, because there are only a limited number of 
ways for rearranging a small number of letters. However, as the number 
of letters in messages increases, the number of possible arrangements 
rapidly explodes. Therefore, for a relatively long message, it is very hard to 
restore the original message (i.e., decipher it) unless the arranging process 
is known.

The alternative to transposition in cryptography is substitution. In 
substitution, the plaintext letters are replaced with substitutes. The substi-
tutes are kept in the cryptotext in the same order as their originals in the 
plaintext. If the use of substitutes remains unaltered throughout the text, 
the cryptosystem is called monoalphabetic. As far as we know, all of the 
ancient substitution systems were monoalphabetic.

Caesar cipher is the most widely known among monoalphabetic sub-
stitution cryptosystems. It was named after Julius Caesar (100–44 BC), 
a Roman military and political leader. He played a critical role in the 
transformation of the Roman Republic into the Roman Empire. Caesar 
was also considered during his lifetime to be one of the best orators and 
authors in Latin. Commentarii de Bello Gallico (Commentaries on the 
Gallic War) was a series of books describing military campaigns waged 
by Julius Caesar against several Gallic tribes. It consists of eight volumes; 
volumes 1 to 7 were written by Caesar himself, while volume 8 was written 
by one of his subordinates.

Caesar cipher is based on substitutions in the following way. Each letter 
in the cryptotext is obtained from its corresponding letter in the plaintext 
by advancing k steps in the alphabet. At the end of the alphabet one goes 
cyclically to the beginning. Caesar cipher is also called shift cipher [1, 3]. 
Thus, for k = 3, substitutions are as follows:

Plaintext:	 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cryptotext:	 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

In this cryptosystem, the plaintext WE GOT A GREAT VICTORY is 
encrypted as ZH JRW D JUHDW YLFWRUB.
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Julius Caesar described in his Commentarii de Bello Gallico how he sent 
an encrypted message to Marcus Tullius Cicero (106–43 BC), a Roman 
philosopher, statesman, and lawyer. It was the substitution system in 
monoalphabetic, but did not employ the Caesar cipher. The Latin letters 
in the plaintext were replaced by Greek ones in the cryptotext to Cicero. 
The historical record that Julius Caesar actually used the Caesar cipher 
comes from the writings of Gaius Suetonius Tranquillus (c. 70–140 AD), a 
historian during the Roman Empire. According to Suetonius, the shift in 
the alphabet in the Caesar cipher was three, as shown above.

In Caesar cipher and other similar cryptosystems, the following 
numerical encoding is convenient:

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

If we use this numerical encoding, the encryption and decryption 
process in Caesar cipher can be expressed via modular arithmetic. Thus, 
according to Caesar cipher, each letter α in a plaintext is encrypted as 
α + k modulo 26, and each letter β in a cryptotext is decrypted as β – k 
modulo 26. For example, suppose k = 3, then boy is encoded to 1 14 24, 
and encrypted to 4 17 1. The cryptotext 4 17 1 is decrypted to 1, 14, 24. 
Note that 24 + 3 ≡ 24 + 3 – 26 ≡ 1 mod 26, and that 1 – 3 ≡ 1 – 3 + 26 ≡ 24 
mod 26. Additional applications of modular arithmetic will be described 
more in Chapter 20.

The number of all possible keys for Caesar cipher is only 26, and the 
alphabetical order remains as in the sequence of substituted letters. From 
the security point of view, these are great disadvantages of Caesar cipher. 
Adversaries can easily break Caesar cipher by attempting to break the 
cryptotext for each possible key value of 0 to 25.

Caesar cipher is not the oldest monoalphabetic substitution cryptosystem. 
A system devised by Polybius (c. 203–120 BC) can be also considered a 
monoalphabetic substitution cipher. Polybius was a Greek historian of 
the Hellenistic period. He died about 30 years before the birth of Caesar. 
We explain the Polybius system using the Roman alphabet. Consider 
the following square matrix, nowadays called the Polybius checkerboard 
(also known as Polybius square) (Table 7.1).
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Each letter α will be represented by the pair of letters indicating the 
row and column in which α lies in the matrix above. For example, the 
representations of A, B, M, N, Y, and Z are AA, AB, CB, CC, ED, and 
EE, respectively. The plaintext “Let us build ships” is encrypted to 
CAAEDDDEDCABDEBDCAADDCBCBDCEDC. The Roman alphabet 
version of the Polybius system is monoalphabetic substitutions into the 
target alphabet {AA, AB, AC, AD, AE, BA, BB, …, EE}.

One of the earliest encryptions by monoalphabetic substitutions 
appears in the Kama Sutra, a group of texts written in the fourth century 
in India. Mallanaga Vatsyayana was a Hindu philosopher in the Vedic tra-
dition, and is believed to have lived during the Gupta Empire (fourth to 
sixth centuries). His name appears as the author of the Kama Sutra, but 
its original manuscripts were dated back as far as the fourth century BC. 
The Kama Sutra recommends that women should study 64 arts, such as 
cooking, dressing, and preparing perfumes. Secret writing is one of the 
64 arts, and it helped women conceal their affairs and liaisons. The key of 
the secret writing is to pair letters of the alphabet, and the encryption is to 
substitute each letter in a plaintext with its partner letter. We explain this 
principle using the Roman alphabet. Suppose that the pairing is (A, O), 
(B, S), (C, T), (D, U), (E, V), (F, Y), (G, W), (H, Z), (I, K), (J, N), (L, X), 
(M, P), (Q, R). Then LOTS OF LOVES is encrypted to XACBAYXAEVB.

Random ways of pairing the letters in an alphabet seem to offer a high 
level of security, because the number of possible pairings is very large. For 
the Roman alphabet, the number of possible pairing ways is 25 × 23 × 21 × 
19 × 17 × 15 × 13 × 11 × 9 × 7 × 5 × 3, which is approximately 7.09 × 1012. 
Of course, both the sender and the receiver must agree on a specific letter 
pairing arrangement in order for the system to be useful.

Although cryptography and steganography are independent, it is 
possible to combine these methods to increase security.

TABLE 7.1  The Polybius Checkerboard

A B C D E

A A B C D E
B F G H I/J K
C L M N O P
D Q R S T U
E V W X Y Z
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C h a p t e r  8

The Abacus

8.1 � THE EARLIEST ABACI
Abacus (plural: abaci or abacuses) is a Latin word that came from the 
Greek word abax or abakon, meaning “table” or “tablet,” and possibly 
from the Hebrew word abaq, meaning “dust” or “sand.” The abacus in 
its various forms is a calculating tool invented by ancient civilizations. 
The simplest of these tools, called a counting board or abacus, may have 
initially been made with lines drawn in the sand and pebbles placed 
between or on the lines as counters.

If we search the archeological record, however, we can find direct 
written evidence and clay artifacts related to the earliest known abaci 
from Mesopotamia. Sumer, an ancient civilization in the southern part 
of Mesopotamia, was established by proto-Euphratean people around 
5000 BC. The Sumerians at first used tokens (clay objects of various shapes 
and sizes marked with symbols) to represent items for trade and account-
ing. By the third millennium BC, these tokens had become “calculi” or clay 
tokens used for arithmetic calculation, the results of which were written 
down on clay tablets in the form of abstract numbers. At this time, although 
the Sumerians had abstract numbers, they did not perform calculations 
directly with them; numbers were used only for record keeping.

For arithmetic calculations, the Sumerians used calculi, or clay tokens 
whose size or shape reflected the order of magnitude in their number 
system. The calculi were manipulated, depending on the arithmetic oper-
ation, by interchanging multiple smaller-level calculi for larger ones, or 
vice versa, until the solution was obtained. At some point, the Sumerians 
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discovered that arranging the calculi on a table delineated with columns 
allowed the same sort of operations to be done more efficiently and could 
also be done using fewer uniformly shaped tokens [2].

It is estimated that the first abacus appeared in Sumer sometime 
between 2700 and 2300 BC [1]. At that time, the Sumerians had already 
developed a positional base-60 number system. The earliest abacus was 
a wooden or clay board, divided into columns labeled with the orders of 
magnitude of a base-60 number system. The various shaped calculi were 
replaced with uniform-sized tokens of clay or short reed sticks. Sumerians 
performed calculation with these tools, while written numbers were used 
mainly to record the results [2].

Mesopotamia became united under the rule of the Assyro-Babylonians 
around 2000 BC. These Semitic people adapted the Sumerians’ cuneiform 
writing in their own language. Since they had a decimal number system, 
it was necessary to create conversion tables for the abaci and translate the 
base-60 results into decimal numbers [3]. Eventually, the abacus itself was 
converted to a decimal format. By the end of the third millennium BC, 
a radical transformation in calculation took place [1]. Rather than the use 
of tokens on the counting boards or abaci, the Babylonians began writing 
numbers directly into clay tablets, erasing and rewriting the numbers as 
each operation was carried out.

The Babylonians used their mathematics for complex astronomical 
calculations, and in the management of a large administrative bureaucracy 
supported by taxation and trade. The abacus, evolving over time, was no 
doubt used by both Babylonian scholars and others as a convenient tool 
for calculation.

Eventually, for portability and convenience, grooved wooden boards 
were invented. Later, more permanent tablets of stone (e.g., marble) and 
metal tablets appeared. People used the abacus to count numbers, per-
form arithmetic operations, and record calculated results. Traders and 
merchants needed a tool for both counting the number of goods bought 
and sold and calculating the price of their wares [4].

While the Babylonians enjoyed an abundance of agricultural products 
thanks to the fertile farmland of Mesopotamia, they lacked the natural 
resources necessary to maintain their growing city-state civilization. 
For this reason, they developed vast trade networks extending to India, 
Persia, and many cultures and states surrounding the Mediterranean 
Sea. It is thought that the Babylonian abacus was introduced throughout 
the Middle East and the Mediterranean area via trade and commercial 
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networks. As it was adopted by various cultures, the design of the aba-
cus was modified to suit their social needs and reflect the appropriate 
language and number system [11].

8.2 � THE SALAMIS TABLET AND 
THE ROMAN HAND ABACUS

The oldest surviving counting board or abacus is the Salamis Tablet 
used around 300 BC, which was discovered in 1846 on Salamis Island, 
an ancient Greek city-state off the coast of Cyprus. It is a slab of white 
marble with some marks. In the upper center of the tablet there is a set of 
five parallel lines equally divided by a vertical line. Below these lines is a 
wide space with another set of 11 parallel lines divided by a vertical line. 
Three sets of Greek symbols (numbers from the acrophonic system, or the 
first Greek number system) are arranged along the left, right, and bottom 
edges of the tablet. The slab is 149 cm long, 75 cm wide, and 4.5 cm thick. 
It was used by the Greeks, but it is thought that its design was based on 
the Babylonian counting board [7, 10]. The following are some examples of 
numeral representations in acrophonic:

TABLE 8.1  Examples of Acrophonic Numerals

I II III IIII Γ ΓI ΓII ΓIII ΓIIII
1 2 3 4 5 6 7 8 9
Δ Η Χ
10 100 1000

As with the Salamis Tablet, pebbles are used to represent numbers. 
Numbers between 0 and 4 were generally represented by a number of 
pebbles. A system of lines on the slab serves to give weights to numbers 
by powers of 10. A pebble between the lines represented the number 5. 
Pebbles on the right side of the vertical line represent positive digits, and 
those on the left side represent negative digits. For example, the number 4 
might be represented as a pebble above the right side of the first line plus 
a pebble on the left side of the first line, which represents 5 – 1 = 4. These 
two pebbles represent the same number as the representation of four 
pebbles on the right side of the first line. Likewise, the number 90 might 
be represented as a pebble on the right side of the third line plus a pebble 
of the left side of the second line. It was possible to perform additions and 
subtractions of large numbers [5, 7, 13]. The Salamis Tablet is currently at 
the National Museum of Epigraphy in Athens, Greece.
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Once the practical counting board had found its way to the Mediterra-
nean region, it was adopted by the ancient Greeks, Romans, and Egyptians. 
In addition to the Salamis Tablet, concrete evidence of the use of abaci was 
found on the Darius Vase (c. fourth century BC), discovered in an ancient 
burial site in Canossa, Italy. One scene on the vase depicts a seated royal 
treasurer using an abacus to calculate as a man in front of him is pre-
senting more tribute to be counted. Like the Salamis Tablet, the abacus 
on the Darius Vase is marked with Greek symbols for drachmas in deci-
mal orders of magnitude. This beautiful vase is in the Museo Nationale in 
Naples, Italy [16]. The Etruscan Cameo (fifth century BC), a 1.5 cm high 
carved artifact from ancient Etruria, is another object clearly showing the 
use of a counting board. Here again we see an abacist sitting at a table on 
which tokens have been placed. He has a tablet in his left hand on which 
he has recorded his results in Etruscan numerals. This cameo is in the 
Cabinet des Medailles, Paris [17].

The ancient Romans designed an early portable calculating device 
called the Roman hand abacus for use by merchants, bankers, engineers, 
architects, tax collectors, and others. It is a base-10 version of the previous 
Babylonian abacus. There are interesting similarities between the Roman 
hand abacus and the Salamis Tablet. The lower slots and upper slots on the 
Roman hand abacus are presumably the proper promotion factors of lines 
and spaces between lines on the Salamis Tablet. A Roman hand abacus, 
which is currently on display at the Bibliotheque Nationale de France, 
in Paris, was made in the first century AD. Replicas of similar Roman hand 
abaci can be found in the Science Museum and in the British Museum, both 
in London. It greatly reduced the time for performing the basic arithmetic 
operations, as opposed to hand calculating with Roman numerals [6].

The Roman hand abacus consists of a metal plate with nine parallel 
columns of slots. The first two columns on the right side of the hand 
abacus are for calculating fractions. The remaining seven slots for calcu-
lating integers are divided into an upper and a lower deck. Each of the 
slots on the upper deck has one sliding bead, and each of the slots on the 
lower deck has four. Each bead in the lower deck slots represents a unit of 
the power of 10. The user of the Roman abacus slides the lower beads up 
toward the center for numbers less than 5 (50, 500, etc., depending on the 
column). To represent 5 units, one upper bead is slid down to the center. 
For example, the number 6 is one bead from the upper deck and one bead 
from the lower deck, both moved to the center, while the number 7 is one 
upper bead and two lower beads in the center [6].
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The two right fraction slots on the Roman hand abacus are base-12. 
This is because the Roman as or pound was divided into 12 uncial or 
ounces. Fractions of Roman currency were expressed in terms of pounds 
and ounces. Thus, for fractional accounting purposes, the base-12 parts 
of the abacus were extremely convenient. Both of the two right columns 
(slots) for calculating fractions were used to count from 0 to 11/12 in dif-
ferent ways (See Figure 8.1). The second column from the rightmost is 
divided into the lower slot and the upper slot: five beads are in the lower 
slot and one bead is in the upper slot. The column counts up to 5 ounces 
(5/12 pound) in the lower slot and carries into the upper slot on a count 
of 6 ounces (6/12 pound), repeats to a count of 11 ounces (11/12 pound), 
and then carries into the decimal units (pounds) on a count of 12 ounces 
(1 pound). Thus, the column can count from 0 to 11/12 pound. In other 
words, the bead in the upper deck represents 1/2 pound and each bead in 
the lower slot represents 1/12 pound. On the other hand, the rightmost 
column is divided into three sections: the lowest slot, the middle slot, and 
the top slot have two beads, one bead, and one bead, respectively. The 
rightmost column can count from 0 to 11/12 ounce, and then carries into 
the next right column into 1 ounce (unit) of a count of 12/12 ounce [6]. In 
other words, the bead in the top slot represents 1/2 ounce, the bead in the 
middle slot represents 1/4 ounce, and either of two beads in the lowest slot 
represents 1/12 ounce. Each of 12 representations (from 0 to 11/12 ounce) 
on the rightmost column is displayed in Figure 8.1.

Top

Middle

Lowest

0
1 2 3 4 5 6 7 8 9 10 11

12 12 12 12 12 12 12 12 12 12 12

FIGURE 8.1  Representations from 0 to 11/12 on the rightmost slot.
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8.3 � THE CHINESE ABACUS
While it is clear that the Sumerian abacus underwent many adaptations and 
had spread throughout the lands of the Middle East and Mediterranean, 
there is also evidence of the use of abaci from ancient times in Asian 
civilizations. In the second century BC, the Chinese calculated with small 
bamboo sticks or rods on a board. They used a positional decimal system, 
and like the early Sumerians, while they had written numbers, they did 
not calculate with them directly [2]. The earliest known written docu-
mentation about the Chinese abacus is probably in a book (c. 190 AD) on 
the Eastern Han dynasty (25–225 AD). However, the exact design of the 
earliest Chinese abacus is not known.

Similarly, between the second century BC and the third century AD, 
Indian mathematicians computed on a sand-covered board, lined with 
columns. The Indian word dhuli-karma, or “sand work,” means higher 
computations. The method of calculation, however, was discontinued 
between the fourth and sixth centuries AD when the use of a written 
decimal number system spread. It is this transformation that is also con-
sidered to be the start of modern written arithmetic [1].

Several centuries later, there is further evidence of more advanced abaci in 
use in China. The panoramic painting Along the River during the Qingming 
Festival by the Song dynasty artist Zhang Zeduan (1085–1145 AD) depicts 
the daily life of people and the landscape of the capital Bianjing (today’s 
Kaifeng). In the scene, a Chinese abacus can be seen beside an account 
book. Furthermore, two books demonstrating the use of the Chinese 
abacus, or suanpan, appeared in the Shun-hi dynasty (1170–1190 AD). 
These books are the Pan chu tsih and the Tseu pan tsih, where pan, chu, 
tseu, and tsih mean “counting board,” “counting beads,” “operations,” 
and “book,” respectively. Based on these and other sources, it seems the 
suanpan is a relatively late development of the abacus in China, appearing 
in the 11th or 12th century. No definite description of the abacus in China 
before the 11th century has been found [14].

The number of rods in the traditional suanpan is usually odd, and never 
less than nine. There are five beads (called earth beads) on each rod in the 
lower deck and two beads (called heaven beads) on each rod in the upper 
deck. These beads are mounted on rods and slide up and down within 
decks. This style suanpan is also referred as a 5-2 suanpan. The 5-2 suanpan 
appeared in China around 1200 AD. The beads are rounded and made of 
wood, stone, or ivory. The rods are made of bamboo, wood, ivory, or metal.
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Suanpan beads are counted by moving them up or down toward the 
crossbeam. The upward move of one bead in the lower deck means an 
increase by one place-value, while the downward move of one bead in 
the upper deck means an increase by five place-values. The beads can be 
quickly reset to the starting position by a quick jerk along the horizontal 
axis to move all the beads away from the horizontal beam separating the 
upper deck and the lower deck [8].

Any number between 0 and 9 can be displayed on each rod without 
using the uppermost bead in the upper deck and the lowest bead in the 
lower deck. Using all the beads on each rod, any number between 0 and 15 
can be displayed on the rod. Thus, the 5-2 suanpan can be used for both 
decimal and hexadecimal computation. None of the beads is redundant for 
hexadecimal calculation with the 5-2 suanpan. However, the uppermost 
beads in the upper deck and the lowest beads in the lower deck are redun-
dant for decimal calculation with the 5-2 suanpan. The traditional Chinese 
system of weights was hexadecimal. For example, 1 jin (600 grams) equals 
16 liand (37.5 grams). The computations in decimal and hexadecimal were 
quite similar except for the usage of the uppermost beads in the upper 
deck and the lowest beads in the lower deck [15].

Later the 5-2 suanpan underwent modification, and appeared as a 5-1 
suanpan in the Ming dynasty (1336–1644 AD). It is illustrated in a Chinese 
book from the 16th century [8] and has one bead in the upper deck and 
five beads in the lower deck on each rod. The 5-1 suanpan was mainly 
used for decimal calculations, while the 5-2 suanpan survived until the 
19th century. Various efficient suanpan techniques have been developed 
for addition, subtraction, multiplication, division, and square and cubic 
roots in China. Multiplication required the use of the multiplication table, 
and division required the division table. The users of the suanpan usually 
learned these tables by heart.

8.4 � THE JAPANESE ABACUS
The use of the suanpan spread from China to Korea around 1400 AD, where 
it is called jupan, jusan, or supan. During the 15th century, the 5-2 suanpan 
found its way also to Japan via the Korean peninsula, where it was called 
soroban. The Chinese division table was also introduced at the same time. 
The Chinese division table was called hassan, meaning “eight classes of 
division calculations.” The method of using the division table was called 
kyukihou (“nine” returning method). Kanbei Mouri (also  known as 
Shigeyoshi Mouri) was an influential Japanese mathematician during the 
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Azuchi-Momoyama era (1573–1603) and early Edo era (1603–1868). He 
instituted a mathematics school in Kyoto in the 16th century, spreading 
the kyukihou (i.e., the division method using the hassan). Mitsuyoshi 
Yoshida (1598–1672), one of his students, was the author of Jinkouki 
(A  Book of Very Large and Very Small Numbers). This  book is an old 
extant Japanese textbook on mathematics containing arithmetic tech-
niques of the soroban. The book was widely read in the Edo and Meiji 
eras (Edo, 1603–1868; Meiji, 1868–1912). Jinkouki contributed greatly to 
spreading the soroban in Japan [9].

The 5-1 soroban appeared in Japan around 1850 at a time when the 
basis for Japanese currency shifted from hexadecimal to decimal [9]. 
The  division method using the division table was rather complicated. 
It  was replaced by a division method using the standard multiplication 
table around 1935, soon after the 4-1 soroban appeared. The 4-1 soroban 
has one bead in the upper deck and four beads in the lower deck on each 
rod. It became the standard configuration of the soroban in Japan.

In 1946, an exciting contest took place between the Japanese soroban 
champion at that time and an American expert of the electronic calculator 
in Tokyo, under the sponsorship of the U.S. Army newspaper, The Stars 
and Stripes. The newspaper reported that the soroban champion defeated 
the expert of the electronic calculator at additions, subtractions, divisions, 
and mixed operations. The expert of the electronic calculator defeated the 
soroban champion only at multiplications [12].

The soroban remained in use in Japan in commercial businesses until 
the 1960s, long after the abacus had been abandoned elsewhere. Even in 
banks and the accounting departments of major companies, calculations 
were performed on the soroban until the 1950s. Although the soroban 
had faded from practical use after the appearance of portable electronic 
calculators, its use continues to be taught in schools in Japan. The soroban 
is still manufactured in Japan today, though pocket electronic calculators 
have proliferated and are much more convenient to use.
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C h a p t e r  9

Book of Calculation 
by Fibonacci

Leonardo Pisano Bigollo (c. 1170–c. 1250), also known as Fibonacci, was 
born in Pisa, Italy. He is best known as the author of Liber Abaci (Book of 
Calculation) (the first edition was published in 1202 and the second edition 
was published in 1228) [5]. Liber Abaci was one of the most important books 
on mathematics in the Middle Ages, introducing the Hindu numeral sys-
tem (also called Hindu-Arabic numeral system or Indian-Arabic numeral 
system) and arithmetic methods throughout Europe [1, 2, 4, 7]. He is also 
well known for introducing a number sequence called Fibonacci’s num-
bers (also called the Fibonacci sequence) to Europe [3, 8]. His extant writ-
ings about his early life are in the second paragraph of “Dedication and 
Prologue” in the 1228 edition of Liber Abaci. We quote the paragraph 
below from the English translation by L. E. Sigler [5]:

As my father was a public official away from our homeland in the 
Bugia* customs house established for the Pisan merchants who fre-
quently gathered there, he had me in my youth brought to him, 
looking to find for me a useful and comfortable future; there he 
wanted me to be in the study of mathematics and to be taught for 
some days. There from a marvelous instruction in the art of the nine 
Indian figures, the introduction and knowledge of the art pleased 
me so much above all else, and I learnt from them, whoever was 

*	 Bugia is now Bejaia, a Mediterranean port in northeast Algeria, North Africa.
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learnt in it, from nearby Egypt, Syria, Greece, Sicily and Province, 
and their various methods, to which locations of business I trav-
elled considerably afterwards for much study, and I learnt from 
the assembled disputations. But this, on the whole, the algorithm 
and even the Pythagorean arcs,* I still reckoned almost an error 
compared to the Indian method. Therefore strictly embracing the 
Indian method, and attentive to the study of it, from mine own 
sense adding some, and some more still from the subtle Euclidean 
geometric art, applying the sum that I was able to perceive to this 
book, I worked to put it together in XV distinct chapters, showing 
certain proof for almost everything that I put in, so that further, 
this method perfected above the rest, this science is instructed 
to the eager, and to the Italian people above all others, who up to 
now are found without a minimum. If, by chance, something less 
or more proper or necessary I omitted, your indulgence for me is 
entreated, as there is no one who is without fault, and in all things 
is altogether circumspect.

Fibonacci was a citizen of the maritime city-state of Pisa, but he was 
educated in mathematics as a youth in Bugia. He continued to develop 
as a mathematician by traveling on business and studying in the Barbary 
Coast of the Western Muslim Empire, Egypt, Syria, Province, Byzantium, 
and other places. He learned Greek mathematics from Euclid’s Elements, 
and the Hindu-Arabic numeral system (i.e., decimal place-value number 
system), calculation, and algebra from Arabic scientists. Although knowl-
edge of the Hindu-Arabic numeral system began to reach Europe around 
the end of the 10th century, its advantage was not generally recognized in 
Europe even in the 12th century. Fibonacci decided to write Liber Abaci 
to bring the numeral system to the Italian people in a usable form. The 
effect of the book was tremendous in dissemination of the Hindu-Arabic 
numeral system throughout Europe [1, 2, 6, 8].

Liber Abaci consists of 15 chapters. In Chapter 1, the 10 numeral figures 
of the Hindu-Arabic numeral system are presented, including zero (0, 1, 2, 
3, 4, 5, 6, 7, 8, 9). The zero is called zephir from the Arabic. This system is 
our familiar decimal place-value number system, in which the figure in the 

*	 Pythagorean arcs are marks to indicate triples of place-value numbers. In the writing of numbers 
Fibonacci uses this number system. For example, for 1,234,567,890, each of the triples 234, 567, 
and 890 is covered by an arc.
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first place (rightmost position) counts only for itself, but the figure in the 
second place to the left counts as so many tens. In the sequence of figures, 
the third place from the right end counts as so many hundreds, and so on. 
The zero denotes nothing and serves as a placeholder. Large numbers are 
organized by triples to facilitate our easy reading of them. For indicating 
these triples, Fibonacci uses “arcs,” which play the same role as commas 
used in representing large numbers. He also showed a way of representing 
numbers up to 1000 by the fingers and the palm of the left hand. At the 
end of Chapter 1, additions and multiplications of some small numbers are 
given in tables. He described ways of how to carry out the additions and 
multiplications by using the tables, the fingers, and the palm.

In Chapter 2 an algorithm for multiplication is given. An algorithm 
for addition and an algorithm for subtraction of whole numbers of arbi-
trary size are given in Chapters 3 and 4, respectively. In Chapter 5 an 
algorithm for the divisions by integral numbers is given. The answer to a 
division is given in a form of its quotient with a fraction of its remainder 
(a numerator) over the divisor (a denominator). In Chapter 6 an algorithm 
for the multiplication with fractions is described. There, he also presents 
the Euclidean algorithm for finding the greatest common divisor of two 
integers. Chapter 7 continuously describes the addition, subtraction, and 
division of whole numbers with fractions. Fibonacci also discusses the 
separation of fractions into sums of unit fractions. This method goes back 
to the ancient Egyptian preference for unit fractions.

In Chapters 8, 9, 10, and 11, specific business and merchandise prob-
lems are given. These are problems on the buying and selling of commer-
cial commodities, the process of bartering, certain rules for buying coins, 
and the alloying of money and the rules that are pertinent to alloying.

Chapter 12 is divided into nine parts. The first part is on summing 
series of numbers. The second is on proportions of numbers. The third is 
on problems of tree lengths. The fourth is on problems of finding purses. 
The fifth is on buying horses among company members according to given 
proportions. The sixth is on problems of the travelers. The seventh is on 
false position and rules of divination. The method of false position works 
by the posing of arguments that are approximations, and then the approxi-
mations are corrected to give true solutions. The eighth is on certain prob-
lems of divination. The ninth is on the doubling of squares and certain 
other problems. Most of these problems are equivalent to linear equations 
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of the simple type, Ax = B. For example, the following is one of the tree 
length problems:

There is a tree. Its (1/4 + 1/3) portion lies underground, and the 
length of this portion is 21 palms (1 palm is about 7 to 10 cm). Find 
the tree length.

If we let the tree length be x palms, then the solution to the tree problem 
above is the solution to linear equation (1/4 + 1/3)x = 21. Thus, the solution 
to the problem is 36 palms.

Chapter 13 begins with summing arithmetic series with applications to 
some problems for travelers. Another one is the found purse problem. For 
example, men have purses containing some denari in each purse (denaro 
is the Pisan monetary unit, and denari is its plural). Conditions are given 
and one must find the amount of denari in each purse. Fibonacci often uses 
negative numbers in Liber Abaci. While the purses cannot contain nega-
tive numbers of denari, Fibonacci shows that they can be used to obtain 
solutions to the purse problem. There are also banking problems about 
investments with simple and compound rates of interest. The famous 
Fibonacci numbers (also called the Fibonacci sequence) are also included 
in Chapter 13. The Fibonacci sequence is described as the following story 
about the birth production of rabbits:

A certain man put a pair of fertile rabbits in a place surrounded on 
all sides by a wall. How many pairs of rabbits can be produced from 
that pair in a year if it is supposed that every month each fertile pair 
delivers a new pair and if each new pair becomes fertile at the age of 
one month. [Here, we assume that the rabbits do not die.]

The resulting sequence of new pairs produced in the 1st month, the 
2nd month, …, and the 12th month is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. 
Thus, the answer to Fibonacci’s question above is 144.

In Chapter 14 Fibonacci collects techniques for finding square and cube 
roots. In Chapter 15 he gives a review of proportion and a collection of 
elementary geometry problems. He uses the Pythagorean theorem to cal-
culate areas and volumes of simple shapes. The techniques of algebra for 
quadratic equations are also presented in Chapter 15. The presentation for 
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the techniques differs little from al-Khwarizmi’s book The Compendius 
Book on Calculation by Completion and Balancing (in Arabic).

Al-Khwarizmi (c. 780–c. 850) was born in a Persian family. He was a great 
mathematician at the House of Wisdom in Baghdad. His The Compendius 
Book on Calculation by Completion and Balancing presents the systematic 
solution of linear and quadratic equations. The book was published more 
than 350 years earlier than Liber Abaci. Fibonacci studied Hindu-Arabic 
mathematics mainly from the work of al-Khwarizmi. In Renaissance 
Europe, Al-Khwarizmi was considered the original inventor of algebra, 
but it is now known that his mathematical work is based on older Hindu 
or Greek sources. The Fibonacci sequence had been also described in 
Hindu mathematics much earlier than Fibonacci.

Practica Geometriae is another book written by Fibonacci (1220). It con-
tains a large collection of geometry arranged into eight chapters with theorems 
based on Euclid’s Elements. Later, Liber Quadratorum (Book of Squares) was 
also written by Fibonacci (1225). In this book he proves some interesting 
number theoretic results. For example, he proved the following facts:

There is no pair of integers (x, y) such that x2 + y2 and x2 – y2 are 
both squares.

There is no non-trivial integral solution for x4 – y4 = z2.

Liber Quadratorum established Fibonacci as the major contributor to 
number theory in the period between Diophantus and the 17th-century 
French mathematician Pierre de Fermat (1601–1665).

In mathematics and arts, two quantities are in golden ratio if the greater 
quantity to the smaller quantity is equal to the ratio of the sum of these 
two quantities to the greater quantity. In Figure 9.1, if AC:CB = AB:AC, 
then AC and CB are in golden ratio.

Ancient Greek mathematicians studied what we call the golden ratio 
because of its frequent appearance in geometry. The golden ratio has fas-
cinated Western intellectuals of diverse interests for at least 2400 years.

In modern mathematics the first two numbers of the Fibonacci sequence 
are 0 and 1, although both the first two numbers of the original Fibonacci 

A C B

FIGURE 9.1  Golden ratio.
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sequence are 1. A French-born mathematician, Albert Girard (1595–1632) 
[12, 13], was the first person who formulated the inductive definition of 
the Fibonacci sequence as:

	 F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn	 (n ≥ 0)

where Fn is the nth Fibonacci number (n = 0, 1, 2, 3, …). He stated that the 
ratios of two consecutive Fibonacci numbers tend to the golden ratio = 
(1 + 5 )/2. This result was published in 1634, 2 years after his death. The 
tree representations for equations Fn+2 = Fn+1 + Fn and Fn+4 = 3Fn+1 + 2Fn are 
shown in Figure 9.2.

Many authors attribute the discovery of the following equation to 
J. P. M. Binet (1786–1856) in 1843, and so call it Binet’s formula [11]:

	 Fn = (1/ 5)(φ1
n – φ2

n),

where φ1 = (1 + 5)/2 and φ2 = (1 – 5)/2 (i.e., φ1 and φ2 are the roots of 
quadratic equation x2 – x – 1 = 0). However, Leonhard Euler (1707–1783) 
discovered the same formula in 1765, much earlier than Binet [10]. 
Moreover, D. E. Knuth [9] stated in his book that the formula above can 
be traced back even further to a paper published in 1730 by A. de Moivre 
(1661–1754) [14, 15].

In modern science and technology, the Fibonacci sequence has been 
applied in many diverse areas. These applications include computer algo-
rithms such as the Fibonacci heap data structure and interconnection 
networks in parallel and distributed systems called the Fibonacci cubes. 

Fn+2

Fn+1Fn

Fn+2

Fn+2

Fn+4

Fn+3

Fn+1 Fn+1

Fn+1

Fn

Fn

FIGURE 9.2  Examples of tree representations for Fibonacci numbers. (a) A binary 
tree for Fn+2 = Fn+1 + Fn (left figure). (b) A binary tree for Fn+4 = 3Fn+1 + 2Fn (right figure).
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The Fibonacci sequence also appears in biology: branching in trees, the 
numbers of spirals in a pineapple, and the arrangement of a pine cone.

It is an interesting observation that the conversion factor 1.609344 for 
miles to kilometers is close to the golden ratio (1 + 5 )/2. Hence, the decom-
position of distances in miles into a sum of Fibonacci numbers becomes 
nearly the kilometer sum when the Fibonacci numbers are replaced by 
their successors.
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C h a p t e r  10

Decimal Fractions 
and Logarithms

10.1 � APPEARANCE OF DECIMAL FRACTIONS
A decimal fraction is a decimal representation of a real number in the 
form of a series written as a sum:

	 r = a0 + a1/10 + a2/102 + a3/103 + … if r ≥ 0

	 r = –a0 – a1/10 – a2/102 – a3/103 – … if r < 0,

where a0 is a nonnegative integer, and a1, a2, … are integers satisfying 
0 ≤ ai ≤ 9 for each i ≥ 1.

Although there is no clear evidence, it is believed that decimal frac-
tions may have first been developed and used in China in around the first 
century BC, from there spreading to the Middle East [2, 3]. The textbook 
Mathematical Treatise in Nine Sections (1247 AD), by Chinese Southern 
Song dynasty mathematician Qin Jiushao (1202–1261), describes decimal 
fractions. In Europe, they probably did not appear until the 14th century. 
A French Jewish mathematician and astronomer, Immanuel Bonfils 
(c.  1300–1377), published astronomical tables and methods of decimal 
arithmetic including decimal fractions around the year 1350 [3].

The Persian mathematician Jamshid al-Kashi (c. 1380–1429), and the 
first director of the Science Institute founded in Samarkand in 1414 by 
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Emperor Ulugh Beg, claimed to have discovered decimal fractions during 
the 1420s. He computed 2π to nine sexagesimal digits, accurately convert-
ing this approximation to 17 decimal places in 1427 [4]. He gave not only 
the value of π more accurately than any of his predecessors, but also wrote 
it using Arabic numerals as follows [1]:

	 Integer

	 3	 1415926535898732

The clear notation of a decimal fraction by al-Kashi seems to predate 
any similar notation found in Europe. In his book The Teatise on the 
Chord and Sine, al-Kashi calculated sin 1° as accurately as his calculation 
for π. It is also known that al-Kashi was the first person who provided a 
clear statement of the law of cosine (i.e., c2 = a2 + b2 – 2ab cos γ, where a, 
b, and c are side lengths of a triangle and γ is the angle between the sides 
with lengths a and b opposed to the side with length c).

The use of a dot or bar before and after integers to indicate decimal frac-
tions became common in Europe in the 16th century. In 1585, the Flemish 
mathematician Simon Stevin (1548–1620) wrote De Thiende (La Disme in 
French, Decimal Arithmetic in English), a booklet first published in Flemish 
and later translated into French. In the booklet he clearly described the 
significance of the decimal fractions and demonstrated the rules for calcu-
lations involving decimal fractions as easily as if they involved only inte-
gers [1]. For example, 27.847 + 37.675 + 875.782 = 941.304 was written as 
27(0)8(1)4(2)7(3) + 37(0)6(1)7(2)5(3) + 875(0)7(1)8(2)2(3) = 941(0)3(1)0(2)4(3).

By the 16th century, European mathematicians were able to produce 
various tables of accurate approximations for square roots, trigonometric 
functions, and other quantities denoted by decimal fractions. Several writ-
ers used a period to separate the decimal fraction portion from its integer 
portion, while others used a bar for demarkation. The improvement in nota-
tion for the decimal fractions was largely made by several scholars, includ-
ing the Swiss clockmaker and mathematician Jobst Burgi (1552–1632), the 
German astronomer and mathematician Johannes Kepler (1571–1630), 
the German mathematician Johann Hartmann Beyer (1563–1625), and the 
Scottish mathematician John Napier (1550–1617).
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10.2 � LOGARITHMS
A logarithm is the inverse function of an exponential function. If x = ay, 
then y is the logarithm of x to base a and is written y = loga x. The loga-
rithm to base-10 is called the common logarithm (also called the decimal 
logarithm or Briggsian logarithm) and has many applications in science 
and technology. The logarithm to base e (= 2.718…) is called the natural 
logarithm, and it is widely used in mathematics, especially in calculus. 
Nowadays, the logarithm to base-2 is commonly used in computer tech-
nology and information science.

Arithmetica Integra (Integer Arithmetic), published in 1544 by the 
German monk and mathematician Michael Stifel (1487–1567), contained 
a table of integers and powers of 2. The book showed how an approxima-
tion of the multiplication of two numbers can be obtained by adding their 
2’ powers and looking up their sum in the table of powers of 2. Stifel’s 
method of multiplication was based on the relation aman = am+n, known 
also to the ancient Greek mathematician Archimedes. This method can be 
considered an early version of multiplication by logarithms.

Logarithms are said to be first invented by John Napier in 1614, in 
his book Marifici Logarithmorum Canonis Descriptio (Description of 
Wonderful Rules of Logarithms). Napier dedicated at least 20 years to 
his work on logarithms [5, 6]. The book was subsequently translated into 
English in 1616. The word logarithm, first used by Napier, means “ratio 
number.” His idea was to simplify multiplication involving trigonometric 
function values, while realizing that logarithms could also be useful for 
other operations. His discovery for simplifying multiplication may have 
been inspired by the following equation:

	 sin A sin B = (cos (A–B)–cos (A + B))/2.

In Napier’s time, there were seven-digit tables of the trigonometric 
functions. Example 10.1 shows how to multiply by using the tables with 
the operations of addition, subtraction, and division by 2.

Example 10.1

Suppose we want to calculate an approximate value of 484.8096 
× 27.56374:

	 484.8096 × 27.56374 = 0.4848096 × 0.2756374 × 105.
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From the sine and cosine table, sin 29° is nearly equal to 0.4848096 
and sin 16° is nearly equal to 0.2756374.

From sin A sin B = (cos (A–B)–cos (A + B))/2 and the cosine table, 
484.8096 × 27.56374 is nearly equal to 105(cos 13°–cos 45°)/2 and is 
nearly equal to 105(0.9743701–0.7071068)/2. Then it is nearly equal 
to 13363.165. Since the exact value is 13363.16576, the approximate 
value is quite close.

Napier’s logarithms (hereafter denoted by Nap.log) are not those loga-
rithms used today. His logarithms are symbolically expressed as

	 Nap.log x = 107(loge (107/x)).

Napier demonstrated certain laws relating logarithm computations, 
which we can state symbolically as follows [1]:

	 1.	If a:b = c:d, then Nap.log a + Nap.log d = Nap.log b + Nap.log c.

	 2.	 If a:b = b:c, then Nap.log a = 2 Nap.log b–Nap.log c.

	 3.	 If a:b = b:c = c:d, then 3 Nap.log b = 2 Nap.log a + Nap.log d, 
and 3 Nap.log c = Nap.log a + 2 Nap.log d.

Henry Briggs (1561–1630), an English mathematician and the first pro-
fessor of geometry at Gresham College, London, was greatly interested in 
astronomy. When he read Napier’s work on logarithms, he thought that 
logarithms would be very useful for astronomical calculations. He began 
studying how Napier’s logarithms could be improved. Briggs traveled from 
London to Edinburgh to discuss logarithms with Napier in the summer of 
1615 [7]. Before meeting in Edinburgh, Briggs had suggested to Napier in 
his letter that logarithms should be to base-10 instead of base e. Originally 
Nap.log 1 is not 0 by its definition. Briggs also suggested that the value 
should be 0. Napier had also been considering these changes. Briggs made 
the second journey to meet Napier in Edinburgh in 1616, and planned to 
make a third visit the following year, but Napier died in the spring before 
the planned visit. Symbolically, the later version of Napier’s logarithms 
took the following form [1, 7]:

	 Nap.log x = 109 log10 x.
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Briggs’s work on logarithms, Logarithmorum Chilias Prima (The First 
Thousand Logarithms), was published in 1618, and his mathematical trea-
tise, Arithmetica Logarithmica (Logarithm Arithmetic), was published in 
1624. In the latter book, Briggs gave the logarithms of natural numbers 
1 to 20,000 and 90,000 to 100,000 that are computed in 14 decimal places.

Jost Burgi (1552–1632), a Swiss clockmaker and mathematician, 
invented logarithms independently of Napier and Briggs, although it is 
not clear when he started work on them. Some historians have suggested 
that Burgi may have invented logarithms earlier than Napier [1, 8], but his 
work was not published until 1620, when the German mathematician and 
astronomer Johannes Kepler asked him to do so. This date was 6 years 
after the publication of Napier’s book.

By the middle of the 17th century, logarithms had become recognized 
as a useful tool for arithmetic calculation not only in Europe, but also in 
China, through the influence of the Jesuit missionaries [1].

In addition to inventing logarithms, Napier also invented a calculat-
ing device known as Napier bones in 1617 and made common the use 
of decimal multiplications and divisions. The device itself does not use 
logarithms, but rather is a convenient tool to reduce multiplication and 
division to a sequence of simple addition and subtraction operations. The 
method employed by Napier’s bones was based on Arab mathematics and 
Fibonacci’s Liber Abaci. The device was a set of rods, each of which was 
inscribed with a part of the multiplication table for the integers 1 to 9. 
Napier coined the word rabdology from the Greek words rabdos, mean-
ing “rod,” and logos, meaning “calculation,” to describe this device and 
its technique. Napier’s bones was popularly used to multiply, divide, and 
even find the square roots and cube roots of numbers [10], and was still 
used as a teaching device in British primary schools into the 20th century, 
see Figure 10.1.

The slide rule (also known as a slip stick in the United States) was used 
primarily for multiplication and division, and also for calculating square 
roots, cubic roots, logarithms, and trigonometric functions. The English 
mathematician Edmund Gunter (1581–1626) first invented it during the 
1620s, shortly after Napier’s publication on logarithms. The English mathe-
matician William Oughtred (1575–1660) and others further developed the 
slide rule in the 17th century. Before the advent of the pocket electronic cal-
culator, slide rules were commonly used calculation tools in mathematics, 
science, and engineering. By the end of the 1960s, the use of slide rules had 
become largely obsolete, and they were seldom manufactured [9].
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At present, logarithms are used in the definitions of various forms of 
measurement. For example, the scale of an earthquake is measured by its 
magnitude M, defined as

	 log10 E = 4.8 + 1.5M,

where E is the energy (Joule) of the earthquake wave.
Another example is the measure for acidity and basicity of an aqueous 

solution known as pH in chemistry, defined as

	 pH = –log10 aH
+,

where aH
+ is the hydrogen ion activity.

The decibel (denoted by dB) is also a logarithmic unit, commonly 
used in physics and engineering to express the ratio between two values. 
For example, the gain of a voltage amplifier that amplifies vi volts to vo volts 
is defined as

	 20 log10(vo/vi) (dB).

While the methods and tools to calculate decimal fractions and loga-
rithms have undergone great transformations over the past four centuries, 
these numerical representations have become an integral part of the 
languages of modern science, engineering, and mathematics.
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FIGURE 10.1  Napier bones and calculation of 8737 × 7. (a) Rods for 8, 7, and 3; 
(b) Calculation of 8737 × 7.
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C h a p t e r  11

Calculating Machines

The origins of mechanical computing devices are rooted in the European 
Renaissance. During this time, there was a resurgence of classicism and 
interest in humanistic subjects: thanks to the gradual spread of Indo-Arabic 
numeration and mathematics in the 16th century, scholars were perform-
ing increasingly complicated calculations. This movement heralded the 
decline of the use of Roman numerals and counter-boards, which had 
been predominantly used in both academia and commerce from the time 
of the Roman Empire. Great cities arose as a result of burgeoning trade 
throughout Europe, the Middle East, and Asia, and along with this trend 
came sufficient wealth to support the arts and sciences. Mathematicians 
and scientists needed more accurate computation on longer numbers in 
various areas than before. As their expertise grew, they searched for easier, 
quicker, and more reliable ways to calculate [7, 10, 16].

Tools like counting boards, Napier’s bones, and the abacus, everywhere 
common, were not true calculating machines. While they certainly made 
calculation easier, they did not mechanize it. Rather, they were simply 
extensions of the human hand, not tools for mechanically carrying out 
arithmetic operations.

The key to the problem of mechanizing arithmetic operations was to find 
a way to reduce the human role while increasing the reliability of the results 
generated by the automatic movement of a machine. The search for solu-
tions to this problem led to the invention and development of a variety of 
numerical calculating machines. The idea of a mechanical calculator may 
seem obvious now, but 400 years ago, such an idea was bold and daring, 
not only with regard to design, but also with regard to construction.
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11.1 � THE RECHEN UHR OR “CALCULATING CLOCK” 
OF WILHELM SCHICKARD

The first step in automatic calculation was taken in 1623, when the German 
astronomer Wilhelm Schickard (1592–1635) constructed his Rechen Uhr, 
or “calculating clock,” as he called it. He was born in the small town of 
Herrenberk, near Tübingen, Wurttemberk (now Germany). He received 
a B.A. degree in 1609 and a M.A. degree in 1611 from the University of 
Tübingen, where he studied theology, oriental languages, mathematics, 
and astronomy [1–4]. Schickard first met Johannes Kepler (1571–1630), the 
distinguished German astronomer, around 1617. Upon meeting Schickard, 
Kepler was impressed with his scientific abilities and engraving skills in 
both wood and copperplate. Kepler wrote in his diary: “I met an excellent 
talent, a math-loving young man, Wilhelm, a very industrious mechanic 
and lover of oriental languages” [4]. He asked Schickard to assist in calcu-
lating tables, and to draw and engrave figures for his books (Harmony of 
the World: Books IV and V). Schickard’s work with Kepler prompted him 
to design the mechanism for a calculating device.

In 1619 Schickard was appointed as professor of Hebrew at the University 
of Tübingen, and in 1631 he became professor of astronomy, mathematics, 
and geodesy. Between the years 1623 and 1624, Schickard wrote Kepler 
two letters, in which he sketched the design of a machine called a calculat-
ing clock. He explained in his letters that the machine could be used for 
calculating astronomical tables. The calculating clock could add and sub-
tract six-digit numbers while indicating the overflow of the limit of digits 
by ringing a bell. We can infer from the letters that the machine could also 
perform multiplication and division. The first calculating clock, built by a 
clockmaker, was later destroyed in a fire, as described below in Schickard’s 
letter to Kepler:

I had placed an order with a local man for the construction of a 
machine for you, but when this machine had half finished, this 
machine, together with some other things of mine, especially 
several metal plates, fell victim to a fire broke out unseen during 
the night three days ago. I took the loss very hard, especially since 
there is no time to produce a replacement soon [1–4].

The design sketches of the calculating machine have been preserved in 
the letters to Kepler from Schickard. In 1718, a German biographer of Kepler, 
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Michael Gottlieb Hansch (1683–1749), published a book about Kepler, 
which included Schickard’s two letters. These letters were rediscovered in 
1935 in the Kepler archive by his biographer, Max Caspar. In 1957, Hammer, 
another biographer of Kepler, announced during a conference on the his-
tory of mathematics that Schickard’s calculating clock predated Pascal’s 
calculating machine, the Pascaline. In 1960, Bruno v. Freytag Löringhoff, 
a professor of philosophy at the University of Tübingen constructed the 
first replica of Schickard’s machine. The Institute for Computer Science 
at the University of Tübingen is called the Wilhelm-Schickard Institute 
in his honor.

Schickard died in Tübingen, Germany, on October 24, 1635, as a result 
of an outbreak of the bubonic plague.

11.2 � THE PASCALINE
Blaise Pascal (1623–1662), born in Clermont-Ferrand, France, was a French 
mathematician, physicist, inventor, and philosopher. A child prodigy, 
he wrote a significant treatise on the subject of projective geometry at 
age 16. Early on, Pascal also made important contributions to the study 
of pressure and vacuum in the natural and applied sciences. Later he 
corresponded with Pierre de Fermat (1601–1638) on probability theory. 
The Pascal (Pa), named after him, is commonly used as the International 
System Unit of pressure [5].

Pascal began to work on the design of a mechanical calculator in 1642, 
while assisting his father, a tax commissioner. His goal was to construct a 
device to reduce his father’s tedious workload of calculation. Pascal built 
more than 20 of these calculating machines, called the Pascaline, over the 
subsequent 12 years. In 1649, Pascal received a royal privilege granting 
the right to manufacture and sell Pascalines in France. By 1654 about 
20 Pascalines had been sold in Europe [6].

The Pascaline was the first calculating machine ever commercialized. 
Nine Pascalines have survived to the present. Seven of them are in 
European museums, one belongs to IBM, and one is in private hands.

The Pascaline was constructed of metal cogwheels. A dial on each 
cogwheel displayed a digit at the corresponding decimal position. To input 
a digit, the user placed a stylus in the corresponding dial, turning it until 
reaching a metal stop at the bottom. By repeating this process, a number 
was displayed in each of the boxes located across the top of the machine. 
The addend was similarly dialed, causing the sum of both numbers to 
appear in the boxes at the top. To subtract one number from another, the 
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number to be subtracted was first converted to its nine’s complement. 
For example, for five-digit subtraction such as 34,563–12,246, the nine’s 
complement of 12,246 is 87,753 (where each digit of the nine’s comple-
ment is the difference of 9 and the corresponding digit of the number to 
be subtracted). Thus, for example, 34,563–12,246 would be carried out by 
the addition of 34,563 + 87,753 + 1–100,000 = 22,317. (Note that for this 
example 100,000 would overflow.)

The Pascaline was also capable of automatic carrying. This was done by a 
series of cogwheels or gears, numbered from 0 to 9, and linked in such a way 
that when one gear completed a revolution, the next wheel was advanced 
by one step. In the case of subtraction, the conversion from a number to its 
nine’s complement would be done automatically by the machine.

The functions of the Pascaline were quite limited. While multiplication 
and division were possible by skillful users, the machines had no special 
mechanisms for these purposes. Doing multiplication or division involved 
many steps, requiring significant effort by the user.

The production of the Pascaline ceased in 1654. By that time Pascal 
had turned his interests to theology and philosophy. He wrote Letters 
Provincials, a series of 18 letters on religious controversy (1656–1657), and 
Pensees, his most influential theological work, unfinished at the time of 
his death and published in 1669.

In 1971, Niklaus Wirth (1934–), a Swiss computer scientist, designed 
and published an innovative programming language that he named Pascal 
to honor the contributions to machine calculation made by Blaise Pascal. 
This programming language is suitable for writing structured programs 
and describing computer algorithms [18].

11.3 � LEIBNIZ AND THE STEPPED RECKONER
Gottfried Wilhelm von Leibniz (1646–1716), a German mathematician, 
scientist, and philosopher, was born in Leipzig, Saxony, during the final 
stages of the Thirty Years’ War (1618–1648). His excellent contributions 
are well known in the history of both mathematics and philosophy. 
Leibniz developed infinitesimal calculus independently of Isaac Newton 
(1642–1725), and together they are considered the founders of differential 
and integral calculus. Leibniz is also known as the inventor of the calcu-
lating machine called the Stepped Reckoner [8].

Leibniz designed the Stepped Reckoner in 1673, but constructed it 
later in 1694. It was the first calculating machine capable of four funda-
mental arithmetic operations (i.e., addition, subtraction, multiplication, 
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and division) by purely mechanical means. Addition and subtraction 
were performed in a single step. Multiplication and division were per-
formed digit by digit on the multiplier or divisor digits. The procedures 
for these arithmetic operations are equivalent to the familiar processes 
for long multiplication and long division, as taught in school nowadays. 
The machine can add or subtract an 8-digit number to or from a 16-digit 
number. It can multiply two 8-digit numbers to obtain a 16-digit result, 
and can divide a 16-digit number by an 8-digit divisor [9].

The Stepped Reckoner did not work well since its complicated gear-work 
caused major problems in construction. The tools available for machine 
manufacture then were not technically capable of building a reliable and 
robust calculating machine. Two prototypes of the Stepped Reckoner 
were built by Leibniz, but never sold. Today only one survives, and is dis-
played in the National Library of Lower Saxony in Hannover, Germany. 
Later, several replicas of the Stepped Reckoner were built, and exhibited 
in museums.

It was Leibniz who truly opened the way for the further development 
of mechanical calculation. Technologically, the Stepped Reckoner made 
many important innovations. Leibniz’s contribution was critical up to 
the start of the computer age of the 20th century. His operating mecha-
nism was employed in many calculating machines for the next 200 years, 
including the hand calculators of the 1970s.

11.4 � THE JACQUARD LOOM
While the development of calculating machines discussed so far is based 
on the need for numerical computation, the motivation that resulted in 
the earliest form of a stored program came from a very different source: 
the textile industry.

One of the fundamental constructs of computational systems is the 
ability to represent information. In ancient times, written symbols for 
numeric values were developed, and then eventually, the invention of 
mechanical tools was inspired by these symbols. Thus, we have the arrange-
ment of pebbles on an abacus frame, the moving scales on a slide rule, 
and the cogged gears on the machines of Schickard, Pascal, and Leibniz. 
All  are examples of representational techniques that try to simplify the 
complex processes of arithmetic tasks. Besides numbers, however, there are 
other forms of information upon which computational processes can be 
performed. The weaving technology developed by Joseph Marie Jacquard 
(1752–1834) in 1801 is one example of these forms of information.
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Joseph Marie Jacquard (1752–1834) was born in the famous textile city 
of Lyon, France. Even as a child Jacquard worked as a pull-boy on the draw 
looms used to produce the beautiful brocade silks worn by aristocrats and 
the wealthy. His father was a master weaver, and when he died in 1772, 
Joseph inherited his workshop and looms. By 1778, Joseph Jacquard had 
himself become a master weaver and silk merchant [11].

As a result of the Industrial Revolution, in the late 18th century there 
was a great expansion in automated industrial processes in important 
industries such as in textile manufacturing. Before the development 
of mechanical looms and weaving machines, fabric had to be tediously 
woven by hand. The invention of powered tools for carrying out this task 
meant that quantities of fabric could be mass-produced far more quickly 
than previously, thereby reducing its expense as well as increasing the 
volume of sales.

There was one technique, however, in which the new machines could 
not compete with skilled manual workers—that was in the production of 
cloth having woven patterns.

The Jacquard loom, the earliest programmable loom, invented by 
Jacquard, provided a solution to this problem. Using the Jacquard loom, 
very intricate patterns and pictures could be automatically woven into 
fabric at almost the same speed as plain fabric could be woven. The key idea 
behind Jacquard’s loom was to control the weaving process by interfacing 
the action of the loom with an encoding of pattern to be woven. To do this, 
Jacquard represented the pattern as groups of holes punched into a sequence 
of pasteboard cards. Each card represented one weft row on the fabric. The 
presence or absence of a hole was detected mechanically, and the informa-
tion was used to control which warp threads were raised while weft threads 
were interwoven. By connecting the cards in sequence on a long tape, the 
Jacquard loom was able to weave patterns of great complexity. A surviving 
example is a black-and-white silk portrait of Joseph Marie Jacquard woven 
under the instructions of some 24,000 cards [13].

Jacquard’s invention of the punched card is important not only for the 
textile industry, but also for its influence on the developers of future com-
puting machinery, including Charles Babbage (1791–1871), Ada Lovelace 
(1815–1852), and Herman Hollerith (1860–1929). Jacquard’s invention was 
a hallmark in mechanization: for the first time, humans could communi-
cate with and be understood by the machines they operated. The language 
of warp and weft, that is, weft threads woven over or under their warp 
counterparts, translated easily into the presence or absence of holes on 
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a card. This same binary logic became our first foray into the world of 
programming software.

11.5 � BABBAGE’S MECHANICAL COMPUTERS
By the turn of the 19th century, England was gripped by the fever of the 
Industrial Revolution; increasingly, people flooded into the cities to live 
and work in factories. New technologies of the efficiency of mass produc-
tion were rapidly developing.

During the same period, both professionals and nonprofessionals alike 
relied heavily on a wide range of mathematical tables to perform the sorts 
of calculations ordinarily done on a hand calculator or a computer today. 
These tables were quite lengthy, and specialized tables on a specific subject 
sometimes filled volumes of books.

In 1790, the French mathematician and engineer Baron Gaspard 
de Prony (1755–1839) used the concept of the division of labor from 
Adam Smith’s (1723–1790) Wealth of Nations to mass-produce tables of 
logarithms and trigonometric functions [15]. Trained mathematicians 
first worked out the formulas to produce the tables, and then broke the 
calculation process down into increasingly simple steps involving only 
simple operations. This was work that could be performed by assembly 
line-like workers with only a rudimentary knowledge of arithmetic. The 
production line involved carrying out repetitive calculations, with one 
person’s results passed to the next group of laborers, who would then carry 
on the computation to the next step. The production of mathematical tables 
in this way became speedy; however, it came at the cost of quality: an error 
early on in the process was compounded at each step along the way, causing 
tables to be chronically incorrect.

Charles Babbage (1792–1871), an English mathematician, philosopher, 
and mechanical engineer, had seen Baron de Prony’s tables when visiting 
Paris in 1819; he was greatly concerned about the errors found in math-
ematical tables and wanted to devise a mechanical solution to calculation 
that would remove the human error. Impressed by de Prony’s method, he 
believed that de Prony’s calculation work could be done by a machine.

In 1822 Babbage proposed his difference engine—a mechanical calculat-
ing machine, so named because it worked by adding constant differences 
to specified starting values. This machine would eliminate the reliance 
on human calculations for producing tables. His sponsors examined his 
drawings for the crank-driven, cogwheel difference engine and found 
the idea promising. They persuaded the British government to fund him 
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1500 pounds. Babbage predicted his difference engine would be complete 
within 3 years.

A working model of the difference engine proved to be an overwhelm-
ing task. Babbage spent the next 10 years modifying, enhancing, and 
redesigning the device. The British government advanced him a further 
17,000 pounds, but ever in the search for an even better machine, Babbage 
abandoned work on the difference engine and undertook the design of 
the analytical engine in 1833. The remarkable steam-powered engine was 
to be an all-purpose machine: the world’s first programmable computer, 
designed not just for solving one particular type of mathematical problem, 
but able to carry out any operation programmed by its operator.

Babbage was convinced that any problem, if represented numerically, 
could be processed mechanically. The analytical engine was composed of 
a store (now called the computer memory) and mill (now called the central 
processing unit or CPU). The computation results could either be stored or 
printed out. Babbage’s analytical engine architecture was remarkably like 
modern computer memory and processors.

Just as with the design of the difference engine, Babbage continued to 
struggle to find an efficient and fast method of doing multiplication and 
division, essential in a machine as sophisticated as the analytical engine. 
Because these processes were so complicated, it required resetting the 
machinery itself each time—a laborious and time-consuming task. The 
final breakthrough came in 1836 when Babbage decided that instructions 
and data would be provided to the analytical engine by a series of punched 
cards, an idea he had borrowed from Joseph Jacquard and his weaving loom.

The construction of a working analytical engine, however, was not suc-
cessful since the technology of the time had not yet achieved a standard 
sufficient for constructing the many sophisticated parts of the machine. 
Babbage continually adjusted his design to the frustration of his engi-
neers. These frequent design changes were the source of constant conflict 
and exhausted his financial resources. The British government eventu-
ally lost faith in him since he never finished what he started—neither the 
difference engine nor the analytical engine. Despite many years of hard 
work, he realized he would never build either engine, but he continued to 
the end to work on their design [14].

11.6 � ADA LOVELACE, THE FIRST COMPUTER PROGRAMMER
Augusta Ada King (Countess of Lovelace, 1815–1852) was the daugh-
ter of the distinguished British poet Lord Byron (George Gordon Byron, 
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1788–1824). In 1816, shortly after her birth, Lord Byron left his family and 
had no further contact with his daughter. Ada was privately schooled in 
mathematics and science by prominent academicians such as the math
ematician and logician Augustus De Morgan (1806–1871). Ada’s interest 
in mathematics dominated her life even after her marriage to the Earl 
of Lovelace and the birth of three children. Ada’s understanding of 
mathematics was aided by her vivid imagination.

At the age of 17 Ada met Mary Fair Somerville (1780–1872), a Scottish 
science writer and polymath, who later introduced Ada to Charles Babbage 
in 1834. Learning of his intriguing design for the revolutionary analytical 
engine, Ada was captivated by his revolutionary ideas.

Through frequent correspondence with Babbage, Ada became one of 
the few to grasp the potential of his machine. Because of her familiarity 
with his work, Babbage suggested to Ada translating into English a French 
essay on the analytical engine written in 1842 by the Italian mathemati-
cian Federico Luigi Menabrea (1809–1896). In the process of doing so, Ada 
added copious notes, tripling the length of the original text, and making 
her essay, “Sketch of the Analytical Engine,” a greatly enhanced descrip-
tion of Babbage’s machine.

In her essay of 1843, Ada compared the analytical engine with the 
Jacquard loom. She wrote, “We may most aptly say that the Analytical 
Engine weaves algebraic patterns just as Jacquard’s loom weaves flowers 
and leaves.” Ada also foresaw that the analytical engine could be used 
to compose music, produce graphics, or be useful for other nonmath
ematical applications.

Ada is credited with writing a program-like algorithm for the analyti-
cal engine to calculate Bernoulli numbers. It is now widely regarded as the 
first computer program, thus making Ada the first computer programmer. 
A programming language developed by the U.S. government was named 
Ada in her honor in 1979.

After completing her essay on Babbage’s analytical engine, Ada became 
very ill and died of cancer at the age of 36. Though her life was short, Ada’s 
vivid imagination as the enchantress of numbers allowed her to anticipate 
in the 19th century many of the features of modern computing [12, 17].

11.7 � HERMAN HOLLERITH AND HIS AMAZING TABULATOR
The 19th century saw great advancements in mechanizing computation 
thanks to the work of Charles Babbage and Ada Lovelace. While the 
analytical engine was never built, it opened the door to all-purpose data 
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processing. By the end of the century, electricity had become the new dar-
ling of the Industrial Revolution as it entered an electromechanical era. 
Herman Hollerith (1860–1929), a mining engineer and a statistician, took 
mechanical computing into this next phase and into the 20th century.

The son of German immigrants, he grew up in Buffalo, New York. After 
receiving a Ph.D. in engineering from Columbia University, he worked 
first for the U.S. Census Bureau and later at MIT. While working for the 
Census Bureau, he learned of the dismal state of census data collection 
and processing. Information gathered from the 1880 census was tak-
ing years to process; with the explosive growth of the population due to 
successive waves of immigrants landing on American shores, prospects 
for the 1890 census were even more dismal. Hollerith responded to the 
Census Bureau’s urgent need and began developing a machine that would 
greatly streamline data processing and enable statisticians to analyze the 
census data much more thoroughly.

In 1884, Hollerith applied for his first patent for a machine that used 
paper tape to represent information. Hollerith was well aware of the 
Jacquard weaving loom and its cards. His brother-in-law was in the silk 
weaving business, and Hollerith had often visited his mills. For this 
reason, he found the idea of storing information in the form of punched 
holes very practical. Instead of cards, however, he first planned to use 
paper tape since this was already commonly used by telegraph services to 
relay information via electric current, just as he had hoped to do. Hollerith 
discovered that paper tape tore easily, so he moved on to the use of the 
more durable cards.

In fact, Hollerith was not designing just a single machine; he was 
designing a whole system that would employ a standardized format for 
data recording, automated reading and counting, and finally, sorting. 
This threefold system included a card punch machine, or pantograph, 
named after an 18th-century device used to enlarge diagrams by mapping. 
To record data, the operator would indicate the paper variable on a 
guide-plate, and the pantograph would punch a hole in a standardized 
card in the appropriate place.

Punched cards were then placed on a hinged grid of blunt needles on 
the card reader. When the operator pulled the lever, the needles passed 
through the card holes into a container of mercury below, completing an 
electric circuit connected to dials on the machine, counting the data on 
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the cards. Each time an electrical impulse was sent, the appropriate dial 
advanced incrementally.

The card reader was electrically attached to a card sorter that contained 
several covered bins for sorting. Depending on the kind of statistics being 
compiled, the sorter would automatically open the correct bin once the 
card had been read, and the operator would drop the card into the bin, 
going on to read the next card. Skilled operators could process thousands of 
cards a day, making the Hollerith system an immediate success. The Census 
Bureau was able to accurately complete the 1890 census data processing in 
record time, and furthermore, for the first time ever, statisticians were able 
to use the data to compile new and valuable statistics for the rapidly growing 
country, making the census an important tool for governance.

With this resounding success under his belt, Hollerith formed the 
Tabulating Machine Company in 1886 and was able to lease his system to 
other countries for their censuses. He named his machine the Tabulator 
and continued to work on refinements and new inventions. It would be 
fair to say that Hollerith ushered in the era of information processing at 
the end of the 19th century.

An engineer by trade, Hollerith was expert at neither company manage-
ment nor sales. In the end, ill health convinced him to sell his business to 
Charles R. Flint (1850–1934), a financier also known as the Father of Trusts, 
who merged it with two other companies, forming the Computer Tabulating 
Recording (CTR) Company in 1911. A few years later, Flint hired Thomas 
J. Watson (1874–1956), a former executive of NCR Corporation, to become 
the general manager. With Watson’s keen business and sales acumen, CRT 
grew steadily. Hollerith continued to serve as a consulting engineer for 
the company until 1921. In 1924, the company was renamed International 
Business Machines (IBM). Herman Hollerith died in 1929 after a lifetime 
of remarkable engineering achievements, and having achieved the success-
ful application of Jacquard’s marvelous cards.

IBM’s punched cards were eventually standardized at 7 and 3/8 inches 
by 3 and 1/4 inches. In 1929, IBM began using rectangular holes instead of 
round ones. Each card contains 12 rows of 80 columns, and each column is 
typically used to represent a single piece of data. The 80-column card domi-
nated the punched card market from around 1950. Although punched cards 
are rarely used now, they had a great influence on the computer industry 
during the 1950s and 1960s.
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C h a p t e r  12

Solutions to 
Algebraic Equations

Being able to solve algebraic equations is at the heart of many modern 
computer applications. Whether one is simply converting a Celsius tem-
perature to Fahrenheit, processing simultaneous linear equations, or 
working with complex, higher-degree equations, finding the solutions 
to algebraic equations is a basic feature of many computer applications. 
Algebraic equations come in many forms and are normally identified 
by the maximum degree of their terms. Finding the general solution for 
algebraic equations has been an endeavor that dates back to the early 
Chinese, Indian, and Arab mathematicians. As any high school math-
ematics student knows, some classes of algebraic equations have general 
solutions; for example, the quadratic equation ax2 + bx + c = 0 has the 
famous formula:

	 x b b ac
a

= − ± −2 4
2

.

As we will see, very interesting people, some with tragically short lives, 
made the many contributions that allow us today to know which algebraic 
equations have general solutions and which do not. Having these general 
solutions to certain algebraic equations makes it much easier to write 
computer software that solves a given algebraic problem in a finite amount 
of time.
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12.1 � LINEAR EQUATIONS
A linear equation is a sum of terms, where each term is either a constant or 
a product of a single variable and a constant called a coefficient. For exam-
ple, 2x + 4 = 0 is a linear equation in a single variable x, and y = 2x – 3 is a 
linear equation in two variables x and y. The latter one is also called a linear 
function (i.e., y is a linear function of x). On the other hand, for example, 
both x2 + 1 = 0 and 2x + y7

 – 6 = 0 are not linear equations, nor is xy + 4 = 0.
Evidence indicates that many early civilizations had learned how to solve 

simple linear equations. Clay tablets, from Mesopotamia, dated 1800 to 
1600 BC, show methods for solving linear and quadratic equations. Egyptian 
mathematical texts from approximately this same time period show how 
to solve first-order linear equations. It is worth noting that early Chinese 
mathematicians had also mastered linear equations. By the year 200 BC, 
Chinese were able to solve systems of linear equations with two unknowns.

Today we frequently rely on algorithms based on the Gauss–Jordan 
method to solve systems of linear equations, and this brings us to Johann 
Carl Friedrich Gauss (1777–1855). Around 1810, Gauss became interested 
in computing the orbit of a newly discovered asteroid in our solar sys-
tem, Pallas. Using observations, he was able to describe the behavior of 
Pallas using six linear equations and six unknowns. To solve this system 
of equations, Gauss invented his method of Gaussian elimination. His 
method involves performing row operations on the linear equations, 
arranged as a matrix, to form an upper-triangular matrix. When in this 
form, the last equation has one unknown and can then be solved. This 
solution is then inserted in the second-to-last equation, to form another 
one unknown equation, and so on.

Example 12.1

Consider the following system of linear equations:

	

x y z

x y z

x y z

+ − =

− − + =

− − =










2 1

2 2 1

3 4 1 .

We show how to find the solution to this system of linear equations 
by the Gaussian elimination method. The augmented matrix of these 
linear equations is
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1 2 1 1
2 1 2 1

3 4 1 1

−
− −

− −















.

Adding twice the first row to the second row, and subtracting three 
times the first row from the third row, we have

	

1 2 1 1
0 3 0 3
0 10 2 2

−

− −















.

We multiply the second row by 1/3 and add 10 times the second row to 
the third row. Then we multiply the third row by 1/2. These processes are

	

1 2 1 1
0 1 0 1
0 10 2 2

1 2 1 1
0 1 0 1
0 0 2 8

−

− −














→

−













→
11 2 1 1
0 1 0 1
0 0 1 4

−













.

Adding the third row to the first row and subtracting twice the 
second row the from the first row, we have

	

1 2 0 5
0 0 1
0 0 1 4

1 0 0 3
0 0 1
0 0 1 4

1 1













→















.

From the last matrix, x = 3,  y = 1,  z = 4.

12.2 � QUADRATIC EQUATIONS
In mathematics, a quadratic equation is a polynomial equation of the 
second degree. The general form is ax2 + bx + c = 0, where x represents a 
variable or an unknown, and a, b, and c are constants with a ≠ 0. (If a = 0, 
the equation is a linear equation.)
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Our look at quadratic equations starts in India. The Indian math-
ematician Brahmagupta (598–668 AD) is thought to have been born 
in Bhinimal, a city in northwest India, and lived under the patronage 
of King Vyaghramukha. He is often referred to as Bhillamalacarya, 
loosely translated to “the teacher from Bhillamala.” Interestingly, his 
approach to computation included the then-new notions of zero and 
negative numbers. It is believed that Brahmagupta’s famous book, 
Brahmasphutasiddhanta (Corrected Treatise of Brahma), was translated 
in the 12th century to Arabic, and this book’s numerical system formed 
the early basis for the Arabic numerals, which eventually made their way 
to Europe and modern mathematics. One of Brahmagupta’s main contri-
butions was in Chapter 18 of Brahmasphutasiddhanta, the solution of the 
general linear equation.

Although the terminology he used was different, Brahmagupta had 
correctly denoted the quadratic equation, which we now know as:

	
x b b ac

a
= − ± −2 4

2
.

Another interesting personality is the Persian mathematician and 
scholar Muh· ammad ibn Mūsā al-Khwārizmī (780–850 AD). He was a 
scholar at the Baghdad House of Wisdom, studying science and math-
ematics. Translations of his work, during the 12th century, brought the 
modern number system, using decimal positions, to the Western world. 
al-Khwārizmī was considered the Father of Algebra in Renaissance 
Europe; however, we now know that his approach to numbers originated 
from much older sources, such as Brahmagupta in India.

It is thought that the famous computer science term algorithm is derived 
from the Latinization of his name, Algoritmi. In addition, the term 
algebra is credited to al-Khwārizmī, and his book Al-Kitāb al-mukhtas· ar 
fī hīsāb al-ğabr wa’l-muqābala (The Compendious Book on Calculation by 
Completion and Balancing) provides a process for solving polynomials of 
up to degree 2. As today’s modern mathematical notations were not known, 
the book explains the quadratic solution processing using ordinary text.

12.3 � CUBIC EQUATIONS
A cubic equation is a polynomial equation of the third degree. The general 
form is ax3 + bx2 + cx + d = 0, where x represents a variable or an unknown, 
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and a, b, c, and d are constants with a ≠ 0. (If a = 0, the equation is a 
quadratic equation at most.)

With how to solve quadratic equations understood around 900 AD, 
we now move on to cubic equations, 600 years later, and Renaissance Italy. 
Here we find an interesting story of discovery, involving four very capable 
mathematicians: Scipione del Ferro (1465–1526), who first discovered a 
general solution to cubic equations; Nicolo Fontana Tartaglia (1500–1557), 
who a few years later independently discovered a similar general solution; 
Girolamo Cardano (1501–1576), who first published a general solution; and 
Lodovico Ferrari (1522–1565), who is described as a student of Cardano.

This would be a simple story if Scipione del Ferro had published his 
approach to finding the solution to general cubic equations. However, in 
del Ferro’s Italy it was common for mathematicians to publicly challenge 
one another to solve each other’s problems, with the loser losing prestige 
and possibly his academic position. So, it was also common for mathema-
ticians to hold their discoveries secret, and use them to defeat other math-
ematicians, if challenged. For whatever reason, del Ferro never published 
his approach. After his death, his approach was only discovered when 
Girolamo Cardano and Lodovico Ferrari received del Ferro’s notebooks, 
containing his approach.

This would all be well and good if it were not for the fact that Nicolo 
Fontana Tartaglia had also discovered a similar approach to solving cubic 
equations—and had shown it to Cardano, with the understanding that 
Cardano would not publish his approach. When Cardano found del Ferro’s 
preexisting approach, Cardano decided that the commitment he had made 
to Tartaglia was no longer valid, and he published del Ferro’s approach in 
his 1545 book Ars Magna. This infuriated Tartaglia, and what followed was 
a decade-long fight, with Tartaglia publicly insulting Cardano. Cardano’s 
student, Lodovico Ferrari, took up the defense of his teacher. Ferrari leads 
us to our next topic (see below), solving quartic and quintic equations.

The approach Cardano published, actually found by del Ferro and 
Tartaglia, is rather complex for our purposes but involves doing a reduction 
to get a depressed cubic. This depressed cubic is of the form t3 + pt + q = 0, 
where p and q are equal to new equations expressed totally in terms of the 
constants a, b, c, and d from the original cubic equation.

12.4 � QUARTIC AND QUINTIC EQUATIONS
A quartic equation is a polynomial equation of the fourth degree. 
The general form is ax4 + bx3 + cx2 + dx + e = 0, where x represents a 
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variable or an unknown, and a, b, c, d, and e are constants with a ≠ 0. 
(If a = 0, the equation is a cubic equation at most.) A quintic equa-
tion is a polynomial equation of the fifth degree. The general form is 
ax5 + bx4 + cx3 + dx2 + ex + f = 0. As we will see, some very intelligent and 
also tragic young mathematicians showed that quintic equations do not 
have a general algebraic solution (i.e., solutions in radicals). An algebraic 
solution means a solution of an algebraic equation in terms of the coeffi-
cients relying on addition, subtraction, multiplication, division, and the 
extraction of roots (i.e., radicals). For example, x5 – x + 1 = 0 is a quintic 
equation such that its roots cannot be expressed in terms of radicals.

Let us continue with Lodovico Ferrari, the student of Cardano. Ferrari 
responded to Tartaglia’s attacks on Cardano, and in Milan in 1548 there 
was a public debate between Ferrari and Tartaglia, concerning the solu-
tion of algebraic equations. It seems the younger Ferrari had a much 
deeper understanding of the mathematics, and the older Tartaglia soon 
refused to engage the younger Ferrari and left under the cover of darkness, 
ceding the debate to Ferrari. In turns out that Ferrari was a very capable 
mathematician in his own right, and among Ferrari’s accomplishments is 
finding the general solution to quartic equations [3].

We now turn our attention to the general solution of quintic equations, 
these being equations of degree 5. Whereas with the previous equation 
types, that is, linear, quadratic, cubic, and quartic, we had success in 
having general algebraic solutions, this area is less satisfying and tragic. 
It is less satisfying because we learn there is no general algebraic solution 
to quintic equations utilizing rational numbers and radicals, and tragic 
because of the deaths that befell two of the young mathematicians that led 
the way to these quantic findings.

But first, we describe the contributions of Joseph Louis Lagrange 
(1736–1813). Lagrange was a mathematician, astronomer, and academic 
who lived at various times in Prussia and France. His doctoral adviser 
was none other than Leonhard Euler, and among his doctoral students 
were Joseph Fourier and Simeon Poisson. Lagrange’s Theorie des fonctions 
analytiques set some of the foundational work for Galois groups, and we will 
now meet Evariste Galois (1811–1832) and Niels Henrik Abel (1802–1829).

Niels Henrik Abel was a famous Norwegian mathematician, born 
in Nedstandrad, Norway, the second of seven children, to Søren Georg 
Abel and Anne Marie Simonen. Although born into a relatively pros-
perous and large family, by the time Abel went to the Royal Frederick 
University, he was nearly destitute due to the untimely death of his father. 
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At age 16, Abel produced a proof of the binomial theorem for all numbers, 
extending Euler’s earlier work. At age 19, he proved that there is no gen-
eral algebraic solution for the roots of quantic equations, this being his 
impossibility theorem. His proof relied on group theory, which he invented 
independently of Galois. After his death, it was discovered that Abel had 
also produced an impressive work on elliptic functions.

Abel was able to travel, due to the patronage of others, through France 
and Germany, where he met with Legendre and others. Through a series 
of missteps and bad luck, Abel failed to get his works fully recognized. 
However, in Berlin he met and befriended August Crelle (1780–1855), an 
amateur mathematician who published a journal on pure and applied 
mathematics. Crelle would go on to publish several of Abel’s works. Abel 
returned to Norway, continuing his wretched existence, having failed to 
find a position and support, living in extreme poverty.

Abel’s mathematical career ended tragically with his death at age 27, due 
to his poverty and associated tuberculosis. Abel had been striving for years 
to obtain a position as a professor, which he badly needed to lift himself 
out of poverty. Ironically, a letter from Crelle arrived 2 days after his death, 
stating that he had been offered a professorship in Berlin. In his short life 
Abel achieved so much of the highest order that he was one of the leading 
mathematicians of the day. Charles Hermite (1822–1901) could say without 
exaggeration, “Abel has left mathematicians enough to keep them busy for 
five hundred years.” Abel, having been asked how he had accomplished 
so much as his age, replied, “By studying the masters, not the pupils” [4].

Abel’s impossibility theorem states that there is no general algebraic 
solution, meaning a solution in radicals, to every polynomial equation of 
degree 5 or higher. Although they cannot be expressed with radicals, they 
can be numerically computed using Newton’s root finding method.

Évariste Galois (1811–1832) was a French mathematician who was born 
in Bourg-la-Reine. While still in his teens, Galois was able to determine 
the exact conditions that permit some polynomial equations to be solved 
by radicals. In particular, he showed that there is no general solution for 
quintic polynomial equations and was the first to use the term group to 
refer to a group of permutations.

Galois entered the Lycée Louis-le-Grand School at age 12 and 
performed well for the first 2 years but became bored with his studies. 
At age 14, he became seriously interested in mathematics, and it is said he 
read Marie Legendre’s Éléments de Géométrie like it was a novel, that is, 
in one reading. By age 15, he was reading the original papers of Lagrange. 
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However, his teachers found his academic work uninspiring. His inability 
to show his abilities resulted in his inability to gain acceptance to École 
Polytechnique, the most famous French mathematics institution of the 
day. He settled for acceptance to École Normale, a lesser institution. About 
this time, he published his first paper on continued fractions.

Galois lived at a time of political turmoil in France, and he got caught 
up in the politics of the day. This resulted in his being expelled from his 
school, École Normale. Leaving school, he eventually joined an artillery 
unit of the National Guard and became friends with the unit’s officers. 
After the arrest of the unit’s officers, it was disbanded and he returned to 
his study of mathematics. However, at a ball where the officers were pres-
ent, Galois got manipulated into a pistol duel over a love affair.

Early on a morning in May 1832, participating in the pistol duel, Galois 
was shot in the abdomen and died the following day, at age 20. The night 
before the duel, suspecting that he might be killed, he wrote his scientific 
“testament” in the form of a letter to a friend. In it, he referred to some of his 
unpublished discoveries. These discoveries included the theory of groups 
and Galois’s theory of equations, which established the limits on general-
ized solutions to algebraic equations. Galois was able to produce criteria 
that showed which algebraic equations are solvable and which are not [1, 2].

Galois’s most important contribution to mathematics is his develop-
ment of what is now called Galois theory. His theory originated in his 
search for why quantic (fifth- or higher-degree) polynomials lack general 
solutions using only algebraic operations and radicals. All the polynomial 
types up to quartic have solutions of this type. At the heart of Galois’s 
theory is the notion of considering the composition of the permutations of 
roots. These roots yield groups of polynomials of a lesser degree.

Although the detailed specifics of theory are beyond our scope, we can 
look at a simple example with a quadratic equation. Let us note that this 
quadratic equation,

	 x x2 4 1 0− + =

has these two roots:

	 A = +2 3

	 B = −2 3 .
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We can further note that these can be combined into two valid equations:

	 A+B = 4

	 AB = 1.

After looking at the possible permutations, using only algebraic opera-
tors and radicals (no irrational numbers, for example), we see that there 
are only two equations; all others are isomorphic. Knowing that there are 
two is sufficient to show that these are the roots of this quadratic equation. 
Évariste Galois’s contributions made it possible to know with certainty 
which polynomials are solved by radicals and which are not.
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C h a p t e r  13

Real and Complex Numbers

13.1 � REAL NUMBERS
Roughly speaking, a real number is a value that represents a quantity on 
the number line, and any point on the number line represents a real num-
ber. That is, the set of real numbers can be thought of as the set of all points 
on an infinitely long number line. Once we decide that a point on the line 
represents zero, any point to the right from the zero point and any point to 
the left from the zero point represent a positive real number and a negative 
real number, respectively. The set of integers is properly included in the set 
of rational numbers, and the set of rational numbers is properly included 
in the set of real numbers.

Any two numbers can be ordered on the number line. If point A locates 
to the left of point B, then A is smaller than B (i.e., A < B). If A < B and 
B <  C, then A < C. Therefore, ordering among real numbers is transi-
tive. Any set with this property is called a totally ordered set. The set of 
integers, the set of rational numbers, and the set of real numbers are all 
totally ordered. Points representing consecutive integers on the number 
line locate discretely, in equally spaced intervals. They look like stepping 
stones in a garden. There is no integer between any pair of consecutive 
integers. On the other hand, between any pair of distinct rational numbers 
a < b, there exists a rational number r such that a < r < b. The density of 
rational numbers signifies this property, as does the set of real numbers. 
The set of integers is, by definition, not dense.

Any number between two real numbers is also a real number, but 
between any pair of distinct real numbers there exists a real number 
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such that it is not a rational number. A real number that is not rational 
is called an irrational number. This property of real numbers is said to be 
continuous. In other words, the set of real numbers is continuous, but the 
set of rational numbers is not continuous on the number line.

The concept of irrational numbers appeared among Hindu mathemati-
cians around 600 BC. Around 500 BC Greek mathematicians, probably 
including Pythagoras, realized that irrational numbers must exist. For 
example, geometrically 2  is the length of the diagonal across a square 
with sides of 1 unit length. They noticed that such a length cannot be rep-
resented by a rational number [1].

In the Middle Ages, Arabic mathematicians treated irrational numbers 
as algebraic objects. In the 17th century French philosopher and mathema-
tician Rene Descartes (1596–1659) introduced the term real number to 
describe the roots of a polynomial equation. A real number that is a root 
of a nonzero polynomial with rational coefficients is called an algebraic 
(real) number. All rational numbers are algebraic, but not vice versa. There 
exist irrational numbers that are algebraic numbers. For example, 2  and 

3 are algebraic irrational numbers. The set of algebraic real numbers is 
a proper subset of the set of real numbers. A real number that is not an 
algebraic number is called a transcendental (real) number.

In the 18th and 19th centuries there was much work on irrational and 
transcendental numbers. The most prominent examples of transcendental 
numbers are π (the ratio of the circumference of a circle to its diameter) 
and e (the Napier constant). Almost all real numbers are transcendental 
numbers, but it is extremely difficult to show that a given number is tran-
scendental. In 1794 the French mathematician Adrien-Marie Legendre 
(1752–1833) gave a complete proof demonstrating that π cannot be rational, 
nor can it be the square root of a rational number. The French mathemati-
cian Joseph Liouville (1809–1882) showed in 1840 that e cannot be a root 
of any quadratic equation with integer coefficients, and then established 
the existence of transcendental numbers. The German mathematician 
Georg Cantor (1845–1918) gave a much simpler proof of the existence 
of transcendental numbers in 1873 from the cardinalities of the set of 
algebraic equations and the set of real numbers [2] (see also Chapter 14).

Before the 1860s, descriptions of real numbers were not rigorous. In 
the latter half of the 18th century, there was a movement to establish a 
rigorous and logically sound foundation for mathematics [4]. A number 
of mathematicians realized that a rigorous definition of real numbers was 
needed as well. They are Karl Weierstrass (1815–1897), Julius Dedekind 
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(1831–1916), and Georg Cantor, along with others. Dedekind introduced 
the notion known as the Dedekind cut in his book in 1872. A Dedekind 
cut c is a partition on the number line into two nonempty parts such that 
every point of the first part (set A) locates to the left of any point of the 
second part (set B), where A = {a | a < c} and B = {b | c ≤ b}. If B contains the 
smallest rational number, the cut c defines a rational number. Otherwise, 
it defines an irrational number. On the other hand, both Weierstrass and 
Cantor defined an irrational number by the limit of an infinite sequence 
of rational numbers. The rigorous construction of an irrational number in 
this way was first presented during lectures in the 1860s by Weierstrass. 
However, he never published his construction of an irrational number in a 
complete form [4]. We give here Cantor’s definition of irrational numbers, 
which was given in 1872:

Let a1, a2, …, an, … be an infinitive sequence of rational numbers. 
For an arbitrarily given small positive number ε, if there exists a 
sufficiently large integer N such that the difference between any an 
and am satisfying n, m > N, is less than ε (i.e., |an – am| < ε), then this 
infinite sequence has its limit. If this limit is not rational, then the 
limit is irrational. In this way an irrational number can be defined.

In 1873 the French mathematician Charles Hermite (1822–1901) first 
proved that e is transcendental, and in 1882 the German mathematician 
Ferdinand von Lindemann (1852–1939) showed that π is transcendental. 
Lindemann’s proof was simplified by Weierstrass in 1885, and was fur-
ther simplified by David Hilbert (1862–1943) in 1893. Lindemann was the 
supervisor for the doctoral thesis of Hilbert at the University of Könisberg.

“Squaring the circle” is a problem proposed by the ancient Greek math-
ematicians. It had been an open problem whether it was possible to con-
struct a square with the same area as a given circle using only a finite 
number of steps with a compass and straightedge. This problem was 
proven to be impossible in 1882, when Lindemann showed that π is tran-
scendental. The hierarchy of number sets is depicted in Figure 13.1.

It seems difficult for school boys and girls to understand why π is an 
irrational number. The first chapter of the well-known science fiction novel 
Contact by Carl Sagan (1934–1996) [6] is “Transcendental Numbers.” In it, 
a school math teacher explains to some seventh graders, “π is about 22/7, 
about 3.1416. But actually, if you want to be exact, it was a decimal that 
went on and on forever without repeating the pattern of numbers.” Ellie, 
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one of the girls in the class, asked the teacher, “How could anybody know 
that the decimals go on forever? How can you count forever?” Ellie went to 
the library later, and then found that the problem is very difficult and that 
this fact was discovered only about 250 years ago [6]. More discussion on 
π is found in Chapter 19.

13.2 � COMPLEX NUMBERS
Some algebraic equations have solutions that are not real numbers. For 
example, no real number can be the solution for x2 + 1 = 0. The imaginary 
unit i is defined to be one of the solutions of x2 + 1 = 0. Another solution of 
this equation is –i. An imaginary number is a number that can be written 
as the multiplication of a real number and the imaginary unit i. A complex 
number is a number expressed in the form a + ib, where a and b are real 
numbers. The real part and the imaginary part of a + ib are a  and  b, 
respectively. Real numbers can be thought of as complex numbers with 
their imaginary parts being zero.

As far as we know, the square root of a negative quantity appeared for the 
first time in the Stereometria of Heron of Alexandria (c. 10–70 AD) [5, 10]. 
Heron of Alexandria was an ancient Greek mathematician who gave the 
correct formula for calculating the height of a frustum of a pyramid with a 
square base. The height is calculated by the square root of c2 – 2((a – b)/2)2, 
where a and b are the edge lengths of the bottom and top squares, respec-
tively, and c is the slant edge length. Heron used a = 28, b = 4, and c = 15, 
giving the square root of –63. Unfortunately, he seemed to misunderstand 
this mysterious quantity [5, 10]. Neither Greek mathematicians nor Arab 
mathematicians seemed to pay much attention to the subject of the square 
root of a negative number.

real numbers

algebraic numbers

rational numbers
integers

natural numbers

transcendental
numbers

FIGURE 13.1  Hierarchy and containments of sets of numbers.
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Italian mathematician Luca Pacioli (1445–1517) stated in his book 
Summa de Arithmetica, Geometria, Proportioni, et Proportionalita (1494) 
that the quadratic equation x2 + c = bx cannot be solved unless b2 is not less 
than 4c. From this fact, he probably recognized the impossibility of find-
ing a real number that is equal to the square root of a negative number [10]. 
Italian mathematician Girolamo Cardano (1501–1576) was the first to use 
the square root of a negative number in an actual computation. He showed 
that 5 15± −  are the solutions to the problem of dividing 10 into two parts 
whose product is 40. German mathematician Gottfried Wilhelm Leibniz 
(1642–1716) studied imaginary numbers. However, he did not grasp the 
idea about geometrical representation of complex numbers.

The use of imaginary numbers was not widely accepted until the 18th 
century. Caspar Wessel (1745–1818) was the first person to describe the geo-
metric interpretation of complex numbers as points on the complex plane 
(1799). Since his idea was published in Danish, it was not noticed by major 
European mathematicians [9]. The same result was later independently 
rediscovered by Jean-Robert Argand (1768–1822) in 1806 and Carl Johann 
Friedrich Gauss (1777–1855) in 1831. The complex plane has an x-axis (the real 
axis) and a y-axis (the imaginary axis) orthogonal to the x-axis. The real part 
and the imaginary part of a complex number are represented by displace-
ments along the x-axis and the y-axis, respectively. One of the most promi-
nent results by Wessel was the vector representation of complex numbers. He 
claimed that a geometrical representation of complex numbers, with length 
and direction, was useful for the addition of complex numbers. The vector 
representation of complex number a + ib is the directed arrow from point 
(0, 0) to point (a, b) in the complex plane. His idea for adding complex num-
bers is the same as the vector addition technique used today, see Figure 13.2.

Im

Re

b

0 a

z = a + ib

FIGURE 13.2  An example of complex plane and complex number a +ib.
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French mathematician Jean Le Rond d’Alembert (1717–1783) first showed 
that every polynomial has a complex root, but his proof was not rigorous. 
Gauss provided a fully rigorous proof of this result. This is now called the 
fundamental theorem of algebra, or the d’Alembert–Gauss theorem. The set of 
complex numbers is closed under the arithmetic operations (addition, subtrac-
tion, multiplication, and division). This result was also shown by d’Alembert.

Example 13.1

The addition, subtraction, multiplication, and division of two com-
plex numbers z a ib1 = +  and z c di c d2 0 0= + ≠ ≠( )or  are defined in 
the following table:

Operation Definition

Addition z z a c i b d1 2+ = +( )+ +( )

Subtraction z z a c i b d1 2− = −( )+ −( )

Multiplication z z ac bd i ad bc1 2× = −( )+ +( )

Division z z a ib
c id

ac bd i bc ad
c d1 2 2 2÷ = +

+
= +( )+ −( )

+

13.3 � COMPLEX-VALUED FUNCTIONS
A complex-valued function (also called a complex function) is a func-
tion that may assign a complex number to each member of its domain. 
The domain may contain complex numbers. In the 18th century some 
European mathematicians turned their attention to complex-valued func-
tions. They extended the domains of real-valued functions to the set of 
complex numbers and allowed their function values (range) to be complex 
numbers. The English mathematician Roger Cotes (1682–1716) discovered 
in 1714 the following formula using a complex logarithm:

	 log (cos sin )e x i x ix+ = .

The Swiss mathematician Leonhard Euler (1707–1783) obtained the 
following formula using a complex exponential function instead of a 
complex logarithm around 1740:

	 e x i xix = +cos sin .
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This is Euler’s formula, named after Leonhard Euler. This formula establishes 
an important relationship between trigonometric functions and complex 
exponential functions. American physicist Richard Feynman (1918–1988) 
called Euler’s formula Euler’s jewel and said that it is the most remarkable 
formula in mathematics (1977). A proof of Euler’s formula is based on the 
following power series (Taylor series) expansions of ex, cos x, and sin x:

	 e x x xx = + + + +1
1 2 3

2 3

! ! !
�

	 cos
! ! !

x x x x= − + − +1
2 4 6

2 4 6

�

	 sin
! ! ! !

x x x x x= − + − +
1 3 5 7

3 5 7

� .

Substituting ix for x in the expansion of the exponential function above 
and using the expansions of the trigonometric functions above, we obtain 
Euler’s formula.

One of the most interesting complex-valued functions is f(x) = eix. The 
locus of eix with the real number domain is the circle of radius 1 at center 0 in 
the complex plane. On the other hand, the locus of real function x2 + y2 = 1 is 
the circle of radius 1 at center (0, 0) in the Euclid plane. Noting the similar-
ity of these loci, American mathematician and electrical engineer Charles 
Proteus Steinmetz (1865–1923) proposed a complex number representation 
for the calculation of alternating currents in an electrical circuit around 1893 
[5, 11]. As a result of Steinmetz’s breakthrough work, electrical engineers 
realized the great advantage in the use of complex quantities rather than 
trigonometric functions for calculating all problems of alternating circuits.

Complex-valued function theory has continued to develop from the 
18th century until today, and is now a very prosperous area in mathematics, 
and there is an enormous amount of literature related to it. Although very 
mathematical in nature, there are many applications for complex-valued 
function theory in the field of physics and engineering.
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C h a p t e r  14

Cardinality

One cannot begin to discuss the notion of cardinality without mentioning 
sets. Philosophers and mathematicians have always used sets, e.g., alpha-
bet = {a, b, c, …, z}, N = the set of natural numbers, Q = the set of rational 
numbers, R = the set of real numbers, etc. With sets, a natural question 
arose: how many elements does a given set have? While this appears to be 
a relatively easy question to answer, that is not quite so. Consider a set of 
elements where it is difficult, if not impossible, to determine if a specific 
element is or is not a member. How does one count the elements of such 
a set? Another apparently easy question is: do sets A and B have the same 
number of elements? Rephrased, the question is: do sets A and B have 
the same cardinality? If both sets have a finite number of elements, the 
answer is straightforward: just count the number of elements in each set 
and check if it is the same number. But what if the sets are not finite, as 
is the case with N and R. While it is obvious that N is a proper subset of 
R, and, in fact, there are infinitely many elements in R that are not in N, 
does that mean that R has more elements? How does one define a set’s 
cardinality if the set is infinite?

The great German mathematician Georg Cantor (1845–1918) formal-
ized the concept of sets and their cardinalities at the end of 19th century. 
Before Cantor, it was the opinion of most mathematicians that cardinal-
ities of all infinite sets are just that, infinite. Cantor argued that if two 
sets are to have the same cardinality, then there must exist (an invertible) 
one-to-one function (bijection) between their respective elements.
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When two sets A and B are said to be of the same cardinality, this is usu-
ally denoted by A = cB, cd(A) = cd(B), or |A| = |B|. There was no problem 
with this when the sets were finite. Problems started when Cantor applied 
this to infinite sets.

It was Cantor’s 1874 article “Über eine Eigenschaft des Inbegriffes aller 
reellen algebraischen Zahlen” (On a Property of the Collection of All Real 
Algebraic Numbers) that was the first to prove that there was more than 
one kind of infinity [1]. Previously, all infinite sets/collections had been 
implicitly assumed to be equinumerous. Due to the novelty of Cantor’s 
idea about cardinality, most mathematicians of the time were very critical 
of his work, some rejecting it outright.

Cantor defined countable sets as those that are finite, or can have their 
elements enumerated, i.e., put into a one-to-one correspondence with the 
elements of the set N. Today, these sets are also called denumerable. The 
cardinality of the set of natural numbers, which is the smallest infinite set, 
was assigned the symbol ℵ0  (read: aleph-zero) by Cantor. He showed that 
there existed an indexing scheme showing a one-to-one correspondence 
between the set of rational numbers and N. This was possible because 
the rational numbers (see Chapter 3) can be represented as ratios of two 
integers. What was not intuitive is that the table of such ratios, say p/q, 
had infinitely many rows and columns. This, however, implied that the 
product ℵ0  × ℵ0  was itself equal to ℵ0 . This was too much for some of the 
mathematicians to handle.

One can easily show that the set of odd integers has the same cardi-
nality as the set of even integers; here the simple (invertible) bijection 
between the two sets is f(n) = 2n. An alternative (but which is also equiv-
alent) argument proving that two sets A and B have the same cardinality 
is to show that there exist two injective functions: between A and B as 
well as B and A. Since it is easy to show that these injections exist, the 
odd, even, and their union, the set of natural numbers N, all have the 
same cardinality of ℵ0 . It follows that ℵ0  + ℵ0  = ℵ0 . Other counter
intuitive arithmetical operations, e.g., a polynomial in ℵ0  is equal to ℵ0 , 
can be shown.

Another example showing the less than intuitive consequences when 
operating with infinite sets is highlighted in the following example: let 
A be an infinite countable set. (1) Is it possible to take away from A an 
infinite subset and still have A remain nonempty? The answer is, of course, 
yes (natural numbers – odd numbers = even numbers). But now, we have a 
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follow-up question: (2) can the process in (1) be repeated arbitrarily many 
times? The answer is, again, affirmative. Take the two-dimensional table 
corresponding to the set of rational numbers (it is of size ℵ0  × ℵ0 ), but 
that quantity is equal to ℵ0. Taking away the first column, which has infi-
nitely many elements, will still leave us with ℵ0  elements; taking away the 
second column, …, etc.

However, Cantor’s proof that the set of real numbers contains more 
than ℵ0  elements was even more counterintuitive, and at first was not 
even accepted by many of the mathematicians. The proof goes as follows:

Cantor’s Proof

Let us assume that N and R have the same cardinality. Then by defini-
tion there must exist a one-to-one onto function f (i.e., a bijection) that 
maps each element from N to a unique element in R. Now, if such a 
function existed, then certainly one would also exist that mapped N to 
S = {irrational numbers between 0 and 1}. Such irrational numbers in S, 
e.g., π/4.0, would have the following representation in decimal: 0.d1d2d3 …, 
where the sequence of digits di would be both infinite and nonrepeating 
(if that were not the case, then the number, by definition, must be rational).

Since f is a bijection, then every element in S must have a correspond-
ing element in N that mapped to it; in other words, it must have an index. 
In that case, the elements (numbers) in S can be listed as s1, s2, s3, …, and 
while we cannot tell exactly which number from S got to be the first one, 
or the second, etc., we do know that every element in S must get an index 
from N. We will now construct a number z that will obviously be in the 
set S, but which will differ from each and every number that has already 
received an index. The number z will have the form 0.e1e2e3 …, where 
the ith digit past the decimal place of z will differ from the ith digit of si. 
We can do this easily by setting ei = sii + 1, where sii is the ith digit of si. 
The  addition is modulo 10, so 9 + 1 = 0 (modulo 10).

Now, z is in S, but it will not receive an index. If it did get one, say k, 
then we have z = sk, but the kth digit of z is, by construction, different from 
the kth digit of sk, which is a contradiction; hence, our assumption that a 
bijection f between N and S existed is incorrect, thus the sets N and S must 
have different cardinalities. Since S has at least as many elements as N, 
our conclusion is that the cardinality of S must be more than ℵ0 .
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Cantor’s proof technique can also be used to show that for any set A, 
the cardinality of its powerset, which is the set of all subsets of A, usually 
denoted by P(A), is always greater than that of A itself. Today this is known 
as Cantor’s theorem. This means that there cannot exist a universal set, i.e., 
a set of “everything,” since its powerset will probably have more elements.

This was discovered by Cantor in 1899 in his eponymous paradox: what 
is the cardinal number of the set of all sets? Clearly it must be the greatest 
possible cardinal. Yet for any set A, the cardinal number of the powerset 
of A is strictly larger than the cardinal number of A, so there cannot be a 
greatest cardinality.

The cardinality of the powerset of N was assigned the symbol ℵ1 , and 
each subsequent powerset would receive an ℵ with an appropriate index. 
Since the concept of constructing powersets has no bounds, this means that 
there are an infinite number of infinities. Therefore, instead of counting 
sheep, one might fall asleep quicker if one were to count different infinities.

The method used in the proof above is called Cantor’s diagonal argu-
ment. Cantor also proved that the cardinalities of the set of complex 
numbers and the set of real numbers are the same. The work of Cantor did 
not stop here. He spent the rest of his life trying to prove what is known 
as the continuum hypothesis, which, stated very informally, reads: there is 
no set whose cardinality is strictly between ℵ0  and ℵ1 . However, he failed 
in his quest. In 1900, the famous German mathematician David Hilbert 
included the continuum problem in his famous list of open problems in 
mathematics. In fact, it was listed as problem number 1. A partial answer 
was provided in 1939 by Kurt Gödel (1906–1978), who proved that the 
continuum hypothesis is consistent with the axioms of set theory; in other 
words, one cannot prove it to be incorrect. It wasn’t until 1963 that an 
American mathematician, Paul Cohen (1934–2007), showed that the con-
tinuum hypothesis is independent of the axiom of set theory, meaning 
that it cannot be proven to be true or false just by using the axioms.

An example of a set whose cardinality exceeds even ℵ1  is the set of all 
real-valued functions, i.e., mappings from R to R. The cardinality of this 
set is denoted by ℵ2 . While the cardinal numbers, which are associated 
with counting, can be produced by, e.g., taking powersets of previously 
constructed ones and whose cardinalities are denoted by ℵ’s with higher 
and higher index numbers, there exist ordinal numbers, usually denoted 
by ω, that would not be reached using this approach.

Ordinals were introduced by Cantor in 1883 to accommodate infinite 
sequences and to classify sets with certain kinds of structures on them 
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(e.g., order). Here, the arithmetic is even more confusing, as, for example, 
ordinals are not commutative, so 1 + ω is ω rather than ω + 1 [5]. When 
two sets U and V are said to be of the same ordinal type, this is usually 
denoted by U = oV.

In his paper, Cantor described “ordinal types” just a few pages after 
defining cardinal numbers [4]:

Every ordered set U has a finite “ordinal type,” … which we will 
denote by U’. By this we understand the general concept which 
results from U if we only abstract from the nature of the elements 
u, and retain the order or precedence among them. Thus, the 
ordinal type U’ is itself an ordered set whose elements are units 
which have the same order of precedence amongst one another as 
the corresponding elements of U, from which they are derived by 
abstraction.… A simple consideration shows that two ordered sets 
have the same ordinal type if, and only if, they are similar, so that 
of the two formulas U = o V, U’ = V’, one is always a consequence 
of the other.

The naïve definition of a set as a collection of objects has led to numer-
ous paradoxes. The best known among these is Russell’s paradox, which 
can be informally stated as: let S be the set of all sets that are not mem-
bers of themselves [2, 3]. Now, a given set, say S, is either a member of 
itself or not. If not a member of itself, then by definition it must contain 
itself, i.e., S as a member, and if it does contain itself, then by definition, 
it shouldn’t (because it already contains itself as a member).

Cantor’s and Russell’s paradoxes showed that the naive, or nonaxiomatic, 
set theory often lead to contradictions. This led to several axiomatizations, 
but even these were incomplete, leaving problems such as the continuum 
hypothesis unanswered.

One of the most important consequences of Cantor’s theorem is that 
there must exist problems for which no algorithms (computer programs) 
can be written (see Chapter 27). The supporting argument is cardinality 
based and it goes as follows:

Problems, e.g., determining if a number is prime or a perfect 
square, etc., are really functions from N to N. Computer programs 
actually take numbers (binary strings) as input, and output their 
answers (again, binary strings). The number of functions from 
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N to N, or equivalently, the number of problems, is the same as the 
number of subsets of N, which is the powerset of N. Its cardinality 
was shown to be ℵ1 . However, the number of possible programs 
that have been, or can ever be, written cannot exceed ℵ0 . So, 
using a straightforward cardinality argument, we have shown 
that there must exist problems/functions for which a computer 
program cannot be written.

Many practical problems in computer science, ranging from the 
determination of running time of an algorithm to proving the opti-
mality or even the correctness of an algorithm, are often resolved using 
cardinality-based analyses.
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C h a p t e r  15

Boolean Algebras 
and Applications

George Boole (1815–1864) was an English mathematician and a founder 
of Boolean logic. He was born in Lincoln, Lincolnshire, England, in 1815. 
Boole’s father, John Boole, was a dilettante in the field of science. He loved 
participating in discussions and lectures on science and technology, and 
became the curator of the library of the Lincoln Mechanics Institute. 
George Boole could access excellent books, and essentially taught himself 
foreign languages, classics, Christian theology, and mathematics [1, 2].

After 3 years working as a schoolteacher, Boole opened his own school 
at age 19 in Lincoln. He worked as a schoolmaster for 15 years until 1849, 
when he became the first professor of mathematics at Queen’s University 
in Cork, Ireland (now University College Cork).

Boole introduced the algebra of logic in his book Mathematical Analysis 
of Logic (1847) [5, 8]. It was designed to provide an alternative, as some 
modification of ordinary algebra, to the traditional approach of Aristotelian 
logic. He developed general methods to greatly extend Aristotelian logic. 
Boole proposed that logical propositions should be expressed as algebraic 
equations. The algebraic manipulation of the symbols in the equations pro-
vides a method of logical deduction. Boole replaced the operation of addi-
tion by the word OR and multiplication by the word AND. The symbols 
in the equations can stand for collections of objects or statements in logic 
[2]. Further statements of his work on the algebra of logic were given in his 
book An Investigation of the Laws of Thought (1854) [9].
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Algebraic laws of set operations are listed in Table 15.1, where ∪ is the 
symbol for the set union, ∩ is the symbol for the set intersection, AC  means 
the complement of set A, U means the universal set, and ϕ means the empty 
set. Both sets and logical propositions satisfy similar laws. In the proposi-
tional logic, ∨ and ∧ are used as the symbols for the logical OR operation 
and logical AND operation, respectively. The symbols ∨ and ∧ are often 
called the disjunction and the conjunction, respectively. The negation of 
proposition A is denoted by ¬A. Binary operations + and · are often used to 
mean ∨ and ∧, respectively. Operations ∪ and ∩ in Table 15.1 correspond 
to ∨ and ∧, respectively, and the complement operation corresponds to the 
negation operation (i.e., AC  corresponds to ¬A). Then the algebraic system 
of logical propositions satisfies the laws given in Table 15.1. Therefore, the 
algebra of sets and the algebra of propositions are similar algebraic sys-
tems. The laws listed in Table 15.1 can also be used to define a mathematical 
structure called Boolean algebra, which is named after George Boole. The 
Boolean algebra can be considered to be a variant of ordinary elementary 
algebra differing in its values, operations, and algebraic laws [6].

Boole’s algebra predated the modern development in abstract algebra 
and mathematical logic. It is the algebra of the truth value and the false 
value, equivalently the algebra of just two subsets, U and ϕ (e.g., for the 
set of subsets of {a}, U = {a} and ϕ). This Boolean algebra is denoted by 
B2. In the late 19th century, Boole’s work was generalized and refined by 
William Stanley Jevons (1835–1884), Augustus De Morgan (1806–1871), 
Charles Sanders Peirce (1839–1914), and William Ernest Johnson 
(1858–1931). Boole’s algebra reached the modern concept of an abstract 
mathematical structure. It can be explained in the algebra of sets. In an 

TABLE 15.1  Algebraic Laws of Set Operations

Idempotent laws (1a) A∪A = A (1b) A∩A = A
Associative laws (2a) (A∪B)∪C = A∪(B∪C) (2b) (A∩B)∩C = A∩(B∩C)
Commutative laws (3a) A∪B = B∪A (3b) A∩B = B∩A
Distributive laws (4a) A∪(B∩C) = (A∪B)∩(A∪C)

(4b) A∩(B∪C) = (A∩B)∪(A∩C)
Identity laws (5a) A∪ϕ = A (5b) A∩U = A

(6a) A∪U = U (6b) A∩ϕ = ϕ

Involution laws (7) ( )A AC C =

Complement laws (8a) A∪AC = U (8b) A∩AC = ϕ

(9a) U C = ϕ (9b) ϕC U=
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abstract setting, Boole’s algebra B2 is isomorphic to one of the algebra of 
sets (i.e., Boolean algebras). In fact, Marshall Harvey Stone (1903–1989) 
proved in 1936 that every Boolean algebra is isomorphic to the algebra 
of sets. Therefore, there exists the Boolean algebra of n elements if n is a 
power of 2 (i.e., n = 2k for some nonnegative integer k). The Boolean alge-
bra with n elements is denoted by Bn. More formally, a Boolean algebra is 
defined by the following definition.

Definition 15.1

A Boolean algebra Bn is a set of elements a a an1 2, , ,�  in Bn with three types 
of operations, ∧(AND), ∨(OR), and ¬(NOT), satisfying the properties given 
in Table 15.1, where any of A, B, and C can take any element in Bn.

Example 15.1

Consider the set of subsets of {a, b, c}. These subsets are ϕ, {a}, {b}, 
{c}, {a, b}, {a, c}, {b, c}, and {a, b, c}. The algebra of these subsets with 
the three types of set operations (i.e., set union, set intersection, and 
complement) is a Boolean algebra. This Boolean algebra is denoted 
by B8.

De Morgan (1806–1871) was a British mathematician and logician. He 
studied mathematics at Trinity College, Cambridge University. He was 
appointed to first professor of mathematics at London University (now 
University College, London University). In 1842, Boole started a correspon-
dence with De Morgan, and they became close friends. De Morgan formu-
lated De Morgan’s laws and introduced the term mathematical induction [3].

In propositional logic and Boolean algebra, De Morgan’s laws are two 
related transformation rules that make it possible for one to express con-
junctions exclusively in terms of disjunction, and disjunctions exclusively 
in terms of conjunction in logical proofs. That is, De Morgan’s laws can be 
given as follows:

	 ¬(A∨B) = (¬A)∧(¬B) and ¬(A∧B) = (¬A)∨(¬B)

where ¬ is the negation operator (NOT), ∧ is the conjunction operator 
(AND), ∨ is the disjunction operator (OR), and = means logically equivalent.
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Example 15.2

The negation of a statement “He is American or British” is logically 
equivalent to a statement “He is not American and not British” by 
De Morgan’s laws.

Although De Morgan’s laws are named after Augustus De Morgan, a 
similar observation was made by Aristotle (384–322 BC) and was known 
to ancient Greek and medieval logicians (e.g., William of Ockham 
(1288–1348), an English philosopher). De Morgan’s laws can be easily 
proved and may seem to be trivial. Nonetheless, these laws are helpful in 
making valid influences in proofs, deductive arguments, and equivalent 
transformations of logical formulae.

John Venn (1834–1923) was a British logician and philosopher. He was 
born in Hull, Yorkshire, England. He began his education at Sir  Roger 
Cholmley’s School (now known as Highgate School in London). He 
enrolled in Gonville and Caius College in Cambridge in 1853, and grad-
uated from Cambridge University in 1857. Venn’s main area of interest 
was logic, and he published three textbooks on the subject. He extended 
Boole’s mathematical logic. Venn introduced the frequency interpreta-
tion of probability in The Logic of Chance, which was published in 1866. 
He introduced Venn diagrams in Symbolic Logic, which was published in 
1881. Venn diagrams are used to show possible logical relations among a 
finite collection of sets. They are used to teach elementary set theory, as 
well as to illustrate simple set relations in probability, statistics, linguistics, 
and computer science. The diagram shown in Figure 15.1 is an example of 
a Venn diagram. The stained glass window of a Venn diagram is displayed 
in the dining hall of Gonville and Caius College, Cambridge University [7].

Expressions built up from the ∧, ∨, and ¬ operations, Boolean constants, 
and any number of variables with any proper usage brackets are called 

FIGURE 15.1  A Venn diagram for (A∧B)∨(A∧C)∨(B∧C).
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Boolean polynomials or Boolean expressions. A Boolean function or 
switching function f x xn( , , )1 �  is defined to be a mapping from {0, 1}n 
to {0, 1}. A Boolean function can be expressed by a Boolean expression. 
For each Boolean function, there are many Boolean expressions to express 
it. For example, Boolean expressions ¬(x∧y) and (¬x)∨(¬y) express the 
same Boolean function as shown in De Morgan’s laws. Boolean function 
values 1 and 0 are called true and false, respectively. The function value of 
a Boolean function f x xn( , , )1 �  depends upon the values of its variables 
x xn1 , ,� . A simple concise way to show this relationship is through a 
truth table.

Example 15.3

Let us consider a game of tossing three coins by a player. If all the 
coins are heads or all the coins are tails, then the player gains score 1, 
and otherwise the player gains score 0. The score of a player can be 
expressed by the following Boolean function:

	 f x x x x x x x x x( , , ) ( ) (( ) ( ) ( ))1 2 3 1 2 3 1 2 3= ∧ ∧ ∨ ¬ ∧ ¬ ∧ ¬ ,

where each of variables x x1 2, , and x3 takes 0 (tail) or 1 (head), and 
the function value is the score of the player. Table 15.2 is the truth 
table of the Boolean function.

Any n-variables Boolean function can be realized by a combinatorial cir-
cuit with n input terminals and a single output terminal, in which OR gates, 
AND gates, and NOT gates are used as logical elements. The OR gate, AND 
gate, and NOT gate are each a Boolean function. Any of these gates can be 

TABLE 15.2  Truth Table of a Boolean Function

x1 x2 x3 f(x1,x2,x3)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
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expressed by using only NOR gates, and also can be expressed by using only 
NAND gates. The NOR gate is a Boolean function f x x x x( , ) ( )1 2 1 2= ¬ ∨ , 
and the NOT gate is a Boolean function f x x x x( , ) ( )1 2 1 2= ¬ ∧ . The truth 
tables of the NOR gate and the NAND gate are given in Table 15.3.

Example 15.4

Let the NOR of x and y, and the NAND of x and y be expressed by 
NOR(x,y) and NAND(x,y), respectively. Then the OR gate, AND gate, 
and NOT gate can each be expressed by using only NOR gates, as well 
as by using only NAND gates, as shown below:

	x∨y = NOR(NOR(x,y),  NOR(x,y)) = NAND(NAND(x,x),  NAND(y,y))

	x∧y = NOR(NOR(x,x),  NOR(y,y)) = NAND(NAND(x,y),  NAND(x,y))

	 ¬x = NOR(x,x) = NAND(x,x).

Claude Elwood Shannon (1916–2001) was an American mathematician 
and electrical engineer known as the Father of Information Theory. He 
graduated from the University of Michigan in 1936 with two bachelor’s 
degrees, one in electrical engineering and one in mathematics. Then he 
graduated from MIT with a M.S. in electrical engineering in 1937 and a 
Ph.D. in mathematics in 1940. He later became a research fellow at the 
Institute for Advanced Study at Princeton University and worked for Bell 
Laboratories. Eventually, Shannon returned to MIT as a professor [4].

While a graduate student at MIT, Shannon was advised by Vannevar 
Bush (1890–1974) and employed to maintain Bush’s differential analyzer, 
an analog computing device. To operate this device, Shannon had to 
manually configure its gears, a laborious task. Bush suggested to Shannon 
that he might write his master’s thesis on the subject of the logical opera-
tion of the differential analyzer. It occurred to Shannon that the machine 

TABLE 15.3  Truth Tables of the NOR Gate and NAND Gate

x y NOR(x,y) NAND(x,y)

0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0
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could be improved if it were operated by electric circuitry rather than 
mechanical gears [4].

While pondering how to redesign the differential analyzer, Shannon 
recalled having taken a course in symbolic logic, where he was introduced 
to Boolean algebra. It now occurred to him that Boolean principles lent 
themselves most conveniently to the design of switching circuits, and 
that this logic could be further used to perform digital calculations. After 
developing this idea, he wrote his master’s thesis, “A Symbolic Analysis 
of Relay and Switching Circuits,” in 1937, and its journal paper appeared 
in 1938 [10]. These papers contain series-parallel two-terminal circuits, 
multiterminal and non-series-parallel networks, synthesis of networks, 
and illustrative examples.

Shannon’s master thesis and its published version [10] are now recog-
nized as the foundation of modern switching theory. The contribution of 
these papers was remarkable for the growth of both the computer industry 
and the telephone industry.

During the early stage of the computer industry, research and devel-
opment of switching theory and its applications to the design of digital 
circuits were very active. A lot of research papers and many textbooks on 
switching theory with applications were published in the 1950s and 1960s, 
e.g., see [11–16].

The Karnaugh map is a graphical technique for representing Boolean 
functions for a few variables and obtaining simplified Boolean expressions. 
This graphical technique is due to Maurice Karnaugh (1924–) [19]. From 1952 
to 1966, Karnaugh worked at Bell Telephone Laboratory where he developed 
pulse code modulation (PCM) encoding and magnetic logic circuits. He 
later worked with IBM, studying multistage interconnection networks [17].

If a Boolean function is expressed as a disjunction of one or more prod-
uct terms, where each product term is the conjunction of several vari-
ables or complements (negations) of variables in which the same variable 
does not appear more than once, the expression is called a disjunctive 
normal form. Similarly, a dual of the disjunctive normal form is called 
a conjunctive normal form. The dual of a Boolean expression is the 
Boolean expression obtained by changing the disjunctive operator with 
the conjunctive operator and the conjunctive operator with the disjunc-
tive operator. The normal form minimization problem was first studied 
by Willard van Orman Quine (1908–2000) [19]. The problem was also 
studied by Edward J. McCluskey [18]. The minimization method is called 
the Quine-McCluskey algorithm.
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Efficient implementation of Boolean functions is a fundamental prob-
lem in the design of combinatorial logic circuits. Modern design automa-
tion tools for very-large-scale integration (VLSI) circuits rely on efficient 
representation of Boolean functions.
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C h a p t e r  16

Computability 
and Its Limitations

Until the mid 1930s the notion of computability had not yet been math-
ematically well established, which is natural since the first electronic com-
puters were not constructed until the Colossus, ENIAC, and EDVAC were 
built in the 1940s. It is quite interesting that the computational limita-
tions of these (as well as all future) computers had already been proven 
mathematically in 1936.

16.1 � GÖDEL’S INCOMPLETENESS THEOREM
At the turn of the 19th century, the German mathematician David Hilbert 
(1862–1943) set out to find an algorithm for determining the truth or false-
hood of any mathematical proposition. Hilbert believed that for any formal 
mathematical theory there must exist a procedure (i.e., an algorithm) by 
which its provability could be decided. This became known as Hilbert’s 
Entscheidungsproblem (decision problem). However, in 1931, Kurt Gödel 
(1906–1978), a young mathematician at the University of Vienna, published 
his now famous paper “Über formal unentscheidbare Sätze der Principia 
Mathematica und verwandter Systeme I” (On Formally Undecidable 
Propositions of Principia Mathematica and Related  Systems  I), proving 
that no such procedure can exist [3].

Gödel showed that the axiomatic method itself unfortunately pos-
sesses certain inherent limitations. The incomplete theorem tells us that 
if a (computable) system is powerful enough to describe the arithmetic 
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of natural numbers, then it cannot be fully axiomatized. For such a sys-
tem, the consistency of the axioms cannot be proved within the system. 
Gödel’s incompleteness theorem was astonishing and attacked a central 
problem in the foundations of logic and mathematics. Naturally, it became 
important to formally define what was meant by the term algorithm or the 
phrase “effective procedure for computing a function.”

Gödel’s incompleteness theorem is closely related to several results 
regarding undecidable problems in recursion theory, the foundation of 
theoretical computer science. Initially, Gödel’s incompleteness and sub-
sequent related theorems left the door slightly open; i.e., there was still 
hope that it might be possible to produce a general procedure that would 
indicate whether a given statement is undecidable or not, thus allowing 
us to bypass the undecidable statements in the first place. The negative 
answer to Hilbert’s Entscheidungsproblem indicated implicitly that it is 
impossible to decide algorithmically whether statements in arithmetic are 
true or false.

16.2 � TOTAL FUNCTIONS
A function is a mapping between two sets, usually called the domain and 
the range, such that each element in the domain is mapped to at most one 
element in the range. If every element of the domain is mapped to exactly 
one element of the range, then such a function is called a total function, 
that is, everywhere defined. For example, the real function f(x) = 2x is a 
total function. On the other hand, the function f(x) = 1/x is not total, since 
it is undefined at x = 0.

An interesting question arises whether a one-to-one correspondence 
exists, i.e., a bijection, between N, the set of nonnegative integers, and 
the set of total functions from N to N. The answer to this question is no, 
even if we restrict our functions to those functions from N to {0, 1}. This 
can be verified using Cantor’s famous diagonalization argument (see also 
Chapter 14).

Assume that the set of all functions from N to {0, 1} has the same 
cardinality as N. It follows that we can enumerate these functions, 
i.e., assign a unique index to each function. Let fi be the ith function in our 
enumeration. Now, let us construct a function g as follows: g(i) = fi(i) + 1 
(mod 2). Clearly g cannot be the first function f1, since g(1) ≠ f1(1). In fact, 
by construction, for any finite index q, our function g cannot be the same 
as fq. However, since g is a total function from N to {0, 1}, then, by assump-
tion, it should have been one of the enumerated functions, i.e., received an 
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index. That is a contradiction, so the set of total functions from N to {0, 1} 
cannot be enumerated, and therefore its cardinality exceeds that of N.

This conclusion has very profound implications. One cannot give a dis-
tinct name to each function, since the set of finite length sequences on an 
alphabet (i.e., some finite set of symbols) has the same cardinality as that 
of the set of integers. It follows that there are too many functions to give 
a distinct name to each one. As a consequence, functions must exist that 
are not computable by any program or algorithm. Observe that the set of 
programs or algorithms is enumerable, although it is infinite, because we 
can easily assign a unique name/index to each (finite length) program by 
simply ordering them lexicographically.

16.3 � TURING MACHINES
Alan M. Turing (1912–1954) was born on June 23, 1912, in London. He 
graduated with distinction from Cambridge University in 1934 and was 
elected to a fellowship at King’s College. In 1935, he attended a course on 
formal logic given by M. H. A. Newman (1897–1984). That course ended 
with a full treatment of the proof of Gödel’s incompleteness theorem, 
which in a sense refuted the possibility of finding the algorithm that 
Hilbert implicitly proposed [7].

Turing was attracted by both Hilbert’s challenge and Gödel’s work. 
He noticed that Gödel did not explicitly define the meaning of mechanical 
operations and the mechanical process of solving a problem. He felt that 
a formal definition of the intuitive notion of solving a problem via such 
means was needed. Turing considered that such a formal definition itself 
was fundamental and necessary in order to understand and address 
these problems.

In his 1936 paper entitled “On Computable Numbers with an Application 
to the Entscheidungsproblem” [1], Turing introduced and gave a construc-
tion for an abstract model for a computation machine, now known as the 
Turing machine [3–6]. Turing displayed great originality in his formalization 
of the intuitive notion of an effective procedure in terms of discrete opera-
tions on his abstract computing machine. He demonstrated the existence 
of functions that were not computable and, in this way, resolved Hilbert’s 
Entscheidungsproblem in the negative. He also defined a computable 
function as a function that can be computed by a Turing machine (which 
does not necessarily have to halt for every given input).

Formally, a Turing machine consists of a finite state control (i.e., a finite 
set of instructions) and an arbitrarily long tape. The arbitrarily long tape 
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means that the machine never runs out of the tape or reaches the right end 
of the tape. The tape, which functions as the machine’s memory, is divided 
into squares (cells). Each square may be read or inscribed with a single 
symbol from a designated finite alphabet, or it may be blank. The tape has 
a leftmost square, but it is unlimited to the right. The control unit can shift 
the read-write head (to the left or right) during each step of the computa-
tion. At any single time step, the read-write head is able to examine just 
the one tape square over which it is positioned as shown in Figure 16.1.

The control unit of a Turing machine can assume any one of a fixed 
number of states that, together with the symbol read from the tape, deter-
mines how the machine will behave at that step. The actions available to a 
Turing machine are quite limited. It may either halt, thereby terminating 
its computation, or carry out a basic move. Each move consists of writing a 
symbol in the currently scanned tape square, shifting the read-write head 
one square to the right or left, and causing the control unit to enter into 
some new state (i.e., go to the next specified instruction).

The computation of a Turing machine proceeds as follows. The machine 
is initially supplied with a tape on which a finite number of squares are 
inscribed with symbols and the rest are left blank. The initial content of 
the tape is called the input. The read-write head is positioned over the left-
most input symbol—usually the leftmost cell of the tape—and the control 
unit assumes the initial/starting state. The machine then goes through its 
computation consisting of a sequence of steps. A computation may con-
tinue indefinitely, or it may terminate after some finite number of moves, 
usually a function of the contents and size of its input. If it does terminate, 
the symbols remaining on the tape are interpreted as the answer/outcome 
of the computation.

As described above, a Turing machine control unit is considered to be 
a set of rules for processing symbols on the tape. We should note that 

an arbitrarily long tape to the right

finite state
control

FIGURE 16.1  An image of a Turing machine.
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variations of a Turing machine (e.g., with multiple tapes, tracks, two-way 
infinite tape, etc.) are computationally no more powerful than the stan-
dard model described here. Obviously, an actual Turing machine cannot 
be built physically, since it would require an unlimited amount of tape. 
It is a formal model or an abstract specification for computation. Turing 
viewed numerical symbols essentially the same as nonnumerical symbols. 
That is, he considered numerical computation to be the same kind of work 
as, for example, playing chess or recognizing patterns.

Turing claimed that any intelligent work by a human brain can be 
simulated by a Turing machine. Therefore, we may consider that, in 
a certain sense, the work by Turing began the field of computer science 
known as artificial intelligence (AI). The famous Turing test, in which a 
human must determine if he or she is communicating with another human 
being or with a computer, is often used as an evaluation tool in AI.

A Turing computable function does not necessarily have to be a total 
function. In fact, for some inputs, a Turing machine may never terminate 
its computation (i.e., it may diverge). Besides solving problems, a Turing 
machine may also be viewed as a procedure for computing a function. 
We can compute a function according to the specifications of a Turing 
machine if we have enough memory and time. The specification of a 
Turing machine is also called the description of a Turing machine. If a 
Turing machine terminates its computation for every input taken from the 
input domain under consideration, the Turing machine is viewed as an 
effective procedure or an algorithm for computing that function.

A function is called a total recursive function (or simply a recursive 
function) if it is computed by a Turing machine that halts with an answer 
for every input. A function is called a partially recursive function if it is 
computed by a Turing machine, which does not necessarily always halt. 
Clearly, the set of recursive functions is properly included in the set of 
partially recursive functions. Interestingly, both sets have the same 
cardinality; i.e., they are countable (enumerable). This is not inconsistent; 
observe that the set of even numbers has the same cardinality as the set of 
natural numbers, although N contains even numbers as a proper subset.

A Turing machine may be viewed as computing a function from inte-
gers to integers. If a function has k arguments, k integers are initially 
placed on the tape in some appropriate form. For example, (2, 3, 2) may 
be represented by the string 001000100 (i.e., two 0s, three 0s, and two 
0s, separated by 1s). Since there is a one-to-one correspondence between 
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N and the set of k-tuples of integers, any k-variable function may, without 
loss of generality, be considered a single-variable function.

For example, consider the problem of finding the greatest common 
divisor of a given positive integer pair. Since we know how to solve the 
problem (e.g., using Euclid’s algorithm), this corresponds to computing a 
totally recursive function from the set of pairs of positive integers to the 
set of positive integers. The domain of the function is the set of pairs of 
positive integers, and its range is the set of positive integers.

Alternatively, computation of a partial (or total) recursive function may be 
viewed as an acceptance (or recognition) of a set of strings, i.e., a language. 
Consider the function f(x) = x2, and its corresponding infinite language 
of strings in binary notation {0, 1, 100, 1001, …}. The determination of 
whether an input string is a member of the language (the set of squares) 
is equivalent to the computation of the characteristic function of this set, 
and it is solving the “perfect square” problem. One can say that, computa-
tionally, the concepts of problem solving, recursive function-computation, 
and language-recognition are, in a sense, equivalent.

In addition to the formal definition of computability, Turing also 
presented a novel definition of a universal machine. This is now called 
the universal Turing machine. Such a machine can perform the work of any 
other Turing machine, provided that a description, or an index, of the other 
Turing machine is given to it. The universal Turing machine is like a gen-
eral purpose computer. It can compute any computable function, as long 
as it is provided with an index (or a program) for computing the function.

In actual practice, we do not construct a dedicated computer for each 
computable function. Rather, we usually build a general purpose com-
puter that computes the function when given a program for the function 
together with the argument values. A Turing machine corresponds to 
a program for computing a function. On the other hand, the universal 
Turing machine is an abstract model of a general purpose computer.

16.4 � CHURCH–TURING’S THESIS
Turing submitted his paper on computability for publication on May 28, 
1936, but just after that he learned of two papers by Alonzo Church 
(1903–1995) also published in 1936, and noticed that his definition of 
computability was equivalent to Church’s notion of effective calculability 
[1, 2]. Turing therefore added an appendix to his paper, dated August 28, 
1936, in which he mentioned the equivalence of the two definitions. The 
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paper was published at the end of 1936 in the Proceedings of the London 
Mathematical Society [1].

From September 1936, Turing began a 2-year residency as a graduate 
student at Princeton University, where he completed the requirements for 
his doctorate with Alonzo Church as his thesis advisor. The activities of 
mathematicians and logicians such as Turing, Gödel, Church, Stephen 
Kleene (1909–1994), Emil Post (1897–1954), and others also gave rise to 
a wide variety of formalisms for the term algorithm, each endeavoring 
to describe the intuitive notion of an algorithm, effective procedure, or 
computability. All of these formalisms have been mathematically proven 
to be equivalent.

Church’s thesis states, “It is believed that there are no functions that 
can be defined by humans, whose calculation can be described by any 
well defined algorithm that people can be taught to perform, that cannot 
be computed by Turing machines. The Turing machine is believed to be 
the ultimate calculating mechanism.” A shorter version of Church’s thesis 
simply states that “any computable problem can be computed by a Turing 
machine” [4–6].

The assumption that the intuitive notion of a computable function can 
be identical with the class of functions computable by Turing machines 
is now known as Church–Turing’s thesis. We cannot hope to prove 
Church–Turing’s thesis as long as the notion of a computable function 
remains informal. We can, however, present evidence to show that it is 
reasonable. As described above, logicians and mathematicians devised 
other formalisms for computable functions, and these formalisms have 
all been proven to be equivalent to Turing’s definition of computability. 
Church–Turing’s thesis has been universally accepted as valid.

If a function is computable by a Turing machine that always halts, then 
there must be an effective procedure (i.e., an algorithm) for computing it. 
In essence, the concepts of a Turing machine and of an algorithm (or a com-
puter program) are similar in the sense that if an algorithm or a program 
solves a problem, then there exists a Turing machine that solves the same 
problem. A Turing machine solves a problem if it always gives a correct 
answer (in a finite number of steps) to any given instance x of the problem.

That is, men and computers are capable of computing it by means 
of an algorithm. An algorithm can be described either in a natural 
language like English or Japanese, or in a programming language like 
C++ or Java. Either way, an algorithm or program is a finite sequence of 
symbols. We therefore have as many algorithms or computer programs 
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as there are integers. Given  the fact that the cardinality of the set of 
functions significantly exceeds that of N, we must agree that almost all 
functions are not computable.

Does this sound extremely pessimistic? In fact, the situation is not as 
bad as it may seem, for although this is true, we can nevertheless avoid the 
limits of computability for many practical purposes. We should instead 
just make a note of the existence of functions/problems that are not solv-
able or even computable. The unsolvability of the halting problem implies 
that no general purpose computer program can always decide whether 
a given computer program will eventually terminate for every input 
given. However, such programs that work for a limited class of computer 
programs actually exist.

The formalization of Turing computability and of the intuitive notion 
of an effective procedure has been widely recognized as the origin of 
computation theory. The work originated by Gödel, Turing, Church, and 
others is among the greatest intellectual achievements of the 20th century.
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C h a p t e r  17

Cryptography 
from the Medieval 
to the Modern Ages

17.1 � THE ARAB CRYPTANALYSTS
A key for the substitution cipher consists of a permutation of 26 letters in 
the case of the Roman alphabet. As described in Chapter 7, the shift cipher 
(i.e., the Caesar cipher) is a special case of the substitution cipher. The num-
ber of permutations of 26 letters is 26!, which is more than 4 × 1026, a very 
large number. Even if we restrict them to a smaller class of possible permu-
tations, the number of these permutations is still very large. For example, 
as described in Section 7.2, pairing letters in the secret writing given in 
the Kama Sutra (written almost 2000 years ago in India) has more than 
7 × 1012 possible keys. These large numbers of possible keys mean that the 
substitution cipher is an excellent way of secret writing. In fact, the mono-
alphabetic substitution cipher had been widely used for many centuries. 
Many ancient scholars considered the substitution cipher unbreakable. 
However, Islamic scholars found shortcuts to break the cryptotexts in the 
ninth century. Arab cryptanalysts used linguistic and statistical analysis 
for breaking the cryptotexts, instead of trying all possible keys [1, 2].

The golden age of Islamic civilization began around the middle of the 
eighth century from the Abbasid caliphate after the transfer of the capital 
from Damascus to Baghdad. The Abbasid caliphs were less interested 
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in military power than their predecessors. They respected the value of 
knowledge and expended much energy to build a wealthy society. For 
about 400 years from the middle of the eighth century, the Islamic world 
became the intellectual center for science, arts, philosophy, medicine, and 
education. The Islamic government encouraged business and industry, 
and protected its state documents by using cryptography [4].

The House of Wisdom in Baghdad was a library and translation institute 
established in 815 by the Abbasid caliph Al-Ma’mum (reigned from 813 
to 833). From the 9th to the middle of the 13th century, it was considered 
a major intellectual center where both Islamic and non-Islamic scholars 
worked together on all areas of knowledge. Many classic works were trans-
lated into Arabic, and later, in turn, into Hebrew and Latin. During this 
period the Abbasid caliphate gathered knowledge from ancient Egypt, 
Greece, Rome, China, India, Persia, North Africa, and Byzantine [4]. 
However, the House of Wisdom and other scholarly institutes in Baghdad 
were destroyed during the Mongol invasion of 1258.

In addition to employing secret writing, the Arab scholars studied 
cryptanalysis (i.e., attempted to break ciphers). They succeeded in find-
ing an efficient method for breaking the monoalphabetical substitution 
using a frequency analysis of letters and statistical analysis. A basic crypt-
analytic attack against monosubstitution systems began with a frequency 
count of letters by Arab scholars. The number of occurrences of each letter 
in the cryptotext can be a crucial clue toward breaking it. The letters of 
the English alphabet are ordered to their frequency in Table 17.1 [1]. For 
instance, the letter with the highest frequency in the cryptotext encrypted 
from an English plaintext is likely to be the substitution for E, and this 
likelihood grows with the length of the cryptotext.

Although it is not known who first realized that linguistic analysis 
could be useful for breaking ciphers, the earliest known description of 
the frequency of letters used in cryptanalysis was by an Arab scholar, 
Al-Kindi (801–873). He was known as the great philosopher of the Arabs 

TABLE 17.1  Frequency Ratios of the English Letters

E T A O N I S R H L D C U

12.31 9.59 8.05 7.94 7.19 7.18 6.59 6.03 5.14 4.03 3.69 3.20 3.10 (%)

P F M W Y B G V K Q X J Z

2.29 2.28 2.25 2.03 1.88 1.62 1.61 0.93 0.52 0.20 0.20 0.10 0.09 (%)
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in the ninth century, and the author of 290 books on medicine, astronomy, 
mathematics, linguistics, and cryptography [5]. He gave the first explana-
tion of cryptanalysis to monoalphabetic substitution ciphers in his book 
A Manuscript on Deciphering Cryptographic Messages [5].

17.2 � POLYALPHABETIC SUBSTITUTION CIPHERS
A cryptosystem is called monoalphabetic if the use of substitutes remains 
unaltered throughout the plaintext, whereas polyalphabetic substitute 
systems use different substitutions in different parts of the plaintext. Until 
the 16th century monoalphabetic substitutes had been sufficient to main-
tain document secrecy. However, the development of frequency analysis 
made monoalphabetic substitution ciphers insecure.

Consequently, cryptographers tried to devise a stronger cipher that 
could withstand cryptanalytic attacks. Although polyalphabetic substitu-
tion ciphers had not been practically used until the 17th century, their 
origin can be traced back to a 15th-century Italian Renaissance polymath, 
Leon Battista Alberti (1404–1472) [1, 2, 6].

In 1467, Alberti wrote an essay on a new form of cipher. He proposed 
a set of two or more different cipher alphabets (i.e., permutations of the 
alphabet), and suggested switching these cipher alphabets during the enci-
phering process. In his new cryptosystem, the same letter in the plain-
text is not necessarily to be replaced by the same corresponding letter in 
the cryptotext. Alberti’s great cryptographic idea was spread not only in 
Italy, but also to other countries in Europe. The German abbot Johannes 
Trithemius (1462–1516), the Italian scientist Giovanni Porta (1513–1615), 
and the French diplomat Blaise de Vigenere (1523–1596), along with others, 
further developed Alberti’s idea. Trithemius introduced a tableau (a large 
table) of the polyalphabetic cipher, and Porta described a sophisticated 
version of multiple cipher alphabets in his book De Furtivis Literarum 
Notis (On Concealed Characters in Writing) in 1563 [2].

In 1549, Blaise de Vigenere became acquainted with the work of 
Alberti, Trithemius, and Porta when he was sent to Rome on a diplomatic 
mission. He examined their ideas, and developed them into a stronger 
polyalphabetic substitution cipher that is known as the Vigenere cipher. 
In the encryption by the Vigenere cipher, a table called the Vigenere square 
(Table 17.2.) is first prepared. The ith row of the table represents a cipher 
alphabet with an i-step cyclic shift of the plaintext alphabet (0 ≦ i ≦ 25). In 
the Vigenere cipher, a different row of the table is used to encrypt different 
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letters of the plaintext. A sequence of cyclic shifts to be applied is usu-
ally expressed by a keyword, which is shared between the sender and the 
receiver. For example, for a keyword John, the 9th row, the 14th row, the 
7th row, the 13th row, again the 9th row, the 14th row, the 7th row, and so 
on, in the Vigenere square, are used to encrypt the letters of a plaintext in 
this order. If the intended receiver knows the keyword, then he or she can 
correctly choose which row of the Vigenere square is used to decrypt each 
letter of the received cryptotext. Blaise de Vigenere published his descrip-
tion of the Vigenere cipher in his book Traicte des Chiffres ou Secretes 
Manieres d’Escrire (Treatise on Secret Writing) in 1586 [1, 3, 7].

TABLE 17.2  The Viginere Square

Keyword:	 J O H N J O H N J O H N J O H
Plaintext:	 A T T A C K T H E T R O O P S
Cryptotext:	 J H A N L Y A U N H Y B X D Z

0	 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1	 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
2	 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
3	 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
4	 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
5	 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
6	 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
7	 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
8	 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
9	 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
10	 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
11	 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
12	 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
13	 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
14	 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
15	 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
16	 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
17	 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
18	 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
19	 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
20	 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
21	 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
22	 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
23	 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
24	 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
25	 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
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Example 17.1

Table 17.2 shows the encryption of a plaintext, “Attack the troops,” 
by the Vigenere cipher with the keyword John.

The advantage of the Vigenere cipher is that it is invulnerable to attack by 
frequency analysis. The number of possible keywords used in the Vigenere 
cipher is enormous. Therefore, a cryptanalyst would be unable to break 
the cryptotext by searching all possible keywords. The polyalphabetic 
Vigenere cipher was considered an unbreakable cryptosystem until the 
middle of the 19th century. Although the Viginere cipher was not practi-
cally used for about two centuries after its discovery, it was frequently used 
in the 18th century [2, 7].

Charles Babbage was successful in the cryptanalysis of the Vigenere 
cipher in the 1850s. Babbage was an English mathematician, best known 
for his programmable mechanical calculating machine, the analytical 
engine (see also Chapter 11). His cryptanalytic discovery was not recog-
nized for a century because he never published it. It was found in his notes 
in the 20th century. Friedrich Wilhelm Kasiski (1805–1881), a retired 
Prussian officer, independently discovered a cryptanalysis of the Vigenere 
cipher. He first published a general method for attacking Vigenere ciphers 
in 1863. Kasiski’s technique is almost the same as Babbage’s discovery. 
The technique is now called the Kasiski test [2, 7].

17.3 � HOMOPHONIC SUBSTITUTION CIPHERS
The Vigenere cipher was sufficiently secure until the middle of the 19th 
century. A polyalphabetical substitution cipher was much more compli-
cated to use than a monoalphabetic substitution cipher. For this reason, 
the Vigenere cipher had not been widely used until the 18th century. The 
monoalphabetic substitution cipher was adequate for many applications 
during the Renaissance period; however, it was inadequate for serious 
applications such as military and government communications in Europe 
in the 17th century. Consequently, cryptographers searched for a suitable 
cipher that was stronger than a monoalphabetic substitution cipher, but 
simpler to use than a polyalphabetical cipher. The homophonic substitution 
cipher was devised as a good candidate for these needs [2, 7, 8].

In a homophonic substitution cipher, each letter in the plaintext can 
be replaced with a variety of substitutes, where the number of potential 
substitutes of a letter is proportional to the frequency of the letter. For 
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example, if we prepare 100 substitutes altogether, and if the frequency of 
letter β is approximately αβ% in plaintexts, we might choose one of the αβ 
substitutes for letter β in a cryptotext [2, 8]. An example of a homophonic 
substitution cipher is shown in Table 17.3. In the next example, we use the 
homophonic substitution given in Table 17.3.

Example 17.2

A plaintext, “Let us meet tonight in the park,” may be encrypted to 
51 82 69 08 86 22 44 16 97 49 90 18 70 25 65 75 32 66 17 39 98 95 
78 29 04. Note that this is not a unique cryptotext for the plaintext. 

TABLE 17.3  A Homophonic Substitution Cipher

A : 01 12 33 47 53 67 78 92
B : 48 81
C : 13 41 62
D : 09 03 45 79
E : 14 16 24 44 46 55 57 64 74 82 87 98
F : 10 31
G : 06 25
H : 23 39 50 56 65 68
I : 32 70 73 83 88 93
J : 15
K : 04
L : 26 37 51 84
M : 22 27
N : 18 36 59 66 71 91
O : 00 05 07 54 72 90 99
P : 38 95
Q : 94
R : 29 35 40 42 77 80
S : 11 19 58 76 86 96
T : 17 20 30 43 49 69 75 85 97
U : 08 61 63
V : 52
W : 60 89
X : 28
Y : 21 34
Z : 02

Source:	 Adapted from Simon Singh, The Code Book: The Science of Secrecy 
from Ancient Egypt to Quantum Cryptography, Anchor Books, New 
York, 1999.
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For example, 37 64 75 61 11 27 14 98 30 20 07 91 88 25 23 49 32 66 43 
65 55 38 33 77 04 is also a cryptotext that can be encrypted from the 
same plaintext.

In the 17th century, cryptographers tried to increase the strength 
of monoalphabetic substitution by incorporating the technique of the 
homophonic substitution ciphers. One such well-known cipher is the 
Great Cipher of Louis XIV. The Great Cipher was developed by Antoine 
Rossignol (1600–1682) and his son, and used to encrypt the king’s impor-
tant messages and records. The Rossignol family served the French crown 
as cryptographers. Modified forms of the Great Cipher were used by the 
French Army until the beginning of the 19th century [2, 9].

17.4 � ENIGMA MACHINE
The earliest cryptographic machine is the cipher disk, invented in the 
15th century by Italian polymath Leon Battista Alberti, one of the found-
ers of the polyalphabetic cipher. Since then various cipher disks were 
used over the next five centuries. The cipher disk is a kind of a scrambler 
that takes each plaintext letter and transforms it into another letter or 
another letter sequence [2].

In 1918, at the end of World War I, German engineer Arthur Scherbius 
(1878–1929) applied for a patent for a cipher machine that can be considered 
an electromechanic version of Alberti’s cipher disks. He and his friend 
founded a company to develop the cipher machine called Enigma, 
which became the most sophisticated cryptomachine. The first model of 
Enigma and its variants were used commercially from the 1920s. By 1925, 
Scherbius began mass-producing Enigma machines, and these Enigmas 
were adopted by German Nazi military and government services. The 
German military bought probably over 30,000 Enigmas. World War II 
began on September 1, 1939, with the invasion of Poland by Germany and 
subsequent declarations of war against Germany by the United Kingdom 
and France. The German military had obtained the most secure crypto-
systems in the world before and during World War II [2, 10].

The Enigma machine is a combined electromechanical cryptosystem. 
It consists of a keyboard, a display board, a plug board, a set of rotating 
disks called rotors or scramblers, stepping components, and a reflec-
tor. The keyboard is used to input each plaintext letter. The display board 
consists of various lamps for indicating the cipher letters. The rotors form 
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the major part of the Enigma machine and act as letter scramblers. Each 
rotor was a disk approximately 10 cm in diameter, made of hard rubber or 
Bakelite, with brass spring-loaded pins on one side arranged in a circle, 
and a circular electrical contact on the other side. The pins and contacts 
represent letters. The rotors were arranged along a spindle. The stepping 
components were used to turn one or more steps of the rotors with each key 
press. Different letter-letter substitutions were made by the movement of 
the rotors. The plug board was located between the keyboard and the first 
rotor. The Enigma user could insert cables in the machine in a certain way. 
Cable insertion caused some letters to be swapped before they entered the 
first rotor. The reflector was connected to the output of the last rotor so 
that the route of the letter stream could be altered. The use of the reflector 
in the Enigma machine started in 1926. The Enigma machine was con-
tained in a compact box (size, 28 × 34 × 15 cm; weight, 12 kg) [2, 10].

The German Navy was first to adopt Enigma among the German 
military in 1926. The keyboard and display board contained 29 letters 
(A to Z and three German letters). Three rotors were chosen from a set of 
five rotors, and the reflector could be inserted in one of four different posi-
tions. The German Army also adopted the Enigma in 1928. A new version, 
called the Wehrmacht Enigma, was introduced in 1930. The new version 
was used extensively by the German military and other government orga-
nizations before and during World War II [2, 10].

17.5 � BREAKING ENIGMA CODES
In the 1930s, Polish cryptanalysts were ahead of other countries in invent-
ing various techniques for breaking the Enigma cipher. The Polish gov-
ernment formed the Biuro Szyfro∙w (the Cipher Bureau) in 1929–1930, and 
invited 20 mathematicians from Poznan∙ University to join the bureau. The 
cryptanalysis developed by the Cipher Bureau in Poland on the early ver-
sions of Enigma was quite successful. Before World War II, Polish crypt
analysts had already designed an electromechanical machine, called the 
Bomba, to test the Enigma rotor setting. However, at the end of 1938 the 
German military modified its Enigma machines so the Polish Bomba was 
no longer capable of breaking the Enigma cipher [2, 10]. Five weeks before 
the German invasion of Poland, the Polish Cipher Bureau transferred 
two  spare Enigma replicas and their techniques for breaking Enigma 
ciphers to the British and French governments.

The British government recruited a large number of mathematicians, 
scientists, college students, and young graduates as code breakers. They 
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were sent to Bletchley Park, Buckinghamshire, the Government Code and 
Cypher School (60 km northwest of London). It was a newly established 
code-breaking organization. Initially, Bletchley Park had a staff of about 
200, but within 5 years the number of workers there grew to about 7000. 
The well-known mathematician Max Newman was invited to Bletchley 
Park as one of the chief cryptanalysts [2, 12].

As described in Chapter 16, Alan M. Turing was one of the most influ-
ential mathematicians in the 20th century. He is known as the inventor of 
the abstract computing models, the so-called Turing machines. In 1939, 
the Government Code and Cypher School invited Turing to become a 
cryptanalyst at Bletchley Park. Turing’s job at Bletchley Park was to find 
an effective way to break Enigma cryptotexts, even if the German military 
avoided using the same message key repeatedly. After investigating a large 
number of decrypted Enigma messages at Bletchley Park, Turing reached 
some ideas for finding the weakness of Enigma ciphertexts. Turing started 
designing electrical circuits that would remove the effect of the Enigma 
plug board. In 1939, Turing completed his design of the device, and it 
was called the Bombe. More than 200 Bombes were built by the British 
Tabulating Machine Company at Letchworth during World War II, but all 
of them were destroyed after the war [2, 12, 13].

After the end of World War II Turing worked at the National Physical 
Laboratory, where he designed a stored-program computer, the Automatic 
Computing Engine (ACE) (see also Chapter 18). His sexual orientation 
resulted in a criminal prosecution in 1952 since homosexual acts were ille-
gal in the United Kingdom at that time. Over the next 2 years he became 
severely depressed. He dipped an apple in cyanide and took several bites 
on June 7, 1954. The greatest mathematician of the 20th century and the 
Father of Computer Science committed suicide just a few weeks before his 
42nd birthday. On September 10, 2009, British Prime Minister Gordon 
Brown made an official public apology on behalf of the British government 
for their treatment of Turing for several years after World War II [14].

17.6 � LORENZ CIPHER
The Lorenz SZ40 and SZ42 were German cipher machines used during 
World War II. Those cipher machines were made by Lorenz Company, and 
were even more complex than the Enigma. Bletchley Park code breakers 
called the Lorenz machine Tunny, and the cipher messages by Tunny were 
called Fish. While the Enigma was mainly used in field units, the Lorenz 
was used exclusively for the most important messages between the German 
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Army field marshals and their Central High Command in Berlin. It was not 
a portable device. The size of the machine itself was 51 × 46 × 46 cm, but it 
could support the heavy teletypewriter and attendant fixed circuits [2, 11].

The Lorenz used the international telephone code in which each letter 
of the alphabet was represented by a series of five electrical impulses. 
Messages were encrypted by the exclusive OR operation (the bitwise addi-
tion of modulo 2) of five pseudorandom bits and the plaintext. The obscur-
ing letters were generated by 12 rotors, another 5 of which followed a 
regular pattern, and another 5 of which followed a pattern dictated by two 
pin wheels. Cracking Fish (cryptotext) relied on determining the starting 
configuration of the Lorenz machine’s rotors [2, 14].

A British cryptanalyst, John Tilman, broke Fish messages at Bletchley 
Park in 1941 using hand methods that relied on statistical analysis, but the 
Germans had introduced complications that made it almost impossible to 
break Lorenz ciphers by hand only. British mathematician Max Newman 
was assigned to the Research Section at Bletchley Park to work as a crypt-
analyst of Lorenz ciphers. He proposed that the code-breaking process 
could be mechanized. In December 1942, he was assigned to build suitable 
machines for that purpose. The first machine designed to break the Lorenz 
cipher was built at the Post Office Research Department at Dollis Hill and 
was called Heath Robinson. Although the Heath Robinson worked well 
enough, it was rather slow [2, 11, 15].

Newman asked for the help of Tommy Flowers, a post office electrical 
engineer at Dollis Hill in London. Flowers built a much faster and more 
reliable machine called Colossus that used 1500 vacuum tubes. The first 
Colossus arrived at Bletchley Park in December 1943. This was the first 
electronic digital information processing machine in the world. The 
Lorenz cryptotexts could be deciphered by carrying out complex statisti-
cal analysis on intercepted messages. Colossus could read paper tape at 
5000 characters per second, and the paper tape moved at 30 miles per hour 
[2, 11, 16] (see also Chapter 18).
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C h a p t e r  18

Electronic Computers

Determining when, where, and by whom the first electronic digital com-
puter was invented is a daunting task as described by A. R. Burks, the 
author of Who Invented the Computer? [1]. The history of this revolution-
ary development is surrounded by the events of World War II and clouded 
by the secrecy required by advanced-level military research. The race to 
decode enemy communications, to develop reliable ballistic tables, and 
to build the first rockets and warheads brought together some of the most 
brilliant mathematicians and engineers of the 20th century. Their work, 
sometimes in collaboration, while at other times independently, led in fits 
and starts to the invention of electronic digital computers, the forerunners 
of the computers we enjoy today. What follows is a brief discussion of some 
of their most significant and hard-won contributions.

18.1 � THE ABC COMPUTER
Born in Hamilton, New York, John Vincent Atanasoff (1903–1995) was 
an American physicist and inventor. In 1925, Atanasoff received his 
B.Sc. degree in electrical engineering from the University of Florida, and 
in 1926 he earned an M.Sc. degree in mathematics at Iowa State College 
(now Iowa State University). Atanasoff received a Ph.D. in theoretical 
physics from the University of Wisconsin, Madison, in 1930, after which 
he obtained an academic position at Iowa State College in mathematics 
and physics [2].

In 1939, Professor Atanasoff and his graduate assistant, Clifford Berry 
(1918–1963), began building the world’s first electronic-digital computer 
at Iowa State College, working on the project for the next few years. The 
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Atanasoff–Berry Computer (ABC) contained various innovations in 
computing, such as binary number systems, digital circuits using vacuum 
tubes, regenerative memory called capacitors, and a separation of mem-
ory and computing functions [3, 6]. The capacitors were built in a rotat-
ing drum that held electric charges representing the memory for binary 
numbers. The prototype of their computer won them a grant of $850 to 
build a full-scale model. The final product weighed 318 kg and had more 
than 300 vacuum tubes. It could perform one fundamental operation per 
15 seconds [6].

The electronic part of the ABC was successful, but the reliability of its 
binary card reader was unsatisfactory. The project was discontinued when 
Atanasoff left Iowa State College, and the ABC was dismantled.

18.2 � THE Z3 COMPUTER
A German engineer and computer pioneer, Konrad Zuse’s (1910–1995) 
great achievement was the invention of one of the world’s first electrical 
computers, the Z3, which became operational in 1941 [8].

The basic components of the Z3 were small, electrically driven, mechan-
ical switches called relays, making Z3 an electromechanical digital com-
puting machine. Several similar digital computing machines were built 
before and during World War II by Howard Aiken (1900–1973) at Harvard 
University, George Stibitz (1904–1995) at Bell Telephone Laboratories, and 
Alan M. Turing at Bletchley Park. Among them, Zuse received the honor 
of having built the first working general purpose program-controlled digi-
tal computer (the Z3). A program-controlled computer, as opposed to a 
stored-program computer, is set up for a task by reconfiguring the wires 
(e.g., by means of plugs) [5, 7].

Zuse designed the Z1 between 1935 and 1936 and built it between 1936 
and 1938. It was totally mechanical, but unreliable. Zuse decided to base 
his next design for the Z2 on the use of relays. The Z2 was completed in 
1939 and demonstrated to Die Deutsche Versuchsanstalt für Luftfahrt 
(the  German Laboratory for Aviation) in 1940. Further improving the 
Z2 computer, he went on to build the Z3 in 1941. His work was a top secret 
project of the German government. The Z3 was faster and far more reliable 
than either the Z1 or the Z2 and was built with about 2000 relays, imple-
mented on a 22-bit word length with a clock frequency of 5 to 10 (Hz). 
Zuse asked the German government for funding to replace the relays with 
fully electronic switches, but it was denied during World War II, since 
such development was not considered urgent during World War II [5, 7, 9].
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The success of Zuse’s Z3 is often attributed to its use of the binary 
number system. However, performing arithmetic with a binary number 
system in a calculating device was invented roughly three centuries earlier 
by Gottfried Leibniz. George Boole later used it to develop his Boolean 
algebra. In 1937, Claude Shannon (1916–2001) introduced the idea of 
mapping Boolean algebra to electrical relays in his work on digital circuit 
design. It seemed that Zuse was not aware of Shannon’s work and devel-
oped digital circuits independently.

The original Z3 was destroyed in 1943 during an Allied bombard-
ment of Berlin. Zuse’s coworker Helmut Schreyer built an electrodigital 
prototype experimental model of a computer using 100 vacuum tubes in 
1942, but it was also lost at the end of World War II. A fully functioning 
replica was built in the 1960s by Zuse’s company. It is exhibited in the 
Deutsche Museum.

18.3 � THE COLOSSUS COMPUTER
In 1939, the day after the war broke out, Alan M. Turing enlisted full-time 
at the British Government Code and Cypher School at Bletchley Park, 
50 miles northwest of London in Buckinghamshire. He was a member of 
the group of able mathematicians drafted into the military’s code-breaking 
operations [16].

Tommy Flowers (1905–1998) was an English engineer born in London. 
He took evening classes at the University of London to earn a degree in 
electrical engineering. In 1929, he joined the telecommunication branch 
of the General Post Office. He was one of the earliest extensive users of 
vacuum tubes for digital data processing. In 1934 Flowers designed 
electronic equipment for controlling the connection between telephone 
exchanges. This device went into operation in 1939. From 1938 to 1939, 
Flowers worked on an experimental electronic digital data processing 
system with a high-speed data store.

Turing wanted Flowers to build a decoder for the relay-based machine, 
called the Bombe, which Turing had developed to help decrypt the Enigma 
codes. The British Government Code and Cypher School was successfully 
deciphering German radio communications by means of the Enigma system, 
and by early 1942 about 39,000 intercepted messages were being decoded 
each month by using these electromechanical Bombe machines [16].

Turing introduced Flowers to Max Newman, who headed the team for 
breaking the German code cipher generated by a teletypewriter coding 
machine, the Lorenz, one of the German Geheimschreiber (secret writer) 
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systems, which the British called Tunny, a far more complex coding system 
than Enigma. The need to decipher Tunny codes as rapidly as possible led 
Max Newman to propose in 1942 that the key parts of the decryption pro-
cess be automated by means of high-speed electronic processing devices. 
The first machine designed and built to Newman’s specification, known 
as the Heath Robinson, was relay based and used vacuum tubes in part. 
The Heath Robinson was installed in 1943, but was unreliable and slow. 
However, it proved that Newman’s idea for breaking the Lorenz code was 
worth the effort [14, 16].

Flowers recommended building an all-electronic machine instead. 
Obtaining full backing for his project, Flowers built the first large-scale 
programmable electronic digital Tunny code-breaking computer, called 
the Colossus I, at the Research Station in the General Post Office at Dollis 
Hill in northwest London. He delivered it to Bletchley Park in 1943, and 
by the end of the war there were 10 Colossi working at Bletchley Park 
where they were used by British code breakers to help decipher encrypted 
German messages during World War II. The Colossus I contained approxi
mately 1600 vacuum tubes, though each of the subsequent machines had 
approximately 2400 vacuum tubes (Figure 18.1). The Colossus lacked two 
important features of modern computers: First, it had no internally stored 
programs. To program it for a new task, the operator had to reconfig-
ure the machine’s physical wiring, using plugs and switches. Second, the 
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Glass Tube (1940–1950)

FIGURE 18.1  An example of a vacuum tube. (a) The structure of a triode; (b) the 
shape of a glass tube (1940–1950).
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Colossus was not a general purpose machine since it was designed for a 
specific cryptanalytic task [9, 12, 16].

For security reasons, most of the Colossi were destroyed after the 
end of the war, but two Colossi were retained by the Government Code 
and Cypher School, renamed the Government Communication Head 
Quarters (GCHQ), even after the end of the war [4]. The last Colossus 
was believed to have stopped running in 1960. Until the 1970s, few had 
known that the Colossus was used successfully for code breaking dur-
ing World War II. Irving John (Jack) Good (1916–2009) and Donald 
Michie (1923–2007) published their notes on the Colossus in 1970 and 
1975, respectively. During the war, Good worked at Bletchley Park and 
contributed to the development of the Colossus, and Michie also had the 
experience of working there. A replica of the Colossus computer was com-
pleted in 2007, and is displayed in the National Museum of Computing at 
Bletchley Park. Now the Colossus is widely believed to be the world’s first 
electronic digital programmable computer [9].

18.4 � THE ENIAC COMPUTER
John Mauchly (1907–1980) was an American physicist who, along with 
John Presper Eckert (1919–1995), designed the Electronic Numerical 
Integrator and Computer (ENIAC). Mauchly was born in Cincinnati, 
Ohio. He completed his Ph.D. in physics at Johns Hopkins University in 
1932. In 1941, Mauchly took a course in wartime electronics at the Moore 
School of Electrical Engineering, University of Pennsylvania, where he 
met a Moore School graduate student, Eckert. The Moore School was a 
center for wartime computing. The critical problem at the Moore School 
was the ballistic calculation that the U.S. military was developing for the 
war effort [10, 11].

The U.S. military needed a calculating machine for preparing artillery 
firing tables. The tables would be used for different weapons under varied 
conditions so that the target would be set accurately. The U.S.  Army’s 
Ballistics Research Laboratory heard about Mauchly’s research in the 
Moore School at the University of Pennsylvania. Mauchly had previ-
ously created several calculating machines, some with small electric 
motors inside. In 1942, Mauchly had begun designing a better calculating 
machine that would use vacuum tubes to speed up calculations.

ENIAC, designed to calculate and construct artillery firing tables for 
the Ballistic Research Laboratory, was financed by the U.S. Army during 
World War II. The construction contract was signed in 1943, and began in 
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secret at the Moore School of Electrical Engineering. Mauchly and Eckert 
were the chief consultant and the chief engineer of the project, respec-
tively. The machine took about a year to design, and another 18 months 
and $500,000 to build, with completion coming in November 1945. The 
ENIAC continued to be used to perform various calculations for advanced 
military research projects after the war was over [1, 6, 10, 15].

The size of the ENIAC was remarkable. It contained 17,468 vacuum 
tubes, 7,200 crystal diodes, 70,000 resistors, 10,000 capacitors, 1,500 relays, 
6,000 manual switches, and 5 million soldered joints. The machine cov-
ered 1,800 square feet (167 square meters) of floor space, weighed 30 tons, 
and consumed 160 kilowatts of electrical power. Input was provided with 
an IBM card reader, while an IBM card punch was used for output. The 
ENIAC used 10-position ring counters to store digits. Arithmetic was 
performed by counting pulses with the ring counters and generating carry 
pulses if the counter wrapped around. It had 20 ten-digit signed accumu-
lators that used 10’s complement representation and could perform 5,000 
simple addition or subtraction operations per second. It could perform 
357 multiplications or 38 divisions per second [6, 9, 10].

The use of vacuum tubes increased its speed, but the ENIAC was not 
easy to reprogram. In fact, one significant problem with the ENIAC was 
that it was extremely difficult to program. It had to be hardwired afresh 
for solving each new problem by reprogramming it with plug panels. 
These changes took technicians several days of tedious manual rewiring. 
Another serious problem was its reliability. Vacuum tubes burned out fre-
quently since special high-reliability tubes were not available until 1948. 
Most vacuum tube failures occurred during the warm-up and cool-down 
periods, when the tube heaters and cathodes overheated. According to an 
interview with Eckert, a tube failure occurred every 2 days, but the techni-
cians could locate the problem within 5 minutes. In 1954, the longest con-
tinuous period of operation without a failure was 116 hours. In 1948, John 
von Neumann (1903–1957) made several modifications to the ENIAC [10].

In 1946, the Moore School decided to change its patent policy in 
order to gain commercial rights to any future and past computer devel-
opment there. Eckert and Mauchly decided this was unacceptable, and 
they resigned their positions. In 1947, they formed the Eckert–Mauchly 
Computer Corporation. In 1949, their company launched the Binary 
Automatic Computer (BINAC) that used magnetic tape to store data [1].

In 1950, Remington Rand Corporation bought Eckert–Mauchly 
Computer Corporation, changing the name to the UNIVAC Division 
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of Remington Rand. Their research resulted in the Universal Automatic 
Computer (UNIVAC), an important forerunner of modern computers. 
In  1955, Remington Rand merged with Sperry Corporation, forming 
Sperry–Rand. Eckert remained with the company as an executive, staying 
on as it later merged with Burroughs Corporation to become Unisys.

The ENIAC retired when power was finally shut off on October 2, 1955 [10].

18.5 � VON NEUMANN ARCHITECTURE FOR COMPUTERS
John von Neumann was born and educated in Budapest, Hungary. He 
received his Ph.D. in mathematics (as well as in experimental physics 
and chemistry) from Pater University in Budapest in 1928. In 1930, von 
Neumann was invited to Princeton University, and then offered a position 
at the Institute for Advanced Study there in 1933. He was highly regarded 
in the fields of set theory, algebra, quantum physics, and computing. 
Von Neumann retained the position of a professor in mathematics at the 
Institute for Advanced Study for the remainder of his life [17].

From 1936 to 1938, Alan M. Turing was a visitor in the Institute for 
Advanced Study at Princeton University. He completed his Ph.D. dis
sertation under Alonzo Church’s supervision. We could imagine that von 
Neumann and Turing met in Princeton during this period and that von 
Neumann knew of Turing’s ideas about computability and the universal 
Turing machine. However, it is unknown how much they discussed com-
puters and related subjects at Princeton. Turing returned to Cambridge, 
England, and a year later he was involved in war work at Bletchley Park. 
To  what extent von Neumann used Turing’s ideas for his design of 
computers 10 years later remains unknown.

During World War II, von Neumann was deeply involved as a con-
sultant to the armed forces, participating also in the development of the 
atomic bomb. Toward the end of World War II, von Neumann took part in 
several national committees, serving as a contact person between groups 
of scientists and government organizations. He worked as a consultant 
with the Los Alamos National Laboratory, the Manhattan Project, and as 
an adviser to the engineer group, building the ENIAC at the Moore School 
of Electrical Engineering [10, 17].

Von Neumann joined Electronic Discrete Variable Automatic Computer 
(EDVAC), a project that began in 1944 as the successor of ENIAC at the 
Moore School, University of Pennsylvania. Von Neumann’s ideas about 
the structure of a computer eventually became the fundamental organiza-
tion of the modern computer, now known as von Neumann architecture. 
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The basic elements of the EDVAC were based on the stored-program con-
cept. His work as a project consultant included preparing the “First Draft 
of a Report on the EDVAC,” written in the spring of 1945. The draft, 
distributed to the staff of the Moore School of Electrical Engineering, 
presented the stored-program concept and the overall structure of a 
computer system.

The report organized the computer system into four main parts: the 
central arithmetic unit, the central control unit, the memory, and the 
input/output devices. The central arithmetic unit carried out the four 
basic arithmetic operations and some higher arithmetic functions, such as 
roots, logarithms, trigonometric functions, and their inverses. The control 
unit controlled the proper sequence of operations and made the individual 
units act together to carry out the specific programmed task. The memory 
stored both numerical data and numerically coded instructions, and the 
input/output devices served as the user’s computer interface. It described 
how these four parts communicate with each other to process informa-
tion. However, the specific materials and design of the implementation 
of each unit were not recorded in the report. Although “First Draft of a 
Report on the EDVAC” was authored solely by von Neumann, the basic 
idea about the stored program was derived from his discussions with 
Eckert, Mauchly, and others [18].

Von Neumann’s contributions to computer design were great, but he 
was less interested in patents and patent law. Most of the information about 
his innovations, such as his “First Draft of a Report on the EDVAC,” was 
widely distributed. He was happy to share his thoughts and theories with 
anyone who was interested in computer design. Von Neumann left the 
EDVAC project in 1946, and then returned to Princeton University, where 
he was involved in the later Institute for Advanced Study (IAS) computer. 
His basic architectural design can be easily recognized even in the most 
advanced computers of today. The IAS computer also had a strong influ-
ence on the IBM 701 built in 1952, which was the first mass-produced 
electronic stored-program computer produced by International Business 
Machines (IBM).

18.6 � OTHER NOTABLE EARLY ELECTRONIC COMPUTERS

18.6.1 � National Physics Laboratory and the ACE

At the end of World War II John Ronald Womersley (1907–1958) was 
appointed superintendent of the Mathematics Division of the National 
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Physical Laboratory in England, where he coined the name Automatic 
Computing Engine (ACE) for the early electronic computer developed there. 
Alan Turing was also asked to use his theories and experience for the ACE 
project [13]. Although Turing was not directly involved in the hardware 
development of the Colossus project, he saw the potential of the electronic 
computer to realize a computing machine that could carry out processes 
previously assumed possible only by the human brain. In  1946 Turing 
presented a detailed paper to the National Physical Laboratory Executive 
Committee, giving a reasonably complete design of a stored-program 
computer [13]. Turing’s report on the ACE included detailed logical circuit 
diagrams and a cost estimate of 11,200 pounds.

Unlike the EDVAC, the ACE implemented subroutine calls, and an addi-
tional departure from the EDVAC was the use of Abbreviated Computer 
Instructions, an early form of programming language. The first version 
of the ACE was a smaller version of Turing’s original design. The Pilot 
ACE had 1,450 vacuum tubes, and used mercury delay lines for its main 
memory. Each of the 12 delay lines could store 32 instructions or data 
words of 32 bits. Turing resigned from the National Physical Laboratory 
in 1948 and moved to Manchester. The Pilot ACE ran its first program on 
May 10, 1950. With an operating speed of 1 MHz, the Pilot ACE was for 
some time the fastest computer in the world [13].

18.6.2 � The MARK 1 at Manchester University

In September 1945, Max Newman was appointed professor in the math-
ematics department at the University of Manchester. The earliest general 
purpose stored-program electronic computer was built in Newman’s 
Computing Machine Laboratory. The Manchester Baby, as it became 
known, was constructed by engineers Frederic Calland Williams 
(1911–1977) and Tom Kilburn (1921–2001), and performed its first calcu-
lation in June 1948. That year, Turing joined the mathematics department 
at the University of Manchester as deputy director of the Royal Society 
Computing Machine Laboratory. He designed an enlarged version of the 
Manchester Baby that became the world’s first commercially available 
computer, the Mark I. The first Manchester Mark I was completed in 1951, 
and installed at the University of Manchester. About 10 Manchester 
Mark I computers were sold in Britain, Canada, Holland, and Italy.

Turing used the Manchester Mark I to investigate prime numbers in 
collaboration with Newman. Meanwhile, he continued his theoretical work 
and in 1950 published another famous paper, “Computing Machinery and 
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Intelligence,” in which he asked the important question “Can computers 
think?” anticipating the subject of artificial intelligence. Turing’s main con-
tribution to the Manchester Mark I project was providing the early software 
requirements for computers, and writing the first programming manual.

By 1951, Newman and Turing had withdrawn from active involvement 
in the Manchester Mark I project and subsequent computer develop-
ment. However, Turing was still a keen user of the computer as a tool for 
his research interests, and was always ready to help programmers of the 
Manchester Mark I with their problems.

18.6.3 � Electronic Delay Storage Automatic Calculator (EDSAC)

In 1949, the EDSAC was built at Cambridge University by Maurice Wilkes 
(1913–2010) and was in operation there until 1958. In 1950, a British 
computer company, J. Lyons and Co., revised the EDSAC, selling it in 
the commercial market as the Lyons Electronic Office (LEO) computer. 
Wilkes received the Turing Award in 1967 for the design and construction 
of the EDSAC.

18.6.4 � Whirlwind I

Whirlwind was developed at MIT. It is the first computer operated in real 
time, using video displays for output. By 1947, Joy Forrester (1918–) and 
collaborator Robert Everett (1921–) completed the design of a high-speed 
stored program. It first went online in 1951.

18.6.5 � Standards Eastern Automatic Computer (SEAC)

SEAC was an early electronic computer, built by the U.S. National Bureau 
of Standards. In 1950, it went into full production, making it the first fully 
functional stored-program electronic computer in the United States.

18.6.6 � Standards Western Automatic Computer (SWAC)

SWAC was built in 1950 by the U.S. Bureau of Standards Western Division 
and Institute for Numerical Analysis, University of California, Los Angeles. 
It was designed by Harry Huskey (1916–).
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C h a p t e r  19

Numerical Methods

After successfully conquering the simple arithmetical tasks of counting, 
addition, subtraction, multiplication, and division, scholars slowly began 
to address significantly more challenging mathematical problems. These 
started with the calculation of 2 , π, areas and volumes of objects, and 
astronomy (orbit projections of heavenly bodies). Eventually, this led to the 
development of well-defined numerical methods and procedures, which 
were initially performed by hand, and later by a computer. Initially, funda-
mental problems in physics, in particular, motion, led to the development 
of many innovative numerical methods. This is now a well-established 
branch of mathematics.

19.1 � NUMERICAL CALCULATION 
IN ANCIENT CIVILIZATIONS

When the ancient Greeks learned about the irrationality of  2 , i.e., it is 
not expressible as a ratio of two integers and therefore cannot be measured 
using numbers known to them, Pythagoras (c. 569–475 BC) and his fol-
lowers decided to keep this sensational discovery a secret. It could only be 
revealed to the initiated insiders, called the mathematikoi (the learners). 
Legend has it that the man who disclosed this secret was thrown over-
board and drowned at sea. It is hypothesized that the unlucky fellow 
was actually Hippasus of Metapontum (ca. 500 BC). He is often credited 
with obtaining the first classical proof of 2 ’s irrationality. The proof is 
based on the unique factorization of any integer into primes and because 
the square of any fraction of the form p/q (where p and q are integers) 
features an even number of prime factors both in the numerator and in 
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the denominator, which cannot cancel pairwise to yield a single prime, 
e.g., 2, in lowest terms. The value of 2  is sometimes referred to as the 
Pythagorean constant, which is somewhat ironic, especially given that 
it was Pythagoras himself who wanted to keep the irrationality of 2  a 
secret (see also Chapter 3).

The existence of the constant represented by π, i.e., the ratio of the 
diameter to the circumference of a circle, has been known and under-
stood by scholars for several thousand years, almost from the beginning 
of man’s recorded history. Ancient Greeks suspected that, just as was the 
case with 2 , π cannot be represented in the form of p/q. The history of 
attempts to calculate the exact value of π spans for at least four millennia, 
starting with the ancient Babylonians, Egyptians, Chinese, Indians, and 
Europeans, including such notable scholars as Archimedes, Euclid, Euler, 
Fibonacci, Leibniz, and Newton.

The actual symbol π, which is probably the most famous among all 
of the transcendental numbers, was first introduced by William Jones 
(1675–1749) in 1706, probably because it is the first letter of the Greek 
word perimetros, from which the word perimeter is derived. Its usage was 
popularized by the Swiss mathematician, Leonhard Euler (1707–1783). 
Although many scholars suspected that it is not rational, the irrationality 
of π was formally proved only in 1761 by a Swiss mathematician, Johann 
Lambert (1728–1777) (see also Chapter 13).

In one of the earliest recorded accounts about π, the Babylonians 
(ca.  2000 BC) used an approximation of 3 + 1/8 = 3.125. Ancient 
Egyptians approximated the value of π to be about 3.16, whereas the 
Bible (Old Testament) simply used the whole integer 3. Archimedes of 
Syracuse obtained lower and upper bounds for π that were fairly accurate 
(two digits past the decimal point). A number of ever-improving approx-
imations for π were obtained throughout the ages (see Table  19.1, but 
note that it is not exhaustive), and all of the calculations until 1946 were 
carried out by hand. These were usually obtained from approximations 
based on polygons with an ever-increasing number of sides, as shown in 
Figure 19.1, or other methods; e.g., Leibniz and Newton were able to apply 
some of their formulas from calculus (invented by them) to estimate the 
value of π.

Starting in the mid-1940s electronic computer technology allowed the 
value of π to be computed with, what now almost amounts to, arbitrary 
precision. These computations were facilitated by the ever-faster hardware 
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and the discovery of very advanced algorithms for performing the required 
high-precision floating-point arithmetic operations on a computer. A sig-
nificantly condensed historical summary of π’s calculations by computers 
from 1947 until 2010 is given in Table 19.1. For example, in 2009, Japanese 
T2K Open Supercomputer more than doubled the previous record by 
calculating 2,576,980,377,524 digits of π. This was followed with a 2010 
calculation by Shigeru Kondo, who used Alexander Yee’s program and 
his own home-built computer, called the y-cruncher, to calculate the first 
5,000,000,000,000 digits of π.

From the scientific or engineering perspective, there is no need to 
calculate the value of π to more than, say, 1000 digits. Whereas the com-
putations of the billions, trillions, or even quadrillions of π’s digits are 
not necessary, some potential benefits, such as the testing of computers’ 
hardware/software integrity, may be reaped from these modern-day com-
putational marathons. A humorous side note: March 14 (3.14) has been 
designated as π-day. This also happens to be Albert Einstein’s (1879–1955) 
birthday (Table 19.1).

19.2 � NUMERICAL SOLUTION OF ALGEBRAIC EQUATIONS
Numerical analysis, which also predates the age of the modern electronic 
computer, is the study of algorithms that use numerical approximations 
to represent real numbers, and mathematical objects such as curves, 
surfaces, functions, and related phenomena. Much of numerical analysis 
is concerned with obtaining approximate solutions, while at the same time 
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FIGURE 19.1  Inscribed and circumscribed polygons for computing π.
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maintaining certain acceptable bounds on the computational errors. Just 
as important for these numerical methods is the determination of the rate 
of convergence, i.e., how fast is the answer actually produced. Numerical 
analysis has applications in all fields of engineering, physical sciences, eco-
nomics, and many other areas of social sciences, and medicine.

For centuries mathematicians were preoccupied with the construc-
tion of numeric methods [1] that would allow them to solve problems that 
were practical (e.g., designing a bridge) or purely theoretical (e.g., predict-
ing a solar eclipse or the orbits of heavenly bodies) in nature. One of the 
fundamental problems here is the design of numerical methods for the 
determination of the roots (or zeroes) of real-valued algebraic functions or, 
in general, systems of such functions, which themselves may be linear or 
nonlinear. Since very few of these problems have any known methods that 
can solve them directly, a vast majority of numerical methods are iterative 
in nature; i.e., a current candidate solution is being improved upon until 
an acceptable answer is found. Iterative techniques, one of the fundamen-
tal principles in computer science, may be used to find roots of functions, 
solutions to systems of linear and nonlinear equations, and solutions to 
ordinary or partial differential, or integral equations.

In the case of a single linear function, the problem is trivial and can be 
solved directly. For a system of linear equations, the method of Gaussian 
elimination may be applied to compute the solution. Although not origi-
nally named as such, this method first appeared in the chapter on rectan-
gular arrays of a Chinese mathematical book, Jiuzhang suanshu, which 
may have been written as early as 150 BC.

German mathematician Johann Carl Friedrich Gauss (1777–1855), 
whose contributions to mathematics include linear algebra, number 
theory, statistics, and many others, came up with this method indepen-
dently in the early 19th century. Gaussian elimination is an algorithm that 
may be used for solving systems of linear equations, finding the rank of a 
matrix, and (if it exists) calculating the inverse of a square matrix.

Whereas Gaussian elimination is a good method that is especially 
well suited for hand computations, for a vast majority of large-sized or 
ill-conditioned matrices, more powerful methods are recommended. 
These include decomposing a given matrix into a product of two triangular 
matrices, usually called L and U. That is, if A is a nonsingular matrix, then 
A can be uniquely expressed as a product LU, where L is a lower-triangular 
matrix with 1’s on its main diagonal and U is an upper-triangular matrix. 
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Then, instead of solving Ax = b, we have LUx = b, which can now be com-
puted in two steps. First, using forward substitution, we obtain a vector y, 
where Ly = b, and next we use backward substitution to get x, where Ux = y. 
In both cases, i.e., solving for y and then for x, the computations are per-
formed in O(n2) steps (See Chapter 26). Of course, the initial decomposi-
tion of A into LU itself does require O(n3) steps, which is also the running 
time of Gaussian elimination. It is easy to see that if we need to solve Ax = 
b multiple times for different b’s, then the LU decomposition approach is 
computationally more efficient than a repeated use of Gaussian elimina-
tion. Several methods can be used to perform the actual factorization of A; 
the most popular of these is Doolittle’s algorithm, but we will not present 
its details here.

Example 19.1

Solve Ax = LUx = b.
Let
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The solution for y is y1 = –1, y2 = 3, and y3 = –6; the final solution for x 
is x1 = 2, x2 = 0, and x3 = 3.
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For better accuracy of the solution, as well as the computational time 
required to obtain it in the first place, other decomposition methods 
(e.g.,  QR), or even iterative approaches, such as the methods of Jacobi 
iteration or successive overrelaxation, may also be used.

In case of a nonlinear function of a single variable, e.g., f(x) = y, there 
are a number of iterative methods that may be used to compute the solu-
tion. The most basic and intuitive method is that of bisection. The bisection 
method is a root-finding algorithm that repeatedly halves the remaining 
interval, that is being bracketed by a and b, and then selects the subinterval 
(in which a root must lie) for further computation. Its convergence is linear, 
which is relatively slow; however, it is guaranteed to come up with a solu-
tion if the initial interval contained it and the function was continuous.

A bracketing method of false position or regula falsi has all of the 
advantages of the bisection method; i.e., it is guaranteed to converge, but 
its convergence to an answer is much quicker. For two bracketing points 
a and b, instead of finding their midpoint as the next bracket point, this 
method computes the next point, say c, to be the intersection (with the 
x-axis) of the line between f(a) and f(b). Depending on the value of f(c), 
the new point then replaces either a or b as the bracket. The convergence 
of regula falsi is said to be superlinear. The invention of this method has 
been credited to Indian mathematicians (ca. 200 BC), although it had been 
mentioned in Chinese books dated from 200 BC. Fibonacci also mentions 
this method in his 1202 book Liber Abaci (The Book of Calculation), in 
which Europe was introduced to Arabic numerals (and these, themselves, 
apparently came from India as well; see Chapter 9).

If a function is continuous and its derivative is known, then a quadrati-
cally convergent approach, called Newton’s (Newton–Raphson) method 
is most useful for finding its zeroes. Sir Isaac Newton (1643–1727) was an 
English mathematician and physicist who is widely recognized as one of 
the most influential scholars in the history of mankind. His many contri-
butions to science include mathematics, including the invention of infini-
tesimal calculus, which he shares with German mathematician Gottfried 
Leibniz; physics, in particular, for what are now known as Newton’s 
three laws of motion; astronomy; philosophy; and many others. Newton 
described his method in De analysi per aequationes numero terminorum 
infinitas (1669), but that was not published until 1711. Newton’s method, 
as such, was first described in 1685 in John Wallis’s (1616–1703) book 
A Treatise of Algebra Both Historical and Practical.
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Newton’s method is defined by one of the best-known equations in 
numerical analysis, and perhaps in all of mathematics [3]:

	 x = x f x
f xi i

i

i
+ − ( )

′( )1 .

This method often converges remarkably quickly, especially if the itera-
tion begins sufficiently close to the solution, i.e., within what is known as the 
radius of attraction. However, if the initial guess for the solution is far from 
the actual root, or if at any point during the iteration the derivative is close to 
zero, and in several other instances, Newton’s method can, in fact, diverge, 
or it may simply oscillate around the final answer. Over the years, many 
mathematicians have proposed numerous modifications and improvements 
to Newton’s method in order to address these and other problems.

Example 19.2

Below is the numerical computation of 2  by Newton’s method.
Since 2  is the positive root of f (x) = x2 – 2 = 0, we have f ′(x) = 2x. 

Let the initial approximation of the root be x0 = 2. Newton’s iterative 
computation is as follows:

	 x1 = 2 – f (2)/f ′(2) = 2 – (4 – 2)/4 = 1.5

	 x2 = 1.5 – f (1.5)/f ′ (1.5) = 1.5 – (1.52 – 2)/3 ≈ 1.4166667

	 x3 = 1.4166667 – f (1.4166667)/f ′ (1.4166667) ≈ 1.4142156
	 x4 = 1.4142156 – f (1.4142156)/f ′ (1.4142156) ≈ 1.4142135.

The fundamental idea of the method is as follows: one starts with an 
initial guess, say x0, which is hopefully close to the solution. The function 
then is approximated by its tangent line—hence the need to know its deriva-
tive, and the x-intercept point of this tangent line is determined. This point 
now becomes an improved approximation for the solution. The process con-
tinues until a sufficiently good solution is obtained. If the derivative of the 
function is not known, it may be computationally approximated (at each 
point of the iteration), in which case this would become the secant method.
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However, Newton’s original description (of what is now known as 
Newton’s method) was not in the iterative form as defined in the above 
equation. Newton applied his method only to the polynomials, and he did 
not present it as iterations over successive approximations. He approxi-
mated the function itself with polynomials, and only as the final step did 
he arrive at an approximation for the actual solution, i.e., the root or zero. 
One might argue that the method (in its original presentation) was, per se, 
not iterative.

Newton’s method was found to have applications as early as in the 
17th century. For example, Japanese mathematician Seki Takakazu-Kōwa 
(1642–1708), also known as Japan’s Newton [4], used this method to solve 
equations that came up in his astronomy computations. Since then, count-
less mathematicians, physicists, engineers, and other scientists have used 
it to solve problems in their respective areas.

The person who is perhaps best known for modifying Newton’s method 
to use it for finding successively (iteratively) better approximations to 
the zeroes of functions was an English mathematician, Joseph Raphson 
(1648–1715). His approach was also an algebraic method, and it was 
restricted only to polynomials. However, Raphson’s method was iterative, 
in that a sequence of successive approximations to the solution was being 
constructed, as opposed to Newton’s sequence of polynomials, which 
were approximating only the function itself. In 1740, Thomas Simpson 
(1710–1761) reformulated Newton’s method as an iterative approach for 
solving general nonlinear equations. It is the formulation by Simpson that 
is now known as Newton’s method.

Arthur Cayley (1821–1895) was first to notice difficulties in generaliz-
ing Newton’s method to complex roots of polynomials of higher degree. 
Newton’s method can be extended to solve systems of (nonlinear) equa-
tions. In the 1940s, Leonid Kantorovich (1912–1986) gave the necessary 
and sufficient conditions for the Newton method to converge to a solu-
tion. Kantorovich, a Soviet mathematician, is best known for his work on 
resource allocation problems, invention of linear programming, and for 
receiving the 1975 Nobel Prize in Economics for his work. Unfortunately, 
the process of verifying Kantorovich’s conditions appears to be just as hard 
as the computation of the solution itself; therefore, most Newton-type 
procedures usually do not check for them.

Newton’s method was generalized by Mieczysław Altman (1916–1997), 
a Polish-American mathematician, in “A Generalization of Newton’s 
Method” [5]. Later, Altman came up with the method of contractors, which 
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formed a basis for a unified theory encompassing a large class of itera-
tive numerical methods, including successive approximations, Newton, 
Newton–Kantorovich, Newton–Altman, as well as steepest descent and 
other gradient-type methods. This work is described in his book Contractors 
and Contractor Directions Theory and Applications: A  New Approach to 
Solving Equations [6].

19.3 � MODERN NUMERICAL ANALYSIS 
AND ITS PROBLEM DOMAINS

Modern numerical analysis [2] includes the design, convergence rate esti-
mation, error analysis, and stability of the various numerical methods 
that are being proposed. In general, such analyses are independent of the 
computer on which they are to be applied. In some instances, however, 
issues such as word size and floating-point accuracy cannot be ignored, 
especially if a specific family of methods is being analyzed for a particular 
class of computers. The ever-increasing size and mathematical complex-
ity of models in physics, engineering, and other domains necessitated the 
need for a formal approach for analyzing and evaluating the numerical 
methods that were being programmed to solve these problems.

Although there have been many papers on the subject prior to the 
1940s, modern numerical analysis is said to have started in the late 1940s 
in parallel with the construction of the first programmable electronic 
computers. John von Neumann’s (1903–1957) and Herman Goldstine’s 
(1913–2004) “Numerical Inverting of Matrices of High Order” paper in 
the Bulletin of the AMS (1947) was one of the first to discuss some of the 
issues in mathematical and error analyses in the context of solving large 
problems on a computer. Von Neumann, a Hungarian-American math-
ematician, is credited with many inventions in mathematics and econom-
ics, such as game theory and the design and architecture of modern-day 
computers. Today, a vast majority of computers have what is known as 
Von Neumann architecture, in which computers store their programs 
(and data) in memory and have a program counter pointing to the next 
instruction about to be executed. Goldstine was an American expert 
in ballistic computations and was one of the first Electronic Numerical 
Integrator and Computer (ENIAC) programmers.

Numerical methods are often used to solve various optimization prob-
lems, where the best operational configurations for models, which are often 
represented by nonlinear functions, must be computed. Usually, these 
optimization problems are constrained in that the allowable solutions can 
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only come from some bounded domain. Of course, from a computational 
standpoint, these restrictions can only make the problem more difficult. 
The calculation of an optimal solution is not, by any means, restricted 
to finding the zeroes of functions or their derivatives. Many problems, 
e.g., modeling and the optimization of the flow of messages on the Internet, 
simply do not have a closed-form functional representation. In such cases, 
various approximation schemes may be used, including self-adaptive ones, 
which may adjust the model if the predicted behavior is not in line with the 
actual one being observed.

Numerical analysis includes other classes of computational methods. 
For example, given a set of data points, how could one predict the value 
of a function between any two measurements? This problem is called 
interpolation, and it has numerous applications in sciences, business, and 
industry. If the number of points is small, one may use a polynomial to 
represent the predicted value of a given function. Otherwise, piecewise 
low-degree polynomial or trigonometric functions, called splines, are pref-
erable. Numerical methods for the approximation of integrals and deriva-
tives of functions are often based on interpolation. Simpson’s rule (named 
after Thomas Simpson; see the previous section) is one of the simpler 
interpolation-based methods that may be used to compute an area under a 
curve (i.e., integrate).

The problem of extrapolation, or prediction of a value of a function 
outside the measured range, is, from the mathematical as well as compu-
tational standpoint, much more difficult. Even from a purely philosophi-
cal point of view, there cannot exist a foolproof method for extrapolation, 
because if one did exist, we could all use it to predict the future prices in 
the stock market and everyone would become rich.

The mathematical modeling of physical systems is often accomplished 
with various forms of (partial) differential and integral equations. 
Obtaining solutions to these problems is inherently computational and 
requires well-designed and stable methods. Numerical methods that may 
be used for solving ordinary or partial differential equations include the 
Runge–Kutta, predictor-corrector, finite difference, finite volume, and finite 
element methods. These, however, are but a few examples of what is a vast 
number of methods in this area.

The computation of eigenvalues and eigenvectors of matrices, i.e., deter-
mination of the real and complex roots of their characteristic polynomial, 
is yet another area for which numerical methods have been developed. The 
power method, Jacobi’s, Householder’s, and the QL method (latter two for 
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symmetric matrices, which often arise in solving differential equations) 
may be used for this purpose.

Numerical methods are being applied to address problems in areas as 
diverse as weather prediction, aircraft design, medical imaging, quantum 
mechanics, structural engineering, system simulation, and stock market 
analysis. Today, these methods are implemented on computers whose task 
it is to perform the necessary calculations.
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C h a p t e r  20

Modular Arithmetic

20.1 � CLOCK ARITHMETIC
For addition, subtraction, and multiplication, the result of any of these 
operations of two integers is also an integer. On the other hand, for a pair 
of integers, the result of dividing one integer by the other is not necessarily 
an integer. That is, the set of integers is closed under addition, subtrac-
tion, and multiplication, but not under division. However, any of the set 
of rational numbers, the set of real numbers, and the set of complex num-
bers is closed under addition, subtraction, and multiplication, as well as 
division (when dividing by any nonzero element).

For any finite set of integers except for the set consisting of just 0, the 
set is not closed under any ordinary addition, subtraction, multiplication, 
and division. People in ancient civilizations devised clock arithmetic on 
a finite set of integers, which is closed under addition, subtraction, and 
multiplication. It is an arithmetic system for the set of integers {1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12}, where numbers wrap around after they reach 12. 
This kind of arithmetic is called modular arithmetic. The introduction of 
the first clock began with ancient astronomers noticing the phenomenon 
of the rising and setting of the sun. The clock arithmetic became known 
about 5000 years ago when Middle East and North Africa civilizations 
made the earliest clock to enhance their calendars. Historically, units of 
time in many civilizations are duodecimal (a positional notation number 
system of base-12). There are 12 months in a year, and the Babylonians had 
12 hours in a day (at some point this was changed to 24 hours) [4].
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In the case of clock arithmetic with modulo 12, 12 o’clock is equiv-
alent to 0 o’clock. Clock arithmetic on {1, 2, …, 12} is isomorphic to 
clock arithmetic on Z12 = {0, 1, 2, …, 11}. More generally, arithmetic of 
modulo m can be defined on the set of integers Zm = {0, 1, 2, …, m–1}. For 
clock arithmetic with modulo m, any integer a is congruent to a ± km 
for any integer k. This relation is denoted by a ≡ ma + km, or a ≡ a + km 
(modulo m). Equivalently, if a–b is evenly divisible by m, we say that a is 
congruent to b (modulo m). Although in general clock arithmetic is not 
closed under division, if m is a prime number, then clock arithmetic with 
modulo m is closed under division (dividing by the nonzero element) 
as well. In other words, if m is a prime number, then for any nonzero 
element a in Zm, the inverse of a (modulo  m) exists, and it is denoted 
by a–1 (modulo m) or 1/a (modulo m).

Example 20.1

For the 12-hour clock, the day is divided into two 12-hour periods. 
If the time is 5 o’clock in the morning, then 8 hours later it will be 
1 o’clock in the afternoon. Since 5 + 8 = 13 ≡ 1 (modulo 12), we may 
say that it will be 13 o’clock.

Suppose that a man drives on a highway. He drove 5 hours and 
arrived at 2 o’clock in the afternoon. Then he started driving on the 
highway at 9 o’clock in the morning, since 2–5 = –3 ≡–3 + 12 = 9 
(modulo 12).

Suppose that a worker starts five jobs sequentially at 4 o’clock in 
the morning. He spends 3 hours to complete one job. If he works 
without any rest until he finishes all the jobs, then he will finish 
all the jobs at 7 o’clock in the evening. Since 4 + 5 × 3 = 19 ≡ 7 
(modulo 12), we may say that he will finish all the jobs at 19 o’clock 
or 7 p.m.

Example 20.2

Let Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and 
Saturday correspond to 0, 1, 2, 3, 4, 5, and 6, respectively. We can 
calculate a day of the week by clock arithmetic with modulo 7. 
Suppose we know that May 2, 2012, is Wednesday. We can calculate 
that May 25, 2012, is Friday by 3 + (25 – 2) = 26 ≡ 5 (modulo 7).
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Example 20.3

In the addition of modulo 2 arithmetic, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 
and 1 + 1 = 0. This addition can be realized by the exclusive OR gate. 
It is equivalent to a logical formula (¬x∧y)∨(x∧¬y) if true and false 
correspond to 1 and 0, respectively.

Example 20.4

For clock arithmetic with modulo 5, the inverses of 1, 2, 3, and 4 are 
1, 3, 2, and 4, respectively. Notice that 1 × 1 = 1, 2 × 3 = 6 ≡ 1, 3 × 2 
= 6 ≡ 1, and 4 × 4 = 16 ≡ 1 (modulo 5). In general, if m is a prime 
number, then Zm is also closed under division (dividing by any non-
zero element).

As described in Chapter 7, in ancient cryptography, modular arithmetic 
was used implicitly. For example, according to Caesar cipher, each letter α 
in a plaintext is encoded as α + 3 (modulo 26), and each letter β in a cipher-
text is decrypted as β–3 (modulo 26), where letters A to Z correspond to 0 
to 25, respectively.

20.2 � CHINESE REMAINDER THEOREM
Not much is known about the origin of an old Chinese text on mathematics, 
Sunzi Suanjing. It is greatly believed that the book was completed around 
400 AD. It consists of three chapters. The first chapter describes measuring 
systems using counting rods, and methods for calculating multiplication, 
division, and square roots. The second and third chapters consist of prob-
lems (28 and 36, respectively) concerning fractions, areas, volumes, and 
others [8]. These problems are rather easier than the problems in another 
ancient text, Nine Chapters on Mathematical Art (its origin is believed to 
be in first century BC or first century AD in China)  [9]. However, one 
problem (problem 26 in Chapter 3) in the Sunzi Suanjing is particularly 
interesting. It is as follows:

Suppose we have an unknown number of objects. When we continue 
counting in threes, 2 objects are left over, when we continue count-
ing in fives, 3 objects are left over, and when we continue counting 
in sevens, 2 objects are left over. How many objects are there?
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The problem above is typically modular arithmetic. That is, it can be 
equivalently described as follows:

There is a number. If it is divided by 3, then the remainder is 2; if it 
is divided by 5, then the remainder is 3; and if it is divided by 7, then 
the remainder is 2. What is the number?

A Swiss mathematician, Leonhard Euler (1707–1783), was a pioneer of 
the modern approach to modular arithmetic. He introduced the idea of 
being congruent to an integer in 1750. Modular arithmetic was further 
advanced by Johann Carl Friedrich Gauss (1777–1855) in his book Disquisi-
tiones Arithmeticae, published in 1801. The problem in Sunzi Suanjing can 
be described in a modern mathematical form by introducing a congruence 
relation as the following simultaneous congruence equations:

	 x ≡ 2 (modulo 3)

	 x ≡ 3 (modulo 5)

	 x ≡ 2 (modulo 7).

The solution to the simultaneous equations above is x = 23 + 105k for 
any nonnegative integer k, and its smallest solution is 23. Equivalently, 
we can say that x is a solution to the simultaneous congruence equations 
above if and only if x ≡ 23 (modulo 105). The Chinese remainder theorem 
is a generalization of the problem in Sunzi Suanjing. The general solution 
to the problem was given by Gauss in 1800. A modern statement of the 
Chinese remainder theorem in algebraic language is as follows:

The Chinese remainder theorem is really a method of solving 
certain systems of simultaneous congruence equations. Suppose 
that m1, …, mr are pairwise relatively prime positive integers, and 
that a1, …, ar are integers. Consider the following system of simul-
taneous congruence equations:

	 x ≡ a1 (modulo m1)

	 x ≡ a2 (modulo m2)
	 .
	 .
	 .

	 x ≡ ar (modulo mr)
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The Chinese remainder theorem asserts that this system has a unique 
solution modulo M = m1 × m2 × … × mr. For 1 ≤ i ≤ r, define Mi = M/mi. The 
following theorem describes an efficient algorithm for solving systems of 
simultaneous congruence equations [1]. Note that Mi and mi are relatively 
prime, and the inverse of Mi (modulo mi) exists (1 ≤ i ≤ r). The inverse can 
be efficiently calculated by a variation of Euclidean algorithm (it is called 
extended Euclidean algorithm [2]).

Theorem 20.1 (Chinese remainder theorem)

Suppose that m1, …, mr are pairwise relatively prime positive integers. 
Then the system of r congruence equations x ≡ ai (modulo mi) (1 ≤ i ≤ r) 
has a unique solution modulo M = m1×…×mr, which is given by

	 x = a1M1y1 + a2M2y2 + … arMryr (modulo M)

	 where Mi = M/mi, and yi = Mi
–1 (modulo mi), for 1 ≤ i ≤ r.

Example 20.5

For the problem in the Sunzi Suanjing (x ≡ 2 (modulo 3), x ≡ 3 
(modulo 5), x ≡ 2 (modulo 7)), a1 = 2, a2 = 3, a3 = 2, m1 = 3, m2 = 5, 
m3 = 7, M = 3 × 5 × 7 = 105, M1 = 105/3 = 35, M2 = 105/5 = 21, and M3 
= 105/7 = 15. Then M1

–1 ≡ y1 ≡ 35–1 ≡ 2 (modulo 3), M2
–1 ≡ y2 ≡ 21–1 ≡ 1 

(modulo 5), and M3
–1 ≡ y3 ≡ 15–1 ≡ 1 (modulo 7). From the Chinese 

remainder theorem the solution to the problem is 2 × 35 × 2 + 3 × 
21 × 1 + 2 × 15 × 1 ≡ 23 (modulo 105).

Modular arithmetic was also described by Indian mathematicians in 
the 6th and 7th centuries and a European mathematician in the 13th 
century. An algorithm for solving the Chinese remainder theorem was 
given by Aryabhata (476–550) [3, 10]. Special cases of the Chinese remain-
der theorem were given by Brahmagupta (596–668) [11], and in the book 
Liber Abaci in 1202 [7].

The following problem was originally given by Brahmagupta, known as 
Brahma’s correct system or the egg-woman problem (the solution to this 
problem is 301):
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An old woman went to a market and was selling eggs from her 
basket. A horse stepped on her basket and crushed the eggs. The 
rider offered to pay for the damage and asked her, “How many eggs 
were there in the basket?” She did not remember the exact number 
of eggs, but when she had taken them out two at a time there was 
one egg left. The same happened to the remainder when she had 
taken them out three, four, five, and six at a time, but when she had 
taken them out seven at a time they came out even. What is the 
smallest number of eggs she could have had in her basket?

The same problem is also given in Fibonacci’s Liber Abaci. The follow-
ing is quoted from the English translation of Liber Abaci by L. E. Sigler [7]:

There is a number which when divided by 2, or 3, or 4, or 5, or 6, 
always has a remainder 1, and it is truly integrally divisible by 7. 
It is sought what is the number.

Maarten Bullynck conjectures possible routes of how the Chinese 
remainder problem reached Europe in his paper [6]. The following is 
quoted from his paper [6]:

In continental Europe, remainder problems show up for the first 
time in medieval manuscripts on calculation, perhaps through the 
mediation of Italian merchants returning from China, perhaps 
through Arabic translations of Indian sources.

20.3 � FERMAT’S LITTLE THEOREM
Pierre de Fermat (1601–1665) has been called the greatest amateur mathema
tician [5]. He communicated mathematical discoveries in numerous 
letters, usually without proof to his friends. However, he became one of 
the best mathematicians in his century. Fermat was a pioneer in several 
areas of mathematics.

One of the theorems discovered by Fermat states that if p is a prime, 
then for any integer a, ap –a will be eventually divided by p. This can be 
expressed in modular arithmetic notation as follows:

	 ap ≡ a (modulo p).
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A variant of this theorem is stated in the following form: if p is a prime, 
and a and p are relatively prime, then the multiplicative order of a is 
p – 1. Hence,

	 ap–1 ≡ 1 (modulo p).

This theorem was stated in a letter to his friend in 1640. He did not 
prove it, but added the following statement [12]: “This proposition is gen-
erally true for all progression and for all primes. I would send you its proof 
if I were not afraid to be too long.”

We call this theorem Fermat’s little theorem, after an English mathema-
tician, James Joseph Sylvester (1814–1897), who called it by the name to 
distinguish it from Fermat’s last theorem. Euler first published a proof of 
Fermat’s little theorem in 1736, but Gottfried Wilhelm Leibniz (1646–1716) 
rediscovered and proved the same result in unpublished notes in 1683. The 
proof by Leibniz is virtually the same as the proof by Euler.

Euler’s phi function, φ(n), is an arithmetic function that counts the num-
ber of positive integers less than n and relatively prime to n. Euler intro-
duced this function in 1760. The standard notation φ(n) is from Gauss’s 
paper “Disquisitiones Arithmeticae” in 1801. For a prime number  p, 
φ(p) = p–1, and for the product of two distinct primes p and q, φ(p × q) 
= (p–1)(q–1). Let Zn* be the set of elements that are relatively prime to n 
and in Zn. For example, Z6 = {0, 1, 2, 3, 4, 5} and Z6* = {1, 5}. The following 
theorem is a variation of Fermat’s little theorem. It is more general than 
the original Fermat’s little theorem [12].

Theorem 20.2

If a is in Zn*, then aφ(n) ≡ 1 (modulo n).

Fermat’s little theorem and its variations play a crucial role in primal-
ity testing, and the factorization of polynomials and integers. As we will 
describe in Chapter 30, these testing algorithms are particularly useful in 
modern cryptography.
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C h a p t e r  21

Cybernetics and 
Information Theory

21.1 � NORBERT WIENER AND CYBERNETICS
Norbert Wiener (1894–1964) studied mathematics at Tufts College from 
1906 to 1909, zoology at Harvard University from 1909 to 1910, and phi-
losophy at Cornell University from 1910 to 1911. Then, he returned to 
Harvard University, while continuing his philosophy studies. Wiener had 
been interested in the scientific method for a long time. He was a partici-
pant in a Harvard seminar run by Josia Royce (1855–1916) between 1911 
and 1913. Harvard University awarded Wiener a Ph.D. in 1912, when he 
was 18 years old, for his dissertation on mathematical logic [10].

In 1914, Wiener traveled to Europe, where he studied under the guid-
ance of Bertrand Russell (1872–1979) and G. H. Hardy (1877–1947) at 
Cambridge University, and David Hilbert (1862–1943) and Edmund 
Landau (1877–1938) at the University of Göttingen. During 1915–1916, he 
taught philosophy at Harvard University, and then worked as an engi-
neer for General Electric Co. In 1926, Wiener returned to Europe, and 
spent most of his time at Göttingen and at Cambridge, where he worked 
on Brownian motion, Fourier integrals, the Dirichlet problem, harmonic 
analysis, and Tauberian theorems.

In the 1940s, during and after World War II, Wiener and Arturo 
Rosenblueth (1900–1970) of the Harvard Medical School conducted a 
monthly series of discussion meetings on the scientific method. The par-
ticipants were mostly young scientists from Harvard Medical School. 
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Wiener played a key role in the entire field of the theory of control and 
communication in machines and animals in this series of meetings. 
Rosenblueth’s return to Mexico in 1944 and the general confusion after 
World War II ended this series of meetings [1].

During World War II, Wiener also worked on guided missile technol-
ogy, and studied how sophisticated electronics used the feedback prin-
ciple. He noticed that feedback is a key feature of life-forms, from the 
simplest plants to the most complex animals, changing their actions in 
response to stimuli from their environment. Wiener developed this con-
cept into the field of cybernetics, concerning the combination of animals 
and machines. In a related work, Wiener investigated information theory 
independently of Claude E. Shannon (1916–2001), and invented what is 
now known as the Wiener filter. The Wiener filter is a statistically designed 
filter to reduce the amount of noise present in a signal. The equivalent 
filter was also derived independently in 1941 by Russian mathematician 
Andrey Nikolaevich Kolmogorov (1903–1987). Their theory is often called 
the Wiener–Kolmogorov filter theory.

In 1948, Wiener published a book representing the outcome, after more 
than a decade, of research undertaken jointly with Rosenblueth at Harvard 
Medical School. He coined the word cybernetics with its current meaning, 
as defined in the title of his book Cybernetics or Control and Communication 
in the Animal and the Machine [1, 10]. The term cybernetics stems from the 
Greek word kybernetes that means “steersman, governor, pilot, or rudder.” 
The book Cybernetics discusses Newtonian and Bergsonian time; groups and 
statistic machines; time series, information, and communication; feedback 
and oscillation; computer machines and nervous systems; gestalt and uni-
versals; cybernetics and psychopathology; and information, languages, and 
society. In the second edition of the book, published in 1961, Wiener added 
supplemental chapters on learning and self-reproducing machines and on 
brain waves and self-organizing systems.

Cybernetics is a broad field of science and technology. The essential goal 
of cybernetics is to understand and define the functions and processes of 
systems with feedback loops. British scientist Stafford Beer (1926–2002) 
called cybernetics the science of effective organization, and another British 
scientist, Gordon Pask (1928–1996), extended it to include information 
flow in all media, from stars to brains. It includes the study of feedback, 
black boxes, and derives concepts such as communication and control in 
living organisms and machines. French mathematician and computer sci-
entist Louis Couffignal (1902–1966) characterized cybernetics as the art 
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of ensuring the efficiency of actions. American mathematician and com-
puter scientist Louis Kauffman (1945–) proposed that “cybernetics is the 
study of systems and processes that interact with themselves and produce 
themselves from themselves.” [9] Concepts studied by cyberneticists also 
include learning, cognition, and adaptive theory. Other fields influenced 
by cybernetics include, but are not limited to, game theory, system theory, 
psychology, neurology, brain science, and anthropology.

21.2 � SHANNON’S INFORMATION THEORY
Claude E. Shannon (1916–2001) is the celebrated Father of Information 
Theory. He graduated from MIT with an M.S. in electrical engineering 
in 1937 and a Ph.D. in mathematics in 1940. He later became a research 
fellow at the Institute for Advanced Study at Princeton University and 
joined Bell Laboratories in 1941 [2, 7, 8].

During World War II, Shannon was employed by Bell Laboratories, 
working on top-secret defense projects in cryptography. His team worked 
on antiaircraft devices that observe enemy planes or missiles and calculate 
the trajectories of intercepting missiles. In an early paper, Shannon acknowl-
edged the profound influence he received from Harry Nyquist (1889–1976) 
and R. V. L. Hartley (1888–1970), who were pioneers and fundamental con-
tributors to data transmissions. In 1943, Shannon met British cryptanalyst 
and mathematician Alan M. Turing. Shannon was interested in speech 
encryption, and developed its binary encoding system. In 1945, it occurred 
to Shannon that the problem of smoothing the data in firing control could 
be formally treated with some analogy to the problem of separating a signal 
from interfering noise in communication systems. His work during World 
War II is closely related to his later publications on communication theory.

In 1948, Shannon’s brilliant memorandum appeared as “A Mathematical 
Theory of Communication” in two parts in the issues of the Bell System 
Technical Journal in 1948 and 1949 [3, 4]. The Mathematical Theory of 
Communication, a book coauthored with Warren Weaver (1894–1978) [5], 
was published in 1949 as reprints of Shannon’s articles and Weaver’s 
memorandum on communication theory. Shannon’s paper focuses on the 
problem of how best to encode the information that a sender wants to 
transmit [5]. In his revolutionary paper, Shannon introduced a quantita-
tive model of communication as a statistical process underlying informa-
tion theory. If a message specifies one from a set of n possible messages, 
according to Shannon’s theory, the quantity of the message is defined as 
log2 n binary digits (briefly bits). Equivalently, if the probability that the 
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message specifies a fact is p = 1/n, then the information of the message is 
–log2 p = log2 n bits. The word bit was first introduced by John W. Tukey 
(1915–2000) while he worked with John von Neumann on early computer 
designs. As Shannon described in his article, the logarithmic measure on 
messages is the most natural choice for the following reasons:

	 1.	Parameters of engineering importance, such as time, bandwidth, 
number of relays, etc., tend to vary linearly with the logarithm of the 
number of possibilities.

	 2.	It is natural to our intuitive feeling as the proper measure. For exam-
ple, two punched cards should have twice the information capacity 
of one card, and two identical channels should have twice the infor-
mation transmitting capacity.

	 3.	Many of the limiting operations are simple in terms of the logarithm but 
would require clumsy restatement in terms of the number of possibilities.

Shannon showed how information could be quantified with absolute 
precision. Telephone signals, texts, radio waves, and television pictures 
could be encoded in bits. The channel capacity of a communication line 
could be precisely measured in bits. In his fundamental work, he used 
tools in probability theory, developed by Norbert Wiener and others, 
and applied them to communication theory. The revolutionary idea by 
Shannon was promptly adopted by communication and computer engi-
neers. His theory has been widely used to measure computer storage in 
bits, needed for pictures, voices, and other types of data.

In his article, Shannon represented a discrete information source as a 
stochastic process. He defined a quantity that would measure how much 
information is produced by such a process and at what rate this infor-
mation is produced. Suppose a set of possible events whose probabilities 
of occurrence are p p pn1 2, , ,� . In the case where these probabilities are 
known, Shannon introduced a measure called entropy:

	 H p p pn( , , , )1 2 � ,

indicating how much certainty is involved in the selection of the event or 
how uncertain we are of the outcome. The entropy of the system is defined 
to be as follows (See Figure 21.1):

	 H p p p p p p p p pn n n( , , , ) ( log log log )1 2 1 2 1 2 2 2 2� �= − + + + .
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As Shannon describes in his paper, it is reasonable to require 
H p p pn( , , , )1 2 �  possessing the following properties:

	 1.	H should be continuous in pi (for each i).

	 2.	 If all pi are equal, pi = 1/n, then H should be a monotonic function 
of n. With equally likely events there is more choice, or uncertainty, 
when there are more possible events.

	 3.	 If a choice is broken down into two successive choices, the original H 
should be the weighted sum of the individual values of H.

According to the definition of Shannon entropy, a single toss of a fair 
coin has entropy of 1 bit. Two tosses have entropy of 2 bits. The entropy 
rate for the coin is 1 bit per toss. However, if the coin is not fair, then 
the uncertainty is lower, and thus Shannon entropy is lower. A series of 
tosses of a two-headed coin will have zero entropy since the outcomes are 
entirely predictable.

The word entropy in information theory came from the close resem-
blance between Shannon’s formula and the known formula for thermo-
dynamics [6]. In statistical thermodynamics, the most general formula for 
thermodynamics entropy is given as follows:

	 − + + + +KB( log log log )p p p p p pe e i e i1 1 2 2 � � .
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FIGURE 21.1  The entropy of a single coin toss with probabilities (p, 1–p).
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where KB is the Boltzmann constant, and each pi is the probability of a 
microstate. This formula was given by Josiah Willard Gibbs (1839–1903) 
in 1878 and is called Gibbs entropy.

21.3 � SHANNON–FANO CODING AND HUFFMAN CODING
An efficient coding technique of messages was proposed in Shannon’s paper 
in 1948. Robert Mario Fano (1917–) developed Shannon’s method and pub-
lished it as a technical report [11]. It is a technique for constructing a code 
based on a set of symbols and their estimated probabilities, and was named 
Shannon–Fano coding. Here, the set of symbols is divided into two sets whose 
total probabilities are as close as possible to being equal. Then all symbols in 
the first set are assigned a 0 and all symbols in the second set are assigned a 1. 
As long as any sets with more than one member remain, the same process is 
repeated. When a set has been reduced to one symbol, the code generating 
process is complete. In this way, the code of each symbol is determined as 
successive binary digits. Note that the code of any symbol does not form 
the prefix of the code of any other symbol. Shannon–Fano coding can be 
more formally described via the following encoding algorithm:

Algorithm: Shannon–Fano Coding

create a table providing frequencies of symbols;
sort symbols according to frequency in descending order;
start with the entire table;
	 division:
		  seek pointer to the first and last symbols of 

the segment;
		  divide the segment into two parts, both nearly 

equal in sum of frequencies;
		  concatenate a binary 0 to the end of each code 

word of the upper part and a binary 1 to the 
end of the code word of the lower part;

		  search for the next segment containing at least 
two symbols and repeat division;

coding of the symbols according to the code words 
created in the table;

In general, Shannon–Fano coding does not achieve the lowest possible 
code word length, but it guarantees that all code word lengths are within 
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1 bit of their theoretical ideal. The next example shows the construction 
of Shannon–Fano coding for a small alphabet {A, B, C, D, E} as shown in 
Figure 21.2.

Example 21.1

Suppose that the frequencies of each symbol of {A, B, C, D, E} are as 
given in the following table:

Symbol A B C D E
Frequency 24 12 10 8 8

The set of symbols {A, B, C, D, E} is divided into two segments, 
{A, B} and {C, D, E}. Then segment {A, B} is divided into {A} and {B}, 
and segment {C, D, E} is divided into {C} and {D, E}. Then segment 
{D, E} is divided into {D} and {E}. The code word of each symbol is 
given in the following table:

Symbol A B C D E
Code word 00 01 10 110 111

The average bit number per symbol is

	(2 × 24 + 2 × 12 + 2 × 10 + 3 × 8 + 3 × 8)/62 ≈ 2.258 (bits per symbol).

In 1951, Professor Robert M. Fano assigned a term paper on the prob-
lem of finding the most efficient binary coding in the information theory 

{A, B, C, D, E}

{A, B} {C, D, E}
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{A} {B} {C}

{D} {E}

62

36 26

24 12 10 16

8 8

0

00

0

1

1 1

1
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FIGURE 21.2  An encoding by Shannon–Fano coding.
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course at MIT. David Albert Huffman (1925–1999), a Ph.D. student at that 
time, started studying the problem, and eventually got the idea of using 
a frequency-sorted binary tree construction. Huffman avoided the major 
flaw of the suboptimal Shannon–Fano coding by constructing the tree 
from the bottom up instead of from the top down. He proved the coding 
method to be the minimum redundancy binary coding [12] (Figure 21.3). 
The following algorithm constructs the Huffman coding:

Algorithm: Huffman Coding

create table providing frequencies of symbols;
sort symbols according to frequency in descending order;
repeat
	 search for the two nodes providing the lowest 

frequencies, which have not been assigned 
a parent node, and assign a parent node with 
a frequency that is the sum of the two 
lower elements

until all nodes are combined together in a root node;
{to generate a Huffman code word we traverse the 
constructed tree from the root node to a leaf node, 
outputting a 0 every time we take a left hand branch, 
and a 1 every time we take a right hand branch}

62

24 38

22 16

12 10 8 8
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B C D E
100 101 110 111

0

0

0

0

0

1

1

1

1

FIGURE 21.3  An encoding by Huffman coding.
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Example 21.2

We use the same frequency table as in Example 21.1. The two lowest-
frequency symbols are E and D. These two nodes are connected first, 
and their parent is created with frequency 16 (sum of frequency 8 of 
E and frequency 8 of D). Next, we choose C and B and connect them. 
Their parent with frequency 22 (sum of 10 and 12) is created. Then 
the parent of E and D, and the parent of C and D are connected, 
and their parent with frequency 38 (sum of 16 and 22) is created. 
Leaf node A with frequency 24, and the parent with frequency 38 
(the ancestor of B, C, D, E) are connected, and their parent with fre-
quency 62 is created. According to the constructed tree, we assign 
code words to the set of symbols as shown in the following table:

Symbol Frequency Code Word Code Length Total Length
A 24 0 1 24
B 12 100 3 36
C 10 101 3 30
D 8 110 3 24
E 8 111 3 24

The average bit number per symbol is

	 (24 + 36 + 30 + 24 + 24)/62 ≈ 2.2258.

Both Shannon–Fano coding and Huffman coding are prefix codes 
(sometimes called prefix-free codes). That is, the bit string represent-
ing any symbol is never a prefix of the bit string representing any other 
symbol. Shannon–Fano coding does not offer the best code efficiency. 
It provides a result similar to that of Huffman coding, but it will never 
exceed Huffman coding.

21.4 � MORSE CODE
One important feature of Shannon–Fano coding and Huffman coding is 
that the length of the code word for a symbol is approximately inversely 
proportional to its frequency. More than 100 years before Shannon–Fano 
coding appeared, this feature was already used in the Morse code. Samuel 
F. B. Morse (1791–1872) was an American contributor to the invention 
of a single-wire telegraph system and an inventor of Morse code. Morse 
was born in Charlestown, Massachusetts. He went to Yale College, where 
he studied religious philosophy, mathematics, and science. In  1810, 
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he graduated from Yale College and became a professional painter. 
In  the 1930s Morse became interested in electromagnetism and devel-
oped the concept of a single-wire telegraph. In 1844, the telegraph wire 
line was officially opened from Baltimore to the Capitol Building in 
Washington, D.C. On May 24, 1844, Morse, in the U.S. Supreme Court 
Chambers in Washington, D.C., sent by telegraph to his colleague Alfred 
Vail (1807–1859) the famous words, “What hath God wrought” (What has 
God worked?). In 1845 Morse, his colleagues, and a small group of inves-
tors formed the Magnetic Telegraph Company. The first commercialized 
telegraph line was completed between Washington, D.C., and New York 
City in the spring of 1846 [13, 14].

Alfred Vail played an important role in the invention of the Morse 
code. A related code for Morse’s telegraph was originally created by Vail in 
the early 1840s. This code was the forerunner of Morse code. In the 1890s 
it began to be extensively used for early radio communication before it 
became possible to transmit voice messages. In the late 19th and the early 
20th century, most high-speed communication systems used Morse code 
on telegraph lines through undersea cables or by electromagnetic waves.

Morse code is a method of transmitting textual information as a series 
of on-off tones that can be understood by a skilled listener. International 
Morse code encodes the Roman alphabet and the Arabic numerals as stan-
dardized sequences of short and long signals called dots and dashes. Each 
character (letter or numeral) is represented by a unique sequence of dots 
and dashes. The duration of a dash is three times the duration of a dot. 
Each dot or dash is followed by a short silence [13]. Table 21.1 summarizes 
the international Morse code:
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TABLE 21.1  International Morse Code

A: ·  — U: ·  ·  —
B: —  ·  ·  · V: ·  ·  ·  —
C: —  ·  —  · W: ·  —  —
D: —  ·  · X: —  ·  ·  —
E: · Y: —  ·  —  —
F: ·  ·  —  · Z: —  —  ·  ·
G: —  —  ·
H: ·  ·  ·  · 1: ·  —  —  —  —
I: ·  · 2: ·  ·  —  —  —
J: ·  —  —  — 3: ·  ·  ·  —  —
K: —  ·  — 4: ·  ·  ·  ·  —
L: ·  —  ·  · 5: ·  ·  ·  ·  ·
M: —  — 6: —  ·  ·  ·  ·
N: —  · 7: —  —  ·  ·  ·
O: —  —  — 8: —  —  —  ·  ·
P: ·  —  —  · 9: —  —  —  —  ·
Q: —  —  ·  — 0: —  —  —  —  —
R: ·  —  ·
S: ·  ·  ·
T: —
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C h a p t e r  22

Error Detecting 
and Correcting Codes

22.1 � PARITY CHECK CODES
We can enjoy chats with friends even in noisy pubs. Even if we cannot 
hear some sounds of words, we can usually understand each other. Since 
any language has some redundancy, we can usually guess the meaning 
of sentences containing some missing sounds or missing words if the 
missing sounds/words are not too many, or we can ask, “Pardon me, could 
you please repeat what you said?” These kinds of techniques are also useful 
in data communications and data processing in digital circuits.

A parity bit in a binary code word is a bit added to ensure that the 
number of bits with the value 1 in the code word is even or odd. Parity bits 
are used as the simplest form of error detecting codes. If the code consists 
of code words with an even (odd) number of 1’s, it is called an even (odd) 
parity check code. In the case of an even (odd) parity check code, given 
k bits of information, an extra bit is added so that the total number of 1’s in 
a code word is even (odd). For example, in an even parity check code with 
4 information bits, the addition of the parity check bit at the beginning 
consists of the following 16 code words:

0: 00000 4: 10100
1: 10001 5: 00101
2: 10010 6: 00110
3: 00011 7: 10111
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8: 11000 12: 01100
9: 01001 13: 11101

10: 01010 14: 11110
11: 11011 15: 01111

Parity check codes were used on magnetic data storage, punched tape 
data in data communication and processing systems in the early 1950s. 
For example, on the systems sold by the British company ICL in the 1950s, 
the 1-inch-wide paper tape had eight hole positions running across it, with 
the eighth being reserved for a parity bit.

In the case of an even parity check code, if an odd number of bits is 
changed in transmission, the message will change parity and the error can 
be detected. The most common interpretation is that a parity value of 1 
indicates the existence of an odd number of errors in the data, and a parity 
value of 0 indicates no errors or an even number of errors in the data.

Parity checking is not robust, since if the number of bits changed is even, 
the error will not be detected. Moreover, parity does not indicate which bit 
contains an error, even when it can detect the existence of an error. The 
data must be discarded entirely and retransmitted from the sender, when-
ever an error is detected. Consequently, on a noisy transmission medium, a 
successful transmission could take a long time. However, while the quality 
of parity checking is poor, this method results in the least overhead.

22.2 � HAMMING CODES
The history of error correcting codes began with the publication of famous 
papers by C. E. Shannon (1948, 1949) [14, 15]. Shannon’s information 
theory told us about the existence of error correcting codes, but he did 
not tell us how to find such codes. Throughout the 1950s much effort was 
devoted to finding explicit constructions for classes of codes that would 
produce an arbitrarily small probability of error, as promised by Shannon.

The first big progress toward the construction of such codes involved 
block codes, which have a strong algebraic flavor. In a block code, each 
message block with m digits is encoded into a longer sequence of n digits 
(n-tuple) for fixed m and n (m < n). Only certain selected n-tuples, called 
code blocks or, more commonly, code words, are transmitted from the 
sender. At the receiver side, a decision concerning the code word trans-
mitted from the sender is made by the nature of a best guess on the basis 
of available information. With a good code, the probability of a wrong 
decision may be much smaller than the probability that the original code 
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word is reproduced without an error at the receiver side. One of the earliest 
error correcting block codes was introduced in 1950, when Richard Wesley 
Hamming (1915–1998) described a class of single error correcting codes [5].

Hamming was an American mathematician. He received his bachelor’s 
degree from the University of Chicago in 1937, a master’s degree from the 
University of Nebraska in 1939, and a Ph.D. from the University of Illinois 
at Urbana-Champaign in 1942 [16]. From 1946 to 1976, he worked at Bell 
Laboratories, where he collaborated with Claude E. Shannon.

In his paper, Hamming explained that he was led to this topic from a 
consideration that a large number of operations must be prepared without 
a single error in the end result. He also described that in a digital com-
puter, a single failure usually means a complete failure, in the sense that 
if it is detected, no more computing can be performed until the failure is 
located and corrected. Hamming introduced a distance, or as it is usually 
called, a metric, in the vector space of 2n points (i.e., 2n binary sequences 
of length n, hereafter denoted by Qn). The metric is now known as the 
Hamming distance, where the distance between two words is defined to 
be the number of positions in which the words differ. The definition of 
the Hamming distance is based on the observation that a single error in 
a code word changes one coordinate (position), two errors, two coordi-
nates, and in general k errors produce differences in k coordinates. More 
formally, the Hamming distance between x in Qn and y in Qn, d(x, y) is 
defined by

	 i i n x yi i| ,1≤ ≤ ≠{ } ,

where x = x xn1� , y = y yn1� , and |S| is the number of elements in the set S.
A block code of length n is a subset of Qn. Let C be a block code. The 

minimum distance of a code C is the smallest Hamming distance between 
distinct code words in C, and it is important in determining the error 
correcting capability of C. It is formally defined as

	 min{d(x, y) | x in C, y in C, and x ≠ y}.

Example 22.1

Suppose that we encode 2-bit messages into 5-bit code words as follows:

	 00 ⇔ 10101, 01 ⇔ 10010, 10 ⇔ 01110, 11 ⇔ 11111.
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This code is a block code of length 5. The code consists of four code 
words, 10101, 10010, 01110, and 11111. For this code, the Hamming 
distances between the specific pairs of distinct code words are:

	 d(10101, 10010) = 3,  d(10101, 01110) = 4

	 d(10101, 11111) = 2,  d(10010, 01110) = 3

	 d(10010, 11111) = 3,  d(01110, 11111) = 2.

The minimum distance of this code is 2. This code has an error 
detecting capability; however, it does not have any error correct-
ing capability. For example, if the receiver receives 10111, then the 
receiver cannot specify the error location, although he or she can 
detect that the received word 10111 contains an error. The original 
message might have been either 10101 or 11111, with the probabili-
ties of each one taking place being equal. This example shows that a 
code is incapable of correcting up to t errors unless the minimum 
distance of the code is at least 2t + 1.	

A systematic block code of length n is defined as a block code in which 
each code word has exactly n binary digits, where m digits are associated 
with the information, while the other k = n–m digits are used for error 
detection and correction. This produces a redundancy R, which is defined 
as the ratio of the number of binary digits used to the absolute minimum 
number necessary to convey the same information (i.e., R = n/m).

Hamming constructed systematic block codes that can correct any 
single-bit error. These codes are called the Hamming codes. For each k (k ≥ 2) 
there exists a Hamming code of code word length n = 2k–1, where k is the 
number of parity check bits and m = n–k is the number of information bits 
in each code word. The minimum distance of each Hamming code is 3. 
Let us consider Qn = {0, 1}n, the set of a binary sequence of length n. A block 
code of length n is a subset of Qn. Now, visualize a sphere about each of the 
code words of a code, each sphere with the same radius. Allow these spheres 
to increase in radius by an integer amount until they cannot be made larger 
without causing some spheres to intersect. The value of the radius is equal 
to the number of errors that can be corrected by the code. A perfect code of 
block length n is one for which there are equal-radii spheres about the code 
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words that are disjoint and that completely fill the space Qn = {0, 1}n. It is a 
well-known fact that any Hamming code is a perfect code [7, 8, 12].

Example 22.2

There are 27 = 128 binary sequences of length 7. Let us consider the 
following set of code words:

0000000 0001011 0010110 0011101
0100111 0101100 0110001 0111010
1000101 1001110 1010011 1011000
1100010 1101001 1110100 1111111

This set is a Hamming code of block length 23–1 = 7. The first 4 
bits and the last 3 bits of each code word are information bits and 
parity check bits, respectively. That is, m = 4, k = 3, and n = 23–1 = 7. 
For the information bits i1, i2, i3, and i4, the parity check bits p1, p2, 
and p3 are determined by the following equations:

	 p1 ≡ i1 + i2 + i3 (modulo 2)

	 p2 ≡ i2 + i3 + i4 (modulo 2)

	 p3 ≡ i1 + i3 + i4 (modulo 2).

For this Hamming code, we can encode any 4-bit message into a 
7-bit code word according to the equations above. The minimum dis-
tance of this code is 3. The number of binary sequences within the 
sphere of radius 1 about each code word is 1 + 7 = 8. Notice that the 
number of 7-bit sequences of Hamming distance 1 from each code 
word is 7. These seven binary sequences and the code word itself are the 
binary sequences within the sphere of radius 1 about the code word. 
These spheres are disjoint, and their union completely covers the whole 
space of binary sequences of length 7, since 8 × 16 = 128. Therefore, 
we can conclude that this code is a perfect code. For a received word 
a1a2a3a4b1b2b3, the following (s1, s2, s3) is called its syndrome:

	 s1 ≡ a1 + a2 + a3 + b1 (modulo 2)

	 s2 ≡ a2 + a3 + a4 + b2 (modulo 2)

	 s3 ≡ a1 + a3 + a4 + b3 (modulo 2).
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For this Hamming code we can decode any received word by the 
following set of rules:

	 1.	There are no errors in the received word if s1s2s3 = 000.
	 2.	b1 is incorrect if s1s2s3 = 100.
	 3.	b2 is incorrect if s1s2s3 = 010.
	 4.	b3 is incorrect if s1s2s3 = 001.
	 5.	a1 is incorrect if s1s2s3 = 101.
	 6.	a2 is incorrect if s1s2s3 = 110.
	 7.	a3 is incorrect if s1s2s3 = 111.
	 8.	a4 is incorrect if s1s2s3 = 011.

22.3 � LINEAR CODES
Under component-wise vector addition and component-wise scalar multi-
plication, the set of n-tuples of elements from GF(q) is a vector space called 
GF(q)n, where GF(q) is the finite field with q elements (also called the Galois 
field with q elements). A linear code is a subspace of GF(q)n. Most of the 
known good codes belong to a class of codes called linear codes. For ease 
of explanation, we restrict our attention mainly to the linear block codes 
over a vector space GF(2)n. Any pair of vectors of the vector space can be 
added by modulo 2 addition in each component. The modulo 2 addition 
in GF(2) is defined as:

	 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1,

and the product in GF(2) is defined as

	 1 × 1 = 1 and 0 × 0 = 0 × 1 = 1 × 0 = 0 × 0 = 0.

A linear code is a subspace of GF(2)n. That is, a linear code of length n 
is a nonempty set of n-tuples over GF(q), called code words, such that the 
sum of any pair of code words is also a code word, and the product of any 
code word by an element of GF(q) is also a code word. For any linear code, 
the all-zero word is always a code word, and any linear combination of 
code words is also a code word.

The theory of vector spaces can be used to study linear codes. Any set of 
basis vectors for the subspace can be expressed as rows forming an m by n 
matrix G called the generator matrix of the linear code of length n with m 
information digits. The set of basis vectors is linearly independent, and the 
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row space of G is a linear code. The set of qm code words generated by the G 
is called an (n, m) linear code [2, 3, 7, 8]. Given an m × n matrix A, the n × m 
matrix obtained by interchanging the rows and columns of A is called the 
transpose of the matrix A and is denoted by AT. Any Hamming code is a 
linear code. As shown in the following example, the (7, 4) Hamming code 
given in Example 22.2 is a linear binary code of length 7 with 4 informa-
tion bits and 3 parity check bits.

Example 22.3

The set of 0001011, 0010110, 0100111, and 1000101 is a set of basis 
vectors of the (7, 4) binary Hamming code, given in Example 22.2. 
The 4 by 7 matrix consisting of these row vectors is a generator 
matrix of the (7, 4) Hamming code. In fact, each code word of the 
(7, 4) Hamming code is a linear combination of these row vectors as 
shown below:

	0000000	= 0 × (0001011) + 0 × (0010110) + 0 × (0100111) + 0 × (1000101)
	 0001011	= 1 × (0001011) + 0 × (0010110) + 0 × (0100111) + 0 × (1000101)
	 0010110	= 0 × (0001011) + 1 × (0010110) + 0 × (0100111) + 0 × (1000101)
	 0011101	= 1 × (0001011) + 1 × (0010110) + 0 × (0100111) + 0 × (1000101)
	 0100111	= 0 × (0001011) + 0 × (0010110) + 1 × (0100111) + 0 × (1000101)
	 0101100	= 1 × (0001011) + 0 × (0010110) + 1 × (0100111) + 0 × (1000101)
	 0110001	= 0 × (0001011) + 1 × (0010110) + 1 × (0100111) + 0 × (1000101)
	 0111010	= 1 × (0001011) + 1 × (0010110) + 1 × (0100111) + 0 × (1000101)
	 1000101	= 0 × (0001011) + 0 × (0010110) + 0 × (0100111) + 1 × (1000101)
	 1001110	= 1 × (0001011) + 0 × (0010110) + 0 × (0100111) + 1 × (1000101)
	 1010011	= 0 × (0001011) + 1 × (0010110) + 0 × (0100111) + 1 × (1000101)
	 1011000	= 1 × (0001011) + 1 × (0010110) + 0 × (0100111) + 1 × (1000101)
	 1100010	= 0 × (0001011) + 0 × (0010110) + 1 × (0100111) + 1 × (1000101)
	 1101001	= 1 × (0001011) + 0 × (0010110) + 1 × (0100111) + 1 × (1000101)
	 1110100	= 0 × (0001011) + 1 × (0010110) + 1 × (0100111) + 1 × (1000101)
	 1111111	= 1 × (0001011) + 1 × (0010110) + 1 × (0100111) + 1 × (1000101)

In a linear code, one-to-one correspondence of m-tuples (i.e., a sequence 
of m information digits) and code words can be used as an encoding pro-
cedure, but the most natural way is to use the following transformation by 
the product of vector i (an m-tuple of information digits) and an m by n 
generator matrix G:
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	 c = iG,

where c is the code word corresponding to i.
Because a linear code is a subspace, it has an orthogonal complement, 

which is the set of all vectors orthogonal to the set of code words. The 
orthogonal complement is also a subspace. The orthogonal complement 
has a dimension of n–m, and its basis has n–m vectors. Let H be a matrix 
with these basis vectors as rows. Then an n-tuple c is a code word of the 
linear code if and only if it is orthogonal to every row vector of H. That is,

	 cHT = 0,

where HT is the transpose of H.
This gives us a way for testing whether a received word is a code word. 

The (n–m) by n matrix H is called a parity check matrix of the code.
We next explain the Golay code, which is also a perfect code. Notice that

	 23 0 23 1 23 2 23 3
12 232 2C C C C+ + +( ) × = ,

where nCr denotes the number of combinations of n objects taken r at a 
time. For example, the combinations of the letters a, b, c, and d taken three 
at a time are

	 {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

Thus 4C3 = 4. The equation above is a necessary (but not sufficient) con-
dition for the existence of a perfect linear code (23, 12) that can correct up 
to triple errors over GF(2). Marcel J. E. Golay (1902–1989) found such a 
code in 1949 [4]. In the binary Golay code, there are 212 code words, and the 
number of binary sequences of length 23 within the radius 3 sphere at each 
code word as a center is equal to the sum of the numbers in the brackets of 
the equation above. These spheres do not overlap, and the union of them 
completely covers the vector space of 223 binary sequences. That is, the 
binary Golay code is a triple error correcting linear code and a perfect code 
as well. Notice that the minimum distance of the binary Golay code is 7.

As described in the previous section and this section, the study of linear 
codes began with the early papers of Hamming (1950) and Golay (1949) 
[4, 5]. Most of the algebraic setting of linear codes is from the 1956 paper [10] 
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by David S. Slepian (1923–2007). Earlier, Zen-ichi Kiyasu (1915–2006) had 
noticed the relationship between linear codes and subspaces of vector 
spaces in 1953 [6]. A. Tietavainen and J. H. van Lint proved that there exist 
no linear (nontrivial) perfect codes other than the Hamming codes and the 
Golay code, in 1974 and in 1975, respectively [11, 12].

Reed–Muller codes are also a class of linear codes over GF(2) that are 
easy to describe and can be decoded by a simple voting technique. The 
Reed–Muller codes were discovered by David E. Muller (1924–2008) in 
1954 [17], and in the same year Irving S. Reed (1923–2012) discovered the 
decoding algorithm for them [18].

The class of cyclic codes is a subclass of the class of linear codes obtained 
by imposing an additional structural requirement on the codes. An (n, m) 
linear code C is called a cyclic code if it has a property that any cyclic shift 
of a code word of C is also a code word of C. More formally, if an n-tuple

	 v = v v v vn0 1 2 1� −

is a code word of C, then the n-tuple

	 v(1) = v v vn n− −1 0 2�

obtained by shifting v cyclically one place to the right is also a code word 
of C. From this definition, it is clear that

	 v(i) = v v v v vn i n i n n i− − + − − −1 1 0 1� �

is obtained by shifting v to the right cyclically i places is also a code word 
of C.

Cyclic codes were first studied by E. Prange in 1957 [9]. Since then, 
progress in the study of cyclic codes has been improved upon by algebraic 
coding theorists. Cyclic codes are attractive for two reasons. First, encod-
ing and syndrome calculation of a cyclic code can be easily implemented. 
Second, because they have nice algebraic structures, it is possible to find 
various efficient decoding methods. The binary (23, 12) Golay code is also 
a cyclic code. The cyclic structure of Hamming codes was studied by N. 
Abramson in 1960 [1].

Of the numerous classes of random error correcting codes, the class 
discovered by A. Hocquenghem (1908–1990) in 1959, and independently 
by R. C. Bose (1901–1987) and D. K. Ray-Chaudhuri (1933–) in 1960 is a 
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large class of multiple error correcting codes, which are called the BCH 
codes. The BCH codes are also cyclic codes. Additional information on 
the BCH codes or other advanced error correcting codes can be found in 
any standard textbook on algebraic coding theory (e.g., [2, 3, 7]).

Since 1969, a number of advanced error correcting codes have also been 
developed for data transmission from deep space. Some of them are linear 
codes, and others are not. The spacecraft Voyager 1 was launched in 1977 
destined to explore Jupiter and Saturn. The extended binary Golay code 
was used as an encoder in the imaging system of the spacecraft [3]. A brief 
summary of the use of error correcting codes in the history of space explo-
ration can be found in [3]. More thorough information about deep space 
applications of error correcting codes can be found in [13].
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C h a p t e r  23

Automata and 
Formal Languages

The term automaton comes from the Greek word automatos meaning 
an “autonomous apparatus.” In particular, an apparatus that looks like 
a human being or an animal was called an automatos. A contemporary 
robot can be considered an intelligent machine that has evolved through 
a long process from the ancient automatos.

23.1 � AUTONOMOUS APPARATUS
The Greek scientist Heron Alexandria (c. 10–70) is a well-known inventor 
of various automata. He taught mathematics, physics, and mechanics at the 
Royal Museum of Alexandria. Some of his lecture notes still exist today. 
Some of Heron’s autonomous apparatuses were operated by program-
mable procedures. These included the aeolipile (a heat-powered steam 
engine), a wind-powered musical instrument, automatic stage apparatus, 
a theater sound generator, a vending machine, and many others. The heavy 
doors of an abbey were opened and closed by Heron’s steam engine. His 
vending machine dispensed holy water when coins were inserted. It is very 
surprising that such apparatuses were invented and operational almost 
2000 years ago. The autonomous apparatuses invented by Heron are pro-
totypes of the steam engines that appeared later, during the Industrial 
Revolution of the 18th century [4].

In the 12th century, during the golden age of the Islamic Empire, 
Al-Jazari (1136–1206), of northern Mesopotamia, also invented a number 
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of autonomous apparatuses. Some of these included a device to pump 
water, a mechanical clock operated hydraulically, a human-like robot 
operated by programmable procedures, a device that converted rotational 
motion to reciprocal movement, and many others. These apparatuses 
are described in detail with his own illustrations in a book written in 
Arabic (1206). Its English translation, The Book of Knowledge of Ingenious 
Mechanical Devices, was published in 1973 [5].

The inventions and techniques of Heron and Al-Jazari eventually 
made their way to Europe. They were very influential in the development 
of mechanical instruments such as the early clocks of medieval Europe. 
Sketches of various advanced automata designed by Leonardo da Vinci 
(1452–1519) around the end of the 15th century have also been found. He 
hoped to build human-like automata capable of moving their heads and 
arms. Unfortunately, the technological level of medieval Europe was not 
sufficiently advanced to build such automata.

By the turn of the 18th century, various types of instruments and 
automata were being made in Europe. These included automata capable 
of playing musical instruments and automata that could write letters. 
Some of these automata remain intact even today. For example, at the 
entrances of arcades or main squares of cities in Switzerland, we can 
see old clocks animated by automata playing musical instruments and 
parading hourly. Most such clocks were built in prosperous cities of 
18th- or 19th-century Europe. Various automata were also made at the 
same time in Japan. A doll-like automaton serving tea and a bird-like 
automaton carrying a written oracle are examples of Japanese-made 
automata from the 18th century.

23.2 � AUTOMATA AS COMPUTING MODELS
Let us revisit the Turing machines described in Chapter 16. A Turing 
machine can be considered an abstract machine (i.e., an automaton) 
whose purpose is to compute a function, solve a problem, or recognize 
a language, which is a set of strings defined over some finite alphabet of 
symbols. Information or a stimulus given to the automaton from the out-
side is called an input action or simply an input to the automaton. During 
its computation, the status of the automaton normally changes step by 
step. We can consider that an automaton is a function from a sequence 
of inputs to a sequence of output symbols. If we are unconcerned about 
its physical construction, components used in the construction, or the 
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material of the components, we can describe the automatic machine as a 
mathematical model. So Turing machines and actual machines, e.g., com-
puters, can be viewed as special cases of automata.

What is the major difference between Turing machines and mathemati-
cal models of actual machines? Any physical machine assumes a state from 
a finite set of possible states. On the other hand, at any point in time during 
its computation, the configuration of a Turing machine is a pair consisting 
of its state (instruction being executed) and all of the contents of its work 
tape. In general, the number of different configurations taken by the Turing 
machine cannot be limited by a fixed number, since the number of its moves 
is unbounded. Therefore, the computational ability of Turing machines 
exceeds the abilities of any physical or any fixed-memory automata.

Quantum mechanical considerations aside, any automatic vending 
machine, elevator control system, and even the human brain can only be 
in one of a finite number of possible states. Therefore, we may consider 
automata, as models of actual machines, as really being restricted Turing 
machines that are not allowed to perform any write operations onto 
their work tapes. An automaton having a finite number of states is called 
a finite state automaton (FSA), a finite state machine (FSM), or simply a 
finite automaton (FA). Warren S. McCulloch (1898–1969) and Walter Pitts 
(1923–1969) introduced finite automata in 1943 as neural network models. 
Around the middle of the 1950s, David Huffman (1925–1999), Edward F. 
Moor (1925–2003), and George H. Mealy (1925–) defined a finite automa-
ton in the form of a set of states, a state transition function, and an output 
function [6–8]. They demonstrated a number of fundamental properties 
of finite automata. Subsequently, many computer scientists and mathema-
ticians showed interesting results about FAs.

FAs have many practical applications, e.g., in the design of logic circuits 
and control systems. Arithmetic and control circuits in a computer can be 
considered FAs. Suppose we want to design a logic circuit for a given Boolean 
function using as few gates as possible. To achieve this logic circuit, we 
first design the minimum state finite automaton such that its input-output 
function is equivalent to the given Boolean function. Then, we construct a 
logic circuit realizing the minimum state FA. As a simple example, let us 
consider an FA that accepts the language of all binary strings containing 
an odd number of 1’s (i.e., an odd parity checker). Such a recognizer can be 
realized by a two-state FA, depicted in Figure 23.1. It should be obvious that 
we cannot design a one-state FA for this task.
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The set of all possible input sequences/strings to an FA is grouped 
in two classes: those in the language of the FA, i.e., accepted by it, and 
the rejected ones, which are not in the language. The finite set of states 
in an FA is divided into two groups: accepting states and nonaccepting 
states. For a given input sequence, if the computation by an FA ends at 
an accepting state after the last input symbol has been read in, then the 
input sequence is said to have been accepted. That is, the input string is 
determined to be a member of the language for which the given FA was 
constructed. Otherwise, the input string is said to be rejected. In this way, 
each FA defines a set of input strings or sequences. If the number of states 
is not too big, an FA can be conveniently expressed as a state transition 
diagram, e.g., as shown in Figures 23.2 and 23.3. Otherwise, the FA’s state 
transition function can be represented in a table.

FIGURE 23.1  The state transition diagram of an odd parity checker FA.

FIGURE 23.2  The state transition diagram of an FA recognizing strings not 
containing consecutive 1’s.

FIGURE 23.3  An FA recognizing binary strings of numbers divisible by 5.
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The state transition diagram in Figure 23.2 defines an FA accepting the 
set of binary sequences not containing consecutive 1’s. S0, S1, and S2 are 
the three states of the FA. Its initial state, S0, is indicated by the leftmost 
arrow, and the accepting state, S2, is indicated by double circles. When any 
symbol, say a 0 or a 1, is received or read from the input tape, the FA state 
moves from its current state to the next, as defined by its state transition 
function, which is represented by the arrows marked 0 or 1, respectively. 
For example, if an input sequence of 00110 is supplied to the automaton in 
Figure 23.2, its state transition sequence would be S0, S0, S0, S1, S2, S2. Since 
S2 is not an accepting state, this input sequence, which contains consecu-
tive 1’s, would be rejected.

The language recognized by an FA can be quite complex. Consider the 
set of binary strings representing numbers divisible by 5, for example. The 
five-state FA shown in Figure 23.3 is the smallest FA that correctly recognizes 
this language. Observe that this FA accepts the language of binary strings 
representing numbers divisible by 5, as opposed to strings whose lengths are 
divisible by 5, for which a different five-state FA can easily be constructed.

A set recognized by any FA can also be expressed or generated by a 
simple expression called a regular expression. The corresponding gener-
ated set is called a regular set. Regular expressions were introduced by 
Stephen C. Kleene (1909–1994) around the middle of the 1950s. The class 
of languages recognizable by FAs is the same as the class of regular sets. 
A regular expression over an alphabet (a finite set of symbols) can be 
constructed by using any of three types of operation symbols: union, 
concatenation, and star; any symbol of the alphabet; the symbol for 
the empty set, denoted by ϕ; and the symbol for the null length string, 
denoted by ϕ. More formally, regular expressions over an alphabet Σ are 
defined as follows [1]:

	 1.	ϕ is a regular expression and denotes the empty set, i.e., a set with no 
strings in it.

	 2.	ε is a regular expression and denotes the set {ε}, i.e., a set with a null 
length string.

	 3.	For each a in Σ, a is a regular expression denoting the singleton set {a}.

	 4.	If r and s are regular expressions denoting sets R and S, respectively, 
then r + s, rs, and r* are regular expressions that denote the sets 
R ∪ S, R • S, and R*.
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In the definition given above, R • S is the concatenation of languages R 
and S, i.e., the set of strings formed by choosing any (prefix) string from 
the set R and following it with any (suffix) string from S. The * operation 
in R*, sometimes called the Kleene star, is the set of strings formed by 
any number of concatenations of strings from R, including the null length 
string ε. For example, (0 + 1)* denotes the set of all possible binary strings, 
whereas (0 + 1)(00 + 01 + 10 + 11)*1 denotes the language/set of all even 
length strings representing odd numbers.

The computational abilities of the FAs are severely limited. There are 
many important sets that cannot be recognized by any FA. That is, most 
nontrivial problems cannot be solved by FAs. For example, we can prove 
that there does not exist an FA that can decide whether a given input has 
the same number of 0’s as 1’s, or whether a given arithmetic expression is 
syntactically correct. An arithmetic expression can be expressed by prop-
erly combining any number of arithmetic operation symbols, such as +, –, 
×, ÷, constants, variables, and parentheses. For example, (a + b) × (a – c) 
is a legitimate arithmetic expression, but (a + (b – 1) is not. Note that the 
parentheses in (a + (b – 1) are not being used properly. Therefore, FAs are 
not sufficiently powerful to recognize, for example, whether a computer 
program is syntactically correct. As a side note, Turing machines can easily 
make that determination; however, even they are not powerful enough to 
check for the semantic, or logical, correctness of computer programs.

If an auxiliary tape called a stack or pushdown is added to an FA, then 
the ability of the automaton is significantly enhanced. This class of automata 
is called pushdown automata (PDAs). A stack is a first-in-last-out data 
structure. That is, symbols/data may be entered or removed only at the 
top of the stack. When a symbol is entered at the top, the symbol pre-
viously at the top becomes second from the top. Similarly, when a sym-
bol is removed from the top, the symbol previously second from the top 
becomes the top symbol. A stack of plates on a spring in a cafeteria has a 
similar structure. When the top plate is removed, the plate immediately 
below appears above the level of the counter. If a plate is put on top, the 
pile of the plates is pushed down. From this analogy, a stack automaton is 
also called a pushdown. We can construct a PDA that can decide whether 
a given arithmetic expression is in a correct syntactical form. PDAs were 
first introduced as a formal model by Anthony Oettinger (1929–) in 
1961. Since then, PDAs have been studied by Marcel Paul Schützenberger 
(1920–1996), Sheila Greibach (1939–), Seymour Ginsburg (1928–2004), 
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and many others. PDAs have many useful applications and have been used 
in many areas of computer science, including programming languages, 
compiler design, and query/natural language processing [1].

The computational ability of PDAs is superior to that of FAs, but inferior 
to Turing machines. Interestingly, Marvin Minsky (1927–) showed that 
PDAs with two stacks are just as powerful as Turing machines. This raises 
an interesting question: can we build automata that are more powerful 
than (one-stack) PDAs, but less powerful than Turing machines? The 
answer is yes. John R. Myhill (1923–1987) introduced yet another class 
of machines, called linear bounded automata (LBAs), which are Turing 
machines with a restriction on the size of their work tapes. LBAs can only 
use as much tape (memory) as the length of the input given to them. It can 
be shown that the computational power of LBAs is superior to that of the 
PDAs, but still inferior to the Turing machines.

There are numerous classes of automata whose computational power is 
between that of FA and Turing machines. Of these, PDAs and LBAs have 
been studied most extensively, not only because they were introduced 
first, but also because of many important theoretical as well as practi-
cal implications for the field of computer science in general. An interest-
ing question regarding the computational power of these automata arises 
when one introduces nondeterminism, i.e., the ability of automata to guess 
or choose a correct computational path (when given such a choice), into 
their computations.

It turns out that nondeterminism does not make FAs or Turing 
machines any more powerful. However, the class of languages recognized 
by deterministic PDAs is a proper subset of the class accepted by nonde-
terministic PDAs. The language of palindromes, i.e., strings that read the 
same forward and backward, is the simplest example of the way in which 
nondeterminism enhances the computational power of PDAs. Although 
extensively studied, the question of whether nondeterminism adds com-
putational power to LBAs is still open. Chapter 26 has an interesting dis-
cussion on whether or how nondeterminism could speed up computations 
for many practical problems in the areas of mathematical optimization, 
biology, chemistry, and economics, just to name a few.

23.3 � FORMAL LANGUAGES
Avram Noam Chomsky (1928–) is an American linguist, philosopher, and 
cognitive scientist. Around the middle of the 1950s, Chomsky introduced 
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the concept of a generative grammar, which is a set of production rules 
for constructing sentences in a given language. In other words, a genera-
tive grammar defines a language as a set of sentences or strings, which 
can be generated from an initial symbol by using the production rules of 
the grammar. The production rules in these grammars are in the form 
of α → β, where α and β are finite length sequences/strings, each defined 
over two finite sets of terminal and nonterminal symbols. The production 
rule α → β of a grammar indicates that a substring α in a sequence can be 
replaced by β. The production rules of the grammar in Example 23.1 gen-
erate the language of well-formed sequences of parentheses. When con-
structing grammars, one needs to make sure the grammar satisfies two 
conditions: it generates every string in the language, and it does not gen-
erate any strings that are not part of the language under consideration.

Example 23.1

Let S → (), S → (S), S → SS be the three production rules in our 
grammar, which generates well-formed sequences of parentheses. 
We may also use an equivalent composite rule S → () | (S) | SS to 
describe this grammar. The set of nonterminal symbols is {S}, 
while the set of terminals is {(,)}. S is also the starting symbol of the 
grammar. Now, examine the string of terminals: (()) () (()). We can 
generate this string from S via the following sequence of production 
rule applications:

	 S → SS → SSS → (S)SS → (())SS → (()) ()S → (()) () (S) → (()) () (()).

In the derivation above, as applied to the leftmost nonterminal, the 
third production rule S → SS, the third production rule, the second 
production rule S → (S), the first production rule S → (), the second 
production rule, and the first production rule are used to obtain the 
final string from the initial symbol S.

Consider two additional languages and grammars that generate them, 
as shown in Example 23.2. Language L1 consists of the strings that have 
the form anbn, n > 0, and L2 (a pseudocomplement language to L1) has the 
strings apbq, p, q > 0, p ≠ q.
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Example 23.2

The production rules for L1 are S → ab | aSb. For L2 the production 
rules are S → A |B, A → aab | aAb | aA, B → abb | aBb |Bb.

Based on the complexity of the production rules, Chomsky categorized 
generative grammars into four types, now called grammars of Chomsky 
types 0, 1, 2, and 3. This classification is called the Chomsky hierarchy, and 
the name also applies to the language classes, which are generated by their 
respective grammar types [2, 3].

•	 Type 0 grammars have no restrictions on their production rules. 
They have the form of α → β, although α must contain at least one 
nonterminal symbol. Type 0 grammars are also called unrestricted 
or phrase structure grammars, and the languages generated by type 0 
grammars are called phrase structure languages, or recursively 
enumerable sets. This language class is equivalent to the class of lan-
guages that can be computed/accepted by Turing machines. A sur-
prising fact is that these languages are not closed under the operation 
of complementation; i.e., some languages may be generated by type 
0 grammars, but their respective complementary languages may not 
have generative grammars.

•	 Type 1 grammars are phrase structure grammars with an additional 
restriction on the production α → β that the length of β is at least as 
long as that of α; i.e., the production rules are length preserving or 
length increasing. Type 1 grammars are usually called context-sensitive 
grammars (CSGs). The languages generated by these grammars are 
called context-sensitive languages (CSLs). The class of CSLs is closed 
under complementation.

•	 Type 2 grammars are CSGs with an additional requirement that α 
should be a single nonterminal symbol. Type 2 grammars are often 
called context-free grammars (CFGs). The corresponding languages 
are called context-free languages (CFLs). The class of CFLs is not 
closed under complementation.

•	 Type 3 grammars are CFGs with an additional restriction that all 
production rules are of the form A → wB or A → w, where A and B are 
nonterminal symbols and w is terminal. Type 3 grammars are also 
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called right-linear or regular grammars. The class of languages gen-
erated by type 3 grammars is equivalent to the class of regular sets. 
This class is closed under complementation.

Formal languages are defined by their generative grammars. Although 
Chomsky’s linguistic theory started in the area of natural languages, gener-
ative grammars have been much more successful in the area of formal lan-
guages and high-level programming languages. Chomsky himself noticed 
that his generative grammars can be applied to programming languages.

Since the end of the 1950s, the relationships between generative gram-
mars and automata have been studied extensively, and many important 
theoretical as well as practical results were obtained. Specifically, Chomsky 
and Miller showed the equivalence of regular grammars and regular sets 
in 1958. Chomsky showed the equivalence of phrase structure languages 
and recursively enumerable sets in 1959. Y. Bar-Hillel, M.  Perles, and 
E.  Shamir showed a number of interesting properties of context-free 
languages in 1961 [9]. S. Y. Kuroda showed the equivalence of linear 
bounded automata and context-sensitive grammars in 1964 [10].

Regular grammars play an important role in the specification of pro-
gramming languages. Context-free grammars are important in the design 
of parsers for high-level programming languages, addressed in Chapter 25. 
Context-sensitive grammars have numerous applications in chemistry, 
medicine, and biological sciences.
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C h a p t e r  24

Artificial Intelligence

Modern artificial intelligence (AI), as it is known today, emerged with the 
introduction of electronic computers (see Chapter 18) in the late 1940s 
[1, 2, 14, 15]. These machines were able to store and process informa-
tion at very high speeds. This enabled researchers to build models and 
design solutions for complex problems in many problem domains, includ-
ing those simulating human intelligence and “smart” behavior. Since the 
early years, progress in AI has been significant. This is true particularly in 
computer hardware, where the size and price of computers have shrunk 
while the speed and reliability have increased. On the other hand, the soft-
ware AI advancements have been somewhat slower, but still many novel 
complex software tools and algorithms have been developed. However, 
AI progress there has not been as fast as initially expected. For example, it 
was predicted that computer chess programs would defeat human experts 
by the end of the 1960s. Only by 1997 did a computer program (Deep Blue) 
defeat Gary Kasparov, the human world chess champion [15]. Moreover, 
some AI experts consider that this victory was achieved only because of 
progress in hardware development, which made possible what was essen-
tially a brute-force search, as opposed to a true algorithmic AI solution.

Starting in the middle of the 1980s expert systems started to easily out-
perform their human counterparts in fields such as medicine, the opera-
tion of complex distribution (e.g., water [3]) and control (e.g., system 
control [4]), and many other problem domains. While today’s machines, 
automobiles, appliances, and almost all electronic devices seem to possess 
some form of an electronic “brain,” these simple (control) devices should 
not be classified as part of AI per se. Human activities such as business or 
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financial decision making, solving engineering problems, flying a plane, 
etc., require various levels of intelligence to be carried out. Computer 
systems that are smart, e.g., an autopilot, usually equal or exceed human 
abilities in their specific areas of expertise. Any software or hardware 
system that can successfully perform such nontrivial tasks is said to pos-
sess some degree of artificial intelligence. While some experts believe that 
artificial intelligence of computers will eventually surpass the natural 
intelligence of humans, it is the opinion of most that that will not happen 
in the foreseeable future.

The one thing the majority of experts do agree on is that performing 
human tasks will require an extremely complex set of AI processes, which 
must then be designed into algorithms that will eventually be implemented 
as AI software. In this chapter, we discuss the history of artificial intelli-
gence, including its most important milestones, as well as the scientists 
whose pioneering work has made AI what it is today.

24.1 � WHAT IS AI?
There are many definitions and explanations of what artificial intelligence 
is (or is not). Below, we list some of them together with the name of the 
person who originated it and the year it was originally introduced:

	 1.	“The science and engineering of making intelligent machines” 
(John McCarthy (1927 –), 1956, e.g., see [11]).

	 2.	“Machine intelligence is an enterprise which may eventually offer 
yet one more mirror for man, in the form of a mathematical model 
of knowledge and reasoning” (Donald Michie (1923–2007), 1973, 
e.g., see [12]).

	 3.	“The automation of activities that we associate with human think-
ing—activities such as decision-making, problem solving, and 
learning, i.e.,  the characteristics we associate with intelligence in 
human behavior and that require common sense and intelligence 
when performed by people” (a compilation of Bellman, Feigenbaum, 
and Kurzweil).

A very common definition of artificial intelligence is that it is the cre-
ation of virtual machines “who can think.” While AI is clearly a field of 
computer science, more often than not, it addresses problem domains 
that are outside of CS; i.e., it deals with the creation and development of 
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intelligent machines/systems, methodologies for performing tasks that 
require human intelligence in general, and in particular, the computer-
ized automation of intelligent behavior.

24.2 � AI TIMELINE
As described in several of the previous chapters, one could say that the 
historical roots of AI extend for thousands of years. Various artifacts and 
then mechanical or computational devices with some level of intelligence 
had been invented as early as 3000 BC, although one does not seriously 
consider pebbles or the counting stick as intelligent. It was only after 
modern electronic computers were developed (see Chapter 18) that AI 
“took off” and became what it is today. While all programs perform tasks 
for which they were designed, today one would not say that adding two 
numbers is an intelligent task.

Below is a timeline (by no means exhaustive) of some of the more 
important milestones, not necessarily computer based, in the history of 
AI. This list was compiled from several sources, including [1, 2, 8, 14, 15]. 
Also note that almost all of the entries enumerated below are discussed in 
detail in various chapters throughout this book:

	 1.	The first “surgical expert system” was introduced around 3000 BC. 
This system (written on papyrus) was based on 48 head wound sur-
gical observations, which were compiled using specific symptom-
diagnosis and treatment-prognosis combinations using a simple 
“If …, then …” expert system approach.

	 2.	In the 13th century, the Zairja was invented by Ramon Llull (c. 1232–
c. 1315). It was a device that was to systematically generate ideas by 
mechanical means.

	 3.	An eight-digit calculator, called the Pascaline, was invented by Pascal 
in 1642.

	 4.	Gottfried Leibniz constructed his calculator in 1694. His algorithm 
is still in use today.

	 5.	In 1726, Jonathan Swift (1667–1745), in his famous book Gulliver’s 
Travels, predicted the invention of an automatic book writer.

	 6.	The first truly programmable device was invented by Joseph Jacquard 
(1752–1834) in 1805. His device was a programmable loom with 
instructions/patterns provided on punched cards.
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	 7.	The analytical engine was designed by Charles Babbage (1791–1871) 
in 1832. This engine was the first mechanical programmable com-
puter. Although the original never truly worked, a model built in 
1991 (using Babbage’s plans) did.

	 8.	A chess automaton, which played chess end games without human 
intervention, was constructed by Leonardo Torres (1852–1936) in 1910.

	 9.	The term robot was invented by the Capek brothers (Josef Capek, 
1887–1945; Karel Capek, 1890–1938) in the 1920s, with Josef actually 
coining this word. It is derived from the Czech-Polish word robota, 
meaning “work.” In Karel’s 1923 play Rossum’s Universal Robots, the 
term robot was used to describe intelligent machines that revolted 
against their human masters.

	 10.	In 1928, John von Neumann came up with the minimax theorem, 
which is still being used by a majority of game-playing programs 
(e.g., in chess).

	 11.	The Turing machine, which can carry out the operation of any other 
computing machine or a well-defined procedure, was introduced by 
Alan Turing in 1937.

	 12.	In 1938, Claude Shannon (1916–2001) showed that calculations 
could be performed much faster using electromagnetic relays than 
with mechanical calculators. The electromagnetic relays were used 
in the world’s first operational computer, Heath Robinson, in 1940, 
built by the English to decode the German Enigma messages.

	 13.	In the mid-1940s, the electromechanical relays in calculators were 
replaced by vacuum tubes. This technology was applied on the 
Colossus [5] computer that was also used to decipher the most 
complex of German codes during World War II.

	 14.	In 1945, John von Neumann introduced a basic computer architec-
ture design that is still in use today.

	 15.	The first general purpose, fully electronic, programmable com-
puter, Electronic Numerical Integrator and Calculator [6] (ENIAC), 
was built in 1945. ENIAC was 1000 times faster than the electro
mechanical computers.

	 16.	Circa 1946, intelligence was determined to be the process of processing 
information to achieve goals.
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	 17.	Learning artificial neural networks were proposed by Donald O. 
Hebb (1904–1985) in 1949.

	 18.	The three laws of robotics were proposed by Isaac Asimov (1920–1992) 
in 1950.

	 19.	The now-famous Turing test [13] was proposed by Alan Turing in 
1950. Its purpose was to recognize machine intelligence. Turing 
argued that the machine should be considered intelligent if it could 
successfully pretend to be human to a knowledgeable observer and 
not be recognized as pretending to be such. Any machine passing the 
Turing test should be considered intelligent.

	 20.	The first artificial neural network was built by Marvin Minsky 
(1927–) [10] and Dean Edmonds in 1951. It simulated a rat trying to 
find its way through a maze.

	 21.	In 1955, Allen Newell (1927–1992), Herbert Simon (1916–2001), 
and J.  C. Shaw wrote an AI program, called the Logic Theorist. 
It could be used to prove theorems using a combination of search-
ing, goal-oriented behavior, and application of logical rules. The pro-
gram was written in a new computer language called Information 
Processing Language.

	 22.	 In 1955, the term artificial intelligence was coined by John McCarthy 
(1927–) in his proposal for a conference at Dartmouth [11]. In the sum-
mer of 1956, a 2-month conference/study at Dartmouth was attended 
by many scientists, who today are considered to be the pioneers of 
artificial intelligence. The participants included John McCarthy, 
Marvin Minsky, Nathaniel Rochester (1919–2001), Claude Shannon, 
Herbert Simon, and Allen Newell. The Dartmouth conference was to 
proceed “on the basis of the conjecture that every aspect of learning 
or any other feature of intelligence can in principle be so precisely 
described that a machine can be made to simulate it”  [2, 11]. The 
two most significant outcomes of the Dartmouth conference were a 
new paradigm of symbolic information processing, which was intro-
duced by Allen Newell and Herbert Simon in their Logic Theorist 
computer program, and the introduction of the term symbolic AI, 
as opposed to brain modeling, which until that time had been used 
by the majority of AI researchers.
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	 23.	In 1957, Newell, Shaw, and Simon came up with their General 
Problem Solver, the first computer program that kept its knowledge 
of problems (rules represented as input data) apart from its strategy 
of how to solve them.

	 24.	The Geometry Theorem was written by Herbert Gelernter in 1957. This 
computer program used a three-step proof of the geometry theorem to 
prune a search with a billion alternatives down to only 25 alternatives.

	 25.	Also in 1957, Arthur Samuel (1901–1990) wrote a checkers pro-
gram, which later learned how to beat Samuel—the one who wrote 
the program.

	 26.	The Artificial Intelligence Laboratory at the Massachusetts Institute of 
Technology was founded by John McCarthy and Marvin Minsky [10] 
in 1958. Also, McCarthy developed the LISP programming language 
for AI applications.

	 27.	 In 1961, an anti-AI book was written by Mortimer Taube (1910–1965) 
entitled Computers and Common Sense: The Myth of Thinking Machines.

	 28.	The first industrial robots were marketed by a U.S. company in 1962.

	 29.	From 1965 to 1975, the first expert system, DENDRAL, was built 
at Stanford by Edward Feigenbaum (1936–) and Robert Lindsay, 
mapping the structure of complex organic chemicals.

	 30.	The Blocks Microworld Project was created by Marvin Minsky and 
Seymour Papert (1928–) at the MIT AI Laboratory in the late 1960s. 
The goal was to integrate and improve computer vision, robotics, 
and natural language processing. This allowed computers to view 
and intelligently manipulate a simple “world of blocks” of various 
colors, shapes, and sizes under different physical configurations.

	 31.	 In 1969, a mobile robot called Shakey was built at Stanford. It was able to 
navigate a block world in eight rooms, after being given oral instructions.

	 32.	In the early 1970s, Abe Mamdani and Seto Assilian used fuzzy logic 
[7] to control the operation of a small steam engine at the Queen 
Mary College in London. This was the first practical demonstration 
of the use of fuzzy logic for process control.

	 33.	In 1972, the computer language PROLOG (Programmation en 
Logique) was developed by Alain Colmerauer and Philippe Roussel. 



Artificial Intelligence    ◾    223  

It became Europe’s AI applications language of choice, while within 
the United States, LISP [9] was preferred.

	 34.	In 1972, Stanford’s Edward Shortliffe (1947–) wrote the MYCIN 
expert system, the world’s first nontrivial medical software tool that 
diagnosed infections and blood diseases and recommended anti
biotics, with dosages adjusted for patients’ body weight.

	 35.	Freddy (1969–1972) and Freddy II (1973–1976) are robots built by 
Donald Michie’s group at the University of Edinburgh. They used 
computer vision to locate and assemble objects.

	 36.	 John McDermott built the first commercial expert system at CMU 
in the late 1970s. The system, XCON, was developed for Digital 
Equipment Company, which started using it in 1980 to automatically 
configure VAX computer systems.

	 37.	Herbert Simon’s theory of bounded rationality and satisfying 
behavior, considered to be one of the cornerstones of AI, was the 
major contributing factor in him winning the Nobel Prize in 
Economics in 1978.

	 38.	In 1979, Hans Moravec (1948–) designed and built the Stanford Cart, 
the first car fully controlled by a computer.

	 39.	In the 1980s, using fuzzy logic [7], Hitachi built a predictive control 
system for the automated subway trains in Sendai, Japan.

	 40.	In 1984, GE built the Diesel Electric Locomotive Troubleshooting 
Aid, an expert system to diagnose breakdowns and give specific 
repair instructions.

	 41.	In 1985, speech recognition systems started to work, providing 
continuous, speaker-independent speech recognition.

	 42.	Polly, the first robot using computer vision and behaving as an 
animal, was built by Ian Horswill in 1993.

	 43.	In 1994, Ernst Dickmanns (1936–) and Daimler-Benz ran their twin 
robot cars, VAMP and VITA2, for more than 1000 kilometers on a 
Paris highway.

	 44.	More than 40 teams of robotic soccer players competed in the first 
RoboCup competition in 1997.
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	 45.	In 1999, the Sony Corporation introduced its robotic pet dog, 
AIBO (Artificial Intelligence Robot). It understood over 100 voice 
commands, used computer vision to see its environment, and had 
adaptive learning capabilities.

	 46.	In 2002, a vacuum cleaning robot called Roomba was built. Two 
million were sold by 2006.

	 47.	The first DARPA Grand Challenge was sponsored by the Defense 
Advanced Research Projects Agency (DARPA) in 2004. The chal-
lenge was a competition for autonomous (driverless) vehicles, and 
it took place on a desert course; however, no vehicles completed the 
course. The second DARPA Grand Challenge took place in 2005. 
Out of 23 vehicles, 5 completed the course. Stanley, an entry from 
Stanford, was the winner.

	 48.	An artificial intelligence humanoid robot, ASIMO, was introduced 
by Honda in 2005. It walked as fast as humans and delivered trays 
in a restaurant.

	 49.	In July 14, 2006, the Dartmouth Artificial Intelligence Conference: 
The Next 50 Years took place.

	 50.	Watson, built in 2011 by IBM’s David Ferrucci et al., won $1 million 
by beating human knowledge experts in the Jeopardy TV show. 
Winning the game required a deep understanding of natural language 
semantics and universal knowledge of facts.

24.3 � AI PIONEERS
Many scientists have made significant contributions to the field of modern 
artificial intelligence. The pioneering work of the individuals discussed 
below has had a deep-seated impact not only on AI, but also, in most cases, 
on other areas of computer science, mathematics, and related sciences.

Alan Turing (1912–1954) was an English mathematician, logician, 
cryptanalyst, and computer scientist. One might argue that besides 
being the Father of Computer Science, Turing’s contributions to arti-
ficial intelligence were, by themselves, fundamental. In 1936 Turing 
published his paper on computable numbers, in which the Turing 
machine was introduced. One of the most remarkable features of 
Turing’s work, especially on his machine, was that he described 
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modern computers even before they existed. Turing presented his 
universal machine (the universal Turing machine) as the one “which 
can be made to do the work of any special-purpose machine, that 
is to say to carry out any piece of computing, if a tape bearing suit-
able ‘instructions’ is inserted into it” [13]. Hence, Turing’s universal 
machine was a computer and the instruction tape was a program 
that was run by that computer. In 1950, Turing published his paper 
“Computing Machinery and Intelligence in Mind” (see also Chapter 
16), where he studied the problems that today are at the heart of arti-
ficial intelligence. In this paper, Turing introduced the Turing test, 
through which the intelligence of a computer can be determined.

Claude Shannon (1916–2001) is considered to be the Father of Informa-
tion Theory. Shannon received his master’s and doctorate from MIT 
in 1940, where he studied electrical engineering and mathematics. 
For his master’s degree, which was in electrical engineering, Shan-
non applied George Boole’s logical algebra to the problem of electri-
cal switching. For his doctorate, Shannon applied mathematics to 
genetics. Besides his pioneering work on the theory of communi-
cation, Shannon wrote a paper “A Symbolic Analysis of Relay and 
Switching Circuits,” where he pointed out the similarity between 
the truth values of symbolic logic and the binary values 1 and 0 of 
electronic circuits. He showed how switching circuits can be used 
to build a logic machine corresponding to the propositions of Bool-
ean algebra. After Shannon joined Bell Telephone Laboratories as 
a research mathematician, he worked on the problem of most effi-
ciently transmitting information. There, Shannon also showed the 
similarity between Boolean algebra and telephone switching cir-
cuits. During World War II, Shannon worked with Alan Turing, who 
had spent several months with Shannon while visiting the United 
States. They were interested in the possibility of building a machine 
that could imitate the human brain. They also worked together to 
build an encrypted voice phone that would allow President Roos-
evelt to have a secure transatlantic conversation with Prime Minister 
Churchill. Information theory was first introduced by Claude Shan-
non in his paper “A Mathematical Theory of Communication” in 
1948. It progressed from a single theoretical paper to become a broad 
field. Shannon explained the way of quantifying information with 
absolute precision. He showed the essential unity of all information 
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media. Shannon showed that every mode of communication, such as 
telephone signals, text, television and radio waves, and most other 
data, can be encoded in bits, a term he coined (see also Chapters 15 
and 21). In 1950, Shannon wrote a groundbreaking paper on com-
puter chess entitled “Programming a Computer for Playing Chess,” 
in which he showed how a computer could play the game intelli-
gently. His approach for having the computer program decide on 
the best move in a given chess game position incorporated John von 
Neumann’s minimax procedure.

Nathaniel Rochester (1919–2001) received his B.S. degree in electri-
cal engineering from MIT in 1941. After his graduation, Rochester 
continued at MIT working in the Radiation Laboratory. In 1948, he 
moved to IBM and designed the first general purpose mass-produced 
computer, IBM 701, for which he wrote the first symbolic assembler. 
In 1948, a group led by Rochester simulated the behavior of abstract 
neural networks on a computer. Rochester worked with Claude 
Shannon et al. to convince the Rockefeller Foundation to sponsor 
the Dartmouth conference in 1956, widely considered the “birth of 
artificial intelligence.” He was a supervisor for many artificial intelli
gence projects at MIT, including Arthur Samuel’s checker program, 
Herbert Gelernter’s Geometry Theorem, and Alex Bernstein’s chess 
program. In 1958, he worked with John McCarthy in the develop-
ment of the LISP programming language, which was one of the first 
high-level languages designed specifically for AI.

John McCarthy (1927–2011) received his Ph.D. in mathematics from 
Princeton University. In 1948, McCarthy heard John von Neumann 
talking about self-replicating automata, which are machines that 
can create copies of themselves. McCarthy’s research interests then 
turned to studying the relationship between human intelligence 
and machine intelligence. After the 1956 Dartmouth conference, 
McCarthy started working on computers that can play games and 
do other human-like tasks. McCarthy was the principal developer 
of the programming language LISP for AI applications. LISP is still 
in wide use today, especially in the United States. In 1990, McCarthy 
published his book Formalizing Common Sense, which contains a 
very nice compilation of his AI research results (see also Chapter 25).
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Marvin Minsky was born in 1927. In 1950, Minsky received his B.A. 
from Harvard University, and in 1954 a doctorate in mathematics 
from Princeton University. In 1951, Minsky built the first neural net-
work simulator and the first randomly wired neural network learn-
ing machine. His work laid down the foundations for the analysis of 
neural networks. Minsky built mechanical arms, hands, and other 
robotic devices. Minsky also did pioneering work on knowledge 
representation, theory of frames, and other well-known AI models. 
In  the early 1970s, while at MIT, Minsky and Seymour Papert 
developed a theory, called the society of mind, which attempted 
to explain how a product of the interaction of nonintelligent parts 
could, itself, become intelligent. In the 1980s, Minsky showed how 
neural networks could be generated automatically, or self-replicate, 
in accordance with any arbitrary learning program, hence allowing 
artificial brains to be grown by a process similar to the development 
of a human brain.

24.4 � AREAS OF AI
The field of artificial intelligence is not clearly partitioned into specific sub-
areas or branches. For most applications, it is not unusual that several of 
them overlap at various levels. The following are some of the better-known 
and established areas of AI:

Game playing. There are programs that can easily defeat 99.9% of the 
best human chess players, including those at the grandmaster level or 
even the world chess champions (as happened in 1997). Usually, such 
programs take full advantage of the brute-force-type approaches 
that allow them to consider millions of moves per second and choose 
the best (optimal) one. While for almost any game there are com-
puter programs that will beat the best of human players, the ancient 
Chinese game of Go still has human experts winning consistently 
(for now).

Speech recognition. Speech recognition techniques are used for spe-
cific purposes, such as flight numbers and city names in airline 
reservation systems. Many users, however, believe that human inter-
action or using computers with keyboard and mouse is still more 
convenient and reliable than using speech recognition computers.



228    ◾    Computing﻿

Natural language processing. AI researchers believe that providing 
computers with sequence of words or syntactically parsing sentences 
is not sufficient. They believe that computers must be able to under-
stand the domain, or the semantic context, that the text belongs to. 
For this reason, this ability is possible only for very limited domains. 
For similar reasons, data mining, in which semantic information 
is extracted from huge amounts of (medical, biological, geographi-
cal, etc.) data, still does not have a universal (domain-independent) 
approach for extracting information.

Computer vision. To make a computer vision program work perfectly, 
the information should be provided in three dimensions. However, 
most vision programs work on two-dimensional views. There are 
some programs that can analyze three-dimensional information, 
but they are not as good as the human eyes.

Expert systems. In expert systems, the knowledge that experts have is 
used to design programs that can do the tasks that these experts do. 
MYCIN was one of the first expert systems. It was designed in 1974 
to diagnose bacterial infections of the blood and suggest treatments. 
MYCIN outperformed medical students and practicing doctors.

Logical AI. Here the programs are aware of the facts of any specific 
situation and they act in order to meet a specified goal. Such goals are 
usually represented by sentences of mathematical logical language 
(e.g., in PROLOG). The programs decide what to do by inferring 
which actions are appropriate for achieving the specified goals.

Fuzzy logic. Invented by Lotif Zadeh (1921–), it is a multivalued logic 
derived from fuzzy set theory. It deals with approximate, as opposed 
to precise, reasoning. The variables of fuzzy logic may have truth 
values between 0 and 1 (i.e., they are not Boolean). Specific functions 
are used to manage these variables. It has been applied to many areas 
of AI and others (e.g., control theory).

Search. Since AI programs examine a large number of possibilities, such 
as moves in a chess game, the goal of the search is to find a specific state 
efficiently among various domains. Some types of search techniques 
used in AI include heuristic search, hill climbing search, best first search, 
and depth first search. Various search space reduction techniques, such 
as alpha-beta pruning, are often employed to further reduce the tree of 
possibilities for certain (e.g., in minimax) applications.
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Pattern recognition. Here, programs compare what they see with some 
predefined pattern. For example, a program can try to match eyes, 
mouth, and nose in order to recognize a face. Also, programs that deal 
with natural language text or chess position use more complex patterns.

Representation. In this branch of AI, languages of mathematical logic 
are used to represent facts about the world in some way.

Inference. Inference AI works as follows: a conclusion is to be inferred 
by default, but the conclusion can be withdrawn if there is evidence 
to the contrary.

Commonsense knowledge and reasoning. This area of AI has been 
an active research area since the 1950s. It is the farthest area from 
the human level in the field of AI, and more ideas are still needed to 
develop it.
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C h a p t e r  25

Programming Languages

This chapter touches on a number of influential programming languages 
and also discusses the characteristics of several categories of program-
ming paradigms. These paradigms include imperative, declarative, func-
tional, logical, and object-oriented programming.

While certain languages are commonly known by a particular pro-
gramming paradigm—Fortran is known as an imperative language, LISP 
as a functional language—it is often the case that languages are hybrids to 
a certain degree, combining aspects of several paradigms into their speci-
fications. As intricate detail is not the goal of this chapter, subtleties such 
as these are not always addressed.

25.1 � MACHINE CODE
The first programming languages implemented in the 1940s and early 
1950s were slow, difficult to use, unfriendly, and error-prone, much like 
the first computers on which they ran. At the time these languages were 
developed and used, they were known as pseudocodes, though the defini-
tion of the word has evolved significantly since that time [1]. Pseudocodes 
were not high-level languages, nor even assembly languages; they were 
bare-bones machine languages. Programs were exceedingly difficult 
to write, difficult to read, difficult to maintain, and incredibly fragile. 
Numeric codes represented instructions, absolute addressing meant that 
inserting a single line could invalidate every address call that followed, 
and computer architectures were not capable of floating-point arithmetic 
or indexing for arrays [1].
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These and other shortcomings inherent in machine language and in 
simple computer architectures motivated the development of a more 
advanced and abstracted programming tool: the assemblers and assembly 
languages that evolved during the early 1950s [1]. Although assembly code 
was a notable improvement from machine code, assembly languages did 
not have much impact on the development of higher-level languages.

25.2 � INTERPRETATIVE CRUTCHES
In the 1950s, several interpretive systems were developed that extended 
machine code to allow for floating-point operations. John Backus 
(1924–2007) developed one such system called the Speedcoding system for 
the IBM 701. The interpreter was able to use the architecture to represent 
a virtual three-address floating-point calculator. Instructions were devel-
oped to execute addition, subtraction, multiplication, division, square 
root, sine, arc tangent, exponent, and logarithm functions. Speedcoding 
also allowed for conditional and unconditional branches and I/O conver-
sions as part of its virtual architecture. Speedcoding even automatically 
incremented the address registers when a new line of code was added 
(though not until 1962). Problems that took days or even weeks to program 
in machine code could be programmed in a few hours using Speedcoding. 
However, the remaining usable memory after loading the interpreter was 
generally very small, and instructions took a significant amount of time 
to execute because simulating floating-point operations in software was a 
very time-consuming process [1].

25.3 � THE FIRST HIGH-LEVEL LANGUAGE: FORTRAN
Today’s high-level languages are abstract, flexible, and portable; they are 
able to be written, compiled, and run on virtually any modern computer. 
In the early days of computing, the situation was quite different; program-
ming features were dependent on the architecture of the particular model 
of machine targeted. So was the state of technology during the ground-
breaking development of the first high-level language.

The IBM 704 was the first mass-produced computer with floating-point 
arithmetic hardware. Including in hardware what until then could only be 
emulated by interpretive systems, it provided the foundation needed for 
the next big step in computing. The 704 was released by IBM in 1954, and 
marked the beginning of the end for the slow, memory-intensive inter
pretive systems. Making good use of the advanced new hardware, the first 
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widely accepted high-level programming language was developed. It was 
named the IBM Mathematical Formula Translating System, or Fortran.

Although a game-changing advancement, Fortran, like its more basic 
predecessors, was still largely a product of its environment. Even with the 
fancy new 704, computers were very slow and suffered from unreliability 
and cripplingly small memories. Compiled code speed was the primary 
goal of the first Fortran compilers. Since computers were used primarily 
for scientific computing, there were no existing effective or efficient ways 
to program computers, and hardware was very expensive.

Fortran 0 was the initial version of Fortran and was fully described 
before the implementation of the language began. Subsequent versions 
of Fortran were I (1957), II (1958), III (1958), IV (1960), 77, 90, 2003, and 
2008 [1].

Because Fortran was the first high-level language, it had a dramatic 
effect on shaping the way computers were used and the way other high-level 
languages were developed. Fortran’s original designers never intended it to 
run on anything but an IBM machine, nor to target any field other than 
numerical computation. While early versions were certainly lacking in 
many ways, this is to be expected during the evolution of the first high-level 
language. Overall, the language and its influence on programming were a 
monumental success; Fortran pioneered a concept that influenced all else 
that followed.

Just as new Fords have rolled off the production line since the first 
Model T’s in 1910, Fortran has evolved a great deal since its conception. 
It continues to be used today as a general purpose, procedural, imperative 
programming language. As was the intent of its designers, it is still well 
suited for numeric and scientific computation.

25.4 � OVERVIEW: IMPERATIVE PROGRAMMING
Imperative programming is a programming paradigm in which explicit 
statements or commands are used to change the state of a program. 
Imperative programs define sequences of statements or commands to be 
performed by a machine in order to get into a particular state. Imperative 
programming is the polar opposite of declarative programming.

Procedural programming is a flavor of imperative programming in 
which the program is built from procedures or functions. In procedural 
programming, state changes are localized to procedures or restrained by 
the parameters passed in to and return values passed out of procedures. 
It  is known that this technique is useful for structured programming. 
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While structured programming is possible to an extent in any program-
ming language, it fits best with procedural programming languages.

ALGOL, Pascal, PL/I, and Ada are examples of some early imperative, 
procedural languages where structured programming was commonly 
used. In addition to Fortran, C is also an imperative, procedural language.

25.5 � OVERVIEW: DECLARATIVE PROGRAMMING
Declarative programming is a programming paradigm in which the pro-
gram describes its desired results without explicitly specifying a list of 
commands to execute in order to achieve those results. Functional and 
logical programming languages are generally declarative in style.

25.6 � THE SECOND HIGH-LEVEL LANGUAGE: LISP
Around the time that Fortran II was released, a second high-level 
language was designed and implemented: LISP. It was invented by John 
McCarthy in 1958 while he was at MIT [3]. LISP (from List Processing) 
was the first functional programming language and was developed to pro-
vide language features for list processing, which was needed by the first 
artificial intelligence (AI) applications of that time (See Chapter 24).

At a time when most computations were done on numeric data in arrays 
by Fortran, developers needed a method to allow computers to process 
symbolic data in linked lists. Unlike scientific computations and number 
crunching, AI was a field where it was often not straightforward to specify 
the problem to be solved or the method of solving it, and success in this 
area required a much different approach.

LISP was not the first attempt at a list processing language. A language 
named Information Processing Language I (IPL-I) was described as a 
theoretical list processing language, and was implemented by version II. 
IPL lived on until its fifth version, but was never widely used due to its 
low-level syntax; it was an assembly language implemented with an inter-
preter that could handle list processing instructions. Furthermore, IPL 
was implemented on and for a RAND Johnniac computer, which was a 
long-lived but obscure machine [1].

In the mid-1950s IBM decided to implement a list processing language 
based on Fortran, so as to reuse the existing (expensive!) Fortran I compiler. 
The language was called the Fortran List Processing Language (FLPL) and 
was an extension to Fortran. It was used to prove plane geometry theorems, 
a relatively easy area for mechanical theorem proving [1]. However, FLPL’s 
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shortcomings—no support for recursion, dynamic storage allocation, or 
conditional expressions—led to the development of the more capable LISP.

LISP addressed these shortcomings of Fortran and pioneered several 
other new advancements, which include automatic storage management 
through implicit deallocation, dynamic typing, and the ability of a LISP 
compiler to compile its own source code.

The initially developed language is now known as pure LISP, because it 
is a purely functional language. Common LISP is one well-known descen-
dant of pure LISP, as is Scheme. Common LISP supports some procedural 
and some object-oriented programming capabilities in addition to its 
inherited functional features, and was developed to provide a standard for 
several dialects of LISP that suffered from portability issues. Scheme uses 
typed variables and treats functions as first-class entities, meaning that 
functions can be passed as arguments to other functions or assigned to 
variables as values. LISP, Common LISP, and Scheme are still in use today, 
though more heavily in academia and theory/research than in industry.

25.7 � OVERVIEW: FUNCTIONAL PROGRAMMING
In functional programming, computation is accomplished by applying 
mathematical functions to arguments. Functional programming avoids 
the concepts of program state and state changes that are present in impera-
tive programming. The variables and assignment statements of imperative 
programming are also absent (and unnecessary) in functional program-
ming. Loops are also unnecessary in functional programming because 
functions can be called recursively.

These basic differences make programming in a functional language 
very different from programming in an imperative language. Imperative 
functions can have side effects that can change the program’s state. 
The  same expression can result in different values at different times. 
The opposite is true in functional programming, where the value of a func-
tion depends only on its arguments. Thus, a function will always produce 
the same results if given the same arguments since there is no program 
state. This can make functional programming more straightforward when 
attempting to understand, predict, and troubleshoot programs.

25.8 � STANDARDIZATION AND COMPROMISE: ALGOL 60
In addition to Fortran and LISP, there were several other high-level 
languages in the works in the late 1950s. The boom of new languages led 
to troubles in sharing programs among different users and platforms; 
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most of the new languages were geared toward a single architecture. 
It  quickly became obvious that machine-dependent languages were not 
the way to foster widespread collaboration, portability, and standardiza-
tion. In  response to this growing problem, several large computer user 
groups in the United States banded together to submit a petition to the 
Association for Computing Machinery (ACM) in 1957 to form a com-
mittee to spearhead the creation of a machine-independent scientific 
programming language [1]. While capable, Fortran was not a practical 
candidate for this universal programming language since it was owned 
exclusively by IBM at the time.

A few years before this, another group in Germany called the Society 
for Applied Mathematics and Mechanics had convened with the same 
purpose in mind: to design a universal programming language. In 1958, 
these two groups joined forces and began a collaborative language design 
project [1].

The goals laid out in the first week-long design meeting for the new 
universal language were [1]:

•	 The syntax of the language should be as close as possible to standard 
mathematical notation to make programs highly readable with little 
to no further explanation needed.

•	 The language used for the description of algorithms should be able to 
be used in printed publications.

•	 Programs in the language must be mechanically translatable into 
machine language (a requirement for any programming language).

The language developed at that design meeting met these goals, but 
the design process required a great deal of compromise from everyone 
involved. The resultant language was originally named the International 
Algorithms Language (IAL), but was later changed to ALGOL (Algorithmic 
Language), and then settled as ALGOL 58.

ALGOL 58 was similar to Fortran in many ways, which is logical consid-
ering that the primary concern of both languages was scientific program-
ming. To free the language from being tied to a particular machine and to 
make it more flexible and capable, many of the features available in Fortran 
were generalized in ALGOL 58. Several new ideas were included as well, 
such as formalizing the concept of a data type and allowing compound 
statements. The reception to the new language was enthusiastic.
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In early 1960, the members of the second ALGOL design meeting dis-
cussed how ALGOL 58 should evolve. As an interesting side note, Backus 
had introduced his new language description syntax, Backus–Naur Form 
(BNF), the year before, and Naur wrote a description of the newly proposed 
language in BNF and distributed it to all of the members at the begin-
ning of the meeting. By the end of the 6-day-long conference, the new and 
improved ALGOL 60 had been specified. The scope and magnitude of the 
agreed-upon changes were significant. Some of the more important new 
developments included:

•	 The block structure, which introduced nested scopes

•	 The ability to pass parameters by either value or name/reference

•	 Recursive procedures (old hat for LISP, but new for imperative 
programming)

•	 Stack-dynamic arrays (the size of and storage for an array is allocated 
during execution)

Although ALGOL 60 was used mostly by computer scientists in the 
United States and Europe, it was never widely used in commercial appli-
cations [4]. However, most imperative programming languages designed 
since that time descend from ALGOL 60 either directly or indirectly. 
These languages include PL/I, SIMULA 67, ALGOL 68, C, Pascal, Ada, 
C++, Java, and C# [1].

Some of the factors that held ALGOL 60 back were its lack of input and 
output statements. Some of its features were too flexible to understand and 
implement well, and the support to ALGOL 60 from IBM was not suffi-
cient. For these reasons, it could not compete with the existence of popular 
Fortran in numerical computation applications.

25.9 � FROM SCIENCE TO BUSINESS: COBOL
COBOL is an interesting case study in programming. The language was 
widely used in the business world—perhaps the most widely used, at least 
near the end of the last millennium—but it has had little to no effect on sub-
sequent languages (with the exception of PL/I). Like ALGOL 60, COBOL 
was designed by a committee in 1959, but in this case by a committee 
sponsored by the U.S. Department of Defense (DoD). One of COBOL’s 
design goals was that it should use English as much as possible and be easy 
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to use, even at the expense of power, in order to open up development to 
as many people as possible. It was also decided that the design should not 
be restricted by problems of implementation, as had happened in several 
areas with ALGOL.

No doubt because of its sponsorship, COBOL became the first program-
ming language mandated by the DoD for use. This was likely a major factor 
in its survival, as the necessity of using the language kept its popularity up 
even though its early compilers were expensive and of poor quality. Calling 
it a government-subsidized programming language may be a little much, 
but having the DoD as a patron no doubt led to its widespread use and 
success, despite its lack of elegance and functions.

25.10 � BACK TO THE BASICS
When modern-day technicians hear BASIC, they probably think of Visual 
BASIC, as in Microsoft’s VB6, VBA, and VB.NET. But the original BASIC 
thrived in the 1970s and early 1980s. BASIC (Beginner’s All-Purpose 
Symbolic Instruction Code) was designed by John G. Kemeny (1926–1992) 
and Thomas E. Kurtz (1928–) at Dartmouth College in 1964. The language 
was designed for use at computer terminals and was intended to be easy 
for nonscience students to learn, as science and engineering students 
made up only about 25% of the student population [1]. It  achieved its 
goals; it was a very limited language and quite easy to learn. However, 
due to its simplicity and “friendliness,” it was all too easy to write poor 
programs, and BASIC tended to perform quite poorly in the areas of 
readability and reliability.

Limitations and simplicity aside, perhaps the most important new 
aspect of BASIC was that it was the first widespread language to be used 
from terminals connected to a remote computer that ran all of the pro-
grams received from each terminal.

BASIC made a big comeback in the 1990s with the introduction of 
Visual BASIC (VB). The visual aspect provided a simple way to build 
graphical user interfaces (GUIs), and thus VB became widely used. As 
hinted at above, the most advanced current version is VB.NET, which 
departs significantly from classic VB due to its need to fit in with the .NET 
Framework and the rest of the .NET languages. One major difference is 
that VB.NET fully supports object-oriented programming. With the 
release of Microsoft’s .NET Framework 4.0 in 2010, everything that can be 
done in VB.NET can be done in C#, and vice versa.
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25.11 � OVERVIEW: LOGICAL PROGRAMMING
As mentioned briefly in the description of declarative programming, 
logical programming languages are generally declarative (as opposed to 
imperative or procedural) in style. That is, the program doesn’t specify 
how to reach a result, but rather describes the necessary characteristics 
of the result to be achieved and then logically infers an answer based on 
those attributes and on its existing tools or knowledge.

Predicate calculus notation is generally used in current logical pro-
gramming languages, and provides a basic form of communication.

25.12 � PROGRAMMING LOGIC: PROLOG
Prolog has a method for specifying predicate calculus propositions, and 
it implements a restricted form of resolution. The first Prolog system was 
developed by Alain Colmerauer (1941–) and Philip Roussel (1945–) in 1972 
[5]. Prolog programs consist entirely of collections of statements, which 
make it easy to use to model an intelligent database of related informa-
tion that can be queried. Prolog’s statements can be either facts or rules. A 
Prolog program simulating an intelligent database would consist of a col-
lection of both facts and rules, and could be queried with a question, a goal 
statement, which is presented to the program. The program then uses this 
goal statement along with its tools of inference and resolution to deter-
mine the truth of the statement. If it can prove based on the statements 
and rules at its disposal that the statement is true, it will do so. If not, it 
will conclude that the statement is false.

While simple and powerful, programs written in Prolog and other 
logical languages tend to lag in efficiency behind comparable impera-
tive programs. Additionally, while logical programming is an effective 
approach for some kinds of database management systems and in some 
areas of AI, its usefulness is much more limited in other areas.

25.13 � OVERVIEW: OBJECT-ORIENTED PROGRAMMING
Object-oriented programming (OOP) is a programming paradigm that 
uses objects to design and implement programs. An object is a collection 
of attributes and methods. Objects can be related to one another through 
concepts such as abstraction, virtualization, inheritance, and poly
morphism. OOP is a common and widespread programming design, and 
many modern programming languages include support for OOP features 
at some level.
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Objects control access to their attributes and methods, allowing as much 
or as little access as desired, with levels of access varying depending on 
the object or function that is attempting the access. Programs often con-
tain many different types of objects, which generally represent real-world 
objects or concepts. One example would be a bank object representing 
an actual bank that contains a collection of account objects representing 
actual bank accounts.

At a minimum, an object-oriented language must provide support for 
abstract data types, inheritance, and dynamic binding of method calls to 
methods [1].

25.14 � THE FIRST OBJECT-ORIENTED PROGRAMMING 
LANGUAGE: SMALLTALK

Smalltalk-80 (or simply Smalltalk) was the first language to fully sup-
port object-oriented programming (1980). All computing in Smalltalk 
is achieved by sending a message to an object to invoke one of its func-
tions. The message replies themselves are objects that either return 
requested information or notify the sender that the requested action has 
been completed.

In Smalltalk, classes are abstractions of objects and can be instantiated 
as objects in the program. An object is always an instance of a class. This is 
a fundamental concept of object-oriented programming that propagated 
into many subsequent languages.

Unlike in common imperative and object-oriented hybrid languages 
such as C++ and Java, all values in Smalltalk are objects, even primitive 
values such as integers, characters, and Booleans. They are all instances 
of their corresponding classes, and all operations are invoked on them by 
sending messages. Because all values in Smalltalk are objects, classes are 
objects as well. Each class is an instance of the metaclass of that class, and 
each metaclass is an instance of the parent/root class metaclass.

In addition to pioneering the popular and widespread notion of 
object-oriented programming, windowed user interfaces (by far the 
dominant GUI design of the time) grew out of Smalltalk.

25.15 � IMPERATIVE AND OBJECT ORIENTED: C++
Released in 1984, C++ improves on the imperative features of C and 
includes support for object-oriented programming. The classes in C++ are 
related to those in Smalltalk.
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Improvements included virtual methods, operator and method over-
loading, and reference types. In version 2.0, support for multiple inheri-
tance (classes can have more than one parent class), and abstract classes 
were added. In version 3.0, templates providing parameterized types were 
added, as was exception handling [1].

C++ quickly became a widespread language and remains widely used 
today. It is almost completely backward compatible with C and linkable to 
C programs. This feature certainly aided in the success of C++. It was also 
the only robust language available when object-oriented programming 
stepped into the spotlight, which made it a shoo-in for many large-scale 
commercial software projects.

25.16 � OBJECT ORIENTED, HOLD THE IMPERATIVE: JAVA
Java was based on C++, and its designers sought to remedy some of C++’s 
drawbacks. What they removed, changed, and added led to a smaller and 
safer language with much of the flexibility and power of C++ still intact. 
Unlike C++, Java supports only object-oriented programming and does 
not support procedural programming.

One example of an unsafe feature of C++ is coercions. A coercion is an 
implicit type conversion. Both Java and C++ allow the coercion of smaller 
types into a larger type, for example, the coercion of an integer into a float. 
However, C++ also allows the coercion of a larger type into a smaller type, 
which can result in unintended data loss. Java does not allow this type of 
implicit conversion, reducing the risk that programmers will unintention-
ally lose data or precision.

Java was designed by Sun Microsystems to act as the programming 
language of choice for devices embedded in consumer electronics such as 
TVs and microwaves. Reliability was a chief concern, due to the very high 
cost that would be incurred if a mass recall of such devices was found to 
be necessary [1].

Object-oriented support was needed, but C++ was larger, riskier, and 
more complex than necessary. The new language designed for this purpose 
was simpler and more reliable. Ironically, none of the products for which 
Java was designed were ever marketed or sold. However, Java was found to 
be useful in web programming in the early 1990s when the Internet grew 
in popularity. Specifically, Java applets became very popular in the mid to 
late 1990s because they were simple and easy-to-use tools. The use of Java 
increased faster than that of any other programming language [1]. The 
most recent version is Java 7, introduced in 2011.
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25.17 � THE BEST OF BOTH WORLDS: C#
C# is based on C++ and Java, and also includes some concepts from Delphi 
(object-oriented Pascal) and Visual BASIC. C# is a multiparadigm pro-
gramming language that includes imperative, declarative, functional, 
objected-oriented, and component-oriented programming features. C# was 
developed by Microsoft and later approved as a standard by European 
Computer Manufacturers Association (ECMA).

The ECMA standard lists these design goals for C# (ECMA Inter
national) [2]:

•	 C# is intended to be a simple, modern, general purpose, object-oriented 
programming language.

•	 The language, and implementations thereof, should provide support 
for software engineering principles such as strong type checking, 
array bounds checking, detection of attempts to use uninitialized 
variables, and automatic garbage collection. Software robustness, 
durability, and programmer productivity are important.

•	 The language is intended for use in developing software components 
suitable for deployment in distributed environments.

•	 Source code portability is very important, as is programmer 
portability, especially for those programmers already familiar with 
C and C++.

•	 Support for internationalization is very important.

•	 C# is intended to be suitable for writing applications for both hosted 
and embedded systems, ranging from the very large that use sophisti-
cated operating systems to the very small having dedicated functions.

•	 Although C# applications are intended to be economical with regard 
to memory and processing power requirements, the language was 
not intended to compete directly on performance and size with C or 
assembly language.

As one of Microsoft’s .NET languages, C# supports component-based 
software development in the .NET Framework. All .NET languages 
use the Common Type System (CTS) and are compiled into the same 
Intermediate Language (IL). A just-in-time compiler translates the IL into 
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machine code before execution. All types in all of the .NET languages 
inherit from the shared class root System.Object. As mentioned earlier, 
with the release of C# 4.0 and VB.NET 4.0, anything that can be done in 
one language can be done in the other, which is evidence of Microsoft’s 
effort to improve each of its .NET languages concurrently and cohesively.

In several areas, C# adds back in what Java stripped out of C++, but 
only after improving upon features and making them safer and more 
useful. C# also improves on features found in Java.

•	 Enums are back and are safer than those in C++. Enum values are no 
longer implicitly converted into integers, making them more type-safe.

•	 The struct is back and is actually useful, after having no real value 
in C++.

•	 C#’s switch statement is an improvement to the one found in C, 
C++, and Java.

•	 C# improves on C++’s unsafe function pointers by providing a new 
type called a delegate. Delegates are used for implementing event 
handlers and controlling thread execution.

•	 Methods in C# can receive a variable number of parameters of the 
same type.

•	 C# makes the conversion between the two distinct typing systems of 
C++ and Java partially implicit.

•	 C# features support for rectangular arrays.

•	 C# features a foreach statement, which is an iterator that can be used 
for collections of any type of object, including arrays.

•	 Properties replace public data members. Properties have built-in get 
and set methods that are implicitly called when references or assign-
ments are made.

•	 C# has access to the resources and capabilities of the entire .NET 
Framework.

C# is truly a multipurpose programming language and has continued 
to rapidly evolve since its release in 2002. It is and looks to remain a 
versatile and widely used programming language.
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C h a p t e r  26

Algorithms and 
Computational Complexity

As described in Chapter 5, the word algorithm comes from the name of 
an Arabic mathematician, al-Khawarizmi, who wrote his famous book, 
Rules of Restoration and Reduction, in the ninth century. According to the 
book by Donald E. Knuth (1938–) [1], the original meaning of the word 
algorithm is “the process of doing arithmetic using Arabic numerals.” 
Knuth also mentioned in the same book that the word algorithm did not 
appear in Webster’s New World Dictionary as late as 1957. Let us look up 
the word in some old versions of English dictionaries. The Concise Oxford 
Dictionary in 1964 defines the word algorithm as Arabic decimal notation. 
The same dictionary in 1976 defines the word algorithm as the process or 
rules for calculation, almost the same definition used today by the Concise 
Oxford Dictionary.

Many university textbooks on algorithms often refer to Euclid’s algo-
rithm as an example of the first well-defined mathematical algorithm. 
It appears in the famous Greek book Euclid’s Elements (c. 300 BC) 
(see Chapter 5). Euclid’s algorithm is an effective and efficient procedure 
(a set of rules) for computing a two-argument function gcd (m, n) deter-
mining the greatest common divisor of two integers m and n. We can 
informally say that an algorithm is an effective procedure for solving a 
problem. As described in Chapter 16, Alan Turing gave a formal defini-
tion of an algorithm in 1936 in terms of abstract models of computers, 
called Turing machines. Alonzo Church, Stephen C. Kleene, Emil L. Post, 
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and others also gave formal definitions of algorithms in different forms 
and computational models, although all these definitions were eventually 
shown to be equivalent.

A computer is a physical device. In order to carry out computation, 
we must supply a procedure or a method of how the computation is to 
proceed. Such a procedure should then be written in a programming 
language so that the computer can understand how it should process data 
in its registers or memory at each step. Chapter 27 discusses the specifics 
of algorithmic design.

An automobile or an airplane needs fuel to move. For example, gaso-
line is one possible resource for an engine to operate. Analogously, for 
the engines of computation, we also need to consider resources that are 
needed to carry out their tasks, even though they may only be abstract 
models that carry out the computation. In the area of theoretical com-
puter science, Turing machines are usually used as abstract models of 
computing devices. In computations, the two most common measure 
types of resources are time and space requirements. These are often used 
to evaluate the efficiency of an algorithm or the difficulty of a problem. 
Time and space complexity are indications of how much computing time 
(the number of steps) and memory (space) are required, respectively, to 
carry out the computation of a given algorithm in order to solve a problem.

The complexity (time or space) of an algorithm is represented by a resource 
binding function whose parameter is the size of a problem instance, say 
n. This function depicts the amount of resource (time or space) needed to 
solve the problem instance by the algorithm. The complexity of a problem 
is represented by the complexity of the best algorithm for solving the 
problem. Alternatively, one can discuss the lower bounds of a problem, 
which indicate the least amount of resources (time or space) needed by any 
algorithm (already existing or not) needed to solve a given problem. If the 
complexity (e.g., the running time) of an algorithm is the same as the 
problem’s complexity, then the algorithm is said to be optimal with respect 
to the particular resource complexity measure. Strangely enough, it can be 
shown that there do exist problems for which no optimal algorithms exist.

Since the mid-1950s, computational complexity has become a very 
active research topic, and it has developed into one of the most funda-
mental areas in theoretical computer science. Let us explain the mean-
ing of computational complexity using a simple example of the problem 
of addition of two numbers (i.e., f(x, y) = x + y). Assume we specify the 
values for x and y using the decimal notation. Then the size of a problem 
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instance in this case is the number of digits needed to represent x and y. 
For the binary, hexadecimal, or any other reasonable notation, the size of 
a problem instance is similarly defined. Consider the conventional addi-
tion algorithm taught in elementary schools: its time complexity is clearly 
proportional to the argument size, that is, the total number of digits used 
to represent x and y.

In general, the actual computing time of an algorithm for solving a 
problem depends on the performance of the computing device or the com-
puting model. The addition of two numbers is usually performed by align-
ing them and adding their least significant digits, moving to the second 
least significant digits (with a carry, if applicable), adding them, and so on, 
until the most significant digits have been added. If the computing time at 
each stage is considered to take a unit time (or a step), then the computing 
time needed for adding two numbers is at most the number of digits of the 
larger one (assuming both are positive).

In the addition algorithm mentioned above, the time complexity is pro-
portional to the input size, and it is denoted by O(n), where O notation is 
pronounced “big oh” or “at most order of.” Suppose that a new computing 
device can concurrently process the addition of some fixed number of con-
secutive digits of the two numbers in a single unit of time. This computing 
device may seem to be more powerful, i.e., quicker, than the original one. 
However, the time complexity of the addition of two numbers by this more 
powerful device is still O(n), since for any positive integer k (independent 
of n), O(n/k) = O(n). From this observation, the reader should be con-
vinced that the big oh notation for complexity classes is independent of 
the computing device used. For example, if we build a new computer that 
is 1000 times faster than the previous one, the big oh running times for 
any particular algorithm on these two computers will, in fact, be the same. 
This makes the big oh notation very convenient.

Next, let us consider the time complexity of integer multiplication, 
f(x, y) = x × y. Assume that both the multiplication and addition of two 
single-digit integers can be performed in a single time unit. Let n be the 
number of digits of the larger number among x and y. It should be obvious 
that the conventional multiplication algorithm that is taught in elemen-
tary schools can be carried out in O(n2) steps.

One could argue that since we ourselves have designed/constructed 
the algorithms, it should be relatively easy to determine their running 
times. That, unfortunately, is not always the case—one could easily write 
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computer programs whose running times themselves are very difficult, 
if not impossible, to determine.

To make things even worse, in general, the evaluation of the complexity 
of a problem, instead of an individual algorithm, is much more difficult. 
The time complexity of the integer addition is obviously O(n) since every 
digit of x and y, as well as the digits of the resulting sum, should be pro-
cessed at least once to obtain the correct answer. However, the complex-
ity of integer multiplication cannot be determined using such a simple 
argument. In 1964, Russian mathematicians A. Karatsuba (1937–) and 
Yu Ofman discovered a more efficient algorithm for integer multiplica-
tion. Their algorithm uses the divide-and-conquer approach, and its time 
complexity is O(n1.59), where 1.59 is from an approximation of log2 3. The 
divide-and-conquer technique divides a big-sized problem instance into 
smaller-sized problem instances, and the solution to the original prob-
lem instance is obtained from the solutions to the smaller-sized problem 
instances. This method is used recursively until we obtain sufficiently small 
problem instances that can be easily handled by some simple method. The 
above-mentioned Karatsuba–Ofman algorithm for integer multiplication 
is not even the best one available. The Schönhage–Strassen algorithm for 
integer multiplication is asymptotically fast for large integers. It was devel-
oped by Arnold Schönhage (1934–) and Volker Strassen (1936–) in 1971. 
The algorithm uses the fast Fourier transforms, and its running time is 
O(n log n log log n), as opposed to O(n2), for the naïve integer multiplication 
algorithm. From the function graphs shown in Figure 26.1, we can easily 
understand that the Karatsuba–Ofman algorithm is much faster than the 
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conventional method, and the Schönhage–Strassen algorithm is much 
faster than the Karatsuba–Ofman algorithm [9].

Computational complexity is at the core of theoretical foundations of 
computer science. The field analyzes the complexity of problems and their 
algorithmic solutions. The major questions in this field are concerned 
with what can be achieved within limited computational resources. The 
most influential work at the beginning was the formal definition of com-
putability by Alan Turing in 1936. The beginning of systematic study in 
computational complexity started around the 1960s. Since then, a number 
of interesting results have been obtained. Juris Hartmanis (1928–) and 
Richard Stearns (1936–) introduced time complexity classes, and proved 
the time hierarchy theorem in 1965 [5]. The theorem ensures the exis-
tence of certain difficult/hard problems, which cannot be solved in a 
given amount of time. This means that for every time-bounded complex-
ity class, there is a strictly larger class containing problems that are not 
members of the smaller class. A similar argument may be presented for 
space-bounded complexity classes. Hartmanis and Stearns received the 
Turing Award in 1993 for their contributions in the field of computational 
complexity theory.

Manuel Blum (1938–) developed an axiomatic complexity theory, called 
the Blum axioms or Blum complexity axioms, which specifies desirable 
properties of complexity measures on the set of computable functions in 
1967 [6]. He proved that for a complexity measure satisfying Blum axioms, 
some fundamental properties must always hold true. Blum received the 
Turing Award in 1995 for his contributions to the foundations of com-
putational complexity theory and its application to cryptography and 
program checking.

The big oh notation and a recursive function f(n) can be used to define 
the computational complexity class O(f(n)). Computational complexity 
classes defined in this way seem to be coarse since O(f(n)) and (O(g(n)) 
define the same complexity class if there exist positive constants k, c1, and 
c2 such that for any n > k, c1g (n) < f (n) < c2g (n). However, this coarseness 
is rather convenient for the study in this field. For example, if computing 
model A is twice as fast as computing model B, and if the computing time 
by A is f(n), then the computing time by B is 2f(n) and O(2 f(n)) = O(f(n)). 
This means that concerning computational complexity classes, we do 
not care what computing models are used, provided that the differences 
among their computing abilities are within a constant factor.
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A problem X is said to be complete for complexity class C, or C-complete, 
if it is the hardest problem within C; i.e., every other problem in C can be 
shown (via a complexity-preserving transformation) to be no more dif-
ficult than X. Observe that more than one problem may be complete for a 
given complexity class. A problem Y is said to be hard for a class if every 
problem within the class is no more difficult than Y. Note that Y does not 
have to be a member of the given class.

Over the years, the notion of efficient computation or an efficient 
algorithm has been associated with two distinct definitions. The first one 
describes an algorithm as efficient if it can be shown that during its com-
putation no unnecessary work is being performed. This, however, does not 
mean that a given efficient algorithm must always be optimal with respect 
to some single complexity measure (e.g., time). In certain applications, 
the computational resources of both time and space are constrained, and 
in order to meet both of them simultaneously, an algorithm may have to 
perform additional steps or use extra space in order to perform its com-
putation successfully. For many problems, we can show that there exists a 
time-space trade-off, meaning, indirectly, that optimality criteria for both 
resources cannot be achieved at the same time.

The second definition of an efficient algorithm, which gained wide 
acceptance during the 1970s, is that it’s an algorithm whose running time 
is bounded by some polynomial function in n, the problem size. More 
formally, an algorithm is of polynomial time complexity if it belongs to 
computational complexity class O(nc) for some constant c > 0, which is 
independent of n. If there exists a polynomial time algorithm for solv-
ing a given problem X, then X belongs to the class of polynomial time 
problems, which is denoted by P. A problem is said to be infeasible, or 
provably intractable, if it does not belong to P. Note that a problem may 
be intractable, but still solvable at the same time. If a problem does not 
belong to P, we consider that it cannot be solved in the practical sense. 
This, of course, does not mean that for such problems we cannot try to 
use approximation or heuristic algorithms, which in certain instances 
may give us a satisfactory or even an optimal answer to our problem. The 
computational class P can also be defined in terms of Turing machines. 
A problem belongs to P if and only if there exists a Turing machine that 
solves the problem in polynomial running time.

Until now, the computations carried out by our Turing machines 
(or other computational devices) have been deterministic—meaning that 
the steps taken always follow the same predetermined computational 
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path. A nondeterministic Turing machine is an enhanced Turing machine 
with an additional power of making choices. For a given state and a tape 
symbol scanned by the tape head, the nondeterministic Turing machine 
has some finite number of possible choices, or moves, for the next step. 
A problem is said to be of nondeterministic polynomial time complexity 
if and only if it can be computed by a nondeterministic Turing machine 
that runs in polynomial time. The class of nondeterministic polynomial 
problems is denoted by NP, and it obviously contains the class P. Also, 
it is not difficult to show that any problem in NP can be solved by a 
deterministic Turing machine that runs in exponential time. However, 
it is yet to be determined whether P = NP. This question was originally 
formulated by Stephen Arthur Cook (1939–) in 1971 [7], and it is the most 
famous open problem in theoretical computer science and mathematics. 
The P = NP question can be rephrased as asking whether there exists a 
deterministic Turing machine with polynomial running time for any one 
of the NP-complete problems.

The class NP can be thought of as those problems for which there exist 
algorithms (or Turing machines) that can verify in deterministic poly
nomial time if a guess or a certificate (that is provided as part of the input 
describing the problem) confirms the answer. One might name this class as 
that of conscientious cheaters. Consider the problem of inverting a matrix. 
During a linear algebra exam, one student (who always obtains the correct 
answer) may use a standard technique, such as Gaussian elimination, to 
obtain the inverse; another student may cheat and simply copy the first 
student’s answer. However, a conscientious cheater would (after copying 
the first student’s answer) actually check and verify whether the answer 
is correct.

The question of whether it is always more difficult to compute an 
answer, rather than simply check the correctness of a proposed answer, 
was first posed by German mathematician Johann Carl Friedrich Gauss 
(1777–1855). While it is obvious that the computation of an answer to any 
problem is at least as difficult as confirming its correctness, it has not been 
shown that it must always be necessarily more difficult.

NP-complete problems are the most difficult problems within the class 
NP; moreover, all of them have the property that if we could construct an 
efficient (deterministic polynomial time) algorithm for one of them, then 
all NP-complete problems would have efficient algorithms and P would 
indeed be equal to NP. On the other hand, if one NP-complete problem 
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can be shown to be outside of P, then none of the NP-complete problems 
would have efficient algorithms.

The first NP-complete problem was identified by Cook in 1971, and it 
dealt with the satisfiability of Boolean expressions. A set of logical propo-
sitions is said to be satisfiable if there exists at least one assignment to a list 
of Boolean variables so that every clause in the set evaluates to “true” under 
that assignment. The satisfiability problem (SAT) is to decide whether a 
given set of Boolean expressions is satisfiable. In 1971 Cook showed that 
SAT is the hardest problem in the class NP; i.e., it is NP-complete. If SAT 
were to be a member of P, then P = NP (which is very unlikely, although 
still a possibility).

Any NP-complete problem must:

	 1.	Belong to the class NP

	 2.	Be at least as difficult as some known NP-complete problem

If a problem X can be reduced to another problem Y in polynomial time, 
and if X is NP-complete and Y belongs to NP, then Y is also NP-complete. 
The technique, or transformation, used here is called the polynomial time 
reduction. After Cook’s initial result, many problems were added to the 
list of NP-complete problems via polynomial time reductions. It should be 
noted that Richard Karp (1935–) and Leonid Levin (1948–) independently 
made equally significant contributions during the early developments of 
the theory of NP-completeness in the early 1970s.

The collection of NP-complete problems is ever growing, and it contains 
tens of thousands of problems. After SAT, the traveling salesman, independent 
sets, Hamiltonian circuit, and knapsack are some of the best-known 
NP-complete problems. When we show a problem is NP-complete, it is 
a good indication that there is very little chance to find an efficient algo-
rithm for it. For such a problem, a heuristic method or an approxima-
tion algorithm may be recommended. A book by Michael R. Garey and 
David S. Johnson (1979) contains an excellent introduction to the theory 
of NP-completeness and a listing of several hundred NP-complete and 
other related problems [8].

The reader may wonder if there could exist problems in NP that are 
outside of P, but which are not NP-complete, i.e., difficult, but not the most 
difficult. The status of this question is open as well. In fact, there are not 
too many problems in NP whose status is unknown (i.e., are they in P 
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or are they NP-complete?). One of the most famous of these is the graph 
isomorphism problem (GIP)—given descriptions of two graphs, do they 
have the same structure, or connectivity, relationship? For many restricted 
cases, such as planar, degree-bounded graphs, etc., efficient/polynomial 
algorithms have been found. However, the general GIP is still not known 
to be in P, nor has it been shown to be NP-complete.

Just as intriguing is the question whether there exist problems that 
provably require more than polynomial time (deterministic or not) to be 
solved. The answer is yes; however, the only known such problems also 
require an exponential amount of space (memory), making them very 
unattractive from the practical perspective. Determination of “forced 
wins” in strategic games such as chess or Go can be shown to require an 
exponential amount of space, and hence time, to compute.

Stephen A. Cook received the Turing Award in 1982 for his formal-
ism of NP-completeness and discovery of the first NP-complete problem, 
SAT. Richard Karp received the Turing Award in 1985 for his introduction 
of the now standard methods for proving problems to be NP-complete, 
which has led to the identification of many theoretical and practical prob-
lems as being computationally hard.

More material on computational complexity can be found, for example, 
in the books by Michael Sipser [2], Sanjeev Arora (1968–) and Boaz Barak [3], 
and Oded Goldreich (1957–) [4].
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C h a p t e r  27

The Design of 
Computer Algorithms

As described in Chapter 18, computers were traditionally built to calculate 
the solution to numerical problems such as the determination of the roots 
of an algebraic equation, or to process numerical data, e.g., the statistical 
calculation of national consensus data. However, for the last 40 years or 
more, a great deal of important work has also been done by computers 
for nonnumerical problems, such as sorting, searching, word or language 
processing, and solving combinatorial problems in software development, 
data communication, and the simulation of various biological, chemical, 
and physical processes. The design and analysis of computer algorithms 
have been developed in the context of such applications.

27.1 � SORTING AND SEARCHING
Sorting a sequence of numeric or alphanumeric items means rearrang-
ing them in some specific order. Since a significant portion of data pro-
cessing involves sorting, efficient sorting algorithms are of considerable 
importance for many practical problems [3, 7]. Sorting is one of the first 
problems for which algorithms were formally analyzed and evaluated. 
It is considered to be a fundamental problem in the area of algorithmics, 
mainly because sorting often plays an essential part of many algorithms. 
For example, sorting significantly facilitates a search for elements in some 
set or a list. A dictionary is a typical example of a sorted list. Words in a 
dictionary are usually arranged in an alphabetical order, which allows us 
to easily locate the word that we are trying to find in the dictionary.
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Some sorting methods were in use long before the invention of computers. 
For example, a card player sorts the cards of his hand so that each card is 
visible and individually accessible. Suppose that A, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
J, Q, K are the order of the cards. The following method has been com-
monly used among card players. The player scans the cards of his hand left 
to right. He chooses the smallest card, and puts it at the leftmost position. 
Then he scans the rest of the cards, and chooses the smallest one among 
them. This card is placed at the second leftmost position. In this way, he 
arranges the smallest card, the second smallest card, the third smallest 
card, and so on. Eventually he obtains the sorted cards in his hand. This 
sorting method is called straight selection sorting or sorting by selection. 
We will soon find out that it is not the fastest way to sort the elements of 
a given set.

The efficiency of a sorting algorithm is often measured by counting the 
number of necessary key comparisons in order for the list to be sorted. 
Usually, this is expressed as a function of the number n of items in the list. 
Sorting by straight selection requires n – 1 key comparisons to choose the 
smallest item among n items. Then, n – 2 key comparisons are needed to 
choose the second smallest item from the remaining n – 1 items, and so on. 
Consequently, sorting n items by the straight selection method requires 
(n – 1) + (n – 2) + … + 1 = n(n – 1)/2 comparisons. Using the notation for 
complexity classes given in Chapter 26, the efficiency of sorting by straight 
selection is O(n2) time. Simple and obvious sorting methods such as sort-
ing by selection, sorting by insertion, and sorting by straight exchange 
(also called the bubblesort) all require O(n2) key comparisons [4, 5].

It can be easily proved that any sorting algorithm based on a compari-
son operation between a pair of items requires at least O(n log n) compari-
sons; if it uses less, then it is provably incorrect. Quicksort is a well-known 
sorting algorithm that, on the average, needs O(n log n) comparisons 
to sort n items. In the worst case, however, it needs O(n2) comparisons, 
though if it is properly implemented, such a case is very rare. In practice, 
quicksort is considerably faster on the average than other O(n log n) sort-
ing algorithms such as heapsort and mergesort [1, 4, 8].

Quicksort was invented in 1960 by a British computer scientist, Charles 
Antony Richard Hoare (1934–), when he was in the Soviet Union as a visit-
ing student at Moscow State University. After Hoare left the Soviet Union, 
he began working with British computer manufacturer Elliot Brothers, 
where he implemented ALGOL 60, one of the first high-level program-
ming languages (See Chapter 25). In 1968, he moved to Queen’s University 
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of Belfast in 1968, and in 1970 moved to Oxford University as a professor 
of computing. Hoare received the Turing Award in 1980 for his contribu-
tions to the definition and design of programming languages [10, 11].

As a first step, quicksort chooses one of the items in the sequence of 
items as the pivot element. If the pivot is chosen randomly, the quicksort 
is called the randomized quicksort. The sequence is then partitioned on 
either side of the pivot so that the items that are greater than the pivot are 
placed on its right section, whereas all the other items are placed on its 
left section. Next, the two sections of the sequence on either side of the 
pivot element are sorted independently by recursive calls of the algorithm. 
The final result is a completely sorted sequence. We should be careful to 
choose a pivot so that the pivot should partition the list into two sections 
with balanced sizes. An algorithm (or a procedure) that calls itself is said 
to be recursive. ALGOL 60 was the first programming language in which 
recursive calls were implemented. Hoare noticed that quicksort can be 
easily implemented in ALGOL 60 by using recursive calls.

Storage and retrieval of data are the fundamental tasks in data pro-
cessing. We are concerned with collecting data efficiently into the com-
puter memory, and are often asked to retrieve the necessary data from 
computer memory as quickly as possible. Searching is a process to find 
or decide whether specific data exist in the computer memory. It is a very 
time-consuming task concerning many software applications, and good 
search methods are important to improve software performance in general.

It is often possible to arrange the data or data structure so that we can 
quickly know where a necessary item is located. If the data are neither struc-
tured nor sorted, we must sequentially search all of the data to find the item 
we need. In such a case, we need O(n) time to search for an element in O set 
or list of n items. If the data are sorted, we can apply a binary search method 
(e.g., as in finding a word in a dictionary). In this case, we only need O(log n) 
time to find the item we need, which is a significant saving of time.

Search methods can be either static or dynamic. Static means that the 
contents of the data files are essentially unchanged. For this type of data 
file, it is important to minimize the search time without regard for the 
time required to set them up. On the other hand, dynamic means that the 
contents of the data files vary frequently by the data insertions and data 
deletions. For this type of data file, suitable set manipulation algorithms 
are required to keep good structures of the data files.

Rich material about sorting and searching, including their history, 
can be found in Knuth’s The Art of Computer Programming: Sorting and 
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Searching [4]. Knuth announced that he would publish a series of seven 
volumes entitled The Art of Computer Programming. Volume 1 of the book 
series was first published in 1968 [2]. After the publication of Volume 3 
in 1973, he developed an electronic typesetting system, creating the now 
widely used Tex and METAFONT tools. Knuth received the Turing Award 
in 1974 for his research contributions to the analysis of algorithms, the 
design of programming languages, and computer programming through 
the series of his books.

27.2 � DATA STRUCTURES
Efficient ways to store and access large amounts of data are an important 
part of many computer applications. Data structures are to organize the 
data in a computer so that they can be accessed and manipulated efficiently.

Often a problem can be formulated in terms of abstract objects such 
as sets, lists, graphs, and so on. Algorithms for a problem usually contain 
fundamental operations on these objects. Typical examples of these oper-
ations are membership determination, insertion of a new element into a 
set, deletion of a member from a set, union of sets, and determination if 
a set contains a particular element. In order to implement these opera-
tions efficiently, various data structures have been devised. If needed, a 
higher-level compound data structure may often be built from these fun-
damental data structures.

Arrays and lists (also called linked lists) are the most fundamental data 
structures. An array is a linear structure, all of whose elements/components 
are of uniform size and type. It is also called a random access structure 
since all components are accessible in one time step. A linked list is a col-
lection of nodes (or cells) arranged linearly in a certain order. The length 
of a linked list is not fixed. The linked list data structure must allow us to 
efficiently determine (via a pointer) the first and last nodes in the list, and 
which nodes are the predecessor and the successor (if they exist) of any 
given node. Its access mechanism is said to be sequential. Such a structure is 
often represented graphically by boxes and arrows, as shown in Figure 27.1. 
The information attached to a node is shown in the corresponding box, 
and the arrows show the relationship between a node and its successor.

�e head of a list
A B C D

FIGURE 27.1  An example of a list.
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A general method for constructing structured types of data is to join 
elements into a compound cell. Such a cell is frequently called a record or 
an object, and it is usually consists of various components [5]. For example, 
consider a table of records for students in a class. A record for a student 
consists of various components, e.g., student’s name, age, birthplace, and 
academic grade for each course. Suppose that this table is sorted in alpha-
betical order by students’ last names. If the number of students in the class 
is fixed, then an array of records would be a convenient data structure 
to use. However, in the case where the class size is dynamic, an array of 
records is inconvenient and inefficient as well. When a new student joins 
the class, the record of the new student should be inserted at an appropri-
ate (alphabetical) position. In order to do so, all the records of the students 
after the new student, in alphabetical order, should be shifted by one posi-
tion so that the space for the record of the new student is made available. 
In the case where a student drops the class, the removal of the record for 
the student creates an empty space in the array. We must then move up the 
records for the students one position in the array after the record for that 
student, which could be quite time-consuming.

The data manipulated by algorithms can frequently grow, shrink, or 
change over time. For such dynamic data, a linked list is more convenient 
and efficient, because the insertion and deletion operations can be imple-
mented by simply modifying the corresponding pointer that is used for the 
connection to the successor or the predecessor. For example, in order to 
remove an element x from a linked list, the pointer to x is modified to delete 
x out of the linked list in a way that it points to the element that was origi-
nally pointed to by x. In order to insert a new element y after element x in a 
linked list, the pointer from x is modified to point to y, and then the pointer 
of y is created to point to the element that was originally pointed to by x.

Many algorithms need the ability to insert elements into, delete ele-
ments from, and test memberships in a set. However, other algorithms may 
require more complicated operations to be efficiently implemented. For 
such algorithms, various advanced data structures have been devised. For 
example, priority queues, heaps, hashing schemes, B-trees, and Fibonacci 
heaps are some advanced data structures that allow us to solve complex 
problems more efficiently [8].

A Programming Language (APL) is an iterative array-oriented pro-
gramming language invented in 1957 by Kenneth E. Iverson (1920–2004). 
Operations on structured arrays can be written in APL in a straight
forward way. Iverson worked on programs that could evaluate large 
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matrices on the Harvard Mark IV computer. In 1960, while at IBM, he 
developed his ideas into a programming language for the IBM/360. In 1979, 
Kenneth E. Iverson received the Turing Award for his work on APL.

Linked lists were developed in 1955–1956 by Allen Newman, Cliff Show, 
and Herbert Simon as the primary data structure for their data process-
ing programs and early artificial intelligence (AI) programs [12]. In 1958, 
Victor H. Yngve (1920–) used linked lists at MIT as data structures in the 
computer programs for processing linguistic problems. LISP is a program-
ming language invented by John McCarthy in 1958, while he was at MIT. 
It stands for List Processing. It is a suitable programming language for 
processing linked lists. It has numerous applications in AI and is a very 
powerful and expressive language, especially for nonprocedural appli-
cations, such as functional programming (see also Chapters 24 and 25). 
A  Swiss computer scientist, Nicklaus Wirth, wrote an outstanding text-
book, Algorithms + Data Structures = Programs, in 1976 [5]. In his book, he 
showed how to describe algorithms and data structures in PASCAL. That 
is, he showed that designing a nice program means designing a nice algo-
rithm and a nice data structure. In 1984, he received the Turing Award for 
developing a series of innovative programming languages.

27.3 � GRAPH ALGORITHMS
One major feature of computer science is its discrete flavor, which means 
that data processing and computing consist of a series of discrete opera-
tions on discrete and finite data. Discrete mathematics has developed to 
formalize basic combinatorial structures. One of the most fundamental 
ways to express a discrete structure is as a graph.

The 18th-century East Prussian town of Königsberg (now Kaliningrad, 
Russia) lay on the bank of the Pregal River and two islands connected 
by seven bridges, as shown in Figure 27.2. The people of Königsberg had 

C
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D

FIGURE 27.2  Königsberg’s bridges.
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a question about walking routes crossing these bridges. The question 
was whether it was possible to start walking from anywhere in town and 
return to the starting place while crossing all seven bridges exactly once.

In 1736, the people of Königsberg wrote to a well-known Swiss math-
ematician, Leonhard Euler, about this question. Euler solved the problem 
by proving that such a walk was impossible by formalizing it as a graph 
problem. He replaced the islands and riverbanks by vertices (nodes) and 
the bridges by edges. Then a graph (multigraph) was obtained as shown in 
Figure 27.3. This graph is equivalent, for the purpose of the problem, to the 
map in Figure 27.2.

Graph G = (V, E) is a simple way of representing pairwise relations among 
a set of objects (nodes, vertices). It consists of a set of vertices V and a set of 
edges E. Each of the edges corresponds to a pair of distinct vertices. Thus, 
we represent an edge in E as a pair of vertices, joining the two vertices. 
If each edge in E is an ordered pair of vertices, then G is called a directed 
graph (or digraph). The graph given in Figure 27.3 has multiple edges, since 
there are two edges connecting vertices A and C, and two edges connect-
ing vertices A and D. This type of graph is usually called a multigraph. The 
degree of a vertex in a graph (multigraph) G is the number of edges in G that 
are incident to the vertex.

A path in a graph or a multigraph G consists of an alternating sequence 
of vertices and edges of the following form:

	 v0, e1, v1, e2, v2, …, en – 1, vn – 1, en, vn,

where each edge ei contains the vertices vi – 1 and vi. The number of edges in 
a path is called the length of the path. A path is called simple if each vertex 
appears in the path at most once. A circuit is a path whose first and last 
vertices are the same.

C

A B

D

FIGURE 27.3  The graph representing Königsberg’s bridges.
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The question about walking the bridges of Königsberg is considered to 
have been the first problem in graph theory, whose creation is credited 
to Euler. It is equivalent to the graph-theoretical problem of whether it is 
possible to find a circuit in the graph that contains each edge exactly once. 
Euler solved this problem by proving that such a traversal is possible if 
and only if the graph is connected and all of its nodes have even degrees. 
Königsberg’s bridge problem showed, in a sense, that a realistic problem 
may be modeled as a graph with some properties. In fact, many funda-
mental problems can be represented by graphs and then solved using 
appropriate graph algorithms.

Consider a problem for finding the shortest (least expensive) routes from 
the head office to each of its branch offices. The problem can be modeled as 
the single-source shortest-path problem in a weighted and directed graph, 
where each edge of the graph has a weight (i.e., the length or cost). The head 
office corresponds to the source vertex, and the length of the road directly 
connecting any two offices is represented by the corresponding weighted 
edge. An elegant algorithm to solve this problem was proposed in 1959 by 
Edsger Wybe Dijkstra (1930–2002) [14]. His algorithm for the problem is 
an example of a typical greedy algorithm. A greedy algorithm makes the 
choice that appears to be the best one at each step. It makes a locally opti-
mal choice with the expectation that this choice will eventually lead to a 
global optimal solution. The time complexity of Dijkstra’s algorithm for the 
shortest paths from the single source is O(|V|2 + |E|) = O(|V|2), where |V| 
is the number of vertices and |E| is the number of edges. For the weighted 
and directed graph in Figure 27.4, the shortest paths from vertex 1 to every 
other vertex are 1 → 3 → 2, 1 → 3, 1 → 5 → 4, and 1 → 5.
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FIGURE 27.4  A weighted and directed graph.
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It should also be mentioned that Dijkstra was well known for his criti-
cisms of the “Goto” statement in computer programming, writing his opin-
ions in various articles (e.g., “Go To Statements Considered Harmful,” 1968). 
He was a leading person of a programming methodology called structured 
programming. It allowed for more understandable programs, which were 
more easily modifiable, and also made it easier to prove their correctness. 
Dijkstra received the Turing Award for his contributions to algorithms, 
programming languages, and programming methodology in 1972.

Michael L. Fredman and Robert E. Tarjan (1948–) improved Dijkstra’s 
algorithm by using the Fibonacci heap data structure [13]. The time 
complexity of the improved version by Fredman and Tarjan for the 
shortest-path problem from the single source is O(|V| log |V| + |E|). Tarjan 
received the Turing Award for his contributions to the design and analysis 
of algorithms and data structures in 1986.

Dijkstra’s algorithm may not work properly if negative edge weights are 
allowed in the graph. The Bellman–Ford algorithm solves the single-source 
shortest-path problem in the general case in which edge weights may be 
negative. The algorithm is based on algorithms proposed in 1958 by an 
American applied mathematician, Richard Bellman (1920–1984), and its 
refined version was proposed in 1962 by an American mathematician, 
Lester R. Ford (1886–1967). The time complexity of the Bellman–Ford 
algorithm is O(|V||E|).

The problem of finding shortest paths between all pairs of vertices in 
a directed and weighted graph is also interesting. Of course, we can solve 
this problem by solving the single-source shortest-path problem for each 
vertex in the graph. This approach, however, is not recommended, because 
it is not the most efficient way to proceed. Floyd’s algorithm for the all-pairs 
shortest paths was proposed in 1962 by Robert Floyd (1936–2001); it uses 
a dynamic programming approach based on matrix multiplication. The 
algorithm uses an adjacency matrix representation of a graph. The input is 
an n × n matrix W representing the edge weights of an n-vertex directed 
graph G = (V, E), where W = (wij) is the weight of the edge from vertex i 
to vertex j.

Dynamic programming is a method of solving problems by breaking 
them down into overlapping subproblems. This method was originally 
proposed and developed by Bellman in the 1940s and refined by the early 
1950s. The overlapping subproblems are of sizes that are smaller than the 
original problem. Each subproblem is then recursively broken down into 
yet smaller subproblems. For example, suppose that we wish to find the 
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shortest path from A to B, and that possible intermediate vertices are M1, 
M2, and M3. Then, we choose the best intermediate vertex from M1, M2, 
and M3 by deciding the smallest value among dist(A, M1) + dist(M1, B), 
dist(A, M2) + dist(M2, B), and dist(A, M3) + dist(M3, B), where dist(X, Y) 
means the shortest distance from vertex X to vertex Y. Floyd received 
the Turing Award in 1978 for his contributions to methodologies for the 
design of efficient and reliable software [6, 9].

The algorithms for the shortest-path problems are just a few exam-
ples of a large family of graph algorithms. Graphs can elegantly model a 
variety of discrete and optimization problems. As another example, we 
describe the problem of scheduling classes in a university or meetings of 
government committees as a graph-theoretical problem. The vertices cor-
respond to the classes (the meetings), and two classes (two meetings) are 
connected by an edge if there is a student (or a government member) who 
wishes to attend both classes (meetings). If classes (meetings) are directly 
connected by an edge, then they should be held in different time periods 
or on different days. The problem is to schedule the classes (meetings) in 
a way that the conflicts are minimized. This problem can be modeled as a 
graph coloring problem, as shown in Example 27.1. It should be noted that 
most scheduling problems have been shown to be NP-complete and are 
therefore extremely difficult to solve.

Example 27.1

In a local government, there is an education committee (Ed), an 
environment committee (En), a finance committee (F), a housing 
committee (H), a security committee (S), a transportation commit-
tee (T), and a welfare committee (W). We wish to schedule the com-
mittee meetings so that the meetings of any two committees should 
be held on different days if there is a member belonging to both of 
them, and that the number of days when any meeting is held should 
be minimized. Each meeting corresponds to a vertex of the graph, 
and two vertices are connected by an edge if there is a member who 
belongs to both committees. Alternatively, we can describe this as a 
problem of finding the minimum number of colors needed to color 
each vertex of a graph so that any adjacent vertices should be colored 
differently. As shown in Figure 27.5, the minimum number of colors 
needed for this example is two. That is, it is possible that 2 days are 
sufficient to hold all of the meetings satisfying the condition.
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27.4 � RANDOMIZED ALGORITHMS
Usually computer algorithms behave predictably. In other words, most 
computer algorithms are deterministic. Given a particular input, a deter-
ministic algorithm will produce the same output, and the underlying 
machine will always work through the same sequence of computing states. 
Consequently, for a given input, a deterministic algorithm requires the 
same execution time. Except for randomized quicksort, all the algorithms 
in the previous sections were deterministic.

As described in Section 27.1, randomized quicksort, devised by Hoare 
in 1960, contains random choice operations. Consider sorting a set by 
randomized quicksort. We first choose a random element y from S, and 
then partition S – {y} into two sets S1 and S2, where S1 consists of those 
elements of S smaller than y, and S2 consists of remaining elements. S1 and 
S2 are then recursively sorted in the same way, eventually resulting in a 
sorted sequence of the elements of S. An algorithm containing random 
choice operations is called a randomized or probabilistic algorithm. The 
fundamental characteristic of randomized algorithms is that they may 
react differently if they are applied twice to the same input instance. Given 
the same input to the randomized quicksort, the computational time may 
vary different at different runs/executions, but the result obtained will 
be the same. However, sometimes, even the results may vary from one 
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FIGURE 27.5  A graph for a meeting schedule of a committee.
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execution to the next of randomized algorithms, depending on which 
computational steps were taken.

Randomness was first used in algorithms for the approximate solution 
of numerical problems. It can be traced back to the 19th century. For 
example, it was used in the experimental determination of π around the 
year 1870. Stanislaw Marcin Ulam (1909–1984), who was an American 
mathematician of Polish-Jewish origin, used randomized computations 
in atomic physics research during World War II in Los Alamos, New 
Mexico. He had coined the phrase “Monte Carlo algorithms,” which 
is still in use today. In  1976, a symposium entitled “Algorithms and 
Complexity: New Directions and Recent Results” was held at Carnegie 
Mellon University. At the symposium, Richard Karp (1935–) and Michael 
Oser Rabin (1935–) gave lectures on various topics. Karp presented an 
outline of randomized algorithms, and Rabin showed fundamental meth-
odologies of how to design efficient randomized algorithms. This sympo-
sium has had a great influence on the development of subsequent research 
in the area of randomized algorithms. Michael O. Rabin received the 
Turing Award in 1976 for his 1959 work with Dana Scott (1932–), “Finite 
Automata and Their Decision Problems” and his many other significant 
research contributions.

Let us consider the following simple problem to understand how ran-
domness produces good results:

Problem

Given a set S = a a an1 2, , ,�{ } of n integers, choose an integer in the 
upper half of S; i.e., it is greater than or equal to more than half of 
the elements in S.

In order to choose such an integer from S correctly, we need at 
least n/2 comparisons of integers of S. From the following way, n/2 
comparisons are sufficient to choose such an integer:

	 1.	Let x = a1 be a candidate of such an integer.
	 2.	For each i(i = 2, 3, …, n/2 + 1), compare x and ai, and if x < ai, 

then set x to be ai.

By the deterministic algorithm shown above, n/2 is the necessary 
and sufficient number of comparisons to choose an integer that 
surely belongs to the upper half of S.
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Now, we consider a randomized algorithm for this problem. Ran-
domly choose two integers and compare them. If we answer that the 
larger one belongs to the upper half of S, then the probability of the 
correctness is 1 – (1/2)2 = 3/4. Although we use only one comparison 
of integers, the result is not bad. Next, randomly choose one more 
integer from the rest of S and compare the larger one in the first 
comparison and the third one. If we answer that the larger one in 
the second comparison is an integer that belongs to the upper half of 
S, the probability of the correctness becomes 1 – (1/2)3 = 7/8. In this 
way, we can increase the probability of correctness by increasing the 
number of comparisons. In general, if we use k comparisons, the 
probability of the correctness is 1 – (1/2)k+1. For example, if we use 
nine comparisons in this way, the probability of an incorrect answer 
is about 1/1000. This randomized method is efficient, and we can 
increase the probability of the correctness as much as we like by 
simply increasing the computing time.

Randomized algorithms can be divided into two major classes: Las Vegas 
and Monte Carlo algorithms. While Las Vegas algorithms never return 
an incorrect answer, they sometimes may not give any answer at all. 
Randomized quicksort is an example of a Las Vegas algorithm. Note that 
randomized quicksort always gives the correct answer, although its run-
ning time for the same input may vary considerably from one execution 
to the next. The name Las Vegas algorithms comes from a popular city in 
Nevada, which is internationally famous for gambling. Las Vegas algo-
rithms were first introduced in 1979 by the Hungarian mathematician 
Laszlo Babai (1950–) for the graph isomorphism problem.

On the other hand, a Monte Carlo algorithm always gives an answer, 
but not necessarily a correct one. The probability of success by a Monte 
Carlo algorithm increases as the algorithm is run repeatedly. Monte Carlo 
is a part of Monaco, which is surrounded by France and the Mediterranean 
Sea. It is also well known for its casinos and gambling.

A primality test is an algorithm for determining whether a given num-
ber is a prime. Primality testing has applications in many diverse areas, for 
example, public-key cryptography [8, 9] (see Chapter 30). A naïve primality 
test is as follows: Given an input number, check whether any integer from 
2 up to the square root of n can be a factor of n. If n is a composite, then it 
can be factored into two integers. This naïve method takes an exponential 
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time in log n for input n. Most popular and practically efficient primality 
tests are probabilistic ones. The Miller–Rabin primality test (1976; Gary 
Lee Miller) and Solovay–Strassen primality test (1977; Robert M. Solovay, 
1938–; Volker Strassen, 1936–) are sophisticated Monte Carlo algorithms 
that usually produce good results. The running time of these algorithms 
is O((log n)3).

We can consider some complexity classes based on randomized algo-
rithms. The following are examples of well-known classes [15]:

	 1.	The class ZPP (for zero-error probabilistic polynomial) is the class 
of languages that have Las Vegas algorithms running in expected 
polynomial time.

	 2.	The class RP (for randomized polynomial) is the class of languages 
L that have a randomized algorithm A running in polynomial time 
such that for any input x:

	 a.	 If x is in L, then the probability that x is accepted by A is at least 1/2.

	 b.	 If x in not in L, then the probability that x is accepted is 0.

	 3.	The class BPP (for bounded-error probabilistic polynomial) is the 
class of languages L that have a randomized algorithm A in polyno-
mial time such that for any input x:

	 a.	 If x is in L, then the probability that x is accepted by A is at least 3/4.

	 b.	 If x is not in L, then the probability that x is accepted by A is at 
most 1/4.

Randomized quicksort is a ZPP algorithm. There are several interest-
ing open problems regarding the relationships among randomized com-
plexity classes, for example, the question of whether BPP ⊆ NP is open.
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C h a p t e r  28

Parallel and 
Distributed Computing

28.1 � DAWN OF PARALLELISM
Parallel computing is a form of computation in which more than one 
calculation can be concurrently carried out. A parallel computer is a com-
puter system with multiple processing elements, working in parallel, to 
solve a problem. Before the middle of the 1950s, all commercial computers 
were traditional serial computers.

IBM 704 was introduced in 1954. It was the first mass-produced com-
puter with floating-point arithmetic hardware and could execute up to 
4000 instructions per second. IBM 704 was a very successful commercial 
computer. However, after the middle of the 1950s some research projects 
needed much faster computers. For example, the University of California 
Radiation Laboratory (UCRL) in Livermore, California, and Los Alamos 
Scientific Laboratory (LASL) wanted high-performance computers for 
their projects. In April 1955, IBM submitted a proposal to UCRL, but 
UCRL rejected it, instead getting in contact with Remington Rand 
(UNIVAC). Then IBM submitted a proposal of STRETCH (also known as 
IBM 7030) to LASL in 1956, and was awarded the contract with LASL for 
the high-performance computer system.

STRETCH was an amazing computer system in the 1950s that con-
tained many high-performance features, such as local concurrency, 
nonlocal concurrency, multiprogramming, a look-ahead approach to start 
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memory fetches early, and pipeline utilization. John Cocke (1925–2002) 
contributed to developing these ideas. From these features, we can say that 
STRETCH was an aggressive computer system with single-processor par-
allelism. We may therefore consider that the start of the STRETCH project 
is the dawn of parallelism. The STRETCH design had its roots in 1954 
from initial studies on advanced concepts for high-performance comput-
ing by Stephen W. Dunwell (1913–1994) and Werner Buchholz (1922–). 
The STRETCH project started formally in 1955 after UNIVAC won the 
contract to build the Livermore Automatic Research Computer (LARC). 
After losing the competition on LARC, IBM proposed a high-performance 
computer system that was 100 times faster than that of IBM 704 to the Los 
Alamos Scientific Laboratory in 1955. John Cocke won the Turing Award 
for his large contribution to computer architecture and compiler optimi-
zation in 1987.

In 1961, actual benchmarks indicated that the performance of the IBM 
7030 was only about 30 times faster than that of the IBM 704. While the 
IBM 7030 was not considered successful, it spawned technologies incor-
porated in future computer systems. The STRETCH was conceived as a 
supercomputer since its high-performance and new concepts of advanced 
technology were far beyond the level of existing computer systems in 
the 1950s. Many advanced technologies developed with the STRETCH 
project were incorporated in later supercomputer designs, such as IBM 
System/360 models, IBM System/370 models, and the IBM 3090 series. As 
the editor, Werner Buchholz published a book about the STRETCH proj-
ect in 1962 [7]. He is the person who coined the term byte in 1956, a unit 
of digital information (1 Byte = 8 bits). The first STRETCH was delivered 
to Los Alamos Scientific Laboratory (LASL) in 1961, and used until 1971. 
The second STRETCH was delivered to the U.S. National Security Agency 
as part of the HARVEST system in 1962. Altogether, 8 STRETCH systems 
(six in the United States, one in the UK, and one in France) were sold from 
1961 to 1963.

Frances E. Allen (1932–) joined IBM in 1957 and ended up staying there 
for 45 years. Her work has had strong impacts on compiler research and 
practice. She introduced many of the abstractions, algorithms, and imple-
mentations that laid the groundwork for automatic program optimization 
technology. Allen developed and implemented her methods as part of the 
compiler for the IBM STRETCH-HARVEST system. She became the first 
woman to win the Turing Award in 2006.
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28.2 � PARALLEL COMPUTERS
Physical limitations on processing speeds forced high-performance 
computations to be targeted at the exploitation of parallelism. Parallel 
computer architecture has grown in the form of multiple microprocessors.

Daniel L. Slotnick (1931–1985) studied mathematics at Columbia Uni-
versity and New York University (now called the Courant Institute at New 
York University). In 1957, he joined IBM, where he wrote a joint paper 
with John Cocke on the use of parallelism in numerical calculations. 
Slotnick was then employed by the Westinghouse Electric Corporation 
in Baltimore, Maryland, where he was given the opportunity to pursue 
his ideas on parallel computers. He designed the Solomon computer and 
built the first parallel processor prototype using first a 3 by 3 and then a 
10 by 10 processor array. In the 1960s, 258 processor elements were used 
in the Solomon computer. These processor elements could run a single 
instruction at a time in parallel. The concept of applying a single instruc-
tion to a large number of data elements is now commonly referred to as 
single instruction, multiple data (SIMD). In 1964, a prototype of Solomon 
was built under a contract from the U.S. Air Force, but the contract ended 
and Westinghouse gave up developing the Solomon system any further.

In 1965, Slotnick moved to the University of Illinois at Urbana-Champaign 
and started the ILLIAC IV project with Burroughs under the sponsorship 
of the government Advanced Research Project Agency (ARPA). Among its 
technological innovations, ILLIAC IV was the first large computer system 
that employed semiconductor primary memory. It was a SIMD computer 
for array processing. The ILLIAC IV design featured high parallelism with 
up to 256 processors that were used to allow it to work on large data sets. 
That technique would later be known as vector processing. After many 
problems, in 1970, ILLIAC IV was transferred from the campus of the 
University of Illinois at Urbana-Champaign to Moffett Field, California, 
NASA Ames Research Center. The first run of ILLIAC IV was in 1973, 
but it was not fully operational until 1975. Its performance was about 
200 MFLOPS (200 million floating-point operations per second) and its 
clock frequency was 13 MHz. The ILLIAC IV was credited as the fast-
est computer in the world until 1981. The operation of ILLIAC IV was 
eventually ended in 1982. The ILLIAC IV chassis is now displayed at the 
Computer History Museum in Mountain View, California.

Cray-1 was the first commercially successful supercomputer and was 
manufactured by Cray Research, Inc., founded in 1972 by Seymour Roger 
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Cray (1925–1996). A supercomputer is a computer that is at the most 
advanced frontline of current processing capacity. The architecture of 
Cray-1 was designed mainly by Seymour Cray. The first Cray-1 was lent 
to Los Alamos National Laboratory in 1976 for a 6-month trial. The first 
full system of Cray-1 was sold to the National Center for Atmospheric 
Research (NCAR) in 1977. Cray-1 adopted integrated circuits (ICs). 
About 200,000 gates were used in Cray-1, and these ICs were supplied 
by Fairchild Semiconductor and Motorola. Over 80 Cray-1 systems were 
sold, and the company was very successful in the supercomputer market. 
When Cray-1 was released, it beat almost every computer in computing 
speed. Only ILLIAC IV was nearly at the same level of performance, but 
its operational cost was much behind that of Cray-1. The peak speed of the 
first Cray-1 was 250 MFLOPS.

Cray-1 was succeeded in 1982 by the 800 MFLOPS Cray X-MP, the 
first Cray multiprocessing computer. In 1985, the very advanced Cray-2 
appeared. Its peak performance was at first 1.9 GFLOPS (1.9 × 109 
floating-point operations per second), and improved to 3.9 GFLOPS. Cray-1s 
are now on display at a number of museums (e.g., Computer History 
Museum in Mountain View, California, Science Museum in London, and 
Deutsches Museum in Munich).

In the early and mid-1980s, a standard supercomputer was a computer 
system with a modest number of vector processors, typically in the range 
of 4 to 16, working in parallel. In the later 1980s and 1990s, a supercom-
puter became a massive parallel processing system with a thousand or 
more processing units. Traditionally, U.S. computer companies such as 
Cray, IBM, and Intel had dominated in the supercomputer market. In the 
1990s, Japanese computer companies NEC, Fujitsu, and Hitachi came up 
to the top group in the supercomputer market, but in the late 1990s, Hitachi 
and Fujitsu moved down from the top group, and in 2002, NEC lost its 
top position to IBM Blue Gene/L. Most modern supercomputers are now 
highly tuned computer clusters using commodity processors combined 
with custom requests. In 2010, Tianhe-1A at National Supercomputing 
Center, Tianjin, China, became the fastest supercomputer in the world. 
The speed of Tianhe-1A is 2.5 PFLOPS (2.5 × 1015 floating-point opera-
tions per second), whereas the speed of the second fastest supercomputer, 
Cray Jaguar, is 1.76 PFLOPS. In 2011, the K computer, manufactured by 
Fujitsu, became the world’s fastest supercomputer with a computation 
speed of 8 PFLOPS, but in 2012 the IBM Sequoia became the world’s fastest 
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supercomputer. The K computer, currently installed in Kobe, Japan, is the 
fourth fastest supercomputer in the world as of 2013 [8].

Supercomputers are used for scientific research in such fields as weather 
forecasting, climate research, quantum physics, molecular modeling, bio-
logical macromolecules, and physical simulation, but also for intelligence 
and military uses.

28.3 � PARALLEL ALGORITHMS
A parallel algorithm is a procedure that executes pieces of work at the same 
time on many different processing devices. Some algorithms are easily 
divided into pieces of work to be allocated to different processors, but some 
algorithms are not easy to do so. It is convenient for designing an efficient 
parallel algorithm if we have a suitable model of the parallel computer.

A widely accepted model for designing and analyzing sequential algo-
rithms consists of a central processing unit with a random access memory 
(RAM) attached to it. This model is also called the von Neumann model. 
The RAM model has been successful in estimating the performance of 
sequential algorithms. We can consider that it is an efficient and useful 
bridge between software and computer hardware. It is not easy to give a 
commonly accepted model for parallel computation due to the presence 
of a set of interconnected processors and their concurrency. The perfor-
mance of a parallel algorithm usually depends on various factors, such as 
processor allocation, job scheduling, communication, and synchronization 
among processors working concurrently.

One of the commonly used models for parallel computing has been the 
shared memory model. It consists of a number of processors, each of which 
has its own local memory and can execute its own local program. All of the 
processors can communicate by exchanging data through a shared mem-
ory unit. There are two basic types of the shared memory model. If all the 
processors operate synchronously under the control of a common clock, 
the model is called the parallel random access machine (PRAM) model. 
The other type is called the asynchronous model. In  the asynchronous 
model, each processor operates under its own clock. A PRAM is considered 
a parallel computer that operates multiple instructions on multiple data 
(MIMD type). That is, each processor may execute multiple instructions on 
data different from those executed by any other processor during any given 
time unit. A general view of a shared memory model with n processors is 
shown in Figure 28.1.
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The network model has also been widely used for parallel computing. 
In particular, a network model may be suitable in the case where the com-
munication costs among processors are considered to be large. A network 
can be viewed as a graph G = (V, E), where each node in V represents 
a processor and each edge (i, j) in E represents a communication link 
between processors i and j. Each processor is assumed to have its own 
local memory and control unit, and no shared memory is available. Data 
can be exchanged between two processors through the communication 
link. The network model incorporates the topology of the interconnection 
between the processors into the model itself. The linear processor array, 
the tree-connected array, the two-dimensional mesh (it is also called the 
mesh-connected processor array), and the hypercube are examples of 
widely used topologies. An example of the mesh-connected processor 
array is shown in Figure 28.2.

There is a very large body of literature on the subject of PRAM algo-
rithms and network model algorithms. A lot of parallel algorithms have 
appeared since the middle 1970s until today. Some of them are very smart, 
and some of them are very sophisticated. Here, we describe two funda-
mental examples of parallel algorithms.

Parallel merge sorting. The parallel merge sort is based on a merg-
ing procedure that is used to sort successively larger and larger non-
overlapping subsequences until the whole sequence is sorted. The 
sequence of operations by the parallel merge sort algorithm can be 
represented on a binary tree as follows. Let T be a balanced binary tree 
with n leaves. The elements of the sequence are distributed among 
leaves. The nodes at height 1 represent the lists that we obtained by 
merging the pairs of consecutive elements contained in the children 
nodes. In general, each internal node represents the sequence that 

Shared Memory

P1 P2 Pn

FIGURE 28.1  The shared memory model.
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we obtained by merging the subsequences generated at the children 
nodes. Hence, each internal node represents the sorted list of the ele-
ments sorted in the subtree rooted at the node. If we use the optimal 
O(log log n) time merging procedure proposed by Leslie G. Valiant 
(1975), we obtain an O(log (log log n)) time parallel sorting algo-
rithm. The total number of operations of the algorithm is O(n log n). 
The pipelined merge sorting algorithm, called Cole’s merge sort, was 
developed in 1988 by Richard Cole (1956 –).

List ranking. The list ranking problem is often encountered in the 
design of parallel algorithms as the fundamental technique. It is 
defined as follows: given a linked list L with n nodes, we would like 
to compute an array R such that R(i) is the distance of node i from 
the end of L. This problem was first proposed in 1979 by J. C. Wylie 
(1952 –). The following is a simple parallel list ranking algorithm:

FIGURE 28.2  The 4 × 4 mesh-connected processor array.
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	 begin
	 for i := 1 to n do in parallel
		  if s(i) ≠ 0 then R(i) := 1
		  else R(i) := 0;
	 for i := 1 to n do in parallel
		  begin
			   q(i) := s(i)
			   while q(i) ≠0 and q(q(i)) ≠0 do begin
			   R(i) := R(i) + R(q(i));
			   q(i) := q(q(i)) end
		  end
	 end;

The simple list ranking algorithm shown above generates R(i) of each 
node i in O(log n) time using O(n log n) operations. The algorithm can 
be implemented to run on the PRAM model. The optimal list ranking 
algorithm that takes O(log n) time and O(n) operations was first dis-
covered by Richard Cole and Uni Viskin (1952–).

The computational complexities of parallel algorithms have also been 
much studied. In the case of sequential algorithms, polynomial time 
solvable problems are considered to be feasible. For parallel algorithms, 
we use the different definition for the quickly solved standard. The com-
plexity class, Nick’s class (NC), of problems quickly solved on a parallel 
computer was named by Stephen Cook after Nicholas Pippenger (1946–), 
who had done extensive research on circuit complexity. If a problem is 
solved by a Boolean circuit with polylogarithmic depth (O(logc n)) and 
polynomial size (O(nk)) for some constants c and k, we say that the prob-
lem belongs to NCc. It is obvious that NC1 ⊆ NC2 ⊆ … ⊆ NCc ⊆ …. Nick’s 
class NC is defined to be NC1 ∪ NC2 ∪ … ∪ NCc ∪ …. In other words, 
if a problem belongs to NC, it can be solved in time O(logc n) using O(nk) 
parallel processors for some constants c and k. One of the major open 
problems is whether or not every class containment in the NC hierarchy 
is proper. That is, it is open to whether the following proper inclusion 
relation holds true:

	 NC1 ⊂ NC2 ⊂ … ⊂ NCc ⊂ … ⊂ NC.

In 1994, Christos H. Papadimitriou (1950–) showed that NC1 ⊆ L ⊆ NL 

⊆ NC2, where L (also known as LSPACE) is the complexity class containing 
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decision problems that can be solved by a deterministic Turing machine 
using a logarithmic amount of memory space. NL is the complexity class 
containing decision problems that can be solved by a nondeterministic 
Turing machine using a logarithmic amount of memory space.

More material about parallel algorithms can be found, for example, in 
[1, 2].

28.4 � DISTRIBUTED COMPUTING
A distributed system originally referred to computer networks where 
individual computers were physically distributed within some geographi-
cal area. The term distributed system is now used in a wider sense. Even 
if some autonomous processors run on the same physical computer and 
they interact with each other by message passing, we may consider such 
a system a distributed system. The study of distributed algorithms has its 
roots in designing operating systems for distributed systems in the 1960s.

The asynchronous network model and the asynchronous shared 
memory model are widely used in the area of distributed computing. A 
distributed system is a collection of individual computing devices called 
processes or processors together with communication channels. Processes 
can communicate with other processes through communication channels 
in a network or through the shared memory as a communication model. 
The shared memory is an abstraction of asynchronous interprocess com-
munication. Each process in a distributed system is generally performed by 
its own program, but it is occasionally requested to collaborate with other 
processes. In the following, we mainly describe distributed computing on 
the shared memory model.

Interaction between a process and its corresponding user is by input 
actions from the user to the process and by output actions from the process 
to the user. We may consider each process in the distributed system to be 
a state machine. All communication among the processes is via the shared 
memory (also called variables). This model was introduced by Nancy 
A. Lynch (1948–) and Mark R. Tuttle (1962–) in 1987, and it is known 
as I/O automaton [2]. Two types of the shared memory model have been 
widely used. One is the multiwriter/reader shared memory, and the other 
is the single-writer/multireader shared memory. In the multiwriter/reader 
shared memory model, the same shared variable may be read or written 
by different processes. On the other hand, in the single-writer/multireader 
shared memory model, each shared variable can be written by only one 
process, but may be read by any process.



280    ◾    Computing﻿

The behavior of operational executions in a distributed system should 
be required to be consistent for all processes and interprocess communi-
cation. We therefore need a unified theory of shared memory consistency. 
In 1986, Leslie Lamport (1941–) defined three categories, safe, regular, and 
atom, for shared variables according to possible assumptions about what 
can happen in the concurrent case of read operations and write operations 
[9]. A shared variable is safe if every read operation that does not overlap 
with write operations returns the last value written to the shared variable. 
On the other hand, every read operation that overlaps with one or more 
write operations may return any value from the domain of the shared 
variable. A shared variable is said to be atomic if it is regular with the 
additional property that read operations and write operations behave as if 
they occur in some total order. In a distributed system, many distributed 
algorithms have been designed under the assumption that all shared vari-
ables are atomic. That is, in the design of most distributed algorithms, we 
assume that there is a possible linearization of the temporal order of read 
operations and write operations such that the linearization is consistent 
with the actual behavior of the system, although these operations may be 
physically overlapped. Even if different processes try to write on the same 
shared variable at nearly the same time, one process’s writing precedes the 
other process’s writing. This means that the contents of the shared variable 
by the earlier one are changed to the value written by the later one even if 
these two events occur very closely.

Mutual exclusion is one of the most fundamental problems for dis-
tributed computing. Historically, it was first seriously studied in 1965 by 
Edsger W. Dijkstra (1930–2002) as an important problem for a distrib-
uted operating system [10]. It is the problem of how to allocate a single 
individual, nonshareable resource among users. A user with access to the 
resource is modeled as being in a critical region (i.e., admitted state to use 
the resource). When a user is not involved in any way with the resource, 
it is said to be in the remainder region. In order to gain admittance to its 
critical region, a user executes a trying protocol. The duration from the 
state of executing the trying protocol to the entrance of the critical region 
is called the trying region. After the end of the use of the resource by a user, 
it executes an exit protocol. The duration of executing the exit protocol is 
called the exit region. Each user follows a cycle, moving from its remainder 
region to its trying region, then to its critical region, then to the exit region, 
and finally back to its remainder region. This cycle can be repeated.
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The mutual exclusion problem is to design a fair and efficient algo-
rithm to decide the temporal order among users wishing to use a shared 
resource. The distributed system to solve the mutual exclusion problem 
should satisfy the following conditions:

	 1.	There is no reachable system state in which more than one user is in 
the critical region.

	 2.	 If at least one user is in the trying region and no user is in the critical 
region, then at some later time point some user enters the critical region.

	 3.	If a user is in the exit region, then at some later time point some user 
enters the remainder region.

If a mutual exclusion algorithm satisfies the following two additional 
conditions, it is said to be lockout-free:

	 4.	If all users always return the resource, then any user that reaches the 
trying region eventually enters the critical region.

	 5.	Any user that reaches the exit region eventually enters the remain-
der region.

An early algorithm for the mutual exclusion by Dijkstra guarantees 
mutual exclusion, but it does not guarantee lockout freedom. That is, 
Dijkstra’s algorithm may allow one user to be repeatedly granted access 
to its critical region, while other users trying to gain access never succeed 
in doing so. Subsequently, a number of improved mutual exclusion algo-
rithms have been proposed.

Other typical problems in a distributed system are the leader election 
problem, consensus problem, resource allocation problem, synchronizer con-
struction problem, concurrent snapshot problem, and bounded time-stamp 
problem. These problems have been extensively studied in distributed 
environments since the 1970s. More material about distributed comput-
ing and algorithms can be found, for example, in [3–6].
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C h a p t e r  29

Computer Networks

Sputnik 1 was the first Earth-orbiting artificial satellite launched by the 
Soviet Union on October 4, 1957. Its success was an astonishing shock 
to the United States. This incident is considered the start of the Space 
Race during the Cold War. Explorer 1 was the first Earth-orbiting artifi-
cial satellite launched by the United States on January 31, 1958. Both the 
United States and the Soviet Union thought that the development of space 
technology could provide a huge diplomatic and military advantage [3–5].

In February 1958, the Advanced Research Projects Agency (ARPA) 
was established in the U.S. Department of Defense. Its foundation was 
motivated by American competition with the Soviet Union’s launch of 
Sputnik 1. The United States was trying to develop a defense system against 
ballistic missile attacks. ARPA promoted research projects for improv-
ing U.S. military technology. In 1972, ARPA was renamed the Defense 
Advanced Research Projects Agency (DARPA), and then in 1993 reverted 
to ARPA. It was finally renamed DARPA in March 1996 [6].

29.1 � PACKET SWITCHING NETWORKS
On May 28, 1961, the radio relay stations at Cedar Mountain, Utah, and 
Wendover, Nevada, were blown up by radicals and virtually destroyed. 
More than 2200 telephone and telegraph circuits and two television chan-
nels were interrupted. The U.S. government was urged by this incident 
to develop secure and reliable communication systems that would be 
invulnerable to communication facility damage. The U.S. government 
transferred its Command and Control Project from Defense Research 
Engineering to ARPA. In the same year, ARPA commissioned the RAND 
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Corporation to conduct a research project for the construction of invul-
nerable communication systems that could tolerate nuclear missile attacks. 
The RAND Corporation (Research and Development Co.) is a nonprofit 
global policy think tank that was formed in 1946 to conduct research and 
analysis for the U.S. armed forces [9].

Paul Baran (1926–2011) was a Polish-born American engineer who 
joined the RAND Corporation in 1959 to work on a project to design 
a robust communication system that could maintain communication 
between endpoints even in the event of serious damage from explosions 
or attacks. The concepts of packet switching were first explored by Baran 
in the early 1960s. Independently, Donald Davies (1924–2000) at the 
National Physical Laboratory in the UK and Leonard Kleinrock (1934–) 
at MIT also developed similar ideas [8].

Packet switching is a digital networking communication method that 
groups all transmitted data regardless of content, type, or structure into 
suitably sized blocks called packets. The principal goals of packet switch-
ing are to optimize the utilization of available link capacity, minimize 
response times, and increase the robustness of communication against the 
damage of nodes or lines in a communication network [2]. Baran may have 
obtained his ideas for packet switching techniques from the observation 
of the similarity between biological neural networks and communication 
systems for telephones and telegraphs. Baran and his team at the RAND 
Corporation developed simulation tests of the connectivity among nodes 
in a communication network. A network with at least three connected 
links at each node showed a significant increase in resilience even when 
many nodes were eliminated. Details of the designs of robust commu-
nication networks using packet switching techniques were reported in 
“On Distributed Communication,” which was published by the RAND 
Corporation and submitted to ARPA in 1964 [10, 11].

Data communications based on the idea of circuit switching, such as 
in traditional telephone circuits, were possible only between the two con-
nected parties. With packet switching, however, data packets from one 
party could be transmitted to many different destinations, and each data 
packet could be routed independently [2].

29.2 � ARPANET AND CSNET
Joseph Carl Robnett Licklider (1915–1990) studied physics and mathematics 
(B.A. in 1937) and psychology (M.A. in 1938) at Washington University 
in St. Louis. He received his Ph.D. in psychoacoustics from Rochester 
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University in 1942. Around 1950 he became interested in information 
technology, and in August 1962 he conceived his earliest ideas for a com-
puter network allowing communications among computer users. Licklider 
wrote a series of memos about his concept of computer networks, where 
everyone in the world could be connected and access programs and data 
at any site from anywhere. He called his computer network concept the 
Intergalactic Computer Network (Galactic Network for short) [14].

In 1962, Licklider became the head of the computer research group 
at ARPA, called the Information Processing Technology Office (IPTO), 
where he developed his ideas on how to establish a time-sharing network 
of computers. He discussed the Galactic Network with young computer 
scientists at MIT. In 1963, Licklider started to discuss his vision with 
Laurence G. Roberts (1937–), Ivan Sutherland (1938–), and Robert Taylor 
(1932–). Licklider contracted with MIT, UCLA, and BBN Technologies to 
start working on computer networks. Eventually, his vision of computer 
networks led to the establishment of the ARPANET, the world’s first oper-
ational packet switching network. Today, Licklider is remembered as one 
of the pioneers of the Internet [12, 14].

Ivan Sutherland used the TX-2 at MIT to write graphical programs 
for computer-aided design. He received the Turing Award in 1988 for the 
invention of Sketchpad, an early predecessor to a sort of graphical user 
interface. Sutherland became the head of IPTO at ARPA when Licklider 
returned to MIT in 1964. Robert Taylor (1932–) was appointed the head 
of IPTO at ARPA when Sutherland moved to Harvard University in 1965.

The ARPANET project actually started in December 1966. Robert 
Taylor had three computer terminals, each connected to different com-
puters: the first for the System Development Corporation (SDC) Q-32 in 
Santa Monica, the second for Project Genie at the University of California, 
Berkeley, and the third for Multics at MIT. Taylor thought that rather than 
having three terminals, there ought to be just one terminal capable of 
connecting anywhere one would want to communicate. That idea was the 
fundamental concept of the ARPANET [12].

In 1968, Robert Taylor proposed a plan for a computer network com-
posed of small computers, called interface message processors (IMPs). The 
IMP at each node would work as a gateway (router) and would perform the 
store-and-forward packet switching function. The host computers were 
connected to the IMPs via a communication interface. The first-generation 
IMPs were initially built by BBN Technologies using Honeywell DDP-516 
computers. Each IMP could support up to four local host computers, and 
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could communicate with up to six remote IMPs. The initial ARPANET 
consisted of the IMPs at the University of California, Los Angeles (UCLA), 
Stanford Research Institute, University of California, Santa Barbara 
(UCSB), and University of Utah [2, 12].

On October 29, 1969, the first message on the ARPANET was transmit-
ted from the SDS Sigma 7 host computer at UCLA to the SDS 940 host 
computer at Stanford Research Institute. By December 5, 1969, the entire 
four-node network (the IMPs at UCLA, Stanford Research Institute, UCSB, 
and the University of Utah) was established. Thereafter, each year the 
ARPANET grew significantly, and by 1981, the number of host computers 
connected to the ARPANET exceeded 200 sites [12].

Robert Elliot Kahn (1938–) and Vinton Cerf (1943–) are American com-
puter scientists who invented the Transmission Control Protocol (TCP) and 
the Internet Protocol (IP), currently the fundamental communication pro-
tocols for the Internet. The set of these protocols is referred to as TCP/IP. 
Kahn, who began to work at IPTO in ARPA in 1972, demonstrated the 
ARPANET by connecting 20 different computers at the International 
Computer Communication Conference. Thereafter he worked to develop 
the TCP/IP protocols. In 1973, Vinton Cerf joined Kahn’s team on the 
TCP project, and they completed an early version of TCP. Later it was 
separated into two layers, where the most fundamental functions of TCP 
were moved to the Internet Protocol (IP). Thus, TCP works as an inter-
mediary level between an application program and the Internet Protocol. 
Kahn and Cerf received the Turing Award in 2004 for their pioneering 
work on the Internet [12, 15, 16].

The CSNET was established in Madison, Wisconsin, in 1979 by 
Lawrence Landweber (1941–). He invited a group of colleagues from other 
universities as well as representatives from DARPA and the National 
Science Foundation (NSF) to discuss the possibility of constructing a com-
puter network connecting computer science departments. MIT, Carnegie 
Mellon University, Stanford University, and some other major universities 
already used the ARPANET. However, many participants at the meeting 
in Madison were not affiliated with these major universities. They thought 
that computer network access would be very important for all computer 
science departments and believed that computer network communication 
could significantly improve the research environment for scientists.

Landweber organized an electronic mail facility for theoretical com-
puter scientists called THEORYNET. It provided members with a mail-
box on a central computer at the University of Wisconsin. The members 
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accessed it from terminals over dial-up phone lines or through the Telnet 
public packet-switched network. THEORYNET successfully attracted 
many users, and as a result, Landweber wanted to extend THEORYNET to 
include file transfer, remote login, and faster message delivery. He extended 
the original CSNET proposal to a consortium of universities. The CSNET 
proposal gained the support of DARPA and NSF in 1980. By 1981, three sites 
(the University of Delaware, Princeton University, and Purdue University) 
had joined CSNET. By 1982, 24 sites had joined, which expanded to 84 sites 
by 1984, including one in Israel. Soon thereafter, connections were further 
expanded to computer science departments in Australia, Canada, France, 
Germany, Japan, and Korea. During this period, a gateway node was 
installed at the University of Wisconsin to provide access to the ARPANET. 
The ARPANET and CSNET were the forerunners of the Internet [13].

29.3 � WORLD WIDE WEB
The World Wide Web (WWW; commonly known as the Web) is a system 
of interlinked hypertext documents that can be accessed via the Internet. 
It rapidly became popular among Internet users in the 1990s.

The conceptual groundwork for the World Wide Web started with an 
American engineer and science administrator, and one of the creators of 
the National Science Foundation, Vannevar Bush (1890–1974), who intro-
duced a conceptual machine called the Memex (derived from “memory 
extension”) during the 1940s. Bush imagined a microfilm-based device in 
which all his books, documents, and records could be stored. It would be 
mechanized for high-speed searching and flexibility. The Memex would 
serve as a supplement to the user’s memory, where private files and data 
were stored in such a way that any item could lead to another related item 
quickly, much like the way hyperlinks work on the Internet. He wrote 
about the Memex in 1945 in a seminal article entitled “As We May Think” 
published in the Atlantic Monthly. In this article, he described his idea 
as an adjustable microfilm viewer. The Memex would work as a memory 
bank to organize and retrieve data through the use of “associative trails.” 
It was somewhat analogous to the structure of some present-day databases 
and that of the present World Wide Web [18].

Theodor Holm Nelson (1937–), an American sociologist, philosopher, 
and pioneer of information technology, coined the terms hypertext and 
hypermedia in 1963 to describe the new paradigms for building tools that 
would transform our way of reading and writing. He published his ideas 
in the article “A File Structure for the Complex, the Changing, and the 
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Intermediate” for the 20th National Conference of ACM in 1965. Nelson 
thought that the concepts of Bush’s Memex could be better applied to com-
puter networks than to photoelectrical or mechanical devices. The main 
thrust of his work has been to make information easily accessible to ordi-
nary people. Nelson founded Project Xanadu in the 1960s, intending to 
create a computer network with a simple user interface. The project name 
Xanadu came from the poem “Kubla Khan” by Samuel Taylor Coleridge 
(1772–1834). Xanadu was the summer capital of Kublai Khan’s Yuan 
Empire, which Coleridge described as a dreamland. The poem suggested 
to Nelson an image of a vast storehouse of memory [19].

In 1974, Nelson published his book Computer Lib/Dream Machine, 
where he defined hypertext as nonsequential writing. Ordinary writing is 
sequential for two reasons. First, it grows out of speech and speech making, 
and second, because books can only be read conveniently in sequence. 
A footnote is a break from a sequence, but it cannot really be extended. 
Writers do better if they do not have to write sequentially, and readers do 
better if they do not have to read in an imposed sequence, but may estab-
lish impressions, jump around, and try different pathways until they find 
the ones they want to follow and study most closely. Nelson devoted much 
of his time to working on and advocating for Project Xanadu. He intended 
to establish an ideal new publishing system for the digital age, although 
Project Xanadu was not quite successful from a practical viewpoint. His 
visionary design was later realized by the invention of the World Wide 
Web by Tim Berners-Lee (1955–) in 1989.

Tim Berners-Lee, an English engineer and computer scientist, studied 
at Queen’s College, University of Oxford, from 1973 to 1976. While work-
ing for CERN (Conseil Europeen pour la Recherche Nucleaire, or the 
European Organization for Nuclear Research) from June to December 
1980, he proposed a project based on the concept of hypertext to facilitate 
sharing and updating information among researchers. During that period, 
he built a prototype system named ENQUIRE, which allowed links to be 
made between arbitrary nodes in a computer network [7, 20].

In 1989, Berners-Lee had an opportunity to join hypertext with the 
Internet. He wrote his initial proposal in 1989 for what would eventually 
become the World Wide Web. In 1990, Berners-Lee and a Belgian com-
puter scientist, Robert Cailliau (1947–), produced a revised version of 
the proposal. They used similar ideas to those in the ENQUIRE system. 
Then they designed and built the first Web browser with the function of 
an editor, and the first Web server. Berners-Lee’s breakthrough was to 
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combine hypertext with the Internet. As described in his book Weaving 
the Web: The Original Design and Ultimate Destiny of the World Wide Web 
by Its Inventor [21], he suggested that a marriage between the two tech-
nologies was possible to members of both technical communities. In the 
process of working on his project, Berners-Lee developed three essential 
technologies [17, 20, 21]:

	 1.	A system of globally unique identifiers for resources on the Web 
and elsewhere, the Universal Document Identifier (UDI), later 
known as Uniform Resource Locator (URL) and Uniform Resource 
Identifier (URI)

	 2.	The publishing language Hypertext Markup Language (HTML)

	 3.	The Hypertext Transfer Protocol (HTTP).

In 1993, CERN announced that the World Wide Web would be free 
to anyone, requiring no fees due. Since the World Wide Web was non
proprietary, it was possible to develop servers and clients independently 
and add extensions without licensing restrictions. In 1994, the World 
Wide Web Consortium (W3C) was founded by Berners-Lee in the 
Laboratory for Computer Science at MIT (LCS/MIT) with support from 
DARPA. A year later, a second website was founded at IRIA (the French 
national computer science laboratory) with support from the European 
Commission DG (Directorates—General Information Society of the 
European Commission). By the end of 1994, the total number of web-
sites was still quite small compared to the present. Since the mid-1990s, 
the number of websites has increased rapidly. Connected by the existing 
Internet, websites were created around the world, and international stan-
dards for domain names and HTML were added. The World Wide Web 
enabled the spread of information over the Internet through an easy and 
flexible format, playing an important role in popularizing the Internet for 
use by both scientists and nonscientists alike [17].

29.4 � CLOUD AND GRID COMPUTING
With the development of computer networks, the client-server model of 
computing was born. Cloud computing is a technique for constructing an 
infrastructure for shared services. It is primarily used to sell application 
services running client-server software at remote locations [27, 28]. The 
following quotation is from “CG Technologies, Cloud Computing” [28]:
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Any computer or web-friendly device connected to the Internet may 
access the same pool of computing power, applications, and files in a 
cloud-computing environment. Users may remotely store and access 
personal files such as music, pictures, videos, and bookmarks; play 
games; or do word processing on a remote server. Data is centrally 
stored, so the user does not need to carry a storage medium such 
as a DVD or USB flash drive. Desktop applications that connect to 
internet-host email providers may be considered cloud applications, 
including web-based email services and many others.

In the mid-2000s, Amazon became famous for its success in online 
retailing. In 2002, Amazon Web Services provided a suite of cloud-based 
services as an online retailer. In 2006, it launched its Elastic Compute 
Cloud (EC2) as a commercial Web service allowing small companies and 
individuals to use the cloud computing system to run their own com-
puter applications. In 2007, Google, IBM, and a number of universities 
embarked on large-scale cloud computing research projects.

The term grid computing originated in the early 1990s as a metaphor 
for making access to distributed computing systems as easy as access to 
outlets of electric power. In 1998, Carl Kesselman and Ian Foster defined 
grid computing in their book The Grid: Blueprint for a New Computing 
Infrastructure (see also [22]). They described grid computing as follows: 
“A computational grid is a hardware and software infrastructure that 
provides dependable, consistent, pervasive, and inexpensive access to 
high-end computational capabilities.” Already in 1969, Leonard Kleinrock 
presciently suggested a similar concept: “We will probably see the spread 
of computer utilities, which, like present electric and telephone utilities, 
will service individual homes and offices across the country” [25].

Grid computing is a form of distributed parallel computing whereby 
a super and virtual computer is composed of a cluster of networked or 
coupled computers acting together to perform very large computational 
tasks. Its main goal is the development of high-performance distributed 
computing software allowing users to access distributed computing envi-
ronments such as meta-computing or cluster computing and to produce 
smart applications to use resources that are geographically separated 
across large networks. The increasing network bandwidth, more powerful 
and faster computer processors, and proliferation of Internet technologies 
have brought a new and better way of computing via the grid concept. 
This is a research infrastructure that supports computation-intensive 
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and data-intensive collaborative activities through dynamically collected 
and integrated shared research resources connected by a high-speed net-
work. Many academic institutes, research organizations, and commercial 
enterprises have been trying to take advantage of this type of computing 
paradigm, and are constantly seeking new technologies and applications 
that have not been able to provide the results within a desirable time if 
traditional computing schemes are used.

29.5 � UBIQUITOUS COMPUTING
Ubiquitous computing began in the Electronics and Imaging Laboratory 
of the Xerox Palo Alto Research Center (PARC) in the late 1980s. Mark 
Weiser (1952–1999) coined the phrase “ubiquitous computing” around 
1988 during his tenure as a chief technologist at PARC [23]. Weiser wrote, 
in his paper entitled “The Computer for the 21st Century” [1]: “Specialized 
elements of hardware and software, connected by wires, radio waves and 
infrared, will be so ubiquitous that no one will notice their presence.” In this 
paper and some subsequent papers by himself and with his colleagues at 
PARC, ubiquitous computing was defined and its details were sketched 
out. Weiser’s 1991 paper starts with the following sentences: “The most 
profound technologies are those that disappear. They weave themselves 
into the fabric of everyday life until they are indistinguishable from it” [1].

Ubiquitous computing refers to the use of computers in everyday life, 
including smartphones and other mobile devices. It also refers to computers 
contained in commonplace objects such as cars and appliances. It implies 
computing where people are unaware of its presence. One of its features is 
that all these devices communicate with each other over wireless networks 
without any interaction by users. Ubiquitous computing is also called per-
vasive computing. All models of ubiquitous computing share a vision of 
small, inexpensive, robust network processing devices, distributed at all 
scales throughout everyday life, and in generally distinct connections [1, 23].

In particular, computers and networks are embedded within the 
complex social framework of daily activities, interplaying with the rest 
of our densely woven physical environment. Such an environment will 
become the truly computerized society of the 21st century. Weiser’s idea 
of ubiquitous computing was influenced by many fields outside computer 
science, including philosophy, phenomenology, anthropology, psychology, 
and sociology.

Hiroshi Ishii (1956–) is a pioneer of the tangible user interface in the 
field of human-computer interaction. He founded the Tangible Media 
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Group when he joined the MIT Media Laboratory as a professor of media 
arts and sciences. Hiroshi Ishii and Brygg Ullmer wrote a paper entitled 
“Tangible Bits: Towards Seamless Interfaces between People, Bits and 
Atoms” [26]. Tangible bits allow users to grasp and manipulate bits in 
the center of users’ attention by coupling the bits with everyday physical 
objects. When Weiser read the paper by Ishii and Ullmer, he noticed that 
the concept of ubiquitous computing and the concept of tangible bits are 
closely related. Weiser wrote an e-mail to Ishii, admiring the tangible bits 
research at MIT Media Laboratory, and further stated that this kind of 
work will characterize the technological landscape of the 21st century [24].
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C h a p t e r  30

Public-Key Cryptography

30.1 � THE SITUATION IN THE 1960s AND 1970s 
BEFORE THE PUBLIC KEYS

During the 1960s, the cost and performance of computers improved 
remarkably due to the development of electronics and semiconductor 
technology. In the early 1960s, IBM and other major computer manufac-
turers produced high-performance computers that used transistors and 
diodes in logic circuits in central processing units. Since then, computers 
have become more powerful and cheaper, and the computer market has 
been rapidly expanding ever since.

Before the 1960s, cryptosystems were mainly used by the government 
and various military and intelligence organizations. In the 1970s, private 
enterprises began to use cryptosystems for confidential data and commu-
nication security. For example, banks used computers to encrypt money 
transfers, and trade companies used them to encrypt transaction records. 
One of the primary problems is the issue of standardization of crypto-
systems among companies. As more and more business companies used 
computers, the standardization of cryptosystems became an important 
issue. In the early 1970s, the U.S. government studied the needs for com-
puter security and its standardization. In 1973, the U.S. standards body 
NBS (National Bureau of Standards, now called the National Institute 
of Standards and Technology) published the first request for a standard 
encryption algorithm. The second request by NBS was published in 1974; 
unfortunately, neither the first nor the second request turned out to be 
suitable. However, these requests by NBS eventually led to the adoption 
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of the Data Encryption Standard (DES). DES was developed at IBM and 
became the most widely used cryptosystem by government organizations 
and business companies as well. DES was first published in the Federal 
Register in 1975, and adopted as a standard for unspecified applications in 
1977. A complete description of DES was given in the Federal Information 
Processing Standards (FIPS) in 1977. By today’s standards, DES is not con-
sidered completely safe.

A document is a sequence of sentences, which are strings themselves 
composed of letters or symbols from some finite alphabet (i.e., a finite set 
of symbols). Each letter or symbol can be expressed by a number. We may 
therefore consider that a document is simply a long sequence of numbers. 
In cryptography, such a sequence is usually divided into fixed-length 
groups of digits or bits, called blocks. Each block is transformed into a 
number by a block cipher encryption algorithm, giving us the block cipher 
cryptosystem (e.g., DES). Block ciphers are widely used for data security.

Since each block and each encrypted block may be considered a pair 
of numbers, an encryption algorithm is a function from integers to inte-
gers. For the same reason, a decryption algorithm is also a function from 
integers to integers. An encryption (decryption) key is used to specify 
an encryption (decryption) function, which is then implemented by an 
appropriate algorithm. When a sender (say, Alice) wishes to send a secret 
message (plaintext) to a receiver (say, Bob), Alice transforms the plain-
text into its corresponding ciphertext by her encryption algorithm, and 
sends it to Bob. He receives the ciphertext, and decrypts it by applying his 
decryption algorithm.

For any cryptography appearing before the 1970s, the encryption key 
and decryption key are trivially related. Such cryptography is called a 
symmetric key, a shared key, a secret key, or a common key cryptography. 
DES is also a symmetric-key cryptosystem. For a symmetric-key crypto-
system, a sender (Alice) and a receiver (Bob) share the same secret key. The 
shared key should, obviously, be kept secret from an adversary or an eaves-
dropper (say, Eve). The number of possible key candidates is a crucial factor 
in determining the strength of a cryptosystem. If it is not large enough, 
a cryptanalyst will decipher the encrypted message by simply trying all 
possible keys. Therefore, the number of possible keys should be sufficiently 
large to ensure strong security of the cryptosystem. Otherwise, an eaves-
dropper could easily decipher the ciphertext with the help of a computer.

DES, which was adopted in 1977, encrypts a plaintext of a 64-bit string 
using a key. The key is a 56-bit string. The number of possible keys of DES 
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is 256, or approximately 1017. For such a big number of possible keys, it is 
practically impossible for anyone to correctly guess the secret key of a DES 
cryptosystem [5, 6]. However, in 1999, some analytical results demonstrated 
a theoretical weakness in the ciphers of DES. In 2002, DES was superseded 
by the Advanced Encryption Standard (AES). Unfortunately, both DES 
and AES are now considered insecure for many top-secret applications, 
because successful brute-force attacks are possible, although these systems 
are more than adequate for almost all commercial applications. No private 
company can afford to have powerful computers that can check every pos-
sible key within a reasonable amount of time. Of course, many foreign 
intelligence and military organizations may have sufficient resources and 
capabilities to break these codes.

The adoption of DES solved the problem of standardization for encrypt-
ing important and secret data. However, the problem of key distribution 
annoyed cryptographers. In secret-key systems, one of the major prob-
lems is the difficulty of secret-key exchange. This problem is known as key 
distribution [5]. It is defined to be a mechanism whereby one party chooses 
a secret key and then transmits it to another party or parties. In practical 
applications, the communication line itself may be insecure. We therefore 
need to protect it against potential adversaries. This problem was solved 
in the mid-1970s with the appearance of public-key cryptography [5, 6].

30.2 � THE BIRTH OF PUBLIC-KEY CRYPTOGRAPHY
The ARPANET was created in 1969, and although it was still in its infancy 
in the early 1970s, some computer scientists and engineers predicted that 
with the advent of the Internet Age it would be indispensable for ordinary 
computer users to send their messages or data securely over the network. 
Whitfield Diffie (1944–) was one such scientist. He had been considering 
how such security could be guaranteed over the Internet.

In the best of all possible worlds, Internet users should be able to 
encrypt their messages so that no other network users other than legiti-
mate receivers could decipher those encrypted messages. Such encryption 
might require the secure exchange or distribution of the encryption keys. 
Diffie was particularly interested in this problem (called the key distribu-
tion problem). He believed that techniques to overcome the key distribu-
tion problem would be very useful to construct a secure Internet world. 
However, solving this problem seemed very difficult.

In 1974, Diffie visited IBM’s Thomas J. Watson Laboratory, where he 
gave a talk about the key distribution problem. Someone in the audience 
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informed him that Martin Hellman (1945–) at Stanford University had 
been studying the same problem. Consequently, Diffie took a trip to 
California to meet Hellman, and began working with him on the key 
distribution problem. They were trying to find an efficient method for 
exchanging keys between a sender and a receiver on the Internet [5].

Diffie and Hellman thought that the encryption key could be public 
without decreasing the security of the encrypted message. This means 
that even if the eavesdropper knows the encryption key, he or she will still 
be unable to decrypt the ciphertext. Such an asymmetric ciphersystem is 
called a public-key cryptography. This idea was presented by Diffie and 
Hellman in the summer of 1975, and published in their joint paper [8].

How does public-key cryptography work? Suppose Alice wants to send 
a secret message to Bob. She puts it inside a box and closes the box with 
a padlocked key. Then she sends the padlocked box by post. Since she 
does not trust the postal employees, she delivers the key of the padlock 
to Bob by herself. She travels with the key to the location where Bob lives, 
and then she hands the key to Bob. From this story, we can appreciate 
the importance of key distribution for security. However, as each of the 
following three scenarios suggests, key distribution might be avoided 
without affecting security:

	 1.	Assume that Bob sends an open padlock with Bob’s identity (not 
including its key) to Alice by post. After Alice receives the open pad-
lock, she puts her message in a box and locks the box with Bob’s 
padlock. Then she sends the locked box to Bob by post. Since the 
postal employees do not have the key to Bob’s padlock, the message 
can safely reach Bob. He opens the box with his own key and safely 
obtains the message from Alice. In this scenario, the message can be 
securely transferred from Alice to Bob.

	 2.	Assume that Bob has a padlock and its key. Bob guards the key, but 
he manufactures thousands of replica padlocks. These replica pad-
locks without their keys are sold at post offices and supermarkets. 
When Alice wants to send a secret message to Bob, she buys a replica 
of Bob’s padlock at a post office or a supermarket. She puts her secret 
message in a box and locks the box with the replica of Bob’s padlock, 
and sends the locked box to Bob by post. Bob can obtain the secret 
message from Alice, since Bob has his own key for the padlock.
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	 3.	Assume again that Alice wants to send a secret message to Bob. 
She puts her message in a box and closes the box with her own pad-
lock. Only Alice has a key for opening her padlock. Alice sends the 
locked box to Bob. When the box arrives, Bob adds his own padlock 
and sends the box back to Alice. Only Bob has a key for opening his 
padlock. When Alice receives the box, she removes her own padlock 
and sends the box back to Bob. Since Bob’s padlock is still closed, the 
box safely arrives at Bob’s location, and he can now open the box with 
his own key and read the secret message from Alice.

The idea of public-key cryptography is closely related to the ideas 
described in the scenarios above, and is also closely related to one-way 
functions. Suppose that given an argument value x, it is easy to compute 
f(x), whereas it is intractable to compute x from f(x). Such a function is 
called a one-way function. In the three scenarios above, the padlock (say, 
Bob’s padlock) can be considered a one-way function f(x) in the sense that 
computing the value f(x) from x is analogous to the action for locking 
the padlock, whereas computing x from f(x) is analogous to the action for 
unlocking the closed padlock. It is very hard for Eve, the eavesdropper, 
to unlock the closed padlock, since only Bob has the key of his padlock. 
Similarly, Alice’s padlock can also be considered a one-way function. The 
key of a padlock corresponds to a trapdoor for computing x from f(x). 
Such a one-way function with a trapdoor plays an essential role in realizing 
a public-key cryptosystem.

Diffie and Hellman focused their attention on one-way functions. A 
one-way function is relatively easy to compute for a given argument value, 
but the inverse computation is very difficult (intractable), especially if we 
do not have the secret information (called a trapdoor). Modular arith
metic is a rich area for one-way functions. For example, f(x) ≡ rx modulo q 
is easily computed, but in general, the computation from a given value 
(say, t) to x such that t ≡ rx modulo q is very hard if q is sufficiently large. 
Diffie and Hellman noticed that if a suitable one-way trapdoor function 
could be found, then it could be used as a public-key encryption function 
and the trapdoor could be used as a private key. Their idea was revolution-
ary, appearing at a very late stage in the very long history of cryptogra-
phy. Diffie and Hellman continued their research at Stanford University 
attempting to find a family of suitable one-way trapdoor functions, but 
they did not fully succeed in its discovery.
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30.3 � RSA CRYPTOGRAPHY
In 1977, Ron Linn Rivest (1947–), Adi Shamir (1952–), and Leonard Max 
Adleman (1945–) discovered a specific one-way trapdoor function. Rivest 
and Shamir are computer scientists, and Adleman is a mathematician, 
who was working on cryptography at MIT. In 1978, their public-key 
cryptography paper was published [9], and it is now referred to as the 
RSA  cryptosystem, which stands for the first letters of Rivest, Shamir, 
and Adleman. Their one-way function is based on an amazingly simple 
number-theoretic idea, and yet it has successfully resisted all cryptana-
lytic attacks. The RSA (Rivest–Shamir–Adleman) cryptosystem has been 
most widely used in electronic commerce protocols, and it is believed to 
be secure if sufficiently long keys are used [1, 6]. In 2002, Rivest, Shamir, 
and Adleman received the Turing Award for their ingenious and practical 
contribution to the development of cryptography.

Suppose Bob wishes to set up an RSA system for anyone to send secret 
messages to him. He would then do the following:

	 1.	Generate two large primes, p and q.

	 2.	Compute n = p × q and φ(n) = (p – 1)(q – 1), where φ(n) is Euler’s phi 
function that counts the number of positive integers less than n and 
relatively prime to n (see Chapter 20).

	 3.	Randomly choose an integer b such that 1 < b <φ(n), and the greatest 
common divisor of b and φ(n) is 1 (b and φ(n) are relatively prime, 
i.e., gcd (b, φ(n)) = 1).

	 4.	Compute a ≡ b–1 mod φ(n) using the extended Euclidean algorithm 
(i.e., a×b ≡ 1 modulo φ(n)).

	 5.	Publicize n and b, but keep the values p, q, and a secret. Bob’s key is 
(n, p, q, a, b), where a is called his private key or secret key, and b is 
called his public key.

When Alice wishes to securely send her message x to Bob, she computes 
y ≡ xb modulo n using Bob’s public key b, and then she sends the ciphertext 
y to Bob. When Bob receives the ciphertext, he computes ya ≡ (xb)a ≡ xab ≡ x 
modulo n by using his secret key a. In this way, Bob can easily read the 
message x from Alice. However, it is very hard for others to compute x 
from y, since y ≡ xb modulo n is a one-way trapdoor function and only 
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Bob has the secret key a. The fact that xab ≡ x modulo n is based on the 
number-theoretic result, given in Theorem 30.1. Communication based 
on the RSA cryptosystem is shown in Figure 30.1.

Theorem 30.1

Let p and q be primes and n = p × q. If a × b ≡ 1 modulo φ(n), then for any 
1 ≤ x ≤ n – 1, xab ≡ x modulo n, where φ(n) is Euler’s phi function.

Example 30.1

Let n = 5 × 11. Then φ(n) = φ(55) = (5 – 1)(11 – 1) = 40. Suppose Bob 
chose b = 3; then Bob’s public key is n = 55 and b = 3. Bob’s secret key 
is a ≡ b–1 ≡ 27 modulo 40. If Alice wishes to send the message 13, she 
encrypts 13 to 133 ≡ 52 modulo 55. Then Alice sends the ciphertext 52 
to Bob. Bob receives 52 and decrypts it to 5227 ≡ 13 modulo 55. Thus, 
Bob can read the original message 13 from Alice.

As shown in Example 30.1, modular exponentiation, i.e., computations 
of the form zc modulo n, is necessary in communication by the RSA cryp-
tosystem (xb modulo n by Alice and ya mod n by Bob). Computation zc 
modulo n can be done using c – 1 modular multiplications. However, this 
naïve method is very inefficient if c is large. If c has k bits in its binary 
representation, the time complexity of this naïve method is exponentially 
large in k. We should use the square-and-multiply method to compute 
zc modulo n, which reduces the number of modular multiplications to at 
most 2k. Modular exponentiation by the square-and-multiply method is 
essential for the RSA cryptosystem since the computations by Alice and 

Alice Bob
a sender a receiver

communication line

encryption decryption

Eve

an adversary or
an eavesdropper

x x

y xb (mod n) x ya (mod n)

FIGURE 30.1  Communication on the RSA cryptosystem.
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Bob should be computationally feasible. For example, the exponential 
computation (5227 modulo 55 in Example 30.1) is carried out as follows:

522 ≡ 9 modulo 55

524 ≡ (522)2 ≡ 92 ≡ 26 modulo 55

528 ≡ (524)2 ≡ 262 ≡ 16 modulo 55

5216 ≡ (528)2 ≡ 162 ≡ 36 modulo 55

5227 ≡ 5216 × 528 × 522 × 52 ≡ 36 × 16 × 9 × 52 ≡ 13 modulo 55

In order for the RSA cryptosystem to be secure, n = p × q must be 
large enough that factoring n will be computationally infeasible. Current 
factoring algorithms are able to factor numbers having up to 130 decimal 
digits. Hence, it is recommended that we pick p and q to be primes of about 
100 digits. Then n will have about 200 digits. How can we find large primes 
of about 100 digits? Primary test algorithms can be used for this purpose.

The question of how to find large primes is especially important for a 
number of cryptographic protocols that use prime numbers. A naïve method 
for a primality test was proposed by an ancient Greek mathematician in an 
algorithm named the sieve of Eratosthenes (c. 240 BC). His method crosses 
out all multiples of primes and takes O(n (log n) log log n) bit operations. 
Another naïve method tries to divide a given number n by every number 
m n≤ . The time complexity of this method is O( n n(log )3). Therefore, 
these naïve methods are not useful at all for very large numbers.

Raymond E. Miller (1928–) and Michael O. Rabin (1935–), and Robert 
M. Solovay (1938–) and Volker Strassen (1931–) proposed probabilistic 
algorithms for efficiently determining if a given number is prime, in 1976 
and 1977, respectively. The former is called the Miller–Rabin algorithm, 
and the latter is called the Solovay–Strassen algorithm. Both are classified 
as yes-biased Monte Carlo algorithms, and are quite useful in practice [6]. 
The running times of these algorithms are roughly O((log n)3). A yes-biased 
Monte Carlo algorithm is a probabilistic algorithm for a decision problem 
in which a yes answer is always correct, but a no answer may be incorrect.

In 2002, Manindra Agrawal (1966–), Neeraj Kayal (1979–), and Nitin 
Saxena (1981–) proposed a deterministic algorithm for a primality test [10]. 
This is the first deterministic algorithm to test O(log n)-digit numbers for 
their primality in time that has been proved to be polynomial in log n. 
When they found the algorithm, Agrawal was a professor in computer 
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science at the Indian Institute of Technology, Kanpur (IITK), and Kayal 
and Saxena were undergraduate students at IITK. Their algorithm 
attracted worldwide attention. In 2006, they received the Gödel Prize for 
their deterministic primality test algorithm. Named after the German 
mathematician Kurt Gödel, the Gödel Prize has been awarded jointly by 
the European Association for Theoretical Computer Science (EATCS) and 
the Association for Computing Machinery (ACM) since 1993 to outstand-
ing papers in theoretical computer science.

The success of the Information Age owed much to the appearance of 
public-key cryptography. The simple encryption and decryption schemes 
of RSA cryptography have given a great advantage to the development of 
the Internet world. The public-key cryptosystems are indispensable, in par-
ticular, for secure data and message transfer, and for the secure operation 
of e-commerce, e-government, and worldwide interbank money transfers.

Although the RSA cryptosystem is the most well-known and widely 
used public-key cryptography, several other public-key cryptosystems 
have also been proposed. Of these cryptosystems, the following are of 
some significance [6]:

	 1.	The ElGamal cryptosystem is based on the difficulty of the discrete 
logarithm problem for finite fields. It was first proposed by Taher 
ElGamal (1955–) in 1985.

	 2.	The McEliece cryptosystem is based on algebraic coding theory. 
It was first proposed by Robert McEliece (1942–) in 1978.

	 3.	The elliptic curve cryptosystem is based on the work in the domain 
of elliptic curves. The use of elliptic curves in cryptography was sug-
gested independently by Neal Kobliz (1948–) and Victor S. Miller 
(1947–) in 1985.

30.4 � DIGITAL SIGNATURES
A conventional handwritten signature attached to a document is used to 
specify the person responsible for it. A signature is often used in everyday 
situations such as writing a letter or a check, withdrawing money from 
the bank, or signing a contract. A digital signature scheme is a method 
of signing a document in electronic form, which can usually be trans-
mitted over the Internet. When Bob receives an e-mail, how can he be 
sure that the message is really from Alice? The wicked Eve may write an 
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e-mail and type Alice’s name at the bottom of the message. How can we 
attach a signature to a document in an electronic form? How can we verify 
the authenticity of the signed document? Public-key cryptography can be 
applied to implement a digital signature scheme.

The following is an outline of a digital signature scheme by an RSA 
cryptosystem. Suppose that Alice wishes to send a secret message x to Bob. 
Let a and b be Alice’s secret key and public key, respectively, and let c and d 
be Bob’s secret key and public key, respectively. Remember that a × b ≡ 1 
modulo φ(n) and c × d ≡ 1 modulo φ(n), and that for any message z, zab ≡ z 
modulo n and zcd ≡ z modulo n. Alice’s signature to the message x is defined 
as y ≡ xa modulo n. Alice encrypts pair (x, y) by Bob’s public key d, and 
sends the encrypted pair to Bob. When Bob receives the encrypted pair, he 
decrypts it with his secret key c. Then he obtains (x, y). Bob can verify that 
the message is surely from Alice by checking whether yb coincides with x. 
More formally, the signature scheme and the verification scheme by the 
RSA cryptosystem are described as follows:

	 1.	Let n = p × q, where p and q are primes.

	 2.	The values n and b are public, and the values p, q, and a are secret, 
where a × b ≡ 1 modulo φ(n).

	 3.	The signature of message x is defined as y ≡ xa modulo n (signa-
ture scheme).

	 4.	(x, y) is true if and only if x ≡ yb modulo n (verification scheme).

Example 30.2

Let (n, p, q, a, b) = (65, 5, 13, 11, 35) be Alice’s key. Note that 65 = 5 × 13, 
φ(65) = (5 – 1)(13 – 1) = 48, and 11 × 35 ≡ 1 modulo 48. Suppose 
that Alice wishes to send the message 8 with her signature to Bob. 
Her signature is 811 ≡ 57 modulo 65. When Bob receives (8, 57), he 
verifies that 5735 ≡ 8 modulo 65. Then Bob is sure that the message 8 
is truly from Alice. If the communication line from Alice to Bob is 
not secure, Alice may encrypt (8, 57) by Bob’s public key to prevent 
(8, 57) from being known to eavesdroppers.

There are several digital signature schemes other than the RSA signa-
ture scheme. The ElGamal signature scheme is based on the difficulty of 



Public-Key Cryptography    ◾    305  

computing a discrete logarithm. It was first described by Taher ElGamal 
in a 1985 paper, “A Public-Key Cryptography and a Signature Scheme,” 
in which he proposed the design of the ElGamal cryptography and the 
ElGamal signature scheme. The ElGamal signature scheme is nondeter-
ministic. This means that there are many valid signatures for any given 
message. The verification algorithm must be able to accept any of these 
valid signatures. The ElGamal signature scheme must not be confused with 
ElGamal cryptography. All ElGamal signature schemes are designed spe-
cifically for the purpose of signature, as opposed to the RSA cryptosystem.

The original ElGamal signature scheme has been rarely used in prac-
tice. In 1989, C. P. Schnorr proposed a signature scheme that is a variant 
of the ElGamal signature scheme in which the signature size is signifi-
cantly reduced. Another variant of the ElGamal signature scheme was 
developed in 1991 at the National Institute of Standards and Technology 
(NIST), incorporating some of the ideas in the Schnorr signature scheme. 
It was called the digital signature scheme (DSA) and adopted as a standard, 
specified in FIPS 186 in 1993. In 2000, the elliptic curve digital signature 
algorithm (ECDSA) was approved as a standard, specified in FIPS 186-2. 
It was a modification of the DSA to elliptic curves.

More information about cryptography can be found, for example, in 
[1–4, 6, 7].

30.5 � ANOTHER STORY OF PUBLIC-KEY 
CRYPTOGRAPHY FROM ENGLAND

Since Diffie and Hellman published their paper “New Directions in 
Cryptography” in 1976 [8], they have been known as the first inventors 
of the concept of public-key cryptography. On the other hand, Rivest, 
Shamir, and Adleman have been known as the first inventors of the RSA 
cryptosystem. However, there is another story of an earlier invention 
involving the same idea of public-key cryptography [5, 11].

A few years earlier than Diffie and Hellman’s invention of the concept 
of public-key cryptography, British mathematician James Henry Ellis 
(1924–1997) arrived at the same idea. Ellis worked in Communications-
Electronics Security Group (CESG) of British Government Communica-
tions Headquarters (GCHQ). In 1970, Ellis wrote a paper, “The Possibility 
of Non-Secret Digital Encryption,” in an internal report (CESG report). 
The nonsecret digital encryption proposed by Ellis is exactly the same idea 
as the public-key cryptography invented by Diffie and Hellman. In 1973, 
a  young mathematician, Clifford Christopher Cocks (1950–), joined 
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GCHQ and was told about Ellis’s nonsecret digital encryption. He thought 
that factoring an integer into prime numbers was a good candidate for a 
suitable one-way function. His idea was the same as RSA cryptography. 
Cocks’s idea was 4 years prior to the invention of RSA cryptography by 
Rivest, Shamir, and Adleman.

Cocks and his colleague Malcolm John Williamson (1950–) worked 
together on the problem for realizing Ellis’s idea. In 1973 and 1974, they 
wrote research reports about their invention of the nonsecret encryption 
algorithm, now known as the RSA encryption algorithm (C. C. Cocks, 
“A Note on Non-Secret Encryption,” CESG Report, 1973; M. J. Williamson, 
“Non-Secret Encryption Using a Finite Field,” CESG Report, 1974). These 
CESG reports were not publicized since they were treated as top-secret 
government information. Consequently, Ellis, Cocks, and Williamson’s 
prior achievements remained unknown until 1997.

In 1987, Ellis wrote a paper, “The Story of Non-Secret Encryption.” This 
paper had also been treated as an internal report within GCHQ. Although 
the invention of public-key encryption at GCHQ had not been publi-
cized by 1997, GCHQ in UK and the National Security Agency (NSA) in 
the United States knew about the work of Ellis, Cocks, and Williamson. 
In  December 1997, Cocks delivered a public talk that contained the 
history of GCHQ’s research on public-key cryptography. Since then, Ellis, 
Cocks, and Williamson’s contributions to the concept and realization of 
public-key cryptography have been acknowledged [5, 11].
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C h a p t e r  31

Quantum Computing

Quantum computing, based on the manipulation of the smallest atomic 
particles, brings together aspects of quantum physics, mathematics, and 
computer science. Using this three-way grouping provides a new approach 
to computation that is very different from the now ubiquitous digital 
approach. Quantum computing, although showing great promise, is still 
unproven, and it is not yet clear how useful and powerful it will ultimately be.

31.1 � THE BASICS OF QUANTUM COMPUTING
The development of radio techniques and the improvement of other tech-
nical aids to study physical phenomena led at the end of the 19th century 
to the discovery of electrons, x-rays, and radioactivity. However, classical 
physics was just not able to explain the properties of atomic and sub-
atomic particles. A study of conditions of equilibrium between matter 
and electromagnetic radiation by Max Planck (1858–1947) in 1900 and 
of photoradiation phenomena by Albert Einstein (1879–1955) led to the 
conclusion that electromagnetic radiation possessed both a wave charac-
ter and a discrete particle character. It was the start of quantum physics.

Quantum physics joined the mainstream in the 1920s and 1930s with 
the general acceptance of the theories of Max Planck, Albert Einstein, Niels 
Bohr (1885–1962), Erwin Schrödinger (1887–1961), Werner Heisenberg 
(1901–1976), Paul Dirac (1902–1984), and many other established physi-
cists. Quantum computing is based on quantum physics, with all of its 
special behaviors and unusual limits. Therefore, quantum computing deals 
with the behaviors of atomic and subatomic particles. These behaviors 
are irreducibly random and the measurement of particle characteristics 
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simultaneously, such as position and momentum, to an arbitrary precision 
is impossible. That is, physical phenomena of small particles do not agree 
often with our classical intuition. The unusual behavior results from fea-
tures of quantum mechanics called superposition and interference. In the 
early 1980s, Richard Feynman (1918–1988) noted that there seemed to be 
fundamental difficulties in simulating quantum mechanical systems on 
digital computers, and further suggested that having computers based on 
the principles of quantum mechanics would overcome those difficulties. 
Devices that perform quantum information processing are known as 
quantum computers.

Whereas the lowest-level unit in common digital computation is the 
binary digit, the bit, the lowest-level unit in quantum computation is the 
quantum binary digit, the qubit [1]. As described in [1], about 103 atoms are 
typically used to store 1 bit of information [2, 3]. Within a quantum environ-
ment, one subatomic particle can encode one, two, or even more qubits. The 
physical size of qubits is much smaller than bits; nevertheless, their behavior 
is much more complex. Qubits can be put into a superpositional state. When 
they are in superposition, the qubit simultaneously has multiple values. 
Qubits can also become entangled, which is explained below. In addition, 
qubits can encounter decoherence; here, the qubit unexpectedly changes 
state and may lose some of its special behaviors, such as superposition.

The behavior of an individual qubit depends on its current state, which 
is the result of its history. Qubits normally start out in one of two states. 
These states are frequently described using the “ket” style of notation, 
using |0> and |1>, respectively, for binary states 0 and 1. However, once a 
qubit is put into superposition state, it is not bounded to only one of these 
two values. The superposition state is not readily observable because when 
a qubit in a state of superposition is observed (measured), it immediately 
collapses to one of the two binary states: |0> or |1>.

The linear algebra notation in quantum computation may not be 
familiar to a student of mathematics or computer science. The notation 
was invented by Paul Dirac and is known as Dirac notation. This notation 
is used often in quantum mechanics. The Bloch sphere is also often used to 
represent the state of a single, unentangled qubit, and it makes it possible 
to view the state of the qubit in a graphical manner. In Figure 31.1, a qubit 
showing the value |1> is depicted, which is represented by –1. Qubit states 
are often represented with three probability amplitudes, along the x-axis, 
y-axis, and z-axis, respectively. In this figure, the x- and y-values are zero 
and the z-value is –1; therefore, the arrow is pointing downwards. These 
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probability amplitudes are expressed via complex numbers, and these 
amplitudes can be both positive and negative. In this particular figure, the 
three values are all real numbers. With quantum behaviors, adding two 
probabilities together may result in a reduced probability.

Qubits may become entangled. Entanglement is one of the most unusual 
behaviors in quantum theory. Once two qubits are entangled, neither one 
can be described without full mention of the other. Even if the two qubits 
are physically separated after entanglement, impacting one qubit impacts 
the other. Entanglement was described by Einstein as “spooky actions at a 
distance” (spukhafte Fernwirkungen) [10]. Entanglement is a basic feature 
of quantum computation and quantum communications.

As previously mentioned, measurement may change the state of a qubit. 
Therefore, it is not generally possible to copy a qubit by measuring its value 
and providing another qubit with a matching value. How can qubits be 
manipulated and processed if intermediate values cannot be measured or 
observed? Qubit manipulations are done via transformations of the qubit’s 
probability amplitudes. With quantum programming, these probability 
amplitudes are manipulated so that, upon measurement, the desired 
values are observed in the qubits. Quantum processing also requires that 
all quantum actions be reversible (Landauer’s principle). The result of this 
is that all gates and circuits used with quantum computing have the same 
number of inputs and outputs. This implies that information cannot be 
lost or erased by these quantum transformations.

X

Y

Z

|1>

FIGURE 31.1  Bloch sphere showing a value of |1>.
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31.2 � QUANTUM COMPUTATION LOGIC AND GATES
Just as digital computation utilizes logic gates, quantum computation also 
utilizes gates. The quantum gates are very different from the digital gates, 
partially due to their need for reversibility and the same number of inputs 
and outputs. With quantum computing, some of the common gates are the 
Hadamard gate (H gate for short), the controlled-NOT gate, the Toffoli gate, 
and the Pauli-X, Pauli-Y, and Pauli-Z gates. The behavior of quantum gates is 
often expressed in the form of a unitary matrix. The remainder of this section 
provides more information about the H gate and the controlled-NOT gate.

The H gate has one input and one output. This gate is commonly used 
to put a qubit into a state of superposition. Its behavior can be described by 

this unitary matrix: 1
2

1 1
1 1−









. When an H gate is applied two times 

in sequence, it returns the original value.
The controlled-NOT gate is more interesting than the H gate. It has two 

inputs and two outputs. Note that the input qubits are usually mutually 
entangled by this gate. The basic processing done is an exclusive OR opera-
tion (XOR) of the inputs, with one input being passed directly through to 
the output; this is called the control input. And the other output contains 
the results of the XOR operation. If the second, noncontrol, input is held 
to |0>, then this gate functions as a NOT operation. The unitary matrix for 

the controlled-NOT operation is 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



















.

The Toffoli gate is a three-input, three-output gate that is similar to 
the controlled-NOT, excepting that it does the XOR with the AND of 
two control inputs. The Pauli-X, Pauli-Y, and Pauli-Z gates are rotations 
about the respective x-, y-, and z-axes. The Paul-X gate can function as a 
NOT operation.

31.3 � FAMOUS QUANTUM ALGORITHMS
In 1985, David Deutsch (1953–) attempted to define computational devices 
that would be capable of efficiently simulating an arbitrary physical system. 
Deutsch was naturally led to consider computing devices based upon 
the principles of quantum mechanics. These devices led to the modern 
concept of a quantum computer.
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Three quantum computing milestone algorithms are now discussed, in 
order of increasing algorithm complexity. The basic steps in these algo-
rithms tend to be: establish the qubits in classic states, put some of the 
qubits into superposition, apply a set of unitary operations (transformations), 
and then measure the values of the desired subset of the qubits. Often 
the results of the quantum algorithms are frequently further processed by 
digital computation, sometimes including numerous nonquantum algo-
rithmic operations.

31.3.1 � Deutsch’s Algorithm (1989) [1]

This algorithm solves a problem with a binary result. The problem can be 
expressed as making a yes/no financial investment decision that is based 
on the result of two long-running calculations, each returning a binary 
result. When equal values are returned, an action is taken. Quantum com-
puting allows these two long-running calculations to occur in parallel. 
This problem can also be expressed mathematically.

The two results of the function f: {0, 1} → {0, 1} can be constant or 
balanced. They are constant if f(0) = f(1) and balanced if f(0) ≠ f(1). With 
classic digital computation, f(x) needs two calculations, one calculation for 
f(0) and the other for f(1). With superposition, parallel calculation of both 
f(0) and f(1) is done in the time needed for just a single calculation. The 
quantum circuit to compare the results is a Hadamard gate providing the 
needed superposition, the long-running calculation done as unitary trans-
formations, and then a controlled-NOT gate to compare the two results. 
The controlled-NOT, performed in parallel, brings |x, y> to |x, y ⊕ f(x)>, 
where ⊕ is XOR. The two results are then put through Hadamard gates. 
In simplified terms, when the ⊕ result is 0, the results are constant, and 
when 1, balanced. It is interesting to note that the direct results of the 
two time-consuming calculations are never observed; what is observed is 
the constant or balanced relationship between them. Figure 31.2 shows a 
version of Deutsch’s algorithm as a (simplified) quantum circuit.

31.3.2 � Grover’s Search Algorithm (1995) [1, 4, 5]

Further evidence for the power of quantum computers came in 1995 
when Lov Grover (1961–) showed that the problem of concluding a search 
through some unstructured search space could be sped up on a quan-
tum computer. Grover’s search algorithm can be viewed as a solution to a 
number of different problems, including looking up a value in a database, 
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finding a needle in a haystack, and inverting a function. The notion is that 
an unordered list of values is searched for a particular value. Utilizing 
classic computation, on average, O(n) time is needed to find a particu-
lar value. Utilizing Grover’s quantum algorithm, O( n) time is needed, 
where n is the database size. This provides a quadratic speed-up and can 
be substantial when n is large.

From the inverting a function point of view, the function f: {0, 1}n → {0, 1} 
is evaluated in search of the unknown value, which is n bits wide, such 
that value = x if f(x) is 1, x varying over the domain and only one result 
of f will provide a 1. This quantum algorithm operates by creating all pos-
sible input values, via superposition, and then the one input value that 
generates the desired output value is transformed such that when the 
qubits are measured, this input value is present in the qubits. Finding the 
desired input value at measurement requires the use of phase inversion 
and inversion about the average transformations, which are done in multi
ple steps. Unfortunately, in a small number of cases the correct value will 
not be measured and the algorithm fails.

Grover’s algorithm shows the solution to a real-world problem using a 
quantum algorithm, and this algorithm provides a substantial improve-
ment in performance.

31.3.3 � Shor’s Factoring Algorithm (1994) [1, 6]

Before discussing this important factoring accomplishment, we require a 
small detour, away from algorithms. In 1981, Richard P. Feynman brought 
the notion of quantum computing into full view when he noted in his 
famous speech, “Simulating Physics with Computers,” that quantum com-
puting might provide answers more quickly, relative to digital computers, 
when performing quantum operations [7]. Digital computers often have 

|0>
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FIGURE 31.2  Deutsch’s algorithm in circuit form.



Quantum Computing    ◾    315  

performance and storage capacity issues when handling large quantum 
simulations. This is due to the explosion of terms that occurs when the ten-
sor product of a large number of quantum particles is formed. Feynman 
proposed this high-value quantum computing use and helped provide 
quantum computing the beginnings of legitimacy.

The algorithm by Peter W. Shor (1959–) gave quantum computing addi-
tional legitimacy, as it provides a fast method to factor numbers. Factoring 
large numbers is a difficult problem, but is not considered a NP-complete 
problem. It is considered to be between NP and P. It is exactly what gives 
many security algorithms their power [8]. If a practical way were found 
to rapidly factor any large number, then the commonly used security 
approaches like RSA (See Chapter 30) and SSL (Secure Socket Layer) 
would no longer be secure. Shor’s algorithm outlines a workable approach 
to factoring large numbers, but there are practical realities, discussed 
below, that prevent the algorithm from being really useful.

This algorithm is complex and uses both classical computation and 
quantum computation. The basic approach is to find a root of an odd com-
posite number. Once this root is known, then with additional steps, the 
odd number can be quickly factored. The approach is rooted in the knowl-
edge that the factoring problem can be reduced to finding the period of a 
repeating function. The quantum part of this algorithm involves finding 
the period of the function. This determination is done by using a super-
position and then applying a function on all of the superposition values, 
looking for the point where the repeating begins. A quantum Fourier 
transform is applied to isolate the period. From this stage, classical com-
putation is done to find the actual factors of the composite number.

Shor’s algorithm makes it clear that quantum computing can solve 
real-world problems, and, along with Feynman’s earlier work, makes it 
clear that quantum computing has significant potential.

31.4 � DIFFICULTIES AND LIMITS OF QUANTUM COMPUTING
So, why is quantum computing not in the mainstream of computing? 
A hint of why comes from the fact that the IBM researchers who first 
implemented Shor’s algorithm in 2001 using nuclear magnetic resonance 
(NMR) actually factored 15 into 3 times 5 [9]. In practical terms, this is 
hardly a great achievement. The researchers were limited by the number 
of qubits they could manipulate without the qubits suffering decoherence, 
due to qubit’s close proximity and unwanted interactions.
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It turns out that quantum computing hardware is not easily constructed, 
nor is it easily scaled. As of this writing, some of the common approaches 
used to construct qubits are based on ion traps, linear optics, NMR, and 
superconductors. However, all of these technologies have problems with 
decoherence, and a register of more than seven or eight qubits is consid-
ered large. Since 28 equals only 256, this is a very significant limit in terms 
of the power of quantum computation. R. Van Meter and Clare Horsman 
deftly summarize the status of quantum computing hardware when they 
pose the question, “When will a quantum computer do science, rather 
than be science?” [11].

In addition to the quantum computing hardware issues and limits, 
software for quantum computing is not easily produced. Quantum algo-
rithms, often implemented as quantum circuits, are not created with the 
mathematical, if/then, and loop operations common to digital algorithms, 
computation, and programming. Instead, quantum algorithms are cre-
ated using transformations, and evolutions, of probability amplitudes. 
In mathematical terms, this amounts to programming strictly via the 
manipulations provided by the multiplication of (large) unitary matrices. 
This is not an easy way to program.

31.5 � CLOSING SUMMARY
Using atomic or subatomic particles, quantum computing draws together 
quantum physics, mathematics, and computer science. Using this approach 
to computation is very different from the now ubiquitous digital approach. 
Successful quantum algorithms have been created, and the quantum 
logic gates needed for the construction of large quantum circuits do exist. 
However, due to various significant difficulties and limits, it is not yet clear 
how useful and powerful quantum computing will ultimately prove to be.
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