
Exploring a vast array of topics related to computation, Computing: A Historical
and Technical Perspective covers the historical and technical foundation of ancient
and modern-day computing. The book starts with the earliest references to counting
by humans, introduces various number systems, and discusses mathematics in
early civilizations. It guides you all the way through the latest advances in computer
science, such as the design and analysis of computer algorithms.

Through historical accounts, brief technical explanations, and examples, the book
answers a host of questions, including:

• Why do humans count differently from the way current electronic computers
do?

• Why are there 24 hours in a day, 60 minutes in an hour, etc.?
• Who invented numbers, when were they invented, and why are there different

kinds?
• How do secret writings and cryptography date back to ancient civilizations?

Innumerable individuals from many cultures have contributed their talents and
creativity to formulate what has become our mathematical and computing heritage.
By bringing together the historical and technical aspects of computing, this book
enables you to gain a deep appreciation of the long evolutionary processes of the
field developed over thousands of years.

Features
• Discusses the earliest references to various number systems and mathematics

in ancient civilizations
• Covers ancient mathematical texts, such as Euclid’s Elements, Diophantus’s

Arithmetica, and Fibonacci’s Book of Calculation
• Explores the history of the abacus, mechanical calculating machines,

electronic computers, and cryptography
• Describes areas at the forefront of computer science, including computability,

artificial intelligence, computer networks, public-key cryptography, and
quantum computing

• Requires no prior knowledge of advanced mathematics or computer science

K22538

C O M P U T I N G
A Historical and Technical Perspective

Yoshihide Igarashi, Tom Altman,
Mariko Funada, and Barbara Kamiyama

Ig
a

ra
sh

i, A
ltm

a
n

,
F

u
n

a
d

a
, a

n
d

 K
a

m
iya

m
a

C
O

M
P

U
T

IN
G

A
 H

isto
rica

l a
n

d
 T

ech
n

ica
l P

ersp
ective

Computing/Computer Science

K22538_cover.indd 1 4/23/14 9:22 AM

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

C O M P U T I N G
A Historical and Technical Perspective

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

C O M P U T I N G
A Historical and Technical Perspective

Yoshihide Igarashi
Gunma University

Kiryu, Japan

Tom Altman
University of Colorado Denver

USA

Mariko Funada
Hakuoh University

Oyama, Japan

Barbara Kamiyama
Gunma University

Kiryu, Japan

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140227

International Standard Book Number-13: 978-1-4822-2742-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

v

Contents

Preface, xiii

Acknowledgments, xv

About the Authors, xvii

Chapter 1: The Dawn of Counting	 1
1.1	 ARCHEOLOGICAL EVIDENCE: PALEOLITHIC ART	 1

1.2	 FINGERS FOR COUNTING	 2

1.3	 THE USE OF TALLY STICKS AND REPRESENTATIONAL
SYMBOLS: THE FIRST INFORMATION REVOLUTION	 2

1.4	 COUNTING BY PEBBLES	 4

1.5	 THE USE OF TOKENS AND
THE SECOND INFORMATION REVOLUTION	 5

REFERENCES	 6

Chapter 2: Representation of Numbers	 7
2.1	 POSITIONAL NUMBER SYSTEMS	 8

2.2	 MORE ABOUT NUMBER SYSTEMS	 10

2.3	 FURTHER DISCUSSIONS OF ZERO	 10

REFERENCES	 14

Chapter 3: Rational and Irrational Numbers	 15
3.1	 APPEARANCE OF FRACTIONS	 15

3.2	 RATIONAL NUMBERS	 17

3.3	 IRRATIONAL NUMBERS	 19

REFERENCES	 21

www.allitebooks.com

http://www.allitebooks.org

vi    ◾    Contents

Chapter 4: Prime Numbers	 23
4.1	 THE STORY OF PRIME	 23

4.2	 THE PRIME NUMBER THEOREM	 29

REFERENCES	 33

Chapter 5: Euclid’s Elements	 35
REFERENCES	 40

Chapter 6: Diophantus of Alexandria and Arithmetica	 43
REFERENCES	 49

Chapter 7: Secret Writing in Ancient Civilization	 51
7.1	 STEGANOGRAPHY	 51

7.2	 CRYPTOGRAPHY	 52

REFERENCES	 57

Chapter 8: The Abacus	 59
8.1	 THE EARLIEST ABACI	 59

8.2	 THE SALAMIS TABLET AND THE ROMAN
HAND ABACUS	 61

8.3	 THE CHINESE ABACUS	 64

8.4	 THE JAPANESE ABACUS	 65

REFERENCES	 66

Chapter 9: Book of Calculation by Fibonacci	 69
REFERENCES	 75

Chapter 10: Decimal Fractions and Logarithms	 77
10.1	 APPEARANCE OF DECIMAL FRACTIONS	 77

10.2	 LOGARITHMS	 79

REFERENCES	 83

Chapter 11: Calculating Machines	 85
11.1	 THE RECHEN UHR OR “CALCULATING CLOCK”

OF WILHELM SCHICKARD	 86

www.allitebooks.com

http://www.allitebooks.org

Contents    ◾    vii

11.2	 THE PASCALINE	 87

11.3	 LEIBNIZ AND THE STEPPED RECKONER	 88

11.4	 THE JACQUARD LOOM	 89

11.5	 BABBAGE’S MECHANICAL COMPUTERS	 91

11.6	 ADA LOVELACE, THE FIRST COMPUTER
PROGRAMMER	 92

11.7	 HERMAN HOLLERITH AND HIS AMAZING TABULATOR	 93

REFERENCES	 96

Chapter 12: Solutions to Algebraic Equations	 97
12.1	 LINEAR EQUATIONS	 98

12.2	 QUADRATIC EQUATIONS	 99

12.3	 CUBIC EQUATIONS	 100

12.4	 QUARTIC AND QUINTIC EQUATIONS	 101

REFERENCES	 105

Chapter 13: Real and Complex Numbers	 107
13.1	 REAL NUMBERS	 107

13.2	 COMPLEX NUMBERS	 110

13.3	 COMPLEX-VALUED FUNCTIONS	 112

REFERENCES	 113

Chapter 14: Cardinality	 115
REFERENCES	 120

Chapter 15: Boolean Algebras and Applications	 121
REFERENCES	 128

Chapter 16: Computability and Its Limitations	 129
16.1	 GÖDEL’S INCOMPLETENESS THEOREM	 129

16.2	 TOTAL FUNCTIONS	 130

16.3	 TURING MACHINES	 131

16.4	 CHURCH–TURING’S THESIS	 134

REFERENCES	 136

www.allitebooks.com

http://www.allitebooks.org

viii    ◾    Contents

Chapter 17: Cryptography from the Medieval to the Modern Ages	 137
17.1	 THE ARAB CRYPTANALYSTS	 137

17.2	 POLYALPHABETIC SUBSTITUTION CIPHERS	 139

17.3	 HOMOPHONIC SUBSTITUTION CIPHERS	 141

17.4	 ENIGMA MACHINE	 143

17.5	 BREAKING ENIGMA CODES	 144

17.6	 LORENZ CIPHER	 145

REFERENCES	 146

Chapter 18: Electronic Computers	 149
18.1	 THE ABC COMPUTER	 149

18.2	 THE Z3 COMPUTER	 150

18.3	 THE COLOSSUS COMPUTER	 151

18.4	 THE ENIAC COMPUTER	 153

18.5	 VON NEUMANN ARCHITECTURE FOR COMPUTERS	 155

18.6	 OTHER NOTABLE EARLY ELECTRONIC COMPUTERS	 156

18.6.1	 National Physics Laboratory and the ACE	 156
18.6.2	 The MARK 1 at Manchester University	 157
18.6.3	 Electronic Delay Storage Automatic Calculator

(EDSAC)	 158
18.6.4	 Whirlwind I	 158
18.6.5	 Standards Eastern Automatic Computer (SEAC)	 158
18.6.6	 Standards Western Automatic Computer (SWAC)	 158

REFERENCES	 158

Chapter 19: Numerical Methods	 161
19.1	 NUMERICAL CALCULATION IN ANCIENT

CIVILIZATIONS	 161

19.2	 NUMERICAL SOLUTION OF ALGEBRAIC EQUATIONS	 164

19.3	 MODERN NUMERICAL ANALYSIS AND ITS
PROBLEM DOMAINS	 170

REFERENCES	 172

www.allitebooks.com

http://www.allitebooks.org

Contents    ◾    ix

Chapter 20: Modular Arithmetic	 173
20.1	 CLOCK ARITHMETIC	 173

20.2	 CHINESE REMAINDER THEOREM	 175

20.3	 FERMAT’S LITTLE THEOREM	 178

REFERENCES	 179

Chapter 21: Cybernetics and Information Theory	 181
21.1	 NORBERT WIENER AND CYBERNETICS	 181

21.2	 SHANNON’S INFORMATION THEORY	 183

21.3	 SHANNON–FANO CODING AND HUFFMAN
CODING	 186

21.4	 MORSE CODE	 189

REFERENCES	 190

Chapter 22: Error Detecting and Correcting Codes	 193
22.1	 PARITY CHECK CODES	 193

22.2	 HAMMING CODES	 194

22.3	 LINEAR CODES	 198

REFERENCES	 202

Chapter 23: Automata and Formal Languages	 205
23.1	 AUTONOMOUS APPARATUS	 205

23.2	 AUTOMATA AS COMPUTING MODELS	 206

23.3	 FORMAL LANGUAGES	 211

REFERENCES	 214

Chapter 24: Artificial Intelligence	 217
24.1	 WHAT IS AI?	 218

24.2	 AI TIMELINE	 219

24.3	 AI PIONEERS	 224

24.4	 AREAS OF AI	 227

REFERENCES	 229

x    ◾    Contents

Chapter 25: Programming Languages	 231
25.1	 MACHINE CODE	 231

25.2	 INTERPRETATIVE CRUTCHES	 232

25.3	 THE FIRST HIGH-LEVEL LANGUAGE: FORTRAN	 232

25.4	 OVERVIEW: IMPERATIVE PROGRAMMING	 233

25.5	 OVERVIEW: DECLARATIVE PROGRAMMING	 234

25.6	 THE SECOND HIGH-LEVEL LANGUAGE: LISP	 234

25.7	 OVERVIEW: FUNCTIONAL PROGRAMMING	 235

25.8	 STANDARDIZATION AND COMPROMISE:
	 ALGOL 60	 235

25.9	 FROM SCIENCE TO BUSINESS: COBOL	 237

25.10	 BACK TO THE BASICS	 238

25.11	 OVERVIEW: LOGICAL PROGRAMMING	 239

25.12	 PROGRAMMING LOGIC: PROLOG	 239

25.13	 OVERVIEW: OBJECT-ORIENTED PROGRAMMING	 239

25.14	 THE FIRST OBJECT-ORIENTED PROGRAMMING
LANGUAGE: SMALLTALK	 240

25.15	 IMPERATIVE AND OBJECT ORIENTED: C++	 240

25.16	 OBJECT ORIENTED, HOLD THE IMPERATIVE: JAVA	 241

25.17	 THE BEST OF BOTH WORLDS: C#	 242

REFERENCES	 244

Chapter 26: Algorithms and Computational Complexity	 245
REFERENCES	 253

Chapter 27: The Design of Computer Algorithms	 255
27.1	 SORTING AND SEARCHING	 255

27.2	 DATA STRUCTURES	 258

27.3	 GRAPH ALGORITHMS	 260

27.4	 RANDOMIZED ALGORITHMS	 265

REFERENCES	 268

Contents    ◾    xi

Chapter 28: Parallel and Distributed Computing	 271
28.1	 DAWN OF PARALLELISM	 271

28.2	 PARALLEL COMPUTERS	 273

28.3	 PARALLEL ALGORITHMS	 275

28.4	 DISTRIBUTED COMPUTING	 279

REFERENCES	 281

Chapter 29: Computer Networks	 283
29.1	 PACKET SWITCHING NETWORKS	 283

29.2	 ARPANET AND CSNET	 284

29.3	 WORLD WIDE WEB	 287

29.4	 CLOUD AND GRID COMPUTING	 289

29.5	 UBIQUITOUS COMPUTING	 291

REFERENCES	 292

Chapter 30: Public-Key Cryptography	 295
30.1	 THE SITUATION IN THE 1960s AND 1970s

BEFORE THE PUBLIC KEYS	 295

30.2	 THE BIRTH OF PUBLIC-KEY CRYPTOGRAPHY	 297

30.3	 RSA CRYPTOGRAPHY	 300

30.4	 DIGITAL SIGNATURES	 303

30.5	 ANOTHER STORY OF PUBLIC-KEY CRYPTOGRAPHY
FROM ENGLAND	 305

REFERENCES	 306

Chapter 31: Quantum Computing	 309
31.1	 THE BASICS OF QUANTUM COMPUTING	 309

31.2	 QUANTUM COMPUTATION LOGIC AND GATES	 312

31.3	 FAMOUS QUANTUM ALGORITHMS	 312

31.3.1	 Deutsch’s Algorithm (1989)	 313
31.3.2	 Grover’s Search Algorithm (1995)	 313
31.3.3	 Shor’s Factoring Algorithm (1994)	 314

xii    ◾    Contents

31.4	 DIFFICULTIES AND LIMITS OF
QUANTUM COMPUTING	 315

31.5	 CLOSING SUMMARY	 316

REFERENCES	 316

xiii

Preface

Have you ever wondered why the way we count differs greatly from the
way modern-day electronic computers do? Or why there are 24 hours
in a day, 60 minutes in an hour, etc.? How about who invented numbers
and when they were invented, as well as why there are different kinds of
numbers. Did you know that secret writings and cryptography date back
to ancient civilizations? You will find the answers to these questions, and
many more, in just the first few chapters of this book.

The primary purpose of this book is to serve as a supplementary text-
book for a mid- to upper-level university undergraduate course offered to
science and engineering majors. The book contents are self-explanatory,
and no prior knowledge of advanced mathematics or computer science is
needed. While some chapters require much deeper reading and analysis
than others, the book’s primary purpose is to expose the reader to the vast
array of topics related to computation. This includes purely historical as
well as the technical aspects of ancient and modern-day computing. The
organization of the 31 chapters follows the historical timeline. Therefore,
while from chapter to chapter the topics may appear to be quite unrelated,
each chapter is “stand-alone” and does not have to be read in sequence.
The book’s primary value is as a historical reference source in the field,
together with brief technical explanations and examples.

The first 10 chapters address what might be considered historical accounts
of counting and computing. It might surprise the reader to find that the
ancient Greeks knew of the existence of numbers that cannot be measured.
Also, it turns out that the modern-day numbers we call Arabic numerals
actually have their origins in India. These and a number of historically
interesting facts are discussed and explained, including examples from
the original works of such renowned scholars as Pythagoras, Diophantus,
Fibonacci, and many others.

xiv    ◾    Preface

Subsequent chapters include the early computing devices, such as the
abacus, Schickard’s calculating clock, the Pascaline, Babbage’s mechanical
computers (the difference engine and the analytical engine), etc. Various
parallel developments in mathematics are listed as well. These include
solutions to algebraic equations, real and complex numbers, and Cantor’s
unexpected result addressing the cardinalities of sets and the fact that
there is more than one “infinity,” and not only that, but also the number
of these infinities itself is infinite.

The last portion of the book tends to focus on the notion of comput-
ability, its capabilities as well as its limitations. It is quite interesting from
a historical perspective that the formal model of computation was intro-
duced by Turing some 15 years before the first electronic computers were
built. An even more surprising fact is that there must exist problems for
which no computer solutions exist. While Turing’s halting problem was
the first of such problems, it turns out the set of problems that cannot be
computed far outnumbers that which can (keeping in mind that both sets
are infinite).

Additional important computational topics such as numerical methods,
information and coding theory, automata and formal languages, and arti-
ficial intelligence are but a few of the computer science–related chapters
that follow. Also included are some practical issues within this area, such
as computational complexity, parallel computation, computer networks,
and public-key cryptography. The last chapter of the book is a brief intro-
duction to quantum computation, an area of computer science still in its
infancy, but showing a great deal of potential.

While the reader can find a great deal of information about the book’s
topics on the Internet, we hope that by organizing it here, a historical per-
spective will allow the reader not only to gain insight into each individual
topic, but also to develop a deep appreciation for the long evolutionary
processes over the millennia. During many cultures, innumerable indi-
viduals have contributed their talents and creativity to formulate what
has become our mathematical and computing heritage. Since each of the
chapters has been written more or less independently, it is noteworthy
that we have actually learned a significant amount while researching our
assigned topics, and especially when proofreading each other’s chapters.

xv

Acknowledgments

This book would not have been possible without the support and encour-
agement of many people, all of whom are our friends, colleagues, and stu-
dents. Our deepest thanks go to Maarten H. van Emden, Akira Maruoka,
Forbes D. Lewis, Geoff Dowling, Robert Senser, and Christine Coder.

We also express our appreciation to Randi Cohen, Marsha Pronin,
and Judith Simon of CRC Press for making our job so much smoother
and easier.

Special thanks go to our families, Sachiko, Hania, Hiroshi, Yoshiko,
Robert, Tadashi, and Johannah, for their patience, understanding, and
having to put up with us over the past 5 years.

xvii

About the Authors

Yoshihide Igarashi is a professor emeritus of computer science at Gunma
University, Kiryu, Japan. He received his Ph.D. from Tohoku University,
Sendai, Japan (1971). He worked in the School of Artificial Intelligence,
the University of Edinburgh (1972–1974). He taught theoretical com-
puter science at the University of Leeds (1974–1977), at City University,
London (1977–1978), Gunma University (1978–2004), and at the University
of Kentucky (1980–1981 and 1987–1988). His research interests include
computational complexity, the design and analysis of algorithms, and
parallel and distributed computing. He is an author of over 150 technical,
conference, and journal papers.

Tom Altman is a professor of computer science at the University of
Colorado, Denver. He holds a Ph.D. from the University of Pittsburgh
(1984). Currently, he is teaching automata theory, theory of computation,
algorithms, and computational complexity. His research interests include
optimization algorithms, parallel computation, and bioinformatics. He
has authored over 80 research papers and is a recipient of several teaching
and research awards in his field.

Mariko Funada is a professor of business administration at Hakuoh
University, Oyama, Japan. She received her Ph.D. from Tokyo Institute of
Technology, Tokyo, Japan, in 1992. She has been teaching computer science
and information processing at Hakuoh University and Gunma University.
Her research interests include human-computer interaction (HCI) and
multivariate data analysis. She is an author of over 60 technical, conference,
and journal papers.

Barbara Kamiyama has been a lecturer of technical English at Gunma
University, Kiryu, Japan since 1994. She received a B.A. in social science
from Fordham University, New York (1972), and attended graduate

xviii    ◾    About the Authors

school in the Department of Anthropology at the State University of
New York at Binghamton (1974–1977) and in the Department of Com-
puter Science at Vanderbilt University, Nashville, Tennessee (1978–1979).
Her research interests include the archeology and anthropology of
mathematics and computing.

www.allitebooks.com

http://www.allitebooks.org

1

C h a p t e r 1

The Dawn of Counting

The origin of abstract numbers is lost forever in the mists of time. To
know what lies behind that thick curtain of mist we call human history,
we must sift through what has been excavated archeologically or decipher
clues in what remains in the written record of civilizations, also long gone.
In doing so, we may catch a glimpse of what first motivated us to invent
numbers. It is important to remember that the invention of numbers was
not a spontaneous act, but rather the result of a long evolutionary process.

Animal behaviorists have observed that birds have some awareness of
the size of a collection of objects in terms of the number of eggs in a nest
and can detect changes in that number. Wasps have been observed to feed
a set number of caterpillars to male eggs and twice as many to female eggs.
It is likely that, in the case of human evolution, a similar ability to dis-
criminate variation in the size of a collection is what eventually, through
trial and error, led to the ability to conceive of abstract numbers. Let’s look
at what evidence we have, sketchy though it may be.

1.1 � ARCHEOLOGICAL EVIDENCE: PALEOLITHIC ART
The dramatic discovery of cave art in the south of France has changed
forever our understanding of the Homo sapiens we know as Cro-Magnon
and who lived there during the Paleolithic era, or about 30,000 years
ago. As spelunkers cast their lantern light on the walls of caves left her-
metically sealed for thousands of years, wild horses, buffalo, and other
extinct animals thundered across the stone face of the walls in a breath-
taking panorama! Here was a clear effort by gifted Paleolithic artists to
represent the large herds of wild animals with which these communities
shared their environment, among which they foraged for food, and that

2    ◾    Computing﻿

inspired them with both fear and reverence. Surreal red handprints on
the cave walls reach out from the past into the present, while collections
of red-ochre dots may represent some sort of calendar—perhaps counting
the phases of the moon. In one cave, a mural depicts hunters posing with
bows and arrows, lined up in a neat one-to-one correspondence with deer
as their prey. All of these paintings tell the tale of a human awareness of
numbers—not necessarily the abstract concept of numbers or words that
represent our understanding of numbers—but surely the awareness of the
size of a collection, the ability to represent a succession of events as in the
use of a simple calendar, and the ability to make a one-to-one correspon-
dence between different sets. We were well on our way to counting!

It is highly unlikely that Paleolithic humans had numbers as we know
them today. One possible explanation is that the invention of abstract
numbers is a product of social necessity. Since the earliest humans prob-
ably roamed seasonally over their environment and had few possessions,
there was little need for creating specific words for large, abstract numbers;
sets or groups of objects (e.g., herds of animals, fish in the river, etc.) were
simply referred to as very many in some primitive cultures, and the ability
to count was limited to three words: one, two, and many.

1.2 � FINGERS FOR COUNTING
Although there is no definitive proof, many evolutionists think that the
first tools humans used for counting were their fingers. With a naïve
ability to make a one-to-one correspondence, the use of fingers seems
almost inevitable. The word digit in English indicates how natural this
tendency is among humans. Digit derives from the Latin word digitus,
which in that language means “finger.” In English, however, the word digit
not only means finger, but also a discrete number.

Various ancient civilizations devised clever methods for expanding the
count by using finger joints, whole fingers, or including other parts of the
body as well. While using fingers (or other body parts) can be very con-
venient, this method has one serious drawback: fingers leave no record
of what is counted unless some other tool is added to the technique.
Inevitably, humans, compelled by need, sought better methods.

1.3 � THE USE OF TALLY STICKS AND REPRESENTATIONAL
SYMBOLS: THE FIRST INFORMATION REVOLUTION

Carving notches on bones or stones has been called by some the first infor-
mation revolution. Alexander Marshack (1918–2004), in his seminal work

The Dawn of Counting    ◾    3  

The Roots of Civilizations (1972) [2], demonstrated that Upper Paleolithic
carvings on bones, dating back some 32,000 years, represented lunar
calendars. The ability to make meaningful observations and record them
on a surface constitutes a significant step in human evolution and rep-
resents man’s first attempt at data storage and retrieval. While many
similar artifacts have been excavated from Cro-Magnon settlements,
Neanderthals living during the same period did not seem to be able to
employ representational symbols. It has been suggested by some that this
may explain in part why Neanderthals eventually died out.

Other important Paleolithic evidence of techniques for counting comes
to us from South Africa. A long piece of bone, known as the Lebombo
stick, named after the cave in which it was found, dates back about
35,000 years. This bone has 29 tally marks on it, indicating that it was used
as a means of keeping a count. Whether it was objects being counted or
was used as a sort of calendar, no one knows. Here again we see the ability
to make a one-to-one correspondence between the objects or events being
counted and the marks on the bone. Each notch represents one object.
From such evidence, however, we can draw the conclusion that humans
had the ability and desire to keep a running tally of something from the
very dawn of the species.

The Ishango bone from the head of the Nile River in the East Africa area
dates from around 20,000 years ago. It is an interesting artifact because
its notches are arranged in groups, which may indicate an attempt to
further facilitate counting by creating a higher level of multiples. In other
words, there may have been one word in the language for a single unit and
another word representing grouped units. All of this is conjecture, but
clearly this was another possible step in the evolution of numbers as we
know them today.

Tally sticks have been widely used not only in Africa but also throughout
Europe. Paper, as invented by the Chinese, was not introduced in Europe
until the 14th century. Until then, manuscripts were written on parchment.
Even with the introduction of paper, however, few could read or write,
making the continued use of tally sticks an important method for ordinary
people to keep track of transactions, whether buying bread in a bakery,
paying taxes, or recording the amount of milk produced by a herd of cows.

A later adjustment was the introduction of the split tally stick, which,
once notched, could be divided lengthwise to allow both parties in a
transaction to hold a record of it. Eventually, the longer portion of the
stick became known as the stock and was kept by the person who had

4    ◾    Computing﻿

lent money or sold goods (and from which we get the term stockholder),
and the shorter portion, given to the customer, was known as the foil. It is
from this custom that we get the expression “the short end of the stick,”
indicating the less admirable end of a deal.

Tally marks and tally sticks remain in use to the present day. Keeping
a tally is a remarkably simple way of performing addition without using
numbers at all. By carving notches into the bone or stick, it becomes, at the
same time, a lasting record of the items being counted.

1.4 � COUNTING BY PEBBLES
In addition to tally sticks, early humans—again without the use of abstract
numbers—probably used pebbles to count the number of objects in a
collection by way of one-to-one correspondence. One advantage of this
system over the use of fingers is that, besides being able to count past 10,
it does leave a physical record of the count.

As the size of human settlements increased, and people became more
sedentary, it was also possible to own more objects. This provided the
impetus to invent better systems for counting. Many researchers have
given the example of a shepherd counting his sheep as they are led out to
pasture by dropping a pebble for each animal as it leaves the corral. Upon
their return at some later point, the shepherd uses the pebbles from the
previous count to do a recount. If more sheep return than he has pebbles,
he knows his flock has somehow increased, and conversely, if fewer return
than the number of pebbles used when they departed, he knows he has
lost some sheep and must go in search of them. This is a very simple,
but accurate, means of keeping a count, requiring neither concrete nor
abstract numbers. Such a method can be applied to bags of grain, jars of
oil, and other objects used in everyday life.

As quantities being counted grew in size, pebbles could be differen-
tiated such that varying colors or sizes might represent multiples, thus
obviating the need for carrying about increasingly heavy bags of pebbles.
This is similar to the practice of making groups of notches on a tally stick
to represent a multiple. The principle of one-to-one correspondence still
applies since one type of pebble represents one size of a group of objects.
The use of both tally sticks and pebbles, precursors of numbers, was an
important step in the evolution of counting that eventually led to the
formation of abstract numbers.

The word calculate in English, which means “to count,” indicates the
importance of the use of pebbles as a means of counting. The word is

The Dawn of Counting    ◾    5  

derived from the Latin word calculus, which means “pebble” or “stone.”
The same Latin word is also the root of the word calcium in English, which
is a mineral. In other words, in English, the Latin root word calculus is used
to form words meaning both count and a kind of mineral. Here again, like
the word digit, the use of the Latin root word in English demonstrates the
close association of two completely different concepts as a result of a com-
mon practice such as using pebbles to count objects.

1.5 � THE USE OF TOKENS AND
THE SECOND INFORMATION REVOLUTION

It took several millennia for humans to move from the use of fingers to
tally sticks and pebbles. Such practices remain in human societies even
today. With the development of agriculture and the establishment of
cities by the first civilizations, however, these common practices, critical
steps in the evolution of numbers, finally gave way to more sophisticated
techniques. The ability to plant and raise cereal crops allowed for rapid
population growth. Archeological excavations in the Middle East, where
the earliest cites were established, have discovered large numbers of small
clay objects of various shapes and sizes that served as tokens for counting.
Different shapes represented different types of goods.

As products were traded at increasingly long distances, clay tokens
were used as bills of lading. Eventually loose clay tokens were pressed into
clay tablets, to make an impression. According to archeologist Denise
Schmandt-Besserat (1933–) [4], this represents a movement from the use of
three-dimensional objects to a two-dimensional record, and the impetus
behind the second information revolution, the replacement of objects for
symbols in a representational system.

Michael Rothschild (1942–) has written about the eventual adapta-
tion of clay tablets in Sumerian civilization about 5,000 years ago and
the appearance of the first writing system [1]. The vast majority of tablets
excavated in Sumeria are documents related to accounting. With the rise
of civilization and the need to collect taxes, maintain a bureaucracy, and
have the ability to produce, import, and export increasingly larger quanti
ties of goods came a simultaneous need to keep and maintain records and
employ larger-and-larger-scale numbers. Humans had moved into the
world of abstract numbers, and the archeological record suggests that it
was the compelling need to keep accounts that stimulated the rise of the
first counting and writing systems.

6    ◾    Computing﻿

REFERENCES
	 1.	 M. Rothschild, Cro-Magnon’s Secret Weapon, Forbes ASAP: A Technology

Supplement, September 13, 1993.
	 2.	 A. Marshack, The Roots of Civilizations: The Cognitive Beginnings of Man’s

First Art, Symbol and Notation, McGraw Hill, New York, 1991.
	 3.	 J. MacLeish, The Story of Numbers, Fawcett Columbine, New York, 1991.
	 4.	 D. Schmandt-Besserat, How Writing Came About, University of Texas Press,

Austin, 1996.
	 5.	 E. Ascalone, Mesopotamia, University of California Press, Berkeley, 2005.
	 6.	 H. Blohm, S. Beer, and D. Suzuki, Pebbles to Computers: The Thread, Oxford

University Press, Toronto, 1986.

7

C h a p t e r 2

Representation
of Numbers

In simple societies, tally sticks and clay tokens served adequately for thou-
sands of years to represent and record objects counted. As the number
of these objects increased, however, various methods appeared to group
the notches on sticks or bones or to designate tokens of higher orders in
order to facilitate the process of counting and recording. With the advent
of agriculture and the division of labor, increased population growth, and
the formation of centralized bureaucracies, simple tools like tally sticks
and clay tokens no longer sufficed.

It is believed that the earliest forms of written numbers evolved when the
spoken names for numbers became associated with their recorded tallies.
In addition, the process of going from a simple one-to-one correspondence
type of tally to one in which tally marks or symbols are grouped is an
important cognitive step that led eventually to the formation of number
systems. Forming groups of various sizes and ordering them in progres-
sion led to the creation of the earliest number symbols and systems [8].

For example, in ancient Egypt, a simple one-stroke hieroglyphic tally
recorded on papyrus evolved into a grouped tally, which then further
evolved into a hieratic code system of abstract symbols. Similarly, the
ancient Sumerians and Babylonians at first recorded wedge-shaped tallies
on clay tablets. These cuneiform (from the Latin word cuneus for wedge)
symbols were later grouped for recording speed and convenience, and
then eventually made into graduated abstract numerals that formed the
basis of a base-60 number system [7].

8    ◾    Computing﻿

In most cultures it is clear that the words used to represent numbers
evolved quite separately from their written representations. While the words
for numbers evolved for the most part within societies and are directly
linked to specific languages or language groups, the written Hindu-Arabic
numerals we use today spread from country to country to become what
Karl Menninger (1898–1963) referred to as “the most significant symbol of
mankind’s universality” [8].

2.1 � POSITIONAL NUMBER SYSTEMS
According to the principle of position, also known as place-value, the
value assigned to any given numeral depends on the position in which
the numeral appears. For example, in our decimal number system, the
numeral 5 appears three times in the number 555; however, each 5 has
a different value because each 5 holds a different position. Reading from
the right, the first 5 means 5 units of one, the next 5 to the left repre-
sents 5 tens or 50, and the next 5 to the left represents 5 hundreds or
500. We have become so accustomed to this written convention that it
seems second nature; however, in actual fact, only a few civilizations ever
invented this practice. Their invention proved so convenient and practi-
cal that positional notation spread throughout the world and is now the
standard used everywhere.

The Babylonians were the first to invent a place-value number system.
Evidence shows that as early as 2000 BC Babylonian scholars employed a
written place-value base-60 or sexagesimal number system, carrying out
quite advanced mathematical calculations for astronomical research and
other forms of record keeping required by their bureaucracy. While their
discovery of the principle of positional notation is the earliest known, their
number system is not the one used in the modern world. Some cultural
vestiges of their sexagesimal number system can be found in our conven-
tion of measuring 60 seconds per minute and 60 minutes per hour, and
in calculations for angles and geographic longitude. The importance of
this Babylonian invention can hardly be overstated, for without positional
notation, different powers of a base required the use of different symbols,
making calculation extremely difficult [1, 2].

The Chinese were the next to invent a positional number system around
the second century BC. Unlike the Babylonians, theirs was a base-10
number system, with calculations performed on a precursor of the
modern Chinese abacus, called suan zi, meaning “calculating with rods.”

Representation of Numbers    ◾    9  

While there were written symbols for the numbers from 1 to 9 and for the
powers of 10 (10, 100, 1000, and so on), these symbols were not used for
calculation. Instead, the Chinese used bamboo or ivory rods on a checker
board table. The columns on the table represented the powers of 10. This
abacus allowed them to perform all arithmetic operations with rods,
becoming a de facto positional notation system. Once calculations had
been performed, the results were transcribed in written numerals, exactly
paralleling the position of the rods on the table [1].

We come then, at last, to ancient India, which gave birth not only to the
numerals used around the world today, but also to the positional number
system and the concept of zero with which we are most familiar. The evolu-
tion of the nine numeral symbols is long and complicated. By the beginning
of the fifth century BC, we find the units 1 to 9 represented by nine abstract
Brahmi numerals in India [9]. At this time, Indian mathematicians
employed a decimal place-value number system and had also invented the
concept of zero. However, their zero was not a written numeral, but only
a Sanskrit word.

The change to a decimal place-value number system with nine numer-
als came about as result of the use of a sand or dust abacus. The columns
of this abacus corresponded to the powers of 10, and Brahmi numerals
were used in the columns. Transcribing the results of calculation on the
abacus into Sanskrit number words, Indian mathematicians mirrored the
abacus format, arriving at a decimal place-value arrangement. After some
time, mathematicians realized that the use of Brahmi numerals would
be a much more efficient writing scheme and did away with writing out
number words in Sanskrit. This evolution marks the birth of the numerals
from 1 to 9 we use today.

The column format of a dust abacus allowed Indian mathematicians to
calculate without a numeral for zero by just leaving the appropriate column
blank. This became a problem, however, when transcribing calculations
from the abacus to written notation. The Indians had a Sanskrit word for
zero based on the concept of the sky or space. They took this word-symbol,
usually either a circle or half-circle, and adapted it to represent their concept
of zero. This came about sometime during the fourth century AD. It is at
this point we find that the Indians used nine abstract numerals, employed
a fully operational decimal place-value number system, and had invented
a true zero. Although the numerals 0 to 9 are now commonly known as
Arabic numerals, they are, as we have seen, Hindu-Arabic in origin [1].

10    ◾    Computing﻿

2.2 � MORE ABOUT NUMBER SYSTEMS
The decimal or base-10 number system was used in various ancient civili-
zations. It was most likely motivated by the common use of 10 fingers to
count. Nondecimal systems, as we have seen in the previous section, have
also occurred in various civilizations and in different eras. One example
is the base-12 or duodecimal number system of the ancient Egyptians.
Rather than counting fingers, they used finger joints or phalanxes for
enumeration, a technique called phalanx counting. With the thumb as
a pointer, each hand could be used to count up to 12, or up to a total
of 24. The Egyptians used their duodecimal number system to divide a
day into 24 periods, a custom that we continue to observe in our 24-hour
day. Phalanx counting is still in use today in Egypt, Syria, Iraq, and some
parts of South Asia.

The sexagesimal or base-60 system of the ancient Sumerians did
not have unique symbols for the units from 1 to 59. Remembering that
many unique symbols would have been burdensome, they subdivided
the numbers into an auxiliary base of 10, with each group of 10 having a
name. For example, one cuneiform represents 10, two cuneiforms repre-
sent 20, three cuneiforms represent 30, and so on.

Another example we might consider is Roman numerals. These numerals
were used throughout the Roman Empire from ancient times. They domi-
nated as the common numeric symbols of medieval Europe and continued
in use into the 17th century. They are still used today for primarily decora-
tive purposes. In fact, Romans numerals were not invented by the Romans,
but date back to the Etruscans, a civilization found on the Italian peninsula
between the seventh and fourth centuries BC, disappearing with the rise
of the Roman Empire. The oldest of the Roman numerals, the symbols I,
V, and X (1, 5, and 10), are probably prehistoric in origin and stem from
the custom of cutting notches on tally sticks [1]. Some Roman numerals
are given in Table 2.1, and an example of the multiplication process using
Roman numerals is given in Table 2.2.

2.3 � FURTHER DISCUSSIONS OF ZERO
The idea of numbers such as 1, 2, and 3 developed long before the concept
of zero. This was largely because of a lack of need in early human societies.
Consider, for instance, the case for counting fruit. While it is common-
place to say we have three apples, it is unlikely we would say we have zero
apples. In such a case, we would say we do not have any apples. From

www.allitebooks.com

http://www.allitebooks.org

Representation of Numbers    ◾    11  

this vantage point, it is easy to see how societies got along for millennia
without ever developing the concept zero. Even with the development of
number systems, the concept of zero proved to be elusive.

The early Babylonians, despite their positional number system, did
not invent the concept of zero, but rather represented an empty value by
a blank space. Successive blank spaces on a clay tablet were ambiguous,
and individual writing idiosyncrasies could also be misleading as to the
presence or absence of a blank space between cuneiform wedges.

From the second century BC, the Babylonians finally decided to elimi-
nate the blank space ambiguity by creating a symbol that served as a space
holder for empty powers of the base. The symbol, never considered a
numeral in itself, was two small slanted wedges.

TABLE 2.1  Roman Numerals

Decimal Roman Decimal Roman Decimal Roman

1 I 8 VIII 15 XV
2 II 9 IX 16 XVI
3 III 10 X 17 XVII
4 IV 11 XI 50 L
5 V 12 XII 100 C
6 VI 13 XIII 500 D
7 VII 14 XIV 1000 M

TABLE 2.2  A Multiplication Using Roman Numerals (CCLXV × XXXVIII)

Roman Notation Decimal Notation

CCLXV 100 + 100 + 50 + 10 + 5 = 265
XXXVIII 10 + 10 + 10 + 5 + 3 = 38
CCLXV × XXXVIII 265 × 38
CCLXV × III = CCCCCC LLL XXX VVV 265 × 38

= 265 × 30 + 265 × 8
= 7950 + 2120 = 10,070

	 = D CC L XXXX V	 … (1)
CCLXV × V = CCCCCCCCCC LLLLL XXXXX VVVVV
	 = M CCC XX V	 … (2)
CCLXV × XXX = MMMMMM DDD CCC LLL	 … (3)
CCLXV × XXXVIII = (1) + (2) + (3)
= MMMMMMM DDDD CCCCCCCC LLLL XXXXXX VV
= MMMMMMMMMMLXX
=
=
=
=

VMMMM D CCC CC L XX
VMMMM DD L XX
VMMMMM L XX
X L XX

12    ◾    Computing﻿

The use of zero as a real value probably first appeared in India around
the fifth century. Lokavibhaga, or “The Parts of the Universe,” is the oldest
known text to use a decimal place-value system that included a zero. This
Jain cosmological text, dated 458 AD, uses Sanskrit words for numerals,
including the word shunya for zero, meaning “void” or “empty” [5].

Aryabhata (476–550) was a renowned Indian mathematician and
the author of several treatises on mathematics and astronomy. His best
known work is Aryabhatiya, a text that summarizes Indian mathematical
knowledge during the fifth and sixth centuries. Around 498 AD, Aryabhata
used the letters of the traditional Sanskrit alphabet to record numbers.
Some historians and mathematicians believe that his place-value system
might be the origin of the modern decimal-based place-value notation,
and that while he did not use a symbol zero, he certainly understood the
concept [1, 6].

The appearance of a symbol for the digit zero, a small circle, was found
on a stone inscription at the Chaturbhuja Temple at Gwalior in India,
dated 876 AD. There are also many documents on copper plates, with a
similar small circle in them, dated as far back as the sixth century AD, but
some historians doubt their authenticity or true meaning.

While the Chinese had a positional number system that dated back to
at least the second century BC, it was only much later, around the eighth
century AD, when Buddhist missionaries brought the use of zero to
China. Until that time, the Chinese left empty squares on their shunya zi
to designate zero.

Before the rise of the Arab (Islamic) Empire, the decimal place-value
number system, which originated in India, had already begun moving
westward from the seventh century AD. As a result of the great wealth
accumulated through their conquests, the Arabs, trading far and wide,
became “cultural middlemen” throughout the Middle East, setting up
Islamic centers in great cities such as Baghdad. They were eager to absorb
the learning of other great cultures such as the Chinese, Indians, and
Persians, as well as the Greeks and Romans.

In the year 773 AD, an Indian brought writings on astronomy to the
court of the caliph of Baghdad. The book was translated from Sanskrit
to Arabic. One of the Persian scholars to read this book was the famous
Al-Khwarizmi, perhaps the greatest mathematician of his time. Based on
his studies of Indian mathematics, he wrote a book entitled Algorithmus
around the year 830, explaining the use of Indian numerals. In this way,

Representation of Numbers    ◾    13  

the Indian place-value number system and the concept of zero was intro-
duced to the Arabic world.

As Islamic and Christian cultures collided in the West, what had become
known as Arab numbers gradually supplanted the use of Roman numerals
and the abacus around the time the Renaissance era had begun in Europe.
The place-value decimal number system we use today can therefore be
traced directly to India. The positional number system and the concept of
zero were the groundbreaking work of ancient Indian mathematicians [1, 2].

There is another story about the invention of zero. The oldest zero in
the New World was found in Mayan civilization, dating back at least to the
first century BC. The numeral is part of their vigesimal positional nota-
tion and was an independent invention. One prominent example of the
Mayan zero is the Mesoamerican or Mayan Long Count Calendar devel-
oped by several pre-Colombian civilizations. The oldest known example
of the calendar dates from 36 BC and comes from Mexico. The calendar
used zero as a placeholder within its vigesimal (base-20) and base-18
place-value number systems. The Long Count Calendar identifies a date by
counting the number of days since a mythical creation date corresponding
to August 11, 3114 BC, in the Gregorian calendar [3]. In Mesoamerican
numerals, a dot represented a 1, a bar represented a 5, and a snail shell-like
symbol was used to represent the zero [4].

The numerals of the Long Count Calendar were no longer in use after the
Spanish conquered the Yucatan Peninsula. Although early in its appear-
ance, the Mayan zero did not spread to any location in the Old World, and
consequently, the Mayan number system and zero did not influence the
development of number systems elsewhere [3].

Over the millennia, cultures all around the world have experimented
with number representation in many various ways trying to represent
numbers. Many converge in their adoption of the decimal system, no
doubt heavily influenced by the use of our 10 finger-digits to count in an
earlier age. In those societies where positional notation was invented, one
condition they share in common was the use of an abacus-like counting
device, which seems to have predisposed them to adopting place-value in
their written notation. It was in India that all of the factors came together
to allow their mathematicians to invent a number system that was not
only positional, but also had zero as a number. It was a long journey to
get there, and the road was not straightforward, but this number system
opened the door to the world of modern mathematics.

14    ◾    Computing﻿

REFERENCES
	 1.	 Georges Ifrah, The Universal History of Computing, John Wiley & Sons,

New York, 2001.
	 2.	 D. E. Smith, History of Mathematics (Vol. II), Dover Publications, New York,

1958.
	 3.	 Wikipedia, Mesoamerican Long Count Calendar, http://en.wikipedia.org/

wiki/Mesoamerican_long_count_calender.
	 4.	 Wikipedia, Mesoamerica, http://en.wikipedia.org/wiki/Mesoamerican.
	 5.	 Wikipedia, Lokavibhaga, http://en.wikipedia.org/wiki/Lokavibhaga.
	 6.	 Wikipedia, Aryabhata, http://en.wikipedia.org/wiki/Aryabhata.
	 7.	 D. Smeltzer, Man and Number, Dover Publications, New York, 2003.
	 8.	 K. Menninger, Number Words and Number Symbols, Dover Publications,

New York, 1992.
	 9.	 Wikipedia, Brahmi Numerals, http://en.wikipedia.org/wiki/Brahmi_numerals.

15

C h a p t e r 3

Rational and
Irrational Numbers

3.1 � APPEARANCE OF FRACTIONS
Counting is the simplest and most fundamental operation using numbers.
However, just counting was insufficient and inconvenient for people even
in ancient civilizations. People at some early stage of their civilizations
realized that arithmetic operations such as addition, subtraction, multi-
plication, and division were necessary and very important. It is probably
more than 4000 years ago that people in Egypt, Mesopotamia, and other
ancient civilized regions could already manipulate arithmetic operations
using their number systems, although it is difficult to specify when and
where people first discovered such techniques for calculations.

Among the four arithmetic operations, multiplication and division
were difficult compared with addition and subtraction. People invented
doubling and halving operations a long time ago. These and similar opera-
tions were convenient for their lives, and made multiplication and division
easier. Consequently, the fractions 1/2, 1/4, 1/8, 1/16, and so on became
commonly used numbers in addition to natural numbers. Furthermore,
the use of reciprocals of integers, such as 1/2, 1/3, 1/4, 1/5, 1/6, and so
on, also became common and of great importance. The reciprocal of each
nonzero natural number is called a unit fraction. They noticed that multi-
plications of unit fractions by integers were also useful for calculations. In
this way, fractions appeared in ancient civilizations [7].

16    ◾    Computing﻿

Ancient Egyptians used special symbols representing fundamental
unit fractions and some other fractions (e.g., 2/3). These symbols appeared
in several mathematical tablets and papyri found in Egypt [10]. Akhmim
wooden tablets and Cairo wooden tablets are two ancient Egyptian doc-
uments that contain, for example, descriptions about multiplications
by fractions 1/3, 1/7, 1/10, 1/11, and 1/13. The following calculation of
fractions also appeared in the tablets:

	 1/2 + 1/4 + 1/8 + 1/16 + 1/64 + 5/320 = 1

Historians suggest that these tablets were probably inscribed at the
beginning of the Egyptian Middle Kingdom around 1950 BC [3]. These
are now held in the Egyptian Museum in Cairo.

In the British Museum in London, the Rhind Papyrus (also called Rhind
Mathematical Papyrus) is displayed. It is approximately 5 m long and 33 cm
wide, one of the oldest existing texts of Egyptian mathematics. A Scottish
lawyer, Alexander H. Rhind (1833–1863), purchased it in 1858 in Egypt
[8]. It was named the Rhind Papyrus after him. It was copied by a scribe
named Ahmes around 1650 BC. In the first paragraph of the papyrus,
Ahmes presents that it is copied from an ancient copy made during the
12th dynasty of Upper and Lower Egypt (c. 1985–1795 BC) [3, 8].

The first part of the Rhind Papyrus contains a list of the fractions 2/n
for odd n from 3 to 101. The following are examples in the list:

	 2/3 = 1/2 + 1/6

	 2/5 = 1/3 + 1/28

	 2/7 = 1/4 + 1/28

	 2/9 = 1/6 + 1/18

	 2/15 = 1/10 + 1/30

	 2/101 = 1/101 + 1/202 + 1/303 + 1/606

The second and third parts of the Rhind Papyrus consist of geometry
problems, and 84 problems with the solutions, respectively. Below is an
example in the third part:

Rational and Irrational Numbers    ◾    17  

Problem 3.1

Let the sum of 2/3 and 1/10 of an unknown quantity be 10. Calculate
the unknown quantity.

SOLUTION
Using modern notation, (2/3 + 1/10)x = 10, where x is the unknown
quantity. Then x = 300/23.

The Moscow Papyrus (also called Moscow Mathematical Papyrus) is
now held in the Puskin State Museum of Fine Arts in Moscow [9]. It is
approximately 5.5 m long and 3 ~ 7.7 cm wide, one of the oldest Egyptian
mathematical texts in existence. The Moscow Papyrus probably dates
to the 11th dynasty of Upper and Lower Egypt (c. 1850 BC). It contains
25 problems of arithmetic, algebra, and geometry. The following are
examples of the problems:

Problem 3.2

Let the sum of 1 and a half of an unknown quantity and 4 be 10.
Calculate the unknown quantity.

SOLUTION
Using modern notation, (1 + 1/2)x + 4 = 10, where x is the unknown
quantity. Then x = 4.

Problem 3.3

Let 1/2 + 1/4 of the square of an unknown quantity be 12. Calculate
the unknown quantity.

SOLUTION
Using modern notation, (3/4)(3/4)x2 = 12(3/4), where x is the unknown
quantity. Then x = 4.

3.2 � RATIONAL NUMBERS
The set of rational numbers is usually denoted by Q, and the elements
of this set have the property that they can be represented as a ratio
of two integers (hence the name rational). These numbers are, in a

18    ◾    Computing﻿

sense, measurable, and they include whole integers, fractions, and their
together negative counterparts. The set of rational numbers is equiva-
lent to the set of multiplications of unit fractions and integers. That is,
we can write

	 Q = {p/q | p is an integer and 1/q is a unit fraction}

A rational number is one that can be named number, in that we can say
seven, three-fourths, 0.3. With this, any rational number can be placed in
its exact (measured) position on the real number line (see also Chapter 13).
Rational numbers can be represented using decimal notation where the
representation is either finite (e.g., two-fifths is 0.40) or infinite, but repeat-
ing (e.g., three and two-sevenths is 3.285714285714285714…). Historically
the decimal fraction notation (e.g., 3.285714285714285714…) appeared
much later than fraction notation (e.g., 3 + 2/7 or 23/7). The use of deci-
mal fraction notation became common in the 16th century (see more in
Chapter 10). Since a repeating decimal can be written algebraically as a
fraction, it follows that any repeating decimal must be a rational number.
Specifically, to prove that any repeating decimal represents a fraction of
two integers, let us examine a number x whose decimal representation
is of the form i i i d d d abcdabcdabcdk m1 2 1 2� � �. , where the digits i and d
represent the integer part, and the nonrepeating portion of x and abcd is the
repeating pattern. Algebraically, x = r + y, where r i i i d d dk m

m= 1 2 1 2 10� � / ,
which already is a ratio of two integers, is a rational number. So, we just
have to show that the number y = 0.00…0abcdabcdabcd… is also a ratio of
two integers. We multiply assign to g the repeating pattern value of abcd,
and pick the smallest h such that 10h > abcd; i.e., h is the pattern length.
Now, y = abcd/(10h – 1) is a ratio of two integers; hence, it must be rational.
Since the set of rational numbers is closed under addition (i.e., a sum of
two fractions is a fraction), the original number x is rational.

Let us examine the above formula on the repeating decimal 0.999…. The
pattern length here is just one digit. Therefore, we have 9.0/(101 – 1) = 1.0.
This is unexpected, because it implies that there are two different repre-
sentations for the same number, that is, 1. The first is 1.0 and the second
is 0.999…. Intuitively, we know that 0.999… is three times 0.333… = 1/3.
So the fact that 0.999… = 1.0 is, at least, not counterintuitive. However, it is
concerning that the same (rational) number can have two representations.
We can prove that 0.999… = 1.0 in another way. Let us solve the following
system of equation(s), 0.999… = x, with one equation and one unknown.

Rational and Irrational Numbers    ◾    19  

Algebraically, we can multiply the two sides of an equation by a number
and maintain equality. In this case, let the multiplier be 10. So, we have
9.999… = 10x. Now, if we subtract the first equation from the second, we
have 9.0 = 9x, so we get our final answer: x = 1.0.

3.3 � IRRATIONAL NUMBERS
Pythagoras (c. 570–540 BC) is one of the most famous Greek philosophers
and mathematicians. The Pythagorean theorem is a relation among the
side lengths of a right triangle. Let a, b, and c be the side lengths of a
right triangle, where c is the length of the side opposed to the right angle.
The Pythagorean theorem can be expressed as the following equation:

	 a2 + b2 = c2.

The Pythagorean theorem was probably known much before Pythagoras
[14], but it is said that Pythagoras first proved the theorem. There exist
many different proofs of the Pythagorean theorem. It can be proved
algebraically or geometrically, e.g., by using the drawings in Figure 3.1.

From the Pythagorean theorem, the Greek mathematicians, probably
including Pythagoras, realized that there exist numbers that cannot be
measured by a rational number. The most obvious example was the length
of the diagonal of a one-by-one square, which is 2 from the Pythagorean
theorem. More generally, if n is a positive integer and not a square
number, then n is not a rational number. The proof of this fact is given
in Theaetetus (c. 360 BC) written by the Greek philosopher and math-
ematician Plato (427–347 BC). They noticed that these numbers cannot
be represented by a ratio of two integers. Arabic mathematicians treated
these numbers as algebraic objects. Hindu and other mathematicians were
also aware of the existence of such numbers and that they are much more
mysterious than the rational numbers, but none of the early mathemati-
cians grasped the full meaning and magnitude of this set.

Pythagoras wanted to believe that all numbers were rational (could be
written as a fraction or be measured). Hippasus (fifth century BC), who
was Pythagoras’s student, actually showed that the square root of 2 cannot
be a ratio of two integers. It is believed that he used a geometrical (and not
an algebraic) argument. Pythagoras was caught in a dilemma: what to do
with a number that was not rational, i.e., irrational. Despite Hippasus’s
proof, he would not accept the existence of irrational numbers. Since
Pythagoras could not disprove the existence of irrational numbers, he had

20    ◾    Computing﻿

Hippasus thrown overboard and drowned! An unfortunate footnote to
this is that 2 is often called Pythagoras’s constant.

Let us present a simple (non-constructive [6]) proof that there can exist
no rational number x whose square is 2. Suppose such a number existed,
i.e., x = m/n, where n is not 0, m/n is simplified to the lowest terms (i.e., m/n
is an irreducible fraction), and x2 = 2. It follows that (mm)/(nn) = 2. Therefore,
both m and n cannot be even numbers—at least one of them must be odd

a

a

a

a

b

b

b

b

c

c

c

c

A

B
D

C

c

c c

c

a
a

a
a

b

b

b

b

FIGURE 3.1  Three different proofs of the Pythagorean theorem.

www.allitebooks.com

http://www.allitebooks.org

Rational and Irrational Numbers    ◾    21  

since m/n is irreducible. From the equation, we can derive n2 = 2m2, which is
an even number. This implies that m must be an even number, e.g., m = 2k,
where k is one-half of m. Now, let us substitute for m. We have (mm)/(nn) =
2 = (2k)2/(nn) = 4k2/(nn). So, 2nn = 4k2, or equivalently, nn = 2k2. Therefore,
nn must be even, which makes n even. But both m and n could not be
even (since m/n is irreducible), and so we have a contradiction. This means
that our assumption that 2 is a ratio of two integers (rational number)
is not correct.

While the majority of tasks of daily life involve rational numbers, the
irrational numbers are just as important, and as will be shown later, there
are much more irrational numbers than we can count (see Chapters 13
and 14).

REFERENCES
	 1.	 Wikipedia, Real Number, http://en.wikipedia.org/wiki/Real.
	 2.	 J. C. Tweddle, Wierstrass’s Construction of the Irrational Number, Math

Semester, 58, 47–58, 2011.
	 3.	 D. E. Smith, History of Mathematics (Vol. II), Dover Publications, New

York, 1958.
	 4.	 Mathworld, http://mathworld.wolfram.com/IrrationalNumber.html.
	 5.	 Wikipedia, Irrational Number, http://en.wikipedia.org/wiki/Irrational_

number#cite_note-28.
	 6.	 A. George and D. Velleman, Philosophies of Mathematics, Blackwell, 2002.
	 7.	 Wikipedia, Fraction, http://en.wikipedia.org/wiki/Fraction.
	 8.	 Wikipedia, Rhind Papyrus, http://en.wikipedia.org/wiki/Rhind_mathemati-

cal_Papyrus.
	 9.	 Wikipedia, Moscow Papyrus, http://en.wikipedia.org/wiki/Moscow_Papyrus.
	 10.	 Wikipedia, Akhmim Wooden Tablets, http://en.wikipedia.org/wiki/Akhmim_

wooden_tablets.
	 11.	 G. Ifrah, The Universal History of Computing, John Wiley & Sons, New

York, 1981.
	 12.	 R. G. Robins and C. C. Shute, The Rhind Mathematical Papyrus: Ancient

Egyptian Text, British Museum Publications, London, 1987.
	 13.	 Mathematics in Egyptian Papyri, http://www-history-mcs.st-andrews.ac.uk/

HistTopics/Egyptian_papyri.html.
	 14.	 B. L. van der Waerden, Geometry and Algebra in Ancient Civilization,

Springer-Verlag, Berlin, 1983.

23

C h a p t e r 4

Prime Numbers

Prime numbers, defined as natural numbers (also called counting num-
bers), divisible by themselves and 1 only, have long enjoyed a special place
of mystery for both advanced mathematicians and school children alike.
The smallest prime number is 2, and it is the only even prime number. For
it seems that the moment, as a civilization, we could perform the arithme-
tic operation of division, the primes have presented themselves as special,
and to this day, many questions of primes are yet to be answered.

For instance, can we consider the primes “building blocks” of the
natural numbers (as Jon Keating, professor of mathematical physics at
the University of Bristol, asked)? Can we say that from primes all other
numbers can be constructed? How many, and in what way? Consider that
a typical layperson, given the task of identifying a large prime, will likely
do so by first producing a guess and dividing it by all the prior prime
numbers less than or equal to its square root. Depending on the size of
the provided prime (and the memory of the individual), this operation
can be quite daunting. For centuries now, mathematicians, called number
theoreticians, have sought to answer exactly these questions.

In the following sections, we will examine what progress we have made
over time with understanding primes. We will also see that there are ques-
tions for which we have answers, and there are many which remain open
and are under study even today.

4.1 � THE STORY OF PRIME
The story of prime numbers likely begins in unrecorded history, when
the idea of groups being broken into smaller groups first occurred to

24    ◾    Computing﻿

mankind. We can see written accounting for prime numbers in an ancient
mathematical papyrus that appeared in Egypt around 1650 BC. Ancient
Egyptians demonstrated perhaps some awareness of primality. It is about
that time that a scribe named Ahmes recorded a possible understand-
ing of the significance of primes within what is now known as the Rhind
Mathematical Papyrus [7] (see also Chapter 3). Within the papyrus, an
exercise of sorts is performed listing a table of fractions as composites of
factors, and it is within this table the notable separation of prime-based
fractions is done.

While the exact implication of the separation and the extent of the
Egyptians’ knowledge of primes at the time are difficult to ascertain from
this evidence, the archeological finding is fascinating. It is sometime later,
about 500 to 300 BC, that the first formal descriptions of primes and per-
fect numbers surface within a group known as the Pythagoreans, follow-
ers of Pythagoras, who is famous for the Pythagorean theorem: a2 + b2 = c2.

Perfect numbers are numbers that are the sum of their proper factors. For
example, 6 is a perfect number, as its factors 3, 2, and 1 add to 6. Euclid
provided a more proper definition in a subsequent paragraph ([6] Book 7,
Definition 22).

An interesting note on the Pythagoreans: while we are perhaps familiar
with their early interest in mathematics, it is not entirely secular or
academic in nature. In fact, the Pythagoreans seemed to be of the opinion
that numbers were entities unto themselves, and worthy of consciousness
and even divinity. Although the Pythagoreans may be our earliest docu-
mented description of primes, it was not until Euclid’s Elements at the
end of that period that we are given a more comprehensive understanding
(complete with definitions, propositions, and proofs).

Euclid’s Elements is widely regarded as the single most important
ancient contribution to the whole of mathematics, engineering, and
science. Its codification and format are outstanding, where definitions
are used axiomatically, and propositions grow from those definitions and
earlier propositions. It consists of 13 books (volumes) that are a collection
of the known mathematics at that time. It had been the standard textbook
for mathematics education for some time (see also Chapter 5).

It is also worth noting that it is of contentious authorship: it is attrib-
uted to Euclid, but it is presumed to contain the contemporary sum of

Prime Numbers    ◾    25  

mathematics for his time. While how much of the content can be attrib-
uted to Euclid himself is a moot point, the existence of such well-organized
documentation is of interest to us.

We can begin by giving the Elements’ definition of prime: “A prime num-
ber is that which is measured by a unit alone” ([6] Book 7, Definition 11).
Euclid’s definition is characteristically Greek, harkening from the Pythago-
reans in the reference of the unit. Euclid states earlier in the Elements that a
number is comprised of units, and the unit is simply that which by its exis-
tence is “called one” ([6] Book 7, Definitions 1 and 2). Simply put, a prime
number has only 1 as its natural divisor, without a remainder. With this
definition, Euclid makes three important propositions:

	 1.	If a number is a product of two numbers and has a factor of a prime,
then one of the two numbers has a factor of the prime.

	 2.	Any nonprime number has a prime number as its factor.

	 3.	Any number is either prime or divisible by a prime.

Summarized, these statements become: “any integer can be expressed
as a unique ordered product of primes,” which is typically known and
understood to be the fundamental theorem of arithmetic. Although Euclid
proposes a proof, it is worth deferring until later. Euclid makes one fur-
ther celebrated contribution to primes with a proof that there are infinitely
many prime numbers.

Proof by Contradiction

Consider a set of primes, a a an0 1 , ,� , and m ai
n

i=∏ =0 .
For a number m + 1 two cases are considered against the proposi-

tions that lead to the fundamental theorem of arithmetic:

If m + 1 is prime, then there are at least n + 2 primes (since it
would be m + 1 in the set).

If m + 1 is not prime, then there are at least n + 1 primes, as some
prime must be a factor within it, as a a an0 1 , ,� are factors of m
(and not m + 1, as division by any of the set a a an0 1 , ,� would
leave a remainder of 1).

26    ◾    Computing﻿

Another definition of scholarly interest is that of so-called perfect
numbers (whose significance will soon be revealed). In the ancient times,
only the first few perfect numbers were known. As of 2013, there are only
48 known perfect numbers, and it is still unknown whether the set of
even perfect numbers is finite or infinite, or if there exist any odd perfect
numbers. The following numbers are examples of perfect numbers:

	 6 = 3 + 2 + 1

	 28 = 14 + 7 + 4 + 2 + 1

	 496 = 248 + 124 + 62 + 31 + 16 + 8 + 4 + 2 + 1

As should be expected, Elements provides a relationship between
primes and perfect numbers, specifically that 2n (2n+1 – 1) is a perfect
number if 2n+1 – 1 is a prime. Considering the limits of the computational
techniques available at the time, this relationship is remarkable and will
figure predominantly in mathematical works to come.

The Pythagoreans again enter history when Nicomachus (c. 60–c. 120 AD)
reported a technique from the third century BC by a scholar named
Eratosthenes (276–194 BC). The technique is called (appropriately enough)
the sieve of Eratosthenes. Eratosthenes, a contemporary of Archimedes,
developed an iterative and mechanical technique for sieving the natu-
ral numbers for primes (the term mechanical is used purposely, in con-
sideration of a famous letter from Archimedes to Eratosthenes arguing
that certain mathematical problems are better handled mechanically,
i.e., without thinking too much).

Eratosthenes is perhaps best known for calculating the circumference
of the earth, its tilt (relative to the sun), and its distance from the moon.
He was also a noteworthy playwright and a poet, and furthered (if not
founded the modern form of) the subject of geography. Unfortunately, we
only know of his life and works through other sources, the originals lost
to history.

From Nicomachus’s description, however, it is possible to accurately
reconstruct his simple solution to the problem of finding prime numbers.

Table 4.1 demonstrates the algorithm for primes between 1 and
100. The procedure is to sieve the numbers less than or equal to 100 by
first eliminating multiples of 2 (), then 3 (), 5 (), and 7 (). The

Prime Numbers    ◾    27  

maximum necessary step to consider is = 10, and the numbers 4, 6, 8, 9,
and 10 were eliminated by earlier factors (2 and 3).

It was about 1650 that our next pioneer of prime numbers, Pierre de
Fermat (1601–1665), stated that for a prime p and an integer a such that
p and a are relatively prime, a pp− ≡1 1 (mod) or ap− −1 1 is divisible by p.
It was left to Euler to formulate the proof, but this, his “little” theorem,
would become the basis for public-key cryptography—an essential tool of
modern life. Fermat has been called the greatest amateur mathematician,
although a number of his theorems were stated with no proof [1].

Relatively prime: Two numbers are considered relatively prime (also called
coprime) if their greatest common divisor is 1.

The sieve of Eratosthenes has two basic steps:

	 1.	List all the natural numbers from 1 to n within which the primes of inter-
est must lie.

	 2.	Then, starting at 2, eliminate all multiples within the list. Repeat this step
for all numbers from 2 to n .

When the process is complete, the numbers that remain in the list are prime.

TABLE 4.1  Finding Primes by the Sieve of Eratosthenes

2 3 4 5 6 7 8 9 10
1211 13 14 15 16 17 18 19 20
2221 23 24 25 26 27 28 29 30
3231 33 34 35 36 37 38 39 40
4241 43 44 45 46 47 48 49 50
5251 53 54 55 56 57 58 59 60
6261 63 64 65 66 67 68 69 70
7271 73 74 75 76 77 78 79 80
8281 83 84 85 86 87 88 89 90
9291 93 94 95 96 97 98 99 100

28    ◾    Computing﻿

In 1736 Leonhard Paul Euler (1707–1783) was the first to document a
proof of Fermat’s little theorem. Here we give a proof of Fermat’s little
theorem using modern algebra [2].

Proof

First, we define Euler’s totient function (also called the Euler phi-function).
For n within positive natural numbers, φ(n) is the number of integers k
coprime to n such that 1 ≤ k ≤ n. This is equivalent to p – 1 if n is a prime
p. Let Zn* = {k | k is a positive integer coprime to n and less than n}, and
let the multiplication of any pair of elements of Zn* be the multiplication
of the elements modulo n. Then Zn* is a multiplicative group of order φ(n),
and for any a in Zn*, φ(n) is divisible by the order of a (from Lagrange’s
theorem), where the order of a is the smallest positive integer m such that
am = 1 in Zn* [2, 5]. If n is prime (say n = p), then φ(n) is p – 1. Hence,
a pp− ≡1 1 (mod).

As alluded to within the explanation of Fermat’s little theorem, Euler’s
proof (essentially the same as the proof above) gives the mathematical
blueprint for the public-key encryption. If n is the product of two primes
p1 and p2, then φ() ()()n p p= − −1 21 1 and you have an interesting function
dependent on the prime factors of n. Given two large primes p1 and p2,
it is easy to multiply p1 and p2, but given only the number n, it is extremely
difficult to factor for the primes (see also Chapter 30).

Euler went on to contribute two other conjectures regarding prime
numbers. The first result, later proven by Pafnuty Chebyshev (1821–1894),
is that for any integer greater than or equal to 2, there exists a prime
between itself and twice itself. The second is drawn from an equation from
the Pythagoreans to generate primes, Euler’s own x x2 41− + . The discov-
ery of other polynomials capable of generating primes continued with the
work by Legendre and many others.

A few years later we turned our attention to the idea that numbers
can be represented by sums of primes, similar to the building block idea
in the introduction to this chapter. In a letter from Christian Goldbach
(1690–1764) to Euler in 1742 is written what is now known as Goldbach’s
conjecture, considered one of the great open problems remaining in prime
number theory. Simply stated in its modern form, it is that every even
integer greater than 2 can be expressed as the sum of two primes.

Prime Numbers    ◾    29  

4.2 � THE PRIME NUMBER THEOREM
It is at this point in history where things get a little more contentious, as
two great mathematicians work toward a common problem, that of π(n),
or the prime number theorem.

In 1796 Adrien-Marie Legendre (1752–1833) published a book, Essay on
the Theory of Numbers, within which he conjectured the distribution of
primes could be described as

	 π()~
ln

n n
n B−

for some value B (Figure 4.1).
This remarkable result, however, would be overshadowed by a young

Gauss (Johann Carl Friedrich Gauss, 1777–1855), and it would not be the
first time Gauss claimed a better or earlier discovery.

Two stories, perhaps more legend than fact, attempt to hint at the genius
that was to come in Gauss. It is said that at the age of 3, Gauss noted an
error in wages paid to workers by his father, and at the age of 7, tasked to
sum the numbers 1 to 100 by his instructor, he added them by summing
pairs ({1, 100}, {2, 99}, …, {50, 51}), although this story is also attributed to
the great Albert Einstein (1879–1955).

There is no doubt, however, that as a teenager, Gauss had demonstrated
extraordinary abilities. Following Euclid’s techniques of geometry (using

Number of primes

Difference

Number of primes by Legendre

90000
80000
70000
60000
50000
40000
30000
20000
10000

0
0 200000 400000 600000 800000 1000000

60
50
40
30
20
10
0
–10
–20
–30
–40

N
um

be
r o

f p
ri

m
es

D
iff

er
en

ce

n

FIGURE 4.1  The numbers of primes less than 1,000,000 and the conjectured
number of primes by Legendre (B = 1.08366).

30    ◾    Computing﻿

only a straightedge and a compass for construction), he constructed a
17-sided heptadecagon, well past the known constructions for polygons
with sides of multiples of 2, 3, and 5. He went on to add many other simi-
lar geometries to his repertoire, all of the form 2 12n

+ (which we know as
Fermat primes). From about ages 15 to 18, during his study at the Brunswick
Collegium Carolinum, Gauss began to think about the distribution of
primes. Similarly to Legendre, Gauss began his study observationally—he
is said to have spent an idle 15 minutes counting the primes in blocks of a
thousand, and when his survey neared a million, he proposed what would
later be known as the prime number theorem, a bounding function for the
distribution of primes:

	 π()~
ln

n n
n

which was then later revised to

	 π() (), ()
ln

n n where n dn
n

n

= = ∫Li Li
2

Two numbers, x and y, are said to be congruent modulo z if their differ-
ence, specifically x – y, is divisible by another number z. The notation for
the above is

	 x ≡ y  (mod  z)

Gauss would go on to make many other contributions to mathematics
and science, but another of his works, this one at age 24, is of great interest
to the study of primes. In fact, it would unify number theory at his time.
The principle Gauss introduced is called congruence.

The problem he set out to solve was stated, although not proven, by
Legendre, and is known as the quadratic reciprocity theorem. Briefly, the
theorem states if p and q are distinct odd primes, not both congruent to
3 modulo 4 (both don’t have a remainder 3 when divided by 4), then either
both x p q2 ≡ (mod) and x q p2 ≡ (mod) are solvable, i.e., have a solution,
or neither is solvable [2].

In 1831 August Ferdinand Möbius (1790–1868), famous for the later
invention of the Möbius strip, invented a function, μ(n), called the Möbius

www.allitebooks.com

http://www.allitebooks.org

Prime Numbers    ◾    31  

function, formulated as follows: it will produce the value 0 for any n that is
a multiple of squares such as 4, 9, 16, and 25; the value 1 for an n with an
even number of distinct primes as its factors or n = 1; and –1 for integers
that have an odd number of distinct primes as its factors.

While its usefulness is not readily apparent, it demonstrates the breadth
of the participants involved in solving problems related to primes. This
function, paired with another one called Marten’s function, proves useful
as an alternate path of proving the Riemann hypothesis.

In 1859 Georg Friedrich Bernhard Riemann (1826–1866) introduced
what is today worth a million dollars (if proved correctly), the so-called
Riemann hypothesis. It is considered one of the greatest problems math-
ematics has yet to solve [3, 4].

First, it is worth knowing a bit about Riemann. Like Gauss, Riemann
demonstrated a keen ability in his teenage years. One of his notable feats
in his youth was responding to the challenge of one of his instructors by
reading Legendre’s 859-page book, Theory of Numbers; not only did he read
it in a week, but he was able to answer questions regarding its contents
2 years later.

While in Riemann’s short life he offered a great deal to mathematics
(much of it only known from his private papers after his death), it is the
Riemann hypothesis, a brief remark made in a paper regarding an attempt
to solve the question of the distribution of primes from another direction,
specifically from an infinite series. The hypothesis progresses as such:

	 1
1

1
2

1
3

1
s s s sn





 +





 +





 + +


 +� �

First, consider an infinite series, familiar from Euler, called by Riemann
the zeta function:

	 ζ()s
ns

n

=
=

∞

∑ 1

1

From here, two techniques can be used to understand its progression to
our more common zeta function form for the Riemann hypothesis. Should
the reader be familiar with infinite geometric series, it requires only sub-
stituting infinite products producing a series of the form (it converges to
1/(1 – p–s)):

32    ◾    Computing﻿

	 1 1 1 1
2+ + + + +

p p ps s ks� �

For the second technique, consider algebraic manipulation by dividing both
sides by the terms within the series, performing an operation analogous to
the sieve of Eratosthenes. The result of both will be a series of the form:

	 ζ()s
s s s s s

=
−

×
−

×
−

×
−

×
−

× ×
−

1

1 1
2

1

1 1
3

1

1 1
5

1

1 1
7

1

1 1
11

1

1 1�

33s

×�

We then produce the zeta function of interest:

	 ζ() ()s pp
s=∏ − − −1 1

The hypothesis, then, is this: the roots of the zeta function would deter-
mine the magnitude of the difference between Gauss’s bounding function
Li(x) and the true π(x). Proof of this hypothesis is therefore both figura-
tively and literally the million dollar question within mathematics.

There have been interesting developments within the study of primes
in the last century as well. For example, in 1919 Viggo Brun (1885–1978)
proved that when the reciprocals of successive twin primes are added,
their sum converges to a specific value called Brun’s constant. While it is
known that the sum of all the reciprocals of primes diverges, it is interest-
ing that for twin primes it converges. It is known that twin primes, with
the exception of the first ({3, 5}), are of the form (6n − 1,  6n + 1).

In 1960, a Polish mathematician, Waclaw Franciszek Sierpiński (1882–
1969), proved there are infinitely many nonprime odd integers k such that
k n× +2 1 is composite. The smallest known Sierpiński number is 78,557,
for which all numbers of the form are divisible by 3, 5, 7, 13, 19, 37, or 73,
and work is currently under way with a distributed computing project to
attempt to prove it the smallest [8].

Three years later, another Polish-born mathematician, Stanislaw Marcin
Ulam (1909–1984), famous primarily for his work on the Manhattan
Project, the Monte Carlo method, and many other contributions, was bored
at the reading of a paper and created a doodle uncovering what is perhaps
a remarkable pattern to certain primes—specifically, that when natural
numbers are written in a spiral from the number 1, prime numbers tend
to appear on diagonals with one another.

Prime Numbers    ◾    33  

There continues to be research performed on primes, twin primes, and
perfect numbers. Ever faster and more powerful computers continue to
hint at mysteries locked within primes. From Dorin Andrica’s 1985 con-
jecture that the gap between two prime numbers is p pn n+ − <1 1 to
Andrew Granville’s (1962–) 2008 paper on prime number distribution
patterns, the study of primes goes on [9].

REFERENCES
	 1.	 J. von zur Gathen and J. Gerhard, Modern Computer Algebra (2nd ed.),

Cambridge University Press, Cambridge, UK, 2003.
	 2.	 D. R. Stinson, Cryptography: Theory and Practice, CRC Press, New York, 1995.
	 3.	 K. Sabbagh, The Riemann Hypothesis: The Greatest Unsolved Problem in

Mathematics, Farrar, Straus and Giroux, New York, 2002.
	 4.	 J. Derbyshire, Prime Obsession: Bernhard Riemann and the Greatest Unsolved

Problem in Mathematics, Joseph Henry Press, Washington, DC, 2003.
	 5.	 G. Birkhoff and S. MacLane, A Survey of Modern Algebra (3rd ed.), Macmillan,

New York, 1965.
	 6.	 Euclid (author), T. L. Heath (trans.), and D. Densmore (ed.), Euclid’s Elements,

Green Lion Press, Santa Fe, NM, 2002.
	 7.	 R. J. Gillings, The Recto of the Rhind Mathematical Papyrus: How Did the

Ancient Egyptian Scribe Prepare It? Archive for History of Exact Sciences,
12(4), 291–298, 1974.

	 8.	 Seventeen or Bust, A Distributed Attack on the Siepinski Problem, http://
www.seventeenorbust.com/.

	 9.	 Wikipedia, Andrica’s Conjecture, http://en.wikipedia.org/wiki/Andrica’s.

35

C h a p t e r 5

Euclid’s Elements

Euclid (also called Eukleides or Euclid of Alexandria, c. 330–c. 260 BC) is
one of the most prominent Greek mathematicians. He is best known as the
author of Elements, which is the most influential treatise in the history of
mathematics. However, there are no known records of the exact date and
place of Euclid’s birth, and little is known about his personal life. During
the reign of the Pharaoh Ptolemy I Soter (323–283 BC) Euclid taught
mathematics at Alexandria Library (the Mouseion) in Alexandria, Egypt.
Euclid’s Elements is considered the most comprehensive compilation of
geometry, arithmetic, and number theory based on the ancient Greek
works of Thales (c. 624–c. 546 BC), Pythagoras (c. 582–c. 497 BC), Plato
(c. 427–c. 347 BC), Theaetetus (c. 417–369 BC), Eudoxus (c. 408–c. 347 BC),
Aristotle (384–322 BC), Manaechmus (380–320 BC), and others [2, 4, 6, 9].

Euclid is often referred to as the father of geometry. It is thought that he
received mathematical training in Plato’s Academy in Athens. Then, he
came to Alexandria in Egypt, which had been the Hellenistic center for
some centuries. Many scholars worked and taught at the great library in
Alexandria, and Euclid wrote Elements there, which was the most widely
used textbook of all time until the 20th century. This treatise influenced
the development of Western mathematics for more than 2000 years.
Proclus (412–485 AD), another Greek philosopher, wrote an influential
commentary on Euclid’s Elements. According to this commentary, to the
Pharaoh Ptolemy I Soter’s request for an easy way of learning mathemat-
ics, Euclid replied, “There is no royal way to geometry” [2, 4, 5, 6].

Elements consists of 13 books. It is a collection of definitions, postu-
lates, common notions, propositions, and mathematical proofs of the

36    ◾    Computing﻿

propositions. Books 1 through 4 are on plane geometry. Book 1 begins
with 23 definitions, 5 postulates, and 5 common notions, and contains
48 propositions. We may consider that both postulates and common
notions are axioms. The following are the postulates given in Book 1 [1]:

	 1.	We can draw a straight line from any point to any point.

	 2.	We can produce a finite straight line continuously in a straight line.

	 3.	We can draw a circle with any center and radius.

	 4.	All right angles are equal to one another.

	 5.	One and only one line can be drawn through a point parallel to a
given line.

(In the 19th century non-Euclidean geometry was introduced, in which
the fifth postulate was removed.)

The following are common notions that are also given in Book 1.
These are not specific geometrical properties, but general assumptions
used in mathematics:

	 1.	Things equal to the same thing are also equal to one another.

	 2.	If equals are added to equals, the whole are equal.

	 3.	 If equals are subtracted from equals, the whole are equal.

	 4.	Things that coincide with one another are equal to one another.

	 5.	The whole is greater than the part.

All propositions in Books 1 through 4 are proved by graphical con-
structions using axioms or propositions proved earlier in the books. For
example, Proposition 1 of Book 1 shows a graphical construction of an
equilateral triangle on a given finite straight line. Proposition 47 of Book
1 is the Pythagorean theorem. Specifically, in Proposition 47, it is proved
by a graphical construction that in any right-angled triangle, the area
of the square whose side is the hypotenuse is equal to the sum of the
squares whose sides are the two other sides. Since most of the proposi-
tions in Book 2 can be considered geometric interpretations of algebraic
identities, Book 2 is called the book of geometric algebra. For example,

Euclid’s Elements    ◾    37  

Proposition 5 of Book 2 is a geometric interpretation of the algebraic
equation (x + y)(x – y) = x2 – y2.

Proposition 5 (of Book 2)

Let a straight line AB be cut into equal segments at C and into unequal
segments at D, as shown below:

	 A____C__D_B

Then the sum of the space of the rectangle whose side lengths are AD and
DB, and the space of the square whose side length is CD, is equal to the
space of the square whose side length is AC.

Book 3 begins with 11 definitions and contains 37 propositions. It studies
the properties of circles. For example, Proposition 1 of Book 3 states how
to find the center of a given circle, and Proposition 5 shows the property
that if two circles cut one another, then they will not have the same center.
Book 4 deals with problems about circles, including constructions of
regular polygons with 4, 5, 6, and 15 sides. Book 5 begins with 18 defi-
nitions followed by 25 propositions about magnitudes, multiples, ratios,
and proportions of numbers and line segment lengths. Book 6 contains
33 propositions. There are some applications of the results of Book 5 to
plane geometry.

Book 7 deals with elementary number theory. It includes divisibility,
prime numbers, and algorithms for finding the greatest common divisor
(GCD). The Euclidean algorithm, which shows an efficient method for
finding the GCD of two integers, is given in Propositions 1 and 2 of Book 7
and in Propositions 2 and 3 of Book 10. In Book 7, the algorithm is formu-
lated for integers, whereas in Book 10, it is formulated for lengths of line
segments. The Euclidean algorithm starts with a pair of numbers (positive
integers) and forms a new pair of numbers that consists of the smaller
number and the difference between the larger and smaller numbers. This
process repeats until the numbers become equal. The resulting number
is the GCD of the original pair of numbers. Euclid also gave a method
(Proposition 34 of Book 7) for finding the least common multiple (LCM)
of two integers.

38    ◾    Computing﻿

In a modern textbook on elementary number theory or computer algo-
rithms, the Euclidean algorithm is usually described in the following way.

Let r0 and r1 be a given pair of positive integers, where r0 > r1. The
algorithm consists of performing the following sequence of divisions:

	 r0 = q1r1 + r2,  0 < r2 < r1

	 r1 = q2r2 + r3,  0 < r3 < r2

	 �

	 rm–2 = qm–1rm–1 + rm, 0 < rm < rm–1

	 rm–1 = qmrm

Then it is not hard to show that

	 gcd(r0, r1) = gcd(r1, r2) = … = gcd(rm–1, rm) = rm

where gcd(a, b) means the GCD of a and b. Hence, it follows that
gcd(r0, r1) = rm.

The Euclidean algorithm was probably not discovered by Euclid. As D.
E. Knuth states in his book [7], some scholars believe that the method
was known up to 200 years earlier, and it was almost certainly known to
Eudoxus [7]. B. L. van der Waerden suggested that Book 7 was derived
from a textbook written by mathematicians in the School of Pythagoras [9].
Centuries later, the Euclidean algorithm was discovered independently in
India and in China to solve Diophantine equations (see Chapter 6). Knuth
calls the Euclidean algorithm the granddaddy of all algorithms, because it
is the oldest nontrivial algorithm that has survived to the present day [7].

The original Euclidean algorithm was described only for natural
numbers and geometric lengths, but in the 19th century it was gener-
alized to other types of numbers such as modular arithmetic numbers
and polynomials in one variable. Although the Euclidean algorithm is
one of the oldest algorithms, it is still commonly used. The algorithm
has many theoretical and practical applications. It is an important part
of the construction of the RSA cryptography, a public-key cryptosystem
most widely used in the security of electronic commerce on the Internet

Euclid’s Elements    ◾    39  

(see Chapter 30). It is also used as a basic tool for proving certain theorems
in modern number theory. For example, it has been used to find multipli-
cative inverses in a finite field.

Propositions 30 and 32 of Book 7 together are equivalent to the funda-
mental theorem that every positive integer can be written as a product of
primes in an essentially unique way. These propositions are given as follows:

Proposition 30 (of Book 7)

If a number is a product of two numbers and if a prime number is a factor
of the product, then the prime number is also a factor of one of the original
two numbers.

Proposition 32 (of Book 7)

Any number is either of a prime number or a multiple of prime numbers.

Book 8 deals with numbers in geometrical sequences as well as with
number theory. Proposition 20 of Book 9 proves the infinitude of prime
numbers. The construction of perfect numbers is given in Proposition 36
of Book 9.

Book 10 deals with commensurable numbers and incommensurable
numbers. The definitions of commensurable and incommensurable
are given at the beginning of Book 10. Commensurable numbers can
be considered to be rational, whereas incommensurable numbers can
be considered to be irrational. Books 11 through to 13 deal with solid
geometry. Book 11 generalizes the results of Books 1 through 6 to solids
(i.e., figures of three dimensions). Book 12 studies volumes of cones, pyra-
mids, cylinders, and spheres. For example, Proposition 10 of Book 12 shows
that the volume of a cone is one-third of the volume of the corresponding
cylinder. Elements ends with Book 13, which discusses the properties of the
five regular polyhedrons. Book 13 is largely based on an earlier treatise by an
Athenian mathematician, Teaetetus, who first proved that there can be only
five regular polyhedrons (i.e., regular tetrahedron, regular hexahedron,
regular octahedron, regular dodecahedron, and regular icosahedron).

40    ◾    Computing﻿

Theon of Alexandria (c. 335–c. 405 AD) was a Greco-Egyptian scholar
and a mathematician in the fourth century. He edited and arranged Euclid’s
Elements. His edition was widely used and had become the only surviv-
ing Greek source until the 19th-century discovery of another source in the
Vatican Library [10]. The Arabs received Elements from Byzantine around
760 AD. This version was translated into Arabic around 800 AD. Although
some Western scholars probably knew that Elements existed in Byzantine,
there is no existing record of Euclid’s Elements having been translated into
Latin before the 12th century. It was lost to West Europe until c. 1120, when
an English monk translated it into Latin from the Arabic translation.

The first printed edition of Euclid’s Elements appeared in 1492 in
Venice. Since then it has been translated into many languages and pub-
lished in many different editions. Theon’s Greek edition was recovered in
1533. Some of the Greek old texts still survive and can be found in the
Vatican Library and in the Bodleian Library, the main research library at
the University of Oxford.

As a mathematical textbook, Elements is a masterpiece. It has been very
influential in many areas of science. For example, Nicolaus Copernicus
(1473–1543), Johannes Kepler (1571–1630), Galileo Galilei (1564–1642),
and Isaac Newton (1642–1727) were all strongly influenced by its axiomatic
deductions, logical approach, and rigorous proofs. At around age 40, Abraham
Lincoln studied Elements for training in reasoning as a lawyer. His law part-
ner Bill Herndon (1818–1891), the biographer of Abraham Lincoln, tells how
late at night Lincoln would lie on the floor studying Euclidean geometry.
Lincoln’s logical speeches and some of his phrases, such as “dedicated to
the proposition that all men are created equal” in the Gettysburg Address
(November 19, 1863), are attributed to his reading of Euclid’s Elements [4].

The following story by Bertrand Russell (1872–1970), a famous British
philosopher, logician, and mathematician, is also well known. It is written
in his autography: “At the age of eleven, I began ‘Euclid’, with my brother as
my tutor. This was one of the great events of my life, as dazzling as first love.
I had not imagined that there was anything so delicious in the world” [8].

REFERENCES
	 1.	 Euclid (author), T. L. Heath (trans.), and D. Densmore (ed.), Euclid’s Elements,

Green Lion Press, Santa Fe, NM, 2002.
	 2.	 Wikipedia, Euclid, http://en.wikipedia.org/wiki/Euclid.
	 3.	 Wikipedia, Euclidean Algorithm, http://en.wikipedia.org/wiki/Euclidean_

algorithm.

www.allitebooks.com

http://www.allitebooks.org

Euclid’s Elements    ◾    41  

	 4.	 Wikipedia, Euclid’s Elements, http://en.wikipedia.org/wiki/Euclid’s_Elements.
	 5.	 Wikipedia, Euclid of Alexandria, http://www-history.mcs.st-andrews.ac.uk/

Biographics/Euclid.html.
	 6.	 D. A. Flower, The Shores of Wisdom, Pharos Publications, UK, 1999.
	 7.	 D. E. Knuth, The Art of Computer Programming (Vol. 2, 2nd ed.), Addison-

Wesley, Reading, MA, 1981.
	 8.	 M. A. Plastow and Y. Igarashi, The Mind of Science, Kyoritsu-shuppan, Tokyo,

1989.
	 9.	 B. L. van der Waerden, Geometry and Algebra in Ancient Civilizations,

Springer-Verlag, Berlin, 1983.
	 10.	 Wikipedia, Theon of Alexandria, http://en.wikipedia.org/wiki/Theon_of_

Alexandria.

43

C h a p t e r 6

Diophantus of Alexandria
and Arithmetica

Diophantus of Alexandria was a Greek mathematician who lived in
Alexandria, Egypt, probably from sometime between 200 and 214 AD to
sometime between 284 and 298 AD. Diophantus’s age of 84 years can be
determined from the solution to a linear equation given in an inscription
(a mathematical poem) on his tomb. The English translation is as follows:

God vouchsafed that he should be a boy for sixth part of his life;
when a twelfth was added, his cheeks acquired a beard; He kindled
for him the light of marriage after a seventh, and in the fifth years
after his marriage he granted him a son. Alas! Late-begotten and
miserable child, when he had reached the measure of half his
father’s life, the chill grave took him. After consoling his grief by
his science of numbers for four years, he reached the end of his life.

Diophantus is often referred to as the Father of Algebra, and is best known
as the author of a series of books called Arithmetica. These books were a work
on the solution of algebraic equations and on various aspects of number
theory. However, there is little biographical information about Diophantus.

Arithmetica is the major work of Diophantus. It is a collection of prob-
lems on both determinate and indeterminate algebraic equations with
their numerical solutions. Unfortunately, of the original 13 volumes, only 6
have survived: volumes I to III and volumes VIII to X of the original text.

44    ◾    Computing﻿

Besides these Greek original volumes, four volumes of Arabic translations
were discovered in the Astan Quds Library in Meshed, Iran, in 1970 [2]:
volumes IV, V, VI, and VII of the original text [2]. These 10 volumes
(6 Greek original volumes and 4 volumes of Arabic translations) contain
about 200 problems with their numerical solutions. Diophantus considered
only rational numbers in his books. Here, we list several examples of the
problems from Arithmetica, where Problem I-1 means the first problem in
volume I, Problem I-2 means the second problem of volume I, and so on:

Problem I-1

The sum of two numbers is 100, and the difference between these
numbers is 40. Find these numbers.

SOLUTION
Let x be the smaller number. Then the larger number is x + 40. Hence,
2x + 40 = 100. The required numbers are 30 and 70.

Problem I-2

The sum of two numbers is 60, and the ratio of the two numbers is
3:1. Find these numbers.

SOLUTION
Let the smaller one be x. Then the larger one is 3x. Then x + 3x = 60.
Hence, the required numbers are 15 and 45.

Problem I-27

Find two numbers such that their sum and product are given numbers.
Necessary condition: The square of half the sum must exceed the

product by a square number.
Suppose that the sum and product of two numbers are 20 and 96,

respectively. Find the two numbers.

SOLUTION
Let 2x be the difference of the required numbers. Then the two num-
bers are 10 – x and 10 + x. Hence, (10 + x)(10 – x) = 100 – x2 = 96.
Therefore, x = 2, and the required numbers are 8 and 12.

Diophantus of Alexandria and Arithmetica    ◾    45  

(Note that given two numbers a and b, ((a + b)/2)2 – ab = ((a – b)/2)2.
The necessary condition of this problem is derived from this equation.)

Problem II-6

Find two numbers having a given difference and a number such that the
difference of their squares exceeds their difference by a given number.

Necessary condition: The square of their difference must be less
than the sum of the said difference and the given excess of the differ-
ence of the squares over the difference of the numbers.

Let the two numbers be x and y. Suppose that the given difference
is x – y = 2 and the given excess x2 – y2 – (x – y) = 20. Find the two
numbers x and y.

SOLUTION
The necessary condition is symbolically (x – y)2 < (x – y) + x2 – y2 –
(x – y) = x2 – y2. Since x – y > 0, the necessary condition means x > y > 0.

Then 4y + 4 = 22. It follows that the required numbers are y = 9/2
and x = 13/2.

Problem II-8

Divide a given square number into two square numbers. Let the
given square number be 16.

SOLUTION
Let x2 be one of the required squares. Then, 16 – x2 must be equal to
a square. Take a square of the form (mx – 4)2, where m is any integer
and 4 is from the square root of 16. For example, take (2x – 4)2, and
equate it to 16 – x2. Hence, 4x2 – 16 x + 16 = 16 – x2, or 5x2 = 16x, and
then x = 16/5. Therefore, the required squares are 256/25 and 144/25.

Problem IV-3

Find two square numbers such that their sum is a cubic number.

SOLUTION
Let x2 and 4x2 be a smaller square number and a larger square number,
respectively. Let x2 + 4x2 = x3. Then x = 5. Therefore, 25 and 100 are

46    ◾    Computing﻿

two square numbers satisfying the condition of the problem. We
can find other pairs of such square numbers in a similar way. For
example, let such a pair of square numbers be x2 and 9x2, and let
x2 + 9x2 = x3. Then x = 10. Therefore, 100 and 900 are also a pair of
two square numbers satisfying the condition.

Problem V-7

Find two numbers such that the sum of the numbers is 20 and
the sum of the cube of the first and the cube of the second is 2240
(i.e., x + y = 20 and x3 + y3 = 2240).

SOLUTION
Let x = 20×1/2 + s and y = 20×1/2 – s. Then x3 + y3 = (x + y)((x + y)2 – 3xy)
= 20(400 – 3(100 – s2)) = 20(100 + 3s2) = 2240. Hence, 100 + 3s2 = 112
and s = 2. Therefore, x = 12 and y = 8.

Problem VIII-15

Find three numbers such that the sum of any two multiplied by the other
is a given number. Let (first + second) × third = 35, (second + third) ×
first = 27, and (third + first) × second = 32.

SOLUTION
Let the third be x. Then (first + second) = 35/x. Assume first = 10/x
and second = 25/x. Then we have

	 250/x2 + 10 = 27 and 250/x2 + 25 = 32

These equations are inconsistent, but they would not be if 25 – 10
were equal to 32 – 27 = 5. From this observation we have to divide
35 into two parts, replacing 25 and 10, such that their difference
is 5. The parts are 15 and 20. Therefore, we may take 15/x as the first
number, 20/x as the second, and we now have

	 300/x2 + 15 = 27 and 300/x2 + 20 = 32

Then the third = x = 5, the first = 3, and the second = 4.

Diophantus of Alexandria and Arithmetica    ◾    47  

A Diophantine equation is an indeterminate polynomial equation
that allows integer solutions only. Diophantus made a study of such
equations in his books. He was one of the first mathematicians who used
symbolism in algebra. The following are some examples of Diophantine
equations, where x, y, and z are unknown variables, and n and k are
given integers:

	 1.	ax + by = k: A linear Diophantine equation.

	 2.	xn + yn = zn: For n = 2, there are infinitely many solutions for x, y, and
z. The integer solutions are called Pythagorean triples.

	 3.	x2 – ny2 = +1 or –1: Pell’s equation. It is named after English mathema-
tician John Pell (1611–1685). It was also studied by Indian mathema-
tician Brahmagupta (598–c. 668) in the 7th century as well as French
mathematician Pierre de Fermat (1601–1665) in the 17th century.

	 4.	4xyz = n (xy + xz + yz), equivalently 4/n = 1/x + 1/y + 1/z: The
Erdös-Straus conjecture states that for every integer n ≥ 2, there exists
a solution in x, y, z, all as positive integers. Paul Erdös (1913–1996)
and Ernst G. Straus (1922–1983) formulated the conjecture in 1948.
Computer searches have verified the truth of the conjecture up to
n ≤ 1014, but proving it for all integers n remains an open problem.

Diophantus wrote several other books in addition to Arithmetica, but
very few of them have survived. Diophantus referred to his book called
The Porisms, but this book has not been found. It is not known whether
The Porisms is one of the lost volumes of Arithmetica.

A polygonal number is a number represented as dots or pebbles arranged
in the shape of a regular polygon. For example, triangular numbers are 1,
3, 6, 10, 15, …, and square numbers are 1, 4, 9, 16, 25, …, and pentagonal
numbers are 1, 5, 12, 22, 35, …. These are examples of polygonal numbers.
Diophantus is also known to have written on polygonal numbers.

In Western Europe, Diophantus was forgotten until the 15th century,
though a portion of Arithmetica, like other ancient Greek texts, was known
to some medieval Byzantine scholars and Arabic scholars. In 1463 a German
mathematician, Johannes Müller von Königsberg (1436–1476), wrote that
no one had yet translated the 13 volumes of Arithmetica from Greek into
Latin. In 1570 an Italian mathematician, Rafael Bombelli (1526–1572), trans-
lated a portion of the original Greek text of Arithmetica, but it was never

48    ◾    Computing﻿

published. The best-known Latin translation of Arithmetica was made by
the French mathematician Claude-Gospar Bachet de Meziriac (1581–1638)
in 1621. That translation was widely available in Western Europe.

Pierre de Fermat, a French lawyer and mathematician, owned a copy of
the 1621 edition of the Latin translation of Arithmetica. Around 1637 he
wrote a memo, so called Fermat’s last theorem, in the margin of his copy
as follows:

If an integer n is greater than 2, then xn + yn = zn has no solutions
in non-zero integers x, y, and z. I have a truly marvelous proof of
the proposition, but this margin is too narrow to contain the proof.

Example 6.1

Find a solution for the following linear Diophantine equation:

	 2072x + 1665y = 37

By the Euclidean algorithm, we have the following sequence of
divisions:

	

2072 1 1665 407

1665 4 407 37

407 11 37 0

= × +

= × +

= × +

,

,

.

Hence, we find gcd (2072, 1665) = 37. Tracing backward the second
and first equations above, we obtain the following equations:

	

37 1665 4 407

1665 4 2072 1665

4 2072 5 1665

= − ×

= − × −

= − × + ×

()

..

Thus, we find x = −4,  y = 5 to the given linear Diophantine
equation.

More generally, x = −4 − 1665t,  y = 5 + 2072t is also a solution
to the linear Diophantine equation for any integer t.

Diophantus of Alexandria and Arithmetica    ◾    49  

Fermat’s claimed proof for his proposition was never found. It is
believed that Fermat did not have the proof. The problem of finding a
proof for Fermat’s last theorem had been an unsolved problem for more
than 350 years. A proof for the theorem was finally found in 1994 by the
British mathematician Andrew John Wiles (1953–) after working on the
problem for 7 years.

In mathematics, the modularity theorem (also called the Taniyama–
Shimura–Weil conjecture) states that elliptic curves over the field of
rational numbers are related to modular forms. Wiles proved that the
modularity theorem for semistable elliptic curves was sufficient to imply
Fermat’s last theorem. He realized that a proof of a limited form of the
modularity theorem might be in reach. He decided to devote all of his
research time to this problem. In 1993, he presented his proof to the public
for the first time at a conference. However, it turned out that the proof
contained a fundamental gap. The crucial idea for circumventing the gap
came to him in 1994. Together with his former student Richard Taylor
(1962–), he published a second paper that circumvented the gap and com-
pleted the proof of Fermat’s last theorem. Both the first paper by Wiles and
the second paper by Taylor and Wiles appeared in 1995 in the Annals of
Mathematics published by Princeton University [7, 8].

Hilbert’s problems form a list of 23 problems in mathematics pub-
lished by the German mathematician David Hilbert (1862–1943) in
1900. He presented 10 problems among them at the Paris conference of
International Congress of Mathematicians. Hilbert’s 10th problem asked
to find an algorithm for determining whether an arbitrary Diophantine
equation has a solution. The Russian mathematician Yuri Vladimirovich
Matiyasevich (1947–) proved that no such algorithm is possible in 1970.
That is, he proved the impossibility of obtaining a general algorithm for
Hilbert’s 10th problem, making it unsolvable (see Chapter 16).

Diophantus’s Arithmetica has been, over the centuries, the source for
many algebraic theorems and has influenced significantly the develop-
ment of number theory, mathematical notation, and the use of symbolism
in algebra.

REFERENCES
	 1.	 T. L. Heath, Diophantus of Alexandria, Cambridge University Press, Cambridge,

UK, 1910.
	 2.	 N. Schappacher, Diophantus of Alexandria: A Text and Its History, manuscript,

2005.

50    ◾    Computing﻿

	 3.	 Wikipedia, Diophantus, http://en.wikipedia.org/wiki/Diophantus.
	 4.	 B. L. van der Waerden, Geometry and Algebra in Ancient Civilization,

Springer-Verlag, Berlin, 1983.
	 5.	 Wikipedia, Fermat’s Last Theorem, http://en.wikipedia.org/wiki/Ferma’s_

Last_Theorem.
	 6.	 Wikipedia, Diophantus Equation, http://en.wikipedia.org/wiki/Diophantine_

equation.
	 7.	 A. Wiles, Modular Elliptic Curves and Fermat’s Last Theorem, Annals of

Mathematics, 141(3), 443–551, 1995.
	 8.	 R. Taylor and A. Wiles, Ring-Theoretic Properties of Certain Hecke Algebras,

Annals of Mathematics, 141(3), 553–572, 1995.

www.allitebooks.com

http://www.allitebooks.org

51

C h a p t e r 7

Secret Writing
in Ancient Civilization

7.1 � STEGANOGRAPHY
It is difficult to specify when secret writing started in ancient civilization.
Some of the earliest accounts of secret writing date back to Herodotus
(c. 484–c. 425 BC), who in his text Histories describes the conflict between
Greece and Persia in the fifth century BC. According to Histories, secret
writing by a Spartan saved Greece from being conquered by Xerxes I
(the Great) of Persia, who reigned from 485 to 465 BC. Herodotus was
an ancient Greek historian and was regarded as the Father of History in
Western culture. The Greek word historia passed into Latin and took on
its modern meaning of history. Histories was divided into nine books by
Alexandrian editors and was structured as a dynastic history of ancient
Persian kings. The following story was recorded in Book 7 of Histories:

Xerxes the Great spent about 5 years secretly assembling the great-
est fighting force to launch an attack on Greece. However, the
Persian military buildup was discovered by Demaratus when he
lived in a Persian city, Susa, after having been expelled from Sparta.
Before his exile, he had been the king of Sparta from 515 to 491 BC.
Demaratus wanted to send a secret message to warn the Spartans
of Xerxes’s invasion plan to Greece. He wrote his secret message
on a wooden tablet, and then covered it over with wax. When the

52    ◾    Computing﻿

wooden tablet reached its destination, the Spartans scraped off the
wax and found the message written on the wood underneath. As
a result of this warning, Greeks began to construct 200 warships.

On September 23, 480 BC, when the Persian fleet approached the
Bay of Salamis near Athens, they found the Greek navy prepared for
battle. Within a day, the Persian fleet was defeated by the Greeks.

Secret communication achieved by hiding the existence of a message
is known as steganography. Demaratus’s strategy for secret communica-
tion is an example of steganography. It is the combination of Greek origin
words, steganos meaning “covered or protected” and graphein meaning
“to write.”

The first recorded use of the term steganography was in 1499 by a German
scholar, Johannes Trithemius (1462–1516), in his book Steganographia
(published in Frankfurt). Another example of ancient steganography
described by Herodotus in Histories is a tattooed message on the shaved
head of a trusted slave. After his hair had grown, the slave was dispatched
to the desired destination with the message hidden in his hair (i.e., at the
time of dispatch it is unreadable).

In ancient China, secret messages were often written on fine silk. They
were first scrunched into tiny balls and then covered by a layer of wax. The
messenger would then swallow the waxed ball and carry it in his stomach
to its destination.

7.2 � CRYPTOGRAPHY
Steganography suffers from a serious weakness. If the messenger is
searched and the hidden message is discovered, its contents are revealed
at once. Another strategy to hide a message is via cryptography, which
had also been developed in ancient civilization. The term cryptography
originates from the combination of Greek origin words krypts, mean-
ing “hidden,” and graphein, meaning “writing.” Cryptography hides the
meaning of a message by a process known as encryption [2, 4]. It is not an
attempt to hide the existence of the message. Cryptography was concerned
with message confidentiality by converting the message from a compre-
hensible form into an incomprehensible one so that the interceptors or
eavesdroppers could not understand the encrypted message without
secret knowledge of how to decrypt it.

Secret Writing in Ancient Civilization    ◾    53  

In cryptography, a secret protocol called a secret key is agreed to
beforehand between the sender and a legitimate receiver. The receiver can
reverse the converted message by using the secret key to make it com-
prehensible. Cryptosystems can be classified into systems of transposition
and substitution.

In transposition, the letters of a message are rearranged. The specific
arrangement protocol of letters needs an agreement between the sender
and the receiver beforehand, but the agreement is kept secret from the
enemy. A typical example of transposition can be seen in the Spartan mili-
tary cryptographic device called scytale, dating back to the fifth century
BC. The scytale is a wooden cudgel around which a strip of parchment is
wound, as shown in Figure 7.1. The sender writes the message along the
length of the scytale, and then unwinds the strip, which now looks like
a sequence of meaningless letters. To recover the message, the receiver
wraps the parchment strip around a scytale of the same diameter as used
by the sender. By doing so, the receiver can read the original message
along the length of the scytale.

T A

A

N
N

V
Y
S
H

H
E
S
P
A
R
T

O
U
L
D
B
E
P
R

E
P
A
R
E
D
F
O

FIGURE 7.1  An example of a message written on the scytale.

54    ◾    Computing﻿

As an example, we show the message “The Spartan navy should be
prepared for the attack by the Persian fleet” written on a parchment strip
that is wound around a scytale (Figure 7.1). Although we have spaces
between words and some punctuation marks in plaintexts, these are
usually omitted in cryptotexts.

For very short messages such as single words, transposition cryptog-
raphy is relatively insecure, because there are only a limited number of
ways for rearranging a small number of letters. However, as the number
of letters in messages increases, the number of possible arrangements
rapidly explodes. Therefore, for a relatively long message, it is very hard to
restore the original message (i.e., decipher it) unless the arranging process
is known.

The alternative to transposition in cryptography is substitution. In
substitution, the plaintext letters are replaced with substitutes. The substi-
tutes are kept in the cryptotext in the same order as their originals in the
plaintext. If the use of substitutes remains unaltered throughout the text,
the cryptosystem is called monoalphabetic. As far as we know, all of the
ancient substitution systems were monoalphabetic.

Caesar cipher is the most widely known among monoalphabetic sub-
stitution cryptosystems. It was named after Julius Caesar (100–44 BC),
a Roman military and political leader. He played a critical role in the
transformation of the Roman Republic into the Roman Empire. Caesar
was also considered during his lifetime to be one of the best orators and
authors in Latin. Commentarii de Bello Gallico (Commentaries on the
Gallic War) was a series of books describing military campaigns waged
by Julius Caesar against several Gallic tribes. It consists of eight volumes;
volumes 1 to 7 were written by Caesar himself, while volume 8 was written
by one of his subordinates.

Caesar cipher is based on substitutions in the following way. Each letter
in the cryptotext is obtained from its corresponding letter in the plaintext
by advancing k steps in the alphabet. At the end of the alphabet one goes
cyclically to the beginning. Caesar cipher is also called shift cipher [1, 3].
Thus, for k = 3, substitutions are as follows:

Plaintext:	 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cryptotext:	 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

In this cryptosystem, the plaintext WE GOT A GREAT VICTORY is
encrypted as ZH JRW D JUHDW YLFWRUB.

Secret Writing in Ancient Civilization    ◾    55  

Julius Caesar described in his Commentarii de Bello Gallico how he sent
an encrypted message to Marcus Tullius Cicero (106–43 BC), a Roman
philosopher, statesman, and lawyer. It was the substitution system in
monoalphabetic, but did not employ the Caesar cipher. The Latin letters
in the plaintext were replaced by Greek ones in the cryptotext to Cicero.
The historical record that Julius Caesar actually used the Caesar cipher
comes from the writings of Gaius Suetonius Tranquillus (c. 70–140 AD), a
historian during the Roman Empire. According to Suetonius, the shift in
the alphabet in the Caesar cipher was three, as shown above.

In Caesar cipher and other similar cryptosystems, the following
numerical encoding is convenient:

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

If we use this numerical encoding, the encryption and decryption
process in Caesar cipher can be expressed via modular arithmetic. Thus,
according to Caesar cipher, each letter α in a plaintext is encrypted as
α + k modulo 26, and each letter β in a cryptotext is decrypted as β – k
modulo 26. For example, suppose k = 3, then boy is encoded to 1 14 24,
and encrypted to 4 17 1. The cryptotext 4 17 1 is decrypted to 1, 14, 24.
Note that 24 + 3 ≡ 24 + 3 – 26 ≡ 1 mod 26, and that 1 – 3 ≡ 1 – 3 + 26 ≡ 24
mod 26. Additional applications of modular arithmetic will be described
more in Chapter 20.

The number of all possible keys for Caesar cipher is only 26, and the
alphabetical order remains as in the sequence of substituted letters. From
the security point of view, these are great disadvantages of Caesar cipher.
Adversaries can easily break Caesar cipher by attempting to break the
cryptotext for each possible key value of 0 to 25.

Caesar cipher is not the oldest monoalphabetic substitution cryptosystem.
A system devised by Polybius (c. 203–120 BC) can be also considered a
monoalphabetic substitution cipher. Polybius was a Greek historian of
the Hellenistic period. He died about 30 years before the birth of Caesar.
We explain the Polybius system using the Roman alphabet. Consider
the following square matrix, nowadays called the Polybius checkerboard
(also known as Polybius square) (Table 7.1).

56    ◾    Computing﻿

Each letter α will be represented by the pair of letters indicating the
row and column in which α lies in the matrix above. For example, the
representations of A, B, M, N, Y, and Z are AA, AB, CB, CC, ED, and
EE, respectively. The plaintext “Let us build ships” is encrypted to
CAAEDDDEDCABDEBDCAADDCBCBDCEDC. The Roman alphabet
version of the Polybius system is monoalphabetic substitutions into the
target alphabet {AA, AB, AC, AD, AE, BA, BB, …, EE}.

One of the earliest encryptions by monoalphabetic substitutions
appears in the Kama Sutra, a group of texts written in the fourth century
in India. Mallanaga Vatsyayana was a Hindu philosopher in the Vedic tra-
dition, and is believed to have lived during the Gupta Empire (fourth to
sixth centuries). His name appears as the author of the Kama Sutra, but
its original manuscripts were dated back as far as the fourth century BC.
The Kama Sutra recommends that women should study 64 arts, such as
cooking, dressing, and preparing perfumes. Secret writing is one of the
64 arts, and it helped women conceal their affairs and liaisons. The key of
the secret writing is to pair letters of the alphabet, and the encryption is to
substitute each letter in a plaintext with its partner letter. We explain this
principle using the Roman alphabet. Suppose that the pairing is (A, O),
(B, S), (C, T), (D, U), (E, V), (F, Y), (G, W), (H, Z), (I, K), (J, N), (L, X),
(M, P), (Q, R). Then LOTS OF LOVES is encrypted to XACBAYXAEVB.

Random ways of pairing the letters in an alphabet seem to offer a high
level of security, because the number of possible pairings is very large. For
the Roman alphabet, the number of possible pairing ways is 25 × 23 × 21 ×
19 × 17 × 15 × 13 × 11 × 9 × 7 × 5 × 3, which is approximately 7.09 × 1012.
Of course, both the sender and the receiver must agree on a specific letter
pairing arrangement in order for the system to be useful.

Although cryptography and steganography are independent, it is
possible to combine these methods to increase security.

TABLE 7.1  The Polybius Checkerboard

A B C D E

A A B C D E
B F G H I/J K
C L M N O P
D Q R S T U
E V W X Y Z

Secret Writing in Ancient Civilization    ◾    57  

REFERENCES
	 1.	 Arto Salomaa, Public-Key Cryptography, Springer-Verlag, Berlin, 1990.
	 2.	 Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography, Anchor Books, New York, 1999.
	 3.	 Douglas R. Stinson, Cryptography: Theory and Practice, CRC Press, New York,

1995.
	 4.	 Wikipedia, Cryptography, http://en.wikipedia.or/wiki/Cryptography.

59

C h a p t e r 8

The Abacus

8.1 � THE EARLIEST ABACI
Abacus (plural: abaci or abacuses) is a Latin word that came from the
Greek word abax or abakon, meaning “table” or “tablet,” and possibly
from the Hebrew word abaq, meaning “dust” or “sand.” The abacus in
its various forms is a calculating tool invented by ancient civilizations.
The simplest of these tools, called a counting board or abacus, may have
initially been made with lines drawn in the sand and pebbles placed
between or on the lines as counters.

If we search the archeological record, however, we can find direct
written evidence and clay artifacts related to the earliest known abaci
from Mesopotamia. Sumer, an ancient civilization in the southern part
of Mesopotamia, was established by proto-Euphratean people around
5000 BC. The Sumerians at first used tokens (clay objects of various shapes
and sizes marked with symbols) to represent items for trade and account-
ing. By the third millennium BC, these tokens had become “calculi” or clay
tokens used for arithmetic calculation, the results of which were written
down on clay tablets in the form of abstract numbers. At this time, although
the Sumerians had abstract numbers, they did not perform calculations
directly with them; numbers were used only for record keeping.

For arithmetic calculations, the Sumerians used calculi, or clay tokens
whose size or shape reflected the order of magnitude in their number
system. The calculi were manipulated, depending on the arithmetic oper-
ation, by interchanging multiple smaller-level calculi for larger ones, or
vice versa, until the solution was obtained. At some point, the Sumerians

60    ◾    Computing﻿

discovered that arranging the calculi on a table delineated with columns
allowed the same sort of operations to be done more efficiently and could
also be done using fewer uniformly shaped tokens [2].

It is estimated that the first abacus appeared in Sumer sometime
between 2700 and 2300 BC [1]. At that time, the Sumerians had already
developed a positional base-60 number system. The earliest abacus was
a wooden or clay board, divided into columns labeled with the orders of
magnitude of a base-60 number system. The various shaped calculi were
replaced with uniform-sized tokens of clay or short reed sticks. Sumerians
performed calculation with these tools, while written numbers were used
mainly to record the results [2].

Mesopotamia became united under the rule of the Assyro-Babylonians
around 2000 BC. These Semitic people adapted the Sumerians’ cuneiform
writing in their own language. Since they had a decimal number system,
it was necessary to create conversion tables for the abaci and translate the
base-60 results into decimal numbers [3]. Eventually, the abacus itself was
converted to a decimal format. By the end of the third millennium BC,
a radical transformation in calculation took place [1]. Rather than the use
of tokens on the counting boards or abaci, the Babylonians began writing
numbers directly into clay tablets, erasing and rewriting the numbers as
each operation was carried out.

The Babylonians used their mathematics for complex astronomical
calculations, and in the management of a large administrative bureaucracy
supported by taxation and trade. The abacus, evolving over time, was no
doubt used by both Babylonian scholars and others as a convenient tool
for calculation.

Eventually, for portability and convenience, grooved wooden boards
were invented. Later, more permanent tablets of stone (e.g., marble) and
metal tablets appeared. People used the abacus to count numbers, per-
form arithmetic operations, and record calculated results. Traders and
merchants needed a tool for both counting the number of goods bought
and sold and calculating the price of their wares [4].

While the Babylonians enjoyed an abundance of agricultural products
thanks to the fertile farmland of Mesopotamia, they lacked the natural
resources necessary to maintain their growing city-state civilization.
For this reason, they developed vast trade networks extending to India,
Persia, and many cultures and states surrounding the Mediterranean
Sea. It is thought that the Babylonian abacus was introduced throughout
the Middle East and the Mediterranean area via trade and commercial

The Abacus    ◾    61  

networks. As it was adopted by various cultures, the design of the aba-
cus was modified to suit their social needs and reflect the appropriate
language and number system [11].

8.2 � THE SALAMIS TABLET AND
THE ROMAN HAND ABACUS

The oldest surviving counting board or abacus is the Salamis Tablet
used around 300 BC, which was discovered in 1846 on Salamis Island,
an ancient Greek city-state off the coast of Cyprus. It is a slab of white
marble with some marks. In the upper center of the tablet there is a set of
five parallel lines equally divided by a vertical line. Below these lines is a
wide space with another set of 11 parallel lines divided by a vertical line.
Three sets of Greek symbols (numbers from the acrophonic system, or the
first Greek number system) are arranged along the left, right, and bottom
edges of the tablet. The slab is 149 cm long, 75 cm wide, and 4.5 cm thick.
It was used by the Greeks, but it is thought that its design was based on
the Babylonian counting board [7, 10]. The following are some examples of
numeral representations in acrophonic:

TABLE 8.1  Examples of Acrophonic Numerals

I II III IIII Γ ΓI ΓII ΓIII ΓIIII
1 2 3 4 5 6 7 8 9
Δ Η Χ
10 100 1000

As with the Salamis Tablet, pebbles are used to represent numbers.
Numbers between 0 and 4 were generally represented by a number of
pebbles. A system of lines on the slab serves to give weights to numbers
by powers of 10. A pebble between the lines represented the number 5.
Pebbles on the right side of the vertical line represent positive digits, and
those on the left side represent negative digits. For example, the number 4
might be represented as a pebble above the right side of the first line plus
a pebble on the left side of the first line, which represents 5 – 1 = 4. These
two pebbles represent the same number as the representation of four
pebbles on the right side of the first line. Likewise, the number 90 might
be represented as a pebble on the right side of the third line plus a pebble
of the left side of the second line. It was possible to perform additions and
subtractions of large numbers [5, 7, 13]. The Salamis Tablet is currently at
the National Museum of Epigraphy in Athens, Greece.

62    ◾    Computing﻿

Once the practical counting board had found its way to the Mediterra-
nean region, it was adopted by the ancient Greeks, Romans, and Egyptians.
In addition to the Salamis Tablet, concrete evidence of the use of abaci was
found on the Darius Vase (c. fourth century BC), discovered in an ancient
burial site in Canossa, Italy. One scene on the vase depicts a seated royal
treasurer using an abacus to calculate as a man in front of him is pre-
senting more tribute to be counted. Like the Salamis Tablet, the abacus
on the Darius Vase is marked with Greek symbols for drachmas in deci-
mal orders of magnitude. This beautiful vase is in the Museo Nationale in
Naples, Italy [16]. The Etruscan Cameo (fifth century BC), a 1.5 cm high
carved artifact from ancient Etruria, is another object clearly showing the
use of a counting board. Here again we see an abacist sitting at a table on
which tokens have been placed. He has a tablet in his left hand on which
he has recorded his results in Etruscan numerals. This cameo is in the
Cabinet des Medailles, Paris [17].

The ancient Romans designed an early portable calculating device
called the Roman hand abacus for use by merchants, bankers, engineers,
architects, tax collectors, and others. It is a base-10 version of the previous
Babylonian abacus. There are interesting similarities between the Roman
hand abacus and the Salamis Tablet. The lower slots and upper slots on the
Roman hand abacus are presumably the proper promotion factors of lines
and spaces between lines on the Salamis Tablet. A Roman hand abacus,
which is currently on display at the Bibliotheque Nationale de France,
in Paris, was made in the first century AD. Replicas of similar Roman hand
abaci can be found in the Science Museum and in the British Museum, both
in London. It greatly reduced the time for performing the basic arithmetic
operations, as opposed to hand calculating with Roman numerals [6].

The Roman hand abacus consists of a metal plate with nine parallel
columns of slots. The first two columns on the right side of the hand
abacus are for calculating fractions. The remaining seven slots for calcu-
lating integers are divided into an upper and a lower deck. Each of the
slots on the upper deck has one sliding bead, and each of the slots on the
lower deck has four. Each bead in the lower deck slots represents a unit of
the power of 10. The user of the Roman abacus slides the lower beads up
toward the center for numbers less than 5 (50, 500, etc., depending on the
column). To represent 5 units, one upper bead is slid down to the center.
For example, the number 6 is one bead from the upper deck and one bead
from the lower deck, both moved to the center, while the number 7 is one
upper bead and two lower beads in the center [6].

The Abacus    ◾    63  

The two right fraction slots on the Roman hand abacus are base-12.
This is because the Roman as or pound was divided into 12 uncial or
ounces. Fractions of Roman currency were expressed in terms of pounds
and ounces. Thus, for fractional accounting purposes, the base-12 parts
of the abacus were extremely convenient. Both of the two right columns
(slots) for calculating fractions were used to count from 0 to 11/12 in dif-
ferent ways (See Figure 8.1). The second column from the rightmost is
divided into the lower slot and the upper slot: five beads are in the lower
slot and one bead is in the upper slot. The column counts up to 5 ounces
(5/12 pound) in the lower slot and carries into the upper slot on a count
of 6 ounces (6/12 pound), repeats to a count of 11 ounces (11/12 pound),
and then carries into the decimal units (pounds) on a count of 12 ounces
(1 pound). Thus, the column can count from 0 to 11/12 pound. In other
words, the bead in the upper deck represents 1/2 pound and each bead in
the lower slot represents 1/12 pound. On the other hand, the rightmost
column is divided into three sections: the lowest slot, the middle slot, and
the top slot have two beads, one bead, and one bead, respectively. The
rightmost column can count from 0 to 11/12 ounce, and then carries into
the next right column into 1 ounce (unit) of a count of 12/12 ounce [6]. In
other words, the bead in the top slot represents 1/2 ounce, the bead in the
middle slot represents 1/4 ounce, and either of two beads in the lowest slot
represents 1/12 ounce. Each of 12 representations (from 0 to 11/12 ounce)
on the rightmost column is displayed in Figure 8.1.

Top

Middle

Lowest

0
1 2 3 4 5 6 7 8 9 10 11

12 12 12 12 12 12 12 12 12 12 12

FIGURE 8.1  Representations from 0 to 11/12 on the rightmost slot.

64    ◾    Computing﻿

8.3 � THE CHINESE ABACUS
While it is clear that the Sumerian abacus underwent many adaptations and
had spread throughout the lands of the Middle East and Mediterranean,
there is also evidence of the use of abaci from ancient times in Asian
civilizations. In the second century BC, the Chinese calculated with small
bamboo sticks or rods on a board. They used a positional decimal system,
and like the early Sumerians, while they had written numbers, they did
not calculate with them directly [2]. The earliest known written docu-
mentation about the Chinese abacus is probably in a book (c. 190 AD) on
the Eastern Han dynasty (25–225 AD). However, the exact design of the
earliest Chinese abacus is not known.

Similarly, between the second century BC and the third century AD,
Indian mathematicians computed on a sand-covered board, lined with
columns. The Indian word dhuli-karma, or “sand work,” means higher
computations. The method of calculation, however, was discontinued
between the fourth and sixth centuries AD when the use of a written
decimal number system spread. It is this transformation that is also con-
sidered to be the start of modern written arithmetic [1].

Several centuries later, there is further evidence of more advanced abaci in
use in China. The panoramic painting Along the River during the Qingming
Festival by the Song dynasty artist Zhang Zeduan (1085–1145 AD) depicts
the daily life of people and the landscape of the capital Bianjing (today’s
Kaifeng). In the scene, a Chinese abacus can be seen beside an account
book. Furthermore, two books demonstrating the use of the Chinese
abacus, or suanpan, appeared in the Shun-hi dynasty (1170–1190 AD).
These books are the Pan chu tsih and the Tseu pan tsih, where pan, chu,
tseu, and tsih mean “counting board,” “counting beads,” “operations,”
and “book,” respectively. Based on these and other sources, it seems the
suanpan is a relatively late development of the abacus in China, appearing
in the 11th or 12th century. No definite description of the abacus in China
before the 11th century has been found [14].

The number of rods in the traditional suanpan is usually odd, and never
less than nine. There are five beads (called earth beads) on each rod in the
lower deck and two beads (called heaven beads) on each rod in the upper
deck. These beads are mounted on rods and slide up and down within
decks. This style suanpan is also referred as a 5-2 suanpan. The 5-2 suanpan
appeared in China around 1200 AD. The beads are rounded and made of
wood, stone, or ivory. The rods are made of bamboo, wood, ivory, or metal.

The Abacus    ◾    65  

Suanpan beads are counted by moving them up or down toward the
crossbeam. The upward move of one bead in the lower deck means an
increase by one place-value, while the downward move of one bead in
the upper deck means an increase by five place-values. The beads can be
quickly reset to the starting position by a quick jerk along the horizontal
axis to move all the beads away from the horizontal beam separating the
upper deck and the lower deck [8].

Any number between 0 and 9 can be displayed on each rod without
using the uppermost bead in the upper deck and the lowest bead in the
lower deck. Using all the beads on each rod, any number between 0 and 15
can be displayed on the rod. Thus, the 5-2 suanpan can be used for both
decimal and hexadecimal computation. None of the beads is redundant for
hexadecimal calculation with the 5-2 suanpan. However, the uppermost
beads in the upper deck and the lowest beads in the lower deck are redun-
dant for decimal calculation with the 5-2 suanpan. The traditional Chinese
system of weights was hexadecimal. For example, 1 jin (600 grams) equals
16 liand (37.5 grams). The computations in decimal and hexadecimal were
quite similar except for the usage of the uppermost beads in the upper
deck and the lowest beads in the lower deck [15].

Later the 5-2 suanpan underwent modification, and appeared as a 5-1
suanpan in the Ming dynasty (1336–1644 AD). It is illustrated in a Chinese
book from the 16th century [8] and has one bead in the upper deck and
five beads in the lower deck on each rod. The 5-1 suanpan was mainly
used for decimal calculations, while the 5-2 suanpan survived until the
19th century. Various efficient suanpan techniques have been developed
for addition, subtraction, multiplication, division, and square and cubic
roots in China. Multiplication required the use of the multiplication table,
and division required the division table. The users of the suanpan usually
learned these tables by heart.

8.4 � THE JAPANESE ABACUS
The use of the suanpan spread from China to Korea around 1400 AD, where
it is called jupan, jusan, or supan. During the 15th century, the 5-2 suanpan
found its way also to Japan via the Korean peninsula, where it was called
soroban. The Chinese division table was also introduced at the same time.
The Chinese division table was called hassan, meaning “eight classes of
division calculations.” The method of using the division table was called
kyukihou (“nine” returning method). Kanbei Mouri (also known as
Shigeyoshi Mouri) was an influential Japanese mathematician during the

66    ◾    Computing﻿

Azuchi-Momoyama era (1573–1603) and early Edo era (1603–1868). He
instituted a mathematics school in Kyoto in the 16th century, spreading
the kyukihou (i.e., the division method using the hassan). Mitsuyoshi
Yoshida (1598–1672), one of his students, was the author of Jinkouki
(A Book of Very Large and Very Small Numbers). This book is an old
extant Japanese textbook on mathematics containing arithmetic tech-
niques of the soroban. The book was widely read in the Edo and Meiji
eras (Edo, 1603–1868; Meiji, 1868–1912). Jinkouki contributed greatly to
spreading the soroban in Japan [9].

The 5-1 soroban appeared in Japan around 1850 at a time when the
basis for Japanese currency shifted from hexadecimal to decimal [9].
The division method using the division table was rather complicated.
It was replaced by a division method using the standard multiplication
table around 1935, soon after the 4-1 soroban appeared. The 4-1 soroban
has one bead in the upper deck and four beads in the lower deck on each
rod. It became the standard configuration of the soroban in Japan.

In 1946, an exciting contest took place between the Japanese soroban
champion at that time and an American expert of the electronic calculator
in Tokyo, under the sponsorship of the U.S. Army newspaper, The Stars
and Stripes. The newspaper reported that the soroban champion defeated
the expert of the electronic calculator at additions, subtractions, divisions,
and mixed operations. The expert of the electronic calculator defeated the
soroban champion only at multiplications [12].

The soroban remained in use in Japan in commercial businesses until
the 1960s, long after the abacus had been abandoned elsewhere. Even in
banks and the accounting departments of major companies, calculations
were performed on the soroban until the 1950s. Although the soroban
had faded from practical use after the appearance of portable electronic
calculators, its use continues to be taught in schools in Japan. The soroban
is still manufactured in Japan today, though pocket electronic calculators
have proliferated and are much more convenient to use.

REFERENCES
	 1.	 G. Ifrah, The Universal History of Computing, John Wiley & Sons, New

York, 2001.
	 2.	 G. Ifrah, The Universal History of Numbers, John Wiley & Sons, New York, 2000.
	 3.	 C. Clawson, The Mathematical Traveler: Exploring the Grand History of

Numbers, Perseus Publishing, New York, 1994.
	 4.	 A Brief History of the Abacus, http://www.ee.ryerson.ca/~elf/abacus/history.

html.

The Abacus    ◾    67  

	 5.	 Wikipedia, Abacus, http://en.wikipedia.org/wiki/Abacus.
	 6.	 Wikipedia, Roman Abacus, http://en.wikipedia.org/wiki/Roman_abacus.
	 7.	 Wikipedia, Salamis Tablet, http://en.wikipedia.org/wiki/Salami.
	 8.	 Wikipedia, Suanpan, http://en.wikipedia.org/wiki/Suanpan.
	 9.	 Wikipedia, Soroban, http://en.wikipedia.org/wiki/Soroban.
	 10.	 Wikipedia, An Overview of Babylonian Mathematics, http://www.history.

mcs.st.andrews.ac.uk/HistTopics/Babylonian_mathematics.html.
	 11.	 K. E. Carr, West Asia Mathematics, Kidipede: History for Kids, 2012, http://

www.historyforkids.org/leam/westasia/science/math.htm
	 12.	 T. Kojima, The Japanese Abacus: Its Use and Theory, Charles E. Tuttle, Tokyo,

1954.
	 13.	 S. K. Stephenson, Roman Hand Abacus Is Key to Roman Use of the Salamis

Tablet, Memorandum, 2011.
	 14.	 D. E. Smith, History of Mathematics (vol. II), Dover Publications, New York,

1958.
	 15.	 The Abacus: A Brief History, http://www.ee.ryerson.ca/~elf/abacus/history.html.
	 16.	 K. Menninger, Number Words and Number Symbols: A Cultural History of

Numbers, Dover Publications, New York, 1992.
	 17.	 S. Chrisomalis, Numerical Notation: A Comparative History, Cambridge

University Press, New York, 2010.

69

C h a p t e r 9

Book of Calculation
by Fibonacci

Leonardo Pisano Bigollo (c. 1170–c. 1250), also known as Fibonacci, was
born in Pisa, Italy. He is best known as the author of Liber Abaci (Book of
Calculation) (the first edition was published in 1202 and the second edition
was published in 1228) [5]. Liber Abaci was one of the most important books
on mathematics in the Middle Ages, introducing the Hindu numeral sys-
tem (also called Hindu-Arabic numeral system or Indian-Arabic numeral
system) and arithmetic methods throughout Europe [1, 2, 4, 7]. He is also
well known for introducing a number sequence called Fibonacci’s num-
bers (also called the Fibonacci sequence) to Europe [3, 8]. His extant writ-
ings about his early life are in the second paragraph of “Dedication and
Prologue” in the 1228 edition of Liber Abaci. We quote the paragraph
below from the English translation by L. E. Sigler [5]:

As my father was a public official away from our homeland in the
Bugia* customs house established for the Pisan merchants who fre-
quently gathered there, he had me in my youth brought to him,
looking to find for me a useful and comfortable future; there he
wanted me to be in the study of mathematics and to be taught for
some days. There from a marvelous instruction in the art of the nine
Indian figures, the introduction and knowledge of the art pleased
me so much above all else, and I learnt from them, whoever was

*	 Bugia is now Bejaia, a Mediterranean port in northeast Algeria, North Africa.

70    ◾    Computing﻿

learnt in it, from nearby Egypt, Syria, Greece, Sicily and Province,
and their various methods, to which locations of business I trav-
elled considerably afterwards for much study, and I learnt from
the assembled disputations. But this, on the whole, the algorithm
and even the Pythagorean arcs,* I still reckoned almost an error
compared to the Indian method. Therefore strictly embracing the
Indian method, and attentive to the study of it, from mine own
sense adding some, and some more still from the subtle Euclidean
geometric art, applying the sum that I was able to perceive to this
book, I worked to put it together in XV distinct chapters, showing
certain proof for almost everything that I put in, so that further,
this method perfected above the rest, this science is instructed
to the eager, and to the Italian people above all others, who up to
now are found without a minimum. If, by chance, something less
or more proper or necessary I omitted, your indulgence for me is
entreated, as there is no one who is without fault, and in all things
is altogether circumspect.

Fibonacci was a citizen of the maritime city-state of Pisa, but he was
educated in mathematics as a youth in Bugia. He continued to develop
as a mathematician by traveling on business and studying in the Barbary
Coast of the Western Muslim Empire, Egypt, Syria, Province, Byzantium,
and other places. He learned Greek mathematics from Euclid’s Elements,
and the Hindu-Arabic numeral system (i.e., decimal place-value number
system), calculation, and algebra from Arabic scientists. Although knowl-
edge of the Hindu-Arabic numeral system began to reach Europe around
the end of the 10th century, its advantage was not generally recognized in
Europe even in the 12th century. Fibonacci decided to write Liber Abaci
to bring the numeral system to the Italian people in a usable form. The
effect of the book was tremendous in dissemination of the Hindu-Arabic
numeral system throughout Europe [1, 2, 6, 8].

Liber Abaci consists of 15 chapters. In Chapter 1, the 10 numeral figures
of the Hindu-Arabic numeral system are presented, including zero (0, 1, 2,
3, 4, 5, 6, 7, 8, 9). The zero is called zephir from the Arabic. This system is
our familiar decimal place-value number system, in which the figure in the

*	 Pythagorean arcs are marks to indicate triples of place-value numbers. In the writing of numbers
Fibonacci uses this number system. For example, for 1,234,567,890, each of the triples 234, 567,
and 890 is covered by an arc.

Book of Calculation by Fibonacci    ◾    71  

first place (rightmost position) counts only for itself, but the figure in the
second place to the left counts as so many tens. In the sequence of figures,
the third place from the right end counts as so many hundreds, and so on.
The zero denotes nothing and serves as a placeholder. Large numbers are
organized by triples to facilitate our easy reading of them. For indicating
these triples, Fibonacci uses “arcs,” which play the same role as commas
used in representing large numbers. He also showed a way of representing
numbers up to 1000 by the fingers and the palm of the left hand. At the
end of Chapter 1, additions and multiplications of some small numbers are
given in tables. He described ways of how to carry out the additions and
multiplications by using the tables, the fingers, and the palm.

In Chapter 2 an algorithm for multiplication is given. An algorithm
for addition and an algorithm for subtraction of whole numbers of arbi-
trary size are given in Chapters 3 and 4, respectively. In Chapter 5 an
algorithm for the divisions by integral numbers is given. The answer to a
division is given in a form of its quotient with a fraction of its remainder
(a numerator) over the divisor (a denominator). In Chapter 6 an algorithm
for the multiplication with fractions is described. There, he also presents
the Euclidean algorithm for finding the greatest common divisor of two
integers. Chapter 7 continuously describes the addition, subtraction, and
division of whole numbers with fractions. Fibonacci also discusses the
separation of fractions into sums of unit fractions. This method goes back
to the ancient Egyptian preference for unit fractions.

In Chapters 8, 9, 10, and 11, specific business and merchandise prob-
lems are given. These are problems on the buying and selling of commer-
cial commodities, the process of bartering, certain rules for buying coins,
and the alloying of money and the rules that are pertinent to alloying.

Chapter 12 is divided into nine parts. The first part is on summing
series of numbers. The second is on proportions of numbers. The third is
on problems of tree lengths. The fourth is on problems of finding purses.
The fifth is on buying horses among company members according to given
proportions. The sixth is on problems of the travelers. The seventh is on
false position and rules of divination. The method of false position works
by the posing of arguments that are approximations, and then the approxi-
mations are corrected to give true solutions. The eighth is on certain prob-
lems of divination. The ninth is on the doubling of squares and certain
other problems. Most of these problems are equivalent to linear equations

72    ◾    Computing﻿

of the simple type, Ax = B. For example, the following is one of the tree
length problems:

There is a tree. Its (1/4 + 1/3) portion lies underground, and the
length of this portion is 21 palms (1 palm is about 7 to 10 cm). Find
the tree length.

If we let the tree length be x palms, then the solution to the tree problem
above is the solution to linear equation (1/4 + 1/3)x = 21. Thus, the solution
to the problem is 36 palms.

Chapter 13 begins with summing arithmetic series with applications to
some problems for travelers. Another one is the found purse problem. For
example, men have purses containing some denari in each purse (denaro
is the Pisan monetary unit, and denari is its plural). Conditions are given
and one must find the amount of denari in each purse. Fibonacci often uses
negative numbers in Liber Abaci. While the purses cannot contain nega-
tive numbers of denari, Fibonacci shows that they can be used to obtain
solutions to the purse problem. There are also banking problems about
investments with simple and compound rates of interest. The famous
Fibonacci numbers (also called the Fibonacci sequence) are also included
in Chapter 13. The Fibonacci sequence is described as the following story
about the birth production of rabbits:

A certain man put a pair of fertile rabbits in a place surrounded on
all sides by a wall. How many pairs of rabbits can be produced from
that pair in a year if it is supposed that every month each fertile pair
delivers a new pair and if each new pair becomes fertile at the age of
one month. [Here, we assume that the rabbits do not die.]

The resulting sequence of new pairs produced in the 1st month, the
2nd month, …, and the 12th month is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144.
Thus, the answer to Fibonacci’s question above is 144.

In Chapter 14 Fibonacci collects techniques for finding square and cube
roots. In Chapter 15 he gives a review of proportion and a collection of
elementary geometry problems. He uses the Pythagorean theorem to cal-
culate areas and volumes of simple shapes. The techniques of algebra for
quadratic equations are also presented in Chapter 15. The presentation for

Book of Calculation by Fibonacci    ◾    73  

the techniques differs little from al-Khwarizmi’s book The Compendius
Book on Calculation by Completion and Balancing (in Arabic).

Al-Khwarizmi (c. 780–c. 850) was born in a Persian family. He was a great
mathematician at the House of Wisdom in Baghdad. His The Compendius
Book on Calculation by Completion and Balancing presents the systematic
solution of linear and quadratic equations. The book was published more
than 350 years earlier than Liber Abaci. Fibonacci studied Hindu-Arabic
mathematics mainly from the work of al-Khwarizmi. In Renaissance
Europe, Al-Khwarizmi was considered the original inventor of algebra,
but it is now known that his mathematical work is based on older Hindu
or Greek sources. The Fibonacci sequence had been also described in
Hindu mathematics much earlier than Fibonacci.

Practica Geometriae is another book written by Fibonacci (1220). It con-
tains a large collection of geometry arranged into eight chapters with theorems
based on Euclid’s Elements. Later, Liber Quadratorum (Book of Squares) was
also written by Fibonacci (1225). In this book he proves some interesting
number theoretic results. For example, he proved the following facts:

There is no pair of integers (x, y) such that x2 + y2 and x2 – y2 are
both squares.

There is no non-trivial integral solution for x4 – y4 = z2.

Liber Quadratorum established Fibonacci as the major contributor to
number theory in the period between Diophantus and the 17th-century
French mathematician Pierre de Fermat (1601–1665).

In mathematics and arts, two quantities are in golden ratio if the greater
quantity to the smaller quantity is equal to the ratio of the sum of these
two quantities to the greater quantity. In Figure 9.1, if AC:CB = AB:AC,
then AC and CB are in golden ratio.

Ancient Greek mathematicians studied what we call the golden ratio
because of its frequent appearance in geometry. The golden ratio has fas-
cinated Western intellectuals of diverse interests for at least 2400 years.

In modern mathematics the first two numbers of the Fibonacci sequence
are 0 and 1, although both the first two numbers of the original Fibonacci

A C B

FIGURE 9.1  Golden ratio.

74    ◾    Computing﻿

sequence are 1. A French-born mathematician, Albert Girard (1595–1632)
[12, 13], was the first person who formulated the inductive definition of
the Fibonacci sequence as:

	 F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn	 (n ≥ 0)

where Fn is the nth Fibonacci number (n = 0, 1, 2, 3, …). He stated that the
ratios of two consecutive Fibonacci numbers tend to the golden ratio =
(1 + 5)/2. This result was published in 1634, 2 years after his death. The
tree representations for equations Fn+2 = Fn+1 + Fn and Fn+4 = 3Fn+1 + 2Fn are
shown in Figure 9.2.

Many authors attribute the discovery of the following equation to
J. P. M. Binet (1786–1856) in 1843, and so call it Binet’s formula [11]:

	 Fn = (1/ 5)(φ1
n – φ2

n),

where φ1 = (1 + 5)/2 and φ2 = (1 – 5)/2 (i.e., φ1 and φ2 are the roots of
quadratic equation x2 – x – 1 = 0). However, Leonhard Euler (1707–1783)
discovered the same formula in 1765, much earlier than Binet [10].
Moreover, D. E. Knuth [9] stated in his book that the formula above can
be traced back even further to a paper published in 1730 by A. de Moivre
(1661–1754) [14, 15].

In modern science and technology, the Fibonacci sequence has been
applied in many diverse areas. These applications include computer algo-
rithms such as the Fibonacci heap data structure and interconnection
networks in parallel and distributed systems called the Fibonacci cubes.

Fn+2

Fn+1Fn

Fn+2

Fn+2

Fn+4

Fn+3

Fn+1 Fn+1

Fn+1

Fn

Fn

FIGURE 9.2  Examples of tree representations for Fibonacci numbers. (a) A binary
tree for Fn+2 = Fn+1 + Fn (left figure). (b) A binary tree for Fn+4 = 3Fn+1 + 2Fn (right figure).

Book of Calculation by Fibonacci    ◾    75  

The Fibonacci sequence also appears in biology: branching in trees, the
numbers of spirals in a pineapple, and the arrangement of a pine cone.

It is an interesting observation that the conversion factor 1.609344 for
miles to kilometers is close to the golden ratio (1 + 5)/2. Hence, the decom-
position of distances in miles into a sum of Fibonacci numbers becomes
nearly the kilometer sum when the Fibonacci numbers are replaced by
their successors.

REFERENCES
	 1.	 Wikipedia, Fibonacci, http://en.wikipedia.org/wiki/Fibonacci.
	 2.	 Leonardo Pisano Fibonacci, http://www-history.mcs.st-and.ac.uk/Biographies/

Fibonacci.html.
	 3.	 Wikipedia, Fibonacci Number, http://en.wikipedia.org/wiki/Fibonacci_number.
	 4.	 Wikipedia, Liber Abaci, http://en.wikipedia.org/wiki/Liber_Abaci.
	 5.	 Fibonacci (Author) and L. E. Sigler (trans.), Fibonacci’s Liber Abaci (Leonardo

Pisano’s Book of Calculation), Springer-Verlag, Berlin, 2002.
	 6.	 R. E. Grimm, The Autobiography of Leonardo Pisano, Fibonacci Quarterly,

21, 99–104, 1976.
	 7.	 J. Hoyrup, Fibonacci—Protagonist or Witness? Who Taught Catholic Europe

about Mediterranean Commercial Arithmetic? Preprint for the workshop
presentation on Borders and Gates or Open Spaces? Knowledge Cultures
in the Mediterranean during the 14th and 15th Centuries, Universidad de
Sevilla, Sevilla, Spain, 2010.

	 8.	 G. Ifrah, The Universal History of Computing, John Wiley & Sons, New York,
2001.

	 9.	 D. E. Knuth, The Art of Computer Programming (vol. 1, 2nd ed.), Addison-
Wesley, Reading, MA, 1973.

	 10.	 L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics (2nd ed.),
Addison-Wesley, Reading, MA, 1994.

	 11.	 Wikipedia, Jacques Philippe Marie Binet, http://en.wikipedia.prg/wiki/
Jacques_Philippe_Marie_Binet.

	 12.	 Wikipedia, Albert Girard, http://en.wikipedia.org/wiki/Albert_Girard.
	 13.	 Albert Girard, http://www-history.mcs.st-and.ac.uk/Biographies/Girard_

Albert.html.
	 14.	 Wikipedia, Abraham de Moivre, http://en.wikipedia.org/wiki/Abraham_

de_Moivre.
	 15.	 Abraham de Moivre, http://www-history.mcs.st-and.ac.uk/Biographies/

De_Moivre.html.

77

C h a p t e r 10

Decimal Fractions
and Logarithms

10.1 � APPEARANCE OF DECIMAL FRACTIONS
A decimal fraction is a decimal representation of a real number in the
form of a series written as a sum:

	 r = a0 + a1/10 + a2/102 + a3/103 + … if r ≥ 0

	 r = –a0 – a1/10 – a2/102 – a3/103 – … if r < 0,

where a0 is a nonnegative integer, and a1, a2, … are integers satisfying
0 ≤ ai ≤ 9 for each i ≥ 1.

Although there is no clear evidence, it is believed that decimal frac-
tions may have first been developed and used in China in around the first
century BC, from there spreading to the Middle East [2, 3]. The textbook
Mathematical Treatise in Nine Sections (1247 AD), by Chinese Southern
Song dynasty mathematician Qin Jiushao (1202–1261), describes decimal
fractions. In Europe, they probably did not appear until the 14th century.
A French Jewish mathematician and astronomer, Immanuel Bonfils
(c. 1300–1377), published astronomical tables and methods of decimal
arithmetic including decimal fractions around the year 1350 [3].

The Persian mathematician Jamshid al-Kashi (c. 1380–1429), and the
first director of the Science Institute founded in Samarkand in 1414 by

78    ◾    Computing﻿

Emperor Ulugh Beg, claimed to have discovered decimal fractions during
the 1420s. He computed 2π to nine sexagesimal digits, accurately convert-
ing this approximation to 17 decimal places in 1427 [4]. He gave not only
the value of π more accurately than any of his predecessors, but also wrote
it using Arabic numerals as follows [1]:

	 Integer

	 3	 1415926535898732

The clear notation of a decimal fraction by al-Kashi seems to predate
any similar notation found in Europe. In his book The Teatise on the
Chord and Sine, al-Kashi calculated sin 1° as accurately as his calculation
for π. It is also known that al-Kashi was the first person who provided a
clear statement of the law of cosine (i.e., c2 = a2 + b2 – 2ab cos γ, where a,
b, and c are side lengths of a triangle and γ is the angle between the sides
with lengths a and b opposed to the side with length c).

The use of a dot or bar before and after integers to indicate decimal frac-
tions became common in Europe in the 16th century. In 1585, the Flemish
mathematician Simon Stevin (1548–1620) wrote De Thiende (La Disme in
French, Decimal Arithmetic in English), a booklet first published in Flemish
and later translated into French. In the booklet he clearly described the
significance of the decimal fractions and demonstrated the rules for calcu-
lations involving decimal fractions as easily as if they involved only inte-
gers [1]. For example, 27.847 + 37.675 + 875.782 = 941.304 was written as
27(0)8(1)4(2)7(3) + 37(0)6(1)7(2)5(3) + 875(0)7(1)8(2)2(3) = 941(0)3(1)0(2)4(3).

By the 16th century, European mathematicians were able to produce
various tables of accurate approximations for square roots, trigonometric
functions, and other quantities denoted by decimal fractions. Several writ-
ers used a period to separate the decimal fraction portion from its integer
portion, while others used a bar for demarkation. The improvement in nota-
tion for the decimal fractions was largely made by several scholars, includ-
ing the Swiss clockmaker and mathematician Jobst Burgi (1552–1632), the
German astronomer and mathematician Johannes Kepler (1571–1630),
the German mathematician Johann Hartmann Beyer (1563–1625), and the
Scottish mathematician John Napier (1550–1617).

Decimal Fractions and Logarithms    ◾    79  

10.2 � LOGARITHMS
A logarithm is the inverse function of an exponential function. If x = ay,
then y is the logarithm of x to base a and is written y = loga x. The loga-
rithm to base-10 is called the common logarithm (also called the decimal
logarithm or Briggsian logarithm) and has many applications in science
and technology. The logarithm to base e (= 2.718…) is called the natural
logarithm, and it is widely used in mathematics, especially in calculus.
Nowadays, the logarithm to base-2 is commonly used in computer tech-
nology and information science.

Arithmetica Integra (Integer Arithmetic), published in 1544 by the
German monk and mathematician Michael Stifel (1487–1567), contained
a table of integers and powers of 2. The book showed how an approxima-
tion of the multiplication of two numbers can be obtained by adding their
2’ powers and looking up their sum in the table of powers of 2. Stifel’s
method of multiplication was based on the relation aman = am+n, known
also to the ancient Greek mathematician Archimedes. This method can be
considered an early version of multiplication by logarithms.

Logarithms are said to be first invented by John Napier in 1614, in
his book Marifici Logarithmorum Canonis Descriptio (Description of
Wonderful Rules of Logarithms). Napier dedicated at least 20 years to
his work on logarithms [5, 6]. The book was subsequently translated into
English in 1616. The word logarithm, first used by Napier, means “ratio
number.” His idea was to simplify multiplication involving trigonometric
function values, while realizing that logarithms could also be useful for
other operations. His discovery for simplifying multiplication may have
been inspired by the following equation:

	 sin A sin B = (cos (A–B)–cos (A + B))/2.

In Napier’s time, there were seven-digit tables of the trigonometric
functions. Example 10.1 shows how to multiply by using the tables with
the operations of addition, subtraction, and division by 2.

Example 10.1

Suppose we want to calculate an approximate value of 484.8096
× 27.56374:

	 484.8096 × 27.56374 = 0.4848096 × 0.2756374 × 105.

80    ◾    Computing﻿

From the sine and cosine table, sin 29° is nearly equal to 0.4848096
and sin 16° is nearly equal to 0.2756374.

From sin A sin B = (cos (A–B)–cos (A + B))/2 and the cosine table,
484.8096 × 27.56374 is nearly equal to 105(cos 13°–cos 45°)/2 and is
nearly equal to 105(0.9743701–0.7071068)/2. Then it is nearly equal
to 13363.165. Since the exact value is 13363.16576, the approximate
value is quite close.

Napier’s logarithms (hereafter denoted by Nap.log) are not those loga-
rithms used today. His logarithms are symbolically expressed as

	 Nap.log x = 107(loge (107/x)).

Napier demonstrated certain laws relating logarithm computations,
which we can state symbolically as follows [1]:

	 1.	If a:b = c:d, then Nap.log a + Nap.log d = Nap.log b + Nap.log c.

	 2.	 If a:b = b:c, then Nap.log a = 2 Nap.log b–Nap.log c.

	 3.	 If a:b = b:c = c:d, then 3 Nap.log b = 2 Nap.log a + Nap.log d,
and 3 Nap.log c = Nap.log a + 2 Nap.log d.

Henry Briggs (1561–1630), an English mathematician and the first pro-
fessor of geometry at Gresham College, London, was greatly interested in
astronomy. When he read Napier’s work on logarithms, he thought that
logarithms would be very useful for astronomical calculations. He began
studying how Napier’s logarithms could be improved. Briggs traveled from
London to Edinburgh to discuss logarithms with Napier in the summer of
1615 [7]. Before meeting in Edinburgh, Briggs had suggested to Napier in
his letter that logarithms should be to base-10 instead of base e. Originally
Nap.log 1 is not 0 by its definition. Briggs also suggested that the value
should be 0. Napier had also been considering these changes. Briggs made
the second journey to meet Napier in Edinburgh in 1616, and planned to
make a third visit the following year, but Napier died in the spring before
the planned visit. Symbolically, the later version of Napier’s logarithms
took the following form [1, 7]:

	 Nap.log x = 109 log10 x.

Decimal Fractions and Logarithms    ◾    81  

Briggs’s work on logarithms, Logarithmorum Chilias Prima (The First
Thousand Logarithms), was published in 1618, and his mathematical trea-
tise, Arithmetica Logarithmica (Logarithm Arithmetic), was published in
1624. In the latter book, Briggs gave the logarithms of natural numbers
1 to 20,000 and 90,000 to 100,000 that are computed in 14 decimal places.

Jost Burgi (1552–1632), a Swiss clockmaker and mathematician,
invented logarithms independently of Napier and Briggs, although it is
not clear when he started work on them. Some historians have suggested
that Burgi may have invented logarithms earlier than Napier [1, 8], but his
work was not published until 1620, when the German mathematician and
astronomer Johannes Kepler asked him to do so. This date was 6 years
after the publication of Napier’s book.

By the middle of the 17th century, logarithms had become recognized
as a useful tool for arithmetic calculation not only in Europe, but also in
China, through the influence of the Jesuit missionaries [1].

In addition to inventing logarithms, Napier also invented a calculat-
ing device known as Napier bones in 1617 and made common the use
of decimal multiplications and divisions. The device itself does not use
logarithms, but rather is a convenient tool to reduce multiplication and
division to a sequence of simple addition and subtraction operations. The
method employed by Napier’s bones was based on Arab mathematics and
Fibonacci’s Liber Abaci. The device was a set of rods, each of which was
inscribed with a part of the multiplication table for the integers 1 to 9.
Napier coined the word rabdology from the Greek words rabdos, mean-
ing “rod,” and logos, meaning “calculation,” to describe this device and
its technique. Napier’s bones was popularly used to multiply, divide, and
even find the square roots and cube roots of numbers [10], and was still
used as a teaching device in British primary schools into the 20th century,
see Figure 10.1.

The slide rule (also known as a slip stick in the United States) was used
primarily for multiplication and division, and also for calculating square
roots, cubic roots, logarithms, and trigonometric functions. The English
mathematician Edmund Gunter (1581–1626) first invented it during the
1620s, shortly after Napier’s publication on logarithms. The English mathe-
matician William Oughtred (1575–1660) and others further developed the
slide rule in the 17th century. Before the advent of the pocket electronic cal-
culator, slide rules were commonly used calculation tools in mathematics,
science, and engineering. By the end of the 1960s, the use of slide rules had
become largely obsolete, and they were seldom manufactured [9].

82    ◾    Computing﻿

At present, logarithms are used in the definitions of various forms of
measurement. For example, the scale of an earthquake is measured by its
magnitude M, defined as

	 log10 E = 4.8 + 1.5M,

where E is the energy (Joule) of the earthquake wave.
Another example is the measure for acidity and basicity of an aqueous

solution known as pH in chemistry, defined as

	 pH = –log10 aH
+,

where aH
+ is the hydrogen ion activity.

The decibel (denoted by dB) is also a logarithmic unit, commonly
used in physics and engineering to express the ratio between two values.
For example, the gain of a voltage amplifier that amplifies vi volts to vo volts
is defined as

	 20 log10(vo/vi) (dB).

While the methods and tools to calculate decimal fractions and loga-
rithms have undergone great transformations over the past four centuries,
these numerical representations have become an integral part of the
languages of modern science, engineering, and mathematics.

1 8 7 3 7
2

3

4

5

6

7

8

9

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

1
4

2
1

2
8

3
5

4
2

4
9

4
9

5
6

5
6

6
3

0
6

0
9

1
2

1
5

1
8

2
1

2
1

2
4

2
7

1
4

2
1

2
8

3
5

4
2

4
9

4
9

5
6

6
3

(a)

(b)

6 1 1 5 9

FIGURE 10.1  Napier bones and calculation of 8737 × 7. (a) Rods for 8, 7, and 3;
(b) Calculation of 8737 × 7.

Decimal Fractions and Logarithms    ◾    83  

REFERENCES
	 1.	 D. E. Smith, History of Mathematics (vol. II), Dover Publications, New York,

1958.
	 2.	 J. Needham (ed.), Decimal System: Science and Civilization in China,

Mathematics and the Sciences of the Heavens and the Earth (vol. III),
Cambridge University Press, Cambridge, UK, 1959.

	 3.	 Wikipedia, Decimal, http://en.wikipedia.org/wiki/Decimal.
	 4.	 Wikipedia, Jamshid al-Kashi, http://en.wikipedia.org/wiki/Jamsh.
	 5.	 Wikipedia, Logarithm, http://en.wikipedia.org/wiki/Logarithm.
	 6.	 John Napier, http://www-history.mcs.st-andrews.ac.uk/Biographics/Napier.

html.
	 7.	 Henry Briggs, http://www-history.mcs.st-andrews.ac.uk/Biographics/Briggs.

html.
	 8.	 Jost Burgi, http://www-history.mcs.st-andrews.ac.uk/Biographics/Burgi.html.
	 9.	 Wikipedia, Slide Rule, http://en.wikipedia.org/wiki/Sliderule.
	 10.	 Wikipedia, Rabdology, http://en.wikipedia.org/wiki/Rabdology.

85

C h a p t e r 11

Calculating Machines

The origins of mechanical computing devices are rooted in the European
Renaissance. During this time, there was a resurgence of classicism and
interest in humanistic subjects: thanks to the gradual spread of Indo-Arabic
numeration and mathematics in the 16th century, scholars were perform-
ing increasingly complicated calculations. This movement heralded the
decline of the use of Roman numerals and counter-boards, which had
been predominantly used in both academia and commerce from the time
of the Roman Empire. Great cities arose as a result of burgeoning trade
throughout Europe, the Middle East, and Asia, and along with this trend
came sufficient wealth to support the arts and sciences. Mathematicians
and scientists needed more accurate computation on longer numbers in
various areas than before. As their expertise grew, they searched for easier,
quicker, and more reliable ways to calculate [7, 10, 16].

Tools like counting boards, Napier’s bones, and the abacus, everywhere
common, were not true calculating machines. While they certainly made
calculation easier, they did not mechanize it. Rather, they were simply
extensions of the human hand, not tools for mechanically carrying out
arithmetic operations.

The key to the problem of mechanizing arithmetic operations was to find
a way to reduce the human role while increasing the reliability of the results
generated by the automatic movement of a machine. The search for solu-
tions to this problem led to the invention and development of a variety of
numerical calculating machines. The idea of a mechanical calculator may
seem obvious now, but 400 years ago, such an idea was bold and daring,
not only with regard to design, but also with regard to construction.

86    ◾    Computing﻿

11.1 � THE RECHEN UHR OR “CALCULATING CLOCK”
OF WILHELM SCHICKARD

The first step in automatic calculation was taken in 1623, when the German
astronomer Wilhelm Schickard (1592–1635) constructed his Rechen Uhr,
or “calculating clock,” as he called it. He was born in the small town of
Herrenberk, near Tübingen, Wurttemberk (now Germany). He received
a B.A. degree in 1609 and a M.A. degree in 1611 from the University of
Tübingen, where he studied theology, oriental languages, mathematics,
and astronomy [1–4]. Schickard first met Johannes Kepler (1571–1630), the
distinguished German astronomer, around 1617. Upon meeting Schickard,
Kepler was impressed with his scientific abilities and engraving skills in
both wood and copperplate. Kepler wrote in his diary: “I met an excellent
talent, a math-loving young man, Wilhelm, a very industrious mechanic
and lover of oriental languages” [4]. He asked Schickard to assist in calcu-
lating tables, and to draw and engrave figures for his books (Harmony of
the World: Books IV and V). Schickard’s work with Kepler prompted him
to design the mechanism for a calculating device.

In 1619 Schickard was appointed as professor of Hebrew at the University
of Tübingen, and in 1631 he became professor of astronomy, mathematics,
and geodesy. Between the years 1623 and 1624, Schickard wrote Kepler
two letters, in which he sketched the design of a machine called a calculat-
ing clock. He explained in his letters that the machine could be used for
calculating astronomical tables. The calculating clock could add and sub-
tract six-digit numbers while indicating the overflow of the limit of digits
by ringing a bell. We can infer from the letters that the machine could also
perform multiplication and division. The first calculating clock, built by a
clockmaker, was later destroyed in a fire, as described below in Schickard’s
letter to Kepler:

I had placed an order with a local man for the construction of a
machine for you, but when this machine had half finished, this
machine, together with some other things of mine, especially
several metal plates, fell victim to a fire broke out unseen during
the night three days ago. I took the loss very hard, especially since
there is no time to produce a replacement soon [1–4].

The design sketches of the calculating machine have been preserved in
the letters to Kepler from Schickard. In 1718, a German biographer of Kepler,

Calculating Machines    ◾    87  

Michael Gottlieb Hansch (1683–1749), published a book about Kepler,
which included Schickard’s two letters. These letters were rediscovered in
1935 in the Kepler archive by his biographer, Max Caspar. In 1957, Hammer,
another biographer of Kepler, announced during a conference on the his-
tory of mathematics that Schickard’s calculating clock predated Pascal’s
calculating machine, the Pascaline. In 1960, Bruno v. Freytag Löringhoff,
a professor of philosophy at the University of Tübingen constructed the
first replica of Schickard’s machine. The Institute for Computer Science
at the University of Tübingen is called the Wilhelm-Schickard Institute
in his honor.

Schickard died in Tübingen, Germany, on October 24, 1635, as a result
of an outbreak of the bubonic plague.

11.2 � THE PASCALINE
Blaise Pascal (1623–1662), born in Clermont-Ferrand, France, was a French
mathematician, physicist, inventor, and philosopher. A child prodigy,
he wrote a significant treatise on the subject of projective geometry at
age 16. Early on, Pascal also made important contributions to the study
of pressure and vacuum in the natural and applied sciences. Later he
corresponded with Pierre de Fermat (1601–1638) on probability theory.
The Pascal (Pa), named after him, is commonly used as the International
System Unit of pressure [5].

Pascal began to work on the design of a mechanical calculator in 1642,
while assisting his father, a tax commissioner. His goal was to construct a
device to reduce his father’s tedious workload of calculation. Pascal built
more than 20 of these calculating machines, called the Pascaline, over the
subsequent 12 years. In 1649, Pascal received a royal privilege granting
the right to manufacture and sell Pascalines in France. By 1654 about
20 Pascalines had been sold in Europe [6].

The Pascaline was the first calculating machine ever commercialized.
Nine Pascalines have survived to the present. Seven of them are in
European museums, one belongs to IBM, and one is in private hands.

The Pascaline was constructed of metal cogwheels. A dial on each
cogwheel displayed a digit at the corresponding decimal position. To input
a digit, the user placed a stylus in the corresponding dial, turning it until
reaching a metal stop at the bottom. By repeating this process, a number
was displayed in each of the boxes located across the top of the machine.
The addend was similarly dialed, causing the sum of both numbers to
appear in the boxes at the top. To subtract one number from another, the

88    ◾    Computing﻿

number to be subtracted was first converted to its nine’s complement.
For example, for five-digit subtraction such as 34,563–12,246, the nine’s
complement of 12,246 is 87,753 (where each digit of the nine’s comple-
ment is the difference of 9 and the corresponding digit of the number to
be subtracted). Thus, for example, 34,563–12,246 would be carried out by
the addition of 34,563 + 87,753 + 1–100,000 = 22,317. (Note that for this
example 100,000 would overflow.)

The Pascaline was also capable of automatic carrying. This was done by a
series of cogwheels or gears, numbered from 0 to 9, and linked in such a way
that when one gear completed a revolution, the next wheel was advanced
by one step. In the case of subtraction, the conversion from a number to its
nine’s complement would be done automatically by the machine.

The functions of the Pascaline were quite limited. While multiplication
and division were possible by skillful users, the machines had no special
mechanisms for these purposes. Doing multiplication or division involved
many steps, requiring significant effort by the user.

The production of the Pascaline ceased in 1654. By that time Pascal
had turned his interests to theology and philosophy. He wrote Letters
Provincials, a series of 18 letters on religious controversy (1656–1657), and
Pensees, his most influential theological work, unfinished at the time of
his death and published in 1669.

In 1971, Niklaus Wirth (1934–), a Swiss computer scientist, designed
and published an innovative programming language that he named Pascal
to honor the contributions to machine calculation made by Blaise Pascal.
This programming language is suitable for writing structured programs
and describing computer algorithms [18].

11.3 � LEIBNIZ AND THE STEPPED RECKONER
Gottfried Wilhelm von Leibniz (1646–1716), a German mathematician,
scientist, and philosopher, was born in Leipzig, Saxony, during the final
stages of the Thirty Years’ War (1618–1648). His excellent contributions
are well known in the history of both mathematics and philosophy.
Leibniz developed infinitesimal calculus independently of Isaac Newton
(1642–1725), and together they are considered the founders of differential
and integral calculus. Leibniz is also known as the inventor of the calcu-
lating machine called the Stepped Reckoner [8].

Leibniz designed the Stepped Reckoner in 1673, but constructed it
later in 1694. It was the first calculating machine capable of four funda-
mental arithmetic operations (i.e., addition, subtraction, multiplication,

Calculating Machines    ◾    89  

and division) by purely mechanical means. Addition and subtraction
were performed in a single step. Multiplication and division were per-
formed digit by digit on the multiplier or divisor digits. The procedures
for these arithmetic operations are equivalent to the familiar processes
for long multiplication and long division, as taught in school nowadays.
The machine can add or subtract an 8-digit number to or from a 16-digit
number. It can multiply two 8-digit numbers to obtain a 16-digit result,
and can divide a 16-digit number by an 8-digit divisor [9].

The Stepped Reckoner did not work well since its complicated gear-work
caused major problems in construction. The tools available for machine
manufacture then were not technically capable of building a reliable and
robust calculating machine. Two prototypes of the Stepped Reckoner
were built by Leibniz, but never sold. Today only one survives, and is dis-
played in the National Library of Lower Saxony in Hannover, Germany.
Later, several replicas of the Stepped Reckoner were built, and exhibited
in museums.

It was Leibniz who truly opened the way for the further development
of mechanical calculation. Technologically, the Stepped Reckoner made
many important innovations. Leibniz’s contribution was critical up to
the start of the computer age of the 20th century. His operating mecha-
nism was employed in many calculating machines for the next 200 years,
including the hand calculators of the 1970s.

11.4 � THE JACQUARD LOOM
While the development of calculating machines discussed so far is based
on the need for numerical computation, the motivation that resulted in
the earliest form of a stored program came from a very different source:
the textile industry.

One of the fundamental constructs of computational systems is the
ability to represent information. In ancient times, written symbols for
numeric values were developed, and then eventually, the invention of
mechanical tools was inspired by these symbols. Thus, we have the arrange-
ment of pebbles on an abacus frame, the moving scales on a slide rule,
and the cogged gears on the machines of Schickard, Pascal, and Leibniz.
All are examples of representational techniques that try to simplify the
complex processes of arithmetic tasks. Besides numbers, however, there are
other forms of information upon which computational processes can be
performed. The weaving technology developed by Joseph Marie Jacquard
(1752–1834) in 1801 is one example of these forms of information.

90    ◾    Computing﻿

Joseph Marie Jacquard (1752–1834) was born in the famous textile city
of Lyon, France. Even as a child Jacquard worked as a pull-boy on the draw
looms used to produce the beautiful brocade silks worn by aristocrats and
the wealthy. His father was a master weaver, and when he died in 1772,
Joseph inherited his workshop and looms. By 1778, Joseph Jacquard had
himself become a master weaver and silk merchant [11].

As a result of the Industrial Revolution, in the late 18th century there
was a great expansion in automated industrial processes in important
industries such as in textile manufacturing. Before the development
of mechanical looms and weaving machines, fabric had to be tediously
woven by hand. The invention of powered tools for carrying out this task
meant that quantities of fabric could be mass-produced far more quickly
than previously, thereby reducing its expense as well as increasing the
volume of sales.

There was one technique, however, in which the new machines could
not compete with skilled manual workers—that was in the production of
cloth having woven patterns.

The Jacquard loom, the earliest programmable loom, invented by
Jacquard, provided a solution to this problem. Using the Jacquard loom,
very intricate patterns and pictures could be automatically woven into
fabric at almost the same speed as plain fabric could be woven. The key idea
behind Jacquard’s loom was to control the weaving process by interfacing
the action of the loom with an encoding of pattern to be woven. To do this,
Jacquard represented the pattern as groups of holes punched into a sequence
of pasteboard cards. Each card represented one weft row on the fabric. The
presence or absence of a hole was detected mechanically, and the informa-
tion was used to control which warp threads were raised while weft threads
were interwoven. By connecting the cards in sequence on a long tape, the
Jacquard loom was able to weave patterns of great complexity. A surviving
example is a black-and-white silk portrait of Joseph Marie Jacquard woven
under the instructions of some 24,000 cards [13].

Jacquard’s invention of the punched card is important not only for the
textile industry, but also for its influence on the developers of future com-
puting machinery, including Charles Babbage (1791–1871), Ada Lovelace
(1815–1852), and Herman Hollerith (1860–1929). Jacquard’s invention was
a hallmark in mechanization: for the first time, humans could communi-
cate with and be understood by the machines they operated. The language
of warp and weft, that is, weft threads woven over or under their warp
counterparts, translated easily into the presence or absence of holes on

Calculating Machines    ◾    91  

a card. This same binary logic became our first foray into the world of
programming software.

11.5 � BABBAGE’S MECHANICAL COMPUTERS
By the turn of the 19th century, England was gripped by the fever of the
Industrial Revolution; increasingly, people flooded into the cities to live
and work in factories. New technologies of the efficiency of mass produc-
tion were rapidly developing.

During the same period, both professionals and nonprofessionals alike
relied heavily on a wide range of mathematical tables to perform the sorts
of calculations ordinarily done on a hand calculator or a computer today.
These tables were quite lengthy, and specialized tables on a specific subject
sometimes filled volumes of books.

In 1790, the French mathematician and engineer Baron Gaspard
de Prony (1755–1839) used the concept of the division of labor from
Adam Smith’s (1723–1790) Wealth of Nations to mass-produce tables of
logarithms and trigonometric functions [15]. Trained mathematicians
first worked out the formulas to produce the tables, and then broke the
calculation process down into increasingly simple steps involving only
simple operations. This was work that could be performed by assembly
line-like workers with only a rudimentary knowledge of arithmetic. The
production line involved carrying out repetitive calculations, with one
person’s results passed to the next group of laborers, who would then carry
on the computation to the next step. The production of mathematical tables
in this way became speedy; however, it came at the cost of quality: an error
early on in the process was compounded at each step along the way, causing
tables to be chronically incorrect.

Charles Babbage (1792–1871), an English mathematician, philosopher,
and mechanical engineer, had seen Baron de Prony’s tables when visiting
Paris in 1819; he was greatly concerned about the errors found in math-
ematical tables and wanted to devise a mechanical solution to calculation
that would remove the human error. Impressed by de Prony’s method, he
believed that de Prony’s calculation work could be done by a machine.

In 1822 Babbage proposed his difference engine—a mechanical calculat-
ing machine, so named because it worked by adding constant differences
to specified starting values. This machine would eliminate the reliance
on human calculations for producing tables. His sponsors examined his
drawings for the crank-driven, cogwheel difference engine and found
the idea promising. They persuaded the British government to fund him

92    ◾    Computing﻿

1500 pounds. Babbage predicted his difference engine would be complete
within 3 years.

A working model of the difference engine proved to be an overwhelm-
ing task. Babbage spent the next 10 years modifying, enhancing, and
redesigning the device. The British government advanced him a further
17,000 pounds, but ever in the search for an even better machine, Babbage
abandoned work on the difference engine and undertook the design of
the analytical engine in 1833. The remarkable steam-powered engine was
to be an all-purpose machine: the world’s first programmable computer,
designed not just for solving one particular type of mathematical problem,
but able to carry out any operation programmed by its operator.

Babbage was convinced that any problem, if represented numerically,
could be processed mechanically. The analytical engine was composed of
a store (now called the computer memory) and mill (now called the central
processing unit or CPU). The computation results could either be stored or
printed out. Babbage’s analytical engine architecture was remarkably like
modern computer memory and processors.

Just as with the design of the difference engine, Babbage continued to
struggle to find an efficient and fast method of doing multiplication and
division, essential in a machine as sophisticated as the analytical engine.
Because these processes were so complicated, it required resetting the
machinery itself each time—a laborious and time-consuming task. The
final breakthrough came in 1836 when Babbage decided that instructions
and data would be provided to the analytical engine by a series of punched
cards, an idea he had borrowed from Joseph Jacquard and his weaving loom.

The construction of a working analytical engine, however, was not suc-
cessful since the technology of the time had not yet achieved a standard
sufficient for constructing the many sophisticated parts of the machine.
Babbage continually adjusted his design to the frustration of his engi-
neers. These frequent design changes were the source of constant conflict
and exhausted his financial resources. The British government eventu-
ally lost faith in him since he never finished what he started—neither the
difference engine nor the analytical engine. Despite many years of hard
work, he realized he would never build either engine, but he continued to
the end to work on their design [14].

11.6 � ADA LOVELACE, THE FIRST COMPUTER PROGRAMMER
Augusta Ada King (Countess of Lovelace, 1815–1852) was the daugh-
ter of the distinguished British poet Lord Byron (George Gordon Byron,

Calculating Machines    ◾    93  

1788–1824). In 1816, shortly after her birth, Lord Byron left his family and
had no further contact with his daughter. Ada was privately schooled in
mathematics and science by prominent academicians such as the math
ematician and logician Augustus De Morgan (1806–1871). Ada’s interest
in mathematics dominated her life even after her marriage to the Earl
of Lovelace and the birth of three children. Ada’s understanding of
mathematics was aided by her vivid imagination.

At the age of 17 Ada met Mary Fair Somerville (1780–1872), a Scottish
science writer and polymath, who later introduced Ada to Charles Babbage
in 1834. Learning of his intriguing design for the revolutionary analytical
engine, Ada was captivated by his revolutionary ideas.

Through frequent correspondence with Babbage, Ada became one of
the few to grasp the potential of his machine. Because of her familiarity
with his work, Babbage suggested to Ada translating into English a French
essay on the analytical engine written in 1842 by the Italian mathemati-
cian Federico Luigi Menabrea (1809–1896). In the process of doing so, Ada
added copious notes, tripling the length of the original text, and making
her essay, “Sketch of the Analytical Engine,” a greatly enhanced descrip-
tion of Babbage’s machine.

In her essay of 1843, Ada compared the analytical engine with the
Jacquard loom. She wrote, “We may most aptly say that the Analytical
Engine weaves algebraic patterns just as Jacquard’s loom weaves flowers
and leaves.” Ada also foresaw that the analytical engine could be used
to compose music, produce graphics, or be useful for other nonmath
ematical applications.

Ada is credited with writing a program-like algorithm for the analyti-
cal engine to calculate Bernoulli numbers. It is now widely regarded as the
first computer program, thus making Ada the first computer programmer.
A programming language developed by the U.S. government was named
Ada in her honor in 1979.

After completing her essay on Babbage’s analytical engine, Ada became
very ill and died of cancer at the age of 36. Though her life was short, Ada’s
vivid imagination as the enchantress of numbers allowed her to anticipate
in the 19th century many of the features of modern computing [12, 17].

11.7 � HERMAN HOLLERITH AND HIS AMAZING TABULATOR
The 19th century saw great advancements in mechanizing computation
thanks to the work of Charles Babbage and Ada Lovelace. While the
analytical engine was never built, it opened the door to all-purpose data

94    ◾    Computing﻿

processing. By the end of the century, electricity had become the new dar-
ling of the Industrial Revolution as it entered an electromechanical era.
Herman Hollerith (1860–1929), a mining engineer and a statistician, took
mechanical computing into this next phase and into the 20th century.

The son of German immigrants, he grew up in Buffalo, New York. After
receiving a Ph.D. in engineering from Columbia University, he worked
first for the U.S. Census Bureau and later at MIT. While working for the
Census Bureau, he learned of the dismal state of census data collection
and processing. Information gathered from the 1880 census was tak-
ing years to process; with the explosive growth of the population due to
successive waves of immigrants landing on American shores, prospects
for the 1890 census were even more dismal. Hollerith responded to the
Census Bureau’s urgent need and began developing a machine that would
greatly streamline data processing and enable statisticians to analyze the
census data much more thoroughly.

In 1884, Hollerith applied for his first patent for a machine that used
paper tape to represent information. Hollerith was well aware of the
Jacquard weaving loom and its cards. His brother-in-law was in the silk
weaving business, and Hollerith had often visited his mills. For this
reason, he found the idea of storing information in the form of punched
holes very practical. Instead of cards, however, he first planned to use
paper tape since this was already commonly used by telegraph services to
relay information via electric current, just as he had hoped to do. Hollerith
discovered that paper tape tore easily, so he moved on to the use of the
more durable cards.

In fact, Hollerith was not designing just a single machine; he was
designing a whole system that would employ a standardized format for
data recording, automated reading and counting, and finally, sorting.
This threefold system included a card punch machine, or pantograph,
named after an 18th-century device used to enlarge diagrams by mapping.
To record data, the operator would indicate the paper variable on a
guide-plate, and the pantograph would punch a hole in a standardized
card in the appropriate place.

Punched cards were then placed on a hinged grid of blunt needles on
the card reader. When the operator pulled the lever, the needles passed
through the card holes into a container of mercury below, completing an
electric circuit connected to dials on the machine, counting the data on

Calculating Machines    ◾    95  

the cards. Each time an electrical impulse was sent, the appropriate dial
advanced incrementally.

The card reader was electrically attached to a card sorter that contained
several covered bins for sorting. Depending on the kind of statistics being
compiled, the sorter would automatically open the correct bin once the
card had been read, and the operator would drop the card into the bin,
going on to read the next card. Skilled operators could process thousands of
cards a day, making the Hollerith system an immediate success. The Census
Bureau was able to accurately complete the 1890 census data processing in
record time, and furthermore, for the first time ever, statisticians were able
to use the data to compile new and valuable statistics for the rapidly growing
country, making the census an important tool for governance.

With this resounding success under his belt, Hollerith formed the
Tabulating Machine Company in 1886 and was able to lease his system to
other countries for their censuses. He named his machine the Tabulator
and continued to work on refinements and new inventions. It would be
fair to say that Hollerith ushered in the era of information processing at
the end of the 19th century.

An engineer by trade, Hollerith was expert at neither company manage-
ment nor sales. In the end, ill health convinced him to sell his business to
Charles R. Flint (1850–1934), a financier also known as the Father of Trusts,
who merged it with two other companies, forming the Computer Tabulating
Recording (CTR) Company in 1911. A few years later, Flint hired Thomas
J. Watson (1874–1956), a former executive of NCR Corporation, to become
the general manager. With Watson’s keen business and sales acumen, CRT
grew steadily. Hollerith continued to serve as a consulting engineer for
the company until 1921. In 1924, the company was renamed International
Business Machines (IBM). Herman Hollerith died in 1929 after a lifetime
of remarkable engineering achievements, and having achieved the success-
ful application of Jacquard’s marvelous cards.

IBM’s punched cards were eventually standardized at 7 and 3/8 inches
by 3 and 1/4 inches. In 1929, IBM began using rectangular holes instead of
round ones. Each card contains 12 rows of 80 columns, and each column is
typically used to represent a single piece of data. The 80-column card domi-
nated the punched card market from around 1950. Although punched cards
are rarely used now, they had a great influence on the computer industry
during the 1950s and 1960s.

96    ◾    Computing﻿

REFERENCES
	 1.	 Wilhelm Schickard, School of Mathematics and Statistics, University of

St. Andrews, http://www-history.mcs.st-andrews.ac.uk/Biographies/schickard.
html.

	 2.	 Wikipedia, Wilhelm Schickard, http://en.wikipedia.org/wiki/Wilhelm_
Schickard.

	 3.	 Wilhelm Schickards Tübinger Rechenmaschine von 1623 (ed.), Bearbeitet von
Friedrich Seck., Tübingen, 2002.

	 4.	 The Calculating Clock of Wilhelm Schickard, History of Computing, http://
history-computer.com/MechanicalCalculators/Pioneers/Schickard.html.

	 5.	 Wikipedia, Blaise Pascal, http://en.wikipedia.org/wiki/Blaise_Pascal.
	 6.	 Wikipedia, Pascal’s Calculator, http://en.wikipedia.org/wiki/Pascal’s_calculator.
	 7.	 M. R. Williams, History of Computing Technology, IEEE Computer Society,

Los Alamitos, CA, 1997.
	 8.	 Wikipedia, Gottfried Leibniz, http://en.wikipedia.org/wiki/Gottfried_Leibniz.
	 9.	 Wikipedia, Stepped Reckoner, http://en.wikipedia.org/wiki/Stepped_Reckoner.
	 10.	 G. Ifrah, The Universal History of Computing, John Wiley & Sons, New

York, 2001.
	 11.	 Wikipedia, Joseph Marie Jacquard, http://en.wikipedia.org/wiki/Joseph_

Marie_Jacquard.
	 12.	 J. Palfreman and D. Swade, The Dream Machine, BBC Books, London, 1991.
	 13.	 J. Essinger, Jacquard’s Web: How a Hand Loom Led to the Birth of the

Information Age, Oxford University Press, New York, 2004.
	 14.	 D. Swade, The Difference Engine: Charles Babbage and the Quest to Build the

First Computer, Penguin Books, New York, 2002.
	 15.	 B. Collier and J. MacLachlan, Charles Babbage and Engines of Perfection,

Oxford University Press, New York, 1998.
	 16.	 H. Blohm, S. Beer, and D. Suzuki, Pebbles to Computers, the Thread, Oxford

University Press, Toronto, 1986.
	 17.	 B. A. Toole, Ada, the Enchantress of Numbers, Prophet of the Computer Age,

Strawberry Press, Mill Valley, CA, 1998.
	 18.	 N. Wirth, The Programming Language Pascal, Acta Informatica, 1, 25–63, 1971.

97

C h a p t e r 12

Solutions to
Algebraic Equations

Being able to solve algebraic equations is at the heart of many modern
computer applications. Whether one is simply converting a Celsius tem-
perature to Fahrenheit, processing simultaneous linear equations, or
working with complex, higher-degree equations, finding the solutions
to algebraic equations is a basic feature of many computer applications.
Algebraic equations come in many forms and are normally identified
by the maximum degree of their terms. Finding the general solution for
algebraic equations has been an endeavor that dates back to the early
Chinese, Indian, and Arab mathematicians. As any high school math-
ematics student knows, some classes of algebraic equations have general
solutions; for example, the quadratic equation ax2 + bx + c = 0 has the
famous formula:

	 x b b ac
a

= − ± −2 4
2

.

As we will see, very interesting people, some with tragically short lives,
made the many contributions that allow us today to know which algebraic
equations have general solutions and which do not. Having these general
solutions to certain algebraic equations makes it much easier to write
computer software that solves a given algebraic problem in a finite amount
of time.

98    ◾    Computing﻿

12.1 � LINEAR EQUATIONS
A linear equation is a sum of terms, where each term is either a constant or
a product of a single variable and a constant called a coefficient. For exam-
ple, 2x + 4 = 0 is a linear equation in a single variable x, and y = 2x – 3 is a
linear equation in two variables x and y. The latter one is also called a linear
function (i.e., y is a linear function of x). On the other hand, for example,
both x2 + 1 = 0 and 2x + y7

 – 6 = 0 are not linear equations, nor is xy + 4 = 0.
Evidence indicates that many early civilizations had learned how to solve

simple linear equations. Clay tablets, from Mesopotamia, dated 1800 to
1600 BC, show methods for solving linear and quadratic equations. Egyptian
mathematical texts from approximately this same time period show how
to solve first-order linear equations. It is worth noting that early Chinese
mathematicians had also mastered linear equations. By the year 200 BC,
Chinese were able to solve systems of linear equations with two unknowns.

Today we frequently rely on algorithms based on the Gauss–Jordan
method to solve systems of linear equations, and this brings us to Johann
Carl Friedrich Gauss (1777–1855). Around 1810, Gauss became interested
in computing the orbit of a newly discovered asteroid in our solar sys-
tem, Pallas. Using observations, he was able to describe the behavior of
Pallas using six linear equations and six unknowns. To solve this system
of equations, Gauss invented his method of Gaussian elimination. His
method involves performing row operations on the linear equations,
arranged as a matrix, to form an upper-triangular matrix. When in this
form, the last equation has one unknown and can then be solved. This
solution is then inserted in the second-to-last equation, to form another
one unknown equation, and so on.

Example 12.1

Consider the following system of linear equations:

	

x y z

x y z

x y z

+ − =

− − + =

− − =










2 1

2 2 1

3 4 1 .

We show how to find the solution to this system of linear equations
by the Gaussian elimination method. The augmented matrix of these
linear equations is

Solutions to Algebraic Equations    ◾    99  

	

1 2 1 1
2 1 2 1

3 4 1 1

−
− −

− −















.

Adding twice the first row to the second row, and subtracting three
times the first row from the third row, we have

	

1 2 1 1
0 3 0 3
0 10 2 2

−

− −















.

We multiply the second row by 1/3 and add 10 times the second row to
the third row. Then we multiply the third row by 1/2. These processes are

	

1 2 1 1
0 1 0 1
0 10 2 2

1 2 1 1
0 1 0 1
0 0 2 8

−

− −














→

−













→
11 2 1 1
0 1 0 1
0 0 1 4

−













.

Adding the third row to the first row and subtracting twice the
second row the from the first row, we have

	

1 2 0 5
0 0 1
0 0 1 4

1 0 0 3
0 0 1
0 0 1 4

1 1













→















.

From the last matrix, x = 3,  y = 1,  z = 4.

12.2 � QUADRATIC EQUATIONS
In mathematics, a quadratic equation is a polynomial equation of the
second degree. The general form is ax2 + bx + c = 0, where x represents a
variable or an unknown, and a, b, and c are constants with a ≠ 0. (If a = 0,
the equation is a linear equation.)

100    ◾    Computing﻿

Our look at quadratic equations starts in India. The Indian math-
ematician Brahmagupta (598–668 AD) is thought to have been born
in Bhinimal, a city in northwest India, and lived under the patronage
of King Vyaghramukha. He is often referred to as Bhillamalacarya,
loosely translated to “the teacher from Bhillamala.” Interestingly, his
approach to computation included the then-new notions of zero and
negative numbers. It is believed that Brahmagupta’s famous book,
Brahmasphutasiddhanta (Corrected Treatise of Brahma), was translated
in the 12th century to Arabic, and this book’s numerical system formed
the early basis for the Arabic numerals, which eventually made their way
to Europe and modern mathematics. One of Brahmagupta’s main contri-
butions was in Chapter 18 of Brahmasphutasiddhanta, the solution of the
general linear equation.

Although the terminology he used was different, Brahmagupta had
correctly denoted the quadratic equation, which we now know as:

	
x b b ac

a
= − ± −2 4

2
.

Another interesting personality is the Persian mathematician and
scholar Muh· ammad ibn Mūsā al-Khwārizmī (780–850 AD). He was a
scholar at the Baghdad House of Wisdom, studying science and math-
ematics. Translations of his work, during the 12th century, brought the
modern number system, using decimal positions, to the Western world.
al-Khwārizmī was considered the Father of Algebra in Renaissance
Europe; however, we now know that his approach to numbers originated
from much older sources, such as Brahmagupta in India.

It is thought that the famous computer science term algorithm is derived
from the Latinization of his name, Algoritmi. In addition, the term
algebra is credited to al-Khwārizmī, and his book Al-Kitāb al-mukhtas· ar
fī hīsāb al-ğabr wa’l-muqābala (The Compendious Book on Calculation by
Completion and Balancing) provides a process for solving polynomials of
up to degree 2. As today’s modern mathematical notations were not known,
the book explains the quadratic solution processing using ordinary text.

12.3 � CUBIC EQUATIONS
A cubic equation is a polynomial equation of the third degree. The general
form is ax3 + bx2 + cx + d = 0, where x represents a variable or an unknown,

Solutions to Algebraic Equations    ◾    101  

and a, b, c, and d are constants with a ≠ 0. (If a = 0, the equation is a
quadratic equation at most.)

With how to solve quadratic equations understood around 900 AD,
we now move on to cubic equations, 600 years later, and Renaissance Italy.
Here we find an interesting story of discovery, involving four very capable
mathematicians: Scipione del Ferro (1465–1526), who first discovered a
general solution to cubic equations; Nicolo Fontana Tartaglia (1500–1557),
who a few years later independently discovered a similar general solution;
Girolamo Cardano (1501–1576), who first published a general solution; and
Lodovico Ferrari (1522–1565), who is described as a student of Cardano.

This would be a simple story if Scipione del Ferro had published his
approach to finding the solution to general cubic equations. However, in
del Ferro’s Italy it was common for mathematicians to publicly challenge
one another to solve each other’s problems, with the loser losing prestige
and possibly his academic position. So, it was also common for mathema-
ticians to hold their discoveries secret, and use them to defeat other math-
ematicians, if challenged. For whatever reason, del Ferro never published
his approach. After his death, his approach was only discovered when
Girolamo Cardano and Lodovico Ferrari received del Ferro’s notebooks,
containing his approach.

This would all be well and good if it were not for the fact that Nicolo
Fontana Tartaglia had also discovered a similar approach to solving cubic
equations—and had shown it to Cardano, with the understanding that
Cardano would not publish his approach. When Cardano found del Ferro’s
preexisting approach, Cardano decided that the commitment he had made
to Tartaglia was no longer valid, and he published del Ferro’s approach in
his 1545 book Ars Magna. This infuriated Tartaglia, and what followed was
a decade-long fight, with Tartaglia publicly insulting Cardano. Cardano’s
student, Lodovico Ferrari, took up the defense of his teacher. Ferrari leads
us to our next topic (see below), solving quartic and quintic equations.

The approach Cardano published, actually found by del Ferro and
Tartaglia, is rather complex for our purposes but involves doing a reduction
to get a depressed cubic. This depressed cubic is of the form t3 + pt + q = 0,
where p and q are equal to new equations expressed totally in terms of the
constants a, b, c, and d from the original cubic equation.

12.4 � QUARTIC AND QUINTIC EQUATIONS
A quartic equation is a polynomial equation of the fourth degree.
The general form is ax4 + bx3 + cx2 + dx + e = 0, where x represents a

102    ◾    Computing﻿

variable or an unknown, and a, b, c, d, and e are constants with a ≠ 0.
(If a = 0, the equation is a cubic equation at most.) A quintic equa-
tion is a polynomial equation of the fifth degree. The general form is
ax5 + bx4 + cx3 + dx2 + ex + f = 0. As we will see, some very intelligent and
also tragic young mathematicians showed that quintic equations do not
have a general algebraic solution (i.e., solutions in radicals). An algebraic
solution means a solution of an algebraic equation in terms of the coeffi-
cients relying on addition, subtraction, multiplication, division, and the
extraction of roots (i.e., radicals). For example, x5 – x + 1 = 0 is a quintic
equation such that its roots cannot be expressed in terms of radicals.

Let us continue with Lodovico Ferrari, the student of Cardano. Ferrari
responded to Tartaglia’s attacks on Cardano, and in Milan in 1548 there
was a public debate between Ferrari and Tartaglia, concerning the solu-
tion of algebraic equations. It seems the younger Ferrari had a much
deeper understanding of the mathematics, and the older Tartaglia soon
refused to engage the younger Ferrari and left under the cover of darkness,
ceding the debate to Ferrari. In turns out that Ferrari was a very capable
mathematician in his own right, and among Ferrari’s accomplishments is
finding the general solution to quartic equations [3].

We now turn our attention to the general solution of quintic equations,
these being equations of degree 5. Whereas with the previous equation
types, that is, linear, quadratic, cubic, and quartic, we had success in
having general algebraic solutions, this area is less satisfying and tragic.
It is less satisfying because we learn there is no general algebraic solution
to quintic equations utilizing rational numbers and radicals, and tragic
because of the deaths that befell two of the young mathematicians that led
the way to these quantic findings.

But first, we describe the contributions of Joseph Louis Lagrange
(1736–1813). Lagrange was a mathematician, astronomer, and academic
who lived at various times in Prussia and France. His doctoral adviser
was none other than Leonhard Euler, and among his doctoral students
were Joseph Fourier and Simeon Poisson. Lagrange’s Theorie des fonctions
analytiques set some of the foundational work for Galois groups, and we will
now meet Evariste Galois (1811–1832) and Niels Henrik Abel (1802–1829).

Niels Henrik Abel was a famous Norwegian mathematician, born
in Nedstandrad, Norway, the second of seven children, to Søren Georg
Abel and Anne Marie Simonen. Although born into a relatively pros-
perous and large family, by the time Abel went to the Royal Frederick
University, he was nearly destitute due to the untimely death of his father.

Solutions to Algebraic Equations    ◾    103  

At age 16, Abel produced a proof of the binomial theorem for all numbers,
extending Euler’s earlier work. At age 19, he proved that there is no gen-
eral algebraic solution for the roots of quantic equations, this being his
impossibility theorem. His proof relied on group theory, which he invented
independently of Galois. After his death, it was discovered that Abel had
also produced an impressive work on elliptic functions.

Abel was able to travel, due to the patronage of others, through France
and Germany, where he met with Legendre and others. Through a series
of missteps and bad luck, Abel failed to get his works fully recognized.
However, in Berlin he met and befriended August Crelle (1780–1855), an
amateur mathematician who published a journal on pure and applied
mathematics. Crelle would go on to publish several of Abel’s works. Abel
returned to Norway, continuing his wretched existence, having failed to
find a position and support, living in extreme poverty.

Abel’s mathematical career ended tragically with his death at age 27, due
to his poverty and associated tuberculosis. Abel had been striving for years
to obtain a position as a professor, which he badly needed to lift himself
out of poverty. Ironically, a letter from Crelle arrived 2 days after his death,
stating that he had been offered a professorship in Berlin. In his short life
Abel achieved so much of the highest order that he was one of the leading
mathematicians of the day. Charles Hermite (1822–1901) could say without
exaggeration, “Abel has left mathematicians enough to keep them busy for
five hundred years.” Abel, having been asked how he had accomplished
so much as his age, replied, “By studying the masters, not the pupils” [4].

Abel’s impossibility theorem states that there is no general algebraic
solution, meaning a solution in radicals, to every polynomial equation of
degree 5 or higher. Although they cannot be expressed with radicals, they
can be numerically computed using Newton’s root finding method.

Évariste Galois (1811–1832) was a French mathematician who was born
in Bourg-la-Reine. While still in his teens, Galois was able to determine
the exact conditions that permit some polynomial equations to be solved
by radicals. In particular, he showed that there is no general solution for
quintic polynomial equations and was the first to use the term group to
refer to a group of permutations.

Galois entered the Lycée Louis-le-Grand School at age 12 and
performed well for the first 2 years but became bored with his studies.
At age 14, he became seriously interested in mathematics, and it is said he
read Marie Legendre’s Éléments de Géométrie like it was a novel, that is,
in one reading. By age 15, he was reading the original papers of Lagrange.

104    ◾    Computing﻿

However, his teachers found his academic work uninspiring. His inability
to show his abilities resulted in his inability to gain acceptance to École
Polytechnique, the most famous French mathematics institution of the
day. He settled for acceptance to École Normale, a lesser institution. About
this time, he published his first paper on continued fractions.

Galois lived at a time of political turmoil in France, and he got caught
up in the politics of the day. This resulted in his being expelled from his
school, École Normale. Leaving school, he eventually joined an artillery
unit of the National Guard and became friends with the unit’s officers.
After the arrest of the unit’s officers, it was disbanded and he returned to
his study of mathematics. However, at a ball where the officers were pres-
ent, Galois got manipulated into a pistol duel over a love affair.

Early on a morning in May 1832, participating in the pistol duel, Galois
was shot in the abdomen and died the following day, at age 20. The night
before the duel, suspecting that he might be killed, he wrote his scientific
“testament” in the form of a letter to a friend. In it, he referred to some of his
unpublished discoveries. These discoveries included the theory of groups
and Galois’s theory of equations, which established the limits on general-
ized solutions to algebraic equations. Galois was able to produce criteria
that showed which algebraic equations are solvable and which are not [1, 2].

Galois’s most important contribution to mathematics is his develop-
ment of what is now called Galois theory. His theory originated in his
search for why quantic (fifth- or higher-degree) polynomials lack general
solutions using only algebraic operations and radicals. All the polynomial
types up to quartic have solutions of this type. At the heart of Galois’s
theory is the notion of considering the composition of the permutations of
roots. These roots yield groups of polynomials of a lesser degree.

Although the detailed specifics of theory are beyond our scope, we can
look at a simple example with a quadratic equation. Let us note that this
quadratic equation,

	 x x2 4 1 0− + =

has these two roots:

	 A = +2 3

	 B = −2 3 .

Solutions to Algebraic Equations    ◾    105  

We can further note that these can be combined into two valid equations:

	 A+B = 4

	 AB = 1.

After looking at the possible permutations, using only algebraic opera-
tors and radicals (no irrational numbers, for example), we see that there
are only two equations; all others are isomorphic. Knowing that there are
two is sufficient to show that these are the roots of this quadratic equation.
Évariste Galois’s contributions made it possible to know with certainty
which polynomials are solved by radicals and which are not.

REFERENCES
	 1.	 L. Infeld, Whom the Gods Love: The Story of Evariste Galois, McGraw-Hill

Book, New York, 1948.
	 2.	 J.-P. Tignol, Galois’ Theory of Algebraic Equations, World Scientific Publishing,

Singapore, 2001.
	 3.	 D. E. Smith, History of Mathematics (vol. II), Dover Publishing, New York, 1958.
	 4.	 Abel, Niels Henrik (1802–1829), from Eric Weisstein’s World of Scientific

Biography, Scienceworld.wolfram.com, http://en.wikipedia.org/wiki/Niels_
Henrik_Abel, which links to http://scienceworld.wolfram.com/biography/
Abel.html (accessed July 12, 2011).

107

C h a p t e r 13

Real and Complex Numbers

13.1 � REAL NUMBERS
Roughly speaking, a real number is a value that represents a quantity on
the number line, and any point on the number line represents a real num-
ber. That is, the set of real numbers can be thought of as the set of all points
on an infinitely long number line. Once we decide that a point on the line
represents zero, any point to the right from the zero point and any point to
the left from the zero point represent a positive real number and a negative
real number, respectively. The set of integers is properly included in the set
of rational numbers, and the set of rational numbers is properly included
in the set of real numbers.

Any two numbers can be ordered on the number line. If point A locates
to the left of point B, then A is smaller than B (i.e., A < B). If A < B and
B < C, then A < C. Therefore, ordering among real numbers is transi-
tive. Any set with this property is called a totally ordered set. The set of
integers, the set of rational numbers, and the set of real numbers are all
totally ordered. Points representing consecutive integers on the number
line locate discretely, in equally spaced intervals. They look like stepping
stones in a garden. There is no integer between any pair of consecutive
integers. On the other hand, between any pair of distinct rational numbers
a < b, there exists a rational number r such that a < r < b. The density of
rational numbers signifies this property, as does the set of real numbers.
The set of integers is, by definition, not dense.

Any number between two real numbers is also a real number, but
between any pair of distinct real numbers there exists a real number

108    ◾    Computing﻿

such that it is not a rational number. A real number that is not rational
is called an irrational number. This property of real numbers is said to be
continuous. In other words, the set of real numbers is continuous, but the
set of rational numbers is not continuous on the number line.

The concept of irrational numbers appeared among Hindu mathemati-
cians around 600 BC. Around 500 BC Greek mathematicians, probably
including Pythagoras, realized that irrational numbers must exist. For
example, geometrically 2 is the length of the diagonal across a square
with sides of 1 unit length. They noticed that such a length cannot be rep-
resented by a rational number [1].

In the Middle Ages, Arabic mathematicians treated irrational numbers
as algebraic objects. In the 17th century French philosopher and mathema-
tician Rene Descartes (1596–1659) introduced the term real number to
describe the roots of a polynomial equation. A real number that is a root
of a nonzero polynomial with rational coefficients is called an algebraic
(real) number. All rational numbers are algebraic, but not vice versa. There
exist irrational numbers that are algebraic numbers. For example, 2 and

3 are algebraic irrational numbers. The set of algebraic real numbers is
a proper subset of the set of real numbers. A real number that is not an
algebraic number is called a transcendental (real) number.

In the 18th and 19th centuries there was much work on irrational and
transcendental numbers. The most prominent examples of transcendental
numbers are π (the ratio of the circumference of a circle to its diameter)
and e (the Napier constant). Almost all real numbers are transcendental
numbers, but it is extremely difficult to show that a given number is tran-
scendental. In 1794 the French mathematician Adrien-Marie Legendre
(1752–1833) gave a complete proof demonstrating that π cannot be rational,
nor can it be the square root of a rational number. The French mathemati-
cian Joseph Liouville (1809–1882) showed in 1840 that e cannot be a root
of any quadratic equation with integer coefficients, and then established
the existence of transcendental numbers. The German mathematician
Georg Cantor (1845–1918) gave a much simpler proof of the existence
of transcendental numbers in 1873 from the cardinalities of the set of
algebraic equations and the set of real numbers [2] (see also Chapter 14).

Before the 1860s, descriptions of real numbers were not rigorous. In
the latter half of the 18th century, there was a movement to establish a
rigorous and logically sound foundation for mathematics [4]. A number
of mathematicians realized that a rigorous definition of real numbers was
needed as well. They are Karl Weierstrass (1815–1897), Julius Dedekind

Real and Complex Numbers    ◾    109  

(1831–1916), and Georg Cantor, along with others. Dedekind introduced
the notion known as the Dedekind cut in his book in 1872. A Dedekind
cut c is a partition on the number line into two nonempty parts such that
every point of the first part (set A) locates to the left of any point of the
second part (set B), where A = {a | a < c} and B = {b | c ≤ b}. If B contains the
smallest rational number, the cut c defines a rational number. Otherwise,
it defines an irrational number. On the other hand, both Weierstrass and
Cantor defined an irrational number by the limit of an infinite sequence
of rational numbers. The rigorous construction of an irrational number in
this way was first presented during lectures in the 1860s by Weierstrass.
However, he never published his construction of an irrational number in a
complete form [4]. We give here Cantor’s definition of irrational numbers,
which was given in 1872:

Let a1, a2, …, an, … be an infinitive sequence of rational numbers.
For an arbitrarily given small positive number ε, if there exists a
sufficiently large integer N such that the difference between any an
and am satisfying n, m > N, is less than ε (i.e., |an – am| < ε), then this
infinite sequence has its limit. If this limit is not rational, then the
limit is irrational. In this way an irrational number can be defined.

In 1873 the French mathematician Charles Hermite (1822–1901) first
proved that e is transcendental, and in 1882 the German mathematician
Ferdinand von Lindemann (1852–1939) showed that π is transcendental.
Lindemann’s proof was simplified by Weierstrass in 1885, and was fur-
ther simplified by David Hilbert (1862–1943) in 1893. Lindemann was the
supervisor for the doctoral thesis of Hilbert at the University of Könisberg.

“Squaring the circle” is a problem proposed by the ancient Greek math-
ematicians. It had been an open problem whether it was possible to con-
struct a square with the same area as a given circle using only a finite
number of steps with a compass and straightedge. This problem was
proven to be impossible in 1882, when Lindemann showed that π is tran-
scendental. The hierarchy of number sets is depicted in Figure 13.1.

It seems difficult for school boys and girls to understand why π is an
irrational number. The first chapter of the well-known science fiction novel
Contact by Carl Sagan (1934–1996) [6] is “Transcendental Numbers.” In it,
a school math teacher explains to some seventh graders, “π is about 22/7,
about 3.1416. But actually, if you want to be exact, it was a decimal that
went on and on forever without repeating the pattern of numbers.” Ellie,

110    ◾    Computing﻿

one of the girls in the class, asked the teacher, “How could anybody know
that the decimals go on forever? How can you count forever?” Ellie went to
the library later, and then found that the problem is very difficult and that
this fact was discovered only about 250 years ago [6]. More discussion on
π is found in Chapter 19.

13.2 � COMPLEX NUMBERS
Some algebraic equations have solutions that are not real numbers. For
example, no real number can be the solution for x2 + 1 = 0. The imaginary
unit i is defined to be one of the solutions of x2 + 1 = 0. Another solution of
this equation is –i. An imaginary number is a number that can be written
as the multiplication of a real number and the imaginary unit i. A complex
number is a number expressed in the form a + ib, where a and b are real
numbers. The real part and the imaginary part of a + ib are a and b,
respectively. Real numbers can be thought of as complex numbers with
their imaginary parts being zero.

As far as we know, the square root of a negative quantity appeared for the
first time in the Stereometria of Heron of Alexandria (c. 10–70 AD) [5, 10].
Heron of Alexandria was an ancient Greek mathematician who gave the
correct formula for calculating the height of a frustum of a pyramid with a
square base. The height is calculated by the square root of c2 – 2((a – b)/2)2,
where a and b are the edge lengths of the bottom and top squares, respec-
tively, and c is the slant edge length. Heron used a = 28, b = 4, and c = 15,
giving the square root of –63. Unfortunately, he seemed to misunderstand
this mysterious quantity [5, 10]. Neither Greek mathematicians nor Arab
mathematicians seemed to pay much attention to the subject of the square
root of a negative number.

real numbers

algebraic numbers

rational numbers
integers

natural numbers

transcendental
numbers

FIGURE 13.1  Hierarchy and containments of sets of numbers.

Real and Complex Numbers    ◾    111  

Italian mathematician Luca Pacioli (1445–1517) stated in his book
Summa de Arithmetica, Geometria, Proportioni, et Proportionalita (1494)
that the quadratic equation x2 + c = bx cannot be solved unless b2 is not less
than 4c. From this fact, he probably recognized the impossibility of find-
ing a real number that is equal to the square root of a negative number [10].
Italian mathematician Girolamo Cardano (1501–1576) was the first to use
the square root of a negative number in an actual computation. He showed
that 5 15± − are the solutions to the problem of dividing 10 into two parts
whose product is 40. German mathematician Gottfried Wilhelm Leibniz
(1642–1716) studied imaginary numbers. However, he did not grasp the
idea about geometrical representation of complex numbers.

The use of imaginary numbers was not widely accepted until the 18th
century. Caspar Wessel (1745–1818) was the first person to describe the geo-
metric interpretation of complex numbers as points on the complex plane
(1799). Since his idea was published in Danish, it was not noticed by major
European mathematicians [9]. The same result was later independently
rediscovered by Jean-Robert Argand (1768–1822) in 1806 and Carl Johann
Friedrich Gauss (1777–1855) in 1831. The complex plane has an x-axis (the real
axis) and a y-axis (the imaginary axis) orthogonal to the x-axis. The real part
and the imaginary part of a complex number are represented by displace-
ments along the x-axis and the y-axis, respectively. One of the most promi-
nent results by Wessel was the vector representation of complex numbers. He
claimed that a geometrical representation of complex numbers, with length
and direction, was useful for the addition of complex numbers. The vector
representation of complex number a + ib is the directed arrow from point
(0, 0) to point (a, b) in the complex plane. His idea for adding complex num-
bers is the same as the vector addition technique used today, see Figure 13.2.

Im

Re

b

0 a

z = a + ib

FIGURE 13.2  An example of complex plane and complex number a +ib.

112    ◾    Computing﻿

French mathematician Jean Le Rond d’Alembert (1717–1783) first showed
that every polynomial has a complex root, but his proof was not rigorous.
Gauss provided a fully rigorous proof of this result. This is now called the
fundamental theorem of algebra, or the d’Alembert–Gauss theorem. The set of
complex numbers is closed under the arithmetic operations (addition, subtrac-
tion, multiplication, and division). This result was also shown by d’Alembert.

Example 13.1

The addition, subtraction, multiplication, and division of two com-
plex numbers z a ib1 = + and z c di c d2 0 0= + ≠ ≠()or are defined in
the following table:

Operation Definition

Addition z z a c i b d1 2+ = +()+ +()

Subtraction z z a c i b d1 2− = −()+ −()

Multiplication z z ac bd i ad bc1 2× = −()+ +()

Division z z a ib
c id

ac bd i bc ad
c d1 2 2 2÷ = +

+
= +()+ −()

+

13.3 � COMPLEX-VALUED FUNCTIONS
A complex-valued function (also called a complex function) is a func-
tion that may assign a complex number to each member of its domain.
The domain may contain complex numbers. In the 18th century some
European mathematicians turned their attention to complex-valued func-
tions. They extended the domains of real-valued functions to the set of
complex numbers and allowed their function values (range) to be complex
numbers. The English mathematician Roger Cotes (1682–1716) discovered
in 1714 the following formula using a complex logarithm:

	 log (cos sin)e x i x ix+ = .

The Swiss mathematician Leonhard Euler (1707–1783) obtained the
following formula using a complex exponential function instead of a
complex logarithm around 1740:

	 e x i xix = +cos sin .

Real and Complex Numbers    ◾    113  

This is Euler’s formula, named after Leonhard Euler. This formula establishes
an important relationship between trigonometric functions and complex
exponential functions. American physicist Richard Feynman (1918–1988)
called Euler’s formula Euler’s jewel and said that it is the most remarkable
formula in mathematics (1977). A proof of Euler’s formula is based on the
following power series (Taylor series) expansions of ex, cos x, and sin x:

	 e x x xx = + + + +1
1 2 3

2 3

! ! !
�

	 cos
! ! !

x x x x= − + − +1
2 4 6

2 4 6

�

	 sin
! ! ! !

x x x x x= − + − +
1 3 5 7

3 5 7

� .

Substituting ix for x in the expansion of the exponential function above
and using the expansions of the trigonometric functions above, we obtain
Euler’s formula.

One of the most interesting complex-valued functions is f(x) = eix. The
locus of eix with the real number domain is the circle of radius 1 at center 0 in
the complex plane. On the other hand, the locus of real function x2 + y2 = 1 is
the circle of radius 1 at center (0, 0) in the Euclid plane. Noting the similar-
ity of these loci, American mathematician and electrical engineer Charles
Proteus Steinmetz (1865–1923) proposed a complex number representation
for the calculation of alternating currents in an electrical circuit around 1893
[5, 11]. As a result of Steinmetz’s breakthrough work, electrical engineers
realized the great advantage in the use of complex quantities rather than
trigonometric functions for calculating all problems of alternating circuits.

Complex-valued function theory has continued to develop from the
18th century until today, and is now a very prosperous area in mathematics,
and there is an enormous amount of literature related to it. Although very
mathematical in nature, there are many applications for complex-valued
function theory in the field of physics and engineering.

REFERENCES
	 1.	 Wikipedia, Real Number, http://en.wikipedia.org/wiki/Real.
	 2.	 Wikipedia, Transcendental Number, http://en.wikipedia.org/wiki/Transcen-

dental.
	 3.	 Wikipedia, Complex Number, http://en.wikipedia.org/wiki/Complex.

114    ◾    Computing﻿

	 4.	 J. C. Tweddle, Wierstrass’s Construction of the Irrational Number, Math
Semester, 58, 47–58, 2011.

	 5.	 P. J. Nahin, An Imaginary Tale: The Story of the Square Root of Minus One,
Princeton University Press, Princeton, NJ, 1998.

	 6.	 Carl Sagan, Contact, Simon and Schuster, New York, 1985.
	 7.	 Wikipedia, Imaginary Number, http://en.wikipedia.org/wiki/Imaginary.
	 8.	 Wikipedia, Complex Number, http://en.wikipedia.org/wiki/Complex.
	 9.	 Wikipedia, Caspar Wessel, http://en.wikipedia.org/wiki/Caspar.Wessel.
	 10.	 D. E. Smith, History of Mathematics (vol. II), Dover Publications, New York,

1958.
	 11.	 C. P. Steinmetz, Complex Quantities and Their Use in Electrical Engineering,

presented at Proceedings of the International Congress, Chicago, 1893.

115

C h a p t e r 14

Cardinality

One cannot begin to discuss the notion of cardinality without mentioning
sets. Philosophers and mathematicians have always used sets, e.g., alpha-
bet = {a, b, c, …, z}, N = the set of natural numbers, Q = the set of rational
numbers, R = the set of real numbers, etc. With sets, a natural question
arose: how many elements does a given set have? While this appears to be
a relatively easy question to answer, that is not quite so. Consider a set of
elements where it is difficult, if not impossible, to determine if a specific
element is or is not a member. How does one count the elements of such
a set? Another apparently easy question is: do sets A and B have the same
number of elements? Rephrased, the question is: do sets A and B have
the same cardinality? If both sets have a finite number of elements, the
answer is straightforward: just count the number of elements in each set
and check if it is the same number. But what if the sets are not finite, as
is the case with N and R. While it is obvious that N is a proper subset of
R, and, in fact, there are infinitely many elements in R that are not in N,
does that mean that R has more elements? How does one define a set’s
cardinality if the set is infinite?

The great German mathematician Georg Cantor (1845–1918) formal-
ized the concept of sets and their cardinalities at the end of 19th century.
Before Cantor, it was the opinion of most mathematicians that cardinal-
ities of all infinite sets are just that, infinite. Cantor argued that if two
sets are to have the same cardinality, then there must exist (an invertible)
one-to-one function (bijection) between their respective elements.

116    ◾    Computing﻿

When two sets A and B are said to be of the same cardinality, this is usu-
ally denoted by A = cB, cd(A) = cd(B), or |A| = |B|. There was no problem
with this when the sets were finite. Problems started when Cantor applied
this to infinite sets.

It was Cantor’s 1874 article “Über eine Eigenschaft des Inbegriffes aller
reellen algebraischen Zahlen” (On a Property of the Collection of All Real
Algebraic Numbers) that was the first to prove that there was more than
one kind of infinity [1]. Previously, all infinite sets/collections had been
implicitly assumed to be equinumerous. Due to the novelty of Cantor’s
idea about cardinality, most mathematicians of the time were very critical
of his work, some rejecting it outright.

Cantor defined countable sets as those that are finite, or can have their
elements enumerated, i.e., put into a one-to-one correspondence with the
elements of the set N. Today, these sets are also called denumerable. The
cardinality of the set of natural numbers, which is the smallest infinite set,
was assigned the symbol ℵ0 (read: aleph-zero) by Cantor. He showed that
there existed an indexing scheme showing a one-to-one correspondence
between the set of rational numbers and N. This was possible because
the rational numbers (see Chapter 3) can be represented as ratios of two
integers. What was not intuitive is that the table of such ratios, say p/q,
had infinitely many rows and columns. This, however, implied that the
product ℵ0 × ℵ0 was itself equal to ℵ0 . This was too much for some of the
mathematicians to handle.

One can easily show that the set of odd integers has the same cardi-
nality as the set of even integers; here the simple (invertible) bijection
between the two sets is f(n) = 2n. An alternative (but which is also equiv-
alent) argument proving that two sets A and B have the same cardinality
is to show that there exist two injective functions: between A and B as
well as B and A. Since it is easy to show that these injections exist, the
odd, even, and their union, the set of natural numbers N, all have the
same cardinality of ℵ0 . It follows that ℵ0 + ℵ0 = ℵ0 . Other counter
intuitive arithmetical operations, e.g., a polynomial in ℵ0 is equal to ℵ0 ,
can be shown.

Another example showing the less than intuitive consequences when
operating with infinite sets is highlighted in the following example: let
A be an infinite countable set. (1) Is it possible to take away from A an
infinite subset and still have A remain nonempty? The answer is, of course,
yes (natural numbers – odd numbers = even numbers). But now, we have a

Cardinality    ◾    117  

follow-up question: (2) can the process in (1) be repeated arbitrarily many
times? The answer is, again, affirmative. Take the two-dimensional table
corresponding to the set of rational numbers (it is of size ℵ0 × ℵ0), but
that quantity is equal to ℵ0. Taking away the first column, which has infi-
nitely many elements, will still leave us with ℵ0 elements; taking away the
second column, …, etc.

However, Cantor’s proof that the set of real numbers contains more
than ℵ0 elements was even more counterintuitive, and at first was not
even accepted by many of the mathematicians. The proof goes as follows:

Cantor’s Proof

Let us assume that N and R have the same cardinality. Then by defini-
tion there must exist a one-to-one onto function f (i.e., a bijection) that
maps each element from N to a unique element in R. Now, if such a
function existed, then certainly one would also exist that mapped N to
S = {irrational numbers between 0 and 1}. Such irrational numbers in S,
e.g., π/4.0, would have the following representation in decimal: 0.d1d2d3 …,
where the sequence of digits di would be both infinite and nonrepeating
(if that were not the case, then the number, by definition, must be rational).

Since f is a bijection, then every element in S must have a correspond-
ing element in N that mapped to it; in other words, it must have an index.
In that case, the elements (numbers) in S can be listed as s1, s2, s3, …, and
while we cannot tell exactly which number from S got to be the first one,
or the second, etc., we do know that every element in S must get an index
from N. We will now construct a number z that will obviously be in the
set S, but which will differ from each and every number that has already
received an index. The number z will have the form 0.e1e2e3 …, where
the ith digit past the decimal place of z will differ from the ith digit of si.
We can do this easily by setting ei = sii + 1, where sii is the ith digit of si.
The addition is modulo 10, so 9 + 1 = 0 (modulo 10).

Now, z is in S, but it will not receive an index. If it did get one, say k,
then we have z = sk, but the kth digit of z is, by construction, different from
the kth digit of sk, which is a contradiction; hence, our assumption that a
bijection f between N and S existed is incorrect, thus the sets N and S must
have different cardinalities. Since S has at least as many elements as N,
our conclusion is that the cardinality of S must be more than ℵ0 .

118    ◾    Computing﻿

Cantor’s proof technique can also be used to show that for any set A,
the cardinality of its powerset, which is the set of all subsets of A, usually
denoted by P(A), is always greater than that of A itself. Today this is known
as Cantor’s theorem. This means that there cannot exist a universal set, i.e.,
a set of “everything,” since its powerset will probably have more elements.

This was discovered by Cantor in 1899 in his eponymous paradox: what
is the cardinal number of the set of all sets? Clearly it must be the greatest
possible cardinal. Yet for any set A, the cardinal number of the powerset
of A is strictly larger than the cardinal number of A, so there cannot be a
greatest cardinality.

The cardinality of the powerset of N was assigned the symbol ℵ1 , and
each subsequent powerset would receive an ℵ with an appropriate index.
Since the concept of constructing powersets has no bounds, this means that
there are an infinite number of infinities. Therefore, instead of counting
sheep, one might fall asleep quicker if one were to count different infinities.

The method used in the proof above is called Cantor’s diagonal argu-
ment. Cantor also proved that the cardinalities of the set of complex
numbers and the set of real numbers are the same. The work of Cantor did
not stop here. He spent the rest of his life trying to prove what is known
as the continuum hypothesis, which, stated very informally, reads: there is
no set whose cardinality is strictly between ℵ0 and ℵ1 . However, he failed
in his quest. In 1900, the famous German mathematician David Hilbert
included the continuum problem in his famous list of open problems in
mathematics. In fact, it was listed as problem number 1. A partial answer
was provided in 1939 by Kurt Gödel (1906–1978), who proved that the
continuum hypothesis is consistent with the axioms of set theory; in other
words, one cannot prove it to be incorrect. It wasn’t until 1963 that an
American mathematician, Paul Cohen (1934–2007), showed that the con-
tinuum hypothesis is independent of the axiom of set theory, meaning
that it cannot be proven to be true or false just by using the axioms.

An example of a set whose cardinality exceeds even ℵ1 is the set of all
real-valued functions, i.e., mappings from R to R. The cardinality of this
set is denoted by ℵ2 . While the cardinal numbers, which are associated
with counting, can be produced by, e.g., taking powersets of previously
constructed ones and whose cardinalities are denoted by ℵ’s with higher
and higher index numbers, there exist ordinal numbers, usually denoted
by ω, that would not be reached using this approach.

Ordinals were introduced by Cantor in 1883 to accommodate infinite
sequences and to classify sets with certain kinds of structures on them

Cardinality    ◾    119  

(e.g., order). Here, the arithmetic is even more confusing, as, for example,
ordinals are not commutative, so 1 + ω is ω rather than ω + 1 [5]. When
two sets U and V are said to be of the same ordinal type, this is usually
denoted by U = oV.

In his paper, Cantor described “ordinal types” just a few pages after
defining cardinal numbers [4]:

Every ordered set U has a finite “ordinal type,” … which we will
denote by U’. By this we understand the general concept which
results from U if we only abstract from the nature of the elements
u, and retain the order or precedence among them. Thus, the
ordinal type U’ is itself an ordered set whose elements are units
which have the same order of precedence amongst one another as
the corresponding elements of U, from which they are derived by
abstraction.… A simple consideration shows that two ordered sets
have the same ordinal type if, and only if, they are similar, so that
of the two formulas U = o V, U’ = V’, one is always a consequence
of the other.

The naïve definition of a set as a collection of objects has led to numer-
ous paradoxes. The best known among these is Russell’s paradox, which
can be informally stated as: let S be the set of all sets that are not mem-
bers of themselves [2, 3]. Now, a given set, say S, is either a member of
itself or not. If not a member of itself, then by definition it must contain
itself, i.e., S as a member, and if it does contain itself, then by definition,
it shouldn’t (because it already contains itself as a member).

Cantor’s and Russell’s paradoxes showed that the naive, or nonaxiomatic,
set theory often lead to contradictions. This led to several axiomatizations,
but even these were incomplete, leaving problems such as the continuum
hypothesis unanswered.

One of the most important consequences of Cantor’s theorem is that
there must exist problems for which no algorithms (computer programs)
can be written (see Chapter 27). The supporting argument is cardinality
based and it goes as follows:

Problems, e.g., determining if a number is prime or a perfect
square, etc., are really functions from N to N. Computer programs
actually take numbers (binary strings) as input, and output their
answers (again, binary strings). The number of functions from

120    ◾    Computing﻿

N to N, or equivalently, the number of problems, is the same as the
number of subsets of N, which is the powerset of N. Its cardinality
was shown to be ℵ1 . However, the number of possible programs
that have been, or can ever be, written cannot exceed ℵ0 . So,
using a straightforward cardinality argument, we have shown
that there must exist problems/functions for which a computer
program cannot be written.

Many practical problems in computer science, ranging from the
determination of running time of an algorithm to proving the opti-
mality or even the correctness of an algorithm, are often resolved using
cardinality-based analyses.

REFERENCES
	 1.	 Wikipedia, George Cantor, http://en.wikipedia.org/wiki/George_Cantor.
	 2.	 Thomas, Jech, Set Theory (3rd ed.), Springer, New York, 2002.
	 3.	 Wikipedia, Russell’s Paradox, http://en.wikipedia.org/wiki/Russell%27s_paradox.
	 4.	 Yiannia Moschovakis, Notes on Set Theory, Springer, Yew York, 1994.
	 5.	 Wikipedia, Ordinal Numbers, http://en.wikipedia.org/wiki/Ordinal_numbers.

121

C h a p t e r 15

Boolean Algebras
and Applications

George Boole (1815–1864) was an English mathematician and a founder
of Boolean logic. He was born in Lincoln, Lincolnshire, England, in 1815.
Boole’s father, John Boole, was a dilettante in the field of science. He loved
participating in discussions and lectures on science and technology, and
became the curator of the library of the Lincoln Mechanics Institute.
George Boole could access excellent books, and essentially taught himself
foreign languages, classics, Christian theology, and mathematics [1, 2].

After 3 years working as a schoolteacher, Boole opened his own school
at age 19 in Lincoln. He worked as a schoolmaster for 15 years until 1849,
when he became the first professor of mathematics at Queen’s University
in Cork, Ireland (now University College Cork).

Boole introduced the algebra of logic in his book Mathematical Analysis
of Logic (1847) [5, 8]. It was designed to provide an alternative, as some
modification of ordinary algebra, to the traditional approach of Aristotelian
logic. He developed general methods to greatly extend Aristotelian logic.
Boole proposed that logical propositions should be expressed as algebraic
equations. The algebraic manipulation of the symbols in the equations pro-
vides a method of logical deduction. Boole replaced the operation of addi-
tion by the word OR and multiplication by the word AND. The symbols
in the equations can stand for collections of objects or statements in logic
[2]. Further statements of his work on the algebra of logic were given in his
book An Investigation of the Laws of Thought (1854) [9].

122    ◾    Computing﻿

Algebraic laws of set operations are listed in Table 15.1, where ∪ is the
symbol for the set union, ∩ is the symbol for the set intersection, AC means
the complement of set A, U means the universal set, and ϕ means the empty
set. Both sets and logical propositions satisfy similar laws. In the proposi-
tional logic, ∨ and ∧ are used as the symbols for the logical OR operation
and logical AND operation, respectively. The symbols ∨ and ∧ are often
called the disjunction and the conjunction, respectively. The negation of
proposition A is denoted by ¬A. Binary operations + and · are often used to
mean ∨ and ∧, respectively. Operations ∪ and ∩ in Table 15.1 correspond
to ∨ and ∧, respectively, and the complement operation corresponds to the
negation operation (i.e., AC corresponds to ¬A). Then the algebraic system
of logical propositions satisfies the laws given in Table 15.1. Therefore, the
algebra of sets and the algebra of propositions are similar algebraic sys-
tems. The laws listed in Table 15.1 can also be used to define a mathematical
structure called Boolean algebra, which is named after George Boole. The
Boolean algebra can be considered to be a variant of ordinary elementary
algebra differing in its values, operations, and algebraic laws [6].

Boole’s algebra predated the modern development in abstract algebra
and mathematical logic. It is the algebra of the truth value and the false
value, equivalently the algebra of just two subsets, U and ϕ (e.g., for the
set of subsets of {a}, U = {a} and ϕ). This Boolean algebra is denoted by
B2. In the late 19th century, Boole’s work was generalized and refined by
William Stanley Jevons (1835–1884), Augustus De Morgan (1806–1871),
Charles Sanders Peirce (1839–1914), and William Ernest Johnson
(1858–1931). Boole’s algebra reached the modern concept of an abstract
mathematical structure. It can be explained in the algebra of sets. In an

TABLE 15.1  Algebraic Laws of Set Operations

Idempotent laws (1a) A∪A = A (1b) A∩A = A
Associative laws (2a) (A∪B)∪C = A∪(B∪C) (2b) (A∩B)∩C = A∩(B∩C)
Commutative laws (3a) A∪B = B∪A (3b) A∩B = B∩A
Distributive laws (4a) A∪(B∩C) = (A∪B)∩(A∪C)

(4b) A∩(B∪C) = (A∩B)∪(A∩C)
Identity laws (5a) A∪ϕ = A (5b) A∩U = A

(6a) A∪U = U (6b) A∩ϕ = ϕ

Involution laws (7) ()A AC C =

Complement laws (8a) A∪AC = U (8b) A∩AC = ϕ

(9a) U C = ϕ (9b) ϕC U=

Boolean Algebras and Applications    ◾    123  

abstract setting, Boole’s algebra B2 is isomorphic to one of the algebra of
sets (i.e., Boolean algebras). In fact, Marshall Harvey Stone (1903–1989)
proved in 1936 that every Boolean algebra is isomorphic to the algebra
of sets. Therefore, there exists the Boolean algebra of n elements if n is a
power of 2 (i.e., n = 2k for some nonnegative integer k). The Boolean alge-
bra with n elements is denoted by Bn. More formally, a Boolean algebra is
defined by the following definition.

Definition 15.1

A Boolean algebra Bn is a set of elements a a an1 2, , ,� in Bn with three types
of operations, ∧(AND), ∨(OR), and ¬(NOT), satisfying the properties given
in Table 15.1, where any of A, B, and C can take any element in Bn.

Example 15.1

Consider the set of subsets of {a, b, c}. These subsets are ϕ, {a}, {b},
{c}, {a, b}, {a, c}, {b, c}, and {a, b, c}. The algebra of these subsets with
the three types of set operations (i.e., set union, set intersection, and
complement) is a Boolean algebra. This Boolean algebra is denoted
by B8.

De Morgan (1806–1871) was a British mathematician and logician. He
studied mathematics at Trinity College, Cambridge University. He was
appointed to first professor of mathematics at London University (now
University College, London University). In 1842, Boole started a correspon-
dence with De Morgan, and they became close friends. De Morgan formu-
lated De Morgan’s laws and introduced the term mathematical induction [3].

In propositional logic and Boolean algebra, De Morgan’s laws are two
related transformation rules that make it possible for one to express con-
junctions exclusively in terms of disjunction, and disjunctions exclusively
in terms of conjunction in logical proofs. That is, De Morgan’s laws can be
given as follows:

	 ¬(A∨B) = (¬A)∧(¬B) and ¬(A∧B) = (¬A)∨(¬B)

where ¬ is the negation operator (NOT), ∧ is the conjunction operator
(AND), ∨ is the disjunction operator (OR), and = means logically equivalent.

124    ◾    Computing﻿

Example 15.2

The negation of a statement “He is American or British” is logically
equivalent to a statement “He is not American and not British” by
De Morgan’s laws.

Although De Morgan’s laws are named after Augustus De Morgan, a
similar observation was made by Aristotle (384–322 BC) and was known
to ancient Greek and medieval logicians (e.g., William of Ockham
(1288–1348), an English philosopher). De Morgan’s laws can be easily
proved and may seem to be trivial. Nonetheless, these laws are helpful in
making valid influences in proofs, deductive arguments, and equivalent
transformations of logical formulae.

John Venn (1834–1923) was a British logician and philosopher. He was
born in Hull, Yorkshire, England. He began his education at Sir Roger
Cholmley’s School (now known as Highgate School in London). He
enrolled in Gonville and Caius College in Cambridge in 1853, and grad-
uated from Cambridge University in 1857. Venn’s main area of interest
was logic, and he published three textbooks on the subject. He extended
Boole’s mathematical logic. Venn introduced the frequency interpreta-
tion of probability in The Logic of Chance, which was published in 1866.
He introduced Venn diagrams in Symbolic Logic, which was published in
1881. Venn diagrams are used to show possible logical relations among a
finite collection of sets. They are used to teach elementary set theory, as
well as to illustrate simple set relations in probability, statistics, linguistics,
and computer science. The diagram shown in Figure 15.1 is an example of
a Venn diagram. The stained glass window of a Venn diagram is displayed
in the dining hall of Gonville and Caius College, Cambridge University [7].

Expressions built up from the ∧, ∨, and ¬ operations, Boolean constants,
and any number of variables with any proper usage brackets are called

FIGURE 15.1  A Venn diagram for (A∧B)∨(A∧C)∨(B∧C).

Boolean Algebras and Applications    ◾    125  

Boolean polynomials or Boolean expressions. A Boolean function or
switching function f x xn(, ,)1 � is defined to be a mapping from {0, 1}n
to {0, 1}. A Boolean function can be expressed by a Boolean expression.
For each Boolean function, there are many Boolean expressions to express
it. For example, Boolean expressions ¬(x∧y) and (¬x)∨(¬y) express the
same Boolean function as shown in De Morgan’s laws. Boolean function
values 1 and 0 are called true and false, respectively. The function value of
a Boolean function f x xn(, ,)1 � depends upon the values of its variables
x xn1 , ,� . A simple concise way to show this relationship is through a
truth table.

Example 15.3

Let us consider a game of tossing three coins by a player. If all the
coins are heads or all the coins are tails, then the player gains score 1,
and otherwise the player gains score 0. The score of a player can be
expressed by the following Boolean function:

	 f x x x x x x x x x(, ,) () (() () ())1 2 3 1 2 3 1 2 3= ∧ ∧ ∨ ¬ ∧ ¬ ∧ ¬ ,

where each of variables x x1 2, , and x3 takes 0 (tail) or 1 (head), and
the function value is the score of the player. Table 15.2 is the truth
table of the Boolean function.

Any n-variables Boolean function can be realized by a combinatorial cir-
cuit with n input terminals and a single output terminal, in which OR gates,
AND gates, and NOT gates are used as logical elements. The OR gate, AND
gate, and NOT gate are each a Boolean function. Any of these gates can be

TABLE 15.2  Truth Table of a Boolean Function

x1 x2 x3 f(x1,x2,x3)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

126    ◾    Computing﻿

expressed by using only NOR gates, and also can be expressed by using only
NAND gates. The NOR gate is a Boolean function f x x x x(,) ()1 2 1 2= ¬ ∨ ,
and the NOT gate is a Boolean function f x x x x(,) ()1 2 1 2= ¬ ∧ . The truth
tables of the NOR gate and the NAND gate are given in Table 15.3.

Example 15.4

Let the NOR of x and y, and the NAND of x and y be expressed by
NOR(x,y) and NAND(x,y), respectively. Then the OR gate, AND gate,
and NOT gate can each be expressed by using only NOR gates, as well
as by using only NAND gates, as shown below:

	x∨y = NOR(NOR(x,y),  NOR(x,y)) = NAND(NAND(x,x),  NAND(y,y))

	x∧y = NOR(NOR(x,x),  NOR(y,y)) = NAND(NAND(x,y),  NAND(x,y))

	 ¬x = NOR(x,x) = NAND(x,x).

Claude Elwood Shannon (1916–2001) was an American mathematician
and electrical engineer known as the Father of Information Theory. He
graduated from the University of Michigan in 1936 with two bachelor’s
degrees, one in electrical engineering and one in mathematics. Then he
graduated from MIT with a M.S. in electrical engineering in 1937 and a
Ph.D. in mathematics in 1940. He later became a research fellow at the
Institute for Advanced Study at Princeton University and worked for Bell
Laboratories. Eventually, Shannon returned to MIT as a professor [4].

While a graduate student at MIT, Shannon was advised by Vannevar
Bush (1890–1974) and employed to maintain Bush’s differential analyzer,
an analog computing device. To operate this device, Shannon had to
manually configure its gears, a laborious task. Bush suggested to Shannon
that he might write his master’s thesis on the subject of the logical opera-
tion of the differential analyzer. It occurred to Shannon that the machine

TABLE 15.3  Truth Tables of the NOR Gate and NAND Gate

x y NOR(x,y) NAND(x,y)

0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0

Boolean Algebras and Applications    ◾    127  

could be improved if it were operated by electric circuitry rather than
mechanical gears [4].

While pondering how to redesign the differential analyzer, Shannon
recalled having taken a course in symbolic logic, where he was introduced
to Boolean algebra. It now occurred to him that Boolean principles lent
themselves most conveniently to the design of switching circuits, and
that this logic could be further used to perform digital calculations. After
developing this idea, he wrote his master’s thesis, “A Symbolic Analysis
of Relay and Switching Circuits,” in 1937, and its journal paper appeared
in 1938 [10]. These papers contain series-parallel two-terminal circuits,
multiterminal and non-series-parallel networks, synthesis of networks,
and illustrative examples.

Shannon’s master thesis and its published version [10] are now recog-
nized as the foundation of modern switching theory. The contribution of
these papers was remarkable for the growth of both the computer industry
and the telephone industry.

During the early stage of the computer industry, research and devel-
opment of switching theory and its applications to the design of digital
circuits were very active. A lot of research papers and many textbooks on
switching theory with applications were published in the 1950s and 1960s,
e.g., see [11–16].

The Karnaugh map is a graphical technique for representing Boolean
functions for a few variables and obtaining simplified Boolean expressions.
This graphical technique is due to Maurice Karnaugh (1924–) [19]. From 1952
to 1966, Karnaugh worked at Bell Telephone Laboratory where he developed
pulse code modulation (PCM) encoding and magnetic logic circuits. He
later worked with IBM, studying multistage interconnection networks [17].

If a Boolean function is expressed as a disjunction of one or more prod-
uct terms, where each product term is the conjunction of several vari-
ables or complements (negations) of variables in which the same variable
does not appear more than once, the expression is called a disjunctive
normal form. Similarly, a dual of the disjunctive normal form is called
a conjunctive normal form. The dual of a Boolean expression is the
Boolean expression obtained by changing the disjunctive operator with
the conjunctive operator and the conjunctive operator with the disjunc-
tive operator. The normal form minimization problem was first studied
by Willard van Orman Quine (1908–2000) [19]. The problem was also
studied by Edward J. McCluskey [18]. The minimization method is called
the Quine-McCluskey algorithm.

128    ◾    Computing﻿

Efficient implementation of Boolean functions is a fundamental prob-
lem in the design of combinatorial logic circuits. Modern design automa-
tion tools for very-large-scale integration (VLSI) circuits rely on efficient
representation of Boolean functions.

REFERENCES
	 1.	 Stanford Encyclopedia of Philosophy, George Boole, http://plato.stanford.

edu/entries/boole/.
	 2.	 Wikipedia, George Boole, http://en.wikipedia.org/wiki/George_Boole.
	 3.	 Wikipedia, Augustus De Morgan, http://en.wikipedia.org/wiki/Augustus_

De_Morgan.
	 4.	 Wikipedia, Claude Shannon, http://en.wikipedia.org/wiki/Claude_Shannon.
	 5.	 Stanford Encyclopedia of Philosophy, The Algebra of Logic Tradition, http://

plato.stanford.edu/entries/algebra-logic-tradition/.
	 6.	 Wikipedia, Boolean Algebra, http://en.wikipedia.org/wiki/Boolean_algebra.
	 7.	 New World Encyclopedia, Venn, John, http://www.newworldencyclopedia.

org/entry/John_Venn.
	 8.	 G. Boole, The Mathematical Analysis of Logic, Being an Essay Towards a

Calculus of Deductive Reasoning, Macmillan, Cambridge, UK, 1847.
	 9.	 G. Boole, An Investigation of the Laws of Thought on Which Are Founded the

Mathematical Theories of Logic and Probabilities, Macmillan, London, 1854.
	 10.	 C. E. Shannon, A Symbolic Analysis of Relay and Switching Circuits, Trans

actions of the American Institute of Electrical Engineers, 57, 713–723, 1938.
	 11.	 M. Phister Jr., Logical Design of Digital Computers, John Wiley & Sons, New

York, 1958.
	 12.	 M. A. Harrison, Introduction to Switching and Automata Theory, McGraw-Hill,

New York, 1965.
	 13.	 R. E. Miller, Switching Theory: Combinatorial Circuits (vol. 1), John Wiley &

Sons, New York, 1965.
	 14.	 S. H. Caldwell, Switching Circuits and Logical Design, John Wiley & Sons,

New York, 1958.
	 15.	 R. A. Higonnet and R. A. Grea, Logical Design of Electrical Circuits,

McGraw-Hill, New York, 1958.
	 16.	 W. S. Humphrey Jr., Switching Circuits with Computer Applications,

McGraw-Hill, New York, 1958.
	 17.	 M. Karnaugh, The Map Method of Synthesis of Combinatorial Logic

Circuits, Communications and Electronics, 9, 593–599, 1953.
	 18.	 E. J. McCluskey Jr., Minimization of Boolean Function, Bell System Technical

Journal, 35, 1417–1444, 1956.
	 19.	 W. V. Quine, The Problem of Simplifying Truth Functions, American

Mathematical Monthly, LXII, 627–631, 1952.

129

C h a p t e r 16

Computability
and Its Limitations

Until the mid 1930s the notion of computability had not yet been math-
ematically well established, which is natural since the first electronic com-
puters were not constructed until the Colossus, ENIAC, and EDVAC were
built in the 1940s. It is quite interesting that the computational limita-
tions of these (as well as all future) computers had already been proven
mathematically in 1936.

16.1 � GÖDEL’S INCOMPLETENESS THEOREM
At the turn of the 19th century, the German mathematician David Hilbert
(1862–1943) set out to find an algorithm for determining the truth or false-
hood of any mathematical proposition. Hilbert believed that for any formal
mathematical theory there must exist a procedure (i.e., an algorithm) by
which its provability could be decided. This became known as Hilbert’s
Entscheidungsproblem (decision problem). However, in 1931, Kurt Gödel
(1906–1978), a young mathematician at the University of Vienna, published
his now famous paper “Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I” (On Formally Undecidable
Propositions of Principia Mathematica and Related Systems I), proving
that no such procedure can exist [3].

Gödel showed that the axiomatic method itself unfortunately pos-
sesses certain inherent limitations. The incomplete theorem tells us that
if a (computable) system is powerful enough to describe the arithmetic

130    ◾    Computing﻿

of natural numbers, then it cannot be fully axiomatized. For such a sys-
tem, the consistency of the axioms cannot be proved within the system.
Gödel’s incompleteness theorem was astonishing and attacked a central
problem in the foundations of logic and mathematics. Naturally, it became
important to formally define what was meant by the term algorithm or the
phrase “effective procedure for computing a function.”

Gödel’s incompleteness theorem is closely related to several results
regarding undecidable problems in recursion theory, the foundation of
theoretical computer science. Initially, Gödel’s incompleteness and sub-
sequent related theorems left the door slightly open; i.e., there was still
hope that it might be possible to produce a general procedure that would
indicate whether a given statement is undecidable or not, thus allowing
us to bypass the undecidable statements in the first place. The negative
answer to Hilbert’s Entscheidungsproblem indicated implicitly that it is
impossible to decide algorithmically whether statements in arithmetic are
true or false.

16.2 � TOTAL FUNCTIONS
A function is a mapping between two sets, usually called the domain and
the range, such that each element in the domain is mapped to at most one
element in the range. If every element of the domain is mapped to exactly
one element of the range, then such a function is called a total function,
that is, everywhere defined. For example, the real function f(x) = 2x is a
total function. On the other hand, the function f(x) = 1/x is not total, since
it is undefined at x = 0.

An interesting question arises whether a one-to-one correspondence
exists, i.e., a bijection, between N, the set of nonnegative integers, and
the set of total functions from N to N. The answer to this question is no,
even if we restrict our functions to those functions from N to {0, 1}. This
can be verified using Cantor’s famous diagonalization argument (see also
Chapter 14).

Assume that the set of all functions from N to {0, 1} has the same
cardinality as N. It follows that we can enumerate these functions,
i.e., assign a unique index to each function. Let fi be the ith function in our
enumeration. Now, let us construct a function g as follows: g(i) = fi(i) + 1
(mod 2). Clearly g cannot be the first function f1, since g(1) ≠ f1(1). In fact,
by construction, for any finite index q, our function g cannot be the same
as fq. However, since g is a total function from N to {0, 1}, then, by assump-
tion, it should have been one of the enumerated functions, i.e., received an

Computability and Its Limitations    ◾    131  

index. That is a contradiction, so the set of total functions from N to {0, 1}
cannot be enumerated, and therefore its cardinality exceeds that of N.

This conclusion has very profound implications. One cannot give a dis-
tinct name to each function, since the set of finite length sequences on an
alphabet (i.e., some finite set of symbols) has the same cardinality as that
of the set of integers. It follows that there are too many functions to give
a distinct name to each one. As a consequence, functions must exist that
are not computable by any program or algorithm. Observe that the set of
programs or algorithms is enumerable, although it is infinite, because we
can easily assign a unique name/index to each (finite length) program by
simply ordering them lexicographically.

16.3 � TURING MACHINES
Alan M. Turing (1912–1954) was born on June 23, 1912, in London. He
graduated with distinction from Cambridge University in 1934 and was
elected to a fellowship at King’s College. In 1935, he attended a course on
formal logic given by M. H. A. Newman (1897–1984). That course ended
with a full treatment of the proof of Gödel’s incompleteness theorem,
which in a sense refuted the possibility of finding the algorithm that
Hilbert implicitly proposed [7].

Turing was attracted by both Hilbert’s challenge and Gödel’s work.
He noticed that Gödel did not explicitly define the meaning of mechanical
operations and the mechanical process of solving a problem. He felt that
a formal definition of the intuitive notion of solving a problem via such
means was needed. Turing considered that such a formal definition itself
was fundamental and necessary in order to understand and address
these problems.

In his 1936 paper entitled “On Computable Numbers with an Application
to the Entscheidungsproblem” [1], Turing introduced and gave a construc-
tion for an abstract model for a computation machine, now known as the
Turing machine [3–6]. Turing displayed great originality in his formalization
of the intuitive notion of an effective procedure in terms of discrete opera-
tions on his abstract computing machine. He demonstrated the existence
of functions that were not computable and, in this way, resolved Hilbert’s
Entscheidungsproblem in the negative. He also defined a computable
function as a function that can be computed by a Turing machine (which
does not necessarily have to halt for every given input).

Formally, a Turing machine consists of a finite state control (i.e., a finite
set of instructions) and an arbitrarily long tape. The arbitrarily long tape

132    ◾    Computing﻿

means that the machine never runs out of the tape or reaches the right end
of the tape. The tape, which functions as the machine’s memory, is divided
into squares (cells). Each square may be read or inscribed with a single
symbol from a designated finite alphabet, or it may be blank. The tape has
a leftmost square, but it is unlimited to the right. The control unit can shift
the read-write head (to the left or right) during each step of the computa-
tion. At any single time step, the read-write head is able to examine just
the one tape square over which it is positioned as shown in Figure 16.1.

The control unit of a Turing machine can assume any one of a fixed
number of states that, together with the symbol read from the tape, deter-
mines how the machine will behave at that step. The actions available to a
Turing machine are quite limited. It may either halt, thereby terminating
its computation, or carry out a basic move. Each move consists of writing a
symbol in the currently scanned tape square, shifting the read-write head
one square to the right or left, and causing the control unit to enter into
some new state (i.e., go to the next specified instruction).

The computation of a Turing machine proceeds as follows. The machine
is initially supplied with a tape on which a finite number of squares are
inscribed with symbols and the rest are left blank. The initial content of
the tape is called the input. The read-write head is positioned over the left-
most input symbol—usually the leftmost cell of the tape—and the control
unit assumes the initial/starting state. The machine then goes through its
computation consisting of a sequence of steps. A computation may con-
tinue indefinitely, or it may terminate after some finite number of moves,
usually a function of the contents and size of its input. If it does terminate,
the symbols remaining on the tape are interpreted as the answer/outcome
of the computation.

As described above, a Turing machine control unit is considered to be
a set of rules for processing symbols on the tape. We should note that

an arbitrarily long tape to the right

finite state
control

FIGURE 16.1  An image of a Turing machine.

Computability and Its Limitations    ◾    133  

variations of a Turing machine (e.g., with multiple tapes, tracks, two-way
infinite tape, etc.) are computationally no more powerful than the stan-
dard model described here. Obviously, an actual Turing machine cannot
be built physically, since it would require an unlimited amount of tape.
It is a formal model or an abstract specification for computation. Turing
viewed numerical symbols essentially the same as nonnumerical symbols.
That is, he considered numerical computation to be the same kind of work
as, for example, playing chess or recognizing patterns.

Turing claimed that any intelligent work by a human brain can be
simulated by a Turing machine. Therefore, we may consider that, in
a certain sense, the work by Turing began the field of computer science
known as artificial intelligence (AI). The famous Turing test, in which a
human must determine if he or she is communicating with another human
being or with a computer, is often used as an evaluation tool in AI.

A Turing computable function does not necessarily have to be a total
function. In fact, for some inputs, a Turing machine may never terminate
its computation (i.e., it may diverge). Besides solving problems, a Turing
machine may also be viewed as a procedure for computing a function.
We can compute a function according to the specifications of a Turing
machine if we have enough memory and time. The specification of a
Turing machine is also called the description of a Turing machine. If a
Turing machine terminates its computation for every input taken from the
input domain under consideration, the Turing machine is viewed as an
effective procedure or an algorithm for computing that function.

A function is called a total recursive function (or simply a recursive
function) if it is computed by a Turing machine that halts with an answer
for every input. A function is called a partially recursive function if it is
computed by a Turing machine, which does not necessarily always halt.
Clearly, the set of recursive functions is properly included in the set of
partially recursive functions. Interestingly, both sets have the same
cardinality; i.e., they are countable (enumerable). This is not inconsistent;
observe that the set of even numbers has the same cardinality as the set of
natural numbers, although N contains even numbers as a proper subset.

A Turing machine may be viewed as computing a function from inte-
gers to integers. If a function has k arguments, k integers are initially
placed on the tape in some appropriate form. For example, (2, 3, 2) may
be represented by the string 001000100 (i.e., two 0s, three 0s, and two
0s, separated by 1s). Since there is a one-to-one correspondence between

134    ◾    Computing﻿

N and the set of k-tuples of integers, any k-variable function may, without
loss of generality, be considered a single-variable function.

For example, consider the problem of finding the greatest common
divisor of a given positive integer pair. Since we know how to solve the
problem (e.g., using Euclid’s algorithm), this corresponds to computing a
totally recursive function from the set of pairs of positive integers to the
set of positive integers. The domain of the function is the set of pairs of
positive integers, and its range is the set of positive integers.

Alternatively, computation of a partial (or total) recursive function may be
viewed as an acceptance (or recognition) of a set of strings, i.e., a language.
Consider the function f(x) = x2, and its corresponding infinite language
of strings in binary notation {0, 1, 100, 1001, …}. The determination of
whether an input string is a member of the language (the set of squares)
is equivalent to the computation of the characteristic function of this set,
and it is solving the “perfect square” problem. One can say that, computa-
tionally, the concepts of problem solving, recursive function-computation,
and language-recognition are, in a sense, equivalent.

In addition to the formal definition of computability, Turing also
presented a novel definition of a universal machine. This is now called
the universal Turing machine. Such a machine can perform the work of any
other Turing machine, provided that a description, or an index, of the other
Turing machine is given to it. The universal Turing machine is like a gen-
eral purpose computer. It can compute any computable function, as long
as it is provided with an index (or a program) for computing the function.

In actual practice, we do not construct a dedicated computer for each
computable function. Rather, we usually build a general purpose com-
puter that computes the function when given a program for the function
together with the argument values. A Turing machine corresponds to
a program for computing a function. On the other hand, the universal
Turing machine is an abstract model of a general purpose computer.

16.4 � CHURCH–TURING’S THESIS
Turing submitted his paper on computability for publication on May 28,
1936, but just after that he learned of two papers by Alonzo Church
(1903–1995) also published in 1936, and noticed that his definition of
computability was equivalent to Church’s notion of effective calculability
[1, 2]. Turing therefore added an appendix to his paper, dated August 28,
1936, in which he mentioned the equivalence of the two definitions. The

Computability and Its Limitations    ◾    135  

paper was published at the end of 1936 in the Proceedings of the London
Mathematical Society [1].

From September 1936, Turing began a 2-year residency as a graduate
student at Princeton University, where he completed the requirements for
his doctorate with Alonzo Church as his thesis advisor. The activities of
mathematicians and logicians such as Turing, Gödel, Church, Stephen
Kleene (1909–1994), Emil Post (1897–1954), and others also gave rise to
a wide variety of formalisms for the term algorithm, each endeavoring
to describe the intuitive notion of an algorithm, effective procedure, or
computability. All of these formalisms have been mathematically proven
to be equivalent.

Church’s thesis states, “It is believed that there are no functions that
can be defined by humans, whose calculation can be described by any
well defined algorithm that people can be taught to perform, that cannot
be computed by Turing machines. The Turing machine is believed to be
the ultimate calculating mechanism.” A shorter version of Church’s thesis
simply states that “any computable problem can be computed by a Turing
machine” [4–6].

The assumption that the intuitive notion of a computable function can
be identical with the class of functions computable by Turing machines
is now known as Church–Turing’s thesis. We cannot hope to prove
Church–Turing’s thesis as long as the notion of a computable function
remains informal. We can, however, present evidence to show that it is
reasonable. As described above, logicians and mathematicians devised
other formalisms for computable functions, and these formalisms have
all been proven to be equivalent to Turing’s definition of computability.
Church–Turing’s thesis has been universally accepted as valid.

If a function is computable by a Turing machine that always halts, then
there must be an effective procedure (i.e., an algorithm) for computing it.
In essence, the concepts of a Turing machine and of an algorithm (or a com-
puter program) are similar in the sense that if an algorithm or a program
solves a problem, then there exists a Turing machine that solves the same
problem. A Turing machine solves a problem if it always gives a correct
answer (in a finite number of steps) to any given instance x of the problem.

That is, men and computers are capable of computing it by means
of an algorithm. An algorithm can be described either in a natural
language like English or Japanese, or in a programming language like
C++ or Java. Either way, an algorithm or program is a finite sequence of
symbols. We therefore have as many algorithms or computer programs

136    ◾    Computing﻿

as there are integers. Given the fact that the cardinality of the set of
functions significantly exceeds that of N, we must agree that almost all
functions are not computable.

Does this sound extremely pessimistic? In fact, the situation is not as
bad as it may seem, for although this is true, we can nevertheless avoid the
limits of computability for many practical purposes. We should instead
just make a note of the existence of functions/problems that are not solv-
able or even computable. The unsolvability of the halting problem implies
that no general purpose computer program can always decide whether
a given computer program will eventually terminate for every input
given. However, such programs that work for a limited class of computer
programs actually exist.

The formalization of Turing computability and of the intuitive notion
of an effective procedure has been widely recognized as the origin of
computation theory. The work originated by Gödel, Turing, Church, and
others is among the greatest intellectual achievements of the 20th century.

REFERENCES
	 1.	 A. M. Turing, On Computable Numbers with an Application to the

Entscheidungsproblem, Proceedings of the London Mathematical Society 2,
42, 230–265, 1936.

	 2.	 A. Church, An Unsolvable Problem of Elementary Number Theory, American
Journal of Mathematics, 58, 345–363, 1936.

	 3.	 K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I, Monatshefte für Mathematik Physik, 38, 173–198, 1931.

	 4.	 J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages,
Computation, Addison-Wesley, Reading, MA, 1979.

	 5.	 F. D. Lewis, Essentials of Theoretical Computer Science, Lecture Notes,
University of Kentucky, Lexington, 1996.

	 6.	 M. Sipser, Introduction to the Theory of Computation (2nd ed.), Course
Technology, Boston, MA, 2006.

	 7.	 Wikipedia, Alan Turing, http://en.wikipedia/wiki/Alan_Turing.

137

C h a p t e r 17

Cryptography
from the Medieval
to the Modern Ages

17.1 � THE ARAB CRYPTANALYSTS
A key for the substitution cipher consists of a permutation of 26 letters in
the case of the Roman alphabet. As described in Chapter 7, the shift cipher
(i.e., the Caesar cipher) is a special case of the substitution cipher. The num-
ber of permutations of 26 letters is 26!, which is more than 4 × 1026, a very
large number. Even if we restrict them to a smaller class of possible permu-
tations, the number of these permutations is still very large. For example,
as described in Section 7.2, pairing letters in the secret writing given in
the Kama Sutra (written almost 2000 years ago in India) has more than
7 × 1012 possible keys. These large numbers of possible keys mean that the
substitution cipher is an excellent way of secret writing. In fact, the mono-
alphabetic substitution cipher had been widely used for many centuries.
Many ancient scholars considered the substitution cipher unbreakable.
However, Islamic scholars found shortcuts to break the cryptotexts in the
ninth century. Arab cryptanalysts used linguistic and statistical analysis
for breaking the cryptotexts, instead of trying all possible keys [1, 2].

The golden age of Islamic civilization began around the middle of the
eighth century from the Abbasid caliphate after the transfer of the capital
from Damascus to Baghdad. The Abbasid caliphs were less interested

138    ◾    Computing﻿

in military power than their predecessors. They respected the value of
knowledge and expended much energy to build a wealthy society. For
about 400 years from the middle of the eighth century, the Islamic world
became the intellectual center for science, arts, philosophy, medicine, and
education. The Islamic government encouraged business and industry,
and protected its state documents by using cryptography [4].

The House of Wisdom in Baghdad was a library and translation institute
established in 815 by the Abbasid caliph Al-Ma’mum (reigned from 813
to 833). From the 9th to the middle of the 13th century, it was considered
a major intellectual center where both Islamic and non-Islamic scholars
worked together on all areas of knowledge. Many classic works were trans-
lated into Arabic, and later, in turn, into Hebrew and Latin. During this
period the Abbasid caliphate gathered knowledge from ancient Egypt,
Greece, Rome, China, India, Persia, North Africa, and Byzantine [4].
However, the House of Wisdom and other scholarly institutes in Baghdad
were destroyed during the Mongol invasion of 1258.

In addition to employing secret writing, the Arab scholars studied
cryptanalysis (i.e., attempted to break ciphers). They succeeded in find-
ing an efficient method for breaking the monoalphabetical substitution
using a frequency analysis of letters and statistical analysis. A basic crypt-
analytic attack against monosubstitution systems began with a frequency
count of letters by Arab scholars. The number of occurrences of each letter
in the cryptotext can be a crucial clue toward breaking it. The letters of
the English alphabet are ordered to their frequency in Table 17.1 [1]. For
instance, the letter with the highest frequency in the cryptotext encrypted
from an English plaintext is likely to be the substitution for E, and this
likelihood grows with the length of the cryptotext.

Although it is not known who first realized that linguistic analysis
could be useful for breaking ciphers, the earliest known description of
the frequency of letters used in cryptanalysis was by an Arab scholar,
Al-Kindi (801–873). He was known as the great philosopher of the Arabs

TABLE 17.1  Frequency Ratios of the English Letters

E T A O N I S R H L D C U

12.31 9.59 8.05 7.94 7.19 7.18 6.59 6.03 5.14 4.03 3.69 3.20 3.10 (%)

P F M W Y B G V K Q X J Z

2.29 2.28 2.25 2.03 1.88 1.62 1.61 0.93 0.52 0.20 0.20 0.10 0.09 (%)

Cryptography from the Medieval to the Modern Ages    ◾    139  

in the ninth century, and the author of 290 books on medicine, astronomy,
mathematics, linguistics, and cryptography [5]. He gave the first explana-
tion of cryptanalysis to monoalphabetic substitution ciphers in his book
A Manuscript on Deciphering Cryptographic Messages [5].

17.2 � POLYALPHABETIC SUBSTITUTION CIPHERS
A cryptosystem is called monoalphabetic if the use of substitutes remains
unaltered throughout the plaintext, whereas polyalphabetic substitute
systems use different substitutions in different parts of the plaintext. Until
the 16th century monoalphabetic substitutes had been sufficient to main-
tain document secrecy. However, the development of frequency analysis
made monoalphabetic substitution ciphers insecure.

Consequently, cryptographers tried to devise a stronger cipher that
could withstand cryptanalytic attacks. Although polyalphabetic substitu-
tion ciphers had not been practically used until the 17th century, their
origin can be traced back to a 15th-century Italian Renaissance polymath,
Leon Battista Alberti (1404–1472) [1, 2, 6].

In 1467, Alberti wrote an essay on a new form of cipher. He proposed
a set of two or more different cipher alphabets (i.e., permutations of the
alphabet), and suggested switching these cipher alphabets during the enci-
phering process. In his new cryptosystem, the same letter in the plain-
text is not necessarily to be replaced by the same corresponding letter in
the cryptotext. Alberti’s great cryptographic idea was spread not only in
Italy, but also to other countries in Europe. The German abbot Johannes
Trithemius (1462–1516), the Italian scientist Giovanni Porta (1513–1615),
and the French diplomat Blaise de Vigenere (1523–1596), along with others,
further developed Alberti’s idea. Trithemius introduced a tableau (a large
table) of the polyalphabetic cipher, and Porta described a sophisticated
version of multiple cipher alphabets in his book De Furtivis Literarum
Notis (On Concealed Characters in Writing) in 1563 [2].

In 1549, Blaise de Vigenere became acquainted with the work of
Alberti, Trithemius, and Porta when he was sent to Rome on a diplomatic
mission. He examined their ideas, and developed them into a stronger
polyalphabetic substitution cipher that is known as the Vigenere cipher.
In the encryption by the Vigenere cipher, a table called the Vigenere square
(Table 17.2.) is first prepared. The ith row of the table represents a cipher
alphabet with an i-step cyclic shift of the plaintext alphabet (0 ≦ i ≦ 25). In
the Vigenere cipher, a different row of the table is used to encrypt different

140    ◾    Computing﻿

letters of the plaintext. A sequence of cyclic shifts to be applied is usu-
ally expressed by a keyword, which is shared between the sender and the
receiver. For example, for a keyword John, the 9th row, the 14th row, the
7th row, the 13th row, again the 9th row, the 14th row, the 7th row, and so
on, in the Vigenere square, are used to encrypt the letters of a plaintext in
this order. If the intended receiver knows the keyword, then he or she can
correctly choose which row of the Vigenere square is used to decrypt each
letter of the received cryptotext. Blaise de Vigenere published his descrip-
tion of the Vigenere cipher in his book Traicte des Chiffres ou Secretes
Manieres d’Escrire (Treatise on Secret Writing) in 1586 [1, 3, 7].

TABLE 17.2  The Viginere Square

Keyword:	 J O H N J O H N J O H N J O H
Plaintext:	 A T T A C K T H E T R O O P S
Cryptotext:	 J H A N L Y A U N H Y B X D Z

0	 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1	 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
2	 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
3	 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
4	 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
5	 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
6	 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
7	 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
8	 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
9	 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
10	 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
11	 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
12	 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
13	 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
14	 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
15	 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
16	 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
17	 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
18	 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
19	 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
20	 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
21	 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
22	 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
23	 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
24	 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
25	 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Cryptography from the Medieval to the Modern Ages    ◾    141  

Example 17.1

Table 17.2 shows the encryption of a plaintext, “Attack the troops,”
by the Vigenere cipher with the keyword John.

The advantage of the Vigenere cipher is that it is invulnerable to attack by
frequency analysis. The number of possible keywords used in the Vigenere
cipher is enormous. Therefore, a cryptanalyst would be unable to break
the cryptotext by searching all possible keywords. The polyalphabetic
Vigenere cipher was considered an unbreakable cryptosystem until the
middle of the 19th century. Although the Viginere cipher was not practi-
cally used for about two centuries after its discovery, it was frequently used
in the 18th century [2, 7].

Charles Babbage was successful in the cryptanalysis of the Vigenere
cipher in the 1850s. Babbage was an English mathematician, best known
for his programmable mechanical calculating machine, the analytical
engine (see also Chapter 11). His cryptanalytic discovery was not recog-
nized for a century because he never published it. It was found in his notes
in the 20th century. Friedrich Wilhelm Kasiski (1805–1881), a retired
Prussian officer, independently discovered a cryptanalysis of the Vigenere
cipher. He first published a general method for attacking Vigenere ciphers
in 1863. Kasiski’s technique is almost the same as Babbage’s discovery.
The technique is now called the Kasiski test [2, 7].

17.3 � HOMOPHONIC SUBSTITUTION CIPHERS
The Vigenere cipher was sufficiently secure until the middle of the 19th
century. A polyalphabetical substitution cipher was much more compli-
cated to use than a monoalphabetic substitution cipher. For this reason,
the Vigenere cipher had not been widely used until the 18th century. The
monoalphabetic substitution cipher was adequate for many applications
during the Renaissance period; however, it was inadequate for serious
applications such as military and government communications in Europe
in the 17th century. Consequently, cryptographers searched for a suitable
cipher that was stronger than a monoalphabetic substitution cipher, but
simpler to use than a polyalphabetical cipher. The homophonic substitution
cipher was devised as a good candidate for these needs [2, 7, 8].

In a homophonic substitution cipher, each letter in the plaintext can
be replaced with a variety of substitutes, where the number of potential
substitutes of a letter is proportional to the frequency of the letter. For

142    ◾    Computing﻿

example, if we prepare 100 substitutes altogether, and if the frequency of
letter β is approximately αβ% in plaintexts, we might choose one of the αβ
substitutes for letter β in a cryptotext [2, 8]. An example of a homophonic
substitution cipher is shown in Table 17.3. In the next example, we use the
homophonic substitution given in Table 17.3.

Example 17.2

A plaintext, “Let us meet tonight in the park,” may be encrypted to
51 82 69 08 86 22 44 16 97 49 90 18 70 25 65 75 32 66 17 39 98 95
78 29 04. Note that this is not a unique cryptotext for the plaintext.

TABLE 17.3  A Homophonic Substitution Cipher

A : 01 12 33 47 53 67 78 92
B : 48 81
C : 13 41 62
D : 09 03 45 79
E : 14 16 24 44 46 55 57 64 74 82 87 98
F : 10 31
G : 06 25
H : 23 39 50 56 65 68
I : 32 70 73 83 88 93
J : 15
K : 04
L : 26 37 51 84
M : 22 27
N : 18 36 59 66 71 91
O : 00 05 07 54 72 90 99
P : 38 95
Q : 94
R : 29 35 40 42 77 80
S : 11 19 58 76 86 96
T : 17 20 30 43 49 69 75 85 97
U : 08 61 63
V : 52
W : 60 89
X : 28
Y : 21 34
Z : 02

Source:	 Adapted from Simon Singh, The Code Book: The Science of Secrecy
from Ancient Egypt to Quantum Cryptography, Anchor Books, New
York, 1999.

Cryptography from the Medieval to the Modern Ages    ◾    143  

For example, 37 64 75 61 11 27 14 98 30 20 07 91 88 25 23 49 32 66 43
65 55 38 33 77 04 is also a cryptotext that can be encrypted from the
same plaintext.

In the 17th century, cryptographers tried to increase the strength
of monoalphabetic substitution by incorporating the technique of the
homophonic substitution ciphers. One such well-known cipher is the
Great Cipher of Louis XIV. The Great Cipher was developed by Antoine
Rossignol (1600–1682) and his son, and used to encrypt the king’s impor-
tant messages and records. The Rossignol family served the French crown
as cryptographers. Modified forms of the Great Cipher were used by the
French Army until the beginning of the 19th century [2, 9].

17.4 � ENIGMA MACHINE
The earliest cryptographic machine is the cipher disk, invented in the
15th century by Italian polymath Leon Battista Alberti, one of the found-
ers of the polyalphabetic cipher. Since then various cipher disks were
used over the next five centuries. The cipher disk is a kind of a scrambler
that takes each plaintext letter and transforms it into another letter or
another letter sequence [2].

In 1918, at the end of World War I, German engineer Arthur Scherbius
(1878–1929) applied for a patent for a cipher machine that can be considered
an electromechanic version of Alberti’s cipher disks. He and his friend
founded a company to develop the cipher machine called Enigma,
which became the most sophisticated cryptomachine. The first model of
Enigma and its variants were used commercially from the 1920s. By 1925,
Scherbius began mass-producing Enigma machines, and these Enigmas
were adopted by German Nazi military and government services. The
German military bought probably over 30,000 Enigmas. World War II
began on September 1, 1939, with the invasion of Poland by Germany and
subsequent declarations of war against Germany by the United Kingdom
and France. The German military had obtained the most secure crypto-
systems in the world before and during World War II [2, 10].

The Enigma machine is a combined electromechanical cryptosystem.
It consists of a keyboard, a display board, a plug board, a set of rotating
disks called rotors or scramblers, stepping components, and a reflec-
tor. The keyboard is used to input each plaintext letter. The display board
consists of various lamps for indicating the cipher letters. The rotors form

144    ◾    Computing﻿

the major part of the Enigma machine and act as letter scramblers. Each
rotor was a disk approximately 10 cm in diameter, made of hard rubber or
Bakelite, with brass spring-loaded pins on one side arranged in a circle,
and a circular electrical contact on the other side. The pins and contacts
represent letters. The rotors were arranged along a spindle. The stepping
components were used to turn one or more steps of the rotors with each key
press. Different letter-letter substitutions were made by the movement of
the rotors. The plug board was located between the keyboard and the first
rotor. The Enigma user could insert cables in the machine in a certain way.
Cable insertion caused some letters to be swapped before they entered the
first rotor. The reflector was connected to the output of the last rotor so
that the route of the letter stream could be altered. The use of the reflector
in the Enigma machine started in 1926. The Enigma machine was con-
tained in a compact box (size, 28 × 34 × 15 cm; weight, 12 kg) [2, 10].

The German Navy was first to adopt Enigma among the German
military in 1926. The keyboard and display board contained 29 letters
(A to Z and three German letters). Three rotors were chosen from a set of
five rotors, and the reflector could be inserted in one of four different posi-
tions. The German Army also adopted the Enigma in 1928. A new version,
called the Wehrmacht Enigma, was introduced in 1930. The new version
was used extensively by the German military and other government orga-
nizations before and during World War II [2, 10].

17.5 � BREAKING ENIGMA CODES
In the 1930s, Polish cryptanalysts were ahead of other countries in invent-
ing various techniques for breaking the Enigma cipher. The Polish gov-
ernment formed the Biuro Szyfro∙w (the Cipher Bureau) in 1929–1930, and
invited 20 mathematicians from Poznan∙ University to join the bureau. The
cryptanalysis developed by the Cipher Bureau in Poland on the early ver-
sions of Enigma was quite successful. Before World War II, Polish crypt
analysts had already designed an electromechanical machine, called the
Bomba, to test the Enigma rotor setting. However, at the end of 1938 the
German military modified its Enigma machines so the Polish Bomba was
no longer capable of breaking the Enigma cipher [2, 10]. Five weeks before
the German invasion of Poland, the Polish Cipher Bureau transferred
two spare Enigma replicas and their techniques for breaking Enigma
ciphers to the British and French governments.

The British government recruited a large number of mathematicians,
scientists, college students, and young graduates as code breakers. They

Cryptography from the Medieval to the Modern Ages    ◾    145  

were sent to Bletchley Park, Buckinghamshire, the Government Code and
Cypher School (60 km northwest of London). It was a newly established
code-breaking organization. Initially, Bletchley Park had a staff of about
200, but within 5 years the number of workers there grew to about 7000.
The well-known mathematician Max Newman was invited to Bletchley
Park as one of the chief cryptanalysts [2, 12].

As described in Chapter 16, Alan M. Turing was one of the most influ-
ential mathematicians in the 20th century. He is known as the inventor of
the abstract computing models, the so-called Turing machines. In 1939,
the Government Code and Cypher School invited Turing to become a
cryptanalyst at Bletchley Park. Turing’s job at Bletchley Park was to find
an effective way to break Enigma cryptotexts, even if the German military
avoided using the same message key repeatedly. After investigating a large
number of decrypted Enigma messages at Bletchley Park, Turing reached
some ideas for finding the weakness of Enigma ciphertexts. Turing started
designing electrical circuits that would remove the effect of the Enigma
plug board. In 1939, Turing completed his design of the device, and it
was called the Bombe. More than 200 Bombes were built by the British
Tabulating Machine Company at Letchworth during World War II, but all
of them were destroyed after the war [2, 12, 13].

After the end of World War II Turing worked at the National Physical
Laboratory, where he designed a stored-program computer, the Automatic
Computing Engine (ACE) (see also Chapter 18). His sexual orientation
resulted in a criminal prosecution in 1952 since homosexual acts were ille-
gal in the United Kingdom at that time. Over the next 2 years he became
severely depressed. He dipped an apple in cyanide and took several bites
on June 7, 1954. The greatest mathematician of the 20th century and the
Father of Computer Science committed suicide just a few weeks before his
42nd birthday. On September 10, 2009, British Prime Minister Gordon
Brown made an official public apology on behalf of the British government
for their treatment of Turing for several years after World War II [14].

17.6 � LORENZ CIPHER
The Lorenz SZ40 and SZ42 were German cipher machines used during
World War II. Those cipher machines were made by Lorenz Company, and
were even more complex than the Enigma. Bletchley Park code breakers
called the Lorenz machine Tunny, and the cipher messages by Tunny were
called Fish. While the Enigma was mainly used in field units, the Lorenz
was used exclusively for the most important messages between the German

146    ◾    Computing﻿

Army field marshals and their Central High Command in Berlin. It was not
a portable device. The size of the machine itself was 51 × 46 × 46 cm, but it
could support the heavy teletypewriter and attendant fixed circuits [2, 11].

The Lorenz used the international telephone code in which each letter
of the alphabet was represented by a series of five electrical impulses.
Messages were encrypted by the exclusive OR operation (the bitwise addi-
tion of modulo 2) of five pseudorandom bits and the plaintext. The obscur-
ing letters were generated by 12 rotors, another 5 of which followed a
regular pattern, and another 5 of which followed a pattern dictated by two
pin wheels. Cracking Fish (cryptotext) relied on determining the starting
configuration of the Lorenz machine’s rotors [2, 14].

A British cryptanalyst, John Tilman, broke Fish messages at Bletchley
Park in 1941 using hand methods that relied on statistical analysis, but the
Germans had introduced complications that made it almost impossible to
break Lorenz ciphers by hand only. British mathematician Max Newman
was assigned to the Research Section at Bletchley Park to work as a crypt-
analyst of Lorenz ciphers. He proposed that the code-breaking process
could be mechanized. In December 1942, he was assigned to build suitable
machines for that purpose. The first machine designed to break the Lorenz
cipher was built at the Post Office Research Department at Dollis Hill and
was called Heath Robinson. Although the Heath Robinson worked well
enough, it was rather slow [2, 11, 15].

Newman asked for the help of Tommy Flowers, a post office electrical
engineer at Dollis Hill in London. Flowers built a much faster and more
reliable machine called Colossus that used 1500 vacuum tubes. The first
Colossus arrived at Bletchley Park in December 1943. This was the first
electronic digital information processing machine in the world. The
Lorenz cryptotexts could be deciphered by carrying out complex statisti-
cal analysis on intercepted messages. Colossus could read paper tape at
5000 characters per second, and the paper tape moved at 30 miles per hour
[2, 11, 16] (see also Chapter 18).

REFERENCES
	 1.	 Arto Salomaa, Public-Key Cryptography, Springer-Verlag, Berlin, 1990.
	 2.	 Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography, Anchor Books, New York, 1999.
	 3.	 Douglas R. Stinson, Cryptography: Theory and Practice, CRC Press, New York,

1995.
	 4.	 Wikipedia, Abbasid Caliphate, http://en.wikipedia.org/wiki/Abbasid_Caliphate.
	 5.	 Wikipedia, Al-Kindi, http://en.wikipedia.org/wiki/Al-Kindi.

Cryptography from the Medieval to the Modern Ages    ◾    147  

	 6.	 Wikipedia, Leon Battista Alberti, http://en.wikipedia.org/wiki/Leon_Battista_
Alberti.

	 7.	 Wikipedia, Vigenere Cipher, http://en.wikipedia.org/wiki/Vigenere_cipher.
	 8.	 Wikipedia, Substitution Cipher, http://en.wikipedia.org/wiki/Substitution_

cipher.
	 9.	 Wikipedia, Great Cipher, http://en.wikipedia.org/wiki/Great_Cipher.
	 10.	 Wikipedia, Enigma Machine, http://en.wikipedia.org/wiki/Enigma_machine.
	 11.	 Wikipedia, Lorenz Cipher, http://en.wikipedia.org/wiki/Lorenz_cipher.
	 12.	 Wikipedia, Bletchley Park, http://en.wikipedia.org/wiki/Bletchley_Park.
	 13.	 Wikipedia, Bombe, http://en.wikipedia.org/wiki/Bombe.
	 14.	 Wikipedia, Alan Turing, http://en.wikipedia.org/wiki/Alan_Turing.
	 15.	 Wikipedia, Heath Robinson (code breaking machine), http://en.wikipedia.

org/wiki/Heath_Robinson.
	 16.	 Wikipedia, Colossus Computer, http://en.wikipedia.org/wiki/Colossus_

computer.

149

C h a p t e r 18

Electronic Computers

Determining when, where, and by whom the first electronic digital com-
puter was invented is a daunting task as described by A. R. Burks, the
author of Who Invented the Computer? [1]. The history of this revolution-
ary development is surrounded by the events of World War II and clouded
by the secrecy required by advanced-level military research. The race to
decode enemy communications, to develop reliable ballistic tables, and
to build the first rockets and warheads brought together some of the most
brilliant mathematicians and engineers of the 20th century. Their work,
sometimes in collaboration, while at other times independently, led in fits
and starts to the invention of electronic digital computers, the forerunners
of the computers we enjoy today. What follows is a brief discussion of some
of their most significant and hard-won contributions.

18.1 � THE ABC COMPUTER
Born in Hamilton, New York, John Vincent Atanasoff (1903–1995) was
an American physicist and inventor. In 1925, Atanasoff received his
B.Sc. degree in electrical engineering from the University of Florida, and
in 1926 he earned an M.Sc. degree in mathematics at Iowa State College
(now Iowa State University). Atanasoff received a Ph.D. in theoretical
physics from the University of Wisconsin, Madison, in 1930, after which
he obtained an academic position at Iowa State College in mathematics
and physics [2].

In 1939, Professor Atanasoff and his graduate assistant, Clifford Berry
(1918–1963), began building the world’s first electronic-digital computer
at Iowa State College, working on the project for the next few years. The

150    ◾    Computing﻿

Atanasoff–Berry Computer (ABC) contained various innovations in
computing, such as binary number systems, digital circuits using vacuum
tubes, regenerative memory called capacitors, and a separation of mem-
ory and computing functions [3, 6]. The capacitors were built in a rotat-
ing drum that held electric charges representing the memory for binary
numbers. The prototype of their computer won them a grant of $850 to
build a full-scale model. The final product weighed 318 kg and had more
than 300 vacuum tubes. It could perform one fundamental operation per
15 seconds [6].

The electronic part of the ABC was successful, but the reliability of its
binary card reader was unsatisfactory. The project was discontinued when
Atanasoff left Iowa State College, and the ABC was dismantled.

18.2 � THE Z3 COMPUTER
A German engineer and computer pioneer, Konrad Zuse’s (1910–1995)
great achievement was the invention of one of the world’s first electrical
computers, the Z3, which became operational in 1941 [8].

The basic components of the Z3 were small, electrically driven, mechan-
ical switches called relays, making Z3 an electromechanical digital com-
puting machine. Several similar digital computing machines were built
before and during World War II by Howard Aiken (1900–1973) at Harvard
University, George Stibitz (1904–1995) at Bell Telephone Laboratories, and
Alan M. Turing at Bletchley Park. Among them, Zuse received the honor
of having built the first working general purpose program-controlled digi-
tal computer (the Z3). A program-controlled computer, as opposed to a
stored-program computer, is set up for a task by reconfiguring the wires
(e.g., by means of plugs) [5, 7].

Zuse designed the Z1 between 1935 and 1936 and built it between 1936
and 1938. It was totally mechanical, but unreliable. Zuse decided to base
his next design for the Z2 on the use of relays. The Z2 was completed in
1939 and demonstrated to Die Deutsche Versuchsanstalt für Luftfahrt
(the German Laboratory for Aviation) in 1940. Further improving the
Z2 computer, he went on to build the Z3 in 1941. His work was a top secret
project of the German government. The Z3 was faster and far more reliable
than either the Z1 or the Z2 and was built with about 2000 relays, imple-
mented on a 22-bit word length with a clock frequency of 5 to 10 (Hz).
Zuse asked the German government for funding to replace the relays with
fully electronic switches, but it was denied during World War II, since
such development was not considered urgent during World War II [5, 7, 9].

Electronic Computers    ◾    151  

The success of Zuse’s Z3 is often attributed to its use of the binary
number system. However, performing arithmetic with a binary number
system in a calculating device was invented roughly three centuries earlier
by Gottfried Leibniz. George Boole later used it to develop his Boolean
algebra. In 1937, Claude Shannon (1916–2001) introduced the idea of
mapping Boolean algebra to electrical relays in his work on digital circuit
design. It seemed that Zuse was not aware of Shannon’s work and devel-
oped digital circuits independently.

The original Z3 was destroyed in 1943 during an Allied bombard-
ment of Berlin. Zuse’s coworker Helmut Schreyer built an electrodigital
prototype experimental model of a computer using 100 vacuum tubes in
1942, but it was also lost at the end of World War II. A fully functioning
replica was built in the 1960s by Zuse’s company. It is exhibited in the
Deutsche Museum.

18.3 � THE COLOSSUS COMPUTER
In 1939, the day after the war broke out, Alan M. Turing enlisted full-time
at the British Government Code and Cypher School at Bletchley Park,
50 miles northwest of London in Buckinghamshire. He was a member of
the group of able mathematicians drafted into the military’s code-breaking
operations [16].

Tommy Flowers (1905–1998) was an English engineer born in London.
He took evening classes at the University of London to earn a degree in
electrical engineering. In 1929, he joined the telecommunication branch
of the General Post Office. He was one of the earliest extensive users of
vacuum tubes for digital data processing. In 1934 Flowers designed
electronic equipment for controlling the connection between telephone
exchanges. This device went into operation in 1939. From 1938 to 1939,
Flowers worked on an experimental electronic digital data processing
system with a high-speed data store.

Turing wanted Flowers to build a decoder for the relay-based machine,
called the Bombe, which Turing had developed to help decrypt the Enigma
codes. The British Government Code and Cypher School was successfully
deciphering German radio communications by means of the Enigma system,
and by early 1942 about 39,000 intercepted messages were being decoded
each month by using these electromechanical Bombe machines [16].

Turing introduced Flowers to Max Newman, who headed the team for
breaking the German code cipher generated by a teletypewriter coding
machine, the Lorenz, one of the German Geheimschreiber (secret writer)

152    ◾    Computing﻿

systems, which the British called Tunny, a far more complex coding system
than Enigma. The need to decipher Tunny codes as rapidly as possible led
Max Newman to propose in 1942 that the key parts of the decryption pro-
cess be automated by means of high-speed electronic processing devices.
The first machine designed and built to Newman’s specification, known
as the Heath Robinson, was relay based and used vacuum tubes in part.
The Heath Robinson was installed in 1943, but was unreliable and slow.
However, it proved that Newman’s idea for breaking the Lorenz code was
worth the effort [14, 16].

Flowers recommended building an all-electronic machine instead.
Obtaining full backing for his project, Flowers built the first large-scale
programmable electronic digital Tunny code-breaking computer, called
the Colossus I, at the Research Station in the General Post Office at Dollis
Hill in northwest London. He delivered it to Bletchley Park in 1943, and
by the end of the war there were 10 Colossi working at Bletchley Park
where they were used by British code breakers to help decipher encrypted
German messages during World War II. The Colossus I contained approxi
mately 1600 vacuum tubes, though each of the subsequent machines had
approximately 2400 vacuum tubes (Figure 18.1). The Colossus lacked two
important features of modern computers: First, it had no internally stored
programs. To program it for a new task, the operator had to reconfig-
ure the machine’s physical wiring, using plugs and switches. Second, the

a plate

a grid

a cathode

a heater

(a) (b)

Glass Tube (1940–1950)

FIGURE 18.1  An example of a vacuum tube. (a) The structure of a triode; (b) the
shape of a glass tube (1940–1950).

Electronic Computers    ◾    153  

Colossus was not a general purpose machine since it was designed for a
specific cryptanalytic task [9, 12, 16].

For security reasons, most of the Colossi were destroyed after the
end of the war, but two Colossi were retained by the Government Code
and Cypher School, renamed the Government Communication Head
Quarters (GCHQ), even after the end of the war [4]. The last Colossus
was believed to have stopped running in 1960. Until the 1970s, few had
known that the Colossus was used successfully for code breaking dur-
ing World War II. Irving John (Jack) Good (1916–2009) and Donald
Michie (1923–2007) published their notes on the Colossus in 1970 and
1975, respectively. During the war, Good worked at Bletchley Park and
contributed to the development of the Colossus, and Michie also had the
experience of working there. A replica of the Colossus computer was com-
pleted in 2007, and is displayed in the National Museum of Computing at
Bletchley Park. Now the Colossus is widely believed to be the world’s first
electronic digital programmable computer [9].

18.4 � THE ENIAC COMPUTER
John Mauchly (1907–1980) was an American physicist who, along with
John Presper Eckert (1919–1995), designed the Electronic Numerical
Integrator and Computer (ENIAC). Mauchly was born in Cincinnati,
Ohio. He completed his Ph.D. in physics at Johns Hopkins University in
1932. In 1941, Mauchly took a course in wartime electronics at the Moore
School of Electrical Engineering, University of Pennsylvania, where he
met a Moore School graduate student, Eckert. The Moore School was a
center for wartime computing. The critical problem at the Moore School
was the ballistic calculation that the U.S. military was developing for the
war effort [10, 11].

The U.S. military needed a calculating machine for preparing artillery
firing tables. The tables would be used for different weapons under varied
conditions so that the target would be set accurately. The U.S. Army’s
Ballistics Research Laboratory heard about Mauchly’s research in the
Moore School at the University of Pennsylvania. Mauchly had previ-
ously created several calculating machines, some with small electric
motors inside. In 1942, Mauchly had begun designing a better calculating
machine that would use vacuum tubes to speed up calculations.

ENIAC, designed to calculate and construct artillery firing tables for
the Ballistic Research Laboratory, was financed by the U.S. Army during
World War II. The construction contract was signed in 1943, and began in

154    ◾    Computing﻿

secret at the Moore School of Electrical Engineering. Mauchly and Eckert
were the chief consultant and the chief engineer of the project, respec-
tively. The machine took about a year to design, and another 18 months
and $500,000 to build, with completion coming in November 1945. The
ENIAC continued to be used to perform various calculations for advanced
military research projects after the war was over [1, 6, 10, 15].

The size of the ENIAC was remarkable. It contained 17,468 vacuum
tubes, 7,200 crystal diodes, 70,000 resistors, 10,000 capacitors, 1,500 relays,
6,000 manual switches, and 5 million soldered joints. The machine cov-
ered 1,800 square feet (167 square meters) of floor space, weighed 30 tons,
and consumed 160 kilowatts of electrical power. Input was provided with
an IBM card reader, while an IBM card punch was used for output. The
ENIAC used 10-position ring counters to store digits. Arithmetic was
performed by counting pulses with the ring counters and generating carry
pulses if the counter wrapped around. It had 20 ten-digit signed accumu-
lators that used 10’s complement representation and could perform 5,000
simple addition or subtraction operations per second. It could perform
357 multiplications or 38 divisions per second [6, 9, 10].

The use of vacuum tubes increased its speed, but the ENIAC was not
easy to reprogram. In fact, one significant problem with the ENIAC was
that it was extremely difficult to program. It had to be hardwired afresh
for solving each new problem by reprogramming it with plug panels.
These changes took technicians several days of tedious manual rewiring.
Another serious problem was its reliability. Vacuum tubes burned out fre-
quently since special high-reliability tubes were not available until 1948.
Most vacuum tube failures occurred during the warm-up and cool-down
periods, when the tube heaters and cathodes overheated. According to an
interview with Eckert, a tube failure occurred every 2 days, but the techni-
cians could locate the problem within 5 minutes. In 1954, the longest con-
tinuous period of operation without a failure was 116 hours. In 1948, John
von Neumann (1903–1957) made several modifications to the ENIAC [10].

In 1946, the Moore School decided to change its patent policy in
order to gain commercial rights to any future and past computer devel-
opment there. Eckert and Mauchly decided this was unacceptable, and
they resigned their positions. In 1947, they formed the Eckert–Mauchly
Computer Corporation. In 1949, their company launched the Binary
Automatic Computer (BINAC) that used magnetic tape to store data [1].

In 1950, Remington Rand Corporation bought Eckert–Mauchly
Computer Corporation, changing the name to the UNIVAC Division

Electronic Computers    ◾    155  

of Remington Rand. Their research resulted in the Universal Automatic
Computer (UNIVAC), an important forerunner of modern computers.
In 1955, Remington Rand merged with Sperry Corporation, forming
Sperry–Rand. Eckert remained with the company as an executive, staying
on as it later merged with Burroughs Corporation to become Unisys.

The ENIAC retired when power was finally shut off on October 2, 1955 [10].

18.5 � VON NEUMANN ARCHITECTURE FOR COMPUTERS
John von Neumann was born and educated in Budapest, Hungary. He
received his Ph.D. in mathematics (as well as in experimental physics
and chemistry) from Pater University in Budapest in 1928. In 1930, von
Neumann was invited to Princeton University, and then offered a position
at the Institute for Advanced Study there in 1933. He was highly regarded
in the fields of set theory, algebra, quantum physics, and computing.
Von Neumann retained the position of a professor in mathematics at the
Institute for Advanced Study for the remainder of his life [17].

From 1936 to 1938, Alan M. Turing was a visitor in the Institute for
Advanced Study at Princeton University. He completed his Ph.D. dis
sertation under Alonzo Church’s supervision. We could imagine that von
Neumann and Turing met in Princeton during this period and that von
Neumann knew of Turing’s ideas about computability and the universal
Turing machine. However, it is unknown how much they discussed com-
puters and related subjects at Princeton. Turing returned to Cambridge,
England, and a year later he was involved in war work at Bletchley Park.
To what extent von Neumann used Turing’s ideas for his design of
computers 10 years later remains unknown.

During World War II, von Neumann was deeply involved as a con-
sultant to the armed forces, participating also in the development of the
atomic bomb. Toward the end of World War II, von Neumann took part in
several national committees, serving as a contact person between groups
of scientists and government organizations. He worked as a consultant
with the Los Alamos National Laboratory, the Manhattan Project, and as
an adviser to the engineer group, building the ENIAC at the Moore School
of Electrical Engineering [10, 17].

Von Neumann joined Electronic Discrete Variable Automatic Computer
(EDVAC), a project that began in 1944 as the successor of ENIAC at the
Moore School, University of Pennsylvania. Von Neumann’s ideas about
the structure of a computer eventually became the fundamental organiza-
tion of the modern computer, now known as von Neumann architecture.

156    ◾    Computing﻿

The basic elements of the EDVAC were based on the stored-program con-
cept. His work as a project consultant included preparing the “First Draft
of a Report on the EDVAC,” written in the spring of 1945. The draft,
distributed to the staff of the Moore School of Electrical Engineering,
presented the stored-program concept and the overall structure of a
computer system.

The report organized the computer system into four main parts: the
central arithmetic unit, the central control unit, the memory, and the
input/output devices. The central arithmetic unit carried out the four
basic arithmetic operations and some higher arithmetic functions, such as
roots, logarithms, trigonometric functions, and their inverses. The control
unit controlled the proper sequence of operations and made the individual
units act together to carry out the specific programmed task. The memory
stored both numerical data and numerically coded instructions, and the
input/output devices served as the user’s computer interface. It described
how these four parts communicate with each other to process informa-
tion. However, the specific materials and design of the implementation
of each unit were not recorded in the report. Although “First Draft of a
Report on the EDVAC” was authored solely by von Neumann, the basic
idea about the stored program was derived from his discussions with
Eckert, Mauchly, and others [18].

Von Neumann’s contributions to computer design were great, but he
was less interested in patents and patent law. Most of the information about
his innovations, such as his “First Draft of a Report on the EDVAC,” was
widely distributed. He was happy to share his thoughts and theories with
anyone who was interested in computer design. Von Neumann left the
EDVAC project in 1946, and then returned to Princeton University, where
he was involved in the later Institute for Advanced Study (IAS) computer.
His basic architectural design can be easily recognized even in the most
advanced computers of today. The IAS computer also had a strong influ-
ence on the IBM 701 built in 1952, which was the first mass-produced
electronic stored-program computer produced by International Business
Machines (IBM).

18.6 � OTHER NOTABLE EARLY ELECTRONIC COMPUTERS

18.6.1 � National Physics Laboratory and the ACE

At the end of World War II John Ronald Womersley (1907–1958) was
appointed superintendent of the Mathematics Division of the National

Electronic Computers    ◾    157  

Physical Laboratory in England, where he coined the name Automatic
Computing Engine (ACE) for the early electronic computer developed there.
Alan Turing was also asked to use his theories and experience for the ACE
project [13]. Although Turing was not directly involved in the hardware
development of the Colossus project, he saw the potential of the electronic
computer to realize a computing machine that could carry out processes
previously assumed possible only by the human brain. In 1946 Turing
presented a detailed paper to the National Physical Laboratory Executive
Committee, giving a reasonably complete design of a stored-program
computer [13]. Turing’s report on the ACE included detailed logical circuit
diagrams and a cost estimate of 11,200 pounds.

Unlike the EDVAC, the ACE implemented subroutine calls, and an addi-
tional departure from the EDVAC was the use of Abbreviated Computer
Instructions, an early form of programming language. The first version
of the ACE was a smaller version of Turing’s original design. The Pilot
ACE had 1,450 vacuum tubes, and used mercury delay lines for its main
memory. Each of the 12 delay lines could store 32 instructions or data
words of 32 bits. Turing resigned from the National Physical Laboratory
in 1948 and moved to Manchester. The Pilot ACE ran its first program on
May 10, 1950. With an operating speed of 1 MHz, the Pilot ACE was for
some time the fastest computer in the world [13].

18.6.2 � The MARK 1 at Manchester University

In September 1945, Max Newman was appointed professor in the math-
ematics department at the University of Manchester. The earliest general
purpose stored-program electronic computer was built in Newman’s
Computing Machine Laboratory. The Manchester Baby, as it became
known, was constructed by engineers Frederic Calland Williams
(1911–1977) and Tom Kilburn (1921–2001), and performed its first calcu-
lation in June 1948. That year, Turing joined the mathematics department
at the University of Manchester as deputy director of the Royal Society
Computing Machine Laboratory. He designed an enlarged version of the
Manchester Baby that became the world’s first commercially available
computer, the Mark I. The first Manchester Mark I was completed in 1951,
and installed at the University of Manchester. About 10 Manchester
Mark I computers were sold in Britain, Canada, Holland, and Italy.

Turing used the Manchester Mark I to investigate prime numbers in
collaboration with Newman. Meanwhile, he continued his theoretical work
and in 1950 published another famous paper, “Computing Machinery and

158    ◾    Computing﻿

Intelligence,” in which he asked the important question “Can computers
think?” anticipating the subject of artificial intelligence. Turing’s main con-
tribution to the Manchester Mark I project was providing the early software
requirements for computers, and writing the first programming manual.

By 1951, Newman and Turing had withdrawn from active involvement
in the Manchester Mark I project and subsequent computer develop-
ment. However, Turing was still a keen user of the computer as a tool for
his research interests, and was always ready to help programmers of the
Manchester Mark I with their problems.

18.6.3 � Electronic Delay Storage Automatic Calculator (EDSAC)

In 1949, the EDSAC was built at Cambridge University by Maurice Wilkes
(1913–2010) and was in operation there until 1958. In 1950, a British
computer company, J. Lyons and Co., revised the EDSAC, selling it in
the commercial market as the Lyons Electronic Office (LEO) computer.
Wilkes received the Turing Award in 1967 for the design and construction
of the EDSAC.

18.6.4 � Whirlwind I

Whirlwind was developed at MIT. It is the first computer operated in real
time, using video displays for output. By 1947, Joy Forrester (1918–) and
collaborator Robert Everett (1921–) completed the design of a high-speed
stored program. It first went online in 1951.

18.6.5 � Standards Eastern Automatic Computer (SEAC)

SEAC was an early electronic computer, built by the U.S. National Bureau
of Standards. In 1950, it went into full production, making it the first fully
functional stored-program electronic computer in the United States.

18.6.6 � Standards Western Automatic Computer (SWAC)

SWAC was built in 1950 by the U.S. Bureau of Standards Western Division
and Institute for Numerical Analysis, University of California, Los Angeles.
It was designed by Harry Huskey (1916–).

REFERENCES
	 1.	 A. R. Burks, Who Invented the Computer? The Legal Battle That Changed

Computer History, Prometheus Books, Amherst, New York, 1996.
	 2.	 Wikipedia, John Vincent Atanasoff, http://en.wikipedia.org/wiki/John_

Vincent_Atanasoff.

Electronic Computers    ◾    159  

	 3.	 Wikipedia, Atanasoff—Berry Computer, http://en.wikipedia.org/wiki/Atana
soffAtanasoff%E2%89%93Berry_Computer.

	 4.	 Stanford Encyclopedia of Philosophy, The Modern History of Computing,
http://plato.stanford.edu/entries/computing-history/.

	 5.	 Wikipedia, Z3 (computer), http://en.wikipedia.org/wiki/Z3_(computer).
	 6.	 Mary Bellis, Inventors of the Modern Computer, http://inventors.about.com/

library/weekly/aa050898.html.
	 7.	 J. Alex, H. Flessner, W. Mons, K. Pauli, and H. Zuse, Konrad Zuse: Der Vater

des Computers, Verlag Parzeller, Fulda, 2000.
	 8.	 Wikipedia, Konrad Zuse, http://en.wikipedia.org/wiki/Konrad_Zuse.
	 9.	 J. Palfreman and D. Swade, The Dream Machine, BBC Books, London, 1991.
	 10.	 Wikipedia, ENIAC, http://en.wikipedia.org/wiki/ENIAC.
	 11.	 Wikipedia, John Mauchly, http://en.wikipedia.org/wiki/John_Mauchly.
	 12.	 Wikipedia, Colossus Computer, http://en.wikipedia.org/wiki/Colossus_

computer.
	 13.	 Wikipedia, Automatic Computing Engine, http://en.wikipedia.org/wiki/

Automatic_Computing_Engine.
	 14.	 Wikipedia, Max Newman, http://en.wikipedia.org/wiki/Max_Newman.
	 15.	 M. Campbell-Kelly and W. Aspray, Computer: A History of the Information

Machine, Basic Books/HarperCollins, New York, 1996.
	 16.	 S. Singh, The Code Book, Anchor Books, New York, 1999.
	 17.	 Wikipedia, John von Neumann, http://en.wikipedia.org/wiki/John_von_

Neumann.
	 18.	 Wikipedia, EDVAC, http://en.wikipedia.org/wiki/EDVAC.

161

C h a p t e r 19

Numerical Methods

After successfully conquering the simple arithmetical tasks of counting,
addition, subtraction, multiplication, and division, scholars slowly began
to address significantly more challenging mathematical problems. These
started with the calculation of 2 , π, areas and volumes of objects, and
astronomy (orbit projections of heavenly bodies). Eventually, this led to the
development of well-defined numerical methods and procedures, which
were initially performed by hand, and later by a computer. Initially, funda-
mental problems in physics, in particular, motion, led to the development
of many innovative numerical methods. This is now a well-established
branch of mathematics.

19.1 � NUMERICAL CALCULATION
IN ANCIENT CIVILIZATIONS

When the ancient Greeks learned about the irrationality of 2 , i.e., it is
not expressible as a ratio of two integers and therefore cannot be measured
using numbers known to them, Pythagoras (c. 569–475 BC) and his fol-
lowers decided to keep this sensational discovery a secret. It could only be
revealed to the initiated insiders, called the mathematikoi (the learners).
Legend has it that the man who disclosed this secret was thrown over-
board and drowned at sea. It is hypothesized that the unlucky fellow
was actually Hippasus of Metapontum (ca. 500 BC). He is often credited
with obtaining the first classical proof of 2 ’s irrationality. The proof is
based on the unique factorization of any integer into primes and because
the square of any fraction of the form p/q (where p and q are integers)
features an even number of prime factors both in the numerator and in

162    ◾    Computing﻿

the denominator, which cannot cancel pairwise to yield a single prime,
e.g., 2, in lowest terms. The value of 2 is sometimes referred to as the
Pythagorean constant, which is somewhat ironic, especially given that
it was Pythagoras himself who wanted to keep the irrationality of 2 a
secret (see also Chapter 3).

The existence of the constant represented by π, i.e., the ratio of the
diameter to the circumference of a circle, has been known and under-
stood by scholars for several thousand years, almost from the beginning
of man’s recorded history. Ancient Greeks suspected that, just as was the
case with 2 , π cannot be represented in the form of p/q. The history of
attempts to calculate the exact value of π spans for at least four millennia,
starting with the ancient Babylonians, Egyptians, Chinese, Indians, and
Europeans, including such notable scholars as Archimedes, Euclid, Euler,
Fibonacci, Leibniz, and Newton.

The actual symbol π, which is probably the most famous among all
of the transcendental numbers, was first introduced by William Jones
(1675–1749) in 1706, probably because it is the first letter of the Greek
word perimetros, from which the word perimeter is derived. Its usage was
popularized by the Swiss mathematician, Leonhard Euler (1707–1783).
Although many scholars suspected that it is not rational, the irrationality
of π was formally proved only in 1761 by a Swiss mathematician, Johann
Lambert (1728–1777) (see also Chapter 13).

In one of the earliest recorded accounts about π, the Babylonians
(ca. 2000 BC) used an approximation of 3 + 1/8 = 3.125. Ancient
Egyptians approximated the value of π to be about 3.16, whereas the
Bible (Old Testament) simply used the whole integer 3. Archimedes of
Syracuse obtained lower and upper bounds for π that were fairly accurate
(two digits past the decimal point). A number of ever-improving approx-
imations for π were obtained throughout the ages (see Table 19.1, but
note that it is not exhaustive), and all of the calculations until 1946 were
carried out by hand. These were usually obtained from approximations
based on polygons with an ever-increasing number of sides, as shown in
Figure 19.1, or other methods; e.g., Leibniz and Newton were able to apply
some of their formulas from calculus (invented by them) to estimate the
value of π.

Starting in the mid-1940s electronic computer technology allowed the
value of π to be computed with, what now almost amounts to, arbitrary
precision. These computations were facilitated by the ever-faster hardware

Numerical Methods    ◾    163  

TA
B

LE
 1

9.
1 

A
cc

ur
ac

y
ov

er
 T

im
e

Im
pr

ov
em

en
ts

 (M
ea

su
re

d
in

 D
ig

its
) f

or
 C

al
cu

la
tio

ns
 o

f π

H
an

d
C

al
cu

la
tio

ns
 (f

ro
m

 2
00

0
BC

 to
 1

94
6)

C
om

pu
te

r-
A

ss
is

te
d

C
al

cu
la

tio
ns

 (f
ro

m
 1

94
7

to
 2

01
0)

In
di

vi
du

al
s

D
at

e
D

ig
its

Pr

og
ra

m
m

er
s

D
at

e
D

ig
its

C

om
pu

te
r

Ba
by

lo
ni

an
s

20
00

 B
C

1

Fe
rg

us
on

19

47

71
0

D
es

k
C

al
cu

la
to

r
Eg

yp
tia

ns

20
00

 B
C

1

Sm
ith

 a
nd

 W
re

nc
h

Jr.
19

49

1
12

0
D

es
k

C
al

cu
la

to
r

A
rc

hi
m

ed
es

25

0
BC

2

Re
itw

ie
sn

er
 e

t a
l.

19
49

2

03
7

EN
IA

C
Pt

ol
em

y
15

0
3

N

ic
ho

lso
n

an
d

Je
en

el

19
54

3

09
2

N
O

RC
Li

u
H

ui

26
3

5

Fe
lto

n
19

58

10
 0

20

Pe
ga

su
s

Zu
C

ho
ng

zh
i

48
0

7

G
ui

llo
ud

19

59

16
 1

67

IB
M

 7
04

A
l-K

as
hi

14

29
14

Sh

an
ks

 a
nd

 W
re

nc
h

19
61

10

0
26

5
IB

M
 7

09
0

Ro
m

an
us

15

93
15

G

ui
llo

ud
 a

nd
 F

ill
ia

tr
e

19
66

25

0
00

0
IB

M
 7

03
0

va
n

C
eu

le
n

16
15

35

G
ui

llo
ud

 a
nd

 D
ic

ha
m

pt
19

67

50
0

00
0

C
D

C
 6

60
0

G
rie

nb
er

ge
r

16
30

39

G
ui

llo
ud

 a
nd

 B
ou

ye
r

19
73

1

00
1

25
0

C
D

C
 7

60
0

Sh
ar

p
16

99
71

K

an
ad

a
an

d
M

iy
os

hi

19
81

2

00
0

03
6

FA
C

O
M

 M
-2

00
M

ac
hi

n
17

06
10

0

Ta
m

ur
a

19
82

2

09
7

14
4

M
EL

C
O

M
 9

00
II

D
e

La
gn

y
17

19
11

2

Ta
m

ur
a

an
d

K
an

ad
a

19
82

8

38
8

57
6

H
ita

ch
i M

-2
80

H
Ve

ga
17

94
13

6

G
os

pe
r

19
85

17

 5
26

 2
00

Sy

m
bo

lic
s 3

67
0

Ru
th

er
fo

rd

18
41

15
2

Ba

ile
y

19
86

29

 3
60

 1
11

C

RA
Y-

2
D

ah
se

18

44
20

0

K
an

ad
a

et
 a

l.
19

87

13
4

21
4

70
0

N
EC

 S
X

-2
C

la
us

en

18
47

24
8

K

an
ad

a
an

d
Ta

m
ur

a
19

88

1
07

3
74

1
79

9
H

ita
ch

i S
-8

20
/8

0
Le

hm
an

n
18

53
26

1

C
hu

dn
ov

sk
ys

19
91

2

26
0

00
0

00
0

m
-Z

er
o

Ru
th

er
fo

rd

18
53

44
0

K

an
ad

a
an

d
Ta

ka
ha

sh
i

19
99

20

6
15

8
43

0
00

0
H

ita
ch

i S
R8

00
0

Ri
ch

te
r

18
54

50
0

K

an
ad

a
et

 a
l.

20
02

1

24
1

10
0

00
0

00
0

H
it.

 S
R8

00
0/

M
P

Sh
an

ks

18
74

52
7

Ta

ka
ha

sh
i e

t a
l.

20
09

2

57
6

98
0

37
7

52
4

T2
K

 O
pe

n
Fe

rg
us

on

19
46

62
0

Ye
e

an
d

Ko
nd

o
20

10
5

00
0

00
0

00
0

00
0

y-
C

ru
nc

he
r

N
ot

e:	
Th

e d
at

a f
or

 th
is

ta
bl

e a
re

 a
se

le
ct

iv
e c

om
pi

la
tio

n
fr

om
 o

ve
r 3

0
so

ur
ce

s,
in

cl
ud

in
g

bo
ok

s,
sc

ho
la

rly
 p

ap
er

s,
m

as
s m

ed
ia

, a
nd

 th
e

In
te

rn
et

; t
he

se
 w

ill
 n

ot
 b

e c
ite

d
in

di
vi

du
al

ly.
 N

um
er

ou
s i

nc
on

sis
te

nc
ie

s i
n

th
e d

at
es

 a
nd

 th
e a

cc
ur

ac
ie

s o
bt

ai
ne

d,
 es

pe
ci

al
ly

 in

th
e

pr
e-

19
47

 co
m

pu
ta

tio
ns

, w
er

e
re

so
lv

ed
 b

y
us

in
g

th
e

“m
aj

or
ity

 v
ot

e”
 ap

pr
oa

ch
. Th

er
e

w
as

 n
o

av
er

ag
in

g.

164    ◾    Computing﻿

and the discovery of very advanced algorithms for performing the required
high-precision floating-point arithmetic operations on a computer. A sig-
nificantly condensed historical summary of π’s calculations by computers
from 1947 until 2010 is given in Table 19.1. For example, in 2009, Japanese
T2K Open Supercomputer more than doubled the previous record by
calculating 2,576,980,377,524 digits of π. This was followed with a 2010
calculation by Shigeru Kondo, who used Alexander Yee’s program and
his own home-built computer, called the y-cruncher, to calculate the first
5,000,000,000,000 digits of π.

From the scientific or engineering perspective, there is no need to
calculate the value of π to more than, say, 1000 digits. Whereas the com-
putations of the billions, trillions, or even quadrillions of π’s digits are
not necessary, some potential benefits, such as the testing of computers’
hardware/software integrity, may be reaped from these modern-day com-
putational marathons. A humorous side note: March 14 (3.14) has been
designated as π-day. This also happens to be Albert Einstein’s (1879–1955)
birthday (Table 19.1).

19.2 � NUMERICAL SOLUTION OF ALGEBRAIC EQUATIONS
Numerical analysis, which also predates the age of the modern electronic
computer, is the study of algorithms that use numerical approximations
to represent real numbers, and mathematical objects such as curves,
surfaces, functions, and related phenomena. Much of numerical analysis
is concerned with obtaining approximate solutions, while at the same time

D

B

C

A
H

FIGURE 19.1  Inscribed and circumscribed polygons for computing π.

Numerical Methods    ◾    165  

maintaining certain acceptable bounds on the computational errors. Just
as important for these numerical methods is the determination of the rate
of convergence, i.e., how fast is the answer actually produced. Numerical
analysis has applications in all fields of engineering, physical sciences, eco-
nomics, and many other areas of social sciences, and medicine.

For centuries mathematicians were preoccupied with the construc-
tion of numeric methods [1] that would allow them to solve problems that
were practical (e.g., designing a bridge) or purely theoretical (e.g., predict-
ing a solar eclipse or the orbits of heavenly bodies) in nature. One of the
fundamental problems here is the design of numerical methods for the
determination of the roots (or zeroes) of real-valued algebraic functions or,
in general, systems of such functions, which themselves may be linear or
nonlinear. Since very few of these problems have any known methods that
can solve them directly, a vast majority of numerical methods are iterative
in nature; i.e., a current candidate solution is being improved upon until
an acceptable answer is found. Iterative techniques, one of the fundamen-
tal principles in computer science, may be used to find roots of functions,
solutions to systems of linear and nonlinear equations, and solutions to
ordinary or partial differential, or integral equations.

In the case of a single linear function, the problem is trivial and can be
solved directly. For a system of linear equations, the method of Gaussian
elimination may be applied to compute the solution. Although not origi-
nally named as such, this method first appeared in the chapter on rectan-
gular arrays of a Chinese mathematical book, Jiuzhang suanshu, which
may have been written as early as 150 BC.

German mathematician Johann Carl Friedrich Gauss (1777–1855),
whose contributions to mathematics include linear algebra, number
theory, statistics, and many others, came up with this method indepen-
dently in the early 19th century. Gaussian elimination is an algorithm that
may be used for solving systems of linear equations, finding the rank of a
matrix, and (if it exists) calculating the inverse of a square matrix.

Whereas Gaussian elimination is a good method that is especially
well suited for hand computations, for a vast majority of large-sized or
ill-conditioned matrices, more powerful methods are recommended.
These include decomposing a given matrix into a product of two triangular
matrices, usually called L and U. That is, if A is a nonsingular matrix, then
A can be uniquely expressed as a product LU, where L is a lower-triangular
matrix with 1’s on its main diagonal and U is an upper-triangular matrix.

166    ◾    Computing﻿

Then, instead of solving Ax = b, we have LUx = b, which can now be com-
puted in two steps. First, using forward substitution, we obtain a vector y,
where Ly = b, and next we use backward substitution to get x, where Ux = y.
In both cases, i.e., solving for y and then for x, the computations are per-
formed in O(n2) steps (See Chapter 26). Of course, the initial decomposi-
tion of A into LU itself does require O(n3) steps, which is also the running
time of Gaussian elimination. It is easy to see that if we need to solve Ax =
b multiple times for different b’s, then the LU decomposition approach is
computationally more efficient than a repeated use of Gaussian elimina-
tion. Several methods can be used to perform the actual factorization of A;
the most popular of these is Doolittle’s algorithm, but we will not present
its details here.

Example 19.1

Solve Ax = LUx = b.
Let

	 A
x
x
x

=
−

− −
− −















=
















=
−1 2 1

2 5 3
1 3 0

1

2

3

, ,x b
11

5
2−















.

Then the equation Ax = b is

	
1 2 1
2 5 3
1 3 0

1
5
2

1

2

3

−
− −
− −






























=

−

−






x
x
x










and the matrices L and U are

	 L U= −
−















=
−

−
−















1 0 0
2 1 0
1 1 1

1 2 1
0 1 1
0 0 2

,
.

The solution for y is y1 = –1, y2 = 3, and y3 = –6; the final solution for x
is x1 = 2, x2 = 0, and x3 = 3.

Numerical Methods    ◾    167  

For better accuracy of the solution, as well as the computational time
required to obtain it in the first place, other decomposition methods
(e.g., QR), or even iterative approaches, such as the methods of Jacobi
iteration or successive overrelaxation, may also be used.

In case of a nonlinear function of a single variable, e.g., f(x) = y, there
are a number of iterative methods that may be used to compute the solu-
tion. The most basic and intuitive method is that of bisection. The bisection
method is a root-finding algorithm that repeatedly halves the remaining
interval, that is being bracketed by a and b, and then selects the subinterval
(in which a root must lie) for further computation. Its convergence is linear,
which is relatively slow; however, it is guaranteed to come up with a solu-
tion if the initial interval contained it and the function was continuous.

A bracketing method of false position or regula falsi has all of the
advantages of the bisection method; i.e., it is guaranteed to converge, but
its convergence to an answer is much quicker. For two bracketing points
a and b, instead of finding their midpoint as the next bracket point, this
method computes the next point, say c, to be the intersection (with the
x-axis) of the line between f(a) and f(b). Depending on the value of f(c),
the new point then replaces either a or b as the bracket. The convergence
of regula falsi is said to be superlinear. The invention of this method has
been credited to Indian mathematicians (ca. 200 BC), although it had been
mentioned in Chinese books dated from 200 BC. Fibonacci also mentions
this method in his 1202 book Liber Abaci (The Book of Calculation), in
which Europe was introduced to Arabic numerals (and these, themselves,
apparently came from India as well; see Chapter 9).

If a function is continuous and its derivative is known, then a quadrati-
cally convergent approach, called Newton’s (Newton–Raphson) method
is most useful for finding its zeroes. Sir Isaac Newton (1643–1727) was an
English mathematician and physicist who is widely recognized as one of
the most influential scholars in the history of mankind. His many contri-
butions to science include mathematics, including the invention of infini-
tesimal calculus, which he shares with German mathematician Gottfried
Leibniz; physics, in particular, for what are now known as Newton’s
three laws of motion; astronomy; philosophy; and many others. Newton
described his method in De analysi per aequationes numero terminorum
infinitas (1669), but that was not published until 1711. Newton’s method,
as such, was first described in 1685 in John Wallis’s (1616–1703) book
A Treatise of Algebra Both Historical and Practical.

168    ◾    Computing﻿

Newton’s method is defined by one of the best-known equations in
numerical analysis, and perhaps in all of mathematics [3]:

	 x = x f x
f xi i

i

i
+ − ()

′()1 .

This method often converges remarkably quickly, especially if the itera-
tion begins sufficiently close to the solution, i.e., within what is known as the
radius of attraction. However, if the initial guess for the solution is far from
the actual root, or if at any point during the iteration the derivative is close to
zero, and in several other instances, Newton’s method can, in fact, diverge,
or it may simply oscillate around the final answer. Over the years, many
mathematicians have proposed numerous modifications and improvements
to Newton’s method in order to address these and other problems.

Example 19.2

Below is the numerical computation of 2 by Newton’s method.
Since 2 is the positive root of f (x) = x2 – 2 = 0, we have f ′(x) = 2x.

Let the initial approximation of the root be x0 = 2. Newton’s iterative
computation is as follows:

	 x1 = 2 – f (2)/f ′(2) = 2 – (4 – 2)/4 = 1.5

	 x2 = 1.5 – f (1.5)/f ′ (1.5) = 1.5 – (1.52 – 2)/3 ≈ 1.4166667

	 x3 = 1.4166667 – f (1.4166667)/f ′ (1.4166667) ≈ 1.4142156
	 x4 = 1.4142156 – f (1.4142156)/f ′ (1.4142156) ≈ 1.4142135.

The fundamental idea of the method is as follows: one starts with an
initial guess, say x0, which is hopefully close to the solution. The function
then is approximated by its tangent line—hence the need to know its deriva-
tive, and the x-intercept point of this tangent line is determined. This point
now becomes an improved approximation for the solution. The process con-
tinues until a sufficiently good solution is obtained. If the derivative of the
function is not known, it may be computationally approximated (at each
point of the iteration), in which case this would become the secant method.

Numerical Methods    ◾    169  

However, Newton’s original description (of what is now known as
Newton’s method) was not in the iterative form as defined in the above
equation. Newton applied his method only to the polynomials, and he did
not present it as iterations over successive approximations. He approxi-
mated the function itself with polynomials, and only as the final step did
he arrive at an approximation for the actual solution, i.e., the root or zero.
One might argue that the method (in its original presentation) was, per se,
not iterative.

Newton’s method was found to have applications as early as in the
17th century. For example, Japanese mathematician Seki Takakazu-Kōwa
(1642–1708), also known as Japan’s Newton [4], used this method to solve
equations that came up in his astronomy computations. Since then, count-
less mathematicians, physicists, engineers, and other scientists have used
it to solve problems in their respective areas.

The person who is perhaps best known for modifying Newton’s method
to use it for finding successively (iteratively) better approximations to
the zeroes of functions was an English mathematician, Joseph Raphson
(1648–1715). His approach was also an algebraic method, and it was
restricted only to polynomials. However, Raphson’s method was iterative,
in that a sequence of successive approximations to the solution was being
constructed, as opposed to Newton’s sequence of polynomials, which
were approximating only the function itself. In 1740, Thomas Simpson
(1710–1761) reformulated Newton’s method as an iterative approach for
solving general nonlinear equations. It is the formulation by Simpson that
is now known as Newton’s method.

Arthur Cayley (1821–1895) was first to notice difficulties in generaliz-
ing Newton’s method to complex roots of polynomials of higher degree.
Newton’s method can be extended to solve systems of (nonlinear) equa-
tions. In the 1940s, Leonid Kantorovich (1912–1986) gave the necessary
and sufficient conditions for the Newton method to converge to a solu-
tion. Kantorovich, a Soviet mathematician, is best known for his work on
resource allocation problems, invention of linear programming, and for
receiving the 1975 Nobel Prize in Economics for his work. Unfortunately,
the process of verifying Kantorovich’s conditions appears to be just as hard
as the computation of the solution itself; therefore, most Newton-type
procedures usually do not check for them.

Newton’s method was generalized by Mieczysław Altman (1916–1997),
a Polish-American mathematician, in “A Generalization of Newton’s
Method” [5]. Later, Altman came up with the method of contractors, which

170    ◾    Computing﻿

formed a basis for a unified theory encompassing a large class of itera-
tive numerical methods, including successive approximations, Newton,
Newton–Kantorovich, Newton–Altman, as well as steepest descent and
other gradient-type methods. This work is described in his book Contractors
and Contractor Directions Theory and Applications: A New Approach to
Solving Equations [6].

19.3 � MODERN NUMERICAL ANALYSIS
AND ITS PROBLEM DOMAINS

Modern numerical analysis [2] includes the design, convergence rate esti-
mation, error analysis, and stability of the various numerical methods
that are being proposed. In general, such analyses are independent of the
computer on which they are to be applied. In some instances, however,
issues such as word size and floating-point accuracy cannot be ignored,
especially if a specific family of methods is being analyzed for a particular
class of computers. The ever-increasing size and mathematical complex-
ity of models in physics, engineering, and other domains necessitated the
need for a formal approach for analyzing and evaluating the numerical
methods that were being programmed to solve these problems.

Although there have been many papers on the subject prior to the
1940s, modern numerical analysis is said to have started in the late 1940s
in parallel with the construction of the first programmable electronic
computers. John von Neumann’s (1903–1957) and Herman Goldstine’s
(1913–2004) “Numerical Inverting of Matrices of High Order” paper in
the Bulletin of the AMS (1947) was one of the first to discuss some of the
issues in mathematical and error analyses in the context of solving large
problems on a computer. Von Neumann, a Hungarian-American math-
ematician, is credited with many inventions in mathematics and econom-
ics, such as game theory and the design and architecture of modern-day
computers. Today, a vast majority of computers have what is known as
Von Neumann architecture, in which computers store their programs
(and data) in memory and have a program counter pointing to the next
instruction about to be executed. Goldstine was an American expert
in ballistic computations and was one of the first Electronic Numerical
Integrator and Computer (ENIAC) programmers.

Numerical methods are often used to solve various optimization prob-
lems, where the best operational configurations for models, which are often
represented by nonlinear functions, must be computed. Usually, these
optimization problems are constrained in that the allowable solutions can

Numerical Methods    ◾    171  

only come from some bounded domain. Of course, from a computational
standpoint, these restrictions can only make the problem more difficult.
The calculation of an optimal solution is not, by any means, restricted
to finding the zeroes of functions or their derivatives. Many problems,
e.g., modeling and the optimization of the flow of messages on the Internet,
simply do not have a closed-form functional representation. In such cases,
various approximation schemes may be used, including self-adaptive ones,
which may adjust the model if the predicted behavior is not in line with the
actual one being observed.

Numerical analysis includes other classes of computational methods.
For example, given a set of data points, how could one predict the value
of a function between any two measurements? This problem is called
interpolation, and it has numerous applications in sciences, business, and
industry. If the number of points is small, one may use a polynomial to
represent the predicted value of a given function. Otherwise, piecewise
low-degree polynomial or trigonometric functions, called splines, are pref-
erable. Numerical methods for the approximation of integrals and deriva-
tives of functions are often based on interpolation. Simpson’s rule (named
after Thomas Simpson; see the previous section) is one of the simpler
interpolation-based methods that may be used to compute an area under a
curve (i.e., integrate).

The problem of extrapolation, or prediction of a value of a function
outside the measured range, is, from the mathematical as well as compu-
tational standpoint, much more difficult. Even from a purely philosophi-
cal point of view, there cannot exist a foolproof method for extrapolation,
because if one did exist, we could all use it to predict the future prices in
the stock market and everyone would become rich.

The mathematical modeling of physical systems is often accomplished
with various forms of (partial) differential and integral equations.
Obtaining solutions to these problems is inherently computational and
requires well-designed and stable methods. Numerical methods that may
be used for solving ordinary or partial differential equations include the
Runge–Kutta, predictor-corrector, finite difference, finite volume, and finite
element methods. These, however, are but a few examples of what is a vast
number of methods in this area.

The computation of eigenvalues and eigenvectors of matrices, i.e., deter-
mination of the real and complex roots of their characteristic polynomial,
is yet another area for which numerical methods have been developed. The
power method, Jacobi’s, Householder’s, and the QL method (latter two for

172    ◾    Computing﻿

symmetric matrices, which often arise in solving differential equations)
may be used for this purpose.

Numerical methods are being applied to address problems in areas as
diverse as weather prediction, aircraft design, medical imaging, quantum
mechanics, structural engineering, system simulation, and stock market
analysis. Today, these methods are implemented on computers whose task
it is to perform the necessary calculations.

REFERENCES
	 1.	 Numerical Methods, http://www. numericalmathematics.com/numerical_

mrthods.html.
	 2.	 Wikipedia, Numerical Analysis, http://en.wikipedia.org/wiki/Numerical_

methods.
	 3.	 Wikipedia, Newton’s Method, http://en.wikipedia.org/wiki/Newton%27s_

method.
	 4.	 Wikipedia, Seki Takakazu, http://en.wikipedia.org/wiki/Seki_Tadaki_Takakazu.
	 5.	 M. Altman, A Generalization of Newton’s Method, Bull. Acad. Polon. Sci., 3,

1955.
	 6.	 M. Altman, Contractors and Contractor Directions Theory and Applications:

A New Approach to Solving Equations, Marcel Dekker, New York, 1977.

173

C h a p t e r 20

Modular Arithmetic

20.1 � CLOCK ARITHMETIC
For addition, subtraction, and multiplication, the result of any of these
operations of two integers is also an integer. On the other hand, for a pair
of integers, the result of dividing one integer by the other is not necessarily
an integer. That is, the set of integers is closed under addition, subtrac-
tion, and multiplication, but not under division. However, any of the set
of rational numbers, the set of real numbers, and the set of complex num-
bers is closed under addition, subtraction, and multiplication, as well as
division (when dividing by any nonzero element).

For any finite set of integers except for the set consisting of just 0, the
set is not closed under any ordinary addition, subtraction, multiplication,
and division. People in ancient civilizations devised clock arithmetic on
a finite set of integers, which is closed under addition, subtraction, and
multiplication. It is an arithmetic system for the set of integers {1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12}, where numbers wrap around after they reach 12.
This kind of arithmetic is called modular arithmetic. The introduction of
the first clock began with ancient astronomers noticing the phenomenon
of the rising and setting of the sun. The clock arithmetic became known
about 5000 years ago when Middle East and North Africa civilizations
made the earliest clock to enhance their calendars. Historically, units of
time in many civilizations are duodecimal (a positional notation number
system of base-12). There are 12 months in a year, and the Babylonians had
12 hours in a day (at some point this was changed to 24 hours) [4].

174    ◾    Computing﻿

In the case of clock arithmetic with modulo 12, 12 o’clock is equiv-
alent to 0 o’clock. Clock arithmetic on {1, 2, …, 12} is isomorphic to
clock arithmetic on Z12 = {0, 1, 2, …, 11}. More generally, arithmetic of
modulo m can be defined on the set of integers Zm = {0, 1, 2, …, m–1}. For
clock arithmetic with modulo m, any integer a is congruent to a ± km
for any integer k. This relation is denoted by a ≡ ma + km, or a ≡ a + km
(modulo m). Equivalently, if a–b is evenly divisible by m, we say that a is
congruent to b (modulo m). Although in general clock arithmetic is not
closed under division, if m is a prime number, then clock arithmetic with
modulo m is closed under division (dividing by the nonzero element)
as well. In other words, if m is a prime number, then for any nonzero
element a in Zm, the inverse of a (modulo m) exists, and it is denoted
by a–1 (modulo m) or 1/a (modulo m).

Example 20.1

For the 12-hour clock, the day is divided into two 12-hour periods.
If the time is 5 o’clock in the morning, then 8 hours later it will be
1 o’clock in the afternoon. Since 5 + 8 = 13 ≡ 1 (modulo 12), we may
say that it will be 13 o’clock.

Suppose that a man drives on a highway. He drove 5 hours and
arrived at 2 o’clock in the afternoon. Then he started driving on the
highway at 9 o’clock in the morning, since 2–5 = –3 ≡–3 + 12 = 9
(modulo 12).

Suppose that a worker starts five jobs sequentially at 4 o’clock in
the morning. He spends 3 hours to complete one job. If he works
without any rest until he finishes all the jobs, then he will finish
all the jobs at 7 o’clock in the evening. Since 4 + 5 × 3 = 19 ≡ 7
(modulo 12), we may say that he will finish all the jobs at 19 o’clock
or 7 p.m.

Example 20.2

Let Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and
Saturday correspond to 0, 1, 2, 3, 4, 5, and 6, respectively. We can
calculate a day of the week by clock arithmetic with modulo 7.
Suppose we know that May 2, 2012, is Wednesday. We can calculate
that May 25, 2012, is Friday by 3 + (25 – 2) = 26 ≡ 5 (modulo 7).

Modular Arithmetic    ◾    175  

Example 20.3

In the addition of modulo 2 arithmetic, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1,
and 1 + 1 = 0. This addition can be realized by the exclusive OR gate.
It is equivalent to a logical formula (¬x∧y)∨(x∧¬y) if true and false
correspond to 1 and 0, respectively.

Example 20.4

For clock arithmetic with modulo 5, the inverses of 1, 2, 3, and 4 are
1, 3, 2, and 4, respectively. Notice that 1 × 1 = 1, 2 × 3 = 6 ≡ 1, 3 × 2
= 6 ≡ 1, and 4 × 4 = 16 ≡ 1 (modulo 5). In general, if m is a prime
number, then Zm is also closed under division (dividing by any non-
zero element).

As described in Chapter 7, in ancient cryptography, modular arithmetic
was used implicitly. For example, according to Caesar cipher, each letter α
in a plaintext is encoded as α + 3 (modulo 26), and each letter β in a cipher-
text is decrypted as β–3 (modulo 26), where letters A to Z correspond to 0
to 25, respectively.

20.2 � CHINESE REMAINDER THEOREM
Not much is known about the origin of an old Chinese text on mathematics,
Sunzi Suanjing. It is greatly believed that the book was completed around
400 AD. It consists of three chapters. The first chapter describes measuring
systems using counting rods, and methods for calculating multiplication,
division, and square roots. The second and third chapters consist of prob-
lems (28 and 36, respectively) concerning fractions, areas, volumes, and
others [8]. These problems are rather easier than the problems in another
ancient text, Nine Chapters on Mathematical Art (its origin is believed to
be in first century BC or first century AD in China) [9]. However, one
problem (problem 26 in Chapter 3) in the Sunzi Suanjing is particularly
interesting. It is as follows:

Suppose we have an unknown number of objects. When we continue
counting in threes, 2 objects are left over, when we continue count-
ing in fives, 3 objects are left over, and when we continue counting
in sevens, 2 objects are left over. How many objects are there?

176    ◾    Computing﻿

The problem above is typically modular arithmetic. That is, it can be
equivalently described as follows:

There is a number. If it is divided by 3, then the remainder is 2; if it
is divided by 5, then the remainder is 3; and if it is divided by 7, then
the remainder is 2. What is the number?

A Swiss mathematician, Leonhard Euler (1707–1783), was a pioneer of
the modern approach to modular arithmetic. He introduced the idea of
being congruent to an integer in 1750. Modular arithmetic was further
advanced by Johann Carl Friedrich Gauss (1777–1855) in his book Disquisi-
tiones Arithmeticae, published in 1801. The problem in Sunzi Suanjing can
be described in a modern mathematical form by introducing a congruence
relation as the following simultaneous congruence equations:

	 x ≡ 2 (modulo 3)

	 x ≡ 3 (modulo 5)

	 x ≡ 2 (modulo 7).

The solution to the simultaneous equations above is x = 23 + 105k for
any nonnegative integer k, and its smallest solution is 23. Equivalently,
we can say that x is a solution to the simultaneous congruence equations
above if and only if x ≡ 23 (modulo 105). The Chinese remainder theorem
is a generalization of the problem in Sunzi Suanjing. The general solution
to the problem was given by Gauss in 1800. A modern statement of the
Chinese remainder theorem in algebraic language is as follows:

The Chinese remainder theorem is really a method of solving
certain systems of simultaneous congruence equations. Suppose
that m1, …, mr are pairwise relatively prime positive integers, and
that a1, …, ar are integers. Consider the following system of simul-
taneous congruence equations:

	 x ≡ a1 (modulo m1)

	 x ≡ a2 (modulo m2)
	 .
	 .
	 .

	 x ≡ ar (modulo mr)

Modular Arithmetic    ◾    177  

The Chinese remainder theorem asserts that this system has a unique
solution modulo M = m1 × m2 × … × mr. For 1 ≤ i ≤ r, define Mi = M/mi. The
following theorem describes an efficient algorithm for solving systems of
simultaneous congruence equations [1]. Note that Mi and mi are relatively
prime, and the inverse of Mi (modulo mi) exists (1 ≤ i ≤ r). The inverse can
be efficiently calculated by a variation of Euclidean algorithm (it is called
extended Euclidean algorithm [2]).

Theorem 20.1 (Chinese remainder theorem)

Suppose that m1, …, mr are pairwise relatively prime positive integers.
Then the system of r congruence equations x ≡ ai (modulo mi) (1 ≤ i ≤ r)
has a unique solution modulo M = m1×…×mr, which is given by

	 x = a1M1y1 + a2M2y2 + … arMryr (modulo M)

	 where Mi = M/mi, and yi = Mi
–1 (modulo mi), for 1 ≤ i ≤ r.

Example 20.5

For the problem in the Sunzi Suanjing (x ≡ 2 (modulo 3), x ≡ 3
(modulo 5), x ≡ 2 (modulo 7)), a1 = 2, a2 = 3, a3 = 2, m1 = 3, m2 = 5,
m3 = 7, M = 3 × 5 × 7 = 105, M1 = 105/3 = 35, M2 = 105/5 = 21, and M3
= 105/7 = 15. Then M1

–1 ≡ y1 ≡ 35–1 ≡ 2 (modulo 3), M2
–1 ≡ y2 ≡ 21–1 ≡ 1

(modulo 5), and M3
–1 ≡ y3 ≡ 15–1 ≡ 1 (modulo 7). From the Chinese

remainder theorem the solution to the problem is 2 × 35 × 2 + 3 ×
21 × 1 + 2 × 15 × 1 ≡ 23 (modulo 105).

Modular arithmetic was also described by Indian mathematicians in
the 6th and 7th centuries and a European mathematician in the 13th
century. An algorithm for solving the Chinese remainder theorem was
given by Aryabhata (476–550) [3, 10]. Special cases of the Chinese remain-
der theorem were given by Brahmagupta (596–668) [11], and in the book
Liber Abaci in 1202 [7].

The following problem was originally given by Brahmagupta, known as
Brahma’s correct system or the egg-woman problem (the solution to this
problem is 301):

178    ◾    Computing﻿

An old woman went to a market and was selling eggs from her
basket. A horse stepped on her basket and crushed the eggs. The
rider offered to pay for the damage and asked her, “How many eggs
were there in the basket?” She did not remember the exact number
of eggs, but when she had taken them out two at a time there was
one egg left. The same happened to the remainder when she had
taken them out three, four, five, and six at a time, but when she had
taken them out seven at a time they came out even. What is the
smallest number of eggs she could have had in her basket?

The same problem is also given in Fibonacci’s Liber Abaci. The follow-
ing is quoted from the English translation of Liber Abaci by L. E. Sigler [7]:

There is a number which when divided by 2, or 3, or 4, or 5, or 6,
always has a remainder 1, and it is truly integrally divisible by 7.
It is sought what is the number.

Maarten Bullynck conjectures possible routes of how the Chinese
remainder problem reached Europe in his paper [6]. The following is
quoted from his paper [6]:

In continental Europe, remainder problems show up for the first
time in medieval manuscripts on calculation, perhaps through the
mediation of Italian merchants returning from China, perhaps
through Arabic translations of Indian sources.

20.3 � FERMAT’S LITTLE THEOREM
Pierre de Fermat (1601–1665) has been called the greatest amateur mathema
tician [5]. He communicated mathematical discoveries in numerous
letters, usually without proof to his friends. However, he became one of
the best mathematicians in his century. Fermat was a pioneer in several
areas of mathematics.

One of the theorems discovered by Fermat states that if p is a prime,
then for any integer a, ap –a will be eventually divided by p. This can be
expressed in modular arithmetic notation as follows:

	 ap ≡ a (modulo p).

Modular Arithmetic    ◾    179  

A variant of this theorem is stated in the following form: if p is a prime,
and a and p are relatively prime, then the multiplicative order of a is
p – 1. Hence,

	 ap–1 ≡ 1 (modulo p).

This theorem was stated in a letter to his friend in 1640. He did not
prove it, but added the following statement [12]: “This proposition is gen-
erally true for all progression and for all primes. I would send you its proof
if I were not afraid to be too long.”

We call this theorem Fermat’s little theorem, after an English mathema-
tician, James Joseph Sylvester (1814–1897), who called it by the name to
distinguish it from Fermat’s last theorem. Euler first published a proof of
Fermat’s little theorem in 1736, but Gottfried Wilhelm Leibniz (1646–1716)
rediscovered and proved the same result in unpublished notes in 1683. The
proof by Leibniz is virtually the same as the proof by Euler.

Euler’s phi function, φ(n), is an arithmetic function that counts the num-
ber of positive integers less than n and relatively prime to n. Euler intro-
duced this function in 1760. The standard notation φ(n) is from Gauss’s
paper “Disquisitiones Arithmeticae” in 1801. For a prime number p,
φ(p) = p–1, and for the product of two distinct primes p and q, φ(p × q)
= (p–1)(q–1). Let Zn* be the set of elements that are relatively prime to n
and in Zn. For example, Z6 = {0, 1, 2, 3, 4, 5} and Z6* = {1, 5}. The following
theorem is a variation of Fermat’s little theorem. It is more general than
the original Fermat’s little theorem [12].

Theorem 20.2

If a is in Zn*, then aφ(n) ≡ 1 (modulo n).

Fermat’s little theorem and its variations play a crucial role in primal-
ity testing, and the factorization of polynomials and integers. As we will
describe in Chapter 30, these testing algorithms are particularly useful in
modern cryptography.

REFERENCES
	 1.	 D. E. Knuth, Seminumerical Algorithms (The Art of Computer Programming

(vol. 2, 2nd ed.), Addison Wesley, Reading, MA, 1981.
	 2.	 D. R. Stinson, Cryptography: Theory and Practice, CRC Press, New York, 1995.

180    ◾    Computing﻿

	 3.	 T. R. N. Rao and Chung-Huang Yang, Modular Arithmetic: From Ancient
India to Public-Key Cryptography, Technical Report, University of Louisiana
at Lafayette, 2006.

	 4.	 Wikipedia, Modular Arithmetic, http://en.wikipedia.org/wiki/Modular_
arithmetic.

	 5.	 J. von zur Gathen and J. Gerhard, Modern Computer Algebra (2nd ed.),
Cambridge University Press, Cambridge, UK, 2003.

	 6.	 M. Bullynck, Modular Arithmetic before C. F. Gauss: Systematizations and
Discussions on Remainder Problems in 18th Century Germany, Historia
Mathematica, 36(1), 48–72, 2009.

	 7.	 L. E. Sigler, Fibonacci’s Liber Abaci: Leonardo Pisano’s Book of Calculation
(English translation of Liber Abaci, 1202), Springer, New York, 2002.

	 8.	 Lay Yong Lam and Tian Se Ang, Tracing the Conception of Arithmetic and
Algebra in Ancient China, World Scientific Publication, Singapore, 2004.

	 9.	 Wikipedia, The Nine Chapters on the Mathematical Art, http://en.wikipedia.
org/wiki/The_Nine_Chapters_on_the_MathematicalArt.

	 10.	 Wikipedia, Aryabhata, http://en.wikipedia.org/wiki/Aryabhata.
	 11.	 Wikipedia, Brahmagupta, http://en.wikipedia.org/wiki/Brahmagupta.
	 12.	 Wikipedia, Fermat’s Little Theorem, http://en.wikipedia.org/wiki/Fermat’s_

little_theorem.

181

C h a p t e r 21

Cybernetics and
Information Theory

21.1 � NORBERT WIENER AND CYBERNETICS
Norbert Wiener (1894–1964) studied mathematics at Tufts College from
1906 to 1909, zoology at Harvard University from 1909 to 1910, and phi-
losophy at Cornell University from 1910 to 1911. Then, he returned to
Harvard University, while continuing his philosophy studies. Wiener had
been interested in the scientific method for a long time. He was a partici-
pant in a Harvard seminar run by Josia Royce (1855–1916) between 1911
and 1913. Harvard University awarded Wiener a Ph.D. in 1912, when he
was 18 years old, for his dissertation on mathematical logic [10].

In 1914, Wiener traveled to Europe, where he studied under the guid-
ance of Bertrand Russell (1872–1979) and G. H. Hardy (1877–1947) at
Cambridge University, and David Hilbert (1862–1943) and Edmund
Landau (1877–1938) at the University of Göttingen. During 1915–1916, he
taught philosophy at Harvard University, and then worked as an engi-
neer for General Electric Co. In 1926, Wiener returned to Europe, and
spent most of his time at Göttingen and at Cambridge, where he worked
on Brownian motion, Fourier integrals, the Dirichlet problem, harmonic
analysis, and Tauberian theorems.

In the 1940s, during and after World War II, Wiener and Arturo
Rosenblueth (1900–1970) of the Harvard Medical School conducted a
monthly series of discussion meetings on the scientific method. The par-
ticipants were mostly young scientists from Harvard Medical School.

182    ◾    Computing﻿

Wiener played a key role in the entire field of the theory of control and
communication in machines and animals in this series of meetings.
Rosenblueth’s return to Mexico in 1944 and the general confusion after
World War II ended this series of meetings [1].

During World War II, Wiener also worked on guided missile technol-
ogy, and studied how sophisticated electronics used the feedback prin-
ciple. He noticed that feedback is a key feature of life-forms, from the
simplest plants to the most complex animals, changing their actions in
response to stimuli from their environment. Wiener developed this con-
cept into the field of cybernetics, concerning the combination of animals
and machines. In a related work, Wiener investigated information theory
independently of Claude E. Shannon (1916–2001), and invented what is
now known as the Wiener filter. The Wiener filter is a statistically designed
filter to reduce the amount of noise present in a signal. The equivalent
filter was also derived independently in 1941 by Russian mathematician
Andrey Nikolaevich Kolmogorov (1903–1987). Their theory is often called
the Wiener–Kolmogorov filter theory.

In 1948, Wiener published a book representing the outcome, after more
than a decade, of research undertaken jointly with Rosenblueth at Harvard
Medical School. He coined the word cybernetics with its current meaning,
as defined in the title of his book Cybernetics or Control and Communication
in the Animal and the Machine [1, 10]. The term cybernetics stems from the
Greek word kybernetes that means “steersman, governor, pilot, or rudder.”
The book Cybernetics discusses Newtonian and Bergsonian time; groups and
statistic machines; time series, information, and communication; feedback
and oscillation; computer machines and nervous systems; gestalt and uni-
versals; cybernetics and psychopathology; and information, languages, and
society. In the second edition of the book, published in 1961, Wiener added
supplemental chapters on learning and self-reproducing machines and on
brain waves and self-organizing systems.

Cybernetics is a broad field of science and technology. The essential goal
of cybernetics is to understand and define the functions and processes of
systems with feedback loops. British scientist Stafford Beer (1926–2002)
called cybernetics the science of effective organization, and another British
scientist, Gordon Pask (1928–1996), extended it to include information
flow in all media, from stars to brains. It includes the study of feedback,
black boxes, and derives concepts such as communication and control in
living organisms and machines. French mathematician and computer sci-
entist Louis Couffignal (1902–1966) characterized cybernetics as the art

Cybernetics and Information Theory    ◾    183  

of ensuring the efficiency of actions. American mathematician and com-
puter scientist Louis Kauffman (1945–) proposed that “cybernetics is the
study of systems and processes that interact with themselves and produce
themselves from themselves.” [9] Concepts studied by cyberneticists also
include learning, cognition, and adaptive theory. Other fields influenced
by cybernetics include, but are not limited to, game theory, system theory,
psychology, neurology, brain science, and anthropology.

21.2 � SHANNON’S INFORMATION THEORY
Claude E. Shannon (1916–2001) is the celebrated Father of Information
Theory. He graduated from MIT with an M.S. in electrical engineering
in 1937 and a Ph.D. in mathematics in 1940. He later became a research
fellow at the Institute for Advanced Study at Princeton University and
joined Bell Laboratories in 1941 [2, 7, 8].

During World War II, Shannon was employed by Bell Laboratories,
working on top-secret defense projects in cryptography. His team worked
on antiaircraft devices that observe enemy planes or missiles and calculate
the trajectories of intercepting missiles. In an early paper, Shannon acknowl-
edged the profound influence he received from Harry Nyquist (1889–1976)
and R. V. L. Hartley (1888–1970), who were pioneers and fundamental con-
tributors to data transmissions. In 1943, Shannon met British cryptanalyst
and mathematician Alan M. Turing. Shannon was interested in speech
encryption, and developed its binary encoding system. In 1945, it occurred
to Shannon that the problem of smoothing the data in firing control could
be formally treated with some analogy to the problem of separating a signal
from interfering noise in communication systems. His work during World
War II is closely related to his later publications on communication theory.

In 1948, Shannon’s brilliant memorandum appeared as “A Mathematical
Theory of Communication” in two parts in the issues of the Bell System
Technical Journal in 1948 and 1949 [3, 4]. The Mathematical Theory of
Communication, a book coauthored with Warren Weaver (1894–1978) [5],
was published in 1949 as reprints of Shannon’s articles and Weaver’s
memorandum on communication theory. Shannon’s paper focuses on the
problem of how best to encode the information that a sender wants to
transmit [5]. In his revolutionary paper, Shannon introduced a quantita-
tive model of communication as a statistical process underlying informa-
tion theory. If a message specifies one from a set of n possible messages,
according to Shannon’s theory, the quantity of the message is defined as
log2 n binary digits (briefly bits). Equivalently, if the probability that the

184    ◾    Computing﻿

message specifies a fact is p = 1/n, then the information of the message is
–log2 p = log2 n bits. The word bit was first introduced by John W. Tukey
(1915–2000) while he worked with John von Neumann on early computer
designs. As Shannon described in his article, the logarithmic measure on
messages is the most natural choice for the following reasons:

	 1.	Parameters of engineering importance, such as time, bandwidth,
number of relays, etc., tend to vary linearly with the logarithm of the
number of possibilities.

	 2.	It is natural to our intuitive feeling as the proper measure. For exam-
ple, two punched cards should have twice the information capacity
of one card, and two identical channels should have twice the infor-
mation transmitting capacity.

	 3.	Many of the limiting operations are simple in terms of the logarithm but
would require clumsy restatement in terms of the number of possibilities.

Shannon showed how information could be quantified with absolute
precision. Telephone signals, texts, radio waves, and television pictures
could be encoded in bits. The channel capacity of a communication line
could be precisely measured in bits. In his fundamental work, he used
tools in probability theory, developed by Norbert Wiener and others,
and applied them to communication theory. The revolutionary idea by
Shannon was promptly adopted by communication and computer engi-
neers. His theory has been widely used to measure computer storage in
bits, needed for pictures, voices, and other types of data.

In his article, Shannon represented a discrete information source as a
stochastic process. He defined a quantity that would measure how much
information is produced by such a process and at what rate this infor-
mation is produced. Suppose a set of possible events whose probabilities
of occurrence are p p pn1 2, , ,� . In the case where these probabilities are
known, Shannon introduced a measure called entropy:

	 H p p pn(, , ,)1 2 � ,

indicating how much certainty is involved in the selection of the event or
how uncertain we are of the outcome. The entropy of the system is defined
to be as follows (See Figure 21.1):

	 H p p p p p p p p pn n n(, , ,) (log log log)1 2 1 2 1 2 2 2 2� �= − + + + .

Cybernetics and Information Theory    ◾    185  

As Shannon describes in his paper, it is reasonable to require
H p p pn(, , ,)1 2 � possessing the following properties:

	 1.	H should be continuous in pi (for each i).

	 2.	 If all pi are equal, pi = 1/n, then H should be a monotonic function
of n. With equally likely events there is more choice, or uncertainty,
when there are more possible events.

	 3.	 If a choice is broken down into two successive choices, the original H
should be the weighted sum of the individual values of H.

According to the definition of Shannon entropy, a single toss of a fair
coin has entropy of 1 bit. Two tosses have entropy of 2 bits. The entropy
rate for the coin is 1 bit per toss. However, if the coin is not fair, then
the uncertainty is lower, and thus Shannon entropy is lower. A series of
tosses of a two-headed coin will have zero entropy since the outcomes are
entirely predictable.

The word entropy in information theory came from the close resem-
blance between Shannon’s formula and the known formula for thermo-
dynamics [6]. In statistical thermodynamics, the most general formula for
thermodynamics entropy is given as follows:

	 − + + + +KB(log log log)p p p p p pe e i e i1 1 2 2 � � .

1.1
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.2 0.4 0.6 0.8 1

H
(p

,1
 –

 p
)

p

FIGURE 21.1  The entropy of a single coin toss with probabilities (p, 1–p).

186    ◾    Computing﻿

where KB is the Boltzmann constant, and each pi is the probability of a
microstate. This formula was given by Josiah Willard Gibbs (1839–1903)
in 1878 and is called Gibbs entropy.

21.3 � SHANNON–FANO CODING AND HUFFMAN CODING
An efficient coding technique of messages was proposed in Shannon’s paper
in 1948. Robert Mario Fano (1917–) developed Shannon’s method and pub-
lished it as a technical report [11]. It is a technique for constructing a code
based on a set of symbols and their estimated probabilities, and was named
Shannon–Fano coding. Here, the set of symbols is divided into two sets whose
total probabilities are as close as possible to being equal. Then all symbols in
the first set are assigned a 0 and all symbols in the second set are assigned a 1.
As long as any sets with more than one member remain, the same process is
repeated. When a set has been reduced to one symbol, the code generating
process is complete. In this way, the code of each symbol is determined as
successive binary digits. Note that the code of any symbol does not form
the prefix of the code of any other symbol. Shannon–Fano coding can be
more formally described via the following encoding algorithm:

Algorithm: Shannon–Fano Coding

create a table providing frequencies of symbols;
sort symbols according to frequency in descending order;
start with the entire table;
	 division:
		 seek pointer to the first and last symbols of

the segment;
		 divide the segment into two parts, both nearly

equal in sum of frequencies;
		 concatenate a binary 0 to the end of each code

word of the upper part and a binary 1 to the
end of the code word of the lower part;

		 search for the next segment containing at least
two symbols and repeat division;

coding of the symbols according to the code words
created in the table;

In general, Shannon–Fano coding does not achieve the lowest possible
code word length, but it guarantees that all code word lengths are within

Cybernetics and Information Theory    ◾    187  

1 bit of their theoretical ideal. The next example shows the construction
of Shannon–Fano coding for a small alphabet {A, B, C, D, E} as shown in
Figure 21.2.

Example 21.1

Suppose that the frequencies of each symbol of {A, B, C, D, E} are as
given in the following table:

Symbol A B C D E
Frequency 24 12 10 8 8

The set of symbols {A, B, C, D, E} is divided into two segments,
{A, B} and {C, D, E}. Then segment {A, B} is divided into {A} and {B},
and segment {C, D, E} is divided into {C} and {D, E}. Then segment
{D, E} is divided into {D} and {E}. The code word of each symbol is
given in the following table:

Symbol A B C D E
Code word 00 01 10 110 111

The average bit number per symbol is

	(2 × 24 + 2 × 12 + 2 × 10 + 3 × 8 + 3 × 8)/62 ≈ 2.258 (bits per symbol).

In 1951, Professor Robert M. Fano assigned a term paper on the prob-
lem of finding the most efficient binary coding in the information theory

{A, B, C, D, E}

{A, B} {C, D, E}

{D, E}

{A} {B} {C}

{D} {E}

62

36 26

24 12 10 16

8 8

0

00

0

1

1 1

1

00 01 10

110 111

FIGURE 21.2  An encoding by Shannon–Fano coding.

188    ◾    Computing﻿

course at MIT. David Albert Huffman (1925–1999), a Ph.D. student at that
time, started studying the problem, and eventually got the idea of using
a frequency-sorted binary tree construction. Huffman avoided the major
flaw of the suboptimal Shannon–Fano coding by constructing the tree
from the bottom up instead of from the top down. He proved the coding
method to be the minimum redundancy binary coding [12] (Figure 21.3).
The following algorithm constructs the Huffman coding:

Algorithm: Huffman Coding

create table providing frequencies of symbols;
sort symbols according to frequency in descending order;
repeat
	 search for the two nodes providing the lowest

frequencies, which have not been assigned
a parent node, and assign a parent node with
a frequency that is the sum of the two
lower elements

until all nodes are combined together in a root node;
{to generate a Huffman code word we traverse the
constructed tree from the root node to a leaf node,
outputting a 0 every time we take a left hand branch,
and a 1 every time we take a right hand branch}

62

24 38

22 16

12 10 8 8

A

B C D E
100 101 110 111

0

0

0

0

0

1

1

1

1

FIGURE 21.3  An encoding by Huffman coding.

Cybernetics and Information Theory    ◾    189  

Example 21.2

We use the same frequency table as in Example 21.1. The two lowest-
frequency symbols are E and D. These two nodes are connected first,
and their parent is created with frequency 16 (sum of frequency 8 of
E and frequency 8 of D). Next, we choose C and B and connect them.
Their parent with frequency 22 (sum of 10 and 12) is created. Then
the parent of E and D, and the parent of C and D are connected,
and their parent with frequency 38 (sum of 16 and 22) is created.
Leaf node A with frequency 24, and the parent with frequency 38
(the ancestor of B, C, D, E) are connected, and their parent with fre-
quency 62 is created. According to the constructed tree, we assign
code words to the set of symbols as shown in the following table:

Symbol Frequency Code Word Code Length Total Length
A 24 0 1 24
B 12 100 3 36
C 10 101 3 30
D 8 110 3 24
E 8 111 3 24

The average bit number per symbol is

	 (24 + 36 + 30 + 24 + 24)/62 ≈ 2.2258.

Both Shannon–Fano coding and Huffman coding are prefix codes
(sometimes called prefix-free codes). That is, the bit string represent-
ing any symbol is never a prefix of the bit string representing any other
symbol. Shannon–Fano coding does not offer the best code efficiency.
It provides a result similar to that of Huffman coding, but it will never
exceed Huffman coding.

21.4 � MORSE CODE
One important feature of Shannon–Fano coding and Huffman coding is
that the length of the code word for a symbol is approximately inversely
proportional to its frequency. More than 100 years before Shannon–Fano
coding appeared, this feature was already used in the Morse code. Samuel
F. B. Morse (1791–1872) was an American contributor to the invention
of a single-wire telegraph system and an inventor of Morse code. Morse
was born in Charlestown, Massachusetts. He went to Yale College, where
he studied religious philosophy, mathematics, and science. In 1810,

190    ◾    Computing﻿

he graduated from Yale College and became a professional painter.
In the 1930s Morse became interested in electromagnetism and devel-
oped the concept of a single-wire telegraph. In 1844, the telegraph wire
line was officially opened from Baltimore to the Capitol Building in
Washington, D.C. On May 24, 1844, Morse, in the U.S. Supreme Court
Chambers in Washington, D.C., sent by telegraph to his colleague Alfred
Vail (1807–1859) the famous words, “What hath God wrought” (What has
God worked?). In 1845 Morse, his colleagues, and a small group of inves-
tors formed the Magnetic Telegraph Company. The first commercialized
telegraph line was completed between Washington, D.C., and New York
City in the spring of 1846 [13, 14].

Alfred Vail played an important role in the invention of the Morse
code. A related code for Morse’s telegraph was originally created by Vail in
the early 1840s. This code was the forerunner of Morse code. In the 1890s
it began to be extensively used for early radio communication before it
became possible to transmit voice messages. In the late 19th and the early
20th century, most high-speed communication systems used Morse code
on telegraph lines through undersea cables or by electromagnetic waves.

Morse code is a method of transmitting textual information as a series
of on-off tones that can be understood by a skilled listener. International
Morse code encodes the Roman alphabet and the Arabic numerals as stan-
dardized sequences of short and long signals called dots and dashes. Each
character (letter or numeral) is represented by a unique sequence of dots
and dashes. The duration of a dash is three times the duration of a dot.
Each dot or dash is followed by a short silence [13]. Table 21.1 summarizes
the international Morse code:

REFERENCES
	 1.	 N. Wiener, Cybernetics or Control and Communication in the Animal and the

Machine, Hermann & Cie, Paris, 1948.
	 2.	 C. E. Shannon, A Symbolic Analysis of Relay and Switching Circuits, Transactions

of the American Institute of Electrical Engineering, 57, 713–723, 1938.
	 3.	 C. E. Shannon, A Mathematical Theory of Communication, Bell System

Technical Journal, 27, 379–423, 1948.
	 4.	 C. E. Shannon, A Mathematical Theory of Communication (Part II), Bell

System Technical Journal, 28, 623–656, 1949.
	 5.	 C. E. Shannon and W. Weaver, The Mathematical Theory of Communication,

University of Illinois Press, Champaign, 1949.
	 6.	 H. Rheingold, Tools for Thought, MIT Press, Cambridge, MA, 2000.
	 7.	 Claude Shannon, http://www.sprangle.com/steve/shannon.html.
	 8.	 Wikipedia, Shannon, http://en.wikipedia.org/wiki/Claude_Shannon.

Cybernetics and Information Theory    ◾    191  

	 9.	 Wikipedia, Cybernetics, http://en.wikipedia.org/wiki/Cybernetics.
	 10.	 Wikipedia, Norbert Wiener, http://en.wikipedia.org/wiki/Cybernetics.
	 11.	 R. M. Fano, Transmission of Information, MIT Press, Cambridge, MA, 1961.
	 12.	 D. A. Huffman, A Method for the Construction of Minimum-Redundancy

Codes, Proceedings of IRE, 40, 1098–1101, 1952.
	 13.	 Wikipedia, Morse Code, http://en.wikipedia.org/wiki/Morse_Code.
	 14.	 Wikipedia, Samuel Morse, http://en.wikipedia.org/wiki/Samuel_Morse.

TABLE 21.1  International Morse Code

A: ·  — U: ·  ·  —
B: —  ·  ·  · V: ·  ·  ·  —
C: —  ·  —  · W: ·  —  —
D: —  ·  · X: —  ·  ·  —
E: · Y: —  ·  —  —
F: ·  ·  —  · Z: —  —  ·  ·
G: —  —  ·
H: ·  ·  ·  · 1: ·  —  —  —  —
I: ·  · 2: ·  ·  —  —  —
J: ·  —  —  — 3: ·  ·  ·  —  —
K: —  ·  — 4: ·  ·  ·  ·  —
L: ·  —  ·  · 5: ·  ·  ·  ·  ·
M: —  — 6: —  ·  ·  ·  ·
N: —  · 7: —  —  ·  ·  ·
O: —  —  — 8: —  —  —  ·  ·
P: ·  —  —  · 9: —  —  —  —  ·
Q: —  —  ·  — 0: —  —  —  —  —
R: ·  —  ·
S: ·  ·  ·
T: —

193

C h a p t e r 22

Error Detecting
and Correcting Codes

22.1 � PARITY CHECK CODES
We can enjoy chats with friends even in noisy pubs. Even if we cannot
hear some sounds of words, we can usually understand each other. Since
any language has some redundancy, we can usually guess the meaning
of sentences containing some missing sounds or missing words if the
missing sounds/words are not too many, or we can ask, “Pardon me, could
you please repeat what you said?” These kinds of techniques are also useful
in data communications and data processing in digital circuits.

A parity bit in a binary code word is a bit added to ensure that the
number of bits with the value 1 in the code word is even or odd. Parity bits
are used as the simplest form of error detecting codes. If the code consists
of code words with an even (odd) number of 1’s, it is called an even (odd)
parity check code. In the case of an even (odd) parity check code, given
k bits of information, an extra bit is added so that the total number of 1’s in
a code word is even (odd). For example, in an even parity check code with
4 information bits, the addition of the parity check bit at the beginning
consists of the following 16 code words:

0: 00000 4: 10100
1: 10001 5: 00101
2: 10010 6: 00110
3: 00011 7: 10111

194    ◾    Computing﻿

8: 11000 12: 01100
9: 01001 13: 11101

10: 01010 14: 11110
11: 11011 15: 01111

Parity check codes were used on magnetic data storage, punched tape
data in data communication and processing systems in the early 1950s.
For example, on the systems sold by the British company ICL in the 1950s,
the 1-inch-wide paper tape had eight hole positions running across it, with
the eighth being reserved for a parity bit.

In the case of an even parity check code, if an odd number of bits is
changed in transmission, the message will change parity and the error can
be detected. The most common interpretation is that a parity value of 1
indicates the existence of an odd number of errors in the data, and a parity
value of 0 indicates no errors or an even number of errors in the data.

Parity checking is not robust, since if the number of bits changed is even,
the error will not be detected. Moreover, parity does not indicate which bit
contains an error, even when it can detect the existence of an error. The
data must be discarded entirely and retransmitted from the sender, when-
ever an error is detected. Consequently, on a noisy transmission medium, a
successful transmission could take a long time. However, while the quality
of parity checking is poor, this method results in the least overhead.

22.2 � HAMMING CODES
The history of error correcting codes began with the publication of famous
papers by C. E. Shannon (1948, 1949) [14, 15]. Shannon’s information
theory told us about the existence of error correcting codes, but he did
not tell us how to find such codes. Throughout the 1950s much effort was
devoted to finding explicit constructions for classes of codes that would
produce an arbitrarily small probability of error, as promised by Shannon.

The first big progress toward the construction of such codes involved
block codes, which have a strong algebraic flavor. In a block code, each
message block with m digits is encoded into a longer sequence of n digits
(n-tuple) for fixed m and n (m < n). Only certain selected n-tuples, called
code blocks or, more commonly, code words, are transmitted from the
sender. At the receiver side, a decision concerning the code word trans-
mitted from the sender is made by the nature of a best guess on the basis
of available information. With a good code, the probability of a wrong
decision may be much smaller than the probability that the original code

Error Detecting and Correcting Codes    ◾    195  

word is reproduced without an error at the receiver side. One of the earliest
error correcting block codes was introduced in 1950, when Richard Wesley
Hamming (1915–1998) described a class of single error correcting codes [5].

Hamming was an American mathematician. He received his bachelor’s
degree from the University of Chicago in 1937, a master’s degree from the
University of Nebraska in 1939, and a Ph.D. from the University of Illinois
at Urbana-Champaign in 1942 [16]. From 1946 to 1976, he worked at Bell
Laboratories, where he collaborated with Claude E. Shannon.

In his paper, Hamming explained that he was led to this topic from a
consideration that a large number of operations must be prepared without
a single error in the end result. He also described that in a digital com-
puter, a single failure usually means a complete failure, in the sense that
if it is detected, no more computing can be performed until the failure is
located and corrected. Hamming introduced a distance, or as it is usually
called, a metric, in the vector space of 2n points (i.e., 2n binary sequences
of length n, hereafter denoted by Qn). The metric is now known as the
Hamming distance, where the distance between two words is defined to
be the number of positions in which the words differ. The definition of
the Hamming distance is based on the observation that a single error in
a code word changes one coordinate (position), two errors, two coordi-
nates, and in general k errors produce differences in k coordinates. More
formally, the Hamming distance between x in Qn and y in Qn, d(x, y) is
defined by

	 i i n x yi i| ,1≤ ≤ ≠{ } ,

where x = x xn1� , y = y yn1� , and |S| is the number of elements in the set S.
A block code of length n is a subset of Qn. Let C be a block code. The

minimum distance of a code C is the smallest Hamming distance between
distinct code words in C, and it is important in determining the error
correcting capability of C. It is formally defined as

	 min{d(x, y) | x in C, y in C, and x ≠ y}.

Example 22.1

Suppose that we encode 2-bit messages into 5-bit code words as follows:

	 00 ⇔ 10101, 01 ⇔ 10010, 10 ⇔ 01110, 11 ⇔ 11111.

196    ◾    Computing﻿

This code is a block code of length 5. The code consists of four code
words, 10101, 10010, 01110, and 11111. For this code, the Hamming
distances between the specific pairs of distinct code words are:

	 d(10101, 10010) = 3,  d(10101, 01110) = 4

	 d(10101, 11111) = 2,  d(10010, 01110) = 3

	 d(10010, 11111) = 3,  d(01110, 11111) = 2.

The minimum distance of this code is 2. This code has an error
detecting capability; however, it does not have any error correct-
ing capability. For example, if the receiver receives 10111, then the
receiver cannot specify the error location, although he or she can
detect that the received word 10111 contains an error. The original
message might have been either 10101 or 11111, with the probabili-
ties of each one taking place being equal. This example shows that a
code is incapable of correcting up to t errors unless the minimum
distance of the code is at least 2t + 1.	

A systematic block code of length n is defined as a block code in which
each code word has exactly n binary digits, where m digits are associated
with the information, while the other k = n–m digits are used for error
detection and correction. This produces a redundancy R, which is defined
as the ratio of the number of binary digits used to the absolute minimum
number necessary to convey the same information (i.e., R = n/m).

Hamming constructed systematic block codes that can correct any
single-bit error. These codes are called the Hamming codes. For each k (k ≥ 2)
there exists a Hamming code of code word length n = 2k–1, where k is the
number of parity check bits and m = n–k is the number of information bits
in each code word. The minimum distance of each Hamming code is 3.
Let us consider Qn = {0, 1}n, the set of a binary sequence of length n. A block
code of length n is a subset of Qn. Now, visualize a sphere about each of the
code words of a code, each sphere with the same radius. Allow these spheres
to increase in radius by an integer amount until they cannot be made larger
without causing some spheres to intersect. The value of the radius is equal
to the number of errors that can be corrected by the code. A perfect code of
block length n is one for which there are equal-radii spheres about the code

Error Detecting and Correcting Codes    ◾    197  

words that are disjoint and that completely fill the space Qn = {0, 1}n. It is a
well-known fact that any Hamming code is a perfect code [7, 8, 12].

Example 22.2

There are 27 = 128 binary sequences of length 7. Let us consider the
following set of code words:

0000000 0001011 0010110 0011101
0100111 0101100 0110001 0111010
1000101 1001110 1010011 1011000
1100010 1101001 1110100 1111111

This set is a Hamming code of block length 23–1 = 7. The first 4
bits and the last 3 bits of each code word are information bits and
parity check bits, respectively. That is, m = 4, k = 3, and n = 23–1 = 7.
For the information bits i1, i2, i3, and i4, the parity check bits p1, p2,
and p3 are determined by the following equations:

	 p1 ≡ i1 + i2 + i3 (modulo 2)

	 p2 ≡ i2 + i3 + i4 (modulo 2)

	 p3 ≡ i1 + i3 + i4 (modulo 2).

For this Hamming code, we can encode any 4-bit message into a
7-bit code word according to the equations above. The minimum dis-
tance of this code is 3. The number of binary sequences within the
sphere of radius 1 about each code word is 1 + 7 = 8. Notice that the
number of 7-bit sequences of Hamming distance 1 from each code
word is 7. These seven binary sequences and the code word itself are the
binary sequences within the sphere of radius 1 about the code word.
These spheres are disjoint, and their union completely covers the whole
space of binary sequences of length 7, since 8 × 16 = 128. Therefore,
we can conclude that this code is a perfect code. For a received word
a1a2a3a4b1b2b3, the following (s1, s2, s3) is called its syndrome:

	 s1 ≡ a1 + a2 + a3 + b1 (modulo 2)

	 s2 ≡ a2 + a3 + a4 + b2 (modulo 2)

	 s3 ≡ a1 + a3 + a4 + b3 (modulo 2).

198    ◾    Computing﻿

For this Hamming code we can decode any received word by the
following set of rules:

	 1.	There are no errors in the received word if s1s2s3 = 000.
	 2.	b1 is incorrect if s1s2s3 = 100.
	 3.	b2 is incorrect if s1s2s3 = 010.
	 4.	b3 is incorrect if s1s2s3 = 001.
	 5.	a1 is incorrect if s1s2s3 = 101.
	 6.	a2 is incorrect if s1s2s3 = 110.
	 7.	a3 is incorrect if s1s2s3 = 111.
	 8.	a4 is incorrect if s1s2s3 = 011.

22.3 � LINEAR CODES
Under component-wise vector addition and component-wise scalar multi-
plication, the set of n-tuples of elements from GF(q) is a vector space called
GF(q)n, where GF(q) is the finite field with q elements (also called the Galois
field with q elements). A linear code is a subspace of GF(q)n. Most of the
known good codes belong to a class of codes called linear codes. For ease
of explanation, we restrict our attention mainly to the linear block codes
over a vector space GF(2)n. Any pair of vectors of the vector space can be
added by modulo 2 addition in each component. The modulo 2 addition
in GF(2) is defined as:

	 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1,

and the product in GF(2) is defined as

	 1 × 1 = 1 and 0 × 0 = 0 × 1 = 1 × 0 = 0 × 0 = 0.

A linear code is a subspace of GF(2)n. That is, a linear code of length n
is a nonempty set of n-tuples over GF(q), called code words, such that the
sum of any pair of code words is also a code word, and the product of any
code word by an element of GF(q) is also a code word. For any linear code,
the all-zero word is always a code word, and any linear combination of
code words is also a code word.

The theory of vector spaces can be used to study linear codes. Any set of
basis vectors for the subspace can be expressed as rows forming an m by n
matrix G called the generator matrix of the linear code of length n with m
information digits. The set of basis vectors is linearly independent, and the

Error Detecting and Correcting Codes    ◾    199  

row space of G is a linear code. The set of qm code words generated by the G
is called an (n, m) linear code [2, 3, 7, 8]. Given an m × n matrix A, the n × m
matrix obtained by interchanging the rows and columns of A is called the
transpose of the matrix A and is denoted by AT. Any Hamming code is a
linear code. As shown in the following example, the (7, 4) Hamming code
given in Example 22.2 is a linear binary code of length 7 with 4 informa-
tion bits and 3 parity check bits.

Example 22.3

The set of 0001011, 0010110, 0100111, and 1000101 is a set of basis
vectors of the (7, 4) binary Hamming code, given in Example 22.2.
The 4 by 7 matrix consisting of these row vectors is a generator
matrix of the (7, 4) Hamming code. In fact, each code word of the
(7, 4) Hamming code is a linear combination of these row vectors as
shown below:

	0000000	= 0 × (0001011) + 0 × (0010110) + 0 × (0100111) + 0 × (1000101)
	 0001011	= 1 × (0001011) + 0 × (0010110) + 0 × (0100111) + 0 × (1000101)
	 0010110	= 0 × (0001011) + 1 × (0010110) + 0 × (0100111) + 0 × (1000101)
	 0011101	= 1 × (0001011) + 1 × (0010110) + 0 × (0100111) + 0 × (1000101)
	 0100111	= 0 × (0001011) + 0 × (0010110) + 1 × (0100111) + 0 × (1000101)
	 0101100	= 1 × (0001011) + 0 × (0010110) + 1 × (0100111) + 0 × (1000101)
	 0110001	= 0 × (0001011) + 1 × (0010110) + 1 × (0100111) + 0 × (1000101)
	 0111010	= 1 × (0001011) + 1 × (0010110) + 1 × (0100111) + 0 × (1000101)
	 1000101	= 0 × (0001011) + 0 × (0010110) + 0 × (0100111) + 1 × (1000101)
	 1001110	= 1 × (0001011) + 0 × (0010110) + 0 × (0100111) + 1 × (1000101)
	 1010011	= 0 × (0001011) + 1 × (0010110) + 0 × (0100111) + 1 × (1000101)
	 1011000	= 1 × (0001011) + 1 × (0010110) + 0 × (0100111) + 1 × (1000101)
	 1100010	= 0 × (0001011) + 0 × (0010110) + 1 × (0100111) + 1 × (1000101)
	 1101001	= 1 × (0001011) + 0 × (0010110) + 1 × (0100111) + 1 × (1000101)
	 1110100	= 0 × (0001011) + 1 × (0010110) + 1 × (0100111) + 1 × (1000101)
	 1111111	= 1 × (0001011) + 1 × (0010110) + 1 × (0100111) + 1 × (1000101)

In a linear code, one-to-one correspondence of m-tuples (i.e., a sequence
of m information digits) and code words can be used as an encoding pro-
cedure, but the most natural way is to use the following transformation by
the product of vector i (an m-tuple of information digits) and an m by n
generator matrix G:

200    ◾    Computing﻿

	 c = iG,

where c is the code word corresponding to i.
Because a linear code is a subspace, it has an orthogonal complement,

which is the set of all vectors orthogonal to the set of code words. The
orthogonal complement is also a subspace. The orthogonal complement
has a dimension of n–m, and its basis has n–m vectors. Let H be a matrix
with these basis vectors as rows. Then an n-tuple c is a code word of the
linear code if and only if it is orthogonal to every row vector of H. That is,

	 cHT = 0,

where HT is the transpose of H.
This gives us a way for testing whether a received word is a code word.

The (n–m) by n matrix H is called a parity check matrix of the code.
We next explain the Golay code, which is also a perfect code. Notice that

	 23 0 23 1 23 2 23 3
12 232 2C C C C+ + +() × = ,

where nCr denotes the number of combinations of n objects taken r at a
time. For example, the combinations of the letters a, b, c, and d taken three
at a time are

	 {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

Thus 4C3 = 4. The equation above is a necessary (but not sufficient) con-
dition for the existence of a perfect linear code (23, 12) that can correct up
to triple errors over GF(2). Marcel J. E. Golay (1902–1989) found such a
code in 1949 [4]. In the binary Golay code, there are 212 code words, and the
number of binary sequences of length 23 within the radius 3 sphere at each
code word as a center is equal to the sum of the numbers in the brackets of
the equation above. These spheres do not overlap, and the union of them
completely covers the vector space of 223 binary sequences. That is, the
binary Golay code is a triple error correcting linear code and a perfect code
as well. Notice that the minimum distance of the binary Golay code is 7.

As described in the previous section and this section, the study of linear
codes began with the early papers of Hamming (1950) and Golay (1949)
[4, 5]. Most of the algebraic setting of linear codes is from the 1956 paper [10]

Error Detecting and Correcting Codes    ◾    201  

by David S. Slepian (1923–2007). Earlier, Zen-ichi Kiyasu (1915–2006) had
noticed the relationship between linear codes and subspaces of vector
spaces in 1953 [6]. A. Tietavainen and J. H. van Lint proved that there exist
no linear (nontrivial) perfect codes other than the Hamming codes and the
Golay code, in 1974 and in 1975, respectively [11, 12].

Reed–Muller codes are also a class of linear codes over GF(2) that are
easy to describe and can be decoded by a simple voting technique. The
Reed–Muller codes were discovered by David E. Muller (1924–2008) in
1954 [17], and in the same year Irving S. Reed (1923–2012) discovered the
decoding algorithm for them [18].

The class of cyclic codes is a subclass of the class of linear codes obtained
by imposing an additional structural requirement on the codes. An (n, m)
linear code C is called a cyclic code if it has a property that any cyclic shift
of a code word of C is also a code word of C. More formally, if an n-tuple

	 v = v v v vn0 1 2 1� −

is a code word of C, then the n-tuple

	 v(1) = v v vn n− −1 0 2�

obtained by shifting v cyclically one place to the right is also a code word
of C. From this definition, it is clear that

	 v(i) = v v v v vn i n i n n i− − + − − −1 1 0 1� �

is obtained by shifting v to the right cyclically i places is also a code word
of C.

Cyclic codes were first studied by E. Prange in 1957 [9]. Since then,
progress in the study of cyclic codes has been improved upon by algebraic
coding theorists. Cyclic codes are attractive for two reasons. First, encod-
ing and syndrome calculation of a cyclic code can be easily implemented.
Second, because they have nice algebraic structures, it is possible to find
various efficient decoding methods. The binary (23, 12) Golay code is also
a cyclic code. The cyclic structure of Hamming codes was studied by N.
Abramson in 1960 [1].

Of the numerous classes of random error correcting codes, the class
discovered by A. Hocquenghem (1908–1990) in 1959, and independently
by R. C. Bose (1901–1987) and D. K. Ray-Chaudhuri (1933–) in 1960 is a

202    ◾    Computing﻿

large class of multiple error correcting codes, which are called the BCH
codes. The BCH codes are also cyclic codes. Additional information on
the BCH codes or other advanced error correcting codes can be found in
any standard textbook on algebraic coding theory (e.g., [2, 3, 7]).

Since 1969, a number of advanced error correcting codes have also been
developed for data transmission from deep space. Some of them are linear
codes, and others are not. The spacecraft Voyager 1 was launched in 1977
destined to explore Jupiter and Saturn. The extended binary Golay code
was used as an encoder in the imaging system of the spacecraft [3]. A brief
summary of the use of error correcting codes in the history of space explo-
ration can be found in [3]. More thorough information about deep space
applications of error correcting codes can be found in [13].

REFERENCES
	 1.	 N. Abramson, A Note on Single Error-Correcting Binary Codes, IRE

Transactions on Information Theory, IT-6, 502–503, 1960.
	 2.	 Richard E. Blahut, Theory and Practice of Error Control Codes, Addison-

Wesley, Reading, MA, 1984.
	 3.	 W. Cary Huffman and Vera Pless, Fundamentals of Error-Correcting Codes,

Cambridge University Press, Cambridge, UK, 2003.
	 4.	 M. J. E. Golay, Notes on Digital Coding, Proceedings of IRE, 37, 657, 1949.
	 5.	 R. W. Hamming, Error Detecting and Error Correcting Codes, Bell System

Technical Journal, 29, 147–160, 1950.
	 6.	 Z. Kiyasu, Research and Development Data (no. 4), Electrical Communications

Laboratory, Nippon Television Network Corp., Tokyo, 1953.
	 7.	 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,

Elsevier/North Holland, New York, 1977.
	 8.	 W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes (2nd ed.), MIT

Press, Cambridge, MA, 1972.
	 9.	 E. Prange, Cyclic Error-Correcting Codes in Two Symbols (AFCRC-TN-57-103),

Air Force Cambridge Research Center, Cambridge, MA, 1957.
	 10.	 D. A. Slepian, A Class of Binary Signaling Alphabets, Bell System Technical

Journal, 35, 203–234, 1956.
	 11.	 A. Tietavainen, A Short Proof for the Nonexistence of Unknown Perfect

Codes over GF(q), q > 2, Annales Academiae Scientiarum Fennicae A, 580,
1–6, 1974.

	 12.	 J. H. van Lint, A Survey of Perfect Codes, Rocky Mountain Journal of
Mathematics, 5, 199–224, 1975.

	 13.	 S. B. Wicker, Deep Space Applications, in Handbook of Coding Theory,
ed. V. S. Pless and W. C. Huffman, Elsevier, Amsterdam, 1998, pp. 2119–2169.

	 14.	 C. E. Shannon, A Mathematical Theory of Communication, Bell System
Technical Journal, 27, 379–423, 1948.

Error Detecting and Correcting Codes    ◾    203  

	 15.	 C. E. Shannon, A Mathematical Theory of Communication (Part II), Bell
System Technical Journal, 28, 623–656, 1949.

	 16.	 Wikipedia, Richard Hamming, http://en.wikipedia.org/wiki/Richard_
Hamming.

	 17.	 D. E. Muller, Application of Boolean Algebra to Switching Circuit Design to
Error Detection, IRE Transactions on Electronic Computers, 3, 6–12, 1954.

	 18.	 I. S. Reed, A Class of Multiple-Error-Correcting Codes and the Decoding
Scheme, IRE Transactions on Information Theory, 4, 38–49, 1954.

205

C h a p t e r 23

Automata and
Formal Languages

The term automaton comes from the Greek word automatos meaning
an “autonomous apparatus.” In particular, an apparatus that looks like
a human being or an animal was called an automatos. A contemporary
robot can be considered an intelligent machine that has evolved through
a long process from the ancient automatos.

23.1 � AUTONOMOUS APPARATUS
The Greek scientist Heron Alexandria (c. 10–70) is a well-known inventor
of various automata. He taught mathematics, physics, and mechanics at the
Royal Museum of Alexandria. Some of his lecture notes still exist today.
Some of Heron’s autonomous apparatuses were operated by program-
mable procedures. These included the aeolipile (a heat-powered steam
engine), a wind-powered musical instrument, automatic stage apparatus,
a theater sound generator, a vending machine, and many others. The heavy
doors of an abbey were opened and closed by Heron’s steam engine. His
vending machine dispensed holy water when coins were inserted. It is very
surprising that such apparatuses were invented and operational almost
2000 years ago. The autonomous apparatuses invented by Heron are pro-
totypes of the steam engines that appeared later, during the Industrial
Revolution of the 18th century [4].

In the 12th century, during the golden age of the Islamic Empire,
Al-Jazari (1136–1206), of northern Mesopotamia, also invented a number

206    ◾    Computing﻿

of autonomous apparatuses. Some of these included a device to pump
water, a mechanical clock operated hydraulically, a human-like robot
operated by programmable procedures, a device that converted rotational
motion to reciprocal movement, and many others. These apparatuses
are described in detail with his own illustrations in a book written in
Arabic (1206). Its English translation, The Book of Knowledge of Ingenious
Mechanical Devices, was published in 1973 [5].

The inventions and techniques of Heron and Al-Jazari eventually
made their way to Europe. They were very influential in the development
of mechanical instruments such as the early clocks of medieval Europe.
Sketches of various advanced automata designed by Leonardo da Vinci
(1452–1519) around the end of the 15th century have also been found. He
hoped to build human-like automata capable of moving their heads and
arms. Unfortunately, the technological level of medieval Europe was not
sufficiently advanced to build such automata.

By the turn of the 18th century, various types of instruments and
automata were being made in Europe. These included automata capable
of playing musical instruments and automata that could write letters.
Some of these automata remain intact even today. For example, at the
entrances of arcades or main squares of cities in Switzerland, we can
see old clocks animated by automata playing musical instruments and
parading hourly. Most such clocks were built in prosperous cities of
18th- or 19th-century Europe. Various automata were also made at the
same time in Japan. A doll-like automaton serving tea and a bird-like
automaton carrying a written oracle are examples of Japanese-made
automata from the 18th century.

23.2 � AUTOMATA AS COMPUTING MODELS
Let us revisit the Turing machines described in Chapter 16. A Turing
machine can be considered an abstract machine (i.e., an automaton)
whose purpose is to compute a function, solve a problem, or recognize
a language, which is a set of strings defined over some finite alphabet of
symbols. Information or a stimulus given to the automaton from the out-
side is called an input action or simply an input to the automaton. During
its computation, the status of the automaton normally changes step by
step. We can consider that an automaton is a function from a sequence
of inputs to a sequence of output symbols. If we are unconcerned about
its physical construction, components used in the construction, or the

Automata and Formal Languages    ◾    207  

material of the components, we can describe the automatic machine as a
mathematical model. So Turing machines and actual machines, e.g., com-
puters, can be viewed as special cases of automata.

What is the major difference between Turing machines and mathemati-
cal models of actual machines? Any physical machine assumes a state from
a finite set of possible states. On the other hand, at any point in time during
its computation, the configuration of a Turing machine is a pair consisting
of its state (instruction being executed) and all of the contents of its work
tape. In general, the number of different configurations taken by the Turing
machine cannot be limited by a fixed number, since the number of its moves
is unbounded. Therefore, the computational ability of Turing machines
exceeds the abilities of any physical or any fixed-memory automata.

Quantum mechanical considerations aside, any automatic vending
machine, elevator control system, and even the human brain can only be
in one of a finite number of possible states. Therefore, we may consider
automata, as models of actual machines, as really being restricted Turing
machines that are not allowed to perform any write operations onto
their work tapes. An automaton having a finite number of states is called
a finite state automaton (FSA), a finite state machine (FSM), or simply a
finite automaton (FA). Warren S. McCulloch (1898–1969) and Walter Pitts
(1923–1969) introduced finite automata in 1943 as neural network models.
Around the middle of the 1950s, David Huffman (1925–1999), Edward F.
Moor (1925–2003), and George H. Mealy (1925–) defined a finite automa-
ton in the form of a set of states, a state transition function, and an output
function [6–8]. They demonstrated a number of fundamental properties
of finite automata. Subsequently, many computer scientists and mathema-
ticians showed interesting results about FAs.

FAs have many practical applications, e.g., in the design of logic circuits
and control systems. Arithmetic and control circuits in a computer can be
considered FAs. Suppose we want to design a logic circuit for a given Boolean
function using as few gates as possible. To achieve this logic circuit, we
first design the minimum state finite automaton such that its input-output
function is equivalent to the given Boolean function. Then, we construct a
logic circuit realizing the minimum state FA. As a simple example, let us
consider an FA that accepts the language of all binary strings containing
an odd number of 1’s (i.e., an odd parity checker). Such a recognizer can be
realized by a two-state FA, depicted in Figure 23.1. It should be obvious that
we cannot design a one-state FA for this task.

208    ◾    Computing﻿

The set of all possible input sequences/strings to an FA is grouped
in two classes: those in the language of the FA, i.e., accepted by it, and
the rejected ones, which are not in the language. The finite set of states
in an FA is divided into two groups: accepting states and nonaccepting
states. For a given input sequence, if the computation by an FA ends at
an accepting state after the last input symbol has been read in, then the
input sequence is said to have been accepted. That is, the input string is
determined to be a member of the language for which the given FA was
constructed. Otherwise, the input string is said to be rejected. In this way,
each FA defines a set of input strings or sequences. If the number of states
is not too big, an FA can be conveniently expressed as a state transition
diagram, e.g., as shown in Figures 23.2 and 23.3. Otherwise, the FA’s state
transition function can be represented in a table.

FIGURE 23.1  The state transition diagram of an odd parity checker FA.

FIGURE 23.2  The state transition diagram of an FA recognizing strings not
containing consecutive 1’s.

FIGURE 23.3  An FA recognizing binary strings of numbers divisible by 5.

Automata and Formal Languages    ◾    209  

The state transition diagram in Figure 23.2 defines an FA accepting the
set of binary sequences not containing consecutive 1’s. S0, S1, and S2 are
the three states of the FA. Its initial state, S0, is indicated by the leftmost
arrow, and the accepting state, S2, is indicated by double circles. When any
symbol, say a 0 or a 1, is received or read from the input tape, the FA state
moves from its current state to the next, as defined by its state transition
function, which is represented by the arrows marked 0 or 1, respectively.
For example, if an input sequence of 00110 is supplied to the automaton in
Figure 23.2, its state transition sequence would be S0, S0, S0, S1, S2, S2. Since
S2 is not an accepting state, this input sequence, which contains consecu-
tive 1’s, would be rejected.

The language recognized by an FA can be quite complex. Consider the
set of binary strings representing numbers divisible by 5, for example. The
five-state FA shown in Figure 23.3 is the smallest FA that correctly recognizes
this language. Observe that this FA accepts the language of binary strings
representing numbers divisible by 5, as opposed to strings whose lengths are
divisible by 5, for which a different five-state FA can easily be constructed.

A set recognized by any FA can also be expressed or generated by a
simple expression called a regular expression. The corresponding gener-
ated set is called a regular set. Regular expressions were introduced by
Stephen C. Kleene (1909–1994) around the middle of the 1950s. The class
of languages recognizable by FAs is the same as the class of regular sets.
A regular expression over an alphabet (a finite set of symbols) can be
constructed by using any of three types of operation symbols: union,
concatenation, and star; any symbol of the alphabet; the symbol for
the empty set, denoted by ϕ; and the symbol for the null length string,
denoted by ϕ. More formally, regular expressions over an alphabet Σ are
defined as follows [1]:

	 1.	ϕ is a regular expression and denotes the empty set, i.e., a set with no
strings in it.

	 2.	ε is a regular expression and denotes the set {ε}, i.e., a set with a null
length string.

	 3.	For each a in Σ, a is a regular expression denoting the singleton set {a}.

	 4.	If r and s are regular expressions denoting sets R and S, respectively,
then r + s, rs, and r* are regular expressions that denote the sets
R ∪ S, R • S, and R*.

210    ◾    Computing﻿

In the definition given above, R • S is the concatenation of languages R
and S, i.e., the set of strings formed by choosing any (prefix) string from
the set R and following it with any (suffix) string from S. The * operation
in R*, sometimes called the Kleene star, is the set of strings formed by
any number of concatenations of strings from R, including the null length
string ε. For example, (0 + 1)* denotes the set of all possible binary strings,
whereas (0 + 1)(00 + 01 + 10 + 11)*1 denotes the language/set of all even
length strings representing odd numbers.

The computational abilities of the FAs are severely limited. There are
many important sets that cannot be recognized by any FA. That is, most
nontrivial problems cannot be solved by FAs. For example, we can prove
that there does not exist an FA that can decide whether a given input has
the same number of 0’s as 1’s, or whether a given arithmetic expression is
syntactically correct. An arithmetic expression can be expressed by prop-
erly combining any number of arithmetic operation symbols, such as +, –,
×, ÷, constants, variables, and parentheses. For example, (a + b) × (a – c)
is a legitimate arithmetic expression, but (a + (b – 1) is not. Note that the
parentheses in (a + (b – 1) are not being used properly. Therefore, FAs are
not sufficiently powerful to recognize, for example, whether a computer
program is syntactically correct. As a side note, Turing machines can easily
make that determination; however, even they are not powerful enough to
check for the semantic, or logical, correctness of computer programs.

If an auxiliary tape called a stack or pushdown is added to an FA, then
the ability of the automaton is significantly enhanced. This class of automata
is called pushdown automata (PDAs). A stack is a first-in-last-out data
structure. That is, symbols/data may be entered or removed only at the
top of the stack. When a symbol is entered at the top, the symbol pre-
viously at the top becomes second from the top. Similarly, when a sym-
bol is removed from the top, the symbol previously second from the top
becomes the top symbol. A stack of plates on a spring in a cafeteria has a
similar structure. When the top plate is removed, the plate immediately
below appears above the level of the counter. If a plate is put on top, the
pile of the plates is pushed down. From this analogy, a stack automaton is
also called a pushdown. We can construct a PDA that can decide whether
a given arithmetic expression is in a correct syntactical form. PDAs were
first introduced as a formal model by Anthony Oettinger (1929–) in
1961. Since then, PDAs have been studied by Marcel Paul Schützenberger
(1920–1996), Sheila Greibach (1939–), Seymour Ginsburg (1928–2004),

Automata and Formal Languages    ◾    211  

and many others. PDAs have many useful applications and have been used
in many areas of computer science, including programming languages,
compiler design, and query/natural language processing [1].

The computational ability of PDAs is superior to that of FAs, but inferior
to Turing machines. Interestingly, Marvin Minsky (1927–) showed that
PDAs with two stacks are just as powerful as Turing machines. This raises
an interesting question: can we build automata that are more powerful
than (one-stack) PDAs, but less powerful than Turing machines? The
answer is yes. John R. Myhill (1923–1987) introduced yet another class
of machines, called linear bounded automata (LBAs), which are Turing
machines with a restriction on the size of their work tapes. LBAs can only
use as much tape (memory) as the length of the input given to them. It can
be shown that the computational power of LBAs is superior to that of the
PDAs, but still inferior to the Turing machines.

There are numerous classes of automata whose computational power is
between that of FA and Turing machines. Of these, PDAs and LBAs have
been studied most extensively, not only because they were introduced
first, but also because of many important theoretical as well as practi-
cal implications for the field of computer science in general. An interest-
ing question regarding the computational power of these automata arises
when one introduces nondeterminism, i.e., the ability of automata to guess
or choose a correct computational path (when given such a choice), into
their computations.

It turns out that nondeterminism does not make FAs or Turing
machines any more powerful. However, the class of languages recognized
by deterministic PDAs is a proper subset of the class accepted by nonde-
terministic PDAs. The language of palindromes, i.e., strings that read the
same forward and backward, is the simplest example of the way in which
nondeterminism enhances the computational power of PDAs. Although
extensively studied, the question of whether nondeterminism adds com-
putational power to LBAs is still open. Chapter 26 has an interesting dis-
cussion on whether or how nondeterminism could speed up computations
for many practical problems in the areas of mathematical optimization,
biology, chemistry, and economics, just to name a few.

23.3 � FORMAL LANGUAGES
Avram Noam Chomsky (1928–) is an American linguist, philosopher, and
cognitive scientist. Around the middle of the 1950s, Chomsky introduced

212    ◾    Computing﻿

the concept of a generative grammar, which is a set of production rules
for constructing sentences in a given language. In other words, a genera-
tive grammar defines a language as a set of sentences or strings, which
can be generated from an initial symbol by using the production rules of
the grammar. The production rules in these grammars are in the form
of α → β, where α and β are finite length sequences/strings, each defined
over two finite sets of terminal and nonterminal symbols. The production
rule α → β of a grammar indicates that a substring α in a sequence can be
replaced by β. The production rules of the grammar in Example 23.1 gen-
erate the language of well-formed sequences of parentheses. When con-
structing grammars, one needs to make sure the grammar satisfies two
conditions: it generates every string in the language, and it does not gen-
erate any strings that are not part of the language under consideration.

Example 23.1

Let S → (), S → (S), S → SS be the three production rules in our
grammar, which generates well-formed sequences of parentheses.
We may also use an equivalent composite rule S → () | (S) | SS to
describe this grammar. The set of nonterminal symbols is {S},
while the set of terminals is {(,)}. S is also the starting symbol of the
grammar. Now, examine the string of terminals: (()) () (()). We can
generate this string from S via the following sequence of production
rule applications:

	 S → SS → SSS → (S)SS → (())SS → (()) ()S → (()) () (S) → (()) () (()).

In the derivation above, as applied to the leftmost nonterminal, the
third production rule S → SS, the third production rule, the second
production rule S → (S), the first production rule S → (), the second
production rule, and the first production rule are used to obtain the
final string from the initial symbol S.

Consider two additional languages and grammars that generate them,
as shown in Example 23.2. Language L1 consists of the strings that have
the form anbn, n > 0, and L2 (a pseudocomplement language to L1) has the
strings apbq, p, q > 0, p ≠ q.

Automata and Formal Languages    ◾    213  

Example 23.2

The production rules for L1 are S → ab | aSb. For L2 the production
rules are S → A |B, A → aab | aAb | aA, B → abb | aBb |Bb.

Based on the complexity of the production rules, Chomsky categorized
generative grammars into four types, now called grammars of Chomsky
types 0, 1, 2, and 3. This classification is called the Chomsky hierarchy, and
the name also applies to the language classes, which are generated by their
respective grammar types [2, 3].

•	 Type 0 grammars have no restrictions on their production rules.
They have the form of α → β, although α must contain at least one
nonterminal symbol. Type 0 grammars are also called unrestricted
or phrase structure grammars, and the languages generated by type 0
grammars are called phrase structure languages, or recursively
enumerable sets. This language class is equivalent to the class of lan-
guages that can be computed/accepted by Turing machines. A sur-
prising fact is that these languages are not closed under the operation
of complementation; i.e., some languages may be generated by type
0 grammars, but their respective complementary languages may not
have generative grammars.

•	 Type 1 grammars are phrase structure grammars with an additional
restriction on the production α → β that the length of β is at least as
long as that of α; i.e., the production rules are length preserving or
length increasing. Type 1 grammars are usually called context-sensitive
grammars (CSGs). The languages generated by these grammars are
called context-sensitive languages (CSLs). The class of CSLs is closed
under complementation.

•	 Type 2 grammars are CSGs with an additional requirement that α
should be a single nonterminal symbol. Type 2 grammars are often
called context-free grammars (CFGs). The corresponding languages
are called context-free languages (CFLs). The class of CFLs is not
closed under complementation.

•	 Type 3 grammars are CFGs with an additional restriction that all
production rules are of the form A → wB or A → w, where A and B are
nonterminal symbols and w is terminal. Type 3 grammars are also

214    ◾    Computing﻿

called right-linear or regular grammars. The class of languages gen-
erated by type 3 grammars is equivalent to the class of regular sets.
This class is closed under complementation.

Formal languages are defined by their generative grammars. Although
Chomsky’s linguistic theory started in the area of natural languages, gener-
ative grammars have been much more successful in the area of formal lan-
guages and high-level programming languages. Chomsky himself noticed
that his generative grammars can be applied to programming languages.

Since the end of the 1950s, the relationships between generative gram-
mars and automata have been studied extensively, and many important
theoretical as well as practical results were obtained. Specifically, Chomsky
and Miller showed the equivalence of regular grammars and regular sets
in 1958. Chomsky showed the equivalence of phrase structure languages
and recursively enumerable sets in 1959. Y. Bar-Hillel, M. Perles, and
E. Shamir showed a number of interesting properties of context-free
languages in 1961 [9]. S. Y. Kuroda showed the equivalence of linear
bounded automata and context-sensitive grammars in 1964 [10].

Regular grammars play an important role in the specification of pro-
gramming languages. Context-free grammars are important in the design
of parsers for high-level programming languages, addressed in Chapter 25.
Context-sensitive grammars have numerous applications in chemistry,
medicine, and biological sciences.

REFERENCES
	 1.	 J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, Reading, MA, 1979.
	 2.	 N. Chomsky, Three Models for the Description of Languages, IRE Trans

actions on Information Theory, 2, 113–124, 1956.
	 3.	 N. Chomsky, On Certain Formal Properties of Grammars, Information and

Control, 2, 137–167, 1959.
	 4.	 Wikipedia, Hero Alexandria, http://en.wikipedia.org/wiki/Hero_Alexandria.
	 5.	 Al-Jazari, The Book of Knowledge of Ingenious Mechanical Devices (English

trans.), Springer-Verlag, Berlin, 1973.
	 6.	 D. A. Huffman, The Synthesis of Sequential Switching Circuits, Journal of the

Franklin Institute, 257, 161–190, 275–303, 1954.
	 7.	 G. H. Mealy, A Method for Synthesizing Sequential Circuits, Bell System

Technical Journal, 34, 1045–1079, 1955.
	 8.	 E. F. Moore, Gedanken Experiments on Sequential Machines, in Automata

Studies, Princeton University Press, Princeton, NJ, pp. 129–153, 1956.

Automata and Formal Languages    ◾    215  

	 9.	 Y. Bar-Hillel, M. Perles, and E. Shamir, On Formal Properties of Simple
Phrase Structure Grammars, Zeitschrift für Phonetik, Sprachwissenshaft, und
Kommunikationsforrshung, 14, 143–172, 1961.

	 10.	 S. Y. Kuroda, Classes of Languages and Linear Bounded Automata,
Information and Control, 7, 207–223, 1964.

217

C h a p t e r 24

Artificial Intelligence

Modern artificial intelligence (AI), as it is known today, emerged with the
introduction of electronic computers (see Chapter 18) in the late 1940s
[1, 2, 14, 15]. These machines were able to store and process informa-
tion at very high speeds. This enabled researchers to build models and
design solutions for complex problems in many problem domains, includ-
ing those simulating human intelligence and “smart” behavior. Since the
early years, progress in AI has been significant. This is true particularly in
computer hardware, where the size and price of computers have shrunk
while the speed and reliability have increased. On the other hand, the soft-
ware AI advancements have been somewhat slower, but still many novel
complex software tools and algorithms have been developed. However,
AI progress there has not been as fast as initially expected. For example, it
was predicted that computer chess programs would defeat human experts
by the end of the 1960s. Only by 1997 did a computer program (Deep Blue)
defeat Gary Kasparov, the human world chess champion [15]. Moreover,
some AI experts consider that this victory was achieved only because of
progress in hardware development, which made possible what was essen-
tially a brute-force search, as opposed to a true algorithmic AI solution.

Starting in the middle of the 1980s expert systems started to easily out-
perform their human counterparts in fields such as medicine, the opera-
tion of complex distribution (e.g., water [3]) and control (e.g., system
control [4]), and many other problem domains. While today’s machines,
automobiles, appliances, and almost all electronic devices seem to possess
some form of an electronic “brain,” these simple (control) devices should
not be classified as part of AI per se. Human activities such as business or

218    ◾    Computing﻿

financial decision making, solving engineering problems, flying a plane,
etc., require various levels of intelligence to be carried out. Computer
systems that are smart, e.g., an autopilot, usually equal or exceed human
abilities in their specific areas of expertise. Any software or hardware
system that can successfully perform such nontrivial tasks is said to pos-
sess some degree of artificial intelligence. While some experts believe that
artificial intelligence of computers will eventually surpass the natural
intelligence of humans, it is the opinion of most that that will not happen
in the foreseeable future.

The one thing the majority of experts do agree on is that performing
human tasks will require an extremely complex set of AI processes, which
must then be designed into algorithms that will eventually be implemented
as AI software. In this chapter, we discuss the history of artificial intelli-
gence, including its most important milestones, as well as the scientists
whose pioneering work has made AI what it is today.

24.1 � WHAT IS AI?
There are many definitions and explanations of what artificial intelligence
is (or is not). Below, we list some of them together with the name of the
person who originated it and the year it was originally introduced:

	 1.	“The science and engineering of making intelligent machines”
(John McCarthy (1927 –), 1956, e.g., see [11]).

	 2.	“Machine intelligence is an enterprise which may eventually offer
yet one more mirror for man, in the form of a mathematical model
of knowledge and reasoning” (Donald Michie (1923–2007), 1973,
e.g., see [12]).

	 3.	“The automation of activities that we associate with human think-
ing—activities such as decision-making, problem solving, and
learning, i.e., the characteristics we associate with intelligence in
human behavior and that require common sense and intelligence
when performed by people” (a compilation of Bellman, Feigenbaum,
and Kurzweil).

A very common definition of artificial intelligence is that it is the cre-
ation of virtual machines “who can think.” While AI is clearly a field of
computer science, more often than not, it addresses problem domains
that are outside of CS; i.e., it deals with the creation and development of

Artificial Intelligence    ◾    219  

intelligent machines/systems, methodologies for performing tasks that
require human intelligence in general, and in particular, the computer-
ized automation of intelligent behavior.

24.2 � AI TIMELINE
As described in several of the previous chapters, one could say that the
historical roots of AI extend for thousands of years. Various artifacts and
then mechanical or computational devices with some level of intelligence
had been invented as early as 3000 BC, although one does not seriously
consider pebbles or the counting stick as intelligent. It was only after
modern electronic computers were developed (see Chapter 18) that AI
“took off” and became what it is today. While all programs perform tasks
for which they were designed, today one would not say that adding two
numbers is an intelligent task.

Below is a timeline (by no means exhaustive) of some of the more
important milestones, not necessarily computer based, in the history of
AI. This list was compiled from several sources, including [1, 2, 8, 14, 15].
Also note that almost all of the entries enumerated below are discussed in
detail in various chapters throughout this book:

	 1.	The first “surgical expert system” was introduced around 3000 BC.
This system (written on papyrus) was based on 48 head wound sur-
gical observations, which were compiled using specific symptom-
diagnosis and treatment-prognosis combinations using a simple
“If …, then …” expert system approach.

	 2.	In the 13th century, the Zairja was invented by Ramon Llull (c. 1232–
c. 1315). It was a device that was to systematically generate ideas by
mechanical means.

	 3.	An eight-digit calculator, called the Pascaline, was invented by Pascal
in 1642.

	 4.	Gottfried Leibniz constructed his calculator in 1694. His algorithm
is still in use today.

	 5.	In 1726, Jonathan Swift (1667–1745), in his famous book Gulliver’s
Travels, predicted the invention of an automatic book writer.

	 6.	The first truly programmable device was invented by Joseph Jacquard
(1752–1834) in 1805. His device was a programmable loom with
instructions/patterns provided on punched cards.

220    ◾    Computing﻿

	 7.	The analytical engine was designed by Charles Babbage (1791–1871)
in 1832. This engine was the first mechanical programmable com-
puter. Although the original never truly worked, a model built in
1991 (using Babbage’s plans) did.

	 8.	A chess automaton, which played chess end games without human
intervention, was constructed by Leonardo Torres (1852–1936) in 1910.

	 9.	The term robot was invented by the Capek brothers (Josef Capek,
1887–1945; Karel Capek, 1890–1938) in the 1920s, with Josef actually
coining this word. It is derived from the Czech-Polish word robota,
meaning “work.” In Karel’s 1923 play Rossum’s Universal Robots, the
term robot was used to describe intelligent machines that revolted
against their human masters.

	 10.	In 1928, John von Neumann came up with the minimax theorem,
which is still being used by a majority of game-playing programs
(e.g., in chess).

	 11.	The Turing machine, which can carry out the operation of any other
computing machine or a well-defined procedure, was introduced by
Alan Turing in 1937.

	 12.	In 1938, Claude Shannon (1916–2001) showed that calculations
could be performed much faster using electromagnetic relays than
with mechanical calculators. The electromagnetic relays were used
in the world’s first operational computer, Heath Robinson, in 1940,
built by the English to decode the German Enigma messages.

	 13.	In the mid-1940s, the electromechanical relays in calculators were
replaced by vacuum tubes. This technology was applied on the
Colossus [5] computer that was also used to decipher the most
complex of German codes during World War II.

	 14.	In 1945, John von Neumann introduced a basic computer architec-
ture design that is still in use today.

	 15.	The first general purpose, fully electronic, programmable com-
puter, Electronic Numerical Integrator and Calculator [6] (ENIAC),
was built in 1945. ENIAC was 1000 times faster than the electro
mechanical computers.

	 16.	Circa 1946, intelligence was determined to be the process of processing
information to achieve goals.

Artificial Intelligence    ◾    221  

	 17.	Learning artificial neural networks were proposed by Donald O.
Hebb (1904–1985) in 1949.

	 18.	The three laws of robotics were proposed by Isaac Asimov (1920–1992)
in 1950.

	 19.	The now-famous Turing test [13] was proposed by Alan Turing in
1950. Its purpose was to recognize machine intelligence. Turing
argued that the machine should be considered intelligent if it could
successfully pretend to be human to a knowledgeable observer and
not be recognized as pretending to be such. Any machine passing the
Turing test should be considered intelligent.

	 20.	The first artificial neural network was built by Marvin Minsky
(1927–) [10] and Dean Edmonds in 1951. It simulated a rat trying to
find its way through a maze.

	 21.	In 1955, Allen Newell (1927–1992), Herbert Simon (1916–2001),
and J. C. Shaw wrote an AI program, called the Logic Theorist.
It could be used to prove theorems using a combination of search-
ing, goal-oriented behavior, and application of logical rules. The pro-
gram was written in a new computer language called Information
Processing Language.

	 22.	 In 1955, the term artificial intelligence was coined by John McCarthy
(1927–) in his proposal for a conference at Dartmouth [11]. In the sum-
mer of 1956, a 2-month conference/study at Dartmouth was attended
by many scientists, who today are considered to be the pioneers of
artificial intelligence. The participants included John McCarthy,
Marvin Minsky, Nathaniel Rochester (1919–2001), Claude Shannon,
Herbert Simon, and Allen Newell. The Dartmouth conference was to
proceed “on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it” [2, 11]. The
two most significant outcomes of the Dartmouth conference were a
new paradigm of symbolic information processing, which was intro-
duced by Allen Newell and Herbert Simon in their Logic Theorist
computer program, and the introduction of the term symbolic AI,
as opposed to brain modeling, which until that time had been used
by the majority of AI researchers.

222    ◾    Computing﻿

	 23.	In 1957, Newell, Shaw, and Simon came up with their General
Problem Solver, the first computer program that kept its knowledge
of problems (rules represented as input data) apart from its strategy
of how to solve them.

	 24.	The Geometry Theorem was written by Herbert Gelernter in 1957. This
computer program used a three-step proof of the geometry theorem to
prune a search with a billion alternatives down to only 25 alternatives.

	 25.	Also in 1957, Arthur Samuel (1901–1990) wrote a checkers pro-
gram, which later learned how to beat Samuel—the one who wrote
the program.

	 26.	The Artificial Intelligence Laboratory at the Massachusetts Institute of
Technology was founded by John McCarthy and Marvin Minsky [10]
in 1958. Also, McCarthy developed the LISP programming language
for AI applications.

	 27.	 In 1961, an anti-AI book was written by Mortimer Taube (1910–1965)
entitled Computers and Common Sense: The Myth of Thinking Machines.

	 28.	The first industrial robots were marketed by a U.S. company in 1962.

	 29.	From 1965 to 1975, the first expert system, DENDRAL, was built
at Stanford by Edward Feigenbaum (1936–) and Robert Lindsay,
mapping the structure of complex organic chemicals.

	 30.	The Blocks Microworld Project was created by Marvin Minsky and
Seymour Papert (1928–) at the MIT AI Laboratory in the late 1960s.
The goal was to integrate and improve computer vision, robotics,
and natural language processing. This allowed computers to view
and intelligently manipulate a simple “world of blocks” of various
colors, shapes, and sizes under different physical configurations.

	 31.	 In 1969, a mobile robot called Shakey was built at Stanford. It was able to
navigate a block world in eight rooms, after being given oral instructions.

	 32.	In the early 1970s, Abe Mamdani and Seto Assilian used fuzzy logic
[7] to control the operation of a small steam engine at the Queen
Mary College in London. This was the first practical demonstration
of the use of fuzzy logic for process control.

	 33.	In 1972, the computer language PROLOG (Programmation en
Logique) was developed by Alain Colmerauer and Philippe Roussel.

Artificial Intelligence    ◾    223  

It became Europe’s AI applications language of choice, while within
the United States, LISP [9] was preferred.

	 34.	In 1972, Stanford’s Edward Shortliffe (1947–) wrote the MYCIN
expert system, the world’s first nontrivial medical software tool that
diagnosed infections and blood diseases and recommended anti
biotics, with dosages adjusted for patients’ body weight.

	 35.	Freddy (1969–1972) and Freddy II (1973–1976) are robots built by
Donald Michie’s group at the University of Edinburgh. They used
computer vision to locate and assemble objects.

	 36.	 John McDermott built the first commercial expert system at CMU
in the late 1970s. The system, XCON, was developed for Digital
Equipment Company, which started using it in 1980 to automatically
configure VAX computer systems.

	 37.	Herbert Simon’s theory of bounded rationality and satisfying
behavior, considered to be one of the cornerstones of AI, was the
major contributing factor in him winning the Nobel Prize in
Economics in 1978.

	 38.	In 1979, Hans Moravec (1948–) designed and built the Stanford Cart,
the first car fully controlled by a computer.

	 39.	In the 1980s, using fuzzy logic [7], Hitachi built a predictive control
system for the automated subway trains in Sendai, Japan.

	 40.	In 1984, GE built the Diesel Electric Locomotive Troubleshooting
Aid, an expert system to diagnose breakdowns and give specific
repair instructions.

	 41.	In 1985, speech recognition systems started to work, providing
continuous, speaker-independent speech recognition.

	 42.	Polly, the first robot using computer vision and behaving as an
animal, was built by Ian Horswill in 1993.

	 43.	In 1994, Ernst Dickmanns (1936–) and Daimler-Benz ran their twin
robot cars, VAMP and VITA2, for more than 1000 kilometers on a
Paris highway.

	 44.	More than 40 teams of robotic soccer players competed in the first
RoboCup competition in 1997.

224    ◾    Computing﻿

	 45.	In 1999, the Sony Corporation introduced its robotic pet dog,
AIBO (Artificial Intelligence Robot). It understood over 100 voice
commands, used computer vision to see its environment, and had
adaptive learning capabilities.

	 46.	In 2002, a vacuum cleaning robot called Roomba was built. Two
million were sold by 2006.

	 47.	The first DARPA Grand Challenge was sponsored by the Defense
Advanced Research Projects Agency (DARPA) in 2004. The chal-
lenge was a competition for autonomous (driverless) vehicles, and
it took place on a desert course; however, no vehicles completed the
course. The second DARPA Grand Challenge took place in 2005.
Out of 23 vehicles, 5 completed the course. Stanley, an entry from
Stanford, was the winner.

	 48.	An artificial intelligence humanoid robot, ASIMO, was introduced
by Honda in 2005. It walked as fast as humans and delivered trays
in a restaurant.

	 49.	In July 14, 2006, the Dartmouth Artificial Intelligence Conference:
The Next 50 Years took place.

	 50.	Watson, built in 2011 by IBM’s David Ferrucci et al., won $1 million
by beating human knowledge experts in the Jeopardy TV show.
Winning the game required a deep understanding of natural language
semantics and universal knowledge of facts.

24.3 � AI PIONEERS
Many scientists have made significant contributions to the field of modern
artificial intelligence. The pioneering work of the individuals discussed
below has had a deep-seated impact not only on AI, but also, in most cases,
on other areas of computer science, mathematics, and related sciences.

Alan Turing (1912–1954) was an English mathematician, logician,
cryptanalyst, and computer scientist. One might argue that besides
being the Father of Computer Science, Turing’s contributions to arti-
ficial intelligence were, by themselves, fundamental. In 1936 Turing
published his paper on computable numbers, in which the Turing
machine was introduced. One of the most remarkable features of
Turing’s work, especially on his machine, was that he described

Artificial Intelligence    ◾    225  

modern computers even before they existed. Turing presented his
universal machine (the universal Turing machine) as the one “which
can be made to do the work of any special-purpose machine, that
is to say to carry out any piece of computing, if a tape bearing suit-
able ‘instructions’ is inserted into it” [13]. Hence, Turing’s universal
machine was a computer and the instruction tape was a program
that was run by that computer. In 1950, Turing published his paper
“Computing Machinery and Intelligence in Mind” (see also Chapter
16), where he studied the problems that today are at the heart of arti-
ficial intelligence. In this paper, Turing introduced the Turing test,
through which the intelligence of a computer can be determined.

Claude Shannon (1916–2001) is considered to be the Father of Informa-
tion Theory. Shannon received his master’s and doctorate from MIT
in 1940, where he studied electrical engineering and mathematics.
For his master’s degree, which was in electrical engineering, Shan-
non applied George Boole’s logical algebra to the problem of electri-
cal switching. For his doctorate, Shannon applied mathematics to
genetics. Besides his pioneering work on the theory of communi-
cation, Shannon wrote a paper “A Symbolic Analysis of Relay and
Switching Circuits,” where he pointed out the similarity between
the truth values of symbolic logic and the binary values 1 and 0 of
electronic circuits. He showed how switching circuits can be used
to build a logic machine corresponding to the propositions of Bool-
ean algebra. After Shannon joined Bell Telephone Laboratories as
a research mathematician, he worked on the problem of most effi-
ciently transmitting information. There, Shannon also showed the
similarity between Boolean algebra and telephone switching cir-
cuits. During World War II, Shannon worked with Alan Turing, who
had spent several months with Shannon while visiting the United
States. They were interested in the possibility of building a machine
that could imitate the human brain. They also worked together to
build an encrypted voice phone that would allow President Roos-
evelt to have a secure transatlantic conversation with Prime Minister
Churchill. Information theory was first introduced by Claude Shan-
non in his paper “A Mathematical Theory of Communication” in
1948. It progressed from a single theoretical paper to become a broad
field. Shannon explained the way of quantifying information with
absolute precision. He showed the essential unity of all information

226    ◾    Computing﻿

media. Shannon showed that every mode of communication, such as
telephone signals, text, television and radio waves, and most other
data, can be encoded in bits, a term he coined (see also Chapters 15
and 21). In 1950, Shannon wrote a groundbreaking paper on com-
puter chess entitled “Programming a Computer for Playing Chess,”
in which he showed how a computer could play the game intelli-
gently. His approach for having the computer program decide on
the best move in a given chess game position incorporated John von
Neumann’s minimax procedure.

Nathaniel Rochester (1919–2001) received his B.S. degree in electri-
cal engineering from MIT in 1941. After his graduation, Rochester
continued at MIT working in the Radiation Laboratory. In 1948, he
moved to IBM and designed the first general purpose mass-produced
computer, IBM 701, for which he wrote the first symbolic assembler.
In 1948, a group led by Rochester simulated the behavior of abstract
neural networks on a computer. Rochester worked with Claude
Shannon et al. to convince the Rockefeller Foundation to sponsor
the Dartmouth conference in 1956, widely considered the “birth of
artificial intelligence.” He was a supervisor for many artificial intelli
gence projects at MIT, including Arthur Samuel’s checker program,
Herbert Gelernter’s Geometry Theorem, and Alex Bernstein’s chess
program. In 1958, he worked with John McCarthy in the develop-
ment of the LISP programming language, which was one of the first
high-level languages designed specifically for AI.

John McCarthy (1927–2011) received his Ph.D. in mathematics from
Princeton University. In 1948, McCarthy heard John von Neumann
talking about self-replicating automata, which are machines that
can create copies of themselves. McCarthy’s research interests then
turned to studying the relationship between human intelligence
and machine intelligence. After the 1956 Dartmouth conference,
McCarthy started working on computers that can play games and
do other human-like tasks. McCarthy was the principal developer
of the programming language LISP for AI applications. LISP is still
in wide use today, especially in the United States. In 1990, McCarthy
published his book Formalizing Common Sense, which contains a
very nice compilation of his AI research results (see also Chapter 25).

Artificial Intelligence    ◾    227  

Marvin Minsky was born in 1927. In 1950, Minsky received his B.A.
from Harvard University, and in 1954 a doctorate in mathematics
from Princeton University. In 1951, Minsky built the first neural net-
work simulator and the first randomly wired neural network learn-
ing machine. His work laid down the foundations for the analysis of
neural networks. Minsky built mechanical arms, hands, and other
robotic devices. Minsky also did pioneering work on knowledge
representation, theory of frames, and other well-known AI models.
In the early 1970s, while at MIT, Minsky and Seymour Papert
developed a theory, called the society of mind, which attempted
to explain how a product of the interaction of nonintelligent parts
could, itself, become intelligent. In the 1980s, Minsky showed how
neural networks could be generated automatically, or self-replicate,
in accordance with any arbitrary learning program, hence allowing
artificial brains to be grown by a process similar to the development
of a human brain.

24.4 � AREAS OF AI
The field of artificial intelligence is not clearly partitioned into specific sub-
areas or branches. For most applications, it is not unusual that several of
them overlap at various levels. The following are some of the better-known
and established areas of AI:

Game playing. There are programs that can easily defeat 99.9% of the
best human chess players, including those at the grandmaster level or
even the world chess champions (as happened in 1997). Usually, such
programs take full advantage of the brute-force-type approaches
that allow them to consider millions of moves per second and choose
the best (optimal) one. While for almost any game there are com-
puter programs that will beat the best of human players, the ancient
Chinese game of Go still has human experts winning consistently
(for now).

Speech recognition. Speech recognition techniques are used for spe-
cific purposes, such as flight numbers and city names in airline
reservation systems. Many users, however, believe that human inter-
action or using computers with keyboard and mouse is still more
convenient and reliable than using speech recognition computers.

228    ◾    Computing﻿

Natural language processing. AI researchers believe that providing
computers with sequence of words or syntactically parsing sentences
is not sufficient. They believe that computers must be able to under-
stand the domain, or the semantic context, that the text belongs to.
For this reason, this ability is possible only for very limited domains.
For similar reasons, data mining, in which semantic information
is extracted from huge amounts of (medical, biological, geographi-
cal, etc.) data, still does not have a universal (domain-independent)
approach for extracting information.

Computer vision. To make a computer vision program work perfectly,
the information should be provided in three dimensions. However,
most vision programs work on two-dimensional views. There are
some programs that can analyze three-dimensional information,
but they are not as good as the human eyes.

Expert systems. In expert systems, the knowledge that experts have is
used to design programs that can do the tasks that these experts do.
MYCIN was one of the first expert systems. It was designed in 1974
to diagnose bacterial infections of the blood and suggest treatments.
MYCIN outperformed medical students and practicing doctors.

Logical AI. Here the programs are aware of the facts of any specific
situation and they act in order to meet a specified goal. Such goals are
usually represented by sentences of mathematical logical language
(e.g., in PROLOG). The programs decide what to do by inferring
which actions are appropriate for achieving the specified goals.

Fuzzy logic. Invented by Lotif Zadeh (1921–), it is a multivalued logic
derived from fuzzy set theory. It deals with approximate, as opposed
to precise, reasoning. The variables of fuzzy logic may have truth
values between 0 and 1 (i.e., they are not Boolean). Specific functions
are used to manage these variables. It has been applied to many areas
of AI and others (e.g., control theory).

Search. Since AI programs examine a large number of possibilities, such
as moves in a chess game, the goal of the search is to find a specific state
efficiently among various domains. Some types of search techniques
used in AI include heuristic search, hill climbing search, best first search,
and depth first search. Various search space reduction techniques, such
as alpha-beta pruning, are often employed to further reduce the tree of
possibilities for certain (e.g., in minimax) applications.

Artificial Intelligence    ◾    229  

Pattern recognition. Here, programs compare what they see with some
predefined pattern. For example, a program can try to match eyes,
mouth, and nose in order to recognize a face. Also, programs that deal
with natural language text or chess position use more complex patterns.

Representation. In this branch of AI, languages of mathematical logic
are used to represent facts about the world in some way.

Inference. Inference AI works as follows: a conclusion is to be inferred
by default, but the conclusion can be withdrawn if there is evidence
to the contrary.

Commonsense knowledge and reasoning. This area of AI has been
an active research area since the 1950s. It is the farthest area from
the human level in the field of AI, and more ideas are still needed to
develop it.

REFERENCES
	 1.	 Wikipedia, Artificial Intelligence, http://en.wikipedia.org/wiki/Artificial_

intelligence.
	 2.	 A Brief History of Artificial Intelligence, AtariArchives.org—Archiving

Vintage Computer Books, Informaton and Software, http://www.atariar-
chives.org/deli/artificial_intelligence.php.

	 3.	 P. Boulos, T. Altman, F. Collevati, and P. Jarrige, A Discrete Simulation
Approach for Network Water Quality Models, ASCE Journal of Water
Resources Planning and Management, 121(1), 49–60, 1995.

	 4.	 T. Altman, T. Hughes, and A. Wala, Mine Ventilation Expert System, Applied
Artificial Intelligence: An International Journal, 2, 265–276, 1988.

	 5.	 Wikipedia, Colossus Computer, http://en.wikipedia.org/wiki/Colossus_
computer.

	 6.	 ENIAC Computer History—Invention of the ENIAC Computer, The Great
Idea Finder—Celebrating the Spirit of Innovation, 1997, http://www.idea
finder.com/history/inventions/comeniac.htm.

	 7.	 Wikipedia, Fuzzy Logic, http://en.wikipedia.org/wiki/Fuzzy_logic.
	 8.	 N. Hardman, The History of Artificial Intelligence, Docstoc—Documents,

Templates, Forms, Ebooks, Papers and Presentations, http://www.docstoc.
com/docs/2201141/The-History-of-Artificial-Intelligence.

	 9.	 Wikipedia, Lisp (Programming Language), http://en.wikipedia.org/wiki/
Lisp_(programming_language).

	 10.	 Wikipedia, M. Minsky, http://en.wikipedia.org/wiki/Marvin_Minsky.
	 11.	 J. McCarthy, A Proposal for the Dartmouth Summer Research Projection

Project on Artificial Intelligence, Formal Reasoning Group, 1955, http://
www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html.

230    ◾    Computing﻿

	 12.	 D. Michie, On Machine Intelligence, Edinburgh University Press, Edinburgh,
1973.

	 13.	 J. J. O’Connor and E. F. Robertson, Alan Mathison Turing, MacTutor History of
Mathematics, School of Mathematics and Statistics, University of St. Andrews,
Scotland, 2003, http://www-history.mcs.st-and.ac.uk/Biographies/Turing.html.

	 14.	 H. Stottler, Smarter Software Solutions, http://www.stottlerhenke.com/
ai_general/history.htm.

	 15.	 Wikipedia, Timeline of Artificial Intelligence, http://en.wikipedia.org/wiki/
Timeline_of_artificial_intelligence.

231

C h a p t e r 25

Programming Languages

This chapter touches on a number of influential programming languages
and also discusses the characteristics of several categories of program-
ming paradigms. These paradigms include imperative, declarative, func-
tional, logical, and object-oriented programming.

While certain languages are commonly known by a particular pro-
gramming paradigm—Fortran is known as an imperative language, LISP
as a functional language—it is often the case that languages are hybrids to
a certain degree, combining aspects of several paradigms into their speci-
fications. As intricate detail is not the goal of this chapter, subtleties such
as these are not always addressed.

25.1 � MACHINE CODE
The first programming languages implemented in the 1940s and early
1950s were slow, difficult to use, unfriendly, and error-prone, much like
the first computers on which they ran. At the time these languages were
developed and used, they were known as pseudocodes, though the defini-
tion of the word has evolved significantly since that time [1]. Pseudocodes
were not high-level languages, nor even assembly languages; they were
bare-bones machine languages. Programs were exceedingly difficult
to write, difficult to read, difficult to maintain, and incredibly fragile.
Numeric codes represented instructions, absolute addressing meant that
inserting a single line could invalidate every address call that followed,
and computer architectures were not capable of floating-point arithmetic
or indexing for arrays [1].

232    ◾    Computing﻿

These and other shortcomings inherent in machine language and in
simple computer architectures motivated the development of a more
advanced and abstracted programming tool: the assemblers and assembly
languages that evolved during the early 1950s [1]. Although assembly code
was a notable improvement from machine code, assembly languages did
not have much impact on the development of higher-level languages.

25.2 � INTERPRETATIVE CRUTCHES
In the 1950s, several interpretive systems were developed that extended
machine code to allow for floating-point operations. John Backus
(1924–2007) developed one such system called the Speedcoding system for
the IBM 701. The interpreter was able to use the architecture to represent
a virtual three-address floating-point calculator. Instructions were devel-
oped to execute addition, subtraction, multiplication, division, square
root, sine, arc tangent, exponent, and logarithm functions. Speedcoding
also allowed for conditional and unconditional branches and I/O conver-
sions as part of its virtual architecture. Speedcoding even automatically
incremented the address registers when a new line of code was added
(though not until 1962). Problems that took days or even weeks to program
in machine code could be programmed in a few hours using Speedcoding.
However, the remaining usable memory after loading the interpreter was
generally very small, and instructions took a significant amount of time
to execute because simulating floating-point operations in software was a
very time-consuming process [1].

25.3 � THE FIRST HIGH-LEVEL LANGUAGE: FORTRAN
Today’s high-level languages are abstract, flexible, and portable; they are
able to be written, compiled, and run on virtually any modern computer.
In the early days of computing, the situation was quite different; program-
ming features were dependent on the architecture of the particular model
of machine targeted. So was the state of technology during the ground-
breaking development of the first high-level language.

The IBM 704 was the first mass-produced computer with floating-point
arithmetic hardware. Including in hardware what until then could only be
emulated by interpretive systems, it provided the foundation needed for
the next big step in computing. The 704 was released by IBM in 1954, and
marked the beginning of the end for the slow, memory-intensive inter
pretive systems. Making good use of the advanced new hardware, the first

Programming Languages    ◾    233  

widely accepted high-level programming language was developed. It was
named the IBM Mathematical Formula Translating System, or Fortran.

Although a game-changing advancement, Fortran, like its more basic
predecessors, was still largely a product of its environment. Even with the
fancy new 704, computers were very slow and suffered from unreliability
and cripplingly small memories. Compiled code speed was the primary
goal of the first Fortran compilers. Since computers were used primarily
for scientific computing, there were no existing effective or efficient ways
to program computers, and hardware was very expensive.

Fortran 0 was the initial version of Fortran and was fully described
before the implementation of the language began. Subsequent versions
of Fortran were I (1957), II (1958), III (1958), IV (1960), 77, 90, 2003, and
2008 [1].

Because Fortran was the first high-level language, it had a dramatic
effect on shaping the way computers were used and the way other high-level
languages were developed. Fortran’s original designers never intended it to
run on anything but an IBM machine, nor to target any field other than
numerical computation. While early versions were certainly lacking in
many ways, this is to be expected during the evolution of the first high-level
language. Overall, the language and its influence on programming were a
monumental success; Fortran pioneered a concept that influenced all else
that followed.

Just as new Fords have rolled off the production line since the first
Model T’s in 1910, Fortran has evolved a great deal since its conception.
It continues to be used today as a general purpose, procedural, imperative
programming language. As was the intent of its designers, it is still well
suited for numeric and scientific computation.

25.4 � OVERVIEW: IMPERATIVE PROGRAMMING
Imperative programming is a programming paradigm in which explicit
statements or commands are used to change the state of a program.
Imperative programs define sequences of statements or commands to be
performed by a machine in order to get into a particular state. Imperative
programming is the polar opposite of declarative programming.

Procedural programming is a flavor of imperative programming in
which the program is built from procedures or functions. In procedural
programming, state changes are localized to procedures or restrained by
the parameters passed in to and return values passed out of procedures.
It is known that this technique is useful for structured programming.

234    ◾    Computing﻿

While structured programming is possible to an extent in any program-
ming language, it fits best with procedural programming languages.

ALGOL, Pascal, PL/I, and Ada are examples of some early imperative,
procedural languages where structured programming was commonly
used. In addition to Fortran, C is also an imperative, procedural language.

25.5 � OVERVIEW: DECLARATIVE PROGRAMMING
Declarative programming is a programming paradigm in which the pro-
gram describes its desired results without explicitly specifying a list of
commands to execute in order to achieve those results. Functional and
logical programming languages are generally declarative in style.

25.6 � THE SECOND HIGH-LEVEL LANGUAGE: LISP
Around the time that Fortran II was released, a second high-level
language was designed and implemented: LISP. It was invented by John
McCarthy in 1958 while he was at MIT [3]. LISP (from List Processing)
was the first functional programming language and was developed to pro-
vide language features for list processing, which was needed by the first
artificial intelligence (AI) applications of that time (See Chapter 24).

At a time when most computations were done on numeric data in arrays
by Fortran, developers needed a method to allow computers to process
symbolic data in linked lists. Unlike scientific computations and number
crunching, AI was a field where it was often not straightforward to specify
the problem to be solved or the method of solving it, and success in this
area required a much different approach.

LISP was not the first attempt at a list processing language. A language
named Information Processing Language I (IPL-I) was described as a
theoretical list processing language, and was implemented by version II.
IPL lived on until its fifth version, but was never widely used due to its
low-level syntax; it was an assembly language implemented with an inter-
preter that could handle list processing instructions. Furthermore, IPL
was implemented on and for a RAND Johnniac computer, which was a
long-lived but obscure machine [1].

In the mid-1950s IBM decided to implement a list processing language
based on Fortran, so as to reuse the existing (expensive!) Fortran I compiler.
The language was called the Fortran List Processing Language (FLPL) and
was an extension to Fortran. It was used to prove plane geometry theorems,
a relatively easy area for mechanical theorem proving [1]. However, FLPL’s

Programming Languages    ◾    235  

shortcomings—no support for recursion, dynamic storage allocation, or
conditional expressions—led to the development of the more capable LISP.

LISP addressed these shortcomings of Fortran and pioneered several
other new advancements, which include automatic storage management
through implicit deallocation, dynamic typing, and the ability of a LISP
compiler to compile its own source code.

The initially developed language is now known as pure LISP, because it
is a purely functional language. Common LISP is one well-known descen-
dant of pure LISP, as is Scheme. Common LISP supports some procedural
and some object-oriented programming capabilities in addition to its
inherited functional features, and was developed to provide a standard for
several dialects of LISP that suffered from portability issues. Scheme uses
typed variables and treats functions as first-class entities, meaning that
functions can be passed as arguments to other functions or assigned to
variables as values. LISP, Common LISP, and Scheme are still in use today,
though more heavily in academia and theory/research than in industry.

25.7 � OVERVIEW: FUNCTIONAL PROGRAMMING
In functional programming, computation is accomplished by applying
mathematical functions to arguments. Functional programming avoids
the concepts of program state and state changes that are present in impera-
tive programming. The variables and assignment statements of imperative
programming are also absent (and unnecessary) in functional program-
ming. Loops are also unnecessary in functional programming because
functions can be called recursively.

These basic differences make programming in a functional language
very different from programming in an imperative language. Imperative
functions can have side effects that can change the program’s state.
The same expression can result in different values at different times.
The opposite is true in functional programming, where the value of a func-
tion depends only on its arguments. Thus, a function will always produce
the same results if given the same arguments since there is no program
state. This can make functional programming more straightforward when
attempting to understand, predict, and troubleshoot programs.

25.8 � STANDARDIZATION AND COMPROMISE: ALGOL 60
In addition to Fortran and LISP, there were several other high-level
languages in the works in the late 1950s. The boom of new languages led
to troubles in sharing programs among different users and platforms;

236    ◾    Computing﻿

most of the new languages were geared toward a single architecture.
It quickly became obvious that machine-dependent languages were not
the way to foster widespread collaboration, portability, and standardiza-
tion. In response to this growing problem, several large computer user
groups in the United States banded together to submit a petition to the
Association for Computing Machinery (ACM) in 1957 to form a com-
mittee to spearhead the creation of a machine-independent scientific
programming language [1]. While capable, Fortran was not a practical
candidate for this universal programming language since it was owned
exclusively by IBM at the time.

A few years before this, another group in Germany called the Society
for Applied Mathematics and Mechanics had convened with the same
purpose in mind: to design a universal programming language. In 1958,
these two groups joined forces and began a collaborative language design
project [1].

The goals laid out in the first week-long design meeting for the new
universal language were [1]:

•	 The syntax of the language should be as close as possible to standard
mathematical notation to make programs highly readable with little
to no further explanation needed.

•	 The language used for the description of algorithms should be able to
be used in printed publications.

•	 Programs in the language must be mechanically translatable into
machine language (a requirement for any programming language).

The language developed at that design meeting met these goals, but
the design process required a great deal of compromise from everyone
involved. The resultant language was originally named the International
Algorithms Language (IAL), but was later changed to ALGOL (Algorithmic
Language), and then settled as ALGOL 58.

ALGOL 58 was similar to Fortran in many ways, which is logical consid-
ering that the primary concern of both languages was scientific program-
ming. To free the language from being tied to a particular machine and to
make it more flexible and capable, many of the features available in Fortran
were generalized in ALGOL 58. Several new ideas were included as well,
such as formalizing the concept of a data type and allowing compound
statements. The reception to the new language was enthusiastic.

Programming Languages    ◾    237  

In early 1960, the members of the second ALGOL design meeting dis-
cussed how ALGOL 58 should evolve. As an interesting side note, Backus
had introduced his new language description syntax, Backus–Naur Form
(BNF), the year before, and Naur wrote a description of the newly proposed
language in BNF and distributed it to all of the members at the begin-
ning of the meeting. By the end of the 6-day-long conference, the new and
improved ALGOL 60 had been specified. The scope and magnitude of the
agreed-upon changes were significant. Some of the more important new
developments included:

•	 The block structure, which introduced nested scopes

•	 The ability to pass parameters by either value or name/reference

•	 Recursive procedures (old hat for LISP, but new for imperative
programming)

•	 Stack-dynamic arrays (the size of and storage for an array is allocated
during execution)

Although ALGOL 60 was used mostly by computer scientists in the
United States and Europe, it was never widely used in commercial appli-
cations [4]. However, most imperative programming languages designed
since that time descend from ALGOL 60 either directly or indirectly.
These languages include PL/I, SIMULA 67, ALGOL 68, C, Pascal, Ada,
C++, Java, and C# [1].

Some of the factors that held ALGOL 60 back were its lack of input and
output statements. Some of its features were too flexible to understand and
implement well, and the support to ALGOL 60 from IBM was not suffi-
cient. For these reasons, it could not compete with the existence of popular
Fortran in numerical computation applications.

25.9 � FROM SCIENCE TO BUSINESS: COBOL
COBOL is an interesting case study in programming. The language was
widely used in the business world—perhaps the most widely used, at least
near the end of the last millennium—but it has had little to no effect on sub-
sequent languages (with the exception of PL/I). Like ALGOL 60, COBOL
was designed by a committee in 1959, but in this case by a committee
sponsored by the U.S. Department of Defense (DoD). One of COBOL’s
design goals was that it should use English as much as possible and be easy

238    ◾    Computing﻿

to use, even at the expense of power, in order to open up development to
as many people as possible. It was also decided that the design should not
be restricted by problems of implementation, as had happened in several
areas with ALGOL.

No doubt because of its sponsorship, COBOL became the first program-
ming language mandated by the DoD for use. This was likely a major factor
in its survival, as the necessity of using the language kept its popularity up
even though its early compilers were expensive and of poor quality. Calling
it a government-subsidized programming language may be a little much,
but having the DoD as a patron no doubt led to its widespread use and
success, despite its lack of elegance and functions.

25.10 � BACK TO THE BASICS
When modern-day technicians hear BASIC, they probably think of Visual
BASIC, as in Microsoft’s VB6, VBA, and VB.NET. But the original BASIC
thrived in the 1970s and early 1980s. BASIC (Beginner’s All-Purpose
Symbolic Instruction Code) was designed by John G. Kemeny (1926–1992)
and Thomas E. Kurtz (1928–) at Dartmouth College in 1964. The language
was designed for use at computer terminals and was intended to be easy
for nonscience students to learn, as science and engineering students
made up only about 25% of the student population [1]. It achieved its
goals; it was a very limited language and quite easy to learn. However,
due to its simplicity and “friendliness,” it was all too easy to write poor
programs, and BASIC tended to perform quite poorly in the areas of
readability and reliability.

Limitations and simplicity aside, perhaps the most important new
aspect of BASIC was that it was the first widespread language to be used
from terminals connected to a remote computer that ran all of the pro-
grams received from each terminal.

BASIC made a big comeback in the 1990s with the introduction of
Visual BASIC (VB). The visual aspect provided a simple way to build
graphical user interfaces (GUIs), and thus VB became widely used. As
hinted at above, the most advanced current version is VB.NET, which
departs significantly from classic VB due to its need to fit in with the .NET
Framework and the rest of the .NET languages. One major difference is
that VB.NET fully supports object-oriented programming. With the
release of Microsoft’s .NET Framework 4.0 in 2010, everything that can be
done in VB.NET can be done in C#, and vice versa.

Programming Languages    ◾    239  

25.11 � OVERVIEW: LOGICAL PROGRAMMING
As mentioned briefly in the description of declarative programming,
logical programming languages are generally declarative (as opposed to
imperative or procedural) in style. That is, the program doesn’t specify
how to reach a result, but rather describes the necessary characteristics
of the result to be achieved and then logically infers an answer based on
those attributes and on its existing tools or knowledge.

Predicate calculus notation is generally used in current logical pro-
gramming languages, and provides a basic form of communication.

25.12 � PROGRAMMING LOGIC: PROLOG
Prolog has a method for specifying predicate calculus propositions, and
it implements a restricted form of resolution. The first Prolog system was
developed by Alain Colmerauer (1941–) and Philip Roussel (1945–) in 1972
[5]. Prolog programs consist entirely of collections of statements, which
make it easy to use to model an intelligent database of related informa-
tion that can be queried. Prolog’s statements can be either facts or rules. A
Prolog program simulating an intelligent database would consist of a col-
lection of both facts and rules, and could be queried with a question, a goal
statement, which is presented to the program. The program then uses this
goal statement along with its tools of inference and resolution to deter-
mine the truth of the statement. If it can prove based on the statements
and rules at its disposal that the statement is true, it will do so. If not, it
will conclude that the statement is false.

While simple and powerful, programs written in Prolog and other
logical languages tend to lag in efficiency behind comparable impera-
tive programs. Additionally, while logical programming is an effective
approach for some kinds of database management systems and in some
areas of AI, its usefulness is much more limited in other areas.

25.13 � OVERVIEW: OBJECT-ORIENTED PROGRAMMING
Object-oriented programming (OOP) is a programming paradigm that
uses objects to design and implement programs. An object is a collection
of attributes and methods. Objects can be related to one another through
concepts such as abstraction, virtualization, inheritance, and poly
morphism. OOP is a common and widespread programming design, and
many modern programming languages include support for OOP features
at some level.

240    ◾    Computing﻿

Objects control access to their attributes and methods, allowing as much
or as little access as desired, with levels of access varying depending on
the object or function that is attempting the access. Programs often con-
tain many different types of objects, which generally represent real-world
objects or concepts. One example would be a bank object representing
an actual bank that contains a collection of account objects representing
actual bank accounts.

At a minimum, an object-oriented language must provide support for
abstract data types, inheritance, and dynamic binding of method calls to
methods [1].

25.14 � THE FIRST OBJECT-ORIENTED PROGRAMMING
LANGUAGE: SMALLTALK

Smalltalk-80 (or simply Smalltalk) was the first language to fully sup-
port object-oriented programming (1980). All computing in Smalltalk
is achieved by sending a message to an object to invoke one of its func-
tions. The message replies themselves are objects that either return
requested information or notify the sender that the requested action has
been completed.

In Smalltalk, classes are abstractions of objects and can be instantiated
as objects in the program. An object is always an instance of a class. This is
a fundamental concept of object-oriented programming that propagated
into many subsequent languages.

Unlike in common imperative and object-oriented hybrid languages
such as C++ and Java, all values in Smalltalk are objects, even primitive
values such as integers, characters, and Booleans. They are all instances
of their corresponding classes, and all operations are invoked on them by
sending messages. Because all values in Smalltalk are objects, classes are
objects as well. Each class is an instance of the metaclass of that class, and
each metaclass is an instance of the parent/root class metaclass.

In addition to pioneering the popular and widespread notion of
object-oriented programming, windowed user interfaces (by far the
dominant GUI design of the time) grew out of Smalltalk.

25.15 � IMPERATIVE AND OBJECT ORIENTED: C++
Released in 1984, C++ improves on the imperative features of C and
includes support for object-oriented programming. The classes in C++ are
related to those in Smalltalk.

Programming Languages    ◾    241  

Improvements included virtual methods, operator and method over-
loading, and reference types. In version 2.0, support for multiple inheri-
tance (classes can have more than one parent class), and abstract classes
were added. In version 3.0, templates providing parameterized types were
added, as was exception handling [1].

C++ quickly became a widespread language and remains widely used
today. It is almost completely backward compatible with C and linkable to
C programs. This feature certainly aided in the success of C++. It was also
the only robust language available when object-oriented programming
stepped into the spotlight, which made it a shoo-in for many large-scale
commercial software projects.

25.16 � OBJECT ORIENTED, HOLD THE IMPERATIVE: JAVA
Java was based on C++, and its designers sought to remedy some of C++’s
drawbacks. What they removed, changed, and added led to a smaller and
safer language with much of the flexibility and power of C++ still intact.
Unlike C++, Java supports only object-oriented programming and does
not support procedural programming.

One example of an unsafe feature of C++ is coercions. A coercion is an
implicit type conversion. Both Java and C++ allow the coercion of smaller
types into a larger type, for example, the coercion of an integer into a float.
However, C++ also allows the coercion of a larger type into a smaller type,
which can result in unintended data loss. Java does not allow this type of
implicit conversion, reducing the risk that programmers will unintention-
ally lose data or precision.

Java was designed by Sun Microsystems to act as the programming
language of choice for devices embedded in consumer electronics such as
TVs and microwaves. Reliability was a chief concern, due to the very high
cost that would be incurred if a mass recall of such devices was found to
be necessary [1].

Object-oriented support was needed, but C++ was larger, riskier, and
more complex than necessary. The new language designed for this purpose
was simpler and more reliable. Ironically, none of the products for which
Java was designed were ever marketed or sold. However, Java was found to
be useful in web programming in the early 1990s when the Internet grew
in popularity. Specifically, Java applets became very popular in the mid to
late 1990s because they were simple and easy-to-use tools. The use of Java
increased faster than that of any other programming language [1]. The
most recent version is Java 7, introduced in 2011.

242    ◾    Computing﻿

25.17 � THE BEST OF BOTH WORLDS: C#
C# is based on C++ and Java, and also includes some concepts from Delphi
(object-oriented Pascal) and Visual BASIC. C# is a multiparadigm pro-
gramming language that includes imperative, declarative, functional,
objected-oriented, and component-oriented programming features. C# was
developed by Microsoft and later approved as a standard by European
Computer Manufacturers Association (ECMA).

The ECMA standard lists these design goals for C# (ECMA Inter
national) [2]:

•	 C# is intended to be a simple, modern, general purpose, object-oriented
programming language.

•	 The language, and implementations thereof, should provide support
for software engineering principles such as strong type checking,
array bounds checking, detection of attempts to use uninitialized
variables, and automatic garbage collection. Software robustness,
durability, and programmer productivity are important.

•	 The language is intended for use in developing software components
suitable for deployment in distributed environments.

•	 Source code portability is very important, as is programmer
portability, especially for those programmers already familiar with
C and C++.

•	 Support for internationalization is very important.

•	 C# is intended to be suitable for writing applications for both hosted
and embedded systems, ranging from the very large that use sophisti-
cated operating systems to the very small having dedicated functions.

•	 Although C# applications are intended to be economical with regard
to memory and processing power requirements, the language was
not intended to compete directly on performance and size with C or
assembly language.

As one of Microsoft’s .NET languages, C# supports component-based
software development in the .NET Framework. All .NET languages
use the Common Type System (CTS) and are compiled into the same
Intermediate Language (IL). A just-in-time compiler translates the IL into

Programming Languages    ◾    243  

machine code before execution. All types in all of the .NET languages
inherit from the shared class root System.Object. As mentioned earlier,
with the release of C# 4.0 and VB.NET 4.0, anything that can be done in
one language can be done in the other, which is evidence of Microsoft’s
effort to improve each of its .NET languages concurrently and cohesively.

In several areas, C# adds back in what Java stripped out of C++, but
only after improving upon features and making them safer and more
useful. C# also improves on features found in Java.

•	 Enums are back and are safer than those in C++. Enum values are no
longer implicitly converted into integers, making them more type-safe.

•	 The struct is back and is actually useful, after having no real value
in C++.

•	 C#’s switch statement is an improvement to the one found in C,
C++, and Java.

•	 C# improves on C++’s unsafe function pointers by providing a new
type called a delegate. Delegates are used for implementing event
handlers and controlling thread execution.

•	 Methods in C# can receive a variable number of parameters of the
same type.

•	 C# makes the conversion between the two distinct typing systems of
C++ and Java partially implicit.

•	 C# features support for rectangular arrays.

•	 C# features a foreach statement, which is an iterator that can be used
for collections of any type of object, including arrays.

•	 Properties replace public data members. Properties have built-in get
and set methods that are implicitly called when references or assign-
ments are made.

•	 C# has access to the resources and capabilities of the entire .NET
Framework.

C# is truly a multipurpose programming language and has continued
to rapidly evolve since its release in 2002. It is and looks to remain a
versatile and widely used programming language.

244    ◾    Computing﻿

REFERENCES
	 1.	 Robert Sebesta, Concepts of Programming Languages (10th ed.), Addison

Wesley, New York, 2012.
	 2.	 C# Language Specification (4th ed.), ECMA International, 2006. http://www.

ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf.
	 3.	 Wikipedia, Lisp (Programming Language), http://en.wikipedia.org/wiki/

Lisp_(programming_language).
	 4.	 Wikipedia, ALGOL 60, http://en.wikipedia.org/wiki/ALGOL_60.
	 5.	 Wikipedia, Prolog, http://en.wikipedia.org/wiki/Prolog.

245

C h a p t e r 26

Algorithms and
Computational Complexity

As described in Chapter 5, the word algorithm comes from the name of
an Arabic mathematician, al-Khawarizmi, who wrote his famous book,
Rules of Restoration and Reduction, in the ninth century. According to the
book by Donald E. Knuth (1938–) [1], the original meaning of the word
algorithm is “the process of doing arithmetic using Arabic numerals.”
Knuth also mentioned in the same book that the word algorithm did not
appear in Webster’s New World Dictionary as late as 1957. Let us look up
the word in some old versions of English dictionaries. The Concise Oxford
Dictionary in 1964 defines the word algorithm as Arabic decimal notation.
The same dictionary in 1976 defines the word algorithm as the process or
rules for calculation, almost the same definition used today by the Concise
Oxford Dictionary.

Many university textbooks on algorithms often refer to Euclid’s algo-
rithm as an example of the first well-defined mathematical algorithm.
It appears in the famous Greek book Euclid’s Elements (c. 300 BC)
(see Chapter 5). Euclid’s algorithm is an effective and efficient procedure
(a set of rules) for computing a two-argument function gcd (m, n) deter-
mining the greatest common divisor of two integers m and n. We can
informally say that an algorithm is an effective procedure for solving a
problem. As described in Chapter 16, Alan Turing gave a formal defini-
tion of an algorithm in 1936 in terms of abstract models of computers,
called Turing machines. Alonzo Church, Stephen C. Kleene, Emil L. Post,

246    ◾    Computing﻿

and others also gave formal definitions of algorithms in different forms
and computational models, although all these definitions were eventually
shown to be equivalent.

A computer is a physical device. In order to carry out computation,
we must supply a procedure or a method of how the computation is to
proceed. Such a procedure should then be written in a programming
language so that the computer can understand how it should process data
in its registers or memory at each step. Chapter 27 discusses the specifics
of algorithmic design.

An automobile or an airplane needs fuel to move. For example, gaso-
line is one possible resource for an engine to operate. Analogously, for
the engines of computation, we also need to consider resources that are
needed to carry out their tasks, even though they may only be abstract
models that carry out the computation. In the area of theoretical com-
puter science, Turing machines are usually used as abstract models of
computing devices. In computations, the two most common measure
types of resources are time and space requirements. These are often used
to evaluate the efficiency of an algorithm or the difficulty of a problem.
Time and space complexity are indications of how much computing time
(the number of steps) and memory (space) are required, respectively, to
carry out the computation of a given algorithm in order to solve a problem.

The complexity (time or space) of an algorithm is represented by a resource
binding function whose parameter is the size of a problem instance, say
n. This function depicts the amount of resource (time or space) needed to
solve the problem instance by the algorithm. The complexity of a problem
is represented by the complexity of the best algorithm for solving the
problem. Alternatively, one can discuss the lower bounds of a problem,
which indicate the least amount of resources (time or space) needed by any
algorithm (already existing or not) needed to solve a given problem. If the
complexity (e.g., the running time) of an algorithm is the same as the
problem’s complexity, then the algorithm is said to be optimal with respect
to the particular resource complexity measure. Strangely enough, it can be
shown that there do exist problems for which no optimal algorithms exist.

Since the mid-1950s, computational complexity has become a very
active research topic, and it has developed into one of the most funda-
mental areas in theoretical computer science. Let us explain the mean-
ing of computational complexity using a simple example of the problem
of addition of two numbers (i.e., f(x, y) = x + y). Assume we specify the
values for x and y using the decimal notation. Then the size of a problem

Algorithms and Computational Complexity    ◾    247  

instance in this case is the number of digits needed to represent x and y.
For the binary, hexadecimal, or any other reasonable notation, the size of
a problem instance is similarly defined. Consider the conventional addi-
tion algorithm taught in elementary schools: its time complexity is clearly
proportional to the argument size, that is, the total number of digits used
to represent x and y.

In general, the actual computing time of an algorithm for solving a
problem depends on the performance of the computing device or the com-
puting model. The addition of two numbers is usually performed by align-
ing them and adding their least significant digits, moving to the second
least significant digits (with a carry, if applicable), adding them, and so on,
until the most significant digits have been added. If the computing time at
each stage is considered to take a unit time (or a step), then the computing
time needed for adding two numbers is at most the number of digits of the
larger one (assuming both are positive).

In the addition algorithm mentioned above, the time complexity is pro-
portional to the input size, and it is denoted by O(n), where O notation is
pronounced “big oh” or “at most order of.” Suppose that a new computing
device can concurrently process the addition of some fixed number of con-
secutive digits of the two numbers in a single unit of time. This computing
device may seem to be more powerful, i.e., quicker, than the original one.
However, the time complexity of the addition of two numbers by this more
powerful device is still O(n), since for any positive integer k (independent
of n), O(n/k) = O(n). From this observation, the reader should be con-
vinced that the big oh notation for complexity classes is independent of
the computing device used. For example, if we build a new computer that
is 1000 times faster than the previous one, the big oh running times for
any particular algorithm on these two computers will, in fact, be the same.
This makes the big oh notation very convenient.

Next, let us consider the time complexity of integer multiplication,
f(x, y) = x × y. Assume that both the multiplication and addition of two
single-digit integers can be performed in a single time unit. Let n be the
number of digits of the larger number among x and y. It should be obvious
that the conventional multiplication algorithm that is taught in elemen-
tary schools can be carried out in O(n2) steps.

One could argue that since we ourselves have designed/constructed
the algorithms, it should be relatively easy to determine their running
times. That, unfortunately, is not always the case—one could easily write

248    ◾    Computing﻿

computer programs whose running times themselves are very difficult,
if not impossible, to determine.

To make things even worse, in general, the evaluation of the complexity
of a problem, instead of an individual algorithm, is much more difficult.
The time complexity of the integer addition is obviously O(n) since every
digit of x and y, as well as the digits of the resulting sum, should be pro-
cessed at least once to obtain the correct answer. However, the complex-
ity of integer multiplication cannot be determined using such a simple
argument. In 1964, Russian mathematicians A. Karatsuba (1937–) and
Yu Ofman discovered a more efficient algorithm for integer multiplica-
tion. Their algorithm uses the divide-and-conquer approach, and its time
complexity is O(n1.59), where 1.59 is from an approximation of log2 3. The
divide-and-conquer technique divides a big-sized problem instance into
smaller-sized problem instances, and the solution to the original prob-
lem instance is obtained from the solutions to the smaller-sized problem
instances. This method is used recursively until we obtain sufficiently small
problem instances that can be easily handled by some simple method. The
above-mentioned Karatsuba–Ofman algorithm for integer multiplication
is not even the best one available. The Schönhage–Strassen algorithm for
integer multiplication is asymptotically fast for large integers. It was devel-
oped by Arnold Schönhage (1934–) and Volker Strassen (1936–) in 1971.
The algorithm uses the fast Fourier transforms, and its running time is
O(n log n log log n), as opposed to O(n2), for the naïve integer multiplication
algorithm. From the function graphs shown in Figure 26.1, we can easily
understand that the Karatsuba–Ofman algorithm is much faster than the

45000
40000
35000
30000
25000
20000
15000
10000

5000
0

0 50 100 150 200

n2

n1.59

n nlogn log(logn)

FIGURE 26.1  Comparison among functions nlognloglogn, n1.59, and n2.

Algorithms and Computational Complexity    ◾    249  

conventional method, and the Schönhage–Strassen algorithm is much
faster than the Karatsuba–Ofman algorithm [9].

Computational complexity is at the core of theoretical foundations of
computer science. The field analyzes the complexity of problems and their
algorithmic solutions. The major questions in this field are concerned
with what can be achieved within limited computational resources. The
most influential work at the beginning was the formal definition of com-
putability by Alan Turing in 1936. The beginning of systematic study in
computational complexity started around the 1960s. Since then, a number
of interesting results have been obtained. Juris Hartmanis (1928–) and
Richard Stearns (1936–) introduced time complexity classes, and proved
the time hierarchy theorem in 1965 [5]. The theorem ensures the exis-
tence of certain difficult/hard problems, which cannot be solved in a
given amount of time. This means that for every time-bounded complex-
ity class, there is a strictly larger class containing problems that are not
members of the smaller class. A similar argument may be presented for
space-bounded complexity classes. Hartmanis and Stearns received the
Turing Award in 1993 for their contributions in the field of computational
complexity theory.

Manuel Blum (1938–) developed an axiomatic complexity theory, called
the Blum axioms or Blum complexity axioms, which specifies desirable
properties of complexity measures on the set of computable functions in
1967 [6]. He proved that for a complexity measure satisfying Blum axioms,
some fundamental properties must always hold true. Blum received the
Turing Award in 1995 for his contributions to the foundations of com-
putational complexity theory and its application to cryptography and
program checking.

The big oh notation and a recursive function f(n) can be used to define
the computational complexity class O(f(n)). Computational complexity
classes defined in this way seem to be coarse since O(f(n)) and (O(g(n))
define the same complexity class if there exist positive constants k, c1, and
c2 such that for any n > k, c1g (n) < f (n) < c2g (n). However, this coarseness
is rather convenient for the study in this field. For example, if computing
model A is twice as fast as computing model B, and if the computing time
by A is f(n), then the computing time by B is 2f(n) and O(2 f(n)) = O(f(n)).
This means that concerning computational complexity classes, we do
not care what computing models are used, provided that the differences
among their computing abilities are within a constant factor.

250    ◾    Computing﻿

A problem X is said to be complete for complexity class C, or C-complete,
if it is the hardest problem within C; i.e., every other problem in C can be
shown (via a complexity-preserving transformation) to be no more dif-
ficult than X. Observe that more than one problem may be complete for a
given complexity class. A problem Y is said to be hard for a class if every
problem within the class is no more difficult than Y. Note that Y does not
have to be a member of the given class.

Over the years, the notion of efficient computation or an efficient
algorithm has been associated with two distinct definitions. The first one
describes an algorithm as efficient if it can be shown that during its com-
putation no unnecessary work is being performed. This, however, does not
mean that a given efficient algorithm must always be optimal with respect
to some single complexity measure (e.g., time). In certain applications,
the computational resources of both time and space are constrained, and
in order to meet both of them simultaneously, an algorithm may have to
perform additional steps or use extra space in order to perform its com-
putation successfully. For many problems, we can show that there exists a
time-space trade-off, meaning, indirectly, that optimality criteria for both
resources cannot be achieved at the same time.

The second definition of an efficient algorithm, which gained wide
acceptance during the 1970s, is that it’s an algorithm whose running time
is bounded by some polynomial function in n, the problem size. More
formally, an algorithm is of polynomial time complexity if it belongs to
computational complexity class O(nc) for some constant c > 0, which is
independent of n. If there exists a polynomial time algorithm for solv-
ing a given problem X, then X belongs to the class of polynomial time
problems, which is denoted by P. A problem is said to be infeasible, or
provably intractable, if it does not belong to P. Note that a problem may
be intractable, but still solvable at the same time. If a problem does not
belong to P, we consider that it cannot be solved in the practical sense.
This, of course, does not mean that for such problems we cannot try to
use approximation or heuristic algorithms, which in certain instances
may give us a satisfactory or even an optimal answer to our problem. The
computational class P can also be defined in terms of Turing machines.
A problem belongs to P if and only if there exists a Turing machine that
solves the problem in polynomial running time.

Until now, the computations carried out by our Turing machines
(or other computational devices) have been deterministic—meaning that
the steps taken always follow the same predetermined computational

Algorithms and Computational Complexity    ◾    251  

path. A nondeterministic Turing machine is an enhanced Turing machine
with an additional power of making choices. For a given state and a tape
symbol scanned by the tape head, the nondeterministic Turing machine
has some finite number of possible choices, or moves, for the next step.
A problem is said to be of nondeterministic polynomial time complexity
if and only if it can be computed by a nondeterministic Turing machine
that runs in polynomial time. The class of nondeterministic polynomial
problems is denoted by NP, and it obviously contains the class P. Also,
it is not difficult to show that any problem in NP can be solved by a
deterministic Turing machine that runs in exponential time. However,
it is yet to be determined whether P = NP. This question was originally
formulated by Stephen Arthur Cook (1939–) in 1971 [7], and it is the most
famous open problem in theoretical computer science and mathematics.
The P = NP question can be rephrased as asking whether there exists a
deterministic Turing machine with polynomial running time for any one
of the NP-complete problems.

The class NP can be thought of as those problems for which there exist
algorithms (or Turing machines) that can verify in deterministic poly
nomial time if a guess or a certificate (that is provided as part of the input
describing the problem) confirms the answer. One might name this class as
that of conscientious cheaters. Consider the problem of inverting a matrix.
During a linear algebra exam, one student (who always obtains the correct
answer) may use a standard technique, such as Gaussian elimination, to
obtain the inverse; another student may cheat and simply copy the first
student’s answer. However, a conscientious cheater would (after copying
the first student’s answer) actually check and verify whether the answer
is correct.

The question of whether it is always more difficult to compute an
answer, rather than simply check the correctness of a proposed answer,
was first posed by German mathematician Johann Carl Friedrich Gauss
(1777–1855). While it is obvious that the computation of an answer to any
problem is at least as difficult as confirming its correctness, it has not been
shown that it must always be necessarily more difficult.

NP-complete problems are the most difficult problems within the class
NP; moreover, all of them have the property that if we could construct an
efficient (deterministic polynomial time) algorithm for one of them, then
all NP-complete problems would have efficient algorithms and P would
indeed be equal to NP. On the other hand, if one NP-complete problem

252    ◾    Computing﻿

can be shown to be outside of P, then none of the NP-complete problems
would have efficient algorithms.

The first NP-complete problem was identified by Cook in 1971, and it
dealt with the satisfiability of Boolean expressions. A set of logical propo-
sitions is said to be satisfiable if there exists at least one assignment to a list
of Boolean variables so that every clause in the set evaluates to “true” under
that assignment. The satisfiability problem (SAT) is to decide whether a
given set of Boolean expressions is satisfiable. In 1971 Cook showed that
SAT is the hardest problem in the class NP; i.e., it is NP-complete. If SAT
were to be a member of P, then P = NP (which is very unlikely, although
still a possibility).

Any NP-complete problem must:

	 1.	Belong to the class NP

	 2.	Be at least as difficult as some known NP-complete problem

If a problem X can be reduced to another problem Y in polynomial time,
and if X is NP-complete and Y belongs to NP, then Y is also NP-complete.
The technique, or transformation, used here is called the polynomial time
reduction. After Cook’s initial result, many problems were added to the
list of NP-complete problems via polynomial time reductions. It should be
noted that Richard Karp (1935–) and Leonid Levin (1948–) independently
made equally significant contributions during the early developments of
the theory of NP-completeness in the early 1970s.

The collection of NP-complete problems is ever growing, and it contains
tens of thousands of problems. After SAT, the traveling salesman, independent
sets, Hamiltonian circuit, and knapsack are some of the best-known
NP-complete problems. When we show a problem is NP-complete, it is
a good indication that there is very little chance to find an efficient algo-
rithm for it. For such a problem, a heuristic method or an approxima-
tion algorithm may be recommended. A book by Michael R. Garey and
David S. Johnson (1979) contains an excellent introduction to the theory
of NP-completeness and a listing of several hundred NP-complete and
other related problems [8].

The reader may wonder if there could exist problems in NP that are
outside of P, but which are not NP-complete, i.e., difficult, but not the most
difficult. The status of this question is open as well. In fact, there are not
too many problems in NP whose status is unknown (i.e., are they in P

Algorithms and Computational Complexity    ◾    253  

or are they NP-complete?). One of the most famous of these is the graph
isomorphism problem (GIP)—given descriptions of two graphs, do they
have the same structure, or connectivity, relationship? For many restricted
cases, such as planar, degree-bounded graphs, etc., efficient/polynomial
algorithms have been found. However, the general GIP is still not known
to be in P, nor has it been shown to be NP-complete.

Just as intriguing is the question whether there exist problems that
provably require more than polynomial time (deterministic or not) to be
solved. The answer is yes; however, the only known such problems also
require an exponential amount of space (memory), making them very
unattractive from the practical perspective. Determination of “forced
wins” in strategic games such as chess or Go can be shown to require an
exponential amount of space, and hence time, to compute.

Stephen A. Cook received the Turing Award in 1982 for his formal-
ism of NP-completeness and discovery of the first NP-complete problem,
SAT. Richard Karp received the Turing Award in 1985 for his introduction
of the now standard methods for proving problems to be NP-complete,
which has led to the identification of many theoretical and practical prob-
lems as being computationally hard.

More material on computational complexity can be found, for example,
in the books by Michael Sipser [2], Sanjeev Arora (1968–) and Boaz Barak [3],
and Oded Goldreich (1957–) [4].

REFERENCES
	 1.	 D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms

(vol. 1, 2nd ed.), Addison-Wesley, Reading, MA, 1973.
	 2.	 M. Sipser, Introduction to the Theory of Computation (2nd ed.), Course

Technology, Boston, MA, 2006.
	 3.	 S. Arora and B. Barak, Computational Complexity: A Modern Approach,

Cambridge University Press, New York, 2009.
	 4.	 O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge

University Press, New York, 2008.
	 5.	 J. Hartmanis and R. E. Stearns, On the Computational Complexity of

Algorithms, Transactions of the AMS, 117, 285–305, 1965.
	 6.	 M. Blum, A Machine-Independent Theory of the Complexity of Recursive

Functions, Journal of ACM, 14, 322–336, 1967.
	 7.	 S. A. Cook, The Complexity of Theorem Proving Procedures, in Proceedings of

3rd Annual ACM Symposium on the Theory of Computing, 1971, pp. 151–158.
	 8.	 M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman, New York, 1979.
	 9.	 A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

255

C h a p t e r 27

The Design of
Computer Algorithms

As described in Chapter 18, computers were traditionally built to calculate
the solution to numerical problems such as the determination of the roots
of an algebraic equation, or to process numerical data, e.g., the statistical
calculation of national consensus data. However, for the last 40 years or
more, a great deal of important work has also been done by computers
for nonnumerical problems, such as sorting, searching, word or language
processing, and solving combinatorial problems in software development,
data communication, and the simulation of various biological, chemical,
and physical processes. The design and analysis of computer algorithms
have been developed in the context of such applications.

27.1 � SORTING AND SEARCHING
Sorting a sequence of numeric or alphanumeric items means rearrang-
ing them in some specific order. Since a significant portion of data pro-
cessing involves sorting, efficient sorting algorithms are of considerable
importance for many practical problems [3, 7]. Sorting is one of the first
problems for which algorithms were formally analyzed and evaluated.
It is considered to be a fundamental problem in the area of algorithmics,
mainly because sorting often plays an essential part of many algorithms.
For example, sorting significantly facilitates a search for elements in some
set or a list. A dictionary is a typical example of a sorted list. Words in a
dictionary are usually arranged in an alphabetical order, which allows us
to easily locate the word that we are trying to find in the dictionary.

256    ◾    Computing﻿

Some sorting methods were in use long before the invention of computers.
For example, a card player sorts the cards of his hand so that each card is
visible and individually accessible. Suppose that A, 2, 3, 4, 5, 6, 7, 8, 9, 10,
J, Q, K are the order of the cards. The following method has been com-
monly used among card players. The player scans the cards of his hand left
to right. He chooses the smallest card, and puts it at the leftmost position.
Then he scans the rest of the cards, and chooses the smallest one among
them. This card is placed at the second leftmost position. In this way, he
arranges the smallest card, the second smallest card, the third smallest
card, and so on. Eventually he obtains the sorted cards in his hand. This
sorting method is called straight selection sorting or sorting by selection.
We will soon find out that it is not the fastest way to sort the elements of
a given set.

The efficiency of a sorting algorithm is often measured by counting the
number of necessary key comparisons in order for the list to be sorted.
Usually, this is expressed as a function of the number n of items in the list.
Sorting by straight selection requires n – 1 key comparisons to choose the
smallest item among n items. Then, n – 2 key comparisons are needed to
choose the second smallest item from the remaining n – 1 items, and so on.
Consequently, sorting n items by the straight selection method requires
(n – 1) + (n – 2) + … + 1 = n(n – 1)/2 comparisons. Using the notation for
complexity classes given in Chapter 26, the efficiency of sorting by straight
selection is O(n2) time. Simple and obvious sorting methods such as sort-
ing by selection, sorting by insertion, and sorting by straight exchange
(also called the bubblesort) all require O(n2) key comparisons [4, 5].

It can be easily proved that any sorting algorithm based on a compari-
son operation between a pair of items requires at least O(n log n) compari-
sons; if it uses less, then it is provably incorrect. Quicksort is a well-known
sorting algorithm that, on the average, needs O(n log n) comparisons
to sort n items. In the worst case, however, it needs O(n2) comparisons,
though if it is properly implemented, such a case is very rare. In practice,
quicksort is considerably faster on the average than other O(n log n) sort-
ing algorithms such as heapsort and mergesort [1, 4, 8].

Quicksort was invented in 1960 by a British computer scientist, Charles
Antony Richard Hoare (1934–), when he was in the Soviet Union as a visit-
ing student at Moscow State University. After Hoare left the Soviet Union,
he began working with British computer manufacturer Elliot Brothers,
where he implemented ALGOL 60, one of the first high-level program-
ming languages (See Chapter 25). In 1968, he moved to Queen’s University

The Design of Computer Algorithms    ◾    257  

of Belfast in 1968, and in 1970 moved to Oxford University as a professor
of computing. Hoare received the Turing Award in 1980 for his contribu-
tions to the definition and design of programming languages [10, 11].

As a first step, quicksort chooses one of the items in the sequence of
items as the pivot element. If the pivot is chosen randomly, the quicksort
is called the randomized quicksort. The sequence is then partitioned on
either side of the pivot so that the items that are greater than the pivot are
placed on its right section, whereas all the other items are placed on its
left section. Next, the two sections of the sequence on either side of the
pivot element are sorted independently by recursive calls of the algorithm.
The final result is a completely sorted sequence. We should be careful to
choose a pivot so that the pivot should partition the list into two sections
with balanced sizes. An algorithm (or a procedure) that calls itself is said
to be recursive. ALGOL 60 was the first programming language in which
recursive calls were implemented. Hoare noticed that quicksort can be
easily implemented in ALGOL 60 by using recursive calls.

Storage and retrieval of data are the fundamental tasks in data pro-
cessing. We are concerned with collecting data efficiently into the com-
puter memory, and are often asked to retrieve the necessary data from
computer memory as quickly as possible. Searching is a process to find
or decide whether specific data exist in the computer memory. It is a very
time-consuming task concerning many software applications, and good
search methods are important to improve software performance in general.

It is often possible to arrange the data or data structure so that we can
quickly know where a necessary item is located. If the data are neither struc-
tured nor sorted, we must sequentially search all of the data to find the item
we need. In such a case, we need O(n) time to search for an element in O set
or list of n items. If the data are sorted, we can apply a binary search method
(e.g., as in finding a word in a dictionary). In this case, we only need O(log n)
time to find the item we need, which is a significant saving of time.

Search methods can be either static or dynamic. Static means that the
contents of the data files are essentially unchanged. For this type of data
file, it is important to minimize the search time without regard for the
time required to set them up. On the other hand, dynamic means that the
contents of the data files vary frequently by the data insertions and data
deletions. For this type of data file, suitable set manipulation algorithms
are required to keep good structures of the data files.

Rich material about sorting and searching, including their history,
can be found in Knuth’s The Art of Computer Programming: Sorting and

258    ◾    Computing﻿

Searching [4]. Knuth announced that he would publish a series of seven
volumes entitled The Art of Computer Programming. Volume 1 of the book
series was first published in 1968 [2]. After the publication of Volume 3
in 1973, he developed an electronic typesetting system, creating the now
widely used Tex and METAFONT tools. Knuth received the Turing Award
in 1974 for his research contributions to the analysis of algorithms, the
design of programming languages, and computer programming through
the series of his books.

27.2 � DATA STRUCTURES
Efficient ways to store and access large amounts of data are an important
part of many computer applications. Data structures are to organize the
data in a computer so that they can be accessed and manipulated efficiently.

Often a problem can be formulated in terms of abstract objects such
as sets, lists, graphs, and so on. Algorithms for a problem usually contain
fundamental operations on these objects. Typical examples of these oper-
ations are membership determination, insertion of a new element into a
set, deletion of a member from a set, union of sets, and determination if
a set contains a particular element. In order to implement these opera-
tions efficiently, various data structures have been devised. If needed, a
higher-level compound data structure may often be built from these fun-
damental data structures.

Arrays and lists (also called linked lists) are the most fundamental data
structures. An array is a linear structure, all of whose elements/components
are of uniform size and type. It is also called a random access structure
since all components are accessible in one time step. A linked list is a col-
lection of nodes (or cells) arranged linearly in a certain order. The length
of a linked list is not fixed. The linked list data structure must allow us to
efficiently determine (via a pointer) the first and last nodes in the list, and
which nodes are the predecessor and the successor (if they exist) of any
given node. Its access mechanism is said to be sequential. Such a structure is
often represented graphically by boxes and arrows, as shown in Figure 27.1.
The information attached to a node is shown in the corresponding box,
and the arrows show the relationship between a node and its successor.

�e head of a list
A B C D

FIGURE 27.1  An example of a list.

The Design of Computer Algorithms    ◾    259  

A general method for constructing structured types of data is to join
elements into a compound cell. Such a cell is frequently called a record or
an object, and it is usually consists of various components [5]. For example,
consider a table of records for students in a class. A record for a student
consists of various components, e.g., student’s name, age, birthplace, and
academic grade for each course. Suppose that this table is sorted in alpha-
betical order by students’ last names. If the number of students in the class
is fixed, then an array of records would be a convenient data structure
to use. However, in the case where the class size is dynamic, an array of
records is inconvenient and inefficient as well. When a new student joins
the class, the record of the new student should be inserted at an appropri-
ate (alphabetical) position. In order to do so, all the records of the students
after the new student, in alphabetical order, should be shifted by one posi-
tion so that the space for the record of the new student is made available.
In the case where a student drops the class, the removal of the record for
the student creates an empty space in the array. We must then move up the
records for the students one position in the array after the record for that
student, which could be quite time-consuming.

The data manipulated by algorithms can frequently grow, shrink, or
change over time. For such dynamic data, a linked list is more convenient
and efficient, because the insertion and deletion operations can be imple-
mented by simply modifying the corresponding pointer that is used for the
connection to the successor or the predecessor. For example, in order to
remove an element x from a linked list, the pointer to x is modified to delete
x out of the linked list in a way that it points to the element that was origi-
nally pointed to by x. In order to insert a new element y after element x in a
linked list, the pointer from x is modified to point to y, and then the pointer
of y is created to point to the element that was originally pointed to by x.

Many algorithms need the ability to insert elements into, delete ele-
ments from, and test memberships in a set. However, other algorithms may
require more complicated operations to be efficiently implemented. For
such algorithms, various advanced data structures have been devised. For
example, priority queues, heaps, hashing schemes, B-trees, and Fibonacci
heaps are some advanced data structures that allow us to solve complex
problems more efficiently [8].

A Programming Language (APL) is an iterative array-oriented pro-
gramming language invented in 1957 by Kenneth E. Iverson (1920–2004).
Operations on structured arrays can be written in APL in a straight
forward way. Iverson worked on programs that could evaluate large

260    ◾    Computing﻿

matrices on the Harvard Mark IV computer. In 1960, while at IBM, he
developed his ideas into a programming language for the IBM/360. In 1979,
Kenneth E. Iverson received the Turing Award for his work on APL.

Linked lists were developed in 1955–1956 by Allen Newman, Cliff Show,
and Herbert Simon as the primary data structure for their data process-
ing programs and early artificial intelligence (AI) programs [12]. In 1958,
Victor H. Yngve (1920–) used linked lists at MIT as data structures in the
computer programs for processing linguistic problems. LISP is a program-
ming language invented by John McCarthy in 1958, while he was at MIT.
It stands for List Processing. It is a suitable programming language for
processing linked lists. It has numerous applications in AI and is a very
powerful and expressive language, especially for nonprocedural appli-
cations, such as functional programming (see also Chapters 24 and 25).
A Swiss computer scientist, Nicklaus Wirth, wrote an outstanding text-
book, Algorithms + Data Structures = Programs, in 1976 [5]. In his book, he
showed how to describe algorithms and data structures in PASCAL. That
is, he showed that designing a nice program means designing a nice algo-
rithm and a nice data structure. In 1984, he received the Turing Award for
developing a series of innovative programming languages.

27.3 � GRAPH ALGORITHMS
One major feature of computer science is its discrete flavor, which means
that data processing and computing consist of a series of discrete opera-
tions on discrete and finite data. Discrete mathematics has developed to
formalize basic combinatorial structures. One of the most fundamental
ways to express a discrete structure is as a graph.

The 18th-century East Prussian town of Königsberg (now Kaliningrad,
Russia) lay on the bank of the Pregal River and two islands connected
by seven bridges, as shown in Figure 27.2. The people of Königsberg had

C

A B

D

FIGURE 27.2  Königsberg’s bridges.

The Design of Computer Algorithms    ◾    261  

a question about walking routes crossing these bridges. The question
was whether it was possible to start walking from anywhere in town and
return to the starting place while crossing all seven bridges exactly once.

In 1736, the people of Königsberg wrote to a well-known Swiss math-
ematician, Leonhard Euler, about this question. Euler solved the problem
by proving that such a walk was impossible by formalizing it as a graph
problem. He replaced the islands and riverbanks by vertices (nodes) and
the bridges by edges. Then a graph (multigraph) was obtained as shown in
Figure 27.3. This graph is equivalent, for the purpose of the problem, to the
map in Figure 27.2.

Graph G = (V, E) is a simple way of representing pairwise relations among
a set of objects (nodes, vertices). It consists of a set of vertices V and a set of
edges E. Each of the edges corresponds to a pair of distinct vertices. Thus,
we represent an edge in E as a pair of vertices, joining the two vertices.
If each edge in E is an ordered pair of vertices, then G is called a directed
graph (or digraph). The graph given in Figure 27.3 has multiple edges, since
there are two edges connecting vertices A and C, and two edges connect-
ing vertices A and D. This type of graph is usually called a multigraph. The
degree of a vertex in a graph (multigraph) G is the number of edges in G that
are incident to the vertex.

A path in a graph or a multigraph G consists of an alternating sequence
of vertices and edges of the following form:

	 v0, e1, v1, e2, v2, …, en – 1, vn – 1, en, vn,

where each edge ei contains the vertices vi – 1 and vi. The number of edges in
a path is called the length of the path. A path is called simple if each vertex
appears in the path at most once. A circuit is a path whose first and last
vertices are the same.

C

A B

D

FIGURE 27.3  The graph representing Königsberg’s bridges.

262    ◾    Computing﻿

The question about walking the bridges of Königsberg is considered to
have been the first problem in graph theory, whose creation is credited
to Euler. It is equivalent to the graph-theoretical problem of whether it is
possible to find a circuit in the graph that contains each edge exactly once.
Euler solved this problem by proving that such a traversal is possible if
and only if the graph is connected and all of its nodes have even degrees.
Königsberg’s bridge problem showed, in a sense, that a realistic problem
may be modeled as a graph with some properties. In fact, many funda-
mental problems can be represented by graphs and then solved using
appropriate graph algorithms.

Consider a problem for finding the shortest (least expensive) routes from
the head office to each of its branch offices. The problem can be modeled as
the single-source shortest-path problem in a weighted and directed graph,
where each edge of the graph has a weight (i.e., the length or cost). The head
office corresponds to the source vertex, and the length of the road directly
connecting any two offices is represented by the corresponding weighted
edge. An elegant algorithm to solve this problem was proposed in 1959 by
Edsger Wybe Dijkstra (1930–2002) [14]. His algorithm for the problem is
an example of a typical greedy algorithm. A greedy algorithm makes the
choice that appears to be the best one at each step. It makes a locally opti-
mal choice with the expectation that this choice will eventually lead to a
global optimal solution. The time complexity of Dijkstra’s algorithm for the
shortest paths from the single source is O(|V|2 + |E|) = O(|V|2), where |V|
is the number of vertices and |E| is the number of edges. For the weighted
and directed graph in Figure 27.4, the shortest paths from vertex 1 to every
other vertex are 1 → 3 → 2, 1 → 3, 1 → 5 → 4, and 1 → 5.

10

10

1

25

50

50

100 30

20 5

34

FIGURE 27.4  A weighted and directed graph.

The Design of Computer Algorithms    ◾    263  

It should also be mentioned that Dijkstra was well known for his criti-
cisms of the “Goto” statement in computer programming, writing his opin-
ions in various articles (e.g., “Go To Statements Considered Harmful,” 1968).
He was a leading person of a programming methodology called structured
programming. It allowed for more understandable programs, which were
more easily modifiable, and also made it easier to prove their correctness.
Dijkstra received the Turing Award for his contributions to algorithms,
programming languages, and programming methodology in 1972.

Michael L. Fredman and Robert E. Tarjan (1948–) improved Dijkstra’s
algorithm by using the Fibonacci heap data structure [13]. The time
complexity of the improved version by Fredman and Tarjan for the
shortest-path problem from the single source is O(|V| log |V| + |E|). Tarjan
received the Turing Award for his contributions to the design and analysis
of algorithms and data structures in 1986.

Dijkstra’s algorithm may not work properly if negative edge weights are
allowed in the graph. The Bellman–Ford algorithm solves the single-source
shortest-path problem in the general case in which edge weights may be
negative. The algorithm is based on algorithms proposed in 1958 by an
American applied mathematician, Richard Bellman (1920–1984), and its
refined version was proposed in 1962 by an American mathematician,
Lester R. Ford (1886–1967). The time complexity of the Bellman–Ford
algorithm is O(|V||E|).

The problem of finding shortest paths between all pairs of vertices in
a directed and weighted graph is also interesting. Of course, we can solve
this problem by solving the single-source shortest-path problem for each
vertex in the graph. This approach, however, is not recommended, because
it is not the most efficient way to proceed. Floyd’s algorithm for the all-pairs
shortest paths was proposed in 1962 by Robert Floyd (1936–2001); it uses
a dynamic programming approach based on matrix multiplication. The
algorithm uses an adjacency matrix representation of a graph. The input is
an n × n matrix W representing the edge weights of an n-vertex directed
graph G = (V, E), where W = (wij) is the weight of the edge from vertex i
to vertex j.

Dynamic programming is a method of solving problems by breaking
them down into overlapping subproblems. This method was originally
proposed and developed by Bellman in the 1940s and refined by the early
1950s. The overlapping subproblems are of sizes that are smaller than the
original problem. Each subproblem is then recursively broken down into
yet smaller subproblems. For example, suppose that we wish to find the

264    ◾    Computing﻿

shortest path from A to B, and that possible intermediate vertices are M1,
M2, and M3. Then, we choose the best intermediate vertex from M1, M2,
and M3 by deciding the smallest value among dist(A, M1) + dist(M1, B),
dist(A, M2) + dist(M2, B), and dist(A, M3) + dist(M3, B), where dist(X, Y)
means the shortest distance from vertex X to vertex Y. Floyd received
the Turing Award in 1978 for his contributions to methodologies for the
design of efficient and reliable software [6, 9].

The algorithms for the shortest-path problems are just a few exam-
ples of a large family of graph algorithms. Graphs can elegantly model a
variety of discrete and optimization problems. As another example, we
describe the problem of scheduling classes in a university or meetings of
government committees as a graph-theoretical problem. The vertices cor-
respond to the classes (the meetings), and two classes (two meetings) are
connected by an edge if there is a student (or a government member) who
wishes to attend both classes (meetings). If classes (meetings) are directly
connected by an edge, then they should be held in different time periods
or on different days. The problem is to schedule the classes (meetings) in
a way that the conflicts are minimized. This problem can be modeled as a
graph coloring problem, as shown in Example 27.1. It should be noted that
most scheduling problems have been shown to be NP-complete and are
therefore extremely difficult to solve.

Example 27.1

In a local government, there is an education committee (Ed), an
environment committee (En), a finance committee (F), a housing
committee (H), a security committee (S), a transportation commit-
tee (T), and a welfare committee (W). We wish to schedule the com-
mittee meetings so that the meetings of any two committees should
be held on different days if there is a member belonging to both of
them, and that the number of days when any meeting is held should
be minimized. Each meeting corresponds to a vertex of the graph,
and two vertices are connected by an edge if there is a member who
belongs to both committees. Alternatively, we can describe this as a
problem of finding the minimum number of colors needed to color
each vertex of a graph so that any adjacent vertices should be colored
differently. As shown in Figure 27.5, the minimum number of colors
needed for this example is two. That is, it is possible that 2 days are
sufficient to hold all of the meetings satisfying the condition.

The Design of Computer Algorithms    ◾    265  

27.4 � RANDOMIZED ALGORITHMS
Usually computer algorithms behave predictably. In other words, most
computer algorithms are deterministic. Given a particular input, a deter-
ministic algorithm will produce the same output, and the underlying
machine will always work through the same sequence of computing states.
Consequently, for a given input, a deterministic algorithm requires the
same execution time. Except for randomized quicksort, all the algorithms
in the previous sections were deterministic.

As described in Section 27.1, randomized quicksort, devised by Hoare
in 1960, contains random choice operations. Consider sorting a set by
randomized quicksort. We first choose a random element y from S, and
then partition S – {y} into two sets S1 and S2, where S1 consists of those
elements of S smaller than y, and S2 consists of remaining elements. S1 and
S2 are then recursively sorted in the same way, eventually resulting in a
sorted sequence of the elements of S. An algorithm containing random
choice operations is called a randomized or probabilistic algorithm. The
fundamental characteristic of randomized algorithms is that they may
react differently if they are applied twice to the same input instance. Given
the same input to the randomized quicksort, the computational time may
vary different at different runs/executions, but the result obtained will
be the same. However, sometimes, even the results may vary from one

Ed

HF S

En W T

Mon

Mon Tues

TuesTues

Mon

Mon

FIGURE 27.5  A graph for a meeting schedule of a committee.

266    ◾    Computing﻿

execution to the next of randomized algorithms, depending on which
computational steps were taken.

Randomness was first used in algorithms for the approximate solution
of numerical problems. It can be traced back to the 19th century. For
example, it was used in the experimental determination of π around the
year 1870. Stanislaw Marcin Ulam (1909–1984), who was an American
mathematician of Polish-Jewish origin, used randomized computations
in atomic physics research during World War II in Los Alamos, New
Mexico. He had coined the phrase “Monte Carlo algorithms,” which
is still in use today. In 1976, a symposium entitled “Algorithms and
Complexity: New Directions and Recent Results” was held at Carnegie
Mellon University. At the symposium, Richard Karp (1935–) and Michael
Oser Rabin (1935–) gave lectures on various topics. Karp presented an
outline of randomized algorithms, and Rabin showed fundamental meth-
odologies of how to design efficient randomized algorithms. This sympo-
sium has had a great influence on the development of subsequent research
in the area of randomized algorithms. Michael O. Rabin received the
Turing Award in 1976 for his 1959 work with Dana Scott (1932–), “Finite
Automata and Their Decision Problems” and his many other significant
research contributions.

Let us consider the following simple problem to understand how ran-
domness produces good results:

Problem

Given a set S = a a an1 2, , ,�{ } of n integers, choose an integer in the
upper half of S; i.e., it is greater than or equal to more than half of
the elements in S.

In order to choose such an integer from S correctly, we need at
least n/2 comparisons of integers of S. From the following way, n/2
comparisons are sufficient to choose such an integer:

	 1.	Let x = a1 be a candidate of such an integer.
	 2.	For each i(i = 2, 3, …, n/2 + 1), compare x and ai, and if x < ai,

then set x to be ai.

By the deterministic algorithm shown above, n/2 is the necessary
and sufficient number of comparisons to choose an integer that
surely belongs to the upper half of S.

The Design of Computer Algorithms    ◾    267  

Now, we consider a randomized algorithm for this problem. Ran-
domly choose two integers and compare them. If we answer that the
larger one belongs to the upper half of S, then the probability of the
correctness is 1 – (1/2)2 = 3/4. Although we use only one comparison
of integers, the result is not bad. Next, randomly choose one more
integer from the rest of S and compare the larger one in the first
comparison and the third one. If we answer that the larger one in
the second comparison is an integer that belongs to the upper half of
S, the probability of the correctness becomes 1 – (1/2)3 = 7/8. In this
way, we can increase the probability of correctness by increasing the
number of comparisons. In general, if we use k comparisons, the
probability of the correctness is 1 – (1/2)k+1. For example, if we use
nine comparisons in this way, the probability of an incorrect answer
is about 1/1000. This randomized method is efficient, and we can
increase the probability of the correctness as much as we like by
simply increasing the computing time.

Randomized algorithms can be divided into two major classes: Las Vegas
and Monte Carlo algorithms. While Las Vegas algorithms never return
an incorrect answer, they sometimes may not give any answer at all.
Randomized quicksort is an example of a Las Vegas algorithm. Note that
randomized quicksort always gives the correct answer, although its run-
ning time for the same input may vary considerably from one execution
to the next. The name Las Vegas algorithms comes from a popular city in
Nevada, which is internationally famous for gambling. Las Vegas algo-
rithms were first introduced in 1979 by the Hungarian mathematician
Laszlo Babai (1950–) for the graph isomorphism problem.

On the other hand, a Monte Carlo algorithm always gives an answer,
but not necessarily a correct one. The probability of success by a Monte
Carlo algorithm increases as the algorithm is run repeatedly. Monte Carlo
is a part of Monaco, which is surrounded by France and the Mediterranean
Sea. It is also well known for its casinos and gambling.

A primality test is an algorithm for determining whether a given num-
ber is a prime. Primality testing has applications in many diverse areas, for
example, public-key cryptography [8, 9] (see Chapter 30). A naïve primality
test is as follows: Given an input number, check whether any integer from
2 up to the square root of n can be a factor of n. If n is a composite, then it
can be factored into two integers. This naïve method takes an exponential

268    ◾    Computing﻿

time in log n for input n. Most popular and practically efficient primality
tests are probabilistic ones. The Miller–Rabin primality test (1976; Gary
Lee Miller) and Solovay–Strassen primality test (1977; Robert M. Solovay,
1938–; Volker Strassen, 1936–) are sophisticated Monte Carlo algorithms
that usually produce good results. The running time of these algorithms
is O((log n)3).

We can consider some complexity classes based on randomized algo-
rithms. The following are examples of well-known classes [15]:

	 1.	The class ZPP (for zero-error probabilistic polynomial) is the class
of languages that have Las Vegas algorithms running in expected
polynomial time.

	 2.	The class RP (for randomized polynomial) is the class of languages
L that have a randomized algorithm A running in polynomial time
such that for any input x:

	 a.	 If x is in L, then the probability that x is accepted by A is at least 1/2.

	 b.	 If x in not in L, then the probability that x is accepted is 0.

	 3.	The class BPP (for bounded-error probabilistic polynomial) is the
class of languages L that have a randomized algorithm A in polyno-
mial time such that for any input x:

	 a.	 If x is in L, then the probability that x is accepted by A is at least 3/4.

	 b.	 If x is not in L, then the probability that x is accepted by A is at
most 1/4.

Randomized quicksort is a ZPP algorithm. There are several interest-
ing open problems regarding the relationships among randomized com-
plexity classes, for example, the question of whether BPP ⊆ NP is open.

REFERENCES
	 1.	 A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
	 2.	 D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms

(vol. 1, 2nd ed.), Addison-Wesley, Reading, MA, 1973 (the first edition was
published in 1968).

	 3.	 D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms
(vol. 2, 2nd ed.), Addison-Wesley, Reading, MA, 1981.

The Design of Computer Algorithms    ◾    269  

	 4.	 D. E. Knuth, The Art of Computer Programming: Sorting and Searching (vol.
3), Addison-Wesley, Reading, MA, 1973.

	 5.	 N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Englewood
Cliffs, NJ, 1976.

	 6.	 G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

	 7.	 U. Manber, Introduction to Algorithmics: A Creative Approach, Addison-Wesley,
Reading, MA, 1989.

	 8.	 T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, MA, 1990.

	 9.	 J. Kleinberg and E. Tardos, Algorithm Design, Addison-Wesley, Boston, 2006.
	 10.	 Wikipedia, Tony Hoare, http://en.wikipedia.org/wiki/Tony_Hoare.
	 11.	 Wikipedia, Quick Sort, http://en.wikipedia.org/wiki/Quick_sort.
	 12.	 Wikipedia, Linked List, http://en.wikipedia.org/wiki/Linked_list.
	 13.	 M. L. Fredman and R. E. Tarjan, Fibonacci Heaps and Their Uses in Improved

Network Optimization Algorithms, Journal of the ACM, 34, 596–615, 1987.
	 14.	 E. W. Dijkstra, A Note on Two Problems in Connection with Graphs,

Numerische Mathematik, 1, 269–271, 1959.
	 15.	 R. Motwani and P. Raghvan, Randomized Algorithms, Cambridge University

Press, New York, 1995.

271

C h a p t e r 28

Parallel and
Distributed Computing

28.1 � DAWN OF PARALLELISM
Parallel computing is a form of computation in which more than one
calculation can be concurrently carried out. A parallel computer is a com-
puter system with multiple processing elements, working in parallel, to
solve a problem. Before the middle of the 1950s, all commercial computers
were traditional serial computers.

IBM 704 was introduced in 1954. It was the first mass-produced com-
puter with floating-point arithmetic hardware and could execute up to
4000 instructions per second. IBM 704 was a very successful commercial
computer. However, after the middle of the 1950s some research projects
needed much faster computers. For example, the University of California
Radiation Laboratory (UCRL) in Livermore, California, and Los Alamos
Scientific Laboratory (LASL) wanted high-performance computers for
their projects. In April 1955, IBM submitted a proposal to UCRL, but
UCRL rejected it, instead getting in contact with Remington Rand
(UNIVAC). Then IBM submitted a proposal of STRETCH (also known as
IBM 7030) to LASL in 1956, and was awarded the contract with LASL for
the high-performance computer system.

STRETCH was an amazing computer system in the 1950s that con-
tained many high-performance features, such as local concurrency,
nonlocal concurrency, multiprogramming, a look-ahead approach to start

272    ◾    Computing﻿

memory fetches early, and pipeline utilization. John Cocke (1925–2002)
contributed to developing these ideas. From these features, we can say that
STRETCH was an aggressive computer system with single-processor par-
allelism. We may therefore consider that the start of the STRETCH project
is the dawn of parallelism. The STRETCH design had its roots in 1954
from initial studies on advanced concepts for high-performance comput-
ing by Stephen W. Dunwell (1913–1994) and Werner Buchholz (1922–).
The STRETCH project started formally in 1955 after UNIVAC won the
contract to build the Livermore Automatic Research Computer (LARC).
After losing the competition on LARC, IBM proposed a high-performance
computer system that was 100 times faster than that of IBM 704 to the Los
Alamos Scientific Laboratory in 1955. John Cocke won the Turing Award
for his large contribution to computer architecture and compiler optimi-
zation in 1987.

In 1961, actual benchmarks indicated that the performance of the IBM
7030 was only about 30 times faster than that of the IBM 704. While the
IBM 7030 was not considered successful, it spawned technologies incor-
porated in future computer systems. The STRETCH was conceived as a
supercomputer since its high-performance and new concepts of advanced
technology were far beyond the level of existing computer systems in
the 1950s. Many advanced technologies developed with the STRETCH
project were incorporated in later supercomputer designs, such as IBM
System/360 models, IBM System/370 models, and the IBM 3090 series. As
the editor, Werner Buchholz published a book about the STRETCH proj-
ect in 1962 [7]. He is the person who coined the term byte in 1956, a unit
of digital information (1 Byte = 8 bits). The first STRETCH was delivered
to Los Alamos Scientific Laboratory (LASL) in 1961, and used until 1971.
The second STRETCH was delivered to the U.S. National Security Agency
as part of the HARVEST system in 1962. Altogether, 8 STRETCH systems
(six in the United States, one in the UK, and one in France) were sold from
1961 to 1963.

Frances E. Allen (1932–) joined IBM in 1957 and ended up staying there
for 45 years. Her work has had strong impacts on compiler research and
practice. She introduced many of the abstractions, algorithms, and imple-
mentations that laid the groundwork for automatic program optimization
technology. Allen developed and implemented her methods as part of the
compiler for the IBM STRETCH-HARVEST system. She became the first
woman to win the Turing Award in 2006.

Parallel and Distributed Computing    ◾    273  

28.2 � PARALLEL COMPUTERS
Physical limitations on processing speeds forced high-performance
computations to be targeted at the exploitation of parallelism. Parallel
computer architecture has grown in the form of multiple microprocessors.

Daniel L. Slotnick (1931–1985) studied mathematics at Columbia Uni-
versity and New York University (now called the Courant Institute at New
York University). In 1957, he joined IBM, where he wrote a joint paper
with John Cocke on the use of parallelism in numerical calculations.
Slotnick was then employed by the Westinghouse Electric Corporation
in Baltimore, Maryland, where he was given the opportunity to pursue
his ideas on parallel computers. He designed the Solomon computer and
built the first parallel processor prototype using first a 3 by 3 and then a
10 by 10 processor array. In the 1960s, 258 processor elements were used
in the Solomon computer. These processor elements could run a single
instruction at a time in parallel. The concept of applying a single instruc-
tion to a large number of data elements is now commonly referred to as
single instruction, multiple data (SIMD). In 1964, a prototype of Solomon
was built under a contract from the U.S. Air Force, but the contract ended
and Westinghouse gave up developing the Solomon system any further.

In 1965, Slotnick moved to the University of Illinois at Urbana-Champaign
and started the ILLIAC IV project with Burroughs under the sponsorship
of the government Advanced Research Project Agency (ARPA). Among its
technological innovations, ILLIAC IV was the first large computer system
that employed semiconductor primary memory. It was a SIMD computer
for array processing. The ILLIAC IV design featured high parallelism with
up to 256 processors that were used to allow it to work on large data sets.
That technique would later be known as vector processing. After many
problems, in 1970, ILLIAC IV was transferred from the campus of the
University of Illinois at Urbana-Champaign to Moffett Field, California,
NASA Ames Research Center. The first run of ILLIAC IV was in 1973,
but it was not fully operational until 1975. Its performance was about
200 MFLOPS (200 million floating-point operations per second) and its
clock frequency was 13 MHz. The ILLIAC IV was credited as the fast-
est computer in the world until 1981. The operation of ILLIAC IV was
eventually ended in 1982. The ILLIAC IV chassis is now displayed at the
Computer History Museum in Mountain View, California.

Cray-1 was the first commercially successful supercomputer and was
manufactured by Cray Research, Inc., founded in 1972 by Seymour Roger

274    ◾    Computing﻿

Cray (1925–1996). A supercomputer is a computer that is at the most
advanced frontline of current processing capacity. The architecture of
Cray-1 was designed mainly by Seymour Cray. The first Cray-1 was lent
to Los Alamos National Laboratory in 1976 for a 6-month trial. The first
full system of Cray-1 was sold to the National Center for Atmospheric
Research (NCAR) in 1977. Cray-1 adopted integrated circuits (ICs).
About 200,000 gates were used in Cray-1, and these ICs were supplied
by Fairchild Semiconductor and Motorola. Over 80 Cray-1 systems were
sold, and the company was very successful in the supercomputer market.
When Cray-1 was released, it beat almost every computer in computing
speed. Only ILLIAC IV was nearly at the same level of performance, but
its operational cost was much behind that of Cray-1. The peak speed of the
first Cray-1 was 250 MFLOPS.

Cray-1 was succeeded in 1982 by the 800 MFLOPS Cray X-MP, the
first Cray multiprocessing computer. In 1985, the very advanced Cray-2
appeared. Its peak performance was at first 1.9 GFLOPS (1.9 × 109
floating-point operations per second), and improved to 3.9 GFLOPS. Cray-1s
are now on display at a number of museums (e.g., Computer History
Museum in Mountain View, California, Science Museum in London, and
Deutsches Museum in Munich).

In the early and mid-1980s, a standard supercomputer was a computer
system with a modest number of vector processors, typically in the range
of 4 to 16, working in parallel. In the later 1980s and 1990s, a supercom-
puter became a massive parallel processing system with a thousand or
more processing units. Traditionally, U.S. computer companies such as
Cray, IBM, and Intel had dominated in the supercomputer market. In the
1990s, Japanese computer companies NEC, Fujitsu, and Hitachi came up
to the top group in the supercomputer market, but in the late 1990s, Hitachi
and Fujitsu moved down from the top group, and in 2002, NEC lost its
top position to IBM Blue Gene/L. Most modern supercomputers are now
highly tuned computer clusters using commodity processors combined
with custom requests. In 2010, Tianhe-1A at National Supercomputing
Center, Tianjin, China, became the fastest supercomputer in the world.
The speed of Tianhe-1A is 2.5 PFLOPS (2.5 × 1015 floating-point opera-
tions per second), whereas the speed of the second fastest supercomputer,
Cray Jaguar, is 1.76 PFLOPS. In 2011, the K computer, manufactured by
Fujitsu, became the world’s fastest supercomputer with a computation
speed of 8 PFLOPS, but in 2012 the IBM Sequoia became the world’s fastest

Parallel and Distributed Computing    ◾    275  

supercomputer. The K computer, currently installed in Kobe, Japan, is the
fourth fastest supercomputer in the world as of 2013 [8].

Supercomputers are used for scientific research in such fields as weather
forecasting, climate research, quantum physics, molecular modeling, bio-
logical macromolecules, and physical simulation, but also for intelligence
and military uses.

28.3 � PARALLEL ALGORITHMS
A parallel algorithm is a procedure that executes pieces of work at the same
time on many different processing devices. Some algorithms are easily
divided into pieces of work to be allocated to different processors, but some
algorithms are not easy to do so. It is convenient for designing an efficient
parallel algorithm if we have a suitable model of the parallel computer.

A widely accepted model for designing and analyzing sequential algo-
rithms consists of a central processing unit with a random access memory
(RAM) attached to it. This model is also called the von Neumann model.
The RAM model has been successful in estimating the performance of
sequential algorithms. We can consider that it is an efficient and useful
bridge between software and computer hardware. It is not easy to give a
commonly accepted model for parallel computation due to the presence
of a set of interconnected processors and their concurrency. The perfor-
mance of a parallel algorithm usually depends on various factors, such as
processor allocation, job scheduling, communication, and synchronization
among processors working concurrently.

One of the commonly used models for parallel computing has been the
shared memory model. It consists of a number of processors, each of which
has its own local memory and can execute its own local program. All of the
processors can communicate by exchanging data through a shared mem-
ory unit. There are two basic types of the shared memory model. If all the
processors operate synchronously under the control of a common clock,
the model is called the parallel random access machine (PRAM) model.
The other type is called the asynchronous model. In the asynchronous
model, each processor operates under its own clock. A PRAM is considered
a parallel computer that operates multiple instructions on multiple data
(MIMD type). That is, each processor may execute multiple instructions on
data different from those executed by any other processor during any given
time unit. A general view of a shared memory model with n processors is
shown in Figure 28.1.

276    ◾    Computing﻿

The network model has also been widely used for parallel computing.
In particular, a network model may be suitable in the case where the com-
munication costs among processors are considered to be large. A network
can be viewed as a graph G = (V, E), where each node in V represents
a processor and each edge (i, j) in E represents a communication link
between processors i and j. Each processor is assumed to have its own
local memory and control unit, and no shared memory is available. Data
can be exchanged between two processors through the communication
link. The network model incorporates the topology of the interconnection
between the processors into the model itself. The linear processor array,
the tree-connected array, the two-dimensional mesh (it is also called the
mesh-connected processor array), and the hypercube are examples of
widely used topologies. An example of the mesh-connected processor
array is shown in Figure 28.2.

There is a very large body of literature on the subject of PRAM algo-
rithms and network model algorithms. A lot of parallel algorithms have
appeared since the middle 1970s until today. Some of them are very smart,
and some of them are very sophisticated. Here, we describe two funda-
mental examples of parallel algorithms.

Parallel merge sorting. The parallel merge sort is based on a merg-
ing procedure that is used to sort successively larger and larger non-
overlapping subsequences until the whole sequence is sorted. The
sequence of operations by the parallel merge sort algorithm can be
represented on a binary tree as follows. Let T be a balanced binary tree
with n leaves. The elements of the sequence are distributed among
leaves. The nodes at height 1 represent the lists that we obtained by
merging the pairs of consecutive elements contained in the children
nodes. In general, each internal node represents the sequence that

Shared Memory

P1 P2 Pn

FIGURE 28.1  The shared memory model.

Parallel and Distributed Computing    ◾    277  

we obtained by merging the subsequences generated at the children
nodes. Hence, each internal node represents the sorted list of the ele-
ments sorted in the subtree rooted at the node. If we use the optimal
O(log log n) time merging procedure proposed by Leslie G. Valiant
(1975), we obtain an O(log (log log n)) time parallel sorting algo-
rithm. The total number of operations of the algorithm is O(n log n).
The pipelined merge sorting algorithm, called Cole’s merge sort, was
developed in 1988 by Richard Cole (1956 –).

List ranking. The list ranking problem is often encountered in the
design of parallel algorithms as the fundamental technique. It is
defined as follows: given a linked list L with n nodes, we would like
to compute an array R such that R(i) is the distance of node i from
the end of L. This problem was first proposed in 1979 by J. C. Wylie
(1952 –). The following is a simple parallel list ranking algorithm:

FIGURE 28.2  The 4 × 4 mesh-connected processor array.

278    ◾    Computing﻿

	 begin
	 for i := 1 to n do in parallel
		 if s(i) ≠ 0 then R(i) := 1
		 else R(i) := 0;
	 for i := 1 to n do in parallel
		 begin
			 q(i) := s(i)
			 while q(i) ≠0 and q(q(i)) ≠0 do begin
			 R(i) := R(i) + R(q(i));
			 q(i) := q(q(i)) end
		 end
	 end;

The simple list ranking algorithm shown above generates R(i) of each
node i in O(log n) time using O(n log n) operations. The algorithm can
be implemented to run on the PRAM model. The optimal list ranking
algorithm that takes O(log n) time and O(n) operations was first dis-
covered by Richard Cole and Uni Viskin (1952–).

The computational complexities of parallel algorithms have also been
much studied. In the case of sequential algorithms, polynomial time
solvable problems are considered to be feasible. For parallel algorithms,
we use the different definition for the quickly solved standard. The com-
plexity class, Nick’s class (NC), of problems quickly solved on a parallel
computer was named by Stephen Cook after Nicholas Pippenger (1946–),
who had done extensive research on circuit complexity. If a problem is
solved by a Boolean circuit with polylogarithmic depth (O(logc n)) and
polynomial size (O(nk)) for some constants c and k, we say that the prob-
lem belongs to NCc. It is obvious that NC1 ⊆ NC2 ⊆ … ⊆ NCc ⊆ …. Nick’s
class NC is defined to be NC1 ∪ NC2 ∪ … ∪ NCc ∪ …. In other words,
if a problem belongs to NC, it can be solved in time O(logc n) using O(nk)
parallel processors for some constants c and k. One of the major open
problems is whether or not every class containment in the NC hierarchy
is proper. That is, it is open to whether the following proper inclusion
relation holds true:

	 NC1 ⊂ NC2 ⊂ … ⊂ NCc ⊂ … ⊂ NC.

In 1994, Christos H. Papadimitriou (1950–) showed that NC1 ⊆ L ⊆ NL

⊆ NC2, where L (also known as LSPACE) is the complexity class containing

Parallel and Distributed Computing    ◾    279  

decision problems that can be solved by a deterministic Turing machine
using a logarithmic amount of memory space. NL is the complexity class
containing decision problems that can be solved by a nondeterministic
Turing machine using a logarithmic amount of memory space.

More material about parallel algorithms can be found, for example, in
[1, 2].

28.4 � DISTRIBUTED COMPUTING
A distributed system originally referred to computer networks where
individual computers were physically distributed within some geographi-
cal area. The term distributed system is now used in a wider sense. Even
if some autonomous processors run on the same physical computer and
they interact with each other by message passing, we may consider such
a system a distributed system. The study of distributed algorithms has its
roots in designing operating systems for distributed systems in the 1960s.

The asynchronous network model and the asynchronous shared
memory model are widely used in the area of distributed computing. A
distributed system is a collection of individual computing devices called
processes or processors together with communication channels. Processes
can communicate with other processes through communication channels
in a network or through the shared memory as a communication model.
The shared memory is an abstraction of asynchronous interprocess com-
munication. Each process in a distributed system is generally performed by
its own program, but it is occasionally requested to collaborate with other
processes. In the following, we mainly describe distributed computing on
the shared memory model.

Interaction between a process and its corresponding user is by input
actions from the user to the process and by output actions from the process
to the user. We may consider each process in the distributed system to be
a state machine. All communication among the processes is via the shared
memory (also called variables). This model was introduced by Nancy
A. Lynch (1948–) and Mark R. Tuttle (1962–) in 1987, and it is known
as I/O automaton [2]. Two types of the shared memory model have been
widely used. One is the multiwriter/reader shared memory, and the other
is the single-writer/multireader shared memory. In the multiwriter/reader
shared memory model, the same shared variable may be read or written
by different processes. On the other hand, in the single-writer/multireader
shared memory model, each shared variable can be written by only one
process, but may be read by any process.

280    ◾    Computing﻿

The behavior of operational executions in a distributed system should
be required to be consistent for all processes and interprocess communi-
cation. We therefore need a unified theory of shared memory consistency.
In 1986, Leslie Lamport (1941–) defined three categories, safe, regular, and
atom, for shared variables according to possible assumptions about what
can happen in the concurrent case of read operations and write operations
[9]. A shared variable is safe if every read operation that does not overlap
with write operations returns the last value written to the shared variable.
On the other hand, every read operation that overlaps with one or more
write operations may return any value from the domain of the shared
variable. A shared variable is said to be atomic if it is regular with the
additional property that read operations and write operations behave as if
they occur in some total order. In a distributed system, many distributed
algorithms have been designed under the assumption that all shared vari-
ables are atomic. That is, in the design of most distributed algorithms, we
assume that there is a possible linearization of the temporal order of read
operations and write operations such that the linearization is consistent
with the actual behavior of the system, although these operations may be
physically overlapped. Even if different processes try to write on the same
shared variable at nearly the same time, one process’s writing precedes the
other process’s writing. This means that the contents of the shared variable
by the earlier one are changed to the value written by the later one even if
these two events occur very closely.

Mutual exclusion is one of the most fundamental problems for dis-
tributed computing. Historically, it was first seriously studied in 1965 by
Edsger W. Dijkstra (1930–2002) as an important problem for a distrib-
uted operating system [10]. It is the problem of how to allocate a single
individual, nonshareable resource among users. A user with access to the
resource is modeled as being in a critical region (i.e., admitted state to use
the resource). When a user is not involved in any way with the resource,
it is said to be in the remainder region. In order to gain admittance to its
critical region, a user executes a trying protocol. The duration from the
state of executing the trying protocol to the entrance of the critical region
is called the trying region. After the end of the use of the resource by a user,
it executes an exit protocol. The duration of executing the exit protocol is
called the exit region. Each user follows a cycle, moving from its remainder
region to its trying region, then to its critical region, then to the exit region,
and finally back to its remainder region. This cycle can be repeated.

Parallel and Distributed Computing    ◾    281  

The mutual exclusion problem is to design a fair and efficient algo-
rithm to decide the temporal order among users wishing to use a shared
resource. The distributed system to solve the mutual exclusion problem
should satisfy the following conditions:

	 1.	There is no reachable system state in which more than one user is in
the critical region.

	 2.	 If at least one user is in the trying region and no user is in the critical
region, then at some later time point some user enters the critical region.

	 3.	If a user is in the exit region, then at some later time point some user
enters the remainder region.

If a mutual exclusion algorithm satisfies the following two additional
conditions, it is said to be lockout-free:

	 4.	If all users always return the resource, then any user that reaches the
trying region eventually enters the critical region.

	 5.	Any user that reaches the exit region eventually enters the remain-
der region.

An early algorithm for the mutual exclusion by Dijkstra guarantees
mutual exclusion, but it does not guarantee lockout freedom. That is,
Dijkstra’s algorithm may allow one user to be repeatedly granted access
to its critical region, while other users trying to gain access never succeed
in doing so. Subsequently, a number of improved mutual exclusion algo-
rithms have been proposed.

Other typical problems in a distributed system are the leader election
problem, consensus problem, resource allocation problem, synchronizer con-
struction problem, concurrent snapshot problem, and bounded time-stamp
problem. These problems have been extensively studied in distributed
environments since the 1970s. More material about distributed comput-
ing and algorithms can be found, for example, in [3–6].

REFERENCES
	 1.	 J. Jaja, An Introduction to Parallel Algorithms, Addison-Wesley, Reading,

MA, 1992.
	 2.	 F. T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan

Kaufmann, San Mateo, CA, 1992.

282    ◾    Computing﻿

	 3.	 G. Tel, Topics in Distributed Algorithms, Cambridge University Press,
New York, 1991.

	 4.	 G. Tel, Introduction to Distributed Algorithms, Cambridge University Press,
New York, 1994.

	 5.	 N. A. Lynch, Distributed Algorithms, Morgan Kaufmann, San Francisco, 1996.
	 6.	 H. Attiya and J. Welch, Distributed Computing (2nd ed.), John Wiley & Sons,

Hoboken, NJ, 2004.
	 7.	 W. Buchholz, Planning a Computer System: Project STRETCH, McGraw Hill,

New York, 1962.
	 8.	 Wikipedia, K Computer, http://en.wikipedia.org/wiki/K_computer.
	 9.	 L. Lamport, The Mutual Exclusion Problem, Part II, Journal of the ACM, 33,

327–348, 1986.
	 10.	 E. W. Dijkstra, Solution of a Problem in Concurrent Programming Control,

Communications of the ACM, 8, 569, 1965.

283

C h a p t e r 29

Computer Networks

Sputnik 1 was the first Earth-orbiting artificial satellite launched by the
Soviet Union on October 4, 1957. Its success was an astonishing shock
to the United States. This incident is considered the start of the Space
Race during the Cold War. Explorer 1 was the first Earth-orbiting artifi-
cial satellite launched by the United States on January 31, 1958. Both the
United States and the Soviet Union thought that the development of space
technology could provide a huge diplomatic and military advantage [3–5].

In February 1958, the Advanced Research Projects Agency (ARPA)
was established in the U.S. Department of Defense. Its foundation was
motivated by American competition with the Soviet Union’s launch of
Sputnik 1. The United States was trying to develop a defense system against
ballistic missile attacks. ARPA promoted research projects for improv-
ing U.S. military technology. In 1972, ARPA was renamed the Defense
Advanced Research Projects Agency (DARPA), and then in 1993 reverted
to ARPA. It was finally renamed DARPA in March 1996 [6].

29.1 � PACKET SWITCHING NETWORKS
On May 28, 1961, the radio relay stations at Cedar Mountain, Utah, and
Wendover, Nevada, were blown up by radicals and virtually destroyed.
More than 2200 telephone and telegraph circuits and two television chan-
nels were interrupted. The U.S. government was urged by this incident
to develop secure and reliable communication systems that would be
invulnerable to communication facility damage. The U.S. government
transferred its Command and Control Project from Defense Research
Engineering to ARPA. In the same year, ARPA commissioned the RAND

284    ◾    Computing﻿

Corporation to conduct a research project for the construction of invul-
nerable communication systems that could tolerate nuclear missile attacks.
The RAND Corporation (Research and Development Co.) is a nonprofit
global policy think tank that was formed in 1946 to conduct research and
analysis for the U.S. armed forces [9].

Paul Baran (1926–2011) was a Polish-born American engineer who
joined the RAND Corporation in 1959 to work on a project to design
a robust communication system that could maintain communication
between endpoints even in the event of serious damage from explosions
or attacks. The concepts of packet switching were first explored by Baran
in the early 1960s. Independently, Donald Davies (1924–2000) at the
National Physical Laboratory in the UK and Leonard Kleinrock (1934–)
at MIT also developed similar ideas [8].

Packet switching is a digital networking communication method that
groups all transmitted data regardless of content, type, or structure into
suitably sized blocks called packets. The principal goals of packet switch-
ing are to optimize the utilization of available link capacity, minimize
response times, and increase the robustness of communication against the
damage of nodes or lines in a communication network [2]. Baran may have
obtained his ideas for packet switching techniques from the observation
of the similarity between biological neural networks and communication
systems for telephones and telegraphs. Baran and his team at the RAND
Corporation developed simulation tests of the connectivity among nodes
in a communication network. A network with at least three connected
links at each node showed a significant increase in resilience even when
many nodes were eliminated. Details of the designs of robust commu-
nication networks using packet switching techniques were reported in
“On Distributed Communication,” which was published by the RAND
Corporation and submitted to ARPA in 1964 [10, 11].

Data communications based on the idea of circuit switching, such as
in traditional telephone circuits, were possible only between the two con-
nected parties. With packet switching, however, data packets from one
party could be transmitted to many different destinations, and each data
packet could be routed independently [2].

29.2 � ARPANET AND CSNET
Joseph Carl Robnett Licklider (1915–1990) studied physics and mathematics
(B.A. in 1937) and psychology (M.A. in 1938) at Washington University
in St. Louis. He received his Ph.D. in psychoacoustics from Rochester

Computer Networks    ◾    285  

University in 1942. Around 1950 he became interested in information
technology, and in August 1962 he conceived his earliest ideas for a com-
puter network allowing communications among computer users. Licklider
wrote a series of memos about his concept of computer networks, where
everyone in the world could be connected and access programs and data
at any site from anywhere. He called his computer network concept the
Intergalactic Computer Network (Galactic Network for short) [14].

In 1962, Licklider became the head of the computer research group
at ARPA, called the Information Processing Technology Office (IPTO),
where he developed his ideas on how to establish a time-sharing network
of computers. He discussed the Galactic Network with young computer
scientists at MIT. In 1963, Licklider started to discuss his vision with
Laurence G. Roberts (1937–), Ivan Sutherland (1938–), and Robert Taylor
(1932–). Licklider contracted with MIT, UCLA, and BBN Technologies to
start working on computer networks. Eventually, his vision of computer
networks led to the establishment of the ARPANET, the world’s first oper-
ational packet switching network. Today, Licklider is remembered as one
of the pioneers of the Internet [12, 14].

Ivan Sutherland used the TX-2 at MIT to write graphical programs
for computer-aided design. He received the Turing Award in 1988 for the
invention of Sketchpad, an early predecessor to a sort of graphical user
interface. Sutherland became the head of IPTO at ARPA when Licklider
returned to MIT in 1964. Robert Taylor (1932–) was appointed the head
of IPTO at ARPA when Sutherland moved to Harvard University in 1965.

The ARPANET project actually started in December 1966. Robert
Taylor had three computer terminals, each connected to different com-
puters: the first for the System Development Corporation (SDC) Q-32 in
Santa Monica, the second for Project Genie at the University of California,
Berkeley, and the third for Multics at MIT. Taylor thought that rather than
having three terminals, there ought to be just one terminal capable of
connecting anywhere one would want to communicate. That idea was the
fundamental concept of the ARPANET [12].

In 1968, Robert Taylor proposed a plan for a computer network com-
posed of small computers, called interface message processors (IMPs). The
IMP at each node would work as a gateway (router) and would perform the
store-and-forward packet switching function. The host computers were
connected to the IMPs via a communication interface. The first-generation
IMPs were initially built by BBN Technologies using Honeywell DDP-516
computers. Each IMP could support up to four local host computers, and

286    ◾    Computing﻿

could communicate with up to six remote IMPs. The initial ARPANET
consisted of the IMPs at the University of California, Los Angeles (UCLA),
Stanford Research Institute, University of California, Santa Barbara
(UCSB), and University of Utah [2, 12].

On October 29, 1969, the first message on the ARPANET was transmit-
ted from the SDS Sigma 7 host computer at UCLA to the SDS 940 host
computer at Stanford Research Institute. By December 5, 1969, the entire
four-node network (the IMPs at UCLA, Stanford Research Institute, UCSB,
and the University of Utah) was established. Thereafter, each year the
ARPANET grew significantly, and by 1981, the number of host computers
connected to the ARPANET exceeded 200 sites [12].

Robert Elliot Kahn (1938–) and Vinton Cerf (1943–) are American com-
puter scientists who invented the Transmission Control Protocol (TCP) and
the Internet Protocol (IP), currently the fundamental communication pro-
tocols for the Internet. The set of these protocols is referred to as TCP/IP.
Kahn, who began to work at IPTO in ARPA in 1972, demonstrated the
ARPANET by connecting 20 different computers at the International
Computer Communication Conference. Thereafter he worked to develop
the TCP/IP protocols. In 1973, Vinton Cerf joined Kahn’s team on the
TCP project, and they completed an early version of TCP. Later it was
separated into two layers, where the most fundamental functions of TCP
were moved to the Internet Protocol (IP). Thus, TCP works as an inter-
mediary level between an application program and the Internet Protocol.
Kahn and Cerf received the Turing Award in 2004 for their pioneering
work on the Internet [12, 15, 16].

The CSNET was established in Madison, Wisconsin, in 1979 by
Lawrence Landweber (1941–). He invited a group of colleagues from other
universities as well as representatives from DARPA and the National
Science Foundation (NSF) to discuss the possibility of constructing a com-
puter network connecting computer science departments. MIT, Carnegie
Mellon University, Stanford University, and some other major universities
already used the ARPANET. However, many participants at the meeting
in Madison were not affiliated with these major universities. They thought
that computer network access would be very important for all computer
science departments and believed that computer network communication
could significantly improve the research environment for scientists.

Landweber organized an electronic mail facility for theoretical com-
puter scientists called THEORYNET. It provided members with a mail-
box on a central computer at the University of Wisconsin. The members

Computer Networks    ◾    287  

accessed it from terminals over dial-up phone lines or through the Telnet
public packet-switched network. THEORYNET successfully attracted
many users, and as a result, Landweber wanted to extend THEORYNET to
include file transfer, remote login, and faster message delivery. He extended
the original CSNET proposal to a consortium of universities. The CSNET
proposal gained the support of DARPA and NSF in 1980. By 1981, three sites
(the University of Delaware, Princeton University, and Purdue University)
had joined CSNET. By 1982, 24 sites had joined, which expanded to 84 sites
by 1984, including one in Israel. Soon thereafter, connections were further
expanded to computer science departments in Australia, Canada, France,
Germany, Japan, and Korea. During this period, a gateway node was
installed at the University of Wisconsin to provide access to the ARPANET.
The ARPANET and CSNET were the forerunners of the Internet [13].

29.3 � WORLD WIDE WEB
The World Wide Web (WWW; commonly known as the Web) is a system
of interlinked hypertext documents that can be accessed via the Internet.
It rapidly became popular among Internet users in the 1990s.

The conceptual groundwork for the World Wide Web started with an
American engineer and science administrator, and one of the creators of
the National Science Foundation, Vannevar Bush (1890–1974), who intro-
duced a conceptual machine called the Memex (derived from “memory
extension”) during the 1940s. Bush imagined a microfilm-based device in
which all his books, documents, and records could be stored. It would be
mechanized for high-speed searching and flexibility. The Memex would
serve as a supplement to the user’s memory, where private files and data
were stored in such a way that any item could lead to another related item
quickly, much like the way hyperlinks work on the Internet. He wrote
about the Memex in 1945 in a seminal article entitled “As We May Think”
published in the Atlantic Monthly. In this article, he described his idea
as an adjustable microfilm viewer. The Memex would work as a memory
bank to organize and retrieve data through the use of “associative trails.”
It was somewhat analogous to the structure of some present-day databases
and that of the present World Wide Web [18].

Theodor Holm Nelson (1937–), an American sociologist, philosopher,
and pioneer of information technology, coined the terms hypertext and
hypermedia in 1963 to describe the new paradigms for building tools that
would transform our way of reading and writing. He published his ideas
in the article “A File Structure for the Complex, the Changing, and the

288    ◾    Computing﻿

Intermediate” for the 20th National Conference of ACM in 1965. Nelson
thought that the concepts of Bush’s Memex could be better applied to com-
puter networks than to photoelectrical or mechanical devices. The main
thrust of his work has been to make information easily accessible to ordi-
nary people. Nelson founded Project Xanadu in the 1960s, intending to
create a computer network with a simple user interface. The project name
Xanadu came from the poem “Kubla Khan” by Samuel Taylor Coleridge
(1772–1834). Xanadu was the summer capital of Kublai Khan’s Yuan
Empire, which Coleridge described as a dreamland. The poem suggested
to Nelson an image of a vast storehouse of memory [19].

In 1974, Nelson published his book Computer Lib/Dream Machine,
where he defined hypertext as nonsequential writing. Ordinary writing is
sequential for two reasons. First, it grows out of speech and speech making,
and second, because books can only be read conveniently in sequence.
A footnote is a break from a sequence, but it cannot really be extended.
Writers do better if they do not have to write sequentially, and readers do
better if they do not have to read in an imposed sequence, but may estab-
lish impressions, jump around, and try different pathways until they find
the ones they want to follow and study most closely. Nelson devoted much
of his time to working on and advocating for Project Xanadu. He intended
to establish an ideal new publishing system for the digital age, although
Project Xanadu was not quite successful from a practical viewpoint. His
visionary design was later realized by the invention of the World Wide
Web by Tim Berners-Lee (1955–) in 1989.

Tim Berners-Lee, an English engineer and computer scientist, studied
at Queen’s College, University of Oxford, from 1973 to 1976. While work-
ing for CERN (Conseil Europeen pour la Recherche Nucleaire, or the
European Organization for Nuclear Research) from June to December
1980, he proposed a project based on the concept of hypertext to facilitate
sharing and updating information among researchers. During that period,
he built a prototype system named ENQUIRE, which allowed links to be
made between arbitrary nodes in a computer network [7, 20].

In 1989, Berners-Lee had an opportunity to join hypertext with the
Internet. He wrote his initial proposal in 1989 for what would eventually
become the World Wide Web. In 1990, Berners-Lee and a Belgian com-
puter scientist, Robert Cailliau (1947–), produced a revised version of
the proposal. They used similar ideas to those in the ENQUIRE system.
Then they designed and built the first Web browser with the function of
an editor, and the first Web server. Berners-Lee’s breakthrough was to

Computer Networks    ◾    289  

combine hypertext with the Internet. As described in his book Weaving
the Web: The Original Design and Ultimate Destiny of the World Wide Web
by Its Inventor [21], he suggested that a marriage between the two tech-
nologies was possible to members of both technical communities. In the
process of working on his project, Berners-Lee developed three essential
technologies [17, 20, 21]:

	 1.	A system of globally unique identifiers for resources on the Web
and elsewhere, the Universal Document Identifier (UDI), later
known as Uniform Resource Locator (URL) and Uniform Resource
Identifier (URI)

	 2.	The publishing language Hypertext Markup Language (HTML)

	 3.	The Hypertext Transfer Protocol (HTTP).

In 1993, CERN announced that the World Wide Web would be free
to anyone, requiring no fees due. Since the World Wide Web was non
proprietary, it was possible to develop servers and clients independently
and add extensions without licensing restrictions. In 1994, the World
Wide Web Consortium (W3C) was founded by Berners-Lee in the
Laboratory for Computer Science at MIT (LCS/MIT) with support from
DARPA. A year later, a second website was founded at IRIA (the French
national computer science laboratory) with support from the European
Commission DG (Directorates—General Information Society of the
European Commission). By the end of 1994, the total number of web-
sites was still quite small compared to the present. Since the mid-1990s,
the number of websites has increased rapidly. Connected by the existing
Internet, websites were created around the world, and international stan-
dards for domain names and HTML were added. The World Wide Web
enabled the spread of information over the Internet through an easy and
flexible format, playing an important role in popularizing the Internet for
use by both scientists and nonscientists alike [17].

29.4 � CLOUD AND GRID COMPUTING
With the development of computer networks, the client-server model of
computing was born. Cloud computing is a technique for constructing an
infrastructure for shared services. It is primarily used to sell application
services running client-server software at remote locations [27, 28]. The
following quotation is from “CG Technologies, Cloud Computing” [28]:

290    ◾    Computing﻿

Any computer or web-friendly device connected to the Internet may
access the same pool of computing power, applications, and files in a
cloud-computing environment. Users may remotely store and access
personal files such as music, pictures, videos, and bookmarks; play
games; or do word processing on a remote server. Data is centrally
stored, so the user does not need to carry a storage medium such
as a DVD or USB flash drive. Desktop applications that connect to
internet-host email providers may be considered cloud applications,
including web-based email services and many others.

In the mid-2000s, Amazon became famous for its success in online
retailing. In 2002, Amazon Web Services provided a suite of cloud-based
services as an online retailer. In 2006, it launched its Elastic Compute
Cloud (EC2) as a commercial Web service allowing small companies and
individuals to use the cloud computing system to run their own com-
puter applications. In 2007, Google, IBM, and a number of universities
embarked on large-scale cloud computing research projects.

The term grid computing originated in the early 1990s as a metaphor
for making access to distributed computing systems as easy as access to
outlets of electric power. In 1998, Carl Kesselman and Ian Foster defined
grid computing in their book The Grid: Blueprint for a New Computing
Infrastructure (see also [22]). They described grid computing as follows:
“A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to
high-end computational capabilities.” Already in 1969, Leonard Kleinrock
presciently suggested a similar concept: “We will probably see the spread
of computer utilities, which, like present electric and telephone utilities,
will service individual homes and offices across the country” [25].

Grid computing is a form of distributed parallel computing whereby
a super and virtual computer is composed of a cluster of networked or
coupled computers acting together to perform very large computational
tasks. Its main goal is the development of high-performance distributed
computing software allowing users to access distributed computing envi-
ronments such as meta-computing or cluster computing and to produce
smart applications to use resources that are geographically separated
across large networks. The increasing network bandwidth, more powerful
and faster computer processors, and proliferation of Internet technologies
have brought a new and better way of computing via the grid concept.
This is a research infrastructure that supports computation-intensive

Computer Networks    ◾    291  

and data-intensive collaborative activities through dynamically collected
and integrated shared research resources connected by a high-speed net-
work. Many academic institutes, research organizations, and commercial
enterprises have been trying to take advantage of this type of computing
paradigm, and are constantly seeking new technologies and applications
that have not been able to provide the results within a desirable time if
traditional computing schemes are used.

29.5 � UBIQUITOUS COMPUTING
Ubiquitous computing began in the Electronics and Imaging Laboratory
of the Xerox Palo Alto Research Center (PARC) in the late 1980s. Mark
Weiser (1952–1999) coined the phrase “ubiquitous computing” around
1988 during his tenure as a chief technologist at PARC [23]. Weiser wrote,
in his paper entitled “The Computer for the 21st Century” [1]: “Specialized
elements of hardware and software, connected by wires, radio waves and
infrared, will be so ubiquitous that no one will notice their presence.” In this
paper and some subsequent papers by himself and with his colleagues at
PARC, ubiquitous computing was defined and its details were sketched
out. Weiser’s 1991 paper starts with the following sentences: “The most
profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it” [1].

Ubiquitous computing refers to the use of computers in everyday life,
including smartphones and other mobile devices. It also refers to computers
contained in commonplace objects such as cars and appliances. It implies
computing where people are unaware of its presence. One of its features is
that all these devices communicate with each other over wireless networks
without any interaction by users. Ubiquitous computing is also called per-
vasive computing. All models of ubiquitous computing share a vision of
small, inexpensive, robust network processing devices, distributed at all
scales throughout everyday life, and in generally distinct connections [1, 23].

In particular, computers and networks are embedded within the
complex social framework of daily activities, interplaying with the rest
of our densely woven physical environment. Such an environment will
become the truly computerized society of the 21st century. Weiser’s idea
of ubiquitous computing was influenced by many fields outside computer
science, including philosophy, phenomenology, anthropology, psychology,
and sociology.

Hiroshi Ishii (1956–) is a pioneer of the tangible user interface in the
field of human-computer interaction. He founded the Tangible Media

292    ◾    Computing﻿

Group when he joined the MIT Media Laboratory as a professor of media
arts and sciences. Hiroshi Ishii and Brygg Ullmer wrote a paper entitled
“Tangible Bits: Towards Seamless Interfaces between People, Bits and
Atoms” [26]. Tangible bits allow users to grasp and manipulate bits in
the center of users’ attention by coupling the bits with everyday physical
objects. When Weiser read the paper by Ishii and Ullmer, he noticed that
the concept of ubiquitous computing and the concept of tangible bits are
closely related. Weiser wrote an e-mail to Ishii, admiring the tangible bits
research at MIT Media Laboratory, and further stated that this kind of
work will characterize the technological landscape of the 21st century [24].

REFERENCES
	 1.	 M. Weiser, The Computer for the 21st Century, Science America, Special Issue

on Communications, Computers and Networks, 265(3), 94–104, 1991.
	 2.	 A. S. Tanenbaum, Computer Networks (3rd ed.), Prentice-Hall, Upper Saddle

River, NJ, 1996.
	 3.	 Wikipedia, Sputnik 1, http://en.wikipedia.org/wiki/Sputnik_1.
	 4.	 Wikipedia, Explorer 1, http://en.wikipedia.org/wiki/Explorer_1.
	 5.	 Wikipedia, Space Race, http://en.wikipedia.org/wiki/Space_Race.
	 6.	 Wikipedia, DARPA, http://en.wikipedia.org/wiki/DARPA.
	 7.	 Wikipedia, ENQUIRE, http://en.wikipedia.org/wiki/ENQUIRE.
	 8.	 Wikipedia, Packet Switching, http://en.wikipedia.org/wiki/Packet_switching.
	 9.	 Wikipedia, Rand Corporation, http://en.wikipedia.org/wiki/RAND_Corpo-

ration.
	 10.	 Paul Baran and Origins of the Internet, http://www.rand.org/history/baran.
	 11.	 Wikipedia, Paul Baran, http://en.wikipedia.org/wiki/Paul_Baran.
	 12.	 Wikipedia, ARPANET, http://en.wikipedia.org/wiki/ARPANET.
	 13.	 Wikipedia, CSNET, http://en.wikipedia.org/wiki/CSNET.
	 14.	 Wikipedia, J. C. R. Licklider, http://en.wikipedia.org/wiki/J._C._R._Licklider.
	 15.	 Wikipedia, Bob Kahn, http://en.wikipedia.org/wiki/Bob_Kahn.
	 16.	 Wikipedia, Vint Cerf, http://en.wikipedia.org/wiki/Vint_Cerf.
	 17.	 Wikipedia, World Wide Web, http://en.wikipedia.org/wiki/World_Wide_Web.
	 18.	 Wikipedia, Memex, http://en.wikipedia.org/wiki/Memex.
	 19.	 Wikipedia, Ted Nelson, http://en.wikipedia.org/wiki/Ted_Nelson.
	 20.	 Wikipedia, Tim Berners-Lee, http://en.wikipedia.org/wiki/Tim_Berners-Lee.
	 21.	 T. Berners-Lee and M. Fischetti, Weaving the Web: The Original Design and

Ultimate Destiny of the World Wide Web by Its Inventor, Harper-Business, New
York, 2000.

	 22.	 C. Kesselman and I. Foster (eds.), The Grid 2: Blueprint for a New Computing
Infrastructure (2nd ed.), Morgan Kaufmann, San Francisco, 2003.

	 23.	 Wikipedia, Ubiquitous Computing, http://en.wikipedia.org/wiki/Ubiquitous_
computing.

Computer Networks    ◾    293  

	 24.	 Wikipedia, Tangible User Interface, http://en.wikipedia.org/wiki/Tangible_
user_interface.

	 25.	 L. Kleinrock, A Vision for the Internet, ST Journal of Research, 2(1), 4–5, 2005.
	 26.	 H. Ishii and B. Ullmer, Tangible Bits: Towards Seamless Interfaces between

People, Bits and Atoms, in Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems, 1997, pp. 234–241.

	 27.	 Wikipedia, Cloud Computing, http://en.wikipedia.org/wiki/Cloud_computing.
	 28.	 CG Technologies, Cloud Computing, http:w3.cgtechnologies.com/index.

php?option=com_content&view=article&id=93.

295

C h a p t e r 30

Public-Key Cryptography

30.1 � THE SITUATION IN THE 1960s AND 1970s
BEFORE THE PUBLIC KEYS

During the 1960s, the cost and performance of computers improved
remarkably due to the development of electronics and semiconductor
technology. In the early 1960s, IBM and other major computer manufac-
turers produced high-performance computers that used transistors and
diodes in logic circuits in central processing units. Since then, computers
have become more powerful and cheaper, and the computer market has
been rapidly expanding ever since.

Before the 1960s, cryptosystems were mainly used by the government
and various military and intelligence organizations. In the 1970s, private
enterprises began to use cryptosystems for confidential data and commu-
nication security. For example, banks used computers to encrypt money
transfers, and trade companies used them to encrypt transaction records.
One of the primary problems is the issue of standardization of crypto-
systems among companies. As more and more business companies used
computers, the standardization of cryptosystems became an important
issue. In the early 1970s, the U.S. government studied the needs for com-
puter security and its standardization. In 1973, the U.S. standards body
NBS (National Bureau of Standards, now called the National Institute
of Standards and Technology) published the first request for a standard
encryption algorithm. The second request by NBS was published in 1974;
unfortunately, neither the first nor the second request turned out to be
suitable. However, these requests by NBS eventually led to the adoption

296    ◾    Computing﻿

of the Data Encryption Standard (DES). DES was developed at IBM and
became the most widely used cryptosystem by government organizations
and business companies as well. DES was first published in the Federal
Register in 1975, and adopted as a standard for unspecified applications in
1977. A complete description of DES was given in the Federal Information
Processing Standards (FIPS) in 1977. By today’s standards, DES is not con-
sidered completely safe.

A document is a sequence of sentences, which are strings themselves
composed of letters or symbols from some finite alphabet (i.e., a finite set
of symbols). Each letter or symbol can be expressed by a number. We may
therefore consider that a document is simply a long sequence of numbers.
In cryptography, such a sequence is usually divided into fixed-length
groups of digits or bits, called blocks. Each block is transformed into a
number by a block cipher encryption algorithm, giving us the block cipher
cryptosystem (e.g., DES). Block ciphers are widely used for data security.

Since each block and each encrypted block may be considered a pair
of numbers, an encryption algorithm is a function from integers to inte-
gers. For the same reason, a decryption algorithm is also a function from
integers to integers. An encryption (decryption) key is used to specify
an encryption (decryption) function, which is then implemented by an
appropriate algorithm. When a sender (say, Alice) wishes to send a secret
message (plaintext) to a receiver (say, Bob), Alice transforms the plain-
text into its corresponding ciphertext by her encryption algorithm, and
sends it to Bob. He receives the ciphertext, and decrypts it by applying his
decryption algorithm.

For any cryptography appearing before the 1970s, the encryption key
and decryption key are trivially related. Such cryptography is called a
symmetric key, a shared key, a secret key, or a common key cryptography.
DES is also a symmetric-key cryptosystem. For a symmetric-key crypto-
system, a sender (Alice) and a receiver (Bob) share the same secret key. The
shared key should, obviously, be kept secret from an adversary or an eaves-
dropper (say, Eve). The number of possible key candidates is a crucial factor
in determining the strength of a cryptosystem. If it is not large enough,
a cryptanalyst will decipher the encrypted message by simply trying all
possible keys. Therefore, the number of possible keys should be sufficiently
large to ensure strong security of the cryptosystem. Otherwise, an eaves-
dropper could easily decipher the ciphertext with the help of a computer.

DES, which was adopted in 1977, encrypts a plaintext of a 64-bit string
using a key. The key is a 56-bit string. The number of possible keys of DES

Public-Key Cryptography    ◾    297  

is 256, or approximately 1017. For such a big number of possible keys, it is
practically impossible for anyone to correctly guess the secret key of a DES
cryptosystem [5, 6]. However, in 1999, some analytical results demonstrated
a theoretical weakness in the ciphers of DES. In 2002, DES was superseded
by the Advanced Encryption Standard (AES). Unfortunately, both DES
and AES are now considered insecure for many top-secret applications,
because successful brute-force attacks are possible, although these systems
are more than adequate for almost all commercial applications. No private
company can afford to have powerful computers that can check every pos-
sible key within a reasonable amount of time. Of course, many foreign
intelligence and military organizations may have sufficient resources and
capabilities to break these codes.

The adoption of DES solved the problem of standardization for encrypt-
ing important and secret data. However, the problem of key distribution
annoyed cryptographers. In secret-key systems, one of the major prob-
lems is the difficulty of secret-key exchange. This problem is known as key
distribution [5]. It is defined to be a mechanism whereby one party chooses
a secret key and then transmits it to another party or parties. In practical
applications, the communication line itself may be insecure. We therefore
need to protect it against potential adversaries. This problem was solved
in the mid-1970s with the appearance of public-key cryptography [5, 6].

30.2 � THE BIRTH OF PUBLIC-KEY CRYPTOGRAPHY
The ARPANET was created in 1969, and although it was still in its infancy
in the early 1970s, some computer scientists and engineers predicted that
with the advent of the Internet Age it would be indispensable for ordinary
computer users to send their messages or data securely over the network.
Whitfield Diffie (1944–) was one such scientist. He had been considering
how such security could be guaranteed over the Internet.

In the best of all possible worlds, Internet users should be able to
encrypt their messages so that no other network users other than legiti-
mate receivers could decipher those encrypted messages. Such encryption
might require the secure exchange or distribution of the encryption keys.
Diffie was particularly interested in this problem (called the key distribu-
tion problem). He believed that techniques to overcome the key distribu-
tion problem would be very useful to construct a secure Internet world.
However, solving this problem seemed very difficult.

In 1974, Diffie visited IBM’s Thomas J. Watson Laboratory, where he
gave a talk about the key distribution problem. Someone in the audience

298    ◾    Computing﻿

informed him that Martin Hellman (1945–) at Stanford University had
been studying the same problem. Consequently, Diffie took a trip to
California to meet Hellman, and began working with him on the key
distribution problem. They were trying to find an efficient method for
exchanging keys between a sender and a receiver on the Internet [5].

Diffie and Hellman thought that the encryption key could be public
without decreasing the security of the encrypted message. This means
that even if the eavesdropper knows the encryption key, he or she will still
be unable to decrypt the ciphertext. Such an asymmetric ciphersystem is
called a public-key cryptography. This idea was presented by Diffie and
Hellman in the summer of 1975, and published in their joint paper [8].

How does public-key cryptography work? Suppose Alice wants to send
a secret message to Bob. She puts it inside a box and closes the box with
a padlocked key. Then she sends the padlocked box by post. Since she
does not trust the postal employees, she delivers the key of the padlock
to Bob by herself. She travels with the key to the location where Bob lives,
and then she hands the key to Bob. From this story, we can appreciate
the importance of key distribution for security. However, as each of the
following three scenarios suggests, key distribution might be avoided
without affecting security:

	 1.	Assume that Bob sends an open padlock with Bob’s identity (not
including its key) to Alice by post. After Alice receives the open pad-
lock, she puts her message in a box and locks the box with Bob’s
padlock. Then she sends the locked box to Bob by post. Since the
postal employees do not have the key to Bob’s padlock, the message
can safely reach Bob. He opens the box with his own key and safely
obtains the message from Alice. In this scenario, the message can be
securely transferred from Alice to Bob.

	 2.	Assume that Bob has a padlock and its key. Bob guards the key, but
he manufactures thousands of replica padlocks. These replica pad-
locks without their keys are sold at post offices and supermarkets.
When Alice wants to send a secret message to Bob, she buys a replica
of Bob’s padlock at a post office or a supermarket. She puts her secret
message in a box and locks the box with the replica of Bob’s padlock,
and sends the locked box to Bob by post. Bob can obtain the secret
message from Alice, since Bob has his own key for the padlock.

Public-Key Cryptography    ◾    299  

	 3.	Assume again that Alice wants to send a secret message to Bob.
She puts her message in a box and closes the box with her own pad-
lock. Only Alice has a key for opening her padlock. Alice sends the
locked box to Bob. When the box arrives, Bob adds his own padlock
and sends the box back to Alice. Only Bob has a key for opening his
padlock. When Alice receives the box, she removes her own padlock
and sends the box back to Bob. Since Bob’s padlock is still closed, the
box safely arrives at Bob’s location, and he can now open the box with
his own key and read the secret message from Alice.

The idea of public-key cryptography is closely related to the ideas
described in the scenarios above, and is also closely related to one-way
functions. Suppose that given an argument value x, it is easy to compute
f(x), whereas it is intractable to compute x from f(x). Such a function is
called a one-way function. In the three scenarios above, the padlock (say,
Bob’s padlock) can be considered a one-way function f(x) in the sense that
computing the value f(x) from x is analogous to the action for locking
the padlock, whereas computing x from f(x) is analogous to the action for
unlocking the closed padlock. It is very hard for Eve, the eavesdropper,
to unlock the closed padlock, since only Bob has the key of his padlock.
Similarly, Alice’s padlock can also be considered a one-way function. The
key of a padlock corresponds to a trapdoor for computing x from f(x).
Such a one-way function with a trapdoor plays an essential role in realizing
a public-key cryptosystem.

Diffie and Hellman focused their attention on one-way functions. A
one-way function is relatively easy to compute for a given argument value,
but the inverse computation is very difficult (intractable), especially if we
do not have the secret information (called a trapdoor). Modular arith
metic is a rich area for one-way functions. For example, f(x) ≡ rx modulo q
is easily computed, but in general, the computation from a given value
(say, t) to x such that t ≡ rx modulo q is very hard if q is sufficiently large.
Diffie and Hellman noticed that if a suitable one-way trapdoor function
could be found, then it could be used as a public-key encryption function
and the trapdoor could be used as a private key. Their idea was revolution-
ary, appearing at a very late stage in the very long history of cryptogra-
phy. Diffie and Hellman continued their research at Stanford University
attempting to find a family of suitable one-way trapdoor functions, but
they did not fully succeed in its discovery.

300    ◾    Computing﻿

30.3 � RSA CRYPTOGRAPHY
In 1977, Ron Linn Rivest (1947–), Adi Shamir (1952–), and Leonard Max
Adleman (1945–) discovered a specific one-way trapdoor function. Rivest
and Shamir are computer scientists, and Adleman is a mathematician,
who was working on cryptography at MIT. In 1978, their public-key
cryptography paper was published [9], and it is now referred to as the
RSA cryptosystem, which stands for the first letters of Rivest, Shamir,
and Adleman. Their one-way function is based on an amazingly simple
number-theoretic idea, and yet it has successfully resisted all cryptana-
lytic attacks. The RSA (Rivest–Shamir–Adleman) cryptosystem has been
most widely used in electronic commerce protocols, and it is believed to
be secure if sufficiently long keys are used [1, 6]. In 2002, Rivest, Shamir,
and Adleman received the Turing Award for their ingenious and practical
contribution to the development of cryptography.

Suppose Bob wishes to set up an RSA system for anyone to send secret
messages to him. He would then do the following:

	 1.	Generate two large primes, p and q.

	 2.	Compute n = p × q and φ(n) = (p – 1)(q – 1), where φ(n) is Euler’s phi
function that counts the number of positive integers less than n and
relatively prime to n (see Chapter 20).

	 3.	Randomly choose an integer b such that 1 < b <φ(n), and the greatest
common divisor of b and φ(n) is 1 (b and φ(n) are relatively prime,
i.e., gcd (b, φ(n)) = 1).

	 4.	Compute a ≡ b–1 mod φ(n) using the extended Euclidean algorithm
(i.e., a×b ≡ 1 modulo φ(n)).

	 5.	Publicize n and b, but keep the values p, q, and a secret. Bob’s key is
(n, p, q, a, b), where a is called his private key or secret key, and b is
called his public key.

When Alice wishes to securely send her message x to Bob, she computes
y ≡ xb modulo n using Bob’s public key b, and then she sends the ciphertext
y to Bob. When Bob receives the ciphertext, he computes ya ≡ (xb)a ≡ xab ≡ x
modulo n by using his secret key a. In this way, Bob can easily read the
message x from Alice. However, it is very hard for others to compute x
from y, since y ≡ xb modulo n is a one-way trapdoor function and only

Public-Key Cryptography    ◾    301  

Bob has the secret key a. The fact that xab ≡ x modulo n is based on the
number-theoretic result, given in Theorem 30.1. Communication based
on the RSA cryptosystem is shown in Figure 30.1.

Theorem 30.1

Let p and q be primes and n = p × q. If a × b ≡ 1 modulo φ(n), then for any
1 ≤ x ≤ n – 1, xab ≡ x modulo n, where φ(n) is Euler’s phi function.

Example 30.1

Let n = 5 × 11. Then φ(n) = φ(55) = (5 – 1)(11 – 1) = 40. Suppose Bob
chose b = 3; then Bob’s public key is n = 55 and b = 3. Bob’s secret key
is a ≡ b–1 ≡ 27 modulo 40. If Alice wishes to send the message 13, she
encrypts 13 to 133 ≡ 52 modulo 55. Then Alice sends the ciphertext 52
to Bob. Bob receives 52 and decrypts it to 5227 ≡ 13 modulo 55. Thus,
Bob can read the original message 13 from Alice.

As shown in Example 30.1, modular exponentiation, i.e., computations
of the form zc modulo n, is necessary in communication by the RSA cryp-
tosystem (xb modulo n by Alice and ya mod n by Bob). Computation zc
modulo n can be done using c – 1 modular multiplications. However, this
naïve method is very inefficient if c is large. If c has k bits in its binary
representation, the time complexity of this naïve method is exponentially
large in k. We should use the square-and-multiply method to compute
zc modulo n, which reduces the number of modular multiplications to at
most 2k. Modular exponentiation by the square-and-multiply method is
essential for the RSA cryptosystem since the computations by Alice and

Alice Bob
a sender a receiver

communication line

encryption decryption

Eve

an adversary or
an eavesdropper

x x

y xb (mod n) x ya (mod n)

FIGURE 30.1  Communication on the RSA cryptosystem.

302    ◾    Computing﻿

Bob should be computationally feasible. For example, the exponential
computation (5227 modulo 55 in Example 30.1) is carried out as follows:

522 ≡ 9 modulo 55

524 ≡ (522)2 ≡ 92 ≡ 26 modulo 55

528 ≡ (524)2 ≡ 262 ≡ 16 modulo 55

5216 ≡ (528)2 ≡ 162 ≡ 36 modulo 55

5227 ≡ 5216 × 528 × 522 × 52 ≡ 36 × 16 × 9 × 52 ≡ 13 modulo 55

In order for the RSA cryptosystem to be secure, n = p × q must be
large enough that factoring n will be computationally infeasible. Current
factoring algorithms are able to factor numbers having up to 130 decimal
digits. Hence, it is recommended that we pick p and q to be primes of about
100 digits. Then n will have about 200 digits. How can we find large primes
of about 100 digits? Primary test algorithms can be used for this purpose.

The question of how to find large primes is especially important for a
number of cryptographic protocols that use prime numbers. A naïve method
for a primality test was proposed by an ancient Greek mathematician in an
algorithm named the sieve of Eratosthenes (c. 240 BC). His method crosses
out all multiples of primes and takes O(n (log n) log log n) bit operations.
Another naïve method tries to divide a given number n by every number
m n≤ . The time complexity of this method is O(n n(log)3). Therefore,
these naïve methods are not useful at all for very large numbers.

Raymond E. Miller (1928–) and Michael O. Rabin (1935–), and Robert
M. Solovay (1938–) and Volker Strassen (1931–) proposed probabilistic
algorithms for efficiently determining if a given number is prime, in 1976
and 1977, respectively. The former is called the Miller–Rabin algorithm,
and the latter is called the Solovay–Strassen algorithm. Both are classified
as yes-biased Monte Carlo algorithms, and are quite useful in practice [6].
The running times of these algorithms are roughly O((log n)3). A yes-biased
Monte Carlo algorithm is a probabilistic algorithm for a decision problem
in which a yes answer is always correct, but a no answer may be incorrect.

In 2002, Manindra Agrawal (1966–), Neeraj Kayal (1979–), and Nitin
Saxena (1981–) proposed a deterministic algorithm for a primality test [10].
This is the first deterministic algorithm to test O(log n)-digit numbers for
their primality in time that has been proved to be polynomial in log n.
When they found the algorithm, Agrawal was a professor in computer

Public-Key Cryptography    ◾    303  

science at the Indian Institute of Technology, Kanpur (IITK), and Kayal
and Saxena were undergraduate students at IITK. Their algorithm
attracted worldwide attention. In 2006, they received the Gödel Prize for
their deterministic primality test algorithm. Named after the German
mathematician Kurt Gödel, the Gödel Prize has been awarded jointly by
the European Association for Theoretical Computer Science (EATCS) and
the Association for Computing Machinery (ACM) since 1993 to outstand-
ing papers in theoretical computer science.

The success of the Information Age owed much to the appearance of
public-key cryptography. The simple encryption and decryption schemes
of RSA cryptography have given a great advantage to the development of
the Internet world. The public-key cryptosystems are indispensable, in par-
ticular, for secure data and message transfer, and for the secure operation
of e-commerce, e-government, and worldwide interbank money transfers.

Although the RSA cryptosystem is the most well-known and widely
used public-key cryptography, several other public-key cryptosystems
have also been proposed. Of these cryptosystems, the following are of
some significance [6]:

	 1.	The ElGamal cryptosystem is based on the difficulty of the discrete
logarithm problem for finite fields. It was first proposed by Taher
ElGamal (1955–) in 1985.

	 2.	The McEliece cryptosystem is based on algebraic coding theory.
It was first proposed by Robert McEliece (1942–) in 1978.

	 3.	The elliptic curve cryptosystem is based on the work in the domain
of elliptic curves. The use of elliptic curves in cryptography was sug-
gested independently by Neal Kobliz (1948–) and Victor S. Miller
(1947–) in 1985.

30.4 � DIGITAL SIGNATURES
A conventional handwritten signature attached to a document is used to
specify the person responsible for it. A signature is often used in everyday
situations such as writing a letter or a check, withdrawing money from
the bank, or signing a contract. A digital signature scheme is a method
of signing a document in electronic form, which can usually be trans-
mitted over the Internet. When Bob receives an e-mail, how can he be
sure that the message is really from Alice? The wicked Eve may write an

304    ◾    Computing﻿

e-mail and type Alice’s name at the bottom of the message. How can we
attach a signature to a document in an electronic form? How can we verify
the authenticity of the signed document? Public-key cryptography can be
applied to implement a digital signature scheme.

The following is an outline of a digital signature scheme by an RSA
cryptosystem. Suppose that Alice wishes to send a secret message x to Bob.
Let a and b be Alice’s secret key and public key, respectively, and let c and d
be Bob’s secret key and public key, respectively. Remember that a × b ≡ 1
modulo φ(n) and c × d ≡ 1 modulo φ(n), and that for any message z, zab ≡ z
modulo n and zcd ≡ z modulo n. Alice’s signature to the message x is defined
as y ≡ xa modulo n. Alice encrypts pair (x, y) by Bob’s public key d, and
sends the encrypted pair to Bob. When Bob receives the encrypted pair, he
decrypts it with his secret key c. Then he obtains (x, y). Bob can verify that
the message is surely from Alice by checking whether yb coincides with x.
More formally, the signature scheme and the verification scheme by the
RSA cryptosystem are described as follows:

	 1.	Let n = p × q, where p and q are primes.

	 2.	The values n and b are public, and the values p, q, and a are secret,
where a × b ≡ 1 modulo φ(n).

	 3.	The signature of message x is defined as y ≡ xa modulo n (signa-
ture scheme).

	 4.	(x, y) is true if and only if x ≡ yb modulo n (verification scheme).

Example 30.2

Let (n, p, q, a, b) = (65, 5, 13, 11, 35) be Alice’s key. Note that 65 = 5 × 13,
φ(65) = (5 – 1)(13 – 1) = 48, and 11 × 35 ≡ 1 modulo 48. Suppose
that Alice wishes to send the message 8 with her signature to Bob.
Her signature is 811 ≡ 57 modulo 65. When Bob receives (8, 57), he
verifies that 5735 ≡ 8 modulo 65. Then Bob is sure that the message 8
is truly from Alice. If the communication line from Alice to Bob is
not secure, Alice may encrypt (8, 57) by Bob’s public key to prevent
(8, 57) from being known to eavesdroppers.

There are several digital signature schemes other than the RSA signa-
ture scheme. The ElGamal signature scheme is based on the difficulty of

Public-Key Cryptography    ◾    305  

computing a discrete logarithm. It was first described by Taher ElGamal
in a 1985 paper, “A Public-Key Cryptography and a Signature Scheme,”
in which he proposed the design of the ElGamal cryptography and the
ElGamal signature scheme. The ElGamal signature scheme is nondeter-
ministic. This means that there are many valid signatures for any given
message. The verification algorithm must be able to accept any of these
valid signatures. The ElGamal signature scheme must not be confused with
ElGamal cryptography. All ElGamal signature schemes are designed spe-
cifically for the purpose of signature, as opposed to the RSA cryptosystem.

The original ElGamal signature scheme has been rarely used in prac-
tice. In 1989, C. P. Schnorr proposed a signature scheme that is a variant
of the ElGamal signature scheme in which the signature size is signifi-
cantly reduced. Another variant of the ElGamal signature scheme was
developed in 1991 at the National Institute of Standards and Technology
(NIST), incorporating some of the ideas in the Schnorr signature scheme.
It was called the digital signature scheme (DSA) and adopted as a standard,
specified in FIPS 186 in 1993. In 2000, the elliptic curve digital signature
algorithm (ECDSA) was approved as a standard, specified in FIPS 186-2.
It was a modification of the DSA to elliptic curves.

More information about cryptography can be found, for example, in
[1–4, 6, 7].

30.5 � ANOTHER STORY OF PUBLIC-KEY
CRYPTOGRAPHY FROM ENGLAND

Since Diffie and Hellman published their paper “New Directions in
Cryptography” in 1976 [8], they have been known as the first inventors
of the concept of public-key cryptography. On the other hand, Rivest,
Shamir, and Adleman have been known as the first inventors of the RSA
cryptosystem. However, there is another story of an earlier invention
involving the same idea of public-key cryptography [5, 11].

A few years earlier than Diffie and Hellman’s invention of the concept
of public-key cryptography, British mathematician James Henry Ellis
(1924–1997) arrived at the same idea. Ellis worked in Communications-
Electronics Security Group (CESG) of British Government Communica-
tions Headquarters (GCHQ). In 1970, Ellis wrote a paper, “The Possibility
of Non-Secret Digital Encryption,” in an internal report (CESG report).
The nonsecret digital encryption proposed by Ellis is exactly the same idea
as the public-key cryptography invented by Diffie and Hellman. In 1973,
a young mathematician, Clifford Christopher Cocks (1950–), joined

306    ◾    Computing﻿

GCHQ and was told about Ellis’s nonsecret digital encryption. He thought
that factoring an integer into prime numbers was a good candidate for a
suitable one-way function. His idea was the same as RSA cryptography.
Cocks’s idea was 4 years prior to the invention of RSA cryptography by
Rivest, Shamir, and Adleman.

Cocks and his colleague Malcolm John Williamson (1950–) worked
together on the problem for realizing Ellis’s idea. In 1973 and 1974, they
wrote research reports about their invention of the nonsecret encryption
algorithm, now known as the RSA encryption algorithm (C. C. Cocks,
“A Note on Non-Secret Encryption,” CESG Report, 1973; M. J. Williamson,
“Non-Secret Encryption Using a Finite Field,” CESG Report, 1974). These
CESG reports were not publicized since they were treated as top-secret
government information. Consequently, Ellis, Cocks, and Williamson’s
prior achievements remained unknown until 1997.

In 1987, Ellis wrote a paper, “The Story of Non-Secret Encryption.” This
paper had also been treated as an internal report within GCHQ. Although
the invention of public-key encryption at GCHQ had not been publi-
cized by 1997, GCHQ in UK and the National Security Agency (NSA) in
the United States knew about the work of Ellis, Cocks, and Williamson.
In December 1997, Cocks delivered a public talk that contained the
history of GCHQ’s research on public-key cryptography. Since then, Ellis,
Cocks, and Williamson’s contributions to the concept and realization of
public-key cryptography have been acknowledged [5, 11].

REFERENCES
	 1.	 A. Salomaa, Public-Key Cryptography, Springer-Verlag, Berlin, 1990.
	 2.	 O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudo-

Randomness, Springer-Verlag, Berlin, 1999.
	 3.	 O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University

Press, Cambridge, UK, 2001.
	 4.	 O. Goldreich, Foundations of Cryptography: Basic Applications (vol. II),

Cambridge University Press, Cambridge, UK, 2004.
	 5.	 S. Singh, The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography, Anchor Books, New York, 1999.
	 6.	 D. R. Stinson, Cryptography: Theory and Practice (3rd ed.), Chapman &

Hall/CRC, New York, 2006.
	 7.	 J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge

University Press, Cambridge, UK, 1999.
	 8.	 W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Transactions

on Information Theory, IT-22, 644–654, 1976.

Public-Key Cryptography    ◾    307  

	 9.	 R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems, Communications of the ACM,
21, 120–126, 1978.

	 10.	 M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Annals of Mathematics,
160, 781–793, 2004.

	 11.	 Wikipedia, James H. Ellis, http://en.wikipedia.org/wiki/James_H._Ellis.

309

C h a p t e r 31

Quantum Computing

Quantum computing, based on the manipulation of the smallest atomic
particles, brings together aspects of quantum physics, mathematics, and
computer science. Using this three-way grouping provides a new approach
to computation that is very different from the now ubiquitous digital
approach. Quantum computing, although showing great promise, is still
unproven, and it is not yet clear how useful and powerful it will ultimately be.

31.1 � THE BASICS OF QUANTUM COMPUTING
The development of radio techniques and the improvement of other tech-
nical aids to study physical phenomena led at the end of the 19th century
to the discovery of electrons, x-rays, and radioactivity. However, classical
physics was just not able to explain the properties of atomic and sub-
atomic particles. A study of conditions of equilibrium between matter
and electromagnetic radiation by Max Planck (1858–1947) in 1900 and
of photoradiation phenomena by Albert Einstein (1879–1955) led to the
conclusion that electromagnetic radiation possessed both a wave charac-
ter and a discrete particle character. It was the start of quantum physics.

Quantum physics joined the mainstream in the 1920s and 1930s with
the general acceptance of the theories of Max Planck, Albert Einstein, Niels
Bohr (1885–1962), Erwin Schrödinger (1887–1961), Werner Heisenberg
(1901–1976), Paul Dirac (1902–1984), and many other established physi-
cists. Quantum computing is based on quantum physics, with all of its
special behaviors and unusual limits. Therefore, quantum computing deals
with the behaviors of atomic and subatomic particles. These behaviors
are irreducibly random and the measurement of particle characteristics

310    ◾    Computing﻿

simultaneously, such as position and momentum, to an arbitrary precision
is impossible. That is, physical phenomena of small particles do not agree
often with our classical intuition. The unusual behavior results from fea-
tures of quantum mechanics called superposition and interference. In the
early 1980s, Richard Feynman (1918–1988) noted that there seemed to be
fundamental difficulties in simulating quantum mechanical systems on
digital computers, and further suggested that having computers based on
the principles of quantum mechanics would overcome those difficulties.
Devices that perform quantum information processing are known as
quantum computers.

Whereas the lowest-level unit in common digital computation is the
binary digit, the bit, the lowest-level unit in quantum computation is the
quantum binary digit, the qubit [1]. As described in [1], about 103 atoms are
typically used to store 1 bit of information [2, 3]. Within a quantum environ-
ment, one subatomic particle can encode one, two, or even more qubits. The
physical size of qubits is much smaller than bits; nevertheless, their behavior
is much more complex. Qubits can be put into a superpositional state. When
they are in superposition, the qubit simultaneously has multiple values.
Qubits can also become entangled, which is explained below. In addition,
qubits can encounter decoherence; here, the qubit unexpectedly changes
state and may lose some of its special behaviors, such as superposition.

The behavior of an individual qubit depends on its current state, which
is the result of its history. Qubits normally start out in one of two states.
These states are frequently described using the “ket” style of notation,
using |0> and |1>, respectively, for binary states 0 and 1. However, once a
qubit is put into superposition state, it is not bounded to only one of these
two values. The superposition state is not readily observable because when
a qubit in a state of superposition is observed (measured), it immediately
collapses to one of the two binary states: |0> or |1>.

The linear algebra notation in quantum computation may not be
familiar to a student of mathematics or computer science. The notation
was invented by Paul Dirac and is known as Dirac notation. This notation
is used often in quantum mechanics. The Bloch sphere is also often used to
represent the state of a single, unentangled qubit, and it makes it possible
to view the state of the qubit in a graphical manner. In Figure 31.1, a qubit
showing the value |1> is depicted, which is represented by –1. Qubit states
are often represented with three probability amplitudes, along the x-axis,
y-axis, and z-axis, respectively. In this figure, the x- and y-values are zero
and the z-value is –1; therefore, the arrow is pointing downwards. These

Quantum Computing    ◾    311  

probability amplitudes are expressed via complex numbers, and these
amplitudes can be both positive and negative. In this particular figure, the
three values are all real numbers. With quantum behaviors, adding two
probabilities together may result in a reduced probability.

Qubits may become entangled. Entanglement is one of the most unusual
behaviors in quantum theory. Once two qubits are entangled, neither one
can be described without full mention of the other. Even if the two qubits
are physically separated after entanglement, impacting one qubit impacts
the other. Entanglement was described by Einstein as “spooky actions at a
distance” (spukhafte Fernwirkungen) [10]. Entanglement is a basic feature
of quantum computation and quantum communications.

As previously mentioned, measurement may change the state of a qubit.
Therefore, it is not generally possible to copy a qubit by measuring its value
and providing another qubit with a matching value. How can qubits be
manipulated and processed if intermediate values cannot be measured or
observed? Qubit manipulations are done via transformations of the qubit’s
probability amplitudes. With quantum programming, these probability
amplitudes are manipulated so that, upon measurement, the desired
values are observed in the qubits. Quantum processing also requires that
all quantum actions be reversible (Landauer’s principle). The result of this
is that all gates and circuits used with quantum computing have the same
number of inputs and outputs. This implies that information cannot be
lost or erased by these quantum transformations.

X

Y

Z

|1>

FIGURE 31.1  Bloch sphere showing a value of |1>.

312    ◾    Computing﻿

31.2 � QUANTUM COMPUTATION LOGIC AND GATES
Just as digital computation utilizes logic gates, quantum computation also
utilizes gates. The quantum gates are very different from the digital gates,
partially due to their need for reversibility and the same number of inputs
and outputs. With quantum computing, some of the common gates are the
Hadamard gate (H gate for short), the controlled-NOT gate, the Toffoli gate,
and the Pauli-X, Pauli-Y, and Pauli-Z gates. The behavior of quantum gates is
often expressed in the form of a unitary matrix. The remainder of this section
provides more information about the H gate and the controlled-NOT gate.

The H gate has one input and one output. This gate is commonly used
to put a qubit into a state of superposition. Its behavior can be described by

this unitary matrix: 1
2

1 1
1 1−









. When an H gate is applied two times

in sequence, it returns the original value.
The controlled-NOT gate is more interesting than the H gate. It has two

inputs and two outputs. Note that the input qubits are usually mutually
entangled by this gate. The basic processing done is an exclusive OR opera-
tion (XOR) of the inputs, with one input being passed directly through to
the output; this is called the control input. And the other output contains
the results of the XOR operation. If the second, noncontrol, input is held
to |0>, then this gate functions as a NOT operation. The unitary matrix for

the controlled-NOT operation is

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



















.

The Toffoli gate is a three-input, three-output gate that is similar to
the controlled-NOT, excepting that it does the XOR with the AND of
two control inputs. The Pauli-X, Pauli-Y, and Pauli-Z gates are rotations
about the respective x-, y-, and z-axes. The Paul-X gate can function as a
NOT operation.

31.3 � FAMOUS QUANTUM ALGORITHMS
In 1985, David Deutsch (1953–) attempted to define computational devices
that would be capable of efficiently simulating an arbitrary physical system.
Deutsch was naturally led to consider computing devices based upon
the principles of quantum mechanics. These devices led to the modern
concept of a quantum computer.

Quantum Computing    ◾    313  

Three quantum computing milestone algorithms are now discussed, in
order of increasing algorithm complexity. The basic steps in these algo-
rithms tend to be: establish the qubits in classic states, put some of the
qubits into superposition, apply a set of unitary operations (transformations),
and then measure the values of the desired subset of the qubits. Often
the results of the quantum algorithms are frequently further processed by
digital computation, sometimes including numerous nonquantum algo-
rithmic operations.

31.3.1 � Deutsch’s Algorithm (1989) [1]

This algorithm solves a problem with a binary result. The problem can be
expressed as making a yes/no financial investment decision that is based
on the result of two long-running calculations, each returning a binary
result. When equal values are returned, an action is taken. Quantum com-
puting allows these two long-running calculations to occur in parallel.
This problem can also be expressed mathematically.

The two results of the function f: {0, 1} → {0, 1} can be constant or
balanced. They are constant if f(0) = f(1) and balanced if f(0) ≠ f(1). With
classic digital computation, f(x) needs two calculations, one calculation for
f(0) and the other for f(1). With superposition, parallel calculation of both
f(0) and f(1) is done in the time needed for just a single calculation. The
quantum circuit to compare the results is a Hadamard gate providing the
needed superposition, the long-running calculation done as unitary trans-
formations, and then a controlled-NOT gate to compare the two results.
The controlled-NOT, performed in parallel, brings |x, y> to |x, y ⊕ f(x)>,
where ⊕ is XOR. The two results are then put through Hadamard gates.
In simplified terms, when the ⊕ result is 0, the results are constant, and
when 1, balanced. It is interesting to note that the direct results of the
two time-consuming calculations are never observed; what is observed is
the constant or balanced relationship between them. Figure 31.2 shows a
version of Deutsch’s algorithm as a (simplified) quantum circuit.

31.3.2 � Grover’s Search Algorithm (1995) [1, 4, 5]

Further evidence for the power of quantum computers came in 1995
when Lov Grover (1961–) showed that the problem of concluding a search
through some unstructured search space could be sped up on a quan-
tum computer. Grover’s search algorithm can be viewed as a solution to a
number of different problems, including looking up a value in a database,

314    ◾    Computing﻿

finding a needle in a haystack, and inverting a function. The notion is that
an unordered list of values is searched for a particular value. Utilizing
classic computation, on average, O(n) time is needed to find a particu-
lar value. Utilizing Grover’s quantum algorithm, O(n) time is needed,
where n is the database size. This provides a quadratic speed-up and can
be substantial when n is large.

From the inverting a function point of view, the function f: {0, 1}n → {0, 1}
is evaluated in search of the unknown value, which is n bits wide, such
that value = x if f(x) is 1, x varying over the domain and only one result
of f will provide a 1. This quantum algorithm operates by creating all pos-
sible input values, via superposition, and then the one input value that
generates the desired output value is transformed such that when the
qubits are measured, this input value is present in the qubits. Finding the
desired input value at measurement requires the use of phase inversion
and inversion about the average transformations, which are done in multi
ple steps. Unfortunately, in a small number of cases the correct value will
not be measured and the algorithm fails.

Grover’s algorithm shows the solution to a real-world problem using a
quantum algorithm, and this algorithm provides a substantial improve-
ment in performance.

31.3.3 � Shor’s Factoring Algorithm (1994) [1, 6]

Before discussing this important factoring accomplishment, we require a
small detour, away from algorithms. In 1981, Richard P. Feynman brought
the notion of quantum computing into full view when he noted in his
famous speech, “Simulating Physics with Computers,” that quantum com-
puting might provide answers more quickly, relative to digital computers,
when performing quantum operations [7]. Digital computers often have

|0>

|0>

|0> + |1> |0,fU(0)> + |1,fU(1)>
qubit1

qubit2

H H

H

U

B

A

FIGURE 31.2  Deutsch’s algorithm in circuit form.

Quantum Computing    ◾    315  

performance and storage capacity issues when handling large quantum
simulations. This is due to the explosion of terms that occurs when the ten-
sor product of a large number of quantum particles is formed. Feynman
proposed this high-value quantum computing use and helped provide
quantum computing the beginnings of legitimacy.

The algorithm by Peter W. Shor (1959–) gave quantum computing addi-
tional legitimacy, as it provides a fast method to factor numbers. Factoring
large numbers is a difficult problem, but is not considered a NP-complete
problem. It is considered to be between NP and P. It is exactly what gives
many security algorithms their power [8]. If a practical way were found
to rapidly factor any large number, then the commonly used security
approaches like RSA (See Chapter 30) and SSL (Secure Socket Layer)
would no longer be secure. Shor’s algorithm outlines a workable approach
to factoring large numbers, but there are practical realities, discussed
below, that prevent the algorithm from being really useful.

This algorithm is complex and uses both classical computation and
quantum computation. The basic approach is to find a root of an odd com-
posite number. Once this root is known, then with additional steps, the
odd number can be quickly factored. The approach is rooted in the knowl-
edge that the factoring problem can be reduced to finding the period of a
repeating function. The quantum part of this algorithm involves finding
the period of the function. This determination is done by using a super-
position and then applying a function on all of the superposition values,
looking for the point where the repeating begins. A quantum Fourier
transform is applied to isolate the period. From this stage, classical com-
putation is done to find the actual factors of the composite number.

Shor’s algorithm makes it clear that quantum computing can solve
real-world problems, and, along with Feynman’s earlier work, makes it
clear that quantum computing has significant potential.

31.4 � DIFFICULTIES AND LIMITS OF QUANTUM COMPUTING
So, why is quantum computing not in the mainstream of computing?
A hint of why comes from the fact that the IBM researchers who first
implemented Shor’s algorithm in 2001 using nuclear magnetic resonance
(NMR) actually factored 15 into 3 times 5 [9]. In practical terms, this is
hardly a great achievement. The researchers were limited by the number
of qubits they could manipulate without the qubits suffering decoherence,
due to qubit’s close proximity and unwanted interactions.

316    ◾    Computing﻿

It turns out that quantum computing hardware is not easily constructed,
nor is it easily scaled. As of this writing, some of the common approaches
used to construct qubits are based on ion traps, linear optics, NMR, and
superconductors. However, all of these technologies have problems with
decoherence, and a register of more than seven or eight qubits is consid-
ered large. Since 28 equals only 256, this is a very significant limit in terms
of the power of quantum computation. R. Van Meter and Clare Horsman
deftly summarize the status of quantum computing hardware when they
pose the question, “When will a quantum computer do science, rather
than be science?” [11].

In addition to the quantum computing hardware issues and limits,
software for quantum computing is not easily produced. Quantum algo-
rithms, often implemented as quantum circuits, are not created with the
mathematical, if/then, and loop operations common to digital algorithms,
computation, and programming. Instead, quantum algorithms are cre-
ated using transformations, and evolutions, of probability amplitudes.
In mathematical terms, this amounts to programming strictly via the
manipulations provided by the multiplication of (large) unitary matrices.
This is not an easy way to program.

31.5 � CLOSING SUMMARY
Using atomic or subatomic particles, quantum computing draws together
quantum physics, mathematics, and computer science. Using this approach
to computation is very different from the now ubiquitous digital approach.
Successful quantum algorithms have been created, and the quantum
logic gates needed for the construction of large quantum circuits do exist.
However, due to various significant difficulties and limits, it is not yet clear
how useful and powerful quantum computing will ultimately prove to be.

REFERENCES
	 1.	 N. S. Yanofsky and M. A. Mannucci, Quantum Computing for Computer

Scientists, Cambridge University Press, New York, 2008.
	 2.	 M. Hayward, Quantum Computing and Shor’s Algorithm, April 26, 2008,

url: alumni.imsa.edu/~matth/quant/299/paper/.
	 3.	 C. Williams, Explorations in Quantum Computing (2nd ed.), Springer-Verlag,

New York, 2011.
	 4.	 C. Lavor, L. Manssur, and R. Portugal, Grover’s Algorithm: Quantum

Database Search, ARXIV, quant. ph. 1079L, 2003.
	 5.	 Wikipedia, Grover’s algorithm, http://en.wikipedia.org/wiki/Grover’s_algorithm.
	 6.	 Wikipedia, Shor’s algorithm, http://en.wikipedia.org/wiki/Shor’s_algorithm.

Quantum Computing    ◾    317  

	 7.	 R. Feynman, Simulating Physics with Computers, International Journal of
Theoretical Physics, 21(6/7), 467–488, 1982.

	 8.	 S. Aaronson, The Limits of Quantum, Scientific American, 298, 62–69, 2008.
	 9.	 L. M. K. Vandersypen, M. Steffen, et al., Experimental Realization of Shor’s

Quantum Factoring Algorithm Using Nuclear Magnetic Resonance, Nature,
414(6866), 883–887, 2001, doi: 10.1038/414883a.

	 10.	 Letter from Einstein to Max Born, March 3, 1947, in The Born-Einstein
Letters; Correspondence between Albert Einstein and Max and Hedwig Born
from 1916 to 1955, Walker, New York, 1971 (cited in M. P. Hobson, et al.,
Quantum Entanglement and Communication Complexity, 1998, pp. 1–13,
CiteSeerX: 10.1.1.20.832).

	 11.	 R. Van Meter and C. Horsman, A Blueprint for Building a Quantum
Computer, Communications of the ACM, 56(10), 84–93, 2013.

Exploring a vast array of topics related to computation, Computing: A Historical
and Technical Perspective covers the historical and technical foundation of ancient
and modern-day computing. The book starts with the earliest references to counting
by humans, introduces various number systems, and discusses mathematics in
early civilizations. It guides you all the way through the latest advances in computer
science, such as the design and analysis of computer algorithms.

Through historical accounts, brief technical explanations, and examples, the book
answers a host of questions, including:

• Why do humans count differently from the way current electronic computers
do?

• Why are there 24 hours in a day, 60 minutes in an hour, etc.?
• Who invented numbers, when were they invented, and why are there different

kinds?
• How do secret writings and cryptography date back to ancient civilizations?

Innumerable individuals from many cultures have contributed their talents and
creativity to formulate what has become our mathematical and computing heritage.
By bringing together the historical and technical aspects of computing, this book
enables you to gain a deep appreciation of the long evolutionary processes of the
field developed over thousands of years.

Features
• Discusses the earliest references to various number systems and mathematics

in ancient civilizations
• Covers ancient mathematical texts, such as Euclid’s Elements, Diophantus’s

Arithmetica, and Fibonacci’s Book of Calculation
• Explores the history of the abacus, mechanical calculating machines,

electronic computers, and cryptography
• Describes areas at the forefront of computer science, including computability,

artificial intelligence, computer networks, public-key cryptography, and
quantum computing

• Requires no prior knowledge of advanced mathematics or computer science

K22538

C O M P U T I N G
A Historical and Technical Perspective

Yoshihide Igarashi, Tom Altman,
Mariko Funada, and Barbara Kamiyama

Ig
a

ra
sh

i, A
ltm

a
n

,
F

u
n

a
d

a
, a

n
d

 K
a

m
iya

m
a

C
O

M
P

U
T

IN
G

A
 H

isto
rica

l a
n

d
 T

ech
n

ica
l P

ersp
ective

Computing/Computer Science

K22538_cover.indd 1 4/23/14 9:22 AM

	Front Cover
	Contents
	Preface
	Acknowledgments
	About the Authors
	Chapter 1: The Dawn of Counting
	Chapter 2: Representation of Numbers
	Chapter 3: Rational and Irrational Numbers
	Chapter 4: Prime Numbers
	Chapter 5: Euclid’s Elements
	Chapter 6: Diophantus of Alexandria and Arithmetica
	Chapter 7: Secret Writing in Ancient Civilization
	Chapter 8: The Abacus
	Chapter 9: Book of Calculation by Fibonacci
	Chapter 10: Decimal Fractions and Logarithms
	Chapter 11: Calculating Machines
	Chapter 12: Solutions to Algebraic Equations
	Chapter 13: Real and Complex Numbers
	Chapter 14: Cardinality
	Chapter 15: Boolean Algebras and Applications
	Chapter 16: Computability and Its Limitations
	Chapter 17: Cryptography from the Medieval to the Modern Ages
	Chapter 18: Electronic Computers
	Chapter 19: Numerical Methods
	Chapter 20: Modular Arithmetic
	Chapter 21: Cybernetics and Information Theory
	Chapter 22: Error Detecting and Correcting Codes
	Chapter 23: Automata and Formal Languages
	Chapter 24: Artificial Intelligence
	Chapter 25: Programming Languages
	Chapter 26: Algorithms and Computational Complexity
	Chapter 27: The Design of Computer Algorithms
	Chapter 28: Parallel and Distributed Computing
	Chapter 29: Computer Networks
	Chapter 30: Public-Key Cryptography
	Chapter 31: Quantum Computing
	Back Cover

