

DATA
ANALYSIS

FOR NETWORK
CYBER-SECURITY

p919hc_9781783263745_tp.indd 1 17/1/14 10:26 am

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

Imperial College Press
ICP

DATA
ANALYSIS

FOR NETWORK
CYBER-SECURITY

editors

Niall Adams • Nicholas Heard
Imperial College London

Heilbronn Institute for Mathematical Research, University of Bristol

p919hc_9781783263745_tp.indd 2 17/1/14 10:26 am

Published by

Imperial College Press
57 Shelton Street
Covent Garden
London WC2H 9HE

Distributed by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

DATA ANALYSIS FOR NETWORK CYBER-SECURITY

Copyright © 2014 by Imperial College Press

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

ISBN 978-1-78326-374-5

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore

January 17, 2014 17:33 9in x 6in Data Analysis for Network Cyber Security b1711-fm

Preface

The contents of this volume are contributions from invited speakers at a
workshop entitled “Data Analysis for Cyber-Security”, hosted by the Uni-
versity of Bristol in March 2013. We are grateful for the generous support of
the Heilbronn Institute for Mathematical Research, an academic research
unit of the Universisty of Bristol with interests related to cyber-security.

Cyber-security – the task of defending computers and people from elec-
tronic attack – is a pressing concern. For example, a report sponsored by
the UK government in 2012 estimated the cost of cyber-attack to the UK
economy as £29 billion. This cost is attributed to various types of attack,
including extortion, fiscal fraud and identity theft. Notably, the largest cat-
egory, intellectual property theft, accounted for around £9 billion. The scale
of cyber-attack provoked the UK government to highlight cyber-security as
a top priority for national security in 2013. From a UK point of view, based
on recent figures, the problem is increasing: 78% of large organisations were
subject to external attack in 2012, up from 73% in the previous year, while
63% of small business were subject to such attack over the same period, an
increase of 41% on the previous year.

Cyber-security is a broad discipline, covering a range of academic dis-
ciplines including computer science, computer and network architecture,
and statistics. This volume is concerned with network cyber-security, and
particularly, analysis of data that are observed in relation to a network of
either computers or people. As an exemplar, consider an institutional com-
puter network, in which communicating devices (computers, printers, etc.)
are nodes and communications between devices are events that occur on
edges between nodes. Numerous types of cyber-attack have been observed
in this context. A variety of such attacks are well described in Davidoff and
Ham (2012) from the point of view of network forensics.

There are a number of problems that can be addressed by analysing
network data. A primary example is constructing anomaly detection meth-
ods to identify when unusual traffic occurs. These complement signature-
based methods, such as those embodied for example in the Snort intrusion

v

January 17, 2014 17:33 9in x 6in Data Analysis for Network Cyber Security b1711-fm

vi Preface

detection system (Caswell et al., 2007). We believe the next generation of
detection tools will have to utilise more information about past and present
traffic behaviour, particularly with respect to temporal aspects. A particu-
lar advantage of anomaly detection methods over rule-based approaches is
their potential to detect new, so-called zero-day, attacks.

There are significant challenges when addressing network data analysis
problems. In the context of cyber-security, data sets are typically big, con-
sisting of a large number of nodes and a great volume of traffic on existing
edges. This alone raises significant computational challenges. If anomaly
detection is the objective, then timeliness becomes an issue, and the veloc-
ity of the traffic on edges becomes an important factor. The combination
of volume and velocity makes much network cyber-security a “big-data”
problem. From a statistical or machine learning point of view, many cyber-
security problems are unsupervised, which raises generic problems of model
selection and control of hyperparameters and decision boundaries. These
data analysis problems are generally exacerbated by increases in the vol-
ume, velocity and heterogeneity of network data. The precise timing of
events on edges is a more subtle aspect that is only recently being seriously
explored. This latter aspect is extensively addressed in this volume.

The above discussion is intended to make the case that cyber-security is
both an important and interesting research problem. Some of the research
opportunities are discussed in more detail in Meza et al. (2009). The chap-
ters in this volume provide a view of this exciting and diverse area. To begin,
Patrick Wolfe and Benjamin Olding give an introduction to the problem of
statistical inference on graphs, and make first steps toward formal inferen-
tial procedures.

Alex Tartakovsky considers the problem of quickest change detection
in the context of statistical anomaly detection. A key concern is to min-
imise the detection delay, an aspect of great importance in many practical
network cyber problems. This chapter features a hybrid anomaly-spectral-
signature-based system useful for efficient traffic filtering.

Joshua Neil and co-authors are concerned with aspects of network
traffic that are localised in both time and graph space. In particular,
they develop a scan statistic-based methodology for finding connected sub-
graphs that are locally connected in time and which have deviated from
historic behaviour. The methodology is illustrated on large-scale network
traffic data.

Summet Dua and Pradeep Chowriappa address situational awareness
by considering user sentiment in social media. Such sentiments can provide

January 17, 2014 17:33 9in x 6in Data Analysis for Network Cyber Security b1711-fm

Preface vii

indicators and precursors for cyber-threat. A novel data-mining approach
is proposed to identify aspects that influence the dynamics of the network
over time.

Céline Lévy-Leduc considers both centralised and decentralised net-
work versions of change detection for network traffic data. This includes
both dimension reduction to simplify network traffic data to a manageable
representation and nonparametric change detection adapted for censoring.

Finally, Nick Heard and Melissa Turcotte develop Bayesian anomaly
detection methodology suited to the computational demands of large net-
works. A screening methodology, based on simple node- and edge-based
statistical models is developed. While these models are relatively simple,
there are numerous technical details addressed to enable their successful
deployment.

Niall Adams, Nick Heard

References

Caswell, B., Beale, J. and Baker, A. (2007). Snort Intrusion Detection and
Prevention Toolkit (Syngress Media).

Davidoff, S. and Ham, J. (2012). Network Forensics: Tracking Hackers Through
Cyberspace (Prentice Hall, Upper Saddle River, NJ).

Meza, J., Campbell, S. and Bailey, D. (2009). Mathematical and statistical oppor-
tunities in cyber security, CoRR. Available at: http://arxiv.org/abs/0904.
1616.

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

January 17, 2014 17:33 9in x 6in Data Analysis for Network Cyber Security b1711-fm

Contents

Preface v

Chapter 1. Inference for Graphs and Networks: Adapting
Classical Tools to Modern Data 1
Benjamin P. Olding and Patrick J. Wolfe

Chapter 2. Rapid Detection of Attacks in Computer Networks by
Quickest Changepoint Detection Methods 33
Alexander G. Tartakovsky

Chapter 3. Statistical Detection of Intruders Within Computer
Networks Using Scan Statistics 71
Joshua Neil, Curtis Storlie, Curtis Hash
and Alex Brugh

Chapter 4. Characterizing Dynamic Group Behavior in Social
Networks for Cybernetics 105
Sumeet Dua and Pradeep Chowriappa

Chapter 5. Several Approaches for Detecting Anomalies
in Network Traffic Data 129
Céline Lévy-Leduc

Chapter 6. Monitoring a Device in a Communication Network 151
Nick A. Heard and Melissa J. Turcotte

Index 189

ix

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Chapter 1

Inference for Graphs and Networks:
Adapting Classical Tools to Modern Data

Benjamin P. Olding∗ and Patrick J. Wolfe†

∗Jana Mobile Inc.
883 Boylston Street

Boston, MA 02116, USA
olding@post.harvard.edu

†University College London
London, WC1E 6BT, United Kingdom

p.wolfe@ucl.ac.uk

Graphs and networks provide a canonical representation of relational data, with
massive network data sets becoming increasingly prevalent across a variety of
scientific fields. Although tools from mathematics and computer science have
been eagerly adopted by practitioners in the service of network inference, they
do not yet comprise a unified and coherent framework for the statistical anal-
ysis of large-scale network data. This chapter serves as both an introduction
to the topic and a first step toward formal inference procedures. We develop
and illustrate our arguments using the example of hypothesis testing for net-
work structure. We invoke a generalized likelihood ratio framework and use
it to highlight the growing number of topics in this area that require strong
contributions from statistical science. We frame our discussion in the context
of previous work from across a variety of disciplines, and conclude by outlining
fundamental statistical challenges whose solutions will in turn serve to advance
the science of network inference.

1.1. Introduction

Graphs and networks have long been a subject of significant mathema-
tical and scientific interest, deemed worthy of study for their own sake and
often associated with scientific data. However, a diverse and rapidly growing
set of contemporary applications is fast giving rise to massive networks
that themselves comprise the data set of interest – and to analyze these
network data, practitioners in turn require analogs to classical inferential
procedures.

1

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

2 B. P. Olding and P. J. Wolfe

While past decades have witnessed a variety of advances in the
treatment of graphs and networks as combinatoric or algebraic objects,
corresponding advances in formal data analysis have largely failed to keep
pace. Indeed, the development of a successful framework for the statistical
analysis of network data requires the repurposing of existing models and
algorithms for the specific purpose of inference. In this chapter, we pose the
question of how modern statistical science can best rise to this challenge
as well as benefit from the many opportunities it presents. We provide first
steps toward formal network inference procedures through the introduction
of new tests for network structure, and employ concrete examples through-
out that serve to highlight the need for additional research contributions in
this burgeoning area.

1.1.1. Modern network data sets

Though once primarily the domain of social scientists, a view of networks
as data objects is now of interest to researchers in areas spanning biology,
finance, engineering, and library science, among others. Newman (2003)
provides an extensive review of modern network data sets; other exam-
ples of note include mobile phone records, which link customers accord-
ing to their phone calls (Eagle et al., 2008); the internet, including both
web pages connected by hyperlinks (Adamic and Huberman, 2000) and
peer-to-peer networks (Stutzbach et al., 2006); electrical power networks,
in which local grids are physically connected by long-distance transmission
lines (Watts and Strogatz, 1998); and publication networks, where citations
provide explicit links between authors (de Solla Price, 1965).

At the same time, other scientific fields are beginning to reinterpret
traditional data sets as networks, in order to better understand, summarize,
and visualize relationships amongst very large numbers of observations.
Examples include protein–protein interaction networks, with isolated pairs
of proteins deemed connected if an experiment suggests that they interact
(Batada et al., 2006); online financial transactions, whereupon items are
considered to be linked if they are typically purchased together (Jin et al.,
2007); food webs, with species linked by predator–prey relationships (Dunne
et al., 2002); and spatial data sets (Thompson, 2006; Ceyhan et al., 2007).

1.1.2. Organization and aims of the chapter

The above examples attest both to the wide variety of networks encountered
in contemporary applications, as well as the multiple expanding literatures

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 3

on their analysis. In this chapter, we focus on introducing the subject from
first principles and framing key inferential questions. We begin with a dis-
cussion of relational data in Section 1.2, and introduce notation to make the
connection to networks precise. We discuss model specification and infer-
ence in Section 1.3, by way of concrete definitions and examples. We intro-
duce new ideas for detecting network structure in Section 1.4, and apply
them to data analysis by way of formal testing procedures. In Section 1.5 we
discuss open problems and future challenges for large-scale network infer-
ence in the key areas of model elicitation, approximate fitting procedures,
and issues of data sampling. In a concluding appendix we provide a more
thorough introduction to the current literature, highlighting contributions
to the field from statistics as well as a variety of other disciplines.

1.2. Networks as Relational Data

We begin our analysis by making explicit the connection between networks
and relational data. In contrast to data sets that may that arise from pair-
wise distances or affinities of points in space or time, many modern network
data sets are massive, high-dimensional, and non-Euclidean in their struc-
ture. We therefore require a way to describe these data other than through
purely pictorial or tabular representations – and the notion of cataloging
the pairwise relationships that comprise them, with which we begin our
analysis, is natural.

1.2.1. Relational data matrices and covariates

Graphs provide a canonical representation of relational data as follows:
Given n entities or objects of interest with pairs indexed by (i, j), we write
i ∼ j if the ith and jth entities are related, and i � j otherwise. These
assignments may be expressed by way of an n×n adjacency matrix A, whose
entries {Aij} are nonzero if and only if i ∼ j. While both the structure of
A and the field over which its entries are defined depend on the application
or specific data set, a natural connection to graph theory emerges in which
entities are represented by vertices, and relations by edges; we adopt the
informal but more suggestive descriptors “node” and “link,” respectively.
The degree of the ith node is in turn defined as

∑n
j=1 Aij .

In addition, the data matrix A is often accompanied by covariates c(i)
associated with each node, i∈{1, 2, . . . , n}. Example 1.1 below illustrates
a case in which these covariates take the form of binary categorical vari-
ables. We shall refer back to these illustrative data throughout Sections 1.2

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

4 B. P. Olding and P. J. Wolfe

and 1.3, and later in Section 1.4 will consider a related real-world example:
the social network recorded by Zachary (1977), in which nodes repre-
sent members of a collegiate karate club and links represent friendships,
with covariates indicating a subsequent split of the club into two disjoint
groups.

Example 1.1 (Network Data Set). As an example data set, consider
the ten-node network defined by data matrix A and covariate vector c as

A =

0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
1 0 0 1 1 0 0 0 0 1
0 0 1 0 0 1 0 1 1 0
1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 1
0 0 1 0 0 1 1 0 1 0

; c =

1
0
0
0
1
0
1
1
1
0

.

A visualization of the corresponding network is shown in Figure 1.1; how-
ever, note that as no geometric structure is implied by the data set itself, a
pictorial rendering such as this is arbitrary and non-unique.

Fig. 1.1. The network data of Example 1.1, with nodes indexed by number and binary
categorical covariate values by shape. Note that no Euclidean embedding accompanies
the data, making visualization a challenging task for large-scale networks.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 5

In Example 1.1, categorical covariates c(i), i∈{1, 2, . . . , n} are given;
however, in network data sets of practical interest, these covariates may
well be latent. This in turn gives rise to many of the principal questions
of network inference – in contrast to the traditional setting of relational
data. Therefore, the issues of network modeling which arise tend to be
distinct; as such, classical approaches (e.g., contingency table tests) are
directly applicable to network data only in very restricted circumstances.

1.2.2. Networks as distinct from relational data

The main distinction between modern-day network data and classical rela-
tional data lies in the requisite computational complexity for inference.
Indeed, the computational requirements of large-scale network data sets
are substantial. With n nodes we associate

(
n
2

)
= n(n − 1)/2 symmetric

relations; beyond this quadratic scaling, latent covariates give rise to a
variety of combinatorial expressions in n. Viewed in this light, methods to
determine relationships amongst subsets of nodes can serve as an impor-
tant tool to “coarsen” network data. In addition to providing a lower-
dimensional summary of the data, such methods can serve to increase the
computational efficiency of subsequent inference procedures by enabling
data reduction and smoothing. The general approach is thus similar to
modern techniques for high-dimensional Euclidean data, and indeed may
be viewed as a clustering of nodes into groups.

From a statistical viewpoint, this notion of subset relations can be
conveniently described by a k-ary categorical covariate, with k specify-
ing the (potentially latent) model order. By incorporating such a covariate
into the probability model for the data adjacency matrix A, the “structure”
of the network can be directly tested if this covariate is observed, or instead
inferred if latent. It is easily seen that the cardinality of the resultant
model space is exponential in the number of nodes n; even if the cate-
gory sizes themselves are given, we may still face a combinatorial inference
problem. Thus, even a straightforwardly posed hypothesis test for a rela-
tively simple model can easily lead to cases where exact inference procedures
are intractable.

1.3. Model Specification and Inference

Fields such as probability, graph theory, and computer science have each
posited specific models which can be applied to network data; however,

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

6 B. P. Olding and P. J. Wolfe

when appealing to the existing literature, it is often the case that neither
the models nor the analysis tools put forward in these contexts have been
developed specifically for inference. In this section, we introduce two basic
network models and relate them to classical statistics. The first such model
consists of nodes whose degrees are identically distributed, whereas the sec-
ond implies group structure via latent categorical covariates. Inferring rela-
tionships amongst groups of nodes from data in turn requires the standard
tools of statistics, including parameter estimation and hypothesis testing.
We provide examples of such procedures below, illustrating their compu-
tational complexity, and introduce corresponding notions of approximate
inference.

1.3.1. Erdös–Rényi: A first illustrative example

We begin by considering one of the simplest possible models from random
graph theory, attributed to Erdös and Rényi (1959) and Gilbert (1959), and
consisting of pairwise links that are generated independently with proba-
bility p. Under this model, all nodes have identically distributed degrees;
it is hence appropriate to describe instances in which no group structure
(by way of categorical covariates) is present. In turn, we shall contrast this
with an explicit model for structure below.

Adapted to the task of modeling undirected network data, the Erdös–
Rényi model may be expressed as a sequence of

(
n
2

)
Bernoulli trials corre-

sponding to off-diagonal elements of the adjacency matrix A.

Definition 1.1 (Erdös–Rényi Model). Let n > 1 be integral and fix
some p∈ [0, 1]. The Erdös–Rényi random graph model corresponds to matri-
ces A∈{0, 1}n×n defined element-wise as

∀ i, j ∈{1, 2, . . . , n} : i < j, Aij
iid∼ Bernoulli(p); Aji = Aij , Aii = 0.

Erdös–Rényi thus provides a one-parameter model yielding indepen-
dent and identically distributed binary random variables representing the
absence or presence of pairwise links between nodes; as this binary relation
is symmetric, we take Aji = Aij . The additional stipulation Aii = 0 for all i
implies that our relation is also irreflexive; in the language of graph theory,
the corresponding (undirected, unweighted) graph is said to be simple, as
it exhibits neither multiple edges nor self-loops. The event i ∼ j is thus a
Bernoulli(p) random variable for all i �= j, and it follows that the degree∑n

j=1 Aij of each network node is a Binomial(n− 1, p) random variable.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 7

Fitting the parameter p is straightforward; the maximum likelihood
estimator (MLE) corresponds to the sample proportion of observed links:

p̂ :=
1(
n
2

)∑
i<j

Aij =
1

n(n− 1)

n∑
i=1

n∑
j=1

Aij .

Example 1.1, for instance, yields p̂ = 14/45.
Given a relational data set of interest, we can test the agreement of data

in A with this model by employing an appropriately selected test statistic.
If we wish to test this uniformly generic model with respect to the notion of
network structure, we may explicitly define an alternate model and appeal
to the classical Neyman–Pearson testing framework.

In this vein, the Erdös–Rényi model can be generalized in a natural
way to capture the notion of local rather than global exchangeability: we
simply allow Bernoulli parameters to depend on k-ary categorical covariates
c(i) associated with each node i∈{1, 2, . . . , n}, where the k ≤ n categories
represent groupings of nodes. Formally we define

c∈Z
n
k ; c(i) : {1, 2, . . . , n} �→ Zk,

and a set of
(
k+1
2

)
distinct Bernoulli parameters governing link probabilities

within and between these categories, arranged into a k×k symmetric matrix
and indexed as pc(i)c(j) for i, j ∈ {1, 2, . . . , n}.

In the case of binary categorical covariates, we immediately obtain
a formulation of Holland and Leinhardt (1981), the simplest example of
a so-called stochastic block model . In this network model, pairwise links
between nodes correspond again to Bernoulli trials, but with a parameter
chosen from the set {p00, p01, p11} according to binary categorical covariates
associated with the nodes in question.

Definition 1.2 (Simple Stochastic Block Model). Let c∈{0, 1}n be
a binary n-vector for some integer n > 1, and fix parameters
p00, p01, p11 ∈ [0, 1]. Set p10 = p01; the model then corresponds to matrices
A∈{0, 1}n×n defined element-wise as

∀ i, j ∈{1, 2, . . . , n} : i < j, Aij ∼ Bernoulli(pc(i)c(j));

Aji = Aij , Aii = 0.

If the vector of covariates c is given, then finding the maximum-
likelihood parameter estimates {p̂00, p̂01, p̂11} is trivial after a re-ordering of

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

8 B. P. Olding and P. J. Wolfe

nodes via permutation similarity: For any n×n permutation matrix Π, the
adjacency matrices A and ΠAΠ′ represent isomorphic graphs, the latter
featuring permuted rows and columns of the former. If Π re-indexes nodes
according to their categorical groupings, then we may define a conformal
partition

ΠAΠ′ =
(

A00 A01

A′
01 A11

)
that respects this ordering, such that exchangeability is preserved within –
but not across – submatrices A00 and A11. We may then simply compute
sample proportions corresponding to each submatrix {A00,A01,A11} to
yield {p̂00, p̂01, p̂11}.

Note that by construction, submatrices A00 and A11 yield subgraphs
that are themselves Erdös–Rényi, and are said to be induced by the two
respective groups of categorical covariates. Nonzero entries of A01 are
said to comprise the edge boundary between these two induced subgraphs;
indeed, the matrix obtained by setting all entries of A00 and A11 to zero
yields in turn a bipartite graph whose vertices can be partitioned according
to their binary covariate values.

The following example illustrates these concepts using the simulated
data of Example 1.1.

Example 1.2 (Similarity and Subgraphs). Let the ten-node network
of Example 1.1 be subject to an isomorphism that re-orders nodes accord-
ing to the two groups defined by their binary covariate values, and define
the permutation-similar data matrix Ã and permuted covariate vector c̃ as
follows:

Ã =

0 0 0 1 0 0 0 1 0 0
0 0 1 0 1 1 1 0 0 0
0 1 0 1 0 0 0 0 1 1
1 0 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 1 0 1
0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0 1 0

=

(
Ã00 Ã01

Ã′
01 Ã11

)
; c̃ =

0
0
0
0
0
1
1
1
1
1

.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 9

Fig. 1.2. Subgraphs based on the binary covariates of Example 1.1, again represented
graphically by node shape. The conformal partition of Example 1.2 implies two induced
subgraphs: solid lines inside the ellipse are links represented in submatrix eA00, while
those outside it appear as links in eA11. The remaining links, shown as dashed lines,
correspond to values of 1 in submatrix eA01 and comprise the associated edge boundary.

Figure 1.2 illustrates the corresponding subgraphs using the visualization of
Figure 1.1; assuming a simple stochastic block model in turn leads to the
following maximum-likelihood parameter estimates:

p̂00 =
5
10

; p̂01 =
7
25

; p̂11 =
2
10

.

Example 1.2 illustrates the ease of model fitting when binary-valued
covariates are known; the notion of permutation similarity plays a similar
role in the case of k-ary covariates.

1.3.2. Approximate inference

The careful reader will have noted that in the case of known categorical
covariates, examples such as those above can be expressed as contingency
tables – a notion we revisit in Section 1.4 – and hence may admit exact
inference procedures. However, if covariates are latent, then an appeal to
maximum-likelihood estimation induces a combinatorial optimization prob-
lem; in general, no fast algorithm is known for likelihood maximization over
the set of covariates and Bernoulli parameters under the general k-group
stochastic block model.

The principal difficulty arises in maximizing the n-dimensional k-ary
covariate vector c over an exponentially large model space; estimating the

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

10 B. P. Olding and P. J. Wolfe

Fig. 1.3. Representations A and ΠAΠ′ of data drawn from the stochastic block model
of Example 1.3, corresponding to isomorphic graphs (black boxes denote links). Though
p01 = 0, only a small subset of permutation similarity transformations Π(·)Π′ will reveal
the disconnected nature of this network.

(
k+1
2

)
associated Bernoulli parameters then proceeds in exact analogy to

Example 1.2 above. The following example illustrates the complexity of
this inference task.

Example 1.3 (Permutation and Maximization). Consider a 100-
node network generated according to the stochastic block model of Defini-
tion 1.2, with each group of size 50 and p00 = p11 = 1/2, p01 = 0. Figure 1.3
shows two permutation-similar adjacency matrices, A and ΠAΠ′, that cor-
respond to isomorphic graphs representing this network; inferring the vector
c of binary categorical covariates from data A in Figure 1.3a is equivalent
to finding a permutation similarity transformation ΠAΠ′ that reveals the
distinct division apparent in Figure 1.3b.

Given the combinatorial nature of this problem in general, it is clear
that fitting models to real-world network data can quickly necessitate
approximate inference. To this end, Example 1.3 motivates an important
means of exploiting algebraic properties of network adjacency structure:
the notion of a graph spectrum. Eigenvalues associated with graphs reveal
several of their key properties (Chung, 1997) at a computational cost that
scales as the cube of the number of nodes, offering an appealing alternative
in cases where exact solutions are of exponential complexity.

As the adjacency matrix A itself fails to be positive semidefinite, the
spectrum of a labeled graph is typically defined via a Laplacian matrix L

as follows.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 11

Definition 1.3 (Graph Laplacian). Let i ∼ j denote a symmetric
adjacency relation defined on an n-node network. An associated n × n

symmetric, positive-semidefinite matrix L is called a graph Laplacian if,
for all i, j ∈{1, 2 . . . , n} : i �= j, we have

L :

{
Lij < 0 if i ∼ j,

Lij = 0 if i � j.
; Lji = Lij .

Note that the diagonal of L is defined only implicitly, via the require-
ment of positive-semidefiniteness; a typical diagonally dominant completion
termed the combinatorial Laplacian takes L = D−A, where D is a diagonal
matrix of node degrees such that Dii =

∑n
j=1 Aij . An important result is

that the dimension of the kernel of L is equal to the number of connected
components of the corresponding graph; hence p01 = 0 implies in turn that
at least two eigenvalues of L will be zero in Example 1.3 above.

Correspondingly, Fiedler (1973) termed the second-smallest eigenvalue
of the combinatorial Laplacian the algebraic connectivity of a graph, and
recognized that positive and negative entries of the corresponding eigenvec-
tor (the “Fiedler vector”) define a partition of nodes that nearly minimizes
the number of edge removals needed to disconnect a network. In fact, in
the extreme case of two equally sized, disconnected subgraphs – as given
by Example 1.3 – this procedure exactly maximizes the likelihood of the
data under a two-group stochastic block model; more generally, it provides
a means of approximate inference that we shall return to in Section 1.4.

As reviewed by von Luxburg (2007), the observation of Fiedler was
later formalized as an algorithm termed spectral bisection (Pothen et al.,
1990), and indeed leads to the more general notion of spectral clustering
(von Luxburg et al., 2008). This remains an active area of research in com-
binatorics and theoretical computer science, where a simple stochastic block
model with p00, p11 > p01 is termed a “planted partition” model (Bollobás
and Scott, 2004).

1.4. Testing for Network Structure

Identifying some degree of structure within a network data set is an impor-
tant prerequisite to formal statistical analysis. Indeed, if all nodes of a
network are truly unique and do not admit any notion of grouping, then the
corresponding data set – no matter how large – is really only a single obser-
vation. On the other hand, if every node can be considered independent

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

12 B. P. Olding and P. J. Wolfe

under an assumed model, then depicting the data set as a network is
unhelpful: the data are best summarized as n independent observations
of nodes whose connectivity structure is uninformative.

In this section we invoke a formal hypothesis testing framework to
explore the notion of detecting network structure in greater detail, and
propose new approaches that are natural from a statistical point of view
but have thus far failed to appear in the literature. To illustrate these ideas
we apply three categories of tests to a single data set – that of Section 1.4.1
below – and in turn highlight a number of important topics for further
development.

1.4.1. The Zachary karate data

Zachary (1977) recorded friendships between 34 members of a collegiate
karate club that subsequently split into two groups of size 16 and 18. These
data are shown in Figure 1.4, with inter- and intra-group links given in
Table 1.1. The network consists of 78 links, with degree sequence (ordered
in accordance with the node numbering of Figure 1.4) given by

(16, 9, 10, 6, 3, 4, 4, 4, 5, 2, 3, 1, 2, 5, 2, 2, 2,

2, 2, 3, 2, 2, 2, 5, 3, 3, 2, 4, 3, 4, 3, 6, 13, 17),

Fig. 1.4. Visualization of the Zachary karate data of Section 1.4.1. Nodes are num-
bered and binary categorical covariate values, reflecting the subsequent group split, are
indicated by shape.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 13

Table 1.1. Zachary (1977) karate data.

Counts # Links # No Links Total

Intra-subgroup: 0–0 33 87 120
Inter-subgroup: 0–1 10 278 288
Intra-subgroup: 1–1 35 118 153
Total 78 483 561

and corresponding sample proportion of observed links given by p̂ =
78/
(
34
2

)
= 78/561.

Sociologists have interpreted the data of Zachary not only as evidence
of network structure in this karate club, but also as providing binary cate-
gorical covariate values through an indication of the subsequent split into
two groups, as per Figure 1.4. This in turn provides us with an opportunity
to test various models of network structure – including those introduced in
Section 1.3 – with respect to ground truth.

1.4.2. Tests with known categorial covariates

We begin by posing the question of whether or not the most basic Erdös–
Rényi network model of Definition 1.1 – with each node being equally likely
to connect to any other node – serves as a good description of the data,
given the categorical variable of observed group membership. The classical
evaluation of this hypothesis comes via a contingency table test.

Example 1.4 (Contingency Table Test). Consider the data of Sec-
tion 1.4.1. When categorical covariates are known, a contingency table test
for independence between rows and columns may be performed according to
the data shown in Table 1.1. The Pearson test statistic Tχ2 in this case
evaluates to over 47, and with only 2 degrees of freedom, the corresponding
p-value for these data is less than 10−3.

In this case, the null hypothesis – that the Erdös–Rényi model’s sole
Bernoulli parameter can be used to describe both inter- and intra-subgroup
connection probabilities – can clearly be rejected.

As in the case of Zheng et al. (2006) and others, this χ2 approach has
been generally used to reject an Erdös–Rényi null when given network data
include a categorical covariate for each node. (A cautionary reminder is
in order: employing this method when covariates are inferred from data
corresponds to a misuse of maximally selected statistics (Altman et al.,
1994).) Of course, in cases where it is computationally feasible, we may

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

14 B. P. Olding and P. J. Wolfe

instead use simulation to determine the exact distribution of any chosen
test statistic T under whichever null model is assumed.

1.4.3. The case of latent categorial covariates

The Erdös–Rényi model of Definition 1.1 clearly implies a lack of network
structure through its nodal properties, thus supporting its use as a null
model in cases such as Example 1.4 and those described above. In contrast,
the partial exchangeability exhibited by the stochastic block model of Def-
inition 1.2 suggests its use as an alternate model that explicitly exhibits
network structure. To this end, the usual Neyman–Pearson logic implies
the adoption of a generalized likelihood ratio test statistic:

TLR =
sup

p

∏
i>j

P(Aij ; p)

max
c

sup
p00,p01,p11

∏
i>j

P(Aij ; p00, p01, p11, c(i), c(j))

=

∏
i>j

p̂Aij (1 − p̂)1−Aij

max
c

sup
p00,p01,p11

∏
i>j

(pc(i)c(j))Aij (1 − pc(i)c(j))1−Aij
.

As we have seen in Section 1.3.2, however, maximizing the likelihood
of the covariate vector c∈{0, 1}n in general requires an exhaustive search.
Faced with the necessity of approximate inference, we recall that the spec-
tral partitioning algorithms outlined earlier in Section 1.3.2 provide an
alternative to exact likelihood maximization in c. The resultant test statistic
TcLR is computationally feasible, though with reduced power, and to this
end we may test the data of Section 1.4.1 as follows.

Example 1.5 (Generalized Likelihood Ratio Test). Let TLR be the
test statistic associated with a generalized likelihood ratio test of Erdös–
Rényi versus a two-group stochastic block model, and TcLR correspond to an
approximation obtained by spectral partitioning in place of the maximization
over group membership. For the data of Section 1.4.1, simulation yields a
corresponding p-value of less than 10−3 with respect to TcLR, with Figure 1.5
confirming the power of this test.

Our case study has so far yielded reassuring results. However, a closer
look reveals that selecting appropriate network models and test statistics
may require more careful consideration.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 15

Fig. 1.5. Receiver operating characteristic (ROC) curves corresponding to tests of the
data of Section 1.4.1, with Erdös–Rényi null and two-group stochastic block model alter-
nate. Test statistics T cLR

and TdVar
were calculated via simulation, with the ROC upper

bound obtained using knowledge of the true group membership for each node.

Example 1.6 (Degree Variance Test). Suppose we adopt instead the
test statistic of Snijders (1981):

TdVar
=

1
n− 1

n∑
i=1

(
n∑

j=1

Aij − 1
n

n∑
i=1

n∑
j=1

Aij

)2

,

the sample variance of the observed degree sequence
∑n

j=1 Aij . A glance at
the data of Section 1.4.1 indicates the poor fit of an Erdös–Rényi null, and
indeed simulation yields a p-value of less than 10−3. Figure 1.5, however,
reveals that TdVar

possesses very little power.

This dichotomy between a low p-value, and yet low test power, high-
lights a limitation of the models exhibited thus far: in each case, both the
expected degree sequence and the corresponding node connectivity proper-
ties are determined by exactly the same set of model parameters. In this
regard, test statistics depending on the data set only through its degree
sequence can prove quite limiting, as the difference between the two mod-
els under consideration lies entirely in their node connectivity properties,
rather than the heterogeneity of their degree sequences.

Indeed, significant degree variation is a hallmark of many observed
network data sets, the data of Section 1.4.1 included; sometimes certain
nodes are simply more connected than others. In order to conclude that

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

16 B. P. Olding and P. J. Wolfe

rejection of a null model necessarily implies the presence of network struc-
ture expressed through categorical covariates, a means of allowing for
heterogenous degree sequences must be incorporated into the null as well
as the alternate.

1.4.4. Decoupling degree sequence and connectivity

An obvious way to decouple properties of the degree sequence from those of
connectivity is to restrict the model space to only those networks exhibiting
the observed degree sequence. However, simulation of such graphs becomes
nontrivial when they are restricted to be simple (i.e., without multiple edges
or self-loops), thus rendering the test calculations of Section 1.4.2 more
difficult to achieve in practice. Correspondingly, such fixed-degree models
have remained largely absent from the literature to date.

Recent advances in graph simulation methods, however, help to over-
come this barrier (Viger and Latapy, 2005; Blitzstein and Diaconis, 2011).
The importance sampling approach of Blitzstein and Diaconis (2011)
enables us here to test the data set of Section 1.4.1 using fixed-degree
models that match its observed degree sequence. Although the correspond-
ing normalizing constants cannot be computed in closed form, we may
specify a proposal distribution, draw samples, and calculate unnormalized
importance weights.

Example 1.7 (Fixed-Degree Test). Consider the set of all simple
graphs featuring an observed degree sequence, and define a null model under
which each of these graphs is equally likely. As an alternate model, let
each graph be weighted in proportion to its likelihood under the two-group
stochastic block model of Definition 1.2; in this case the normalizing con-
stant will depend on parameters p00, p01, and p11. The corresponding fixed-
degree generalized likelihood ratio test statistic TLR−FD is given in analogy
to Example 1.5 by

1
max

c
sup

p00,p01,p11

∏
i>j

P(Aij ; p00, p01, p11, c(i), c(j))
.

Just as before, calculation of TLR−FD requires a combinatorial search
over group assignments c; moreover, the fixed-degree constraint precludes
an analytical sup operation over parameters p00, p01, and p11. We therefore
define an approximation TcLR−FD employing spectral partitioning in place
of the maximization over group membership, and substituting the analytical

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 17

Fig. 1.6. ROC curve of T cLR−FD
using fixed-degree models for both the null and alter-

nate hypotheses. (The stepped appearance of the curve is an artifact of the importance
sampling weights.) Also shown is an ROC upper bound, obtained using knowledge of
the true group membership for each node.

sup under two-group stochastic block likelihood for the exact sup operation.
The substantial power of this test for the data of Section 1.4.1 is visible in
Figure 1.6; the estimated p-value of this data set remains below 10−3.

Note that specification of parameters p00, p01, and p11 was required
to generate Figure 1.6 via simulation; here, we manually fit these three
parameters to the data, starting with their estimates under the two-group
stochastic block model, until the likelihood of the observed data approached
the median likelihood under our parameterization. A more formal fitting
procedure could, of course, be adopted in practice.

1.5. Open Problems in Network Inference

The examples of Sections 1.3 and 1.4 were designed to be illustrative, and
yet they also serve to illuminate broader questions that arise as we seek
to extend classical notions of statistics to network data. As we have seen
in Section 1.3, for instance, the inclusion of latent k-ary categorical covari-
ates immediately necessitates a variety of combinatorial calculations. The
increasing prevalence of large, complex network data sets presents an even
more significant computational challenge for statistical inference. Indeed,
longstanding inferential frameworks – as exemplified by the hypothesis
tests of Section 1.4, for instance – are crucial to the analysis of networks

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

18 B. P. Olding and P. J. Wolfe

and relational data, and yet their implementations can prove remarkably
difficult even for small data sets.

To address these broader questions and impact the future of network
inference, we believe that statisticians should focus on the following three
main categories of open problems, whose descriptions comprise the remain-
der of this section:

(1) We must work to specify models that can more realistically describe
observed network data. For instance, the fixed-degree models intro-
duced earlier account explicitly for heterogeneous degree sequences; in
the case of large-scale network data sets, even more flexible models are
needed.

(2) We must build approximations to these models for which likelihood
maximization can be readily achieved, along with tools to evaluate the
quality of these approximations. The spectral partitioning approach
featured in our examples of Section 1.4 serves as a prime example;
however, validation of approximate inference procedures remains an
important open question.

(3) We must seek to understand precisely how network sampling influences
our statistical analyses. In addition to better accounting for data gath-
ering mechanisms, sampling can serve as a method of data reduction.
This in turn will enable the application of a variety of methods to data
sets much larger than those exhibited here.

1.5.1. Model elicitation and selection

More realistic network models can only serve to benefit statistical inference,
regardless of their computational or mathematical convenience (Banks and
Constantine, 1998). Models tailored to different fields, and based on the-
ory fundamental to specific application areas, are of course the long-term
goal – with the exponential random graph models reviewed by Anderson
et al. (1999) and Snijders et al. (2006) among the most successful and widely
known to date. However, additional work to determine more general models
for network structure will also serve to benefit researchers and practitioners
alike. As detailed in the Appendix, there are presently several competing
models of this type, each with its own merits: stochastic block models
(Wang and Wong, 1987), block models with mixed membership (Airoldi
et al., 2007), and structural models that explicitly incorporate information
regarding the degree sequence in addition to group membership (Chung
et al., 2003).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 19

At present, researchers lack a clearly articulated strategy for selecting
between these different modeling approaches – the goodness-of-fit proce-
dures of Hunter et al. (2008), based on graphical comparisons of various
network statistics, provide a starting point, but comparing the complexity
of these different modeling strategies poses a challenge. Indeed, it is not
even entirely clear how best to select the number of groups used in a single
modeling strategy alone. For the data of Section 1.4.1, for example, we
restricted our definition of network structure to be a binary division of the
data into two groups, whereas many observed data sets may cluster into an
a priori unknown number of groups.

It is also worth noting that many different fields of mathematics may
provide a source for network data models. While graph theory forms a
natural starting point, other approaches based on a combination of random
matrices, algebra, and geometry may also prove useful. For example, the
many graph partitioning algorithms based on spectral methods suggest the
use of corresponding generative models based on the eigenvectors and eigen-
values of the graph Laplacian. The primary challenge in this case appears to
be connecting such models to the observed data matrix A, which typically
consists of binary entries.

1.5.2. Approximate inference and validation

Computationally or mathematically convenient models will also continue to
play a key role in network analysis. Even simple generic models of structure
are very high-dimensional, and with network data sets commonly consisting
of thousands to millions of nodes, model dimensionality spirals out of con-
trol at an impossible rate. Somehow this fundamental challenge of network
data – how to grapple with the sheer number of relational observations –
must be turned into a strength so that further analysis may proceed. Reduc-
ing the dimensionality through an approximate clustering is an excellent
first step to build upon, but computationally realizable inference schemes
must also follow in turn.

The usefulness of such approximations will ultimately be determined
by the extent to which evaluation tools can be developed for massive data
sets. Whenever models are sufficiently complex to necessitate approximate
inference procedures, such models must be paired with mechanisms to
relate the quality of the resulting analysis back to the original problem and
model specification. Indeed, assurances are needed to convince thoughtful
practitioners that analyzing a different model, or maximizing a quantity
other than desired likelihood, is a useful exercise.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

20 B. P. Olding and P. J. Wolfe

Other approaches to validation may focus on the outcome of the anal-
ysis in some way, rather than its theoretical underpinnings. With ground
truth by its very definition available only for small-scale illustrative prob-
lems, or for those which are generally felt to have already been solved,
prediction may provide a valuable substitute. By monitoring the results
of approximation over time relative to revealed truth, confidence in the
adopted inference procedure may be grown.

1.5.3. Sampling, missingness, and data reduction

A final concern is to better understand how sampling mechanisms influence
network inference. Consider that two critical assumptions almost always
underpin the vast majority of contemporary network analyses: First, that
all links within the collection of observed nodes have been accounted for;
and second, that observed nodes within the network comprise the only
nodes of interest. In general, neither of these assumptions may hold in
practice.

To better understand the pitfalls of the first assumption, consider that
while observing the presence of a link between nodes is typically a feasible
and well-defined task, observing the absence of a link can in many cases pose
a substantial challenge. Indeed, careful reflection often reveals that zero
entries in relational data sets are often better thought of as unobserved
(Clauset et al., 2008; Marchette and Priebe, 2008). The implications of
this fact for subsequent analysis procedures – as well as on approximate
likelihood maximization procedures and spectral methods in particular –
remain unclear.

The second assumption, that all nodes of interest have in fact been
recorded, also appears rarely justified in practice. Indeed, it seems an arti-
fact of this assumption that most commonly studied data sets consist of
nodes which form a connected network. While in some cases the actual net-
work may in fact consist of a single connected component, researchers may
have unwittingly selected their data conditioned upon its appearance in the
largest connected component of a much larger network. How this selection
in turn may bias the subsequent fitting of models has only recently begun
to be investigated (Handcock and Gile, 2010).

A better understanding of missingness may also lend insight into opti-
mal sampling procedures. Although researchers themselves may lack influ-
ence over data gathering mechanisms, the potential of such methods for
data reduction is clear. One particularly appealing approach is to first

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 21

sample very large network data sets in a controlled manner, and then apply
exact analysis techniques. In some cases the resultant approximation error
can be bounded (Belabbas and Wolfe, 2009), implying that the effects on
inferential procedures in question can be quantified.

Other data reduction techniques may also help to meet the computa-
tional challenges of network analysis; for example, Krishnamurthy et al.
(2007) examined contractions of nodes into groups as a means of lessen-
ing data volume. Such strategies of reducing network size while preserving
relevant information provide an alternative to approximate likelihood max-
imization that is deserving of further study.

1.6. Conclusion

In many respects, the questions being asked of network data sets are not
at all new to statisticians. However, the increasing prevalence of large net-
works in contemporary application areas gives rise to both challenges and
opportunities for statistical science. Tests for detecting network structure in
turn form a key first step toward more sophisticated inferential procedures,
and moreover provide practitioners with much-needed means of formal data
analysis.

Classical inferential frameworks are precisely what is most needed
in practice, and yet as we have seen, their exact implementation can
prove remarkably difficult in the setting of modern high-dimensional, non-
Euclidean network data. To this end, we hope that this chapter has suc-
ceeded in helping to chart a path toward the ultimate goal of a unified
and coherent framework for the statistical analysis of large-scale network
data sets.

Acknowledgments

Research supported in part by the National Science Foundation under
Grants DMS-0631636 and CBET-0730389; by the Defense Advanced
Research Projects Agency under Grant No. HR0011-07-1-0007; by the
US Army Research Office under PECASE Award W911NF-09-1-0555 and
MURI Award 58153-MA-MUR; by the UK EPSRC under Mathematical
Sciences Established Career Fellowship EP/K005413/1 and Institutional
Sponsorship Award EP/K503459/1; by the UK Royal Society under a
Wolfson Research Merit Award; and by Marie Curie FP7 Integration
Grant PCIG12-GA-2012-334622 within the 7th European Union Frame-
work Program.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

22 B. P. Olding and P. J. Wolfe

Appendix: A Review of Approaches to Network Analysis

Three canonical problems in network data analysis have consistently drawn
attention across different contexts: network model elicitation, network
model inference, and methods of approximate inference.

A.1. Model Elicitation

With new network data sets being generated or discovered at rapid rates
in a wide variety of fields, model elicitation – independent even of model
selection – remains an important topic of investigation. Although graph
theory provides a natural starting point for identifying possible models for
graph-valued data, practitioners have consistently found that models such
as Erdös–Rényi lack sufficient explanatory power for complex data sets. Its
inability to model all but the simplest of degree distributions has forced
researchers to seek out more complicated models.

Barabási (2002) and Palla et al. (2005) survey a wide variety of network
data sets and conclude that commonly encountered degree sequences follow
a power law or similarly heavy-tailed distribution; the Erdös–Rényi model,
with its marginally binomial degree distribution, is obviously insufficient to
describe such data sets. Barabási and Albert (1999) introduced an alterna-
tive by way of a generative network modeling scheme termed “preferential
attachment” to explicitly describe power-law degree sequences. Under this
scheme, nodes are added sequentially to the graph, being preferentially
linked to existing nodes based on the current degree sequence. A moment’s
reflection will convince the reader that this model is in fact an example of
a Dirichlet process (Pemantle, 2007).

Though the preferential attachment approach serves to describe the
observed degree sequences of many networks, it can fall short of correctly
modeling their patterns of connectivity (Li et al., 2005); moreover, het-
erogenous degree sequences may not necessarily follow power laws. A nat-
ural solution to both problems is to condition on the observed degree
sequence as in Section 1.4.4 and consider the connections between nodes
to be random. As described earlier, the difficulties associated with simulat-
ing fixed-degree simple graphs have historically dissuaded researchers from
this direction, and hence fixed-degree models have not yet seen wide use in
practice.

As an alternative to fixed-degree models, researchers have instead
focused on the so-called configuration model (Newman et al., 2001) as well
as models which yield graphs of given expected degree (Chung et al., 2003).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 23

The configuration model specifies the degree sequence exactly, as with the
case of fixed-degree models, but allows both multiple links between nodes
and “self-loops” in order to gain a simplified asymptotic analysis. Models
featuring given expected degrees specify only the expected degree of each
node – typically set equal to the observed degree – and allow the degree
sequence to be random. Direct simulation becomes possible if self-loops and
multiple links are allowed, thus enabling approximate inference methods of
the type described in Section 1.3.2. However, observed network data sets do
not always exhibit either of these phenomena, thus rendering the inferen-
tial utility of these models highly dependent on context. In the case of very
large data sets, for example, the possible presence or absence of multiple
connections or self-loops in the model may be irrelevant to describing the
data on a coarse scale. When it becomes necessary to model network data
at a fine scale, however, a model which allows for these may be insufficiently
realistic.

Graph models may equally well be tailored to specific fields. For exam-
ple, sociologists and statisticians working in concert have developed a class
of well-known approaches collectively known as exponential random graph
models (ERGMs) or alternatively as p∗ models. Within this class of models,
the probability of nodes being linked to each other depends explicitly on
parameters that control well-defined sufficient statistics; practitioners draw
on sociological theory to determine which connectivity statistics are criti-
cal to include within the model. A key advantage of these models is that
they can readily incorporate covariates into their treatment of connectivity
properties. For a detailed review, along with a discussion of some of the
latest developments in the field of social networks, the reader is referred to
Anderson et al. (1999) and Snijders et al. (2006).

Since their original introduction, ERGMs have been widely adopted as
models for social networks. They have not yet, however, been embraced to
the same extent by researchers outside of social network analysis. Sociolo-
gists can rely on existing theory to select models for how humans form rela-
tionships with each other; researchers in other fields, though, often cannot
appeal to equivalent theories. For exploratory analysis, they may require
more generic models to describe their data, appearing to prefer models
with a latent vector of covariates to capture probabilistically exchange-
able blocks. Indeed, as noted in Section 1.3.1, this approach falls under
the general category of stochastic block modeling. Wang and Wong (1987)
detail similarities and differences between this approach and the original
specification of ERGMs.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

24 B. P. Olding and P. J. Wolfe

Stochastic block modeling, though relatively generic, may still fail to
adequately describe networks in which nodes roughly group together, yet
in large part fail to separate into distinct clusters. In cases such as this,
where stochastic exchangeability is too strong an assumption, standard
block modeling breaks down. To this end, two possible modeling solutions
have been explored to date in the literature. Hoff et al. (2002) introduced a
latent space approach, describing the probability of connection as a function
of distances between nodes in an unobserved space of known dimensionality.
In this model, the observed grouping of nodes is a result of their proximity
in this latent space. In contrast, Airoldi et al. (2007) retained the explicit
grouping structure that stochastic block modeling provides, but introduced
the idea of mixed group membership to describe nodes that fall between
groups. Node membership here is a vector describing partial membership
in all groups, rather than an indicator variable specifying a single group
membership.

A.2. Model Fitting and Inference

Even when a model or class of models for network data can be specified,
realizing inference can be challenging. One of the oldest uses of random
graph models is as a null; predating the computer, Moreno and Jennings
(1938) simulated a random graph model quite literally by hand in order
to tabulate null model statistics. These authors drew cards out of a ballot
shuffling apparatus to generate graphs of the same size as a social network
of schoolgirls they had observed. Comparing the observed statistics to the
distribution of tabulated statistics, they rejected the hypothesis that the
friendships they were observing were formed strictly by chance.

Asymptotic tests may alleviate the need for simulation in cases of large
network data sets, and are available for certain models and test statistics –
the χ2-test of Section 1.4.2 being one such example. As another example,
Holland and Leinhardt (1981) developed asymptotic tests based on likeli-
hood ratio statistics to select between different ERGMs. Sociologists and
statisticians together have developed results for other test statistics as well,
many of which are reviewed by Wasserman and Faust (1994).

A desire upon the rejection of a null model, of course, is the fitting of an
alternate. However, as demonstrated in Section 1.3.2, direct fitting by max-
imum likelihood can prove computationally costly, even for basic network
models. A common solution to maximizing the likelihood under an ERGM,
for example, is to employ a Markov chain Monte Carlo strategy (Snijders

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 25

et al., 2006). Handcock et al. (2007) also used such methods to maximize
the likelihood of a latent space network model; additionally, these authors
suggested a faster, though approximate, two-stage maximization routine.

Other researchers have employed greedy algorithms to maximize the
model likelihood. Newman and Leicht (2007) used expectation maximiza-
tion (EM) to fit a network model related to stochastic block modeling.
Relaxing the precise requirements of the EM algorithm, both Hofman
and Wiggins (2008) and Airoldi et al. (2008) have applied a variational
Bayes approach (see, e.g., Jordan et al. (1999)) to find maximum likelihood
estimates of parameters under a stochastic block model. Reichardt and
Bornholdt (2004) applied simulated annealing to maximize the likelihood
of network data under a Potts model, a generalization of the Ising model.
Rosvall and Bergstrom (2007, 2008) have also employed simulated annealing
in network inference in order to maximize information-theoretic functionals
of the data.

Following any kind of model fitting procedure, a goodness-of-fit test of
some kind is clearly desirable. Yet, researchers have thus far struggled to
find a clear solution to this problem. Hunter et al. (2008) have proposed a
general method of accumulating a wide set of network statistics, and com-
paring them graphically to the distribution of these same statistics under
a fitted model. Networks which fit well should in turn exhibit few statistics
that deviate far from those simulated from the corresponding model.

A.3. Approximate Inference Procedures

In most cases of practical interest, and in particular for large network data
sets, model likelihoods cannot be maximized in a computationally feasi-
ble manner, and researchers must appeal to a heuristic that yields some
approximately maximized quantity. With this goal in mind, the idea of
likelihood maximization has been subsumed by the idea of fast graph par-
titioning described in Section 1.3.2, as it is the process of determining group
membership which typically poses the most computational challenges. The
invention of new algorithms that can quickly partition large graphs is clearly
of great utility here.

A.3.1. Algorithmic approaches

Computer scientists and physicists have long been active in the creation
of new graph partitioning algorithms. In addition to techniques such as
spectral bisection, many researchers have also noted that the inherently

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

26 B. P. Olding and P. J. Wolfe

sparse nature of most real-world adjacency structures enables faster imple-
mentations of spectral methods (see, e.g., White and Smyth (2005)).

Researchers have sought to also incorporate graph partitioning concepts
that allow for multiple partitions of varying sizes. Some researchers, such
as Eckmann and Moses (2002) and Radicchi et al. (2004), have attempted
to use strictly local statistics to aid in the clustering of nodes into multi-
ple partitions. Girvan and Newman (2002) focused in contrast on global
statistics, by way of measures of the centrality of a node relative to the rest
of the graph. This line of reasoning eventually resulted in the introduction
of modularity (Newman, 2006) as a global statistic to relate the observed
number of edges between groups to their expected number under the con-
figuration model outlined in Section A.1. Spectral clustering methods can
also be applied to the task of approximately maximizing modularity, in a
manner that enables both group size and number to vary. A wide variety of
alternative maximization approaches have been applied as well: Both Wang
et al. (2007) and Brandes et al. (2008) review the computational difficulties
associated with maximization of the modularity statistic, and relate this
to known combinatorial optimization problems. Fortunato and Castellano
(2007) review many recently proposed maximization routines and contrast
them with traditional methods.

A.3.2. Evaluation of efficacy

Approximate procedures in turn require some way to evaluate the depar-
ture from exact likelihood maximization. Thus far, a clear way to eval-
uate partitions found through the various heuristics cited above has not
yet emerged, though many different approaches have been proposed. Both
Massen and Doye (2006) and Karrer et al. (2008) have explored ways to test
the statistical significance of the output of graph partitioning algorithms.
Their methods attempt to determine whether a model which lacks structure
could equally well explain the group structure inferred from the data. These
approaches, though distinct from one another, are both akin to performing
a permutation test – a method known to be effective when applied to more
general cases of clustering. Carley and Banks (1993) apply this exact idea
to test for structure when group memberships are given.

Other researchers have attempted a more empirical approach to the
problem of partition evaluation by adopting a metric to measure the
distance between found and “true” partitions. Such distances are then
examined for a variety of data sets and simulated cases for which the true

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 27

partition is assumed known. In this vein Danon et al. (2005) specified an
explicit probability model for structure and compared how well different
graph partitioning schemes recovered the true subgroups of data, rank-
ing them by both execution time as well as average distance between true
and found partitions. Gustafsson et al. (2006) performed a similar com-
parison, along with a study of differences in “found” partitions between
algorithms for several well-known data sets, including the karate club data
of Section 1.4.1. They found that standard clustering algorithms (e.g.,
k-means) sometimes outperform more specialized network partition algo-
rithms. Finally, Fortunato and Barthélemy (2007) have undertaken theoret-
ical investigations of the sensitivity and power of a particular partitioning
algorithm to detect subgroups below a certain size.

References

Adamic, L. A. and Huberman, B. A. (2000). Power-law distribution of the World
Wide Web, Science 287, p. 2115.

Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2007). Combining
stochastic block models and mixed membership for statistical network anal-
ysis, in E. M. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing
and A. X. Zheng (eds), Papers from the ICML 2006 Workshop on Statistical
Network Analysis (Springer, Berlin), pp. 57–74.

Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2008). Mixed mem-
bership stochastic block models, J. Machine Learn. Res. 9, pp. 1981–2014.

Altman, D. G., Lausen, B., Sauerbrei, W. and Schumacher, M. (1994). Dangers of
using “optimal” cutpoints in the evaluation of prognostic factors, J. Natl.
Cancer Inst. 86, pp. 829–835.

Anderson, C. J., Wasserman, S. and Crouch, B. (1999). A p∗ primer: Logit models
for social networks, Social Networks 21, pp. 37–66.

Banks, D. and Constantine, G. M. (1998). Metric models for random graphs,
J. Classificat. 15, pp. 199–223.

Barabási, A. L. (2002). Linked: The New Science of Networks (Perseus Publishing,
Cambridge, MA).

Barabási, A. L. and Albert, R. (1999). Emergence of scaling in random networks,
Science 286, pp. 509–512.

Batada, N. N., Reguly, T., Breitkreutz, A., Boucher, L., Breitkreutz, B.-J., Hurst,
L. D. and Tyers, M. (2006). Stratus not altocumulus: A new view of the
yeast protein interaction network, PLoS Biology 4, pp. 1720–1731.

Belabbas, M.-A. and Wolfe, P. J. (2009). Spectral methods in machine learning
and new strategies for very large data sets, Proc. Natl. Acad. Sci. USA 106,
pp. 369–374.

Blitzstein, J. and Diaconis, P. (2011). A sequential importance sampling algorithm
for generating random graphs with prescribed degrees, Internet Math. 6,
pp. 489–522.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

28 B. P. Olding and P. J. Wolfe

Bollobás, B. and Scott, A. D. (2004). Max Cut for random graphs with a planted
partition, Combinat. Probab. Comput. 13, pp. 451–474.

Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z. and
Wagner, D. (2008). On modularity clustering, IEEE Trans. Knowl. Data
Eng. 20, pp. 172–188.

Carley, K. and Banks, D. (1993). Nonparametric inference for network data,
J. Math. Sociol. 18, pp. 1–26.

Ceyhan, E., Priebe, C. E. and Marchette, D. J. (2007). A new family of random
graphs for testing spatial segregation, Canad. J. Statist. 35, pp. 27–50.

Chung, F., Lu, L. and Vu, V. (2003). Spectra of random graphs with given
expected degrees, Proc. Natl. Acad. Sci. USA 100, pp. 6313–6318.

Chung, F. R. K. (1997). Spectral Graph Theory (American Mathematical Society,
Providence, RI).

Clauset, A., Moore, C. and Newman, M. E. J. (2008). Hierarchical structure and
the prediction of missing links in networks, Nature 453, pp. 98–101.

Danon, L., Diaz-Guilera, A., Duch, J. and Arenas, A. (2005). Comparing com-
munity structure identification, J Statist. Mech. 9, p. P09008.

de Solla Price, D. J. (1965). Networks of scientific papers, Science 149,
pp. 510–515.

Dunne, J. A., Williams, R. J. and Martinez, N. D. (2002). Food-web structure
and network theory: The role of connectance and size, Proc. Natl. Acad.
Sci. USA 99, pp. 12917–12922.

Eagle, N., Pentland, A. and Lazer, D. (2008). Mobile phone data for infer-
ring social network structure, in H. Liu, J. J. Salerno and M. J. Young
(eds), Social Computing, Behavioral Modeling, and Prediction (Springer,
New York, NY), pp. 79–88.

Eckmann, J.-P. and Moses, E. (2002). Curvature of co-links uncovers hidden
thematic layers in the World Wide Web, Proc. Natl. Acad. Sci. USA 99,
pp. 5825–5829.

Erdös, P. and Rényi, A. (1959). On random graphs, Publicat. Mathemat. 6,
pp. 290–297.

Fiedler, M. (1973). Algebraic connectivity of graphs, Czech. Math. J. 23,
pp. 298–305.

Fortunato, S. and Barthélemy, M. (2007). Resolution limit in community detec-
tion, Proc. Natl. Acad. Sci. USA 104, pp. 36–41.

Fortunato, S. and Castellano, C. (2007). Community structure in graphs, Unpub-
lished manuscript. Available at: http://arxiv.org/abs/0712.2716. Accessed
09.09.13.

Gilbert, E. N. (1959). Random graphs, Ann. Math. Stat. 30, pp. 1141–1144.
Girvan, M. and Newman, M. E. J. (2002). Community structure in social and

biological networks, Proc. Natl. Acad. Sci. USA 99, pp. 7821–7826.
Gustafsson, M., Hörnquist, M. and Lombardi, A. (2006). Comparison and vali-

dation of community structures in complex networks, Physica A: Statist.
Mech. Appl. 367, pp. 559–576.

Handcock, M. S. and Gile, K. J. (2010). Modeling social networks from sampled
data, Ann. Appl. Statist. 4, pp. 5–25.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 29

Handcock, M. S., Raftery, A. E. and Tantrum, J. M. (2007). Model-based clus-
tering for social networks, J. Roy. Statist. Soc. A 170, pp. 301–354.

Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002). Latent space approaches
to social network analysis, J. Amer. Statist. Assoc. 97, pp. 1090–1098.

Hofman, J. M. and Wiggins, C. H. (2008). Bayesian approach to network modu-
larity, Phys. Rev. Lett. 100, pp. 258701(1–4).

Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability
distributions for directed graphs, J. Amer. Statist. Assoc. 76, pp. 33–50.

Hunter, D. R., Goodreau, S. M. and Handcock, M. S. (2008). Goodness of fit of
social network models, J. Amer. Statist. Assoc. 103, pp. 248–258.

Jin, R. K.-X., Parkes, D. C. and Wolfe, P. J. (2007). Analysis of bidding networks
in eBay: Aggregate preference identification through community detection,
in C. Geib and D. Pynadath (eds), Plan, Activity, and Intent Recognition
(PAIR): Papers from the 2007 AAAI Workshop (AAAI Press, Menlo Park,
CA), pp. 66–73.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K. (1999). An intro-
duction to variational methods for graphical models, Machine Learn. 37,
pp. 183–233.

Karrer, B., Levina, E. and Newman, M. E. J. (2008). Robustness of community
structure in networks, Phys. Rev. E 77, pp. 46119(1–9).

Krishnamurthy, V., Faloutsos, M., Chrobak, M., Cui, J. H., Lao, L. and Percus,
A. G. (2007). Sampling large Internet topologies for simulation purposes,
Comput. Networks 51, pp. 4284–4302.

Li, L., Alderson, D., Doyle, J. C. and Willinger, W. (2005). Towards a theory of
scale-free graphs: Definition, properties, and implications, Internet Math.
2, pp. 431–523.

Marchette, D. J. and Priebe, C. E. (2008). Predicting unobserved links in incom-
pletely observed networks, Computat. Statist. Data Anal. 52, pp. 1373–
1386.

Massen, C. P. and Doye, J. P. K. (2006). Thermodynamics of community struc-
ture, Unpublished manuscript. Available at: http://arxiv.org/abs/cond-
mat/0610077. Accessed 09.09.13.

Moreno, J. L. and Jennings, H. H. (1938). Statistics of social configurations,
Sociometry 1, pp. 342–374.

Newman, M. E. J. (2003). The structure and function of complex networks, SIAM
Rev. 45, pp. 167–256.

Newman, M. E. J. (2006). Modularity and community structure in networks,
Proc. Natl. Acad. Sci. USA 103, pp. 8577–8582.

Newman, M. E. J. and Leicht, E. A. (2007). Mixture models and exploratory
analysis in networks, Proc. Natl. Acad. Sci. USA 104, pp. 9564–9569.

Newman, M. E. J., Strogatz, S. H. and Watts, D. J. (2001). Random graphs
with arbitrary degree distributions and their applications, Phys. Rev. E
64, pp. 26118(1–17).

Palla, G., Derényi, I., Farkas, I. and Vicsek, T. (2005). Uncovering the overlapping
community structure of complex networks in nature and society, Nature
435, pp. 814–818.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

30 B. P. Olding and P. J. Wolfe

Pemantle, R. (2007). A survey of random processes with reinforcement, Probab.
Surv. 4, pp. 1–79.

Pothen, A., Simon, H. D. and Liou, K.-P. (1990). Partitioning sparse matrices
with eigenvectors of graphs, SIAM J. Matrix Anal. Appl. 11, pp. 430–452.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V. and Parisi, D. (2004). Defin-
ing and identifying communities in networks, Proc. Natl. Acad. Sci. USA
101, pp. 2658–2663.

Reichardt, J. and Bornholdt, S. (2004). Detecting fuzzy community structures in
complex networks with a Potts model, Phys. Rev. Lett. 93, pp. 218701(1–4).

Rosvall, M. and Bergstrom, C. T. (2007). An information-theoretic framework
for resolving community structure in complex networks, Proc. Natl. Acad.
Sci. USA 104, pp. 7327–7331.

Rosvall, M. and Bergstrom, C. T. (2008). Maps of random walks on complex
networks reveal community structure, Proc. Natl. Acad. Sci. USA 105,
pp. 1118–1123.

Snijders, T. A. B. (1981). The degree variance: An index of graph heterogeneity,
Social Networks 3, pp. 163–223.

Snijders, T. A. B., Pattison, P. E., Robins, G. L. and Handcock, M. S. (2006). New
specifications for exponential random graph models, Sociolog. Methodol. 36,
pp. 99–153.

Stutzbach, D., Rejaie, R., Duffield, N., Sen, S. and Willinger, W. (2006). On unbi-
ased sampling for unstructured peer-to-peer networks, in Proc. 6th ACM
SIGCOMM Conference on Internet Measurement, pp. 27–40.

Thompson, S. K. (2006). Adaptive web sampling, Biometrics 62, pp. 1224–1234.
Viger, F. and Latapy, M. (2005). Efficient and simple generation of random sim-

ple connected graphs with prescribed degree sequence, in L. Wang (ed.),
Proc. 11th Annual International Computing and Combinatorics Conference
(Springer, Berlin), pp. 440–449.

von Luxburg, U. (2007). A tutorial on spectral clustering, Statist. Comput. 17,
pp. 395–416.

von Luxburg, U., Belkin, M. and Bousquet, O. (2008). Consistency of spectral
clustering, Ann. Statist. 36, pp. 555–586.

Wang, R., Wang, Y., Zhang, X. and Chen, L. (2007). Detecting community
structure in complex networks by optimal rearrangement clustering, in
J. G. Carbonell and J. Siekmann (eds), Papers from the PAKDD 2007
International Workshops (Springer, Berlin), pp. 119–130.

Wang, Y. J. and Wong, G. Y. (1987). Stochastic block models for directed graphs,
J. Amer. Statist. Assoc. 82, pp. 8–19.

Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Appli-
cations (Cambridge University Press, Cambridge).

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of “small-world”
networks, Nature 393, pp. 440–442.

White, S. and Smyth, P. (2005). A spectral clustering approach to finding com-
munities in graphs, in Proc. SIAM International Conference on Data Min-
ing, pp. 274–285. Available at: http://www.cs.ucr.edu/%7Eeamon/HOT%
20SAX%20%zolong-ver.pdf. Accessed 04.09.13.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch01

Inference for Graphs and Networks 31

Zachary, W. W. (1977). An information flow model for conflict and fission in small
groups, J. Anthropolog. Res. 33, pp. 452–473.

Zheng, T., Salganik, M. J. and Gelman, A. (2006). How many people do you know
in prison?: Using overdispersion in count data to estimate social structure
in networks, J. Amer. Statist. Assoc. 101, pp. 409–423.

May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Chapter 2

Rapid Detection of Attacks in Computer Networks
by Quickest Changepoint Detection Methods

Alexander G. Tartakovsky

University of Southern California, Department of Mathematics
3620 S. Vermont Avenue, KAP-108, Los Angeles, CA 90089-2532, USA

tartakov@usc.edu

University of Connecticut, Department of Statistics
215 Glenbrook Road, U-4120, Sorrs, CT 06269, USA

a.tartakov@uconn.edu

Changepoint problems deal with detecting changes in a process that occur at
unknown points in time. The gist of the quickest changepoint problem is to
design a detection procedure that minimizes the expected detection delay of a
real change subject to a bound on the false alarm rate. In this chapter, we argue
that network anomaly detection can be efficiently performed using changepoint
detection methods. More specifically, we propose an anomaly intrusion detec-
tion system that exploits score-based versions of cumulative sum (CUSUM) and
Shiryaev–Roberts detection algorithms. These algorithms are robust, compu-
tationally simple, and efficient for the detection of a wide variety of network
intrusions that lead to relatively abrupt changes in network traffic. We also
devise a novel hybrid anomaly-spectral-signature intrusion detection system
that integrates change detection-based anomaly and spectral-based signature
detection systems. This hybrid system allows for efficient filtering of false detec-
tions and confirmation of true attacks, ensuring very high speeds of detection
with extremely low false alarm rates. The results are illustrated for several real
data sets with denial-of-service flooding attacks on backbone links as well as
for detecting spam campaigns.

2.1. Introduction

Cyber-security has evolved into a critical 21st-century problem that affects
governments, businesses and individuals. Recently, cyber-threats have
become more diffuse, more complex, and harder to detect.

Malicious activities and intrusion attempts such as spam campaigns,
phishing, personal data theft, worms, distributed denial-of-service (DDoS)

33

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

34 A. G. Tartakovsky

attacks, address resolution protocol man-in-the-middle attacks, fast flux,
etc. occur every day, have become commonplace in contemporary computer
networks, and pose enormous risks to users for a multitude of reasons.
These threats can incur significant financial damage and severely com-
promise the integrity of personal information. It is therefore essential to
devise automated techniques to detect such events as quickly as possible
so as to respond appropriately and eliminate the negative consequences for
the users.

Current ultra-high-speed networks carry massive aggregate data flows.
Malicious events usually produce (relatively) abrupt changes in network
traffic profiles, which must be detected and isolated rapidly while keeping
a low false alarm rate (FAR). Both requirements are important. However,
rapid intrusion detection with minimal FAR and the capability to detect
a wide spectrum of attacks is a challenge for modern ultra-high-speed net-
works. This problem is compounded by the increasing dimensionality in
terms of the sheer number and complexity of attacks and the myriad of
available detection systems, which appear non-commensurate due to the
lack of unified performance metrics for unbiased performance evaluation.
Moreover, even routine behavior of users could generate anomalous events
requiring the attention of network operators and managers. A good exam-
ple would be flash-crowds. Efficient operation and management of computer
networks depend heavily on a relatively precise analysis of anomalies pro-
duced by both malicious and legitimate behavior. As a result, the challenges
of intrusion detection in high-speed networks constantly outstrip our ability
to detect, track, and interpret anomalies. This combination of massive com-
plex data and the difficulty of extracting relevant information overwhelms
human operators.

Detection of traffic anomalies in computer networks is performed by
employing Intrusion Detection Systems (IDS). Such systems in one way or
another capitalize on the fact that maltraffic is noticeably different from
legitimate traffic. Depending on the principle of operation there are two
categories of IDSs: signature-based or anomaly-based. For an overview see:
Debar et al. (1999); Ellis and Speed (2001); Kent (2000). A signature-
based IDS (SbIDS) inspects passing traffic to find matches against already
known malicious patterns. Examples of SbIDSs are Snort (Roesch, 1999)
and Bro (Paxson, 1999). An anomaly-based IDS (AbIDS) is first trained
to recognize normal network behavior and then watches for any deviation
from the normal profile, classifying deviations as potential attacks (Kent,
2000; Tartakovsky et al., 2006a,b, 2013).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 35

As an example, consider DDoS attacks, which lead to abrupt changes in
network traffic (Loukas and Öke, 2010; Mirkovic et al., 2004). Such attacks
typically involve many traffic streams resulting in a large number of packets
aimed at congesting the target’s server or network. Such attacks can be
detected by noticing a change in the average number of packets sent through
the victim’s link per unit time. Intuitively, it is appealing to formulate the
problem of detecting DDoS as a quickest changepoint detection problem.
That is, to detect changes in statistical models as rapidly as possible (with
minimal average delays) while maintaining the FAR at a given low level.

Previous publications (Polunchenko et al., 2012; Tartakovsky et al.,
2006a,b, 2013) have showed that certain quickest changepoint detection
methods (Basseville and Nikiforov, 1993; Lai, 1998; Pollak and Tartakovsky,
2009) can be effectively used for designing AbIDSs for the early detection of
intrusions in high-speed computer networks. Changepoint detection theory
allows us to develop solutions that are easily implemented and have certain
optimality properties.

However, AbIDSs and SbIDSs are clearly complementary, and neither
alone is sufficient to detect and isolate the anomalies generated by attacks
or non-malicious events. The reason is that both these types of IDSs, when
working independently, are plagued by a high rate of false positives and are
susceptible to carefully crafted attacks that “blend” themselves into normal
traffic. The ability of changepoint detection techniques to run at high speeds
and with small detection delays presents an interesting opportunity. What if
one could combine these techniques with signature-type methods that offer
very low FAR but are too heavy to use at line speeds? Do such synergistic
IDSs exist, and if so, how can they be integrated?

Such an approach is explored in this chapter. The main idea is to inte-
grate two substantially different detection techniques – anomaly change-
point detection-based methods and signature–spectral detection techniques.
We demonstrate that the resulting hybrid anomaly–signature IDS is syn-
ergistic and performs better than any individual system. More specifi-
cally, the resulting IDS is based on a two-stage (cascade) hybrid approach
that combines changepoint AbIDS and “flow-based” SbIDS to simultane-
ously improve detection performance and lower FAR. This two-stage hybrid
approach allows augmenting hard detection decisions with profiles that can
be used for further analysis, e.g., for filtering false positives and confirming
real attacks both at single-sensor and network levels. The hybrid IDS is
tested on real attacks, and the results demonstrate the benefits of carefully
combining anomaly and signature IDSs.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

36 A. G. Tartakovsky

The chapter is organized as follows. In Section 2.2 we outline certain
theoretical aspects of quickest detection methods. In Section 2.3 we tran-
sition from changepoint detection theory to cyber-security and formulate
the principles of the anomaly IDS. In Section 2.4 we describe the novel
hybrid anomaly–signature IDS that integrates anomaly- and signature-
based detection systems and allows for efficient false alarm filtering and
true attack confirmation. In Subsections 2.3.2 and 2.4.2 we present the
results of experimental studies for real-world data with several challenging
attacks.

2.2. Quickest Changepoint Detection

Computer intrusions produce either abrupt or at least relatively abrupt
changes in network traffic. The observations are obtained sequentially and,
as long as their behavior is consistent with the “normal state,” one is con-
tent to let the process continue. If the state changes, one should detect
the change as soon as possible. In other words, the change occurs at an
unknown instant, and the practitioners’ goal is to detect it as quickly as
possible while avoiding frequent false alarms. Evidently, the desire to detect
a change quickly causes one to be trigger-happy, which brings about many
false alarms if there is no change. On the other hand, attempting to avoid
false alarms too strenuously will lead to a long delay between the time
of occurrence of a real change and its detection. Thus, the design of the
quickest changepoint detection procedures involves optimizing the tradeoff
between two kinds of performance measures, one being a measure of detec-
tion delay, the other a measure of the false alarm frequency. A good decision
procedure depends on what is known about the stochastic behavior of the
observations, both pre- and post-change.

These ideas can be used for designing an efficient AbIDS based on
changepoint detection schemes. See Section 2.3 for a detailed discussion.

We now provide a brief overview of changepoint detection approaches
and two main competing detection procedures – CUSUM (Cumulative Sum)
and the Shiryaev–Roberts procedure.

Suppose a series {Xn}n≥1 of random variables, not necessarily inde-
pendent and identically distributed (i.i.d.), is observed sequentially, in a
one-at-a-time manner. At first, the series is “in-control” and each Xn is
distributed according to conditional density f(Xn|Xn−1

1), the pre-change
density, where we used the notation X�

1 = (X1, X2, . . . , X�) for the vector
of first � observations. At an unknown time instant ν something unusual

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 37

happens and the series “runs out of control” by altering its statistical prop-
erties so that beginning from the time moment ν+1 the conditional density
of each Xn is g(Xn|Xn−1

1), the post-change density. Note that in general
these densities may depend on n, and the post-change density may also
depend on the changepoint ν, i.e., f(Xn|Xn−1

1) = fn(Xn|Xn−1
1) for n ≥ 1

and g(Xn|Xn−1
1) = gn,ν(Xn|Xn−1

1) for n > ν. After the change occurs, an
alarm should be raised as soon as possible and with few false detections so
that an appropriate action is taken.

Statistically, having observed the sample Xn
1 = (X1, . . . , Xn), the prob-

lem is to test the hypothesis Hk : ν = k ≥ 0 that the change has occurred
at time k somewhere in the starch of n observations against the alternative
H∞ : ν = ∞ that there is never a change. The densities of Xn

1 given the
hypotheses Hk and H∞ are

p(Xn
1 |Hk) =

k∏
i=1

f(Xi|Xi−1
1) ×

n∏
i=k+1

g(Xi|Xi−1
1),

p(Xn
1 |H∞) =

n∏
i=1

f(Xi|Xi−1
1).

According to hypothesis testing theory an optimal solution should be based
on the likelihood ratio (LR) between these hypotheses given by

Λk
n =

p(Xn
1 |Hk)

p(Xn
1 |H∞)

=
n∏

j=k+1

Lj for k < n, Lj =
g(Xj |Xj−1

1)
f(Xj|Xj−1

1)
, (2.1)

where
∏n

j=� Lj = 1 for � > n.
In the simplest setting, it is assumed that the observations are indepen-

dent throughout the entire period of surveillance, so that X1, X2, . . . , Xν

are distributed according to a common pre-change density f , while
Xν+1, Xν+2, . . . have a common density g �≡ f . We refer to this case as
the i.i.d. case. Note that due to the i.i.d. assumption, the LR for the nth
observation simplifies to Ln = g(Xn)/f(Xn).

The LRs {Λk
n}n≥1 are then used by a sequential detection procedure

to decide in favor of one of the hypotheses. Given the sequence {Xn}n≥1,
a sequential detection procedure is defined as a stopping time T adapted
to the observations, i.e., the event {T ≤ n} is measurable with respect
to X1, . . . , Xn. The stopping time T is nothing but the time instant at
which the detection procedure stops and declares that a change is in effect.
If the change is declared prematurely, i.e., T ≤ ν, then a false alarm is

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

38 A. G. Tartakovsky

(a) Process of interest with a change in the mean.

(b) Two possible detection scenarios: false
alarm (gray) and correct detection (black).

Fig. 2.1. Illustration of sequential changepoint detection.

raised. Figure 2.1(a) shows a typical example of change in the mean of the
process and its detection. The gray trajectory in Figure 2.1(b) illustrates
the false alarm situation when the detection statistic exceeds the detection
threshold prior to the change occurring, in which case T can be regarded
as the (random) run length to the false alarm. The black trajectory in
Figure 2.1(b) illustrates true detection when the detection statistic exceeds
the detection threshold past the changepoint. Note that the detection delay
characterized by the difference T − ν is random.

There are various formulations of the optimum tradeoff problem, which
differ in the way the terms “detection delay” and “false alarm rate” are
defined (see Polunchenko and Tartakovsky (2012) for a detailed overview).
We now outline two optimality approaches that are of greatest interest for
our purposes.

A minimax formulation was proposed by Lorden’s (1971) and later by
Pollak (1985), who suggested a different measure of detection speed. This
formulation regards the changepoint ν as unknown, but not random. The

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 39

goal is to minimize the worst-case average delay to detection, subject to a
lower bound on the mean time to false alarm. The second is a Bayesian
formulation, introduced by Shiryaev (1963). In contrast to the minimax
formulation, the Bayesian formulation assumes that the changepoint ν is a
random variable with a known (prior) distribution. The objective is to min-
imize the expected delay, subject to an upper bound on the weighted false
alarm probability. Since the prior distribution of the point of occurrence of
network traffic anomaly is not feasible to model, we will assume that the
changepoint has improper uniform distribution on the positive line, leading
to a generalized Bayesian solution (also related to a more practical setting
of detecting changes occurring in a distant future (Pollak and Tartakovsky,
2009)).

Hereafter, let Pk and P∞ denote the probability measures when a
change takes place at 0 ≤ ν = k < ∞ and when no change ever occurs
and let Ek and E∞ be the corresponding expectations.

Lorden’s (1971) minimax changepoint detection theory measures the
false alarm rate in terms of E∞T , the average run length (ARL) to false
alarm (ARL2FA). Specifically, define Cγ = {T : E∞T ≥ γ} the class of
procedures for which the ARL2FA is no less than the desired chosen level
γ > 1. To measure the detection speed, Lorden’s (1971) suggested the
following “worst-worst-case” essential supremum average detection delay
(ESADD)

ESADD(T) = sup
0≤ν<∞

ess supEν [(T − ν)+|X1, . . . , Xν], (2.2)

where x+ = max{0, x}. In other words, the detection delay is maximized
over both the changepoint and the trajectory of observations.

A more suitable for practical purposes measure of detection delay was
proposed by Pollak (1985), who instead suggested to use

SADD(T) = sup
0≤ν<∞

Eν(T − ν|T > ν), (2.3)

i.e., the maximal (supremum) conditional average detection delay (SADD),
provided a false alarm has not sounded. In the following this detection
speed measure will be used along with the stationary average detection
delay (ADD) (STADD(T)) introduced below.

In the minimax problem, the goal is to find procedures that would min-
imize ESADD(T) and SADD(T) subject to E∞T ≥ γ, i.e., in the class Cγ .

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

40 A. G. Tartakovsky

Note that ideally one would prefer to find a procedure that would min-
imize Eν(T − ν|T > ν) for all ν ≥ 0, when the frequency of false alarms
is kept at a desired level. However, no such uniformly optimal procedure
exists in the class Cγ, so we have to resort to minimax or other settings.

In the i.i.d. setting, Moustakides (1986) showed that Page’s (1954)
CUSUM procedure is strictly minimax with respect to Lorden’s measure of
delay to detection ESADD given by (2.2). The CUSUM procedure is based
on a maximum likelihood principle: maxk≥0 Λk

n, which leads (after taking
logarithms) to the detection statistic

Wn = (0,Wn−1 + Zn)+, n ≥ 1, W0 = 0, (2.4)

where, as usual, x+ = max(0, x) denotes a positive part of x, Wn =
log(maxk≥0 Λk

n) and Zn = logLn is the log-likelihood ratio (LLR) for the
nth observation. The procedure stops and declares that the change has
occurred at

TCS(h) = min{n ≥ 1: Wn ≥ h}, min{∅} = ∞, (2.5)

i.e., as soon as the detection statistic Wn exceeds h, a positive detection
threshold preset so as to achieve the desired level of false alarms γ > 1.
This can be done by choosing h = hγ = log γ since E∞TCS(h) ≥ eh for any
h > 0 (Lorden’s, 1971). This choice of the detection threshold guarantees
TCS(h) ∈ Cγ , but this lower bound is extremely conservative. For relatively
large values of γ a connection of h and γ is given in Tartakovsky (2005):
E∞TCS(h) ∼ v−1eh as h → ∞, where 0 < v < 1 is a computable constant
depending on the model. Thus, setting h = log(vγ) guarantees E∞TCS(h) ≈
γ. Hereafter xb ∼ yb means that limb→∞(xb/yb) = 1, which can also be
written as xb = yb(1 + o(1)), where o(1) → 0 as b→ ∞.

A competitive detection procedure, the so-called Shiryaev–Roberts
(SR) procedure, is based on the averaging of the likelihood ratio over the
uniform prior distribution rather than maximizing it over the unknown
changepoint. Specifically, define

Rn =
n∑

k=1

n∏
i=k

Li, TSR(A) = min {n ≥ 1: Rn ≥ A} , (2.6)

whereA is a positive threshold that controls the FAR. A connection between
A and the ARL2FA E∞TSR(A) is given in Pollak (1987): E∞TSR(A) ≥ A

for every A > 0 and E∞TSR(A) ∼ ζ−1A as A → ∞, where the constant
0 < ζ < 1 is subject of renewal theory. Hence, taking Aγ = γζ yields
ARL2FA(TSR) ≈ γ for sufficiently large γ.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 41

Note the recursion

Rn+1 = (1 +Rn)Ln+1, n ≥ 0, R0 = 0 (2.7)

(with the null initial condition).
Pollak (1985) tweaked the procedure by starting it off at a ran-

dom RQA
0 whose distribution is the quasi-stationary distribution QA =

limn→∞ P∞(Rn ≤ x|TSR(A) > n) of the SR statistic Rn and showed that
the detection procedure that stops and raises an alarm at the first time
when the statistic RQA

n crosses the level A,

TQA

A = min
{
n ≥ 1: RQA

n ≥ A
}
, (2.8)

minimizes (asymptotically as γ → ∞) to within o(1) the maximal expected
delay SADD(T) over all stopping times that satisfy E∞T ≥ γ, where A is
such that E∞TQA

A = γ. We will refer to this randomized SR procedure as
the Shiryaev–Roberts–Pollak (SRP) procedure.

Until recently, the question of whether the SRP procedure is exactly
minimax with respect to Pollak’s expected delay measure SADD(T) (in
the class of procedures Cγ) was open. Moustakides et al. (2011) presented
numerical evidence that uniformly better procedures exist. They proposed
to start the original SR procedure at a fixed (but specially designed) point
Rr

0 = r, 0 ≤ r < A, showing that, for certain values of r, the expected
conditional delay Eν(T r

A∗ − ν|T r
A∗ > ν) < Eν(TQA

A − ν|TQA

A > ν) for all
ν ≥ 0, where A∗ and A are such that E∞TQA

A = E∞T r
A∗ . We will refer to

the procedure T r
A that starts from r to as the SR−r procedure. Tartakovsky

et al. (2012) showed that the SR−r procedure with a specially designed
r = r(γ) is third-order asymptotically minimax (i.e., to within o(1)) in
the class of procedures Cγ with E∞T ≥ γ as γ → ∞. Polunchenko and
Tartakovsky (2010, 2012) provided examples where the SR−r procedure is
strictly minimax.

In a variety of surveillance applications, including intrusion detection,
the detection procedure should be applied repeatedly. This requires speci-
fication of a renewal mechanism after each alarm (false or true). The sim-
plest renewal strategy is to restart from scratch, in which case the procedure
becomes multi-cyclic with similar cycles (in a statistical sense) if the process
is homogeneous. Furthermore, the most interesting scenario for our applica-
tions is when a change (attack) occurs at a distant time horizon, i.e., long
after surveillance begins. This naturally leads to a problem of detecting
a distant change in a stationary background of false alarms (stationary

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

42 A. G. Tartakovsky

regime), assuming the detection procedure is applied anew after each time
the detection statistic exceeds the threshold. Pollak and Tartakovsky (2009)
showed that if a change takes place after many successive re-runs of a stop-
ping time T , the expected delay is minimized asymptotically as ν → ∞ over
all multi-cyclic procedures with E∞T ≥ γ for every γ > 1 by the original
(multi-cyclic) SR procedure. In other words, the SR procedure is strictly
optimal in the i.i.d. case with respect to the stationary average delay to
detection (STADD) given by

STADD(T) = lim
ν→∞ Eν(N1 +N2 + · · · +NJν − ν) (2.9)

for every γ > 1. Since computer intrusions most likely start long after
surveillance begins, the SR type statistics are preferable to CUSUM.
Figure 2.2 illustrates this multi-cyclic scenario, where N1, N2, . . . are
sequential independent repetitions of a stopping time T , e.g., the CUSUM
or SR detection algorithm. There are multiple false alarms and the detection
statistic is renewed from scratch each time. Note also that recent research
shows that the difference in performance between SR and CUSUM is visi-
ble only when detecting dim changes (Tartakovsky et al., 2012), as we also
verified in our experiments with real attacks.

For the purpose of illustration, Figure 2.3 compares the behavior of the
CUSUM and SR statistics for a simulated trajectory from the Gaussian i.i.d.
model with a change in the mean from 0 to 1 and standard deviation 1. The
thresholds in both procedures were selected to guarantee the same ARL2FA.
The change occurs at ν = 200, i.e., relatively far from the beginning. In
this particular case, the CUSUM statistic exits over the threshold a little
later than the SR statistic, as expected from our previous discussion. We
plot log(Rn) to be on the same scale with CUSUM Wn.

The plots of the conditional average delay to detection ADDν(T) =
Eν(T − ν|T > ν) versus the changepoint ν for several detection procedures
described above are shown in Figure 2.4. These plots were obtained solving

Fig. 2.2. Illustration of the typical multi-cyclic surveillance scenario.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 43

20 40 60 80 100 120 140 160 180 200 220
Time

O
bs

er
ve

d
D

at
a

20 40 60 80 100 120 140 160 180 200 220

Time

D
et

ec
tio

n
S

ta
tis

tic

Shiryaev−Roberts
Cusum

Shiryaev−Roberts Threshold

Cusum Threshold

False Alarm
Shiryaev−Roberts Detection

Cusum Detection

Change Point

Fig. 2.3. The CUSUM statistic and log of the SR statistic for the Gaussian model (pre-
change mean µ = 0, post-change mean θ = 1, standard deviation σ = 1, changepoint
ν = 200).

Fig. 2.4. ADD versus changepoint ν for CUSUM and SR with various initialization
strategies.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

44 A. G. Tartakovsky

numerically integral equations for operating characteristics (Moustakides
et al., 2011). The SRP and SR-r procedures outperform both SR and
CUSUM with respect to SADD. However, this comes with the additional
effort of finding an appropriate initialization – not a trivial task. Besides,
the difference is not dramatic. For this reason, in this chapter, we will focus
on the “pure” CUSUM and SR procedures with zero initialization as well as
on their semiparametric and nonparametric modifications more suitable for
intrusion detection applications. Note also that the SR procedure outper-
forms all its counterparts when the change occurs at a distant time horizon.

The following theorem, whose proof may be found in Tartakovsky et al.
(2014, Ch. 9), establishes asymptotic properties of the CUSUM and SR
procedures for the low FAR (large γ, i.e., as h,A→ ∞). We need additional
notation: λn =

∑n
i=1 Zi,

τa = min {n : λn ≥ a} , κ = lim
a→∞ E0 (λτa − a) , ζ = lim

a→∞E0e
−(λτa−a),

QCS(y) = P0

(
min
n≥0

λn ≤ y

)
, QSR(y) = P0

{
log

(
1 +

∞∑
n=1

e−λn

)
≤ y

}
,

QCS
st (y) = lim

n→∞ P∞(Wn ≤ y), QSR
st (y) = lim

n→∞P∞(Rn ≤ y),

CCS
0 = −

∫ 0

−∞
y dQCS(y), CSR

0 =
∫ ∞

0

y dQSR(y),

CCS
∞ = −

∫ ∞

0

∫ −z

−∞
y dQCS(y)dQCS

st (z), CSR
∞ =

∫ ∞

0

∫ z

0

y dQSR(y)dQSR
st (z).

Define also the Kullback–Leibler (KL) information number

I = E0Z1 =
∫

log
(
g(x)
f(x)

)
g(x) dµ(x).

Theorem 2.1. Consider the i.i.d. case. Assume that E0|Z1|2 < ∞ and
that Z1 is P0-nonarithmetic.

(i) If h = log(Iζ2γ), then ARL2FA(TCS) ∼ γ as γ → ∞ and

SADD(TCS) =
1
I
(log γ + CCS) + o(1),

STADD(TCS) =
1
I
(log γ + C̃CS) + o(1),

where CCS = κ − log(1/Iζ2)−CCS
0 and C̃CS = κ − log(1/Iζ2)−CCS

∞ .

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 45

(ii) If A = log(ζγ), then ARL2FA(TSR) ∼ γ as γ → ∞ and

SADD(TSR) =
1
I
(log γ + CSR) + o(1),

STADD(TSR) =
1
I
(log γ + C̃SR) + o(1),

where CSR = κ − log(1/ζ) − CSR
0 and C̃CS = κ − log(1/ζ) − CSR

∞ .

Neglecting the constants yields

SADD(TCS) ≈ SADD(TSR) ≈ STADD(TCS) ≈ STADD(TSR) ≈ log γ
I

.

The latter approximation is not especially accurate but can still be used as
a preliminary estimate for average detection delays.

It is worth mentioning that the i.i.d. assumption is rather restrictive
for intrusion detection applications where the observed data is usually cor-
related and non-stationary, even “bursty” due to substantial temporal vari-
ability. Recent advances in general changepoint detection theory imply that
the CUSUM and SR procedures are asymptotically optimal for general non-
i.i.d. statistical models when the FAR is low (γ → ∞) (Fuh, 2003, 2004; Lai,
1998; Tartakovsky and Veeravalli, 2004, 2005). Specifically, if we assume
that

lim
n→∞

1
n

Ek[log Λk
k+n] = I for all k ≥ 0,

where I is a positive and finite number (a prototype of the KL number),
and the strong law of large numbers (SLLN) holds for the LLR, i.e.,

1
n

log Λk
k+n

Pk−a.s.−−−−−→
n→∞ I for all k ≥ 0

and additionally will require a certain rate of convergence in the SLLN (cf.
Tartakovsky et al., 2014), then both detection procedures, CUSUM and
SR, with thresholds hγ = log γ and Aγ = γ are asymptotically first-order
minimax:

inf
T∈Cγ

SADD(T) ∼ SADD(TCS) ∼ SADD(TSR) ∼ log γ
I

as γ → ∞.

(cf. Theorem 1 in Tartakovsky et al., 2006a). The same asymptotic opti-
mality result holds for the stationary average delay to detection, i.e.,

inf
T∈Cγ

STADD(T) ∼ STADD(TCS) ∼ STADD(TSR) ∼ log γ
I

as γ → ∞.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

46 A. G. Tartakovsky

Finally, note that typically the post-change distribution is known only
up to some unknown parameter θ ∈ Θ (at best), that is g(Xn|Xn

1) =
gθ(Xn|Xn

1). For example, the attack intensity is never known exactly. In
this case, SADDθ(T) = supν≥1 Eν,θ(T − ν|T > ν) depends on this param-
eter, and the same is true for STADDθ(T). Here Eν,θ is the corresponding
expectation operator when the parameter value is θ. Then, the CUSUM
and SR procedures tuned to a putative value θ = θ1 are optimal or asymp-
totically optimal only if the true parameter value is θ1, but they are not
optimal for other parameter values.

The two conventional methods of overcoming this parametric uncer-
tainty are either the generalized likelihood ratio (GLR) approach based on
the GLR statistic supθ∈Θ Λk

n(θ) or the mixture-based approach based on
the weighted LR

∫
Θ

Λk
n(θ)dπ(θ), where π(θ) is some positive weight (prior

distribution) and

Λk
n(θ) =

n∏
i=k+1

gθ(Xn|Xn
1)

f(Xn|Xn
1)
, k < n.

Using the GLR statistic in CUSUM leads to the generalized CUSUM pro-
cedure

TGCS(A) = min
{
n ≥ 1 : max

0≤k≤n
sup
θ∈Θ

Λk
n(θ) ≥ A

}
, (2.10)

while using the weighted LR statistic in SR leads to the weighted (mixture)
SR procedure

TWSR(A) = min

{
n ≥ 1 :

n−1∑
k=0

∫
Θ

Λk
n(θ)dπ(θ) ≥ A

}
. (2.11)

Selecting A = γ guarantees that both procedures belong to the class Cγ ,
i.e., the ARL2FA for both procedures is lower-bounded by γ for every γ > 1.
With this threshold, both detection procedures are uniformly first-order
asymptotically minimax under quite general conditions: as γ → ∞ for all
θ ∈ Θ

inf
T∈Cγ

SADDθ(T) ∼ SADDθ(TGCS) ∼ SADDθ(TWSR) ∼ log γ
Iθ

,

where Iθ = limn→∞ 1
nE0,θ[log Λ0

n] (cf. Tartakovsky et al., 2014).
In particular, consider the i.i.d. case and a multivariate exponential

family of distributions with density (with respect to some non-degenerate

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 47

σ-finite measure µ(dx))

fθ(x) = exp
{
θ�x − ψ(θ)

}
,

{
θ ∈ Θ : ψ(θ) = log

∫
Θ

eθ�x µ(dx) <∞
}
,

assuming that both X = (X1, . . . , X�) ∈ R
� and θ = (θ1, . . . , θ�) ∈ Θ ⊂ R

�

are �-dimensional vectors. The pre-change parameter is θ = 0 and the post-
change parameter is θ ∈ Θε = Θ − Bε, where Bε is the ball of radius ε in
R

�. It can be shown (Tartakovsky et al., 2014) that

ARL2FA(TGCS) ≥ h−�/2eh/Kε

(
1 + o(1)

)
as h→ ∞

with

Kε = (2π)−�/2

∫
Θε

ζθ

√
det[∇2ψ(θ)]/I�

θ dθ.

Therefore, setting h = log[Kεγ(log γ)�/2] yields ARL2FA(TGCS) ≥ γ(1 +
o(1)) and, as γ → ∞,

SADDθ(TGCS) =
1
Iθ

(
log γ +

�

2
log log γ + CGCS(θ)

)
+ o(1),

where

CGCS(θ) = − �

2
[1 + log(2π)] + log

(∫
Θε

ζt

√
det[∇2ψ(t)]/I�

t dt
)
− µθ + κθ

(cf. Tartakovsky et al., 2014). Here Iθ = θ�∇ψ(θ) − ψ(θ) is the KL
number, ∇ is the gradient, ∇2 is the Hessian, µθ = Eθ[minn≥0 λn(θ)],
λn(θ) = θ�∑n

k=1 Xk − ψ(θ)n and κθ = lima→∞ Eθ[λτa(θ) − a] is the
limiting average overshoot in the one-sided test τa = min{n : λn(θ) ≥ a}.
A similar approximation holds for the weighted SR procedure with an arbi-
trary continuous weight (of course with a different constant CWSR(θ)). The
second term �

2
log log γ that goes to infinity when γ becomes large is the

price one pays for prior uncertainty.
While these procedures have a nice uniform asymptotic optimality

property, it is difficult to implement them online, since even in the i.i.d.
case there is no recursive structure, and there are computational difficulties.
Luckily, in most computer intrusion applications the minimal intensity of
attacks is rather high. For example, DoS attacks attempt to overflow servers,
so a quite intense data flow is transmitted. Then one may tune the IDS to
an expected minimal intensity, and the real intensity will be typically much
higher, in which case further optimization is unnecessary.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

48 A. G. Tartakovsky

2.3. Anomaly-based IDS

2.3.1. CUSUM and SR score-based algorithms

Changepoint detection theory is straightforward to implement in the con-
text of intrusion detection in computer networks. As discussed above, net-
work anomalies take place at unknown points in time and produce abrupt
changes in statistical properties of traffic data. In network monitoring, one
can observe various informative features from packet headers, e.g., packet
size, source IP address, destination IP address, source port, destination
port, types of protocols (e.g., ICMP, UDP, TCP), etc. In the case of user
diagram protocol (UDP) flooding attacks, potentially useful observables
include packet sizes, source ports, destination ports, and destination pre-
fix. In the case of transmission control protocol (TCP) flooding attacks,
conceivably we could have multiple channels that record counts of different
flags (SYN, ACK, PUSH, RST, FIN, URG) from TCP header. Another
plausible observable is a number of half-open connections for the detection
of SYN flooding attacks. We could also have channels that keep track of
the discrepancies in TCP SYN-FIN or TCP SYN-RST pairs. Furthermore,
in order to detect file-sharing, we could monitor arrival (e.g., packet, byte
or flow) counts, port numbers, and source-destination prefixes.

Hence, we consider the problem of anomaly detection in computer net-
works a quickest changepoint detection problem: to detect changes in net-
work traffic as rapidly as possible while maintaining a tolerable level of false
alarms.

In network security, however, the behavior of both pre- and post-attack
traffic is poorly understood; as a result, typically neither the pre- nor post-
change distributions are known. Consequently, one can no longer rely on
the LR (2.1), demanding an alternative approach based on replacing the LR
with appropriate statistics that we refer to as scores. To understand the idea
behind constructing score-based statistics, consider the typical behavior of
the LR-based CUSUM and SR procedures. It suffices to consider CUSUM
Wn since logRn evolves similarly. As long as the observed process {Xn}n≥1

is “in-control”, Wn fluctuates not far from the zero reflection barrier as if it
were “afraid” of approaching the detection threshold h, although Wn could
cross the threshold sooner or later, raising a false alarm. However, as soon
as Xν+1, the first “out-of-control” measurement, is observed, the behavior
of Wn makes a complete 180◦ turn – now it eagerly tries to hit the level
h. Figures 2.2 and 2.3 illustrate this typical behavior, guaranteed by the
fact that E∞Zn < 0, i.e., the detection statistic has a negative drift in the

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 49

normal regime, while EνZn > 0 for ν < n, i.e., the drift is positive in the
abnormal regime.

That said, consider the following score-based modification of the
CUSUM and SR algorithms

W sc
n = max{0,W sc

n−1 + Sn}, T sc
CS = min {n ≥ 1 : W sc

n ≥ h} (2.12)

and

Rsc
n = (1 +Rsc

n−1)e
Sn , T sc

SR = min {n ≥ 1 : Rsc
n ≥ A} , (2.13)

where W sc
0 = 0 = Rsc

0 and h,A > 0 are a priori chosen detection thresh-
olds which determine FAR. Here Sn(Xn

1) is a score function sensitive to a
change. Clearly, as long as the score function has negative pre-change mean
E∞Sn < 0 and positive post-change mean EνSn > 0, the resulting score-
based (semiparametric or nonparametric) CUSUM and SR algorithms will
work, though they are no longer guaranteed to be optimal.

Let Q be a positive and finite number and assume that

lim
n→∞

1
n

Eν

[
ν+n∑

i=ν+1

Si

]
= Q for all ν ≥ 0.

Further, assume that the SLLN holds for the score Sn:

1
n

ν+n∑
i=ν+1

Si
Pν−a.s.−−−−−→
n→∞ Q for all ν ≥ 0.

If, in addition, we postulate a certain rate of convergence in the SLLN, it
can be shown that

SADD(T sc
CS) ∼ STADD(T sc

CS) ∼ h/Q as h→ ∞, (2.14)

and similar asymptotic approximations hold for the score-based SR proce-
dure with h replaced by logA. See Theorem 3 in Tartakovsky et al. (2006a).
In general, however, it is impossible to approximate ARL2FA unless Sn is
connected to the LLR. So it is unclear how to select thresholds h and A to
guarantee the given FAR level. In general, Monte Carlo simulations seem
to be the only way.

The score function Sn can be chosen in a number of ways, each particu-
lar choice depending crucially on the expected type of change. For example,
detecting a shift in the mean value and a change in the variance requires con-
sidering different score functions. In the applications of interest, the problem

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

50 A. G. Tartakovsky

can be usually reduced to detecting changes in mean values or in variance
or in both mean and variance. In Tartakovsky et al. (2006a,b), a linear
memoryless score was proposed for detecting changes in the mean, and in
Tartakovsky et al. (2013) this score was generalized to linear-quadratic to
simultaneously handle changes in both mean and variance.

Specifically, let µ∞ = E∞Xn, σ2∞ = var∞[Xn] and µ = E0Xn, σ2 =
var0[Xn] denote the pre- and post-anomaly mean values and variances,
respectively. Write Yn = (Xn−µ∞)/σ∞ for the centered and scaled observa-
tion at time n. In the real-world applications, the pre-change parameters µ∞
and σ2∞ are estimated from the training data and periodically re-estimated
due to the non-stationarity of network traffic; they can therefore be assumed
known. Introduce the following memoryless linear-quadratic score

Sn(Yn) = C1Yn + C2Y
2
n − C3, (2.15)

where C1, C2 and C3 are non-negative design numbers, assuming for con-
creteness that the change leads to an increase in both mean and variance.
In the case where the variance either does not change or changes relatively
insignificantly compared to the change in the mean, the coefficient C2 may
be set to zero. In the opposite case where the mean changes only slightly
compared to the variance, we may take C1 = 0. The first linear case is
typical for many cyber-security applications such as internet control mes-
sage protocol (ICMP) and UDP DDoS attacks. However, in certain cases,
such as the TCP SYN attacks considered in Polunchenko et al. (2012) and
Tartakovsky et al. (2013), both the mean and variance change significantly.

Note that the score given by (2.15) with

C1 = δq2, C2 = (1 − q2)/2, C3 = δ2q2/2 − log q, (2.16)

where q = σ∞/σ, δ = (µ − µ∞)/σ∞, is optimal if pre- and post-change
distributions are Gaussian with known putative values µ and σ2. This is
true because in the latter case Sn is the log-likelihood ratio for the nth
observation. If one accepts the Gaussian model (which is sometimes the
case), it follows from the discussion in Section 2.2 that selecting q = q0 and
δ = δ0 with some design values q0 and δ0 provides reasonable operating
characteristics for q < q0 and δ > δ0 and optimal characteristics for q = q0
and δ = δ0. However, it is important to emphasize that the proposed score-
based CUSUM and SR procedures do not assume that the observations
have Gaussian (or any other) pre- and post-change distributions.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 51

Further improvement may be achieved by using either mixtures or
adaptive versions with generalized likelihood ratio-type statistics similar to
(2.10) – (2.11). Also, an improvement can be obtained by running several
CUSUM (or SR) algorithms in parallel, each tuned to its own value of (q, δ).
This multichart CUSUM and SR procedures are robust and very efficient
(Tartakovsky and Polunchenko, 2007, 2008).

In Tartakovsky et al. (2006a,b), we conjectured that in certain con-
ditions splitting packets in “bins” and considering multichannel detectors
helps localize and detect attacks more rapidly. Consider the multichannel
scenario where the vector data X

(1)
n , . . . , X

(N)
n are used to decide on the

presence of anomalies. Here X(i)
n is a sample obtained at time n in the ith

channel. For example, in the case of UDP flooding attacks the channels
correspond to packet sizes (size bins), while for TCP SYN attacks they
correspond to IP addresses (IP bins).

Similarly to the single-channel case, for i = 1, . . . , N , introduce the
score functions S(i)

n = Ci
1Y

i
n +Ci

2(Y
i
n)2 −Ci

3 (or any other reasonable scores
in channels) and the corresponding score-based CUSUM and SR statistics

W (i)
n = max

{
0,W (i)

n−1 + S(i)
n

}
, W

(i)
0 = 0;

R(i)
n = (1 +R(i)

n) exp
{
S(i)

n

}
, R

(i)
0 = 0.

(2.17)

Typically, the statistics W (i)
n and logR(i)

n (i = 1, . . . , N) remain close to
zero in normal conditions; when the change occurs in the jth channel, the
jth statistics W (j)

n and logR(j)
n start rapidly drifting upward. The “MAX”

algorithm previously proposed by Tartakovsky et al. (2006a,b) is based on
the maximal statistic Wmax(n) = max1≤i≤N W

(i)
n , which is compared to a

threshold h that controls FAR, i.e., the algorithm stops and declares the
attack at

Tmax(hN) = min {n ≥ 1 : Wmax(n) ≥ hN} . (2.18)

This method shows very high performance and is the best one can do
when attacks are visible in one or very few channels. The latter conclu-
sion can be explained as follows. If the attack is visible in the ith channel
(and only in this channel), then analogously to (2.14) the average delay to
detection SADDi(Tmax) = supν≥0 Eν,i(Tmax − ν|Tmax > ν) is approximated

as SADDi(Tmax) ≈ hN/Qi, where Qi = limn→∞ 1
nE0,i

[∑n
k=1 S

(i)
k

]
is the

“signal-to-noise” ratio (related to the attack intensity relative to the back-
ground traffic) in the ith channel. In the N -channel system, the threshold

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

52 A. G. Tartakovsky

hN should be increased roughly by logN compared with the threshold h

in the single-channel system to have about the same FAR (see Lemma 1 in
Tartakovsky et al. (2006a)). We thus obtain the estimate

SADDi(Tmax) ≈ (h+ logN)/Qi, i = 1, . . . , N. (2.19)

For the sake of concreteness, consider the Gaussian model with a change in
the mean µ∞ → µi in the ith channel and constant variance σ2

∞ = σ2, in
which case the linear score S(i)

n = µiX
(i)
n −δ2i /2 is optimal, where δi = µi/σ.

Then Qi = δ2i /2. Now, for a single-channel system where all packets are
mixed in a single statistic but the attack is only visible in the ith bin, we
have

SADDi(T sc
CS) ≈ h/(δ2i /2N). (2.20)

Therefore, for large enough h, which in this case can be taken h = log γ,
using (2.19) and (2.20), we obtain

SADDi(T sc
CS)

SADDi(Tmax)
≈ N.

This estimate is very approximate but shows how poorly a single-channel
procedure may perform.

Assuming the attack is visible in many channels, the following “SUM”
decision statistic that combines scores from all the channels will be efficient:

Wn = max

{
0,Wn−1 +

N∑
i=1

[
S(i)

n

]+}
, W 0 = 0.

The detection procedure TSUM = min{n : Wn ≥ h} outperforms the previ-
ous one when the anomaly due to the attack occurs in many channels.

However, the most general case is where the number of affected chan-
nels is a priori unknown and may vary from small to large. In this
case, the reasonable detection statistic is W c

n =
∑N

i=1W
(i)
n , or if the

maximal percentage, p, of the affected channels is a priori known, then
W c,p

n =
∑pN

i=1W
(i)
n , where W

(i)
n , i = 1, . . . , N are ordered versions, i.e.,

W
(1)
n ≤ W

(2)
n ≤ · · · ≤ W

(N)
n . Such an LR-based algorithm was considered

in Mei (2010). A similar approach can be used to form SR-type multichannel
detection procedures (Siegmund, 2013).

Monte Carlo simulations and experiments with real data show that the
multichannel score-based CUSUM and SR procedures defined above are
very efficient at detecting anomalies of arbitrary nature and structure.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 53

Yet another approach is to exploit a nonparametric algorithm with
binary quantization and optimization of the quantization threshold. In this
case, it is possible to implement optimal binary quantized CUSUM and SR
algorithms that are based on true likelihood ratios for Bernoulli sequences
at the output of quantizers. Specifically, the observations Xn, n ≥ 1 are
quantized as follows: Vn = 1 if Xn > t and 0 otherwise, where t is a
quantization threshold. After quantization, the LLR-based CUSUM or SR
algorithms are applied to the binary (Bernoulli) sequence {Vn}n≥1. Let
β0 and β1 denote the probabilities that Vn = 1 under the normal and
the attack conditions, respectively. It is easily seen that the LLR Zb

n =
log[P(Vn|H0)/P(Vn|H∞)] for the binary data between the post-change and
pre-change hypotheses is given by Zb

n = a1Vn + a0, where

a1 = log
β1 (1 − β0)
β0 (1 − β1)

, a0 = log
1 − β1

1 − β0
.

The binary CUSUM and SR procedures are

T b
CS(hb) = min{n ≥ 1 : W b

n ≥ hb}, W b
n = (0,W b

n−1 + Zb
n)+,

T b
SR(hb) = min{n ≥ 1 : Rb

n ≥ Ab}, Rb
n = (1 +Rb

n−1)e
Zb

n ,
(2.21)

where W b
0 = Rb

0 = 0. To optimize the performance, one should choose
the threshold t to maximize the KL number Ib(t) = β1(t)a1(t) + a0(t):
topt = argmaxt>0 Ib(t). See Tartakovsky et al. (2006a, Section 4) for details.

Finally, it is worth mentioning that the development of an adaptive
structure that allows for an efficient online estimation of both pre-change
(normal) and post-change (abnormal) parameters is an important task.
Preliminary experiments show that in certain conditions these adaptive
algorithms are more efficient then the previous ones.

2.3.2. Experimental study

2.3.2.1. Detection of DDoS attacks

TCP SYN DoS Attack (CAIDA). To validate usefulness of a mul-
tichannel AbIDS as opposed to the single-channel system, we used the
eight-hour real backbone data captured by the Cooperative Association
for Internet Data Analysis (CAIDA). A bidirectional link from San Jose,
CA to Seattle, WA belonging to the US backbone Internet service provider
(ISP) was monitored. This data set contains a TCP SYN flooding attack.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

54 A. G. Tartakovsky

The attack’s aim is to congest the victim’s link with a series of SYN
requests.

We compare the single-channel CUSUM (SC-CUSUM) to the multi-
channel CUSUM (MC-CUSUM) algorithm in terms of the maximal average
detection delay (ADD) given by (2.3) and FAR expressed via the average
run length to false alarm ARL2FA(T) = E∞T .

In the case of SYN attack detection, one can observe the number of
SYNs that would cause denial of service. Since we are interested in the
SYN arrival rate at a destination, we divide the channels based on their
destination IP addresses. There are many ways to divide the IP address
space. We take the following approach to set up the multichannel detection
problem. One specific group of IP addresses that belong to the same 8-bit
prefix (the first 8 bits of the IP address are the same) is considered. This
group of IP addresses (/8) is further subdivided into 256 channels, each
containing all the IP addresses that have the same first 16 bits (/16), so we
have N = 256 channels. In each channel, we monitor the number of SYN
packets sent per second for the entire eight-hour duration. In the single-
channel case, the time series is formed by monitoring the total number of
SYNs per second for all the IP addresses that have the same 8-bit prefix;
the pre-change mean value µ∞ = 3 SYNs/sec and the post-change (attack)
mean µ = 19 SYNs/sec with the same (approximately) variance. Thus, a
linear score has been used (C2 = 0 in (2.15)). In the multichannel case,
the attack occurs in the channel i = 113 with mean values µ113∞ = 0.0063
SYNs/sec and µ113 = 15.3 SYNs/sec. It is therefore obvious that local-
izing the attack with the multichannel MAX algorithm (2.18) based on
the thresholding of the statistic Wmax(n) = max1≤i≤256 W

(i)
n enhances the

detection capability.
Figures 2.5(a) and 2.5(b) illustrate the relation between the ADD and

− log(FAR) = log ARL2FA for the SC-CUSUM and MAX MC-CUSUM
detection algorithms, respectively. The optimal value of the design param-
eter C3 = c is copt = 0.1 for the single-channel case and copt = 1.8 for the
multichannel case. In the extreme right of the plot, we achieve the ARL2FA
of 8103 sec, i.e., 2.25hours (− log(FAR) = 9). For this FAR, the ADD for
the MAX MC-CUSUM is 3.5 sec, while the ADD for the SC-CUSUM is
45 sec, about 13 times higher. Since the ADD dramatically increases as the
FAR decreases, for the lower FAR the SC-CUSUM algorithm may be unable
to detect short attacks.

We therefore conclude that in certain scenarios the use of multichannel
intrusion detection systems may be very important.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 55

3 4 5 6 7 8 9

5

10

15

20

25

30

35

40

45

−log(FAR)

A
D

D
 (

se
c)

c = 0

c = 0.05

c = 0.1

c = 0.15

3 4 5 6 7 8 9

c = 0

c = 0.05

c = 0.1

c = 0.15

(a) The SC-CUSUM algorithm

3 4 5 6 7 8 91

2

3

4

5

6

7

−log(FAR)
A

D
D

 (
se

c)

c = 1.4

c = 1.6
c = 1.8
c = 2.0

(b) The MAX MC-CUSUM algorithm

Fig. 2.5. ADD versus −log(FAR) for the SC-CUSUM and MAX MC-CUSUM
algorithms.

TCP SYN DDoS Attack (LANDER Project). Next, we present
the results of testing the single-channel (score-based) CUSUM and SR
detection algorithms with respect to the STADD introduced in (2.9)
when the attack occurs long after surveillance starts and is preceded
by multiple false alarms. This testing was performed for a real data
set containing a DDoS SYN flood attack. The data is courtesy of the
Los Angeles Network Data Exchange and Repository (LANDER) project
(see http://www.isi.edu/ant/lander). Specifically, the trace is flow data cap-
tured by Merit Network Inc. (see http://www.merit.edu) and the attack
is on a University of Michigan IRC server. It starts at approximately
550 seconds into the trace and lasts for ten minutes. Figure 2.6 shows the
number of attempted connections (the connections birth rate) as a function
of time. While the attack can be seen to the naked eye, it is not completely
clear when it starts. In fact, there is fluctuation (a spike) in the data before
the attack.

The observations {Xn}n≥1 represent the number of connections dur-
ing 20 msec batches. The estimated values of the connections birth rate
mean and standard deviation for legitimate and attack traffic are: µ∞ ≈
1669, σ∞ ≈ 114 and µ ≈ 1888, σ ≈ 218 (connections per 20msec). There-
fore, this attack leads to a considerable increase in both the mean and
standard deviation of the connections birth rate.

Statistical analysis of this data set shows that the distribution of the
number of attempted connections for legitimate traffic is very close to
Gaussian, but for attack traffic it is not (see Tartakovsky et al. (2013) for

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

56 A. G. Tartakovsky

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

Time (seconds)

N
u
m
b
e
r

o
f

A
t
t
e
m
p
t
e
d

C
o
n
n
e
c
t
i
o
n
s

Changepoint

Fig. 2.6. The connections birth rate for LANDER data.

details). We implement the score-based multi-cyclic SR and CUSUM pro-
cedures with the linear-quadratic memoryless score (2.15). When choosing
the design parameters C1, C2, C3 we assume the Gaussian pre-attack model,
i.e., the parameters C1, C2, and C3 are chosen according to formulas (2.16)
with q0 = q ≈ 0.52 and to allow for detection of dimmer attacks δ0 ≈ 1.5
(versus the estimated attack value δ ≈ 1.9). We set the detection thresholds
A ≈ 1.9×103 and h ≈ 6.68 so as to ensure the same level of ARL2FA, which
in the multi-cyclic setup characterizes the mean time between false alarms,
at approximately 500 samples (i.e., 10 sec) for both procedures. The thresh-
olds are estimated using Monte Carlo simulations assuming the empirical
pre-change distribution learned from the data.

The results are illustrated in Figures 2.7 and 2.8. Figure 2.7 shows a
relatively long run of the SR statistic with several false alarms and then
the true detection of the attack with a very small detection delay (at the
expense of raising many false alarms prior to the correct detection). Recall
that the idea of minimizing the STADD is to set the detection thresholds
low enough in order to detect attacks very quickly, which unavoidably leads
to multiple false alarms prior to the attack starts. These false alarms should

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 57

540 541 542 543 544 545 546 547 548
−1

0

1

2

3

4

5

6

7

8

Time (seconds)

L
o
g

S
h
y
r
i
a
e
v
−
R
o
b
e
r
t
s

S
t
a
t
i
s
t
i
c
,

l
o
g
(
R
)~

Log SR Threshold

False Alarms

Fig. 2.7. Long run of the SR procedure (logarithm of the SR statistic versus time) for
SYN flood attack.

be filtered by a specially designed algorithm, as has been suggested by Pol-
lak and Tartakovsky (2009) and will be further discussed in Section 2.4.
Figure 2.8(a) shows the behavior of logRsc

n shortly prior to the attack
and right after the attack starts until detection. Figure 2.8(b) shows the
CUSUM score-based statistic W sc

n . Both procedures successfully detect the
attack with very small delays and raise about seven false alarms per 1000
samples. The detection delay is approximately 0.14 seconds (seven samples)
for the repeated SR procedure, and about 0.21 seconds (ten samples) for
the CUSUM procedure. As expected, the SR procedure is slightly better.

UDP DoS Flooding Attack (CAIDA). Finally, we validate the feasibil-
ity of the binary CUSUM detection algorithm (2.21) on backbone data with
the one-hour packet traces captured on SONET OC-48 links by CAIDA
monitors. This data set, shown in Figure 2.9, contains the UDP flooding
attack. Figure 2.9 shows the time series of the total number of UDP packets
in a sample period of 0.015 msec. The attack is not visible to the naked
eye, but an offline examination revealed that it consists of a Trojan horse
called trojan.dasda sent from one source on port 10100 to one destination on
port 44097. Trojan.dasda is a Trojan horse that can download and execute

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

58 A. G. Tartakovsky

547.4 547.6 547.8 548 548.2 548.4 548.6
−1

0

1

2

3

4

5

6

7

8

Time (seconds)

L
o
g

S
h
y
r
i
a
e
v
−
R
o
b
e
r
t
s

S
t
a
t
i
s
t
i
c
,

l
o
g
(
R
)

Change Point

SR Detection

~ Log SR Threshold

(a) The multi-cyclic SR procedure

547.4 547.6 547.8 548 548.2 548.4 548.6
−1

0

1

2

3

4

5

6

7

8

Time (seconds)

C
U
S
U
M

S
t
a
t
i
s
t
i
c
,

W

CUSUM Detection

Change Point

~

CUSUM Threshold

(b) The multi-cyclic CUSUM procedure

Fig. 2.8. Detection of the SYN flood attack by the multi-cyclic SR and CUSUM
procedures.

remote files and open a back-door on an infected computer. Careful esti-
mation shows that there is a change from the pre-change mean µ∞ = 87
packets per sample period to the post-change mean µ = 94 packets per
sample period. Thus, the parameter differentiating the normal traffic from
an abnormal one is changed from 87 to 94 packets per sample period.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 59

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

nu
m

be
r

of
 p

ac
ke

ts
pe

r
sa

m
pl

e
pe

rio
d

attack starts

sample number x 105

Fig. 2.9. Time series of the total number of UDP packets in a sample period 0.015msec.
Observe that the attack is not visible to the naked eye.

A
D

D
 (

se
c)

-4 -3 -2 -1 0 1 2 3 4 5 6 7
0

5

10

15

20

25

−log(FAR)

c = 0

c = 2

c = 6
c = 8

c = 4

(a) Operating characteristic
 of score CUSUM.

A
D

D
 (

se
c)

-1 0 1 2 3 4 5 6 70

1

2

3

4

5

6

−log(FAR)

(b) Operating characteristic
of binary CUSUM.

Fig. 2.10. SADD (sec) versus −log FAR for the score-based and binary CUSUM algo-
rithms.

Operating characteristics (SADD versus − log FAR = log ARL2FA) of
the score-based and binary CUSUM algorithms are shown in Figure 2.10.
Specifically, Figure 2.10(a) illustrates the operating characteristic of the
linear score-based CUSUM procedure (i.e., C1 = 1 and C2 = 0 in (2.15))
for different values of C3 = c, the tuning parameter. Note that the range
of − log FAR = log ARL2FA from −4 to 7 is equivalent to the frequency of
false alarms from every 0.018 sec to every 1096 sec (≈ 18 min). Note that
in the left-most region of Figure 2.10(a) the ADD is very small but this
results in a very large FAR. On the other hand, the right-most region in
Figure 2.10(a) has the lowest FAR and, hence, a bigger ADD. For example,
the ADD is 0.015 sec for ARL2FA = 0.018 sec (the left-most region) and

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

60 A. G. Tartakovsky

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1.5

2

2.5

3

3.5

4

4.5

5

A
D

D
(

)

A
D

D
(

b)

A
D

D
(

)

A
D

D
(

b)

A
D

D
(

)

A
D

D
(

b)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1.5

2

2.5

3

3.5

4

4.5

5

−log(FAR)

Fig. 2.11. Relative efficiency versus −log FAR.

the ADD is 26 sec for ARL2FA = 945 sec (the right-most region). Varying
the value of c allows us to optimize the algorithm. The optimal value of c is
copt = 6. For this c, we get the best performance in the sense that, for the
same FAR, we obtain the smallest ADD as compared to other values of c.

Figure 2.10(b) shows the operating characteristic of the binary CUSUM
algorithm defined in (2.21). The optimal quantization threshold is topt =
105 and the corresponding maximum KL number Ib(topt) = 0.163.

Figure 2.11 illustrates the efficiency of the binary CUSUM detection
procedure with respect to the optimized score-based CUSUM procedure
(with copt = 6) in terms of the relative efficiency, which is defined as
SADD(T sc

CS)/SADD(T b
CS). In this case, the binary CUSUM algorithm per-

forms the same as the optimized score-based CUSUM algorithm for small
− logFAR. However, the binary CUSUM shows performance improvement
by a factor of 1.5 to 4.5 as compared to the optimized score-based CUSUM
algorithm for larger values of − logFAR. This can be explained by the fact
that in addition to the mean, variance also changes, in which case the
use of linear-quadratic score (2.15) is more appropriate, requiring further
optimization of the parameter C2.

This allows us to conclude that the binary CUSUM algorithm is robust
and efficient. Moreover, when the quantization threshold is optimized, it is
optimal in the class of binary change detection procedures. As a result, it
may outperform the score-based CUSUM algorithm, especially if attacks
lead to changes not only in mean values but also in the entire distribution.
The binary detection algorithms (CUSUM and SR) also have a simple lower

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 61

bound on the ARL2FA, E∞T b(A) ≥ A, which is convenient in the design
of intrusion detection systems.

2.3.2.2. Rapid detection of spam at the network level

Most organizations run spam filters at their local networks, such as Bayesian
filters or a block list. These filters examine the content of each message as
well as the IP address. If the message matches known spam signatures, it
is marked as spam. These techniques work quite well but have high oper-
ational costs. Block lists rely on information gathered ahead of time and
thus perhaps stale. Bayesian approaches, while quite good, are not infallible
and require examining all message content.

Another approach to fighting spam is to monitor traffic at the network
level looking for spam behavior. Detecting spammers at the network level
has several advantages such as no privacy issues related to message content
examination, near real-time detection based on network behavior, and min-
imizing collateral damage because dynamic addresses released by spammers
can be removed from block lists quickly.

What features are useful for detecting spammers? Prior work has
shown that the autonomous system the IP address belongs to, message
size, blocked connections, and message length are important. All these fea-
tures can be determined from network traffic and used in conjunction with
changepoint detection to detect when traffic patterns from a particular host
match known spammer patterns. Examples include:

(1) Message size. Most spam campaigns attempt to deliver the same
(or similar) message to many recipients. With the exception of the
receiver’s IP address the size of the message does not vary significantly.
Thus, one may use changepoint detection methods to detect hosts that
send email blocks of a similar size.

(2) Dropped connections. Block lists that refuse connections from sus-
pected spammers will be detected in network traces. Keeping track of
such events can help detect spammers, and changepoint detection tech-
niques can detect a change in dropped connections from a particular
IP address.

(3) Connection patterns. Spammers typically send very few emails to a
particular domain to avoid being detected. Network monitoring, how-
ever, which monitors many domains at once, can detect this pattern.
Changepoint detection can detect a spammer touching many different
domains.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

62 A. G. Tartakovsky

0 500 1000
0

100
200

Time, sec
P
a
c
k
e
t
s
/
s
e
c

Packet Rate

0 500 1000
0
2
4

n, sec (sample)

W
n

CUSUM

0 500 1000
0

5

Shiryaev−Roberts

n, sec (sample)

R
n

SPAM MESSAGE SENT

SPAMMER DETECTED

SPAMMER DETECTED

Fig. 2.12. Spam detection. Top – raw data; middle – CUSUM statistic; bottom – SR
statistic.

We now illustrate rapid spam detection for a particular real-world data
set to prove the feasibility of change detection methods. The data set was
obtained from a regional ISP. The trace contains email flows to a mail
server from a number of hosts. The records are sorted by the source IP
address. Our objective is to isolate suspicious hosts and extract the typ-
ical behavioral pattern. Examining how the email size changes with time
shows that it is very stable, with some occasional bursts. The individual
producing such bursts is very likely to be a spammer. Figure 2.12 shows
the detection of a real-world spammer using the AbIDS. The email (SMTP)
traffic generated by a certain host is under surveillance. Ordinarily, SMTP
traffic produced by a user sending legitimate messages is characterized by
a relatively steady intensity, i.e., the number of messages sent per unit time
remains more or less constant, with no major bursts or drops. However,
the behavior changes abruptly once a spam attack begins: the number
of sent messages explodes, possibly for a very short period of time. The
top-most plot in Figure 2.12 illustrates this typical behavior. The spike
in the traffic intensity that appears in the far right of the plot can eas-
ily be detected by changepoint detection methods. The behavior of the
linear score-based CUSUM and SR procedures (i.e., C2 = 0 in (2.15)) is
plotted in the middle and bottom pictures, respectively. Both statistics
behave similarly – an alarm is raised as soon as the traffic intensity blunder
caused by the spam attack is encountered. The spammer is detected imme-
diately after he/she starts activity. The difference is mainly prior to the
attack – there are two false detections produced by CUSUM, while none
by SR.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 63

2.4. Hybrid Anomaly–Signature IDS

2.4.1. IDS structure

Since in real life legitimate traffic dominates, comparing various AbIDSs
using the multi-cyclic approach and the stationary average detection delay
(2.9) is the most appropriate method for cyber-security applications. How-
ever, even an optimal changepoint detection method is subject to large
detection delays if the FAR is maintained at a low level. Hence, as we have
already mentioned, employing one such scheme alone will lead to multiple
false detections, or if detection thresholds are increased to lower the FAR,
the delays will be too large, and attacks may proceed undetected.

Could one combine changepoint detection techniques with other meth-
ods that offer very low FAR but are too time-consuming to use at line
speeds? Do such synergistic anomaly detection systems exist, and if so,
how can they be fused?

In this section, we answer these questions by devising a novel approach
to intrusion detection based on a two-stage hybrid anomaly–signature IDS
(HASIDS) with profiling, false alarm filtering, and true attack confirmation
capabilities. Specifically, consider complementing a changepoint detection-
based AbIDS with a flow-based signature IDS that examines the traffic’s
spectral profile and reacts to changes in spectral characteristics of the data.
The main idea is to integrate anomaly- and spectral-signature-based detec-
tion methods so that the resulting HASIDS overcomes the shortcomings
of current IDSs. We propose using “flow-based” signatures in conjunc-
tion with anomaly-based detection algorithms. In particular, Fourier and
wavelet spectral signatures and related spectral analysis techniques can be
exploited, as shown in Hussain et al. (2003, 2006) and He et al. (2009). This
approach is drastically different from traditional signature-based systems
because it depends not on packet content but on communication patterns
alone.

At the first stage, we use either CUSUM or SR multi-cyclic (repeated)
changepoint detection algorithm to detect traffic anomalies. Recall that in
network security applications it is of utmost importance to detect attacks
that may occur in a distant future very rapidly (using a repeated application
of the same anomaly-based detection algorithm), in which case the true
detection of a real change is preceded by a long interval with frequent false
alarms that should be filtered (rejected) by a separate algorithm. This latter
algorithm is based on spectral signatures, so at the second stage we exploit
a spectral-based IDS that filters false detections and confirms true attacks.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

64 A. G. Tartakovsky

In other words, the methodology is based on using the changepoint
detection method for preliminary detection of attacks with low threshold
values and a discrete Fourier (or wavelet) transform to reveal periodic pat-
terns in network traffic to confirm the presence of attacks and reject false
detections produced by the anomaly IDS. When detection thresholds are
low, the AbIDS produces an intense flow of false alarms. However, these
false alarms can be tolerated at the level of minutes or even seconds, since
they do not lead to real false alarms in the whole system. An alarm in the
AbIDS triggers a spectral analyzer. This alarm will either be rejected or
confirmed, in which case a final alarm will be raised. Schematically, the
system is shown in Figure 2.13.

To summarize, the HASIDS is based on the following principles:

• Anomaly IDS – Quick Detection with High FAR: In order to
detect attacks quickly, the detection threshold in the changepoint detec-
tion module is lowered leading to frequent false alarms that are filtered
by a separate algorithm.

• Signature IDS – False Alarm Filtering: A spectral-based
approach, e.g., Fourier or wavelet spectral analysis module, is used to
reject false detections.

• Changepoint Detection Module: For quick detection with rela-
tively high FAR and triggering spectral analysis algorithms.

• Spectral Analysis Module: For false alarm filtering/rejection and
true attack confirmation.

Quickest Changepoint Detection-Based AbIDS with
Autoselection and Adaptive Reconfigurable Architecture

Signature-Spectral IDS

Raw

Data

Raw

Data

Fig. 2.13. Block diagram of the hybrid anomaly–signature intrusion detection system.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 65

This approach allows us not only to detect attacks with small delays
and a low FAR but also to isolate/localize anomalies precisely, e.g., low-rate
pulsing attacks. See Figure 2.15 in Subsection 2.4.2 for further details. The
results of experiments presented below show that such combining of the
changepoint anomaly- and spectral-signature-based detectors significantly
improves the system’s overall performance, reducing the FAR to the mini-
mum and simultaneously guaranteeing very small detection delays.

2.4.2. Experimental study

We now present sample testing results that illustrate efficiency of the
HASIDS for LANDER data sets.

ICMP Attack (LANDER). The first data set is a tcpdump trace file
containing a fragment of real-world malicious network activity, identified as
an ICMP attack. The trace was captured on one of the Los Nettos private
networks (a regional ISP in Los Angeles).

Figure 2.14 demonstrates the attack detection. It shows raw data (top),
the behavior of the multi-cyclic CUSUM statistic (middle), and the power
spectral density (PSD) of the data (bottom). The hybrid IDS filtered all
false alarms (shown by green circles) and detected the attack very rapidly
after its occurrence. Note that the spectral analyzer is triggered only when
a threshold exceedance occurs. None of the false alarms passed the hybrid
system since the peak in spectrum appeared only after the attack began.
This allowed us to set a very low threshold in the anomaly IDS, resulting
in a very small delay to detection of the attack.

UDP Flooding Attack (LANDER). The next experiment demon-
strates the supremacy of the hybrid anomaly–signature approach to intru-
sion detection over the anomaly-based approach by applying HASIDS and
AbIDS to detect and isolate a real-world “double-strike” UDP DDoS attack.
The attack is composed of two consecutive “pulses” in the traffic intensity,
shown in Figure 2.15(a). Each pulse is a sequence of seemingly insignificant
packets (roughly 15 bytes in size) sent to the victim’s UDP port 22 at a
rate of about 180 Kbps. This is approximately thrice the intensity of the
background traffic (about 53 Kbps). Although each individual packet may
appear to be harmless due to its small size, each pulse’s combined power
is sufficient to knock the machine down almost instantaneously. One would
think that because the attack is so strong, any IDS will be able to detect
it quickly. However, the challenge is that each pulse is rather short, the

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

66 A. G. Tartakovsky

Fig. 2.14. Detection of the ICMP DDoS attack with HASIDS.

gap between the two pulses is very short, and the source of the attack
packets for each pulse is different. Therefore, if the detection speed is com-
parable to the short duration of the pulses, the attack will get through
undetected. Furthermore, if the renewal time (i.e., the interval between the
most recent detection and the time the IDS is ready for a new detection)
is longer than the distance between the pulses, then even though the first
pulse may be detected, the second one is likely to be missed. Hence, this
scenario is challenging and illustrates the efficiency of the proposed HASIDS
not only for detecting attacks quickly but also for isolating closely located
anomalies.

Figure 2.15 illustrates the detection by the change detection-
based AbIDS (Figure 2.15(b)) and by the HASIDS (Figure 2.15(c)).
Figure 2.15(b) shows that the anomaly IDS detects the first pulse but
misses the second one because the threshold in the anomaly detector is
high to guarantee the given low FAR. With the selected threshold, this trace
shows no false alarms. If the threshold is lowered, as it is in Figure 2.15(c),

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 67

0 20 40 60 80 100 120
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7x 10
4

t, sec

P
a
c
k
e
t
s

p
e
r

s
e
c
o
n
d

First Attack Starts

Second Attack Starts

(a) Raw data – packet rate.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

n, sec (sample)

W
n

First Attack Detected
Instanteneously

Second Attack Missed

No False Alarms

(b) Detection by AbIDS.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

n, sec (sample)

W
n

First Attack Detected

Second Attack Detected

More False Alarms

(c) Detection by HASIDS.

Fig. 2.15. Detection of a short UDP DoS attack with AbIDS and HASIDS. The second
“pulse” is missed by the AbIDS but not by the HASIDS.

both segments of the attack are perfectly detected and localized. However,
this brings many false alarms at the output of the changepoint detection
based AbIDS. What can be done? The hybrid IDS offers an answer. The
FFT (fast Fourier transform) spectral module is triggered by the AbIDS
when detections (false or true) occur. In this particular experiment, all false
alarms were filtered by the FFT spectral analyzer. This allowed us to lower
the detection threshold in the AbIDS and, as a result, detect both pulses
with a very small detection delay and with no increase of FAR, since in
the hybrid system false alarms were filtered by the spectral module (see
Figure 2.15(c)).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

68 A. G. Tartakovsky

2.5. Conclusion

The experimental study shows that the proposed AbIDS, which exploits
score-based CUSUM and SR changepoint detection methods, is robust and
efficient for detecting a multitude of computer intrusions, e.g., UDP, ICMP,
and TCP SYN DDoS attacks as well as spammers. More importantly, devis-
ing the hybrid anomaly–signature IDS that fuses quickest change detection
techniques with spectral signal processing methods solves both aspects of
the intrusion detection problem. It achieves unprecedented speeds of detec-
tion and simultaneously has a very low FAR in ultra-high-speed networks.
In addition to achieving high performance in terms of the tradeoff between
delays to detection, correct detections and false alarms, the hybrid system
allows one to estimate anomaly length and distinguish between anomalies,
i.e., efficient isolation-localization of anomalies.

Acknowledgments

This work was supported in part by the U.S. National Science Foundation
under grants CCF-0830419 and DMS-1221888 and the U.S. Army Research
Office under MURI grant W911NF-06-1-0044 at the University of Southern
California, Department of Mathematics as well as the U.S. Department of
Energy Office of Science SBIR contract at ARGO SCIENCE CORP.

The author would like to thank Christos Papadopoulos (Colorado State
University, Department of Computer Science) and John Heidemann (Uni-
versity of Southern California, Information Sciences Institute) for help with
obtaining real data and for useful discussions. The author is also grateful to
Aleksey Polunchenko, Kushboo Shah, and Greg Sokolov for the help with
simulations and processing real data.

References

Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes – Theory
and Application, Information and System Sciences Series (Prentice Hall,
Inc, Englewood Cliffs, NJ).

Debar, H., Dacier, M. and Wespi, A. (1999). Toward a taxonomy of intrusion
detection systems, Comput. Net. 31, 8, pp. 805–822.

Ellis, J. and Speed, T. (2001). The Internet Security Guidebook: From Planning
to Deployment (Academic Press, Amsterdam).

Fuh, C.-D. (2003). SPRT and CUSUM in Hidden Markov Models, Ann. Stat. 31,
3, pp. 942–977.

Fuh, C.-D. (2004). Asymptotic operating characteristics of an optimal change
point detection in Hidden Markov Models, Ann. Stat. 32, 5, pp. 2305–2339.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

Rapid Detection of Attacks by Quickest Changepoint Detection Methods 69

He, X., Papadopoulos, C., Heidemann, J., Mitra, U. and Riaz, U. (2009). Remote
detection of bottleneck links using spectral and statistical methods, Com-
put. Net. 53, 3, pp. 279–298.

Hussain, A., Heidemann, J. and Papadopoulos, C. (2003). A framework for
classifying denial of service attacks, in Proceedings of the 2003 Confer-
ence on Applications, Technologies, Architectures and Protocols for Com-
puter Communications (Karlsruhe, Germany), pp. 99–110. Available at:
http://doi.acm.org/ 10.1145/863955.863968.

Hussain, A., Heidemann, J. and Papadopoulos, C. (2006). Identification of
repeated denial of service attacks, in Proceedings of the 25th IEEE Interna-
tional Conference on Computer Communications (IEEE, Barcelona, Spain),
pp. 1–15, doi:10.1109/INFOCOM.2006.126.

Kent, S. (2000). On the trail of intrusions into information systems, IEEE Spec-
trum 37, 12, pp. 52–56.

Lai, T. L. (1998). Information bounds and quick detection of parameter changes
in stochastic systems, IEEE T. Inform. Theory 44, 7, pp. 2917–2929.

Lorden, G. (1971). Procedures for reacting to a change in distribution, Ann. Math.
Stat. 42, 6, pp. 1897–1908.

Loukas, G. and Öke, G. (2010). Protection against denial of service attacks: A sur-
vey, Comput. J. 53, 7, pp. 1020–1037.

Mei, Y. (2010). Efficient scalable schemes for monitoring a large number of data
streams, Biometrika 97, 2, pp. 419–433.

Mirkovic, J., Dietrich, S., Dittrich, D. and Reiher, P. (2004). Internet
Denial of Service Attack and Defense Mechanisms (Prentice Hall PTR,
Indianapolis, IN).

Moustakides, G. V. (1986). Optimal stopping times for detecting changes in dis-
tributions, Ann. Stat. 14, 4, pp. 1379–1387.

Moustakides, G. V., Polunchenko, A. S. and Tartakovsky, A. G. (2011). A numer-
ical approach to performance analysis of quickest change-point detection
procedures, Stat. Sinica 21, 2, pp. 571–596.

Page, E. S. (1954). Continuous inspection schemes, Biometrika 41, 1–2, pp. 100–
114.

Paxson, V. (1999). Bro: A system for detecting network intruders in real-time,
Comput. Net. 31, 23–24, pp. 2435–2463.

Pollak, M. (1985). Optimal detection of a change in distribution, Ann. Stat. 13,
1, pp. 206–227.

Pollak, M. (1987). Average run lengths of an optimal method of detecting a change
in distribution, Ann. Stat. 15, 2, pp. 749–779.

Pollak, M. and Tartakovsky, A. G. (2009). Optimality properties of the Shiryaev–
Roberts procedure, Stat. Sinica 19, 4, pp. 1729–1739.

Polunchenko, A. S. and Tartakovsky, A. G. (2010). On optimality of the Shiryaev–
Roberts procedure for detecting a change in distribution, Ann. Stat. 38, 6,
pp. 3445–3457.

Polunchenko, A. S. and Tartakovsky, A. G. (2012). State-of-the-art in sequential
change-point detection, Methodol. Comput. Appl. Prob. 14, 3, pp. 649–684,
doi:10.1007/s11009-011-9256-5.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch02

70 A. G. Tartakovsky

Polunchenko, A. S., Tartakovsky, A. G. and Mukhopadhyay, N. (2012). Nearly
optimal change-point detection with an application to cybersecurity,
Sequential Anal. 31, 4, pp. 409–435, doi:10.1080/07474946.2012.694351.

Roesch, M. (1999). Snort — lightweight intrusion detection for networks, in Pro-
ceedings of the 13th Systems Administration Conference (LISA), Seattle,
Washington, USA (USENIX), pp. 229–238.

Shiryaev, A. N. (1963). On optimum methods in quickest detection problems,
Theor. Probab. Appl. 8, 1, pp. 22–46.

Siegmund, D. (2013). Change-points: From sequential detection to biology and
back, Sequential Anal. 32, 1, pp. 2–14.

Tartakovsky, A. G. (2005). Asymptotic performance of a multichart CUSUM
test under false alarm probability constraint, in Proceedings of the 44th
IEEE Conference on Decision and Control and European Control Confer-
ence (CDC-ECC’05), Seville, Spain, IEEE (Omnipress CD-ROM), pp. 320–
325.

Tartakovsky, A. G., Nikiforov, I. V. and Basseville, M. (2014). Sequential Analysis:
Hypothesis Testing and Change-Point Detection, Statistics (Chapman &
Hall/CRC, Boca Raton, FL).

Tartakovsky, A. G., Pollak, M. and Polunchenko, A. S. (2012). Third-order
asymptotic optimality of the generalized Shiryaev–Roberts changepoint
detection procedures, Theor. Probab. Appl. 56, 3, pp. 457–484.

Tartakovsky, A. G. and Polunchenko, A. S. (2007). Decentralized quickest change
detection in distributed sensor systems with applications to information
assurance and counter terrorism, in Proceedings of the 13th Annual Army
Conference on Applied Statistics (Rice University, Houston, TX).

Tartakovsky, A. G. and Polunchenko, A. S. (2008). Quickest changepoint detec-
tion in distributed multisensor systems under unknown parameters, in Pro-
ceedings of the 11th IEEE International Conference on Information Fusion
(Cologne, Germany).

Tartakovsky, A. G., Polunchenko, A. S. and Sokolov, G. (2013). Efficient computer
network anomaly detection by changepoint detection methods, IEEE J. Sel.
Top. Signal Process. 7, 1, pp. 4–11.

Tartakovsky, A. G., Rozovskii, B. L., Blaźek, R. B. and Kim, H. (2006a). Detec-
tion of intrusions in information systems by sequential change-point meth-
ods, Stat. Method. 3, 3, pp. 252–293.

Tartakovsky, A. G., Rozovskii, B. L., Blaźek, R. B. and Kim, H. (2006b).
A novel approach to detection of intrusions in computer networks via adap-
tive sequential and batch-sequential change-point detection methods, IEEE
Tran. Signal Proc. 54, 9, pp. 3372–3382.

Tartakovsky, A. G. and Veeravalli, V. V. (2004). Change-point detection in mul-
tichannel and distributed systems, in N. Mukhopadhyay, S. Datta and S.
Chattopadhyay (eds), Applied Sequential Methodologies: Real-World Exam-
ples with Data Analysis, Statistics: a Series of Textbooks and Monographs,
Vol. 173 (Marcel Dekker, Inc, New York), pp. 339–370.

Tartakovsky, A. G. and Veeravalli, V. V. (2005). General asymptotic Bayesian
theory of quickest change detection, Theor. Probab. Appl. 49, 3, pp. 458–
497.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Chapter 3

Statistical Detection of Intruders Within Computer
Networks Using Scan Statistics

Joshua Neil, Curtis Storlie, Curtis Hash and Alex Brugh

Los Alamos National Laboratory
PO BOX 1663, Los Alamos, New Mexico, 87545, USA

jneil@lanl.gov

We introduce a computationally scalable method for detecting small anoma-
lous subgraphs in large, time-dependent graphs. This work is motivated by,
and validated against, the challenge of identifying intruders operating inside
enterprise-sized computer networks with 500 million communication events per
day. Every observed edge (time series of communications between each pair
of computers on the network) is modeled using observed and hidden Markov
models to establish baselines of behavior for purposes of anomaly detection.
These models capture the bursty, often human-caused, behavior that dominates
a large subset of the edges. Individual edge anomalies are common, but the
network intrusions we seek to identify always involve coincident anomalies on
multiple adjacent edges. We show empirically that adjacent edges are primarily
independent and that the likelihood of a subgraph of multiple coincident edges
can be evaluated using only models of individual edges. We define a new scan
statistic in which subgraphs of specific sizes and shapes (out-stars and 3-paths)
are tested. We show that identifying these building-block shapes is sufficient to
correctly identify anomalies of various shapes with acceptable false discovery
rates in both simulated and real-world examples.

3.1. Introduction

In this chapter, we consider the problem of detecting locally anomalous
activity in a set of time-dependent data having an underlying graph struc-
ture. While the method proposed can be applied to a general setting in
which data is extracted from a graph over time, and in which anomalies
occur in connected subgraphs, we will focus exclusively on the detection
of attacks within a large computer network. Specifically, we are interested
in detecting those attacks that create connected subgraphs within which
the communications have deviated from historic behavior in some window
of time.

71

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

72 J. Neil, C. Storlie, C. Hash and A. Brugh

We start with a discussion of computer network data, and the under-
lying graph induced by this network.

3.1.1. Basic graph concepts and computer network data

A graph consists of nodes and edges (Kolaczyk, 2009). In the example
of a computer network, nodes are computers and edges are a time series
of directed communications between computers. In general, data can be
collected over time from both nodes and edges. For this chapter, how-
ever, we will only consider data extracted from network communications,
with node data a subject of future work. The data we will focus on was
obtained from NetFlow records (Bensley et al., 1997; Brownlee et al., 1997;
Phaal et al., 2001) gathered from one of Los Alamos National Laboratory’s
(LANL’s) internal networks, over 30 days in 2010. Internet protocol (IP)
addresses define nodes, and counts of connections per minute between IPs
define a time series on the directed edge between those nodes, resulting
in a total of 558,785 edges. Each edge is directed, in the sense that com-
munications are marked with a source and destination, and an edge with
reversed source and destination nodes is considered a separate edge from the
forward direction. The data is observed every minute, and in a 30-minute
period the network graph has in the order of 20,000 active nodes and 90,000
active edges.

This is a fairly difficult data set to come by, since collection is a chal-
lenge for many reasons. At many universities, for example, data from per-
sonal machines is not collected for privacy reasons. In addition, sensors
in the network that measure this data need to be distributed well to have
access to all of the connections, and when they are, the data rate can be very
high, so that significant engineering is required to collect and store these
measurements. For these reasons, data of this type is not widely available,
and there is little published work using it. The LANL has invested sig-
nificant resources in collection over the past ten years, and since attacks
can and are observed via edge data, we feel it is an extremely fruitful data
stream for researchers to collect and analyze.

A plot of one of these edges is given in Figure 3.1. There is an enormous
variety among the edges in a typical network. Those that are driven by
human presence, such as the edge created between a desktop and an email
server when a user checks his email, tend to be similar to Figure 3.1. Others,
such as edges between load-balancing servers, tend to be much smoother.
Several of the edges exhibit periodic behavior, at multiple timescales.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 73

Fig. 3.1. Counts of connections per minute between two machines in LANL’s internal
network. The connections originate at a specific user’s machine, and the destination is a
server providing virtual desktop services.

In order to establish a baseline of behavior for each edge, modeling is
used. Section 3.4 presents three models, one of which, the hidden Markov
model, attempts to capture this human behavior, by explicitly accounting
for the burstiness apparent on this edge. A more thorough modeling effort
is required to accurately reflect the variety of edges seen in this data, an
effort that is ongoing, but the three models presented represent a first step.

Attacks create deviations not just on single edges, but across multiple
connected edges, a subject discussed in the next section. Under an inde-
pendence assumption among the edges in the subgraph, models for edges
lead to models for subgraphs as discussed in Section 3.3.

3.1.2. Example traversal attack

A common initial stage of attack on computer networks is to infect a
machine on the network using malicious software. One method for initial
infection is known as a phishing attack, where an email that includes a link
to a malicious website is sent to a set of users on a network. When the user
clicks on the link, their machine becomes infected, giving the attacker some
form of access to the machine.

The attacker generally cannot dictate which machine is infected, and
the initial host is usually not the ultimate target of the attack, if there
even is an ultimate target. Instead, the attacker may wish to move to other
machines in order to locate and exfiltrate valuable data, escalate privileges,
or to establish broad presence in the network for later exploitation. There-
fore, from this initial host, the attacker may proceed to other hosts, hopping
from one to the next; see Figure 3.2.

In order to maximize the true positive rate, and minimize the false one,
statistical testing is performed at the subgraph level, not at that of each
edge. The task then is to form a subgraph that simultaneously captures as
many attack edges as possible, and as few non-attack edges as possible.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

74 J. Neil, C. Storlie, C. Hash and A. Brugh

Fig. 3.2. A traversal attack. Step 1: Initial infection and local search. Step 2: First
traversal has occurred, and further search is performed. Step 3: A full traversal has
occurred. This shape is denoted as a caterpillar. The data on each edge in this graph is
potentially anomalous. The filled nodes and dotted edges in Step 3 form a 3-path, which
is one type of shape used to capture this behavior.

3.1.3. Attack shapes in the graph

Our institution is under regular attack by many entities, from simple auto-
mated tools scanning our firewalls through a spectrum of attack types
including dedicated, sophisticated teams of attackers. This chapter was
motivated by two canonical types of attacks seen against our site. While
the details cannot be discussed for security reasons, forensic expertise has
been brought to bear to describe these attacks to the authors.

Scanning Behavior: Out-stars. Attackers may wish to search locally
around a single node for vulnerabilities in neighboring computers. This
generates traffic emanating from a central node, to a set of destination
nodes, forming a star in the graph. Out-stars, introduced by Priebe et al.
(2005), are defined as the set of edges whose source is a given central node;
see Figure 3.3. Since some computers, such as email servers, communicate
with large numbers of hosts, these shapes can contain large numbers of
edges, and an attack that only used a few of the edges in the star may be lost
in edges not part of the local search behavior. This suggests enumerating
subsets of stars, which is the subject of future work. For this discussion, all
edges emanating from a node are examined.

Traversal Behavior: k-Paths. Another type of behavior commonly seen
in real attacks is that of attacker traversal, as depicted by the filled nodes
and dotted edges in Figure 3.2, Step 3. To capture this behavior, we suggest
the directed k-path. Informally, a k-path is a sequence of k edges where the
destination node of the current edge in the sequence is the source node of
the next edge in the sequence, and so on. In graph terms, a k-path is a
directed subgraph where both size and diameter are equal to k (Kolaczyk,
2009).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 75

Fig. 3.3. Example out-star, centered at node v.

The k-path captures the core of many network attacks, which have a
path through the network with additional edges as “fuzz” around this core
path. In addition, the k-path is limited to k edges, allowing for the detec-
tion of very small anomalies. In the simulation (Section 3.5) and real-data
(Section 3.6) studies, we choose to use 3-paths. 3-paths have the advantage
of locality, but are also large enough to capture significant traversal. In
a complete system, we forsee analyzing all 1-, 2- and 3-paths, but longer
paths are less local, providing analysts with more alarmed edges to sort
through.

3.1.4. Related work

We are interested in testing the null hypothesis that all edges in the graph
are behaving as they have historically, versus the alternative that there are
local shapes of altered activity among the edges. To accomplish this goal,
we have developed a method based on scan statistics to examine each of
these shapes in the graph over sliding windows of time. Scan statistics have
been widely used to detect local clusters of events (Naus, 1982; Loader,

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

76 J. Neil, C. Storlie, C. Hash and A. Brugh

1991; Kulldorff, 1997; Glaz et al., 2001). The idea is to slide a window over
a period of time and/or space, calculating a local deviation statistic. The
most extreme of these is known as the scan statistic, which is used to decide
if there is any deviation from historic behavior in the local window.

Fast statistical anomaly detection on streaming data has become an
important area of research given the proliferation of data over the past few
decades, and the need to detect quickly the event that a process has changed
significantly from past behavior. Applications can be found in many areas
including engineering (Chandola et al., 2009), computer science (Forrest
et al., 1996), and, specifically, in communications networks (Mukherjee
et al., 1994; Yeung and Ding, 2003; Lambert and Liu, 2006; Chandola et al.,
2009).

In many cases, the data can be represented as a graph (Kolaczyk, 2009).
Nodes represent actors sending and receiving data, and edges represent
communications between nodes. Anomalies can be detected in the changes
to the structure of the graph (Noble and Cook, 2003; Collins and Reiter,
2007).

Scan statistics for communications graphs were established in Priebe
et al. (2005), and used a star shape. Paths are compared with stars in
Section 3.5.1. Similar methods that aggregate at the node, examining each
node’s behavior independently, include Yeung and Ding (2003) and Mukher-
jee et al. (1994). In none of this work are edges modeled. Yet, different edges
may have significantly different behavior over time, and attacks between
nodes must happen over edges. In addition, traversal cannot be captured
by analyzing node behavior separately for each node. In these cases, mod-
eling each edge is desirable. Additionally, all of these graph methods tend
to lack fine-grained locality, which we address by using k-paths. Because of
this locality, we have discovered attacks that are not specifically traversal
or star-shaped.

In only one article identified, Heard et al. (2010), are the individ-
ual edges modeled. A Bayesian testing framework is proposed to test the
anomalousness of each edge in a social network, without consideration of
other local-edge anomalousness. These edges are then passed to a secondary
analysis that examines the graph constructed from the edges that were
detected in the initial pass. Interesting features of the anomalous edge graph
can be detected in this way, but simultaneously testing multiple local sets of
edges will have increased power to detect locally anomalous behavior. For
example, if two anomalous edges were connected by a non-anomalous edge,
this possible traversal path would likely be missed by the technique in Heard

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 77

et al. (2010), but is a valid anomaly in many settings. In addition, when
data speeds are high, a fully Bayesian treatment may pose computational
difficulties, unless the model is parsimonious enough for sequential Monte
Carlo (Doucet et al., 2001).

Hidden Markov models (HMMs) for communcations networks are dis-
cussed in Section 3.4. Salamatian and Vaton (2001) discuss using HMMs
to examine packet loss in the internet. The data we work with, however,
is internal network data, and the challenges of modeling edge data are
entirely different than those of modeling highly aggregated flows over the
internet. There is some interesting work on identifying groups in social
networks using HMMs in the literature (Baumes et al., 2004, 2006). While
these methods are geared to social networks, do not use edge data, and
use prelabeled examples, not anomaly detection, we feel this work to be
inspirational, as it tackles many similar issues. Finally, Ye et al. (2000)
present a Markov model for audit data from Unix machines to perform
node-based anomaly detection. No network modeling is done, and focusing
on a set of Unix machines is no longer of particular interest, since modern
networks have a variety of operating systems, and a general approach to
network anomaly detection cannot focus on a single operating system.

Paths have been examined in the context of vehicular traffic in Lu et al.
(2009), using a similarity metric to compare paths, and then clustering to
find outliers. This method, however, assumes we observe path values that
can be clustered. On the contrary, in this chapter we propose a statistically
rigorous method to infer anomalous shapes from the network without any
prior knowledge about traversal by individual actors.

Many of the methods mentioned above are intended for much smaller
graphs than our method proposes to address. We have a data set that is
difficult to come by: a record of all of the communications between individ-
ual computers on a large corporate-sized network. These communications
are recorded at fine timescales (1 second or finer), and have been archived
for the past decade in some cases. The objects (paths) we monitor num-
ber in the hundreds of millions per 30-minute window, which we are able
to test in under 5 seconds. With the exception of the telephone network
literature (Lambert et al., 2001; Lambert and Liu, 2006) (that does not
monitor at a graph level, but at individual aggragation points), the sheer
size of this endeavor separates it from most other work.

The formal statement of the scan statistic is given in Section 3.2. Inde-
pendence between the edges within a path is covered in Section 3.3. Mod-
eling of edge data is discussed in Section 3.4. Stars and paths are compared

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

78 J. Neil, C. Storlie, C. Hash and A. Brugh

on a variety of simulations in Section 3.5. Finally, we present results of
scanning on actual computer network data in Section 3.6.

3.2. The Scan Statistic

In this section, we describe the methodology behind scanning for local
anomalies in a graph over time. Windowing in this space is then discussed,
followed by the definition of the scan statistic.

3.2.1. Windows in the cross product space

We are interested in examining sets of windows in the T ime×Graph prod-
uct space. We define these sets of windows as follows. We have a graph
G = (V,E) with node set V and edge set E. For each edge e ∈ E, at
discrete time points t ∈ {1, . . . , T}, we have a data process Xe(t). We
denote the set of time windows on edges e over discretized time intervals
(s, s+ 1, . . . , k) as Ω = {[e, (s, s+ 1, . . . , k)] : e ∈ E, 0 ≤ s < k ≤ T }.

The set of all subsets of windows, Γ = {{w1, w2, . . .} : wj ∈ Ω}, is
usually very large, and we are normally interested in only a subset, Γs ⊂ Γ,
that contains locality constraints in time and in graph space. We therefore
restrict our attention to sets of windows γ ∈ Γs.

For convenience, we denote X(γ) as the data in the window given by γ.
Next, we assume that for any time point t and edge e, we can describe Xe(t)
with a stochastic process (specific examples are given in Section 3.4) with
parameter function given by θe(t). We denote the values of the parameter
functions evaluated in the corresponding set of windows γ by θ(γ). Finally,
we denote the likelihood of the stochastic process on γ as L(θ(γ) |X(γ)).

At this point, it is worth returning to our discussion in Section 3.1.3 of
the 3-path used to detect traversal. In this example, Xe(t) are the directed
time series of counts of connections between the pair of hosts that define
each edge e. Then, Ω is the set of all (edge, time interval) pairs. We would
like to combine edges to form shapes, so we take all subsets of Ω and
call that Γ. For this example, we now restrict our set of shapes to sets
consisting of three (edge, time interval) pairs such that the edges form a
directed 3-path, and the time interval is selected to be the same on each
edge. In the simulations and real network example, the time intervals are
30 minutes long, and overlap by ten minutes with the next time window,
and are identical on each edge in the shape. These are then the windows γ
that are used in the 3-path scan shape.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 79

3.2.2. A scan statistic for windows in the

T ime × Graph space

We would like to examine whether the data in a window γ was likely to have
been produced by some known function of the parameters θ0(γ), versus
alternatives indicating that the parameters have changed. That is, given
that we observe X(γ) = x(γ), we would like to test whether H0 : θ(γ) =
θ0(γ) against alternatives that can be formed by restricting the overall
parameter space, Θ, to a subset ΘA ⊂ Θ. The generalized likelihood ratio
test statistic (GLRT) is a natural statistic to use. Let

λγ = −2 log
(L(θ0(γ) |x(γ))

supθ∈ΘA
L(θ(γ)|x(γ))

)
. (3.1)

The size of λγ depends on the number of parameters being tested in the
window, making it difficult to use directly. To address this issue, we nor-
malize λγ by converting it into a p-value, pγ. These p-values are discussed
in detail in Section 3.4.5.

To scan for anomalies in the T ime × Graph product space, we must
slide over all windows γ, keeping track of the scan statistic Ψ = minγ pγ .
In practice, thresholding of the set of p-values is performed so more than
just the minimum p-value can be considered. For online monitoring, we set
a threshold on the p-values to control the false discovery rate (Benjamini
and Hochberg, 1995). This threshold setting is described in more detail in
Section 3.4.6, but we emphasize that generally, when a detection occurs,
a set of windows (not just one) are detected, and so the union of these
windows is the detected anomaly produced by the system.

3.3. Independence Among Edges in a Path

In order to scan for anomalous shapes, it is necessary to have models that
describe the behavior of the data in the window γ under normal conditions.
The number of enumerated subgraphs tends to scale exponentially with the
number of nodes, however, and an assumption of independence among the
edges in the shape facilitates scaling the computations required to process
large graphs at line speeds, under reasonable memory requirements. While
the general approach discussed in Section 3.2.1 does not require indepen-
dence among the edges in the window γ, independence will be assumed
among the stars and paths discussed in Section 3.1.3 and used in the
simulation and real-data sections. Note that for those shapes, no edge is
repeated.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

80 J. Neil, C. Storlie, C. Hash and A. Brugh

Edge independence ensures the ability to scale, since models (and the
storage of their parameters) for each edge are sufficient to construct models
for subgraphs of edges under this assumption, whereas non-independence
might require models for each shape, of which there may be many hundreds
of millions, if not billions. Therefore, an examination of the assumption of
independence among edges connected in a path is conducted.

Intuitively, independence among the edges in a 2-path (and in a 3-
path) makes sense in the following way. In this chapter, the network is
measured at the connection layer, layer 4 of the OSI model (Stallings, 1987),
not at layer 3, which is the layer at which packets are routed. That is,
end-to-end communications are measured. There is very little reason for a
computer to generate connections to further computers as a result of being
communicated with by some originating computer. There are exceptions, as
will be apparent below, but these exceptions tend to be interesting in their
own right. Detecting such flows is not a bad thing, it is a good thing, since
attackers can tend to make correlated flows where there should be none.
After the authors pointed out these highly correlated edges connected in a
2-path, network security personnel examined the behavior in detail.

This study utilized LANL NetFlow records over a 30-day period. For
each edge, the data consists of a per-minute recording of the indicator
variable that is 1 if there is activity on that edge in that minute, and 0
otherwise. This results in a sequence of 40,320 binary values for each edge.
The sample correlation between pairs of edges connected in a 2-path was
calculated. In this data set, there were a total of 311,411 2-paths.

Correlation was chosen as the measure used to gauge independence,
since, in binary random variables, correlation equal to zero implies indepen-
dence. Additionally, the independence assumption is being violated here,
and the task then is to evaluate how severely the assumption is being vio-
lated in the data. It is clear from the results that this assumption is not far
from reality, and it is likely that this model will suffice for this application.

In Figure 3.4 we plot the empirical cumulative distribution function
(CDF) for the absolute values of these correlation statistics. Half of all
correlations were less than 0.003 in absolute value, and only 1 in 1000 had
R2 value of larger than 6%.

Note that under the independence assumption, the path GLRT is
expressed as

λγ =
∑
e∈γ

λe (3.2)

where λe are the GLRT scores on each edge in window γ.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 81

Fig. 3.4. Empirical CDF of absolute value of correlations between pairs of edges con-
nected in a 2-path.

3.4. Modeling, Estimation, and Hypothesis Testing

As can be seen in Figure 3.1, it is common in communications between a pair
of computers to observe a switching process. Intuitively, for many edges,
this switching is caused by the human presence on the network. If a user
is present at a machine, she may make nonzero counts on edges emanating
from that machine. But in many minutes, even though the user may be
present, she may not be making nonzero counts on this edge, since she may
be communicating with some other machine, or not using the network at all.
We only know that when she is not there, we will observe 0s on this edge.
This presence/absence induces a switching process between a purely 0 count
emission and one that admits positive counts. While, intuitively, there will
be higher counts in the middle of the day than at night, in this chapter
we use homogeneous models for the sake of simplicity. In this section, two
models for capturing the switching behavior of the time series on each edge
are discussed.

In addition, a model for establishing the probability that a connection
is observed between two computers that have not communicated in the
past is given. We denote this behavior as a new edge. While new edges are
observed under non-attack conditions, it is a hallmark of many attacks, and

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

82 J. Neil, C. Storlie, C. Hash and A. Brugh

therefore an important behavior to model. Intuitively, many attackers are
not aware of the normal communications patterns in a computer network,
and tend to create many new edges as a result. This lack of awareness of
normal behavior is a key difference between attackers and defenders, and
one defenders must exploit to the fullest.

3.4.1. Observed Markov model

The first and simplest model is a two-state observed Markov model (OMM),
which we denote Bt. If there was a nonzero count in time bin t, then Bt = 1,
otherwise Bt = 0. This model has two parameters, p01 = P (Bt = 1 |Bt−1 =
0) and p10 = P (Bt = 0 |Bt−1 = 1). Its likelihood is given by

L(p01, p10 | b1, . . . , bN) = (1 − p01)n00pn01
01 p

n10
10 (1 − p10)n11 (3.3)

where nij is the number of times that the consecutive pair (bi, bj) was
observed in the data. We assume that the initial state is fixed and known.
Maximum likelihood estimates are given by p̂01 = n01

n00+n01
and p̂10 =

n10
n10+n11

.
While this model captures the burstiness, it ignores the distribution of

the counts, and also does not reflect the underlying hidden process in many
edges, which is that of a user being absent altogether (low state) versus the
user being present (high state).

3.4.2. Hidden Markov model

To address the issues not covered by the OMM, we employ a two-state
HMM (Rabiner, 1989) with a degenerate distribution at zero for the low
state, and a negative binomial emission density in the high state. Neg-
ative binomial emission densities do not suffer from the equidispersion
property of the Poisson (Pohlmeier and Ulrich, 1995), and a good jus-
tification for using them to monitor for anomalies in network counts is
given in Lambert and Liu (2006). This model is similar to the hurdle mod-
els described in Heard et al. (2010) and elsewhere, with one important
distinction: we allow the high state to emit zeros. We believe that this is
important in modeling our data. Again, referring to Figure 3.1, we see that
zero counts are interspersed with the nonzero data, but are still clearly a
part of the “active” state. Intuitively, we think of the active state as “the
user is present at the machine,” and therefore likely to make communica-
tions, not as “the user is making a communication on this edge.” Next, the
estimation of the HMM is discussed in this setting.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 83

Notation and Likelihood. At a set of T discrete time points we observe
counts x = [x1, . . . , xT]′, with xt ∈ {0, 1, . . .} for t = 1, . . . , T . In this
model, the counts are viewed as coming from one of two distributions, as
governed by Z = [Z1, . . . , ZT]′, a latent two-state Markov process. Letting
p01 = Pr(Zn = 1 |Zn−1 = 0) and p10 = Pr(Zn = 0 |Zn−1 = 1), we denote
the latent transition matrix as

A =

[
1 − p01 p01

p10 1 − p10

]
.

The initial state distribution is denoted π = Pr(Z1 = 1).
The marginal distribution of the count at time t, given that Zt = 0

is degenerate at 0, i.e. Pr(Xt = xt |Zt = 0) = I(Xt = 0) where I(·)
is the indicator function. When Zt = 1, we assume that the counts are
distributed according to a negative binomial distribution with mean and
size parameters given by φ = [µ, s]′, i.e.

Pr(Xt = xt |Zt = 1, φ) =
Γ(s+ xt)

Γ(s)Γ(xt + 1)

(
s

µ+ s

)s (
µ

µ+ s

)xt

.

A useful fact is that the joint probability distribution over both latent
and observed variables can be factored in a way that is useful for compu-
tation, since it separates the different parameter types:

Pr(X = x,Z = z |θ)

= Pr(Z1 = z1 |π)
T∏

t=2

Pr(Zt = zt |Zt−1 = zt−1,A)

×
T∏

t=1

Pr(Xt = xt |Zt = zt, φ)

where θ = (π,A, φ)′. Finally, the likelihood is

Pr(X = x |θ) =
1∑

z1=0

· · ·
1∑

zt=0

Pr(X = X,Z = z |θ). (3.4)

Maximum Likelihood Estimates. Equation (3.4) involves 2T terms,
making it computationally infeasible to work with directly, for even mod-
erately large T . Hence, we look to expectation maximization (EM) as

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

84 J. Neil, C. Storlie, C. Hash and A. Brugh

an iterative approach for calculating the maximum likelihood estimates.
EM starts with some initial selection for the model parameters, which we
denote θold.

Initial Parameters. To obtain θold, we proceed by assuming that the
high-state emission density, Pr(Xt = xt |Zt = 1, φ) only emits positive
counts. This, in effect, makes Zt an observed random variable. Let bt,0 =
I(Xt = 0), bt,1 = I(Xt > 0). We use initial transition probabilities defined
by the maximum likelihood estimators (MLEs) of the observed Markov
chain: p̃01 = n01

n01+n00
p̃10 = n10

n10+n11
, where nij is the number of times that

the consecutive pair (bt−1,i, bt,j) was observed in x. An initial estimate for
π is the steady-state probability given by π̃ = p̃01

p̃01+p̃10
.

To obtain initial estimates for the high-state emission parameters φ,
we collect the samples of X such that Xt > 0, and call that collection Y .
We then calculate µ̃ and σ̃2, the sample mean and variance of Y . Finally,
we reparameterize from (µ̃, σ̃2) to (µ̃, s̃) where s̃ is the initial size param-
eter, via s̃ = µ̃2

σ̃2−µ̃
. This approach ignores the fact that the high-state

distribution can emit zeros, but for our application these initial values
were sufficient for the EM algorithm to converge in a reasonable number of
iterations.

The E step. In the E step, we take these initial parameter values and find
the posterior distribution of the latent variables Pr(Z = z |X = x,θold).
This posterior distribution is then used to evaluate the expectation of the
logarithm of the complete-data likelihood function, as a function of the
parameters θ, to give the function Q(θ,θold) defined by

Q(θ,θold) =
∑
Z

Pr(Z = z |X = x,θold) log Pr(X = x,Z = z |θ). (3.5)

It has been shown (Baum and Sell, 1968; Baker, 1975) that maximization of
Q(θ,θold) results in increased likelihood. To evaluate Q(θ,θold), we intro-
duce some notation. Let γ(zt) be the marginal posterior of zt and ξ(zt−1, zt)
be the joint posterior of two successive latent variables, so

γ(zt) = Pr(Zt = zt |X = x,θold)

ξ(zt−1, zt) = Pr(Zt−1 = zt−1, Zt = zt |X = x,θold).

Now for k = 0, 1, the two states of the Markov chain, we denote
ztk = I(zt = k), which is 1 if zt is in state k and 0 otherwise. Let γ(ztk)

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 85

be the conditional probability that ztk = 1, with a similar notation for
ξ(zt−1,j, ztk). Since expectation of a binary random variable is just the
probability that it takes value 1,

γ(ztk) = Eztk =
∑
Z

γ(Z)ztk

ξ(zt−1,j, ztk) = Ezt−1,j, ztk =
∑
Z

γ(Z)zt−1,jztk.

If we substitute the joint distribution Pr(X = x,Z = z |θ), along with γ

and ξ, into (3.5), we obtain

Q(θ,θold) = γ(z10) log(1 − π) + γ(z11) log π

+
T∑

t=2

1∑
j=0

1∑
k=0

ξ(zt−1,j , ztk) logAjk

+
T∑

t=1

γ(zt0)I(xt = 0) + γ(zt1) log Pr(Xt = xt |Zt = 1, φ).

(3.6)

Next, we seek an efficient procedure for evaluating the quantities γ(ztk)
and ξ(zt−1,j , ztk). The forward–backward algorithm (Baum and Eagon,
1967; Baum and Sell, 1968) is used to accomplish this. First, we define
the forward variable as

α(zt,k) = Pr(X1 = x1, . . . , Xt = xT , Zt = k |θ) k = 0, 1.

α can be solved for inductively:

(1) Initialization: α(z1,0) = 1 − π α(z1,1) = πPr(X1 = x1 |Z1 = 1, φ).
(2) Induction: For k = 0, 1 and 1 ≤ t ≤ T − 1,

α(zt+1,k) = [α(zt,0)A0k + α(zt,1)A1k] Pr(Xt = xt |Zt = k, φ). (3.7)

Below, we will use the fact that Pr(X = x |θ) = α(zT,0) + α(zT,1).
We next need to define the backward variable, the probability of the partial
observation sequence from t+ 1 to T :

β(zt) = Pr(Xt+1 = xt+1, . . . , XT = xT |Zt = zt,θ).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

86 J. Neil, C. Storlie, C. Hash and A. Brugh

β(zt) can be solved for inductively as follows:

(1) Initialization: β(zT,k) = 1 k = 0, 1.
(2) Induction: For k = 0, 1 and t = T − 1, . . . , 1,

β(zt,k) = Ak,0 Pr(Xt+1 = xt+1 |Zt+1 = 0)β(zt+1,0)

+Ak,1 Pr(Xt+1 = xt+1 |Zt+1 = 1, φ)β(zt+1,1). (3.8)

Finally,

γ(zt) =
α(zt)β(zt)

Pr(X = x |θ)
(3.9)

ξ(zt−1, zt) =
α(zt−1) Pr(Xt = xt|Zt = zt, φ) Pr(Zt = zt|Zt−1 = zt−1)β(zt)

Pr(X = x|θ)
.

(3.10)

The M Step. In the M step, we maximize (3.6) with respect to θ. Max-
imization with respect to π and A is easily achieved using appropriate
Lagrange multipliers. Taking the derivative with respect to µ results in a
closed form update as well.

π̂ =
γ11∑1

j=0 γ(z1j)

Âjk =
∑T

t=2 ξ(zt−1,j , ztk)∑1
l=0

∑T
t=2 ξ(zt−1,j, ztl)

j = 0, 1 k = 0, 1

µ̂ =
∑T

t=1 γ(zt1)xt∑T
t=1 γ(zt1)

.

The size parameter update is not closed form. From (3.6), we see that
it comes down to maximizing log Pr(Xt = xt |Zt = 1, φ) with respect to s,
which we achieve through a numerical grid optimization routine.

Scaling. For moderate lengths of chains, the forward and backward vari-
ables quickly get too small for the precision of the machine. One cannot
work with logarithms, as is the case for independent and identically dis-
tributed (i.i.d) data, since here we have sums of products of small numbers.
Therefore a rescaling has been developed, and is described in Bishop (2006).
Define a normalized version of α as

α̂(zt) = Pr(Zt = zt |X1 = x1, . . . , Xt = xt) =
α(zt)

Pr(X = x |θ)
.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 87

Equation (3.7) becomes

α̂(zt+1) =
Pr(Xt = xt |Zt = zt, φ)

∑
zt
α̂(zt) Pr(Zt+1 = zt+1 |Zt = zt)
ct

,

where

ct =
1∑

k=0

Pr(Xt = xt |Zt = k, φ)
∑

k

α̂(zt−1,k) Pr(Zt = k |Zt−1 = k)

is the constant required to normalize α̂(zt). Equations (3.8), (3.9), and
(3.10) become

β̂(zt) =

P
zt+1

β̂(zt+1) Pr(Xt+1 = xt+1 |Zt+1 = zt+1, φ)Pr(Zt+1 = zt+1 |Zt = zt)

ct+1

ξ(zt−1, zt) = ctα̂(zt−1) Pr(Xt = xt |Zt = zt, φ)

×Pr(Zt = zt |Zt−1 = zt−1)β̂(zt)

γ(zt) = α̂(zt)β̂(zt).

3.4.3. New edges

The approach described above discusses the stochastic modeling of existing
edges, and seeks paths upon which the data have deviated from baseline
models. Through examination of historic attacks, however, it is clear that
new edges can be indicative of attacks.

The subject of new edges is related to link prediction in the social
network literature (Liben-Nowell and Kleinberg, 2007), where suggesting
“friends” is an important topic. In this chapter, however, we ask about the
tail of the probability distribution. Instead of finding most probable new
“friends,” we seek the most unlikely new edges between pairs of computers,
in order to identify anomalies.

For existing edges, one can associate a model with the observed behav-
ior, and then estimate the parameters of the model given observed behavior.
A more complicated problem is to estimate the probability of observing a
new edge, since we have no existing behavior upon which to base our esti-
mation. Instead, we borrow information from the frequency at which the
source and destination nodes make and receive new edges from other nodes
in the network.

Specifically, suppose that we observe source node x initiating a new
edge to destination node y. To establish a probability of observing this

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

88 J. Neil, C. Storlie, C. Hash and A. Brugh

edge, we propose a logistic model:

logit(Pxy) = α+ βx + γy,

where Pxy is the probability of the new edge initiated by x, bound for y;
α is an effect for the overall rate at which new edges are produced in the
network; βx is an effect for how often x initiates new edges; and γy is an
effect for how often y receives new edges.

Maximum likelihood estimation of the above model is computation-
ally expensive. Instead, we use the method of moments estimation (Casella
and Berger, 2001), significantly reducing estimation complexity. On large
networks, method of moments provides high-quality estimation, since the
sample size will be very large. In practice, the estimation requires that
we have two graphs, an established graph that provides the existing edges,
and another graph, disjoint in time, that allows us to estimate the rate
at which new edges (those not in the established graph, but in the second
graph) appear.

The new edge model above was not used in the simulation study in
Section 3.5, but was used in the real-data section (3.6).

3.4.4. Alternative hypotheses

In order to obtain a GLRT, we need to restrict our overall parameter space
to allow for alternatives that reflect the types of attacker behavior we wish
to detect. These are intentionally kept general, in order to catch a variety
of behaviors. We postulate that attacker behavior causes increases to the
MLEs of parameters governing the models. This is due to the fact that the
attacker must act in addition to the normal behavior on that edge. Specif-
ically, referring to the OMM, we propose that attacker behavior causes an
increase in the probability of transitioning from the inactive to the active
state:

H0 : p01 = p̃01 versus HP : p01 > p̃01, (3.11)

where p̃01 is the historic parameter value.
In the HMM setting, we have more options. We will test three combi-

nations of parameter changes:

HP : p01 > p̃01, HM : µ > µ̃, HB : p01 > p̃01 and µ > µ̃. (3.12)

In each case, the null hypothesis is that the parameter or two-parameter
pair is equal to its historic parameter value.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 89

3.4.5. P-value calculation

We seek a p-value for the observed GLRT statistic, λγ . Under mild regu-
larity conditions, the GLRT is asymptotically χ2 with degrees of freedom
equal to the number of free parameters in Θ. However, this does not hold
when the true parameters are not on the boundary of Θ (see Casella and
Berger, 2001, p. 516). If the true parameters are on the boundary, as in the
restricted tests we perform (see Section 3.4.4), we will obtain a point mass
at zero in the distribution of λγ .

Star p-values. We start with the simpler of the two shapes, the star. The
number of stars in a graph is just the number of nodes, and therefore,
for each node v, we can afford to model the distribution of the GLRT
λv =

∑
e∈outedges(v) λe for the star around v (see [3.2]).

Let Λv have the distribution of the λv. We model Λv as Λv = BvXv

where Bv ∼ Bernoulli(pv) and Xv ∼ Gamma(τv, ηv). Since all λe in the sum
could be zero, Λv must have a point mass at zero. This is captured byBv. To
model the positive part of the distribution for Λv, the Gamma distribution
is attractive since it is equal to a χ2 distribution with degrees of freedom
ν when τv = ν

2
and ηv = 2. The asymptotic distribution of λv is then the

sum of independent zero-inflated χ2 distributed random variables. Thus,
we expect the zero-inflated Gamma to be able to model the distribution of
λv fairly well. The log-likelihood of N i.i.d. samples is given by

l(p, τ, η) =
N∑

i=1

I(λi = 0) log(1 − p)

+ I(λi > 0)[(τ − 1) logλi − λi/η − log Γ(τ) − τ log η]. (3.13)

To estimate τv and ηv, we use direct numerical optimization of (3.13)
over 10 days of non-overlapping 30-minute windows, for each star centered
at node v. We denote the MLEs as (p̂v, τ̂v, η̂v). Then for an observed λv, the
upper p-value is calculated by P (Λv > λv) = p̂v(1 − FΓ(λv | τ̂v, η̂v) where
FΓ is the Gamma CDF.

Path p-values. Unlike stars, the large number of paths makes modeling
λγ for each path prohibitively expensive, both in computation time and
memory requirements. Instead, we build a model for each individual edge,
and then combine them during the path likelihood calculation. For each
edge e, let Λe have the null distribution of e’s GLRT scores, λe. Again, we
use a zero-inflated Gamma distribution to model this. Now, however, it will
be on a per-edge basis. Once again, this model is motivated by the fact that

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

90 J. Neil, C. Storlie, C. Hash and A. Brugh

asymptotically, the null distribution of λe is a zero-inflated χ2 (with 50%
mass at zero if testing one parameter).

Let Λe = BeXe where Be ∼ Bernoulli(pe), and Xe ∼ Gamma(τe, η),
with edge-specific shape τe and shared scale η. That is, we have two free
parameters for each edge, pe and τe, and a common scale parameter for all
edges, η. The importance of the common scale parameter will become clear
shortly. We estimate MLEs p̂e, τ̂e, and η̂ using λes from non-overlapping
30-minute windows. The likelihood is similar to (3.13), but since each edge
has its own τe, and a shared η, we have developed an iterative scheme that
alternates between estimating η for all edges, and then, for that fixed η, esti-
mating individual τe. Since each step of the iteration increases likelihood,
the overall procedure increases likelihood.

Once the edge models are fitted, we have all of the information we need
to calculate path p-values. Let Λp =

∑
e∈path BeXe. The 3-path exceedance

p-value is the mixture exceedance given by

P (Λp > λp)

=
1∑

b1=0

1∑
b2=0

1∑
b3=0

P (B1 = b1)P (B2 = b2)P (B3 = b3)P (Λp > λp | b1, b2, b3)

=
1∑

b1=0

1∑
b2=0

1∑
b3=0

(
3∏

i=1

(1 − p̂i)1−bi p̂bi
i

)1 − FΓ

λp |
3∑

j=1

biτ̂i, η̂

where we used the fact that the sum of Gamma random variables with
common scale parameters is again Gamma.

3.4.6. Threshold determination

To obtain thresholds, we simulate ten days of per-minute counts for each
edge with no anomalies introduced. We then slide 30-minute windows, offset
by ten minutes, over the ten days, calculating the minimum p-value in each
window, just as would be done in the full scanning procedure. See the
scanning procedure discussion in Section 3.5 for a brief discussion of the
time-window choices. To achieve a false discovery rate of one alarm per day,
we might take the tenth smallest p-value in the resulting list of p-values. But
since the windows overlap, we choose to be less conservative, by counting
minimum p-values resulting from consecutive windows on the same path as
a single p-value, and find the tenth-smallest minimum p-value associated
with non-consecutive windows. In this way, alarms over several overlapping

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 91

windows only contribute one alarm to the threshold determination, which
is exactly the way an analyst would view a series of consecutive alarms.

3.5. Simulation Study

In this section we describe a series of simulations. We use both star and
path shapes to scan. Using both shapes allows us to directly compare paths
with the method of Priebe et al. (2005), since the scan shape used in that
work is the out-star. We will describe three anomaly shapes introduced
into the simulation: the star anomaly, the path anomaly, and the caterpillar
anomaly. The interplay between the shape of the true anomaly and the scan
shape is significant. Not surprisingly, we will see that a path scan shape
is better at detecting a path anomaly, and a star scan shape is better at
detecting a star anomaly. On a mixed star/path shape, the caterpillar, stars
tend to only identify parts of the anomaly, and paths generally discover
the more complete anomalous shape, while both shapes tend to produce
additional false edges.

Simulation Procedure. The steps for generating simulated data are:

(1) For each edge, estimate historic parameters from the full 30 days of
LANL data (see Section 3.4).

(2) Fit models for the distribution of the λγ scores collected on the 30 days
of data (see Section 3.4.5).

(3) Obtain a p-value threshold from ten days of simulated, non-anomalous
data (see Section 3.4.6).

(4) Simulate 100 days of minute data on each edge according to the his-
toric estimates, except for the set of anomalous edges, where the model
parameters are adjusted to introduce an anomaly (see below).

Anomalous Shapes Introduced into the Simulation. Three anoma-
lous shapes were used in the simulation, on two different areas of the LANL
network. The shapes are visualized in Figure 3.5. On each edge in each
shape, the model parameters were adjusted from their historic settings to
mimic an attacker, while all other edges (approximately 550k edges) in the
network are left at their historic settings. In both subgraphs, a red path is
highlighted. These paths will form the path anomalies. The purple edges,
in addition to the red edges, form a more general attack, the caterpillar
anomalies, designed to mimic the attack described in Figure 3.2. Finally,
the star anomaly was introduced as the set of outgoing edges from the
yellow-circled node in subgraph B.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

92 J. Neil, C. Storlie, C. Hash and A. Brugh

(a) Subgraph A (b) Subgraph B

Fig. 3.5. Star, path, and caterpillar anomalies. Each subgraph has a core path, around
which anomalous shapes were introduced. For each core path, the anomaly is plotted,
along with the directly connected edges not involved in the anomaly, which are provided
for context. Red edges and nodes give the core path, and additional caterpillar nodes and
edges are plotted in purple. Every edge in subgraph B is part of the caterpillar for this
subgraph. The yellow circle indicates the node at the center of the anomalous out-star.

The additional green edges in subgraph A are to give context for the
embedded anomalous subgraph within the larger network. One key differ-
ence between subgraph A and subgraph B is that in subgraph A, only two
additional purple edges where chosen to be anomalous for the caterpillar
anomaly, whereas in subgraph B, every outgoing edge of each node in the
path was made anomalous. Yet the red path in subgraph A, call it path
A, traverses a much more central part of LANL’s network, whereas path B
traverses a much less connected area. While these subgraphs do not come
close to examining all of the possibilities of traversal in the network, we
chose them as exemplars of the interplay between the underlying graph
topology and the attack path taken over that topology.

Anomalous Parameter Settings. To insert an anomaly on a star, path,
or caterpillar, we modify the historic parameters in each edge of the anoma-
lous shape before simulating, but use the historic parameters for all other
edges in the network.

In the OMM simulation, the parameters on the anomaly shape were
adjusted letting panom

01 = p̂01 + 0.2 on each of the anomalous path edges

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 93

Table 3.1. Anomalous parameter change
for simultations. P is an anomalous p01

change, M is an anomalous µ change, and
B is a change to both p01 and µ.

Type Anomalous Parameter Change

P panom
01 = p̂01 + 0.2

M µanom = µ̂ + 1
B panom

01 = p̂01 + 0.2, µanom = µ̂ + 1

(see Table 3.1). This increase was arrived at after consulting with cyber-
security experts, whose intuition was that likely attacker behavior could be
to transition to the active state once every two minutes. We choose to be
more conservative, by inserting a one-in-five-minute anomaly.

In the HMM simulations, we introduce three types of anomalies, sum-
marized in Table 3.1. The high-state mean was raised in the M and B
anomaly types, reflecting the fact that an attacker may act in a way that
increases the historic mean by one count per minute. All parameters not
mentioned in each type are left at their historic settings.

Scanning Procedure. Once the data has been generated for a specific
anomaly shape and model choice, for each of the 100 days of scanning:

(1) Slide a window of length 30 minutes over the day, offsetting each consec-
utive window by ten minutes. These choices were made after consulting
with experts and examining real attacks. Thirty minutes is sufficient to
capture many attack behaviors, but not so long that the true attack is
buried in non-attack data. The ten-minute offset was chosen to balance
processing time with quick response time, since shorter offsets require
more processing, but longer offsets mean longer delays between alarms.

(2) Within each window, select the edges of the entire data set for which
there was at least one nonzero count in the window. This creates a
subgraph of the overall graph.

(3) For this subgraph, enumerate all 3-paths, and calculate their p-values.
(4) If any path in this window has a p-value below the threshold, record

all such paths, and examine no further windows for this day.

The idea behind Step 4 is that once an anomaly is detected, the system
would pass the results to an analyst. This analyst would possibly shut down
the machines involved, and determine what, if any, true malicious activity
was present, before allowing the machines back on the network. Therefore,

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

94 J. Neil, C. Storlie, C. Hash and A. Brugh

Table 3.2. Detection statistics on star and caterpillar anomaly shapes
comparing path and star scanning shapes. AEF (average edge frequency)
is the average number of true anomalous edges per number of detected
edges. PAD (percent anomalous detected) is the average percentage of
the truly anomalous edges that were detected. GS (graph size) is the
average size of the detected subgraph, which may contain many false
edges. Standard errors are given in parentheses.

Anomaly Type Scan Type AEF PAD GS

Star Path 0.18(.02) 0.23(.03) 448.50(106.49)
Star Star 1.00(.00) 1.00(.00) 43.02(.02)
Cat A Path 0.01(.01) 0.79(.01) 3431.71(279.11)
Cat A Star 0.02(.00) 0.19(.01) 62.42(4.06)
Cat B Path 0.24(.01) 0.92(.01) 887.04(106.96)
Cat B Star 1.00(.00) 1.00(.00) 134.02(.02)

these first detection graphs are the only graphs we analyze in the results,
since for any further windows in the day, the anomaly would not be present
in the data after forensic analysis was performed.

3.5.1. A comparison of stars and paths

As discussed above, a wide variety of simulations was performed for this
chapter. We will focus on the differences between stars and paths, when the
true anomaly is a star or a caterpillar.

In Table 3.2, we present several statistics related to the detection of the
anomalous subgraph. Cat A and B refer to the caterpillar shapes inserted,
and correspond to subgraphs A and B of Figure 3.5.

Star Anomaly. Referring to Table 3.2, it is clear that using star windows
to scan a star anomaly is much more accurate than using paths. In fact,
the star scan detected every true anomalous edge, and only those edges, for
99% of the days. Paths picked up some portion of the anomalous star, but
at the cost of a much larger detected graph.
Caterpillar Anomaly. Recall from Figure 3.5 that Cat A is a very light
anomaly (only 11 edges) whose core is a very well-connected path. Path
scanning detected the anomaly on the first window, but stars had a non-
trivial time to first detection, as seen in Figure 3.6. While the AEF value was
fairly low using paths, on average nearly the entire anomaly was detected.
The star scan, on the other hand, consistently detected only one of the three
stars in the caterpillar. The other two stars, and core path edges, were not
detected at all by the star scan.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 95

Fig. 3.6. Caterpillar A time to detection. The x-axis is in minutes from the beginning
of the anomaly.

Cat B is a much heavier anomaly, involving every out edge of core Path
B, for a total of 174 edges. But Path B is much more lightly connected in the
graph, and therefore far fewer paths run through the anomaly than Path
A. We might expect path scanning to suffer, as a result. However, path
scanning performed even better than it did for Cat A, detecting more truly
anomalous edges on average, and fewer falsely detected edges. Fewer false
edges can be explained by the fact that fewer paths were inspected, but
better detection of the true anomaly has to do with the difference between
historic and anomalous parameters on the true anomaly. This is clear from
looking at the historic versus anomalous parameter values, but since there
were 174 sets of parameters to compare, we omit this analysis.

Next, we will discuss visualizations of the detected graphs. A detection
using path scans corresponds to the union of every path that had a p-value
smaller than the false discovery rate (FDR) threshold. Paths may overlap
on a set of edges, and so for each detected graph we can count the number
of times each edge appears in any detected path. This count can then be
used to color edges in a heat map of the detection. A heat map resulting
from using a path shape on the anomaly given by Caterpillar A is presented
in Figure 3.7.

On the left, we see Caterpillar A embedded in its 1-hop containing
graph (i.e., all edges emanating from the nodes in the caterpillar). On the
right, we see the path-scan heat map of a single detected window. The core
path is brightly colored, as these edges were detected very frequently. In
addition, while some edges may be dim, for this detection at least, every
true anomalous edge is present in this detection graph. These colors not only
give the analyst an ordering of importance of the edges, but also provide
an overall view of the structure of the anomaly. It additionally highlights
the ability of paths to form more general shapes of detection than just the
core shape.

To contrast with the visualization in Figure 3.7, in Figure 3.8 we provide
a visualization produced by using a star-shaped window to scan the same
Caterpillar A anomaly. One can see that most of the anomalous edges were

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

96 J. Neil, C. Storlie, C. Hash and A. Brugh

(a) Caterpillar A (b) Detection Heat Map

Fig. 3.7. Anomaly graph and heat map for Caterpillar A. The true anomaly is given
on the left, with anomalous edges colored red and purple. Green nodes and edges are
uninvolved in the anomaly, but are provided to give context. The more green edges, the
more chance of false discovery. The detected heat map is displayed on the right, with
darker red indicating more evidence of an anomaly.

missed, and many false edges were detected. Since star scans cannot overlap,
there is no concept of heat in this visualization. Red indicates the edge was
detected, and the light blue nodes are to provide the graph context.

3.6. Real Network Detections

Since our goal with this work is a system that runs in real time, on real
networks such as LANL’s internal network, we considered it an important
milestone to run, at least in prototype form, a path scan on real data
from such a network. Therefore, in this section we describe two path-scan
analyses of data contained in LANL’s historic data archives.

3.6.1. Detection of user change

The HMM models whose parameters were estimated from real data in 2011,
ending 30 days later, were used for this study. We chose to test for an
elevation in p01. Initially, we attempted a test of both parameters, but we

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 97

Fig. 3.8. Star scanning results for Caterpillar A. Detected edges are plotted in red. The
light blue nodes are to provide context.

encountered several numerical problems with testing the high-state mean
that could only be resolved with a more custom model for this data. In
addition, testing for only a p01 change had good performance in simulation,
especially when the mean was also anomalously high.

Since we used simulated data to set p-value thresholds in the simu-
lations, we require new thresholds when preparing to scan on real data.
Therefore, the next ten days of data, starting March 2 and ending March
12, were used to obtain these thresholds, using a discovery rate of one
detection per day. Finally, the next 20 days were scanned using 3-paths.

Note that completely unestimated (new) edges did arise in this data
set. For this example, we used these new edges in enumeration, allow-
ing estimated edges to be “bridged” by the new edges in the paths. But
we did not use the data on these new edges to contribute to the path
GLRT score.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

98 J. Neil, C. Storlie, C. Hash and A. Brugh

In these 20 days, 38 unique detections occurred, which is not unreason-
able for this example. We would have expected 20 detections, but the larger
number of detections can be attributed to estimation error in setting the
threshold, random fluctuation in the number of detections, and/or some
deterioration of the model fits over time. In practice, a larger sample would
be used for setting the threshold, and these models would be updated over
time.

While many of these detections look interesting, we choose to describe
the most anomalous one, i.e., the detection that achieved the minimum p-
value in the 20 days, in detail. A heat map of this detection is provided in
Figure 3.9.

Fig. 3.9. User-change detection heat map.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 99

In this figure, we see a star of 11 nodes around a central node, along
with a 2-path (red) beginning at the central node. This central node is a
calendaring server, and the star nodes around it are user machines making
connections to it to get the updated meeting schedule. The red edge leading
out from the calendaring server is an edge to a user machine, given in purple.
The edge leading out from this user machine is an email server.

On March 22, at around 11:00 am, this graph was detected as anoma-
lous. Each of the edges leading to the calendaring server were identified once
in the detected graph, and the two red edges were detected 11 times. This
implies that the 11 3-paths starting at each star node all passed through
both red edges.

When we conducted a forensic analysis of this graph, two relevant facts
emerged. First, the rate of counts on the two red edges increased signif-
icantly, while the edges leading into the star did not. This indicated an
embedded anomalous 2-path in the 3-paths, which is apparent in Figure 3.9.
Second, it was determined that the purple node changed significantly.
Specifically, the purple machine’s user changed.

Since the user changed, the settings of applications that accessed the
network from this computer changed. While this event could be explained
by normal network usage, it is nonetheless a very promising detection.
Without the legitimate user change, this would be an extremely interesting
anomaly, possibly indicating the presence of an attacker, and one that our
security team would investigate thoroughly. Since our goal was to imple-
ment a practical monitoring system that detects just such anomalies, this
finding is very encouraging.

3.6.2. Detection of real attack

While detecting a change in user was a compelling result, the real purpose
of this work is to detect true attackers. Therefore, we present a detection
of one such event. This event occurred over a period of nine days.

Paths were used as the scan shape and the OMM model was used.
A 30-day period immediately preceding the attack was used as training
data. The first 15 days were used to provide a baseline graph of existing
edges, and the second 15 days were used to define new edges and estimate
the new edge rates and OMM parameters for existing edges.

In Figure 3.10, we give the heat map of the most anomalous window.
Again, this is the union of those paths that exceeded the threshold, and
the minimum p-value path in this detection was the smallest p-value in the
entire time period.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

100 J. Neil, C. Storlie, C. Hash and A. Brugh

Edge Anomaly Level
High

Low

Vertex Legend

Known Bad
Suspected Bad

Fig. 3.10. Real detection heat map. Red nodes were independently verified as being
compromised during the attack. Blue nodes were highly suspicious (low p-values on
edges associated with these nodes).

3.7. Conclusions and Future Work

We have described a method for detecting anomalous activity where data
is defined over time on edges in an underlying graph structure. We moti-
vated the need for anomaly detection in this setting with the example of
an attacker traversing a computer network. Attacks can be very localized,
and so we introduce a method of windowing locally in the time × graph
space. In each window, we calculate a scan statistic indicating whether or
not the data in this local window is behaving according to a historic model.
Many attacks have, at their core, a path that is the result of an attacker

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 101

traversing through the network. Therefore, we have introduced k-paths as
a versatile type of local graph window.

We presented the results of simulations and real-data examples. The
simulations provide insight into system performance on a variety of different
anomalies and testing schemes. The real-data examples are exciting, since
we have detected the very activity we set out to detect. We presented
heat maps that should aid in the forensic investigation of detected graphs.
This system is operational on LANL’s computer networks, and has already
identified several interesting events.

Most of our work so far has been focused on the general framework
of scanning. Further work is focused on developing models that better
represent computer edge data. The OMM and HMM presented here are
not entirely sufficient to model the network data to our satisfaction. The
new edge model appears to be very effective, and requires very lightweight
estimation.

In addition, the data exhibit daily and weekly patterns. As seen in
Figure 3.1, the middle part of the work day has higher counts than at night.
Different schedules on different days can also be seen. Thus, the parameters
of the model should also be allowed to change smoothly through the day,
similar in spirit to the diurnal and weekly patterns modeled on telephone
call networks presented in Lambert and Liu (2006).

Another avenue of investigation lies in the graph shapes. More general
shapes are needed to avoid bias on our current knowledge of attack behavior.
For example, one could enumerate all subgraphs with at most k edges. The
issue then becomes one of limiting the number of subgraphs enumerated
for computational reasons. We are investigating methods for allowing the
data to suggest the enumerated subgraphs, rather than having fixed shapes
such as paths or stars, but this work is very nascent.

Yet another research direction is the handling of data collected at each
host. We believe there is strong signal in host data for identifying attacks.
New processes and services, along with open files, all have promise. To
collect this data requires substantial software engineering, something this
team is developing currently. Once the data is collected, we will model it
and include it in subgraph likelihoods just as we have done for the edges in
this chapter.

To conclude, we feel that this approach is very promising. We have
already identified attacks, yet we also feel that there is much to be done.
Ultimately, we aim to reduce false positive rates to extremely low lev-
els, allowing for highly accurate detection performance. The framework

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

102 J. Neil, C. Storlie, C. Hash and A. Brugh

of identifying local graph structures, followed by a measure of deviation
from baseline models, we feel, is a very promising approach to the task of
computer network attack detection.

Acknowledgments

This manuscript/publication has been authored by Los Alamos National
Security, LLC under Contract No. DE-AC52-06NA25396 for Los Alamos
National Laboratory with the U.S. Department of Energy. The United
States Government retains, and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains, a
non-exclusive, paid-up, irrevocable, worldwide license to publish or repro-
duce the published form of this manuscript, or allow others to do so, for
the United States Government.

References

Baker, J. (1975). The dragon system–an overview, IEEE T. Acoust. Speech 23,
1, pp. 24–29.

Baum, L. and Eagon, J. (1967). An inequality with applications to statistical
estimation for probabilistic functions of Markov processes and to a model
for ecology, Bull. Amer. Math. Soc. 73, 3, pp. 360–363.

Baum, L. and Sell, G. (1968). Growth functions for transformations on manifolds,
Pac. J. Math. 27, 2, pp. 211–227.

Baumes, J., Goldberg, M., Hayvanovych, M., Magdon-Ismail, M., Wallace, W.
and Zaki, M. (2006). Finding hidden group structure in a stream of com-
munications, ISI, pp. 201–212.

Baumes, J., Goldberg, M., Magdon-Ismail, M. and Wallace, W. (2004). Discov-
ering hidden groups in communication networks, ISI, pp. 378–389.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A
practical and powerful approach to multiple testing, J. Roy. Stat. Soc. B
Met. 57, 1, pp. 289–300.

Bensley, S., Amsden, P., Lyons, G., Amweg, J. and Calato, P. (1997). Cabletron’s
light-weight flow admission protocal specification version 1.0 (Network
Working Group, Request for Comments: 2124).

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Springer, New
York, NY).

Brownlee, N., Mills, C. and Ruth, G. (1997). Traffic flow measurement: Architec-
ture (Network Working Group, Request for Comments: 2722).

Casella, G. and Berger, R. (2001). Statistical Inference (Duxbury Press, Pacific
Grove, CA).

Chandola, V., Banerjee, A. and Kumar, V. (2009). Anomaly detection: A survey,
ACM Comput. Surv. 41, 3, p. 15.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

Statistical Detection of Intruders Within Computer Networks 103

Collins, M. and Reiter, M. (2007). Hit-list worm detection and bot identification
in large networks using protocol graphs, in Recent Advances in Intrusion
Detection, Proceedings of the 10th International Symposium, RAID. 5–7
September 2007 (Springer, New York, NY), pp. 276–295.

Doucet, A., De Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo meth-
ods in practice (Springer, New York, NY).

Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T. et al. (1996). A sense of
self for unix processes, IEEE Symposium on Security and Privacy (IEEE
COMPUTER SOCIETY), pp. 120–128.

Glaz, J., Naus, J. and Wallenstein, S. (2001). Scan Statistics (Springer, New
York, NY).

Heard, N., Weston, D., Platanioti, K. and Hand, D. (2010). Bayesian anomaly
detection methods for social networks, Ann. Appl. Stat. 4, 2, pp. 645–662.

Kolaczyk, E. (2009). Statistical Analysis of Network Data: Methods and Models
(Springer, New York, NY).

Kulldorff, M. (1997). A spatial scan statistic, Commun. Stat. Theor. 26, 6,
pp. 1481–1496.

Lambert, D. and Liu, C. (2006). Adaptive thresholds: Monitoring streams of
network counts online, J. Am. Stat. Assoc. 101, 473, pp. 78–88.

Lambert, D., Pinheiro, J. and Sun, D. (2001). Estimating millions of dynamic
timing patterns in real time. J. Am. Stat. Assoc. 96, 453.

Liben-Nowell, D. and Kleinberg, J. (2007). The link-prediction problem for social
networks, J. Am. Soc. Inf. Sci. Tech. 58, 7, pp. 1019–1031.

Loader, C. (1991). Large-deviation approximations to the distribution of scan
statistics, Adv. Appl. Probab. 23, 4, pp. 751–771.

Lu, Q., Chen, F. and Hancock, K. (2009). On path anomaly detection in a large
transportation network, Comput. Environ. Urban. 33, 6, pp. 448–462.

Mukherjee, B., Heberlein, L. and Levitt, K. (1994). Network intrusion detection,
IEEE Network 8, 3, pp. 26–41.

Naus, J. (1982). Approximations for distributions of scan statistics, J. Am. Stat.
Assoc. 77, 377, pp. 177–183.

Noble, C. and Cook, D. (2003). Graph-based anomaly detection, in Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (ACM), Washington, DC, pp. 631–636.

Phaal, P., Panchen, S. and McKee, N. (2001). Inmon corporations sflow: A method
for monitoring traffic in switched and routed networks (Network Working
Group, Request for Comments: 3176), Tech. rep., Technical report, Internet
Engineering Task Force (IETF).

Pohlmeier, W. and Ulrich, V. (1995). An econometric model of the two-part
decisionmaking process in the demand for health care, J. Hum. Resour. 30,
2, pp. 339–361.

Priebe, C. E., Conroy, J. M. and Marchette, D. J. (2005). Scan statistics on enron
graphs, in Workshop on Link Analysis, Counterterrorism and Security at
the SIAM International Conference on Data Mining (Newport Beach, CA),
pp. 229–247.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch03

104 J. Neil, C. Storlie, C. Hash and A. Brugh

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications
in speech recognition, Proceedings of the IEEE 77, 2, pp. 257–286.

Salamatian, K. and Vaton, S. (2001). Hidden Markov modeling for network com-
munication channels, Perf. E. R. 29, pp. 92–101.

Stallings, W. (1987). Handbook of Computer-communications Standards: The
Open Systems Interconnection (OSI) Model and OSI-related Standards, Vol-
ume 1 (Macmillan, New York, NY).

Ye, N. and Li, X. (2000). A Markov chain model of temporal behavior for anomaly
detection, in Proceedings of the 2000 IEEE Systems, Man, and Cybernetics
Information Assurance and Security Workshop, Vol. 166 (Oakland, CA),
p. 169.

Yeung, D. and Ding, Y. (2003). Host-based intrusion detection using dynamic
and static behavioral models, Pattern Recogn. 36, 1, pp. 229–243.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Chapter 4

Characterizing Dynamic Group Behavior in Social
Networks for Cybernetics

Sumeet Dua∗ and Pradeep Chowriappa

Program of Computer Science, Louisiana Tech University,
121, Nethken Hall, Dan Reneau Drive, Ruston, LA 71272, USA

sdua@coes.latech.edu

This chapter is an attempt to characterize users sentiments or opinions for the
creation of ad hoc communities over social networks for effective situational
awareness. We believe that the mined patterns in user opinions can act as
indicators of potential threats in cyberspace. This chapter proposes a novel
data-mining approach to identify ad hoc communities and track these commu-
nities to effectively identify users and topics that influence the dynamics of a
community over time.

4.1. Introduction

The recent excrescence of social networking (SN) and social media (SM)
as a medium of communication cannot be overlooked primarily for its far-
reaching applications and outreach. Both SN and SM have developed from
a means of casual communication to “virtual glue” that connects individ-
uals over cyberspace. This constantly evolving and dynamic cyber system
provides a deluge of data and information that can be exploited to enhance
the situational awareness (SA). Existing techniques to achieve SA work by
modeling the structure of user communities. These techniques employ stan-
dard visualization and quantitative tools to measure correlations between
profiles of users within a community and users across communities. Though
SA in SN lacks a clear definition and the use of a social network-based SA
system is still in the conceptual form, this chapter is aimed at exploiting
SN for effective SA.

∗corresponding author.

105

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

106 S. Dua and P. Chowriappa

The transition of the World Wide Web (Web 1.0) to the semantic web
(Web 2.0) has enabled technologies to move away from just websites and
portals to social networking and social media sharing. This transition has
not only enabled online collaborations between individuals across the globe,
but has laid the foundation for a more interoperable system, with diverse
subsystems and organizations working synergistically. With the emergence
of mobile networks, we move towards a more intelligent web (Web 3.0),
and the growing footprint for an individual over cyberspace has become
more significant. There is a need for data mining, machine learning, and
recommendation systems for a more intuitive web that can adapt to an
individual’s needs.

The current Web 2.0 provides a unified framework for the sharing and
reuse of data across platforms, applications, and organizations alike for
all users. Web 3.0, on the contrary, focuses on establishing relationships
between data. One can therefore foresee the characterization of an individ-
ual over cyberspace by the data he possesses and the data he shares with
others over the same space. This vision for a user-specific web is, however,
plagued by challenges of data growth and uncertainty. Handling these data
challenges is vital to establishing a well-connected semantic web. Despite
these challenges the semantic web provides the avenue to revolutionizing
the social structure in which individuals and communities have a stronger
presence.

Cybernetics is an area of research that has its theoretical underpinnings
in social network analysis and applications in online communities. These
online communities include wikis, social network communities, collabora-
tive book marking, and social tagging (to name a few). Cybernetics in this
chapter is perceived in three key aspects: surveillance, event management,
and threat analysis. Each of these aspects affects three prominent applica-
tions of cyber security, namely: data forensics, community intelligence, and
incidence management.

Situational awarenes can be described as the effective recognition and
realization of a system’s (or an organization of users over the web) perfor-
mance. The performance of a system is defined as the system’s ability to
achieve set deliverables that the system is expected to support. Effective SA
relies on the prediction of events (threats) both internal and external to the
system. In a social network, users are related to each other if they share simi-
larities in interests referred to as topics of interest. These topics of interest
are dynamic for a user and change with the user’s interest and activity over
the social network. This change in activity helps keep track of users’ likes
and dislikes that are vital in the realization of a situationally aware system.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 107

Groups of users in a system that share similar interests are referred to
as ad hoc communities. The tracking of ad hoc communities enables the
detection of events, tracking of existing events, and summarizing all events.
Furthermore, the tracking of communities establishes the complex interplay
between users of communities in a cyber system.

Of the many challenges of SA, some are related to the problem of
maturity. Here security should encompass a wide variety of cyber-security
issues, from the collection of log information to the analysis of outliers and
anomalies. Secondly, there is the challenge of handling the data deluge asso-
ciated with social networks. Data over social networks are semi-structured.
The development of techniques to manage and enable analysis of a diverse
set of data types is challenging. Data management in a cyber system is
vital as the confidence of predicting events is tied to the quality of data.
These predicted events are succinct to the creation of a system capable of
identifying zero day events (attacks), rather than a reactive system. The
next challenge is the creation of scalable and reliable tools for SA. Cur-
rently, SA and its associated challenges focus on networks to answer two
predominant issues: the determination of the current state of the system,
and comparing the current conditions with normal conditions to identify
potential inconsistencies that might indicate a threat. With large amounts
of SN data unstructured and varied, creating newer tools to visualize this
data is still an open challenge.

This chapter is targeted towards describing the significant role of cyber-
netics and SN in SA. We focus on the extraction, inference, and testing of
higher-order feature spaces for the identification and characterization of ad
hoc communities in a social network. We highlight techniques that exploit
the behavior of individuals over an SN. We demonstrate a novel graph
theoretic approach that exploits user-behavior patterns for effective ad hoc
community detection. Leveraging the concepts of tag sense disambiguation,
this approach effectively gauges the behavior of a user in a social tagging
SN. Furthermore, we build on the concepts of inter-transaction mining over
time to track the evolution of behavioral patterns within communities. In
conclusion, we discuss future directions and potential applications of the
proposed system.

4.2. User Interaction Pattern Analysis

As “social” is the phrase du jour, we foresee rampant growth of social web
techniques. There has been an increased interest in social network analysis
for identifying structure and semantics and providing better information

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

108 S. Dua and P. Chowriappa

management and retrieval systems in this chaos of information overload.
As we move toward a more socio-semantic web, identifying structure in
web content will continue to provide semantics and automatic machine
translation for users. This automatic machine translation provides netizens,
citizens of the internet, with a curated and contextual web experience.

The most important criterion being similarity in interests, we employ a
relevancy metric to link similar contributors and filter dissimilar ones. The
significance of the research presented in this work is focused on identifying
ad hoc user communities.

To allow us to link and filter users, we must first determine and extract
the best features that capture the similarity among contributors. Although
shared interests are connected implicitly in the interest domain, they are
not connected explicitly in the connectivity domain. Thus, we aim to
identify different sets of contributors who are interconnected through a
particular topic of interest, and form groups that we refer to as ad hoc
communities.

With the proliferation of collaborative tagging platforms, there has
been a recent surge in the study of textual keywords (tags) applied by users
to annotate web content (Lindstaedt et al., 2009; seok Min et al., 2009).
Tags are examined to generate ways of identifying similarities between con-
tributors. In social settings, contextualized tags facilitate online collabo-
ration among contributors with similar interests, which provide avenues
for personalized information exploration. However, this requires that first
an ad hoc community be identified based on the semantic context of user
information need. This semantic context is captured from the user’s tag
usage profile.

This ad hoc community detection is a valuable tool required in grouping
related items based on relevancy identified by similarity. Community detec-
tion is used in two ways in social network mining. First, it is used to identify
a structure in the form of social interest topics in which a community is
formed by a group of tags (tag clusters) which identify social interest topics
in the folksonomy-based social network. Second, it is used to cluster users
into groups (ad hoc communities) based on similarities. We focus on iden-
tifying these communities; thus, the use of the term community detection
from this point refers to ad hoc communities.

By definition, community detection refers to the identification of clus-
ters in a network, and clusters refer to groups of nodes. The nodes in this
group have more connections among each other than with nodes in other
clusters (Fortunato, 2010). The task of discovering clusters of nodes in

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 109

a network is usually referred to as the problem of discovering community
structures within the networks (Newman, 2004). It has been suggested that
this method identifies higher-order structures in the networks to unveil
insights into the functional organization of communities (Gulbahce and
Lehmann, 2008). For community detection, identifying interactions between
nodes can help determine communities; thus, establishing links between
users (nodes), by identifying implicit social interactions, forms the crux of
ad hoc community detection.

It is believed that meaningful tag clusters (consisting of sets of related
tags in the tag space) are found to revolve around a particular topic of
interest. A tag concept hierarchy is a hierarchy of interest topics identified in
the tag space. In this space, an inherent topic–subtopic relationship exists,
forming a hierarchical structure. Thus, identifying meaningful groups of
related tags from a tag concept hierarchy has been found to enhance a social
search by contextualizing tags. Tag contextualization is supported by the
formation of tag communities and subcommunities. Therefore, tag concept
hierarchy generation, from which we can identify meaningful communities
and subcommunities of tags, is crucial. In the process of identifying tag
communities, the system reduces a user’s options to a limited set of tags,
thereby filtering irrelevant information content associated with other tags.
Hence, related communities are identified from tag concept hierarchy and
provide relevancy to the user’s information need or interest. We propose a
graph-based information extraction methodology to extract topical features
that identify the tendency of users in an SN to associate with other users
with similar interests. We hypothesize that an ad hoc community of users
sharing similar interests can be identified by overlapping tag clusters in the
tag concept hierarchy.

4.3. Motivation

In the participatory Web 2.0, collaborative tagging systems that employ
folksonomy information, which is a collection of users, tags, and resources,
have been identified as a valuable source of information that can be used
to build efficient information retrieval and recommender systems.

In a folksonomy, it has been shown that tags are the most valuable
source of information among its three elements. The tag has been shown
to be a good tool for the proper indexing, managing, and organizing of
web resources, as seen in tag-based information retrieval and recommender
systems (Hotho et al., 2006; Zhang et al., 2006). Tags are used to identify

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

110 S. Dua and P. Chowriappa

shared knowledge in collaborative tagging systems (Golder and Huberman,
2013) and to identify social interest topics (Li et al., 2008).

More recent information retrieval systems do not rely solely on raw tags
from the folksonomies, but require a higher-order relationship between tags.
This higher-order relationship between tags forms a semantic or meaning-
ful structure and adds context to the tags. As we move toward a socio-
semantic web, ontology and emergent semantic web technologies aim at
linking entities within the web. Ontologies are also important for informa-
tion retrieval (Zhang et al., 2006; Zhou et al., 2008) and recommendation
systems (Arazy et al., 2009), because they aid in semantic searches made
possible by the ontological knowledge base.

Emergent semantic structure in social networks also exists in the form
of ontologies (Mika, 2007). Studies have shown that hierarchical relation-
ships between concepts are formed by the tags in the folksonomy system.
These studies have outlined folksonomy applications for better informa-
tion retrieval systems (Zhou et al., 2008) and a more complete semantic
web (Zhang et al., 2006).

The main purpose for grouping/clustering tags is to extract semantics
in the web chaos. As individual tags do not have an inherent structure
and have a lot of noise in the form of sparseness, ambiguity, and varying
granularity levels, we need to find tag clusters (higher-order relationships
between tags) to alleviate these problems (Plangprasopchok et al., 2010).

Tag annotations can be leveraged to cluster the tags into groups. Thus,
tag use provides more avenues of information exploration and navigation,
automatic content annotation (Brooks and Montanez, 2006), user profil-
ing (Gemmell et al., 2008), content clustering (Giannakidou et al., 2008),
and tag sense disambiguation (Au Yeung et al., 2009). This tag-use infor-
mation is the cornerstone of the automatic curation of web content, making
the task of machine translation easier and user-intervention free.

The challenge of using this system, however, lies in identifying and link-
ing higher-order relationships between tags based on semantic similarity.
Grouping tags by identifying related tags has been done using association
rules (Schmitz et al., 2006) as well as clustering techniques (Papadopoulos
et al., 2010).

Employing association rules is not always feasible for identifying and
grouping related tags, as these techniques rely on user-defined parameters
of support and confidence. The clustering of tags based on conventional
clustering techniques (Giannakidou et al., 2008) requires that the num-
ber of clusters be defined as input. Although shortcomings of conventional

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 111

clustering techniques can be addressed using community detection methods
on tag graphs, these methods do not consider the overlap among the tag
clusters and only consider a disjoint set of tags. The work by Papadopoulos
et al. (2010) uses overlapping clusters to establish the relationship between
tags. We believe that employing the overlapping clique percolation method
is best for identifying overlapping tag clusters. This method, although
not formally a parameter-free algorithm, is used here in a parameter-
independent manner, the details of which are discussed in the following
section. This algorithm also finds groups based on inherent properties of
tag associations that take into consideration the semantic context of the
tag used to group them.

Related research include profiling a user in a social network. Profiling
refers to identifying user interests, which can be carried out by analyz-
ing the online activity of a user left behind during his or her web use.
Another way to profile users (to capture user interests) is to identify user
opinions toward different entities in the web that could be captured from
user-generated content. Capturing such user opinions is possible due to a
budding research area called opinion mining. This area has been explored
as an approach toward information retrieval by Missen et al. (2013), who
have analyzed words appearing in documents as sources for identifying user
opinions/interests in a network. The opinion-mining approach has also been
extended to the folksonomy-based social network arena, in which the focus
has been on using user-generated tags to identify user interests/opinions as
can be seen in Liang et al. (2010). Opinion mining has also been explored
as a means for providing quality recommendations (Anand and Bharadwaj,
2013). Anand and Bharadwaj carve out trust–distrust networks based on
a user’s historic preferences (interests). Interests/opinions/preferences have
also been explored where users are grouped based on similar opinions (Hua
and Haughton, 2012). Shared communities of interest have been discussed
by Cha et al. (2012).

In a different but related research area, user communities are identified
in social networks based on extracted profiles. In this framework, commu-
nities are formed implicitly by shared interests. User interests evolve over
time and, as a result, user-community membership also changes over time.
In related research, Kashoob and Caverlee (2012) have discussed tempo-
ral group (community) formation and their transient interests. Temporal
group formation emphasizes the study and analysis of social bookmarking
communities over time. Our method differs from theirs, however, because
we restrict our analysis to finding permanent user communities that share

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

112 S. Dua and P. Chowriappa

similar interests over a given time. Kas et al. (2012) also discuss the topology
changes in social networks based on changing trends and temporal group
evolution.

Multiple user interests can result in users having multiple community
memberships. This phenomenon causes overlapping community structure
in social networks. Because of the potential overlap between memberships
and interests, many researchers have studied communities with an overlap-
ping nature, for example, Rees and Gallagher (2012). Overlapping user
communities based on co-clustering of tags and users have been studied
by Wang et al. (2010). The proposed methodology framework for ad hoc
community detection aims at identifying discrete social groups of shared
interest topics, as opposed to social groups with an overlapping nature.

4.4. Proposed Framework

The proposed framework for ad hoc community detection is based on the
popular knowledge discovery in databases (KDD) and is an extension to
the framework described by Nair and Dua (2012). Figure 4.1 provides an
illustration of the four-step process that includes data preprocessing, feature
extraction, and higher-order mining. The fourth step is an extension of tem-
poral analysis of ad hoc communities using mining of frequent patterns. This
framework uses a graph-based information extraction approach, involving
the steps of topic modeling, user profiling, and community detection.

In this section, some of the concepts required for a better understanding
of the folksonomy system are introduced before we explain the steps in
our methodology. We define the entities involved in a folksonomy system
and the relationships formed between entities that could be leveraged for
identifying ad hoc communities of users.

We start by defining a resource as a group of any type of information
available on the web that includes a set of web pages, URLs, music, videos,
books, academic papers, events, or bookmarks. Here, resources correspond
to research articles, and the term is defined as follows.

Definition 4.1. Resources, R, is a finite set of articles {a1, a2, . . . , an}
from the who-posted-what table in the given data set.

Similarly, tag is a textual keyword in the form of metadata, or can be
simply stated as a “meta keyword,” which is used to annotate or label a
resource (based on its information content). Therefore, we define tags as
below.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 113

Fig. 4.1. The three-step framework consists of data preprocessing, feature extraction,
and higher-order mining.

Definition 4.2. Tags, T, is a finite set {t1, t2, . . . , tm} from the who-
posted-what table in the given data set, which is used to label articles
available in the data set.

A user is anyone who has a collection of resources and tags to which he
or she is associated. This user uses the tags in his or her collection, which
we call the user’s tag vocabulary, to annotate different resources in the web
the user is interested in, making that resource part of his or her library of
resources.

Definition 4.3. Users, U, is a finite set {u1, u2, . . . , up} from the who-
posted-what table in the given data set in which each user has different
resources (articles) and tags in his or her library.

Folksonomy is the bottom-up classification of resources by users and is
a result of using personal free tagging to form a data structure. The users
rely on such structures for efficient recollection and retrieval of resources.

Folksonomy is an embodiment of the above-defined entities R, T,
and U, and several primary and higher-order relationships exist between

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

114 S. Dua and P. Chowriappa

the elements involved in the folksonomy. Primary relationships are formed
between these entities when there is a direct relationship between the combi-
nations of any two of these three entities. An example of a primary relation-
ship is a resource-tag graph, where there is an edge between two entities of
folksonomy, namely, resources and tags. Higher-order relationships occur in
a folksonomy due to the relationship between any of these entities and any
of the possible relationships (derivative relationships) between them. An
example of a higher-order relationship is an interest graph in which there is
an edge between users and social interest topics. Social interest topics, then,
are derivations of the relationships between resources and tags. Therefore,
we formalize the definition of folksonomy as follows.

Definition 4.4. A folksonomy, F, is a tuple F = (U, T,R, Y), where U, T,
and R are finite sets as defined above, and Y is a ternary relation between
them, i.e., Y ⊆ U×T×R, called tag assignments/tag annotations (Schmitz
et al., 2006).

In a folksonomy, resources are connected to tags based on tag applica-
tions and users are connected to resources present in their library. Through
the resources present in a user’s library, the user becomes connected to a
tag as well. This connection forms the ternary relationship between R, T,
and U.

4.5. Data Preprocessing

Data preprocessing here corresponds to data transformation, which is car-
ried out as a projection step. Data transformation starts with modeling
the folksonomy’s data as a graph. Then this graph is subjected to different
projection operations to transform it from a higher dimension to a lower
dimension.

Definition 4.5. A folksonomy graph FG = (V, Y) is a tripartite graph,
where the vertex set V is partitioned into three disjoint subsets of U, T,
and R, such that U ∩ T = T ∩R = U ∩R = U ∩ T ∩R = ø, and every edge
(u, v) ∈ Y , connects a pair of vertices u and v where u and v are vertices
that “do not” belong to the same disjoint set U, T, or R, i.e., Y ⊆ U×T×R.

The folksonomy graph FG, which is a tripartite graph, can be projected
to its corresponding bipartite representations of user-resource, tag-resource,
and user-tag bipartite graphs.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 115

4.5.1. Projection of tripartite to bipartite graph

This tripartite to bipartite projection is carried out by considering any two
sets of vertices indexed over a third set. This projection step is explained
more clearly by using an example of folding a tripartite folksonomy graph
to a bipartite tag-resource graph.

In order to capture interactions between resources and tags for indi-
vidual users, we fold the tripartite folksonomy graph into resource and tag
dimensions to get a resource base for every user ui in FG.

Example 4.1. In order to study a single user, we extract all the tags
used and resources tagged by this user. The bipartite tag-resource graph
for a user u can be represented as TRu = (T × R,Etr), where edge set
Etr = {(t, r) | (u, t, r) ∈ Y }.

Definition 4.6. A resource base RB = (T (ui)×R(ui), E, ui) is a bipartite
graph, for each user ui, such that ui ∈ U . The vertex set is T (ui) ⊆ T and
R(ui) ⊆ R with the constraint that T (ui) ∩ R(ui) = Ø. The edge set is
given by the following equation, E = {(t(ui), r(ui)) | (ui, t(ui), r(ui)) ∈ Y },
where vertex t(ui) ∈ T (ui) and vertex r(ui) ∈ R(ui).

The resource base is a bipartite graph that is a subgraph of the folk-
sonomy graph FG, and includes the elements R(ui) and T (ui) indexed for
a user ui. This graph represents mapping of resources to tags in a user’s
library based on whether a particular tag is used to label a resource.

Definition 4.7. A global resource library (GRL) is defined as GRL =
(T × R,ETR) that is a bipartite graph, where the vertex set T × R is
partitioned into two disjoint subsets of T and R, such that T ∩R = Ø and
the edge set is ETR = {(t, r) | (t, r) ∈ Y }, and GRL is a set of all the
resource bases (RB), of all users U that form a large bipartite graph which
can be thought of as a library indexed over resource bases of all users.

The GRL represents connections between different resources R and
tags T. This connection is formed based on whether a particular tag is used
to label a particular resource where the tags and resources come from the
resource bases of all the users.

The GRL is represented using an incidence matrix B, where incidence
matrix is used to represent two sets of vertices T and R in a bipartite graph,
defined as Bm×n = {bij}, where i = 1 . . .m, j = 1 . . . n, m = number of
resources R, n = number of tags T , and m �= n.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

116 S. Dua and P. Chowriappa

If the indices i = j, then bij = 0;

otherwise, bij =

{
1, if there is an edge between ti and rj
0, if there is no edge between ti and rj

.

Definition 4.8. A tag graph TG = (T,ETT) is a one-mode graph, where
vertex set T represents the set of tags and ETT is an edge set, such that
ETT ⊆ {(t1, t2) | (t1, t2) ∈ T }, and t1 and t2 are vertices that belong to the
same vertex set T .

4.5.2. Projection of bipartite to one-mode graph

The projection of bipartite to one-mode graphs is carried out using matrix
multiplication. In this step, the transpose of incidence matrix B is multi-
plied with B, which represents GRL to generate TG. The tag co-occurrence
matrix (TCM), which is the matrix representation of TG, can thus be
calculated as TCM = BT × B.

This matrix multiplication step automatically identifies co-occurrence
weights (edge weight between two tags in TG) between two tags as values in
TCM. The co-occurrence weight between two tags t1 and t2 in TG is aggre-
gated on all the resources they have co-occurred (used/applied together).

This aggregation of weights is performed automatically using adja-
cency matrix multiplication during the projection step. However, in our
methodology, we do not consider edge weights above 1; hence, any weight
corresponding to connectivity is represented by a binary weight 1, and 0
represents no connectivity.

The TG is represented by using an adjacency matrix TCM, where
adjacency matrix is used to represent a single set of vertices in a one-
mode graph and is defined as TCMn?n = {tcmij}, where i = 1, . . . , n,
j = 1, . . . , n, and n = number of tags T.

If the indices i = j, then tcmij = 0;

otherwise, tcmij =

{
1, if there is an edge between ti and tj
0, if there is no edge between ti and tj

.

The interactions between all the tags represented by TCM correspond
to a tag space.

To study and capture the tag interactions occurring in tag space TCM,
which are made possible by the resources (i.e., to capture the links formed
between all sets of tag pairs because of the common resources used by a
pair of tags), we again fold/project the resource-tag bipartite graph GRL

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 117

into a one-mode graph of tags. We call the resultant graph a tag graph
(TG) and we refer to the TG as the tag concept hierarchy (TCH).

4.6. Feature Extraction

Feature extraction is an information-extraction step in which we search
for topic features (set of tags), which can be used to build user profiles.
For feature extraction, we follow a graph-based topic modeling technique
to extract abstract topics in the form of tag cliques from the tag graph.
Hence, we also refer to the feature-extraction step as topic extraction. This
process is illustrated schematically in Figure 4.2.

Definition 4.9. Tag clique, TC, in a tag graph TG = (T,ETT) is a tag
vertex set ⊆ T , such that for every two vertices in TS, there exists an edge,
which is equivalent to saying that a subgraph (clique) induced by TS is
complete.

Thus, TC is a pair (TS,E), where TS is a set of vertices corresponding
to tags and E is the edge set, such that E ⊆ {(t1, t2) | t1, t2 ∈ TS}, where
t1 and t2 are vertices that belong to the same vertex set TS and TS ⊆ T .

There exists several such tag cliques in the tag graph; hence, we define
TCn as a finite set {TC1, TC2, . . . , TCn}, ∀TCi ⊆ T .

As shown in the equation above, tag cliques are subsets of related tags
identified in the tag graph that correspond to tag clusters in such a way that
each tag in the cluster is connected to every other tag of the community,
forming a cohesive dense subgroup of tags (a clique). All the tags in such a
cluster are supposed to belong to a topic area of interest in the real world.
We refer to these clusters as social interest topics or interest topics.

Fig. 4.2. Steps of topic extraction: (a) resource-tag graph (GRL); (b) tag concept hier-
archy; and (c) topic extraction (TC).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

118 S. Dua and P. Chowriappa

The identified tag cliques correspond to interest topics. Furthermore,
the sub-cliques within the tag clique correspond to subtopics of interest.

4.6.1. Tag sense disambiguation

Folksonomy systems have an inherent problem in which many tags are
ambiguous and unfamiliar to users. This unfamiliarity is due to a lack of
knowledge of the context in which a tag was used, making them fail to under-
stand the meaning of the tag. The methods used to disambiguate the context
of each tag’s use are referred to as tag sense disambiguations (TSDs).

In our analysis of tag graphs for identifying tag cliques, we need a tech-
nique to identify tags that have been used in different contexts to provide
for a better TSD. This requirement indicates that we should not just find
tag cliques in the tag graph, but that we should also find tag cliques that
overlap. Finding tag cliques that overlap makes them effective for disam-
biguating the context of tag use. In order to reach this objective, we have
used the clique percolation method (CPM) (Palla et al., 2005), which is
an effective graph theoretic method; we define the details and workings of
CPM in the next section.

4.6.2. Clique percolation method

The clique percolation method is a graph theoretic algorithm used to
analyze a network and identify overlapping community structures of net-
works (Palla et al., 2005). Formally, this algorithm is not parameter free.
However in our work, we used it in a parameter-free way as follows. The
implementation of the CPM algorithm finds overlapping communities from
graphs based on first locating the maximal cliques that are also overlap-
ping. This algorithm uses these maximal cliques to further build k-clique
communities that are not necessarily maximal. Finding these k-clique com-
munities is thus dependent on a parameter k. In our work, we only used the
maximal complete subgraphs that were identified by the CPM algorithm
and is thus independent of any user-defined parameters. Hence we used the
CPM algorithm in a parameter-free manner.

4.6.3. Tag concept hierarchy

Due to the above-mentioned required criterion of TSD, our methodology
used the clique percolation method (Palla et al., 2005) to find the overlap-
ping tag cliques in the tag graph.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 119

Definition 4.10. A tag concept hierarchy TCH = (T,E, δ) is a one-mode
graph, where T is a set of vertices corresponding to tags, E is a set of edges
set E ⊆ {(u, v) | u, v ∈ T }, and δ represents the hierarchical relationship
formed by the tag cliques which can be defined as follows.

Definition 4.11. We define a tag k-clique TC in TCH (where k ≥ 4)
with vertex set TS, ∃ vertex set of tags r ⊂ TS, such that for every two
vertices in r, an edge exists connecting the two.

The constant δ represents subsumption hierarchical relationships in the
form of topic–subtopic relationship, where the general topic subsumes the
subtopic forming a hierarchy.

The definition of TCH is an extended version of the definition of TG
appending the hierarchy relationships involved in it, and we call this tag
graph a tag concept hierarchy from this point forward.

4.6.4. Effective tag sense disambiguation using tag

concept hierarchy

TCH is a byproduct of the folding of the global resource library into one
dimension of tags. Thus, TCH is a tag–tag one-mode graph that represents
connectivity between tags (represented by a tag co-occurrence matrix) in
the tag space TCM. In such a graph, the constant δ represents the subsump-
tion hierarchy formed between different topics formed by a set of tags. The
inherent hierarchical characteristics of TCH can thus be thought of as a
semantic structure formed by tags. The social topics (tag cliques) embed-
ded in TCH and corresponding to various concepts formed by tags can be
thus thought of as a concept hierarchy formed by the tags in the tag space
TCM. Hence, we can also call the tag graph a tag concept hierarchy. When
combined, the steps of generating GRL to extracting social interest topics
TC form the topic extraction step.

4.7. Higher-order Mining

Higher-order mining is the mining of knowledge based on higher-order fea-
tures, which are the relationships between the raw features with which we
worked in previous steps. In this work, the raw features correspond to tags,
and higher-order features correspond to social interest topics formed by
tags (tag cliques). In this step, higher-order features, in the form of tag
cliques (interest topics), obtained from the previous step are mined.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

120 S. Dua and P. Chowriappa

For the higher-order mining step, we use the following sub-steps:
(1) building a user profile; (2) establishing links between users based on
interest similarity; and (3) detecting ad hoc communities.

4.7.1. User profile

We extract interest graphs by modeling user profiles using a method that
includes mapping users to interests (social interest topics) identified in the
form of tag cliques in the previous step. This mapping yields a vector for
each user, and features correspond to social interest topics. We define an
interest graph as follows.

Definition 4.12. An interest graph IG = (U × TC,EUTC) is a bipartite
graph, where the vertex set is partitioned into two disjoint sets of vertices,
users U and tag cliques TC, such that U ∩ TC = Ø and edge set, EUTC =
{(u, tc) | (u, tc) ∈ Y }, where u and tc are vertices and do not belong to the
same disjoint set U or TC.

Since this bipartite graph captures the mappings from users U to their
interest topics TC, we refer to the interest graph a user profile in this work.
While building a user profile, we consider the user’s degree of interest toward
a social interest topic and use this degree of interest to assign weights to the
edge that maps the user U to an interest topic TC in the IG. There are three
types of user profiles (interest graphs) used in this work: binary, weighted,
and term frequency-inverse document frequency (TF-IDF)-weighted user
profiles. The differences between binary, weighted, and TF-IDF -weighted
user profiles are based on different weighing schemes.

4.7.2. Types of user profiles

The three interest graphs corresponding to binary, weighted, and TF-IDF -
weighted weighing schemes are represented using three incidence matrices
BUP , WUP , and TUP , respectively, in which an incidence matrix is used
to represent a bipartite graph with two sets of vertices. We define each of
these incidence matrices as follows.

Definition 4.13. A binary user profile BUPm×n = {bupij} is a matrix,
where i = 1, . . . ,m, j = 1, . . . , n, and m �= n.

If the indices i = j,
then bupij = 0;
otherwise,

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 121

bupij =

{
1, if there is an edge between ui and tcj
0, if there is no edge between ui and tcj

where there is an edge between ui and tcj only if |t(ui) ∩ tcj | ≥ 1.

Definition 4.14. A weighted user profile WUPm×n = {wupij} is a
matrix, where i = 1, . . . ,m, j = 1, . . . , n, and m �= n.

If the indices i = j,
then wupij = 0;
otherwise,

wupij =

{
|t(ui) ∩ tcj | , if there is an edge between ui and tcj
0, if there is no edge between ui and tcj

where there is an edge between ui and tcj only if |t(ui) ∩ tcj | ≥ 1.

Definition 4.15. A TF-IDF -weighted user profile TUPm×n = {tupij} is
a matrix, where i = 1, . . . ,m, j = 1, . . . , n, and m �= n.

If the indices i = j,
then tupij = 0;
otherwise,

wupij =

{
Norm |t(ui) ∩ tcj | , if there is an edge between ui and tcj
0, if there is no edge between ui and tcj

where there is an edge between ui and tcj only if |t(ui) ∩ tcj | ≥ 1 and
Norm |t(ui) ∩ tcj| = |t(ui) ∩ tcj | × log n

|tcj| .

The TF-IDF weighting is used to penalize large, common communities
(generic topic communities) and boost the significance of small communities
(communities very focused on a specific topic).

4.7.3. Linking users based on similarity

In any user (social) graph, there is a sense of commonality (similarity)
between users. This step in our methodology follows the same notion for
linking similar users when similarity is identified by the alignment of user
interests identified in the form of social interest topics. Similarity breeds
connection (McPherson et al., 2001). Thus, we linked people who shared
similar interests.

Definition 4.16. A social graph SG = (U,EUU) is a one-mode graph,
where U represents the vertex set of users and EUU is an edge set, such that
EUU ⊆ {(u1, u2) | (u1, u2) ∈ U}, where u1 and u2 are vertices belonging to

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

122 S. Dua and P. Chowriappa

vertex set U and ∃Eu1u2 , if sim(u1, u2) ≥ 1, where sim(u1, u2) = (u1.u2)
|u1||u2|

determines the similarity between a pair of users, u1 and u2.

In this step, social links were established between users based on their
user-interest-profile similarity. In a user profile (interest graph), similarity
between two users who are identified by an interest topic vector is calculated
by the dot product between these vectors. The interest graph, which is rep-
resented by an incidence matrix, is a collection of all user vectors. The dot
product operation between every pair of user vectors to calculate the pair-
wise user similarity happens automatically during the projection step which
involves matrix multiplication. Thus, the projection operation extracts
social graph SG from the interest graph IG, where the social graph is
a graph representing connectivity between users as shown in Figure 4.3(a).
This social graph is subjected to the Louvain community detection algo-
rithm to uncover ad hoc communities as shown in Figure 4.3(b).

4.7.3.1. Projection of bipartite to one-mode graph

This projection is carried out by matrix multiplication, where the inci-
dence matrices BUP , WUP , and TUP , representing binary, weighted, and

Fig. 4.3. Ad hoc community detection. (a) Social graph depicts the connectivity
between users in the topical space; (b) Ad hoc communities (implicit communities) are
identified in this step from the social graph modeled, which identifies users’ affinity
toward each other based on topical contexts.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 123

TF-IDF -weighted interest graphs IG are multiplied with the transpose of
BUP , WUP , and TUP , respectively, to generate three representations of
social graph SG based on different weighing schemes. The user connectivity
matrices, binary weighted and TF-IDF -weighted are denoted by:

UCMB = BUP ×BUPT ,
UCMW = WUP ×WUP T , and
UCMT = TUP × TUPT .

Therefore, an SG is a byproduct of graph projection operation on IG

and connects users. This graph captures the connectivity between users
based on the interest graph modeled, where the links between users are
identified based on commonalities in user interests that were captured by
interest graph.

4.7.4. Communities in a graph

In any given set of items, there exists a notion of similarity between a certain
subset of items that helps to distinguish that subset from the remaining
elements in the set. The same notion extends to a graph, wherein for a
given set of vertices, there exists high similarity between a certain subset of
vertices. This means that the vertices in the subset are highly similar to each
other compared to other vertices in the graph providing a means to separate
them from other vertices in the form of communities. This phenomenon is
referred to as community structure in graphs.

4.7.5. Identifying user communities in social graph

Definition 4.17. An ad hoc community AC in a social graph SG =
(U,EUU) is a subgraph that contains a vertex set of users US ⊆ U , such
that connections exist based on modularity maximization between (u1, u2)
pairs that belong to US.

Thus, AC is a pair (US,E), where US is a set of vertices corresponding
to users, and E is the edge set, such that E ⊆ {(u1, u2) | u1, u2 ∈ US},
where u1 and u2 are vertices that belong to the same vertex set US and
US ⊆ U .

Several such ad hoc communities exist in the social graph; hence, we
define ACn, as a finite set of ad hoc communities {AC1, AC2, . . . , ACn},
∀ACi ⊆ U .

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

124 S. Dua and P. Chowriappa

4.7.5.1. Detecting ad hoc communities

Thus, ad hoc communities are a subset of related users (based on modularity
maximization) identified in a social graph that correspond to user clusters
in such a way that users in a community are more densely connected to
each other than to other users in the social graph and form a cohesive
dense subgroup (a cluster). All users in such a cluster are supposed to have
aligned topic area(s) of interest in the real world. We call these users sharing
similar interests ad hoc communities.

Following the definition of community structures in networks, AC can
be defined as a community. The difference between AC and the normal
definition of community structure is that, in AC, the modules, clusters, or
cohesive subgroups are formed revolving around one or more topical areas of
interest shared by the users in the community in such a way that the inter-
ests of users in a community align more with the users within the commu-
nity than with users outside. The ad hoc community detection that involves
extracting communities from the social graphs was achieved by employing
the Louvain community detection algorithm (Blondel et al., 2008). This
algorithm was primarily chosen due to it being a modularity maximization-
based community detection algorithm, and also because it is parameter free.
Among different community detection algorithms available, the Louvain
community detection algorithm has the best characteristics. On employ-
ment of this algorithm on the social graph, we get ad hoc communities. This
step accurately clustered users in the social graph into inherent groups that
were not explicitly identified in the connectivity domain, but were captured
based on the extracted interest topics. We called these communities ad hoc
communities, as shown in Figure 4.3(b), meaning that these users acciden-
tally collaborate for a specific case, based on their actions in the web. In our
case, the actions corresponded to their tagging (tag usage) patterns.

4.7.5.2. Louvain community detection

The Louvain community detection method (Blondel et al., 2008) is a greedy
optimization method that optimizes the “modularity” of a partition of the
graph where modularity measures the strength of the division of the graph
into modules, groups, clusters, or communities.

4.7.6. Temporal analysis of communities

The evolution of social network ad hoc communities is gaining significant
interest. The evolution of ad hoc communities over social networks can

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 125

Fig. 4.4. Schematic representation of detecting ad hoc communities and capturing their
evolutionary behavior in time.

provide insights into the influence of users and topics over time. Figure 4.4
provides a schematic representation of tracking ad hoc communities. How-
ever, this analysis has some computational challenges. Firstly, capturing
the evolution of communities. This entails the capturing of the merging,
splitting, appearance, or disappearance of communities. Secondly, the evo-
lution of concepts. Here, it is challenging to establish the relevance of topics
with time. We objectify that these challenges can be addressed using the
concepts of inter and intra-transaction rule mining.

Classical association rule-mining algorithms focus on finding rela-
tionships among items, which occur together in a database of transac-
tions (intra-transaction). Recent research has witnessed algorithms directed
toward mining rules among items separated by a spatial component, includ-
ing time (inter-transaction rules). Most inter-transaction association rule-
mining algorithms focus on converting an existing transaction database into
a mega transaction database using sliding-window segmentation, thereby
abstracting the inter-transaction rule-mining problem to intra-transaction
rule mining.

Researchers have concentrated on developing inter-transaction associ-
ation rule-mining algorithms to find relationships among items that are
separated by a spatial component and, hence, occur in different transac-
tions. The application of such algorithms is far reaching, and can be used
to analyze ad hoc communities with time.

4.8. Conclusion

Based on results obtained we are confident that the proposed data-mining
framework can uncover implicitly formed communities of interest. These

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

126 S. Dua and P. Chowriappa

communities are not easily conceived in the connectivity domain, but can be
identified taking into consideration convergence among user interests. The
presented framework takes into consideration that shared topics of interest
identified as overlapping tag clusters from a tag concept hierarchy mod-
eled on folksonomy data can be used to model links between users. Using
these topics of interest we uncover the social connectivity graphs which are
valuable for identifying user communities of shared interests embedded in
the folksonomy system. We believe that these ad hoc communities can be
tracked over time that can be captured using inter- and intra-transaction
mining. This research finds its applicability in the arenas of recommender
systems, web search and information retrieval, and other numerous appli-
cation domains. In cyber-security, this can be used to detect ad hoc groups
or communities who have malicious intent on social networking sites such
as Facebook and Twitter.

References

Anand, D. and Bharadwaj, K. K. (2013). Pruning trust-distrust network via relia-
bility and risk estimates for quality recommendations, Social Netw. Analys.
Mining 3, 1, pp. 65–84.

Arazy, O., Kumar, N. and Shapira, B. (2009). Improving social recommender sys-
tems, IT Professional 11, 4, pp. 38–44, doi:10.1109/MITP.2009.76. Avail-
able at: http://dx.doi.org/10.1109/MITP.2009.76.

Au Yeung, C.-m., Gibbins, N. and Shadbolt, N. (2009). Contextualising tags in
collaborative tagging systems, in Proceedings of the 20th ACM Conference
on Hypertext and hypermedia, HT ’09 (ACM, New York, NY), pp. 251–260,
doi:10.1145/1557914.1557958. Available at: http://doi.acm.org/10.1145/
1557914.1557958.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. (2008). Fast
unfolding of communities in large networks.

Brooks, C. H. and Montanez, N. (2006). Improved annotation of the blogosphere
via autotagging and hierarchical clustering, in Proceedings of the 15th Inter-
national Conference on World Wide Web, WWW ’06 (ACM, New York,
NY), pp. 625–632, doi:10.1145/1135777.1135869. Available at: http://doi.
acm.org/10.1145/1135777.1135869.

Cha, M., Pérez, J. A. N. and Haddadi, H. (2012). The spread of media content
through blogs, Social Netw. Analys. Mining 2, 3, pp. 249–264.

Fortunato, S. (2010). Community detection in graphs, Phys. Rep. 486, 35,
pp. 75–174, doi:10.1016/j.physrep.2009.11.002. Available at: http://www.
sciencedirect.com/science/article/pii/S0370157309002841.

Gemmell, J., Shepitsen, A., Mobasher, B. and Burke, R. (2008). Personalizing
navigation in folksonomies using hierarchical tag clustering, in Proceedings

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

Characterizing Dynamic Group Behavior in Social Networks for Cybernetics 127

of the 10th International Conference on Data Warehousing and Knowledge
Discovery, DaWaK ’08 (Springer-Verlag, Berlin, Heidelberg), pp. 196–205,
doi:10.1007/978-3-540-85836-2 19. Available at: http://dx.doi.org/10.1007/
978-3-540-85836-2 19.

Giannakidou, E., Koutsonikola, V., Vakali, A. and Kompatsiaris, I. (2008). Co-
clustering tags and social data sources, in The Ninth International Confer-
ence on Web-Age Information Management, 2008. WAIM ’08, pp. 317–324,
doi:10.1109/WAIM.2008.61.

Golder, S. and Huberman, B. A. (2013). The structure of collaborative tagging
systems. Available at: http://arxiv.org/abs/cs/0508082.

Gulbahce, N. and Lehmann, S. (2008). The art of community detection, BioEssays
30, 10, pp. 934–938, doi:10.1002/bies.20820.

Hotho, A., Jäschke, R., Schmitz, C. and Stumme, G. (2006). Information
retrieval in folksonomies: Search and ranking, in Proceedings of the 3rd
European Conference on The Semantic Web: Research and Applications,
ESWC’06 (Springer-Verlag, Berlin, Heidelberg), pp. 411–426, doi:10.1007/
11762256 31. Available at: http://dx.doi.org/10.1007/11762256 31.

Hua, G. and Haughton, D. (2012). A network analysis of an online expertise
sharing community, Social Netw. Analys. Mining 2, 4, pp. 291–303.

Kas, M., Carley, K. M. and Carley, L. R. (2012). Trends in science networks:
Understanding structures and statistics of scientific networks, Social Netw.
Analys. Mining 2, 2, pp. 169–187.

Kashoob, S. and Caverlee, J. (2012). Temporal dynamics of communities in social
bookmarking systems, Social Netw. Analys. Mining 2, 4, pp. 387–404.

Li, X., Guo, L. and Zhao, Y. E. (2008). Tag-based social interest discovery, in Pro-
ceedings of the 17th International Conference on World Wide Web, WWW
’08 (ACM, New York, NY), pp. 675–684, doi:10.1145/1367497.1367589.

Liang, H., Xu, Y. and Li, Y. (2010). Mining users’ opinions based on item folkson-
omy and taxonomy for personalized recommender systems, in 2010 IEEE
International Conference on Data Mining Workshops (ICDMW), pp. 1128–
1135, doi:10.1109/ICDMW.2010.163.

Lindstaedt, S., Mörzinger, R., Sorschag, R., Pammer, V. and Thallinger, G.
(2009). Automatic image annotation using visual content and folksonomies,
Multimedia Tools Appl. 42, 1, pp. 97–113, doi:10.1007/s11042-008-0247-7.
Available at: http://dx.doi.org/10.1007/s11042-008-0247-7.

McPherson, M., Smith-Lovin, L. and Cook, J. M. (2001). Birds of a feather:
Homophily in social networks, Annu. Rev. Sociol. 27, 1, pp. 415–444, doi:
10.1146/annurev.soc.27.1.415. Available at: http://www.annualreviews.
org/doi/abs/10.1146/annurev.soc.27.1.415.

Mika, P. (2007). Ontologies are us: A unified model of social networks and seman-
tics, Web Semant. 5, 1, pp. 5–15, doi:10.1016/j.websem.2006.11.002. Avail-
able at: http://dx.doi.org/10.1016/j.websem.2006.11.002.

Missen, M. M. S., Boughanem, M. and Cabanac, G. (2013). Opinion mining:
Reviewed from word to document level, SNAM 3, 1, pp. 107–125.

Nair, V. and Dua, S. (2012). Folksonomy-based ad hoc community detection in
online social networks, SNAM 2, 4, pp. 305–328.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch04

128 S. Dua and P. Chowriappa

Newman, M. E. J. (2004). Fast algorithm for detecting community structure in
networks, Phys. Rev. E 69, p. 066133, doi:10.1103/PhysRevE.69.066133.
Available at: http://link.aps.org/doi/10.1103/PhysRevE.69.066133.

Palla, G., Derényi, I., Farkas, I. and Vicsek, T. (2005). Uncovering the over-
lapping community structure of complex networks in nature and society,
Nature 435, 7043, pp. 814–818, doi:10.1038/nature03607. Available at:
http://dx.doi.org/10.1038/nature03607.

Papadopoulos, S., Kompatsiaris, Y. and Vakali, A. (2010). A graph-based cluster-
ing scheme for identifying related tags in folksonomies, in Proceedings of the
12th International Conference on Data Warehousing and Knowledge Dis-
covery, DaWaK’10 (Springer-Verlag, Berlin, Heidelberg), pp. 65–76. Avail-
able at: http://dl.acm.org/citation.cfm?id=1881923.1881931.

Plangprasopchok, A., Lerman, K. and Getoor, L. (2010). Growing a tree in
the forest: Constructing folksonomies by integrating structured meta-
data, in Proceedings of the 16th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’10 (ACM, New
York, NY), pp. 949–958, doi:10.1145/1835804.1835924. Available at: http://
doi.acm.org/ 10.1145/1835804.1835924.

Rees, B. S. and Gallagher, K. B. (2012). Overlapping community detection using
a community optimized graph swarm, SNAM 2, 4, pp. 405–417.

Schmitz, C., Schmitz, C., Hotho, A., Jäschke, R. and Stumme, G. (2006). Mining
association rules in folksonomies, Data Science and Classification: Proc. of
the 10th IFCS Conf., Studies in Classification, Data Analysis, and Knowl-
edge Organization, pp. 261–270, doi:10.1.1.93.9741.

seok Min, H., Choi, J., De Neve, W., Ro, Y.-M. and Plataniotis, K. (2009).
Semantic annotation of personal video content using an image folksonomy,
in 2009 16th IEEE International Conference on Image Processing (ICIP)
pp. 257–260, doi:10.1109/ICIP.2009.5413429.

Wang, X., Tang, L., Gao, H. and Liu, H. (2010). Discovering overlap-
ping groups in social media, in Proceedings of the 2010 IEEE Interna-
tional Conference on Data Mining, ICDM ’10 (IEEE Computer Society,
Washington, DC, USA), pp. 569–578, doi:10.1109/ICDM.2010.48. Available
at: http://dx.doi.org/10.1109/ICDM.2010.48.

Zhang, L., Wu, X. and Yu, Y. (2006). Emergent Semantics from Folksonomies:
A quantitative study, in S. Spaccapietra, K. Aberer and P. Cudré-
Mauroux (eds), Journal on Data Semantics VI, (Springer-Verlag, Berlin,
Heiderberg), pp. 168–186. Available at: http://dl.acm.org/citation.cfm?id=
2167832.2167841.

Zhou, D., Bian, J., Zheng, S., Zha, H. and Giles, C. L. (2008). Exploring social
annotations for information retrieval, in Proceedings of the 17th Interna-
tional Conference on World Wide Web, WWW ’08 (ACM, New York, NY),
pp. 715–724, doi:10.1145/1367497.1367594. Available at: http://doi.acm.
org/10.1145/1367497.1367594.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Chapter 5

Several Approaches for Detecting Anomalies
in Network Traffic Data

Céline Lévy-Leduc

AgroParisTech/INRA MIA UMR 518
16, Rue Claude Bernard, 75005 Paris, France

celine.levy-leduc@agaroparistech.fr

In this chapter we propose centralised and decentralised approaches for detect-
ing changepoints in high-dimensional network traffic data. These methods con-
sist of a data-reduction stage followed by a nonparametric changepoint detec-
tion test based on rank statistics and adapted to deal with the presence of
censored data. The advantage of such a nonparametric approach is that it does
not require any prior information on the distribution of the observations. Both
types of methodologies can address massive data and perform network anomaly
detection on the fly. The performance of these methods are investigated on real
Internet traffic data provided by a major French Internet service provider.

5.1. Introduction

Since the recent attacks against major web services providers, which led to
a disruption of services to users, network anomaly detection has become a
major concern to the network security community. In this chapter, we shall
focus on denial of service (DoS) attacks and distributed denial of service
(DDoS) attacks which are typical examples of network anomalies.

Several methods for dealing with DoS and DDoS attacks have been pro-
posed. They can be split into two categories: signature-based approaches
and statistical methods. The former operate by comparing the observed
patterns of network traffic with known attack templates: Roesch (1999)
and Paxson (1999) propose two examples of such network anomalies detec-
tion systems. Thus, this type of methodology can only be applied to the
detection of anomalies that have already been observed. The second type of
methodology relies on statistical approaches and can thus potentially detect
any type of network anomalies which do not have to belong to a prescribed

129

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

130 C. Lévy-Leduc

database. The statistical approaches consist of modelling network anomalies
by abrupt changes in some network characteristics occurring at unknown
time instants. Hence, the network anomaly detection issue can be seen as a
changepoint detection problem which is a familiar topic in statistics, see, for
instance, Basseville and Nikiforov (1993); Brodsky and Darkhovsky (1993);
Csörgő and Horváth (1997).

In the changepoint detection field, two different approaches are usually
distinguished: the detection can be retrospective and hence with a fixed
delay (batch approach) or online, with a minimal average delay (sequential
approach). A widely used changepoint detection technique in the network
security field is the cumulated sum (CUSUM) algorithm which was first
proposed by Page (1954) and which is a sequential approach. It has, for
instance, been used by Wang et al. (2002) and by Siris and Papagalou (2006)
for detecting DoS attacks of the TCP (Transmission Control Protocol) SYN
(synchronization) flooding type. This attack consists of exploiting the TCP
three-way hand-shake mechanism and its limitation in maintaining half-
open connections. More precisely, when a server receives a SYN packet, it
returns a SYN/ACK (synchronization acknowledged) packet to the client.
Until the SYN/ACK packet is acknowledged by the client, the connection
remains half-opened for a period of at most the TCP connection timeout.
A backlog queue is built up in the system memory of the server to maintain
all half-open connections, thus leading to a saturation of the server. In Siris
and Papagalou (2006), the authors use the CUSUM algorithm to detect
a changepoint in the time series corresponding to the aggregation of the
SYN packets received by all the requested destination Internet protocol
(IP) addresses. With such an approach, it is only possible to set off an
alarm when a massive change occurs in the aggregated series. However, it
is impossible to identify the attacked IP addresses.

In order to identify the attacked IP addresses, it is possible to apply a
changepoint detection test to each time series corresponding to the number
of TCP/SYN packets received by each destination IP address. This idea is
used in Tartakovsky et al. (2006a) and Tartakovsky et al. (2006b) where
a multichannel detection procedure is proposed: it makes it possible to
detect changes which occur in a channel and which could be obscured by
the normal traffic in the other channels if global statistics were used.

When analysing wide-area-network traffic, however, it is no longer
possible to consider individually all the possible destination IP addresses
for computational reasons since the quantity of data is too massive. For
instance, the real data used for the evaluation of the proposed methods in

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 131

Sections 5.3 and 5.4 contain several thousands of different IP addresses in
each one-minute observation window. In order to detect anomalies in such
massive data within a reasonable time span, dimension reduction techniques
have to be used. Several approaches have been proposed. The first one uses
principal component analysis (PCA) techniques; see Lakhina et al. (2004).
The second one uses random aggregation (or sketches); see Krishnamurthy
et al. (2003) and Li et al. (2006). The identification of the involved attacked
IP addresses is possible with the second approach but not with the first one.

In the approaches mentioned above, all the data are sent to a cen-
tral analysis site, called the collector in the sequel, in which a decision is
made concerning the presence of an anomaly. These methods are called cen-
tralised approaches. In this chapter, we present a method called TopRank for
detecting changepoints in a multivariate time series under computational
constraints which makes it possible to process the data on the fly. It is
based on record filtering which is another dimension-reduction technique.
With this method, network anomalies of the following type can be identi-
fied: TCP/SYN flooding, UDP (User Data Protocol) flooding, PortScan and
NetScan. UDP flooding is an attack similar to TCP/SYN flooding which
aims at saturating the memory of a destination IP address by sending a
lot of UDP packets. A PortScan consists of sending TCP packets to each
port of a machine to know which ones are open. In a NetScan attack, a
source IP address sends packets to a large number of IP addresses in order
to detect the machines which are connected to the network. The TopRank
methodology is described in Section 5.2.1.1. It consists of a data-reduction
stage based on record filtering followed by a nonparametric changepoint
test based on rank statistics and adapted to the presence of censored data.

A limitation of these centralised approaches is that they are not adapted
to large networks with massive data since, in this case, the communication
overhead within the network becomes significant. In this situation, decen-
tralised approaches are often preferred to centralised ones. In this chapter,
we present some decentralised approaches which consist of processing the
data within the network (in local monitors) in order to send only the most
relevant data to the collector. In Huang et al. (2007), a method to decen-
tralise the approach of Lakhina et al. (2004) is considered but, as previously
explained, localising the network anomaly is impossible with such a method.
In Section 5.2.2.1, we present an efficient way of decentralising the TopRank
algorithm described in Section 5.2.1.1 and called DTopRank (Distributed
TopRank) in the sequel. It consists of applying the TopRank algorithm
locally in each monitor and sending only the most relevant data to the

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

132 C. Lévy-Leduc

collector. The data sent by the different local monitors are then aggre-
gated in a specific way and a nonparametric rank test for doubly censored
data is performed within the collector. The DTopRank algorithms make
it possible to achieve a performance comparable with the fully centralised
TopRank algorithm while minimising the quantity of data that needs to be
sent to the collector. In Section 5.2.2.3, we propose another decentralised
approach called MultiRank using a novel nonparametric rank-based change-
point detection test for multivariate data.

The chapter is organised as follows. In Section 5.2, we describe the
centralised and decentralised approaches. The performance of the proposed
algorithms are then assessed on real traffic data provided by a major French
Internet service provider (ISP) in Sections 5.3 and 5.4.

5.2. Description of the Methods

In the sequel, the raw data consists of Netflow-type data collected at several
points of the Internet network. The data at our disposal includes the source
and destination IP addresses, the source and destination ports, the start
time and the end time of the flow as well as the protocol and the number
of exchanged packets.

Depending on the type of attack that one wants to detect, some time-
indexed traffic characteristics are of particular interest and have to be pro-
cessed for detection purposes. For instance, in the case of the TCP/SYN
flooding, the quantity of interest is the number of TCP/SYN packets
received by each destination IP address per unit of time.

We denote by ∆ the smallest time unit used for building time series
from our raw Netflow type data. The time series are built as follows: in
the case of TCP/SYN flooding, we shall denote by N∆

i (t) the number of
TCP/SYN packets received by the destination IP address i in the sub-
interval indexed by t of size ∆ seconds. The corresponding time series of
the destination IP address i will thus be denoted by (N∆

i (t))t≥1. In the case
of UDP flooding, N∆

i (t) will correspond to the number of UDP packets
received by the destination IP address i in the tth sub-interval of size ∆
seconds. For a PortScan, N∆

i (t) will be the number of different requested
destination ports of the destination IP address i in the tth sub-interval
of size ∆ seconds and for a NetScan, it will be the number of different
requested destination IP addresses by the source IP address i.

Our goal is now to provide algorithms for detecting changepoints in
the time series (N∆

i (t))t≥1 for each i ∈ {1, . . . , D} under the following

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 133

computational constraint: being able to process the data on the fly, even
for a high dimension D. For instance, in the case of TCP/SYN flooding, D
is the number of destination IP addresses appearing in the raw data and
can be huge, up to several thousand addresses within a minute and several
million within a few days.

In the following we will drop the superscript ∆ in the notation N∆
i (t)

for notational simplicity.

5.2.1. Centralised approaches

In this chapter, we shall focus only on batch methods which means that
the traffic is analysed in successive observation windows, each having a
duration of P ×∆ seconds, for some fixed integer P . A decision concerning
the presence of potentially attacked IP addresses is made at the end of
each observation window and we also identify the involved IP addresses.
The value of D then corresponds to the number of different i encountered
in the observation window of time length P × ∆ seconds.

A crude solution for detecting changepoints in the time series
(Ni(t))1≤t≤P would be to apply a changepoint detection test to each time
series (Ni(t))1≤t≤P for all i ∈ {1, . . . , D}. Since D can be huge even in
a given observation window, we are faced in practice with massive data
streams leading to the construction and the analysis of several thousands
of time series even for short observation periods (around one minute). To
overcome this difficulty, a data-reduction stage must precede the change-
point detection step.

Two different data-reduction mechanisms can be considered: record fil-
tering and random aggregation (sketches). The record filtering consists of
selecting the heavy-hitters among the flows involved and processing them
while the random aggregation will construct and process several (randomly
chosen) linear combinations of all the flows. Random aggregation is cur-
rently the dimension-reduction mechanism which is the most used in the
network security community. Nevertheless, we believe that for the pur-
pose of changepoint detection, in particular if the changepoints involve a
massive increase, record filtering would be a more efficient alternative. At
first glance, random aggregation has the advantage of processing all the
data. However, heavy-hitters are mixed with many other flows, which may
smooth the changepoints and result in poor detection. On the other hand,
heavy-hitters are selected with high probability in record filtering and their
changepoints are more likely to be detected. In the sequel, we shall focus

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

134 C. Lévy-Leduc

on the record-filtering approach. For a further comparison of these two
approaches we refer the reader to Lévy-Leduc and Roueff (2009).

As for the changepoint detection step, we propose using nonparametric
tests based on ranks which do not require any prior information concerning
the distribution of the time series constructed after the dimension-reduction
step. Such an approach is of particular interest for dealing with Internet
traffic data, for which there is a lack of commonly accepted parametric
models.

In the following, we shall refer to record filtering followed by a non-
parametric changepoint detection test as the TopRank algorithm.

5.2.1.1. TopRank

The TopRank algorithm can be split into three steps described hereafter.
Note that the following processing is performed in each observation window
of length P × ∆ seconds and that all the stored data is erased at the end
of each observation window.

1. Record filtering: For each time index t in {1, . . . , P}, the indices of
the M largest counts Ni(t) are recorded and labelled as i1(t), . . . , iM (t) to
ensure that Ni1(t)(t) ≥ Ni2(t)(t) ≥ · · · ≥ NiM (t)(t). In the sequel, TM(t)
denotes the set {i1(t), . . . , iM (t)}. We stress that, in order to perform the
following steps, we only need to store the variables {Ni(t), i ∈ TM (t), t =
1, . . . , P}.

2. Creation of censored time series: For each index i selected in
the previous step (i ∈ ⋃P

t=1 TM (t)), the censored time series is built.
This time series is censored since i does not necessarily belong to the set
TM (t) for all indices t in the observation window, in which case, its value
Ni(t) is not available and is censored using the upper bound NiM (t)(t) =
mini∈TM (t)Ni(t). More formally, the censored time series (Xi(t), δi(t))1≤t≤P

are defined, for each t ∈ {1, . . . , P}, by

(Xi(t), δi(t)) =

(Ni(t), 1), if i ∈ TM (t)(

min
j∈TM (t)

Nj(t), 0
)
, otherwise.

The value of δi(t) indicates whether the corresponding value Xi(t) has
been censored or not. Observe that, by definition, δi(t) = 1 implies that
Xi(t) = Ni(t) and δi(t) = 0 implies that Xi(t) ≥ Ni(t). We also define the

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 135

upper and lower bounds of Xi(t) by Xi(t) = Xi(t) and Xi(t) = Xi(t)δi(t),
respectively.

In practice the censored time series are only built for indices i selected
in the first step, i.e. i ∈ ⋃P

t=1 TM (t). However, many such time series will be
highly censored. Hence we propose an additional dimension reduction. At
this stage, two strategies for dimension reduction can be considered. The
first one consists of considering only the indices

i ∈
P⋃

t=1

TM ′(t),

where M ′ ∈ {1, . . . ,M} is a chosen parameter. The second one consists of
processing a fixed number S of time series instead of all those in

⋃P
t=1 TM(t)

(at mostM×P) and to build only the time series corresponding to the index
i in the list i1(1), . . . , i1(P), i2(1), . . . , i2(P), i3(1), . . . where the indices ik(t)
are defined in the previous step. The main difference between these two
strategies is that for the second one the number of time series to analyse is
fixed and equal to S.

In the first two steps we have significantly reduced the amount of data
to be processed. In the next step, a changepoint detection test is applied
to the new time series corresponding to the selected IP addresses.

3. Changepoint detection test: The nonparametric changepoint test,
described hereafter, is applied to each time series created in the previous
stage and the corresponding p-value is computed, a small value suggesting
a potential anomaly.

Let us now further describe the statistical test that we perform.
This procedure aims at testing from the observations previously built
(X i(t), X i(t))1≤t≤P if a change occurred in this time series for a given
i. More precisely, if we drop the subscript i for notational simplicity in the
description of the test, the tested hypotheses are:

(H0): “(X(t),X(t))1≤t≤P are i.i.d. random vectors.”

against

(H1): “There exists some r such that ((X(1),X(1)), . . . , (X(r), X(r))) and
((X(r + 1), X(r + 1)), . . . , (X(P),X(P))) have a different distribution.”

To define the proposed test statistic, we define, for each s, t in
{1, . . . , P},

h(s, t) = 1(X(s) > X(t)) − 1(X(s) < X(t)),

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

136 C. Lévy-Leduc

where 1(E) = 1 if the event E is true and 0 if it is not, and

Ys =
Us√∑P
t=1 U

2
t

, with Us =
P∑

v=1

h(s, v). (5.1)

The test statistic is then given by

WP = max
1≤t≤P

∣∣∣∣∣
t∑

s=1

Ys

∣∣∣∣∣ . (5.2)

The following theorem, which is proved in Lung-Yut-Fong et al. (2012a),
provides, under mild assumptions, the limiting distribution of WP , as P
tends to infinity, under the null hypothesis and thus provides a way of
computing the p-values of the test.

Theorem 5.1. Let (X,X) be a R
2-valued random vector such that

P(F (X−) +G(X) = 1) < 1, (5.3)

where F is the cumulative distribution function (c.d.f.) of X, G the c.d.f. of
X and F (x−) denotes the left limit of F at point x. Let (X(t),X(t))1≤t≤P

be i.i.d. random vectors having the same distribution as (X,X), then, as P
tends to infinity,

sup
0<u<1

∣∣∣∣∣∣
�Pu�∑
s=1

Ys

∣∣∣∣∣∣ d−→ B� := sup
0<u<1

|B(u)|, (5.4)

where {B(u), 0 < u < 1} denotes the Brownian Bridge and d−→ denotes the
convergence in distribution.

Theorem 5.1 of this chapter thus extends Theorem 1 of Gombay and
Liu (2000), where only one-sided censoring was considered and continuity
of the random variables was assumed.

Remark 5.1. Theorem 5.1 provides a way of controlling the asymptotic
false alarm rate, for large enough P . The only requirement of Theorem 5.1 is
(5.3). In particular, if the random variablesX andX both have a continuous
c.d.f., (5.3) holds whenever P(X = X) > 0, that is, when the probability of
not being censored is positive. Thus, the p-values deduced from Theorem 5.1
are reliable whenever P is large enough and P(X = X) > 0 that is if some
non-censored values have been observed.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 137

Based on (5.4), we take for the changepoint detection test the following
p-value: Pval(WP), where for all positive b (see, for instance, Billingsley,
1968, p. 85),

Pval(b) = P(B� > b) = 2
∞∑

j=1

(−1)j−1e−2j2b2 , (5.5)

where B� is defined in (5.4).

5.2.2. Decentralised approaches

The centralised TopRank algorithm analyses the global packet counts. In
the case of decentralised approaches, we have at our disposal a monitoring
system with a set of local monitors M1, . . . ,MK, which collect and analyse
the locally observed time series. As a consequence of decentralised process-
ing, the packets sent to a given destination IP address are not observed by
all monitors, although some overlap may exist, depending on the routing
matrix and the location of the monitors.

For TCP/SYN flooding detection purposes, we shall focus on the
number of TCP/SYN packets and thus denote by Nk

i (t) the number of
TCP/SYN packets transiting to the destination IP address i in the sub-
interval indexed by t, observed by the kth monitor. In the proposed batch
approach, detection is performed from the data observed during an observa-
tion window of duration P ×∆ seconds. The goal is to detect changepoints
in the aggregated time series (Ni(t))t≥1 corresponding to the total number
of packets received by the IP address i using only the local time series
(Nk

i (t))t≥1 for each k ∈ {1, . . . ,K} and a quantity of data transmitted to
the collector that is as small as possible.

5.2.2.1. DTopRank

The DTopRank algorithm operates at two distinct levels: the local process-
ing step within the local monitors M1, . . . ,MK, and the aggregation and
global changepoint detection step within the collector.

1. Local processing: The local processing of DTopRank consists of four
steps which are applied in each of the K monitors. The first three steps
are similar to the TopRank algorithm applied to the local series of counts
(Nk

i (t))1≤t≤P for each k in {1, . . . ,K}.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

138 C. Lévy-Leduc

The fourth step consists of selecting the data to be transmitted to the
collector. We select in each monitor Mk the d censored time series having
the smallest p-values and send them to the collector. Thus, the collector
receives at most d × K censored time series, instead of

∑K
k=1Dk, where

Dk is the number of destination IP addresses seen by the kth monitor, if a
centralised approach was used.

2. Aggregation and changepoint detection test in the collector:
Within the collector, the lower and upper bounds of the aggregated time
series (Zi(t), Zi(t))1≤t≤P associated to the IP address i are then built as
follows:

Zi(t) =
∑
k∈K

X
(k)
i (t) and Zi(t) =

∑
k∈K

X
(k)

i (t), (5.6)

where (X(k)
i (t), t = 1, . . . , P) and (X

(k)

i (t), t = 1, . . . , P) are the time
series associated to the IP address i computed by the monitor Mk, and
K is the set of monitors which have transmitted series associated to the
IP address i. Then, the changepoint detection test described in step 3 of
TopRank algorithm is applied to the time series (Zi(t), t = 1, . . . , P) and
(Zi(t), t = 1, . . . , P). An IP address i is thus claimed to be attacked at a
given false alarm rate α ∈ (0, 1), if Pval(WP) < α.

As noted in Remark 5.1, Theorem 5.1 can be applied to the aggre-
gated time series (Zi(t), Zi(t)) as long as they are not fully censored. By
definition, the aggregated series is more censored than the individual series
(X(k)

i (t), X
(k)

i (t)) detected at monitor level. On the other hand, for a given
address i, only the series that are among the d series having the smallest
p-values at the monitor level are aggregated at the collector level. Hence, the
collector usually aggregates strictly less than K series and only aggregates
potentially significant series.

5.2.2.2. BTopRank

In the sequel, the DTopRank algorithm is compared with a simpler approach
using, instead of the aggregation step, a simple Bonferroni correction of the
p-values determined in each monitor. More precisely, in BTopRank an IP
address is claimed to be attacked at the level α in (0, 1) within the collector
if at least one local monitor has computed a p-value smaller than α/K,
namely if K(inf1≤k≤K Pvalk) < α, Pvalk being the p-value computed in
the monitor k.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 139

5.2.2.3. MultiRank

Like the DTopRank approach, the MultiRank procedure also operates at
two levels: the local processing step within the local monitors M1, . . . ,MK

and the global changepoint detection step within the collector.
Within each local monitor Mk and for each IP address i, the time series

corresponding to the number of received packets (Nk
i (t))1≤t≤P is built. For

each IP address i, a changepoint detection test in the multivariate time
series (Nk

i (t))1≤t≤P,1≤k≤K has to be performed within the collector in order
to make a decision concerning a network anomaly.

For dealing with this issue, we shall consider the following more general
problem. Let P multivariate K-dimensional observations (X1, . . . ,XP) and
denote by Xi,k the kth coordinate of Xi, such that Xi = (Xi,1, . . . , Xi,K)′,
where the prime is used to denote transposition. We aim at testing:

(H0): “(X1, . . . ,XP) are i.i.d random vectors.”

against

(H1): “There exists n1 such that (X1, . . . ,Xn1) and (Xn1+1, . . . ,XP) have
different distributions.”

For this, let VP (n1) = (VP,1(n1), . . . , VP,K(n1))′ denote the vector such
that

VP,k(n1) =
1

P 3/2

n1∑
i=1

P∑
j=n1+1

{1(Xi,k ≤ Xj,k) − 1(Xj,k ≤ Xi,k)},

k = 1, . . . ,K, (5.7)

and define

S̃P (n1) = VP (n1)′Σ̂−1
P VP (n1), (5.8)

where Σ̂P denote the K-dimensional empirical covariance matrix defined
by

Σ̂P,kk′ =
4
P

P∑
i=1

{F̂P,k(Xi,k) − 1/2}{F̂P,k′(Xi,k′) − 1/2}, 1 ≤ k, k′ ≤ K.

We now consider the statistic

W̃P = max
1≤n1≤P−1

S̃P (n1). (5.9)

The following theorem, proved in Lung-Yut-Fong et al. (2012b), gives the
asymptotic p-values of W̃P under the null hypothesis (H0).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

140 C. Lévy-Leduc

Theorem 5.2. Assume that (Xi)1≤i≤P are R
K-valued i.i.d. random vec-

tors such that, for all k, the c.d.f. Fk of X1,k is a continuous function.
Further assume that the K ×K matrix Σ defined by

Σkk′ = 4 Cov(Fk(X1,k);Fk′ (X1,k′)), 1 ≤ k, k′ ≤ K,

is invertible. Then,

W̃P
d−→ sup

0<t<1

(
K∑

k=1

B2
k(t)

)
, as P → ∞, (5.10)

where d denotes convergence in distribution and {Bk(t), t ∈ (0, 1)}1≤k≤K

are independent Brownian bridges.

To determine the p-value Pval(WP) associated to (5.10), one can use
the following result due to Kiefer (1959):

Pval(b) = P

(
sup

0<t<1

(
K∑

k=1

B2
k(t)

)
> b

)

= 1 − 4

Γ
(

K
2

)
2

K
2 b

K
2

∞∑
m=1

(γ(K−2)/2,m)K−2 exp[−(γ(K−2)/2,m)2]/2b
[JK/2(γ(K−2)/2,m)]2

,

(5.11)

where Jν is the Bessel function of the first kind, γν,m is themth non-negative
zero of Jν and Γ is the Gamma function. In practice, only a few terms of
the series have to be computed. For values of K of 40 or less computing the
p-values from the 30 terms of the series was sufficient.

In order to reduce the quantity of information that is transmitted to
the collector, a possibility would be to filter the information within the local
monitors by using the TopRank as it is done in the DTopRank approach.
The quantities VP,k and Σ̂P should then be changed in order to take into
account the presence of censored observations. This will be the subject of
future work.

5.3. Application of the Centralised Approaches to Real Data

In this section, we give the results of the TopRank algorithm when it is
applied to some real Internet traffic provided by France-Télécom within
the framework of the ANR-RNRT OSCAR project and we give some hints
about the choice of the different parameters involved.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 141

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

3
x 10

4

Time in seconds

N
um

be
r

of
 T

C
P

 p
ac

ke
ts

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

800

1000

Time in seconds
N

um
be

r
of

 T
C

P
/S

Y
N

 p
ac

ke
ts

Fig. 5.1. Number of TCP packets exchanged and number of TCP/SYN packets received
by the four attacked IP addresses.

This data corresponds to a recording of 118 minutes of ADSL (asym-
metric digital subscriber line) and peer-to-peer (P2P) traffic to which some
TCP/SYN flooding-type attacks have been added. Figure 5.1 (left) dis-
plays the total number of TCP packets received each second by the dif-
ferent requested IP addresses. The number of TCP/SYN packets received
by the four attacked destination IP addresses are displayed on the right in
Figure 5.1. As we can see in this figure, the first attack occurs at around
2000 seconds, the second at around 4000 seconds, the third at around
6000 seconds and the last one at around 6500 seconds.

From Figure 5.1, we can see that we are faced with massive data and
that the attacks are completely hidden in TCP traffic and thus very difficult
to detect.

5.3.1. Choice of parameters

As described above, Step 1 (the record filtering step) and Step 2 (the cre-
ation of the censored time series) of the TopRank algorithm rely on several
parameters, (P,∆,M for Step 1 and S or M ′ for Step 2). As for Step 3
(the changepoint detection test), it does not require the tuning of any
parameters since it is a nonparametric approach. The main objective of
the first two steps is to cope with high dimensionality and the requirements
of real-time implementation. The choice of the parameters must satisfy
these requirements as well as a relevant selection of the time series to be
processed in the subsequent detection step. In the following, we give some
guidance regarding parameter selection in the context of network anomaly
detection.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

142 C. Lévy-Leduc

Since a decision concerning the presence of attacks is made at the end of
each observation window, the maximal detection delay is given by the time
length of the observation window, that is: P × ∆ seconds. Once the time
length of the observation window has been chosen, one should choose P as
large as possible under the constraints of real-time data processing. Indeed,
a large P ensures a better statistical consistency. On the other hand, the
test statistic WP in (5.2) has a O(P 2) computational complexity. Given the
computational limits of a standard computer, we chose P = 60 in order to
allow up to 103 time series to be processed within a one-minute observation
window.

Let us now explain the choice of M , which sets the censorship level.
Indeed, the number of TCP/SYN packets received by the Mth most-
requested machine corresponds to a threshold above which an IP address
may appear as potentially attacked. From the data, we remark that 99%
of the observed values of this threshold are at most 10 when M = 10 and
at most 5 for M = 20. In the applications to real data, we chose M = 10
to allow us to capture flows with significantly high traffic rates (10 packets
per second) while ensuring a low cost in terms of memory storage. Recall
that a M ×P data table (Xi(t), X i(t))1≤t≤P,1≤i≤M has to be stored during
the first and second step.

We now comment on the choice of the parameter M ′ in {1, . . . ,M}.
Taking M ′ = 1 means that we only analyse the IP addresses i having,
at least once in an observation window, the largest Ni(t). Taking M ′ = M

means that the detection step is applied to the censored time series of all IP
addresses i which have been selected in the filtering step. Hence increasing
M ′ increases the number of analysed censored time series. The right part
of Figure 5.2 displays the number of time series which are actually built
in Step 2 of TopRank after the filtering stage of Step 1 for different values
of M ′: M ′ = 1, M ′ = 5 and M ′ = M = 10 when we are looking for
TCP/SYN flooding-type attacks. The left part of Figure 5.2 displays the
number of different destination IP addresses every minute of the traffic
trace. Comparing the left part with the right part of Figure 5.2, we see
that Step 1 and Step 2 of the TopRank algorithm appear to be necessary
to provide an implementation feasible on the fly. Indeed, applying Step 3
to each IP address every minute would produce an excessive computational
load. As for the statistical performance of the method with respect to the
parameter M ′, we shall see in the following section that the parameter
M ′ does not significantly change the results in terms of false alarm and
detection rates.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 143

0 20 40 60 80 100 120
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Time in minutes

N
um

be
r

of
 d

es
tin

at
io

n
IP

 a
dd

re
ss

es

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

Time in minutes

N
um

be
r

of
 a

na
ly

se
d

tim
e

se
rie

s
Fig. 5.2. Left: Number of destination IP addresses every minute. Right: Number of
analysed time series every minute when M ′ = 1 (“x”), M ′ = 5 (“o”) and M ′ = M = 10
(“+”).

1860 1870 1880 1890 1900 1910 1920
10

0

10
1

10
2

10
3

Time in seconds

C
en

so
re

d
nu

m
be

r
of

 S
Y

N
 p

ac
ke

ts

3900 3910 3920 3930 3940 3950 3960
10

0

10
1

10
2

10
3

Time in seconds

C
en

so
re

d
nu

m
be

r
of

 S
Y

N
 p

ac
ke

ts

Fig. 5.3. Censored time series of the four attacked IP addresses where the vertical lines

correspond to the detected changepoint instants and the uncensored values are displayed
with (“o”).

5.3.2. Performance of the method

We now investigate the performance of the TopRank algorithm with the
following parameters: P = 60, ∆ = 1s, M = 10 and M ′ = 1.

5.3.2.1. Statistical performance

First, note that with the previous choice of parameters the attacked IP
addresses have been identified when the upper bound of the p-value α

introduced in Step 3 of TopRank is such that α ≥ 2 × 10−6.
Figure 5.3 displays the censored time series (Step 2 of TopRank) of two

of the four attacked IP addresses. These censored time series are displayed

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

144 C. Lévy-Leduc

Table 5.1. Statistical performance for detecting the four
successive SYN flooding attacks displayed on the right-hand
side of Figure 5.1. SP is the method devised by Siris and
Papagalou (2006), the h row gives the smallest threshold
values that ensure the detection of each attack. In the last
row, the corresponding number of false alarms is displayed.

Number of SYN packets 1000 500 200 50

h 5 6.5 9.7 16.34
SP Number of false alarms 69 65 62 22

in the first observation window in which the algorithm detects the anomaly.
We also display with a vertical line the instant where the change is detected.
Remember that the uncensored time series of the four attacked IP addresses
are displayed in Figure 5.1 (right). We observe that we recover the real
number of received TCP/SYN packets received per second: 1000 for the
first IP address and 500 for the second one.

The TopRank part of Table 5.1 gives the smallest p-value above which
the corresponding attack is detected as well as the number of false alarms.
The number of false alarms corresponds to the number of IP addresses for
which an alarm is triggered but which are different from the attacked IP
addresses. For instance, the first attack is detected if α ≥ 10−8, see (5.5),
and the associated number of false alarms is equal to 3. If M ′ = 5 or
M ′ = M = 10, the results remain unchanged except for the third attack
for which the number of false alarms equals 10 instead of 9.

In Table 5.1, we also give the results obtained from the same data
with a method proposed by Siris and Papagalou (2006). This algorithm
uses the CUSUM algorithm to look for a changepoint in the time series
corresponding to the sum of received SYN packets by all the destination
IP addresses which have been requested. For each observation window of
60 seconds, an alarm is set off when the statistic gn defined in equation
(6) of Siris and Papagalou (2006) is greater than a threshold h at least
once in the window. This quantity gn depends on two parameters α and
β. We use the same values as Siris and Papagalou (2006), namely α = 0.5
and β = 0.98, to obtain the results displayed in Table 5.1. We observe
that the TopRank algorithm allows us not only to retrieve the attacked
destination IP addresses but also seems to perform better in terms of false
alarm rate. This suggests that aggregating traffic flows results in a poor
detection of malicious flows, especially when the normal traffic is high.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 145

1200 1210 1220 1230 1240 1250 1260
0

5

10

15

20

Time in seconds

C
en

so
re

d
nu

m
be

r
of

 S
Y

N
 p

ac
ke

ts

1380 1390 1400 1410 1420 1430 1440
0

2

4

6

8

10

12

14

16

18

Time in seconds

C
en

so
re

d
nu

m
be

r
of

 S
Y

N
 p

ac
ke

ts
Fig. 5.4. Censored time series for IP addresses considered as false alarms where the
vertical lines correspond to the detected changepoint instants and the uncensored values
are displayed with (“o”).

Indeed, a close look shows that the normal traffic is particularly high during
the first attack, which explains why the corresponding threshold value is the
lowest (and the false alarm rate the highest) although this attack is the most
intense.

To compute the number of false alarms, we have considered that the
attacked IP addresses were only those for which an attack was generated but
it is possible that the underlying ADSL and P2P traffic contains some other
attacks. Figure 5.4 displays the censored time series of some IP addresses
which were considered to be false alarms in the TopRank algorithm as well
as the time instant where a change was detected (vertical line). However, if
we refer to their time series, these IP addresses could be considered as being
attacked. Thus, the results have been computed in the most unfavourable
way for our methodology.

5.3.2.2. Numerical performance

As we have seen, the TopRank algorithm seems to give satisfactory results
from a statistical point of view. Moreover, with M = 10, M ′ = 1
and P = 60, applying the TopRank algorithm takes only one minute and
19 seconds to process the whole traffic trace of 118 minutes, when looking
for TCP/SYN flooding type-attacks with a computer having the following
configuration: RAM 1GB, CPU 3GHz. For an application of the TopRank
approach to a data set containing anomalies of UDP flooding, PortScan
and NetScan, we refer the reader to Lévy-Leduc and Roueff (2009).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

146 C. Lévy-Leduc

5.4. Application of the Decentralised Approaches

We consider the same data as those used in Section 5.3. As this data set
does not contain full routing information, it has been artificially distributed
over a set of virtual monitors as follows: the data is shared among K = 15
monitors by assigning each source destination pair (source IP address, des-
tination IP address) to a randomly chosen monitor; a single monitor thus
records all the flows between two particular IP addresses. The experiments
reported below are based on 50 independent replications of this process.
Finally, the existing anomalies have been down-sampled (by randomly drop-
ping packets involved in the attacks) to 12.5 and 25 packets/s, respectively,
to explore more difficult detection scenarios.

Figures 5.5 (a), (b) display the number of TCP/SYN packets globally
exchanged within two different monitors whereas (c), (d) focus on the traffic
received by the attacked IP addresses within these two monitors.

The attacked IP addresses (bottom part of Figure 5.5) are completely
hidden in the global TCP/SYN traffic (top part of Figure 5.5) and thus very
difficult to detect. Note also that 1,006,000 destination IP addresses are
present in this data set, with an average of 15,000 destination IP addresses
in each of the 118 one-minute observation windows. Hence, real-time pro-
cessing of the data would not be possible, even at the monitor level, without
a dimension-reduction step such as record filtering.

5.4.1. Performance of the methods

In what follows, the DTopRank algorithm is used with the same parameters
as those adopted in Section 5.3 for the TopRank algorithm, with one-minute
windows divided in P = 60 sub-intervals of ∆ = 1 s, with M = 10 and
S = 60. The parameter d was set to d = 1, due to the limited number of
attacks expected in each one-minute window. In setting P and ∆ the main
concern is the overall observation duration ∆×P which should be sufficient
to allow for meaningful statistical decisions while ensuring an acceptable
detection delay and that the extracted series can still be considered as
stationary in the absence of change.

Figure 5.6 shows the benefits of the aggregation stage within the
collector of the DTopRank algorithm with respect to the use of a local
strategy or the simple Bonferroni correction in the BTopRank algorithm.
Figures 5.6 (a), (b) and (c) display the time series (X(t), t = 1, . . . , P) and
(X(t), t = 1, . . . , P) associated to an attacked IP address in three different
monitors as well as the corresponding p-values. Figure 5.6 (d) displays the

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 147

Fig. 5.5. Number of TCP/SYN packets globally exchanged within two particular mon-
itors (a), (b) and received by the four attacked IP addresses within these two particular
monitors (c), (d). (a) and (c) correspond to the traffic in monitor 1. (b) and (d) corre-
spond to the traffic in monitor 2.

aggregated time series (Z(t), t = 1, . . . , P) and (Z(t), t = 1, . . . , P), as
defined in (5.6), as well as the associated p-value. Note that the aggregated
time series corresponds to the aggregation of 11 time series created by 11
different monitors where the attacked IP address has been detected. The
p-value of the aggregated time series is equal to 5.65 × 10−6 and is thus
much smaller than the ones determined at the local monitors. If the BTo-
pRank algorithm had been used, the corresponding p-value would have been
5.4 × 10−3.

The DTopRank, BTopRank and TopRank algorithms have also been fur-
ther compared through 50 Monte Carlo replications in the cases of attacks
having an intensity of 12.5 SYN/s and 25 SYN/s. We observed that DTo-
pRank performs very similarly to the centralised algorithm, especially in the
range of interest where the false alarm rate is about 1e-4 (recall that there

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

148 C. Lévy-Leduc

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 60
0

1

2

0 10 20 30 40 50 60
0

1

2

0 10 20 30 40 50 60
0

10

20

1.25*10 −2

1.34*10 −2

2.05*10 −3

5.65*10 −6

(a)

(b)

(c)

(d)

Fig. 5.6. (a), (b), (c): times series (X
(k)
i (t), t = 1, . . . , 60) and (X

(k)
i (t), t = 1, . . . , 60)

displayed with (*) and (�), respectively, for three different values of k, (d): (Zi(t), t =
1, . . . , 60) and (Zi(t), t = 1, . . . , 60) displayed with (*) and (�), respectively.

are about 15,000 different IP addresses in each one-minute window). How-
ever, the quantity of data exchanged within the network is much reduced
as the centralised algorithm needs to obtain information about, on average,
34,000 flows per minute whereas the DTopRank algorithm only needs to
transmit the d upper- and lower-censored time series from the monitors
to the collector. For d = 1 and K = 15, this amounts to 1800 scalars that
need to be transmitted to the collector, versus 34000×5 (start and end time
stamps, source and destination IP, number of SYN packets for each flow)
for the centralised algorithm, resulting in a reduction of almost two orders
of magnitude of the data that needs to be transmitted over the network.
For further comparisons of these three different approaches, we refer the
reader to Lung-Yut-Fong et al. (2012a).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

Several Approaches for Detecting Anomalies in Network Traffic Data 149

References

Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes: Theory
and Applications (Prentice Hall, Upper Saddle River, NJ).

Billingsley, P. (1968). Convergence of Probability Measures (Wiley, New York).
Brodsky, B. E. and Darkhovsky, B. S. (1993). Nonparametric Methods in Change-

Point Problems (Kluwer Academic Publisher, Berlin).
Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-point Analysis

(Wiley, New York).
Gombay, E. and Liu, S. (2000). A nonparametric test for change in randomly

censored data, Can. J. Stat. 28, 1, pp. 113–121.
Huang, L., Nguyen, X., Garofalakis, M., Jordan, M. I., Joseph, A. and Taft, N.

(2007). In-network PCA and anomaly detection, in B. Schölkopf, J. Platt
and T. Hoffman (eds), Advances in Neural Information Processing Systems
19 (MIT Press, Cambridge, MA), pp. 617–624.

Kiefer, J. (1959). K-sample analogues of the Kolmogorov–Smirnov and Cramér–
V. Mises tests, Ann. Math. Statist. 30, pp. 420–447.

Krishnamurthy, B., Sen, S., Zhang, Y. and Chen, Y. (2003). Sketch-based change
detection: Methods, evaluation, and applications, in IMC ’03: Proceedings
of the 3rd ACM SIGCOMM Conference on Internet Measurement (ACM,
New York, NY), pp. 234–247.

Lakhina, A., Crovella, M. and Diot, C. (2004). Diagnosing network-wide traf-
fic anomalies, in Proceedings of the 2004 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications
(ACM, New York, NY), pp. 219–230.

Lévy-Leduc, C. and Roueff, F. (2009). Detection and localization of change-points
in high-dimensional network traffic data, Ann. Appl. Stat. 3, 2, pp. 637–662.

Li, X., Bian, F., Crovella, M., Diot, C., Govindan, R., Iannaccone, G. and Lakhina,
A. (2006). Detection and identification of network anomalies using sketch
subspaces, in Proceedings of the 6th ACM SIGCOMM Conference on Inter-
net Measurement (IMC 2006, Rio de Janeiro, Brazil) (ACM, New York,
NY), pp. 147–152.

Lung-Yut-Fong, A., Lévy-Leduc, C. and Cappé, O. (2012a). Distributed detec-
tion/localization of change-points in high-dimensional network traffic data,
Statist. Comput. 22, 12, pp. 485–496.

Lung-Yut-Fong, A., Lévy-Leduc, C. and Cappé, O. (2012b). Homogeneity and
change-point detection tests for multivariate data using rank statistics,
Tech. rep., arXiv:1107.1971.

Page, E. S. (1954). Continuous inspection schemes, Biometrika 41, pp. 100–115.
Paxson, V. (1999). Bro: A system for detecting network intruders in real-time,

Comput. Netw. 31, 23–24, pp. 2435–2463.
Roesch, M. (1999). Snort: Lightweight intrusion detection for networks, in Pro-

ceedings of the 13th USENIX Conference on System Administration (LISA
1999, Seattle, USA) (USENIX Association, Berkeley, CA), pp. 229–238.

Siris, V. A. and Papagalou, F. (2006). Application of anomaly detection algo-
rithms for detecting syn flooding attacks, Comput. Commun. 29, 9,
pp. 1433–1442.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch05

150 C. Lévy-Leduc

Tartakovsky, A., Rozovskii, B., Blazek, R. and Kim, H. (2006a). Detection
of intrusion in information systems by sequential change-point methods,
Statistical Methodology 3, 3, pp. 252–340.

Tartakovsky, A., Rozovskii, B., Blazek, R. and Kim, H. (2006b). A novel approach
to detection of intrusions in computer networks via adaptive sequential and
batch-sequential change-point detection methods, IEEE T. Sign. Proces.
54, 9, pp. 3372–3382.

Wang, H., Zhang, D. and Shin, K. G. (2002). Detecting SYN flooding attacks,
Proceedings of the Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM) 3, pp. 1530–1539.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Chapter 6

Monitoring a Device in a Communication Network

Nick A. Heard and Melissa J. Turcotte

Department of Mathematics, Imperial College London
London, SW7 2AZ, United Kingdom

n.heard@imperial.ac.uk

Anomalous connectivity levels in a communication graph can be indicative
of prohibited or malicious behaviour. Detecting anomalies in large graphs,
such as telecommunication networks or corporate computer networks, requires
techniques which are computationally fast and ideally parallelisable, and this
puts a limit on the level of sophistication which can be used in modelling
the entire graph. Here, methods are presented for detecting locally anomalous
substructures based on simple node and edge-based statistical models. This
can be viewed as an initial screening stage for identifying candidate anomalies,
which could then be investigated with more sophisticated tools. The focus is
on monitoring diverse features of the same data stream emanating from a sin-
gle communicating device within the network, using conditionally independent
probability models. Whilst all of the models considered are purposefully very
simple, their practical implementation touches on a diverse range of topics,
including conjugate Bayesian inference, reversible jump Markov chain Monte
Carlo, sequential Monte Carlo, Markov jump processes, Markov chains, density
estimation, changepoint analysis, discrete p-values and control charts.

6.1. Introduction

Monitoring a large interaction network over time for anomalous behaviour
is computationally very challenging. Typically each node will exhibit their
own unique modes of behaviour, which will depend on the identity of their
neighbours in the network with which they communicate, their own avail-
ability to communicate over time, the availability of their neighbours, and
other seasonal factors which will affect their propensity to communicate.

The aim of this work was to build probability models of normal
behaviour in an interaction network, either at the node level or at the edge
level, and then use these probability models to monitor the network and
detect anomalous departures from this normal behaviour. Departures from

151

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

152 N. A. Heard and M. J. Turcotte

normal behaviour are interesting, either from a commercial perspective of
understanding changes in consumer requirements, or from a security per-
spective of detecting fraudulent use of an account.

To aid computational tractability, modelling of nodes and edges will
rely upon simple independence assumptions. If the nodes are computing
devices, such as PCs or mobile phones, such models lend themselves to
analytics where the analysis can potentially be run on the device itself. In
this scenario, very simple analytics are required which potentially use only
a minimal proportion of the computational power of the device.

For each device, there is an associated multivariate stream of data with
diverse characteristics and of differing dimension for different devices. The
aim is to process this multivariate stream into a single time-varying score of
surprise. Probability models are constructed for the full multivariate data
stream using conditional independence assumptions, and surprising recent
behaviours against this learnt model of normality are then sought.

A fundamental choice in this problem is whether to work in continuous
or discrete time. This choice applies both to modelling and monitoring, and
all four possibilities of continuous or discrete time modelling or monitoring
are explored and finally compared.

As a concrete example, attention here will be focused on mobile
phone communications; however, the framework being presented should be
regarded as more general with applicability to computer networks and other
security settings, requiring only domain-specific alterations to the proposed
probability models.

The next section introduces a synthetic mobile phone data set which
will be used for comparing the different approaches which are proposed.
Sections 6.3 and 6.4, respectively, present continuous and discrete time
models for the data streams. Sections 6.5 and 6.6 present monitoring tools
in continuous and discrete time, respectively. Section 6.7 shows some results
of applying different combinations of the modelling and monitoring methods
to the synthetic mobile phone data, and some concluding remarks are made
in Section 6.8.

6.2. VAST 2008 Challenge Data

A publicly available, unclassified, but synthetic, data set was pro-
vided by the VAST 2008 Challenge (http://www.cs.umd.edu/hcil/VAST-
challenge08). The data are the records of mobile phone calls made within
a small, fictional population of 400 nodes over a ten-day period.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 153

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0

Day

In
di

vi
du

al

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

Fig. 6.1. VAST data by event time and source node.

Each call event is logged with full details of the metadata of that call:
which node called which other node, what time the call started, what time
the call ended, and the cell tower which the source node connected to when
making the call, to provide an imprecise geolocation. The event times in
the data set are plotted in Figure 6.1, and the diurnal seasonal patterns in
the data are apparent from the stripey appearance of the data.

The records should provide critical information about an important
social network structure. The aim of the challenge was to detect some
anomalous activity from a small subset of the individuals sometime within
the ten-day period. From the results of an award-winning published work
on this challenge by Ye et al. (2008), which used a combination of the
PageRank algorithm (Brin and Page, 1998) and visual analytic methods,
there is good reason to suspect that the major anomalous activity occurs on
the eighth day and involves a list of at least 11 individuals. For illustration
purposes only, the subnetwork of those 11 individuals, made up of any
nodes with which they communicated over the ten-day period, is plotted
in Figure 6.2; the 11 anomalous nodes are shaded. In particular it is worth
noting that individuals 200 and 300 are fairly central in the network of
anomalous actors, but have many fewer communicating neighbours than
the other anomalous nodes.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

154 N. A. Heard and M. J. Turcotte

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●
●

●

●
●

● ●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

0

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15
17

18
19

21

22

24

25

26

27

28

30 31

32

33

34

35

36

37

38

40

41

42

48
50

54

56

57

6163

64

68

69

7071

77

80

84

85

86

87

89

90

94

97

99

105

106

107

109

112

113

114
116117

124

126

134

135

137

138

139

140

141
145

147

150 151

153

155

157

165

167

168

170
172

175 179

180
184

185

189

193

194

196
197

200

201

208

210

216

220

226

227

228

237

239

240

242

244

245

246

248

256

261

267

268

270

273
276

278281

284
288

289

292

295

300

301

306

309

311

314

316

321

322

326

328

332

334

340

341

342
343

346
348

352

355

360

362

366

371

378

383

390

397

399

Fig. 6.2. Subgraph of VAST data from malicious actors’ contacts.

6.3. Continuous Time Behavioural Modelling

6.3.1. Markov jump processes

Markov jump processes provide a natural framework for continuous time
modelling of the transitions between different behaviours of a device in a
communication network. There are many different ways to represent the
status of node i in an interaction network using these processes and the
following sections demonstrate some possibilities, ranging from a binary
“currently connected” status indicator for a node through to full modelling
of each individual edge. Other constructions are possible; for example, if
the nodes have been clustered in some way, one could instead consider the
frequencies of connections to particular node types. It should also be noted
that this flexible framework readily extends to cases where measurable,
possibly time-varying covariates are available for nodes or edges, as these
simply present further terms in the equations for the transition intensities
which now follow.

The following sections consider a communication network containing
N nodes, labelled {1, 2, . . . , N}. Denote the ordered event times at which
the connections of node i begin as 0 < ti1 < ti2 < · · · . Let di

1, d
i
2, . . . be the

durations of those connections; for j = 1, 2, . . ., let ei
j ∈ {1, 2, . . . , N} be the

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 155

Fig. 6.3. Two-state “idle-connected” undirected Markov model.

identity of the node which i connected to at time tij ; finally, let δi
j ∈ {0, 1}

denote whether the jth connection to node i was outgoing (δi
j = 1) and so

initiated by node i, or incoming (δi
j = 0) and so initiated by node ei

j . Note
that every connection appears twice in this notation, once as an outgoing
connection and once as an incoming connection.

For a telephone communication network, it will be assumed that node
i can be connected to at most one node at any one time. This corresponds
to a requirement that ∀j ≥ 1, tij+1 > tij + di

j .

6.3.1.1. Idle and connected states, undirected edges

The two-state model in Figure 6.3 shows the simplest representation of the
behaviour of node i.

The labelled transition intensity µi(t) is the rate at which node i makes
connections at time t,

µi(t) = lim
dt↓0

P(i will become connected within [t, t+ dt) | i idle at time t)
dt

.

Once in the connected state, the transition intensity λi(t) is the rate at
which node i would terminate a connection at time t,

λi(t) = lim
dt↓0

P(i will become idle within [t, t+ dt) | i connected at time t)
dt

.

6.3.1.2. Idle and connected states, directed edges

Figure 6.4 shows a three-state representation of the behaviour of node i,
with a distinction now made between making a connection and receiving a
connection; communications are now assumed to have a direction.

Here there are two possible transitions from the idle state. µi·(t) is the
intensity with which node i will initiate connection to any recipient,

µi·(t) = lim
dt↓0

P(i will make a connection within [t, t+ dt) | i idle at time t)
dt

,

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

156 N. A. Heard and M. J. Turcotte

Fig. 6.4. Three-state “idle-connected” directed Markov model. i� denotes i initiating
a connection, whilst � i denotes i receiving a connection.

whilst µ·i(t) is the intensity with which node i will receive a connection
from any source,

µ·i(t) = lim
dt↓0

P(i will receive a connection within [t, t+ dt) | i idle at time t)
dt

.

To relate this model to the two-state model of Section 6.3.1.1, note that

µi(t) = µi·(t) + µ·i(t).

Similarly, λi·(t) and λ·i(t) are the intensities with which node i will termi-
nate an outgoing or incoming connection, respectively. If these two intensi-
ties were assumed to be equal, then they would relate to the previous model
parameters through

λi(t) = λi·(t) = λ·i(t),

but in general this may not be true.

6.3.1.3. Embedded Markov chain for connection identities

In the above models for the timing of connections, no consideration is given
to the identities of the nodes with which node i is connecting. Further
understanding of the normal behaviour of a node can be gained by learning
the nodes with which it typically makes connections.

The next section will consider an extended Markov model to incorpo-
rate this level of detail. However, an alternative formulation can be specified
by regarding the sequence of identities of the communicants as a separate,
conditionally independent, time-stamped data stream.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 157

Recall that the identities of the communication events of node i formed
a sequence ei

1, e
i
2, . . ., where each ei

j ∈ {1, 2, . . . , N}. The simplest model for
this sequence would assume each outcome in the sequence is an independent
draw from a multinomial distribution with parameters

θi
k = P(ei

j = k), k = 1, 2, . . . , N

where
∑N

k=1 θ
i
k = 1. This model allows node i to have preferred nodes for

connections, which can be learnt over time.
The conjugate prior for the vector of probabilities (θi

1, θ
i
2, . . . , θ

i
N) is

Dirichlet (α1, α2, . . . , αN) where by default each prior parameter αk > 0
might be set equal, or otherwise there is an option to a priori favour con-
nectivity to popular nodes, using, for example,

αk ∝ indegree(k).

A richer model, which does not assume independence of the identities,
is to treat ei

1, e
i
2, . . . as a Markov chain on {1, 2, . . . , N}, with transition

probabilities

θi
k,� = P(ei

j+1 = � | ei
j = k), k, � = 1, 2, . . . , N

where
∑N

�=1 θ
i
k,� = 1. This allows a first-order level of dependency in the

connections of node i, where patterns of a connection with node k typically
being followed by a connection with node � are captured.

For fixed k, the vector of probabilities (θi
k,1, θ

i
k,2, . . . , θ

i
k,N) are the con-

ditional distribution of the identity of the next connection, given the most
recent communication was with node k. Hence this vector of probabilities
is the kth row of the transition probability matrix of the Markov chain
for node i. Allowing each row of the transition probability matrix to be
independent draws from the same Dirichlet prior as above completes the
conjugate Bayesian specification of this model.

6.3.1.4. Separate states for each connecting node, undirected edges

Alternatively, as noted in Section 6.3.1.3, the state space of the continuous
time Markov jump process can be extended to incorporate connection iden-
tities. An undirected specification, where no attention is paid to which node
initiates the connection, is diagrammatically represented by Figure 6.5.

This model is much more heavily parameterised, with separate transi-
tion intensities (µij , λij) for all pairs of nodes in the network, but restricted
here such that, say, i < j. Potentially this could lead to O(N2) level of

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

158 N. A. Heard and M. J. Turcotte

Fig. 6.5. Generalised undirected Markov model. i� j denotes i and j connecting in
either direction.

Fig. 6.6. Generalised directed Markov model. i � j denotes i initiating a connection
with node j.

computational effort, but in practice communication networks are sparse
and the intensities for the majority of edges will be zero.

6.3.1.5. Separate states for each connecting node, directed edges

A further extension of Section 6.3.1.4 assumes the connections are also
directed. This is represented by Figure 6.6.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 159

Now there are separate transition intensities (µij , λij) for all pairs of
nodes in the network, with no restriction. This is the richest possible rep-
resentation of the communication status.

6.3.2. Inference for Markov jump processes

Even for the richest Markov jump process model (see Section 6.3.1.5), the
data observed for each node can be divided up into separate (partially
overlapping) data sets for each of the different transition intensities, such
that learning each of the intensities can be seen as completely separate
inference problems. Even from the idle state, an event time marking a
connection to one node simply represents a censored observation period for
waiting times for connections to all other nodes, which can be resumed once
the node returns to the idle state.

For the task of anomaly detection, this provides another choice for the
analyst. One may be interested in finding, say, a changepoint for a single
intensity function µij or λij , to indicate that this specific relationship has
changed; or taking a more global view of node i, one may wish to detect a
changepoint which simultaneously affects, say, µij for all j. (A third option,
which is to look for changes in a subset of these intensities, is the subject
of current work and beyond the scope of the work presented here.)

Let Yi(t) ∈ {0, 1} be an indicator function such that

Yi(t) = 1 ⇐⇒ i idle at time t.

Taking the full model from Section 6.3.1.5 as an example, define Nij(t)
to be the counting process of events i � j. Nij(t) can be analysed as an
inhomogeneous Poisson process with intensity function

Yi(t)Yj(t)µij(t).

Note that the durations of the connections of node i (to any node, including
j) and node j (to any node, including i) both act as a censoring mechanism
for the process Nij(t).

Additionally, the connected durations also provide another data stream.
These durations can be viewed simply as marks to the point process of con-
nections; or in this extended Markov model, as observations from another
state transition intensity, and this approach is followed here.

Supposing connection durations are also of inferential interest, let
N̄ij(t) be the counting process of i� j connection terminations.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

160 N. A. Heard and M. J. Turcotte

Also let Yij(t) ∈ {0, 1} be an indicator function such that

Yij(t) = 1 ⇐⇒ i connected to j at time t.

N̄ij(t) can be analysed as an inhomogeneous Poisson process with inten-
sity function

Yij(t)λij(t).

Note that the pair of processes (Nij(t), N̄ij(t)) are heavily dependent
upon one another, since either Nij(t) = N̄ij(t) or Nij(t) = N̄ij(t) + 1;
additionally one always has zero intensity, since Yij(t) cannot be nonzero
when either Yi(t) or Yj(t) are zero.

However, their p-values (considered later) are asymptotically indepen-
dent of one another as more and more observation time elapses.

6.3.3. Seasonal changepoints

Fast, tractable conjugate Bayesian inference for Markov jump processes is
available if the state transition intensities λij(t) and µij(t) are assumed
constant and independently gamma distributed. But the inherent season-
ality in the processes does not admit constant intensities for representing
normal behaviour.

For example, looking at a daily level, it is likely there will be variability
in connectivity between the night-time, daytime, evening, and so on. For
example, see Figure 6.1, which illustrates this level of seasonality in the
VAST data.

Let S be a seasonal period over which the processes are expected to
show repetitive intensity patterns; for example, S might be the length of
one day.

The process Nij(t) will be assumed here to be the censored counting
process (implied by the state space diagrams) of events arising from an
inhomogeneous Poisson process with intensity function

µij(t) = µij mij(t mod S)

where mij : [0, S] → R
+ is a probability density function for the time

within the season at which a single connection would be made. A density
function representation is helpful here, since the requirement of mij to
have a fixed integral over [0, S) (equal to 1) allows the multiplier µij to be
identifiable.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 161

The intensity function of the processNij(t) for normal behaviour there-
fore becomes

µijYi(t)Yj(t) mij(t mod S). (6.1)

Similarly, N̄ij(t) will have intensity

λijYij(t)lij(t mod S) (6.2)

where lij : [0, S] → R
+ is the probability density function of a single con-

nection ending time for the same edge.
For (approximately) known density functions lij ,mij , this construction

then admits conjugate Bayesian inference when

λij , µij ∼ Γ(a, b).

The density functions lij ,mij for capturing seasonality must be learnt
from training data, and then periodically updated.

If some edges have sparse data, then it can be reasonable to assume
that for j 	= k,

lij = lik = li,

mij = mik = mi

and possibly even li = mi. This also reduces the computational resource
required.

6.3.3.1. Bayesian changepoint density estimation

To allow simple and tractable inference, the unknown density mij or lij
is assumed to be piecewise constant on [0, S), with kS changepoints σ1:kS

ordered such that 0 = σ0 < σ1 < · · · < σkS < σkS+1 = S.
Both the number of changepoints and their locations in [0, S) are

assumed to be unknown; they are assumed to follow a Poisson process
with rate νS , and so have prior density

p(kS, σ1:kS) = νkS

S e−νSS .

Conditional on (kS , σ1:kS), let θj be the probability of an observation
falling in the jth segment, j = 1, 2, . . . , kS + 1. Together the changepoints

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

162 N. A. Heard and M. J. Turcotte

and these probabilities specify a piecewise constant density, say

m(s) =
k+1∑
j=1

I[σj−1,σj)(s)
θj

σj − σj−1
, s ∈ [0, S).

Straightforward conjugate Bayesian inference can be completed by
specifying

[θ1:kS+1 | (kS , σ1:kS)] ∼ Dirichlet (α1, α2, . . . , αkS+1),

where αj = α{[σj−1, σj)} and α(·) is a base measure on [0, S); the default
choice being Lebesgue measure,

α{[σj−1, σj)} = α
(σj − σj−1)

S
.

To make inference on the number and locations of good changepoints,
let D be the data set of event times wrapped around into this season. That
is, an event time at time t ∈ [0, T] provides an observation at time t mod S
(the remainder of t after division by S). Let nj be the number of such
observations falling in the jth segment defined by the changepoints, and
n =

∑kS+1
j=1 nj .

Care has to be taken to not double count the censorship induced by
the alternating availability of the node to make a communication. Equa-
tions (6.1) and (6.2) already account for the fact that node i is not available
to make a new connection whilst it is still engaged in an existing connection.
So the density estimates should not reflect this censoring.

Strictly, this would require treating each seasonal period of data as a
sample from a truncated version of mij(s), but this breaks the conjugacy
of the Dirichlet model. So instead an approximate solution is proposed.

Focusing on the connections made by node i, for s ∈ [0, S], after observ-
ing nS seasons let

Ỹi(s) =
nS∑
j=0

Yi(s+ jS)

be the number of seasons in which the node was being observed and avail-
able to make a connection at time s. Figure 6.7 shows a plot of this function
for individual 1 from the VAST data. Notice that in the middle of the day,
where most of the connections have been made, the connection durations
have meant that the individual has been significantly less available to make
or receive further connections during the ten-day observation period.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 163

s

N
um

be
r

of
 s

ea
so

ns
 a

t r
is

k
at

 ti
m

e
s

0
2

4
6

8
10

0 2 4 6 8 10 12 14 16 18 20 22 24

● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●●● ● ● ● ● ●● ● ● ●●●

● ● ● ● ● ● ●●● ● ●●● ● ● ● ● ●● ●●● ●●● ● ● ●● ●● ● ● ● ● ● ● ● ● ●

●●●● ● ●● ● ● ● ● ● ● ●●●●● ● ● ●●●●● ● ● ●● ●● ● ● ● ● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ● ●

● ● ●●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ●● ● ●

●● ●● ● ● ● ● ●●● ●●●●● ● ● ● ● ●●● ● ● ●● ● ● ● ● ●● ● ●●●● ●●●●● ● ● ●

● ● ● ●● ●● ●●●● ●●●● ● ● ● ● ●● ● ●● ●● ●● ●●● ● ● ●● ● ● ● ●

● ● ● ● ●● ● ● ●●● ● ●● ●● ●●● ●● ●●●● ● ● ●●● ● ●● ● ●●●

●

2
4

6
8

10

S
ea

so
n

Fig. 6.7. Ỹ1(s) for the VAST data, where s gives the hour of day. The points and lines
at the bottom show the phone call event times and durations.

Define

aj =
∫ σj

s=σj−1

Ỹi(s)α(ds),

sj =
∫ σj

s=σj−1

Ỹi(s)ds

to be, respectively, the base measure and Lebesgue measure of the total
observation time of node i in the jth segment, and

a =
kS+1∑
j=1

aj

to be the base measure of the overall total observation time for node i.
Then approximate inference can proceed by defining

qj =
sj

nS(σj − σj−1)

and then

θ′j =
qjθj∑k+1
i=1 qiθi

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

164 N. A. Heard and M. J. Turcotte

as the realised probabilities of observing an event in the jth segment, and
then performing conjugate inference assuming

[θ′1:kS+1 | (kS , σ1:kS)] ∼ Dirichlet (a1, a2, . . . , akS+1).

Any estimate of θ′ can be transformed back into true probabilities θ which
are unaffected by censoring via

θj =
θ′j/qj∑k+1
i=1 θ

′
i/qi

. (6.3)

Under the conjugate Dirichlet model, the vector θ′1:kS+1 can be inte-
grated out, and reversible jump Markov chain Monte Carlo (RJMCMC)
(Green, 1995) sampling of changepoints from the posterior distribution is
trivial, with equilibrium density

p(kS , σ1:kS | D) ∝ νkS

S

kS+1∏
j=1

Γ(aj + nj)
Γ(aj)s

nj

j

.

For the single estimate required here, the MAP number of changepoints
is first obtained,

k∗S = argmax
kS

p(kS |D)

and then conditional on kS = k∗S , the MAP changepoints are obtained,

σ∗
1:kS

= argmax
σ1:k∗

S

p(k∗S , σ1:k∗
S
| D).

Using (6.3), the transformed posterior mean heights for the piecewise
constant probability density function corresponding to these changepoints
are given by

m∗
j ∝ aj + nj

(a+ n)sj
, j = 1, 2 . . . , kS + 1.

Figure 6.8 shows the density estimate obtained for individual 3 from
the VAST data when assuming the same seasonality for all communications
with this node, using Lebesgue measure as the base measure.

6.4. Discrete Time Behavioural Modelling

An alternative range of modelling possibilities arise if the connection event
data are first aggregated into counts on a discretisation of the time domain.
For example, the data may be collected or otherwise processed into, say,

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 165

D
en

si
ty

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0 2 4 6 8 10 12 14 16 18 20 22 24

● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ●● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●

Fig. 6.8. Estimated m3(s) using the VAST data for individual 3, compared with a
histogram of those data.

one-minute intervals, so that for each edge there would be a time series
recording the number of connections observed each minute.

For consideration of whether a node or edge is idle or connected at each
time point, the discrete time analogy of the Markov jump processes used
in Section 6.3 are Markov chains. A simple Markov chain model is outlined
here. In addition, since events have been aggregated there is potentially
further information in the number of connections that have occurred in
non-idle periods. Such models are not considered in depth here, but would
be trivial to incorporate; an example implementation is given by Heard
et al. (2010).

6.4.1. Markov chain modelling of a node: idle

and connected states

Let Zi(t) be the number of connections for node i at the tth time point. For
a binary representation, analogous to Section 6.3.2, let Yi(t) ∈ {0, 1} be the
indicator variable for whether node i is idle at time t; so now in discrete time,

Yi(t) = 0 ⇐⇒ Zi(t) > 0.

A Markov chain for the connectivity status of node i requires a transi-
tion probability matrix (

φi 1 − φi

ψi 1 − ψi

)

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

166 N. A. Heard and M. J. Turcotte

where

φi = P(Yi(t) = 0 |Yi(t− 1) = 0)

ψi = P(Yi(t) = 0 |Yi(t− 1) = 1)

are the conditional probabilities of node i being connected at time t given
that it was either connected or idle, respectively, at time t− 1.

Assuming a constant transition probability matrix over time corre-
sponds to an assumption that durations of connected periods follow a Geo-
metric (φi) distribution rather than the exponential distribution from the
continuous time model, although here no event distinction is made if a
connection is terminated and a new one begins within the same discrete
time period.

6.4.2. Seasonal changepoints

Seasonal variability in behaviour can be captured by dividing the seasonal
period into segments and fitting separate Markov chains for transition
behaviour within each seasonal segment. This provides a discrete time ana-
logue of the changepoint model given in Section 6.3.3.

In discrete time, the vector of ordered changepoints σ1:kS take values
from a discrete set of points {1, 2, . . . , S}. The presence of changepoints
at each of these positions can be viewed as independent Bernoulli (νS)
trials, leading to the discrete time analogue of the Poisson process prior of
Section 6.3.3,

p(kS, σ1:kS) = νkS

S (1 − νS)S−kS .

Conjugate beta distribution priors for the transition probability matrix
parameters

φi, ψi iid∼ Beta(a0, a1)

allow the unknown transition probability matrices to be integrated out.
And so similar to Section 6.3.3, RJMCMC sampling can be performed
directly on the unknown number of unknown changepoints, with equilib-
rium distribution

p(kS , σ1:kS | D) ∝ νkS

S (1 − νS)S−kS

×
kS+1∏
j=1

1∏
i=0

Γ(a0 + a1)Γ(a0 + nj
i0)Γ(a1 + nj

i1)
Γ(a0)Γ(a1)Γ(a0 + a1 + nj

i0 + nj
i1)
,

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 167

where (nj
i0, n

j
i1) record the number of transitions from state i to states

0 and 1 respectively that have been observed in the jth seasonal period
{σj−1, σj−1 + 1, . . . , σj − 1}.

The seasonal changepoints can initially be learnt on a batch of training
data, and then updated periodically.

6.4.3. Node connection counts

At a fine enough level of discretisation, often a binary view of activity will
be sufficient. However, for those time points when node i is not idle, the
magnitudes of the number of connections in them can be regarded as a
further data stream.

A model for [Zi(t) |Zi(t) > 0] can be assumed to be independent from
the model for Yi(t). When the connection counts are of inferential interest,
this two-level model is still advantageous as it provides a hurdle or zero-
inflated component for capturing the over-expression of zeros common in
connectivity data.

6.4.4. Edge-level modelling

The identities of the edges for each connection of node i can be viewed
as a further data stream. Sequentially each identity can be modelled as
independent samples, or as a dependent, irregularly time-spaced Markov
chain, as proposed for continuous time in Section 6.3.1.3.

Alternatively, each edge could be treated completely separately as a
separate modelling stage. Taking only those discrete time points at which
the node is active, identical Markov chain modelling is performed at the
edge level. In this setting, separate seasonal changepoints can be learnt for
each edge. This might not be preferable if data on some edges is sparse;
however, it may be necessary if seasonality variability is different for the
different edges emanating from a node.

6.5. Continuous Time Behavioural Monitoring

The previous two sections have presented continuous and then discrete time
approaches to modelling the arrival of events in a communication network,
and the durations of these events.

Attention is now turned to the task of monitoring the network for
anomaly detection. Like modelling, this can be done either in continu-
ous or discrete time. This section considers continuous time behavioural

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

168 N. A. Heard and M. J. Turcotte

monitoring, which is only suitable when implemented in conjunction with a
continuous time model for the data. In contrast, the next section will exam-
ine discrete time monitoring, which can be used with either an underlying
continuous time or discrete time model for the event processes.

6.5.1. Changepoint analysis

Continuous time anomaly detection is most naturally framed as a con-
tinuous time changepoint problem, where changepoints mark changes in
behaviour. Since a node may undergo several changes in behaviour over
time, multiple changepoints are considered.

Recall (6.1) for the intensity function µij(t) of the process Nij(t) under
normal behaviour. Changes in the overall level of connectivity from normal
behaviour will act as changepoints in the scalar µij .

For each of a sequence of monitoring times t0 < t1 < t2 < · · · , inference
will be made about the changepoints which have occurred in the process
based on observation over [t0, tn]. The changepoints which have occurred
by tn will be denoted τ1:kn = (τ1, . . . , τkn), and are assumed to arrive as a
homogeneous Poisson process with intensity ν, and so have prior density

p(kn, τ1:kn) = νkne−νtn .

The scalar multipliers µij for the intensities are assigned conjugate
priors,

µij
0:kn

= (µij
0 , . . . , µ

ij
kn

) iid∼ Γ(α, β),

and so these multipliers can be integrated out from the likelihood function
without any estimation. It follows that the changepoint posterior distribu-
tion is given up to proportionality by

π[t0,tn](τ1:kn , kn) ∝ γ[t0,tn](τ1:kn , kn) = νe−νt
kn∏

k=0

βα

Γ(α)
Γ(α+ rk)

(β + yk)rk+α

where τ0 = t0, τk+1 = tn and rk is the number of observed connections in
the kth segment and

yk =
∫ τk+1

t=τk

Yi(t)Yj(t) mij(t mod S)dt

is the seasonally rescaled total observation time spent in the kth segment.
After observing the network from t0 until the first monitoring time

point t1, an approximate sample of changepoints (τ1:k1 , k1)(i) from the

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 169

posterior π[t0,t1](τ1:k1 , k1) are easily obtained by reversible jump MCMC
(Green, 1995). In most cases, there will be a low probability of there being
any changepoints at this stage. Subsequently, an efficient sequential Monte
Carlo (SMC) algorithm for updating changepoint samples (Turcotte and
Heard, 2013) can exploit the similarity of π[t0,tn−1] and π[t0,tn] at successive
monitoring times.

6.5.2. Anomaly function

Following Turcotte and Heard (2011), to construct a measure of anomaly
at time t, let g(t) be the time that has passed since the last changepoint,

g(t) = t− τi∗ ,

i∗ = max
i

{τi ≤ t}.

Small values of g(t) correspond to recent change and therefore anomalous
behaviour.

Note that the prior expectation and variance of g(t) are both increasing
with t, and therefore it is preferable to work with a standardised alternative

h(t) =
g(t) − E[g(t)]√

Var[g(t)]
.

For monitoring, Turcotte and Heard (2011) consider two approaches.
The first calculates the posterior expectation E[h(t)], and monitors how
this evolves over time; this should take highly negative around the time of
an anomaly.

The second approach calculates and monitors the posterior probability
P(h(t) < 0) >, since this should be high around the time of an anomaly.
This approach has the advantage that it is more easily calibrated, and
anomalies can be flagged whenever

P(h(t) < 0) > α

for some α, say 0.95.
Both monitoring tools are considered in Section 6.7.

6.6. Discrete Time Behavioural Monitoring

Finally, the case of monitoring using discrete time analytics is considered.
The well-studied field of quality control charts provides the ideal framework
here. These charts measure the level of surprise at each discrete time point,

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

170 N. A. Heard and M. J. Turcotte

and then aggregate these levels of surprise over time. An important article
with examples close to the current context was published by Lambert and
Liu (2006).

In Heard et al. (2010), each node or edge had a single data stream
from which a predictive p-value was obtained at each discrete time point
to measure current surprise. In the presence of multiple data streams,
approximately conditionally independent p-values are calculated for each
data stream at any given time point, and then combined using Fisher’s
method to obtain a single measure of surprise which will serve as the unit
for a quality control chart.

6.6.1. Quality control chart

For a collection of independent p-values p1, . . . , pk, Fisher’s method com-
bines these separate measures of surprise into a single score

X2 = −2
k∑

i=1

log pi. (6.4)

When the null hypotheses which give rise to the p-values are correct
and the p-values arise from continuous distributions, then each p-value is
Uniform[0, 1] and it follows that X2 ∼ χ2

2k.
At monitoring time point tn, the aim is to combine independent uniform

p-values obtained for the most recently observed data from each aspect of
the multivariate data stream using Fisher’s method, to give a single measure
of surprise pn.

Since each of these combined, time-indexed p-values {pn} should be
independently uniformly distributed on [0, 1] under the null hypothesis of
normal behaviour, they can be transformed to real values {Zn} which inde-
pendently follow a standard normal distribution under the same hypothesis,
using Stouffer’s Z-score method

Zn = Φ−1(1 − pn).

Now outlying (small p-value) behaviour at time tn will correspond to a large
value of Zn.

Finally, to accumulate evidence of anomalous behaviour over time, fol-
lowing Lambert and Liu (2006) the proposed method runs an exponentially
weighted moving average (EWMA) chart {Sn} on the Z-scores {Zn},

Sn = (1 − w)Sn−1 + wZn, n ≥ 1, (6.5)

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 171

where S0 = 0, with the dual benefits that more recent values carry highest
weight but recent surprise over successive intervals can also be accumulated.
The tunable parameter w ∈ [0, 1] controls the level of significance placed
on the most recent Z-score.

This model has well-understood boundaries under the null hypothesis
(Lambert and Liu, 2006), of the form

L

√
w

2 − w
[1 − (1 − w)2n].

6.6.2. Discrete p-values

The discrete time monitoring analytic proposed in Section 6.6.1 relies on
p-values which are truly Uniform[0, 1] under the null hypothesis. However,
even from continuous time models, the discrete time monitoring statis-
tics which will be considered in this section will have discrete or mixed
type distributions and hence the resulting p-values will not have this
property.

For example, for the discrete time model which takes a binary view
of activity status, for computational tractability p-values need to be cal-
culated for each calculated binary observation of activity status and then
combined using a method such as Fisher’s. The crude discrete p-values from
a Bernoulli distribution can only take two values, and so are very far from
uniform.

6.6.2.1. Basic theory of discrete p-values

Let X be a discrete random variable on N = {0, 1, 2, . . .}. Denote the prob-
ability mass function (pmf), survivor function and cumulative distribution
function, respectively, as

px = P(X = x)

sx = P(X ≥ x) = 1 −
x−1∑
j=0

pj

fx = P(X ≤ x) = 1 − sx + px.

Note that s0 ≡ 1 and limx→∞ sx = 0. Without loss of generality, it can
be assumed that p0 > 0.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

172 N. A. Heard and M. J. Turcotte

Then, for example, one-sided upper-tail p-values of draws from X are
discrete random variables sX with range {s0 > s1 > · · · } and pmf

P(sX = sx) = px, x = 0, 1, 2,

Boolean outcomes such as idle/connected can be labelled as 0 or 1
in such a way that p0 ≥ p1. Count random variables could be similarly
relabelled if such p-values defined as

p-value(x) =
∑

j

I[0,px](pj)pj .

were preferred.
A problem in the context of this work is that p-values for discrete

random variables are discrete and therefore not U[0, 1] random variables.
Instead they are only approximately uniform when a latent variable U is
drawn conditional on the realised value of X , as now demonstrated.

Theorem 6.1. Suppose

X ∼ px,

[U |X = x] ∼ U(sx+1, sx].

Then U ∼ U[0, 1].

Proof. For u ∈ [0, 1], U has density function

f(u) =
∑

x

pxf(u|x) =
∑

x

(sx − sx+1)
I(sx+1,sx](u)
sx − sx+1

=
∑

x

I(sx+1,sx](u) = I[0,1](u). �

Noting the range of U in the above theorem, it follows immediately that
discrete p-values, which deterministically take the value sx, are stochasti-
cally larger than U[0, 1] random variables.

Corollary 6.1. If X ∼ px, then E(sX) > 1
2
.

Additionally, a second result is easily obtained:

Theorem 6.2. If U ∼ U[0, 1] and X ∼ px, then P(U < sX) > 1
2
.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 173

Proof.

P(U < sX) =
∑

x

pxP(U < sx) =
∑

x

pxsx

=
∑

x

px

∑
j≥x

pj =
1 +

∑
x p

2
x

2
>

1
2
. �

In conclusion, discrete p-values are too large if they are going to be used
in Fisher’s method, which assumes U[0, 1] random variables. Note that the
same results hold for lower-tail p-values.

To bridge this gap, discrete p-values should be regarded as an interval
censored observation of a truly uniform p-value, as prescribed by Theo-
rem 6.1. This is analogous to drawing a random variable X from a contin-
uous distribution, but then interval censoring X such that it is only known
that X lies between two integers x and x + 1. A discrete observation of
X = x then corresponds to the censored observation of a p-value

s ∼ U(sx+1, sx]. (6.6)

The next sections present two alternative solutions to this problem: the first
is a simple deterministic correction, the second is a numerical approximation
of an expected true p-value obtained from Monte Carlo simulation.

6.6.2.2. Deterministic adjustment

A simple correction is to use an adjusted p-value

s∗x =
1
2
(sx + sx+1) = sx − px

2
,

which is the midpoint of the range of the uniform latent variable in (6.6).

Theorem 6.3. If X ∼ px and U ∼ U[0, 1], then E(s∗X) = 1
2

and P(U <

s∗X) = 1
2 .

Proof. Since px = sx − sx+1,

E(s∗X) =
∑

x(sx − sx+1)(sx + sx+1)
2

=
∑

x s
2
x − s2x+1

2
=
s0
2

=
1
2
.

Also,

P(U < s∗X) =
∑

x

pxs
∗
x =

∑
x(sx − sx+1)(sx + sx+1)

2
=

1
2
. �

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

174 N. A. Heard and M. J. Turcotte

Although s∗X is of course still discrete, as an adjusted p-value it at least
possesses these two important properties of U[0, 1].

The preceding arguments have all been concerned with upper-tail
p-values sx. For lower-tail p-values, there is an analogous correction to fx,
given by

f∗x =
1
2
(fx + fx−1) = 1 − s∗x.

Corollary 6.2. If X ∼ px and U ∼ U[0, 1], then E(f∗
X) = 1

2
and P(U <

f∗X) = 1
2 .

Finally, for two-sided p-values, a little more care is required; this is the
subject of the next section.

6.6.2.3. Two-sided adjusted p-values

For x = 0, 1, 2, . . . define

gx = min(sx, fx).

Let xm be the median of X satisfying both sxm ≥ 1
2 and fxm ≥ 1

2 .
Then since sx and fx are, respectively, non-increasing and non-

decreasing in x, gx is unimodal in x with maximum at xm. An example
of gx from a Poisson random variable is plotted in Figure 6.9.

For x = 0, 1, 2, . . ., to define p-values let

Rx = {j : gx ≥ gj}.
If x = xm then Rx = N. Otherwise, since gx is unimodal then N\Rx is a
finite subinterval of N, say Rx = N\{ax, ax+1, . . . , bx} where ax ≤ xm ≤ bx
and either ax = x− 1 if x < xm or else bx = x+ 1 if x > xm.

�

�gx

0.46

0 1 2 3 4 5 6 7 x

Fig. 6.9. gx for X ∼ Poi(3.5).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 175

An unadjusted, two-sided p-value for an observed x is

hx =
∑

j∈Rx

pj,

but this has the same uniformity issues as the one-sided p-values. For exam-
ple, an observation of the median has unadjusted p-value hxm = 1.

By identical reasoning to the one-sided case, a suitable adjusted two-
sided discrete p-value is

h∗x = hx − px

2
.

Corollary 6.3. If X ∼ px and U ∼ U[0, 1], then E(h∗X) = 1
2 and P(U <

h∗X) = 1
2 .

6.6.2.4. P-values for variables of mixed type

Another important case which needs to be considered is the behaviour of p-
values from variables of mixed type; that is, variables whose distribution has
both a continuous part and a discrete part. Here, attention is restricted to
the case where such a variable arises through right-censoring of a continuous
time to event variable.

Suppose X is a random variable of mixed type with distribution

P(X ≤ x) =

∫ x

0

ζ(u)du, x < T

1, x ≥ T,

as illustrated in Figure 6.10.

Fig. 6.10. Example of a time to event variable X of mixed type, due to right-censoring
at T .

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

176 N. A. Heard and M. J. Turcotte

Let fT =
∫ T

0
ζ(u)du be the probability of X being drawn from the

continuous part (the shaded area of Figure 6.10), and sT = 1 − fT be the
probability that X = T (the height of the spike at T in Figure 6.10).

An upper-tail p-value sX has distribution

P(sX ≤ s) =

{
0, 0 < s < sT

s, sT ≤ s ≤ 1.

So p-values from observations of X are also of mixed type.
A lower-tail p-value fX has distribution

P(fX ≤ f) =

{
f, 0 < f < fT

1, fT ≤ f ≤ 1.

Define a corrected upper-tail p-value,

s∗x =

sT

2
, sx = sT

sx, sT < sx ≤ 1

where the first case corresponds to the point mass at T and the second case
corresponds to the continuous part. Note that when X has been sampled
from the continuous part, no correction is made to the p-values. Otherwise
if X = T , then the corrected p-value is the midpoint of (0, sT].

Similarly, define a corrected lower-tail p-value,

f∗
x =

fx, fx = 0 ≤ fx < fT

fT + 1
2

, fx = fT .

In this case if X = T , then the corrected p-value is the midpoint of [fT , 1),
and otherwise no correction is required.

Finally, the definition of a two-sided p-value depends upon whether the
censoring value T is beyond the median of the continuous density function
ζ, since this determines whether or not sT is greater than one half. If sT >

1/2, then the two-sided p-value is simply the lower-tail p-value fx since
fX can never exceed sX . On the other hand, if sT ≤ 1/2, then the two-
sided p-values from a mixed type variable behave just like those from a
continuous random variable, and therefore require no correction. Hence a

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 177

corrected two-sided p-value is

h∗x =

{
2gx, sT ≤ 0.5

f∗x , sT > 0.5.

Then {s∗x}, {f∗x} and {h∗x} have the properties stated in the earlier corol-
laries for corrected discrete p-values.

6.6.2.5. Expected adjustment

Alternatively, rather than performing an immediate deterministic adjust-
ment on p-values, each observed p-value can be preserved as a uniform
random variable. For example, by equation (6.6) an observation of X = x

simply spawns an upper-tail p-value variable with a U(sx+1, sx] distribution.
When several independently observed p-values p1, p2, . . . , pn are going

to be combined, typically arising from different distributions, if the ith p-
value pi is uniform on (ai, bi] then, for example, expectations of functions
of interest such as Fisher’s score (6.4) can be taken with respect to their
joint distribution with density

n∏
i=1

I(ai,bi](p
i)

bi − ai
.

Monte Carlo estimation of expectations arising from this joint distribution
are trivial to perform, but carry an increased computational cost.

In the current work, both the deterministic and Monte Carlo corrections
were observed to give very similar answers to one another.

The next two sections outline the p-values that will arise, respectively,
from the continuous time and discrete time models of Sections 6.3 and
6.4, which are corrected using the methods from this section before being
streamed to a control chart (see Section 6.6.1).

6.6.3. Poisson process p-values

Suppose an inhomogeneous Poisson process has recently been observed over
(tn−1, tn] (see Section 6.3.2), producing two pieces of summary data:

(1) a total number of events N(tn) −N(tn−1) = k;
(2) event times tn−1 = t(0) < t(1) < · · · < t(k) < tn and inter-arrival times

x1 = t(1) − tn−1, x2 = t(2) − t(1), xk = t(k) − t(k−1) and perhaps a
right-censored arrival time xk+1 = tn − t(k).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

178 N. A. Heard and M. J. Turcotte

Respectively there are two natural p-values to consider (and corresponding
lower-tail and two-sided analogues):

(1) P(N(tn) −N(tn−1) ≥ k);
(2) sx1 , sx2 , . . . , sxk

, s∗xk+1
combined via Fisher’s method.

Sverdrup’s (unpublished) observations on transition intensities imply that
the first would be more powerful when the intensity of connections is low,
otherwise the second would have more power.

6.6.4. Bernoulli process p-values

Suppose a Bernoulli process has recently been observed over discrete time
points {tn−1, tn−1 + 1, . . . , tn} (see Section 6.4.1). Note that observing a
two-state Markov chain for node i in Section 6.4.1 (rather than independent
samples) equates to alternating between the observation of two independent
Bernoulli processes with parameters φi and ψi.

For each t in {tn−1, tn−1 + 1, . . . , tn}, let Yi(t) ∈ {0, 1} be the activity
status of node i at time t.

If t falls in the jth seasonal segment, then having previously observed
(nj

i0, n
j
i1) transitions from state i to states 0 and 1, respectively, in that

segment up to time t − 1, the conjugate beta distribution priors for the
transition probabilities imply independent posterior distributions

φi ∼ Beta(a0 + nj
00, a1 + nj

00),

ψi ∼ Beta(a0 + nj
10, a1 + nj

11).

So the predictive distribution for the next observation in the chain is

p0 = P(Y (t) = 0 |Y (t− 1) = i) =
a0 + nj

i0

a0 + a1 + nj
i0 + nj

i1

,

p1 = P(Y (t) = 1 |Y (t− 1) = i) = 1 − p0.

If p0 = p1 then the next observation is uninformative as the crude
discrete p-value will surely take value 1 and, when viewed as a partial
observation, the unobserved p-value will simply be Uniform[0, 1] under the
null hypothesis.

Otherwise, without loss of generality suppose p1 > p0. Then if Y (t) = 0,
the crude p-value will be p0 and the unobserved part will be Uniform[0, p0];
otherwise if Y (t) = 1, the crude p-value will be 1 and the unobserved part
will be Uniform(p0, 1].

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 179

Using either of the corrections of Section 6.6.2, each of the independent
p-values for t ∈ {tn−1, tn−1+1, . . . , tn} are combined using Fisher’s method
to obtain a single measure of surprise for this monitoring window.

6.7. Results for the VAST Data

The plots in the following sections show control charts or changepoint
curves for a selection of the different model and analytic combinations when
applied to the VAST data of Section 6.2, using 100 update windows over
the ten-day period. Continuous time modelling followed by either discrete
or continuous monitoring is then followed by discrete time modelling and
monitoring.

Both directed and undirected views of the call-time data streams of
a node or edge can be considered in four different ways. In the first, the
direction of the communications is ignored and all calls are treated as homo-
geneous events; in the second, just outgoing calls are counted; in the third,
just incoming calls are counted; in the fourth, outgoing calls and incoming
calls provide two separate counting processes suitable for a joint analysis.
For node-level analyses, the effects of including the caller identities or the
cell towers as additional data streams are also considered.

Each line in the plots represents one node from the network. If present,
a dashed line indicates a possible threshold for decision making, where a
node is marked as anomalous if its curve crosses the threshold. In some
cases a near optimal choice of threshold for this data set is shown, to show
the best performance that could have been achieved.

The darkest grey lines in the plots, along with identity numbers to the
right in bold face, indicate malicious actors who have been detected; any
other known malicious actors are coloured medium grey, and their identifiers
are shown in italic face. The lightest grey lines potentially indicate false
positives, as these actors are not known to be malicious.

6.7.1. Continuous time Markov jump process model

First, continuous time modelling (Section 6.3) is applied to the VAST data.
Sections 6.7.1.1 and 6.7.1.2 present the resulting control charts from the dis-
crete time analytic Sn; these two sections contrast the performance achieved
from modelling the aggregated call behaviour of a node against splitting up
the data streams for each of the different identities with which the node
communicates. Section 6.7.1.3 then presents results from the continuous
time analytics E[h(t)] or P(h(t) < 0).

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

180 N. A. Heard and M. J. Turcotte

0 2 4 6 8 10

Time t

S
t

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 1 2 3 4 5 6 7 8 9 10

200

15

32

53
105
268

00

11

22

33

55

300300

306306

309309

360360

397397

Fig. 6.11. VAST data control charts: continuous time model for undirected node event
times.

6.7.1.1. Control charts when monitoring node connection times

Figure 6.11 shows the control chart Sn from (6.5) for each individual in the
VAST data set when looking at all calls made or received by the individual
as one series.

The dashed line shows the threshold which would give optimal perfor-
mance in terms of maximising true positives and minimising false positives
for these particular control charts; any individual whose control chart ever
exceeds the threshold is marked as having been flagged as anomalous.

Note that individual 200, earlier seen to be at the centre of the malicious
subnetwork in Figure 6.2, is not detected at the optimal threshold. In fact,
individual 200 is not detected by any of the methods presented here, since
his call behaviour does not noticeably change; it is more realistic to find this
individual through “guilt by association”, as he regularly communicated
with malicious individuals 1, 2, 3 and 5, who are all detected here; 1 and 5
are detected with particularly strong significance. However, to achieve just
one false negative, four false positive anomalies are being flagged (indicated
in light grey).

Figure 6.12 shows the control charts obtained when only looking at
the outgoing call behaviour of each individual. Surprisingly, this causes a
huge reduction in detection power, with five malicious actors going unde-
tected; reducing the threshold to detect more malicious individuals leads

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 181

0 2 4 6 8 10

Time t

S
t

00

22

33

55
200200
11

300300

306306

309309

360360

397397

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 1 2 3 4 5 6 7 8 9 10

Fig. 6.12. VAST data control charts: continuous time model for outgoing event times
for each node.

to an avalanche of false positives. Clearly, there is only a weak signal in the
outgoing call behaviour here.

In contrast, Figure 6.13 shows the control charts obtained when only
looking at the incoming calls received by each individual. Performance here
exceeds that achieved when merging the incoming and outgoing calls; at
the optimal threshold, all of the malicious actors except individual 200 is
found, but this time with only two false positives.

A strong signal in the incoming call behaviour is interesting, per-
haps suggestive of an organisation where the malicious actors are receiving
instructions rather than relaying. To explore if stronger detection power
could be obtained from the incoming call data, Figure 6.14 shows the results
from adding a second data stream to the analysis of each node, using a
Markov chain to model the identities of the sources of the incoming calls
(see Section 6.3.1.3). However, this can be seen to be only injecting noise
into the analysis, with the false positive rate increasing.

Very similar results are obtained (and so not shown here) if the orig-
inating cell tower for the incoming calls is added as a data stream in the
analysis. A similar increase in false positives is observed. However, in both
cases, it appears that some of the malicious actors would be detected sooner
using these extra data streams.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

182 N. A. Heard and M. J. Turcotte

0 2 4 6 8 10

Time t

S
t

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 1 2 3 4 5 6 7 8 9 10

200

32

0

1

1

2

2

3

3

5

5

300

300

306

306

309

309

360

360

397

397

Fig. 6.13. VAST data control charts: continuous time model for incoming event times
for each node.

0 2 4 6 8 10

Time t

S
t

200200

7

1315

23

41

52

00

11

22

33

55

300300

306306

309309

360360

397397

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 1 2 3 4 5 6 7 8 9 10

Fig. 6.14. VAST data control charts: continuous time model for incoming event times
and Markov model for corresponding incoming caller for each node.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 183

0 2 4 6 8 10

Time t

S
t

00

22

200200

32

11

33

55

300300

306306

309309

360360

397397

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 1 2 3 4 5 6 7 8 9 10

Fig. 6.15. VAST data control charts: continuous time models for incoming and outgoing
event times for each node.

Finally for this approach, the incoming and outgoing calls of each node
were treated as two separate data streams in the analysis. The resulting
control charts are shown in Figure 6.15, and, as in Figure 6.11, the inclusion
of outgoing call data is shown to reduce performance, even when introduced
as a separate data stream.

6.7.1.2. Control charts when monitoring edge connection times
of each node

In these analyses, separate incoming and outgoing call data streams were
created for each relationship of a node. The p-values for the different rela-
tionships of a node were then combined into a single surprise score to make
control charts. As in the previous section, four different representations of
the data were considered: a merged incoming/outgoing call stream; out-
going calls; incoming calls; outgoing and incoming calls as two separate
streams.

Interestingly the control charts behave quite differently from the anal-
yses of Section 6.7.1.1, but the detection performance is very similar, if
slightly inferior. Again, outgoing calls are found to carry the least infor-
mation, and including both incoming calls and outgoing calls as two data

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

184 N. A. Heard and M. J. Turcotte

0 2 4 6 8 10

Time t

S
t

−
1

0
1

2
3

4

0 1 2 3 4 5 6 7 8 9 10

200200
13
14
213200

11

22
33

55

300300

306306

309309

360360

397397

Fig. 6.16. VAST data control charts: continuous time models for incoming and outgoing
event times for each edge of a node.

streams, now for each edge in the network graph, gives the best performance
of all. The control chart for this analysis is shown in Figure 6.16.

6.7.1.3. Changepoint analysis results

In this section, results are presented for the same continuous time model and
data streams as Section 6.7.1.2, but now using the continuous time anomaly
detection analytics based on changepoint discovery (Section 6.5.1).

As with the discrete time analytic results in Section 6.7.1.1, the incom-
ing calls were found to carry the strongest signal, and a joint analysis of
the outgoing and incoming call streams outperforms analysis when merg-
ing the two streams together. Note that in this section, the thresholds for
P(h(t) < 0) were fixed at 95% and so have not been chosen to be opti-
mal; therefore direct comparisons both within this section and between
sections are not intended. Figures 6.17 and 6.18 show the anomaly detec-
tion functions E[h(t)] and P(h(t) < 0) from Section 6.5.2 when modelling
the incoming call data for each node.

In the plot of E[h(t)] (Figure 6.17) the known malicious actors are indi-
cated by their identifiers, and it is unclear how a simple threshold could be
applied here without absorbing a large number of false positive anomalies;
in contrast, for the plot of P(h(t) < 0) (Figure 6.18) a threshold is simply

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 185

0 2 4 6 8 10

Time t

h t

00

11

22

3355

002 002

003 003 603 603 903 903 063 063
793 793

−
10

−
8

−
6

−
4

−
2

0

0 1 2 3 4 5 6 7 8 9 10

Fig. 6.17. VAST data E[h(t)]: continuous time model for incoming event times for each
node.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time t

P
(h

t<
0)

0 1 2 3 4 5 6 7 8 9 10

0

11223355

2200

003 003 603 603 903 903 063 063 793 793

Fig. 6.18. VAST data P(h(t) < 0): continuous time model for incoming event times for
each node.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

186 N. A. Heard and M. J. Turcotte

set at 95% and for this merged data stream all but one of the malicious
actors are detected, along with a handful of false positives.

6.7.2. Discrete time Markov chain model

In this section the discrete time model (Section 6.4) is applied to the VAST
data, and output is shown from the discrete time control chart analytic. To
form discrete time series from the VAST data, the ten days of data were
discretised into binary activity status indicator variables for each minute,
meaning each series was of length 14,400 and therefore each update window
consisted of 144 observations of activity status.

As in previous sections, the following analyses were considered: a
merged incoming/outgoing call stream; outgoing calls; incoming calls; out-
going and incoming calls as two separate streams. Again, incoming calls
were found to carry much greater signal than outgoing calls under this
model. However, in this case, similar performance is obtained whether
analysing just incoming calls (displayed in Figure 6.19), or both incoming
and outgoing calls either as one merged stream or as two separate streams.
Overall though, there is much less separation between the control charts of
malicious actors and those of the rest of the network. In particular, the other
central node from the malicious subnetwork of Figure 6.2, individual 300,

0 2 4 6 8 10

Time t

S
t

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 1 2 3 4 5 6 7 8 9 10

200

200

300

300

13

0

0

1

1

2

2

3

3

5

5

306

306

309

309

360

360

397

397

Fig. 6.19. VAST data control charts: discrete time model for incoming node event times
for each node.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

Monitoring a Device in a Communication Network 187

can no longer be detected without accepting an avalanche of false positives,
and is always below the optimal threshold.

6.8. Conclusions

The control charts and changepoint plots of Section 6.7 yield the following
tentative conclusions about the methods and the VAST data, based on this
analysis.

6.8.1. Summary of methods

Continuous time modelling gave more accurate inference and is computa-
tionally faster than discrete time modelling, which also requires an arbitrary
discretisation of the time domain. In contrast, continuous time monitoring
and discrete time monitoring gave very similar inference, and it is discrete
time monitoring that has the greater computational simplicity (with no
requirement for costly MCMC or SMC simulation).

6.8.2. Summary of VAST data results

Although the analysis was only performed on synthetic data, it is interesting
to be able to gain insight into how the anomalies in the data were generated.
The majority of the signal for detecting the malicious actors in the VAST
2008 Challenge data was in the change in pattern of their incoming calls.
The outgoing calls held almost no information. This finding was consistent
across all of the different analytics.

Beyond this, there was limited further information to be extracted from
the identity of the incoming callers, or the cell towers used by those callers;
earlier detection of some malicious actors came with a price of a higher false
positive rate. Splitting the data stream into separate process for each edge
led to more noise rather than more signal. It seems the information in the
VAST 2008 Challenge data was in the aggregated call patterns.

References

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual Web
search engine, Comput. Networks ISDN 30, pp. 107–117.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination, Biometrika 82, pp. 711–732.

January 17, 2014 17:32 9in x 6in Data Analysis for Network Cyber Security b1711-ch06

188 N. A. Heard and M. J. Turcotte

Heard, N. A., Weston, D. J., Platanioti, K. and Hand, D. J. (2010). Bayesian
anomaly detection methods for social networks, Ann. Appl. Stat. 4,
pp. 645–662.

Lambert, D. and Liu, C. (2006). Adaptive thresholds, J. Am. Stat. Assoc. 101,
473, pp. 78–88.

Turcotte, M. J. M. and Heard, N. A. (2011). Continuous time changepoint detec-
tion with applications in dynamic networks, Tech. rep., Imperial College
London. Available upon request from the authors.

Turcotte, M. J. M. and Heard, N. A. (2013). An efficient sequential Monte Carlo
algorithm for sampling multiple changepoints in continuous time, Tech.
rep., Imperial College London. Available upon request from the authors.

Ye, Q., Zhu, T., Hu, D., Wu, B., Du, N. and Wang, B. (2008). Cell phone mini
challenge award: Social network accuracy – Exploring temporal commu-
nication in mobile call graphs, in Proceedings of IEEE VAST Symposium
(IEEE, Piscataway, NJ), pp. 207–208.

January 17, 2014 17:33 9in x 6in Data Analysis for Network Cyber Security b1711-index

Index

Bayesian changepoint analysis, 166,
168

BTopRank, 138

CAIDA, 53

changepoint analysis, 36, 130

Bayesian, 161

community detection, 108

contingency table test, 13

control charts

CUSUM, 40, 130

EWMA, 170

degree variance test, 15

denial of service, 129

distributed, 53, 129

density estimation, 161

discrete p-values, 171

DTopRank, 137

Erdös–Rényi model, 6

fixed-degree test, 16

flooding

TCP/SYN, 48, 130

UDP, 48, 131

folksonomy, 109, 114

graph Laplacian, 11

combinatorial, 11

hidden Markov model, 82

intrusion detection systems

anomaly-based, 48

hybrid anomaly–signature, 63

k-paths, 74

LANDER project, 55

Markov chains, 156, 164
Markov jump processes, 154
MultiRank, 139

NetFlow, 72, 132
new edges, 87

observed Markov model, 82
out stars, 74

port scanning, 131

record filtering, 133
relational data, 3

Shiryaev–Roberts procedure, 40
situational awareness, 105
sketches, 133
social media, 105
social networking, 105
spectral analysis techniques, 63
stochastic block model, 7
Stouffer’s Z-scores, 170

TopRank, 134
traversal attack, 73

user interaction pattern analysis, 107

VAST 2008 Challenge data, 152, 179

Zachary karate data, 12

189

	Contents
	Preface
	Chapter 1. Inference for Graphs and Networks: Adapting Classical Tools to Modern Data
	1.1. Introduction
	1.1.1. Modern network data sets
	1.1.2. Organization and aims of the chapter

	1.2. Networks as Relational Data
	1.2.1. Relational data matrices and covariates
	1.2.2. Networks as distinct from relational data

	1.3. Model Specification and Inference
	1.3.1. Erdos–Renyi: A first illustrative example
	1.3.2. Approximate inference

	1.4. Testing for Network Structure
	1.4.1. The Zachary karate data
	1.4.2. Tests with known categorial covariates
	1.4.3. The case of latent categorial covariates
	1.4.4. Decoupling degree sequence and connectivity

	1.5. Open Problems in Network Inference
	1.5.1. Model elicitation and selection
	1.5.2. Approximate inference and validation
	1.5.3. Sampling, missingness, and data reduction

	1.6. Conclusion
	Acknowledgments
	Appendix: A Review of Approaches to Network Analysis
	A.1. Model Elicitation
	A.2. Model Fitting and Inference
	A.3. Approximate Inference Procedures
	A.3.1. Algorithmic approaches
	A.3.2. Evaluation of efficacy

	References

	Chapter 2. Rapid Detection of Attacks in Computer Networks by Quickest Changepoint Detection Methods
	2.1. Introduction
	2.2. Quickest Changepoint Detection
	2.3. Anomaly-based IDS
	2.3.1. CUSUM and SR score-based algorithms
	2.3.2. Experimental study
	2.3.2.1. Detection of DDoS attacks
	2.3.2.2. Rapid detection of spam at the network level

	2.4. Hybrid Anomaly–Signature IDS
	2.4.1. IDS structure
	2.4.2. Experimental study

	2.5. Conclusion
	Acknowledgments
	References

	Chapter 3. Statistical Detection of Intruders Within Computer Networks Using Scan Statistics
	3.1. Introduction
	3.1.1. Basic graph concepts and computer network data
	3.1.2. Example traversal attack
	3.1.3. Attack shapes in the graph
	3.1.4. Related work

	3.2. The Scan Statistic
	3.2.1. Windows in the cross product space
	3.2.2. A scan statistic for windows in the Time × Graph space

	3.3. Independence Among Edges in a Path
	3.4. Modeling, Estimation, and Hypothesis Testing
	3.4.1. Observed Markov model
	3.4.2. Hidden Markov model
	3.4.3. New edges
	3.4.4. Alternative hypotheses
	3.4.5. P-value calculation
	3.4.6. Threshold determination

	3.5. Simulation Study
	3.5.1. A comparison of stars and paths

	3.6. Real Network Detections
	3.6.1. Detection of user change
	3.6.2. Detection of real attack

	3.7. Conclusions and Future Work
	Acknowledgments
	References

	Chapter 4. Characterizing Dynamic Group Behavior in Social Networks for Cybernetics
	4.1. Introduction
	4.2. User Interaction Pattern Analysis
	4.3. Motivation
	4.4. Proposed Framework
	4.5. Data Preprocessing
	4.5.1. Projection of tripartite to bipartite graph
	4.5.2. Projection of bipartite to one-mode graph

	4.6. Feature Extraction
	4.6.1. Tag sense disambiguation
	4.6.2. Clique percolation method
	4.6.3. Tag concept hierarchy
	4.6.4. Effective tag sense disambiguation using tag concept hierarchy

	4.7. Higher-order Mining
	4.7.1. User profile
	4.7.2. Types of user profiles
	4.7.3. Linking users based on similarity
	4.7.3.1. Projection of bipartite to one-mode graph

	4.7.4. Communities in a graph
	4.7.5. Identifying user communities in social graph
	4.7.5.1. Detecting ad hoc communities
	4.7.5.2. Louvain community detection

	4.7.6. Temporal analysis of communities

	4.8. Conclusion
	References

	Chapter 5. Several Approaches for Detecting Anomalies in Network Traffic Data
	5.1. Introduction
	5.2. Description of the Methods
	5.2.1. Centralised approaches
	5.2.1.1. TopRank

	5.2.2. Decentralised approaches
	5.2.2.1. DTopRank
	5.2.2.2. BTopRank
	5.2.2.3. MultiRank

	5.3. Application of the Centralised Approaches to Real Data
	5.3.1. Choice of parameters
	5.3.2. Performance of the method
	5.3.2.1. Statistical performance
	5.3.2.2. Numerical performance

	5.4. Application of the Decentralised Approaches
	5.4.1. Performance of the methods

	References

	Chapter 6. Monitoring a Device in a Communication Network
	6.1. Introduction
	6.2. VAST 2008 Challenge Data
	6.3. Continuous Time Behavioural Modelling
	6.3.1. Markov jump processes
	6.3.1.1. Idle and connected states, undirected edges
	6.3.1.2. Idle and connected states, directed edges
	6.3.1.3. Embedded Markov chain for connection identities
	6.3.1.4. Separate states for each connecting node, undirected edges
	6.3.1.5. Separate states for each connecting node, directed edges

	6.3.2. Inference for Markov jump processes
	6.3.3. Seasonal changepoints
	6.3.3.1. Bayesian changepoint density estimation

	6.4. Discrete Time Behavioural Modelling
	6.4.1. Markov chain modelling of a node: idle and connected states
	6.4.2. Seasonal changepoints
	6.4.3. Node connection counts
	6.4.4. Edge-level modelling

	6.5. Continuous Time Behavioural Monitoring
	6.5.1. Changepoint analysis
	6.5.2. Anomaly function

	6.6. Discrete Time Behavioural Monitoring
	6.6.1. Quality control chart
	6.6.2. Discrete p-values
	6.6.2.1. Basic theory of discrete p-values
	6.6.2.2. Deterministic adjustment
	6.6.2.3. Two-sided adjusted p-values
	6.6.2.4. P-values for variables of mixed type
	6.6.2.5. Expected adjustment

	6.6.3. Poisson process p-values
	6.6.4. Bernoulli process p-values

	6.7. Results for the VAST Data
	6.7.1. Continuous time Markov jump process model
	6.7.1.1. Control charts when monitoring node connection times
	6.7.1.2. Control charts when monitoring edge connection times of each node
	6.7.1.3. Changepoint analysis results

	6.7.2. Discrete time Markov chain model

	6.8. Conclusions
	6.8.1. Summary of methods
	6.8.2. Summary of VAST data results

	References

	Index

