
www.allitebooks.com

http://www.allitebooks.org

Developing AR Games for iOS
and Android

Develop and deploy augmented reality apps using
Vuforia SDK and Unity 3D

Dominic Cushnan

Hassan El Habbak

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Developing AR Games for iOS and Android

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1170913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78328-003-2

www.packtpub.com

Cover Image by Dominic Cushnan (dominic@mixedrealitystudio.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Dominic Cushnan

Hassan El Habbak

Reviewers
Thomas Finnegan

Nguyen Duc Luong

Acquisition Editor
James Jones

Commissioning Editor
Mohammed Fahad

Technical Editors
Krutika Parab

Gaurav Thingalaya

Dennis John

Project Coordinator
Joel Goveya

Proofreaders
Stephen Copestake

Clyde Jenkins

Indexer
Rekha Nair

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Dominic Cushnan is a visionary, and he is always looking for the next new
idea and technology to analyze. He is currently the director of a software company
dedicated to bringing augmented reality solutions to various types of clients in
various fields. Dominic began developing web-based AR projects, and he has seen
the industry grow and develop over the years. Working initially with advertising
agencies and brands, Dominic is excited to see the consumer AR market expand.

I would like to thank all the support I have had from mentors
to clients and friends who share my vision and the ever patient
''squirrel''. Mostly I would like to thank Hassan for being a great
team player and true friend.

Hassan EL Habbak is a software engineer with a huge interest in mobile
technologies, particularly in the areas of AR and gaming. He started off with
small-scale mobile applications, but soon found himself creating massive AR
experiences for a variety of businesses and individuals. He is also a gaming
enthusiast with various games already implemented using free technologies
such as Unity. He thrives on finding channels through which he may deliver
his content to the masses of unsuspecting people.

I would like to thank my wife, without whom none of this would
have happened. I would like to thank Dominic for being the friend
that supported me for years now. I would like to thank everyone
who has ever worked or improved tech; we stand on shoulders
of giants.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Thomas Finnegan graduated from Brown College in 2010, and now works as a
freelance game developer. Since then, he has worked on everything from mobile
platforms to web development, and even experimental devices. Past clients include
Carmichael Lynch, Coleco, and Subaru. His most recent project is Battle Box 3D, a
virtual table top. His first book, about Android Game Development in Unity 3D,
will see release in early 2014.

Nguyen Duc Luong has two diplomas, one in Information Technology, and one
for Business Administration; with him study is good. He has started as Software
Engineer, but he has experience of more than seven years as a developer. With
passion in programming, he has developed a lot of complex and distributed system
on desktop, web base for government and business organizations projects, in many
programming languages. He also has strong experience in developing apps and
games on smartphones (iOS and Android OS) in the century of mobile. Recent
languages that he focuses on now are Ruby, C++, C#, Objective-C, with some game
engines such as Cocos2d and Unity, and some frameworks for app on mobile
such as jQuery Mobile and PhoneGap.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: What is Augmented Reality?	 5

Definition of augmented reality	 6
The forms of augmented reality	 6

Smartphones and augmented reality	 7
Immersion factor for delivering content	 8
Vuforia SDK and how it helps in delivering the AR experience	 9
Unity 3D and how it fits with Vuforia	 14
Summary	 16

Chapter 2: Setting Up the Environment	 17
Downloading and installing Unity 3D	 17
Downloading and installing Vuforia	 18
Vuforia sample projects	 20
Starting a Unity project	 21

Unity scenes	 21
Importing packages in Unity	 23

Unity scene files	 24
Trackable files	 27

Build settings	 30
Deploying for Android	 32
Deploying for iOS	 35

Summary	 38
Chapter 3: Understanding Vuforia	 39

Creating a Unity project with Vuforia	 39
Vuforia prefabs	 41

Importing and attaching 3D objects	 49
Parenting in Unity objects	 57

Summary	 59

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: Trackables and Tracking	 61
What are trackables for image targets?	 61
Creating image targets	 61
Trackable score	 65
What decides trackable score?	 66

Features definition	 70
Enhancing score by enhancing contrast	 71
Feature distribution on image targets	 73
How to enhance distribution of features	 74
Patterns in image targets	 76

Exporting datasets to Unity	 78
Summary	 80

Chapter 5: Advanced Augmented Reality	 81
Augmented reality games	 81
Unity as a game engine	 82

Setting up the environment	 82
The Whack-A-Mole game	 83

Creating the ground for moles	 84
The Whack-A-Mole model	 87

Adding colliders to the scene	 89
Creating the ball for the ball gun	 90

Setting global gravity settings	 92
Adding audio sources	 93
Scripting the ball gun	 96
Vuforia trackable event handler	 103
Adding a Particles prefab	 107
Scripting the mole character	 109
Mask shader	 112
Summary	 114

Index	 115

www.allitebooks.com

http://www.allitebooks.org

Preface
In this book, we will be introduced to augmented reality, and how to achieve it using
powerful but simple tools. Using the free license of Vuforia and Unity 3D, we will
see how the two technologies can seamlessly entwine and produce amazing results.
We will learn how to design a great augmented reality experience that will immerse
users and not feel foreign when augmented on the real world. Augmented reality
became increasingly reliable with recent advancements in the field; we will learn
how to use that potential in most efficient way.

What this book covers
Chapter 1, What is Augmented Reality?, will explain what is augmented reality,
and what is its past, present, and future.

Chapter 2, Setting Up the Environment, will cover how to set up the environment
necessary for AR using Unity 3D and Vuforia, and also how to deploy AR on iOS
and Android devices.

Chapter 3, Understanding Vuforia, will go through the components of Vuforia and how
they work together to achieve augmented reality.

Chapter 4, Trackables and Tracking, will explain how to create trackables for Vuforia
and how to optimize them to achieve highest tracking scores.

Chapter 5, Advanced Augmented Reality, will introduce how to make fully-functional
AR games using Unity and Vuforia.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

What you need for this book
The free version of Unity 3D is required, as well as Vuforia SDK.

Who this book is for
This book is for anyone with basic to advanced programming experience, who
is interested in AR and game development. In a booming smartphones industry,
this book is for anyone looking for entry into the immersive mobile experience
using interactive games and AR.

Conventions
In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[3]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Preface

[4]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

What is Augmented Reality?
In augmented reality, the reality around us is layered on with virtual content.
Whether that is an immersive 3D experience or simple text and indicators, virtual
reality is both an old concept and a rising new technology. In this chapter we will go
over the concept of augmented reality in its many forms, to broaden our view of the
scope of the concept and how it can be utilized. We will also go over the tools that
will help us materialize this concept in the explosively growing mobile platforms,
particularly iOS devices. The following image shows an augmented reality game:

What is Augmented Reality?

[6]

Definition of augmented reality
Augmented reality (AR) in its broadest and simplest definition is the technology that
enables the addition of virtual content to the real world. This is usually associated
with the addition of 3D content to a live feed from camera, though the term in itself
has a much broader meaning and usage.

Perhaps the simplest form of augmented reality that people have been using for
decades is the one available in photo cameras more than a decade ago. Many use it,
but very few realized the nature of the concept applied. It's the part of the camera
called "the viewfinder", which is the little window you look through to view the
world through the camera. This little window is in fact an augmented reality in a
very simple form. What it fundamentally does is look at the world around it through
the lens and then add a layer printed on glass to highlight the center of the lens
and the borders of the image to be captured. What it did here is what augmented
reality in all its forms aspires to do, which is to layer relative information over the
real world.

In mobile platforms, augmented reality works on the same principles even if the
method is slightly different. The camera captures a live feed of the world around it,
and then the computer vision systems try to get a bearing in the visible 3D space and
display the augmented reality in a way that is seamless with the world. The process
of calculating the relative position of the user to the reality around, to be able to
correctly augment the content for the user, is called tracking.

The forms of augmented reality
Augmented reality can take many forms. It always depends in one form or another
on a technique to calculate the relative 3D space to the reality around us. It can
achieve that using many technologies. For example, the Gyroscope on an iPhone
can be used to track the placement of the phone in the 3D space that can be used to
track the world relative to the device if movement is applied. That is usually seen in
a number of augmented reality games for the device. That is certainly a form of AR
but in this book, we will be mainly concerned with one form of tracking that uses
computer vision.

Computer vision tracking can be divided into two sections, marker tracking and
markerless tracking. In marker tracking, there is a physical entity that the computer
vision is trained to track; it positions the camera's perspective relative to it. The
physical object used is usually called a trackable. The trackable is usually handled
internally to be the origin and the center of the world, which the computer vision can
orient itself to. Sometimes, the camera live feed is the one considered to be the center
of the world, and the trackable or trackables are objects that orbit it in space so
to speak.

Chapter 1

[7]

Markerless tracking techniques are essentially similar to marker tracking in that they
try to find an origin point to augment the reality relative to. They differ in the way
they find the origin point that, unlike marker tracking, they achieve without using
a predefined physical object that the computer vision is only trained to follow. In
Markerless tracking, the computer vision is mainly programmed to follow certain
colors and shapes with a degree of freedom. For example, the computer can be
trained to follow green objects of a certain shade and cover them completely with a
blue one. In this case, it simply tracks the color; if it finds a green area in the camera
feed, it augments it with a blue virtual object. Computer vision can even be trained
to recognize faces, such as all the famous camera apps that add animated effects
around the user's head or face. Markerless tracking is definitely more versatile, but
it offers less reliability than marker tracking. Also Markerless tracking is naturally
more complicated to develop, contributing to the popularity of the Marker tracking
augmented reality.

In this book, we will use the Vuforia SDK, which is an SDK that uses Marker tracking
techniques. We will use this with the Unity 3D engine to deliver augmented reality
experiences on iOS devices. In utilizing both technologies, we will be familiarizing
ourselves with the workflow of creating augmented reality.

Smartphones and augmented reality
As we have established, the concept of augmented reality is an old one. It is even
woven into the pop-culture in sci-fi movies as old as we can remember. Augmented
reality as a technology did not reach the mainstream till quite recently. In the past,
augmented reality was considered a niche, because of the expensive setup it needed
to function. Augmented reality is demanding when it comes to hardware. It needs
a camera to view the world with, computational power to calculate and render the
augmented content, and a way for the user to interact with the virtual content.
All of this was difficult to attain for mainstream users.

Today, almost everyone is walking around with very capable computers in
their pockets able to render graphics content to a large degree of realism. Those
smartphones are evolving at an unprecedented pace that makes them more and more
powerful by the month. And best of all, they come with an accurate camera, fulfilling
all the three needs for augmented reality.

It is not very inaccurate to assume that everyone is walking around with an
augmented reality-capable machine at his or her will. That alone eradicated
the barrier to accessibility that was present for so long. Now augmented reality
content can reach millions of users for an unprecedented immersive experience.

What is Augmented Reality?

[8]

A lot of companies understood the importance of the trend in the industry and its
potential. Perhaps in the lead is Qualcomm, the biggest mobile chip manufacturer in
the world. Qualcomm realized the huge potential of AR present in mobile phones,
and developed the free SDK Vuforia. Vuforia, known as QCAR in the past, was
created to enable developers to tap that potential in the mobile space. Vuforia
started out on Android platforms, and later expanded to include iOS devices as
well. Qualcomm always includes subtle optimizations to AR on their chips to further
improve the experience. This shows how much they believe in the future of the
technology. Qualcomm even invested in making a more mobile-friendly OpenCV
SDK called Easy CV. Easy CV is a tool for image processing and computer vision
that can further enhance the experience of AR along other uses that involve
computer vision.

Google also is heavily invested in the concept of augmented reality with their
Google Glass project. Google Glass is perhaps the most ambitious augmented reality
project under development right now. It promises wearable computers for the
mainstream in the form of a head mounted display equipped with a camera. The
design is to be unobtrusive, but at the same time efficient at displaying augmented
reality data based on the input of the real world. Interaction will be in the form of
voice commands and it will be able to access the Internet. The project is still in its
infancy but the fact that Google is investing so many resources, clearly indicates
the importance of the rising AR technology.

With the accessibility of augmented reality hardware, the support of major
corporations, and the huge market available, augmented reality has everything it
needs to thrive and stay for a long time. This is why it is important to familiarize
us with the concept and its potential.

Immersion factor for delivering content
Immersion is the factor in which the user is engrossed in the world you presented
to them. The more believable the world, the more immersed the user will be, and
the more successful the message the experience is trying to convey. The successful
developer will try to achieve the highest level of immersion possible.

The human mind will always try to make sense of what it's seeing; that is true for all
human interactions. This fact is particularly interesting for virtual interaction because
what the human mind is trying to make sense of is not physically there. The more
elaborate the lie, the easier the mind will believe it. So the art of immersion is the
art of telling the perfect lie to the mind. And as all good liars will say, if they were
honest for that moment, the way to tell the perfect lie is to mix it with the truth. By
that definition, augmented reality is the perfect way of telling a lie.

Chapter 1

[9]

By mixing the virtual content with the real world, the user feels connected to
the content presented in a way most other virtual medias fall short of. Watching a
user interact with augmented reality content for the first time is always wonderful.
Often, we can see that the user forgets for a moment that they are watching the
virtual content through the screen of their device and try to grab it with their
hands as if to check it's not really there. It happens almost consistently and
certainly subconsciously. This is indicative of how much the user is immersed
in the action.

What adds to the immersion as well is the way the user can interact with the
augmented reality content. The user can view the content from almost all angles.
They can walk around it, come close to it, and walk away from it. The fact that it
stays consistent with the world around them, maintains the connection between the
user and the content. If the experience is mixed with the right audio and/or video
content, it can be something that brings a smile on the user's face.

Interactivity can even come in the form of a game structure that allows the user to
directly affect the content being displayed. Interactivity of this kind can be very
entertaining for the user and a fresh way of playing a game.

Vuforia SDK and how it helps in
delivering the AR experience
Vuforia is a great offering from Qualcomm that gave the augmented reality industry
a great boost. It has one of the fastest tracking algorithms in the market that is less
prone to trackable occlusion and even low light conditions. This makes the apps
created using the SDK user-friendly and easy to use. Best of all, the Vuforia SDK
is offered for free, making it widely used with an active community on the forums
tackling most issues that might arise.

The SDK is also particularly friendly to developers new to the concept. It is easy
to learn with a smooth workflow that just makes sense. Using this SDK will allow
developers to deploy simple AR apps in very little time, and still allows them to
develop robust and complex AR experiences.

Vuforia offers easy to use components that perform the augmented reality role
when interacting together. For example, the SDK offers the ARCamera component.
The ARCamera component will automatically take the video camera feed from the
device and display it for the use. It will also detect trackables that the developer
specified for the camera. The ARCamera will respond to the orientation of the user
in relation to the trackable mostly without much intervention from the developer.
This simplifies the process of creating an augmented reality experience greatly.

What is Augmented Reality?

[10]

Vuforia also offers a number of tracking solutions that cover a number of situations.
The list of components offered in the SDK is as follows:

•	 ARCamera: This is essentially the user's portal into the real world through
the app. It offers the live camera feed from the device and also the number
of trackables to detect.

•	 Image Target: This is the most common form of trackables offered by
Vuforia. Using this component, the app can detect any suitable image it
has been trained to detect and show the AR content layered on top of it. By
simply adding the content to this component and setting what image it needs
to track, the AR content will appear relative to the trackable image in the real
world. The following image shows Image Target with a 3D object rendered:

•	 Frame Marker: This is a square marker with code embedded around its
internal edges. There are 100 coded Frame Markers that Vuforia offers
for you that the app can detect using their coded number and display AR
content on top of them. Frame Markers can be smaller than Image Targets,
and we can add any sort of image inside their borders without having to
worry about how well they can be tracked. It's suitable for game pieces or
playing cards. With a minimal performance hit, many of them can be
tracked simultaneously at the same time. The following image shows
a Frame Marker image:

Chapter 1

[11]

•	 Multi-Targets: Multi-Targets allow developers to track a simple physical box
from any angle. The box must have suitably detailed images on it, and must
be of a simple shape. Using Multi-Targets can even allow occlusion of AR
content from the physical object. It means that if an object is to rotate around
the box being tracked, it can be developed so that the 3D is occluded when it
passes behind the object being tracked.

•	 Virtual Button: Virtual Button is an interesting technology that can add to
the whole AR experience. What this component does is allow the user to
touch a physical part of the trackable image, and the app will respond to
it. There can be more than one Virtual Button on the Image Target and all
can be assigned different events. The following screenshot shows a Virtual
Button affecting the color of a rendered object:

www.allitebooks.com

http://www.allitebooks.org

What is Augmented Reality?

[12]

With the array of options Vuforia provides, a complete and rich AR experience can
be achieved on the powerful smartphones most have with them right now.

In this book, we will be focusing on the most versatile and widely popular tracking
technology that is Image Target. Using Image Targets, a natural experience can
be delivered to the user because of how relevant the trackable image can be. For
example, the trackable image can be an advertisement with information on it but
also, if looked at through the AR app, it displays a video playback layered on the
image as if the image came to life.

The tracking data of Image Targets are stored in entities called datasets. In datasets,
the data of the image such as the edges and contrasting areas are stored, and the
ARCamera keeps on processing the live feed video looking for areas that match any of
the images inside the dataset. When that happens, the trackable is considered found in
the real world and AR content is layered on. The app can have more than one dataset
active simultaneously. Each dataset can have up to 100 images. That is a lot of data the
app can process in real-time, which shows how powerful Vuforia can be.

The Image Target creation process is also a simple one using Vuforia Target
Manager, which can create datasets from images, and even assign a score of how
well that particular image can be tracked. The trackability of the image depends on
many factors, mainly high contrast and well-defined edges. The following image
shows the Vuforia Target Manager website:

Chapter 1

[13]

Vuforia also offers a number of solutions for Image Target behavior. One of the
services it offers is cloud-based recognition. The Cloud Recognition service provided
by Qualcomm enables apps to have over one million Image Targets at the same time.
It allows an easier management of a large number of targets as well. This service is
well suited for large deployment of targets that are subject to change, such as for
retail stores to create an AR shopping experience. The service is free but limited to
1000 total images for non-business use and paid but unlimited for business.

Also Vuforia allows the user to create a user-defined Image Target at runtime from a
camera shot. This is a great versatile tool that doesn't tie the user to a specific target
image that might not always be available for the user every time the app is needed.
The following image shows User-defined Target sample app from Vuforia:

What is Augmented Reality?

[14]

There are many ways we can use the great tools provided in the SDK. We will try to
cover the basics that will allow the creation of a well-defined AR experience that will
resonate with the user.

Unity 3D and how it fits with Vuforia
Unity is a cross-platform game engine that is developed by Unity Technologies.
The game engine has a built in IDE and the ability to deploy to numerous platforms.
More than one million developers, making it the most popular game engine in
the industry to date, are using Unity. It is designed for ease of use and high
productivity. And because of its relatively easy learning curve and the fact that
there is a free version of it being offered, encouraged some schools to teach Unity
as an introduction to game development.

Unity's greatest strength is its ability to deploy on a large number of platforms
with ease and few changes to the project's structure. Unity's name comes from that
particular strength. Unity can deploy on Windows, OS X, iOS, Android, Web plugin,
Flash, Xbox 360, PlayStation 3, and Wii U. That kind of reach opens up a lot of
opportunities when developing using Unity engine.

Unity allows you to choose from three languages to write scripts with. The languages
available are JavaScript, C#, or Boo. Unity ships with a customized version of
MonoDevelop for debugging purposes. In the same project, a combination of scripts
using any of these languages is allowable, though it is recommended to only use
one scripting language throughout the entire project to avoid any conflicts and to be
easier to read and understand. In this book, we will use C# as the scripting language.
The reason for the choice is that Vuforia uses C# for its scripts, and that makes it
easier to communicate with Vuforia scripts as we will see later on. Also C# is a
well-structured language that, while having a higher learning curve than JavaScript,
is much more robust and less prone to mistakes. It is the language of choice for most
professional studios as well. The following screenshot shows Unity project window:

Chapter 1

[15]

The preceding screenshot can be intimidating for the uninitiated, but through this
book we will go over a lot of the basics of Unity engine. In the book we will go over
how to create a new project and the deployment process needed to deploy on IOS
devices. We will also cover some game development techniques by making our
simple AR game and establish how the user can interact with the AR content.

Though Vuforia offers an OpenGL SDK that we can use to create AR apps natively
without having to use Unity, Unity offers a lot of tools that would simply take too
long to create using OpenGL. Unity is a game engine that offers a lot of tools that can
make 3D content look incredibly good and realistic. Some of the best-looking iPhone
and iPad games on the iTunes market are created using Unity engine. Some of these
games are Dead Trigger and Shadowgun, both incredibly good-looking games on
the platform.

What is Augmented Reality?

[16]

Also Unity simplifies game logic greatly with the robust structure it offers. It offers
a window into how the 3D graphics will look exactly and even how interactions will
look. Unity using Vuforia can utilize a webcam to detect trackables and even show
you how exactly the AR content will be on the trackable without having to deploy
on the device first. That saves a lot of time that could have been wasted simply
deploying on devices to find out that the 3D content doesn't look or behave
correctly on the trackable.

Lately Unity opened up their license options to allow anyone to deploy to iOS and
Android for free. We do not need to buy their license to be able to deploy simple
Vuforia apps. Although Unity pro does offer many strong features, they are not
necessary in the course of our book.

Summary
In this chapter we were introduced to the meaning and possibilities of augmented
reality. It is a very exciting field that has been briefly introduced in this chapter. We
have been introduced to the many forms of augmented reality and how it manifested
themselves in the hand of the users in the form of smartphones. We know also
understand how powerful AR is at delivering immersive experience for users.

We were introduced to Vuforia, the free AR SDK by Qualcomm. We understand
how powerful it can be in improving the flow of creating AR apps for users.
Having it handle the technicalities of AR and allowing us to focus on making a
better experience. We know the many tracking techniques that Vuforia offers
and how different of an experience each can deliver. This should allow us to
better utilize them in the future.

Unity was introduced to us, we have a vague idea of how powerful that engine is or
how it can enable us as developers to forge AR experience as creatively as we want
them. In the book, we will further explore the surface of Unity's power. While we
won't be able to go through everything that is Unity in this book, we will see how
simple knowledge in a few components can create impressive AR apps.

In the next chapter, we will go through the process of setting up our environment to
start creating AR apps. We will set up both Unity and Vuforia to better understand
how they both work together. We will also deploy Vuforia sample apps on device to
test how a final app looks like.

Setting Up the Environment
In this chapter, we will go over setting up the environment we need for augmented
reality, and also deploy our first working augmented reality app. We will get a feel
for how the end products feel and how to deploy them. The chapter will lightly
touch areas such as Unity platform settings and Vuforia prefabs. The chapter,
however, will not cover iOS Apple provisioning and Xcode management since
they are outside the scope of the book.

Downloading and installing Unity 3D
The process of downloading and installing Unity on Mac OS X is quite simple.
Simply by going to its website and downloading the free trial version of iOS
and Android, we can get most of Unity's power instantly for free for a limited
time. To download, use the following link: http://unity3d.com/unity/download/.
Notice that iOS can only be deployed on Mac OS X.

http://unity3d.com/unity/download/

Setting Up the Environment

[18]

The following image shows the Unity website with free trial:

Once Unity is downloaded, installation is quite straightforward. We can choose the
trial version to try out Unity Pro with increased features. The free version will still
allow us to deploy to both Android and iOS, but Pro features includes shaders and
playing video files. For more information on what is included in the Pro version,
check Unity's website.

Downloading and installing Vuforia
Vuforia made a lot of effort to simplify the installation process of the SDK and
streamline its workflow so as not to be intimidating to new developers. We will go
over the process of installing Vuforia SDK on Mac OS X in preparation of deploying
our first augmented reality app.

Chapter 2

[19]

Vuforia offers a number of different SDK versions that might seem confusing at first;
so we will go over them:

•	 Android native SDK which is to be used with Eclipse and Ant to deploy on
android devices, without the need for Unity

•	 iOS native SDK that is used to deploy on iOS devices using Xcode without
the need for Unity

•	 Unity extension for Android and iOS that is used to deploy on either
Android or iOS using Unity's cross-platform capabilities

What we will cover in the book is Vuforia Unity's extension. To download it,
please go to the following link:

https://developer.vuforia.com/resources/sdk/unity

There is a simple registration process before being able to download the SDKs.
The following screenshot shows Vuforia SDK Unity extension:

Setting Up the Environment

[20]

The download file is a Unity package file that, as we will see soon, is very easy to add
to a Unity project. There are no further files needed for the SDK. With this, we have
everything we need to start developing AR apps on iOS. Unity, the game engine that
will facilitate rendering of 3D objects and game logic for us, Vuforia will provide the
augmented reality components and Xcode will finally deploy the app on the device.

Vuforia sample projects
Vuforia offers a rather colorful sample project for every SDK version they have for
users to see how the SDK can be used. We will utilize those sample projects to be an
entry point for us to see how the structure of a finished Vuforia project looks and
how to deploy it on iOS and Android devices.

Vuforia offers their sample projects as a package. This package contains a
number of applications for Vuforia SDK, but we will focus on Image Target
in this book. Let's download the sample projects from the following link
https://developer.vuforia.com/resources/sample-apps.

The following screenshot shows Vuforia sample apps:

https://developer.vuforia.com/resources/sample-apps
https://developer.vuforia.com/resources/sample-apps

Chapter 2

[21]

After downloading the compressed project samples, decompress the folder and take
a look inside it. The folder will contain a number of files called packages. Those are
essentially Unity files that can be imported inside unity projects with ease.

Starting a Unity project
Now that we have downloaded everything that we need, it's time to start a Unity
project. Launch Unity, and from the File menu, select a new project. Place the project
anywhere you would like, but make sure the project name does not have any spaces
to avoid later problems. You will be greeted with the Unity's project window. It may
seem intimidating a little and feels foreign if this is the first time with a game engine,
but we will familiarize ourselves with it as we build our project. The following
screenshot shows the Unity project window.

Unity scenes
The following screenshot shows Unity scenes:

www.allitebooks.com

http://www.allitebooks.org

Setting Up the Environment

[22]

The first concept we will familiarize ourselves with is the scene. The scene is
primarily the game level that everything is built inside. It is what is loaded and
presented to the user on runtime. It contains all of the game objects such as menus
and 3D models. It is the world that we are creating for the user. We can have
multiple scenes just as a game has multiple levels.

The Hierarchy (Scene Hierarchy) as shown in the preceding screenshot represents
the objects in the scene and their relationship between each other. For example, a
cube object could be the parent of a sphere object; that way whenever the cube object
moves, the sphere object will follow it. This is particularly useful for constructing
complex objects such as a car, for example, and has the car parts move with the
parent rather than individually. This concept is really important and fundamental
to how Vuforia works in Unity.

The Game (Game Render) window is a rather useful tool in Unity. It gives a preview
of how the game works and looks without the need for deployment, saving a lot of
time. Any changes in script or in Scene (Scene Editor) will show right away when
the play button at the top is clicked and the game "runs". This will allow us to see
how the augmented reality experience plays out without having to deploy on the
device first.

The Project (Project assets) panel is where all of the project assets are. This is where
models and textures are imported to the project and even Vuforia SDK. This is also
where all the scripts are stored for the app. It is always crucial to keep the assets
folder organized and following a certain convention. Projects can grow bigger and
keeping track of where assets are can prove very difficult if a project assets hierarchy
is not followed.

Inspector (Inspector panel) is where components and assets are tweaked. It displays
all the settings for the currently selected scene object from the project hierarchy or
assets from the Project (Project assets) panel. The inspector is a versatile tool that is
used extensively while building a project.

Now that Unity's GUI has been demystified, we can take a look at the sample
projects folder we have downloaded from Vuforia. It will contain a number of
package files with the name of the project they represent. Package files are very
important for Unity. The need to transfer assets from one project to another is not
uncommon in game development. Often projects share common assets between
them, so Unity needed an efficient way of transferring assets between projects.
That's why Unity package files came to be.

Chapter 2

[23]

In Unity, it is possible to select certain files from the asset store, and even entire
scenes, to be exported as a package file. Sometimes the entire project can be exported
as a package file. Later that file can be imported into a Unity project and become
usable right away.

Vuforia sample projects are in the form of Unity packages, which must be imported
into a Unity project to be able to deploy those projects. It is useful to mention that
even Vuforia's SDK is offered in the form of a Unity package that can be imported
into any project and can utilize its AR components.

Importing packages in Unity
Now we import the sample project into the Unity project that we have created.
The following screenshot shows Unity importing ImageTarget sample project:

Importing packages is quite a simple process. Go to the Assets menu on the top and
choose import packaged, and then choose the custom package. Navigate to where
Vuforia's sample projects are and choose the image target file. A window like the
previous screenshot will be displayed.

Setting Up the Environment

[24]

This window is quite important because it displays information on what is being
imported into the project. We can select which files we want to import and which
ones we don't. It also displays if the file is new, as in not already in the project, or
old, meaning it's already in our Assets folder and is being updated. For now we
need all the files from the package file, so go ahead and click on Import. The
following screenshot shows Unity project after importing ImageTarget:

We can see that a lot of files have been imported into our Assets folder, including a
Qualcomm Augmented Reality folder that is the Vuforia SDK. This is everything
we need for a deployable project, but the scene hierarchy still only contains a Main
Camera object and the Game panel is still quite blue. This is because we have loaded
the assets but not the scene file yet.

Unity scene files
Scene files are essentially how Unity stores the scene hierarchy and composition.
Scene files hold the world created in the editor with all its details. This is useful for
loading different scene files at different times and creating multiple worlds, related
or unrelated, in the same app. This is how Unity handles multiple game levels
and areas.

Chapter 2

[25]

Now to select the project's scene files that Qualcomm already created for us,
we can go to the Scenes folder in the project files and double-click on the
file named Vuforia-4-ImageTargets. The following screenshot shows the
Vuforia-4-ImageTargets scene active:

Now Unity project view looks much more lively. There are rendered 3D teapots
already visible in the Game panel, and the Hierarchy panel displays the components
of the scene. Chances are the Scene editor still looks empty as in the preceding
figure; we will see now how to navigate to the Scene editor view to move around
the world created.

Setting Up the Environment

[26]

The first thing we need to do is to focus on one of the objects we have in our scene
to be our origin point. We can do that by selecting the first image target object from
the Hierarchy panel, which is ImageTargetChips, then place the mouse pointer
over the scene panel and press the keyboard button F. This will zoom over the object
and have it as the origin point for the editor view. It is important to have the mouse
pointer over the Scene panel, otherwise the zoom will not happen over the object.
The following screenshot shows the selected object in focus:

Now that the object is in focus, we can have the editor camera orbit around it to
view the scene in game. We can do that by holding the Alt key and dragging over
the scene to position the editor camera anywhere we like. We can also use the mouse
wheel to zoom in and out of the object in focus.

As we can see, the scene is made up of three different teapots lying over a plane with
an image over it. This is the AR scene that is in the sample project, which will display
one of the teapots depending on the image target detected by ARCamera. The scaling
and the transformation of the object will match that currently visible in the Scene
editor in relation to the image target the teapot is on. This makes visualizing how
the AR experience will play out very easy while building it.

Chapter 2

[27]

Trackable files
In the project folder, we will find the trackable images used in this project. We
will need to have them printed in order to test the AR experience. To reach them,
navigate to Assets | Editor | QCAR | ImageTargetEditor. Inside there will be
two folders with the three images used in the scene. To open them right-click
on the image and select Reveal in Finder to open the file in Mac OS X finder.
The following screenshot shows the target image location in the project:

When printing the images, make sure that they fill the entire page to have the best
result with the AR experience.

Vuforia has a handy feature that allows us to view the AR experience without the
need to deploy first. This is achieved by having a web cam on the PC in use and
Unity utilizes the information from the webcam to display how the experience will
play out in the Game panel. This is indispensable for debugging AR projects without
wasting time on deployment cycles.

Setting Up the Environment

[28]

To utilize this feature, simply click on the Play Button at the top of the Unity project
window. The following screenshot shows live camera feed AR:

By having the target image in front of the camera, Vuforia will recognize the
trackable and then position the ARCamera object relative to the target image and
render the 3D content. If we click on the ARCamera component from the Hierarchy
panel, we can see the ARCamera moving dynamically and relative to the target as
we move the target image in front of the web cam.

The ARCamera is practically the window through which the user can view the world
we create inside Unity. By moving the camera relative to the target image, we can
effectively simulate that the teapot is part of the real world.

Try different targets to see how they respond differently by displaying the
different teapots.

Chapter 2

[29]

When we opened the Scenes folder, we found more than one scene. We only chose
the Main Scene, but now it's time to understand what the other scenes are there for.

Open the Scene folder again from the Assets folder. The four scenes are named
as follows

•	 Vuforia-1-SplashScreen

•	 Vuforia-2-AboutScreen

•	 Vuforia-3-LoadingScene

•	 Vuforia-4-ImageTargets

Apps are rarely made of one scene; usually they are a collection of scenes that
play out in a certain succession. For this sample project, the app is made using
four scenes. The first scene to appear to the user is the SplashScreen scene. The
splash screen will only do what the name suggests; it will display a splash screen
for the user for two seconds, then it will automatically load the next scene that is
AboutScreen.

The AboutScreen scene will display an about screen about the app. It will have a
button to dismiss the about screen and load the next scene, which is LoadingScene.

The loading scene does one simple task, which is to load the main scene,
ImageTarget, in the background and display an animated spinner to indicate
loading. This is always a good idea when loading a large scene. Without it, the app
seems to freeze for a few seconds while loading the next scene; this might let the user
think the app crashed or is unresponsive.

As we can see, the succession of the four scenes makes up the entire app experience.
Feel free to open any of the scene files and click on the play button to see how they
act individually. But if we do that, we will notice that the scenes do not load any
scene behind it when the action is done; that is because we have not told Unity what
scene files to load when the app starts. Right now if we deploy, we will only get a
blue screen on the device because no scenes are loaded at all.

Setting Up the Environment

[30]

Build settings
To mark the scenes to be loaded with the app, we have to access the build settings
window. To do this, navigate to File | Build Settings. The following screenshot
shows the Build Settings window:

The Build Settings window is a very important one in Unity. From it, we can control
what platform we are deploying for, what scenes to include in the deployment, the
platform-specific settings, and even deploy on the platform from there.

The top box in the windows is where scenes are marked to be included in the app.
Any scene the app will ever use must be added to this in the Build Settings window
to work on the platform. We will add our scenes now, but first make sure that the
box doesn't have any scenes in it. Scenes sometimes are added automatically if there
were no scenes designated. Unity does that to avoid deploying the build with no
scenes at all. To delete any scene, click on it and press backspace on the keyboard.

Chapter 2

[31]

It is very important to know that the first scene in the window will be the first scene
the app will open up to. This is very important to have right, or the flow of the app
will be wrong. In our case, the SplashScreen scene is the first one. It loads the about
screen after it. That mean we need to add the SplashScreen scene first to have the
app open up to; the order of the scenes after it is not important since loading is done
with the name of the scene in our project.

To add the scenes, simply drag the scene file from the scene folder to the window.
Make sure you add the SplashScreen scene before adding any other scene. Add
all the four scenes. The following screenshot shows Build Settings:

Notice the numbers next to the scenes in build; they are numerical representation of
the scenes that can be used to load the scenes instead of their name. The number 0
represents the first scene that the app will load automatically.

www.allitebooks.com

http://www.allitebooks.org

Setting Up the Environment

[32]

Deploying for Android
We will be deploying to Android in this section; if for any reason you choose to not
deploy on this platform, you can skip over to the next section that handles iOS.

Now that we have all the scenes added to the scenes in build, we move on to other
settings in preparation for the deployment. Under the Scenes in Build window,
there is an intriguing box with the name Platform that has a colorful collection of
well-known platform. These are the platforms that Unity can deploy the project to.
Some of them will be grayed out if we do not own the license to deploy to them
from Unity. By default, the PC, Mac, and Linux standalone platform is selected.
This obviously is not our target platform so we go ahead and change that.

Choose the Android platform, and then click on the Switch Platform button in the
bottom-left corner. This will start the process of automatically converting all the
assets to suit the new platform we just picked.

Once Unity has finished processing the assets, click on the Player Settings... button.
In the Inspector panel, we will find something similar to the following screenshot:

Chapter 2

[33]

PlayerSettings reveals the target platform-specific settings, for example, the app
name, splash screen, icons, and so on. It is important to customize the settings
correctly for every platform we are deploying to, to achieve better results.

Change the app name in the Product Name field to Image Target. We will not
customize the icons and splash images right now, though it is important to know
that you can do so from here.

One of the most important settings that are particularly hidden in the panel is
the app Identification field. We know that is important for an app to maintain its
identity on the market and it is important to remember to set it correctly. To reach
that setting, click on Other Settings as shown in the following figure:

Change the Bundle Identifier to something suitable to the app. Notice that the other
settings all handle very low-level settings regarding the platform, such as API level
and what OpenGL to use. We can leave it at the default for now and it will work on
most devices, but it pays off to know where to reach those settings in the future.

Setting Up the Environment

[34]

As we know, Android apps are deployed using keystores. Unity makes the process
of creating one a little easier. To reach keystore settings, click on Puslishing Settings
as shown in the following screenshot:

Now select Create New Keystore, and then enter any password in the two fields as
shown in the preceding screenshot. This will tell Unity to create a new keystore for
us and use it when deploying. It is important to note that Unity will not store our
password for us; if we are to restart Unity, we will have to re-enter the password
here or build will fail.

Now that everything is in place, we only need to click on Build And Run to deploy
the app. It will ask us where to save the APK; anywhere would be fine. The app will
be deployed to the Android device connected using USB to the machine, so we need
to make sure it is properly connected.

If Unity failed to recognize the android device connected, make sure that the USB
drivers for the specific device are correctly installed. They can be found on the
manufacturer's website.

Chapter 2

[35]

Deploying for iOS
Choose the iOS platform, and then click on the Switch Platform button at the
bottom-left corner. You will notice Unity re-building and re-importing certain
assets. This process is to match compression schemes and settings for the target
platform. This is an automatic process that Unity handles very well on its own.

After Unity has finished importing all the assets again, its time to continue adjusting
our settings to build the project on the device. At the bottom, there is a button named
Player Settings.... Click on this button to get something like the following screenshot:

As with Android, PlayerSettings is where all the platform-specific settings you
would expect are. It will include anything specific to iOS now that we have
switched to the iOS platform.

First, let's change the app name. In Product Name, change it to Image Target.
We will leave the default icon and splash screen for now. For now we adjust the
Resolution and Presentation settings. Click on the Resolution and Presentation
bar to expand the settings area.

Setting Up the Environment

[36]

In the Default Orientation section, choose from the drop-down box the Auto
Rotation option. It will expand a list of checkboxes below it. Uncheck the first
one which is Use Animated Autorotation. The following screenshot shows the
Resolution and Presentation section:

Resolution and Presentation settings handle the presentation of the app to the user.
It has options such as supported device orientations and status bar visibility. We
just enabled the auto rotation option for the app. We also disabled Use Animated
Autorotation because it never looks OK for AR experiences. It is usually disorienting
for the user.

Now what is left for us to do is set the bundle identifier for the app. Apple developer
provisions are issued per app identifier, which follows this structure:

com.Company.ProductName

Depending on your Xcode managed provision company name, you need to input
yours in Unity settings for deploying through Xcode works.

To reach the bundle identifier settings, click on the other bar at the very button of the
Inspector area, and change the Bundle Identifier with a proper one that Xcode will
accept. The following screenshot shows Bundle Identifier settings:

Chapter 2

[37]

Now that we have gone through all the settings needed, it is time to deploy the app
to the device. The process of deployment is very simple thanks to Unity's strong
cross-platform capability. The process is mostly automatic and requires little to no
interference from the developer.

First, connect the device to the PC. Now we click on the Build and Run button, in the
Build Settings window, on the bottom-right. It will ask you where you want to have
the build folder located; it is OK to just locate it inside the Unity project folder, but
not inside the Assets folder. Give it any name you would like; it's a good convention
though to name it like the Unity project folder name.

Unity will start an automated process of building the project for iOS. It will also
open Xcode automatically. Try not to interfere with the process till the very end.
The process of opening Xcode from Unity is done using a script, witch switches the
focused window and executes certain steps on Xcode. So it is preferable to let Unity
take control of your PC till it's done and not switch focus to any other window.

After Xcode has finished copying the app to the device, we should find a perfectly
working AR app on our devices. The app will work exactly as we would expect it
to, and displays how powerful the Unity and Vuforia combo is.

Setting Up the Environment

[38]

The following screenshot shows About screen of the Image Target app:

Note that when Unity is deploying to Xcode, it will automatically switch between
open windows and execute a number of scripts on Xcode. This is why we need to
let Unity do its routine and let it have control of the desktop till it starts building.
If we forcefully prevent it from switching to Xcode automatically, it will interrupt
automatic building. Note that it can be resumed manually after that.

Summary
In this chapter we have gone through the process of setting up our environment.
We installed both Unity and Vuforia. We were introduced to Unity's GUI and started
a new project. We imported Vuforia 's sample app and saw how to deploy it to our
devices. While doing that, we were introduced to many Unity settings that relate to
app deployment and also some basic features of Vuforia.

With this, we are familiar with the process of deployment and how the final products
look. We have set up our environment to be able to build AR apps using Vuforia
and Unity, and have seen how easy it is to deploy on the target device. We were
introduced to simple settings for the Unity environment, and paved the way for a
more in-depth look at how to build our own scenes and our own AR experiences.

In the next chapter, we will start to familiarize ourselves more with Vuforia and how
to start a project from scratch.

Understanding Vuforia
In this chapter we will go over the components Vuforia provides with the SDK, and
how to construct an AR scene. The addition of the SDK to a project will be covered,
and how to include and activate the trackable data to be recognized in the app.
We will create a very simple project from scratch similar to the example project
provided by Vuforia to see how all the components fit together.

Creating a Unity project with Vuforia
From the previous chapter, we know how to create a project easily from Unity.
Do not forget to exclude any spaces in the project name. This will create an empty
project that we can build our AR app on.

By default, Unity projects are created preset to the PC and Mac stand-alone platform.
We need to change that to iOS. The current platform is always visible on the window
title bar on the top.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Understanding Vuforia

[40]

The following screenshot shows platform switching.

After switching the platform, it is time to add the Vuforia SDK to our project. To do
that, click on the Asset menu in the menu bar, then inside Import package ..., click
on custom package. This is exactly the same way we imported the sample project
from Vuforia to our project.

Now find where Vuforia SDK was installed and choose the Vuforia Unity package
to be imported into the project. The following screenshot shows the importing of a
Vuforia package:

Chapter 3

[41]

Now that the entire Vuforia library has been added to the project, we can start
looking at the components that comes with it. All that makes a Vuforia project is
within the Qualcomm Augmented Reality folder inside the project. This folder
will contain all the scripts that control the behavior of the AR experience. Not only
scripts, but some shaders and textures as well. They are mainly used for the video
background rendering of the AR app.

Fortunately, we don't have to deal directly with most of those scripts, as Vuforia
bundles the necessary components in Unity prefabs ready to be dropped into
the scene.

Vuforia prefabs
A prefab is essentially a type of asset that is created in Unity to be a reusable game
object stored in Project view. Prefabs can be inserted as many times as we want into
the scene and with any object transformation applied to it. When added to the scene,
they are basically an instance of the original prefab and linked to it. When a change
is applied to the original prefab, all its instances will copy it, as they are essentially
clones of it.

www.allitebooks.com

http://www.allitebooks.org

Understanding Vuforia

[42]

Prefabs are an indispensable tool for Unity. It makes the creation of standard scene
components a much easier task. Imagine we are making a game with many enemy
non-player characters. It will take a lot of time to manually construct every one of
them, but if we create a single enemy prefab and then clone it multiple times, it will
make constructing the scene much easier. Also if we want to edit the entire enemy
NPCs, we only have to edit the prefab and the change will propagate.

Unity prefabs also make it easier to share components between projects if
they are to be exported into Unity packages. This is essentially what Qualcomm
did with Vuforia components. All the components that make the AR scene are
stored as prefabs that are ready to be dropped into the scene; we only needs its
parameters adjusted.

All Vuforia prefabs can be found inside the Prefabs folder inside the Qualcomm
Augmented Reality folder. The following screenshot shows the Qualcomm
Augmented Reality Prefabs folder:

Chapter 3

[43]

Inside the Prefabs folder, we will find all the components explained before such
as the ImageTarget prefab and the FrameMarker prefab. We will also find the
ARCamera prefab, which is the common thing among any type of AR app.

By default, when Unity creates a new scene, it adds a camera to the scene such as
the one in the Hierarchy panel. In our case, we will use Vuforia's special ARCamera
prefab in our scene. So we need to first delete the Main Camera object from the
Hierarchy panel.

Simply select the Main Camera from the scene Hierarchy and right click on it, then
click on Delete. Now drag-and-drop the ARCamera prefab to the scene. Anywhere
on the scene is fine. Now to focus on its position, select the ARCamera from the
Hierarchy panel and hold the F keyboard key till the focus is on it. When holding
the F key, make sure the mouse pointer is over the scene panel, or the focus will not
work. The following screenshot shows ARCamera prefab added to the scene:

Adding the rest of the components is just as easy. Now that we have an ARCamera
prefab added to the scene, we just need to add the ImageTarget prefab to the scene
as well. Drag and drop the ImageTarget prefab anywhere on the scene.

Understanding Vuforia

[44]

This prefab is the platform that we will add the 3D content to. It will also hold the
image target that the app will track to orient ARCamera the way we saw in the sample
app. The following screenshot shows ImageTarget prefab added to the scene:

Depending on where the ImageTarget prefab was dropped in the scene, its position
in the game world displayed in the transform section will differ. Transform is
basically the position of the game object in the game world. Transform holds three
different vectors for three different data about the position of the object. That data is
as follows:

•	 Position: This is the position of the object in the three axes, x, y, and z
•	 Rotation: This is the rotation of the object in the three axes , x, y, and z
•	 Scale: This is the size scale of the object compared to its original size in the

game world

Chapter 3

[45]

Objects can be anywhere in the world, but it is recommended to keep the world's
floor at y=0. By keeping the floor to 0, it simplifies a lot of other aspects of code when
it comes to changing the transformation of object through scripts. So now change all
the ImageTarget's position to be (x=0, y=0, z=0). This will position the object in the
origin of the world and simplifies the position aspect of subsequent game objects.
The following screenshot shows the image target inspector:

As it is noticeable from the inspector, there are a lot of settings for Image Target that
might seem intimidating at first. One of those components is named Image Target
Behaviour (Script), which is highlighted in the image above; this is responsible for
attaching the image target data to the image target object. Right now, it has no target
defined in the app because we haven't added any yet, hence the white representation
of the image target.

Understanding Vuforia

[46]

The first thing we need to do is to add the image target's data into the app. We do
that by importing the dataset's Unity package that is available with the book content
by the name exampleDataset.unitypackage. Import the package in the same
way we imported all the other Unity packages. The following screenshot shows
exampleDataset.unityPackage:

What this package essentially contains is the data of the target image that Vuforia's
tracking algorithm can effectively look for from the camera's feed. It also carries a
texture representation of the target image to be viewed inside Unity's editor while
developing the app.

Now that the project contains the tracking data, a new selection will appear inside
the ImageTarget prefab for the Image Target Behaviour. We will be able to select
any of the images imported from the target package and the ImageTarget prefab
will instantly adopt it.

Chapter 3

[47]

First we need to select the dataset that contains the images. From the dropdown
menu, we can select the only dataset available, named exampleDataset. From the
dropdown menu below, we can choose the specific target image. Choose the target
image stones. Notice immediately the ImageTarget representation in the game world
carries now the target image. The following screenshot shows the dataset selection:

Datasets are essentially a collection of image targets that Vuforia will track
simultaneously for any of the images inside it. Inside the dataset that we imported,
we have images images from the Vuforia sample project. The app will track all three
images at any given time till it finds any of the images to render the 3D material on
top of it.

The app can have multiple datasets with as many as 100 images in each one of them.
That is a substantial number of images that Vuforia can track. We also have the
ability to activate and deactivate any of the datasets from the editor or from script.

Understanding Vuforia

[48]

When we added the dataset to the ImageTarget, it represented the image target
in the world right away, but that doesn't necessarily mean that ARCamera will be
tracking that dataset. For that, we need to first activate the dataset and tell the
ARCamera to start tracking that dataset.

Click on the ARCamera object from the Hierarchy panel. In the inspector, we can
find the Script component Data Set Load Behaviour (Script). Inside the component,
there will be one checkbox with the label Load Data Set exampleDataset. If we click
on the checkbox, another one will appear with the label Activate. Click on that as
well. Now the dataset is loaded and activated. The following screenshot shows the
activated dataset in ARCamera.

There is a particular reason why we need to both load and activate the datasets as
separate options. The datasets will be loaded but not necessarily tracked at the start
of the scene if added to the ARCamera component. From script, we can then enable
and disable tracking for any of them without the need for loading overhead. The
process is very fast that way.

Chapter 3

[49]

Now we know that Vuforia both knows what trackables to track and is actively
tracking them. We added the ImageTarget prefab and set it to the Stones image
target. If we are to press play and present the camera with the stones image target,
nothing will happen beyond a console log declaring it has detected the image target.
We might even notice the ARCamera frantically moving around the game world in
relation to the image target in the editor. That is simply because we do not have any
3D content attached to the target image just yet.

Importing and attaching 3D objects
Unity is capable of importing 3D models from many well-established formats.
Models can be created from any of the 3D modeling applications such as 3D max,
Maya, and Blender. As long as the model is exported in a Unity-supported format,
it is easily imported into the project.

Formats supported by Unity are as follows:

•	 Maya (.mb and .ma)
•	 3D Studio Max (.max)
•	 Cheetah 3D (.jas)
•	 Cinema 4D (.c4d)
•	 Blender (.blend)
•	 Modo (.lxo)
•	 Autodesk (.fbx)
•	 COLLADA
•	 Carrara
•	 Lightwave
•	 XSI 5.x
•	 SketchUp Pro
•	 Wings 3D
•	 3D studio (.3ds, does not work on Mac OSX)
•	 Wavefront (.obj)
•	 Drawing Interchange Files (.dxf)

The list is quite extensive. It is quite safe to assume that Unity will support
most known 3D model formats. Notice though that Unity uses the 3D modeling
application to convert the model format to FBX, which then can be imported
by Unity. This process is mostly automatic and produces smooth results and
streamlines the workflow considerably.

Understanding Vuforia

[50]

Now it's time to add our own 3D model to the project. Firstly, we need to create a
folder for models in our project. We will use it to include all models in our project.
In the Assets root folder, create a folder and name it Models.

Importing assets is easily done from the Assets menu at the top. Click on Import
New Asset from the menu, and point at the chapter's assets folder and choose
frog.fbx file. Unity will start importing the asset right away. The following
screenshot shows Unity imported Frog asset:

Now we have the 3D model in our project, it is that easy to add models to Unity
projects. That is good news because for a game engine, adding models is one of the
top chores done in projects. Are you wondering why the 3D model is a frog? It is
because it's generally good for developers to have a sense of humor; it helps.

Chapter 3

[51]

When importing the 3D model, it created two folders and one file for us. The
folders contain materials for the 3D model and settings for the FBX import. The
file is actually a Unity prefab of the model with the materials attached ready to
be dropped to the scene. Unity creates the prefab automatically for us.

Now we can drag the Frog prefab and drop it in our scene. The frog 3D model
will appear in our game world. The following screenshot shows the frog model
added to the scene:

Just as when we added the ImageTarget prefab, the frog's position in the scene is
almost certainly not right. We need to position it on top of the ImageTarget and for
it to face the right way, but first we need to approximate its position in relation to the
ImageTarget better. Remember when we added the ImageTarget; we positioned it
at the game world's origin at (0,0,0) position. We will do the same for the frog as a
first step.

www.allitebooks.com

http://www.allitebooks.org

Understanding Vuforia

[52]

Select the frog from the Hierarchy, and from the inspector panel in Transform
position, set x, y and z to zero. The following screenshot shows the frog position
at the origin point:

The first thing to notice wrong with the frog is that it is sunk in the ImageTarget.
The other problem is that it is too small for the ImageTarget.

First we will try to position the frog above the ImageTarget. At the top left of
Unity, make sure that you have the directional cross button selected. This allows
us to change the position of the selected object. Notice the green, blue, and red axes
coming out of the frog. They are the relative position of the object in the game world.
Green is for the y axis, red for the x axis, and blue for the z axis. We will want to
move the object in the y axis to get it above the ImageTarget. To do that, simply
drag the green axis and move the mouse up; the object will move up with it.

Chapter 3

[53]

Position the frog anywhere above the ImageTarget. It doesn't have to be perfect for
now. The following screenshot shows the frog positioned higher in the y axis:

Now for the second problem, its size; we will need to scale it up considerably to fit
the ImageTarget.

While the frog is selected from the scene, click on the Scale button from the top left
menu. It is the last icon on the right of a square with arrows coming out of it.

Understanding Vuforia

[54]

The scaling button allows us to scale the object in the scene on any axis or all axes.
Since we need the object to scale in every direction equally to avoid the frog being
stretched in one direction more than the other, we need to click on the square at the
origin of the three axes now represented on the object, and then drag the mouse over
it. The following screenshot shows the scaled up the frog object:

Scaling up to 10 in the inspector should be sufficient, but since there are no
constraints, we can make it as big or as small as we want it to be.

Now, we need to make the frog face the right way, opposite to where it's facing right
now. To do that we need to activate the Rotation button in the top left menu.

Once the Rotation button is activated, the axes over the object will look quite
different. For a start they are spherical in nature, and there are more than just
the (x, y, and z) axes.

Chapter 3

[55]

Rotation functions in a similar manner, despite the different look to the other
transformation tools. By dragging on the (x, y, and z) axes, we can rotate the object
around any of the three axes. The remaining white axes are diagonal rotations for
easy access.

Drag the green y axis to rotate the object to face the right way. Notice the rotation
data in the inspector changing around the y axis. We need it to be around 180 or
-180 degrees. Note that we can just input that number in the rotation section of
the inspector to reach the same result. The following screenshot shows the rotated
frog object:

Understanding Vuforia

[56]

Now that the frog is rotated to face the right way in relation to the trackable, we only
need to position it higher up to be right on top of the trackable. We can achieve that
in the same way we positioned the frog before. Only this time with more care and we
must rotate the editor camera several times to make sure the frog is positioned from
all angles correctly. The following screenshot shows correctly the positioned frog:

Now the frog is positioned perfectly fine on top of the image target, all is good. You
would notice, though, that the frog seems to have dull colors. That is mainly due to
the lack of any light sources in the scene; this is what we are going to add next.

From the top menu, choose GameObject. From the menu click on Directional Light
from the Create Other menu. This adds an object called Directional Light to your
scene. The following screenshot shows Directional Light added to scene:

Chapter 3

[57]

Directional Light is a type of scene light that is quite easy to add and cheap on
device resources. It essentially acts like a sun, lighting up any object in the direction
you point it at. All we need to do is adjust the object's rotation. Its position in the
game world doesn't mean much, because its light is only based on its direction,
not its position.

Now the frog is where we want it to be, and looking good. We might be tempted to
press the Play Button now and test the AR experience. If we do that and present the
camera with the trackable, the frog will appear correctly. But once the trackable is
lost to the camera, we will find that the frog remains on the screen regardless.
This happens because we did not parent the frog with the image target.

Parenting in Unity objects
There is a good reason Unity's Hierarchy panel is named that way. That is because
it represents the object's hierarchy in the scene. If we are to click on the arrow next
to the frog object in the Hierarchy panel, it will reveal a number of objects below it.
These objects are essentially children of the object frog.

Understanding Vuforia

[58]

The parent object frog contains many children under it in Hierarchy that essentially
means that the children's transformation will follow that of the parent. When we
moved the frog object around, we didn't have to individually move the children
as we did so; they automatically moved with the parent object. That is fortunate
because it would have consumed a lot of time to do that.

Parenting in Unity happens for a number of reasons. Whether it's script access,
transformation, or simple grouping, Unity parenting is a very important feature.

For image targets to work correctly, we must parent them over any 3D content they
will display. This is a must for Vuforia to be able to control when and how the 3D
content is shown to match that of the image target.

To parent it, we simply need to drag the frog object and drop it over the
ImageTarget object in the Hierarchy panel. The following screenshot
shows the parented frog object:

Chapter 3

[59]

With that our AR project should be functional and displays the frog correctly once
we click on the Play Button to test it. We can deploy it on the device if we follow the
settings explained in the previous chapter.

Through this chapter, we have learned how to build a Vuforia project from scratch in
Unity, how to import and present our 3D objects, and how to add and set up Vuforia
components to correctly display it.

Summary
In this chapter, we started our new Unity project that we added Vuforia SDK to.
We were introduced to the meaning of the term prefab and then explored the
different prefabs that are packaged inside Vuforia SDK. We saw how to build up an
AR scene using Vuforia prefabs, especially the ARCamera prefab and ImageTarget
prefab. We then understood the method in which we add targets to the project and
how to activate those datasets in our project. We also saw how easy it is to add a
3D model to a Unity project and position it in our scene however we like and add
appropriate lightening.

Next chapter, we will see how to create our own target datasets in the target
manager, and understand how to obtain the best targeting results from the
images we choose.

Trackables and Tracking
Trackables are an integral part of an AR experience. It is the foundation on which the
whole world we are building literally rests. We can have the best AR content in the
world, but if the trackable is not suitable, the experience will degrade considerably.
In this chapter we will try to understand the details of how to create and use suitable
trackables. We will also explore how to modify a trackable to increase its trackability
in the app.

What are trackables for image targets?
Trackables are a collection of features that the AR app can track. This can be anything
from the traditional QR code, where a collection of black and white binary code
determines the object detected, to the image targets we experienced in the previous
chapter where the trackable is just an image.

For image targets, only the natural features of the image itself is used as a way of
detecting the image in the real, and its perspective to calculate where the AR camera
should be. Natural features are analyzed, stored in a database, and then used to
compare with the camera input feed. This naturally makes how effectively the
image can be tracked, based on its features.

Creating image targets
The process is made simple using Vuforia's Target Manager. The target manager is
an online tool provided by Qualcomm that automatically analyzes and creates image
target databases to be deployed in apps. It can also manage multiple datasets with
multiple targets.

www.allitebooks.com

http://www.allitebooks.org

Trackables and Tracking

[62]

To reach this target manager, simply go to the following URL:
https://developer.vuforia.com/target-manager.

The following screenshot shows Target Manager:

You should be greeted with a view similar to the one above. This is the target
manager—the tool that we will use to create all of our targets and maintain them.
The target manager can be used for both local target datasets and cloud-based ones.
In this book, we will focus on Device Databases.

Chapter 4

[63]

To start, let's create a database that we will use to see how the process of creating
targets works. Click on the Create Database button and name the database
Chapter 4. The following image shows a created dataset in Target Manager:

Now we have a dataset. Currently our dataset is empty, but we can add multiple
image targets to a dataset for the AR app to track all of them. We can even create
multiple datasets in this view, each with its own set of targets.

Now what we need to do is to create our first image target. First, we will use the
stones image from Vuforia's sample project we did earlier. It will give us an idea
of how the image targets for the sample project were created.

Trackables and Tracking

[64]

Click on the database to open it. We will find an add a target button on the right;
click on it. The following image shows target creation:

The parameters for creating a target are very simple. For the name, we will pick
Stones, like it was in the sample app. For target type, we will leave it at Single
Image. The other two types are used for MultiTarget prefab in Vuforia for
detecting 3D objects in the world.

The last parameter, Target Dimension, is an important parameter. This number is the
representation of the image target in the scene. It governs how objects that appear
on top of it are scaled, and how much space it occupies of the virtual space in the
scene. That said, it is a value easily ignorable in Unity 3D environment. This is due
to the scaling property that is easily editable in Unity. This value is very important in
OpenGL environment however. For now, we can leave it at 5 units. This is a 5 units
distance in the Unity 3D scene.

Click on the Add button, and let the image be uploaded. The target will have
processing tag on it; processing takes a few minutes to happen. Give it some time,
and then click on the target to see its details window. The following image shows
Stones target details window:

Chapter 4

[65]

This is the details window of the target we just added to the database. To the right,
we will find all the details about the target. It starts with a unique ID of the target
across all databases, cloud-based and local. This is useful for global identification
of the target.

Below the Target ID, we will find the augmentable score. This is the most important
feature of the target. It demonstrates how well the target can be tracked in the
app. This target has 5 stars out of 5; this is because the features in image are
great for tracking.

Trackable score
Several factors affect the trackable score, but first we need to understand how the
score affects the trackability for the image.

Trackables and Tracking

[66]

The augmentable score is based on 5 stars. It represents augmentability as follows:

•	 Between 4 to 5 stars: The trackable is very suitable for AR apps. It can handle
part of the image to be occluded, and still the app will be able to track it.
It can also be tracked in low light and other environment noise.

•	 Between 2 to 3 stars: The trackable is augmentable. It will work fine under
ideal conditions. It may not be very good with part of the images occluded.
This is the least score to aim for that will not affect the user's experience.

•	 1 star: This is the bare minimum score for trackability. It means that the
image will be recognizable by the app, but the experience will be affected.
Avoid attaining this score at all costs.

•	 0 stars: The image is not suitable for trackability at all; there are not enough
recognizable features in the image for the app to recognize. This image will
not be recognized at all by the app.

In situations where the content of the trackable is restricted, and we know that the
usage conditions will be idle in good lighting with no occlusion, we can aim for 2
to 3 stars. Otherwise, it is preferable to get 4 to 5 stars for optimal usage by the user.
Anything below 2 stars should be avoided completely.

What decides trackable score?
Trackables are the foundation of the AR experience using Vuforia. It is paramount to
understand and create a suitable trackable for the experience to be robust and useful.
The score attributed to the trackable in the target manager is our indication of how
robust the target image is going to perform, but what decides that score?

The best way of understanding this, is by understanding how Vuforia tracks the
images. The idea is simple; it looks for position of contrasting edges in clusters all
around the image. Those edges are tracked, and based on the map of positions that
are stored in the dataset, Vuforia can tell the relative position of the trackable in
the real world, and accordingly render the 3D content on top of it. This particularly
means that tracking the image is not a function of its color or what really is in it, as
much as how many contrasting edges are there in the image, and how well they are
distributed on the image.

Chapter 4

[67]

To better understand this, we can look on the current edges that are recognizable
in the image we have just uploaded. To do that, simply click on the Show Features
link on the top left of the webpage. The following image shows features in image
target stones:

Once the Show Features link has been clicked, the image target manager layers over
the target image an overlay of where it detects a recognizable edge that it can track
in a Vuforia image target. Notice that it is only tracking the dark edges between the
Stones and nothing else in the image. It is even tracking only the high contrast edges
between the Stones, while ignoring some of the lighter ones.

Also notice that the number of edges found in the image is large, and evenly
distributed all around the image. This is a great factor in what made this image
suitable for tracking.

Trackables and Tracking

[68]

To contrast this image's result, lets try an image that will yield a 1-star score when
tried on the target manager. The following image shows landscape image added to
target image:

Before adding this image, intuitively, we might think that this image is suitable for
tracking. It certainly has a lot of details of a wide-angle landscape. But this image
yielded a shocking 1-star result when added to the Target Manager.

The main reason for the low score for this image is the fact that the entire image is a
shade of green. This greatly diminishes contrasting edges in the image.

Chapter 4

[69]

If we are to click on the Show Features link on the top, we will be able to see what
the target manager detected from the image. The following image shows features
in the mountain landscape image:

Immediately, we notice the considerably lower number of features detected in
the image compared to the stones one. It only detected the edges created by the
shadows of the objects in the image, which is clearly not enough to award it any
score above 1 star.

Trackables and Tracking

[70]

Features definition
To help us get a higher score, we must understand what are the features that the
target manager is looking for. We do know now that the main thing that the target
manager is looking for in an image is edges, but what kind of edges specifically?
To understand that, we need the definition of features.

A feature is a sharp and spiked detail in the image, like the corner of an edge.
Features must be very contrasting to be found and it has to be distributed evenly
across the image and in a random manner. The following image shows shapes and
features recognized in them:

In the shapes illustrated above, we can see the yellow crosses representation of the
features recognizable in the shape. The representation is as follows:

•	 Shape 1: It is a perfect circle without any corners at all, and as such,
no features are recognizable in it.

•	 Shape 2: It has an edge to the left with two recognizable corners. That yields
two features recognizable in the shape.

•	 Shape 3: It is a square with four edges and four corners. This yields four
recognizable features in the shape.

This means that any curved object yields little to none features at all. Primarily,
humans and animals make very poor trackables due to their curved nature.

Chapter 4

[71]

Enhancing score by enhancing contrast
One of the easiest ways of enhancing an image's score is by simply enhancing the
image's contrast. Feature detection looks for sharp edges like above; it is very hard to
do so when the image's contrast is low. Like the landscape image we used before, the
main reason the image resulted in a low score was because of the low contrast in the
image. Then what happens when we increase the image's contrast and light levels in
a photo editing application like Photoshop or Gimp? The following image shows the
figure with enhanced contrast in landscape image:

Trackables and Tracking

[72]

The score makes a giant leap from 1-star score to 4-star score. As you can see, if
you compare the image used now to the one we used earlier, the image's contrast
is greatly enhanced, and the target manager easily detects such shadows and edges
now. Lets look at the features detected by the target manager. The following image
shows features in the high contrast image:

The features detected in the image are way more than what the target manager
found in the previous image. Mostly, the features are located around the mountain
and tree shadows. Notice how the green field is still yielding little features, but the
features from the mountain and trees are enough to yield a high score of 4 stars.

It is highly recommend to enhance the contrast in all targets used for AR apps.
It is greatly beneficial for the experience to have the best trackable possible.

Chapter 4

[73]

Feature distribution on image targets
Having recognizable features on the image is important, but how they are
distributed is also very important. We can have all the features recognized on only
one part of the image and nothing on another. This kind of imbalance lowers the
score greatly, because it hinders the detection of the relative position of the image
in the world for the AR app. For example, examine the image target below.
The following image shows the lake target:

This is a lake image target that was added to the image target manager. It has a
fair bit of details, but the left side of the image is mostly empty but for the lake.
This image yielded 2 stars, and that is after enhancing the image's contrast.

Trackables and Tracking

[74]

To understand the reason for the low score, lets look at the features detected.
The following image shows features in the lake house target:

As expected, all the features detected are on the right side of the image, leaving the
left side completely empty. This is very bad for occlusion management and relative
position detection by the AR app. It will track, but it will be a very poor target.

How to enhance distribution of features
Enhancing distribution of features can be done by the obvious method, which is
adding objects to the empty space of the image. If we are to add textured objects to
the empty side of the image above, it will naturally enhance its score after the new
object yields new detectable features. But changing the target's composition might
not always be a viable option in practice if there is a restriction on what the target can
be. For example, if the target is part of a magazine or a brochure, and we do not have
control on what we can add to the image. However, we will always have control on
what we can subtract from the target.

Chapter 4

[75]

If we manage to subtract the empty space from the image target and take a subset of
the target that is rich in details and well-distributed features, we can circumvent the
problem. The interesting part is that the AR app will trigger on the large image just
fine, even if we only give data of the subset. For example, examine this subset
target of the lake target we added earlier. The following figure shows a subset
of the lake image target:

As we can see, the above image is only a subset of the lake image, with just the lake
house visible in it. Immediately, more features are recognizable now that target
manager can focus on a smaller area. It also enhanced the feature distribution
on the image. This enhanced the score to 3 stars for this trackable.

The AR app will trigger to this image, regardless if it's in this subset form, or if it was
subjected to the original image before cropping the lake house from it. This is a very
useful feature to keep in mind when trying to achieve a higher score for a target.

The position of the AR content will need to be adjusted according to appear relative
the original lake image and not the subset. This can be achieved easily with an offset
to the position applied to the AR content in Unity.

Trackables and Tracking

[76]

Patterns in image targets
We now understand the need for a good distribution of features on the image, but
there is one thing to keep in mind: having repeated patterns on the image is only
counted once, meaning if we have a repeated pattern all across the image target,
the score will be very bad. Examine the following image target. The following
figure shows a snowflake pattern image target:

The above image when used yields a staggering 0 star. This image is mainly a
repeated pattern of a snowflake. If we examine the features detected, we will
see something like the following image. The following figure shows features
in snowflake pattern:

Chapter 4

[77]

As we can see, there are enough features detected in the image to effectively be
augmentable, but yet the target manager gives it a 0 star. It will not be detectable
at all from the app's perspective.

To understand why that happens, we need to ask ourselves the following question:
if we take a subset of the image at the center, would it be distinguishable from the
larger image? The answer is no, the pattern repeats itself symmetrically around the
image. The app will not be able to find the relative position of the target in the real
world if it compares the features detected with that in the dataset.

Trackables and Tracking

[78]

Exporting datasets to Unity
Now that we know how to select and create our trackables, exporting them to Unity
is a much easier task. The following figure shows highlighted targets to be exported:

From the dataset's view, we can select what targets we want to export. Simply select
any number of targets for deployment. Once the targets are selected, we can click on
Download Selected Targets on the top left. The following image shows Download
Selected Targets:

Chapter 4

[79]

From the list of development option, select Unity Editor as the option. It is
recommended to leave the database name the same name in the target manager.
This makes it easier to update the dataset later. This will download a Unity package
file that we can import easily into a project like we did in the sample project.

As we have seen, the create of a dataset in the target manager is quite easy,
and makes creating a project more fluid.

Trackables and Tracking

[80]

Summary
In this chapter, we understood the process of creating our own trackables and
datasets using the target manager from Qualcomm. We also explored how to design
and use a trackable that will yield the best trackability in our apps. We have seen
what makes a trackable bad, such as patterns and feature distribution, and what
makes it good, such as contrast, and edges. We learned a couple of tricks to enhance
the trackability score of our trackable, such as taking a subset of the original image
or by increasing the contrast in Photoshop or apps like it. With this knowledge, we
easily optimize the most important foundation of AR, which is our trackable.

In the next chapter, we will create a project from the scratch that will be an AR game.
Techniques and code will be of a higher level than previously explored in the book
so far, and will get us closer to the full potential of Unity and Vuforia.

Advanced Augmented Reality
There are a lot of possibilities for delivering augmented reality experiences. In this
chapter, we will discuss a lot of the advanced features that are available when using
Vuforia with Unity. We will do that while developing a small arcade augmented
reality game. The game is a classic arcade game, with an augmented reality twist that
will make it feel fresh. We will be making an augmented reality whack a mole game.

Augmented reality games
A lot of developers misunderstand the value of augmented reality games. Many
view AR games as unprofitable and marginalized due to the fact that most, if not all,
AR games cannot go viral and tend to not sell. This might be true due to the fact that
AR games tend to require motion, a trackable, or both, like in the game we will now
make. Those requirements make the game not playable at any time by the user, but
what a lot of people tend to overlook is that it is ok for AR games not to go viral.

AR games, while not going to spawn the next Angry Birds, can deliver a unique
experience for a specific purpose. For example, AR games can be used quite
effectively for promotion games. The game can trigger on a promotion flyer or a
page in the magazine and then a competitive game spawns up with a chance to win
a real prize, for example. This insures that the user received a positive experience in
the form of a fresh AR game, and at the same time, we are sure the user viewed the
promotion and joined a competition. AR games can also be used in exhibitions or
stores for many uses: promotional or pure entertainment.

Advanced Augmented Reality

[82]

Unity as a game engine
Surely Unity makes making AR apps easier and deployable to multiple platforms,
but that is not where its true power comes from. Unity is first and foremost a very
powerful modern game engine. It is used to power some of the industry's known
games, both on mobile and PC. Not utilizing that kind of power to deliver very
fresh AR experiences is inexcusable, because it is quite easy to understand how
the engine works.

In this chapter, we will go over some of the elements in Unity that allow the making
of simple games. We will go over how to add audio effects to the game, how to
animate objects, how to set the world's physics, how to control particle effects,
and how to factor in user interactions. Hopefully that will be enough to display
how effective it is to build an AR game in Unity.

Setting up the environment
Now, we can start a new Unity project for the Whack-A-Mole game that we are
creating. Like we did previously in the book, we set up Unity's environment for
the AR app. The following are the steps again:

1.	 Change the value of Platform to IOS from the Build Settings under the
File menu.

2.	 Import Vuforia Unity package by navigating to Import Package | Assets.
3.	 Import the exampleDataset.unitypackage file that we used previously

in Chapter 3, Understanding Vuforia, that contains the dataset for trackables.
They are available in this chapter's assets too.

4.	 Add ARCamera and ImageTarget prefabs from the Qualcomm Augmented
reality prefab folder.

5.	 Set the ImageTarget to use the dataset we have imported, and set it to use
Chips target from the Inspector.

6.	 Set ARCamera to load our dataset and activate it as well.
7.	 Save the scene to the Assets folder, and name it Level.

Chapter 5

[83]

The following screenshot shows created the project for our Whack-A-Mole game:

We should end up with similar settings for the environment, as shown in the
preceding screenshot. Now it is ready for us to start adding the elements that
will make up our game.

The Whack-A-Mole game
In this section, we will go over the design of the game we are making. It is a simple
Whack-A-Mole game with a twist. Over our target, we want to render a ground
filled with mole holes, where the moles will pop up and down randomly from them.
The user will be able to shoot balls at the moles from the device to the target; if a
ball hits a mole, we will make the mole disappear with a sound effect and spawn
a particle effect.

There will be no score system or a way to actually clear the level. We will just have
this game as a demonstration of how games are made for AR in a simple way. All
assets used in this game are available in the Assets folder in the code bundle of
this chapter.

Advanced Augmented Reality

[84]

Creating the ground for moles
The first thing we need to do is to create the ground level from which moles will
pop up. We need to create a plane that will be layered right on top of the trackable
with a ground texture attached to it.

1.	 Let's create a plane from the GameObject menu. Choose Create other and
click Plane. This will create a plane in the scene. Make sure the plane we
created has the same position as the trackable; both should be at the global
origin, which is at (0, 0, 0).

2.	 Now, resize the plane like we have done before by clicking on the Resize
button at the top-left toolbar. Resize the plane so that its width exactly
covers the trackable. The height of the plane most likely will be bigger
than the trackable, but that is all right as long as the trackable is completely
covered in the scene. The following screenshot shows the Z-Buffer distortion:

Chapter 5

[85]

We might have noticed that the distortion that is happening between the trackable
and the plane we just added. This is because both the trackable and the plane have
the exact same position in the y axis. The engine doesn't know which one to render
on top of the other, and something called Z-Buffer conflict happens, where the
engine keeps on alternating between the components to be rendered on the top.
The solution is to simply adjust the plane's y axis position to be slightly above that
of the trackable.

1.	 Name the plane Ground, and attach it to the trackable by dragging-and-
dropping it from the Hierarchy list to ImageTarget.

2.	 Now that the ground plane is in place, the first thing we will get the urge
to do is to lose that plain white texture that is there by default on the plane.
We would want it to look like an actual ground, so we will create a material
for it. Materials for Unity are components that carry the information of what
is the texture of the object and what shader is used to render it. It is very
important and used extensively for almost every object in any scene.

3.	 First, create two folders in the Assets folder of our project from Unity. Name
one Textures; this is where we will keep the texture images of our materials,
and the other Materials; this is where we are going to create our materials.

4.	 Now drag-and-drop the file named Ground.jpg into the Textures folder we
just created. We could also add the asset through the Assets menu, like we
saw before. This just added the texture image for the ground to our project.

5.	 Now, let's create the material; inside the Materials folder we just created,
from the Assets menu, choose Material. This creates a new material that
we will name as Ground. Now attach the Ground material we created to the
ground plane. Do this by simply dragging the material and dropping it on
Ground plane in the Hierarchy panel.

Advanced Augmented Reality

[86]

Notice that the plane stays white as it was before; this is because we haven't attached
the texture yet to the material. To do that, access the material we just added to the
Ground plane by selecting the Ground plane and from the Inspector; here we will
find the Material we assigned. There is a small Texture property under Material,
drag-and-drop the texture we added earlier to this box. The following screenshot
shows the Ground material attached:

Chapter 5

[87]

Now we have an ok looking ground for our moles. Notice that the shader for the
material is Diffuse. This type of shader is suitable for opaque materials and works
perfectly fine for the ground texture. Later on, we can use different shaders
for different materials to achieve different results, such as the transparency
or particle shader.

The Whack-A-Mole model
Now that we have the ground to build on, it is time to add our mole model
to the project. Simply create a folder in the Assets folder, and name it Models.
Drag-and-drop the file from the chapter assets named WhackAMoleModel.fbx.
Unity will automatically import the model into the project and will create a
prefab for us.

1.	 Like we have done before, drag-and-drop the prefab created for
WhackAMoleModel into our scene. You might not automatically see
where the model was added; this is mainly because the model is too
small in comparison to the ground plane. If you focus on the model
by holding the F key, you will see how small the model is.

To change that, we can scale the model using the same way we
did before, which is to scale it from the editor, or we can change
the FBX Converter settings. The FBX Converter settings handle
how the model is inserted into our scene through many settings
specific to the model. If we are to scale the model in the editor,
it will naturally not have a 1:1 ratio between the model and the
world. This is done in real time, takes up resources, and makes
scripting more confusing and frustrating. It is recommend to
scale objects from their model settings.

Advanced Augmented Reality

[88]

2.	 Click on the model's prefab in the folder, and the Inspector will display the
FBX Converter settings. There is a setting for Scale Factor, that is by default
set to a very small value, which is 0.01. This is how big the model is to be
inserted to the scene compared to its original scale from the 3D modeling
application. Change this setting to 0.7, and click on Apply. The model will
resize automatically in the scene without changing the scale transform in the
scene itself. The following screenshot shows WhackAMoleModel scaled and
positioned in the middle:

3.	 Position the model exactly at the center of the ground and to be on top of
the ground correctly. After that, attach the WhackAMoleModel object to
the ImageTarget in the Hierarchy to set the ImageTarget as its parent object.

Chapter 5

[89]

Adding colliders to the scene
Unity simulates physics for the objects in the game, but only when we specify what
is being simulated and how. The reason for this is that in most games, not every
single object is simulated by physics. For example, not every wall in every game is
breakable. There are static objects that are just there simply defying physics, but for
games, that is quite all right.

Collider is a component that we can attach to any object in the scene that makes this
object "collidable" with any other collidable object. For example, if we are making a
shooting game such as Call of Duty or the likes of it, if we do not attach a collider to
all walls in our game, the game character will be able to simple "walk through" the
wall. This is, of course, not desirable.

For our game, we need to be able to "whack" the mole; if there is no collider on the
mole, we certainly won't be able to whack it. Also, the balls that we will be shooting
at the moles need to be able to collide with the ground, not just pass through it.
All of this is possible with colliders.

1.	 First, select the WhackAMoleModel from the scene, and expand it to reveal
the MoleHill and the character. Those are the two components to which we
need to add the colliders. First, select the character from the scene, and select
Box Collider by navigating to Component | Physics. This will add a collider
with the shape of a box around the character. The box won't be exactly
wrapping the character, but it is cheap on resources, and is enough in our
case to simulate a good collision with the balls that we will fire at the moles.

2.	 Next, select the MoleHill; the MoleHill is irregular in shape, and we need
the ball collision with it to be simulated more effectively than what a box
collider can do. This is why we need to use a Mesh collider. From the same
previous menu, now choose Mesh Collider to be added to the MoleHill
model. What the Mesh Collider does is that it adds a collider that is exactly
the same shape as the model on top of it, so it simulates the collision exactly
the same as the model.

Advanced Augmented Reality

[90]

The following screenshot shows colliders added to the Mole model:

Notice that the ground already has a collider added to it. That is because, by default,
any primitive object created in the editor has a collider attached to it.

Creating the ball for the ball gun
Now that we have the general feeling of the game being set, we need to create the
gun's projectile. It is understandable that because it's a ball gun, it will just shoot
spheres, which we can create through a script. But before we can do that, we need a
role model for the script to clone and create in the scene. So, the next thing we will
work on is creating the basis for the gun's projectile prefab.

1.	 Select ARCamera from the Hierarchy panel, and then from the GameObject
menu navigate to Create | Other | Sphere. This will create a sphere where
ARCamera is; however, it will not parent it to the camera. It is particularly
useful when creating objects at the position of other objects. Change the
name of the sphere we just created to Ball.

Chapter 5

[91]

2.	 Now, the main idea is to have the projectile occupy at least half the camera's
view and be at the center of it to give the user a sense of immersion while
shooting the balls at the moles. This is easily achievable with everything we
know. Simply position the ball directly in front of the camera and resize it till
you feel its size is appropriate to the camera. We can check how big it will
look like if we look at the Game panel in the editor or Camera Preview at
the bottom-right corner of the Scene panel when selecting the camera.

3.	 Once the position and scale is right, create a material in the Materials folder,
and name it ball. When selecting this material, in the Inspector you will
notice a color box that is by default set to white. For the ball, we do not
need a texture like we did for the ground, but rather, just a color that will
make it contrast over the environment. So, just set the color box to red, and
then attach the material to the ball. The following screenshot shows the Ball
projectile in the Scene panel:

Notice that the ball already has a collider by default, which will come in handy when
we want the ball to actually collide with the moles and the ground.

Advanced Augmented Reality

[92]

There is one fundamental thing to point out; adding a collider to the object doesn't
make it simulated by physics in the engine, it only makes it collidable with other
colliders. But of course, we want the projectile to act like a real projectile and respond
to gravity and forces. We want the projectile to bounce off of the floor and off of the
moles in a natural way. This is easily simulated in Unity, but we need to tell Unity
what to simulate and how.

Select the ball object from the Hierarchy panel, and from Components menu, go to
Physics, and select Rigidbody. This adds a Rigidbody component to the ball. What
the Rigidbody component does is that it simulates physics on the object it is attached
to as if the object is a rigid body in the real world. It simulates gravity, bounce,
external forces, and everything to which you would expect a real-world rigid
body be subjected to, such as an air drag.

By default, the Rigidbody component is set to simulate gravity on the object. We
do not need to change any settings in Rigidbody because they all suit us for now.
Simply click the Play button, and we will immediately see the ball falling down
in the game world under the effect of gravity.

Setting global gravity settings
We might have noticed that the ball was falling a little too slow for it to feel natural
for the game. This is mainly because our scale is not 1:1 with the game. It is rather 1:1
with the real world. This is because it is an AR application, and the concern is for it
to feel natural with the real-world interaction. This, however, makes us all giants in
comparison to the game world when using the AR game. So, it's not that the ball that
is falling too slow, a bit of Einstein's relativity coming, it's that the ball that is falling a
great distance in relation to us.

To remedy that, we need to bring up the force of gravity to compensate for the giant
status in which we are located. If the gravity is stronger, the ball will fall faster and
will give us the feeling that it is natural for our own real world. Luckily, changing
the gravity setting in a Unity project is quite simple.

1.	 From the Edit menu, go to Project settings, and select Physics. In the
Inspector, we will be presented with a number of settings all related to how
physics works. We can change any of them, but we only need one changed
for now. The first setting is related to gravity. Gravity in the real world acts
on the y axis and is roughly -9.81 in magnitude. We need this to be 6 times
stronger, so change it to -60.81.

2.	 Click on the Run button, and watch the ball fall much faster and in a more
natural manner. The following screenshot shows the gravity settings for
the project:

Chapter 5

[93]

This should take care of the physics compensation value and should work naturally
in the real world in an AR environment.

Adding audio sources
We now need to create sound sources in the scene to handle sound effects for the
game. Sound sources are audio sources that can be position in the world for 3D
positional sound or simple 2D sounds. In order to hear sound effects in the game,
audio sources are needed to produce the sound, but also we need a listener to
actually capture the created sound to present to the user.

Advanced Augmented Reality

[94]

By default, ARCamera has a listener component added to it, so we only need to add
the audio sources to it.

1.	 Create a folder and name it Audio in the Assets folder. Drag-and-drop the
two files inside the Audio folder in the chapter's assets. This will import the
two audio files named ballFire.wav and moleHit.wav. We will use the first
for the sound effect of firing the ball from the gun, and the second for when a
ball hits a mole.
Because this is an arcade game, we do not need 3D sound positions; we
mostly need all audio to be 2D and independent of how far or close we are
to the sound source. We do this by changing the setting for the audio assets,
which we just imported, in the Inspector.

2.	 Select the audio file from the Audio folder, and from the Inspector uncheck
the checkbox named 3D Sound. Do the same for both files. The following
screenshot shows the audio settings for the audio files:

Chapter 5

[95]

3.	 Now, select ARCamera, and then from the GameObject menu, select Create
Empty. What this does is it creates an empty object in the world and near
ARCamera. Now, rename the object to ballFireAudio. Now, select the
object we have just created, and from the Component menu, navigate to
Audio | Audio source. Repeat the same steps to create moleHitAudio.

4.	 Drag-and-drop the audio file from the Audio folder appropriately into the
audio source component we have just created. This effectively creates sound
sources in our scene. Just uncheck the checkbox named Play on Awake,
because we need to control this audio source through code. It is a useful
option to test how the sound source will play out in the game panel though.
The following screenshot shows sound source settings for ballFireAudio:

Advanced Augmented Reality

[96]

Now that the sound sources are in place, we can easily call on them from script to
add to the immersion of the app.

Scripting the ball gun
We have already created the projectile for the gun, and we also created the sound
source for it, but we are yet to make this act like a ball gun; this is when scripting
comes in handy.

The first thing we need to do is to create a prefab for the projectile we created.
This is to be able to clone the projectile through the script and fire it at the poor
moles. To do that, simply create a folder in the Assets folder, and name it
Prefabs. Drag-and-drop the Ball object from the Hierarchy panel to the
folder you just created. Now we have a prefab that we can call upon through
code and can create as many balls as we want.

The ball we have attached to the camera is meaningless, because we will be creating
the projectiles through code. So, after we have already made a prefab of the ball,
we no longer need it in the scene, but before we remove that, there is another step.
We need to have a placeholder from which the projectiles spawn. That placeholder
should be in the same position and with the same rotation as the ball we have in the
scene right now.

First, we add an empty object to the scene from the GameObject menu. Now, attach
that object to the ARCamera object by dragging-and-dropping it. Rename that
object to BallPlaceHolder. We need the BallPlaceHolder object to have the exact
same transformation as that of the Ball object. Unfortunately, there is no automatic
function in Unity that copies the transformation for two objects, so we need to
manually copy it. Click the Ball object and copy both the position and rotation
of that object, and insert them into the BallPlaceHolder object. Then, delete the
Ball object, because we no longer need it.

Chapter 5

[97]

The following screenshot shows BallPlaceHolder added to the scene:

Now, it is time to create a folder for our scripts. Create a new folder in Assets,
and rename it Scripts. Inside the Scripts folder, from Assets menu, navigate to
Create | C# Script. Name the created file ballGun. Now, double-click on it, and
Unity will automatically open its MonoDevelop Editor for us.

Advanced Augmented Reality

[98]

The following screenshot shows the Unity MonoDevelop Editor:

Unity automatically creates a number of things for us in the MonoDevelop Editor.
First, it creates a class template with the name of the script file. This is why the script
filename must be that of the class name, among other reasons. It adds two empty
functions for us that are very crucial to game development on the platform.

The Start() function is a function that is called automatically by Unity engine when
the scene starts. It is very useful for variable initialization, and can be thought of as
the constructor for the class.

The Update() function is a very important function that Unity automatically calls
on every frame that passes in the game. This is very important for keeping track of
the game object state, maintaining game logic, and many other uses. It is strongly
advised not to have intensive calculations inside the Update() function, because it
will slow down the frame rates of the game, because Unity doesn't render the next
frame till all Update() functions in the game are executed completely.

Chapter 5

[99]

Now, let's look at the script after the code has been added to it and see what every
function does. The following screenshot shows the ballGun.cs script:

This is how the script that will control the behavior of the ball gun appears. We will
be attaching this script to the ARCamera object, and it will respond to user's touch
anywhere on the screen to fire a ball directly toward where the user is pointing the
camera. Let's see what every function does in this script.

The first things we see are the declared variables for the script. They follow a similar
syntax to what you would expect from a C# language:

public GameObject projectile;
public Transform projectilePlaceHolder;
private GameObject ballFireAudio;
private Gameobject Trackable;

The public or private status of the variable is very important in Unity. This is
because public variables appear in the Editor, and their values can be set in the
Inspector. This is particularly useful and should be kept in mind.

Advanced Augmented Reality

[100]

The projectile variable is what we will use from which to link to the Ball prefab.
It is public, because we will set its value from the Editor, as we will see in a little
while. projectile is of type GameObject, which is the general type for any object
in the game. It contains a large number of relevant functions and variables that often
come in handy. wer sadfas

The variable projectilePlaceHolder is of type Transform. It will hold the
transform information of the BallPlaceHolder object we have in the scene
on which to spawn projectiles.

For the variable ballFireAudio, as its name suggests, we will be using this to link to
the audio source object we created earlier.

The Trackable variable will be used to link to the ImageTarget object. We will use it
to parent the spawned projectiles to it. We will do that to allow the balls to disappear
if Trackable is lost from sight:

void Start() {
 ballFireAudio = this.gameObject.transform.
FindChild("ballFireAudio").gameObject;
 Trackable = GameObject.Find("ImageTarget").gameObject;
}

This is how our Start() function looks like. In this function, we are initializing both
ballFireAudio and Trackable variables. We do that by finding the GameObject
from the scene and attaching it to the variable. Notice that we find the GameObject
by its name; if the name is different, change it accordingly, or the variable will not be
initialized correctly:

void Update () {
 if(Input.GetMouseButtonDown(0))
 {
 ballFireAudio.audio.Play();
 GameObject obj = Instantiate(projectile,
 projectilePlaceHolder.position,
 this.gameObject.transform.rotation) as GameObject;
 obj.gameObject.rigidbody.AddRelativeForce(Vector3.forward *
Time.deltaTime * 1100000);
 obj.transform.parent = Trackable.transform;
 Destroy(obj.gameObject,5f);
 }
}

Chapter 5

[101]

This is our Update() function that will be called with every frame. It mainly listens
for user interaction; if the user touches the screen or clicks with the mouse, a Ball
prefab is instantiated and a force is applied on it to propel it forward with a sound
effect. Repeated clicks or touches will spawn more balls.

What Input.GetMouseButtonDown(0) does is that it returns true if the user clicks
with the mouse or touches the screen. This is how we listen if the user interacted
with the screen. If it is true, we proceed with our game logic.

We first play the audio attached to the game object ballFireAudio to play the sound
effect for ball shooting.

Next, we instantiate a new clone from the prefab Ball attached to a projectile
variable. We instantiate it into the variable obj with the transform of the
projectilePlaceHolder position and the rotation of the camera so that it always
fires forward.

We then apply the relative force to the instantiated object's Rigidbody component
to fire forward. The direction is Vector3.forward, which is the object's forward
direction. We multiply it by Time.deltaTime; we do this to make the force frame
rate independent (Time.deltaTime is the time since the last frame). This avoids
making the ball slower if the frame rate drops down for any reason. Then we
multiply by the force's power. Notice that the force is really big; this is because we
need the ball to fire forward quickly and to also compensate for the ratio between
the game world and the real world as we saw with gravity.

We then parent the instantiated object to ImageTarget so that it behaves correctly
with the image target.

Finally, we destroy the object with a delay of 5 seconds. We do that because we do
not ever want projectiles to disappear, as this will really deteriorate the performance
of the app.

1.	 Now that our script is ready, we need to attach it to the ARCamera object.
Do this by dragging the script and dropping it on the ARCamera object.
The script component will appear in ARCamera and we will notice that
the two public variables Projectile and Projectile Place Holder are visible
in the Inspector.

Advanced Augmented Reality

[102]

2.	 Now, we need to drag-and-drop the Ball prefab from the Prefabs folder to
the Projectile variable in the Inspector. We also need to drag-and-drop the
BallPlaceHolder object from the scene to the variable Projectile Place Holder
variable in the Inspector. The following shows ARCamera with the
ballGun.cs script attached:

3.	 Now that our script is attached correctly to our ARCamera object, we
can now try it out in the Game view. Click on Run and the click over the
panel. The camera will shoot out balls. The following screenshot shows the
ballGun.cs script in action:

Chapter 5

[103]

4.	 On testing the script, we might notice that the balls are a little too small
in comparison to the mole. We can change that through the Ball prefab
direction from the Prefabs folder. Select it, and then change the scale value
for (x, y, z) to 20. This is a prime example of how useful prefabs are when
doing changes, because it automatically propagates it for the project.

Vuforia trackable event handler
More often than not, we need to attach a certain behavior that triggers when a
trackable is found. To do this, we must understand how to keep a track of trackable
events, such as trackable found or trackable lost. Vuforia makes this easy for us by
providing a template script named DefaultTrackableEventHandler. This script
is by default attached to any ImageTarget prefab. It should be there now in our
ImageTarget object in the scene.

Advanced Augmented Reality

[104]

What the script does is it handles the event of a trackable found or a trackable
lost. It is the script responsible for rendering the 3D content when the trackable is
found, and making it disappear when it is lost as well. It is important to notice that
it is however not responsible for the perspective or the ARCamera position on the
trackable, this is handled by another script , which is beyond our scope.

Vuforia recommends that we create our own trackable event handler scripts using
the DefaultTrackableEventHandler script as a template. This is exactly what we
will do now by adding a very small function to the script.

Open the script named DefaultTrackableEventHandler, which can be found inside
the Scripts folder under the Qualcomm Augmented reality folder. It should look
similar to the following screenshot, where the DefaultTrackableEventHandler.cs
script is shown:

Chapter 5

[105]

The following three functions are important to understand from this script:

•	 OnTrackableStateChanged: This function is called every time the state of
the trackable is changed, whether it is found or lost. It then determines if it
is detected or lost, and appropriately calls on the event function.

•	 OnTrackingFound: This is the function that is called when the trackable is
found. It is responsible for rendering all the children of the ImageTarget
object and switching on their colliders.

•	 OnTrackingLost: This function is called when the trackable is lost.
It is responsible for turning off the rendering for all the child objects
of ImageTarget. It also turns off the collider for them.

These are the three crucial functions in the script. We will leave them as they are for
our app, but for one modification. We need to add a new function that returns the
status of the trackable to tell us whether the trackable is detected or not. This will be
useful for us when animating the mole character, as we will see in a little while.

Create a new C# script in the Scripts folder and name it
MoleTrackableEventHandler. Now copy all the code from the script
DefaultTrackableEventHandler and paste it inside the script we just created. It
is important to change the class name from DefaultTrackableEventHandler to
MoleTrackableEventHandler, else errors will appear in Unity due to the fact that
the class name is not the same as the filename.

Advanced Augmented Reality

[106]

After modification, the script will look similar to the following screenshot, where the
MoleTrackableEventHandler.cs script is shown:

We added the variable TrackableStatus, which we want to hold the state of the
trackable. It will be true if it is visible, and false if not. We then created a function
and named it trackableVisible, which will return the variable TrackableStatus.

Chapter 5

[107]

We then simply set the TrackableStatus to true when found and false when not
found inside the function OnTrackableStateChanged().

Now, if we call on the function trackableVisible(); it will effectively tell us if the
trackable is visible or not.

Now, we need to attach the MoleTrackableEventHandler to the ImageTarget
object in our scene. We now do not need DefaultTrackableEventHandler attached
to ImageTarget, so we need to delete that component or simply disable it.

DefaultTrackabeEventHandler can be customized later on for all sorts of effects
such as playing a sound or video when the trackable is found, or controlling specific
GUI objects to respond to the trackable. It gives us a lot of control over the behavior
of the AR app, so it always pays off to keep it in mind.

Adding a Particles prefab
Particles in Unity is a very useful tool that many developers use. With it, it is
possible to create fog, dust, flames, explosions, and all sorts of effects. The effect on
resources is usually minimal, as Particles uses small 2D images animated to give the
effect needed, hence the name Particles.

For our app, it will be useful to add dust particles appear when we whack the mole
with the balls fired at them. Although learning how to create particles is outside the
scope of this book, we will see how we can add one to the scene that is already made,
because there are a number of free particles available through the Unity store.

1.	 Import the package named DustParticles to the project. Add the prefab we
just imported to the scene. You will automatically notice the dust cloud being
simulated in the Editor. Now, we only need to position it appropriately over
the molehill and have it look as if the dust is rising from the hold, then parent
it to the Mole object. In a little while, we will see how we can call on this
particle system and activated it through code.

Advanced Augmented Reality

[108]

2.	 Change the position of the Character object to be under the ground, because
this is where they should be when the game starts. It will also give us a good
idea how the dust will look like with character not present. Simply move the
Character on the y axis till it is just below the ground and not visible. The
following screenshot shows dust particles added to the scene:

Unity is a great tool, but like everything else, it is not perfect. What it lacks, however,
is usually remedied by a very active community that create add-ons and scripts for
it. One of the most useful and free scripts available for Unity is iTween.

iTween is a script that allows us to animate objects quite easily through script. It is
very customizable, and fits most object animation needs for games. For example,
iTween can easily be used to animate a missile in a game to home at the target in a
fluid manner. In our case, we will use iTween to animate the mole coming out of the
molehill and going back.

iTween can be easily added from the Unity's Asset store. It is for free; simply search
for it in the Unity Asset store, which is accessible from the Window menu, then
download and import into the project. Now, we can access iTween functions easily
from code.

Chapter 5

[109]

iTween's documentations can be found at http://itween.pixelplacement.com/
documentation.php.

Scripting the mole character
Now that iTween is in place, let's see how we can script the mole character to make
use of iTween and animate the character correctly. What we are aiming to achieve
with the mole script at this stage is to have it animate up and down from the
molehill. The animation should start at a random time between two ranges to avoid
repetition and predictability of the behavior.

Let's take a look at how this script looks like. The following screenshot shows
moleAnimator.cs script:

Advanced Augmented Reality

[110]

The first three lines in the Start() function are quite simple. We find and attach the
mole hit sound source to moleHitAudio to be used by us in the script. We find and
attach the dust particle system to use as a hit effect. We then find the ImageTarget
object and only use the script component MoleTrackableEventHandler. We do this
to be able to call on the function that added, which is trackableVisible, to check to
see if the trackable is visible or not. This is one way of accessing other class' functions
in Unity.

The last line in the Start() function starts the animation sequence; let's see how it
does it:

iTween.MoveBy(gameObject, iTween.Hash("y", 40, "easeType",
"easeInOutQuad", "speed", 20, "delay", Random.Range(0.3f, 5f),
"oncomplete", "animComplete_Up");

This is the line of code that starts the whole animation sequence on the mole
character. MoveBy() is a function in the iTween class that allows animating objects
in a given axis by moving them along it. We first give it the current game object to
which the script is attached, which will be the mole character, and then we pass
in the iTween.Hash parameters to set what kind of animation we want.

The parameters for iTween.Hash are very important, but easy to understand.
It follows the syntax of (parameter name string, parameter value). First,
we give it the actual axis on which we want to animate, which is in our case y axis.
Then, we set a value for easyType, which governs the slowing down and speeding
up of the animation to make it not feel abrupt; easeInOutQuad is a perfect natural
feel for our character. We set the speed of the animation to 20. Now for the delay,
which is the delay of the animation start, we add a random value to make moles
animate at different times, and not all at the same time, because we will have more
than one mole in our scene at a later stage. The oncomplete parameter is the name
of the function to be called once the animation is complete. Because this line animates
the character up and out of the hole, it calls on animComplete_up, which in turn will
animate the character back down and into the hole, as we will see next.

Chapter 5

[111]

If we look at the function animComplete_Up, we will see that it only contains a single
line of code that does something similar to what the Start() function did in its
last code line, but reversed. It animates the character back down and into the hole,
which makes sense, because we want the character to not pop up and down from the
molehill. Notice that the oncomplete parameter calls on animComplete_Down, which
we will take a look at next.

In function animComplete_Down, we do two things. First we check to see if the
trackable is visible by calling the trackableVisible() function, which is a member
of MoleTrackableEventHandler. If the target is visible, we turn on renderer and
collider for the object. This makes the object visible and collidable. We do this
because we will make the mole disappear when the ball hits it, but we should only
make it reappear if the trackable is visible, otherwise it will interfere with how
ImageTarget renders objects, and we will see floating objects on the camera when
there is no tracked target. Next, it animates the object back up and then oncomplete
in turn calls animComplete_Up, making a perfect recursive loop.

The last function, which is OnCollisionEnter, is a Unity event that fires up
whenever two colliders collide with each other. It is sent to any object with a collider
attached to it. We use this event to check if any ball hit the mole or not. If it does hit
the mole, we then play the hit sound and the dust particles. We then turn off the
renderer of the object to make it disappear and turn off the collider to not interfere
with any more balls.

This is the script that will handle the mole behavior for us. Now all we have to do is
attach it to the Character object inside the WhackAMoleModel object and hit Play. We
can immediately see the mole is animating correctly and randomly. Also, if a ball hits
it, sound effects and dust particles are played, indicating a correct whack.

Now as our mole object is complete, prefab the whole object into the Prefabs folder
and then add multiple mole objects into the scene to have more than one mole.
Add as many as you would want, but I believe four is a good enough number,
considering how small the trackable is.

Advanced Augmented Reality

[112]

Mask shader
We are mostly done with the game. We have the behavior of all our objects in place
and are ready for deployment; but we are missing one last thing. We might have
noticed that when the moles go underground, they are still visible from the side
angle. This will be apparent as well when deploying the app to the device in AR
environment. There is an easy solution we can do to hide those moles when they
go underground in an AR environment, which is using a depth mask shader.

1.	 Add the shader asset named DepthMask.shader, which can be found in the
chapter's assets. Then, we want to create a cube in our scene that will be as
big as the ground plane and name it mask, and hide all the moles behind it,
as shown in the following screenshot. The following screenshot also shows
the Mask object added to scene:

Chapter 5

[113]

2.	 Of course, this object is not acting as a mask yet, it is just an ordinary cube.
To give it the mask properties, we need to create a material for it in the
Materials folder and name it Mask. Because we added the DepthMask
shader, it should be automatically available in the Shader dropdown list
for the material. Simply choose the DepthMask shader from there, and then
attach the material to the Mask object. The following screenshot shows the
DepthMask shader activated:

We immediately notice that the cube has disappeared, but further inspection reveals
that not only the cube is not visible, but also the moles behind it. This effectively fixes
our problem by hiding the moles underground.

Advanced Augmented Reality

[114]

Summary
In this chapter we covered a lot of ground on the advanced AR development in
Unity. We created a perfectly functional and fun game that utilizes a lot of concepts
in both Unity and Vuforia. All we need to do now is deploy the game to a device and
play with it. Maybe add a score system, or maybe add a limited number of balls to
hit the mole. The sky is your limit. Experiment with it, and create an experience that
users will appreciate.

Index
A
AboutScreen scene 29
Add button 64
Alt key 26
Android

deploying for, in build settings 32-34
ARCamera 28
audio sources

adding 93, 95
Augmented reality (AR)

about 6
defining 6
forms 6, 7
image 5
smartphones 7

augmented reality games 81

B
ballFireAudio 95
ball gun

ball, creating for 90-92
global gravity settings, setting 92, 93
scripting 96-103

Ball projectile
in Scene panel 91

Build and Run button 37
build settings

about 30, 31
deploying, for Android 32-34
deploying, for iOS 35-37

C
collider 89
content

delivering, immersion factor 8, 9

D
DepthMask shader 113
Device Databases 62

F
feature distribution

enhancing 74, 75
File | Build Settings 30
Frame Marker 10
Frog prefab 51

G
Game (Game Render) window 22
Game view 102

H
Hierarchy panel 58
Hierarchy (Scene Hierarchy) 22

I
Image Target 10
Image Target app 38
ImageTarget prefab 44

[116]

image targets
creating 61-65
feature distribution 73
patterns 76, 77
trackables 61

immersion factor
used, for content delivery 8, 9

Inspector (Inspector panel) 22
Inspector panel 32
installations

Unity 3D 17, 18
Vuforia 19

iOS
deploying for, in build settings 35-37

iTween 108

M
mask shader 112, 113
mole character

scripting 109-111
MoveBy() function 110
Multi-Targets 11

O
OnTrackableStateChanged functions 105
OnTrackingFound functions 105
OnTrackingLost functions 105

P
packages

importing, in Unity project 23-26
packages, importing in Unity project

trackable files 27-29
Unity scene files 24-26

particles 107
Particles prefab

adding 107, 108
prefab, Vuforia

3D objects, attaching 49-57
3D objects, importing 49-57
about 41-48
Directional Light, adding to scene 56
Hierarchy panel 57
object, positioning 44

projectile variable 100
Project (Project assets) panel 22

R
Resolution and Presentation settings 36

S
scene files, in Unity files 24-26
Show Features link 69
smartphones

Augmented reality (AR) 7, 8
Start() function 111
Switch Platform button 32, 35

T
Target Manager 61
Texture property 86
trackable event handler

in Vuforia 103-105
trackables

about 61
in image targets 61

trackable score
augmentability 66
deciding, factors 66-69
enhancing, by contrast enhancement 71, 72
featues, Target Manager 70

trackableVisible() function 111
tracking solutions components,Vuforia

SDK
about 12, 13
ARCamera 10
Image Target 10
Virtual Button 11, 12

U
Unity

as game engine 82
datasets, exporting to 78, 79
supported formats 49

Unity 3D
downloading 17
installing 17

[117]

integrating, with Vuforia 14, 15
website 18

Unity, as game engine
about 82
environment, setting up 82, 83

Unity Editor 79
Unity objects

parenting 58
Unity project

creating, Vuforia used 39-41
packages, importing 23
starting 21
Unity scenes 21, 22

Update() function 101

V
Virtual Button 11
Vuforia

downloading 18, 20
installing 18, 20
prefab 41

sample apps 20
sample projects 20, 21
trackable event handler 103-106
Unity 3D,integrating with 14, 15
used, for Unity project creating 39-41
Vuforia SDK Unity extension 19

Vuforia SDK
about 9
tracking solutions components 10, 11

W
Whack-A-Mole game

about 83
ground level, creating 84-86

Whack-A-Mole model
about 87
colliders, adding to scene 89, 90

Z
Z-Buffer conflict 85

Thank you for buying
Developing AR Games for iOS And Android

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity Game Development
Essentials
ISBN: 978-1-84719-818-1 Paperback: 316 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamics effects,
and more!

1.	 Kick start game development, and build
ready-to-play 3D games with ease

2.	 Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more

3.	 Test & optimize your game to perfection with
essential tips-and-tricks

Unity 3.x Game Development
Essentials
ISBN: 978-1-849691-44-4 Paperback: 488 pages

Build fully functional, professional 3D games with
realistic environments sound, dynamic effects,
and more!

1.	 Kick start your game development, and build
ready-to-play 3D games with ease.

2.	 Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more.

3.	 Test & optimize your game to perfection with
essential tips-and-tricks.

4.	 Written in clear, plain English, this book
takes you from a simple prototype through
to a complete 3D game with concepts you’ll
reuse throughout your new career as a game
developer.

Please check www.PacktPub.com for information on our titles

Unity iOS Game Development
Beginners Guide
ISBN: 978-1-84969-040-9 Paperback: 314 pages

Develop iOS games from concept to cash flow
using Unity

1.	 Dive straight into game development with no
previous Unity or iOS experience

2.	 Work through the entire lifecycle of developing
games for iOS

3.	 Add multiplayer, input controls, debugging, in
app and micro payments to your game

4.	 Implement the different business models that
will enable you to make money on iOS games

Unity 3D Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-054-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly

1.	 Build fun games using the free Unity 3D game
engine even if you've never coded before

2.	 Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3.	 Deploy your games to the Internet so that your
friends and family can play them

4.	 Packed with ideas, inspiration, and advice for
your own game design and development

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
What is Augmented Reality?
	Definition of augmented reality
	The forms of augmented reality

	Smartphones and augmented reality
	Immersion factor for delivering content
	Vuforia SDK and how it helps in delivering the AR experience
	Unity 3D and how it fits with Vuforia
	Summary

	Chapter 2:
Setting Up the Environment
	Downloading and installing Unity 3D
	Downloading and installing Vuforia
	Vuforia sample projects
	Starting a Unity project
	Unity scenes
	Importing packages in Unity
	Unity scene files
	Trackable files

	Build settings
	Deploying for Android
	Deploying for iOS

	Summary

	Chapter 3:
Understanding Vuforia
	Creating a Unity project with Vuforia
	Vuforia prefabs
	Importing and attaching 3D objects
	Parenting in Unity objects

	Summary

	Chapter 4:
Trackables and Tracking
	What are trackables for image targets?
	Creating image targets
	Trackable score
	What decides trackable score
	Features definition
	Enhancing score by enhancing contrast
	Feature distribution on Image Targets
	How to enhance distribution of features
	Patterns in Image Targets

	Exporting datasets to Unity
	Summary

	Chapter 5:
Advanced Augmented Reality
	Augmented reality games
	Unity as a game engine
	Setting up the environment

	Whack-A-Mole game
	Creating the ground for moles

	The Whack-A-Mole model
	Adding colliders to the scene

	Creating the ball for the ball gun
	Setting global gravity settings

	Adding audio sources
	Scripting the ball gun
	Vuforia trackable event handler
	Adding a Particles prefab
	Scripting the mole character
	Mask shader
	Summary

	Index

