
www.allitebooks.com

http://www.allitebooks.org

Developing RESTful Web
Services with Jersey 2.0

Create RESTful web services smoothly using the robust
Jersey 2.0 and JAX-RS APIs

Sunil Gulabani

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Developing RESTful Web Services with Jersey 2.0

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 2070214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-78328-829-8

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sunil Gulabani

Reviewers
Ketan Parmar

Daniel Rodríguez Millán

Acquisition Editor
Rubal Kaur

Commissioning Editor
Shaon Basu

Technical Editor
Mrunmayee Patil

Copy Editors
Mradula Hegde

Dipti Kapadia

Alfi da Paiva

Project Coordinator
Akash Poojary

Proofreader
Clyde Jenkins

Indexer
Monica Mehta

Graphics
Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sunil Gulabani is a software engineer based in Ahmedabad, Gujarat (India).
He completed his graduation in Commerce from S M Patel Institute of Commerce
(SMPIC) and Masters in Computer Applications from Ahmedabad Education Society
Institute of Computer Studies (AESICS). He has been a top ranker while pursuing
his master's degree. He has also presented a paper "Effective Label Matching
For Automated Evaluation of Use Case Diagrams" on Technology For Education
(T4E)—IIIT. Hyderabad, an IEEE Conference, along with senior lecturers, Vinay
Vachharajani and Dr. Jyoti Pareek.

He has been working since 2011 as a software engineer, and is Cloud technology
savvy. He has experience in developing enterprise solutions using Java (EE), Apache
SOLR, RESTful web services, GWT, SmartGWT, Amazon web services (AWS), Redis,
Memcache, MongoDB, and so on. He has a keen interest in system architecture
and integration, data modeling, relational databases, and mapping with NoSQL for
high throughput.

Apart from that, he takes interest in writing tech blogs and is actively involved
in a knowledge-sharing community named Java User Group Ahmedabad
(JUG-Ahmedabad).

You can visit him online at http://www.sunilgulabani.com and follow
him on Twitter at twitter.com/sunil_gulabani, or reach him directly at
sunil_gulabani@yahoo.com.

I would like to express my heartiest thanks to my parents and family
members who supported me at each and every level of my career.
I would also like to convey thanks to my friends and colleagues
without whom jumping to the next step of my career would not be
possible. And thanks to the Packt Publishing team, who gave me an
opportunity to author this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ketan Parmar (aka KPBird) has been a Java enthusiast since the last seven years.
He started working in various technologies in Java, and explored all three areas
(SE, ME, and EE). He is currently working as a Technical Lead.

His constant urge for fi nding best solutions using emerging technology made him
pursue Ph.D. (Mobile Grid Computing). He has provided lots of solutions on Stack
Overfl ow, and has contributed on various blogs and sites.

He is passionate about Java, Android, grid computing, user interface, and open
source software (OSS). He is currently exploring big data. He has been an eminent
speaker on Java Enterprise and Android Mobile related tools and technologies.
He is the leader and founder of JUGAhmedabad (Java User Group Ahmedabad).

Daniel Rodriguez is a software architect for Java server-side development. He has
background experience on high demand servers in the Electric Power Industry. He
is also a software hobbyist who likes to study all frameworks available, searching for
the perfect tool for the perfect job.

He has worked for 10 years on banking, public administration, and electric power
industry, from logistics fi eld work devices to mainframe servers. He is currently
working as a senior software developer at Mobivery, a startup focused on client and
server development for mobile projects.

He is the author of the book Java Game Programming (Programación de
videojuegos en Java) focused on game architecture for mobile phones.

I would like to thank my baby girl Miriam for sleeping enough time
for me to review this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support fi les, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support fi les and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub fi les available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started 5

What is JAX-RS 2.0? 5
Features of JAX-RS 2.0 6

Ease of using and reusing JAX-RS artifacts 8
Modules and dependencies 8
Creating a new project 9
Summary 12

Chapter 2: Server API 13
Root-resource classes 13
@Path 14

@Path with a regular expression 16
HTTP methods 16

@GET 17
@PUT 17
@POST 18
@DELETE 18
@Produces 18
@Consumes 20

Parameter annotations 20
@PathParam 21
@QueryParam 21
@DefaultValue 22
@MatrixParam 23
@HeaderParam 23
@CookieParam 24
@FormParam 25
@BeanParam 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Subresources 27
Scope of the root-resource classes 29
Rules of injection 30
Deploying a RESTful web service 32
Summary 34

Chapter 3: Client API 35
Consuming web services using a client 35

The get method 37
The post method 38
The put method 38
The delete method 39
The path parameter 40
The query parameter 40
The cookie parameter 41
The matrix parameter 42
The bean parameter 43
The @Produces annotation 44
The @Consumes annotation 45

Use of Invocation.Builder 46
Adding support for new representations 47
Client transport connectors 47
Securing a client 47

Summary 48
Chapter 4: Common Media-Type Representations 49

JSON 49
MOXy 50

Using the ResourceConfig class 51
Java API for JSON Processing (JSON-P) 52
Jackson 53
Jettison 56

XML 57
Low-level XML support 57
JAXB support 59
POJOs 60

Multipart 61
Summary 63

Chapter 5: Server-Sent Events (SSE) 65
Getting started 65
Implementing Server-Sent Events (SSE) 67

Consuming the SSE events 69

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

The pull model (using EventInput) 69
The push model (using EventSource) 70

Summary 71
Chapter 6: WADL 73

Getting started 73
Configuration 79
Summary 79

Index 81

www.allitebooks.com

http://www.allitebooks.org

Preface
This book is for developing the JAX-RS 2.0 RESTful web services using Java. It
provides an understanding of new features of JAX-RS 2.0, along with practical
examples for the server and client side. It also covers implementation of different
media representations, such as JSON, XML, and multipart. Apart from this, we
have also included the modern HTML5-feature of Server-Sent Events (SSE). SSE is
basically used for real-time applications, where a server pushes events to the client.
Lastly, we described how to generate an XML specification named Web Application
Description Language (WADL) of the web services.

What this book covers
Chapter 1, Getting Started, gives a brief note regarding the new features that have been
introduced in JAX-RS 2.0, such as client API, filters and interceptors, and client-side
and server-side asynchronous. It also contains some other prominent features, such
as listing of modules and dependencies that are used for implementing JAX-RS 2.0.

Chapter 2, Server API, covers how to create resource classes and methods, usage of
parameter annotations to access user-defined values, and subresources to consume
specific resource methods. We will see when the root-resource classes are accessible,
and the rules for injecting the path annotations to access values. Lastly, we will learn
how to load the resource classes using different methods of the Application model,
ResourceConfig, and Without Application Model.

Chapter 3, Client API, shows how to consume the RESTful web services that are
using the JAX-RS client API. We will cover how to call web services for different
HTTP headers and *Param annotations, so that we can then perform all the CRUD
operations using this client API. JAX-RS is a wrapper class of the HTTP, so we can
use any web services that are based on the HTTP protocol. JAX-RS client API follows
the uniformity that implements the REST architecture.

Preface

[2]

Chapter 4, Common Media-Type Representations, covers different representations
of the data. Data representation is the primary decision for any application. We
need to decide an appropriate representation on the basis of the client that will
consume the web services. We will also go through the implementation of different
representations on the server side as well as the client side.

Chapter 5, Server-Sent Events (SSE), covers how to create a connection between the
client/server and maintain the connection at the server's end. This is needed to push
the data from the server to the client without any new request initiated by the client.
This type of mechanism is basically used for applications such as chatting, stock
market, or any real-time data-providing applications.

Chapter 6, WADL, describes Web Application Description Language (WADL), which
is a skeleton of the deployed RESTful web service.

What you need for this book
• Understanding of RESTful web services
• Java EE
• Eclipse IDE
• JAX-RS 1.0 knowledge (optional)

Who this book is for
This book is intended for the Java EE developers who are building the application on
the REST architecture. This is a quick handbook for learning JAX-RS 2.0. Developers
should be having knowledge about the RESTful web services and not mandated to
JAX-RS 1.0.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code and the output being generated by the code are added to the book
as screenshots.

A block of code is set as follows:

@Path("/getResource")
public class GetResource {

Preface

[3]

 @GET
 public String get() {
 return "Hello World!!!";
 }

 @GET
 @Path("{name}")
 public Response greetUser(@PathParam("name") String name){
 returnResponse.status(200).entity("Hello, " +
 name).build();
 }
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus, or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com
or sunil_gulabani@yahoo.com, and mention the book title via the subject of
your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com or sunil_gulabani@yahoo.com
if you are having a problem with any aspect of the book, and we will do our best to
address it.

Getting Started
This chapter provides readers with a brief introduction on JAX-RS 2.0. It also
includes the principles required to be followed in RESTful web services and the
new features that have been introduced in JAX-RS 2.0, such as client API, filters
and interceptors, client-side and server-side asynchronous. It also contains some
other prominent features, such as listing of modules and dependencies that are used
for implementing JAX-RS 2.0. Besides the previously mentioned features, it also
provides a demonstration of JAX-RS 2.0 with examples.

What is JAX-RS 2.0?
JAX-RS 2.0 is a framework that helps you in writing the RESTful web services on the
client side as well as on the server side. Jersey 2.0 is the reference implementation
of the JAX-RS 2.0 (JSR 339 specification). Along with the enhancements in Java EE 7,
JAX-RS 2.0 has also been revised dramatically.

The following is a list of the RESTful principles that must be followed:

• An ID should be assigned to everything
• Things should be linked together
• A common set of methods must be used
• Multiple representations should be allowed
• Stateless communication must be kept

Getting Started

[6]

Before moving ahead, let's look at the existing features of JAX-RS 1.0:

• POJO-based Resource API
• Provides access to the resource classes using HTTP
• Format (content types) independence
• Container (web server) independence
• Inclusion in Java EE

Features of JAX-RS 2.0
JAX-RS 2.0 remains consistent with the central theme of Java EE 7, but it contains
other long-awaited APIs too. These APIs are mostly focused around what is referred
to as Simplified API. They can be categorized as follows:

Client API The specifications in the earlier versions of JAX-RS were
only accountable for a server-side API for the RESTful calls.
However, the same resulted into the development of different
implementers of the server API, that is, Jersey and RESTEasy.
This led to the independent development of a client-side API.
Now, JAX-RS 2.0 has a Client API that provides support to the
server-side specification. This feature is a major incorporation
of the previous version of the Jersey Client API. This can be
summarized as:

• Low-level HTTP Client APIs
• Shared APIs with Server APIs
• Compatible with some JAX-RS 1.0 implementations

Filters and interceptors This JAX-RS 2.0 specification is accountable for the client
and server filters. In the case of the Client API, implementers
provided their own versions of these filters for the client
and server. This JAX-RS 2.0 specification, however, absorbs
the same into its API. Things that can be done through this
specification are:

• Customization of JAX-RS implementations through
well-defined extension points

• Logging, Compression, Security, and so on can be
achieved

• Shared APIs with Server APIs
• Compatibility with some JAX-RS 1.0 implementations

using some different semantics can be achieved

Chapter 1

[7]

Client-side and
Server-side
Asynchronous

This feature allows a request to be dispatched in a nonblocking
manner, while the results are made available asynchronously.
Also, long-running requests on the server side that are I/O
bound can be dispatched. This releases the application server
thread and enables it to service other requests. It helps in
accomplishing the following tasks:

• Allows free running of different threads at the
server side

• Request threads can be suspended and resumed as
per the need

• Servlet 3 async support
• Provides Client API support

Improved Connection
Negotiation

This feature helps in automatically determining the response
type even if client specification is already present.

Validation This feature consists of:
• Services-enabled data validation
• Bean Validation
• Inline-constraint annotations on:

Fields and properties
Request parameters
Methods based on response entity
Resource classes, that is, path validation using
regular expressions

HyperMedia as the
Engine of Application
State (HATEOAS)

This feature is an important aspect of the RESTful architecture.
HATEOAS allows us to provide hyperlinks/URIs in the
request/response of the web services. This can be compared
with the hyperlinks in an HTML form.

However, Jersey 2.0 can be deployed on several web containers that support Servlet
2.5 or higher, Grizzly 2 HTTP server (which is also the default server for testing), and
OSGi containers. For the new async feature of JAX-RS 2.0, Server-Side Events (SSE),
we need containers supporting Servlet 3.0.

Getting Started

[8]

Ease of using and reusing JAX-RS
artifacts
As a part of Java EE 7, it is easy to create RESTful web services using JAX-RS 2.0.
Using JAX-RS annotations, we can map the POJO resource class to the URIs and
the URI templates. Using annotations, it becomes easier to develop web services.
Different @*Param annotations are available to access the values of the user request:

• @PathParam

• @QueryParam

• @MatrixParam

• @HeaderParam

• @CookieParam

• @FormParam

• @DefaultValue

• @Context

JAX-RS also supports all the Java data types to be supplied in the @*Param
annotations. There are other APIs available to create the RESTful web services, but
mostly they require more coding. However, in the Jersey implementation of JAX-RS,
it is simpler and easier to create the RESTful web services. JAX-RS manages to encode
and decode the request/response content according to the media type it mentioned.

Modules and dependencies
To provide backward compatibility, all Jersey applications are compiled with Java SE
6. Thus, we can run our Jersey application on Java SE 6 easily though JAX-RS 2.0 is
part of Java EE 7.

To create Jersey-based applications, we require several dependencies and for
other modules, we require third-party dependencies. Jersey dependencies are
loosely-coupled and separated according to the module dependencies. Jersey
dependencies are lightweight, so our application has much complexity for
dependencies and creation of the RESTful web services.

The following are the core Jersey modules:

• Jersey Core
• jersey-client
• jersey-common
• jersey-server

Chapter 1

[9]

You can download the Jersey Core JAX-RS 2.0 Bundle from:

http://repo1.maven.org/maven2/org/glassfish/
jersey/bundles/jaxrs-ri/2.0/jaxrs-ri-2.0.zip

Apart from these dependencies, there are Jersey Containers, Connectors, Media,
Extensions, Test Framework, and Glassfish Bundles. These dependencies can be
easily plugged. You can find Jersey 2.0 binaries on the Jersey 2.0 Maven repository,

http://repo1.maven.org/maven2/org/glassfish/jersey/,

and on

https://maven.java.net/content/repositories/releases/org/glassfish/
jersey/.

Creating a new project
The first step for creating a new project is to accumulate the required tools:

• Java JDK (Version 6 or higher)
• Eclipse IDE (Juno)
• Apache Tomcat Server (Version 7) or Glassfish Server (Version 4.0)
• Jersey Framework

Firstly, we will create a web project using Eclipse IDE. Go to File | New |
Others | Dynamic Web Project. Follow the steps, and after the project is created,
add the following libraries into the classpath:

• asm-all-repackaged-2.2.0-b14.jar

• cglib-2.2.0-b14.jar

• guava-14.0.1.jar

• hk2-api-2.2.0-b14.jar

• hk2-locator-2.2.0-b14.jar

• hk2-utils-2.2.0-b14.jar

• javax.annotation-api-1.2.jar

• javax.inject-2.2.0-b14.jar

• javax.ws.rs-api-2.0.jar

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[10]

• jersey-client-2.2.jar

• jersey-common-2.2.jar

• jersey-container-servlet-core-2.2.jar

• jersey-server-2.2.jar

• osgi-resource-locator-1.0.1.jar

• validation-api-1.1.0.Final.jar

Now, we need to configure web.xml to the bound Jersey Container with the
resources packages:

...........
<servlet>
 <servlet-name>simpleJerseyExample</servlet-name>
 <servlet-
 class>org.glassfish.jersey.servlet.ServletContainer</servlet-
 class>
 <init-param>
 <param-name>jersey.config.server.provider.packages</param-
 name>
 <param-value>com.demo</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>simpleJerseyExample</servlet-name>
 <url-pattern>/services/*</url-pattern>
</servlet-mapping>
...........

A servlet container is treated as a controller to redirect the specified resource that is
being called. jersey.config.server.provider.packages maps the resources that
are available in the com.demo package. So, whenever any resource is being requested,
ServletContainer checks into the com.demo package for the resource URI and
serves the request accordingly.

Chapter 1

[11]

The next step is to create the Resource class that contains the business logic:

package com.demo;

import javax.ws.rs.Path;
import javax.ws.rs.Get;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.Produces;

/**
* helloWorld Root Resource
*/
@Path("helloWorld")
public class HelloWorldResource{

 @GET
 @PRODUCES(MediaType.TEXT_PLAIN)
 public String greet(){
 return "Hello World!!!";
 }
}

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

A JAX-RS resource is an annotated POJO, which provides the so-called resource
methods that are able to handle the HTTP requests for the URI paths bound to the
resource. In the previous code, "helloWorld" is the resource URI:

@Path("helloWorld")

To run the application, create a WAR file and deploy it on the Apache Tomcat
Server. Once the project is deployed on the Tomcat server, we are ready to consume
the "helloWorld" web service. We can type the resource URL in the browser or we
can use curl:

$curl http://localhost:8080/projectName/services/helloWorld
Hello World!!!

Getting Started

[12]

Summary
We have covered a brief introduction about the JAX-RS 2.0 and Jersey 2.0 features
that have enriched the JAX-RS web services. We've analyzed a simple RESTful web
service example that shows the basic implementation of the JAX-RS 2.0. In the next
chapter, we will see how to use the Server API with different examples of complete
sets of code to implement the Server-side web services.

Server API
In this chapter, we will look at the creation of the RESTful web service using
JAX-RS 2.0. We will see how to create resource classes and methods, usage of
parameter annotations to access user-defined values, and subresources to consume
specific resource methods. We will also see when the root-resource classes are
accessible, and the rules for injecting the path annotations to access values. Lastly,
we will learn how to load the resource classes using different methods of the
Application model, ResourceConfig, and Without Application Model.

Root-resource classes
The root-resource classes are Plain Old Java Objects (POJO), which are either
annotated with @Path or have at least one method annotated with @Path or a request
method designator, such as @GET, @PUT, @POST, or @DELETE. Resource methods are
methods of a resource class that are annotated with a request-method designator.

Let's look at the JAX-RS annotations:

• @Path("resource_path"):
The @Path annotation defines the path to the base URL or resource_path.
The base URL is based on the application's name, the servlet, and the URL
pattern from the web.xml configuration file.

• @PathParam:
The @PathParam annotation is used to inject values from the URL into a
method parameter. In this way, one can inject, say, the ID of a resource into
the method for getting the correct object.

• @GET:
The @GET annotation indicates that the method will answer to an HTTP
GET request.

Server API

[14]

• @PUT:
The @PUT annotation indicates that the method will answer to an
HTTP PUT request.

• @POST:
The @POST annotation indicates that the method will answer to an
HTTP POST request.

• @DELETE:
The @DELETE annotation indicates that the method will answer to an
HTTP DELETE request.

• @Produces(MediaType.TEXT_PLAIN):
The @Produces annotation defines which MIME type is delivered by a
method annotated with any HTTP annotated methods. In the given example,
a text (text/plain) is produced. Other examples would be application/
xml or application/json.

• @Consumes(type):
The @Consumes annotation defines which MIME type is consumed by
this method.

@Path
The @Path annotation's value is a relative URI path. This is a very simple use of
the @Path annotation. The following code example provides a simple example of
a root-resource class using the JAX-RS annotations:

@Path("helloWorld")
public class HelloWorldResource {

 @GET
 @Produces("text/plain")
 public String sayHello() {
 return "Hello World!";
 }
}

In the preceding example, the Java class will be hosted at the URI path /helloworld.
What makes JAX-RS so useful is that one can embed variables in the URIs.

Chapter 2

[15]

URI path templates are URIs with variables that are embedded within the URI
syntax. These variables are substituted during runtime so that a resource can
respond to a request, based on the substituted URI. The variables are denoted by
curly braces shown as follows:

• Class-level:
@Path("/helloWorld/{name}")
public class HelloWorldResource {

 @GET
 @Produces("text/plain")
 public String sayHello(@PathParam("name") String name) {
 return "Hello, " + name;
 }
}

• Method-level:
@Path("/helloWorld")
public class HelloWorldResource {

 @GET
 @Produces("text/plain")
 @Path("{name}")
 public String sayHello(@PathParam("name") String name) {
 return "Hello, " + name;
 }
}

We can also use the following code:

@PathParam(value = "name") instead of @PathParam("name")

In the previously mentioned example, a user is prompted to enter his/her name.
After that, a Jersey web service, which has been configured to respond to requests to
this URI path template, will respond.

For example, if the user has entered his name as "John", the web service will respond
to the following URL:

http://localhost:8080/JAXRSDemo/services/helloWorld/John

Output:
Hello, John

@PathParam may be used on the method parameter of a request method to get the
value of the name variable.

Server API

[16]

@Path with a regular expression
@Path also supports a complex URI matched with a regular expression via the
following expression:

 {"variable-name":"[regular-expression]"}

@Path("/helloWorld")
public class HelloWorldResource {

 @GET
 @Produces("text/plain")
 @Path("{name: ([a-zA-Z])*}")
 public String sayHello(@PathParam("name") String name) {
 return "Hello, " + name;
 }
}

In this given example, a user will be prompted for only a string literal. For example,
if the user has entered his name as "John", the web service will respond to the
following URL considering the following two cases, correct or wrong:

• Correct:
http://localhost:8080/JAXRSDemo/services/helloWorld/John

Output:
Hello, John

• Wrong:
http://localhost:8080/JAXRSDemo/services/helloWorld/John1987

Output:
HTTP Status 404, Not Found

HTTP methods
@GET, @PUT, @POST, and @DELETE are the resource method designator annotations
that are defined by JAX-RS and correspond to the similarly named HTTP methods.
The behavior of a resource is determined by the type of HTTP methods to which the
resource is responding.

Chapter 2

[17]

@GET
This method is used to retrieve (or read) a representation of a resource. According
to the design of the HTTP specification, GET (along with HEAD) requests are used
only to read data, and not to change it. They are considered to be safe when they
are used in this manner. This means that they can be called without the risk of data
modification or corruption. The following example shows the use of the GET method:

...
@GET
public String getUser() {
 System.out.println("GET");
 return "Hello User";
}
...

Here, we have used a simple method, getUser(). The @GET annotation is a request
method designator defined by JAX-RS. In this example, the annotated Java method
will process the HTTP GET requests. The behavior of a resource is determined by the
HTTP method to which the resource would respond.

@PUT
This one is mostly used for update capabilities. We can use @PUT in a known resource
URI with the request body containing the newly-updated representation of the
original resource.

However, it can also be used to create a resource in the case where the resource ID
is chosen by the client instead of the server. The following example shows the use of
this method:

@PUT
public void updateUser(String userData) {
 System.out.println("PUT");
 System.out.println("User Data: " + userData);
}

In the previous example, the PUT request has a payload associated with it that is
stored in the userData variable.

Server API

[18]

@POST
POST is usually used for creation of new resources. The following example shows
the use of the POST method, where the person can access the values using the
FormParam annotation:

@POST
public void addUser(@FormParam("id") String id,@FormParam("name")
String name){
 System.out.println("POST");
 System.out.println("Id: " + id);
 System.out.println("Name: " + name);
}

Or we can also use the POST method to access the values using the
MultivaluedMap annotation:

@POST
public String addUser(MultivaluedMap<String, String> formData) {
 System.out.println("Form Data: " + formData);
 return "User added successfully.";
}

In the previous example, one can access the ID and name parameters that are
embedded in a form.

@DELETE
The use of DELETE is easy to understand. It is used to delete a resource identified
by a URI:

@DELETE
@Path("{name}")
public void delete(@PathParam("name")String name) {
 System.out.println("DELETE: " + name);
}

@Produces
This annotation specifies the type of output a method (or web service) will produce.
@Produces are defined at the following two levels:

• Class-level:
In this level, all the methods in a resource can produce the specified MIME
types by default.

Chapter 2

[19]

• Method-level:
This level overrides the specified MIME types at the class level.

If none of the methods in a resource are able to produce the MIME type in a client
request, the JAX-RS runtime sends back an HTTP 406 Not Acceptable error. If
the annotation is not present at any level, by default the "text/html" media type
is returned.

@Produces can accept multiple MIME types also:

@Path("/helloWorld")
@Produces("text/plain")
public class HelloWorldResource {
 @GET
 public String greet() {
 ...
 }

 @GET
 @Produces("text/html")
 public String greetUser() {
 ...
 }
}

In the previous example, the greet() method will produce the "text/plain" MIME
type, which is of a class-level MIME type, whereas the greetUser() method will
override the class-level MIME type, "text/plain", to specify the MIME type as
"text/html".

It is also possible to provide multiple MIME types, as shown in the following example:

@GET
@Produces({"application/xml", "application/json"})
public String greet() {
 ...
}

In the previous example, this method will be served for any specified MIME type.
Thus, it becomes easier to invoke where multiple client requests with different
MIME types.

www.allitebooks.com

http://www.allitebooks.org

Server API

[20]

@Consumes
The @Consumes annotation is used to specify the MIME types that a method
(or web service) can consume. @Consumes is defined at the following two levels:

• Class-level:
All the methods in a resource can produce the specified MIME types
by default.

• Method-level:
It overrides the specified MIME types at the class level.

If a resource is unable to consume the MIME type of a client request, the JAX-RS
runtime sends back an HTTP 415 (Unsupported Media Type) error. If the annotation
is not present at any level, then by default, the "text/html" media type is returned.

@Consumes can also accept multiple MIME types, for example:
@Path("/helloWorld")
@Consumes("multipart/related")
public class HelloWorldResource {
 @POST
 public String processMultipart(MimeMultipart multipartData) {
 ...
 }

 @POST
 @Consumes("application/x-www-form-urlencoded")
 public String processForm(FormURLEncodedProperties formData) {
 ...
 }
}

In this example, the processMultipart() method will accept a class-level MIME type,
"multipart/related", whereas processForm will override the class-level MIME type,
and it will serve as a specified MIME type, application/x-www-form-urlencoded.

Parameter annotations
Parameter's annotations are used to retrieve values from the request. The different
types of parameter annotations are listed as follows:

• @PathParam

• @QueryParam

• @MatrixParam

• @HeaderParam

• @CookieParam

Chapter 2

[21]

• @FormParam

• @BeanParam

@PathParam
@PathParam is a parameter annotation that enables you to map a variable URI
path's fragments into your method call. The following example shows the use
of the @PathParam method:

@Path("/userService")
public class UserResource {
 ...
 @GET
 @Path("{name}")
 public String getUserByName(@PathParam("name")String name) {
 return name;
 }
 ...
}

In the example, the getUserByName() method takes a parameter as a name. We can
access the URI parameter using PathParam. It binds the URI template's parameter to
the parameter that is defined in the getUserByName() method.

@QueryParam
This annotation allows you to map a URI query string parameter or a URL form
encoded parameter to your method invocation. The following example shows the
use of the @QueryParam method:

@Path("/userService")
public class UserResource {
 ...
 @GET
 @Path("/queryParam")
 public String getUser(@QueryParam("name")String name) {
 System.out.println("Name: " + name);
 return name;
 }
 ...
}

In the previous example, the getUser() method and the QueryParam annotation
take care of mapping a query parameter (name) in a request to a method
parameter respectively.

URI Pattern: /services/userService/queryParam?name=John

Server API

[22]

In URI Pattern, /userService is the root-resource path and /queryParam is the
resource method path, using which getUser(String) will be invoked. We embedded
the name parameter in URI as query string and John as value.

@DefaultValue
At times, we have to keep optional parameters in request, so that we can assign
a default value using @DefaultValue. The DefaultValue annotation can be used
with the following annotations:

• @PathParam

• @QueryParam

• @MatrixParam

• @FormParam

• @HeaderParam

• @CookieParam

Let's look at the example of @DefaultValue:

@GET
@Path("/queryParam")
public String getUser(
 @QueryParam("name")String name,
 @DefaultValue("15") @QueryParam("age") String age) {
 System.out.println("Name: " + name);
 System.out.println("Age: " + age);
 return name;
}

Here, you can see that the age parameter has been assigned DefaultValue:

URI Pattern: /services/userService/queryParam?name=John
URI Pattern: /services/userService/queryParam?name=John&age=20

Both the URI patterns are correct. In the first URI, we haven't mentioned "age"
parameter as query string, so application detects automatically and invoke matching
resource method. And application appends the missing "age" parameter with the
default value as "15". In the first URI, the response will be:

Name: John
Age: 15

For the second URI, the response will be:
Name: John
Age: 20

Chapter 2

[23]

So, whenever there is any optional parameter for caution of error prone, you can set
the default value.

@MatrixParam
Matrix parameters are a set of name=value pairs embedded in the URI path,
for example:

URI Pattern: /service/getUserById/1;name=John;age=10

In the preceding URI, the matrix parameters are name=John and age=10, separated
by a semi colon (;). It represents resources that are noted by their attributes as well
as their IDs.

@GET
@Path("/getUserById/{userId}")
public Response getUserById(
 @PathParam("userId") String userId,
 @MatrixParam("name") String name,
 @DefaultValue("15") @MatrixParam("age") String age) {

 return Response
 .status(200)
 .entity("Id: " + userId + ", Name: " + name + ", Age: " + age)
 .build();
 }

In the example, the getUserById() method takes three parameters, userId as the
path parameter, which is mandatory, and name and age as the matrix parameters.
If you don't provide values in the URL path, then the value set by default is null.

@HeaderParam
The @HeaderParam annotation maps a request HTTP header to your method
parameters, for example:

@GET
@Path("/getUserAgent")
public String getUserDevice(@HeaderParam("user-agent") String
userAgent,
@HeaderParam("Content-Type") MediaType contentType) {

 return "User Agent: " + userAgent + ", Content-Type: " +
 contentType ;
}

Server API

[24]

In the previous example, the getUserDevice() method provides us with the header
information of the request. At times, we need to provide a response on the basis of the
request header that might be browser-specific, mobile-specific, or content type-specific.

URI Pattern: /services/userService/getUserAgent

$ curl -X GET -H "Content-Type:application/json"
 http://localhost:8080/Chapter2/services/userService/getUserAgent

In the URI, "/userService" is the root-resource path and "/getUserAgent" is the
resource method that will invoke the getUserDevice() method. We embedded the
header value for Content-Type so that appropriate resource method to be invoked.
getUserDevice(userAgent, contentType) will be invoked and application dynamically
embeds the header values for userAgent and contentType from the incoming request.

@CookieParam
Cookies are special types of HTTP headers. They are made up of name or value
pairs that are passed to the resource implementation. The cookie is passed to-and-fro
between the provider and the consumer with each request/response. Only consumers
can modify the cookies. They are used to maintain sessions and store settings and
other data.

The @CookieParam annotation allows you to inject the value of a cookie or an object
representation of an HTTP request cookie into your method invocation:

@GET
@Path("/getCookies")
public String getCookies(@CookieParam("sessionid") int sessionId) {
 return "Session Id: " + sessionId;
}

In the example, the getCookies() method provides the value of the sessionId
stored in the cookie. We can retrieve any value stored in the cookie using the
CookieParam annotation. A default value can also be specified using the @
DefaultValue annotation as shown:

@GET
@Path("/getCookies")
public String getCookies(
 @DefaultValue("10") @CookieParam("sessionid") int sessionId) {
 return "Session Id: " + sessionId;
}

Chapter 2

[25]

Sometimes, we need more information than the value itself. For that, we can use the
Cookie class instead of the primitive datatype, for example:

@GET
@Path("/getCookies")
public String getCookies(@CookieParam("user-agent") Cookie
 userAgentCookie) {
 return
 "Name: " + userAgentCookie.getName() +
 "Value: " + userAgentCookie.getValue() +
 "Domain: " + userAgentCookie.getDomain() +
 "Path: " + userAgentCookie.getPath() +
 "Version: " + userAgentCookie.getVersion();
}

The table describing the methods of the Cookie object is as follows:

Method Description
getName() Corresponds to the string name of the cookie
getValue() Corresponds to the string value of the cookie
getDomain() Specifies the DNS name
getPath() Corresponds to the URI path from where the request is being called
getVersion() Defines the format of the cookie header

@FormParam
The @FormParam annotation can be used when a request body is of the media type,
application/x-www-form-urlencoded. We can inject single parameters into the
resource method invocation. Let's look at the following example:

@POST
@Path("/addUser")
public void addUser(
 @FormParam("name") String name,
 @FormParam("id") String id){
 System.out.println("Add User:");
 System.out.println("Id: " + id);
 System.out.println("Name: " + name);
 }

In the preceding example, name and id are form parameters that are being injected
into the addUser() resource method:

$ curl -X POST -d "name=John&id=100" http://localhost:8080/Chapter2/
services/userService/addUser

Server API

[26]

Here /userService is the root-resource path and /addUser is the resource method.
In the curl request we embedded the form data for name and id as John and 100
respectively. We can also use MultivaluedMap<String,String> to get all values of
the HTML form, shown as follows:

@POST
@Path("/addUser")
public String addUser(MultivaluedMap<String, String> formData) {
 return "Form Data: " + formData;
}

It is not mandatory for the form's data to be encoded. Mostly, MultivaluesMap's data
are automatically decoded by the JAX-RS implementations.

@BeanParam
This annotation allows injection of the parameters into a single bean. A bean
annotated with @BeanParam containing any properties and other parameter
annotations (such as @PathParam, @QueryParam, @MatrixParam, @HeaderParam,
@CookieParam, @FormParam) will be mapped with request values.

Therefore, instead of providing request values, such as parameter annotations (for
example, @PathParam, @QueryParam, @MatrixParam, @HeaderParam, @CookieParam,
and @FormParam) into a method parameter, the @BeanParam annotation can be used.
The @BeanParam annotation is used for aggregation of more request parameters into
a single bean. Let's take a look at the following example:

public class UserBean {

 @PathParam("id")
 private String id;

 @MatrixParam("name")
 private String name;

 @MatrixParam("age")
 private String age;

 @DefaultValue("No address provided")
 @QueryParam("address")
 private String address;

 @HeaderParam("user-agent")
 private String userAgent;

 public String toString(){
 return

Chapter 2

[27]

 "Id: " + id +
 "\nName: " + name +
 "\nAge: " + age +
 "\nAddress: " + address +
 "\nUser Agent: " + userAgent + "\n" ;
 }
}

This is the UserBean that we will inject into the resource method:

@Path("/beanResource")
public class BeanResource {

 @GET
 @Path("/getUserDetails/{id}")
 public String getUser(@BeanParam UserBean userBean) {
 return "User Bean: " + userBean.toString();
 }
}

In this example, the UserBean fields are being mapped with their respective parameter
annotations. You can run the example from a browser using the following URI:

URI Pattern:

$ curl -X GET http://exampe.com/services/beanResource/getUserDetails/1
;name=John;age=25?address=USA

Subresources
The @Path annotation is used for the identification of the resource that is to be called
for the specific request. It can be defined at the following two levels:

• Class-level
• API-level

Class-level @Path annotations are termed as the root-resource classes, and the
methods are defined as resource methods, whereas API-level @Path annotations
point directly to specific methods under the root-resource classes, which are defined
as subresource methods. The following example shows the use of the subresources:

@Path("/userService")
public class UserResource {

 @GET

Server API

[28]

 public String getUser() {
 return "John";
 }

 @GET
 @Path("/getUserName")
 public String getUserName() {
 return "John";
 }
}

In this example, getUserName() is the subresource method, as we have explicitly
defined the path of the method. We can also assign regular expressions in the URI
template for the root-resource class and the subresource methods. When the request
URI is userService, the first resource method, getUser(), will be invoked, and when
the request URI is "userService/getUserName", the second method, getUserName(),
will be invoked:

URI Pattern: http://localhost:8080/Chapter2/services/userService/
getUserName

In the URI, /userService is the root-resource path and /getUserName is the
resource method that will invoke the getUserName() method in which we
explicitly defined the path /getUserName.

We can also create subresource locators where methods under the root-resource
classes are not annotated by any HTTP headers. In fact, these HTTP header resource
methods will be created in different resource classes where we redirect the request
from the root-resource method class. This helps in easier management of the code,
and each subresource will be loosely coupled. Let's look at the example:

@Path("/userService")
public class UserResource {
 ………..
 @Path("/getAddress")
 public AddressResource getAddress() {
 return new AddressResource();
 }
}

public class AddressResource {
 @GET
 public Response getUserName() {
 return Response
 .status(200)

Chapter 2

[29]

 .entity("Address")
 .build();
 }
}

URI Pattern: http://localhost:8080/Chapter2/services/userService/
getAddress

In the UserResource class, we have a subresource method, getAddress(), which
redirects the request to the AddressResource. This is termed as a subresource locator.
Now, AddressResource is responsible for delivering the response to the request. It
locates the appropriate subresource method and the method that is being invoked to
serve the request.

Scope of the root-resource classes
By default, every time a new request is made, a new instance of the root-resource class
is being created. The scope of the root-resource class, which is created at the time of
request, is limited to that request only. This makes it easier to manage and work in
isolation. It helps us in handling multiple concurrent requests to the root-resource
class. We don't need to manage anything to handle multiple concurrent requests.

If we manage a single root-resource class instance to process multiple concurrent
requests, we will face performance issues for the same. A new instance for every
request makes it easier for JVM to go for garbage collection of the created and
destroyed instance that served the request. We can also define a root-resource class
as Singleton for a single instance of multiple requests.

Let's now look at the resource scopes:

• Request scope:
By using the @RequestScope annotation or none, we can have a life-cycle till
the request lasts. This is the default scope of the root-resource classes. For
each new request, a new root-resource instance is being created and served
accordingly for the first time. However, when the same root-resource method
is being called, then the old instance will be used to serve the request.

• Per-lookup scope:
The @PerLookup annotation creates root-resource instances for every request.

• Singleton:
The @Singleton annotation allows us to create only a single instance
throughout the application.

www.allitebooks.com

http://www.allitebooks.org

Server API

[30]

Rules of injection
Injection can be applied on fields, constructor parameters, resources, subresources,
subresource locators, method parameters, and setter methods. It helps to identify
which path or parameter of the request needs to be handled. Let's look at the
following examples:

• Root-resource:
@Path("/userService")
public class UserResource {
 ...
}

• Fields:
@Path("/userService")
public class UserResource {
 ...
 @QueryParam("name")
 private String name;
 ...
}

• Constructor parameter:
@Path("/userService")
public class UserResource {

 public UserResource(@PathParam("id") int id){
 ...
 }

 @GET
 @Path("{id}")
 public String getUser() {
 ...
 }
}

• Resource method:
@Path("/userService")
public class UserResource {
 @GET
 public String getUser(@QueryParam("name")String name) {
 ...
 }
}

Chapter 2

[31]

• Subresource method:
@Path("/userService")
public class UserResource {
 @GET
 @Path("/getUser/{name}")
 public String getUser(@PathParam("name")String name) {
 ...
 }
}

• Subresource locator method:
@Path("/userService")
public class UserResource {
 @Path("/getAddress")
 public AddressResource getAddress(@QueryParam("id")
 int id) {
 ...
 }
}

• Bean setter method:

@Path("/userService")
public class UserResource {
 @GET
 @Path("{id}")
 public String getUser() {
 ...
 }

 @PathParam("id")
 public void setId(int id){
 ...
 }
}

Server API

[32]

Deploying a RESTful web service
There are several ways to deploy the JAX-RS applications. Some of them are
illustrated as follows:

• Using the abstract Application class:
In this type, we provide all the root-resource classes to the Application
class. So, when the server is started, we need to load the Application subclass
that has injected the root-resource class. Basically, when we need to set
some configuration before loading the root-resource class, we can use the
Application Model. Let's look at the following example:
public class MainApplication extends Application {
 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> s = new HashSet<Class<?>>();
 s.add(HelloWorld.class);
 …..
 return s;
 }
}

In web.xml, the path of the Application subclass needs to be defined, as
shown in the following code:

 ….
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.
ServletContainer</servlet-class>
 <init-param>
<param-name>javax.ws.rs.Application</param-name>
 <param-value>com.example.MainApplication</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>
 …….

Chapter 2

[33]

• Using the ResourceConfig class:
The ResourceConfig class is used to configure a web application. Let's look
at the following example:
public class MainApplication extends ResourceConfig{
 public MainApplication() {
 packages("com.example");
 }
}

In web.xml, we need to define the path of the Application subclass:

 ….
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.
ServletContainer</servlet-class>
 <init-param>
<param-name>javax.ws.rs.Application</param-name>
 <param-value>com.example.MainApplication</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>
 …….

In the MainApplication class, we have defined the package name where all
the root-resource classes exist. Now, the ResourceConfig class manages to
load the root-resource class from a package when the server starts. We can also
define multiple packages in which the root-resources classes exist, for example:

packages("com.example;com.example2;com.example3");

• Without Application class:

This type of deployment process is used when we don't need to set any
pre-configuration for our web application before loading the root-resource
classes.
 …….
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.
 ServletContainer</servlet-class>

Server API

[34]

 <init-param>
 <param-name>jersey.config.server.provider.packages
 </param-name>
 <param-value>com.example</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

Here, we have defined the package path where the root-resource class exists.
We can also supply multiple packages for different root-resources classes, such as:

<param-value>com.example;com.example2;com.example3</param-value>

Summary
In this chapter, we covered how to create the JAX-RS web service using Jersey
implementation. We also saw different aspects of the defining resource classes and
their methods, how HTTP headers will be defined, and what will be the scope of the
path parameter annotations. We also discussed the rules to inject path parameters
into resource methods. Finally, we saw various methods to deploy our resource
classes. In the next chapter, we will see how to consume these server-side web
services with different HTTP annotated methods and *Param annotations.

Client API
In the previous chapter, we have seen how to create RESTful web services using the
Jersey implementation of JAX-RS 2.0. In this chapter, we will see how to consume the
RESTful web services that are using the JAX-RS client API. We will also cover how to
call web services for different HTTP headers and *Param annotations, so that we can
then perform all the CRUD operations using this client API. JAX-RS is a wrapper class
over the HTTP, so we can use any web services that are based on the HTTP protocol.
JAX-RS client API follows the uniformity that implements the REST architecture.

Consuming web services using a client
The JAX-RS client API is built on top of the HTTP protocol. It consumes all web
services that are built on the HTTP protocol. Apart from this client API, there are
other APIs, such as HTTPURLConnection and Apache HTTP Library, to consume
web services. However, this API is harder to code and time-consuming for complex
web services. So, the JAX-RS client API is wrapped in such a way that developers can
find it easy to code and reuse wrapper classes as much as they can.

In the Web Service Flow figure, Client is the base to initiate the connection. We can
get the client instance using the entry point, that is, the ClientBuider method.
ClientBuilder provides a new instance every time. So, if necessary, we can create
different instances for different URIs.

Note that creating multiple client instances
can be expensive.

Client API

[36]

Once we obtain the client instance, optionally, we can set properties or register filters.
Filters can help in manipulating custom objects over the client and server side. Now,
we create an instance of WebTarget using the client.target() method. We can
provide either the context URI or a root-resource URI. Setting target to the context URI
will allow the same target instance to call multiple individual resource URIs, and in
case of setting a target to individual URIs, we can use the same target instance URI or
its subresources. Setting the target to context URIs is preferable, because we need to
call the same resources of single context URI. Under the WebTarget instance, we have
a path() method that allows us to provide the resource URI or subresource URI.

Request Resource URI

Request Individual Resource URI

Java Types: String, Number, Boolean,....

Custom Objects

Request Individual Resource URI

Request Individual Resource URI

Request Individual Resource URI

Configuration

Context Root
URI

RESTful
Web Services

Client

WebTarget

.........

.........
Response

.........

.........

Path

Path

Path

Path

Web Service Flow

Let's look at the following example:

Client client = ClientBuilder.newClient();

WebTarget target = client.target("http://localhost:8080/Chapter2/
services");

target = target.path("getResource");

Chapter 3

[37]

Here, we first created an instance of client using the static method of ClientBuilder.
Then, from the client instance, we mapped the context root URI. For consuming
specific getResource web service, we set the target using the path() method. So
now, our web target points to the following location:

http://localhost:8080/Chapter2/services/getResource

We are simply calling a getResource method. In either way, we can receive the
response from web service in "Response" or "String":

Response response = target.request().get();

String responseData = response.readEntity(String.class);

Or

String responseData = target.request().get(String.class);

By using "Response", we can know the status or access the header properties,
metadata, media type, cookies, and so on, of the response received. Let's see
how to consume the RESTful web service using different representation types
and resource methods.

The get method
The HTTP get method invokes the request. This method is by default requested
synchronously:

WebTarget target = client.target("http://localhost:8080/Chapter2/
services/getResource");

String responseData = target.request().get(String.class);

Here, we specified that the accept type will be a Java primitive type string. For
consuming the get method, we have the get(...) method of the Builder class.

On the server side, it will first identify the root-resource getResource and then
check for the matching resource method to process the request. The resource method
is mapped according to the matching URI template, that is, either a subresource or
the validator, or the @Produces media type or @Consumes media type is applied on
the resource method.

@GET
public String get() {
 return "Hello World!!!";
}

Client API

[38]

The post method
The HTTP post method invokes the request. This method is by default requested
synchronously as follows:

WebTarget target = client.target("http://localhost:8080/Chapter2/
services/postResource");

MultivaluedMap<String, String> postForm = new
MultivaluedHashMap<String, String>();

postForm.add("name", "John");

String responseData = target
 .request()
 .post(Entity.form(postForm),String.class);

Here, we provided MultivaluedMap<String,String> to pass the form parameters.
It is the same as passing input types in an HTML form. Entity.form(postForm)
creates the application/x-www-form-urlencoded form entity. So, we don't need
to define the content type explicitly. This makes it easier for a developer to code and
manage the API. For consuming the post method, we have the post(...) method of
the Builder class.

On the server side, it will first identify the root-resource getResource and then
check for the matching resource method post(...) to process the request. The
resource method is mapped according to the matching URI template, that is, either
a subresource or the validators, or the @Produces media type or the @Consumes
media type is applied on the resource method:

@POST
public Response postForm(@FormParam("name") String name){
 return Response
 .status(200)
 .entity("Hello, "+ name)
 .build();
}

The put method
The HTTP put method invokes the request. This method is requested synchronously
by default:

WebTarget target = client.target("http://localhost:8080/Chapter2/
services/putResource");

MultivaluedMap<String, String> putForm = new
MultivaluedHashMap<String, String>();

Chapter 3

[39]

putForm.add("name", "John");

String responseData = target.request().put(Entity.
form(putForm),String.class);

It is the same as the post method. In order to consume the put method, we have the
put(...) method of the Builder class.

On the server side, it will first identify the root-resource getResource and then
check for the matching resource method put() to process the request. The resource
method is mapped according to the matching URI template, that is, either a
subresource or the validator, or the @Produces media type or the @Consumes media
type is applied on resource method:

@PUT
public String put(@FormParam("name") String name){
 return "Hello, " + name;
}

The delete method
The HTTP delete method invokes the request. This method is requested
synchronously by default as follows:

WebTarget target =
 client
 .target(
 "http://localhost:8080/Chapter2/services/deleteResource?name=John%20
Doe");

String responseData = target.request().delete(String.class);

Here, the values are passed using the Query parameter. We can also use the path
parameter to pass values to the server. For consuming the delete method, we have
the delete(...) method of the Builder class.

On the server side, it will first identify the root-resource getResource and then
check for the matching resource method delete() to process the request. The
resource method is mapped according to the matching URI template, that is, either a
subresource or the validator, or the @Produces media type or the @Consumes media
type that are applied on the resource method.

@DELETE
public String delete(@QueryParam("name") String name){
 return "Delete " + name;
}

www.allitebooks.com

http://www.allitebooks.org

Client API

[40]

The path parameter
To set the path parameters, we have a path(String) and resolveTemplate
(String,Object) method to add multiple path parameters as the key/value pair.
This eliminates the necessity to specify path parameters into URI. It is easier for
developers to read the code and assign multiple path parameters:

WebTarget target = client.target("http://localhost:8080/Chapter2/
services/getResource");

String responseData =
 target
 .path("{id}")
 .resolveTemplate("id", "100")
 .request()
 .get(String.class);

Here, we consumed the get method by using the path parameter. At the time of
request invocation, the builder forms the URI as follows:

http://localhost:8080/Chapter2/services/getResource/100

On the server side, using the @Path and @PathParam annotations provided by the
JAX-RS API, path parameters are mapped to the method parameter:

@GET
@Path("{id}")
public Response get(@PathParam("id") int id) {
 return Response.status(200).entity("Id: " + id).build();
}

In this example, we have used the @PathParameter annotation to map the id
parameter with the request path parameter.

The query parameter
To set the query parameters, we have a queryParam(String,Object) method to
add multiple query parameters as the key/value pair. This eliminates the need to
specify query parameters into URI as follows:

WebTarget target = client.target("http://localhost:8080/Chapter2/
services/getResource");

String responseData =
 target
 .path("subResource")

Chapter 3

[41]

 .queryParam("id", 1)
 .queryParam("name", "John")
 .request().get(String.class);

At the time of request invocation, the builder forms the URI as:

http://localhost:8080/Chapter2/services/getResource/
subResource?id=1&name=John

On the server side, using an @QueryParam annotation provided by the JAX-RS API,
query parameters are mapped to the method parameter as follows:

@GET
@Path("/subResource")
public Response usingQueryParam(
 @DefaultValue("0") @QueryParam("id") String id,
 @DefaultValue("No Name") @QueryParam("name") String name) {
 return Response
 .status(200)
 .entity("Id: " + id + ", Name: " + name).build();
}

In this example, we have used the @QueryParameter annotation to map the id and
name parameters with the request id and name parameters respectively.

The cookie parameter
To set the cookie parameters, we have a cookie(Cookie) method to add multiple
cookies. Cookies are reliable mechanisms to remember information or maintain
users' activities.

WebTarget target = client
.target("http://localhost:8080/Chapter2/services/getResource/
getSessionId");

Cookie cookie = new Cookie("sessionid", "100");

String responseData = target.request().cookie(cookie).get(String.
class);

On the server side, using an @CookieParam annotation provided by the JAX-RS API,
cookie parameters are been mapped to the method parameters.

@GET
@Path("/getSessionId")
public String getSessionId(@CookieParam("sessionid") int sessionId) {
 return "Session Id: " + sessionId ;
}

Client API

[42]

In this example, we have used the @CookieParameter annotation to map the
sessionid parameter with the request sessionId parameter.

The matrix parameter
To set the matrix parameters, we have the matrixParam(String,Object) method to
add multiple matrix parameters. Matrix parameter values are converted into string
objects using the toString() method. They are appended at the end of the URI path
segments as follows:

WebTarget target = client.target("http://localhost:8080/Chapter2/
services/getResource");

String responseData =
 target
 .path("usingMatrixParam")
 .matrixParam("id", 1)
 .matrixParam("name", "John")
 .request().get(String.class);

At the time of request invocation, the builder forms the URI as follows:

http://localhost:8080/Chapter2/services/getResource/
usingMatrixParam;id=1;name=John

On the server side, using an @MatrixParam annotation provided by the JAX-RS API,
matrix parameters are mapped to the method parameters:

@GET
@Path("usingMatrixParam")
public Response usingMatrixParam(
 @DefaultValue("0") @MatrixParam("id") String id,
 @DefaultValue("No Name") @MatrixParam("name")
 String name) {

 return Response
 .status(200)
 .entity("Id: " + id + ", Name: " + name)
 .build();
}

In this example, we have used the @MatrixParameter annotation to map the id and
name parameters with the request id and name parameters respectively.

Chapter 3

[43]

The bean parameter
To set the bean parameters, we can use any of the *Param methods as follows:

WebTarget target = client
.target("http://localhost:8080/Chapter2/services/beanResource/get/101;
name=John;age=25?address=USA");

String responseData = target.request().get(String.class);

Or

WebTarget target = client.target("http://localhost:8080/Chapter2
services/beanResource/get");

String responseData =
 target
 .path("{id}")
 .resolveTemplate("id", "1001")
 .matrixParam("name", "John")
 .matrixParam("age", 25)
 .queryParam("address", "USA")
 .request()
 .get(String.class);

At the time of request invocation, the builder forms the URI as follows:

http://localhost:8080/Chapter2/services/beanResource/get/101;name=Joh
n;age=25?address=USA

On the server side, using an @BeanParam annotation provided by the JAX-RS API,
different *Parameters are mapped to the *Parameters method respectively
as follows:

@GET
@Path("/get/{id}")
public String get(@BeanParam UserBean user) {
 return "User Bean: " + user.toString();
}

The UserBean class can be used as follows:

public class UserBean {
 @PathParam("id")
 private String id;

 @MatrixParam("name")
 private String name;

Client API

[44]

 @MatrixParam("age")
 private String age;

 @DefaultValue("No address provided")
 @QueryParam("address")
 private String address;

 @HeaderParam("user-agent")
 private String userAgent;

 public String toString(){
 return
 "Id: " + id +
 ", Name: " + name +
 ", Age: " + age +
 ", Address: " + address +
 ", User Agent: " + userAgent + "\n" ;
 }
}

In this example, we have used the @BeanParameter annotation to map the id, name,
age, address (optional), and user Agent parameters with request id, name, age,
address, and user Agent parameters respectively.

The @Produces annotation
At times, we have multiple response MIME types implemented in resource classes.
If we need a specific response MIME type, we need to provide the MIME type in the
request(MediaType) method explicitly:

WebTarget target = client
 .target("http://localhost:8080/Chapter2/services/getResource/
getUserList");
String responseData = target
 .request(MediaType.APPLICATION_XML).get(String.class);

In this example, we have explicitly mentioned that the response MIME type should
be APPLICATION_XML.

On the server side, using the @Produces annotation provided by the JAX-RS API,
maps the request MIME type:

@GET
@Path("/getUserList")
@Produces({ "application/xml" })
public User[] getList() {
 User[] list = new User[3];
 list[0] = new User("John");

Chapter 3

[45]

 list[1] = new User("William);
 list[2] = new User("Suzzane");

 return list;
}

The User class can be used as follows:

@XmlRootElement
public class User {
 private String name;

 public User() {
 }

 public User(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return name;
 }
}

We don't need to convert the List<User> instance to an XML format. JAX-RS does
this on its own.

The @Consumes annotation
At times, we have multiple accept MIME types that are implemented in resource
classes. If we need a specific accept MIME type to process the request, we need to
provide the MIME type in the accept(MediaType) object explicitly.

WebTarget target = client
.target("http://localhost:8080/Chapter2/services/postResource/
usingFormParamWithConsume");

MultivaluedMap<String, String> postForm = new
MultivaluedHashMap<String, String>();

Client API

[46]

postForm.add("name", "John");

String responseData = target
 .request()

.accept(MediaType.APPLICATION_FORM_URLENCODED_TYPE)
 .post(Entity.form(postForm),String.class) ;

In this example, we have explicitly mentioned that the accept MIME type should be
APPLICATION_FORM_URLENCODED_TYPE.

On the server side, use the @Consumes annotation provided by the JAX-RS API to
map the accept MIME type.

@POST
@Path("/usingFormParamWithConsume")
@Consumes(MediaType.APPLICATION_FORM_URLENCODED)
public String greet(@FormParam("name") String name) {
 return "Hello, " + name;
}

Use of Invocation.Builder
For invoking an HTTP request, we require an instance of Invocation Builder.
An Invocation Builder instance is created using the web target's request method.
Invocation Builder is basically used for wrapping up response media type, headers,
properties, authentication token, cookies, and so on. These can be used for data
manipulation or authentication at the server side. Let's look at the following example:

WebTarget target = client.target("http://localhost:8080/Chapter2/
services/getResource");

Invocation.Builder builder = target.request("text/plain");

Invocation invocation = builder.buildGet();

String responseData = invocation.invoke(String.class);

Here, we first created an instance of WebTarget for the URI from the client instance.
We set the accept type in the request and set the instance to Invocation.Builder.
We then wrapped the Builder instance to Invocation; that is, our request is ready with
the headers/properties, data, and so on, and ready to call the web service. Using the
invoke(T) object, we call the web service. In this, we are expecting String.class to
be the response. Else, we can also have a response instance from the web service using
invoke() as shown in the following example:

Response response = invocation.invoke();

String responseData = response.readEntity(String.class);

Chapter 3

[47]

Adding support for new representations
JAX-RS provides us the facility to add our custom entity provider for request/response
message bodies. By using the custom entity provider, we can serialize or deserialize
any message bodies with any media type. Using MessageBodyReader<T> for request
and MessageBodyWriter<T> for response, we can implement these representations.

Before consuming a web service, we need to register the entity providers with any of
the following methods: ClientBuilder or Client or WebTarget or ClientConfig.

Client transport connectors
Transport connectors are basically used to traverse the data to and from over the
network. By default, HTTPURLConnection is used at the transport layer. On the base
of Jersey-specific connector Service Provider Interface (SPI), the HttpUrlConnector
is wrapped to support the Jersey transport layer. We can create our own connector
for transport layers. Alternatively, we can use ApacheConnector or GrizzlyConnector
that are available in the market.

Securing a client
To secure communication between request-response instances in our application,
we can implement Secure Sockets Layer (SSL). Jersey client provides us a way to
use SSL by using SSLContext. This will be used during communication to the server
endpoint from the Jersey client instance. Here's an example that shows how to
implement SSL:

SSLContext sslContext = SSLContext.getInstance("SSL");

Client client = ClientBuilder.newBuilder().sslContext(sslContext).
build();

Response response = client
.target("https://localhost:8080/Chapter2/services/getResource").
request().get();

In this example, we created an instance of SSLContext that is passed as a constructor
argument in the ClientBuilder instance. The SSLContext.getInstance(String)
provides us the specified secure socket protocol.

Client API

[48]

Summary
JAX-RS 2.0 Client API provides us a simple API for consuming web services. In
this chapter, we covered Client API and how to use different HTTP methods and
*Param annotations for consuming web services. We also covered the web service
flow from the client request to server response. This API provides an easier way
for a developer to utilize its simplified API. We can also create our own custom
MIME type and its implementation using MessageBodyReader<T> for request and
MessageBodyWriter<T>. Lastly, we checked how we can secure our application by
implementing SSL. In the next chapter, we will see how we can use different media
representations (JSON, XML, and Multipart) for data interchange between the client
and server. These media representations are important, because they define how the
web services data will look.

Common Media-Type
Representations

In this chapter, we will learn how to use different representations of data. Data
representation is the primary decision for any application. We need to decide
appropriate representation on the basis of the client that will consume the web
services. We will also go through the implementation of different representations
on the server side, as well as on the client side.

JSON
JSON is a lightweight format used to traverse the network. It is easy to parse and
generate a JSON format from POJOs and Java types. The following modules are
supported by Jersey JSON:

• MOXy
• Java API for JSON Processing (JSON-P)
• Jackson
• Jettison

Let's look at each in turns.

www.allitebooks.com

http://www.allitebooks.org

Common Media-Type Representations

[50]

MOXy
The MOXy component allows developers to bind POJOs to XML or JSON formats. It
automatically formats data without any explicit confi guration. This MOXy feature is
automatically discovered when you add the jersey-media module in an application.
MOXy combines with JAXB and manages to convert data to and fro. Let's check how
we can use MOXy in our application:

public class App extends ResourceConfig {
 public App() {
 packages("com.chapter4").register
 (new JsonMoxyConfigurationContextResolver());
 }

 @Provider
 final static class JsonMoxyConfigurationContextResolver
 implements ContextResolver<MoxyJsonConfig> {

 @Override
 public MoxyJsonConfig getContext(Class<?> objectType) {
 final MoxyJsonConfig configuration = new MoxyJsonConfig();

 Map<String, String> namespacePrefixMapper =
 new HashMap<String, String>(1);
 namespacePrefixMapper.put(
 "http://www.w3.org/2001/XMLSchema-instance", "xsi");

 configuration.setNamespacePrefixMapper(namespacePrefixMap
 per);
 configuration.setNamespaceSeparator(':');

 return configuration;
 }
 }
}

Copyright © 2014 Oracle and/or its affi liates. All rights reserved.

In this example, we registered JsonMoxyConfigurationContextResolver that
implements MoxyJsonConfig. In JsonMoxyConfigurationContextResolver, we
set the property of MoxyJsonConfig. This enables us to use the MOXy feature. When
MOXy is explicitly disabled, it is necessary to register MOXyJsonProvider. Let's look
at how to register MOXyJsonProvider using the abstract Application class.

Chapter 4

[51]

We can override the getSingletons() method of the Application class to register
MOXyJsonProvider:

public class UsingApplication extends Application {
 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> s = new HashSet<Class<?>>();
 s.add(UserResource.class);
 return s;
 }

 @Override
 public Set<Object> getSingletons() {
 MOXyJsonProvider moxyJsonProvider =
 new MOXyJsonProvider();
 moxyJsonProvider.setWrapperAsArrayName(true);
 HashSet<Object> set = new HashSet<Object>(1);
 set.add(moxyJsonProvider);
 return set;
 }
}

In the getSingletons() method, we enabled the grouping of the element that
should be used as the JSON array name using the wrapperAsArrayName property
on MOXyJsonProvider.

Using ResourceConfig class
We registered JsonMoxyConfigurationContextResolver that implements
MoxyJsonConfig:

public class UsingResourceConfig extends ResourceConfig {

 public UsingResourceConfig() {
 packages("com.chapter4").register
 (new JsonMoxyConfigurationContextResolver());
 }

 @Provider
 final static class JsonMoxyConfigurationContextResolver
 implements ContextResolver<MoxyJsonConfig> {

 @Override
 public MoxyJsonConfig getContext(Class<?> objectType) {
 final MoxyJsonConfig configuration = new MoxyJsonConfig();

Common Media-Type Representations

[52]

 Map<String, String> namespacePrefixMapper =
 new HashMap<String, String>(1);
 namespacePrefixMapper.put(
 "http://www.w3.org/2001/XMLSchema-instance", "xsi");

 configuration.setNamespacePrefixMapper
 (namespacePrefixMapper);
 configuration.setNamespaceSeparator(':');

 return configuration;
 }
 }
}

In JsonMoxyConfigurationContextResolver, we set the property of
MoxyJsonConfig. This enables us to use the MOXy feature. When MOXy is explicitly
disabled, it is necessary to register MOXyJsonProvider.

Note: To use MOXy as your JSON provider, you need to
add the jersey-media-moxy module.

Java API for JSON Processing (JSON-P)
In JAX-RS 2.0, this feature can be automatically discovered. We don't need to
explicitly register the JSON-P feature. It just needs to be added into our application.
Let's see how to use JSON-P:

• On the server side:
We will register JsonProcessingFeature into the server application
and JsonGenerator.PRETTY_PRINTING property. This needs to be
done when the application is loaded, so the application can make use
of JsonProcessingFeature for marshaling and unmarshaling the data
interchange on the server side:

public class UsingResourceConfig extends ResourceConfig {
 public UsingResourceConfig() {
 packages("com.chapter4.jsonp")
 .register(JsonProcessingFeature.class)
 .property(JsonGenerator.PRETTY_PRINTING, true);
 }
}

Chapter 4

[53]

• On the client side:
Here also, we need to register JsonProcessingFeature to enable the
marshaling and unmarshaling of data interchange on the client side:
Client client = ClientBuilder.newBuilder()
 .register(JsonProcessingFeature.class)
 .property(JsonGenerator.PRETTY_PRINTING, true)
 .build();

Here, JsonProcessingFeature is registered and the JsonGenerator.
PRETTY_PRINTING property is set to true. This should be registered when
JsonProcessingFeature is explicitly disabled.

Note that in order to use JSON-P as your JSON provider,
you need to add the jersey-media-json-processing module.

Jackson
Jackson JSON processor is a powerful API that serves the function of binding data
between POJO and JSON. For creating a custom implementation of serialization/
deserialization, we need to create our own custom ObjectMapper instance, and
this instance needs to be registered at the client and server sides. Also, we need to
register JacksonFeature on both sides. Let's see how we can implement it:

• On the server side:
public class UsingResourceConfig extends ResourceConfig {
 public UsingResourceConfig() {
 packages("com.chapter4.jackson")
 .register(MyObjectMapperProvider.class)
 // if needed
 .register(JacksonFeature.class);
 }
}

We can see that JacksonFeature and MyObjectMapperProvider are
registered at the initial application loading, so as to use JacksonFeature.

• On the client side:
Client client = ClientBuilder.newBuilder()
 .register(MyObjectMapperProvider.class) // if needed
 .register(JacksonFeature.class)
 .build();

Here also, we need to register JacksonFeature and
MyObjectMapperProvider to provide support for the marshaling and
unmarshaling of data interchange on the client side.

Common Media-Type Representations

[54]

• On both the sides:
@Provider
public class MyObjectMapperProvider implements
ContextResolver<ObjectMapper> {

 /**
 Default Object Mapper will be used for other POJOs
 */
 final ObjectMapper defaultObjectMapper;

 /**
 user Object Mapper will be used for User POJO ONLY.
 */
 final ObjectMapper userObjectMapper;

 /**
 MyObjectMapperProvider() constructor initializes the
 defaultObjectMapper and userObjectMapper.
 */
 public MyObjectMapperProvider() {
 defaultObjectMapper = createDefaultMapper();
 userObjectMapper = createUserObjectMapper();
 }

/**

This method provides the specific ObjectMapper instance. Either it can be
UserObjectMapper for the user POJO or DefaultObjectMapper for the other
POJOs.

*/
 @Override
 public ObjectMapper getContext(Class<?> type) {
 if (type == User.class) {
 return userObjectMapper;
 } else {
 return defaultObjectMapper;
 }
 }

/**

Chapter 4

[55]

This method returns the UserObjectMapper instance by configuring the
properties to use specific serialization and deserialization mechanism. This
helps to wrap the data in request/response.

*/
 private static ObjectMapper createUserObjectMapper() {
 Pair combinedIntrospector =
 createJaxbJacksonAnnotationIntrospector();
 ObjectMapper result = new ObjectMapper();
 result.configure(SerializationConfig.Feature.
 WRAP_ROOT_VALUE, true);
 result.configure(DeserializationConfig.
 Feature.UNWRAP_ROOT_VALUE, true);
 result.setDeserializationConfig(
 result.getDeserializationConfig()
 .withAnnotationIntrospector
 (combinedIntrospector));
 result.setSerializationConfig(
 result.getSerializationConfig()
 .withAnnotationIntrospector(combinedIntrospector));

 return result;
 }

/**

This method provides the DefaultObjectMapper instance that can be used
for any POJO other than a specific defined ObjectMapper POJO:

*/
 private static ObjectMapper createDefaultMapper() {
 ObjectMapper result = new ObjectMapper();
 result.configure(Feature.INDENT_OUTPUT, true);

 return result;
 }

/**

This method provides the pair of the annotation introspectors that transforms
JAXB annotation to a JSON mapping:

*/
 private static Pair createJaxbJacksonAnnotationIntrospector() {

 AnnotationIntrospector jaxbIntrospector =
 new JaxbAnnotationIntrospector();

Common Media-Type Representations

[56]

 AnnotationIntrospector jacksonIntrospector =
 new JacksonAnnotationIntrospector();
 return new AnnotationIntrospector.Pair(
 jacksonIntrospector, jaxbIntrospector);
 }
}

Here, we have created our own custom ObjectMapper implementation
that handles the user POJO, as well as the other POJOs. You can find the
difference in implementation in the createDefaultMapper() and
createUserObjectMapper() methods.

Note that in order to use Jackson as your JSON provider,
you need to add the jersey-media-json-jackson module.

Jettison
Jettison is a JSON API that is used to parse and generate JSON formats. We need to
register JettisonFeature and ContextResolver<T> for JAXB POJO at both ends.
Let's look at how we can implement it:

• On the server side:
public class UsingResourceConfig extends ResourceConfig {
 public UsingResourceConfig() {
 packages("com.chapter4.jettison")
 .register(CustomContextResolver.class)
 // if needed
 .register(JettisonFeature.class);
 }
}

We can see that JettisonFeature and CustomContextResolver
are registered at the initial application loading to enable the use of
JettisonFeature.

• On the client side:
Client client = ClientBuilder.newBuilder()
 .register(CustomContextResolver.class) // if needed
 .register(JettisonFeature.class)
 .build();

As on the server side, we need to register JettisonFeature and
CustomContextResolver when the client instance is being created.

Chapter 4

[57]

• On both the sides:
@Provider
public class CustomContextResolver implements
ContextResolver<JAXBContext> {

 private final JAXBContext context;
 private final Set<Class<?>> types;
 private final Class<?>[] cTypes = {User.class};

 public CustomContextResolver() throws Exception {
 this.types =
 new HashSet<Class<?>>(Arrays.asList(cTypes));
 this.context = new JettisonJaxbContext(
 JettisonConfig.DEFAULT, cTypes);
 }

 @Override
 public JAXBContext getContext(Class<?> objectType) {
 return (types.contains(objectType)) ?
 context : null;
 }
}

In the preceding example, ContextResolver<T> is
optional. If any special processing has to be done, we can
use ContextResolver<T>. We defined user POJO to be
marshaled and unmarshaled using the Jettison feature. To
use Jettison as your JSON provider, you need to add the
jersey-media-json-jettison module.

XML
XML is a standard way to process data in the client/server architecture. Jersey
provides different ways to use XML for data traversing over the client/server.

Low-level XML support
Low-level XML support consists of:

• StreamSource
• SAXSource
• DOMSource
• Document

Common Media-Type Representations

[58]

Let's look at the following example:

• Server side:
@Path("/userResource")
public class UserResource {

 @POST
 @Path("usingStreamSource")
 public StreamSource getStreamSource(StreamSource streamSource)
 {
 return streamSource;
 }

 @POST
 @Path("usingSAXSource")
 public SAXSource getSAXSource(SAXSource saxSource) {
 return saxSource;
 }

 @POST
 @Path("usingDOMSource")
 public DOMSource getDOMSource(DOMSource domSource) {
 return domSource;
 }

 @POST
 @Path("usingDocument")
 public Document getDocument(Document document) {
 return document;
 }
}

StreamSource, SAXSource, DOMSource, and Document are different types
of XML formats. These low-level formats are used to read, parse, or generate
XMLs using their simplified APIs.

• Client side:
WebTarget target =
client.target("http://localhost:8080/Chapter4_XML/services/
userResource/usingStreamSource");

User bean = target.request(MediaType.APPLICATION_XML).post(
Entity.entity(new User(1,"John"),
 MediaType.APPLICATION_XML),User.class) ;

Chapter 4

[59]

This is the format used to read, parse, or generate XMLs using their simplified
APIs on the client side. It follows the same way for SAXSource, DOMSource,
and Document URI.

JAXB support
The JAXB annotation is simple to map POJO with the XML elements. We just have
to assign @XmlRootElement to our POJO, and then JAXB handles the data by itself.
Let's look at the following example:

• Server side:
@Path("jaxbResource")
@Produces("application/xml")
@Consumes("application/xml")
public class UserResource {

 @GET
 public User[] getUserArray() {
 List<User> userList = new ArrayList<User>();
 userList.add(new User(1, "John"));
 ………
 return userList.toArray(new User[userList.size()]);
 }
}

This root-resource class produces and consumes XML MIME types only.
The MIME type is defined at the class level, so by default all the resource
methods and subresource methods will have the same MIME type.

• Client side:
………
WebTarget target =
client.target("http://localhost:8080/Chapter4_XML/services/
jaxbResource");

GenericType<User[]> userListGenericType = new
GenericType<User[]>() {};
User[] responseData =
target.request
(MediaType.APPLICATION_XML).get(userListGenericType);

for(User user : responseData)
{
 System.out.println("Response Data: " + user);
}

www.allitebooks.com

http://www.allitebooks.org

Common Media-Type Representations

[60]

Here, because we are getting User[] in response, we use GenericType<T>
to obtain the response entity along with the XML media type. We can also
create custom GenericType<T> by subclassing it in order to use it as an
entity in request and response. GenericType<T> is basically used for objects
that have parameterized type.

• Both sides:
@XmlRootElement
public class User {
 private int id;
 private String name;

 public User() {}

 public User(int id,String name) {
 this.id = id;
 this.name = name;
 }
 ………
}

Here, the @XmlRootElement JAXB annotation maps the user object to the
XML elements. The name of the root XML element will be the class name.

POJOs
In this media type representation, beans are not assigned any annotations. We
programmatically map the POJOs to the XML elements. This is shown in the
following example:

• Server side:
@GET
@Path("withoutAnnotation")
public JAXBElement<UserWithoutAnnotation> getuser() {

 UserWithoutAnnotation user = new UserWithoutAnnotation
(1,"John");

 return new JAXBElement<UserWithoutAnnotation>
 (new QName("user"), UserWithoutAnnotation.class, user);
}

Here, we responded to the JAXBElement instance that contains the
UserWithoutAnnotation POJO. QName is the qualified name, which
is used for assigning the root element name.

Chapter 4

[61]

• Client side:
………
WebTarget target = client.target("http://localhost:8080/Chapter4_
XML/services/jaxbResource/withoutAnnotation");

GenericType<JAXBElement<UserWithoutAnnotation>> userType =
new GenericType<JAXBElement<UserWithoutAnnotation>>() {};

UserWithoutAnnotation user = (UserWithoutAnnotation) target
.request(MediaType.APPLICATION_XML_TYPE)
.get(userType)
.getValue();
………

Here, we obtain the UserWithoutAnnotation response POJO using the
getValue() method. The getValue() method automatically maps the XML
to the UserWithoutAnnotation POJO. Else, we can also obtain the XML
format in response using:
target.request(MediaType.APPLICATION_XML_TYPE).get(String.class);

And then, we can access it using any XML parser.

Multipart
At times, we require multipart representation in request/response web services.
We need to create custom MessageBodyReader<T> and MessageBodyWriter<T>
implementation to support the multipart feature in our application. For this, we
need to register MultiPartFeature on the client and server sides. Look at the
following example:

• Server side:
public class UsingResourceConfig extends ResourceConfig {

 public UsingResourceConfig() {
 packages("com.chapter4.multipart")
 .register(MultiPartFeature.class);
 }
}

Common Media-Type Representations

[62]

Here, we registered MultiPartFeature at the time of application loading.
This feature needs to be registered to provide the marshalling and
unmarshalling of data on the server side.
@POST
@Consumes(MediaType.MULTIPART_FORM_DATA)
public String post(
 @FormDataParam("part") String part,
 @FormDataParam("part") FormDataContentDisposition d)
 {
 return part + ":" + d.getFileName();
 }

Copyright © 2014 Oracle and/or its affi liates. All rights reserved.
In this post() method , it accepts FormDataParam, which contains the form
value, and FormDataContentDisposition, which contains the metadata or
header of the fi le.

• Client side:
Client client = ClientBuilder
.newBuilder()
.register(MultiPartFeature.class)
.build();

Here, we registered MultiPartFeature on the client side. This enables us to
use multipart representation between the client/server data interchange.

 …..
WebTarget target = client.target("http://localhost:8080/Chapter4_
Multipart/services/
 multipartResource");

final FormDataMultiPart multipart = new FormDataMultiPart();

final FormDataBodyPart bodyPart = new FormDataBodyPart
(FormDataContentDisposition.name("part").fileName("file").
build(),"CONTENT");

multipart.bodyPart(bodyPart);

String response = target.request().post(Entity.entity(multipart,
MediaType.MULTIPART_FORM_DATA_TYPE), String.class);
 …..

Here, we created the instance of FormDataMultipart that will contain the
multipart request to be sent to the server. FormDataBodyPart will have the
form data and fi les to be attached.

Chapter 4

[63]

Note that in order to use multipart features, you need to
add the jersey-media-multipart module.

Summary
We've analyzed different media type representations that are useful for data
interchange between the client and server sides. These media type representations
should be chosen on the basis of requirement, which best fit the situation. We also
need to keep in mind that the same web services can be accessed with different
representations, that is, JSON and XML both can be consumed. Then, it becomes
easier for us to create and manage the web service, because most media type
representations are managed by Jersey itself. In the next chapter, we will see how
to create and consume the Server-Sent Events (SSE). SSE is a nice feature that has
support from the client and server APIs.

Server-Sent Events (SSE)
In the previous chapters, we covered how to create and consume the RESTful web
services using JAX-RS 2.0 and Jersey 2.0. In this chapter, we will learn how to create a
connection between the client/server and maintain the connection at the server end.
This is required to push data from the server to the client without any new request
being initiated by the client. Basically, this type of mechanism is used for applications,
such as chatting, stock market, or any real-time data-providing applications.

Getting started
Generally, the flow of web services is initiated by the client by sending a request for
the resource to the server. This is the traditional way of consuming web services.

Browser
or

Jersey Client

Request: Data

Server

Response: Data

Request: Data

Response: Data

Request: Data

Response: Data

Traditional Flow

Server-Sent Events (SSE)

[66]

Here, the browser or Jersey client initiates the request for data from the server, and
the server provides a response along with the data. Every time a client needs to
initiate a request for the resource, the server may not have the capability to generate
the data. This becomes difficult in an application where real-time data needs to be
shown. Even though there is no new data over the server, the client needs to check
for it every time.

Nowadays, there is a requirement that the server needs to send some data without the
client's request. For this to happen the client and server need to be connected, and the
server can push the data to the client. This is why it is termed as Server-Sent Events.
In these events, the connections created initially between the client and server are not
released after the request. The server maintains the connection and pushes the data to
the respective client when required.

Browser
or

Jersey Client <EventSource>

Event Listener

<EventOutput>

All Opened
HTTP

Connections

Request: Establishing Connection

Response: Connection Opened

Broadcast: Data

Broadcast: Data

Broadcast: Data

Broadcast: Data

Server

Event

Event

Event

Event

Server-Sent Event Flow

In the Server-Sent Event Flow diagram initially, when a browser or a Jersey client
initiates a request to establish a connection with the server using EventSource,
the server is always in a listening mode for the new connection to be established.
When a new connection from any EventSource is received, the server opens a new
connection and maintains it in a queue. Maintaining a connection depends upon the
implementation of business logic. SSE create a single unidirectional connection. So,
only a single connection is established between the client and server.

Chapter 5

[67]

After the connection is successfully established, the client is in the listening mode for
new events from the server. Whenever any new event occurs on the server side, it
will broadcast the event, along with the data to a specific open HTTP connection. In
modern browsers that support HTML5, the onmessage method of EventSource is
responsible for handling new events received from the server; whereas, in the case
of Jersey clients, we have the onEvent method of EventSource, which handles new
events from the server.

Note: Server-Sent Event creates a single
unidirectional connection.

Implementing Server-Sent Events (SSE)
To use SSE, we need to register SseFeature on both the client and server sides. By
doing so, the client/server gets connected to SseFeature to be used while traversing
data over the network.

Server

Outbound Event

Outbound Event Writer

Serializing
Data

Inbound Event

Inbound Event Reader

Deserializing
DataBroadcast Event

MIME-Type
text/event-stream

Client

SSE: Internal Working

In the SSE: Internal Working diagram, we assume that the client/server is connected.
When any new event is generated, the server initiates an OutboundEvent instance
that will be responsible to have chunked output, which in turn will have a serialized
data format. OutboundEventWriter is responsible to serialize the data on the server
side. We need to specify the media type of the data in OutboundEvent. There are no
restrictions of providing specific media types only.

However, on the client side, InboundEvent is responsible for handling the incoming
data from the server. Here, InboundEvent receives the chunked input that contains
serialized data format. Using InbounEventReader, data is deserialized.

Server-Sent Events (SSE)

[68]

Using SSEBroadCaster, we are able to broadcast events to multiple clients that are
connected to the server. Let's look at the example, which shows how to create SSE
web services and broadcast the events:

@ApplicationPath("services")
public class SSEApplication extends ResourceConfig {
 publicSSEApplication() {
 super(SSEResource.class, SseFeature.class);
 }
}

Here, we registered the SseFeature module and the SSEResource root-resource
class to the server.

private static final SseBroadcaster BROADCASTER = new
SseBroadcaster();
……
@GET
@Path("sseEvents")
@Produces(SseFeature.SERVER_SENT_EVENTS)
public EventOutput getConnection() {

 final EventOutput eventOutput = new EventOutput();

 BROADCASTER.add(eventOutput);

 return eventOutput;
}
……

In the SSEResource root class, we need to create a resource method that will
allow clients to establish the connection and persist accordingly. Here, we are
maintaining the connection into the BROADCASTER instance in the SseBroadcaster
class. EventOutput manages specific client connections. SseBroadcaster is
simply responsible for accommodating a group of EventOutput; that is, the
client's connection.

……
@POST
@Consumes(MediaType.APPLICATION_FORM_URLENCODED)
public void post(@FormParam("name") String name) {
 BROADCASTER
 .broadcast(new OutboundEvent.Builder()
 .data(String.class, name)
 .build());
}
……

Chapter 5

[69]

When any post method is consumed, we create a new event and broadcast it to
the client available in the BROADCASTER instance. The OutboundEvent instance will
contain the data (MediaType, Object) method that is initialized with a specific
media type and actual data. We can provide any media type to send data. By using
the build() method, data is being serialized with the OutBoundEventWriter
class internally. When the broadcast (OutboundEvent) is called, internally
SseBroadcaster pushes data on all registered EventOutputs; that is, on clients
connected to SseBroadcaster.

At times, there's a scenario where the client/server has been connected and after
sometime, the client gets disconnected. So, in this case, SseBroadcaster automatically
handles the client connection; that is, it determines whether the connection needs
to be maintained. When any client connection is closed, the broadcaster
detects EventOutput and frees the connection and resources obtained by
that EventOutput connection.

Note: To use SSE we need to include the jersey-media-sse
module.

Consuming the SSE events
Jersey client has two models that can consume SSE:

• The pull model (Using EventInput)
• The push model (Using EventSource)

The pull model (Using EventInput)
The pull model allows us to read and consume events when they arrive. By using
EventInput, we can access the data. Let's look at the example:

……
Client client = ClientBuilder
 .newBuilder()
 .register(SseFeature.class)
 .build();

WebTarget target = client
 .target("http://localhost:8080/
Chapter5_Server_Sent_Event/services/sseResource/sseEvents");

EventInputeventInput = target.request().get(EventInput.class);

Server-Sent Events (SSE)

[70]

while (!eventInput.isClosed()) {
 final InboundEvent inboundEvent = eventInput.read();
 if (inboundEvent == null) {
 break; // connection has been closed
 }
 try {
 System.out.println(inboundEvent.getData(String.class));
 } catch (IOException exception) {
 exception.printStackTrace();
 }
}
……

First, we created an instance of a client that has registered SseFeature. We then
mapped WebTarget to the SSE resource method, which can provide a connection
between the client and server. Next, we invoked the gethttp method, requesting
the media type to respond as EventInput. Here, the server returns the EventInput
type, which means connection is being established between the client and server.
Once the connection stream is closed from the server end, the EventInput type
will also release the connection from the client end. EventInput is an extension
of ChunkedInput<InboundEvent> that allows us to read the event data using the
inbound event's getData(MediaType) method.

The push model (using EventSource)
The push model is basically used for reading and processing asynchronous events
using EventSource. Let's look at the following example:

……
Client client = ClientBuilder
 .newBuilder()
 .register(SseFeature.class)
 .build();

WebTarget target = client
 .target("http://localhost:8080/
Chapter5_Server_Sent_Event/services/sseResource/sseEvents");

final EventSource eventSource = new EventSource(target) {

 @Override
 public void onEvent(InboundEvent inboundEvent) {
 try {

Chapter 5

[71]

 System.out.println("Data Received: " + inboundEvent.
 getData(String.class));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
};
……

In this example, we first created instance of client that have registered SseFeature.
Then, we pointed our SSE resource URI to WebTarget. Using the EventSource
constructor, we created the instance of EventSource that has an established connection
with the server. So, we can process the SSE using the onEvent(InboundEvent)
method and consume it using the getData(MediaType) method.

Summary
In this chapter, we learned the difference between the traditional web service flow
and SSE web service flow. We also covered how to create the SSE web services
and implement the Jersey client in order to consume the SSE using different
programmatic models; that is, using EventInput and EventSource. In the next
chapter, we will generate the Web Application Description Language (WADL)
that defines the RESTful web application using XML.

WADL
In the previous chapters, we described and analyzed the implementation of the server
and the client. In this chapter, we will describe the Web Application Description
Language (WADL), which is a skeleton of the deployed RESTful web service.

Getting started
WADL is an XML description for the deployed RESTful web service. It is supported
using the Jersey implementation, and is similar to SOAP's Web Services Description
Language (WSDL).

Like WSDL that shows the structure, functionality, and parameters, and accepts
different HTTP methods of the SOAP web services, WADL also provides the same
features. The difference between the two is that WADL is used for RESTful-based
web services, and WSDL is used for SOAP-based web services.

Let's see how WADL looks for our resource class:

@Path("/getResource")
public class GetResource {
 @GET
 public String get() {
 return "Hello World!!!";
 }

 @GET
 @Path("{name}")
 public Response greetUser(@PathParam("name") String name){
 returnResponse.status(200).entity("Hello, " +
 name).build();
 }
}

WADL

[74]

Here, we have two @GET resource methods under the getResource path. Once the
application is deployed on the server, open the URI in a browser:

http://localhost:8080/Chapter6/services/application.wadl

Jersey automatically generates WADL from the resource classes. It will have a get
method with the /application.wadl resource. This will give the following result:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<application xmlns="http://wadl.dev.java.net/2009/02">

 <doc xmlns:jersey="http://jersey.java.net/"
jersey:generatedBy="Jersey: 2.0 2013-05-03 14:50:15" />

 <grammars />

 <resources base="http://localhost:8080/Chapter6/services/">

 <resource path="/getResource">

 <method id="get" name="GET">

 <response />

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="application/vnd.sun.
 wadl+xml" />

 </response>

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="text/plain" />

 </response>

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="*/*" />

Chapter 6

[75]

 </response>

 </method>

 <resource path="{name}">

 <paramxmlns:xs="http://www.w3.org/2001/XMLSchema" name="name"

 style="template" type="xs:string"/>

 <method id="greetUser" name="GET">

 <response />

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="application/vnd.sun.
 wadl+xml" />

 </response>

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="text/plain" />

 </response>

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="*/*" />

 </response>

 </method>

 </resource>

 </resource>

 <resource path="application.wadl">

 <method id="getWadl" name="GET">

 <response>

 <representation mediaType="application/vnd.sun.
 wadl+xml" />

WADL

[76]

 <representation mediaType="application/xml" />

 </response>

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="text/plain" />

 </response>

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="*/*" />

 </response>

 </method>

 <resource path="{path}">

 <paramxmlns:xs="http://www.w3.org/2001/XMLSchema" name="path"

 style="template" type="xs:string"/>

 <method id="geExternalGrammar" name="GET">

 <response>

 <representation mediaType="application/xml" />

 </response>

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

 <representation mediaType="text/plain" />

 </response>

 </method>

 <method id="apply" name="OPTIONS">

 <request>

 <representation mediaType="*/*" />

 </request>

 <response>

Chapter 6

[77]

 <representation mediaType="*/*" />

 </response>

 </method>

 </resource>

 </resource>

 </resources>

</application>

This is the WADL specification for the web service. In this WADL specification, we
can see the first resource node as:

<resources base="http://localhost:8080/Chapter6/services/">

Here, base defines the prefix URI of the application through which web services are
accessible. Under this resource node, there is another resource node, which is:

<resource path="/getResource">

This one defines the root class path. Using the /getResource path, we can access
the resource method and subresource methods, such as get() and greet(). For
each resource path, methods or subresource paths will be defined. Along with these
methods or subresource paths, Jersey will create the OPTIONS method automatically.
The method or subresource path will have the request and response parameter
that defines the input parameters the web service takes, and the output parameter
or entity or representation the web service returns back. These parameters are
useful for the developers who are going to consume the web services during the
implementation of the client side. As for the PathParam annotation, input parameters
are defined under the resource path node as:

<resource path="{name}">
 <param name="name" style="template" type="xs:string"/>
………
</resource>

To view WADL specifications for a specific root-resource class, we can use:

• Method: OPTIONS
• Accept type: application/vnd.sun.wadl+xml
• URI: http://localhost:8080/Chapter6/services/getResource/John

http://localhost:8080/Chapter6/services/
http://localhost:8080/Chapter6/services/getResource/John

WADL

[78]

This will return a WADL specification as follows:

This WADL specification only defines the XML description of the greet() method as
we defined in the URI, to get only a specific path of WADL using the OPTIONS method.

Chapter 6

[79]

Configuration
Jersey provides us with the facility to enable/disable the WADL creation. By
default, WADL will be generated by Jersey. We explicitly have to define or disable
the WADL creation. We can set the property in web.xml once the parameters are
initialized, as follows:

<param-name>jersey.config.server.wadl.disableWadl</param-name>
<param-value>true</param-value>

If we use the deployment process using an application, then we need to use:

property(ServerProperties.WADL_FEATURE_DISABLE, true);

This will disable the WADL feature.

Summary
In this chapter, we documented how to generate the WADL specification of the
web service. We also covered how the developer can find this WADL specification
to consume or implement the web service for his/her reference. This WADL
specification inform the developer about the input and output parameters that the
web service takes in and out.

So far, we have covered all the major aspects of the JAX-RS 2.0 and Jersey 2.0, along
with the theory and necessary coding part. Now, we are ready to tweak the API and
create some complex applications.

Index
Symbols
@BeanParam annotation 26, 27, 43
@Consumes annotation

about 14, 20, 45, 46
accept(MediaType) object 45

@Consumes media type 37
@CookieParam annotation 41 24
@DefaultValue annotation 22
@DELETE annotation 14, 18
@FormParam annotation 25, 26
@GET annotation 13, 17
@HeaderParam annotation 23
@MatrixParam annotation 42 23
@*Param annotation 8
@Path annotation

about 13, 14, 40
URI path 14, 15
with, regular expression 16

@PathParam annotation 13, 21, 40
@POST annotation 14, 18
@Produces annotation

about 14, 18, 44, 45
request(MediaType) method 44

@Produces media type 38, 39
@PUT annotation 14, 17
@QueryParam annotation 41 21
@QueryParameter annotation 41

A
accept(MediaType) object 45
AJAX-RS resource 11

B
bean parameter

@BeanParam annotation 43
about 43
setting 43, 44
UserBean class 43

Builder class 39

C
client 35
Client API 6
ClientBuilder method 35
Client-side and Server-side Asynchronous 7
client.target() method 36
Connection Negotiation 7
cookie(Cookie) method 41
cookie parameter

@CookieParam annotation 41
about 41
cookie(Cookie) method 41

core Jersey modules 8
createDefaultMapper() method 56
createUserObjectMapper() method 56

D
data representation

about 49
JSON 49
multipart representation 61
XML 57

delete method. See HTTP delete method
dependencies 8

[82]

G
getCookies() method 24
get method. See HTTP get method
getResource method 37
getResource web service 37
getSingletons() method 51
getUserById() method 23
getUserByName() method 21
getUser() method 17
greet() method 19
greetUser() method 19

H
HTTP delete method

@Produces media type 39
about 39
delete(...) method 39

HTTP get method
@Consumes media type 37
about 37
get(...) method 37

HTTP methods
Consumes 20
DELETE 18
GET 17
POST 18
Produces 18
PUT 17

HTTP post method
@Produces media type 38
about 38

HTTP put method
about 38, 39
Builder class 39
put(...) method 39

HyperMedia as the Engine of
Application State (HATEOAS) 7

I
injection

about 30
examples 30
rules 30, 31

Invocation.Builder
Client transport connectors 47
invoke(T) object 46
support, adding for new representations 47
using 46

invoke(T) object 46

J
Jackson

about 53
using, on client side 53
using, on server and client side 54-56
using, on server side 53

Java API for JSON Processing. See JSON-P
JAXB support, XML

implementing, on client side 59
implementing, on server and client side 60
implementing, on server side 59

JAX-RS 8, 35
JAX-RS 1.0

features 6
JAX-RS 2.0

about 5
features 6, 7
specification 6

JAX-RS annotations
@Consumes 14
@DELETE 14
@GET 13
@Path 13
@PathParam 13
@POST 14
@Produces 14
@PUT 14

JAX-RS client API 35
Jersey 6
Jersey 2.0 5
Jersey 2.0 binaries 9
Jersey 2.0 Maven repository 9
Jersey-based applications

creating 8
jersey.config.server.provider.packages 10
Jersey Core JAX-RS 2.0 Bundle

URL, for downloading 9

[83]

Jettison
about 56
implementing, on client side 56
implementing, on server and client side 57
implementing, on server side 56

JSON
about 49
Jackson 53
Jettison 56
JSON-P 52
MOXy component 50

JSON-P
about 52
using 52
using, on client side 53
using, on server side 52

L
low-level XML support, XML

about 57
example 58
implementing, on client side 58
implementing, on server side 58

M
matrix parameter

@MatrixParam annotation 42
matrixParam(String,Object) method 42
setting 42
toString() method 42

modules 8
MOXy component

about 50, 51
ResourceConfig class, using 51, 52
using 50

multipart representation
about 61
implementing, on clietn side 62
implementing, on server side 61

P
parameter annotations

@BeanParam 26
@CookieParam 24
@DefaultValue 22

@FormParam 25
@HeaderParam 23
@MatrixParam 23
@PathParam 21
@QueryParam 21

path() method 36, 37
path parameter

@Path annotation 40
@PathParam annotation 40
about 40
resolveTemplate(String,Object) method 40

Per-lookup scope 29
POJOs

about 60
implementing, on client side 61
implementing, on server side 60

post method. See HTTP post method
post() method 62
project

creating 9
pull model, SSE

about 69
example 69, 70

push model, SSE
example 70, 71

put method. See HTTP put method

Q
query parameter

@QueryParam annotation 41
about 40, 41
queryParam(String,Object) method 40

queryParam(String,Object) method 40

R
request(MediaType) method 44
Request scope 29
resolveTemplate(String,Object) method 40
Resource class

creating 11
ResourceConfig class, MOXy component

using 51, 52
resource scopes

per-lookup scope 29
request scope 29
singleton scope 29

[84]

RESTEasy 6
RESTful principles 5
RESTful web service

deploying 32
deploying, abstract Application

class used 32
deploying, ResourceConfig class used 33
deploying, without Application class 33, 34

root-resource classes
about 13
scope 29

S
Secure Sockets Layer (SSL) 47
Server-Sent Events. See SSE
Service Provider Interface (SPI) 47
Simplified API 6
singleton scope 29
SSE

about 7, 65, 66
events, consuming 69
flow diagram 66
implementing 67-69
pull model 69
push model 70

SseBroadcaster class 68
SSEResource root class 68
SSLContent.getInstance(String) 47
subresources

examples 27, 28
using 27, 28

T
toString() method 42

U
UserBean class 43

V
validation 7

W
WADL

about 73
configuring 79
specification, for web service 77
specification, viewing 77
structure 73

Web Application Description Language.
See WADL

WebTarget instance 36

X
XML

about 57
JAXB support 59
low-level XML support 57
POJOs 60

Thank you for buying
Developing RESTful Web Services with Jersey 2.0

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Developing RESTful Services
with JAX-RS 2.0, WebSockets,
and JSON
ISBN: 978-1-78217-812-5 Paperback: 128 pages

A complete and practical guide to building RESTful
Web Services with the latest Java EE7 API

1. Learning about different client/server
communication models including but not
limited to client polling, Server-Sent Events
and WebSockets

2. Efficiently use WebSockets, Server-Sent Events,
and JSON in Java EE applications

3. Learn about JAX-RS 2.0 new features and
enhancements

RESTful PHP Web Services
ISBN: 978-1-84719-552-4 Paperback: 220 pages

Learn the basic architectural concepts and steps
through examples of consuming and creating
RESTful web services in PHP

1. Get familiar with REST principles

2. Learn how to design and implement PHP web
services with REST

3. Real-world examples, with services and client
PHP code snippets

4. Introduces tools and frameworks that can
be used when developing RESTful PHP
applications

Please check www.PacktPub.com for information on our titles

RESTful Java Web Services
ISBN: 978-1-84719-646-0 Paperback: 256 pages

Master core REST concepts and create RESTful web
services in Java

1. Build powerful and flexible RESTful web
services in Java using the most popular Java
RESTful frameworks to date (Restlet, JAX-RS
based frameworks Jersey and RESTEasy,
and Struts 2)

2. Master the concepts to help you design and
implement RESTful web services

3. Plenty of screenshots and clear explanations to
facilitate learning

Java EE 6 with GlassFish 3
Application Server
ISBN: 978-1-84951-036-3 Paperback: 488 pages

A practical guide to install and configure the
GlassFish 3 Application Server and develop Java
EE 6 applications to be deployed to this server

1. Install and configure the GlassFish 3
Application Server and develop Java EE 6
applications to be deployed to this server

2. Specialize in all major Java EE 6 APIs, including
new additions to the specification such as CDI
and JAX-RS

3. Use GlassFish v3 application server and gain
enterprise reliability and performance with
less complexity

4. Clear, step-by-step instructions, practical
examples, and straightforward explanations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	What is JAX-RS 2.0?
	Features of JAX-RS 2.0

	Ease of use and reusing JAX-RS artifacts
	Modules and dependencies
	Creating a new project
	Summary

	Chapter 2: Server API
	Root resource classes
	@Path
	@Path with a regular expression

	HTTP methods
	@GET
	@PUT
	@POST
	@DELETE
	@Produces
	@Consumes

	Parameter annotations
	@PathParam
	@QueryParam
	@DefaultValue
	@MatrixParam
	@HeaderParam
	@CookieParam
	@FormParam
	@BeanParam

	Subresources
	Scope of the root resource classes
	Rules of injection
	Deploying a RESTful web service
	Summary

	Chapter 3: Client API
	Consuming web service using client
	The get method
	The post method
	The put method
	The delete method
	The path parameter
	The query parameter
	The cookie parameter
	The matrix parameter
	The bean parameter
	The @Produces annotation
	The @Consumes annotation

	Use of Invocation.Builder
	Adding support for new representations
	Client transport connectors
	Securing a client

	Summary

	Chapter 4: Common Media
Type Representations
	JSON
	MOXy
	Using ResourceConfig class

	Java API for JSON Processing (JSON-P)
	Jackson
	Jettison

	XML
	Low-level XML support
	JAXB support
	POJOs

	Multipart
	Summary

	Chapter 5: Server-Sent Events (SSE)
	Getting started
	Implementing Server-Sent Events (SSE)
	Consuming the SSE events
	The pull model (Using EventInput)
	The push model (using EventSource)

	Summary

	Chapter 6: WADL
	Getting started
	Configuration
	Summary

	Index

