
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Drupal	8	Configuration	Management

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Drupal	8	Configuration	Management

Credits

About	the	Authors

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

So	what	is	configuration	in	Drupal	terms?

How	it	works	in	Drupal	8

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Understanding	Configuration	Management

An	introduction	to	Configuration	Management

Configuration

Content

Session

State

Why	manage	configuration?

Tracking	configuration	changes

www.allitebooks.com

http://www.allitebooks.org

Some	version	control	best	practices

Using	a	project	management	tool

Meaningful	commit	messages

Meaningful	branches

A	look	back	at	Drupal	7

Manual	Configuration	Management

The	hook_install()/hook_update_N()	function

The	Features	module

What	is	the	Features	module?

Creating	a	Feature

The	settings	to	export	with	Features

The	settings	to	not	export	with	Features

The	Configuration	Management	module

Storing	configuration	variables	in	settings.php

How	Drupal	8	takes	care	of	Configuration	Management

How	to	start	using	Configuration	Management

Using	version	control	to	keep	track	of	configuration	changes

Types	of	configuration

Configuration	storage	and	deploying	between	environments

Summary

2.	Configuration	Management	for	Administrators

Why	do	we	want	to	manage	our	configuration?

Making	a	clone	of	your	site

The	Configuration	Management	interface

The	interface	options

Using	full	import/export

Single	import/export

Summary

3.	Drupal	8’s	Take	on	Configuration	Management

The	config	directory

A	simple	configuration	example

www.allitebooks.com

http://www.allitebooks.org

Config	and	schema	files	–	what	are	they	and	what	are	they	used	for?

Config	files

Schema	files

Learning	the	difference	between	active	and	staging	directories

Changing	the	active	configuration	storage

Changing	the	storage	location	of	the	active	and	staging	directories

Simple	configuration	versus	configuration	entities

Simple	configuration

Configuration	entities

Summary

4.	The	Configuration	Management	API

A	simple	configuration	API

Working	with	configuration	data

Retrieving	the	configuration	object

Getting	configuration	values

Setting	configuration	values

Removing	configuration	values

Best	practices

Getting	notified	about	configuration	changes

Overriding	the	configuration

Global	overrides

Language	overrides

Module	overrides

Avoiding	overrides

Creating	configuration	entity	types

Adding	the	basics

Taking	control	of	your	data

Summary

5.	The	Anatomy	of	Schema	Files

What	are	schema	files	in	Drupal?

The	structure	of	a	schema	file

www.allitebooks.com

http://www.allitebooks.org

Properties

Data	types

Reusing	data	types

Making	data	translatable

Dynamic	type	references

The	element-key	references

The	sub-key	references

The	parent-key	references

Coding	standards

PHP	API

Summary

6.	Adding	Configuration	Management	to	Your	Module

Default	configuration

An	example

Defining	and	using	your	own	configuration

Setting	your	configuration	file

Custom	configuration	entity	types

Using	the	configuration

Creating	a	configuration	form

Configuration	forms	in	Drupal	7

Creating	configuration	forms	in	Drupal	8

Adding	a	form	controller

Route	and	menu	items

The	result

Summary

7.	Upgrading	Your	Drupal	7	Variables	to	the	Drupal	8	Configuration

Upgrading	your	variables

Simple	configuration

Complex	configuration	objects

Upgrading	to	the	new	state	system

Providing	an	upgrade	path	for	your	variables

www.allitebooks.com

http://www.allitebooks.org

Migrating	your	data

Source	plugins

Process	plugins

Destination	plugins

Running	the	migration

Summary

8.	Managing	Configuration	for	Multilingual	Websites

Multilingual	sites	in	Drupal	7

The	Locale	module

Content	translation

Translating	other	types	of	content

Translation	settings/configuration

Translating	entities

Translating	in	Drupal	8

Configuration	translation

Translating	the	configuration

Storing	translations

Exporting	and	importing	configuration	translations

Summary

9.	Useful	Tools	and	Getting	Help

Community	documentation

The	administration	guide	documentation

Contributed	modules

The	configuration	inspector	for	Drupal	8

Configuration	development

Drush

Exporting	and	importing	your	configuration	using	Drush	commands

Forums

The	issue	queue

IRC	chat

Summary

www.allitebooks.com

http://www.allitebooks.org

Questions

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Drupal	8	Configuration	Management

Drupal	8	Configuration	Management
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2015

Production	reference:	1130315

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-520-3

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Stefan	Borchert

Anja	Schirwinski

Reviewers

Greg	Dunlap

Johannes	Haseitl

Thomas	Keitel

Jose	A.	Reyero

Dev	Saran

Commissioning	Editor

Julian	Ursell

Acquisition	Editor

Kevin	Colaco

Content	Development	Editor

Shubhangi	Dhamgaye

Technical	Editor

Indrajit	A.	Das

Copy	Editors

Alfida	Paiva

Adithi	Shetty

Project	Coordinator

Harshal	Ved

Proofreaders

Stephen	Copestake

Maria	Gould

Indexer

Priya	Sane

Production	Coordinator

Alwin	Roy

Cover	Work

Alwin	Roy

About	the	Authors
Stefan	Borchert	has	been	working	with	Drupal	for	more	than	9	years.	In	the	community,
he	is	better	known	by	his	nickname	stBorchert.	He	contributes	to	Drupal	by	writing
contributed	modules,	helping	with	Drupal	Core,	and	providing	help	to	new	contributors	as
a	project	application	review	administrator.	He	is	a	founding	partner	and	senior	Drupal
developer	at	undpaul,	a	Drupal	Digital	Agency	based	in	Germany.

Anja	Schirwinski	got	to	know	Drupal	more	than	8	years	ago	as	a	themer/site	builder	and
went	on	to	build	several	very	different	web	applications	with	it	for	the	company	she
worked	for.	She	has	been	a	participating	member	of	the	Drupal	community	since	2007,
known	by	the	nickname	aschiwi.

From	2009-2010,	Anja	was	the	deputy	chair	of	the	Drupal	Initiative,	a	registered
association	that	promotes	Drupal	in	Germany.	She	is	the	cofounder	and	CEO	of	undpaul,
one	of	the	first	Drupal-only	digital	agencies	in	Germany.	She	founded	the	company	in
2010	with	friends	she	met	at	a	local	Drupal	user	group.

About	the	Reviewer
Thomas	Keitel,	also	known	as	hctom	on	the	Web,	started	with	computers	as	a	kid	using
an	Amiga	500	for	his	first	graphic	designs.	When	technology	evolved,	he	became	more
and	more	interested	in	learning	how	to	program	and	design	for	the	Web.	He	completed	his
training	as	a	digital	media	designer	in	2003,	focusing	on	a	combination	of	development
and	design.	Being	more	of	a	self-learner,	he	taught	himself	several	web	programming
languages	before	finally	settling	for	PHP.	This	got	him	started	with	Drupal	in	2007.	Over
the	years,	he	built	a	wide	range	of	Drupal	sites	from	small	corporate	sites	to	big
community	and	content	portals.

In	August	2014,	he	started	working	for	undpaul,	one	of	Germany’s	oldest	Drupal-only
digital	agencies.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
In	professional	web	development,	especially	when	working	in	teams	of	any	size,
configuration	management	is	one	of	the	most	important	tasks	when	it	comes	to	keeping
track	of	configuration	changes.

The	Wikipedia	article	for	Software	Configuration	Management	states	that	“In	software
engineering,	software	configuration	management	(SCM)	is	the	task	of	tracking	and
controlling	changes	in	the	software,	which	is	part	of	the	larger	cross-discipline	field	of
configuration	management.	SCM	practices	include	revision	control	and	the	establishment
of	baselines.	If	something	goes	wrong,	SCM	can	determine	what	was	changed	and	who
changed	it.	If	a	configuration	is	working	well,	SCM	can	determine	how	to	replicate	it
across	many	hosts.”

So	what	is	configuration	in	Drupal	terms?
In	Drupal,	configuration	includes	topics	such	as	content	types,	fields,	menus,	or	text
formats.	Creating	or	changing	a	configuration	on	a	live	site	poses	a	high	risk	and	makes
changes	untraceable.	Questions	such	as	who	made	a	change,	and	when	and	why	it	was
made,	cannot	be	answered.

Up	until	Drupal	7,	Drupal	had	all	configuration	stored	in	the	database.	By	Drupal	7,	most
professional	Drupal	developers	kept	track	of	their	configuration	changes	by	exporting
them	to	code,	the	most	popular	option	being	the	Features	module,	and	version-controlling
it	with	a	version	control	system	such	as	Git.

How	it	works	in	Drupal	8
When	planning	for	Drupal	8,	the	so-called	Configuration	Management	Initiative	was	led
by	Greg	Dunlap	in	order	to	make	developers’	lives	easier.	Configuration	still	lives	in	the
database,	but	can	be	easily	exported	to	YAML	text	files.	You	can	now	deploy	a
configuration	from	one	environment	to	another	(between	cloned	instances	of	the	same
site).	This	capability	replaces	the	need	for	various	contributed	modules	such	as	Features,
Strongarm,	and	Context.

This	book	will	teach	you	everything	you	need	to	know	about	Drupal	8’s	brand	new
configuration	system.	We	hope	you	enjoy	it.

www.allitebooks.com

http://www.allitebooks.org

What	this	book	covers
Chapter	1,	Understanding	Configuration	Management,	will	give	you	a	quick	overview	of
Drupal	8’s	hottest	new	feature:	Configuration	Management.	You	will	learn	what	types	of
configuration	exist,	why	managing	configuration	is	a	good	idea,	and	how	to	get	started
with	it.	We	will	introduce	you	to	version	control	and	show	you	some	best	practices.	We
will	provide	a	look	at	the	several	ways	in	which	configuration	was	managed	in	Drupal	7
and	then	show	how	Drupal	8	approaches	the	problem.

Chapter	2,	Configuration	Management	for	Administrators,	provides	an	introduction	on
how	to	use	Configuration	Management	for	users	who	are	not	developers,	but
administrators	of	a	Drupal	website	who	want	to	make	use	of	the	advantages	of	this	new
feature.	We	will	show	you	how	to	use	the	Configuration	Management	interface	and	how	to
create	a	copy	of	your	website,	and	you	will	learn	how	to	move	a	configuration	made	on
one	site	to	another	site.

Chapter	3,	Drupal	8’s	Take	on	Configuration	Management,	will	show	you	the	inner
workings	of	the	Configuration	Management	system	in	Drupal	8.	You	will	learn	about
config	and	schema	files,	and	read	about	the	difference	between	simple	configuration	and
configuration	entities.

Chapter	4,	The	Configuration	Management	API,	will	teach	you	how	to	get	your	hands
dirty	and	learn	about	the	Configuration	Management	API	of	Drupal	8.	Here,	you	will	dive
into	the	Simple	Configuration	API	and	learn	how	configuration	can	be	overridden.	Later,
you	will	take	a	closer	look	at	how	to	create	custom	configuration	entity	types,	and	we’ll
also	teach	you	about	the	configuration’s	context	system.

Chapter	5,	The	Anatomy	of	Schema	Files,	covers	schema	files	and	explains	how	Drupal
uses	them	for	Configuration	Management.	You	will	learn	about	the	structure	of	schema
files	used	by	Drupal	and	write	your	own	schema	for	custom	configuration.

Chapter	6,	Adding	Configuration	Management	to	Your	Module,	will	teach	you	how	to
access	configuration	objects	and	how	schema	files	are	structured	in	the	previous	chapters.
(You	will	surely	want	to	know	how	to	get	all	this	fancy	stuff	into	your	shiny	new	module
for	Drupal	8).	You	will	learn	how	to	include	the	default	configuration	in	custom	modules,
how	to	define	and	use	your	own	configuration,	and	how	to	create	configuration	forms.

Chapter	7,	Upgrading	Your	Drupal	7	Variables	to	the	Drupal	8	Configuration,	will	show
you	ways	to	convert	your	Drupal	7	variables	into	Drupal	8	Configuration	objects	and	how
to	provide	an	upgrade	path	in	your	modules.

Chapter	8,	Managing	Configuration	for	Multilingual	Websites,	allows	you	to	build
comprehensive	multilingual	websites	in	which	you	can	display	a	site’s	content	in	different
languages	and	translate	the	user	interface.	While	many	features	were	built	into	Drupal’s
core	in	previous	versions,	building	multilingual	sites	remained	a	very	painful	task.	In	this
chapter,	we	will	take	a	look	at	how	Drupal	7	deals	with	different	languages	on	a	site	and
how	Drupal	8	is	trying	to	fix	weaknesses	from	previous	versions.

Chapter	9,	Useful	Tools	and	Getting	Help,	provides	a	list	of	links	and	tools	provided	by
the	Drupal	community;	these	will	be	useful	if	you	reach	a	point	where	you	need	help	when
dealing	with	Configuration	Management.

What	you	need	for	this	book
To	follow	along	with	this	book,	you	need	an	installation	of	Drupal	8,	preferably	in	a	local
development	environment.	There’s	some	good	documentation	about	setting	up	a	local
development	environment	at	https://www.drupal.org/setting-up-development-environment.
Specific	system	requirements	for	all	Drupal	versions	are	listed	at
https://www.drupal.org/requirements.

To	follow	the	code	examples,	you	will	need	a	text	editor	or	an	IDE.	There’s	a	good	list	of
suitable	software	at	https://www.drupal.org/node/147789.

https://www.drupal.org/setting-up-development-environment
https://www.drupal.org/requirements
https://www.drupal.org/node/147789

Who	this	book	is	for
Drupal	Configuration	Management	is	intended	for	anyone	who	uses	Drupal	8	to	build
websites,	whether	they	are	a	hobbyist	using	Drupal	for	the	first	time,	or	a	long-time
Drupal	site	builder,	or	a	professional	web	developer.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Finally,
to	run	the	migrations,	we	need	to	execute	the	Drush	command	migrate-manifest.”

A	block	of	code	is	set	as	follows:

#	Example	for	Drupal	7	to	Drupal	8	migration

d7_cm_example_settings

d7_cm_example_block

d7_block

d7_filter_format

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“On	this	page,	you	simply
select	Simple	configuration	as	the	configuration	type,	paste	the	copied	configuration
value	into	the	text	area,	and	click	on	Import.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.allitebooks.com

http://www.allitebooks.org

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.	You	can	contact	the	authors	at	http://drupal-8-
configuration-management.undpaul.com	if	you	are	facing	a	problem	with	any	aspect	of
this	book,	and	they	will	do	their	best	to	address	it.

http://drupal-8-configuration-management.undpaul.com

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Understanding	Configuration
Management
In	this	first	chapter,	we	will	give	you	a	quick	overview	of	Drupal	8’s	hottest	new	feature:
Configuration	Management.	You	will	learn	what	types	of	configuration	exist,	why
managing	configuration	is	a	good	idea,	and	how	to	get	started	with	it.	We	will	introduce
you	to	version	control	and	show	some	best	practices.	We	will	also	provide	a	look	at	the
several	ways	in	which	configuration	was	managed	in	Drupal	7,	and	then	show	how	Drupal
8	approaches	the	problem.

An	introduction	to	Configuration
Management
The	general	definition	of	the	term	“Configuration	Management”	is	somewhat	different
from	the	definition	of	Configuration	Management	in	Drupal	8.	To	make	things	easier,	we
will	focus	on	explaining	what	Configuration	Management	is	in	Drupal	terms.

Configuration	Management	in	Drupal	8	aims	at	making	configuration	manageable	across
different	environments	by	allowing	us	to	store	configuration	in	files	instead	of	the
database.

Let’s	start	by	defining	what	configuration	is,	and	what	other	types	of	information	exist	in
Drupal	8.

www.allitebooks.com

http://www.allitebooks.org

Configuration
Configuration	is	the	information	about	your	site	that	is	not	content	and	is	meant	to	be
more	permanent,	such	as	the	name	of	your	site,	the	content	types,	fields,	and	views	you
have	defined.

Content
Content	is	the	information	meant	to	be	displayed	on	your	site,	such	as	articles,	basic
pages,	images,	files,	and	so	on.

Session
This	is	the	information	about	an	individual	user’s	interactions	with	the	site,	such	as
whether	they	are	logged	in.

State
This	is	information	of	a	temporary	nature	about	the	current	state	of	your	site.	Examples
include	the	time	when	Cron	was	last	run,	whether	node	access	permissions	need
rebuilding,	and	so	on.

Why	manage	configuration?
It’s	simple	to	explain	why	configuration	that	is	only	saved	in	the	database	is	bad.	You
can’t	keep	track	of	any	changes	(who	made	what	change,	and	when);	it’s	hard	to	work
with	a	group	of	people	(you	simply	can’t	get	their	changes	without	using	their	SQL	dump,
and	using	their	dump	would	delete	your	work);	and,	if	you	build	something	on	a
development	environment,	how	do	you	get	it	to	the	live	site?	You	get	the	gist.	We	want
our	configuration	in	files,	and	Drupal	8	gives	us	just	that.

Before	Drupal	8,	a	variety	of	methods	were	used	to	transport	configuration	from	one
environment	to	another—for	example,	from	a	development	environment	to	a	production
environment.

These	included	some	rather	bad	methods	such	as	writing	down	the	process	to	manually
recreate	the	same	configuration,	which	is	error-prone;	dumping	the	development	database
in	the	live	site,	which	loses	all	content	created	in	the	meantime;	and	some	better	but	rather
time-consuming	methods,	such	as	writing	update	hooks	or	using	the	contributed	module
Features	to	export	configuration	to	a	module.	The	latter	is	one	of	the	most	used	methods	in
Drupal	7	because	it	works	well	most	of	the	time,	produces	well-arranged	files,	and	can	be
used	without	having	to	write	any	code,	which	is	good	because	anyone	can	create	a	Feature
without	having	to	know	how	to	code.

Even	though	you	can	use	the	new	Configuration	Management	system	without	a	version
control	system	such	as	Git,	it’s	at	its	best	when	used	with	one.	Version-controlling	your
configuration	allows	you	to	track	document	changes.	Later	in	this	chapter,	we	will	show
you	how	to	get	the	best	out	of	version-controlling	your	configuration.	Version-controlled
Configuration	Management	is	crucial	to	developing	and	maintaining	quality	in	a	Drupal
project,	especially	when	working	with	a	team	of	developers.	Exposing	all	developers	to
the	same	code	and	providing	a	history	for	the	code	increases	efficiency	a	lot.

At	first,	it	might	seem	frustrating	to	have	to	learn	something	new.	However,	software	tends
to	change	over	time,	and	changes	are	hard	to	track	using	just	your	memory.	This	is	really
one	of	the	best	ways	to	improve	your	project	and	save	your	time	and	money,	so	make	sure
you	learn	it!

Tracking	configuration	changes
Drupal	8’s	new	Configuration	Management	system	can	be	used	without	a	version	control
system,	but	if	you	want	to	really	improve	your	process,	you	should	use	it	in	combination
with	version	control.	Having	organized	and	versioned	code	helps	prevent	mistakes	and
duplicated	efforts	between	multiple	developers;	it	serves	as	documentation	of	the	project’s
history	and	can	show	who	worked	on	what	and,	very	importantly,	why.

There	are	others,	but	we	are	going	to	talk	about	Git	as	our	example	version	control	tool
because	it’s	used	by	the	Drupal	community	and	offers	everything	we	need	in	terms	of
functionality,	scalability,	and	ease-of-use.

Note
Use	a	version	control	tool	such	as	Git	to	get	the	best	out	of	the	Configuration	Management
system!

The	best	time	to	start	with	versioned	Configuration	Management	is	at	the	beginning	of	the
development.	However,	it’s	never	too	late,	even	if	your	project	has	been	started	or	even
finished	for	a	while.	Check	your	Drupal	site	configuration,	organize	it,	and	put	everything
in	a	Git	repository.	Now,	you	have	a	good	starting	point	from	which	to	manage	and
document	any	changes	that	will	be	made	to	the	project	in	the	future.

Some	version	control	best	practices
So	let’s	see	what	will	really	improve	the	development	process	when	using	version	control.

Using	a	project	management	tool
You	will	achieve	the	best	results	if	you	put	your	work	tasks	in	a	project	management	tool
such	as	the	free	and	open	source	tool	Redmine.	If	you’re	not	used	to	working	with	a
project	management	tool,	it	might	take	some	discipline	to	keep	track	of	your	work	this
way,	but	it	has	so	many	advantages.	The	ticket	holds	information	about	what	needs	to	be
done	and	you	can	use	the	ticket’s	comments	to	discuss	requirements,	give	status	updates,
or	report	problems.

Most	project	management	tools	also	have	some	sort	of	ID	for	each	ticket.	You	can	use	the
ticket	ID	in	your	Git	commit	messages,	which	is	a	very	good	way	to	know	why	a	commit
was	made.

Meaningful	commit	messages
Commit	messages	are	a	very	important	part	of	your	code	documentation	when	working
with	version	control.	When	looking	for	something	that	was	done	in	the	past,	you	will	first
scan	through	the	commit	messages,	as	shown	in	the	following	screenshot:

It	makes	no	sense	at	all	to	just	use	a	commit	message	such	as	stuff	or	even	asdf.	You	might
laugh,	but	we’ve	seen	both	of	these	in	real-world	projects.	When	you	start	out	with	version
control,	it	will	take	some	discipline	to	write	meaningful	commit	messages,	but	it’s	really
worth	it	when	you	come	across	a	bug	and	are	looking	for	code	that	might	have	caused	it.
Make	sure	you	always	use	the	ticket	ID	that	your	project	management	tool	provides	and
put	it	at	the	beginning	of	your	commit	message.	When	you	find	the	commit	that	causes	the
problem,	the	ID	will	give	you	more	information	about	what	was	done	there	and	for	what
reason.

Note
Small	and	well-structured	commits	are	more	effective.

Also,	make	commits	small!	Do	not	wait	until	your	workday	is	over	to	commit	everything
you	did	on	that	day.	This	will	make	it	more	difficult	to	go	through	the	changes	in	that
specific	commit.	For	example,	make	each	new	contributed	module	you	add	to	your	project
a	separate	commit;	do	not	add	5	modules	at	once	or	a	module	together	with	other	code	or
configuration.

Meaningful	branches
Tickets	that	require	a	lot	of	work	should	be	worked	on	in	a	separate	branch.	When	you
name	that	branch,	make	sure	you	use	your	ticket	ID	at	the	beginning—for	instance,	1234-
publications,	as	shown	in	the	following	screenshot:

www.allitebooks.com

http://www.allitebooks.org

A	look	back	at	Drupal	7
Configuration	Management	in	Drupal	7	isn’t	as	simple	as	its	equivalent	in	Drupal	8.	In
Drupal	7,	almost	the	entire	configuration	set	on	a	site	is	stored	in	the	database	by	default.
This	includes	simple	variables,	content	types	and	field	configuration,	settings	from	custom
or	contributed	modules,	and	so	on.

Using	the	database	to	store	settings	makes	it	really	hard	to	track	configuration	changes	or
roll	back	a	bunch	of	settings	to	a	state	defined	earlier.

Unfortunately,	there	is	no	real	standard	for	Configuration	Management	in	Drupal	7,	but
there	are	several	ways	to	manage	site	and	module	settings	in	the	code.

We	will	take	a	short	look	at	the	following	five	different	approaches:

Manual	Configuration	Management
The	hook_install()	/	hook_update_N()	function
The	Features	module
The	Configuration	Management	module
Storing	configuration	variables	in	settings.php

Manual	Configuration	Management
Many	users	of	Drupal	manage	their	configuration	manually.	They	try	to	remember	each
setting	they’ve	made	in	the	local	development	environment	and	then	recreate	every	step
on	the	live	site.	At	first	sight,	this	seems	to	be	very	fast	and	easy,	but	if	you	have	to
manually	set	permissions	for	some	roles	multiple	times,	you’ll	never	want	to	do	this
manually	again	after	hearing	there	are	much	better	ways.

Additionally,	you	will	never	know	if	a	setting	has	changed	and	all	of	your	configuration
will	not	be	version-controlled	(because	it	only	exists	in	the	database).	Also,	it	makes
working	in	a	team	much	more	painful	than	necessary.

If	you	ever	want	to	share	configuration	between	two	or	more	instances	of	a	site,	don’t	do
this.

Tip
Don’t	use	manual	Configuration	Management!

The	hook_install()/hook_update_N()	function
Install	and	update	hooks	are	the	simplest	way	to	manage	configuration	on	a	Drupal	7	site
in	code.	The	basic	idea	behind	this	approach	is	to	set	configuration	values	while	installing
a	module	or	running	update.php.	Within	the	.install	file	of	a	custom	module,	you
implement	hook_install()	and/or	hook_update_N(),	and	add	the	code	needed	to	set	the
configuration	to	these	functions:

<?php	

/**

	*	Implements	hook_install().

	*/

function	my_module_install()	{

		//	Set	site	name.

		variable_set('site_name',	'Configuration	Management');

}

In	this	example,	we	simply	set	the	variable	site_name	to	the	Configuration	Management
value,	so	the	name	of	our	site	will	be	updated	to	this	value	after	enabling	the	module.	The
possibilities	given	here	are	nearly	endless.	In	addition	to	setting	simple	variables,	you
might	add	new	roles,	update	block	settings,	or	even	create	new	content	types.	However,
while	it’s	technically	possible,	it	is	not	recommended	and	not	very	simple	to	export
complex	configuration	(think	of	fields	or	views).	Also,	you	need	a	developer	to	actually
write	the	code.

Unfortunately,	this	is	one-way	configuration	management,	so	there	is	no	way	to
automatically	save	changes	that	you	have	made	on	the	site’s	configuration	back	to	code.
You	have	to	update	the	code	manually	with	the	new	settings	(for	example,	add	a	new
implementation	of	hook_update_N()).

Additionally,	you	do	not	have	any	chance	to	see	which	settings	were	changed	by	a	user.	If
you	want	to	save	the	current	state	of	configuration,	you	need	to	go	through	all	settings	set
in	hook_install()	or	hook_update_N()	and	compare	them	with	the	current	settings	on
the	site.

The	Features	module
To	manage	configuration	in	Drupal	7,	most	people	use	the	Features	module
(https://drupal.org/project/features).	If	you	need	a	simple	tool	to	export	your	configuration
and	put	it	under	version	control,	Features	is	the	module	to	work	with	in	Drupal	7.

What	is	the	Features	module?
To	quote	James	Sansbury	from	Lullabot:

“The	Features	module	is	a	module	that	creates	other	modules	called	features.”

In	other	words,	Features	helps	you	to	put	your	site’s	configuration	into	code	so	that	you
can	keep	track	of	changes	and	simply	share	it	with	other	sites.	It	was	originally	created	to
serve	another	purpose:	to	group	multiple	configurations	for	one	use-case	so	you	could
package	actual	site	features	and	use	them	in	different	sites.	However,	due	to	a	lack	of
alternatives,	it	ended	up	becoming	popular	as	a	tool	to	manage	Drupal	configuration.

Features	works	by	using	so-called	components	that	hold	information	about	configuration
objects	provided	by	Drupal	itself	or	contributed	modules.

Features	uses	different	types	of	components:	configuration	objects	that	live	in	code
without	the	need	for	an	instance	in	the	database	(exportable	components)	and	so-called
faux-exportable	components	that	must	exist	in	the	database.	Exports	of	faux-exportable
components	are	used	to	synchronize	configuration	objects	in	the	database,	so	the	settings
are	always	up-to-date.

To	make	an	object	exportable,	you	can	write	a	module	and	use	your	own	default	hook
handling	and	export	generation.	The	default	hook	provides	a	default	state	of	your
configuration	object	that	is	directly	used	on	the	site	or	synchronized	with	the	database
(depending	on	the	needs	of	this	object).

A	very	simple	example	of	an	object	exported	using	a	default	hook	is	a	content	type.
Custom	modules	can	provide	their	own	content	types	using	hook_node_info():

<?php

/**

	*	Implements	hook_node_info().

	*/

function	cm_blog_node_info()	{

		return	array(

				'blog'	=>	array(

						'name'	=>	t('Blog'),

						'base'	=>	'blog',

						'description'	=>t('Use	for	multi-user	blogs.'),

),

);

}

?>

This	simple	example	(taken	from	api.drupal.org)	defines	a	new	content	type	with	the

https://drupal.org/project/features
http://api.drupal.org

machine	name	blog.	Additionally,	it	sets	the	human-readable	name	to	Blog	and	adds	a
short	description	to	the	type,	so	users	know	about	its	purpose.

A	better	way	to	make	custom	configuration	objects	exportable	is	to	integrate	the	module
with	the	CTools	Export	API.

Note
The	CTools	Export	API	has	been	designed	to	provide	a	standardized	way	to	export	and
import	objects	in	Drupal.	Developers	simply	add	some	special	keys	to	the	object’s	schema
and	implement	a	load	function	as	well	as	a	save	function.

Using	the	CTools	Export	API,	Features	will	automatically	integrate	with	your	module
and	handle	the	export	and	synchronization	of	your	components.	Prominent	representatives
of	contributed	modules	that	implement	this	in	Drupal	7	are	Views	and	Panels.

Creating	a	Feature
Creating	a	Feature	is	very	easy.	Using	the	user	interface	of	the	Features	module,	you
simply	add	the	components	you	would	like	to	export	to	the	newly	created	module.	While
generating	the	new	module,	Features	uses	the	defined	default	hooks	or	the	CTools	Export
API	to	save	the	information	about	the	components	to	code	so	you	don’t	need	to	write	the
code	yourself.	While	writing	the	code	may	be	fairly	easy	for	content	types	(as	shown
previously),	writing	down	the	complete	configuration	of	a	field,	an	image	style,	or	even	a
view	is	not	so	simple,	and	you	do	not	want	to	do	this	manually.	With	Features,	you	only
need	a	few	clicks	to	get	the	configuration	into	code.	Take	a	look	at	the	following
screenshot:

In	the	preceding	example,	we	selected	the	content	type	Blog	along	with	some	permissions.
As	you	can	see,	Features	automatically	added	the	required	dependencies	to	other	modules
along	with	the	information	about	the	fields	of	the	content	type	and	common	variables
related	to	the	type.

After	adding	everything	you	want	to	include	in	the	export,	you	can	download	the	feature
or	let	Features	directly	create	the	files	on	your	disk.

Note
If	you	create	a	new	Feature,	make	sure	you	use	a	unique	machine-readable	name	that	does
not	conflict	with	any	existing	module.	The	best	practice	is	to	prepend	the	machine	name
with	an	abbreviation	of	your	project	or	site	name	(in	our	example,	cm_blog).

After	downloading	the	Feature	and	enabling	it	in	the	same	way	as	any	other	module,	you
are	able	to	track	changes	to	components	in	the	Feature.	For	example,	if	you	change	the
label	of	a	field	included	in	the	Feature,	the	Feature	will	be	shown	as	overridden.	With	the

help	of	the	Diff	module,	it	even	displays	each	modified	component	as	follows:

You	can	then	choose	between	reverting	the	Feature	to	its	default	state	(that’s	what	you
have	in	the	code	of	your	Feature),	which	would	undo	the	change	you	made	to	your	field
label,	or	you	can	update	the	Feature,	which	gives	you	the	modified	values	in	code,	so	you
can	share	it	with	others	or	distribute	it	to	another	environment.

Both	tasks	can	either	be	done	using	the	Feature	UI	or	Drush,	which	is	much	faster.

The	settings	to	export	with	Features
Basically,	all	components	that	rely	on	the	CTools	Export	API,	or	on	modules	that	define
default	hooks,	may	be	exported.

These	include	the	following:

Variables:	These	are	exported	using	the	Strongarm	module,	which	implements	the
CTools	Export	API	for	all	entries	in	the	variables	table	of	Drupal
Views:	These	are	exported	using	the	default	hook:	hook_views_default_views()
Content	types:	These	are	directly	exported	by	the	Features	API	using	Drupal’s
hook_node_info()

Field	definitions:	These	are	exported	using	default	hooks	defined	by	Features	itself
And	many	more:	These	include	text	formats,	image	styles,	and	rules
(http://www.drupal.org/project/rules)

The	settings	to	not	export	with	Features
While	some	components	may	theoretically	be	exportable,	it	is	not	always	sensible	to	do
this.	For	example,	exporting	cache	variables	or	variables	that	store	timestamps	such	as
cron_last,	which	stores	the	date	when	the	last	cron	was	run,	would	result	in	constantly
overridden	Features.	There	is	also	no	benefit	in	having	components	such	as	this	in	code,
because	you	can’t	actively	change	it,	and	you	don’t	need	to	know	its	value	for	anything.

As	a	general	rule	of	thumb,	you	should	never	export	components	that	change	often,	such
as	timestamps	or	status	variables.

http://www.drupal.org/project/rules

The	Configuration	Management	module
The	Configuration	Management	module	is	the	latest	approach	we	will	take	a	look	at	here.
While	Features	was	never	really	intended	to	do	real	Configuration	Management,	the
Configuration	Management	module	takes	some	core	concepts	from	the	Drupal	8
Configuration	Management	Initiative	and	makes	them	available	for	Drupal	7.

The	main	concept	behind	this	module	is	the	data	storage	architecture.	It	defines	an
activestore	and	a	datastore	to	manage	the	configuration	of	a	site.	The	activestore
represents	the	current	state	of	an	individual	configuration	component	(for	example,	a
variable	in	the	database)	whereas	the	datastore	is	defined	as	the	file	that	contains	the
default	state	of	the	component.

After	changing	the	value	of	a	component	tracked	by	the	Configuration	Management
module,	you	can	save	its	value	back	to	the	datastore	(the	module	updates	the
corresponding	files	for	you)	so	that	you	can	track	the	changes	in	your	version	control
system.

Looking	at	the	export	of	this	configuration	in	the	following	screenshot,	you	will	notice
many	similarities.	This	is	due	to	the	fact	that	both	modules	use	the	CTools	Export	API
and	nearly	the	same	default	hooks	to	import/export	the	data.

The	main	advantage	of	the	Configuration	Management	module	in	comparison	to	Features
is	the	reduction	to	pure	Configuration	Management.	There	is	no	possibility	for	a	developer
to	extend	the	export	with	custom	code	(that	is	hook_form_alter()	or	hook_menu())	as	is
done	often	when	exporting	configuration	objects	with	Features.	The	export	simply
contains	the	components	you	want	to	put	under	version	control	and	nothing	more.

Storing	configuration	variables	in	settings.php
There	is	one	more	way	to	store	settings	back	in	Drupal	7:	your	site’s	settings.php,	which
you	know	from	storing	your	database	details	in	it.	The	Drupal	installation	process	and
Drupal	modules	use	the	variables	table	to	store	different	types	of	information	that	will	be
used	at	runtime.	The	values	of	these	variables	can	be	overridden	in	the	settings.php	file.
Every	module,	when	enabled,	may	add	variables	that	can	be	altered	in	the	configuration
setting.	One	example	is	the	variable	named	theme_default,	which	sets	the	default	theme.

Variables	stored	inside	your	settings.php	file’s	$conf	array	will	override	whatever	is	in
the	variables	table	of	your	database.	This	is	really	useful	when	you	need	different
configuration	for	different	environments,	such	as	local,	staging,	and	production.

There	is	a	complete	list	of	default	variables	available	on	a	fresh	installation	of	Drupal	at
https://www.drupal.org/node/1525472.

www.allitebooks.com

https://www.drupal.org/node/1525472
http://www.allitebooks.org

How	Drupal	8	takes	care	of	Configuration
Management
Drupal	8	totally	changes	the	way	configuration	is	managed	on	a	site.	The	configuration
can	be	stored	in	files	instead	of	the	database,	so	it	is	not	a	problem	to	put	it	under	version
control.

All	default	configuration	defined	and	used	by	a	module	must	be	able	to	be	stored	in
special	configuration	files	using	the	YAML	specification	and	the	.yml	file	extension.
YAML	is	short	for	YAML	Ain’t	Markup	Language;	according	to	its	creators,	YAML	is	a
human-friendly	data	serialization	standard	for	all	programming	languages.	In	short,	it’s
easier	to	read	and	write.	Each	module	provides	its	own	default	configuration	files	in	a
special	folder	named	config,	which	makes	it	easy	to	see	which	configuration	a	module
provides.	Taking	the	core	system	module	as	an	example,	you	will	find	several	files	in	the
config	directory	responsible	for	all	configurations	that	the	system	module	handles	on	the
site.

How	to	start	using	Configuration	Management
By	default,	Drupal	8	stores	configuration	in	the	site’s	database.	During	installation	of	your
Drupal	site,	Drupal	adds	a	directory	within	sites/default/files	called	config_HASH,
where	HASH	is	a	long	random	string	of	letters	and	numbers,	as	shown	in	the	following
screenshot:

Using	version	control	to	keep	track	of
configuration	changes
Inside	this	config	directory,	there	are	two	more	directories:	active	and	staging.	Both
contain	no	configuration	files	by	default,	but	they	each	contain	a	helpful	README.txt.

The	contents	of	the	active	directory’s	README.txt	are	as	follows:

If	you	change	the	configuration	system	to	use	file	storage	instead	of	the	database	for	the
active	Drupal	site	configuration,	this	directory	will	contain	the	active	configuration.	By
default,	this	directory	will	be	empty.	If	you	are	using	files	to	store	the	active	configuration,
and	you	want	to	move	it	between	environments,	files	from	this	directory	should	be	placed
in	the	staging	directory	on	the	target	server.	To	make	this	configuration	active,	visit
admin/config/development/configuration/sync	on	the	target	server.	For	information
about	how	to	deploy	configuration	between	servers,	see
http://drupal.org/documentation/administer/config.

The	staging	directory’s	README.txt	explains	the	following	points:

In	order	to	start	using	Configuration	Management	to	keep	track	of	your	configuration
changes,	all	you	have	to	do	is	export	your	current	configuration	and	place	it	inside	the
staging	directory	as	follows:

1.	 Go	to	/admin/config/development/configuration/full/export	and	use	the
Export	button	to	download	an	archive	of	your	site	configuration,	as	shown	in	the
following	screenshot:

2.	 Save	the	archive	inside	the	sites/default/files/config_HASH/staging	folder	of
your	Drupal	source	files	and	extract	the	contents	of	the	archive.	The	result	should
look	something	like	this:

http://drupal.org/documentation/administer/config

Tip
If	you’re	familiar	with	the	Drupal	command-line	tool	Drush,	you	can	export
configuration	with	a	simple	command.	Check	Chapter	9,	Useful	Tools	and	Getting
Help	for	details.

You	can	find	more	detailed	information	in	the	next	chapter,	Chapter	2,	Configuration
Management	for	Administrators.

Types	of	configuration
There	are	two	types	of	configuration	in	Drupal	8:	simple	configuration	and	configuration
entities.

Simple	configuration	is	basically	the	same	as	variables	(that	is,	the	site	name	or	the
number	of	nodes	on	the	front	page)	and	is	used	for	single	global	settings.

Looking	at	the	system	module’s	configuration	file	system.site.yml,	you	see	some
examples	for	simple	configuration.	The	file	defines	the	default	values	for	some	of	the
main	settings	you	will	need	on	your	site—that	is,	the	site	name	or	the	default	e-mail
address:

name:	'Configuration	Management	in	Drupal	8'

mail:	'info@example.com'

slogan:	''

page:

		403:	''

		404:	''

		front:	user

langcode:	en

As	you	can	see,	configuration	can	even	be	nested,	so	you	can	group	settings.

Configuration	entities	are	more	complex	than	a	simple	configuration,	and	are	used	for
objects	that	can	have	multiple	copies	such	as	content	types	or	views.

Configuration	storage	and	deploying	between
environments
Earlier	in	this	chapter,	we	learned	about	the	directory	named	staging.	In	this	directory,
you	put	the	configuration	you	would	like	to	import	into	a	copy	of	your	Drupal	site—for
example,	to	copy	changes	from	your	local	environment	to	your	production	site.	Simply
export	the	new	configuration	from	your	local	environment,	place	it	in	the	staging	directory
of	your	production	site	(preferably	by	using	version	control),	and	import	it	later	at
admin/config/development/configuration/sync.

Note	that,	at	the	time	of	writing	this	book,	the	active	directory	is	not	used	as	originally
intended.	Its	original	purpose	was	to	store	the	site’s	currently	active	configuration	but,
since	that	is	now	kept	in	the	database,	the	active	directory	remains	empty.	This	might
change	in	future	versions	of	Drupal	8.

Summary
Now	you	have	a	very	complete	overview	of	what	Configuration	Management	is	in	Drupal
8	and	why	you	should	make	use	of	it.	You	read	about	some	best	practices	that	show	you
how	to	best	keep	track	of	your	changes	with	version	control.	You	also	learned	about	all	the
different	ways	to	achieve	some	kind	of	Configuration	Management	in	Drupal	7	and	were
given	a	basic	introduction	to	the	way	it	works	in	Drupal	8.	Read	on	to	find	out	how	site
administrators	with	no	programming	knowledge	can	use	this	system.

Chapter	2.	Configuration	Management
for	Administrators
In	the	previous	chapter,	we	learned	about	the	general	concept	of	Configuration
Management	and	how	we	used	Configuration	Management	in	Drupal	7,	or	at	least	how	we
tried	to	do	it.

This	chapter	will	provide	an	introduction	on	how	to	use	Configuration	Management,	for
administrators	(rather	than	developers)	of	a	Drupal	website	who	want	to	make	use	of	the
advantages	of	this	new	feature.	We	will	show	you	how	to	use	the	Configuration
Management	interface,	how	to	create	a	copy	of	your	website,	and	how	to	move
configuration	made	on	one	site	to	another	site.

Why	do	we	want	to	manage	our
configuration?
If	you’re	not	a	developer,	you	might	wonder	what	you	need	Configuration	Management
for.	Up	until	now,	you	have	probably	made	any	changes	right	in	the	live	website,	which
we	call	the	Production	website.	For	example,	you	might	have	added	a	field	to	a	content
type	or	moved	a	block	to	a	new	region.	Sometimes,	this	works	fine,	sometimes	it	doesn’t.
When	everything	breaks,	you	may	have	to	import	a	backup	database,	if	you	are	lucky
enough	to	have	one.	In	the	meantime,	any	visitors	to	your	site	may	have	seen	a	broken	site
and	probably	declined	to	come	back.	In	professional	web	development,	it’s	crucial	to	not
make	changes	to	the	production	website.	Developers	don’t	build	new	features	in	the	live
website	but	in	a	local	copy	of	the	site.	Only	when	they	are	satisfied	with	the	result	will	the
changes	go	live.

We	want	to	make	our	configuration	live	as	fast	as	possible.	We	don’t	want	to	have	to	click
our	way	through	everything	again.	This	is	where	Drupal	8’s	Configuration	Management
comes	in.	It	allows	you	to	easily	export	all	configuration	from	a	development	copy	of	your
site	in	a	single	.zip	file	and	to	import	it	to	your	live	website.

Note
As	a	best	practice,	make	sure	you	never	make	configuration	changes	in	the	production
website	or	they	will	get	lost	the	next	time	you	import	a	configuration	from	your
development	site.

The	development	and	production	websites	can	be	seen	as	follows:

Making	a	clone	of	your	site
For	Configuration	Management	to	work,	you	need	to	create	an	exact	copy	of	your	website.
This	might	change	in	future	versions	of	Drupal	8	but,	at	the	time	of	writing,	it	has	to	be	an
exact	copy.	If	you	don’t	have	a	local	development	environment	set	up,	that	copy	could	be
on	the	same	server	your	website	runs	on.	Copy	the	directory	that	Drupal	runs	in,	and	also
copy	the	database.	Make	sure	you	change	the	database	name	in	your	settings.php	file!	It
doesn’t	matter	whether	you	use	the	original	site	or	the	copy	as	your	development	site	or
your	production	site.	Just	make	the	decision	and	then	stick	to	it.	Read	on	to	find	out	how
to	export	configuration	from	the	development	site	and	import	it	to	the	production	site.

The	Configuration	Management	interface
Let’s	take	a	look	at	Drupal	8’s	Configuration	Management	interface	that	was	created	for
website	administrators	without	programming	knowledge.	Now	that	you	have	two	copies
of	your	site,	go	to	the	one	that	you	identify	as	your	Development	Site.	As	a	simple
example	for	the	following	explanations,	we	will	use	the	configuration	for	Site	name,
which	is	the	name	you	picked	for	your	site	during	installation.	Navigate	to	Configuration
|	System	|	Site	information,	change	the	contents	of	the	site	name,	and	save	the	page.	You
will	find	out	how	to	apply	those	changes	to	what	you	identified	as	your	Production	Site.

You	can	find	the	Configuration	Management	interface	by	navigating	to	Configuration	|
Configuration	management	(admin/config/development/configuration),	as	shown	in
the	following	screenshot:

The	interface	options
In	the	first	tab,	Synchronize,	you	will	see	that	there	are	no	configuration	changes,	which
means	your	site	is	using	the	configuration	files	from	the	database	and	that	no	changes
were	made	to	the	site.

The	second	tab,	Single	Import/Export,	allows	you	to	import	just	a	single	configuration
file.	We	will	not	go	into	details	here	but,	if	you’re	interested,	you	can	read	more	about	it	in
the	Configuration	Management	documentation	on	Drupal.org	at
https://drupal.org/documentation/administer/config.

The	third	tab,	Full	Import/Export,	is	the	option	we	will	focus	on	now.	After	clicking	on
the	tab,	you	will	see	two	suboptions:	Import	and	Export,	as	shown	in	the	following
screenshot:

https://drupal.org/documentation/administer/config

Go	ahead	and	grab	an	export	of	your	configuration.	Clicking	on	the	Export	button	will
present	you	with	the	download	of	an	archive	file	named	config.tar.gz.	Save	this
somewhere.	Now,	to	actually	do	something	with	a	configuration	exported	from	your
development	site	(let’s	call	this	Site	A	from	here	on),	you	need	to	go	to	the	Production
copy	of	your	site	(this	will	be	Site	B	from	here	on).	Refer	to	the	Making	a	clone	of	your
site	section	earlier	in	this	chapter	for	how	to	do	this.

Using	full	import/export

Now	that	you	have	exported	your	config.tar.gz	file,	we	can	get	started	with	importing	it
into	Site	B.

Go	to	Site	B	and	visit	admin/config/development/configuration/full/import	(Full
Import/Export).	Select	your	saved	config.tar.gz	from	Site	A	and	upload	it,	as	shown	in
the	following	screenshot:

After	uploading	the	file,	go	to	the	Synchronize	page
(admin/config/development/configuration)	and	you	should	now	see	something	like
the	following	listing:

This	page	lists	all	the	configuration	changes,	so	you	can	check	if	everything	is	correct
before	completing	the	import.

In	our	example,	there	is	a	change	to	the	file	system.site.yml,	because	that	is	where	the
site	name	is	stored.	Drupal	recognizes	this,	tells	us	that	this	file	was	changed,	and	allows
you	to	view	the	differences,	as	shown	in	the	following	screenshot:

Once	you’re	done	checking	the	changes,	close	the	popup	and	click	on	Import	all.

The	import	may	take	up	to	a	few	minutes,	depending	on	the	number	of	differences
between	both	sites,	as	shown	in	the	following	screenshot:

As	soon	as	the	import	is	finished,	you	will	be	redirected	back	to
admin/config/development/configuration,	where	you	can	see	that	there	are	no	further
configuration	changes,	as	shown	in	the	following	screenshot:

Now	check	your	site	information	again	at	admin/config/system/site-information,	and
you	will	see	that	the	site	name	from	your	Site	A	is	now	also	in	your	Site	B.

You	will	really	enjoy	this	simple	process	once	you’re	dealing	with	bigger	changes	to	your
site,	such	as	a	new	or	changed	content	type.

Although,	theoretically,	you	should	make	all	changes	during	development	and	export	from
there	to	production,	sometimes	direct	changes	to	the	production	site	may	be	necessary.	To
take	those	changes	from	the	production	site	to	development,	simply	export	the	full
production	site	configuration,	save	the	resulting	config.tar.gz,	and	then	import	that	into
your	development	site.	This	will	update	the	development	site	with	your	production
changes.	From	here,	you	can	continue	making	further	changes	on	development	and	import
back	to	production,	as	previously	explained.

Single	import/export
This	is	an	advanced	option.	To	use	it,	you	will	have	to	know	which	configuration	type	and
name	you’re	looking	for.	You	don’t	need	to	use	this	option	at	all,	but	let’s	quickly	cover
what	it’s	good	for.	You	don’t	always	need	to	synchronize	the	entire	configuration	between
two	installations.	Sometimes,	you	only	need	to	transfer	a	single	configuration	value	or
configuration	entity	from	Site	A	to	Site	B.

Let’s	use	our	previous	example	and	assume	that	you	would	like	to	copy	the	configuration
for	the	site	name	to	Site	B.	On	Site	A,	change	the	site	name	again	and	then	navigate	to
admin/config/development/configuration/single/export.	You	will	need	to	select	the
type	of	configuration	to	export	and	(after	selecting	it)	the	specific	name	of	the
configuration.	In	our	case,	we	select	Simple	configuration	as	the	configuration	type,	and
system.site	as	the	name.

As	soon	as	you	select	the	configuration	name,	the	contents	of	the	text	area	will	be	updated
with	the	current	value	of	the	selected	configuration	object.

Copy	the	contents	of	the	text	area	and	navigate	to
admin/config/development/configuration/single/import	on	Site	B.	On	this	page,
you	simply	select	Simple	configuration	as	the	configuration	type,	paste	the	copied

configuration	value	into	the	text	area,	and	click	on	Import.	After	confirming	the	action,
you	will	be	redirected	back	to	the	page	when	your	configuration	has	been	imported
successfully.

There	is	another	way	of	moving	your	configuration	from	one	site	to	another	without	using
the	interface.	We	will	get	to	this	in	the	next	chapter.

Summary
In	this	chapter,	we	have	learned	how	to	use	the	Configuration	Management	interface	and
how	to	create	a	copy	of	our	website,	and	also	learned	how	to	move	a	configuration	made
on	one	site	to	another	site.	In	the	next	chapter,	we	will	learn	the	inner	workings	of	the
Configuration	Management	system	in	Drupal	8.

Chapter	3.	Drupal	8’s	Take	on
Configuration	Management
In	this	chapter,	we	will	show	you	the	inner	workings	of	the	Configuration	Management
system	in	Drupal	8.	You	will	learn	about	config	and	schema	files	and	read	about	the
difference	between	simple	configuration	and	configuration	entities.

The	config	directory
During	installation,	Drupal	adds	a	directory	within	sites/default/files	called
config_HASH,	where	HASH	is	a	long	random	string	of	letters	and	numbers,	as	shown	in
the	following	screenshot:

This	sequence	is	a	random	hash	generated	during	the	installation	of	your	Drupal	site.	It	is
used	to	add	some	protection	to	your	configuration	files.	Additionally	to	the	default
restriction	enforced	by	the	.htaccess	file	within	the	subdirectories	of	the	config	directory
that	prevents	unauthorized	users	from	seeing	the	content	of	the	directories.	As	a	result,
would	be	really	hard	for	someone	to	guess	the	folder’s	name.

Within	the	config	directory,	you	will	see	two	additional	directories	that	are	empty	by
default	(leaving	the	.htaccess	and	README.txt	files	aside).

One	of	the	directories	is	called	active.	If	you	change	the	configuration	system	to	use	file
storage	instead	of	the	database	for	active	Drupal	site	configuration,	this	directory	will
contain	the	active	configuration.	If	you	did	not	customize	the	storage	mechanism	of	the
active	configuration	(we	will	learn	later	how	to	do	this),	Drupal	8	uses	the	database	to
store	the	active	configuration.

The	other	directory	is	called	staging.	This	directory	is	empty	by	default,	but	can	host	the
configuration	you	want	to	be	imported	into	your	Drupal	site	from	another	installation.	You
will	learn	how	to	use	this	later	on	in	this	chapter.

A	simple	configuration	example
First,	we	want	to	become	familiar	with	configuration	itself.	If	you	look	into	the	database
of	your	Drupal	installation	and	open	up	the	config	table	,	you	will	find	the	entire	active
configuration	of	your	site,	as	shown	in	the	following	screenshot:

Note
Depending	on	your	site’s	configuration,	table	names	may	be	prefixed	with	a	custom	string,
so	you’ll	have	to	look	for	a	table	name	that	ends	with	config.

Don’t	worry	about	the	strange-looking	text	in	the	data	column;	this	is	the	serialized
content	of	the	corresponding	configuration.	It	expands	to	single	configuration	values—that
is,	system.site.name,	which	holds	the	value	of	the	name	of	your	site.

Changing	the	site’s	name	in	the	user	interface	on	admin/config/system/site-
information	will	immediately	update	the	record	in	the	database;	thus,	put	simply	the
records	in	the	table	are	the	current	state	of	your	site’s	configuration,	as	shown	in	the
following	screenshot:

But	where	does	the	initial	configuration	of	your	site	come	from?	Drupal	itself	and	the
modules	you	install	must	use	some	kind	of	default	configuration	that	gets	added	to	the
active	storage	during	installation.

Config	and	schema	files	–	what	are	they
and	what	are	they	used	for?
In	order	to	provide	a	default	configuration	during	the	installation	process,	Drupal
(modules	and	profiles)	comes	with	a	bunch	of	files	that	hold	the	configuration	needed	to
run	your	site.	To	make	parsing	of	these	files	simple	and	enhance	readability	of	these
configuration	files,	the	configuration	is	stored	using	the	YAML	format.

Note
YAML	(http://yaml.org/)	is	a	data-orientated	serialization	standard	that	aims	for	simplicity.
With	YAML,	it	is	easy	to	map	common	data	types	such	as	lists,	arrays,	or	scalar	values.

http://yaml.org/

Config	files
Directly	beneath	the	root	directory	of	each	module	and	profile	defining	or	overriding
configuration	(either	core	or	contrib),	you	will	find	a	directory	named	config.	Within	this
directory,	there	may	be	two	more	directories	(although	both	are	optional):	install	and
schema.

Check	the	image	module	inside	core/modules	and	take	a	look	at	its	config	directory,	as
shown	in	the	following	screenshot:

The	install	directory	shown	in	the	following	screenshot	contains	all	configuration	values
that	the	specific	module	defines	or	overrides	and	that	are	stored	in	files	with	the	extension
.yml	(one	of	the	default	extensions	for	files	in	the	YAML	format):

During	installation,	the	values	stored	in	these	files	are	copied	to	the	active	configuration	of
your	site.	In	the	case	of	default	configuration	storage,	the	values	are	added	to	the	config
table;	in	file-based	configuration	storage	mechanisms,	on	the	other	hand,	the	files	are
copied	to	the	appropriate	directories.

Looking	at	the	filenames,	you	will	see	that	they	follow	a	simple	convention:	<module
name>.<type	of	configuration>[.<machine	name	of	configuration	object>].yml

(setting	aside	<module	name>.settings.yml	for	now).	The	explanation	is	as	follows:

<module	name>:	This	is	the	name	of	the	module	that	defines	the	settings	included	in
the	file.	For	instance,	the	image.style.large.yml	file	contains	settings	defined	by
the	image	module.
<type	of	configuration>:	This	can	be	seen	as	a	type	of	group	for	configuration
objects.	The	image	module,	for	example,	defines	several	image	styles.	These	styles
are	a	set	of	different	configuration	objects,	so	the	group	is	defined	as	style.	Hence,
all	configuration	files	that	contain	image	styles	defined	by	the	image	module	itself
are	named	image.style.<something>.yml.

Note
The	same	structure	applies	to	blocks	(<block.block.*.yml>),	filter	formats
(<filter.format.*.yml>),	menus	(<system.menu.*.yml>),	content	types
(<node.type.*.yml>),	and	so	on.

<machine	name	of	configuration	object>:	The	last	part	of	the	filename	is	the
unique	machine-readable	name	of	the	configuration	object	itself.	In	our	examples
from	the	image	module,	you	see	three	different	items:	large,	medium,	and	thumbnail.
These	are	exactly	the	three	image	styles	you	will	find	on
admin/config/media/image-styles	after	installing	a	fresh	copy	of	Drupal	8.	The
image	styles	are	shown	in	the	following	screenshot:

Schema	files
The	primary	reason	schema	files	were	introduced	into	Drupal	8	is	multilingual	support.	A
tool	was	needed	to	identify	all	translatable	strings	within	the	shipped	configuration.

The	secondary	reason	is	to	provide	actual	translation	forms	for	configuration	based	on
your	data	and	to	expose	translatable	configuration	pieces	to	external	tools.

Each	module	can	have	as	many	configuration	the	.yml	files	as	needed.	All	of	these	are
explained	in	one	or	more	schema	files	that	are	shipped	with	the	module.	As	a	simple
example	of	how	schema	files	work,	let’s	look	at	the	system’s	maintenance	settings	in	the
system.maintenance.yml	file	at	core/modules/system/config/install.	The	file’s
contents	are	as	follows:

message:	'@site	is	currently	under	maintenance.	We	should	be	back	shortly.	

Thank	you	for	your	patience.'

langcode:	en

The	system	module’s	schema	files	live	in	core/modules/system/config/schema.	These
define	the	basic	types	but,	for	our	example,	the	most	important	aspect	is	that	they	define
the	schema	for	the	maintenance	settings.	The	corresponding	schema	section	from	the
system.schema.yml	file	is	as	follows:

system.maintenance:

		type:	mapping

		label:	'Maintenance	mode'

		mapping:

				message:

						type:	text

						label:	'Message	to	display	when	in	maintenance	mode'

				langcode:

						type:	string

						label:	'Default	language'

The	first	line	corresponds	to	the	filename	for	the	.yml	file,	and	the	nested	lines	underneath
the	first	line	describe	the	file’s	contents.

Mapping	is	a	basic	type	for	key-value	pairs	(always	the	top-level	type	in	.yml).	The
system.maintenance.yml	file	is	labeled	as	label:	'Maintenance	mode'.	Then,	the
actual	elements	in	the	mapping	are	listed	under	the	mapping	key.	As	shown	in	the	code,
the	file	has	two	items,	so	the	message	and	langcode	keys	are	described.	These	are	a	text
and	a	string	value,	respectively.	Both	values	are	given	a	label	as	well	in	order	to	identify
them	in	configuration	forms.

Chapter	5,	The	Anatomy	of	Schema	Files	will	cover	schema	files	in	greater	detail.

Learning	the	difference	between	active
and	staging	directories
By	now,	you	know	that	Drupal	works	with	the	two	directories	active	and	staging.	But
what	is	the	intention	behind	those	directories?	And	how	do	we	use	them?

The	configuration	used	by	your	site	is	called	the	active	configuration	since	it’s	the
configuration	that	is	affecting	the	site’s	behavior	right	now.	The	current	(active)
configuration	is	stored	in	the	database	and	direct	changes	to	your	site’s	configuration	go
into	the	specific	tables.	The	reason	Drupal	8	stores	the	active	configuration	in	the	database
is	that	it	enhances	performance	and	security.	Source:
https://www.drupal.org/node/2241059.

However,	sometimes	you	might	not	want	to	store	the	active	configuration	in	the	database
and	might	need	to	use	a	different	storage	mechanism.	For	example,	using	the	filesystem	as
configuration	storage	will	enable	you	to	track	changes	in	the	site’s	configuration	using	a
versioning	system	such	as	Git	or	SVN.

https://www.drupal.org/node/2241059

Changing	the	active	configuration	storage
If	you	do	want	to	switch	your	active	configuration	storage	to	files,	here’s	how:

Note
Note	that	changing	the	configuration	storage	is	only	possible	before	installing	Drupal.
After	installing	it,	there	is	no	way	to	switch	to	another	configuration	storage!

To	use	a	different	configuration	storage	mechanism,	you	have	to	make	some	modifications
to	your	settings.php	file.

First,	you’ll	need	to	find	the	section	named	Active	configuration	settings.	Now	you
will	have	to	uncomment	the	line	that	starts	with
$settings['bootstrap_config_storage']	to	enable	file-based	configuration	storage.
Additionally,	you	need	to	copy	the	existing	default.services.yml	(next	to	your
settings.php	file)	to	a	file	named	services.yml	and	enable	the	new	configuration
storage:

services:

		#	Override	configuration	storage.

		config.storage:

				class:	Drupal\Core\Config\CachedStorage

				arguments:	['@config.storage.active',	'@cache.config']

		config.storage.active:

				#	Use	file	storage	for	active	configuration.

				alias:	config.storage.file

This	tells	Drupal	to	override	the	default	service	used	for	configuration	storage	and	use
config.storage.file	as	the	active	configuration	storage	mechanism	instead	of	the
default	database	storage.

After	installing	the	site	with	these	settings,	we	will	take	another	look	at	the	config
directory	in	sites/default/files	(assuming	you	didn’t	change	to	the	location	of	the
active	and	staging	directory):

As	you	can	see,	the	active	directory	contains	the	entire	site’s	configuration.	The	files	in
this	directory	get	copied	here	during	the	website’s	installation	process.	Whenever	you
make	a	change	to	your	website,	the	change	is	reflected	in	these	files.

Exporting	a	configuration	(as	we	did	in	the	previous	chapter)	always	exports	a	snapshot	of
the	active	configuration,	regardless	of	the	storage	method.

The	staging	directory	contains	the	changes	you	want	to	add	to	your	site.	Drupal	compares
the	staging	directory	to	the	active	directory	and	checks	for	changes	between	them.	In
the	previous	chapter,	we	taught	you	how	to	use	the	Configuration	Management	Interface
to	export	and	import	configuration	files.	When	you	upload	your	compressed	export	file,	it
actually	gets	placed	inside	the	staging	directory.

This	means	you	can	save	yourself	the	trouble	of	using	the	interface	to	export	and	import
the	compressed	file	if	you’re	comfortable	enough	with	copy-and-pasting	files	to	another
directory.	Just	make	sure	you	copy	all	of	the	files	to	the	staging	directory	even	if	only	one
of	the	files	was	changed.	Any	missing	files	are	interpreted	as	deleted	configuration,	and
will	mess	up	your	site.

In	order	to	get	the	contents	of	staging	into	active,	we	simply	have	to	use	the	synchronize
option	at	admin/config/development/configuration	again.	This	page	will	show	us	what
was	changed	and	allows	us	to	import	the	changes.	On	importing,	your	active	configuration
will	get	overridden	with	the	configuration	in	your	staging	directory.	Note	that	the	files
inside	the	staging	directory	will	not	be	removed	after	the	synchronization	is	finished.	The
next	time	you	want	to	copy-and-paste	from	your	active	directory,	make	sure	you	empty
staging	first.

Note
Note	that	you	cannot	override	files	directly	in	the	active	directory.	The	changes	have	to	be
made	inside	staging	and	then	synchronized.

Changing	the	storage	location	of	the	active	and
staging	directories
In	case	you	do	not	want	Drupal	to	store	your	configuration	in	sites/default/files,	you
can	set	the	path	according	to	your	wishes.	Actually,	this	is	recommended	for	security
reasons,	as	these	directories	should	never	be	accessible	over	the	Web	or	by	unauthorized
users	on	your	server.

Additionally,	it	makes	your	life	easier	if	you	work	with	version	control.	By	default,	the
whole	files	directory	is	usually	ignored	in	version-controlled	environments	because
Drupal	writes	to	it,	and	having	the	active	and	staging	directory	located	within
sites/default/files	would	result	in	them	being	ignored	too.

So	how	do	we	change	the	location	of	the	configuration	directories?

Before	installing	Drupal,	you	will	need	to	create	and	modify	the	settings.php	file	that
Drupal	uses	to	load	its	basic	configuration	data	from	(that	is,	the	database	connection
settings).	If	you	haven’t	done	it	yet,	copy	the	default.settings.php	file	and	rename	the
copy	to	settings.php.	Afterwards,	open	the	new	file	with	the	editor	of	your	choice	and
search	for	the	following	line:

$config_directories	=	array();

Change	the	preceding	line	to	the	following	(or	simply	insert	your	addition	at	the	bottom	of
the	file).

$config_directories	=	array(

		CONFIG_ACTIVE_DIRECTORY	=>	'./../config/active',	//	folder	outside	the	

webroot

		CONFIG_STAGING_DIRECTORY	=>	'./../config/staging',	//	folder	outside	the	

webroot

);

The	directory	names	can	be	chosen	freely,	but	it	is	recommended	that	you	at	least	use
similar	names	to	the	default	ones	so	that	you	or	other	developers	don’t	get	confused	when
looking	at	them	later.	Remember	to	put	these	directories	outside	your	webroot,	or	at	least
protect	the	directories	using	an	.htaccess	file	(if	using	Apache	as	the	server).

Directly	after	adding	the	paths	to	your	settings.php	file,	make	sure	you	remove	write
permissions	from	the	file	as	it	would	be	a	security	risk	if	someone	could	change	it.	Drupal
will	now	use	your	custom	location	for	its	configuration	files	on	installation.

You	can	also	change	the	location	of	the	configuration	directories	after	installing	Drupal.
Open	up	your	settings.php	file	and	find	these	two	lines	near	the	end	of	the	file	and	start
with	$config_directories.	Change	their	paths	to	something	like	this:

$config_directories['active']	=	'./../config/active';

$config_directories['staging]	=	'./../config/staging';

This	path	places	the	directories	above	your	Drupal	root.

Now	that	you	know	about	active	and	staging,	let’s	learn	more	about	the	different	types	of

configuration	you	can	create	on	your	own.

Simple	configuration	versus	configuration
entities
As	soon	as	you	want	to	start	storing	your	own	configuration,	you	need	to	understand	the
differences	between	simple	configuration	and	configuration	entities.	Here’s	a	short
definition	of	the	two	types	of	configuration	used	in	Drupal.	Please	refer	to	the	next	chapter
for	an	in-depth	look	at	the	Configuration	Management	API	to	learn	more	about	these	two.

Simple	configuration
This	configuration	type	is	easier	to	implement	and	therefore	ideal	for	basic	configuration
settings	that	result	in	Boolean	values,	integers,	or	simple	strings	of	text	being	stored,	as
well	as	global	variables	that	are	used	throughout	your	site.	A	good	example	would	be	the
value	of	an	on/off	toggle	for	a	specific	feature	in	your	module,	or	our	previously	used
example	of	the	site	name	configured	by	the	system	module:

name:	'Configuration	Management	in	Drupal	8'

Simple	configuration	also	includes	any	settings	that	your	module	requires	in	order	to
operate	correctly.	For	example,	JavaScript	aggregation	has	to	be	either	on	or	off.	If	it
doesn’t	exist,	the	system	module	won’t	be	able	to	determine	the	appropriate	course	of
action.

Configuration	entities
Configuration	entities	are	much	more	complicated	to	implement	but	far	more	flexible.
They	are	used	to	store	information	about	objects	that	users	can	create	and	destroy	without
breaking	the	code.	A	good	example	of	configuration	entities	is	an	image	style	provided	by
the	image	module.

Take	a	look	at	the	image.style.thumbnail.yml	file:

uuid:	fe1fba86-862c-49c2-bf00-c5e1f78a0f6c

langcode:	en

status:	true

dependencies:	{		}

name:	thumbnail

label:	'Thumbnail	(100×100)'

effects:

		1cfec298-8620-4749-b100-ccb6c4500779:

				uuid:	1cfec298-8620-4749-b100-ccb6c4500779

				id:	image_scale

				weight:	0

				data:

						width:	100

						height:	100

						upscale:	false

third_party_settings:	{		}

This	defines	a	specific	style	for	images,	so	the	system	is	able	to	create	derivatives	of
images	that	a	user	uploads	to	the	site.

Configuration	entities	also	come	with	a	complete	set	of	create,	read,	update,	and	delete
(CRUD)	hooks	that	are	fired	just	like	any	other	entity	in	Drupal,	making	them	an	ideal
candidate	for	configuration	that	might	need	to	be	manipulated	or	responded	to	by	other
modules.	As	an	example,	the	Views	module	uses	configuration	entities	that	allow	for	a
scenario	where,	at	runtime,	hooks	are	fired	that	allow	any	other	module	to	provide
configuration	(in	this	case,	custom	views)	to	the	Views	module.

Summary
In	this	chapter,	you	learned	about	how	to	store	configuration	and	briefly	got	to	know	the
two	different	types	of	configuration.

The	next	chapter	will	give	you	an	in-depth	look	at	the	Configuration	API.

Chapter	4.	The	Configuration
Management	API
In	the	previous	chapters,	we	explained	the	basic	concepts	of	Configuration	Management	in
Drupal	8	and	also	talked	about	the	different	types	of	configuration.	Now	we	will	get	our
hands	dirty	and	learn	about	the	Configuration	Management	API	of	Drupal	8.	Here,	we	will
dive	into	the	Simple	Configuration	API	and	learn	how	configuration	can	be	overridden.
Later,	we	will	take	a	closer	look	at	how	to	create	custom	configuration	entity	types,	and
you’ll	also	learn	about	the	configuration’s	context	system.

A	simple	configuration	API
As	you	learned	earlier	in	this	book,	there	are	several	types	of	configuration	objects	in
Drupal	8:	simple	configuration	and	the	more	complex	configuration	entities.

Working	with	configuration	data
If	you’ve	worked	with	Drupal	7	before	and	have	written	some	custom	code,	you	will
surely	remember	the	variable	subsystem.	Drupal	7	itself	and	many	modules	store	their
settings	in	the	{variable}	database	table.	Every	configuration	saved	to	this	table	needs	to
be	serialized	before	saving	and	converted	back	to	its	original	state	while	reading	from	the
table.	To	read	and	write	configuration,	Drupal	7	has	the	widely	used	functions
variable_get($name)	and	variable_set($name,	$value).

Here	are	some	small	examples	of	how	Drupal	7	reads	and	saves	simple	configuration
settings,	taken	from	system.admin.inc:

<?php

//	The	status	message	depends	on	whether	an	admin	theme	is	currently	in	

use:

//	a	value	of	0	means	the	admin	theme	is	set	to	be	the	default	theme.

$admin_theme	=	variable_get('admin_theme',	0);

...

//	Set	the	default	theme.

variable_set('theme_default',	$theme);

?>

As	you	can	see,	Drupal	7	makes	it	quite	simple	to	access	the	site	settings	and	permanently
save	them	back	to	the	database	table.

However,	in	Drupal	8,	all	of	this	changes.	The	complete	variable	subsystem	has	been
removed	from	the	Drupal	core	and	is	reborn	as	the	Simple	Configuration	API.

The	preceding	example	looks	slightly	different	in	Drupal	8:

<?php

//	The	status	message	depends	on	whether	an	admin	theme	is	currently	in	

use:

//	a	value	of	0	means	the	admin	theme	is	set	to	be	the	default	theme.

$admin_theme	=	\Drupal::config('system.theme')->get('admin');

...

//	Set	the	default	theme.

\Drupal::configFactory()->getEditable('system.theme')

		->set('default',	$theme)

		->save();

?>

Pretty	simple,	right?

Let’s	take	a	closer	look	at	the	single	elements	of	the	function	calls.

Retrieving	the	configuration	object
Drupal	8	was	built	on	top	of	the	Symfony	framework	to	make	use	of	its	code	base	while
not	having	to	reinvent	the	wheel.	Additionally,	Drupal	8	switched	to	object-oriented	code,
so	it	mainly	uses	classes	instead	of	procedural	code	within	the	core	components.	To	make
it	easier	to	move	away	from	procedural	to	object-orientated	code,	the	generic	class	Drupal
has	been	created.

Calling	\Drupal	acts	as	a	global	accessor	to	services	within	the	complete	system.	Using
this	notation,	you	can	easily	access	the	basic	services	such	as	caching	the	database,	the
language	manager,	or	configuration.	For	example,	\Drupal::config($name)	is	a	shortcut
for	the	function	get($name)	of	the	ConfigFactory	service,	so	you	don’t	need	to	initialize
the	complete	service	every	time	you	would	like	to	load	a	configuration	object.	The
function	is	the	main	entry	point	to	the	Configuration	Management	API,	so	there	is	no	way
around	it	when	reading	the	configuration.

Our	example	simply	returns	the	configuration	object	for	the	name	system.theme.	Do	you
still	remember	the	.yml	files	we	used	as	an	example	in	previous	chapters?	The	name
sounds	familiar,	right?	In	fact,	a	file	named	system.theme.yml	exists	in	the	config
directory	of	the	system	module:

admin:	''

default:	stark

So	\Drupal::config('system.theme')	will	allow	us	to	access	the	configuration	stored	in
this	file.

Getting	configuration	values
The	next	part	of	the	call	is	->get('admin').	Using	this	function	allows	us	to	access	a
single	value	of	the	loaded	configuration	object.	In	this	case,	the	call	retrieves	the	value	of
admin	key	that	our	configuration	object	stored	in	system.theme.yml.

Of	course,	configuration	values	can	be	nested	as	well.	Looking	at
system.theme.global.yml	as	an	example,	we	see	a	small	hierarchy	of	configuration	with
mimetype	and	path	being	children	of	the	key	favicon:

favicon:

		mimetype:	image/vnd.microsoft.icon

		path:	''

		url:	''

		use_default:	true

In	order	to	access	the	value	of	the	configuration,	Drupal	offers	a	few	different	options.	The
first	option	is	to	directly	get	the	value.	To	do	this,	we	need	to	merge	the	keys	of	each
parent	configuration	with	the	one	we	would	like	to	read,	starting	from	the	highest	level.
The	key	needs	to	be	separated	by	a	single	dot,	so	the	merged	key	for	our	(nested)	example
would	be	favicon.mimetype,	and	the	complete	call	would	be	$value	=
\Drupal::config('system.theme.global')->get('favicon.mimetype');.	The	$value
parameter	now	contains	the	string	image/vnd.microsoft.icon.

Alternatively,	you	could	simply	use	$value	=
\Drupal::config('system.theme.global')->get('favicon');	to	read	all	children	of
the	top-level	key	favicon.	Using	this	call,	$value	will	hold	an	associative	array	that
contains	all	child	configurations	of	the	key	“favicon”	in	system.theme.global.yml:

<?php

array(

		'mimetype'	=>	'image/vnd.microsoft.icon',

		'path'	=>	'',

		'url'	=>	'',

		'use_defaults'	=>	TRUE,

);

?>

It	is	also	possible	to	completely	omit	the	configuration	name	$value	=
\Drupal::config('system.theme.global')->get().	Now,	$value	holds	an	array	with
the	complete	configuration	object	stored	in	system.theme.global.

Setting	configuration	values
The	set	function	call	is	basically	the	same	as	\Drupal::config($name)->get($name);
with	one	minor	but	important	difference:	you	are	not	able	to	change	configuration	values
you	received	using	get($name).	To	update	configuration	objects,	you	need	to	retrieve
them	using	the	function	getEditable($name)	of	the	configuration	factory.	Therefore,	we
do	not	use	the	shortcut	\Drupal::config('system.theme'),	but	need	to	load	the
configuration	object	using	\Drupal::configFactory()-
>getEditable('system.theme').	Trying	to	change	the	value	of	a	configuration	object
loaded	using	the	::config()	shortcut	or	get($name)	will	result	in	an	exception.

If	the	key	you	are	using	with	set()	doesn’t	exist	yet	in	the	configuration	object,	it	will	be
added	so	we	can	use	it	later.

Let’s	get	back	to	our	earlier	example.	We	override	the	configuration	object	system.theme
and	set	the	default	theme	to	the	value	of	the	variable	$theme.	The	value	isn’t	saved
permanently	yet;	only	the	current	instance	of	the	editable	loaded	configuration	object	has
been	modified.	To	write	the	changed	values	back	into	the	configuration	object	(depending
on	your	configuration	storage	mechanism,	this	would	be	in	the	database,	in
system.theme.yml,	or	in	something	else),	we	need	to	do	a	call	to	the	save()function	on
the	configuration	object.

This	function	validates	the	values	of	the	modified	configuration	object	against	a	possibly
existing	schema	and	writes	the	configuration	object	back	to	the	active	storage.

When	setting	values	of	a	configuration	object,	you	are	not	limited	to	one	value	per	call.	If
you	would	like	to	set	several	values	at	once,	you	need	to	provide	an	array	with	all	keys
and	values	to	set	or	add:

<?php

//	Set	multiple	configuration	values	at	once.

\Drupal::configFactory()->getEditable('system.theme')->set(array(

		'admin'	=>	'my_admin_theme',

		'default'	=>	'my_custom_theme',

))->save();

?>	

In	this	example	code,	we	update	the	values	of	the	current	admin	theme	and	change	the
value	for	the	default	theme.

It	is	also	possible	to	replace	all	data	of	a	configuration	object.	If	you	want	to	do	this,	use
the	setData($data)	function.	The	$data	parameter	must	contain	every	key	and	value	pair

that	a	call	to	get()	(without	a	name	specified)	would	return.	If	you	accidently	miss	a	key,
the	key	and	its	value	will	be	removed	from	the	active	configuration,	which	might	break
your	site	(depending	on	the	configuration	you	are	updating).	Setting	single	configuration
values	is	not	possible	with	this	function.	You	need	to	call	set($name,	$value)	multiple
times.

Removing	configuration	values
Sometimes,	you	need	to	remove	configuration	values	from	a	configuration	object	on
purpose.	Back	in	Drupal	7,	you	could	do	this	very	easily	using	variable_del($name).
Drupal	8	offers	two	functions	to	remove	configuration,	clear($key)	and	delete():

<?php

//	Load	configuration	object.

$config	=	\Drupal::configFactory()->getEditable('system.theme');

//	Remove	single	value	from	configuration	object.

$config->clear('admin')->save();

$admin_theme	=	\Drupal::config('system.theme')->get('admin');

?>

As	you	can	see,	we	also	need	to	save	the	changes	so	that	the	modified	configuration	object
gets	written	to	the	corresponding	file.	The	variable	$admin_theme	in	the	preceding
example	will	hold	the	value	NULL,	since	we	removed	it	from	the	configuration	object.

To	remove	entire	configuration	objects,	you	need	to	use	the	delete()function:

<?php

//	Load	configuration	object.

$config	=	\Drupal::configFactory()->getEditable('system.theme');

//	Remove	entire	configuration	object.

$config->delete();

$theme_default	=	\Drupal::config('system.theme')->get('default');

?>

The	delete()	function	should	not	be	followed	by	a	call	to	save()	since	this	would	result
in	an	empty	configuration	file	that	could	break	your	site.

Executing	the	code	would	set	the	value	of	the	$theme_default	variable	to	NULL	because
the	configuration	object	itself	no	longer	exists.

Best	practices
If	you	plan	to	do	several	function	calls	on	the	same	configuration	object,	do	not	instantiate
the	same	object	multiple	times.	The	following	code	is	an	example	of	what	not	to	do:

<?php

\Drupal::configFactory()->getEditable('system.theme')->set('admin',	

'seven')->save();

\Drupal::configFactory()->getEditable('system.theme')->set('default',	

'bartik')->save();

?>

This	code	has	to	load	the	configuration	object	system-theme	multiple	times	and	(even
worse)	needs	to	write	the	entire	configuration	object	to	the	configuration	storage	for	every

change	you	have	made.

A	much	better	solution	is	to	instantiate	the	configuration	object	only	once	and	save	it	to	a
variable.	This	variable	can	then	be	used	to	modify	the	object	and	save	all	changes	at	once:

<?php

//	Load	the	editable	configuration	object.

$config	=	\Drupal::configFactory->getEditable('system.theme');

//	Set	value	of	first	configuration	item.

$config->set('admin',	'seven');

//	Set	another	value.

$config->set('default',	'bartik');

//	Save	changes	back	to	configuration	storage.

$config->save();

?>

Getting	notified	about	configuration	changes
Whenever	Drupal	saves	or	deletes	a	configuration	object,	it	sends	out	a	notification	about
it.	Thanks	to	Symfony’s	event	listener	system,	modules	can	listen	to	these	events	and	react
to	the	changes.

Creating	a	class	that	implements	EventSubscriberInterface	is	the	first	thing	you	need	to
do	when	writing	a	custom	module	that	you	want	to	react	when	a	configuration	object	is
saved	or	deleted.

In	the	following	examples,	we	create	a	module	named	cm_example,	so	we	start	with	a
basic	cm_example.info.yml:

name:	Configuration	Management	example

type:	module

description:	'Example	for	Configuration	Management	in	Drupal	8.'

package:	Custom

version:	8.x-0.1

core:	8.x

To	register	our	event	subscriber,	a	file	named	cm_example.services.yml	needs	to	be
created	with	the	following	contents:

services:

		cm_example.config_subscriber:

				class:	Drupal\cm_example\EventSubscriber\ConfigSubscriber

				tags:

						-	{	name:	event_subscriber	}

Without	this	file	and	definition,	Drupal	will	have	no	idea	whether	we	would	like	to	react
on	any	event	it	triggers.

Next,	we	need	to	create	an	implementation	of	the	previously	mentioned
EventSubscriberInterface	to	create	a	custom	reaction	on	configuration	changes.	We	put
this	file	in	the	src/EventSubscriber	folder	of	our	module	directory:

The	source	code	in	the	ConfigSubscriber.php	is	as	follows:

<?php

/**

	*	@file

	*	Contains	\Drupal\cm_example\EventSubscriber\ConfigSubscriber.

	*/

namespace	Drupal\cm_example\EventSubscriber;

use	Drupal\Core\Config\ConfigCrudEvent;

use	Drupal\Core\Config\ConfigEvents;

use	Symfony\Component\EventDispatcher\EventSubscriberInterface;

/**

	*	Custom	config	subscriber.

	*/

class	ConfigSubscriber	implements	EventSubscriberInterface	{

		/**

			*	{@inheritdoc}

			*/

		static	function	getSubscribedEvents()	{

				$events[ConfigEvents::SAVE][]	=	array('onConfigSave',	40);

				return	$events;

		}

		/**

			*	React	on	changes	of	the	configuration	object	"system.theme".

			*

			*	@param	ConfigCrudEvent	$event

			*			The	configuration	event.

			*/

		public	function	onConfigSave(ConfigCrudEvent	$event)	{

				$saved_config	=	$event->getConfig();

				if	($saved_config->getName()	==	'system.theme')	{

						//	Do	some	magic	based	on	the	saved	configuration.

				}

		}

}

?>

In	the	getSubscribedEvents()	function,	we	create	a	list	of	all	events	that	we	would	like
to	react	on.	This	is	not	limited	to	configuration	events	as	shown	in	the	preceding	code;	you
can	even	react	to	basic	kernel	events,	that	is,	KernelEvents::REQUEST,	which	occurs	at	the
very	beginning	of	request	dispatching.	In	our	example,	we	register	a	custom	function
named	onConfigSave	to	the	event	ConfigEvents::SAVE.

To	allow	prioritization	of	all	registered	functions,	we	add	a	weight	to	the	call.	The
functions	are	executed	in	the	order	of	their	priority,	so	the	function	with	the	highest
priority	will	be	executed	first.	Make	sure	you	don’t	set	the	weight	to	a	value	greater	than
255,	as	this	is	the	weight	of	the	functions	that	the	basic	ConfigFactory	uses.	A	value
between	0	and	40	should	fit	all	your	needs.

If	you	now	save	a	configuration	object	on	your	site,	the	onConfigSave()function	in	our
custom	class	is	called.	Within	the	function,	we	have	access	to	the	configuration	object	that
has	been	written	to	the	configured	storage.

As	said	before,	you	are	not	limited	to	configuration	events.	With
EventSubscriberInterface,	it	is	also	possible	to	override	the	configuration.

Overriding	the	configuration
While	working	with	your	site,	you	sometimes	need	to	override	the	configuration.	Looking
back	at	Drupal	7,	we	remember	it	was	possible	to	set	variables	in	the	settings.php	file.	It
had	the	global	$conf	variable	in	which	you	could	simply	override	the	existing
configuration.	For	example,	you	could	set	the	configuration	for	the	contrib	module
Environment	indicator	(https://drupal.org/project/environment_indicator)	directly	in	the
settings.php	file:

<?php

//	Develop	environment.

$conf['environment_indicator_overwritten_name']	=	'develop';

$conf['environment_indicator_overwritten_color']	=	'#ff940f';

?>

Though	this	is	very	handy,	a	huge	drawback	of	this	system	is	that	it	directly	changes	the
current	configuration.	Submitting	a	settings	form	that	also	contains	this	configuration
might	save	the	overridden	values	to	the	database,	which	we	don’t	usually	want.

Drupal	8	introduces	a	completely	new	configuration	override	system	where	the	overridden
configuration	is	a	new	layer	on	top	of	the	standard	configuration	values.	Configuration
forms	do	not	display	the	overridden	data,	so	they	won’t	pollute	the	active	configuration
storage.	With	the	new	system,	it	is	even	possible	to	store	the	overridden	configuration	with
other	configurations	to	support	version	control.	This	is	very	useful	for	maintaining
language-specific	overrides	(as	explained	later)	in	single	files.

Drupal	8	introduces	three	different	types	of	configuration	overrides:

Global	overrides
Language	overrides
Module	overrides

Global	overrides
The	simple	global	$conf	system	known	from	Drupal	7	is	retained	(while	renaming	the
variable	to	$config),	and	therefore	it	is	still	possible	to	globally	override	specific
configuration	values	using	the	file	settings.php.	None	of	the	values	changed	here	are
visible	in	the	Drupal	administration	interface,	so	you	don’t	have	to	worry	about
overwriting	the	(possibly	version-controlled)	active	configuration	with	these	overrides.

Every	time	you	retrieve	a	configuration	value	using	\Drupal::config($name)-
>get($name),	which	we	described	earlier	in	this	chapter,	the	global	$config	system	is
capable	of	changing	the	returned	value:

<?php

//	Get	system	site	maintenance	message	text.	This	value	may	be	overridden	

by

//	default	from	global	$config	(as	well	as	translations,	see	below).

$message	=	\Drupal::config('system.maintenance')->get('message');

?>

Using	\Drupal::configFactory()->getEditable($name)->get($name)	instead	will

https://drupal.org/project/environment_indicator

return	the	configuration’s	value	without	any	overrides.

To	override	the	maintenance	message,	you	could	add	the	following	code	to	your
settings.php:

<?php

$config['system.maintenance']['message']	=	'Sorry,	our	site	is	currently	

down.';

?>

When	putting	your	site	in	maintenance	mode,	it	will	display	the	text	configured	in	the
settings.php	file	instead	of	displaying	the	default	message	from
system.maintenance.yml.

As	you	can	see,	you	only	have	to	reference	the	name	and	the	keys	of	the	configuration
object	to	change	its	value.

Note
Not	all	configuration	values	are	overridable	using	$config.	For	example,	the	list	of
installed	modules	could	not	be	overridden	here	because	the	installation	process	would	not
be	triggered.

Apart	from	the	global	$config	system,	there	is	also	the	global	$settings	system:

<?php

//	Set	a	custom	theme	for	offline	pages.

$settings['maintenance_theme']	=	'my_custom_maintenance_theme';

?>

However,	this	setting	is	not	defined	as	a	configuration	object	(hence,	it	misses	the	dot-
notation).	Unlike	$config,	$settings	contains	a	configuration	that	cannot	be	changed	or
removed	programmatically.	Some	of	the	configuration	(that	is,	the	database	settings)
stored	in	$settings	are	required	in	a	very	early	phase	of	the	Drupal	bootstrap,	when	even
the	configuration	system	is	not	available	yet,	so	it	is	kept	away	from	$config.

To	access	the	configuration	of	$settings	in	a	module,	you	need	to	use	the	settings()
function	instead	of	the	previously	described	\Drupal::config():

<?php

use	\Drupal\Core\Site\Settings;

//	Load	name	of	maintenance	theme.

$theme	=	Settings::get()->get('maintenance_theme','bartik');

?>

The	\Drupal\Core\Site\Settings	class	utilizes	only	a	few	functions	whereas	you	will
mainly	use	get($name,	$default)	to	retrieve	single	read-only	settings.

Language	overrides
Apart	from	the	possibility	of	overriding	configuration	using	global	$config	and	global
$settings	in	the	settings.php,	there	is	also	a	language	override	system	within	the
ConfigFactory.

For	example,	to	set	the	current	language	for	the	current	configuration,	the	language

module	defines	an	event	subscriber	class	named	LanguageRequestSubscriber	that
overrides	the	current	language	used	by	the	ConfigFactory	on	every	page	request	using	the
EventSubscriberInterface	we’ve	learned	about	earlier.

When	loading	a	configuration	object	from	storage,	ConfigFactory	is	now	able	to	load
configuration	data	specific	to	the	current	language	from	the	configuration	storage.	The
language	overrides	are	stored	right	next	to	the	normal	configuration.	The	only	this	is
different	from	the	default	configuration	files	is	the	naming.

Using	the	default	storage-mechanism-translated	configuration,	the	translation	is	identified
additionally	by	a	collection;	that	is,	translating	your	site’s	name	to	German	will	add	a	new
entry	to	table	{config},	where	the	column	collection	is	filled	with	the	language.de	string.

If	you	use	file-based	storage	for	your	configuration,	you	will	notice	a	folder	named
language	within	your	configuration	directory.	This	directory	contains	one	directory	per
language	and	includes	all	files	of	the	translated	configuration.	In	a	custom	module,	you
can	also	add	custom	translations.	Simply	add	a	language	directory	to	your
config/install,	as	shown	in	the	following	screenshot:

For	every	language	for	which	you	would	like	to	provide	translations,	add	another	directory
under	language	using	the	language	code	as	the	name	(that	is,	de	for	German	or	hu	for
Hungarian).	Then,	place	the	configuration	files	you	would	like	to	translate	in	these
directories	and	translate	the	values.

Note
Translating	configuration	values	provided	by	other	modules	that	use	them	is	not
recommended.	If	the	configuration	translation	already	exists,	your	module	will	not	be
installed.

Only	put	the	configuration	you	translate	in	these	files;	that	is,	if	you	would	like	to	translate
only	the	name	of	your	site	to	German,	create	a	file	named	system.site.yml	in	the
directory	config/install/language/de	(as	shown	in	the	preceding	image)	and	put	the
following	contents	in	it:

name:	'Konfigurationsmanagement	in	Drupal	8'

During	installation	of	your	module,	the	translation	is	imported	into	Drupal	and	is	directly
available	on	your	site.

For	some	tasks,	it	is	necessary	to	load	configuration	objects	in	a	language	other	than	the
current	site	language.	For	example,	think	of	sending	e-mails	to	various	users	in	different
languages.	The	e-mails	should	be	sent	in	the	user’s	language	and	not	in	the	site’s	language.

To	get	configuration	values	in	the	correct	language,	you	need	to	set	the	configuration’s
override	language:

<?php

//	Retrieve	the	current	user	object.

$account	=	\Drupal::currentUser();

//	Get	the	language	manager.

$language_manager	=	\Drupal::languageManager();

//	Load	preferred	user	language.

$language	=	\Drupal::languageManager()->getLanguage($account-

>getPreferredLangcode());

//	Set	configuration	language	override.

$language_manager->setConfigOverrideLanguage($language);

?>

From	now	on,	Drupal	will	return	configuration	values	in	the	requested	language	if	there
were	overrides	available	for	the	requested	values.

If	you	need	to	switch	the	configuration	language,	it	is	useful	to	remember	the	current
language	first	before	setting	a	new	one.	This	way,	you	can	switch	back	to	the	original
language	after	working	with	the	translated	configuration	values:

<?php

//	Store	original	language.

$language_original	=	$language_manager->getConfigOverrideLanguage();

//	Set	configuration	language	override.

$language_manager->setConfigOverrideLanguage($language);

//	Do	some	stuff,	i.e.	send	localized	emails.

//	...

//	Set	the	language	back	to	its	original	value.

$language_manager->setConfigOverrideLanguage($language_original);

?>

Module	overrides
The	last	type	of	configuration	override	is	the	module	override.	While	Drupal	core	handles
global	overrides	as	well	as	language	overrides,	there	are	many	other	use	cases	for	different
kinds	of	overrides.	Think	of	a	configuration	override	based	on	the	roles	a	user	has,	the
current	domain,	and	so	on.	The	possibilities	are	nearly	endless.

Say	you	would	like	to	override	the	name	of	your	site	using	a	custom	module.	First,	you
need	to	extend	the	services.yml	file	we	used	in	a	previous	example	with	these	lines
(adapt	them	to	your	needs	and	replace	cm_example	with	the	name	of	your	module):

		cm_example.config_factory_override:

				class:	Drupal\cm_example\Config\ExampleConfigFactoryOverride

				arguments:	['@config.storage',	'@event_dispatcher',	'@config.typed']

				tags:

						-	{	name:	config.factory.override,	priority:	10	}

As	you	can	see,	we	define	a	new	service	using	the	ExampleConfigFactoryOverride	class.

The	key	part	here	is	the	tags	section;	with	the	name	config.factory.override,	you	tell
Drupal	that	there	is	a	new	service	that	wants	to	override	the	configuration	factory.	We	give
the	service	a	priority	of	10,	so	it	is	executed	after	most	default	services	in	the	queue	(that
is,	the	language	override	has	a	very	low	priority	to	execute	it	as	one	of	the	first	services).

Next,	we	create	the	class	itself	in	a	directory	named	Config	under	the	src	directory	of	our
custom	module:

<?php

/**

	*	@file

	*	Contains	\Drupal\cm_example\Config\ExampleConfigFactoryOverride.

	*/

namespace	Drupal\cm_example\Config;

use	Drupal\Core\Config\ConfigFactoryOverrideInterface;

use	Drupal\Core\Config\StorageInterface;

/**

	*	Provides	custom	overrides	for	the	configuration	factory.

	*/

class	ExampleConfigFactoryOverride	implements	

ConfigFactoryOverrideInterface	{

		/**

			*	{@inheritdoc}

			*/

		public	function	loadOverrides($names)	{

				$overrides	=	array();

				if	(in_array('system.site',	$names))	{

						$overrides['system.site']	=	['name'	=>	'Customized	site	name'];

				}

				return	$overrides;

		}

		/**

			*	{@inheritdoc}

			*/

		public	function	getCacheSuffix()	{

				return	'CmExampleConfigOverrider';

		}

		/**

			*	{@inheritdoc}

			*/

		public	function	createConfigObject($name,	$collection	=	

StorageInterface::DEFAULT_COLLECTION)	{

				return	NULL;

		}

}

?>

The	class	simply	implements	ConfigFactoryOverrideInterface	and	implements	the
three	loadOverrides(),	getCacheSuffix(),	and	createConfigObject()functions.

You	do	not	need	to	worry	about	the	latter	ones	because	the	main	function	needed	for	our
purpose	is	loadOverrides().	In	our	example,	the	function	simply	checks	whether
system.site	is	one	of	the	configuration	keys	ConfigFactory	collects	overrides	for,	and
returns	a	list	of	overrides	for	this	configuration	object.

If	multiple	modules	registered	a	custom	configuration	override	service,	the	service	with
the	highest	priority	within	all	module	overrides	will	be	called	last;	so,	if	multiple	services
override	the	same	configuration	object,	the	last	one	is	used	for	the	override	and	provides
the	current	value.

Across	the	different	types	of	configuration	overrides,	language	overrides	have	the	lowest
priority.	Module	overrides	takes	precedence	over	language	overrides,	and	are	overridden
themselves	by	overrides	of	the	global	$config	and	global	$settings	systems.

Avoiding	overrides
When	writing	a	custom	configuration	form,	it	is	very	useful	to	get	the	configuration
objects	without	overrides.	Otherwise,	the	overridden	configuration	will	get	into	the	saved
configuration.	As	for	localized	configuration,	you’ll	never	want	to	override	the	original
configuration	with	localized	values.

To	get	configuration	values	without	any	overrides,	Drupal	provides	the	function
getEditable()	of	ConfigFactory.	While	configuration	objects	returned	by	get()	are
immutable,	getEditable()	returns	configuration	objects	that	may	be	changed.

When	inheriting	your	form	class	from	the	core	ConfigFormBase	class,	you	can	simply
implement	the	getEditableConfigNames()	function,	and	return	a	list	of	all	the	names	of
the	configuration	objects	your	form	might	alter:

<?php

/**

	*	@file

	*	Contains	\Drupal\cm_example\Form\ExampleConfigurationForm.

	*/

namespace	Drupal\cm_example\Form;

use	Drupal\Core\Form\ConfigFormBase;

use	Drupal\Core\Form\FormStateInterface;

/**

	*	Provides	the	site	configuration	form.

	*/

class	ExampleConfigurationForm	extends	ConfigFormBase	{

		/**

			*	{@inheritdoc}

			*/

		public	function	getFormId()	{

				return	'example_configuration_form';

		}

		/**

			*	{@inheritdoc}

			*/

		protected	function	getEditableConfigNames()	{

				return	['cm_example.settings'];

		}

}

?>

You	are	then	able	to	load	the	configuration	object	using	$this->config($name)	and
change	the	configuration	value.	Drupal	will	automatically	load	the	configuration	object
without	overrides	if	the	name	is	in	the	list	returned	by	getEditableConfigNames(),	so
you	don’t	have	to	bother	about	this.

Creating	configuration	entity	types
In	Chapter	3,	Drupal	8’s	Take	on	Configuration	Management,	we	learned	about	the
different	types	of	configuration:	simple	configuration	and	configuration	entities.	Though
Drupal	8	comes	with	several	different	configuration	entity	types,	it	is	sometimes	useful	to
create	your	own	configuration	entity	type	when	developing	a	custom	module.

Adding	the	basics
At	first,	we	need	to	create	a	simple	interface	for	the	new	configuration	entity	type.	This
class	must	extend	the	generic	ConfigEntityInterface	class,	which	is	common	for	all
configuration	entities:

<?php

/**

	*	@file

	*	Contains	\Drupal\cm_example\CmExampleInterface.

	*/

namespace	Drupal\cm_example\Entity;

use	Drupal\Core\Config\Entity\ConfigEntityInterface;

/**

	*	Provides	an	interface	defining	an	Example	entity.

	*/

interface	CmExampleInterface	extends	ConfigEntityInterface	{

		//	Add	getter	and	setter	methods	for	your	configuration	properties	here.

}

?>

If	you	would	like	to	add	some	specific	getter	and	setter	functions	for	properties	used	by
your	configuration	entity,	you	will	need	to	do	this	here	as	well.

Next,	we	need	to	add	the	main	configuration	entity	class	that	handles	all	the	stuff	you
would	like	to	do	with	the	configuration	data.	To	avoid	writing	too	much	code	and	re-
inventing	everything,	you	should	simply	extend	the	core	class	ConfigEntityBase.	This
will	give	you	a	large	set	of	functions	to	handle	your	configuration	entity	so	that	you	don’t
need	to	bother	with	this.

The	most	important	thing	in	the	main	class	is	the	comment	block	right	above	the	class
definition,	the	so-called	Annotation,	by	which	the	main	definition	of	the	type	is	done.

Note
Annotations	are	meta-information	used	to	describe	classes,	properties,	and	functions,	and
are	always	put	in	comments	above	the	described	structure.	If	you	have	written	code	for
Drupal	before,	you	will	certainly	know	@param	or	@return	for	functions;	these	are
annotations	used	by	parsers	that	create	documentation.

To	tell	Drupal	about	your	custom	configuration	entity	type,	you	will	need	to	add	the
@ConfigEntityType	annotation	to	your	class	comment:

<?php

/**

	*	@file

	*	Definition	of	Drupal\cm_example\Entity\CmExample.

	*/

namespace	Drupal\cm_example\Entity;

use	Drupal\cm_example\CmExampleInterface;

use	Drupal\Core\Config\Entity\ConfigEntityBase;

/**

	*	Defines	the	CmExample	configuration	entity.

	*

	*	@ConfigEntityType(

	*			id	=	"cm_example",

	*			label	=	@Translation("CM	Example"),

	*			handlers	=	{

	*					"form"	=	{

	*							"delete"	=	"Drupal\Core\Entity\EntityDeleteForm"

	*					},

	*					"list_builder"	=	"Drupal\cm_example\CmExampleListBuilder",

	*			},

	*			config_prefix	=	"cm_example",

	*			admin_permission	=	"administer	site	configuration",

	*			entity_keys	=	{

	*					"id"	=	"id",

	*					"label"	=	"label",

	*			},

	*			links	=	{

	*					"edit-form"	=	"/admin/structure/cm_example/manage/{cm_example}",

	*					"delete-form"	=	

"/admin/structure/cm_example/manage/{cm_example}/delete",

	*					"collection"	=	"/admin/structure/cm_example",

	*			}

	*)

	*/

class	CmExample	extends	ConfigEntityBase	implements	CmExampleInterface	{

		/**

			*	The	machine	name	for	the	configuration	entity.

			*

			*	@var	string

			*/

		protected	$id;

		/**

			*	The	human-readable	name	of	the	configuration	entity.

			*

			*	@var	string

			*/

		public	$label;

}

?>

Within	this	class	annotation,	you	define	the	internal	name	and	the	label	for	the	new
configuration	entity	type.	Additionally,	you	may	define	the	handlers	used	to	display	and
store	entities	of	the	new	type	and	the	paths	for	different	tasks	on	the	entity	(that	is,	the	edit
form).

Taking	control	of	your	data
Since	we	didn’t	define	custom	handlers	for	storage,	listing,	and	access	control,	Drupal	will
use	the	default	handlers	for	these	tasks.	You	can	easily	use	your	own	handlers:	simply	add
storage,	list_builder,	or	access	to	the	handler	array	within	the	annotation,	and	set	the
names	of	the	appropriate	classes.

For	example,	a	custom	access	handler	should	extend	the	basic
EntityAccessControlHandler	class	and	override	the	checkAccess()	function.

Tip
For	an	in-depth	example	on	how	to	create	a	custom	configuration	entity	type	and	the
different	handlers	and	form	classes,	look	at	the	great	Examples	module
(https://www.drupal.org/project/examples).

https://www.drupal.org/project/examples

Summary
After	defining	all	the	classes	that	we	need	in	order	to	add,	edit,	and	list	entities	of	the	new
configuration	entity	type,	we	are	now	able	to	use	this	type	in	configuration	objects	like
every	other	core	type.

So	what	did	we	learn	in	this	chapter?	We	learned	about	how	to	get	and	update
configuration	values	and	about	the	different	ways	of	overriding	configuration	provided	by
Drupal	or	modules;	then	we	created	a	very	simple	configuration	entity	type.	Thus,	by	now,
you	should	be	able	to	create	a	module	and	manage	your	custom	configuration	right	away.

Chapter	5.	The	Anatomy	of	Schema	Files
In	the	previous	chapters,	we	learned	about	the	fundamental	principles	of	Drupal	8’s
Configuration	Management,	and	took	a	look	at	the	Configuration	Management	API.	So
we	now	know	how	to	work	with	configuration	objects	and	how	to	read	and	write
individual	configuration.

However,	how	does	Drupal	validate	data	within	a	site’s	configuration?	We	probably	need
a	setting	to	accept	integer	values	or	a	URI.	Or	we	would	like	to	enforce	fixed	structure	in
our	configuration	data.	This	is	exactly	where	schema	files	come	into	play.

This	chapter	will	tell	you	about	schema	files	and	how	Drupal	uses	them	for	Configuration
Management.	We	will	learn	about	the	structure	of	schema	files	used	by	Drupal	and	how
you	can	write	your	own	schema	for	custom	configuration.

What	are	schema	files	in	Drupal?
With	schema	files,	you	can	describe	the	contents	of	a	configuration	file.	You	can
determine	which	configuration	keys	are	allowed	in	a	specific	configuration	object	and
which	data	type	configuration	data	needs	to	have.	Drupal	8’s	schema	files	are	inspired	by
Kwalify.

Note
Kwalify	(http://www.kuwata-lab.com/kwalify/)	is	a	parser	and	schema	validator	for
YAML	and	JSON.	It	adds	a	schema	to	YAML	and	JSON	as,	for	example	DTD	does	for
XML.

The	format	used	by	Kwalify	was	slightly	modified	to	fit	the	needs	of	the	structure	needed
in	Drupal	8	but,	generally,	it	is	largely	identical.

Schema	files	were	not	introduced	for	validation	purposes	only.	The	primary	use	case	for
schema	files	was	to	support	multilingual	configuration	in	Drupal	8.	It	was	necessary	to
create	a	tool	to	identify	all	translatable	strings	within	the	configuration	files,	so	the	entire
configuration,	views,	menu	items,	and	user	roles	that	you	may	define	in	a	custom	module
or	theme	could	be	offered	as	translation	packages	on	http://localize.drupal.org.

The	second	very	important	use	case	for	schema	files	is	forms	that	translate	configuration
data.	Without	schema	files,	it	would	be	very	hard	for	Drupal	to	display	configuration
values	in	the	expected	type	or	to	discover	whether	a	configuration	value	is	valid.	Drupal
automatically	typecasts	configuration	values	to	the	type	defined	in	the	corresponding
schema	in	order	to	ensure	the	right	data	type	is	used	when	the	configuration	is	saved.

Additionally,	Drupal	has	nearly	no	chance	of	printing	out	the	human-readable	name	for
the	form	element	of	a	configuration	element	just	by	looking	at	the	configuration	file.

Let’s	look	at	system.file.yml	as	an	example:

allow_insecure_uploads:	false

default_scheme:	'public'

path:

		temporary:	''

temporary_maximum_age:	21600

To	use	the	intended	data	types	while	building	the	related	form	for	this	configuration
object,	Drupal	needs	to	know	which	type	of	data	to	display	and	in	to	which	type	to	save
the	values.

This	information	is	precisely	defined	in	the	associated	schema	file.

http://www.kuwata-lab.com/kwalify/
http://localize.drupal.org

The	structure	of	a	schema	file
Schema	files	are	located	in	a	subdirectory	of	the	config	directory	of	each	module	that
defines	its	own	configuration.	The	name	of	this	directory	is	schema	(not	very	surprising,	is
it?).	The	schema	files	themselves	are	named	after	the	module	that	defines	the	schema,
followed	by	an	optional	identifier	and	the	string	.schema.yml.	Again,	using	the	system
module	as	an	example,	the	path	to	its	schema	file	is
system/config/schema/system.schema.yml.

Within	each	schema	file,	the	top-level	key	corresponds	to	the	name	of	the	configuration
file,	the	name	of	the	configuration	object	that	the	schema	should	apply	to.	The	following
nested	values	describe	the	exact	structure	of	the	related	configuration	object.

Let’s	look	at	a	part	of	the	system.schema.yml	for	an	explanation:

system.file:

		type:	mapping

		label:	'File	system'

		mapping:

				allow_insecure_uploads:

						type:	boolean

						label:	'Allow	insecure	uploads'

				default_scheme:

						type:	string

						label:	'Default	download	method'

				path:

						type:	mapping

						label:	'Path	settings'

						mapping:

								temporary:

										type:	string

										label:	'Temporary	directory'

				temporary_maximum_age:

						type:	integer

						label:	'Maximum	age	for	temporary	files'

As	mentioned	before,	the	top-level	key	system.file	references	the	configuration	file
system.file.yml,	so	the	contents	listed	under	this	key	define	the	content	of	the
configuration	object	system.file.

The	next	lines	in	our	example	define	the	data	types	used	for	the	values	of	the
configuration	data.	We	will	explain	the	displayed	schema	in	the	next	part	of	this	chapter.

Properties
In	the	previous	example,	you	see	some	of	the	properties	used	in	schema	files.	These
properties	define	the	basic	structure	of	the	schema	and	influence	the	possible	usage	of	the
inherited	configuration	objects.	Let’s	take	a	look	at	them:

type:	This	is	the	data	type	of	the	configuration	value.	This	may	be	either	one	of	the
base	types	or	a	derived	type.	We	will	show	the	difference	between	both	later	in	this
chapter.
label:	This	is	a	short	description	for	the	value.	It	does	not	have	to	match	a
corresponding	configuration	form	label	but,	for	clarity,	they	should	match.
translatable:	This	indicates	whether	the	defined	data	type	is	translatable	or	not.
translation	context:	This	is	a	string	context	used	for	the	translation.	Drupal	uses
different	contexts	to	allow	translating	the	same	word	depending	on	where	it	is	used
on	the	site.	For	example,	the	word	View	can	be	used	either	to	describe	a	list	of	entities
or	simply	to	display	something.	The	translation	context	helps	to	differentiate	between
both.
class:	This	is	used	only	on	base	types	to	define	the	class	used	to	parse	the	data	type.
You	don’t	have	to	worry	about	this	normally.
mapping:	This	type-specific	property	is	used	to	list	the	underlying	elements	within	a
configuration	element	(for	example,	the	children	of	system.file	in	the	example
shown	before)	as	key-value	pairs	(like	an	associative	array).	Only	strings	are	allowed
for	the	keys	of	these	key-value	pairs.
sequence:	This	is	used	to	list	the	underlying	elements	within	a	sequence	of	values.	In
contrast	to	mapping,	the	keys	in	a	sequence	can	be	either	integers	or	strings.	You	can
think	of	the	sequence	as	a	simple	indexed	list.

Data	types
Most	of	the	basic	types,	as	well	as	some	more	complex	types,	are	defined	in	the
core.data_types.schema.yml	file:

#	Basic	scalar	data	types	from	typed	data.

boolean:

		label:	'Boolean'

		class:	'\Drupal\Core\TypedData\Plugin\DataType\Boolean'

email:

		label:	'Email'

		class:	'\Drupal\Core\TypedData\Plugin\DataType\Email'

integer:

		label:	'Integer'

		class:	'\Drupal\Core\TypedData\Plugin\DataType\Integer'

float:

		label:	'Float'

		class:	'\Drupal\Core\TypedData\Plugin\DataType\Float'

string:

		label:	'String'

		class:	'\Drupal\Core\TypedData\Plugin\DataType\String'

uri:

		label:	'Uri'

		class:	'\Drupal\Core\TypedData\Plugin\DataType\Uri'

These	types	have	a	direct	mapping	to	their	Typed	Data	API	counterparts.	The	Typed	Data
API	has	been	created	to	provide	developers	with	a	consistent	way	to	interact	with	data.	By
default,	PHP	is	a	very	loosely-typed	language.	The	Typed	Data	API	is	trying	to	fix	this,	so
Drupal	itself—or	any	another	system	on	which	you	would	like	to	expose	your	data—will
not	run	into	problems	while	guessing	a	value	type.	For	example,	using	a	configuration
value	of	type	integer	will	automatically	cast	the	value	to	int	in	Drupal,	so	a	developer
who	uses	this	value	doesn’t	have	to	do	this	manually.

For	configuration	data,	Drupal	defines	some	additional	types:

#	Basic	data	types	for	configuration.

undefined:

		label:	'Undefined'

		class:	'\Drupal\Core\Config\Schema\Undefined'

ignore:

		label:	'Ignore'

		class:	'\Drupal\Core\Config\Schema\Ignore'

mapping:

		label:	Mapping

		class:	'\Drupal\Core\Config\Schema\Mapping'

		definition_class:	'\Drupal\Core\TypedData\MapDataDefinition'

sequence:

		label:	Sequence

		class:	'\Drupal\Core\Config\Schema\Sequence'

		definition_class:	'\Drupal\Core\TypedData\ListDataDefinition'

As	mentioned	before,	mapping	and	sequence	are	basically	the	same,	with	mapping	being
similar	to	an	associative	array	and	sequence	being	similar	to	a	simple	indexed	list.

On	the	other	hand,	setting	the	type	of	a	configuration	object	to	undefined	equates	to	not
defining	a	schema	at	all,	so	there	is	no	point	in	using	this	type.	When	creating
configuration	data	structures	where	no	type	is	possible	(for	example,	for	testing	purposes),
you	could	use	the	ignore	type.	Elements	of	this	type	are	not	casted	and	always	validate.

Reusing	data	types
In	order	to	allow	more	flexibility	and	the	reuse	of	data	types,	types	can	simply	be	derived
from	each	other	to	create	more	complex	data	structures.	For	example,	the	type	label	is	a
simple	extended	data	type	that	uses	the	basic	data	type	string	as	its	own	type.	In	contrast
to	data	of	type	string,	the	label	type	requires	its	data	to	be	plain	text	and	editable	with	a
text	field.

Sometimes,	a	module	defines	configuration	using	the	same	data	structure	from	different
places.	For	example,	if	you	provide	a	configuration	for	e-mails,	you	always	define	the	e-
mail	subject	and	the	e-mail	body.	In	your	configuration,	you	can	now	write	the	following
code	in	every	configuration	file	that	needs	an	e-mail	configuration	object:

cm_example.notification:

		type:	mapping

		label:	'Notification	settings'

		mapping:

				subject:

						type:	label

						label:	'Subject'

				body:

						type:	text

						label:	'Body'

Thanks	to	reusable	data	types,	this	can	be	covered	in	a	single	custom	data	type.	This
prevents	errors	in	writing,	and	makes	the	structure	of	the	configuration	files	much	more
readable:

#	Mail	text	with	subject	and	body	parts.

mail:

		type:	mapping

		label:	'Mail'

		mapping:

				subject:

						type:	label

						label:	'Subject'

				body:

						type:	text

						label:	'Body'

Whenever	you	need	to	reference	an	e-mail	in	your	configuration,	simply	use	type:	mail,
and	Drupal	automatically	expands	this	to	the	complex	type:

cm_example.notification:

		type:	mapping

		label:	'Notification	settings'

		mapping:

				email:

						type:	mail

						label:	'Email'

Making	data	translatable
As	shown	before,	there	is	also	a	translatable	property	for	schema	files.	For	example,	the
data	type	label	makes	use	of	it:

label:

		type:	string

		label:	'Label'

		translatable:	true

This	property	is	the	basic	requirement	for	configuration	data	to	be	translated.	Drupal	is
now	able	to	identify	the	translatable	configuration	and	create	the	correct	forms	and
functions	around	it,	so	authorized	users	of	the	site	may	translate	them.	By	default,	only
label,	text,	and	date_format	are	built-in	translatable	data	types.

Dynamic	type	references
As	you	can	see	from	the	previous	examples,	simple	and	complex	data	types	are	essential
references	to	other	data	types.	Sometimes,	a	type	isn’t	fixed	but	depends	on	the	data	of	the
configuration	object	itself.	Think	of	Drupal	image	styles.	They	can	contain	several
different	image	effects,	with	each	of	the	effects	requiring	a	different	structure.	Let’s	look	at
the	default	configuration	object	of	the	image	style	thumbnail	located	in
image.style.thumbnail.yml:

name:	thumbnail

label:	'Thumbnail	(100x100)'

effects:

		1cfec298-8620-4749-b100-ccb6c4500779:

				id:	image_scale

				data:

						width:	100

						height:	100

						upscale:	true

				weight:	0

				uuid:	1cfec298-8620-4749-b100-ccb6c4500779

langcode:	en

Depending	on	the	selected	effect,	the	key	data	can	contain	a	completely	different
structure.	For	example,	the	structure	of	the	effect	image_crop	uses	the	property	anchor
instead	of	upscale.	Here	is	an	excerpt	merely	showing	the	image	effect:

				id:	image_crop

				data:

						width:	100

						height:	100

						anchor:	'top-left'

In	order	to	map	this	dynamic	data	structure,	we	need	to	create	a	reference	to	the	related
data	type	by	using	the	identifier	of	the	image	effect.	Here’s	an	excerpt	from
image.schema.yml:

image.style.*:

…

				effects:

						type:	sequence

						sequence:

								type:	mapping

										mapping:

												id:

														type:	string

												data:

														type:	image.effect.[%parent.id]

												weight:

														type:	integer

												uuid:

														type:	string

The	schema	excerpt	shown	here	uses	a	dynamic	type	reference	to	name	the	data	type	for	a

single	effect.	Variable	values	used	in	data	types	should	be	enclosed	in	square	brackets,	and
can	be	combined	with	fixed	components	(such	as	image.effect.	in	our	example).

There	are	3	types	of	dynamic	references:

Element-key	references,	for	example,	[%key]
Sub-key	references,	such	as	type:	views.field.[plugin_id]
Parent-key	references,	such	as	type:	image.effect.[%parent.id]

The	element-key	references
Taking	ckeditor.schema.yml	as	an	example,	we	have	the	following	code:

plugins:

		type:	sequence

		label:	'Plugins'

		sequence:

				type:	ckeditor.plugin.[%key]

So,	if	you	create	a	configuration	object	using	type:	stylescombo	(stylescombo	is	a	core
style	of	the	core	ckeditor	module),	Drupal	will	automatically	expand	this	to
ckeditor.plugin.stylescombo	and	use	the	schema	defined	for	this.

The	sub-key	references
The	used	data	type	is	composed	of	the	fixed	part	and	the	value	of	the	property	referenced
by	the	sub-key.	Let’s	take	a	look	at	the	schema	for	filters	in	views:

				filters:

						type:	sequence

						label:	'Filters'

						sequence:

								type:	views.filter.[plugin_id]

In	a	view,	adding	a	filter	for	the	node	status	(published/unpublished)	will	give	you	the
following	excerpt	in	the	corresponding	configuration	object:

						filters:

								status:

										field:	status

										group:	1

										id:	status

										table:	node_field_data

										value:	true

										plugin_id:	boolean

										entity_type:	node

										entity_field:	status

Drupal	now	takes	the	value	of	the	key	plugin_id	from	the	definition	of	the	status	filter
and	creates	the	type	name	from	it.	This	results	in	the	type	views.filter.boolean,	defined
in	views.filter.schema.yml.

The	parent-key	references
This	creates	a	reference	to	the	parent	configuration	object	(the	upper	level	in	the
hierarchy)	and	uses	values	from	this	object.	For	example,	the	value	property	of	a	view
filter	is	forced	to	use	views.filter_value.[%parent.plugin_id]	as	the	type:

views_filter:

		type:	views_handler

		mapping:

				operator:

						type:	string

						label:	'Operator'

				value:

						type:	views.filter_value.[%parent.plugin_id]

						label:	'Value'

Looking	at	the	example	from	the	sub-key	reference,	Drupal	will	take	the	plugin	ID	from
the	status	filter	and	create	the	type	for	value	from	it,	resulting	in
views.filter_value.boolean.

At	first,	this	can	be	really	confusing	and	hard	to	understand,	but	it	allows	maximum
flexibility	when	creating	dynamic	configuration	objects.

Coding	standards
When	developing	for	Drupal,	it	is	not	only	a	best	practice	to	follow	the	Coding	Standards
for	configuration	(https://www.drupal.org/coding-standards/config),	but	it	is	also	one	of
the	things	you	need	to	internalize	in	your	daily	work.	Of	course,	the	Coding	Standards	do
not	apply	to	PHP	only;	there	are	even	some	guidelines	for	writing	schema	files.

The	first	rule	of	thumb	is	to	simply	follow	the	code	style	of	the	.yml	files,	as	seen
everywhere	else	in	Drupal	code.	The	key	points	are	as	follows:

Add	a	comment	to	the	file,	explaining	the	purpose	and	the	content	of	this	file.	If	there
is	only	one	schema	file	in	your	module,	you	may	use	a	comment	such	as	#	Schema
for	the	configuration	files	of	the	{YOURMODULENAME}	module.
Do	not	use	double	quotes	for	strings;	use	single	quotes	whenever	you	need	to	wrap
strings	in	quotes.
Use	single	quotes	for	label	values	that	have	only	one	word,	for	consistency.
Key	definitions	and	types	should	never	be	put	in	quotes.	According	to	the	Drupal
standard,	key	names	and	types	must	not	contain	spaces,	so	there	is	no	need	to	wrap
them	in	quotes.
Integer	values	used	in	configuration	data	are	casted	to	strings	when	written	to	the
.yml	files.	Therefore,	you	need	to	wrap	them	in	single	quotes	too.
Avoid	comments	that	provide	no	extra	clarity	to	the	schema.	Each	schema	item	needs
to	have	a	descriptive	label	anyway,	so	an	additional	comment	may	be	superfluous	for
many	items	(for	example,	Comment	settings	above	the	section	comment.section).
Add	labels	at	least	to	the	translatable	values	and	to	their	containers.	Otherwise,	the
translation	form	for	these	values	cannot	be	generated	in	a	useful	way	(some	elements
in	the	form	would	lack	labels).
Use	proper	indentation	so	that	you	can	easily	see	the	structure	within	the	schema	(this
is	not	a	standard	per	se,	but	a	best	practice).

https://www.drupal.org/coding-standards/config

PHP	API
Defining	a	schema	for	your	configuration	is	not	only	for	Drupal’s	internals,	it	may	also
help	you	while	writing	a	custom	module.	For	example,	you	might	like	to	get	the	data	type
of	a	configuration	object	(say,	for	validation	purposes	or	to	print	out	information	about	the
type).

In	addition	to	the	already	known	\Drupal::config($name)	to	load	a	single	configuration
object,	there	is	\Drupal::service('config.typed').	Using	this	function,	you	can	access
the	definition	of	a	configuration	object’s	data	structure.

To	load	the	type	definition	of,	for	example,	system.maintenance,	we	could	use	the
following	code:

<?php

$definition	=	\Drupal::service('config.typed')-

>getDefinition('system.maintenance');

?>

This	would	result	in	an	array	that	contains	the	following	structure:

<?php

$definition	=	array(

		'label'	=>	'Maintenance	mode',

		'type'	=>	'system.maintenance',

		'class'	=>	'\Drupal\Core\Config\Schema\Mapping',

		'definition_class'	=>	'\Drupal\Core\TypedData\MapDataDefinition',

		'mapping'	=>	array(

				'message'	=>	array(

						'type'	=>	'text',

						'label'	=>	'Message	to	display	when	in	maintenance	mode',

),

				'langcode'	=>	array(

						'type'	=>	'string',

						'label'	=>	'Default	language',

),

),

);

?>

If	we	compare	this	with	the	definition	of	the	configuration	object	system.maintenance	in
system.schema.yml,	we	will	see	that	its	values	match:

system.maintenance:

		type:	mapping

		label:	'Maintenance	mode'

		mapping:

				message:

						type:	text

						label:	'Message	to	display	when	in	maintenance	mode'

				langcode:

						type:	string

						label:	'Default	language'

Retrieving	the	data	for	a	single	configuration	item	is	as	easy	as	getting	the	complete
schema	definition.	You	simply	have	to	use	\Drupal::service('config.typed')-
>get($name).	Depending	on	the	structure	of	the	configuration	schema,	you	will	probably
have	to	chain	multiple	calls	of	get().

For	example,	\Drupal::service('config.typed')->get('system.maintenance')-
>get('message')->getDataDefinition()	will	give	you	an	array	that	holds	the	schema
definition	for	the	maintenance	message.	Later,	you	can	access	the	properties	of	the
definition	and,	for	example,	use	them	to	create	corresponding	forms:

$message	=	\Drupal::service('config.typed')->get('system.maintenance')-

>get('message')->getDataDefinition->toArray();

$label	=	$message['label'];

Even	if	it	is	theoretically	possible	to	make	changes	to	the	configuration	loaded	using	the
Typed	Data	API,	you	shouldn’t	do	this.	Using	\Drupal::config()	is	simpler	and	faster.

If	you	would	like	to	inspect	your	configuration	and	learn	more	about	the	structure	and	how
to	generate	forms	based	on	a	given	configuration	schema,	you	don’t	need	to	print	out	the
information	yourself;	simply	download	and	install	the	great	Configuration	inspector
module	(https://drupal.org/project/config_inspector).	It	will	give	you	an	overview	of	your
configuration	and	help	you	while	creating	your	configuration	and	the	corresponding
schema.

https://drupal.org/project/config_inspector

Summary
Schema	files	are	required	in	order	to	define	how	configuration	objects	are	structured	and
how	(and	if)	Drupal	should	handle	translation	of	configuration	data.	They	are	used	to
ensure	that	configuration	data	is	loaded	and	saved	in	the	correct	data	type,	so	developers
don’t	need	to	worry	about	casting	the	values	into	the	types	they	need.

If	the	data	types	provided	by	Drupal	do	not	fit	your	needs,	you	can	simply	extend	those
types	by	creating	your	own.

With	all	this	knowledge	about	configuration	objects	and	configuration	schemas,	we	will
learn	how	to	add	configuration	to	custom	modules	in	the	next	chapter.

Chapter	6.	Adding	Configuration
Management	to	Your	Module
After	we	learned	how	to	access	configuration	objects	and	how	schema	files	are	structured
in	previous	chapters,	you	will	surely	want	to	know	how	to	get	all	this	fancy	stuff	into	your
shiny	new	module	for	Drupal	8.

We	will	learn	how	to	include	the	default	configuration	in	custom	modules,	how	to	define
and	use	your	own	configuration,	and	how	to	create	configuration	forms.

Default	configuration
Let’s	start	with	a	simple	task	and	add	some	default	configuration	to	our	example	module.

In	Drupal	7,	you	have	to	use	custom	code	to	create	and	update	the	default	configuration,
such	as	content	types,	views,	or	field	configurations.	Many	people	also	use	the	great
Features	module	that	provides	some	handy	functions	to	manage	default	configuration
easily.

Drupal	8	uses	the	.yml	files	we	talked	about	extensively	in	previous	chapters	to	store
information	about	the	default	configuration.	The	Configuration	Management	system	itself
takes	care	of	creating	and	managing	the	default	configuration,	so	we	can	focus	on	writing
its	definition	rather	than	creating	the	functions	for	management.

An	example
Let’s	add	a	custom	vocabulary	to	our	site	and	define	the	term	container	and	its
configuration	in	the	example	module	we	used	in	the	previous	chapters.	The	vocabulary
should	be	named	Category	and	have	the	internal	identifier	cm_example_category	(this	is
the	machine-readable	name).	For	the	vocabulary	definition,	we	create	a	new	file	named
taxonomy.vocabulary.cm_example_news.yml	in	the	subdirectory	called	config/install
of	the	module’s	main	directory.	To	prevent	conflicts	with	configuration	provided	by	other
modules,	you	should	always	respect	the	naming	convention	and	prefix	custom	types
(content	types,	vocabularies,	and	so	on)	with	your	module	name	followed	by	an
underscore.

After	creating	the	file,	you	can	put	the	following	code	in	it:

vid:	cm_example_category

name:	Category

description:	'List	of	categories'

status:	true

hierarchy:	1

weight:	0

dependencies:

		enforced:

				module:

						-	cm_example

langcode:	en

As	you	can	see,	we	simply	define	the	basic	configuration	of	the	vocabulary,	as	we	would
do	in	the	user	interface	as	follows:

The	vid	key	is	the	unique	identifier	of	the	vocabulary	(in	the	previous	versions	of
Drupal,	this	was	vocabulary	ID,	hence	the	name).	To	avoid	name	clashes	with
vocabularies	created	by	other	modules	or	by	the	administrator	of	the	site,	you	should
use	your	module’s	name	as	a	prefix	for	this	machine-readable	identifier.
The	name	and	description	keys	hold	the	vocabulary’s	name	and	description	that	are
visible	in	the	user	interface.
Since	we	would	like	the	vocabulary	to	be	enabled	and	usable	after	installation,	the
value	of	the	status	key	is	set	to	true.
In	the	hierarchy	key,	you	can	decide	which	type	of	hierarchy	the	new	vocabulary
should	support:

This	denotes	that	the	hierarchy	is	disabled
This	denotes	a	simple	hierarchy	(only	1	parent	per	term	is	allowed)
This	denotes	multiple	parents	(a	term	in	this	vocabulary	can	have	multiple
parents)

To	make	sure	the	vocabulary	is	only	available	on	the	site	as	long	as	the	defining
module	is	installed,	we	declare	a	dependency	to	our	module	cm_example	in	the	key
dependencies.	Using	the	enforced	key,	we	tell	Drupal	to	require	this	dependency
regardless	of	the	changes	or	the	additions	that	a	user	of	the	site	made	to	the
configuration	of	the	vocabulary.

Tip
If	you	do	not	want	to	write	the	configuration	manually,	you	can	also	create	the
vocabulary	in	the	user	interface	and	export	the	configuration	using	the	configuration
exporter	on	admin/config/development/configuration/single/export.

Of	course,	configuring	the	user	interface	and	exporting	it	works	will	all	types	of
configuration,	whether	defined	by	Drupal	itself	or	other	modules,	so	you	can	ship	your
module	with	predefined	content	types,	views,	user	roles,	block	settings,	or	whatever	needs
to	be	configured	to	make	your	module	work.	A	view,	for	example,	would	require	you	to
create	a	file	named	views.view.[name	of	your	view].yml,	user	roles	would	go	into
user.role.[role	name].yml,	and	so	on.

Remember	to	reinstall	your	module	if	you	add	a	default	configuration	after	installing	the
module	since	Drupal	only	imports	configuration	on	installation	of	a	module.

Defining	and	using	your	own
configuration
Sometimes,	including	default	configuration	objects	defined	by	other	modules	is	not
enough,	and	you	may	want	to	define	your	own	configuration.	As	with	many	other	parts	of
the	Configuration	Management	in	Drupal	8,	this	is	not	very	complicated.

Setting	your	configuration	file
Configuration	files	for	configuration	objects	defined	by	a	module	reside	in	the
config/install	subdirectory	of	this	module.	In	our	example,	this	is
/modules/custom/cm_example/config/install.

Tip
We	put	our	example	module	in	a	directory	named	custom	inside	the	modules	directory	to
separate	contributed	modules	downloaded	from	https://drupal.org	from	custom	modules.
This	is	a	well-known	best	practice	when	creating	sites	to	keep	your	modules	organized.

In	Chapter	3,	Drupal	8’s	take	on	Configuration	Management,	we	mentioned	the	naming
conventions	of	configuration	files.	As	said	before,	simple	module	settings	should	go	into	a
file	named	<module	name>.settings.yml;	thus,	in	our	case,	we	will	name	it
cm_example.settings.yml:

items_per_page:	20

langcode:	en

These	settings	will	set	the	default	language	to	en	for	English,	and	provide	a	simple	setting
named	items_per_page	in	our	module.

All	settings	saved	to	this	file	will	define	the	default	values	for	your	module.	Drupal	will
take	these	values	on	installation	and	use	them	as	defaults	unless	overridden	by	the	user	or
another	module.

Of	course,	you	are	not	limited	to	simple	configuration	in	your	module.	If	you	need	more
complex	configuration	objects	or	configuration	entities,	this	is	also	possible.

https://drupal.org

Custom	configuration	entity	types
Let’s	take	a	look	back	at	our	custom	configuration	entity	type	named	“CM	Example”,
which	we	created	in	Chapter	4,	The	Configuration	Management	API:

<?php

/**

	*	@file

	*	Definition	of	Drupal\cm_example\Entity\CmExample.

	*/

namespace	Drupal\cm_example\Entity;

use	Drupal\cm_example\CmExampleInterface;

use	Drupal\Core\Config\Entity\ConfigEntityBase;

/**

	*	Defines	the	CmExample	configuration	entity.

	*

	*	@ConfigEntityType(

	*			id	=	"cm_example",

	*			label	=	@Translation("CM	Example"),

	*			handlers	=	{

	*					"form"	=	{

	*							"delete"	=	"Drupal\Core\Entity\EntityDeleteForm"

	*					},

	*					"list_builder"	=	"Drupal\cm_example\CmExampleListBuilder",

	*			},

	*			config_prefix	=	"cm_example",

	*			admin_permission	=	"administer	site	configuration",

	*			entity_keys	=	{

	*					"id"	=	"id",

	*					"label"	=	"label",

	*			},

	*			links	=	{

	*					"edit-form"	=	"/admin/structure/cm_example/manage/{cm_example}",

	*					"delete-form"	=	

"/admin/structure/cm_example/manage/{cm_example}/delete",

	*					"collection"	=	"/admin/structure/cm_example",

	*			}

	*)

	*/

class	CmExample	extends	ConfigEntityBase	implements	CmExampleInterface	{

		/**

			*	The	machine	name	for	the	configuration	entity.

			*

			*	@var	string

			*/

		protected	$id;

		/**

			*	The	human-readable	name	of	the	configuration	entity.

			*

			*	@var	string

			*/

		public	$label;

}

?>

To	provide	default	configuration	for	this	type,	we	need	to	place	it	in	a	file	named
cm_example.example.[bundle	name].yml	and	define	a	schema	for	the	type	in
cm_example.schema.yml.

Let’s	assume	that	the	type	requires	a	label	and	a	message	only,	and	is	translatable:

cm_example.cm_example.*:

		type:	config_entity

		label:	'Example	settings'

		mapping:

				id:

						type:	string

						label:	'Internal	Example	ID'

				label:

						type:	string

						label:	'Human	readable	label'

				message:

						type:	string

						label:	'Message	to	display'

				langcode:

						type:	string

						label:	'Default	language'

This	defines	the	basic	structure	for	all	bundles	of	the	CM	Example	configuration	type,	as
we	learned	in	Chapter	5,	The	Anatomy	of	Schema	Files.

If	we	now	add	the	default	configuration	for	this	configuration	entity	type,	we	can	simply
create	a	file	named	cm_example.cm_example.test.yml	and	add	the	following	code	to	the
file:

#	Machine-readable	name.

id:	test

#	Define	the	label.

label:	'Example	bundle'

#	A	basic	message.

message:	'Configuration	Management	in	Drupal	8'

#	Default	language.

langcode:	'en'

During	the	installation	of	our	module,	Drupal	will	then	create	an	entity	named	test	of	the
type	CM	Example	based	on	the	values	defined	in	the	default	configuration	file	(assuming
we	have	already	implemented	the	corresponding	functions	to	save	the	entities	of	our
configuration	type).

Using	the	configuration
We	already	learned	how	to	use	the	Configuration	Management	API	to	access
configuration	objects	in	the	previous	chapters.	The	simplest	way	to	use	your	configuration
is	the	\Drupal::config()	method	and	\Drupal::configFactory()->getEditable():

<?php

//	Load	all	settings	from	'cm_example.settings.yml'.

$settings	=	\Drupal::config('cm_example.settings');

//	Get	number	of	items	per	page.

$items_per_page	=	$settings->get('items_per_page');

?>

This	will	load	the	current	value	of	the	simple	configuration	items_per_page.	If	the	value
hasn’t	been	changed	by	a	user	or	overridden	by	another	module,	the	variable	will	hold	the
default	value	provided	by	our	module.

As	described	before,	you	can	also	modify	the	configuration:

<?php

//	Change	items	per	page	and	save	to	active	configuration.

\Drupal::configFactory()->getEditable('cm_example.settings')-

>set('items_per_page',	'10')->save();

?>

Now	that	we	have	equipped	our	example	module	with	some	default	configuration,	and
added	our	own	configuration	entity	type,	we	would	like	some	users	to	change	the	basic
settings	of	our	module.

Creating	a	configuration	form
Now	that	we	know	how	to	add	custom	configuration	to	our	module	and	how	to	provide
some	configuration	defaults,	we	will	learn	how	to	enable	certain	users	to	change	the
configuration	values	in	the	user	interface.	To	do	this,	we	need	to	create	a	custom	form	for
our	configuration	values	and	define	a	path	on	which	the	form	will	be	accessible.

Configuration	forms	in	Drupal	7
First,	let’s	take	a	look	back	at	Drupal	7.	In	Drupal	7,	we	needed	to	add	an	implementation
of	hook_menu()	to	our	custom	module	to	tell	Drupal	from	which	path	users	might	access
our	configuration	form:

<?php

/**

	*	Implements	hook_menu().

	*/

function	cm_example_menu()	{

		$items	=	array();

		//	Define	path	to	configuration	page.

		$items['admin/config/example']	=	array(

				'title'	=>	'Example	configuration',

				'description'	=>	'Configure	settings	for	Example.',

				'page	callback'	=>	'drupal_get_form',

				'page	arguments'	=>	array('cm_example_settings_form'),

				'access	arguments'	=>	array('access	administration	pages'),

);

		return	$items;

}

?>

This	will	register	the	path	admin/config/example	to	our	page	built	in	Drupal	7,	and
ensure	that	the	specified	function	to	generate	our	configuration	page	will	be	called.	To
simplify	things	a	bit,	we	use	drupal_get_form()	as	the	page	callback	function	here	and
hand	over	the	name	of	our	form	generation	function	as	an	argument	to	it.	The
cm_example_settings_form()function	itself	wasn’t	very	complicated.	You	define	your
form	elements	and	return	the	form	structure	wrapped	by	system_settings_form().	This
function	includes	the	necessary	elements	(that	is,	the	submit	button),	adds	the	required
validation,	and	submits	callbacks	to	the	form,	so	you	don’t	need	to	bother	about	saving	the
values.	It	maps	the	form’s	fields	to	variables	using	the	variable	system:

<?php

/**

	*	Form	generation	callback	for	Example	settings	in	Drupal	7.

	*/

function	cm_example_settings_form()	{

		$form	=	array();

		$form['items_per_page']	=	array(

				'#type'	=>	'textfield',

				'#title'	=>	t('Items	per	page'),

				'#description'	=>	t('The	number	of	Example	items	per	page.'),

				'#default_value'	=>	variable_get('items_per_page',	10),

);

		//	Return	the	wrapped	form	structure.

		return	system_settings_form($form);

}

?>

In	real	life,	you	would	prefix	the	settings	name	with	the	name	of	your	module	to	avoid
naming	collisions	with	other	modules	or	Drupal	itself.	In	our	example,	this	would	create	a
simple	form	with	a	single	text	field	and	would	save	the	entered	value	without	any	further
validation	to	the	variables	table.

Creating	configuration	forms	in	Drupal	8
In	Drupal	8,	things	have	changed	a	lot	when	it	comes	to	form	building.	As	shown	in	the
previous	pages,	in	Drupal	7,	you	simply	add	a	menu	hook	definition	and	a	form	creation
function	that	returns	a	renderable	array.	Since	Drupal	8	uses	object-oriented	programming,
forms	are	defined	using	classes.

So,	to	create	a	configuration	form	for	our	configuration,	we	need	to:

Add	a	form	controller	class	that	is	responsible	for	creating	the	form	elements	and
handles	validation	and	submission
Add	a	route	to	define	a	path	for	the	form
Add	a	menu	item	for	the	form

Adding	a	form	controller

At	first,	we	need	to	create	a	form	controller	that	is	responsible	for	form	generation	and
handles	additional	validation	and	saving	of	the	submitted	values.	Since	we	do	not	want	to
build	the	controller	from	scratch,	we	simply	extend	the	existing	ConfigFormBase	class.
This	class	is	Drupal	8’s	replacement	for	system_settings_form(),	familiar	from	Drupal	7
and	before.

The	form	controller	class	is	saved	to	a	file	named	ExampleSettingsForm.php.	Since	we
would	like	to	keep	our	code	organized,	we	put	this	file	in	the	src\Form	subdirectory	of	our
module.	To	create	the	basic	class,	we	need	to	define	the	namespace	of	the	class	and
override	the	getFormId()	and	getEditableConfigNames()functions	of	the	basic
FormInterface	interface.	The	returned	string	identifies	the	form	across	the	system	and
must	be	unique	for	your	site.	It	is	a	best	practice	to	use	the	name	of	the	defining	module	as
a	prefix	again,	so	we	simply	use	cm_example_settings_form	as	the	identifier	in	our
example:

<?php

/**

	*	@file

	*	Contains	\Drupal\cm_example\Form\ExampleSettingsForm.

	*/

namespace	Drupal\cm_example\Form;

use	Drupal\Core\Form\ConfigFormBase;

use	Drupal\Core\Form\FormStateInterface;

/**

	*	Provides	the	site	configuration	form.

	*/

class	ExampleSettingsForm	extends	ConfigFormBase	{

		/**

			*	{@inheritdoc}

			*/

		public	function	getFormId()	{

				return	'cm_example_settings_form';

					}

		/**

			*	{@inheritdoc}

			*/

		protected	function	getEditableConfigNames()	{

				return	['cm_example.settings'];

		}

}

?>

The	getEditableConfigNames()function	returns	the	names	of	configuration	items	that	the
form	should	be	able	to	edit.	Drupal	then	automatically	uses	the	correct	getter	for	your
configuration	if	you	access	the	values	through	$this->config().	If	the	configuration
object	is	requested	as	editable,	a	call	to	\Drupal::configFactory()->getEditable()	is
made	internally;	otherwise,	it	is	simply	\Drupal::config()->get().

Now,	we	create	the	needed	form	elements	for	our	configuration	by	overriding	the
buildForm()	function:

<?php

		/**

			*	{@inheritdoc}

			*/

		public	function	buildForm(array	$form,	FormStateInterface	$form_state)	{

				$config	=	$this->config('cm_example.settings');

				$form['example']	=	array(

						'#type'	=>	'fieldgroup',

						'#title'	=>	$this->t('Example'),

);

				$form['example']['items_per_page']	=	array(

						'#type'	=>	'textfield',

						'#title'	=>	$this->t('Items	per	page'),

						'#default_value'	=>	$config->get('items_per_page'),

						'#required'	=>	TRUE,

						'#weight'	=>	-20,

);

				return	parent::buildForm($form,	$form_state);

		}

?>

As	you	can	see,	this	is	not	very	different	from	the	function	used	in	Drupal	7.	The	only
major	differences	are	the	use	of	the	ConfigFactory	class	(available	through	$this-
>config())	and	the	call	to	the	parent	class’s	buildForm()	function.

The	last	missing	piece	for	the	form	controller	class	is	a	submission	handler.	Unlike	using
Drupal	7’s	system_settings_form(),	we	need	to	manually	save	the	submitted
configuration	values:

<?php

		/**

			*	{@inheritdoc}

			*/

		public	function	submitForm(array	&$form,	FormStateInterface	$form_state)	

{

				$this->config('cm_example.settings')

												->set('items_per_page',	$form_state-

>getValue('items_per_page'))

												->save();

				parent::submitForm($form,	$form_state);

		}

?>

Route	and	menu	items

Making	a	page	accessible	on	your	site	is	not	as	easy	as	it	has	been	in	former	Drupal
versions.	Instead	of	adding	the	path	using	hook_menu(),	you	need	to	define	a	so-called
route.

The	route	is	defined	in	a	file	called	cm_example.routing.yml	and	placed	in	the	root
directory	of	our	module:

cm_example.settings:

		path:	'/admin/config/cm_example/settings'

		defaults:

				_form:	'\Drupal\cm_example\Form\ExampleSettingsForm'

				_title:	'Example	settings'

		requirements:

				_permission:	'administer	site	configuration'

In	the	cm_example.routing.yml	file,	we	define	the	path	from	which	the	configuration
form	will	be	accessible,	and	map	the	form	we	created	using	the	Form	Controller.
Additionally,	we	define	the	page	title	and	set	some	permission	(so	that	unprivileged	users
cannot	change	these	settings).

Even	though	we	defined	the	route	here,	we	still	need	to	manually	add	an	item	to	the	menu
so	that	the	site’s	user	can	simply	access	the	page	without	manually	entering	the	path	every
time.

For	the	new	menu	item,	we	would	like	to	create	a	new	group	on	admin/config	to	visually
separate	the	item	from	other	pages.	To	create	such	a	group,	we	need	to	edit
cm_example.routing.yml	again	and	add	the	following	lines:

cm_example.admin_config_cmexample:

		path:	'/admin/config/cm_example'

		defaults:

				_controller:	

'\Drupal\system\Controller\SystemController::systemAdminMenuBlockPage'

				_title:	'CM	Example'

		requirements:

				_permission:	'access	administration	pages'

As	you	can	see,	we	use	the	core	function	systemAdminMenuBlockPage()	of	the
SystemController	class	here,	so	we	don’t	need	to	implement	any	other	classes.

To	add	the	menu	item	to	this	group,	we	now	create	a	file	named
cm_example.links.menu.yml	in	the	root	folder	of	our	module	as	follows:

Within	this	file,	we	define	a	menu	item	for	the	previously	created	group	(an	automatically
created	overview	page	such	as	admin/config/system),	and	define	the	menu	item	for	our
custom	settings	form	that	we	created	earlier	in	this	chapter:

cm_example.admin_config_cmexample:

		title:	'CM	Example'

		route_name:	cm_example.admin_config_cmexample

		parent:	system.admin_config

		description:	'CM	Example	settings.'

		weight:	0

cm_example.example_settings:

		title:	'CM	Example	settings'

		parent:	cm_example.admin_config_cmexample

		description:	'Change	settings	of	CM	Example.'

		route_name:	cm_example.settings

		weight:	0

For	a	menu	item,	we	add	the	name	of	the	corresponding	route	(the	route_name	key)	that
defines	the	path	to	follow,	and	a	parent	for	the	item.	The	value	of	the	parent	key	is	the
key	of	the	menu	item	that	you	want	your	item	to	be	a	child	of;	thus,	to	put	our	overview
page	below	admin/config,	we	need	to	set	system.admin_config	as	the	parent	here.

The	result

Visiting	admin/config	after	installing	the	example	module	will	now	give	you	a	new	group
that	contains	a	link	to	the	configuration	form	as	follows:

Calling	admin/config/cm_example	gives	you	the	automatically	created	overview	page	of
all	menu	items	that	have	the	cm_example.admin_config_cmexample	route:

Finally,	clicking	on	the	link	will	direct	us	to	our	settings	form	in	all	its	beauty,	as	shown	in
the	following	screenshot:

Summary
As	you	can	see,	it	is	not	very	complicated	to	add	a	default	configuration	to	your	Drupal	8
module	and	to	create	a	custom	form	for	your	configuration.

Drupal	8	provides	you	with	powerful	tools	to	define	the	form	and	create	the	required	menu
items,	so	you	can	focus	on	the	form	itself	and	give	your	users	a	good	user	experience.

Having	to	upgrade	a	configuration	defined	in	previous	versions,	though,	is	not	as	simple.
In	the	next	chapter,	we	will	describe	how	to	upgrade	your	variables	from	older	versions	of
Drupal	to	make	them	available	with	the	new	Configuration	Management	system.

Chapter	7.	Upgrading	Your	Drupal	7
Variables	to	the	Drupal	8	Configuration
In	the	previous	chapters,	we	prepared	you	to	add	configuration	data	and	schema	files	to
your	Drupal	8	modules.	But	what	about	all	the	old	modules	written	for	Drupal	7?	How	do
you	convert	the	variables	introduced	there	to	new	configuration	objects?	And	how	can	we
convert	the	old	setting	forms	to	the	forms	used	by	the	Configuration	System	in	Drupal	8?

This	chapter	will	show	you	some	ways	to	convert	your	Drupal	7	variables	to	the	Drupal	8
Configuration	objects	and	how	to	provide	an	upgrade	path	in	your	modules.

Upgrading	your	variables
When	upgrading	your	variables	from	Drupal	7	to	Drupal	8,	you	first	need	to	identify
whether	the	variables	are	a	simple	configuration	(for	example,	the	number	of	nodes
displayed	to	a	user)	or	whether	you	need	to	create	a	more	complex	configuration	object
(for	example,	an	image	style).	Some	variables,	though,	are	not	meant	to	be	permanent	(for
example,	the	time	of	the	last	Cron	run);	additionally,	therefore,	you	will	have	to	decide	if	it
should	be	a	configuration	(which	is	permanent	by	definition)	or	a	state	(which	reflects
information	about	the	current	site’s	state,	but	we	will	come	back	to	this	later).

Simple	configuration
Let’s	start	with	a	simple	example	and	a	simple	variable	to	convert.	Simple	variables	are,
for	example,	the	number	of	nodes	on	the	front	page,	the	name	of	your	site,	or	whether
your	site	is	in	maintenance	mode.

We	assume	that	our	module	built	for	Drupal	7	uses	variables	to	store	settings	that	a	user
might	configure.	So,	the	module	provides	a	small	form	to	save	the	settings:

<?php

/**

	*	Page	callback	for	Drupal	7	example	settings	form.

	*/

function	cm_example_settings($form,	&$form_state)	{

		//	Saved/default	value	of	variable	"items_per_page".

		$items_per_page	=	variable_get('cm_example_items_per_page',	20);

		//	Create	the	corresponding	form	element.

		$form['items_per_page']	=	array(

				'#type'	=>	'textfield',

				'#title'	=>	t('Items	per	page'),

				'#description'	=>	t('Enter	the	number	of	items	per	page.'),

				'#default_value'	=>	$items_per_page,

				'#element_validate'	=>	array('element_validate_integer'),

);

		//	Saved/default	value	of	variable	"header".

		$header	=	variable_get('cm_example_header',	TRUE);

		$form['header']	=	array(

				'#type'	=>	'checkbox',

				'#title'	=>	t('Display	list	header'),

				'#default_value'	=>	$header,

);

		//	Create	form	actions.

		$form['actions']	=	array(

				['#type']	=	'actions',

);

		$form['actions']['submit']	=	array(

				'#type'	=>	'submit',

				'#value'	=>	t('Save	configuration'),

);

		//	Return	the	form	structure	to	pass	to	drupal_get_form().

		return	$form;

}

?>

Normally,	we	would	use	system_settings_form()	to	add	the	submit	button	and	the
submit	callback.	However,	since	we	would	like	to	display	the	use	of	variable_set(),	we
manually	save	our	variables,	as	shown	in	the	following	code:

<?php

/**

	*	Submit	callback	for	Drupal	7	example	settings.

	*/

function	cm_example_settings_submit($form,	&$form_state)	{

		//	Save	the	variables	(preprend	the	variable	names	with	the	

		//	module	name	to	prevent	naming	conflicts).

		$items_per_page	=	$form_state['values']['items_per_page'];

		variable_set('cm_example_items_per_page',	$items_per_page);

		$header	=	$form_state['values']['header'];

		variable_set('cm_example_header',	$header);

		drupal_set_message('The	configuration	options	have	been	saved.');

}

?>

As	the	variables	shown	in	our	example	code	are	all	simple	items,	we	can	easily	convert
them	to	a	simple	configuration	in	Drupal	8.	All	of	these	settings	can	be	stored	in	a
configuration	object	named	<module_name>.settings.

We’ve	already	learned	how	to	put	simple	settings	provided	by	a	module	in	a	file	named
<module_name>.settings.yml	in	your	module’s	config/install	directory.	In	our
example,	this	is	cm_example.settings.yml:

#	Configuration	for	the	CM	Example	module.

items_per_page:	20

header:	1

Make	sure	you	create	a	schema	file	too,	otherwise	your	configuration	won’t	be	correctly
recognized	by	Drupal:

#	Schema	for	the	configuration	files	of	the	CM	Example	module.

cm_example.settings:

		type:	mapping

		label:	'CM	Example	settings'

		mapping:

				items_per_page:

						type:	integer

						label:	'Items	per	page'

				header:

						type:	boolean

						label:	'Display	list	header'

Now,	you	can	easily	convert	all	the	calls	made	to	variable_get()	to	the	new
\Drupal::config($name)->get($key)	calls:

<?php

//	Drupal	7:

$items_per_page	=	variable_get('cm_example_items_per_page',	20);

//	Drupal	8:

$items_per_page	=	\Drupal::config('cm_example.settings')-

>get('items_per_page');

?>

Converting	the	calls	to	variable_set()	is	basically	what	we	did	for	variable_get();	we
simply	replace	the	function	calls	with	the	setter	function	of	ConfigFactory.	Remember	to
use	\Drupal::configFactory()->getEditable()	here	since	you	cannot	change	any

configuration	loaded	with	\Drupal::config():

<?php

//	Drupal	7:

variable_set('cm_example_items_per_page',	$items_per_page);

//	Drupal	8:

\Drupal::configFactory->getEditable('cm_example.settings')

		->set('items_per_page',	$items_per_page)

		->save();

?>

When	using	\Drupal::config()	or	\Drupal::configFactory->getEditable()	multiple
times	for	the	same	configuration	object	within	one	functional	block,	it	is	much	better	to
invoke	it	only	once:

<?php

//	Load	mutable	configuration	object.

$config	=	\Drupal::configFactory->getEditable('cm_example.settings');

//	Access	single	configuration	value.

$items_per_page	=	$config->get('items_per_page');

$header	=	$config->get('header');

//	Modify	values.

$items_per_page	=	10;

$header	=	FALSE;

//	Save	configuration	value.

$config->set('items_per_page',	$items_per_page)

		->set('header',	$header)

		->save();

?>

This	way,	you	can	avoid	multiple	unnecessary	reads	of	the	configuration	and	a	decrease	in
performance.

Complex	configuration	objects
If	you	have	used	more	complex	settings	in	your	Drupal	7	module	(such	as	image	styles	or
filter	formats),	you	could	consider	creating	a	custom	Configuration	Entity	Type	as	we
showed	in	the	previous	chapter.	For	example,	image	styles	have	been	converted	to
Configuration	Entity	Types,	including	image	effects	as	plugins	in	Drupal	8.

Assume	you	would	like	to	convert	an	image	style	named	news	provided	by	your	Drupal	7
module	to	a	Drupal	8	configuration	object.	First,	you	will	create	a	file	named
image.style.news.yml	(according	to	the	naming	convention,	<module_name>.
<config_object_name>{.<optional_sub_key>}.yml).	This	file	will	hold	the	entire
definition	of	your	image	style:

name:	news

label:	'News	(240x160)'

effects:

		148b5b70-be82-11e3-b1b6-0800200c9a66:

				id:	image_scale

				data:

						width:	240

						height:	160

						upscale:	true

				weight:	0

				uuid:	148b5b70-be82-11e3-b1b6-0800200c9a66

langcode:	en

Now	you	scan	your	module’s	files	for	code	that	contains	the	image	style	options	(for
example,	the	width	of	the	used	effect)	and	replace	it	with	calls	to	the	corresponding
load()	function:

<?php

//	Drupal	7:

//	Load	the	image	style.

if	(($style	=	image_style_load('news'))	!==	FALSE)	{

		//	List	all	associated	effects	for	this	style.

		$effects	=	image_style_effects($style);

		//	Assume	the	effect	has	ieid	"1".

		$effect_width	=	$effects[1]['data']['width'];

}

//	Drupal	8:

//	Load	entity	of	type	"Image	Style".

$style	=	entity_load('image_style',	'news');

//	Get	the	effect	definition.

$effect_scale	=	$style->getEffect('148b5b70-be82-11e3-b1b6-0800200c9a66');

//	Get	dimensions	of	selected	effect.

$dimensions	=	array(

		'height'	=>	0,

		'width'	=>	0,

);

$effect_scale->transformDimensions($dimensions);

//	Get	the	value	of	property	"width".

$effect_width	=	$dimensions['width'];

?>

As	you	can	see,	configuration	entities	simplify	things	a	lot,	and	the	code	is	much	easier	to
handle.

Upgrading	to	the	new	state	system
Sometimes,	you	use	variables	in	your	modules	that	represent	a	state	of	the	system.	For
example,	if	your	module	regularly	fetches	data	from	a	different	site,	you	may	want	to	store
the	time	of	the	last	fetch;	alternatively,	and	taking	Drupal	itself	as	an	example,	the	time	of
the	last	cron	run	or	maintenance	mode	are	not	persistent	configuration	but	are	specific	to
the	current	environment.	This	information	has	no	use	in	deployment,	and	therefore	should
not	be	saved	as	configuration	data.

Fortunately,	the	State	API	is	very	similar	to	the	Configuration	API.	To	get	a	specific	value
from	the	state	system,	simply	use	$value	=	\Drupal::state()->get($key);.	Setting
values	is	simply	\Drupal::state()->set($key,	$value);.

For	example,	if	you	would	like	to	get	maintenance	mode,	you	would	do	this:

$mode	=	\Drupal::state()->get('system.maintenance_mode');

Providing	an	upgrade	path	for	your
variables
Unfortunately,	providing	an	upgrade	path	for	variables	used	in	modules	for	Drupal	6	or
Drupal	7	is	not	as	easy	as	simply	fetching	the	values	from	the	database	and	storing	them
into	the	new	configuration	system.	You	need	to	convert	the	variables	into	configuration
objects,	performing	the	correct	data	conversions	and	saving	the	values	correctly.

Prior	to	Drupal	8,	upgrading	between	major	versions	of	Drupal	was	mainly	done	using
hook_update_N().	The	developer	used	this	hook	to	move	the	required	data	from	the	old
data	structure	into	the	new	one,	and	was	responsible	for	all	conversions	needed	for	the
data	to	work	in	the	new	version	of	the	site.	In	2013,	during	DrupalCon	in	Prague,	the
decision	was	made	to	disallow	these	old-style	upgrades	and	use	a	new	and	much	more
flexible	approach	for	this	task:	the	Migrate	module.

Migrating	your	data
The	best	way	to	securely	upgrade	existing	variables	to	the	new	configuration	system	is	by
using	Migrate	(a	module	that	has	now	been	built	into	Drupal	8’s	core).

Migrate	has	been	around	for	a	couple	of	years	as	a	contributed	module	in	Drupal.	It	gives
you	near	endless	possibilities	for	migrating	content	into	Drupal	from	other	sources.	This
isn’t	limited	to	Drupal-to-Drupal	conversions;	you	are	also	able	to	import	from	CMS,
XML,	JSON,	or	any	other	parsable	source.

So,	to	inform	Drupal	about	the	variables	that	we	would	like	to	upgrade	to	Drupal	8,	we
need	to	define	a	migration	configuration.	The	naming	schema	of	the	migration
configuration	files	is	migrate.migration.<identifier>.yml.

For	the	cm_example	module	that	we	used	in	the	previous	chapters,	we	use
d7_cm_example_settings	as	the	identifier	because	we	would	like	to	provide	an	upgrade
path	from	Drupal	7	for	the	variables	defined	by	our	module:

id:	d7_cm_example_settings

label:	Drupal	7	CM	example	configuration

migration_groups:

		-	CM	example

source:

		plugin:	variable

		variables:

				-	cm_example_items_per_page

				-	cm_example_header

process:

		items_per_page:	cm_example_items_per_page

		header:	cm_example_header

destination:

		plugin:	config

		config_name:	cm_example.settings

This	tells	Drupal	to	convert	all	the	listed	variables	to	the	new	configuration	object
cm_example.settings.

Let’s	dissect	the	previous	example:

id:	This	is	the	unique	identifier	for	the	migration.	This	is	the	same	identifier	that	we
used	in	order	to	create	the	filename.
label:	This	is	a	human-readable	description	for	the	migration.
migration_groups:	This	is	a	list	of	group	names	for	creating	bundles	of	migrations
that	can	be	executed	together	(for	example,	migrations	converting	a	site	from	Drupal
7	to	Drupal	8	or	all	migrations	importing	data	from	XML).
source:	This	defines	the	plugin	used	to	collect	the	source	data	and	arguments	used	by
this	plugin.	In	our	example,	we	use	the	variable	plugin	to	fetch	the	variables	named
cm_example_items_per_page	and	cm_example_header	from	the	database	of	our
Drupal	7	database.
process:	This	describes	how	the	migrate	destination	is	constructed	from	the	source
data.	We	simply	map	the	names	of	our	new	configuration	items	with	the	old	variable

names,	so	the	data	that	comes	from	the	Drupal	7	variable	cm_example_header	will	be
mapped	to	the	configuration	item	cm_example.settings.header.
destination:	This	is	similar	to	the	source,	but	(obviously)	defines	the	destination
plugin	responsible	for	transforming	the	incoming	data	into	the	desired	format.	Since
we	would	like	to	save	the	old	variables	into	a	configuration	object,	config	is	used	as
the	destination,	and	the	name	of	our	configuration	object	is	passed	as	an	argument	to
the	plugin.

For	more	complex	examples	(such	as	complex	data	alterations	or	dependencies),	just
examine	the	migrate.*.yml	files	within	the	core	module	Migrate	Drupal.

Source	plugins
To	tell	Drupal	which	type	of	data	you	would	like	to	upgrade,	you	will	need	to	specify	the
source	plugin	for	your	migration:

source:

		plugin:	variable

		variables:

				-	cm_example_items_per_page

				-	cm_example_header

Since	we	are	upgrading	our	variables,	we	will	use	the	variable	source	plugin	here.	There
is	a	whole	bunch	of	source	plugins	available,	for	blocks,	comments,	fields,	and	so	on—
just	anything	you	need	to	upgrade	a	simple	Drupal	site.

To	specify	which	variables	to	upgrade,	simply	add	the	variables	subkey	and	list	the
names	of	the	variables	as	they	are	stored	in	the	table	{variables}	of	your	old	site.
Depending	on	the	plugin	used	as	the	source,	there	are	eventually	other	arguments	you
need	to	add.	For	example,	the	term	source	requires	you	to	specify	a	vocabulary.

Process	plugins
For	a	clean	migration,	Drupal	needs	to	know	how	to	handle	the	properties	of	your	data.
This	is	described	in	the	process	key	of	a	migration	configuration.	The	plugin	used	here	is
responsible	for	mapping	the	incoming	data	to	the	new	structure:

process:

		items_per_page:	cm_example_items_per_page

		header:	cm_example_header

Each	property	to	be	processed	during	the	migration	is	entered	as	a	child	key	of	process.
The	value	of	such	a	property	key	is	either	the	name	of	the	source	property	or	an
associative	array.	In	the	previous	example,	we	need	a	simple	1:1	mapping,	so	it	is	safe	to
use	the	name	of	the	new	configuration	item	as	the	key	and	the	name	of	the	Drupal	7
variable	as	the	value.

If	the	source	data	needs	some	special	processing,	the	value	is	written	as	an	associative
array.	It	contains	a	plugin	key	that	identifies	the	plugin	to	use	for	the	mapping	and
additional	values	used	by	the	specified	process	plugin.	An	example	of	such	a	process
plugin	is	to	use	an	author	ID	from	a	different	migration:

process:

		uid:

				plugin:	migration

				migration:	users

				source:	author

This	tells	Drupal	to	use	the	value	of	the	property	author,	which	has	been	defined	in	a
migration	named	users	as	the	data	source	of	the	new	property	uid.

It	is	even	possible	to	pass	the	source	value	through	multiple	plugins	to	get	the	correct
structure	and	value	for	the	destination	property.	To	do	this,	you	need	to	add	a	list	of	plugin
configurations	to	the	destination	key.

The	Drupal	6	migration	for	filter	formats,	for	example,	passes	the	name	of	the	old	format
to	a	process	plugin	to	create	a	machine	name,	and	then	reduces	potential	duplicated
values:

process:

		format:

				-

						plugin:	machine_name

						source:	name

				-

						plugin:	dedupe_entity

						entity_type:	filter_format

						field:	format

						length:	32

If	you	are	using	a	nested	data	structure	(for	example,	if	the	source	is
$source['defaults']['page']['items_per_page']),	you	need	to	use
'defaults/page/items_per_page'	as	the	value	(or	as	the	key	when	setting	the	value	to	a
nested	configuration	object).

Some	examples	of	process	plugins	are:

get:	This	is	the	simplest	process	plugin	and	simply	maps	the	data	exactly	from	the
source	to	the	destination.	You	do	not	even	need	to	specify	the	plugin	but	can	simply
use	the	shorthand	notation:

process:

		items_per_page:	cm_example_items_per_page

callback:	This	is	used	to	process	the	source	value	using	custom	or	built-in	functions:

process:

		destination:

				plugin:	callback

				callable:	strtolower

		source:	source_field	

It	is	even	possible	to	use	a	method	within	a	specific	class.	In	this	case,	you	need	to
identify	the	names	of	the	class	and	the	function	as	an	array	for	the	key	callable:

process:

		plugin:	callback

				callable:

				-	'\Drupal\Component\Utility\Unicode'

				-	strtolower

		source:	source_field

default_value:	This	simply	sets	a	default	value	for	a	destination	property.	This
plugin	is	useful	in	combination	with	other	plugins,	so	you	can	add	a	default	value	if
other	plugins	in	the	process	pipeline	fail	to	fetch	a	value:

process:

		uid:

				-	

						plugin:	migration

						id:	users

						source:	author

				-

						plugin:	default_value

						default_value:	1

For	a	complete	list	of	process	plugins	provided	by	the	Drupal	core,	visit	the	Migrate
handbook	at	https://www.drupal.org/node/2129651.

Destination	plugins
After	defining	the	data	source	and	how	to	process	each	property	in	it,	we	need	to	tell
Drupal	where	to	put	the	processed	data.	This	is	done	with	destination	plugins.	For	entities,
the	value	of	the	plugin	key	typically	is	entity:{entity_type}.	For	example:

destination:

		plugin:	entity:block

For	our	purpose,	we	will	use	the	config	plugin	that	gives	us	the	ability	to	save	the
processed	data	into	configuration	objects.

The	plugin	simply	accepts	the	name	of	a	configuration	object:

destination:

		plugin:	config

		config_name:	cm_example.settings

Since	Drupal	can	handle	only	one	destination	per	migration,	you	need	to	create	multiple
migrations	if	you	need	to	split	your	old	variables	into	different	configuration	objects.

Drupal	8	provides	several	predefined	destination	plugins	(such	as	comments,	files,	or
taxonomy	terms),	so	usually	you	don’t	need	to	create	your	own	for	a	simple	site.

Running	the	migration
At	the	time	of	writing,	running	the	migration	is	not	that	easy.	Unfortunately,	there	is	no
user	interface	in	the	Drupal	core	to	execute	a	migration,	so	you	will	need	to	use	Drush
(version	7.x	and	above).	Some	work	has	been	done	on	a	user	interface	for	Migrate
(https://www.drupal.org/project/migrate_upgrade),	but	it	is	still	unclear	when	and	if	this
will	be	moved	into	Drupal	8’s	core.

To	migrate	data	from	one	site	to	another,	Drupal	needs	to	know	which	migrations	should

https://www.drupal.org/node/2129651
https://www.drupal.org/project/migrate_upgrade

be	executed.	This	needs	to	be	defined	in	a	so-called	manifest	file.	The	following	are	the
conditions	that	the	manifest	file	should	fulfill:

It	must	be	saved	directly	in	Drupal’s	root	directory
It	must	be	a	simple	text	file
It	obviously	needs	to	list	all	migrations	you	wish	to	execute	(including	their
dependencies)

The	name	of	the	manifest	file	doesn’t	matter,	but	it	should	be	named	something	similar	to
manifest.yml	(even	if	it	is	a	simple	text	file,	we	should	use	the	.yml	extension	to	create
some	kind	of	convention).

Here	is	a	short	example	on	how	such	a	manifest	could	look:

#	Example	for	Drupal	7	to	Drupal	8	migration

d7_cm_example_settings

d7_cm_example_block

d7_block

d7_filter_format

You	do	not	need	to	bother	about	the	order	of	the	listed	migrations	within	your	manifest
since	Migrate	will	automatically	reorder	them	based	on	the	individual	dependencies	each
migration	has.

Finally,	to	run	the	migrations,	we	need	to	execute	the	Drush	command	migrate-manifest:

drush	migrate-manifest	<path/to/manifest>	--legacy-db-url=<database-

connection-string>

Summary
Updating	your	modules	to	use	the	new	configuration	objects	instead	of	variables	is	really
easy	and	makes	your	code	much	more	readable	and	flexible.	After	reading	this	chapter,
you	should	now	be	able	to	differentiate	between	persistent	configuration	(deployable)
using	the	Configuration	API	and	environment-specific	data	using	the	State	API.

Upgrading	a	Drupal	6	site	to	Drupal	7	seems	easier	at	first	glance	since	you	simply	have	to
run	update.php	after	preparing	the	site	and	updating	the	code	base.	However,	as	soon	as
you	have	installed	some	contrib	modules,	it	gets	complicated.	The	modules	need	to
convert	their	data	to	the	correct	structure,	and	sometimes,	you	need	to	write	your	own
update	hooks.	Using	Migrate	as	the	base	tool	for	major	version	upgrades	is	much	more
flexible	and	robust.

In	the	next	chapter,	we	will	show	you	how	to	deal	with	configuration	on	multilingual	sites
and	how	you	can	provide	translations	for	configuration.

Chapter	8.	Managing	Configuration	for
Multilingual	Websites
Drupal	allows	you	to	build	comprehensive	multilingual	websites	in	which	you	can	display
content	in	different	languages	and	translate	the	user	interface.

While	many	features	had	been	built	into	the	Drupal	core	in	previous	versions,	building
multilingual	sites	was	a	very	painful	task.

In	this	chapter,	we	will	take	a	look	at	how	Drupal	7	deals	with	different	languages	on	a	site
and	how	Drupal	8	is	trying	to	fix	the	weaknesses	from	the	previous	versions.

Multilingual	sites	in	Drupal	7
In	Drupal	7,	it	wasn’t	very	easy	to	create	multilingual	sites	and	make	all	your	content	and
settings	translatable.	There	were	too	many	components	that	utilized	different	ways	to
translate	content,	and	all	of	these	components	had	too	many	dependencies.	Even	for
experienced	site	builders,	it	could	be	a	real	struggle	to	set	up	those	components	and
dependencies.

We	will	describe	some	of	the	basic	aspects	of	Drupal	7’s	multilingual	approach	before
covering	details	of	multilingual	sites	in	Drupal	8.

The	Locale	module
The	main	translation	component	in	Drupal	7	was	the	Locale	module.	It	gives	you	basic
language	support	and	is	responsible	for	translating	the	site’s	user	interface.	Without	the
Locale	module,	you	cannot	set	up	your	site	to	display	texts	in	another	language,	and	you
will	also	be	unable	to	translate	common	strings,	such	as	the	text	on	submit	buttons.

As	shown	in	the	preceding	image,	the	Locale	module	makes	it	very	easy	to	translate
strings	on	your	site	as	long	as	they	are	provided	using	the	t()	function	(see
https://api.drupal.org/api/search/7/t).

To	avoid	translating	all	the	strings	manually,	you	can	install	the	Localization	update
module,	which	downloads	translations	for	Drupal	itself	and	for	contributed	modules	on
installation.	Additionally,	it	updates	translations	for	you	after	a	module	has	been	updated,
and	makes	sure	the	translation	matches	the	current	installed	version.	The	translations	for
Drupal’s	core	and	many	contributed	modules	are	created	by	the	community	and	are
available	on	https://localize.drupal.org.	By	default,	Localization	update	fetches	its	data
from	this	official	server,	but	you	can	also	create	your	own	translation	source	and	let
Localization	update	get	the	translations	from	your	custom	server.

https://api.drupal.org/api/search/7/t
https://localize.drupal.org

Content	translation
Having	a	multilingual	user	interface	and	being	able	to	translate	the	interface	text	used	on
the	site	isn’t	enough	for	most	sites.	Most	users	would	like	to	have	their	content	available
in	different	languages	too.	For	example,	some	news	items	only	apply	to	visitors	located	in
English-speaking	countries,	while	other	items	are	of	interest	for	people	in	Hungary.

So,	in	Drupal	7,	you	needed	to	install	the	Content	translation	module	that	comes	with
Drupal	7	by	default	so	you	didn’t	need	to	download	it	separately.

This	module	gives	you	the	ability	to	translate	single	nodes	into	different	languages.	For
every	translation,	it	creates	a	copy	of	the	translated	node,	so	you	will	have	one	node	per
language.

The	main	drawback	of	this	module	is	that	it	can	be	used	only	for	nodes,	and	does	not
handle	translation	of	other	types	of	content.

Translating	other	types	of	content
To	translate	other	types	of	content—such	as	taxonomy	terms,	views,	menus	and	menu
items,	or	field	labels—you	need	at	least	one	other	additional	module,
Internationalization	(i18n).	This	is	the	base	module	for	the	translation	of	entities	other
than	nodes.	To	make	things	just	a	little	more	complex,	there	are	some	more	modules
required	to	enable	translation	of	this	type	of	content,	such	as	Internationalization
Views	(i18n_views),	Webform	Localization	(webform_localization),	and	many	more.
Unfortunately,	there	has	been	no	real	standard	on	how	to	implement	translatability,	so
nearly	every	module	that	defines	its	own	type	of	content	needs	a	different	module	for
translation,	and	you’ll	end	up	installing	more	and	more	modules	to	translate	your	content.

Translation	settings/configuration
As	you	might	guess,	there	is	still	something	missing	when	translating	your	Drupal	7	site—
that	is,	the	configuration	defined	by	Drupal	itself	and	the	contributed	modules	you	have
installed	on	the	site.	Think	of	your	site’s	slogan,	the	site	name,	or	the	e-mails	sent	to	users
after	registration.	You	surely	want	to	deliver	these	in	the	language	that	the	user	prefers.

So	you	need	another	bundle	of	modules—for	example,	Variable	and	Variable	translation
(part	of	the	Internalization	module).	After	installing	those,	you	are	able	to	translate
variables	too,	but	only	if	the	module	that	defines	the	variable	provides	integration	for	the
Variable	module.

So,	every	form	that	handles	multilingual	variables	is	modified	to	provide	translation
capabilities	for	these	variables.	Sometimes,	the	translation	form	does	not	show	all	the
variables	of	the	original	form	because	not	all	variables	are	translatable.	This	can	be	very
confusing	at	times.

Translating	entities
Finally,	even	after	translating	all	the	other	stuff,	custom	entities	are	still	missing.	Have	you
ever	heard	of	Drupal	Commerce	(you	need	this	if	you	are	building	a	shop	on	your	site)	or
Bean	(a	replacement	for	the	block	system	in	Drupal	7)?	If	you	need	to	make	these	entities
translatable	(and	of	course,	others	too),	you	need	to	install	Entity	translation	and	some
other	modules.

So,	to	sum	it	up,	you	easily	need	to	install	30+	modules	to	create	a	fully	multilingual	site
in	Drupal	7	and	configure	all	those	modules	correctly.	This	is	a	real	struggle	and	could
take	a	lot	of	time.

Not	to	forget	the	poor	content	editors	and	site	administrators	who	have	to	find	the	correct
pages	to	translate	the	stuff.	Every	type	of	translation	has	a	different	user	interface	located
on	a	different	path	with	a	different	set	of	permissions,	so	translating	your	site	isn’t	really
much	fun.

Translating	in	Drupal	8
Drupal	8	wouldn’t	be	Drupal	8	if	it	didn’t	change	translation	as	it	changes	everything	else.
The	Drupal	8	Multilingual	Initiative,	under	the	lead	of	Gábor	Hojtsy,	did	a	great	job	and
reworked	nearly	everything	that	was	related	to	translation.

In	Drupal	8,	there	are	4	main	pillars	for	translation:

Language:	This	is	the	base	service	for	all	modules	that	deal	with	data	on	your	site.
Even	if	you	don’t	actually	use	translation	features,	it	manages	languages	wherever
you	may	need	them	on	your	site	or	within	your	modules.	Additionally,	it	is
responsible	for	language	detection	and	selecting	the	correct	language	in	which	to
deliver	your	translated	content	and	configuration.
Interface:	The	interface	component	supports	translation	of	Drupal	itself,	as	it
provides	all	the	tools	to	translate	the	interface	strings	(as	they	were	known	in
previous	versions).
Content:	In	contrast	to	Drupal	7’s	Content	translation	module,	this	handles	the
translation	of	all	fields	for	all	defined	entities	on	a	site	(similar	to	Entity	translation	in
Drupal	7).	It	isn’t	limited	to	nodes,	but	will	manage	the	translation	of	all	other	entity
types	too.
Configuration:	Every	configuration	defined	as	translatable	is	translated	using	this
component.	It	makes	sure	you	can	translate	simple	configuration—for	example,	the
site’s	name,	its	slogan,	or	complex	configuration	such	as	blocks,	views,	or	field
settings	(for	instance	labels).

Configuration	translation
As	mentioned	before,	every	configuration,	whether	provided	by	Drupal	itself	or	a
contributed	module,	can	be	translated	if	it’s	defined	as	translatable	and	after	you	enable
the	core	module	Configuration	translation.	The	language	of	the	configuration	(either	a
simple	configuration	or	a	complex	configuration)	is	tracked	directly	in	the	responsible
configuration	object.	We	expand	cm_example.settings.yml	with	2	more	keys,
description	and	langcode,	as	follows:

items_per_page:	20

header:	1

description:	''

langcode:	en

The	langcode	key	you	see	in	the	previous	example	defines	the	default	language	for
translatable	items	within	this	configuration	object.

To	enable	translation	for	a	configuration	item,	you	need	to	add	a	flag	to	the	corresponding
schema	to	tell	Drupal	that	this	configuration	item	can	be	translatable:

#	Schema	for	the	configuration	files	of	the	CM	Example	module.

cm_example.settings:

		type:	mapping

		label:	'CM	Example	settings'

		mapping:

				description:

						type:	string

						label:	'Item	description'

						translatable:	true

Even	a	data	type	can	identify	itself	as	translatable.	When	creating	a	custom	configuration
data	type,	you	can	also	add	the	translatable	property;	all	the	configuration	items	using
this	type	will	then	be	translatable	by	default,	without	your	having	to	specify	them
individually.	For	example,	the	date_format	core	data	type	does	this,	and	also	defines	a
translation	context:

#	PHP	Date	format	string	that	is	translatable.

date_format:

		type:	string

		label:	'Date	format'

		translatable:	true

		translation	context:	'PHP	date	format'

Translating	the	configuration
After	installing	the	Configuration	translation	module,	you	will	get	a	Translate…	tab	on
the	configuration	page	of	your	module	(and	on	all	other	pages	that	show	configuration
forms),	as	shown	in	the	following	screenshot:

Clicking	on	the	link	will	route	you	to	a	listing	of	all	possible	languages	this	configuration
can	be	translated	to,	as	shown	in	the	following	screenshot:

You	can	either	edit	the	item	in	the	original	language,	which	will	bring	you	back	to	the
default	configuration	form,	or	add	a	translation	for	the	configuration	items.	On	the
translation	page,	you	will	see	only	the	items	marked	as	translatable	in	the	following
schema	(as	shown	in	the	previous	example):

Of	course,	translation	also	applies	to	other	configuration	objects.	If	you	would	like	to
translate	the	title	of	a	block,	you	simply	go	to	its	configuration	page	and	click	on	the
Translate	block	tab.	Now,	you	can	see	the	language	listing	we	talked	about	earlier	and
can	translate	the	block,	as	shown	in	the	following	screenshot:

To	get	an	overview	of	all	available	translatable	configuration,	Drupal	provides	a	listing	of
all	these	items	at	admin/config/regional/config-translation,	as	shown	in	the
following	screenshot:

As	you	can	see,	there	are	two	different	types	listed:	simple	configuration	objects	(such	as
Account	settings)	that	can	be	translated	directly,	and	sets	of	entities,	where	you	are
directed	to	a	list	of	items	of	that	type	(such	as	Image	style).

Storing	translations
The	translation	is	also	stored	as	configuration,	using	the	same	storage	mechanism	as	a
normal	configuration,	so	it	is	treated	just	like	the	configuration	itself.	The	name	of	the
translated	configuration	object	equates	to	the	original	object,	but	is	associated	with	a
different	so-called	collection.

For	translations,	the	schema	for	a	collection	name	is	usually	language.{language-code}
—for	example	language.de	for	a	German	translation.

Translating	our	configuration	object	defined	in	cm_example.settings	in	to	German	would
result	in	an	entry	named	cm_example.settings	in	the	database,	with	the	collection	set	to
language.de.

Exporting	and	importing	configuration	translations
Manual	translation	of	your	site’s	configuration	isn’t	the	only	way	to	create	a	completely
multilingual	site.	You	can	also	import	existing	translations	into	your	current	site,	so	you
don’t	have	to	do	all	the	editing	by	hand.

At	the	time	of	writing,	the	only	way	to	export	configuration	translations	is	to	do	a	full
export	of	your	site’s	configuration.

Doing	a	full	export	of	the	site’s	configuration	would	create	a	directory	named	language
within	the	export.	For	each	language	translated,	a	configuration	value	would	be	created	in
another	subdirectory	within	language.	These	language-specific	directories	contain	files
for	all	translated	configuration	objects,	as	shown	in	the	following	screenshot:

In	our	case,	the	cm_example.settings.yml	file	would	only	contain	the	description	key,
since	this	is	the	only	translatable	configuration	value	set	up	for	translation:

description:	Test	(de)

Assume	you’ve	translated	the	configuration	in	your	development	environment	and	would
like	to	make	the	translation	available	on	the	live	site.	First,	you	will	need	to	export	the
current	translation	(by	doing	a	full	export	on
admin/config/development/configuration/full/export).

On	the	target	website,	you	can	then	simply	import	the	translation	by	copying	the	language
directory	with	all	its	files	from	the	exported	archive	to	the	staging	directory	of	the	target
website.	Note	that	this	directory	needs	to	contain	all	configuration	files	you’ve	exported,
since	any	configuration	missing	here	will	be	deleted	from	the	active	storage	on	the	target
site	during	the	import.

There,	you	will	need	to	navigate	to	admin/config/development/configuration	to	view
the	configuration	changes:

You	can	even	view	the	differences	between	the	active	configuration	and	the	new	values
before	importing,	so	you	don’t	end	up	with	unwanted	an	configuration	or	translation.

It	is	also	possible	to	ship	a	default	configuration	translation	with	your	own	module.	To	do
this,	you	simply	need	to	create	a	directory	structure	such	as	the	one	described	before
within	the	config/install	directory	of	your	module,	and	put	the	.yml	files	with	your
translated	configuration	values	in	it:

Note	that	shipping	the	translation	with	your	module	shouldn’t	be	done	if	you	host	your
project	at	https://drupal.org	because	in	that	case,	the	translation	is	created	by	the
community	(or	yourself)	and	hosted	at	https://localize.drupal.org.	Additionally,	the
Interface	translation	module	downloads	and	manages	translations	of	modules	hosted	at
https://drupal.org	or	on	a	custom	localization	server	you	registered	to	use.

https://drupal.org
https://localize.drupal.org
https://drupal.org

Summary
In	this	chapter,	we’ve	seen	that	it	was	difficult	to	build	a	multilingual	site	in	Drupal	7.	You
had	to	install	various	modules	and	implement	many	different	settings	to	allow	your	users
to	translate	every	type	of	content	and	configuration	on	the	site.

In	Drupal	8,	this	process	has	been	rebuilt	completely,	so	you	can	make	your	site
multilingual	with	just	a	few	clicks	and	give	your	users	simple	tools	to	translate	the	missing
pieces.

Now	that	you	have	learned	so	much	about	the	different	types	of	configuration,	how	to
upgrade	your	configuration	from	previous	versions	of	Drupal,	and	how	to	make	the
configuration	translatable,	we	will	show	you	some	tools	and	resources	you	might	want	to
try	out	in	the	next	chapter.

Chapter	9.	Useful	Tools	and	Getting	Help
When	dealing	with	Configuration	Management,	you	might	get	to	a	point	where	you	need
help.	This	chapter	provides	a	list	of	useful	links	and	tools	provided	by	the	Drupal
community.

Your	starting	point	should	be	the	documentation	pages	on	Drupal.org.	These	pages	are
maintained	by	members	of	the	Drupal	community,	and	anyone	with	a	Drupal.org	user
account	can	add	or	change	them.

Community	documentation
The	Drupal.org	community	documentation	contains	a	section	on	Configuration
Management	for	developers:	Configuration	API	in	Drupal	8,	which	can	be	found	at
https://drupal.org/developing/api/8/configuration.

This	section	contains	several	subpages	with	in-depth	information,	and	is	a	must-read	for
developers	who	work	with	the	Configuration	Management	API.

https://drupal.org/developing/api/8/configuration

The	administration	guide	documentation
The	Drupal.org	administration	guide	provides	information	about	the	daily	or	ongoing
operation	of	a	Drupal	site.	Configuration	Management	is	documented	in	general	terms	in
the	Managing	configuration	in	Drupal	8	post	at
https://drupal.org/documentation/administer/config.

https://drupal.org/documentation/administer/config

Contributed	modules
There	are	a	couple	of	contributed	modules	which	help	you	developing	configuration.

The	configuration	inspector	for	Drupal	8
The	configuration	inspector	uses	Drupal	8’s	core	built-in	configuration	system	as	well	as	a
schema	system	to	let	you	inspect	configuration	values	and	the	use	of	schemas	on	top	of
them.	This	makes	it	possible	to	have	a	developer-focused	overview	of	all	your
configuration	values,	and	perform	various	testing	and	verification	tasks	on	your
configuration	schemas.	The	following	is	a	screenshot	taken	from
https://drupal.org/project/config_inspector	this	module	lists	the	available	configuration
data	for	user.settings:

https://drupal.org/project/config_inspector

Configuration	development
This	module	helps	in	developing	configuration.	It	does	the	following	three	things:

Importing	configuration	files	automatically	into	active	storage
Exporting	configuration	objects	automatically	into	files
Helping	to	create	modules	that	behave	somewhat	similarly	to	feature	exporting	in
Drupal	7

Check	the	module’s	project	page	at	https://www.drupal.org/project/config_devel	for	more
details.

https://www.drupal.org/project/config_devel

Drush
Drush	is	a	command-line	shell	and	scripting	interface	that	makes	life	easier	for	people
who	develop	websites	with	Drupal.	If	you	don’t	know	Drush	yet,	go	visit	its	GitHub	page
at	https://github.com/drush-ops/drush.

The	tool	provides	some	useful	commands	for	Configuration	Management.

https://github.com/drush-ops/drush

Exporting	and	importing	your	configuration	using
Drush	commands
The	following	Drush	commands	will	be	the	most	used	ones	as	they	allow	you	to	export
and	import	your	configuration	with	a	simple	command:

drush	config-export	staging:	This	will	export	the	configuration	from	the	active
directory
drush	config-import	staging:	This	will	import	the	configuration	from	a	config
directory	named	staging

There	are	other	commands	available.	We	will	only	list	the	commands	here.	Read	Drush’s
help	documentation	to	find	out	how	to	use	these	commands,	since	they	may	have	specific
arguments	and	options.	The	commands	are	listed	as	follows:

config-get:	This	will	display	a	config	value	or	a	whole	configuration	object.
config-set:	This	will	set	the	config	value	directly	in	the	active	configuration.
config-list:	This	will	list	config	names	by	a	prefix.
config-edit:	This	will	open	a	config	file	in	a	text	editor.	Edits	are	imported	into	the
active	configuration	after	closing	the	editor.

Here	is	an	example	of	how	to	use	Drush’s	help	guide	to	receive	more	information	about	a
command:

Forums
For	support	questions,	you	can	visit	the	forum	at	https://drupal.org/forum.	Make	sure	you
do	a	search	first	because	there	is	a	very	good	chance	that	your	specific	question	has
already	been	answered.

https://drupal.org/forum

The	issue	queue
The	issue	queue	is	where	all	discussions	happen.	It	contains	a	vast	history	of	the
configuration	system	so,	if	you	want	to	dig	deeper,	this	is	the	place	to	go.	You	get	to	this
issue	queue	by	visiting	Drupal’s	project	page	at	http://drupal.org/project/drupal,	and
clicking	through	to	the	issues	linked	in	the	right	sidebar.	You	should	then	filter	by	Version
(8.x	issues)	and	Component	(a	configuration	system	or	configuration	entity	system).
Here’s	a	direct	link	to	the	configuration	system	queue:
https://www.drupal.org/project/issues/drupal?
version=8.x&component=configuration+system.

The	direct	link	to	the	configuration	entity	system’s	issue	queue	is
https://www.drupal.org/project/issues/drupal?
version=8.x&component=configuration+entity+system.

Tip
The	issue	queue	is	also	the	place	to	provide	patches,	but	you	shouldn’t	ask	for	support
there.

http://drupal.org/project/drupal
https://www.drupal.org/project/issues/drupal?version=8.x&component=configuration+system
https://www.drupal.org/project/issues/drupal?version=8.x&component=configuration+entity+system

IRC	chat
The	Drupal	community	uses	IRC	to	chat	about	different	topics.	To	find	out	more	about
IRC,	visit	https://drupal.org/irc.	The	IRC	channel	for	Configuration	Management	is
#drupal-cmi.

https://drupal.org/irc

Summary
Now	you	know	some	tools	and	how	to	get	help,	along	with	everything	there	is	to	know
about	Drupal	8’s	Configuration	Management.	Make	sure	you	use	it	in	your	next	project!
Don’t	forget,	it’s	important	to	be	able	to	track	configuration	changes	to	your	site,	as	it	will
save	you	time	in	the	long	run.

Do	you	have	any	questions	or	corrections?

Questions
You	can	contact	us	at	http://drupal-8-configuration-management.undpaul.com	if	you	are
facing	a	problem	with	any	aspect	of	this	book,	and	we	will	do	our	best	to	address	it.

http://drupal-8-configuration-management.undpaul.com

Index
A

active	configuration	storage
modifying	/	Changing	the	active	configuration	storage

active	directory
about	/	The	config	directory,	Changing	the	active	configuration	storage
versus	staging	directory	/	Learning	the	difference	between	active	and	staging
directories
storage	location,	modifying	of	/	Changing	the	storage	location	of	the	active	and
staging	directories

administration	guide	documentation
about	/	The	administration	guide	documentation
URL	/	The	administration	guide	documentation

C
code	style

about	/	Coding	standards
Coding	Standards,	for	configuration

URL	/	Coding	standards
community	documentation

URL	/	Community	documentation
complex	configuration	objects	/	Complex	configuration	objects
components

about	/	What	is	the	Features	module?
config	directory

about	/	The	config	directory
config	files

about	/	Config	files
configuration

about	/	Configuration
managing	/	Why	do	we	want	to	manage	our	configuration?
clone,	creating	of	site	/	Making	a	clone	of	your	site
Configuration	Management	interface	/	The	Configuration	Management	interface
single	import/export	/	Single	import/export
defining	/	Defining	and	using	your	own	configuration
using	/	Defining	and	using	your	own	configuration,	Using	the	configuration

configuration,	deploying	between	servers
reference	link	/	Using	version	control	to	keep	track	of	configuration	changes

configuration,	Drupal	8
overriding	/	Overriding	the	configuration
global	overrides	/	Global	overrides
language	overrides	/	Language	overrides
module	overrides	/	Module	overrides
overrides,	avoiding	/	Avoiding	overrides

configuration	API
about	/	A	simple	configuration	API
configuration	data,	defining	/	Working	with	configuration	data
notification,	obtaining	for	configuration	changes	/	Getting	notified	about
configuration	changes
configuration,	overriding	/	Overriding	the	configuration
configuration	entity	types,	creating	/	Creating	configuration	entity	types,	Adding
the	basics

configuration	changes
tracking	/	Tracking	configuration	changes
tracking,	version	control	used	/	Using	version	control	to	keep	track	of
configuration	changes

configuration	data

working	with	/	Working	with	configuration	data
configuration	object,	retrieving	/	Retrieving	the	configuration	object
configuration	values,	obtaining	/	Getting	configuration	values
configuration	values,	setting	/	Setting	configuration	values
configuration	values,	removing	/	Removing	configuration	values
best	practices	/	Best	practices

configuration	development
about	/	Configuration	development
URL	/	Configuration	development

configuration	entities	/	Types	of	configuration
versus	simple	configuration	/	Simple	configuration	versus	configuration	entities
about	/	Configuration	entities

configuration	entity	types
creating	/	Creating	configuration	entity	types
basics,	adding	/	Adding	the	basics
data,	controlling	/	Taking	control	of	your	data

configuration	file
setting	/	Setting	your	configuration	file

configuration	form
creating	/	Creating	a	configuration	form

configuration	forms,	Drupal	7	/	Configuration	forms	in	Drupal	7
configuration	forms,	Drupal	8

about	/	Creating	configuration	forms	in	Drupal	8
form	controller,	adding	/	Adding	a	form	controller
route,	defining	/	Route	and	menu	items
menu	Items,	defining	/	Route	and	menu	items
result	/	The	result

configuration	inspector,	Drupal	8
about	/	The	configuration	inspector	for	Drupal	8
URL	/	The	configuration	inspector	for	Drupal	8

Configuration	inspector	module
URL	/	PHP	API

Configuration	Management
about	/	An	introduction	to	Configuration	Management
need	for	/	Why	manage	configuration?

Configuration	Management,	Drupal	7
about	/	A	look	back	at	Drupal	7,	The	Configuration	Management	module
Manual	Configuration	Management	/	Manual	Configuration	Management
hook_install()	function	/	The	hook_install()/hook_update_N()	function
hook_update_N()	function	/	The	hook_install()/hook_update_N()	function
Features	module	/	The	Features	module,	What	is	the	Features	module?
advantages	/	The	Configuration	Management	module
configuration	variables,	storing	in	settings.php	/	Storing	configuration	variables
in	settings.php

Configuration	Management,	Drupal	8
about	/	How	Drupal	8	takes	care	of	Configuration	Management
using	/	How	to	start	using	Configuration	Management

Configuration	Management	interface
about	/	The	Configuration	Management	interface
interface	options	/	The	interface	options

configuration	object
retrieving	/	Retrieving	the	configuration	object

configuration	storage
about	/	Configuration	storage	and	deploying	between	environments

configurations	types,	Drupal	8
simple	configuration	/	Types	of	configuration
configuration	entities	/	Types	of	configuration

Configuration	translation,	Drupal	8
about	/	Translating	in	Drupal	8,	Configuration	translation
configuration,	translating	/	Translating	the	configuration
translation	storage	/	Storing	translations
importing	/	Exporting	and	importing	configuration	translations
exporting	/	Exporting	and	importing	configuration	translations

configuration	values
obtaining	/	Getting	configuration	values
setting	/	Setting	configuration	values
removing	/	Removing	configuration	values

configuration	variables
storing,	in	settings.php	/	Storing	configuration	variables	in	settings.php

content
about	/	Content

Content	translation,	Drupal	8
about	/	Translating	in	Drupal	8

Content	translation	module
about	/	Content	translation
configuring	/	Content	translation

content	types	/	The	settings	to	export	with	Features
CTools	Export	API

about	/	What	is	the	Features	module?,	The	settings	to	export	with	Features
using	/	What	is	the	Features	module?

custom	configuration	entity	types
about	/	Custom	configuration	entity	types

D
data	migration

about	/	Migrating	your	data
example	/	Migrating	your	data
source	plugins	/	Source	plugins
process	plugins	/	Process	plugins
destination	plugins	/	Destination	plugins
running	/	Running	the	migration

data	types
about	/	Data	types
reusing	/	Reusing	data	types

default	configuration
about	/	Default	configuration
example	/	An	example

default	variables,	on	fresh	installation	of	Drupal
reference	link	/	Storing	configuration	variables	in	settings.php

destination	plugins	/	Destination	plugins
Drupal

URL	/	Setting	your	configuration	file,	The	Locale	module,	Exporting	and
importing	configuration	translations

Drupal	7
Configuration	Management	/	A	look	back	at	Drupal	7,	The	Configuration
Management	module

Drupal	8
Configuration	Management	/	How	Drupal	8	takes	care	of	Configuration
Management

Drush
about	/	Drush
URL	/	Drush

Drush	commands
used,	for	importing	configuration	/	Exporting	and	importing	your	configuration
using	Drush	commands
used,	for	exporting	configuration	/	Exporting	and	importing	your	configuration
using	Drush	commands
drush	config-export	staging	/	Exporting	and	importing	your	configuration	using
Drush	commands
drush	config-import	staging	/	Exporting	and	importing	your	configuration	using
Drush	commands
config-get	/	Exporting	and	importing	your	configuration	using	Drush	commands
config-set	/	Exporting	and	importing	your	configuration	using	Drush	commands
config-list	/	Exporting	and	importing	your	configuration	using	Drush	commands
config-edit	/	Exporting	and	importing	your	configuration	using	Drush
commands

dynamic	type	references
about	/	Dynamic	type	references
element-key	references	/	The	element-key	references
sub-key	references	/	The	sub-key	references
parent-key	references	/	The	parent-key	references

E
element-key	references	/	The	element-key	references
Entity	translation

about	/	Translating	entities

F
Feature

creating	/	Creating	a	Feature
Features	module

URL	/	The	Features	module
about	/	What	is	the	Features	module?
setting,	for	exporting	with	features	/	The	settings	to	export	with	Features
setting,	for	not	exporting	with	features	/	The	settings	to	not	export	with	Features

field	definitions	/	The	settings	to	export	with	Features
Forums

URL	/	Forums
about	/	Forums

G
Git

about	/	Tracking	configuration	changes
global	overrides	/	Global	overrides

H
hook_install()	function	/	The	hook_install()/hook_update_N()	function
hook_update_N()	function	/	The	hook_install()/hook_update_N()	function

I
interface	options,	Configuration	Management	interface

full	import/export,	using	/	Using	full	import/export
Interface	translation,	Drupal	8

about	/	Translating	in	Drupal	8
IRC

used,	for	chat	/	IRC	chat
URL	/	IRC	chat

issue	queue
about	/	The	issue	queue
URL	/	The	issue	queue

K
Kwalify

about	/	What	are	schema	files	in	Drupal?
URL	/	What	are	schema	files	in	Drupal?

L
language	overrides	/	Language	overrides
Language	translation,	Drupal	8

about	/	Translating	in	Drupal	8
Locale	module

about	/	The	Locale	module

M
manifest	file

requirements	/	Running	the	migration
Manual	Configuration	Management	/	Manual	Configuration	Management
Migrate

URL	/	Running	the	migration
module	overrides	/	Module	overrides
multilingual	sites,	Drupal	7

creating	/	Multilingual	sites	in	Drupal	7
Locale	module	/	The	Locale	module
Content	translation	module	/	Content	translation
other	types	of	content,	translating	/	Translating	other	types	of	content
translation	settings/configuration	/	Translation	settings/configuration
Entity	translation	/	Translating	entities

O
overrides

avoiding	/	Avoiding	overrides

P
parent-key	references	/	The	parent-key	references
PHP	API

about	/	PHP	API
process	plugins

about	/	Process	plugins
examples	/	Process	plugins

project	management	tool
about	/	Using	a	project	management	tool

properties,	schema	files
about	/	Properties
type	/	Properties
label	/	Properties
translatable	/	Properties,	Making	data	translatable
translation	context	/	Properties
class	/	Properties
mapping	/	Properties
sequence	/	Properties

S
schema	files

about	/	Schema	files,	What	are	schema	files	in	Drupal?
structure	/	The	structure	of	a	schema	file
properties	/	Properties

session
about	/	Session

settings.php
configuration	variables,	storing	in	/	Storing	configuration	variables	in
settings.php

simple	configuration	/	Types	of	configuration
example	/	A	simple	configuration	example
versus	configuration	entities	/	Simple	configuration	versus	configuration	entities
about	/	Simple	configuration

single	import/export	/	Single	import/export
source	plugins	/	Source	plugins
staging	directory

about	/	The	config	directory,	Changing	the	active	configuration	storage
versus	active	directory	/	Learning	the	difference	between	active	and	staging
directories
storage	location,	modifying	of	/	Changing	the	storage	location	of	the	active	and
staging	directories

state
about	/	State

storage	location
modifying	of	active	directory	/	Changing	the	storage	location	of	the	active	and
staging	directories
modifying	of	staging	directory	/	Changing	the	storage	location	of	the	active	and
staging	directories

sub-key	references	/	The	sub-key	references

T
t()	function

about	/	The	Locale	module
URL	/	The	Locale	module

translation,	Drupal	8
about	/	Translating	in	Drupal	8
Language	/	Translating	in	Drupal	8
Interface	/	Translating	in	Drupal	8
Content	/	Translating	in	Drupal	8
Configuration	/	Translating	in	Drupal	8,	Configuration	translation
Configuration	translation	/	Configuration	translation

U
upgrade	path

providing,	for	variables	/	Providing	an	upgrade	path	for	your	variables

V
variables	/	The	settings	to	export	with	Features

upgrading	/	Upgrading	your	variables
configuration	/	Simple	configuration
complex	configuration	objects	/	Complex	configuration	objects
upgrading,	to	new	state	system	/	Upgrading	to	the	new	state	system
data,	migrating	/	Migrating	your	data

version	control
used,	for	tracking	configuration	changes	/	Using	version	control	to	keep	track	of
configuration	changes

version	control,	best	practices
about	/	Some	version	control	best	practices
work	tasks,	putting	in	project	management	tool	/	Using	a	project	management
tool
meaningful	commit	messages	/	Meaningful	commit	messages
meaningful	branches	/	Meaningful	branches

views	/	The	settings	to	export	with	Features

Y
YAML

URL	/	Config	and	schema	files	–	what	are	they	and	what	are	they	used	for?
about	/	Config	and	schema	files	–	what	are	they	and	what	are	they	used	for?

	Drupal 8 Configuration Management
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	So what is configuration in Drupal terms?
	How it works in Drupal 8
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Understanding Configuration Management
	An introduction to Configuration Management
	Configuration
	Content
	Session
	State
	Why manage configuration?
	Tracking configuration changes
	Some version control best practices
	Using a project management tool
	Meaningful commit messages
	Meaningful branches
	A look back at Drupal 7
	Manual Configuration Management
	The hook_install()/hook_update_N() function
	The Features module
	What is the Features module?
	Creating a Feature
	The settings to export with Features
	The settings to not export with Features
	The Configuration Management module
	Storing configuration variables in settings.php
	How Drupal 8 takes care of Configuration Management
	How to start using Configuration Management
	Using version control to keep track of configuration changes
	Types of configuration
	Configuration storage and deploying between environments
	Summary
	2. Configuration Management for Administrators
	Why do we want to manage our configuration?
	Making a clone of your site
	The Configuration Management interface
	The interface options
	Using full import/export
	Single import/export
	Summary
	3. Drupal 8's Take on Configuration Management
	The config directory
	A simple configuration example
	Config and schema files – what are they and what are they used for?
	Config files
	Schema files
	Learning the difference between active and staging directories
	Changing the active configuration storage
	Changing the storage location of the active and staging directories
	Simple configuration versus configuration entities
	Simple configuration
	Configuration entities
	Summary
	4. The Configuration Management API
	A simple configuration API
	Working with configuration data
	Retrieving the configuration object
	Getting configuration values
	Setting configuration values
	Removing configuration values
	Best practices
	Getting notified about configuration changes
	Overriding the configuration
	Global overrides
	Language overrides
	Module overrides
	Avoiding overrides
	Creating configuration entity types
	Adding the basics
	Taking control of your data
	Summary
	5. The Anatomy of Schema Files
	What are schema files in Drupal?
	The structure of a schema file
	Properties
	Data types
	Reusing data types
	Making data translatable
	Dynamic type references
	The element-key references
	The sub-key references
	The parent-key references
	Coding standards
	PHP API
	Summary
	6. Adding Configuration Management to Your Module
	Default configuration
	An example
	Defining and using your own configuration
	Setting your configuration file
	Custom configuration entity types
	Using the configuration
	Creating a configuration form
	Configuration forms in Drupal 7
	Creating configuration forms in Drupal 8
	Adding a form controller
	Route and menu items
	The result
	Summary
	7. Upgrading Your Drupal 7 Variables to the Drupal 8 Configuration
	Upgrading your variables
	Simple configuration
	Complex configuration objects
	Upgrading to the new state system
	Providing an upgrade path for your variables
	Migrating your data
	Source plugins
	Process plugins
	Destination plugins
	Running the migration
	Summary
	8. Managing Configuration for Multilingual Websites
	Multilingual sites in Drupal 7
	The Locale module
	Content translation
	Translating other types of content
	Translation settings/configuration
	Translating entities
	Translating in Drupal 8
	Configuration translation
	Translating the configuration
	Storing translations
	Exporting and importing configuration translations
	Summary
	9. Useful Tools and Getting Help
	Community documentation
	The administration guide documentation
	Contributed modules
	The configuration inspector for Drupal 8
	Configuration development
	Drush
	Exporting and importing your configuration using Drush commands
	Forums
	The issue queue
	IRC chat
	Summary
	Questions
	Index

