
www.allitebooks.com

http://www.allitebooks.org

Eclipse 4 Plug-in Development by
Example Beginner's Guide

How to develop, build, test, package, and release Eclipse
plug-ins with features for Eclipse 3.x and Eclipse 4.x

Dr Alex Blewitt

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Eclipse 4 Plug-in Development by Example Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1140613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-032-8

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Dr Alex Blewitt

Reviewers
Ann Ford

Thomas Fletcher

Jeff MAURY

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Dayan Hyames

Technical Editors
Prasad Dalvi

Mausam Kothari

Worrell Lewis

Pushpak Poddar

Amit Ramadas

Project Coordinator
Arshad Sopariwala

Proofreaders
Linda Morris

Lindsey Thomas

Indexers
Hemangini Bari

Tejal R. Soni

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dr Alex Blewitt has been developing Java applications since Version 1.0 was released
in 1996, and has been using the Eclipse platform since its first release as part of the IBM
WebSphere Studio product suite. He even migrated some plugins from Visual Age for
Java to WebSphere Studio/Eclipse as part of his PhD on Automated Verification of Design
Patterns. He got involved in the open source community as a tester when Eclipse 2.1 was
being released for Mac OS X, and then subsequently as an editor for EclipseZone, including
being a finalist for Eclipse Ambassador in 2007.

More recently, Alex has been writing for InfoQ, covering generic Java and specifically, Eclipse
and OSGi subjects. He keynoted the 2011 OSGi Community Event on the past, present, and
future of OSGi. The coverage of both new releases of the Eclipse platform and its projects,
as well as video interviews with some of the Eclipse project leads can be found via the InfoQ
home page, for which he was nominated and won the Eclipse Top Contributor 2012 award.

Alex currently works for an investment bank in London. He also has a number of apps on the
Apple AppStore through Bandlem Limited. When he's not working on technology, and if the
weather is nice, he likes to go flying from the nearby Cranfield airport.

Alex writes regularly at his blog, http://alblue.bandlem.com, as well as tweets
regularly from Twitter and App.Net as @alblue.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I'd like to thank my wife Amy for supporting me during the development of this book,
(particularly the late nights and weekends that were spent completing it), and indeed
throughout our decade plus marriage. I'd also like to thank my parents, Derek and Ann,
for installing a sense of independence and self-belief which has taken me many places in
my lifetime. I hope that I can encourage a similar level of confidence and self-belief in my
children, Sam and Holly.

Special thanks are due to Ann Ford, who provided detailed feedback about every chapter
and the exercises therein. Without her diligence and attention, this book would contain
many more errors than I would like. Any remaining errors are my own. My thanks also go
to the other reviewers of earlier draft chapters: Thomas Fletcher and Jeff Maury, for their
comments and suggestions.

During the later stages of the book, I was also fortunate enough to receive some good
feedback and advice from Paul Webster and Lars Vogel, both of whom are heavily involved
in the Eclipse 4 platform. Their comments on the chapter on Eclipse 4 have measurably
improved the content.

Finally, I'd like to thank OD, DJ, and JC for their support in making this book possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ann Ford is an experienced Eclipse plugin developer who has contributed significant
portions of the Eclipse Technology Accessibility Tools Framework incubator project as a
former committer. Having over 30 years of programming experience with IBM, she has
worked on tools and components of OS/2, DB2, and the IBM JDK, with extensive experience
in issues of usability, accessibility, and translation. Currently, she specializes in the design and
development of GUIs for desktop applications and tools using Java Swing, Eclipse SWT, and
JFace, with an eye towards mobile applications in the future.

Thomas Fletcher has worked in the field of real-time and embedded software
development for more than 10 years and is a frequent presenter at industry conferences. He
is a Technical Subject Matter Expert and Thought Leader on Embedded System Architecture
and Design, Real-time Performance Analysis, Power Management, and High Availability.

Prior to Crank Software, Thomas directed QNX Software Systems' Tools Development Team.
He was the Lead Architect for Multimedia, Team Leader of Core OS, and regularly engaged
with sales and marketing as a result of his ability to bridge technology and customer needs.

Thomas is an active participant within the Eclipse Community. He was a committer with the
C/C++ Development Tools (CDT) project and represented QNX on the Eclipse Architecture
and the Multicore Association review boards.

Thomas holds a degree in Master of Computer Engineering from Carleton University,
focusing on instrumentation and performance analysis of embedded systems, and a degree
in Bachelor of Electrical Engineering from the University of Victoria.

www.allitebooks.com

http://www.allitebooks.org

Jeff MAURY is currently working as the technical lead for the Java team at SYSPERTEC,
a French ISV offering mainframe integration tools.

Prior to SYSPERTEC, he co-founded in 1996 a French ISV called SCORT, precursor of the
application server concept and offering J2EE-based integration tools.

He started his career in 1988 at MARBEN, a French integration company specialized
in telecommunication protocols. At MARBEN, he started as a software developer
and finished as X.400 team technical lead and Internet division strategist.

I would like to dedicate my work to Jean-Pierre ANSART, my mentor, and thank my wife Julia
for her patience and my three sons Robinson, Paul, and Ugo.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Creating Your First Plug-in 7

Getting started 7
Time for action – setting up the Eclipse SDK environment 8
Creating your first plug-in 11
Time for action – creating a plug-in 11
Running plug-ins 15
Time for action – launching Eclipse from within Eclipse 15
Debugging a plug-in 18
Time for action – debugging a plug-in 18
Time for action – updating code in debugger 22
Debugging with step filters 23
Time for action – setting up step filtering 23
Using different breakpoint types 25
Time for action – breaking at method entry and exit 25
Using conditional breakpoints 26
Time for action – setting a conditional breakpoint 26
Using exceptional breakpoints 28
Time for action – catching exceptions 28
Time for action – using watch variables and expressions 31
Summary 34

Chapter 2: Creating Views with SWT 35
Creating views and widgets 35
Time for action – creating a view 36
Time for action – drawing a custom view 38
Time for action – drawing a second hand 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for action – animating the second hand 42
Time for action – running on the UI thread 43
Time for action – creating a reusable widget 45
Time for action – using layouts 47
Managing resources 50
Time for action – getting colorful 51
Time for action – finding the leak 52
Time for action – plugging the leak 54
Interacting with the user 56
Time for action – getting in focus 57
Time for action – responding to input 58
Using other SWT widgets 60
Time for action – adding items to the tray 60
Time for action – responding to the user 62
Time for action – modal and other effects 64
Time for action – groups and tab folders 66
Summary 73

Chapter 3: Creating JFace Viewers 75
Why JFace? 75
Creating TreeViewers 76
Time for action – creating a TreeViewer 76
Time for action – using Images in JFace 81
Time for action – styling label providers 84
Sorting and filtering 86
Time for action – sorting items in a viewer 87
Time for action – filtering items in a viewer 89
Interaction and properties 91
Time for action – adding a double-click listener 92
Time for action – showing properties 95
Tabular data 100
Time for action – viewing time zones in tables 100
Time for action – syncing selection 104
Summary 107

Chapter 4: Interacting with the User 109
Creating actions, commands, and handlers 109
Time for action – adding context menus 110
Time for action – creating commands and handlers 111
Time for action – binding commands to keys 114

Table of Contents

[iii]

Time for action – changing contexts 115
Time for action – enabling and disabling the menu's items 118
Time for action – reusing expressions 120
Time for action – contributing commands to pop-up menus 121
Jobs and progress 124
Time for action – running operations in the background 125
Time for action – reporting progress 127
Time for action – dealing with cancellation 128
Time for action – using subtasks and subprogress monitors 129
Time for action – using null progress monitors and submonitors 131
Time for action – setting job properties 133
Reporting errors 137
Time for action – showing errors 137
Summary 141

Chapter 5: Storing Preferences and Settings 143
Storing preferences 143
Time for action – persisting a value 144
Time for action – creating a preference page 145
Time for action – creating warning and error messages 147
Time for action – choosing from a list 148
Time for action – using a grid 150
Time for action – placing the preferences page 151
Time for action – using other field editors 153
Time for action – adding keywords 154
Time for action: using IEclipsePreferences 156
Using IMemento and DialogSettings 157
Time for action – adding a memento for the Time Zone View 158
Time for action – using DialogSettings 159
Summary 161

Chapter 6: Working with Resources 163
Using the workspace and resources 163
Time for action – creating an editor 164
Time for action – writing the markup parser 166
Time for action – building the builder 168
Time for action – iterating through resources 170
Time for action – creating resources 173
Time for action – implementing incremental builds 174

Table of Contents

[iv]

Time for action – handling deletion 175
Using natures 178
Time for action – creating a nature 178
Using markers 182
Time for action – error markers if the file is empty 182
Time for action – registering a marker type 184
Summary 186

Chapter 7: Understanding the Eclipse 4 Model 187
Working with the Eclipse 4 model 188
Time for action – installing E4 tooling 188
Time for action – creating an E4 application 190
Time for action – creating a part 195
Time for action – styling the UI with CSS 200
Using services and contexts 206
Time for action – adding logging 206
Time for action – getting the window 208
Time for action – obtaining the selection 209
Time for action – dealing with events 212
Time for action – calculating values on demand 215
Time for action – using preferences 217
Time for action – interacting with the UI 219
Using Commands, Handlers, and MenuItems 221
Time for action – wiring a menu to a command with a handler 221
Time for action – passing command parameters 224
Time for action – creating a direct menu and keybindings 226
Time for action – creating a pop-up menu and a view menu 229
Creating custom injectable classes 232
Time for action – creating a simple service 232
Time for action – injecting subtypes 233
Summary 235

Chapter 8: Creating Features, Update Sites, Applications, and Products 237
Grouping plug-ins with features 237
Time for action – creating a feature 238
Time for action – exporting a feature 240
Time for action – installing a feature 242
Time for action – categorizing the update site 244
Time for action – depending on other features 249
Time for action – branding features 250

Table of Contents

[v]

Building applications and products 254
Time for action – creating a headless application 254
Time for action – creating a product 259
Summary 263

Chapter 9: Automated Testing of Plug-ins 265
Using JUnit for automated testing 265
Time for action – writing a simple JUnit test case 266
Time for action – writing a plug-in test 267
Using SWTBot for user interface testing 268
Time for action – writing an SWTBot test 268
Time for action – working with menus 271
Working with SWTBot 273
Time for action – hiding the welcome screen 273
Time for action – avoiding SWTBot runtime errors 274
Working with views 274
Time for action – showing views 275
Time for action – interrogating views 276
Interacting with the UI 277
Time for action – getting values from the UI 277
Time for action – waiting for a condition 278
Summary 281

Chapter 10: Automated Builds with Tycho 283
Using Maven to build Eclipse plug-ins with Tycho 283
Time for action – installing Maven 284
Time for action – building with Tycho 286
Building features and update sites with Tycho 289
Time for action – creating a parent project 289
Time for action – building a feature 292
Time for action – building an update site 293
Time for action – building a product 295
Testing and releasing 300
Time for action – running automated tests 300
Time for action – changing the version numbers 303
Signing update sites 305
Time for action – creating a self-signed certificate 305
Time for action – signing the plug-ins 307
Time for action – serving an update site 309
Summary 310

Table of Contents

[vi]

Appendix: Pop Quiz Answers 311
Chapter 1, Creating Your First Plug-in 311
Chapter 2, Creating Views with SWT 312
Chapter 3, Creating JFace Viewers 314
Chapter 4, Interacting with the User 315
Chapter 5, Storing Preferences and Settings 317
Chapter 6, Working with Resources 317
Chapter 7, Understanding the Eclipse 4 Model 318
Chapter 8, Creating Features, Update Sites, Applications, and Products 320
Chapter 9, Automated Testing of Plug-ins 320
Chapter 10, Automated Builds with Tycho 321

Index 323

Preface
This book provides a general introduction to developing plug-ins for the Eclipse platform. No
prior experience, other than Java, is necessary to be able to follow the examples presented
in this book. By the end of the book, you should be able to create an Eclipse plug-in from
scratch, as well as be able to create an automated build of those plug-ins.

What this book covers
Chapter 1, Creating Your First Plug-in, provides an overview of how to download Eclipse, set
it up for plug-in development, create a sample plug-in, launch, and debug it.

Chapter 2, Creating Views with SWT, provides an overview of how to build views with SWT,
along with other custom SWT components such as system trays and resource management.

Chapter 3, Creating JFace Viewers, discusses creating views with JFace using TableViewers
and TreeViewers, along with integration with the properties view and user interaction.

Chapter 4, Interacting with the User, discusses using commands, handlers, and menus to
interact with the user, as well as the Jobs and Progress APIs.

Chapter 5, Storing Preferences and Settings, tells how to store preference information
persistently, as well as displaying it via the preferences pages.

Chapter 6, Working with Resources, teaches how to load and create Resources in the
workbench, as well as how to create a builder and nature for automated processing.

Chapter 7, Understanding the Eclipse 4 Model, discusses the key differences between
the Eclipse 3.x and Eclipse 4.x models, as well as how to migrate existing content to
the new model.

Preface

[2]

Chapter 8, Creating Features, Update Sites, Applications, and Products, tells how to take the
plug-ins created so far in this book, aggregate them into features, publish to update sites,
and how applications and products are used to create standalone entities.

Chapter 9, Automated Testing of Plug-ins, teaches how to write automated tests that
exercise Eclipse plug-ins, including both UI and non-UI components.

Chapter 10, Automated builds with Tycho, details how to build Eclipse plug-ins, features,
update sites, applications, and products automatically with Maven Tycho.

What you need for this book
To run the exercises for this book, you will need a computer with an up-to-date operating
system (running Windows, Linux, or Mac OS X). Java also needs to be installed; JDK 1.7 is
the current released version although the instructions should work for a newer version of
Java as well.

This book has been tested with the Eclipse SDK (Classic/Standard) for Juno (4.2) and
Kepler (4.3). Newer versions of Eclipse may also work. Care should be taken while
installing Eclipse for RCP and RAP developers, as this will cause the applications
created in Chapter 7, Understanding the Eclipse 4 Model and Chapter 8, Creating
Features, Update Sites, Applications, and Products.

The first chapter explains how to get started with Eclipse, including how to obtain and install
both Eclipse and Java.

Who this book is for
This book is aimed at Java developers who are interested in learning how to create plug-ins,
products, and applications for the Eclipse platform. The book starts with how to install and
use Eclipse to build and debug plug-ins, covers different types of user interfaces, and finishes
with how to create update sites and build and test plug-ins automatically.

This book will also be useful to those who already have some experience in building Eclipse
plug-ins and want to know how to create automated builds using Maven Tycho, which has
become the de-facto standard for building Eclipse plug-ins.

Finally, those Eclipse developers who are familiar with the Eclipse 3.x model but are
interested in learning about the changes that the Eclipse 4.x model brings will find the
information presented in Chapter 7, Understanding the Eclipse 4 Model a useful summary of
what opportunities the new model provides.

Preface

[3]

� E4: In this book, both the Eclipse 3.x and Eclipse 4.x models are covered.
The Eclipse 4 platform contains a backwards-compatible runtime for the Eclipse
3.x APIs. Where the Eclipse 3.x APIs differ from the Eclipse 4.x APIs, the icon

� E4 will be used to call out a difference. A full explanation of the Eclipse 4
concepts will be covered in Chapter 7, Understanding the Eclipse 4 Model; so the
E4 notes can be skipped on the first reading if necessary.
If you are developing an Eclipse IDE-based plug-in, you should consider using
the Eclipse 3.x APIs, as these will work in both older Eclipse instances, as well as
newer ones. If you are developing an Eclipse RCP-based application and do not
need to support older versions, consider building an Eclipse 4-based application.
Future versions of the Eclipse platform (4.4/Luna and afterwards) will make it
possible to use some of the Eclipse 4 APIs in the IDE.

Conventions
In this book, you will find several headings appear frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own
understanding.

Preface

[4]

Have a go hero – heading
These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "You may notice that we used the Unix command
rm to remove the Drush directory rather than the DOS del command."

A block of code is set as follows:

* Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

* Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300

Any command-line input or output is written as follows:

cd /ProgramData/Propeople

rm -r Drush

git clone --branch master http://git.drupal.org/project/drush.git

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "On the Select Destination
Location screen, click on Next to accept the default destination".

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

The code samples from this book are also available from the GitHub repository at
http://github.com/alblue/com.packtpub.e4. There are ten branches, each
corresponding to the state of the book's examples at the end of each chapter.

www.allitebooks.com

http://www.packtpub.com/
http://www.packtpub.com/support
http://github.com/alblue/com.packtpub.e4
http://www.allitebooks.org

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

See also the book's GitHub repository at http://github.com/alblue/com.packtpub.
e4. If any code samples need to be updated, they will be updated there.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://github.com/alblue/com.packtpub.e4
http://github.com/alblue/com.packtpub.e4
mailto:copyright@packtpub.com

1
Creating Your First Plug-in

Eclipse is a highly modular application, consisting of hundreds of plug-ins, and
can be extended by installing additional plug-ins. Plug-ins are developed and
debugged with the Plug-in Development Environment (PDE).

In this chapter, we shall:

 � Set up an Eclipse environment for performing plug-in development

 � Create a plug-in with the new plug-in wizard

 � Launch a new Eclipse instance with the plug-in enabled

 � Debug the Eclipse plug-in

Getting started
Developing plug-ins requires an Eclipse development environment. This book has been
developed and tested on Juno (Eclipse 4.2) Kepler (4.3). Use the most recent version available.

Eclipse plug-ins are generally written in Java. Although it's possible to use other JVM-based
languages (such as Groovy or Scala), this book will use the Java language.

There are several different packages of Eclipse available from the downloads page, each of
which contains a different combination of plug-ins. This book has been tested with:

 � Eclipse SDK from http://download.eclipse.org/eclipse/downloads/

 � Eclipse Classic and Eclipse Standard from http://www.eclipse.org/downloads/

Creating Your First Plug-in

[8]

These contain the necessary Plug-in Development Environment (PDE) feature as well as the
source code, the help documentation, and other useful features. (The RCP and RAP package
should not be used, as it will cause problems with exercises in the Chapter 7, Understanding
the Eclipse 4 Model.)

It is also possible to install the Eclipse PDE feature into an existing Eclipse instance. To do
this, go to the Help menu and select Install New Software, followed by choosing the General
Purpose Tools category from the update site. The Eclipse Plug-in Development Environment
feature contains everything needed to create a new plug-in.

Time for action – setting up the Eclipse SDK environment
Eclipse is a Java-based application, which needs Java installed. Eclipse is distributed as a
compressed archive and doesn't require an explicit installation step.

1. To obtain Java, go to http://java.com and follow the instructions to download
and install Java. Note that Java comes in two flavors; a 32-bit install and a 64-bit
install. If the running OS is a 32-bit, install the 32-bit JDK; alternatively, if the running
OS is 64-bit, install the 64-bit JDK.

2. Running java -version should give output like so:
java version "1.7.0_09"

Java(TM) SE Runtime Environment (build 1.7.0_09-b05)

Java HotSpot(TM) 64-Bit Server VM (build 23.5-b02, mixed mode)

3. Go to http://www.eclipse.org/downloads/ and select the Eclipse Classic or
Eclipse Standard distribution.

4. Download the one which matches the installed JDK. Running java -version
should report either:

 � If it's a 32-bit JDK:
Java HotSpot(TM) Client VM

 � If it's a 64-bit JDK:
Java HotSpot(TM) 64-Bit Server VM

On Linux, Eclipse requires GTK2 to be installed. Most Linux distributions
have a window manager based on GNOME that provides GTK2.x.

5. To install Eclipse, download and extract the contents to a suitable location. Eclipse
is shipped as an archive, and needs no administrator privileges. Do not run it from a
networked drive as this will cause performance problems.

Chapter 1

[9]

Note that Eclipse needs to write to the folder from which it is extracted,
so it's normal that the contents are writable afterwards. Generally, installing
into /Applications or C:\Program Files, while being logged in with
administrator account, is not recommended.

6. Run Eclipse by double-clicking on the Eclipse icon, or by running eclipse.exe
(Windows), eclipse (Linux), or Eclipse.app (OS X).

7. Upon startup, the splash screen should be shown:

8. Choose a workspace, which is the location in which projects are be stored, and click
on OK:

Creating Your First Plug-in

[10]

9. Close the welcome screen by clicking on the cross icon in the tab next to
the Welcome text. The welcome screen can be re-opened by navigating to
Help | Welcome:

What just happened?
Eclipse needs Java to run, and so the first step involved in installing Eclipse is ensuring that an
up-to-date Java installation is available. By default, Eclipse will find a copy of Java installed on
the path or from one of the standard locations. It is also possible to specify a different Java
version by using the -vm command-line argument.

Chapter 1

[11]

If the splash screen doesn't show up, the Eclipse version may be incompatible with the
JDK (for example, a 64-bit JDK with a 32-bit Eclipse, or vice-versa). Common error messages
shown at the launcher may include Unable to find companion launcher or a cryptic
message about being unable to find an SWT library.

On Windows, there is an additional eclipsec.exe launcher, which allows log messages
printed to the console to be seen. This is sometimes useful if Eclipse fails to load and no
other message is displayed. Other operating systems can use the eclipse command. Both
eclipse.exe and eclipse support the -consolelog argument, which can display more
diagnostic information about problems while launching Eclipse.

The Eclipse workspace is a directory used for two purposes: as the default project location,
and to hold the .metadata directory containing Eclipse settings, preferences, and other
runtime information. The Eclipse runtime log is stored in the .metadata/.log file.

The workspace chooser dialog has an option to set the chosen value as the default
workspace. It can be changed within Eclipse by navigating to File | Switch Workspace.
It can also be overridden by specifying a different workspace location with the -data
command-line argument.

Finally, the welcome screen is useful for first-time users, but is worth closing (rather than
minimizing) once Eclipse has started.

Creating your first plug-in
In this task, Eclipse's plug-in wizard will be used to create a plug-in.

Time for action – creating a plug-in
In the Plug-in Development Environment (PDE), every plug-in has its own individual project.
A plug-in project is typically created with the New Project wizard, although it is possible
to upgrade an existing Java project to a plug-in project by adding the PDE nature and the
required files (by navigating to Configure | Convert to plug-in project).

Creating Your First Plug-in

[12]

1. To create a Hello World plugin, navigate to File | New | Project:

2. The project types shown may be different from this list, but should include Plug-in
Project with Eclipse Classic. If nothing is shown under the File | New menu, navigate
to Window | Open Perspective | Other | Plug-in Development first; the entries
should then be seen under the File | New menu.

3. Choose Plug-in Project and click on Next. Fill in the dialog as follows:

 � Project name: com.packtpub.e4.hello.ui

 � Select the checkbox for Use default location

 � Select the checkbox for Create a Java project

 � Target Eclipse Version: 3.5 or greater

4. Click on Next again, and fill in the plug-in properties:

 � ID: com.packtpub.e4.hello.ui

 � Version: 1.0.0.qualifier

 � Name: Hello

 � Vendor: PacktPub

Chapter 1

[13]

 � Execution Environment: Use the default (for example: JavaSE-1.6 or
JavaSE-1.7)

 � Select the checkbox for Generate an Activator

 � Activator: com.packtpub.e4.hello.ui.Activator

 � Select the checkbox for This plug-in will make contributions to the UI

 � Rich client application: No

5. Click on Next and a set of templates will be provided:

 � Select the checkbox for Create a plug-in using one of the templates

 � Choose the Hello World Command template

6. Click on Next to customize the sample, including:

 � The Java package name, which defaults to the project's name

 � The handler class name, which is the code that gets invoked for the action

 � The message box text, which is the message supplied

7. Finally, click on Finish and the project will be generated.

8. If a dialog asks, click on Yes to show the plug-in development perspective.

What just happened?
Creating a plug-in project is the first step towards creating a plug-in for Eclipse. The New
Plug-in Project wizard was used with one of the sample templates to create a project.

Plug-ins are typically named in reverse domain name format, so these examples will
be prefixed with com.packtpub.e4. This helps to distinguish between many plug-ins;
the stock Eclipse SDK comes with more than 440 individual plug-ins, for example,
the Eclipse-developed ones start with org.eclipse.

Conventionally, plug-ins which create additions to (or require) the use of the
UI have .ui. in the name. This helps to distinguish from those that don't,
which can often be used headlessly. Of the 440+ plug-ins that make up the
Eclipse SDK, 120 of those are UI related and the rest are headless.

The project contains a number of files which are automatically generated, based on the
content filled in the wizard. The key files in an Eclipse plug-in are:

 � META-INF/MANIFEST.MF: The OSGi manifest describes the plug-in's dependencies,
version, and name. Double-clicking it will open a custom editor, which shows the
information entered in the wizards; or it can be opened in a standard text editor.

Creating Your First Plug-in

[14]

The Manifest follows standard Java conventions; continuations are represented by a
new line followed by a single space character, and the file must end with a new line.
(For example, the maximum line length is 72 characters, although many ignore this.)

 � plugin.xml: The plugin.xml file declares what extensions this plug-in
provides to the Eclipse runtime. Not all plug-ins need a plugin.xml file; headless
(non-UI) plug-ins often don't need to have one. Extension points will be covered in
more detail later, but the sample project creates an extension for the commands,
handlers, bindings, and menus extension points. (If the older Hello World template
was chosen, present on 3.7 and older, only the actionSets extension will be used.)

Text labels for the commands, actions, or menus are represented declaratively in
the plugin.xml file, rather than programmatically; this allows Eclipse to show the
menu before needing to load or execute any code.

This is one of the reasons Eclipse starts so quickly; by not needing to load
or execute classes, it can scale by showing what's needed at the time, and
then load the class on demand when the user invokes the action. Java
Swing's Actions provides labels and tool tips programmatically, which can
result in a slower initialization of the user interface.

 � build.properties: This file is used by PDE at development time and at build
time. Generally it can be ignored, but if resources are added that need to be made
available to the plug-in (such as images, properties files, HTML content, and so on),
an entry must be added here as otherwise it won't be found. Generally, the easiest
way to do this is by going to the Build tab of the build.properties file, which will
give a tree-like view of the project's contents.

This file is an archaic hangover from the days of Ant builds, and is generally useless when
using more up-to-date builds such as Maven Tycho, which will be covered in Chapter 10,
Automated Builds with Tycho.

Pop quiz – Eclipse workspaces and plug-ins
Q1. What is an Eclipse workspace?

Q2. What is the naming convention for Eclipse plug-in projects?

Q3. What are the names of the three key files in an Eclipse plug-in?

Chapter 1

[15]

Running plug-ins
To test an Eclipse plug-in, Eclipse is used to run or debug a new Eclipse instance with the
plug-in installed.

Time for action – launching Eclipse from within Eclipse
Eclipse can launch a new Eclipse application by clicking on the Run button, or via the
Run menu.

1. Select the plug-in project in the workspace.

2. Click on the Run button to launch the project. The first time this happens, a dialog
will be shown; subsequent launches will remember the previous type:

3. Choose the Eclipse Application type and click on OK, and a new Eclipse instance will
be launched.

4. Close the welcome page in the launched application, if shown.

5. Click on the Hello World icon in the menu bar, or navigate to Sample Menu |
Sample Command, and the dialog box created via the wizard will be shown:

www.allitebooks.com

http://www.allitebooks.org

Creating Your First Plug-in

[16]

6. Quit the test Eclipse instance by closing the window, or via the usual keyboard
shortcuts or menus (Cmd + Q on OS X, Alt + F4 on Windows).

What just happened?
When clicking Run in the toolbar (or via the Run | Run As | Eclipse Application menu) a
launch configuration is created, which includes any plug-ins open in the workspace. A second
copy of Eclipse—with its own temporary workspace—will enable the plug-in to be tested and
verified so that it works as expected.

The Run operation is intelligent, in that it launches an application based on what is selected
in the workspace. If a plug-in is selected, it will offer the opportunity to run as an Eclipse
application; if a Java project with a class with a main method, it will run it as a standard Java
application; and if it has tests then it will offer to run the test launcher instead.

However, the Run operation can also be counter-intuitive; if clicked a second time, and in a
different project context, something other than the expected launch might be run.

A list of the available launch configurations can be seen by going to the Run menu, or by
going to the drop-down list to the right of the Run icon. The Run | Run Configurations menu
shows all the available types, including any previously run:

Chapter 1

[17]

By default, the runtime workspace is kept between runs. The launch configuration for an
Eclipse application has options that can be customized; in the previous screenshot, the
Workspace Data section in the Main tab shows where the runtime workspace is stored,
and an option is shown that allows the workspace to be cleared (with or without
confirmation) between runs.

Launch configurations can be deleted by clicking on the red Delete icon on the top-left,
and new launch configurations can be created by clicking on the New icon . Each launch
configuration has a type:

 � Eclipse Application

 � Java Applet

 � Java Application

 � JUnit

 � JUnit Plug-in Test

 � OSGi Framework

The launch configuration can be thought of as a precanned script, which can launch different
types of programs. Additional tabs are used to customize the launch, such as the environment
variables, system properties, or command-line arguments. The type of the launch
configuration specifies what parameters are required, and how the launch is executed.

When a program is launched with the Run icon, changes to the project's source code do not
take effect. However, as we'll see in the next section, if it's launched with the Debug icon,
changes can take effect.

If the test Eclipse is hanging or otherwise unresponsive, in the host Eclipse instance the
Console view (shown with the Window | View | Show View | Other | General | Console
menu) can be used to stop () the test Eclipse instance.

Pop quiz – launching Eclipse
Q1. What are the two ways of terminating a launched Eclipse instance?

Q2. What are launch configurations?

Q3. How do you create and delete launch configurations?

Creating Your First Plug-in

[18]

Have a go hero – modifying the plug-in
Now that you've got the Eclipse plug-in running, try the following:

 � Change the message of the label and title of the dialog box to something else

 � Invoke the action by using the keyboard shortcut (defined in plugin.xml)

 � Change the tool tip of the action to a different message

 � Switch the action icon to a different graphic (note that if you use a different
filename, remember to update build.properties).

Debugging a plug-in
Since it's rare that everything works first time, it's often necessary to develop iteratively,
adding progressively more functionality each time. Secondly, sometimes it's necessary to
find out what's going on under the covers when trying to fix a bug, particularly if it's hard
to track down exceptions such as NullPointerException.

Fortunately, Eclipse comes with excellent debugging support, which can be used for
debugging both standalone Java applications as well as Eclipse plug-ins.

Time for action – debugging a plug-in
Debugging an Eclipse plug-in is almost the same as running an Eclipse plug-in, except that
breakpoints can be used, and the state of the program can be updated, variables, and minor
changes to the code can be done. Rather than debugging plug-ins individually, the entire
Eclipse launch configuration is started in debug mode. That way, all the plug-ins can be
debugged at the same time.

Although run mode is slightly faster, the added flexibility of being able to make changes
makes debug mode much more attractive to use as a default.

Start the test Eclipse, by navigating to the Debug | Debug As | Eclipse Application menu, or
by clicking on Debug () in the toolbar.

1. Click on the Hello World icon in the test Eclipse to display the dialog, as before,
and click on OK to dismiss it.

Chapter 1

[19]

2. In the host Eclipse, open the SampleHandler class and go to the execute() method.

3. Add a breakpoint by double-clicking in the vertical ruler (the gray/blue bar on the
left of the editor), or by pressing Ctrl + Shift + B (or Cmd + Shift + B on OS X). A blue
dot representing the breakpoint will appear in the ruler:

Creating Your First Plug-in

[20]

4. Click on the Hello World icon in the test Eclipse to display the dialog, and the
debugger will pause the thread at the breakpoint in the host Eclipse:

The debugger perspective will open whenever a breakpoint is triggered
and the program will be paused. While it is paused, the test Eclipse is
unresponsive. Any clicks on the test Eclipse application will be ignored,
and it will show a busy cursor.

5. On the top-right, variables that are active in the line of code are shown. In this case,
it's just the implicit variables (via this), any local variables (none, yet) as well as the
parameter (in this case, event).

Chapter 1

[21]

6. Click on Step Over or press F6, and window will be added to the list of
available variables:

7. When ready to continue, click on Resume or press F8 to keep running.

What just happened?
The built-in Eclipse debugger was used to launch Eclipse in debug mode. By triggering an
action which led to a breakpoint, the debugger was revealed allowing the local variables to
be introspected.

When in the debugger, there are several options available for stepping through the code:

 � Step Over – allows stepping over line-by-line in the method

 � Step Into – follow the method calls recursively as execution unfolds

Creating Your First Plug-in

[22]

There is also a Run | Step into Selection menu item that does not have
a toolbar icon. It can be invoked with Ctrl + F5 (Alt + F5 on OS X), and is
used to step into a specific expression.

 � Step Return – jump to the end of a method

 � Drop to Frame – return to a stack frame in the thread to re-run an operation

Time for action – updating code in debugger
When an Eclipse instance is launched in run mode, changes made to the source code aren't
reflected in the running instance. However, debug mode allows changes made to the source
to be reflected in the running test Eclipse instance.

1. Launch the test Eclipse in debug mode by clicking on the Debug icon.
2. Click on the Hello World icon in the test Eclipse to display the dialog, as before,

and click on OK to dismiss it. It may be necessary to remove or resume the
breakpoint in the host Eclipse instance to allow execution to continue.

3. In the host Eclipse, open the SampleHandler class and go to the
execute() method.

4. Change the title of the dialog to Hello again, Eclipse world and save
the file. Provided that Project | Build Automatically is enabled, the change
will be recompiled.

5. Click on the Hello World icon in the test Eclipse instance again. The new message
should be shown.

What just happened?
By default, Eclipse ships with Project | Build Automatically enabled. Whenever changes are
made to Java files, they are recompiled along with their dependencies if necessary.

When a Java program is launched in run mode, it will load classes in on-demand and then
keep using that definition until the JVM shuts down. Even if the classes are changed, the
JVM won't notice that they have been updated, and so no differences will be seen in the
running application.

However, when a Java program is launched in debug mode, whenever changes to classes
are made, it will update the running JVM with the new code if possible. The limits to what
can be replaced are controlled by the JVM through the JVMTI and whether, for example, the
virtual machine's canUnrestrictedlyRedefineClasses() call returns true. Generally,
updating an existing method and adding a new method or field will work, but changes to
interfaces and super classes may not be. (Refer to http://en.wikipedia.org/wiki/
Java_Virtual_Machine_Tools_Interface for more information.)

Chapter 1

[23]

The ex-Sun Hotspot JVM cannot replace classes if methods are added or
interfaces are updated. Some JVMs have additional capabilities which can
substitute more code on demand. With the merging of JRockit and Hotspot
over time, more may be replaceable at runtime than before; for everything
else, there's JRebel.
Other JVMs, such as IBM's, can deal with a wider range of replacements.

Note that there are some changes which won't be picked up; for example, new extensions
added to the plugin.xml file. In order to see these changes, it is possible to start and stop
the plug-in through the command-line OSGi console, or restart Eclipse inside or outside the
host Eclipse to see the change.

Debugging with step filters
When debugging using Step Into, the code will frequently go into Java internals, such as the
implementation of Java collections classes or other internal JVM classes. These don't usually
add value, but fortunately Eclipse has a way of ignoring uninteresting classes.

Time for action – setting up step filtering
Step filtering allows for uninteresting packages and classes to be ignored during step debugging.

1. Run the test Eclipse application in debug mode.

2. Ensure a breakpoint is set at the start of the SampleHandler class's
execute() method.

3. Click on the Hello World icon, and the debugger should open at the first line
as before.

4. Click on Step Into five or six times. At each point, the code will jump into the next
method in the expression; first through various methods in HandlerUtil and then
into ExecutionEvent.

5. Click on Resume to continue.

6. Open Preferences, and then navigate to Java | Debug | Step Filtering.

7. Check the Use Step Filters option.

Creating Your First Plug-in

[24]

8. Click on Add Package and enter org.eclipse.ui, followed by clicking on OK.

9. Click on the Hello World icon again.

10. Click on Step Into as before. This time, the debugger goes straight to
getApplicationContext() in the Execution Event class.

11. Click on the Resume icon to continue.

12. To make debugging more efficient by skipping accessors, go back into the Step
Filters preference and select the Filter Simple Getters from the Step Filters
preference's page.

13. Click on the Hello World icon again.

14. Click on Step Into as before.

15. Instead of going into the getApplicationContext() method, execution will drop
through to the ExpressionContext class's getVariable() method instead.

What just happened?
The Step Filters preferences allows uninteresting packages to be skipped, at least from the
point of debugging. Typically, JVM internal classes (such as those beginning with sun or
sunw) are not helpful when debugging and can easily be ignored. This also avoids debugging
through the class loader, as it loads classes on demand.

Chapter 1

[25]

Typically, it makes sense to enable all the default packages in the Step Filters dialog, as it's
pretty rare to need to debug any of the JVM libraries (internal or public interfaces). This
means when stepping through the code, if a common method such as List.toString()
is called, debugging won't step through the internal implementation.

It also makes sense to filter out simple setters and getters (those that just set a variable, or
those that just return a variable). If the method is more complex (like the getVariable()
method discussed previously), it will still stop in the debugger.

Constructors and static initializers can also be specifically filtered.

Using different breakpoint types
Although it's possible to place a breakpoint anywhere in a method, a special breakpoint type
exists, which can fire on method entry, exit, or both. Breakpoints can also be customized to
only fire in certain situations or when certain conditions are met.

Time for action – breaking at method entry and exit
Method breakpoints allow the user to see when a method is entered or exited.

1. Open the SampleHandler class, and go to the execute() method.

2. Double-click in the vertical ruler at the method signature, or select Toggle
Method Breakpoint from the method in one of the Outline, Package
Explorer, or Members views.

3. The breakpoint should be shown on the line public Object execute(...)
throws ExecutionException {.

4. Open the breakpoint properties by right-clicking on the breakpoint or via the
Breakpoints view, which is shown in the debug perspective. Set the breakpoint
to trigger at the method entry and method exit.

5. Click the Hello World icon again.

6. When the debugger stops at the method entry, click on the Resume icon.

7. When the debugger stops at the method exit, click on the Resume icon.

What just happened?
The breakpoint triggers at the time the method enters and subsequently when the method's
return statement is reached.

www.allitebooks.com

http://www.allitebooks.org

Creating Your First Plug-in

[26]

Note that the exit is only triggered if the method returns normally; if an exception is raised
which causes the method to return, this is not treated as a normal method exit, and so the
breakpoint won't fire.

Other than the breakpoint type, there's not a significant difference between creating
a breakpoint on method entry and creating one on the first statement of the method.
Both give the ability to introspect the parameters and do further debugging prior to any
statements in the method itself are called.

The method exit breakpoint, on the other hand, will only trigger once the return statement
is about to leave the method. Thus, any expression in the method's return value will have
been evaluated prior to the exit breakpoint firing. Compare and contrast this to the line
breakpoint, which will wait to evaluate the argument of the return statement.

Note that Eclipse's Step Return icon has the same effect; this will run until the method's
return statement is about to be executed. However, to find when a method returns,
using a method exit breakpoint is far faster than stopping at a specific line and then
clicking on Step Return.

Using conditional breakpoints
Breakpoints are useful, since they can be invoked on every occasion that a line of code is
triggered. However, sometimes they need to break for specific actions only, such as when a
particular option is set, or when a value has been incorrectly initialized. Fortunately, this can
be done with conditional breakpoints.

Time for action – setting a conditional breakpoint
Normally, breakpoints fire on each invocation. It is possible to configure breakpoints such
that they fire when certain conditions are met.

1. Go to the execute() method of the SampleHandler class.

2. Clear any existing breakpoints by double-clicking them or using Delete all
breakpoints from the Breakpoints view.

3. Add a breakpoint to the first line of the execute() method body.

4. Right-click on the breakpoint and select the Breakpoint Properties menu. (It can
also be shown by Ctrl + double-clicking, or Cmd + double-clicking on OS X on the
breakpoint icon itself.)

Chapter 1

[27]

5. Set the Hit Count field to 3, and click on OK.

6. Click on the Hello World icon button three times. On the third click, the debugger
will open up at that line of code.

7. Open the breakpoint properties, deselect Hit Count and select the Enabled and
Conditional options. Put the following code into the conditional trigger field:
((org.eclipse.swt.widgets.Event)event.trigger).stateMask == 65536

8. Click on the Hello World icon and the breakpoint will not fire.

9. Hold down Alt, click on the Hello World icon, and the debugger will open. (65536 is
the value of SWT.MOD3, which is the Alt key.)

Creating Your First Plug-in

[28]

What just happened?
When a breakpoint is created, it is enabled by default. A breakpoint can be temporarily
disabled, which has the effect of removing it from the flow of execution. Disabled
breakpoints can be trivially re-enabled on a per-breakpoint basis, or from the Breakpoints
view. Quite often it's useful to have a set of breakpoints defined in the codebase, but not
necessarily have them all enabled at once.

It is also possible to temporarily disable all breakpoints using the Skip All Breakpoints
setting, which can be changed from the corresponding item in the Run menu (when the
debug perspective is enabled), or the corresponding icon in the Breakpoints view. When
this is toggled, no breakpoints will be fired.

Conditional breakpoints must use a Boolean expression, rather than a statement or a set
of statements. Sometimes this is constraining; if that's the case, having a utility class with a
static method allows more complex code paths (with the caveat that all interesting data must
be passed in as method arguments).

Using exceptional breakpoints
Sometimes when debugging a program, an exception occurs. Typically this isn't known about
until it happens, when an exception message is printed or displayed to the user via some
kind of dialog box.

Time for action – catching exceptions
Although it's trivial to put a breakpoint in the catch block, this is merely the location where
the failure was ultimately caught, not where it was caused. The place where it was caught
can often be in a completely different plug-in from where it was raised, and depending
on the amount of information encoded within the exception (particularly if it has been
transliterated into a different exception type), it may hide the original source of the
problem. Fortunately, Eclipse can handle such cases with a Java Exception breakpoint.

1. Introduce a bug into the SampleHandler class's execute() method, by adding
the following just before the MessageDialog.openInformation() call:
window = null;

Chapter 1

[29]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

2. Click on the Hello World icon.

3. Nothing will appear to happen in the target Eclipse, but in the Console view of the
host Eclipse instance, the following error message should be seen:
Caused by: java.lang.NullPointerException
 at com.packtpub.e4.hello.ui.handlers.SampleHandler.
execute(SampleHandler.java:30)
 at org.eclipse.ui.internal.handlers.HandlerProxy.
execute(HandlerProxy.java:293)
 at org.eclipse.ui.internal.handlers.E4HandlerProxy.
execute(E4HandlerProxy.java:76)

4. Create a Java Exception breakpoint in the Breakpoints view of the debug
perspective. The exception dialog will be shown as follows:

Creating Your First Plug-in

[30]

5. Enter NullPointerException into the search dialog and click on OK.

6. Click on the Hello World icon and the debugger will stop at the line the exception is
thrown, instead of where it is caught:

What just happened?
The Java Exception breakpoint stops when an exception is thrown, not when it is caught.
The dialog asks for a single exception class to catch and by default, the wizard has
been prefilled with any class whose name includes *Exception*. However, any name
(or filter) can be typed into the search box, including abbreviations such as FNFE for
FileNotFoundException. Wildcard patterns can also be used, which allows searching
for Nu*Ex or *Unknown*.

By default, the exception breakpoint corresponds to instances of that specific class. This
is useful (and quick) for exceptions such as NullPointerException, but not so useful
for ones with an extensive class hierarchy such as IOException. In this case, there is a
checkbox visible in the Breakpoint properties window and the bottom of the Breakpoints
view, which allows the selection of all subclasses of that exception, not just of the specific
class itself.

Chapter 1

[31]

There are also two other checkboxes, which say whether the debugger should stop when
the exception is caught or uncaught. Both of these are selected by default; if both are
deselected, the breakpoint effectively becomes disabled. Caught means that the exception
is thrown in a corresponding try/catch block, and Uncaught means that the exception is
thrown without a try/catch block (thus, bubbles up to the method's caller).

Time for action – using watch variables and expressions
Finally, it's worth seeing what the Variables view can do.

1. Create a breakpoint at the start of the execute() method.

2. Click on the Hello World icon again.

3. Highlight the openInformation() call and navigate to Run | Step Into Selection.

4. Select the title in the the Variables view.

5. Modify where it says Hello in the bottom half of the Variables view and change it
to Goodbye:

Creating Your First Plug-in

[32]

6. Save the value using Ctrl + S (or Cmd + S on OS X).

7. Click on the Resume icon and the newly updated title can be seen in the dialog.

8. Click on the Hello World icon again.

9. With the debugger stopped in the execute() method, highlight event in the
Variables view.

10. Right-click on the value and choose Inspect (Ctrl + Shift + I or Cmd + Shift + I on an
OS X) and the value is opened in the Expressions view:

11. Click on the Add new expression option in the bottom of the Variables view.

12. Add new java.util.Date() and the right-hand side will show the current time.

13. Right-click on the new java.util.Date() and choose Re-evaluate Watch
Expression. The right-hand pane shows the new value.

14. Step through the code line by line, and notice that the watch expression is
reevaluated after each step.

Chapter 1

[33]

15. Disable the watch expression by right-clicking on it and choosing Disable.

16. Step through the code line by line and the watch expression will not be updated.

What just happened?
The Eclipse debugger has many powerful features, and the ability to inspect (and change)
the state of the program is one of the more important ones.

Watch expressions, when combined with conditional breakpoints, can be used to find out
when data becomes corrupted or used to show the state of a particular object's value.

Expressions can also be evaluated based on objects in the Variables view, and the code
completion is available to select methods, with the result being shown with Display.

Pop quiz – debugging
Q1. How can an Eclipse plug-in be launched in debug mode?

Q2. How can certain packages be avoided when debugging?

Q3. What are the different types of breakpoints that can be set?

Q4. How can a loop debugged that only exhibits a bug after 256 iterations?

Q5. How can a breakpoint be set on a method when its argument is null?

Q6. What does inspecting an object do?

Q7. How can the value of an expression be calculated?

Have a go hero – working with breakpoints
Using the conditional breakpoint to stop at a certain method is fine if the data is simple,
but sometimes there needs to be more than one expression. To implement additional
functionality, the breakpoint can be delegated to a breakpoint() method in a
Utility class. The following steps will help you to work with breakpoints:

1. Create a Utility class with a static method breakpoint(), this will return a true
value if the breakpoint should stop and false otherwise:
public class Utility {
 public static boolean breakpoint() {
 System.out.println("Breakpoint");
 return false;
 }
}

Creating Your First Plug-in

[34]

2. Create a conditional breakpoint in the execute() method, which calls Utility.
breakpoint().

3. Click on the Hello World icon again and the message will be printed to the host
Eclipse's Console view. The breakpoint will not stop.

4. Modify the breakpoint() method to return true instead of false. Run the
action again. The debugger will stop.

5. Modify the breakpoint() method to take the message as an argument, along with
a Boolean value that is returned to say if the breakpoint should stop.

6. Set up a conditional breakpoint with the following code:
Utility.breakpoint(
 ((org.eclipse.swt.widgets.Event)event.trigger).stateMask
 != 0,"Breakpoint")

7. Modify the breakpoint() method to take a varargs Object array, and use that in
conjunction with the message to use String.format() for the resulting message:
Utility.breakpoint(((org.eclipse.swt.widgets.Event)event.
trigger).stateMask
 != 0,"Breakpoint" %s %h",event,
 new java.util.Date().getTime()))

Summary
In this chapter, we covered how to get started with Eclipse plug-in development. From
downloading the right Eclipse package (from a bewildering array of choices) to getting
started with a wizard-generated plug-in, you should now have the tools to follow through
with the remainder of the chapters in this book.

Specifically, we covered:

 � The Eclipse SDK (also known as Eclipse Classic) has the necessary Plug-in
Development Environment to get you started

 � The plug-in creation wizard can be used to create a plug-in project, optionally using
one of the example templates

 � Testing an Eclipse plug-in launches a second copy of Eclipse with the plug-in installed
and available for use

 � Launching Eclipse in debug mode allows you to update code and stop execution at
breakpoints defined via the editor

Now that we've learned about how to get started with Eclipse plug-ins, we're ready to look
at creating plug-ins which contribute to the IDE; starting with SWT and Views, which is the
topic of the next chapter.

2
Creating Views with SWT

SWT is the widget toolkit that Eclipse uses, which gives performant access
to the platform's native tools in a portable manner. Unlike Swing, which is
rendered with Java native drawing operations, SWT delegates the drawing to
the underlying operating system.

In this chapter, we shall:

 � Create an Eclipse view with SWT widgets

 � Create a custom SWT widget

 � Work with resources and learn how to detect and fix resource leaks

 � Handle focus operations

 � Group components and resize them automatically

 � Create system tray items

 � Display non-rectangular windows

 � Provide scrolling and tabbed navigation

Creating views and widgets
This section introduces views and widgets and uses as its example clocks.

www.allitebooks.com

http://www.allitebooks.org

Creating Views with SWT

[36]

Time for action – creating a view
The Eclipse UI consists of multiple views, which are the rectangular areas that display
content such as the Outline, Console, or Package Explorer. In Eclipse 3.x, views are created by
adding an extension point to an existing plug-in, or by using a template. A clock.ui plug-in
will be created to host the clock widgets and views.

1. Open the plug-in wizard by navigating to File | New | Other | Plug-in Project. Enter
the details as follows:

 � Project name: com.packtpub.e4.clock.ui

 � Select the checkbox for Use default location

 � Select the checkbox for Create a Java project

 � Target Eclipse Version: 3.5 or greater

2. Click on Next again, and fill in the plug-in properties:

 � ID: com.packtpub.e4.clock.ui

 � Version: 1.0.0.qualifier

 � Name: Clock

 � Vendor: PacktPub

 � Select the checkbox for Generate an Activator

 � Activator: com.packtpub.e4.clock.ui.Activator

 � Select the checkbox for This plug-in will make contributions to the UI

 � Rich client application: No

3. Click on Next to choose from a set of templates:

 � Select the checkbox for Create a plug-in using one of the templates

 � Choose the Plug-in with a view template

4. Click on Next to customize a few aspects of the sample, including:

 � Java package name: com.packtpub.e4.clock.ui.views

 � View class name: ClockView

 � View name: Clock View

 � View category ID: com.packtpub.e4.clock.ui

 � View category name: Timekeeping

 � Viewer type: Table Viewer

5. Deselect the Add checkboxes as these are not required.

Chapter 2

[37]

6. Click on Finish to create the project.

7. Run the Eclipse application via the Run toolbar icon.

8. Go to Window | Show View | Other | Timekeeping | Clock View to show the Clock
View, which has a simple list view with One, Two, Three listed:

What just happened?
It's not usual to create a plug-in project per view (or per action) but often plug-ins are
encapsulated and provide functionality specific to that particular plug-in. In this case,
clocks aren't related to the Hello World one created before, so a new plug-in was
created to host them.

The plug-in wizard created an empty plug-in project, as well as two key files.

MANIFEST.MF
The manifest contains references to dependent plug-ins and interfaces, and includes
the following:

Bundle-SymbolicName: com.packtpub.e4.clock.ui; singleton:=true
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: com.packtpub.e4.clock.ui.Activator
Require-Bundle: org.eclipse.ui, org.eclipse.core.runtime

Plug-ins that contribute to the user interface need to do two things:

 � Depend on org.eclipse.ui

 � Have ;singleton:=true after the bundle symbolic name

The dependency on the org.eclipse.ui bundle gives access to the Standard Widget
Toolkit and other key parts of the Eclipse framework.

The clause ;singleton:=true is an OSGi directive, which means that only one version of
this plug-in can be installed in Eclipse at one time. For plug-ins which add dependencies to
the UI, there is a restriction that they must be singletons. (This constraint is one of the main
reasons why installing a new plug-requires the IDE to restart.)

The Manifest sets up the project's classpath. Any additional plug-in dependencies need to be
added to the Manifest.

Creating Views with SWT

[38]

plugin.xml
The plugin.xml file defines a list of extensions that this plug-in provides. Extension points
are how Eclipse advertises the plug-in extensions, much like a USB hub provides a generic
connector that allows many other types of devices to be plugged in.

The Eclipse extension points are documented in the help system, and each has a point
identifier, with optional children that are point-specific. In this case, the extension is defined
using the org.eclipse.ui.views point, which expects a combination of category and
view elements. In this case, it will look like:

<plugin>
 <extension point="org.eclipse.ui.views">
 <category name="Timekeeping"
 id="com.packtpub.e4.clock.ui"/>
 <view name="Clock View"
 icon="icons/sample.gif"
 category="com.packtpub.e4.clock.ui"
 class="com.packtpub.e4.clock.ui.views.ClockView"
 id="com.packtpub.e4.clock.ui.views.ClockView"/>
 </extension>
</plugin>

The class in this case extends the ViewPart abstract class, which is used for all views in
Eclipse 3.x.

� E4: The Eclipse 4 model defines views in a different way,
which is covered in more detail in Chapter 7, Understanding the
Eclipse 4 Model. The Eclipse 4.x SDK includes a 3.x compatibility
layer, so these examples will work in Eclipse 4.x SDKs.

The viewer component is a default table view, which will be replaced in the next section.

Time for action – drawing a custom view
An SWT Canvas can be used to provide custom rendering for a view. As a starting point for
drawing a clock, the Canvas will use drawArc() to create a circle.

1. Remove the content of ClockView leaving behind an empty implementation of the
setFocus() and createPartControl() methods.

2. Run the target Eclipse instance and see that ClockView is now empty.

Chapter 2

[39]

3. In the createPartControl() method, do the following:

1. Create a new Canvas, which is a drawable widget.

2. Add PaintListener to the Canvas.

3. Get gc from PaintEvent and call drawArc() to draw a circle.

The code will look like:
import org.eclipse.swt.*;
import org.eclipse.swt.events.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.ui.part.ViewPart;
public class ClockView extends ViewPart {
 public void createPartControl(Composite parent) {
 final Canvas clock = new Canvas(parent,SWT.NONE);
 clock.addPaintListener(new PaintListener() {
 public void paintControl(PaintEvent e) {
 e.gc.drawArc(e.x,e.y,e.width-1,e.height-1,0,360);
 }
 });
 }
 public void setFocus() {
 }
}

4. Run the Eclipse instance and show the Clock View.

5. Resize the view and the clock should change size with it:

What just happened?
In SWT, the widget used for custom drawing is Canvas. The view is constructed with a call to
createPartControl(), which is invoked once when the view is shown for the first time.
If the view is minimized, then maximized, this is not invoked again; however, if the view is
closed and a new view is opened, then a call will be made to a new instance of ClockView
to initialize it.

Creating Views with SWT

[40]

Unlike other Java GUI frameworks, a widget is not added or removed to a containing
parent once created; the widget's parent is specified at construction time. Thus, instead
of creating it with an empty constructor and then adding it, the parent is passed into the
widget's constructor.

There is also a style flag that is passed in. This is used by widgets in
different ways; for example, the Button widget takes various flags to
indicate whether it should be rendered as a push button, radio button,
checkbox, toggle, or arrow. For consistency, in SWT all widgets have an int
style flag, which enables up to 32 bits of different options to be configured.
These are defined as constants in the SWT class; for example, the checkbox
button style is represented as SWT.CHECKBOX. Options can be combined;
to specify a flat button, one would bitwise or the values of the two fields
together:

new Button(parent,SWT.PUSH|SWT.FLAT)

Generally, the value SWT.NONE can be used to represent default options.

The code adds an empty Canvas to the view, but how can it be drawn on? SWT does not
expose a paint method on any of its widgets. Instead, PaintListener is called whenever
the canvas needs to be repainted.

All in the name of performance
You may wonder why all these little things are different between the way
SWT handles its widgets versus how AWT or Swing handle them. The
answer is in the name of speed and delegation to native rendering and
controls if at all possible. This mattered back in the early days of Java
(Eclipse 1.0 was released when Java 1.3 was the most advanced runtime
available) when neither the JITs nor the CPUs were as powerful as today.
Secondly, the goal of SWT was to offload as much of the processing onto
native components (like AWT) and let the OS do the heavy work instead
of Java. By doing that, the time spent in the JVM could be minimized
while allowing the OS to render the graphics in the most appropriate
(and performant) way. The paint listener is one such example of how to
avoid performing unnecessary drawing-related calls unless a component
actually needs it.

The paintControl() method is invoked with a PaintEvent argument, which contains
references to all the data needed to draw the component. To minimize method calls, the
fields are publicly readable (not considered to be a good style, but certainly performant
in this case). It also contains a reference to the graphics context (GC) which can be used to
invoke drawing commands.

Chapter 2

[41]

Finally, the event also records the region in which the paint event is to be fired. The x and y
fields show the position of the top-left to start from, and the width and height fields of the
event shows the drawing bounds.

In this case, the graphics context is set up with the necessary foreground color, and
drawArc() is called between the bounds specified. Note that the arc is specified in
degrees (from 0 with a 360 span) rather than radians or any other measure.

Time for action – drawing a second hand
A clock with no hands and no numbers is just a circle.

Since arcs are drawn anticlockwise from 0 (on the right, or 3 p.m.) through 90 (12 p.m.), then
180 (9 p.m.), then 270 (6 p.m.), and finally back to 360 (3 p.m.), it is possible to calculate the
arc's position for the second hand by using (15-s)*6%360.

1. Go to the paintControl() method of the PaintListener inside ClockView.

2. Add a variable seconds that is initialized to new Date().getSeconds().

3. Get SWT.COLOR_BLUE via the display and store it in a local variable blue.

4. Set the background color of the graphics context to blue.

5. Draw an arc using the previous formula to draw the second hand.

The code should look like the following:
public void paintControl(PaintEvent e) {
 int seconds = new Date().getSeconds();
 int arc = (15-seconds) * 6 % 360;
 Color blue = e.display.getSystemColor(SWT.COLOR_BLUE);
 e.gc.setBackground(blue);
 e.gc.fillArc(e.x,e.y,e.width-1,e.height-1,arc-1,2);
}

6. Start Eclipse and show the Clock View. The second hand will be shown once but
won't change.

7. Resize the view then the second hand will be drawn in the new location.

What just happened?
The code calculates the position on the arc that the second hand will need to be drawn.
Since the arc degrees go anticlockwise, the seconds have to be negative. The offset of 15
represents the fact that 0 represents 15 seconds on the clock (3 p.m.). This is then multiplied
by 6 (60 seconds = 360 degrees) and finally the result is calculated modulus 360, to ensure
that it's up to 360 degrees. (The value can be negative; the arc calculation works in this way
as well.)

Creating Views with SWT

[42]

Although drawArc() colors in the foreground color, the fillArc() colors in the
background color. The GC maintains two colors; a foreground and a background color.
Normally, an SWT Color object needs to have dispose() after use, but to simplify this
example the Display class' getSystemColor() is used, whose result does not need
to be disposed.

Finally, the arc is drawn from the second hand position and 2 degrees afterwards. To center
it, it starts from pos-1, so the arc is drawn from pos-1 to pos+1.

When the view is resized, a redraw() is issued on the Canvas, and so the second hand
is drawn in the correct position. However, to be useful as a clock, this should be done
automatically; do this while the view is active.

Time for action – animating the second hand
The second hand is drawn with a redraw() on the Canvas, but this will need to be run
periodically. If it is redrawn once per second, it can emulate a clock ticking.

Eclipse has a mechanism called jobs which would be just right for this task, but these will be
covered in Chapter 4, Interacting with the User. So to begin with, a simple Thread class will
be used to issue the redraw.

1. Open the ClockView class.

2. Add the following to the bottom of the createPartControl() method:
new Thread("TickTock") {
 public void run() {
 while (!clock.isDisposed()) {
 clock.redraw();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 return;
 }
 }
 }
}.start();

3. Re-launch the test Eclipse instance and open the Clock View.

4. Open the host Eclipse instance and look in the Console View for the errors.

Chapter 2

[43]

What just happened?
When the Clock View is created, a Thread is created and started, which runs once per
second. Every second, in the host Eclipse instance's Console View, an exception is generated
that looks like this:

Exception in thread "TickTock"
org.eclipse.swt.SWTException: Invalid thread access
 at org.eclipse.swt.SWT.error(SWT.java:4361)
 at org.eclipse.swt.SWT.error(SWT.java:4276)
 at org.eclipse.swt.SWT.error(SWT.java:4247)
 at org.eclipse.swt.widgets.Widget.error(Widget.java:775)
 at org.eclipse.swt.widgets.Widget.checkWidget(Widget.java:570)
 at org.eclipse.swt.widgets.Control.redraw(Control.java:2748)
 at com.packtpub.e4.clock.ui.views.ClockView$2.run(ClockView.java:41)

This is expected behavior in this case, but it's worth taking a dive into the SWT internals to
understand why.

Many windowing systems have a UI thread which is responsible for coordinating the user
interface updates with the program code. If long running operations execute on the UI
thread, the program can appear to hang and become unresponsive. Many windowing
systems will have an automated process, which changes the cursor into an hourglass
if the UI thread for an application is blocked for more than a short period of time.

SWT mirrors this by providing a UI thread for interacting with the user interface, and
ensures that updates to SWT components are done on this thread. Redraws occur
on the SWT thread, as do calls to methods like createPartControl().

Technically, SWT is capable of supporting multiple
OS UI threads.

In the clock update example, updates are being fired on a different thread (in this case, the
TickTock thread) and it results in the preceding exception. So how are these updates run
on the right thread?

Time for action – running on the UI thread
To execute code on the UI thread, Runnables are posted to the Display class via
two methods, syncExec() and asyncExec(). The syncExec() method runs the
code synchronously (that is, the caller blocks until the code has been run), while the
asyncExec() method runs the code asynchronously (that is, the caller continues
while the code is run in the background).

Creating Views with SWT

[44]

The Display class is SWT's handle to a monitor (so a runtime may have more than one
Display object, and each may have its own resolution). To get hold of an instance, call
either Display.getCurrent() or Display.getDefault(). However, it's much better
to get a Display class from an associated view or widget. In this case, the Canvas has an
associated Display.

1. Go to the TickTock thread inside the createPartControl() method of the
ClockView class.

2. Inside the run() method, replace the call to clock.redraw() with:
clock.getDisplay().asyncExec(new Runnable() {
 public void run() {
 if(clock != null && !clock.isDisposed())
 clock.redraw();
 }
});

3. Run the test Eclipse instance and show the Clock View. The second hand should now
update automatically.

What just happened?
This time, the event will execute as expected. One thread, TickTock, is running in the
background, and every second it posts a Runnable to the UI thread, which then runs
asynchronously. This example could have used syncExec(), and the difference would not
have been noticeable; but in general, using asyncExec() is to be preferred unless there is a
specific reason to need the synchronous blocking behavior.

The thread is in a while loop and is guarded with a call to clock.isDisposed(). Each SWT
widget is non-disposed when it is initially created, and then subsequently disposed with a
call to dispose(). Once a widget is disposed, any native operating system resources are
returned and any further operations will throw an exception. In this example, the Canvas is
disposed when the view is closed, which in turn disposes the components contained therein.
As a result, when the view is closed, the Thread automatically ceases its loop. (The Thread
can also be aborted by interrupting it during its 1 second sleep pauses.)

Note that the test for whether the widget is not null or disposed is done in the Runnable
as well. Although the widget isn't disposed when it is added to the event queue, it might be
when the event is processed some time later.

Chapter 2

[45]

Time for action – creating a reusable widget
Although the ClockView shows an animated clock, creating an independent widget will
allow the clock to be reused in other places.

1. Create a new class in the com.packtpub.e4.clock.ui package, called
ClockWidget, that extends Canvas.

2. Create a constructor that takes a Composite parent and an int style bits
parameter, and passes them to the superclass:
public ClockWidget(Composite parent, int style) {
 super(parent, style);
}

3. Move the implementation of the paintControl() method from the ClockView
to the ClockWidget. Remove the PaintListener references from the
ClockView class.

4. In the ClockWidget constructor, register an anonymous PaintListener that
delegates the call to the paintControl() method:
addPaintListener(new PaintListener() {
 public void paintControl(PaintEvent e) {
 ClockWidget.this.paintControl(e);
 }
});

5. Move the TickTock thread from ClockView to the ClockWidget constructor;
this will allow the ClockWidget to operate independently. Change any references
for clock to ClockWidget.this:
new Thread("TickTock") {
 public void run() {
 while (!ClockWidget.this.isDisposed()) {
 ClockWidget.this.getDisplay().asyncExec(
 new Runnable() {
 public void run() {
 if (!ClockWidget.this.isDisposed())
 ClockWidget.this.redraw();
 }
 });
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 return;
 }
 }
 }
}.start();

www.allitebooks.com

http://www.allitebooks.org

Creating Views with SWT

[46]

6. Add a computeSize() method to allow the clock to have a square appearance that
is the minimum of the width and height. Note that SWT.DEFAULT may be passed
in, which has the value -1, so this needs to be handled explicitly:
public Point computeSize(int w,int h,boolean changed) {
 int size;
 if(w == SWT.DEFAULT) {
 size = h;
 } else if (h == SWT.DEFAULT) {
 size = w;
 } else {
 size = Math.min(w,h);
 }
 if(size == SWT.DEFAULT)
 size = 50;
 return new Point(size,size);
}

7. Finally, change ClockView to instantiate the ClockWidget instead of the Canvas
in the createPartControl() method:
final ClockWidget clock = new ClockWidget(parent,SWT.NONE);

8. Run the test Eclipse instance and the clock should be shown as before.

What just happened?
The drawing logic was moved into its own widget, and hooked up PaintListener to a
custom method in ClockWidget so that it could render itself. This allows Clock to be used
standalone in any Eclipse or SWT application.

In a real application, the clocks would not have their own thread; it would either be the case
that a single Thread would control updates to all Clock instances, or they would be set up
with repeating Jobs using the Eclipse jobs framework. Jobs will be covered in Chapter 4,
Interacting with the User.

The technique of using an anonymous class to bind a specific listener type to the instance
of the class is a common pattern in SWT. The convention is to use the same method
name in the enclosing class; this helps to disambiguate the use. (Remember to set
the listener at startup, as otherwise it can be confusing why it's not getting called.) It's
also why ClockWidget.this is used in the delegation call; directly invoking this.
paintControl() or paintControl() would have ended up in an infinite loop.

Chapter 2

[47]

It's also possible for ClockWidget to implement PaintListener directly; in this case,
addPaintListener(this) would be called in the constructor. Modern JITs will optimize
the calls to equivalent code paths in any case; it comes down to a style decision as to
whether ClockWidget should implement the PaintListener interface or not.

Finally, compute the size based on the hints. This is called by the layout manager to
determine what size the widget should be. For widgets with a fixed size (say, a text string or
an image) the size can vary depending on the layout. In this case, it returns a square, based
on the minimal size of the supplied width and height hints, or 50, whichever is bigger. The
SWT.DEFAULT value is -1 which has to be dealt with specifically.

Time for action – using layouts
Now that ClockWidget has been created, multiple instances can be added into
ClockView.

1. Modify the ClockView class's createPartControl() method to create three
ClockWidget instances:
final ClockWidget clock1 = new ClockWidget(parent, SWT.NONE);
final ClockWidget clock2 = new ClockWidget(parent, SWT.NONE);
final ClockWidget clock3 = new ClockWidget(parent, SWT.NONE);

2. Run the test Eclipse instance and show the Clock View. Three clocks will be shown,
counting in seconds:

3. In the ClockView constructor, create a new RowLayout with SWT.HORIZONTAL,
and then set it as the layout on parent Composite:
public void createPartControl(Composite parent) {
 RowLayout layout = new RowLayout(SWT.HORIZONTAL);
 parent.setLayout(layout);

Creating Views with SWT

[48]

4. Run the code again now and the clocks will be in a row (horizontal):

5. Resize the view, the clocks will flow into different rows:

RowLayout has a number of fields that can affect how the widgets are laid out:
 � center – if components are centered (vertically or horizontally)
 � fill – if the entire size of the parent should be taken up
 � justify – if the components should be spaced so they reach the end
 � pack – if components should get their preferred size or expanded to fill

space
 � wrap – if the components should wrap at the end of the line

There are also options to control any pixel spacing between elements
(spacing) and any margins at the edge (marginHeight and
marginWidth, or which can be specified individually as marginTop,
marginBottom, marginLeft, and marginRight).

6. Every SWT widget has an optional layout data object, which is specific to the
kind of layout being used by its containing parent. In the ClockView class's
createPartControl() method, add a RowData object to the first and last clocks:
clock1.setLayoutData(new RowData(20,20));
clock3.setLayoutData(new RowData(100,100));

7. Open the Clock View, and the clocks are shown in increasing order of size:

Chapter 2

[49]

What just happened?
A Composite is capable of handling multiple widgets, and the job of deciding where to
put these components is done by the associated LayoutManager. The standard layout
managers include FillLayout, RowLayout, GridLayout, FormLayout, and CellLayout
(note that CellLayout is technically not SWT, but part of the Eclipse UI Workbench). The
default for Eclipse Views is to use a FillLayout; though a manually created Composite
has no associated layout by default.

Both FillLayout and RowLayout create a horizontal or vertical set of widgets with
controlled sizes. FillLayout is the default for views and expands the size of the widgets
to the space available. RowLayout will set the component's sizes to their default size as
calculated by computeSize(0,0).

Layout managers have different properties such as SWT.HORIZONTAL and SWT.VERTICAL,
which change how elements are wrapped if the row becomes full. The documentation for
each layout manager has information as to what it supports.

Layout data objects are used to specify different values for objects within Composite. The
preceding example looked at RowData options.

The corresponding FillData class for FillLayout has no public fields, and therefore is of
lesser use. Other layout managers, such as GridLayout, have more extensive customization
options in the GridData class. Remember when changing LayoutManager the associated
layout data objects will need to be modified accordingly.

Pop quiz – understanding views
Q1. What is the parent class of any views that you create?

Q2. How do you register views with the Eclipse workbench?

Q3. What two arguments are passed into every SWT widget and what are they for?

Q4. What does it mean for a widget to be disposed?

Q5. How do you draw a circle on a Canvas?

Q6. What listener do you have to register to execute drawing operations?

Q7. What happens if you try and update an SWT object from outside a UI thread?

Q8. How do you update SWT components from a different thread?

Q9. What value is SWT.DEFAULT used for?

Q10. How do you specify a specific size for a widget in a RowLayout?

Creating Views with SWT

[50]

Have a go hero – drawing hours and minute hands
Now that the Clock View is animating a second hand, do the same calculation for the hour
and minute hands. Minutes will be calculated the same way as seconds; for hours, multiply
the hours by 5 to map onto the same path.

Draw lines for every five minutes using the drawLine() function. Some simple maths will
be required to calculate the start and end points of the line.

Finally, draw the text lettering for the numbers in the right locations. The drawText()
method can be used to place a string at a particular place. Use this to print out the current
time in the center of the clock, or print out the date.

Managing resources
One of the challenges in adopting SWT is that native resources must be freed when they
are no longer needed. Unlike AWT or Swing, which perform these operations automatically
when an object is garbage collected, SWT needs manual resource management.

Why does SWT need manual resource management?
A common question asked is why SWT has this rule, when Java has had
perfectly acceptable garbage collection for many years. In part, it's because
SWT predated acceptable garbage collection, but it's also to try and return
native resources as soon as they are no longer needed.
From a performance perspective, adding a finalize() method to an
object also causes the garbage collector to work harder; much of the speed
in today's garbage collectors are because they don't need to call methods,
as they are invariably missing. It also hurts in SWT's case because the object
must post its dispose request onto the UI thread, which delays its garbage
collection as the object becomes reachable again.

Not all objects need to be disposed; in fact, there is an abstract class Resource, which is the
parent of all resources that need disposal. It is this class that implements the dispose()
method, as well as the isDisposed() call. Once a resource is disposed, subsequent calls to its
methods will throw an exception with a Widget is disposed or Graphic is disposed message.

Further confusing matters, some instances of Resources should not be disposed by the
caller. Generally, instances owned by other classes in accessors should not be disposed; for
example, the Color instance returned by the Display class's getSystemColor() method
is owned by the Display class, so shouldn't be disposed by the caller. Resources that are
instantiated by the caller must be disposed of explicitly.

Chapter 2

[51]

Time for action – getting colorful
To add an option for ClockWidget to have a different color, an instance must be obtained,
instead of the hardcoded BLUE reference. Since Color objects are Resources, they must
be disposed correctly when the widget is disposed.

To avoid passing in a Color directly, the constructor will be changed to take an RGB value
(which is three int values), and use that to instantiate a Color object to store for later. The
lifetime of the Color instance can be tied to the lifetime of ClockWidget.

1. Add a private final Color instance called color to ClockWidget:
private final Color color;

2. Modify the constructor of ClockWidget to take an RGB instance, and use it to
instantiate a Color object. Note that the color is leaked at this point, and will be
fixed later:
public ClockWidget(Composite parent, int style, RGB rgb) {
 super(parent, style);
 // FIXME color is leaked!
 this.color = new Color(parent.getDisplay(),rgb);
 ...

3. Modify the paintControl() method to use this custom color:
protected void paintControl(PaintEvent e) {
 ...
 e.gc.setBackground(color);
 e.gc.fillArc(e.x, e.y, e.width-1, e.height-1, arc-1, 2);

4. Finally, change ClockView to instantiate the three clocks with different colors:
public void createPartControl(Composite parent) {
 ...
 final ClockWidget clock =
 new ClockWidget(parent, SWT.NONE, new RGB(255,0,0));
 final ClockWidget clock2 =
 new ClockWidget(parent, SWT.NONE, new RGB(0,255,0));
 final ClockWidget clock3 =
 new ClockWidget(parent, SWT.NONE, new RGB(0,0,255));

Creating Views with SWT

[52]

5. Now run the application and see the new colors in use:

What just happened?
The Color object was created based on the red/green/blue value passed in to the
ClockWidget constructor. Since RGB is just a value object, it doesn't need to be
disposed afterwards.

Once the Color is created, it is assigned to the instance field. When the clocks are drawn,
the second hands are the appropriate colors.

The one problem with this approach is that the Color instance is leaked.
When the view is disposed, the associated Color object is garbage
collected, but the resources associated with the native handle are not.

Time for action – finding the leak
It is necessary to know how many resources are allocated in order to know if the leak has
been plugged or not. Fortunately, SWT provides a mechanism to do this via the Display
and the DeviceData classes. Normally, this is done by a separate plug-in, but in this
example ClockView will be modified to show this behavior.

1. At the start of the ClockView class' createPartControl() method, add a call to
obtain the number of allocated Objects, via DeviceData of the Display class:
public void createPartControl(Composite parent) {
 Object[] oo=parent.getDisplay().getDeviceData().objects;

2. Iterate through the allocated objects counting how many are instances of Color:
 int c = 0;
 for (int i = 0; i < oo.length; i++)
 if (oo[i] instanceof Color)
 c++;

Chapter 2

[53]

3. Print the count to the standard error stream:
System.err.println("There are " + c + " Color instances");

4. Now run the code in debug mode and show the Clock View. The following will be
displayed in the host Eclipse Console View:
There are 0 Color instances
There are 0 Color instances
There are 0 Color instances

For efficiency, SWT doesn't log all the allocated resources all the time.
Instead, it's an option which is enabled at startup through an options file,
which is a text properties file with name=value pairs. This can be passed
to an Eclipse instance at launch via the -debug flag.
Fortunately, it is easy to set within Eclipse from the launch configuration's
tracing tab.

5. Close the target Eclipse application, if it is running.

6. Go to the launch configuration via the Debug | Debug Configurations menu.

7. Select the Eclipse Application (if it's not selected already) and go to the Tracing tab.
Enable the tracing option, and select the org.eclipse.ui plugin. Select both the
debug (at the top) and the trace/graphics options:

Creating Views with SWT

[54]

8. Now launch the application by hitting Debug, and open and close the Clock View a
few times:
There are 87 Color instances
There are 92 Color instances
There are 95 Color instances
There are 98 Color instances

What just happened?
Clearly, something is leaking three Color instances each time the Clock View is opened.
Not surprisingly, three instances of the Color object are allocated in the three instances of
ClockWidget. This suggests that there is a resource leak in ClockView or ClockWidget.

When SWT is running in trace mode, it will keep a list of previously allocated resources in
a global list, which is accessible through the DeviceData object. When the resource is
disposed, it will be removed from the allocated list. This allows the monitoring of the state
of resources at play in the Eclipse workbench and discover leaks, typically through repeated
actions and noting an increase each time in the resource count.

Other object types are also stored in this list (for example, Fonts and Images) so it's
important to filter by type when looking for a resource set. It's also important to note
that Eclipse has its own runtime resources, which are used and so when tracing these are
included in the list as well.

By learning how to enable tracing and how to programmatically detect what objects are
allocated, it will be possible to discover such leaks, or verify whether they have been
fixed afterwards.

Time for action – plugging the leak
Now that the leak has been discovered, it needs to be fixed. The solution is to dispose()
the Color once it is finished with, which will be when the view itself is removed.

A quick investigation of ClockWidget suggests that overriding dispose() might work.
(Note that this is not the correct solution; see later for why.)

1. Create a dispose() method in ClockWidget with the following code:
@Override
public void dispose() {
 if(color != null && !color.isDisposed())
 color.dispose();
 super.dispose();
}

Chapter 2

[55]

2. Run the Eclipse application in debug mode (with the tracing enabled, as before) and
open and close the view. The output will show something like:
There are 87 Color instances
There are 91 Color instances
There are 94 Color instances
There are 98 Color instances

3. Remove the dispose() method (since it doesn't work as intended) and modify
the constructor of ClockWidget to add an anonymous DisposeListener that
disposes of the associated Color object:
public ClockWidget(Composite parent, int style, RGB rgb) {
 super(parent, style);
 this.color = new Color(parent.getDisplay(),rgb);
 addDisposeListener(new DisposeListener() {
 public void widgetDisposed(DisposeEvent e) {
 if(color != null && !color.isDisposed())
 color.dispose();
 }
 });
}

4. Now run the code and see what happens when the view is opened and closed a
few times:
There are 87 Color instances
There are 88 Color instances
There are 88 Color instances
There are 88 Color instances

The leak has been plugged.

What just happened?
Once the source of the leak has been identified, the correct course of action is to
dispose() the Color object when no longer needed. However, although it is tempting
to think that overriding the dispose() method of ClockWidget would be all that is
needed, in fact it doesn't work. The only time dispose() is called is at the top level
Shell (or ViewPart), and if there are no registered listeners then the dispose method is
not called on any components beneath. Since this can be quite counter-intuitive, it is of
value to have stepped through code to verify that that is the behavior so that it can be
avoided in the future.

www.allitebooks.com

http://www.allitebooks.org

Creating Views with SWT

[56]

Detecting, and resolving, resource leaks can be a time-consuming process. There is a plug-in,
developed by the SWT team, which can perform a snapshot of resources and verify whether
there are any leaks using a similar technique to the preceding one. The plug-in is located
at the SWT tools update site (refer to http://www.eclipse.org/swt/tools.php and
search for Sleak for more information) and can be installed to avoid having to modify code
(as was done in this example) for the purposes of monitoring allocated resources.

Don't forget when performing tests that the first one or two runs may give different results
by virtue of the fact that other resources may be being initialized at the time. Take a couple
of readings first before relying on any data, and bear in mind that other plug-ins (that maybe
executing in the background) may be doing resource allocation as well.

Finally, when working with any SWT widget, it is good practice to check whether the resource
is already disposed or not. The JavaDoc for dispose() says that this is not strictly necessary,
and that resources which are already disposed will treat this as a no-op method.

Pop quiz – understanding resources
Q1. Where do resource leaks come from?

Q2. What are the different types of Resources?

Q3. How can you enable SWT resource tracking?

Q4. Once enabled, how do you find out what objects are tracked?

Q5. What's the right way and the wrong way to free resources after use?

Have a go hero – extending the clock widget
Now that the ClockWidget is running, try the following:

 � Write a sleak-like view, which periodically counts allocated objects by type.

 � Modify any text written by acquiring a Font object, with disposal.

 � Create a generic dispose listener that takes an instance of Resource.

 � Provide a setColor() method which allows you to change the color.

Interacting with the user
The whole point of a user interface is to interact with the user. Having a view which displays
information may be useful, but it is often necessary to ask the user for data or respond to
user actions.

Chapter 2

[57]

Time for action – getting in focus
To allow the time zone of the clock widgets to be changed, a drop-down box (known as
Combo) as well as a Button will be added to the view. The Combo will be created from an
array of String representing TimeZone IDs.

1. Create a timezones field in the ClockView class:
private Combo timezones;

2. At the end of the createPartControl() method, add this snippet to create the
drop-down list:
public void createPartControl(Composite parent) {
 ...
 String[] ids = TimeZone.getAvailableIDs();
 timezones = new Combo(parent, SWT.SIMPLE);
 timezones.setVisibleItemCount(5);
 for (int i = 0; i < ids.length; i++) {
 timezones.add(ids[i]);
 }
}

3. Run the Eclipse and open the Clock View again, and a list of time zones will
be shown:

4. It's conventional to set the focus on a particular widget when a view is opened.
Implement the appropriate call in the ClockView's setFocus() method:
public void setFocus() {
 timezones.setFocus();
}

5. Run Eclipse and open the Clock View, and the time zone drop-down widget will be
focused automatically.

Creating Views with SWT

[58]

What just happened?
Every SWT Control has a setFocus() method, which is used to switch focus for the
application to that particular widget. When the view is focused (which happens both
when it's opened, and also when the user switches to it after being in a different view) its
setFocus() method is called.

� E4: As will be discussed in Chapter 7, Understanding the Eclipse 4
Model, in E4 the setFocus() method may be called anything and
annotated with the @Focus annotation. Conventionally, and to save
sanity, it helps to call this method setFocus().

Time for action – responding to input
To show the effect of changing the TimeZone, it is necessary to add an hour hand to the
clock. When the time zone is changed in the drop-down box, the hour hand will be updated.

1. Add an offset field to ClockWidget along with a setter:
private int offset;
public void setOffset(int offset) {
 this.offset = offset;
}

2. Getters and setters can be generated automatically. Once the field is added, the
Source | Generate Getters and Setters menu option can be used to generate all
missing getters and/or setters; in addition, a single getter/setter can be generated by
typing set in the class body, followed by Ctrl + Space (Cmd + Space on OS X).

3. Add an hour hand in the paintControl() method using the following:
e.gc.setBackground(e.display.getSystemColor(SWT.COLOR_BLACK));
int hours = new Date().getHours() + offset;
arc = (3 - hours) * 30 % 360;
e.gc.fillArc(e.x, e.y, e.width-1, e.height-1, arc - 5, 10);

4. To update the clock when the time zone is changed, register a
SelectionListener property on the Combo in the createPartControl()
method of the ClockView class:
timezones.addSelectionListener(new SelectionListener() {
 public void widgetSelected(SelectionEvent e) {
 String z = timezones.getText();
 TimeZone tz = z == null ? null : TimeZone.getTimeZone(z);
 TimeZone dt = TimeZone.getDefault();

Chapter 2

[59]

 int offset = tz == null ? 0 : (
 tz.getOffset(System.currentTimeMillis()) -
 dt.getOffset(System.currentTimeMillis())) / 3600000;
 clock3.setOffset(offset);
 clock3.redraw();
 }
 public void widgetDefaultSelected(SelectionEvent e) {
 clock3.setOffset(0);
 clock3.redraw();
 }
});

5. Run the Eclipse instance, and modify the time zone. The updates should be drawn
on the last clock instance:

What just happened?
The Combo box's addSelectionListener() method notifies any changes in the
drop-down list. When a notification is received, the text from the Combo box is used to
lookup the corresponding time zone offset from the TimeZone class. The difference with
the current time zone's offset is subtracted, and since it's in milliseconds, divide by 1000
and then divide by 60 times 60 to convert it to hours. (This also truncates it to an even
number of hours.)

If the selection is not found, or the default selection is chosen (in this case, the one with no
value) then the offset is reset to zero.

The clock's hour hand doesn't quite behave properly; typically, the hour hand is shorter
than the second hand, and the hour hand jumps between hours instead of smoothly
moving round as the time progresses. Fixing this is left as an exercise for the reader.

To render the changes immediately, the clock is asked to redraw itself. This could be done
inside the ClockView class's setOffset() method; but it would have to check that it was
done from the SWT thread, or arrange for it to be posted on the thread asynchronously.
Instead, for convenience clock3.redraw() is done immediately after setting the offset,
while still inside the SWT thread.

Creating Views with SWT

[60]

Pop quiz – understanding widgets
Q1. How do you mark a widget as being the default one for a view?

Q2. How do you update a widget after modifying it?

Q3. What listener can you register with a Combo?

Q4. What's the purpose of the widgetDefaultSelected() method?

Have a go hero – updating the clock widget
Now that the ClockWidget can handle time zones, do the following:

 � Update the hour hand so that the position is calculated based on fractional hours.

 � Display the time zone underneath the clock face in the ClockWidget.

 � Modify the ClockWidget so that it can take a TimeZone rather than an offset.

 � Show if the time displayed is in summer time or not.

Using other SWT widgets
SWT contains many other widgets other than Canvas, and this section covers some of them.
JFace will be covered in the next chapter, which provides a Model-View-Controller view to
designing GUIs, but it's helpful to know the base SWT classes upon which they are built.

Time for action – adding items to the tray
Most operating systems have the concept of a tray as a set of icons visible from the main
window, which can provide quick access components. On OS X, these are represented as icons
across the top menu bar; on Windows, as icons on the bottom-right near the clock. Linux
systems have various approaches which do similar, and some operating systems have none.
Since there is only one Tray, it is necessary to add the item only once. The Activator class
can be used to ensure that TrayItem is created at startup and removed at shutdown.

1. Open the Activator class and add two private fields:
private TrayItem trayItem;
private Image image;

2. Add the following to the start() method:
final Display display = Display.getDefault();
display.asyncExec(new Runnable() {
 public void run() {

Chapter 2

[61]

 image = new Image(display, Activator.class
 .getResourceAsStream("/icons/sample.gif"));
 Tray tray = display.getSystemTray();
 if (tray != null && image != null) {
 trayItem = new TrayItem(tray, SWT.NONE);
 trayItem.setToolTipText("Hello World");
 trayItem.setVisible(true);
 trayItem.setText("Hello World");
 trayItem.setImage(new Image(trayItem.getDisplay(),
 Activator.class.getResourceAsStream("/icons/sample.gif")));
 }
 }
});

3. Run the test Eclipse instance, and show the Clock View. The small sample.gif icon
should appear in the task area (top right of OS X, bottom-right of Windows).

4. To test the effect of stopping and restarting the bundle, open the Console View in
the test Eclipse instance. Click on the drop-down list on the top-right of the View to
create a Host OSGi Console.
WARNING: This console is connected to the current running instance
of Eclipse!osgi>
"Framework is launched."

5. Type ss clock at the osgi> prompt and it will show a bundle ID, which can be
used to start/stop:
osgi> ss clock

id State Bundle
4 RESOLVED com.packtpub.e4.clock.ui_1.0.0.qualifier

6. Start and stop the bundle by typing start and stop into the console with the ID
given the preceding output:
osgi> stop 4
osgi> start 4
osgi> stop 4
osgi> start 4

7. Notice that a new TrayItem appears in the Tray each time it is started. The clean
routine needs to be added in the Activator class's stop() method:
public void stop(BundleContext context) throws Exception {
 if (trayItem != null && !trayItem.isDisposed()) {
 Display.getDefault().asyncExec(new Runnable() {
 public void run() {
 if (trayItem != null && !trayItem.isDisposed())

Creating Views with SWT

[62]

 trayItem.dispose();
 }
 });
 }
 if (image != null && !image.isDisposed()) {
 Display.getDefault().asyncExec(new Runnable() {
 public void run() {
 if (image != null && !image.isDisposed())
 image.dispose();
 }
 });
}

8. Re-run the application and start and stop the bundle (probably the same bundle ID
as before, but you should check rather than assume); the SWT tray icon should go
and come back each time the bundle is stopped and started.

What just happened?
An SWT TrayItem is added to the system's Tray when the bundle started, and removed it
when the bundle stopped. The icon that came with the sample project was used. To use a
different one, don't forget to update the build.properties file.

Since the tray is a graphical component, if there's no image then the item isn't shown. The
tooltips are optional. Note also that not every system has the concept of a tray, so null is a
legitimate return value for display.getSystemTray().

A bundle is started automatically when it is loaded, and the loading is triggered by a
menu item. If a View is opened, the bundle that class is loaded from is automatically
started. They can also be started and stopped programmatically, or through the host
OSGi console, which is useful to test whether the Activator class's start() and
stop() methods are working correctly.

Time for action – responding to the user
When the user clicks on the icon, nothing happens. That's because there is not a
registered listener on TrayItem itself. There are two listeners that can be registered: a
SelectionListener, called when the icon is clicked, and a MenuDetectListener which
can respond to a context-sensitive menu. The former will be used to present a clock in its
own window, which in SWT terms is called a Shell.

1. Open the Activator class.

2. Add a field to store a Shell:
private Shell shell;

Chapter 2

[63]

3. Go to the run() method inside the Runnable in the Activator class's
start() method.

4. After the creation of the TrayItem, call addSelectionListener(), which
creates a new Shell with a ClockView:
trayItem.addSelectionListener(new SelectionListener() {
 public void widgetSelected(SelectionEvent e) {
 if (shell == null) {
 shell = new Shell(trayItem.getDisplay());
 shell.setLayout(new FillLayout());
 new ClockWidget(shell, SWT.NONE, new RGB(255, 0, 255));
 shell.pack();
 }
 shell.open();
 }
});

5. Run the Eclipse instance, open the Clock View and click on the tray icon. A
windowed clock will be shown:

6. Ensure that the Shell is disposed when the bundle is stopped, so add the following
to the end of the Activator class 's stop() method:
if (shell != null && !shell.isDisposed()) {
 Display.getDefault().asyncExec(new Runnable() {
 public void run() {
 if (shell != null && !shell.isDisposed())
 shell.dispose();
 }
 });
}

7. Run the Eclipse instance, click on the TrayItem, and use the host OSGi console
to stop and start the bundle. The window should disappear when the bundle
is stopped.

Creating Views with SWT

[64]

What just happened?
When TrayItem is installed into the system's Tray, event listeners can be registered
to respond to user input. The one that gets called when the icon is clicked is the
SelectionListener, and this gives the opportunity to display the window
(or Shell in SWT's terminology).

The Display associated with the TrayItem is used when instantiating the Shell. Although
either Display.getDefault() or Display.getCurrent() could be used, neither of
these would be the right option. When developers are running in multi-monitor mode, or
with a virtual display that spans multiple desktops, it's important to ensure that the Shell is
shown on the same display as the corresponding Tray.

Without a LayoutManager, the clock won't show up. FillLayout is used here to ensure
that the clock is made as large as the window (and resizes accordingly to the window itself).
Once the window is created the pack() method is called, which sets the size of the window
to the preferred size of its children; in this case, ClockView.

Finally, the window is shown with the open() call.

Time for action – modal and other effects
There are a number of style bits that are applicable to windows, and some useful methods to
affect how the window appears. For example, it might be desirable to make the clock appear
semi-transparently, which allows the clock to float above other windows. SWT's Shell has a
number of these options that can be set.

1. Modify the instantiation of the Shell inside the widgetSelected() method
in the Activator class's inner class to add SWT.NO_TRIM (no close/minimize/
maximize widgets) and SWT.ON_TOP (floating on top of other windows):
shell = new Shell(trayItem.getDisplay(),SWT.NO_TRIM|SWT.ON_TOP);

2. Set the alpha value as 128, which is semi-transparent:
shell.setAlpha(128);

3. Run the Eclipse instance, and click on the tray item to see what kind of window
is created.

4. To create a modal window (and thus, prevent interaction on the main window),
change the flag to use SWT.APPLICATION_MODAL:
shell = new Shell(trayItem.getDisplay(),SWT.APPLICATION_MODAL);

Chapter 2

[65]

5. To make the application full-screen, call either setFullScreen() or
setMaximized() depending on the platform:
shell.setFullScreen(true);
shell.setMaximized(true);

6. Note that without trims, it may be necessary to add controls such as detecting
selection events to close the window.

7. Run the Eclipse application and see the effect these flags have on the window.

8. Change the Shell back to use SWT.NO_TRIM and SWT.ON_TOP.

9. To calculate a circular shape for the floating clock window, add the circle()
method to the Activator class, which has been taken from Snippet134.
java (taken from the SWT snippets page at http://www.eclipse.org/swt/
snippets/):
private static int[] circle(int r, int offsetX, int offsetY) {
 int[] polygon = new int[8 * r + 4];
 //x^2 + y^2 = r^2
 for (int i = 0; i < 2 * r + 1; i++) {
 int x = i – r;
 int y = (int)Math.sqrt(r*r – x*x);
 polygon[2*i] = offsetX + x;
 polygon[2*i+1] = offsetY + y;
 polygon[8*r - 2*i - 2] = offsetX + x;
 polygon[8*r - 2*i - 1] = offsetY – y;
 }
 return polygon;
}

10. Finally, change the shape of the window to be circular by setting a Region on the
Shell. This will have the effect of making it look like the clock itself is floating. Add
the following code after the Shell is created in the widgetSelected() method:
final Region region = new Region();
region.add(circle(25, 25, 25));
shell.setRegion(region);

11. When run, the clock will look something like this:

Creating Views with SWT

[66]

12. For completeness, register a dispose listener on the shell to ensure that Region is
cleaned up:
shell.addDisposeListener(new DisposeListener() {
 public void widgetDisposed(DisposeEvent e) {
 if (region != null && !region.isDisposed())
 region.dispose();
 }
});

What just happened?
Varying the flags used to create the shell affects how that window is displayed and interacts
with the user. Other calls on the shell can programmatically drive transitions to full-screen and
maximized or minimized status, which can be useful in specific circumstances. Some windowing
systems differentiate maximized and full-screen; others have distinct characteristics.

The SWT.NO_TRIM flag is used to display a window without the normal window furniture.
This can be combined with setting a region via setRegion(), which allows creation of a
non-rectangular shape.

Often, windows without trim are floating, that is, they should stay on top of the application
window even when it hasn't got the focus. To achieve this, set the SWT.ON_TOP flag as well,
and adjust the alpha (transparency) value with setAlpha(). The alpha value is between 0
(fully transparent) and 255 (fully opaque).

A Region can be defined from a set of connected points, or set on a pixel-by-pixel basis. It's
important to note that a Region is also a Resource, and thus must be disposed of after use
(which is typically when the Shell is closed). The clean-up operation is similar to that of the
others discussed earlier, via the addDisposeListener() on the Shell.

Time for action – groups and tab folders
A new TimezoneView will show a list of clocks in time zones around the world. This time,
instead of using the plug-in wizard, the extension will be added manually.

� E4: The way views are defined for E4 is covered in Chapter 7,
Understanding the Eclipse 4 Model. This chapter discusses how to do it
in Eclipse 3.x and the Eclipse 3.x compatibility model of Eclipse 4.x.

1. Right-click on the project and navigate to Plug-in Tools | Open Manifest, or find the
plugin.xml file in the navigator and double-click on it.

Chapter 2

[67]

2. Go to the manifest editor's Extensions tab. The extensions will list org.eclipse.
ui.views. Expand this, and underneath the Timekeeping (category) the Clock
View (view) will be displayed, added via the plug-in wizard.

3. Right-click on org.eclipse.ui.views and navigate to New | view from
the menu. A placeholder entry name (view) will be added to the list, and the
right-hand side lists properties such as the id, name, class, and category.
Fill in the following:

 � ID: com.packtpub.e4.clock.ui.views.TimeZoneView

 � Name: Time Zone View

 � Class: com.packtpub.e4.clock.ui.views.TimeZoneView

 � Category: com.packtpub.e4.clock.ui

 � Icon: icons/sample.gif

4. Save the file. The following will be added into the plugin.xml file:
<view
 category="com.packtpub.e4.clock.ui"
 class="com.packtpub.e4.clock.ui.views.TimeZoneView"
 icon="icons/sample.gif"
 id="com.packtpub.e4.clock.ui.views.TimeZoneView"
 name="Time Zone View"
 restorable="true">
</view>

5. Create the TimeZoneView class. The easiest way is to go to the plugin.xml file's
Extensions tab, select the Time Zone View and click on the hyperlinked class* label
next to the class name. Alternatively, use the New Class wizard by navigating to File
| New | Class to create TimeZoneView as a subclass of ViewPart, in the com.
packtpub.e4.clock.ui.views package.

6. Create a class called TimeZoneComparator, which implements Comparator, in
a new package com.packtpub.e4.clock.ui.internal. It is conventional to
provide utility classes in an internal package to ensure that the implementation is
not visible to others. The compare method should delegate to the TimeZone class's
compareTo() method:
public class TimeZoneComparator implements Comparator {
 public int compare(Object o1, Object o2) {
 if(o1 instanceof TimeZone && o2 instanceof TimeZone) {
 return ((TimeZone) o1).getID().
 compareTo(((TimeZone) o2).getID());
 } else {
 throw new IllegalArgumentException();
 }
 }
}

Creating Views with SWT

[68]

7. Add a public static method to the TimeZoneComparator class called
getTimeZones(), which will return a Map of Sets of TimeZones. The Map will
be indexed by the first half of the TimeZone class's ID. (A TimeZone class's ID is
something like Europe/Milton_Keynes or America/New_York.) This will group all
TimeZone in Europe together, and all TimeZone in America together:
public static Map<String, Set<TimeZone>> getTimeZones(){
 String[] ids = TimeZone.getAvailableIDs();
 Map<String, Set<TimeZone>> timeZones =
 new TreeMap<String, Set<TimeZone>>();
 for (int i = 0; i < ids.length; i++) {
 String[] parts = ids[i].split("/");
 if (parts.length == 2) {
 String region = parts[0];
 Set<TimeZone> zones = timeZones.get(region);
 if (zones == null) {
 zones = new TreeSet<TimeZone>(new TimeZoneComparator());
 timeZones.put(region, zones);
 }
 TimeZone timeZone = TimeZone.getTimeZone(ids[i]);
 zones.add(timeZone);

 }
 }
 return timeZones;
}

8. In the createPartControl() method in TimeZoneView, create CTabFolder
and then iterate through the time zones, creating CTabItem for each one:
public void createPartControl(Composite parent) {
 Map<String, Set<TimeZone>> timeZones =
 TimeZoneComparator.getTimeZones();
 CTabFolder tabs = new CTabFolder(parent, SWT.BOTTOM);
 Iterator<Entry<String, Set<TimeZone>>> regionIterator =
 timeZones.entrySet().iterator();
 while(regionIterator.hasNext()) {
 Entry<String, Set<TimeZone>> region =
 regionIterator.next();
 CTabItem item = new CTabItem(tabs, SWT.NONE);
 item.setText(region.getKey());
 }
 tabs.setSelection(0);
}

Chapter 2

[69]

9. Run this example and show the Time Zone View, and there should be a populated
list of tabs along the bottom:

10. Inside the while loop, add a Composite instance to hold multiple ClockWidget
classes for each TimeZone instance:
item.setText(region.getKey()); // from before
Composite clocks = new Composite(tabs, SWT.NONE);
clocks.setLayout(new RowLayout());
item.setControl(clocks);

11. Now iterate through the TimeZones, adding a ClockWidget for each:
RGB rgb = new RGB(128, 128, 128);
TimeZone td = TimeZone.getDefault();
Iterator<TimeZone> timezoneIterator = region.getValue().
iterator();
while (timezoneIterator.hasNext()) {
 TimeZone tz = timezoneIterator.next();
 ClockWidget clock = new ClockWidget(clocks, SWT.NONE, rgb);
 clock.setOffset((
 tz.getOffset(System.currentTimeMillis()) -
 td.getOffset(System.currentTimeMillis())) / 3600000);
}

12. Run the Eclipse instance and open the Time Zone View to see all of the clocks:

Creating Views with SWT

[70]

13. To make the clocks more identifiable, each will be put into a Group
with an associated text label, so that the view hierarchy goes from
CTabItem→Composite→ClockWidget to CTabItem→Composite→
Group→ClockWidget. Replace the call to create the the ClockWidget with this:
ClockWidget clock = new ClockWidget(clocks, SWT.NONE, rgb);
Group group = new Group(clocks,SWT.SHADOW_ETCHED_IN);
group.setText(tz.getID().split("/")[1]);
ClockWidget clock = new ClockWidget(group, SWT.NONE, rgb);

14. Run it again, and a series of blank elements will be shown:

15. Since the default layout manager for general Composite classes is null, Groups
don't have a layout manager and thus, the clocks are not getting sized appropriately.
This can be fixed by setting a layout manager explicitly:
group.setLayout(new FillLayout());

16. Run it again, it looks a little bit more sane:

17. The clocks at the bottom are squashed and the view can't be scrolled, even
though there are clearly more time zones available. To add scrolling to a widget,
the ScrolledComposite can be used. This provides automatic scroll bars and
interaction with the user to permit a much larger virtual area to be scrolled. The View
hierarchy will change from CtabItem→Composite→Group→ClockWidget to CTa
bItem→ScrolledComposite→Composite→Group→ClockWidget instead:
Composite clocks = new Composite(tabs, SWT.NONE);
item.setControl(clocks);
ScrolledComposite scrolled = new

Chapter 2

[71]

 ScrolledComposite(tabs,SWT.H_SCROLL | SWT.V_SCROLL);
Composite clocks = new Composite(scrolled, SWT.NONE);
item.setControl(scrolled);
scrolled.setContent(clocks);

18. Run it again, but unfortunately this will be seen:

19. The problem is that ScrolledComposite has no minimum size. This can be
calculated from the clocks container. Add this to the bottom of the while
loop, after the contents of ScrolledComposite have been created:
Point size = clocks.computeSize(SWT.DEFAULT,SWT.DEFAULT);
scrolled.setMinSize(size);
scrolled.setExpandHorizontal(true);
scrolled.setExpandVertical(true);

20. Run it again, and the clocks now show up as expected:

21. The ScrolledComposite has a different background. To change it, add this line
after constructing the clock's Composite:
clocks.setBackground(Display.getDefault()
 .getSystemColor(SWT.COLOR_LIST_BACKGROUND));

Creating Views with SWT

[72]

22. Now the Time Zone View is complete:

What just happened?
A combination of Composite types created a tabbed environment using CTabFolder
and CTabItem instances. Inside each CTabItem, a ScrolledComposite contained a
Composite of multiple Group instances, each of which had a single ClockWidget. Adding
the ScrolledComposite provided the scrolling for free, and Group allowed us to place
text above the ClockWidget to display its time zone.

Some of the components used here lie in the org.eclipse.swt.
custom package, instead of the org.eclipse.swt.widgets package.
Several of these begin with C as a custom designator to distinguish similarly
named widgets. The CTabFolder/Item is an SWT-implemented class that
provides the tab functionality; the corresponding OS widget TabFolder/
Item uses a native rendered tab switcher.

Pop quiz – using SWT
Q1. How do you add an icon to the system menu?

Q2. What does the SWT.NO_TRIM style do for Shell objects?

Q3. How do you make a Shell transparent?

Q4. What do you need to set to create a nonrectangular Shell?

Q5. What Composite allows you to attach a label to a set of related items?

Q6. What is the default layout manager for a Group instance?

Q7. How do you add scrolling to an existing widget?

Chapter 2

[73]

Have a go hero – enhancing the time zones
A set of times are displayed in different time zones, but there is scope for enhancements:

 � Switch to the tab with the user's default time zone when the view is created

 � Sort the clocks by time zone offset, rather than by name of the region

 � Create a favorites tab and allow it to be populated by drag-and-drop

 � Improve the speed of updates by sharing a single Thread to update all clocks

 � Improve the sizing of the ScrollableComposite so that more than one row
is displayed

Summary
In this chapter, we covered how to create views with SWT widgets. We looked at both
standard widget types as well as creating our own, and how those widgets can be assembled
into groups with Composite and Layout classes. We also looked at how resources are
managed within SWT, including stepping through the debug procedure for detecting and
eliminating leaks.

In the next chapter, we will look at how to use a higher level of abstraction, JFace.

3
Creating JFace Viewers

In the last chapter, we looked at the basic building blocks of SWT, which provide
a glue layer between the native operating system's widgets and Java. We'll now
look at JFace, which builds upon SWT to provide an MVC architecture as well as
many of the common widgets used by Eclipse.

In this chapter we will cover:

 � Creating a view for showing hierarchical data

 � Using image, font, and color resources

 � Generating styled text

 � Sorting and filtering entries in viewers

 � Adding double-click actions

 � Selections and property support

 � Creating a view for showing tabular data

Why JFace?
While SWT provides generic implementations for basic widgets (such as trees, buttons,
labels, and so on), these often work at a level that deals with strings and responding to
selection by integer index. To make it easier to display structured content, JFace provides
several viewers, which provide combinations of SWT widgets and event managers to provide
a UI for structured content.

Creating JFace Viewers

[76]

There are many types of viewers (all subclasses of Viewer), but the most common ones are
ContentViewers such as the TreeViewer and TableViewer. There are also text-based
viewers (TextViewer has subclasses for SourceViewer) as well as operational views
(ConsoleViewer for the Console view, DetailedProgressViewer for the Progress
view). In this chapter, we'll create views based on TreeViewer and TableViewer. Since
JFace is based on SWT, knowing how SWT works is essential to understand how JFace is used.

Creating TreeViewers
Many widgets in Eclipse are based upon a tree-like view, from a file navigator to class
contents. The JFace framework provides a TreeViewer, which provides all of this
functionality. This will be used to provide a TimeZoneTreeView.

Time for action – creating a TreeViewer
As done in the previous chapter, a new TimeZoneTreeView will be created using the
plugin.xml editor. This view will show the time zones, organized hierarchically by region.

1. Right-click on the com.packtpub.e4.clock.ui project and select Plug-in Tools |
Open Manifest, if it's not open already.

2. Open the Extensions tab and go to the org.eclipse.ui.views. Right-click on
this and choose New | View, and fill in the following fields:

 � ID: com.packtpub.e4.clock.ui.views.TimeZoneTreeView

 � Name: Time Zone Tree View

 � Class: com.packtpub.e4.clock.ui.views.TimeZoneTreeView

 � Category: com.packtpub.e4.clock.ui

 � Icon: icons/sample.gif

3. An entry is created in the plugin.xml file that looks like the following code snippet:
<view
 category="com.packtpub.e4.clock.ui"
 class="com.packtpub.e4.clock.ui.views.TimeZoneTreeView"
 icon="icons/sample.gif"
 id="com.packtpub.e4.clock.ui.views.TimeZoneTreeView"
 name="Time Zone Tree View"
 restorable="true">
</view>

4. As before, create the class TimeZoneTreeView, which extends ViewPart.

Chapter 3

[77]

5. In the view's createPartControl() method, create an instance of a TreeViewer,
with the V_SCROLL, H_SCROLL, and MULTI flags set and store it in a field. Implement
the setFocus() method of the view to that of the tree viewer's control:
public class TimeZoneTreeView extends ViewPart {
 private TreeViewer treeViewer;
 public void createPartControl(Composite parent) {
 treeViewer = new TreeViewer(parent,
 SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);
 }
 public void setFocus() {
 treeViewer.getControl().setFocus();
 }
}

� E4: Although E4 will be discussed in detail in Chapter 7, Understanding
the Eclipse 4 Model, in E4 the @Inject annotation is needed above the
createPartControl() method (to supply the parent Composite)
and @Focus above the setFocus() method. This allows the view to be
a POJO with no Eclipse UI specific references, other than SWT.

6. Run the Eclipse application, and show the view by navigating to Window | Show
View | Timekeeping | Time Zone Tree View:

7. Unlike Swing, which expects data to be presented in a specific interface, the JFace
viewers don't expect any specific data class. Instead, they expect an object value to
display (the input), an interface which can read that data (the content provider), and
an interface for displaying that data (a label provider).

Creating JFace Viewers

[78]

8. Create a new class, called TimeZoneLabelProvider, which extends
LabelProvider (from the org.eclipse.jface.viewers package). This has
a method called getText(), which is passed an object and translates that into a
textual representation. Instead of a toString() call here, return an appropriate
value for a Map.Entry or a TimeZone:
public class TimeZoneLabelProvider extends LabelProvider {
 public String getText(Object element) {
 if (element instanceof Map) {
 return "Time Zones";
 } else if (element instanceof Map.Entry) {
 return ((Map.Entry) element).getKey().toString();
 } else if (element instanceof TimeZone) {
 return ((TimeZone) element).getID().split("/")[1];
 } else {
 return "Unknown type: " + element.getClass();
 }
 }
}

Since a TreeViewer can have multiple roots, the instanceof Map test is used to
represent the top of the tree, called Time Zones.

9. It's usually a good idea to have a default value—even if it's only an empty
string—so that when an unexpected value type is seen in the list, it can be
recognized and debugged.

10. Create a new class, TimeZoneContentProvider, which implements the
ITreeContentProvider interface. This requires the implementation of
three methods:

 � hasChildren(): returns true if the node has children

 � getChildren(): provides the children of a given node

 � getElements(): provides the top-level roots

11. The hasChildren() will return true, if a Map or Collection is passed to it, and
it's not empty; otherwise, if a Map.Entry is passed, recurse. For trees based on
nested Map or Collection, the hasChildren() method will look identical:
public boolean hasChildren(Object element) {
 if (element instanceof Map) {
 return !((Map) element).isEmpty();
 } else if (element instanceof Map.Entry) {
 return hasChildren(((Map.Entry)element).getValue());
 } else if (element instanceof Collection) {
 return !((Collection) element).isEmpty();
 } else {

Chapter 3

[79]

 return false;
 }
}

12. The getChildren() implementation recurses into a Map, Collection, or Map.
Entry following the same pattern. Since the return of this function is an Object[],
the built-in functionality of Map is used to convert the contents via an entrySet()
to an array:
public Object[] getChildren(Object parentElement) {
 if (parentElement instanceof Map) {
 return ((Map) parentElement).entrySet().toArray();
 } else if (parentElement instanceof Map.Entry) {
 return getChildren(((Map.Entry)parentElement).getValue());
 } else if (parentElement instanceof Collection) {
 return ((Collection) parentElement).toArray();
 } else {
 return new Object[0];
 }
}

13. The key to implementing a ITreeContentProvider is to remember to keep the
implementation of the getChildren() and hasChildren() methods in sync.
One way of doing this is to implement the hasChildren() method in terms of
getChildren() returning an empty array, but this may be less performant if the
getChildren() is an expensive operation.

14. Since a TreeViewer can have multiple roots, there is a method to get the array of
roots from the input element object. A bug in the JFace framework prevents the
getElements() argument containing its own value. It is therefore, conventional
to pass in an array (containing a single element) and return it. This method will be
identical for every TreeContentProvider that you're ever likely to write:
public Object[] getElements(Object inputElement) {
 if (inputElement instanceof Object[]) {
 return (Object[]) inputElement;
 } else {
 return new Object[0];
 }
}

Since a TreeViewer can have multiple roots, there is a method to get the array of
roots from the input element object.

Creating JFace Viewers

[80]

15. Now that the providers are complete, in the createPartControl() method of
TimeZoneTreeViewer, connect the providers to the viewer, and finally set the
input data object:
treeViewer.setLabelProvider(new TimeZoneLabelProvider());
treeViewer.setContentProvider(new TimeZoneContentProvider());
treeViewer.setInput(new Object[]
 {TimeZoneComparator.getTimeZones()});

16. Run the Eclipse instance, open the view with Window | Show View | Timekeeping |
Time Zone Tree View and see the results:

What just happened?
The data of TreeViewer was provided by the setInput() method, which is almost always
an array of objects, even if it contains only a single element.

To unpack the data structure, the ITreeContentProvider interface provides two key
methods: hasChildren() and getChildren(). These allow the data structure to be
walked on demand as the user opens and closes nodes in the tree. The rationale for having
two separate methods is that the calculation for getChildren() may be expensive; the
hasChildren() is used to show the expandable icon in the node, but the getChildren()
is deferred until the user opens that node in the tree.

For data structures that support it, implement the getParent() method
as well; this makes accessing (or revealing) the object possible. With this
method implemented, viewer.reveal(Object) will expand the
nodes in the hierarchy to reveal that particular object.

To render the labels in the tree, a LabelProvider is used. This provides a label (and an
optional image) for each element. It is possible to present a different icon for each type of
object; this is used by the Package view in the Java perspective to present a class icon for
the classes, a package icon for the packages, and so on.

The LabelProvider can render the messages in different ways; for example, if could
append the timezone offset (or only show the difference between that and GMT).

Chapter 3

[81]

Time for action – using Images in JFace
The TimeZoneLabelProvider can return an Image, which is a standard SWT widget.
Although the Image can be loaded (as in the previous chapter), in JFace there are resource
registries, which can be used to manage a set of resources for the application. These
include the ImageRegistry, FontRegistry, and ColorRegistry classes. The purpose
of a resource registry is to maintain a list of Resource instances and ensure that they are
correctly disposed, but only when they are no longer needed.

JFace has a set of these global registries; but there are specific ones, such as the ones used
by the IDE to maintain a folder and file type icons, for example. These use descriptors to hold
a meaning for the resource, and a means to acquire an instance of the resource based on
that descriptor. The returned resource is owned by the registry, and as such, should not be
disposed by clients that acquire them.

1. In the TimeZoneLabelProvider, add a method getImage() that uses the
Workbench's ImageRegistry to provide the folder icon. Implement it as follows:
public Image getImage(Object element) {
 if(element instanceof Map.Entry) {
 return PlatformUI.getWorkbench().getSharedImages()
 .getImage(ISharedImages.IMG_OBJ_FOLDER);
 } else {
 return super.getImage(element);
 }
}

2. Run the Eclipse instance, and open the Time Zone Tree View. A folder icon will
be shown; regions show a folder shown for each of the time zones in your view.
The Image instance doesn't need to be disposed, because it's owned by the
PlatformUI plug-in (the images are disposed when the PlatformUI shuts down):

Creating JFace Viewers

[82]

� E4: If using E4, the ISharedImages instance can be obtained via injection:

@Inject
private ISharedImages images;
images.getImage(ISharedImages.IMG_OBJ_FOLDER);

3. To use a different image, either the global ImageRegistry of JFaceRegistry
could be used, or one can be instantiated separately. Using the global one will work,
but it means that effectively the Image instance never gets disposed, since the
JFaceRegistry will last for the lifetime of your Eclipse instance.

Instead, create a LocalResourceManager and ImageRegistry, which are tied
to the lifetime of the control. When the parent control is disposed, the images will
be disposed automatically. These should be added to the createPartControl()
method of TimeZoneTreeView.
public void createPartControl(Composite parent) {
 ResourceManager rm = JFaceResources.getResources();
 LocalResourceManager lrm = new LocalResourceManager(rm,parent);

4. Using the LocalResourceManger, create an ImageRegistry, and add an
ImageDescriptor from a URL using createFromURL().
ImageRegistry ir = new ImageRegistry(lrm);
URL sample = getClass().getResource("/icons/sample.gif");
ir.put("sample", ImageDescriptor.createFromURL(sample));

5. Now the ImageRegistry is populated, it must be hooked up to the
LabelProvider, so that it can show the right Image on demand.
Pass the image registry into the constructor of the TimeZoneLabelProvider.
treeViewer.setLabelProvider(new TimeZoneLabelProvider());
treeViewer.setLabelProvider(new TimeZoneLabelProvider(ir));

6. Implement the constructor in the TimeZoneLabelProvider to store the
ImageRegistry, and use it to acquire the image in the getImage() call:
private final ImageRegistry ir;
public TimeZoneLabelProvider(ImageRegistry ir) {
 this.ir = ir;
}
public Image getImage(Object element) {
 if(element instanceof Map.Entry) {
 return ir.get("sample");
 } else if(element instanceof TimeZone) {
 return ir.get("sample");
 } else {
 return super.getImage(element);
 }
}

Chapter 3

[83]

7. Now, when opening the view, the sample gif is used as a tree icon:

What just happened?
To start with, standard images from the PlatformUI were used, using predefined
descriptors from ISharedImages. The names of the descriptors begin with IMG,
and then follow a predefined pattern:

 � etool and dtool: Enabled and disabled toolbar icons

 � elcl and dlcl: enabled and disabled local toolbar icons

 � dec: decorator

 � obj and objs: object(s) (files, folders, and so on)

Other plug-ins have a similar set of images; such as JDT UI, which adds icons for packages,
classes, methods, and fields.

To use custom images, an ImageRegistry was created backed by a
LocalResourceManager. When a Control is passed into the constructor, it registers itself
as a DisposeListener—so when the control is disposed, so are the associated images.
This also makes the code cleaner, because the ImageRegistry can be passed into the
TimeZoneContentProvider.

Finally, the ImageRegistry is initialized with a set of ImageDescriptors—in this case,
the icons/sample.gif that came from the new plug-in project wizard. The same key
is used when both initializing and accessing the image. Some Eclipse projects follow a
convention of having an ISharedImages interface with a set of constants.

Creating JFace Viewers

[84]

Time for action – styling label providers
The IStyledLabelProvider is used to style the representation of the tree viewer, as used
by the Java outline viewer for displaying the return type of the method, and by the team's
decorator when showing when changes have occurred.

1. Add the IStyledLabelProvider interface to the TimeZoneLabelProvider,
and create the getStyledText() method. If the selected element is a Map.Entry
that contains a TimeZone, add the offset afterwards in brackets.
public class TimeZoneLabelProvider extends LabelProvider
 implements IStyledLabelProvider {
 public StyledString getStyledText(Object element) {
 String text = getText(element);
 StyledString ss = new StyledString(text);
 if (element instanceof TimeZone) {
 int offset = -((TimeZone) element).getOffset(0);
 ss.append(" (" + offset / 3600000 + "h)",
 StyledString.DECORATIONS_STYLER);
 }
 return ss;
 }
}

2. In order to use the styled label provider, it has to be wrapped within a
DelegatingStyledCellLabelProvider. Modify the constructor,
called from the createPartControl() method of TimeZoneTreeView.
treeViewer.setLabelProvider(
 new DelegatingStyledCellLabelProvider(
 new TimeZoneLabelProvider(ir)));

3. Run the Eclipse instance, open the view, and the offset is displayed in a
different color:

Chapter 3

[85]

4. To change the Font used by the view, the TimeZoneLabelProvider needs to
implement the IFontProvider interface. JFace's FontRegistry can be used to
return an italicized version of the default font. Add a FontRegistry parameter
to the TimeZoneLabelProvider constructor, and implement the getFont()
method as follows:
public class TimeZoneLabelProvider extends LabelProvider
 implements IStyledLabelProvider, IFontProvider {
 private final FontRegistry fr;
 public TimeZoneLabelProvider(ImageRegistry ir, FontRegistry fr){
 this.ir = ir;
 this.fr = fr;
 }
 public Font getFont(Object element) {
 Font italic = fr.getItalic(JFaceResources.DEFAULT_FONT);
 return italic;
 }
}

5. Modify the TimeZoneTreeView to instantiate and pass in the global
FontRegistry from the JFaceResources class.
FontRegistry fr = JFaceResources.getFontRegistry();
treeViewer.setLabelProvider(
 new DelegatingStyledCellLabelProvider(
 new TimeZoneLabelProvider(ir)));
treeViewer.setLabelProvider(
 new DelegatingStyledCellLabelProvider(
 new TimeZoneLabelProvider(ir, fr)));

6. Run the Eclipse instance again, and now the time zones should be shown in an
italic font.

What just happened?
By implementing the IStyledLabelProvider and wrapping it with a
DelegatingStyledCellLabelProvider, the style of the individual elements in the tree
can be controlled, including any additions or style/colors of the item. The StyledText can
render the string in different styles.

Although the DecorationsStyler was used here, additional stylers can be defined with
StyledString.createColorRegistryStyler("foreground", "background"),
where the two strings are keys in the global JFace ColorRegistry.

Creating JFace Viewers

[86]

Although Colours can be changed on a character-by-character basis, the Font is global
for the string. That's because when the label is calculated, its size is calculated based on the
assumption that the string is displayed in a single Font.

It's generally good programming practice to have the content or label providers use resource
managers that are passed in at construction time. That way, the code can be tested using
automated tests or other mock resources. Whether using the Eclipse 3.x or the Eclipse 4.x
programming model, decoupling where the resources come from is key to testing.

Pop quiz – understanding JFace
Q1. What methods are present on LabelProvider?

Q2. What is the difference between hasChildren() and getChildren() on the
ContentProvider?

Q3. What is an ImageRegistry used for?

Q4. How do you style entries in a TreeView?

Have a go hero – adding images for regions
Now that the basics have been covered, try extending the example as follows:

 � Correct the TimeZoneLabelProvider so that it shows hours/minutes offset
from GMT

 � Update the plug-in with a number of flag icons, and then create entries for the
image registry (the name of the time zone can be used for the key, which will make
accessing it easier)

 � Display the name of the region in italics, but the time zones themselves in bold font

Sorting and filtering
One of the features of JFace is that the ordering of the data can be processed by the view,
rather than having to require that the data structure do the processing. This makes it easy
to present filtered views, where the user either searches for a particular term, or performs
a sort in a different manner. These filters are used heavily in the Eclipse IDE, where options
such as Hide libraries from external and Hide closed projects can be found in many of the
drop-down actions for the view.

Chapter 3

[87]

Time for action – sorting items in a viewer
The TreeViewer is already showing data in a sorted format, but this is not a view-imposed
sort. Because the data is stored in a TreeMap, the sort ordering is created by the TreeMap
itself, which in turn is sorting on the value of toString(). To use a different ordering
(say, based on offset) the choices are either to modify the TreeMap to add a Comparator
and sort the data at creation time, or add a sorter to the TreeViewer. The first choice
is applicable if the data is only used by a single view, or if the data is coming from a large
external data store, which can perform the sorting more efficiently (such as a relational
database). For smaller data sets, the sorting can be done in the viewer itself.

1. JFace structured viewers allow view-specific sorting with the ViewerComparator.
Create a new subclass, TimeZoneViewerComparator, in the package com.
packtpub.e4.clock.ui.internal, and implement the compare()
method as follows:
public class TimeZoneViewerComparator extends ViewerComparator {
 public int compare(Viewer viewer, Object o1, Object o2) {
 int compare;
 if (o1 instanceof TimeZone && o2 instanceof TimeZone) {
 compare=((TimeZone)o2).getOffset(System.currentTimeMillis())
 - ((TimeZone)o1).getOffset(System.currentTimeMillis());
 } else {
 compare = o1.toString().compareTo(o2.toString());
 }
 return compare;
 }
}

2. Hook it up to the viewer as follows:
treeViewer.setComparator(new TimeZoneViewerComparator());

3. Run the Eclipse instance, open the Time Zone Tree View, and the TimeZones should
be sorted first by offset, then alphabetically:

Creating JFace Viewers

[88]

4. To add a viewer-specific sort, modify the compare() method of
TimeZoneViewerComparator to get a REVERSE key from the
viewer's data. Use that to invert the results of the sort:
return compare;
boolean reverse = Boolean.parseBoolean(
 String.valueOf(viewer.getData("REVERSE")));
return reverse ? -compare : compare;

5. To see the effect of this sort, set the REVERSE key just before the
setComparator() call at the end of the createPartControl()
method of TimeZoneTreeView.
treeViewer.setData("REVERSE",Boolean.TRUE);
treeViewer.setComparator(new TimeZoneViewerComparator());

6. Re-launch the Eclipse instance, and the view should be in the reverse order.

What just happened?
By adding a ViewerComparator to the Viewer, the data can be sorted in an appropriate
manner for the viewer in question. Typically, this will be done in conjunction with selecting
an option in the view—for example, an option may be present to reverse the ordering, or to
sort by name or offset.

When implementing a specific Comparator, check that the method can handle multiple
object types (including ones that may not be expected). The data in the viewer may change,
or be different at runtime than expected. Use instanceof to check that the items are of
the expected type.

To store properties that are specific to a viewer, use the setData() and getData() calls
on the viewer itself. This allows a generic comparator to be used across views while still
respecting per view filtration/sorting operations.

The preceding example hardcodes the sort data, which requires an Eclipse relaunch to see
the effect. Typically, after modifying properties that may affect the view's sorting or filtering,
the viewer has a refresh() invoked to bring the display in line with the new settings.

Chapter 3

[89]

Time for action – filtering items in a viewer
Another common feature of viewers is filtering. This is used when performing a manual
search as well as for filtering-specific aspects from a view. Quite often, the filtering is
connected to the view's menu, which is the drop-down triangle on the top right of the view,
using a common name such as Filters. The ViewerFilter class provides a filtering method,
confusingly called select(). (There are some filter() methods, but these are used to
filter the entire array; the select() method is used to determine if a specific element is
shown or not.)

1. Create a class, TimeZoneViewerFilter, in the com.packtpub.e4.clock.
ui.internal package, which extends ViewerFilter. It should take a String
pattern in the constructor, and return true if the element is a TimeZone with that
pattern in its display name.
public class TimeZoneViewerFilter extends ViewerFilter {
 private String pattern;
 public TimeZoneViewerFilter(String pattern) {
 this.pattern = pattern;
 }
 public boolean select(Viewer v, Object parent, Object element) {
 if(element instanceof TimeZone) {
 TimeZone zone = (TimeZone)element;
 return zone.getDisplayName().contains(pattern);
 } else {
 return true;
 }
 }
}

2. The filter is set on the viewer; since views can have multiple filters, it set this
as an array on the corresponding viewer. The pattern to filter is passed into the
constructor in this case, but would normally be taken from the user. Modify the
TimeZoneTreeViewer class at the bottom of the createPartControl() method:
treeViewer.setFilters(new ViewerFilter[] {
 new TimeZoneViewerFilter("GMT")});

Creating JFace Viewers

[90]

3. Now run the Eclipse instance and open the Time Zone Tree View; only time zones in
the etc region are listed:

4. To remove the expandable nodes next to the tree items, the TreeViewer can be
configured to expand nodes automatically:
treeViewer.setExpandPreCheckFilters(true);

5. Now run the Eclipse instance and open the Time Zone Tree View. The empty
groups are still listed, but the expandable markers only appear on those which
have children after filtration.

What just happened?
The TimeZoneViewerFilter class was created as a subclass of ViewerFilter and set
on the TreeViewer. When displaying and filtering the data, the filter is called for every
element in the tree (including the root node).

By default, if the hasChildren() method returns true, the expandable icon is shown.
When clicked, it will iterate through the children, applying the filter to them. If all the
elements are filtered, the expandable marker will be removed.

By calling setExpandPreCheckFilters(true) on the viewer, it will verify that at least
one child is left after filtration. This has no negative effect when there aren't any filters set.
If there are filters set and there are large data sets, it may take some time to perform the
calculation of whether they should be filtered or not.

To show all the tree's elements by default, or collapse it down to a single tree, use
expandAll() and collapseAll() on the viewer. This is typically bound to a local view
command with a [+] and [-] icon (for example, the Synchronize view or the Package Explorer).

Chapter 3

[91]

If the data is a tree structure, which only needs to show some levels by default, there is an
expandToLevel() and collapseToLevel(), which take an integer and an object (use
the getRoot() of the tree if not specified) and mark everything as expanded or collapsed
to that level. The expandAll() method is a short-hand for expandToLevel(getRoot(),
ALL_LEVELS).

When responding to a selection event, which contains a hidden object, it is conventional
to perform a reveal() operation on the object to make it visible in the tree. Note that
reveal() only works when the getParent() is correctly implemented, which isn't the
case with this example.

Pop quiz – understanding sorting and filters
Q1. How can elements of a tree be sorted in an order which isn't its default?

Q2. What method is used to filter elements?

Q3. How can multiple filters be combined?

Have a go hero – expanding and filtering
Now that views can be sorted and filtered, try the following:

 � Add a second filter which removes all time zones, with a negative offset

 � When the view is opened, perform an expandAll() operation of the elements

 � Provide a sort that sorts the regions in reverse order, but the time zones in
ascending order

 � Provide a dialog that can be used to update the filter and use the empty string,
which can be used to reset the filter

Interaction and properties
Being able to display data is one thing, but invariably views need to be interactive. Whether
that's hooking up the sort or filter functionality from the previous chapter, or seeing
information about the selected item, views must be interactive not only for exploring data,
but also for working with data.

Creating JFace Viewers

[92]

Time for action – adding a double-click listener
Typically, a tree view is used to show content in a hierarchical manner. However, a tree on
its own is not enough to be able to show all the details associated with an object. When the
user double-clicks on an element, more details can be shown.

1. At the end of the createPartControl() method of TimeZoneTreeView,
register an anonymous inner class that implements the IDoubleClickListener
interface with the addDoubleClickListener() method on the treeViewer. As
with the example in Chapter 1, Creating Your First Plug-in, this will open a message
dialog to verify that it works as expected.
treeViewer.addDoubleClickListener(new IDoubleClickListener() {
 public void doubleClick(DoubleClickEvent event) {
 Viewer viewer = event.getViewer();
 Shell shell = viewer.getControl().getShell();
 MessageDialog.openInformation(shell, "Double click",
 "Double click detected");
 }
});

2. Run the Eclipse instance, and open the view. Double-click on the tree, and a
shell will be displayed with the message Double click detected. The dialog is
modal and prevents other components in the user interface from being
selected until it is dismissed.

3. To find the selected object(s), Eclipse provides an ISelection interface (which only
provides an isEmpty() method) and an IStructuredSelection (which provides
an iterator and other accessor methods). There's also a couple of specialized subtypes,
such as ITreeSelection, which can be interrogated for the path that led to the
selection in the tree. In the createPartControl() method of TimeZoneTreeView,
where the doubleClick() method of the DoubleClickListener inner classis
present, replace the MessageDialog as follows:
MessageDialog.openInformation(shell, "Double click",
 "Double click detected");
ISelection sel = viewer.getSelection();
Object selectedValue;
if (!(sel instanceof IStructuredSelection) || sel.isEmpty()) {
 selectedValue = null;
} else {
 selectedValue = ((IStructuredSelection)sel).getFirstElement();
if (selectedValue instanceof TimeZone) {
 TimeZone timeZone = (TimeZone)selectedValue;
 MessageDialog.openInformation(shell, timeZone.getID(),
 timeZone.toString());
}

Chapter 3

[93]

4. Run the Eclipse instance, and open the view. Double-click on the tree, and a shell
will be displayed with the string representation of the TimeZone.

5. To display more information about the TimeZone in the displayed window, create
a subclass of MessageDialog called TimeZoneDialog in the com.packtpub.
e4.clock.ui.internal package. Implement it as follows:
public class TimeZoneDialog extends MessageDialog {
 private TimeZone timeZone;
 public TimeZoneDialog(Shell parentShell, TimeZone timeZone) {
 super(parentShell, timeZone.getID(), null, "Time Zone "
 + timeZone.getID(), INFORMATION,
 new String[] { IDialogConstants.OK_LABEL }, 0);
 this.timeZone = timeZone;
 }
}

6. The contents of the Dialog are provided by the customArea() method, which can
be used to build up the view. Add the following createCustomArea() method to
the TimeZoneDialog:
protected Control createCustomArea(Composite parent) {
 ClockWidget clock = new ClockWidget(parent,SWT.NONE,
 new RGB(128,255,0));
 clock.setOffset(
 (TimeZone.getDefault().getOffset(System.currentTimeMillis())
 - timeZone.getOffset(System.currentTimeMillis()))
 /3600000);
 return parent;
}

7. Finally, modify the call to MessageDialog.open() by TimeZoneTreeView to use
the new implementation:
if (selectedValue instanceof TimeZone) {
 TimeZone timeZone = (TimeZone) selectedValue;
 MessageDialog.openInformation(shell, timeZone.getID(),
 timeZone.toString());
 new TimeZoneDialog(shell, timeZone).open();
}

Creating JFace Viewers

[94]

8. Run the Eclipse instance, double-click on the time zone, and the dialog should appear:

What just happened?
A double-click listener was added to the viewer by registering it with
addDoubleClickListener(). Initially, a standard information dialog was displayed, but
then a custom subclass of MessageDialog was used which included a ClockWidget. In
order to get the appropriate TimeZone, it was accessed via the currently selected object
from the TreeViewer.

Selection is managed via an ISelection interface. The viewer's getSelection()
method should always return a non-null value, although the value may return true for
the isEmpty() call. There are two relevant subinterfaces; IStructuredSelection and
ITreeSelection.

The ITreeSelection is a subtype of IStructuredSelection, and adds methods specific
to trees. This includes the ability to find out what the selected object(s) are and what their
parents are in the tree.

The IStructuredSelection is the most commanly used interface in dealing with
selection types. If the selection is not empty, it is almost always an instance of an
IStructuredSelection. As a result, the following snippet of code appears regularly:

ISelection sel = viewer.getSelection();
Object selectedValue;
if (!(sel instanceof IStructuredSelection) || sel.isEmpty()) {
 selectedValue = null;
} else {
 selectedValue = ((IStructuredSelection)sel).getFirstElement();
}

Chapter 3

[95]

This snippet gets the selection from the viewer, and if it's not an IStructuredSelection,
or it's empty, it assigns the variable selectedValue to null. If it's non-empty, it casts it to
the IStructuredSelection interface and calls getFirstElement() to get the single
selected value.

The selection may have more than one selected value, in which case the
getFirstElement() method only returns the first element selected. The
IStructuredSelection class provides an iterator to step through all selected objects.

� E4: In E4, the selected object can be injected via an annotated method:

@Inject @Optional
void setTZ(@Named(IServiceConstants.ACTIVE_SELECTION)
TimeZone timeZone) {
}

Time for action – showing properties
Instead of every object having to have its own custom information dialog, the Eclipse IDE
provides a generic Properties view (in the org.eclipse.ui.views plug-in), which can be
used to show information about the currently selected object. The properties are discovered
generically from an object and accessed through the IPropertySource interface. This allows
an object to provide an abstracted way of computing the fields shown in the property view.

The easiest way to create a property source is to let the object in question implement its
own IPropertySource interface. This works when the source code can be modified, but
in many cases (such as the TimeZone, or a Map.Entry containing a String key and a
TimeZone) the source code cannot be modified.

1. Open the MANIFEST/META-INF.MF of the plug-in, and add org.eclipse.
ui.views as a dependency via the Dependencies tab, or by adding it to the
bundles in the Require-Bundle entry. Without this, the IPropertySource
interface won't be found.

2. Create a class TimeZonePropertySource in the com.packtpub.e4.clock.
ui.internal package that implements the IPropertySource interface. Take a
single TimeZone instance in the constructor.
public class TimeZonePropertySource implements IPropertySource {
 private TimeZone timeZone;
 public TimeZonePropertySource(TimeZone timeZone) {
 this.timeZone = timeZone;
 }
}

Creating JFace Viewers

[96]

3. The only methods that need to be implemented are getPropertyValue()
and getPropertyDescriptors(). (The other methods, such as
getEditableValue() and isPropertySet(), can be ignored, because they only
get invoked when performing edit operations. These should be left empty or return
null/false.) The accessors are called with an identifier; while the latter returns an
array of PropertyDescriptors combining pairs of identifiers and a displayable
name. Add the following to the TimeZonePropertySource class:
private static final Object ID = new Object();
private static final Object DAYLIGHT = new Object();
private static final Object NAME = new Object();
public IPropertyDescriptor[] getPropertyDescriptors() {
 return new IPropertyDescriptor[] {
 new PropertyDescriptor(ID, "Time Zone"),
 new PropertyDescriptor(DAYLIGHT, "Daylight Savings"),
 new PropertyDescriptor(NAME, "Name")
 };
}
public Object getPropertyValue(Object id) {
 if (ID.equals(id)) {
 return timeZone.getID();
 } else if(DAYLIGHT.equals(id)) {
 return timeZone.inDaylightTime(new Date());
 } else if (NAME.equals(id)) {
 return timeZone.getDisplayName();
 } else {
 return null;
 }
}

4. To hook this property source into the Properties view, an adapter is used. It can
be specified via a generic IAdaptable interface, which allows a class to virtually
implement an interface. Since the TimeZone cannot implement the IAdaptable
interface directly, an IAdapterFactory is needed.

5. Create TimeZoneAdapterFactory in the com.packtpub.e4.clock.
ui.internal package that implements the IAdapterFactory interface.
public class TimeZoneAdapterFactory implements IAdapterFactory {
 public Class[] getAdapterList() {
 return new Class[] { IPropertySource.class };
 }
 public Object getAdapter(Object o, Class type) {

Chapter 3

[97]

 if(type == IPropertySource.class && o instanceof TimeZone) {
 return new TimeZonePropertySource((TimeZone)o);
 } else {
 return null;
 }
 }
}

6. To register the adaptor factory with Eclipse, add it to the plugin.xml
file declaratively.
<extension point="org.eclipse.core.runtime.adapters">
 <factory adaptableType="java.util.TimeZone"
 class=
 "com.packtpub.e4.clock.ui.internal.TimeZoneAdapterFactory">
 <adapter type=
"org.eclipse.ui.views.properties.IPropertySource"/>
 </factory>
</extension>

7. Run the Eclipse instance, select a time zone in the tree view, and then open the
properties by navigating to Window | Show View | Other | General | Properties.
Nothing will be shown. To confirm that the adapter has been wired correctly, add
this at the end of the createPartControl() method in the TimeZoneTreeView
view creation:
System.out.println("Adapter is " + Platform.getAdapterManager().
 getAdapter(TimeZone.getDefault(),IPropertySource.class));

8. Run the Eclipse instance, open the Time Zone Tree View, and check the Console view
of the host Eclipse instance. The console should contain an output message similar
to the following:
Adapter is com.packtpub.e4.clock.ui.internal.
TimeZonePropertySource@7f8a6fb0

9. So what's the missing link? It turns out in this case that the Properties view
is not being notified of the change in selection. Adding the following to the
createPartControl() method of the TimeZoneTreeView class will solve
the problem.
System.out.println("Adapter is " + Platform.getAdapterManager().
 getAdapter(TimeZone.getDefault(),IPropertySource.class));
getSite().setSelectionProvider(treeViewer);

Creating JFace Viewers

[98]

10. Now, changes in selection are propagated up to the workbench, so that other views
can update themselves. When a TimeZone is selected, the Properties, view will be
updated automatically. Run the Eclipse instance and open the Time Zone Tree View,
select a time zone, and open the Properties view:

� E4: To hook a viewer up to the selection provider, the code looks similar
to this:

@Inject
ESelectionService selectionService;
ISelectionChangedListener selectionListener;
@PostConstruct
public void postConstruct() {
 selectionListener = new ISelectionChangedListener() {
 public void selectionChanged(SelectionChangedEvent e)
{
 if (selectionService != null)
 selectionService.setSelection(e.getSelection());
 }
 };
 treeViewer.addSelectionChangedListener(
 selectionListener);
}
@PreDestroy
public void preDestroy() {
 if(selectionListener != null)
 treeViewer.removeSelectionChangedListener
 (selectionListener);
 selectionListener = null;
}

Chapter 3

[99]

What just happened?
To update the state of the Workbench's selection, the view's selection provider was
connected with that of the page (via the getSite() method). When the selection in the
viewer changes, it sends a message to registered listeners of the page's selection service so
that they can update their views, if necessary.

� E4: The selection listener needs to be (un)registered manually to
provide a hook between the viewer and the selection service. Instead
of being ISelectionService, it's ESelectionService. The
interface is slightly different, because the ISelectionService is tied
to the IWorkbenchPart class, but the ESelectionService is not.

To provide information to the Properties view, an IPropertySource was created for the
TimeZone and associated with the Platform IAdapterManager through the declaration
in the plugin.xml file.

It's generally better to provide hooks declaratively in the plugin.xml file rather than hooking
it up with the start() and stop() activator methods. That's because the start on the
Activator may not be called until the first class is loaded from the bundle; in the case of the
adaptor, the declarative registration can provide the information before it is first required.

The adaptor factory provides the getAdapter() method, which wraps or converts the
object being passed into one of the desired type. If the object is already an instance of the
given type, it can just be returned as it is—but otherwise return a POJO, proxy, or wrapper
object that implements the desired interface. It's quite common to have a class (such as
TimeZonePropertySupport) whose sole job is to implement the desired interface, and
which wraps an instance of the object (TimeZone) to provide the functionality.

The IPropertySupport interface provides a basic means to acquire properties from the
object, and to do so it uses an identifier for each property. These can be any object type;
in the preceding example, new Object instances were used. Although it is possible to use
String (plenty of other examples do), this is not recommended, since the value of the
String has no importance and it takes up space in the JVM's PermGen memory space. In
addition, using a plain Object means that the instance can be compared with == without
any concerns, whereas doing so with String is likely to fail the code reviews or automated
style checkers. (The preceding example uses the .equals() method to encourage its use
when not using an Object, but a decent JIT will in-line it—particularly since the code is
sending the message to a static final instance.)

Creating JFace Viewers

[100]

Pop quiz – understanding properties
Q1. How can TableViewer instances respond to a click?

Q2. Why are Dialog subclasses created?

Q3. What are property descriptors?

Q4. How are properties displayed on the Properties view?

Tabular data
The tree viewer is used in many situations in Eclipse, but sometimes being able to display
more information for a single element is required. JFace provides a TableViewer that is
similar to the TreeViewer, except that instead of a single label there are multiple columns
available. There is also a combined TableTreeViewer, which combines functionality from
the two classes.

Time for action – viewing time zones in tables
To display the time zones in table form, a new view will be created called Time Zone
Table View.

1. Right-click on the com.packtpub.e4.clock.ui project and select Plug-in Tools |
Open Manifest. Open the Extensions tab and right-click on the org.eclipse.ui.views,
followed by selecting New | View and filling in the following fields:

 � ID: com.packtpub.e4.clock.ui.views.TimeZoneTableView

 � Name: Time Zone Table View

 � Class: com.packtpub.e4.clock.ui.views.TimeZoneTableView

 � Category: com.packtpub.e4.clock.ui

 � Icon: icons/sample.gif

2. The plugin.xml file should now contain the following code snippet:
<view
 category="com.packtpub.e4.clock.ui"
 class="com.packtpub.e4.clock.ui.views.TimeZoneTableView"
 icon="icons/sample.gif"
 id="com.packtpub.e4.clock.ui.views.TimeZoneTableView"
 name="Time Zone Table View"
 restorable="true">
</view>

Chapter 3

[101]

3. Create the class using the editor's shortcuts to create a new class,
TimeZoneTableView, which extends ViewPart, or with the new class
wizard. Once the view is created, add an empty TableViewer, and use an
ArrayContentProvider with the set of available TimeZone IDs:
public class TimeZoneTableView extends ViewPart {
 private TableViewer tableViewer;
 public void createPartControl(Composite parent) {
 tableViewer=new TableViewer(parent,SWT.H_SCROLL|SWT.V_SCROLL);
 tableViewer.getTable().setHeaderVisible(true);
 tableViewer.setContentProvider(
 ArrayContentProvider.getInstance());
 tableViewer.setInput(TimeZone.getAvailableIDs());
 }
 public void setFocus() {
 tableViewer.getControl().setFocus();
 }
}

� E4: If creating a part for an E4 application, remember to
use the @Inject annotation for the constructor and @Focus
for the setFocus() method.

4. Run the Eclipse instance, and a one-dimensional list of time zones will be shown in
the Time Zone Table View:

5. Convert the array of Strings to an array of TimeZones and set that as the input:
tableViewer.setInput(TimeZone.getAvailableIDs());
String[] ids = TimeZone.getAvailableIDs();
TimeZone[] timeZones = new TimeZone[ids.length];
for(int i=0;i<ids.length;i++) {
 timeZones[i] = TimeZone.getTimeZone(ids[i]);
}
tableViewer.setInput(timeZones);
getSite().setSelectionProvider(tableViewer);

Creating JFace Viewers

[102]

6. The selection provider is wired up like in the TimeZoneTreeView example. Make a
selection in the table, and see the change in the Properties view:

7. The table shows a list of the ZoneInfo objects. That's because there is no
LabelProvider, so they're just being rendered with their toString()
representation. Because a table has multiple columns, TableViewers have a
number of TableViewerColumn instances. Each one represents a column in the
Table, and each has its own size, title, and label provider. Creating a new column
often involves setting up standard features (such as the width) as well as hooking in
the required fields to display.

To make it easy to re-use, create an abstract subclass of ColumnLabelProvider
called TimeZoneColumn (in the com.packtpub.e4.clock.ui.internal
package) with abstract getText() and getTitle() methods, and a concrete
getWidth() method.
public abstract class TimeZoneColumn extends ColumnLabelProvider {
 public abstract String getText(Object element);
 public abstract String getTitle();
 public int getWidth() {
 return 250;
 }
}

8. Add a helper method to the TimeZoneColumn class, which makes it easier to add it
to a viewer:
public TableViewerColumn addColumnTo(TableViewer viewer) {
 TableViewerColumn tableViewerColumn =
 new TableViewerColumn(viewer,SWT.NONE);
 TableColumn column = tableViewerColumn.getColumn();
 column.setMoveable(true);
 column.setResizable(true);
 column.setText(getTitle());
 column.setWidth(getWidth());
 tableViewerColumn.setLabelProvider(this);
 return tableViewerColumn;
}

Chapter 3

[103]

9. Now create a custom subclass TimeZoneIDColumn in the same package that
returns the ID column for a TimeZone:
public class TimeZoneIDColumn extends TimeZoneColumn {
 public String getText(Object element) {
 if (element instanceof TimeZone) {
 return ((TimeZone) element).getID();
 } else {
 return "";
 }
 }
 public String getTitle() {
 return "ID";
 }
}

10. Modify the TimeZoneTableView class, and at the end of the
createPartControl() method, instantiate the column and
call the addColumnTo() method, above the call to setInput():
new TimeZoneIDColumn().addColumnTo(tableViewer);
tableViewer.setInput(timeZones);

Note that the columns need to be created prior to the
setInput() call, otherwise they won't display properly.

11. Run the Eclipse instance, and show the Time Zone Table View. The ID column should
be displayed on its own.

12. To add additional columns, copy the TimeZoneIDColumn class, modifying the title
returned and the returned property of the associated TimeZone. For example,
create a copy of the TimeZoneIDColumn called TimeZoneDisplayNameColumn,
and modify the get method and title.
return ((TimeZone) element).getID();
return ((TimeZone) element).getDisplayName();
return "ID";
return "Display Name";

13. Optionally, do the same with the other properties of TimeZone, such as the
offset (with getOffset()), and whether it's in summer time or not (with
useDaylightTime()). The columns can then be added to the table.
new TimeZoneOffsetColumn().addColumnTo(tableViewer);
new TimeZoneDisplayNameColumn().addColumnTo(tableViewer);
new TimeZoneSummerTimeColumn().addColumnTo(tableViewer);

Creating JFace Viewers

[104]

14. Run the Eclipse instance, go to the Time Zone Table View, and the additional
column(s) should be seen:

What just happened?
A TableViewer was created and multiple ColumnLabelProviders were added to it
for displaying individual fields of an object. Subclassing ColumnLabelProvider avoids
the need to use anonymous inner classes and it gives a helper function. This can be used
to create and wire in the column (with specified title and width), while delegating those
properties to the concrete subclasses of TimeZoneIDColumn and so on. This avoids the
need for tracking columns by ID.

For specific customizations of the columns, the underlying SWT Column is used to set
functionality required by the application, including allowing the column to be movable with
setMovable(true), and to be resizable with setResizable(true). Similarly, table-wide
operations (such as showing the header) are performed by manipulating the underlying SWT
Table and invoking setHeaderVisible(true).

It's important to note that the columns of the tree viewer are calculated when the
setInput() method is called, so columns that are added after this line may not show
properly. Generally, the setInput() should be left until the end of the table's construction.

All of the other functionality from the other view is portable, for example, by wiring up the
selection appropriately, the Properties view can show properties of the selected object.

Time for action – syncing selection
The TimeZoneTableView and the TimeZoneTreeView can propagate their selection to
the Properties view. Responding to selection changes gives a unified feel despite the fact that
the views are independent entities.

Chapter 3

[105]

They can be further linked so that when a TimeZone is selected in either of these views, it
automatically reveals in the other. To do this, a selection listener will need to be registered,
and if the selected object is a type of TimeZone, display it in the view (with the reveal()
and setSelection() methods).

1. Create a class TimeZoneSelectionListener (in the com.packtpub.
e4.clock.ui.internal package), which implements the ISelectionListener
interface. This will take a viewer, and an associated part, to implement the
selectionChanged() method.
public class TimeZoneSelectionListener implements
 ISelectionListener {
 private Viewer viewer;
 private IWorkbenchPart part;
 public TimeZoneSelectionListener(Viewer v, IWorkbenchPart p) {
 this.viewer = v;
 this.part = p;
 }
 public void selectionChanged(IWorkbenchPart p, ISelection sel) {
 }
}

2. The selectionChanged() method needs to:

 � Ignore the event if it was fired by the same part

 � Get the selected object from the event and compare it with the current one

 � If different, and the selected object is a TimeZone, update the viewer

3. Implement it as follows:
public void selectionChanged(IWorkbenchPart p, ISelection sel) {
 if (p != this.part) {
 IStructuredSelection selected = ((IStructuredSelection)sel)
 .getFirstElement();
 Object current = ((IStructuredSelection)viewer.getSelection())
 .getFirstElement();
 if(selected != current && selected instanceof TimeZone) {
 viewer.setSelection(sel);
 if(viewer instanceof StructuredViewer) {
 ((StructuredViewer) viewer).reveal(selected);
 }
 }
 }
}

Creating JFace Viewers

[106]

4. The selection listeners need to be registered with the views. Open up the
TimeZoneTableView class, and at the bottom of the createPartControl()
method, add the following:
selectionListener = new TimeZoneSelectionListener(
 tableViewer, getSite().getPart());
getSite().getWorkbenchWindow().getSelectionService()
 .addSelectionListener(selectionListener);

5. The selectionListener needs to be added as a field, because it will be necessary
to remove the listener when the view is disposed:
private TimeZoneSelectionListener selectionListener;
public void dispose() {
 if (selectionListener != null) {
 getSite().getWorkbenchWindow().getSelectionService()
 .removeSelectionListener(selectionListener);
 selectionListener = null;
 }
 super.dispose();
}

6. A very similar change (only the viewer's variable name is different) needs to be
added to the TimeZoneTreeView class:
selectionListener = new TimeZoneSelectionListener(
 tableViewer, getSite().getPart());
getSite().getWorkbenchWindow().getSelectionService()
 .addSelectionListener(selectionListener);

7. The dispose method is the same for the TimeZoneTreeView class as the
TimeZoneTableView.

8. Now run the Eclipse instance, select a time zone in the Time Zone Table View, and
the Time Zone Tree View should show the same one. Change the selection of the
Time Zone Tree View and the Time Zone Table View should show the same one.

What just happened?
Selection events occur a lot in the Eclipse workspace, so it is important that the selection
listeners be performant. By filtering events fired from the same part, or filtering
uninteresting types, the event delivery will be more efficient. In this case, the selection is
checked to ensure that the selection contains (at least) one element, which is a TimeZone,
before performing any UI updates.

Chapter 3

[107]

The selection of the viewer can be synchronized with the setSelection() call; this
saves having to instantiate a new selection object and set the data appropriately. However,
setting the selection alone is not enough; the reveal() method needs to be called to
ensure that it is appropriately highlighted. If multiple objects are selected, this will only
reveal the first element.

The reveal() method is only available to StructuredViewers, so the selection stamps
the selection as it is, and explicitly sets the IStructuredSelection for those that are
StructuredViewers.

Finally, the listeners are registered when the view is created, and removed when
the view is disposed. To do this, get hold of the ISelectionService via the part
and then invoke the addSelectionListener() method to add it, and invoke the
removeSelectionListener() method to remove it.

� E4: If using E4, instead of using the ISelectionService, the
ESelectionService is used. This provides a similar, but not identical,
interface in that the WorkbenchPart is no longer present. Typically, the
ESelectionService is injected into the view and the listener is wired
in the @PostConstruct and removed in the @PreDestroy call.

Pop quiz – understanding tables
Q1. How are a columns' headers enabled in a TableViewer?

Q2. What is a TableViewerColumn for?

Q3. How is selection synchronized between two views?

Summary
This chapter covered how to use JFace to build viewers for structured data; both tree-based
views (with a TreeViewer) and table-based views (with a TableViewer). It also covered
some JFace built-in features for managing fonts and images.

To synchronise data between views in Eclipse, services such as the ISelectionService
are used (or for E4 the ESelectionService is used). Having views generate and consume
selection events provides a visual consistency, even though the views may be exposed by
different plug-ins.

4
Interacting with the User

In the previous chapter, we looked at some of the basic JFace viewers, which
provide a representation of data. However, we need to interact with the
user and we can do this in multiple ways, from responding to mouse clicks to
processing data-intensive operations in the background.

In this chapter we will cover:

 � Creating a menu in response to a user pop up

 � Adding a command and a handler in a menu

 � Using progress managers to report work

 � Adding actions to the progress manager

 � Showing errors and dealing with failure

Creating actions, commands, and handlers
The first few releases of the Eclipse framework provided Action as a means of contributing
to menu items. These were defined declaratively via actionSets in the plugin.xml file,
and many tutorials still reference those today. At the programming level, when creating
views, Actions are still used to provide context menus programmatically.

They were replaced with commands in Eclipse 3, as a more abstract way of decoupling the
operation of a command with its representation of the menu. To connect these two together,
a handler is used.

Interacting with the User

[110]

� E4: Eclipse 4.x uses the command's model, and decouples it further
using the @Execute annotation on the handler class. Commands and
views are hooked up with entries on the application's model. The basic ideas
covered in this chapter will translate into examples in the E4 in Chapter 7.

Time for action – adding context menus
A context menu can be added to the TimeZoneTableView class and respond to it
dynamically in the view's creation. The typical pattern for Eclipse 3 applications is to create
a hookContextMenu() method, which is used to wire up the context menu operation with
displaying the menu. A default implementation can be seen by creating an example view, or
one can be created from first principles.

Eclipse menus are managed by a MenuManager. This is a specialized subclass of a more
general ContributionManager, which looks after a dynamic set of contributions that can be
made from other sources. When the menu manager is connected to a control, it responds in
the standard ways for the platform for showing the menu (typically a context-sensitive click or
short key). Menus can also be displayed in other locations, such as a view's or the workspace's
coolbar (toolbar). The same MenuManager approach works in these different locations.

1. Open the TimeZoneTableView class and go to the createPartControl()
method.

2. At the bottom of the method, add a new MenuManager with the ID #PopupMenu
and associate it to the viewer's control.
MenuManager manager = new MenuManager("#PopupMenu");
Menu menu = manager.createContextMenu(tableViewer.getControl());
tableViewer.getControl().setMenu(menu);

3. If the Menu is empty, the MenuManager won't show any content, so this currently
has no effect. To demonstrate this, an Action will be added to the Menu. An
Action has text (for rendering in the pop-up menu, or the menu at the top of
the screen), as well as a state (enabled/disabled, selected) and a behavior. These
are typically created as subclasses and (although the Action doesn't strictly
require it) an implementation of the run() method. Add this to the bottom of the
createPartControl() method.
Action deprecated = new Action() {
 public void run() {
 MessageDialog.openInformation(null, "Hello", "World");
 }
};
deprecated.setText("Hello");
manager.add(deprecated);

Chapter 4

[111]

4. Run the Eclipse instance, open the Time Zone Table View, and right-click on
the table. The Hello menu can be seen, and when selected, an informational
dialog is shown.

What just happened?
The MenuManager (with the id #PopupMenu) was bound to the control, which means when
that particular control's context sensitive menu is invoked, the manager will be able to ask to
display a menu. The manager is associated with a single Menu object (which is also stamped
on the underlying control itself) and is responsible for updating the status of the menu.

Actions are deprecated. They are included here since examples on the
Internet may have preferred references to them, but it's important to
note that while they still work, the way of building user interfaces are
with the commands and handlers, shown in the next section.

When the menu is shown, the actions that the menu contains are rendered in the order
in which they are added. Action are usually subclasses that implement a run() method,
which performs a certain operation, and have text which is displayed.

Action instances also have other metadata, such as whether they are enabled or disabled.
Although it is tempting to override the accessor methods, this behavior doesn't work—the
setters cause an event to be sent out to registered listeners, which causes side effects, such
as updating any displayed controls.

Time for action – creating commands and handlers
Since the Action class is deprecated, the supported mechanism is to create a command, a
handler, and a menu to display the command in the menu bar.

1. Open the plug-in manifest for the project, or double-click on the plugin.xml file.

2. Edit the source on the plugin.xml tab, and add a definition of a Hello command as
follows:
<extension point="org.eclipse.ui.commands">
 <command name="Hello"
 description="Says Hello World"
 id="com.packtpub.e4.clock.ui.command.hello"/>
</extension>

Interacting with the User

[112]

3. This creates a command, which is just an identifier and a name. To specify
what it does, it must be connected to a handler, which is done by adding
the following extension:
<extension point="org.eclipse.ui.handlers">
 <handler class=
 "com.packtpub.e4.clock.ui.handlers.HelloHandler"
 commandId="com.packtpub.e4.clock.ui.command.hello"/>
</extension>

4. The handler joins the processing of the command to a class that implements
IHandler, typically AbstractHandler. Create a class HelloHandler in a
new com.packtpub.e4.clock.ui.handlers package, which implements
AbstractHandler (from the org.eclipse.core.commands package).
public class HelloHandler extends AbstractHandler {
 public Object execute(ExecutionEvent event) {
 MessageDialog.openInformation(null, "Hello", "World");
 return null;
 }
}

5. The command's ID com.packtpub.e4.clock.ui.command.hello is used
to refer to it from menus or other locations. To place the contribution in an
existing menu structure, it needs to be specified by its locationURI, which is
a URL that begins with menu: such as menu:window?after=additions or
menu:file?after=additions. To place it in the Help menu, add this to the
plugin.xml file.
<extension point="org.eclipse.ui.menus">
 <menuContribution allPopups="false"
 locationURI="menu:help?after=additions">
 <command commandId="com.packtpub.e4.clock.ui.command.hello"
 label="Hello"
 style="push">
 </command>
 </menuContribution>
</extension>

6. Run the Eclipse instance, and there will be a Hello menu item under the Help menu.
When selected, it will pop up the Hello World message. If the Hello menu is
disabled, verify that the handler extension point is defined, which connects the
command to the handler class.

Chapter 4

[113]

What just happened?
The main issue with the actions framework was that it tightly coupled the state of the
command with the user interface. Although an action could be used uniformly between
different menu locations, the Action superclass still lives in the JFace package, which has
dependencies on both SWT and other UI components. As a result, Action cannot be used in
a headless environment.

Eclipse 3.x introduced the concept of commands and handlers, as a means of separating
their interface from their implementation. This allows a generic command (such as Copy)
to be overridden by specific views. Unlike the traditional command design pattern, which
provides implementation as subclasses, the command in Eclipse 3.x uses a final class and
then a retargetable IHandler to perform the actual execution.

� E4: In Eclipse 4.x, the concepts of commands and handlers are used
extensively to provide the components of the user interface. The key
difference is in their definition; for Eclipse 3.x, this typically occurs in the
plugin.xml file, whereas in E4 it is part of the application model.

In the example, a specific handler was defined for the command, which is valid in all
contexts. The handler's class is the implementation; the command ID is the reference.

The org.eclipse.ui.menus extension point allows menuContributions to be added
anywhere in the user interface. To address where the menu can be contributed to, the
locationURI object defines where the menu item can be created. The syntax for the URI is
as follows:

 � menu: Menus begin with the menu: protocol (can also be toolbar: or popup:)

 � identifier: This can be a known short name (such as file, window, and
help), the global menu (org.eclipse.ui.main.menu), the global toolbar
(org.eclipse.ui.main.toolbar), a view identifier (org.eclipse.
ui.views.ContentOutline), or an ID explicitly defined in a pop-up menu's
registerContextMenu() call.

 � ?after(or before)=key: This is the placement instruction to put this after or
before other items; typically additions is used as an extensible location for others to
contribute to.

The locationURI allows plug-ins to contribute to other menus, regardless of where they
are ultimately located.

Note, that if the handler implements the IHandler interface directly instead of subclassing
AbstractHandler, the isEnabled() method will need to be overridden as otherwise the
command won't be enabled, and the menu won't have any effect.

Interacting with the User

[114]

Time for action – binding commands to keys
To hook up the command to a keystroke a binding is used. This allows a key (or series of keys)
to be used to invoke the command, instead of only via the menu. Bindings are set up via an
extension point org.eclipse.ui.bindings, and connect a sequence of keystrokes to a
command ID.

1. Open the plugin.xml in the clock.ui project.

2. In the plugin.xml tab, add the following:
<extension point="org.eclipse.ui.bindings">
 <key commandId="com.packtpub.e4.clock.ui.command.hello"
 sequence="M1+9"
 contextId="org.eclipse.ui.contexts.window"
 schemeId=
 "org.eclipse.ui.defaultAcceleratorConfiguration"/>
</extension>

3. Run the Eclipse instance, and press Cmd + 9 (for OS X) or Ctrl + 9 (for Windows/
Linux). The same Hello dialog should be displayed, as if it was shown from the
menu. The same keystroke should be displayed in the Help menu.

What just happened?
The M1 key is the primary meta key, which is Cmd on OS X and Ctrl on Windows/Linux.
This is typically used for the main operations; for example M1 + C is copy and M1 + V is
paste on all systems. The sequence notation M1 + 9 is used to indicate pressing both
keys at the same time.

The command that gets invoked is referenced by its commandId. This may be defined in the
same plug-in, but does not have to be; it is possible for one application to provide a set of
commands and another plug-in to provide keystrokes that bind them.

It is also possible to set up a sequence of key presses; for example, M1 + 9 8 7 would
require pressing Cmd + 9 or Ctrl + 9 followed by 8 and then 7 before the command is
executed. This allows a set of keystrokes to be used to invoke a command; for example, it's
possible to emulate an Emacs quit operation with the keybinding Ctrl + X Ctrl + C to
the quit command.

Other modifier keys include M2 (Shift), M3 (Alt/Option), and M4 (Ctrl on OS X). It is possible to
use CTRL, SHIFT, or ALT as long names, but the meta names are preferred, since M1 tends
to be bound to different keys on different operating systems.

Chapter 4

[115]

The non-modifier keys themselves can either be single characters (A to Z), numbers
(0 to 9), or one of a set of longer name key-codes, such as F12, ARROW_UP, TAB, and
PAGE_UP. Certain common variations are allowed; for example, ESC/ESCAPE, ENTER/
RETURN, and so on.

Finally, bindings are associated with a scheme, which in the default case should be org.
eclipse.ui.defaultAcceleratorConfiguration. Schemes exist to allow the user
to switch in and out of keybindings and replace them with others, which is how tools like
"vrapper" (a vi emulator) and the Emacs bindings that come with Eclipse by default can be
used. (This can be changed via Window | Preferences | Keys menu in Eclipse.)

Time for action – changing contexts
The context is the location in which this binding is valid. For commands that are visible
everywhere—typically the kind of options in the default menu—they can be associated with
the org.eclipse.ui.contexts.window context. If the command should also be invoked
from dialogs as well, then the org.eclipse.ui.context.dialogAndWindow context
would be used instead.

1. Open the plugin.xml file of the clock.ui project.

2. To enable the command only for Java editors, go to the plugin.xml tab, and modify
the contextId as follows:
<extension point="org.eclipse.ui.bindings">
 <key commandId="com.packtpub.e4.clock.ui.command.hello"
 sequence="M1+9"
 contextId="org.eclipse.ui.contexts.window"
 contextId="org.eclipse.jdt.ui.javaEditorScope"
 schemeId="org.eclipse.ui.defaultAcceleratorConfiguration"/>
</extension>

3. Run the Eclipse instance, and create a Java project, a test Java class, and an empty
text file.

4. Open both of these in editors. When the focus is on the Java editor, the Cmd + 9 or
Ctrl + 9 operation will run the command, but when the focus is on the text editor,
the keybinding will have no effect.

Unfortunately, it also highlights the fact that just because the keybinding is disabled when in
the Java scope, it doesn't disable the underlying command.

Interacting with the User

[116]

If there is no change in behavior, try cleaning the workspace of the test instance
at launch, by going to the Run | Run ... menu, and choosing Clear on the
workspace. This is sometimes necessary when making changes to the plugin.
xml file, as some extensions are cached and may lead to strange behavior.

What just happened?
Context scopes allow bindings to be valid for certain situations, such as when a Java editor is
open. This allows the same keybinding to be used for different situations, such as a Format
operation—which may have a different effect in a Java editor than an XML editor, for instance.

Since scopes are hierarchical, they can be specifically targeted for the contexts in which
they may be used. The Java editor context is a subcontext of the general text editor,
which in turn is a subcontext of the window context, which in turn is a subcontext of the
windowAndDialog context.

The available contexts can be seen by editing the plugin.xml file in the plug-in editor; in
the extensions tab the binding shows an editor window with a form:

Chapter 4

[117]

Clicking on the Browse… button next to the contextId brings up a dialog, which presents the
available contexts:

It's also possible to find out all the contexts programmatically or via the running OSGi
instance, by navigating to Window | Show View | Console, and then using New Host
OSGi Console in the drop-down menu, and then running the following code snippet:

osgi> pt -v org.eclipse.ui.contexts

Extension point: org.eclipse.ui.contexts [from org.eclipse.ui]

Extension(s):

null [from org.eclipse.ant.ui]
 <context>
 name = Editing Ant Buildfiles
 description = Editing Ant Buildfiles Context
 parentId = org.eclipse.ui.textEditorScope
 id = org.eclipse.ant.ui.AntEditorScope

Interacting with the User

[118]

 </context>

null [from org.eclipse.compare]
 <context>
 name = Comparing in an Editor
 description = Comparing in an Editor
 parentId = org.eclipse.ui.contexts.window
 id = org.eclipse.compare.compareEditorScope
 </context>

Time for action – enabling and disabling the menu's items
The previous section showed how to hide or show a specific keybinding depending on the
open editor type. However, it doesn't stop the command being called via the menu, or from
it showing up in the menu itself. Instead of just hiding the keybinding, the menu can be
hidden as well by adding a visibleWhen block to the command.

The expressions framework provides a number of variables, including activeContexts,
which contains a list of the active contexts at the time. Since many contexts can be active
simultaneously, the active contexts is a list (for example, [dialogAndWindows,windows,
textEditor,javaEditor]). So, to find an entry (in effect, a contains operation) an
iterate operator with the equals expression is used.

1. Open up the plugin.xml file, and update the the Hello command by adding a
visibleWhen expression.
<extension point="org.eclipse.ui.menus">
 <menuContribution allPopups="false"
 locationURI="menu:help?after=additions">
 <command commandId="com.packtpub.e4.clock.ui.command.hello"
 label="Hello" style="push">
 <visibleWhen>
 <with variable="activeContexts">
 <iterate operator="or">
 <equals value="org.eclipse.jdt.ui.javaEditorScope"/>
 </iterate>
 </with>
 </visibleWhen>
 </command>
 </menuContribution>
</extension>

Chapter 4

[119]

2. Run the Eclipse instance, and verify that the menu is hidden until a Java editor is
opened. If this behavior is not seen, run the Eclipse application with the clean
argument to clear the workspace. After clearing, it will be necessary to create a new
Java project with a Java class, as well as an empty text file, to verify that the menu's
visibility is correct.

What just happened?
Menus have a visibleWhen guard that is evaluated when the menu is shown. If it is false,
the menu is hidden.

The expressions syntax is based on nested XML elements with certain conditions. For
example, an <and> block is true if all of its children are true, whereas an <or> block is
true if one of its children is true. Variables can also be used with a property test using
a combination of a <with> block (which binds the specified variable to the stack) and an
<equals> block or other comparison.

In the case of variables that have lists, an <iterate> can be used to step through elements
using either operator="or" or operator="and" to dynamically calculate enablement.

To find out if a list contains an element, a combination of <iterate> and <equals>
operators is the standard pattern.

There are a number of variables that can be used in tests; these are listed in the Eclipse
help documentation under the Workbench Core Expressions chapter, and include the
following variables:

 � activeContexts: List of context IDs that are active at the time

 � activeShell: The active shell (dialog or window)

 � activeWorkbenchWindow: The active window

 � activeEditor: The current or last active editor

 � activePart: The active part (editor or view)

 � selection: The current selection

 � org.eclipse.core.runtime.Platform: The Platform object

The Platform object is useful for performing dynamic tests using test, such as the following:

<test value="ACTIVE"
 property="org.eclipse.core.runtime.bundleState"
 args="org.eclipse.core.expressions"/>
<test
 property="org.eclipse.core.runtime.isBundleInstalled"
 args="org.eclipse.core.expressions"/>

Interacting with the User

[120]

Knowing if a bundle is installed is often useful; it's better to only enable functionality if a
bundle is started (or in OSGi terminology, ACTIVE). As a result, use of isBundleInstalled
has been replaced by the bundleState=ACTIVE tests.

Time for action – reusing expressions
Although it's possible to copy and paste expressions between places where they are used, it
is preferable to re-use an identical expression.

1. Declare an expression using the expression's extension point, by opening the
plugin.xml file of the clock.ui project.
<extension point="org.eclipse.core.expressions.definitions">
 <definition id="when.hello.is.active">
 <with variable="activeContexts">
 <iterate operator="or">
 <equals value="org.eclipse.jdt.ui.javaEditorScope"/>
 </iterate>
 </with>
 </definition>
</extension>

If defined via the extension wizard, it will prompt to add dependency on the org.
eclipse.core.expressions bundle. This isn't strictly necessary for this example
to work.

2. To use the definition, the enablement expressions needs to use the reference.
<extension point="org.eclipse.ui.menus">
 <menuContribution allPopups="false"
 locationURI="menu:help?after=additions">
 <command commandId="com.packtpub.e4.clock.ui.command.hello"
 label="Hello" style="push">
 <visibleWhen>
 <with variable="activeContexts">
 <iterate operator="or">
 <equals value="org.eclipse.jdt.ui.javaEditorScope"/>
 </iterate>
 </with>
 <reference definitionId="when.hello.is.active"/>
 </visibleWhen>
 </command>
 </menuContribution>
</extension>

Chapter 4

[121]

3. Now that the reference has been defined, it can be used to modify the handler as
well, so that the handler and menu become active and visible together. Add the
following to the Hello handler in the plugin.xml file:
<extension point="org.eclipse.ui.handlers">
 <handler class="com.packtpub.e4.clock.ui.handlers.Hello"
 commandId="com.packtpub.e4.clock.ui.command.hello">
 <enabledWhen>
 <reference definitionId="when.hello.is.active"/>
 </enabledWhen>
 </handler>
</extension>

4. Run the Eclipse application and exactly the same behavior will occur; but should the
enablement change, it can be done in one place.

What just happened?
The org.eclipse.core.expressions extension point defined a virtual condition that
could be evaluated when the user's context changes, so both the menu and the handler
can be made visible and enabled at the same time. The reference was bound in the
enabledWhen condition for the handler, and the visibleWhen condition for the menu.

Since references can be used anywhere, expressions can also be defined in terms of other
expressions. As long as the expressions aren't recursive, they can be built up in any manner.

Time for action – contributing commands to pop-up menus
It's useful to be able to add contributions to pop-up menus so that they can be used by
different places. Fortunately, this can be done fairly easily with the menuContribution
element and a combination of enablement tests. This allows the removal of the Action
introduced in the first part of this chapter with a more generic command and handler pairing.

There is a deprecated extension point—which still works in Eclipse 4.2 today—called
objectContribution, which is a single specialized hook for contributing a pop-up menu
to an object. This has been deprecated for some time, but often older tutorials or examples
may refer to it.

1. Open the TimeZoneTableView class and add the hookContextMenu() method
as follows:
private void hookContextMenu(Viewer viewer) {
 MenuManager manager = new MenuManager("#PopupMenu");
 Menu menu = manager.createContextMenu(viewer.getControl());
 viewer.getControl().setMenu(menu);
 getSite().registerContextMenu(manager, viewer);
}

Interacting with the User

[122]

2. Add the same hookContextMenu() method to the TimeZoneTreeView class.

3. In the TimeZoneTreeView class, at the end of the createPartControl()
method, call hookContextMenu(tableViewer).

4. In the TimeZoneTableView class, at the end of the createPartControl()
method, replace the call to the action with a call to hookContextMenu() instead:
hookContextMenu(tableViewer);
MenuManager manager = new MenuManager("#PopupMenu");
Menu menu = manager.createContextMenu(tableViewer.getControl());
tableViewer.getControl().setMenu(menu);
Action deprecated = new Action() {
 public void run() {
 MessageDialog.openInformation(null, "Hello", "World");
 }
};
deprecated.setText("Hello");
manager.add(deprecated);

5. Running the Eclipse instance now and showing the menu results in nothing being
displayed, because no menu items have been added to it yet.

6. Create a command and a handler Show the Time.
<extension point="org.eclipse.ui.commands">
 <command name="Show the Time" description="Shows the Time"
 id="com.packtpub.e4.clock.ui.command.showTheTime"/>
</extension>
<extension point="org.eclipse.ui.handlers">
 <handler class=
 "com.packtpub.e4.clock.ui.handlers.ShowTheTime"
 commandId="com.packtpub.e4.clock.ui.command.showTheTime"/>
</extension>

7. Create a class ShowTheTime, in the com.packtpub.e4.clock.ui.handlers
package, which extends org.eclipse.core.commands.AbstractHandler, to
show the time in a specific time zone.
public class ShowTheTime extends AbstractHandler {
 public Object execute(ExecutionEvent event) {
 ISelection sel = HandlerUtil.getActiveWorkbenchWindow(event)
 .getSelectionService().getSelection();
 if (sel instanceof IStructuredSelection && !sel.isEmpty()) {
 Object value =
 ((IStructuredSelection)sel).getFirstElement();
 if (value instanceof TimeZone) {
 SimpleDateFormat sdf = new SimpleDateFormat();

Chapter 4

[123]

 sdf.setTimeZone((TimeZone) value);
 MessageDialog.openInformation(null, "The time is",
 sdf.format(new Date()));
 }
 }
 return null;
 }
}

8. Finally, to hook it up, a menu needs to be added to the special locationURI
popup:org.eclipse.ui.popup.any.
<extension point="org.eclipse.ui.menus">
 <menuContribution allPopups="false"
 locationURI="popup:org.eclipse.ui.popup.any">
 <command label="Show the Time" style="push"
 commandId="com.packtpub.e4.clock.ui.command.showTheTime">
 <visibleWhen checkEnabled="false">
 <with variable="selection">
 <iterate ifEmpty="false">
 <adapt type="java.util.TimeZone"/>
 </iterate>
 </with>
 </visibleWhen
 </command>
 </menuContribution>
</extension>

9. Run the Eclipse instance, and open the Time Zone Table view or Time Zone
Table view. Right-click on a TimeZone, and the command Show the Time will be
displayed (that is, one of the leaves of the tree or one of the rows of the table).
Select the command and a dialog should show the time.

What just happened?
The views from the previous chapter and the knowledge of how to wire up commands in this
chapter provided a unified means of adding commands, based on the selected object type.
This approach of registering commands is powerful, because any time a time zone is exposed
as a selection in the future it will now have a Show the Time menu added to it automatically.

The commands define a generic operation, and handlers bind those commands to
implementations. The context-sensitive menu is provided by the pop-up menu extension
point using the locationURI popup:org.eclipse.ui.popup.any. This allows the
menu to be added to any pop-up menu that uses a MenuManager and when the selection
contains a TimeZone. The MenuManager is responsible for listening to the mouse gestures
to show a menu, and filling it with details when it is shown.

Interacting with the User

[124]

In the example, the command was enabled when the object was an instance of a TimeZone,
and also if it could be adapted to a TimeZone. This would allow another object type (say, a
contact card) to have an adapter to convert it to a TimeZone, and thus show the time in that
contact's location.

Have a go hero – using view menus and toolbars
The way to add a view menu is similar to adding a pop-up menu; the locationURI used is
the view's ID rather than the menu item itself. Add a Show the Time menu to the TimeZone
view as a view menu.

Another way of adding the menu is to add it as a toolbar, which is an icon in the main Eclipse
window. Add the Show the Time icon by adding it to the global toolbar instead.

To facilitate testing of views, add a menu item that allows you to show the TimeZone
views with PlatformUI.getActiveWorkbenchWindow().getActivePage().
showView(id).

Pop quiz – understanding menus
Q1. What's the difference between an Action and a Command, and which one should
be used?

Q2. How can a Command be connected to a menu?

Q3. What is the M1 key?

Q4. How are keystrokes bound to commands?

Q5. What is a menu locationURI?

Q6. How is a pop-up menu created?

Jobs and progress
Since the user interface is single threaded, if a command takes a long amount of time it will
block the user interface from being redrawn or processed. As a result, it is necessary to run
long-running operations in a background thread to prevent the UI from hanging.

Although the core Java library contains java.util.Timer, the Eclipse Jobs API provides a
mechanism to both run jobs and report progress. It also allows jobs to be grouped together
and paused or joined as a whole.

Chapter 4

[125]

Time for action – running operations in the background
If the command takes a long time to execute, the user interface can be blocked. This happens
because there is only one user interface thread, and because the command is launched
from the UI, it will run in the UI thread. Instead, long running operations should run in a
background thread, and then once finished, be able to display the results instead. Clearly
creating a new Thread (like the clock updates initially) or other techniques like a Timer
would work. However, the Eclipse system has a mechanism to provide a Job to do the work
instead, or a UIJob to run in the context of the UI thread.

1. Open the HelloHandler and go to the execute() method. Replace its contents
with the following code snippet:
public Object execute(ExecutionEvent event) {
 Job job = new Job("About to say hello") {
 protected IStatus run(IProgressMonitor monitor) {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 }
 MessageDialog.openInformation(null, "Hello", "World");
 return Status.OK_STATUS;
 }
 };
 job.schedule();
 return null;
}

2. Run the Eclipse instance, and click on the Help | Hello menu item. (It may be
necessary to open a Java file to enable the menu). Open the Progress view, and a
Job will be listed with About to say hello running. Unfortunately, an error
dialog is then shown:

Interacting with the User

[126]

3. This occurs because the Job runs on a non-UI background thread, so when the
MessageDialog is shown an exception occurs. To fix this, instead of showing
the MessageDialog directly, a second Job or Runnable can be created to run
specifically on the UI thread. Replace the call to the MessageDialog with the
following code snippet:
MessageDialog.openInformation(null, "Hello", "World");
Display.getDefault().asyncExec(new Runnable() {
 public void run() {
 MessageDialog.openInformation(null, "Hello", "World");
 }
});

This example uses the asyncExec() to run a runnable on the UI thread (similar to
the SwingUtilities.invokeLater() method in Swing).

4. Run the Eclipse instance, select the Hello menu, and after a five second pause, the
dialog should be shown.

What just happened?
Every action in the Eclipse UI must run on the UI thread, so if the action takes a significant
time to run, it will give the impression that the user interface is blocked or hung. The way to
avoid this is to drop out of the UI thread before doing any long term work. Any updates that
need to be done involving the UI should be scheduled back on the UI thread.

The example used both Job (a mechanism for scheduling named processes that can be
monitored via the Progress view), as well as the display's asyncExec() method to
launch the resulting message dialog.

Both of these situations require the use of inner classes, which can increase the verbosity
of the code. With future versions of Java and use of lambda expressions this will be
significantly reduced.

� E4: Since E4 can use different renderers, the Display is not a good
target for submitting background UIJob. Instead, use a UISynchronize
instance to acquire the asyncExec() or syncExec() method.

Have a go hero – using a UI job
Instead of scheduling the UI notification piece as a Display.asyncExec() method, create
it as a UIJob instead. This works in exactly the same way as a Job does, but you need to
override the runInUIThread() method instead of the run() method. This may be useful
when there is more UI interaction required, such as asking the user for more information.

Chapter 4

[127]

Time for action – reporting progress
Normally when a Job is running, it is necessary to periodically update the user to let them
know the state of progress. By default, if a Job provides no information, a generic busy
indicator is shown. When a Job is executed, it is passed an IProgressMonitor object,
which can be used to notify the user of progress (and provide a way to cancel the operation).
A progress monitor has a number of tasks, each of which has a total unit of work that it can
do. For jobs that don't have a known amount of work, UNKNOWN can be specified and it will
be displayed in a generic busy indicator.

1. Open the HelloHandler and go to the execute() method. In the run() method
of the inner Job, add a beginTask() at the beginning, and a worked() method
in the loop after each second's sleep, for five iterations. The code will look like
the following:
protected IStatus run(IProgressMonitor monitor) {
 try {
 monitor.beginTask("Preparing", 5000);
 for(int i=0;i<5;i++) {
 Thread.sleep(1000);
 monitor.worked(1000);
 }
 } catch (InterruptedException e) {
 } finally {
 monitor.done();
 }
 MessageDialog.openInformation(null, "Hello", "World");
 return Status.OK_STATUS;
}

2. Run the Eclipse instance, and open the Progress view by navigating to Windows |
Show View | Other | General | Progress. Now, go to Help | Hello; the Progress view
should show the progress as the sleep occurs.

3. To make the reporting more accurate, report the status more frequently.
for(int i=0;i<50;i++) {
 Thread.sleep(100);
 monitor.worked(100);
}

4. Run the Eclipse instance again. When the job is run via the Help | Hello menu, the
status will be updated in the Progress view more frequently.

Interacting with the User

[128]

What just happened?
When running a Job, the progress monitor can be used to indicate how much work has been
done. It must start with a beginTask() method—this gives both the total number of work
units as well as a textual name that can be used to identify what's happening.

If the amount of work is unknown, use IProgressMonitor.UNKNOWN.

The unit scale doesn't really matter; it could have been 50 or 50,000. As long as the total
number of work units add up, and they're appropriately used, it will give the user a good
idea of the operation.

Don't just report based on the number of lines (or tasks). If there are four work items but
the fifth one takes as long as the previous four, then the amount of work reported needs to
be balanced; for example, provide a total of 8 units, with 1 unit for each of the first four and
then the remaining four for the fifth item.

Finally, done() was called on the progress monitor. This signifies that the Job has been
completed, and can be removed from any views that are reporting the status. This is
wrapped inside a finally block to ensure that the monitor is completed even if the
Job finishes abnormally (for example, if an exception occurs).

Time for action – dealing with cancellation
Sometimes the user will change their mind; they may have selected the wrong option, or
something more important may have come up. The progress monitor allows for two-way
communication; the user can signify when they want to cancel as well. There is a method,
isCancelled(), which returns true if the user has signified in some way that he/she
wishes the Job to finish early. Periodically checking this during the operation of the Job
allows the user to cancel a long-running Job before it reaches the end.

1. Modify the for loop in the HelloHandler to check on each iteration whether the
monitor is cancelled or not.
for(int i=0;i<50 && !monitor.isCanceled(); i++) {
 ...
}
if(!monitor.isCancelled()) {
 Display.getDefault().asyncExec(new Runnable() {…});
}

Chapter 4

[129]

2. Run the Eclipse instance and click on the Hello command. This time, go into the
Progress view and click on the red stop square next to the job. The job should
cancel and the dialog showing the message shouldn't be shown:

What just happened?
Being responsive to the user is a key point in implementing plug-ins. If there are long running
operations, make sure to check to see if the user has cancelled the operation—there's no
point in tying up the CPU if the user doesn't want it to continue.

The monitor.isCancelled() method is generally implemented with a single field
access, so calling it frequently often has no negative performance implications. Calling the
isCancelled() method too many times is never noticed by users, however, not calling it
enough certainly is noticed.

Time for action – using subtasks and subprogress monitors
When performing a set of operations, subtasks can give the user additional details about the
state of the operation. A subtask is merely a named message, which is displayed along with
the task name in the Progress view.

1. Add monitor.subTask() during the operation to give feedback.
for (int i=0; i<50 && !monitor.isCanceled(); i++) {
 if(i==10) {
 monitor.subTask("Doing something");
 } else if (i==25) {
 monitor.subTask("Doing something else");
 } else if (i==40) {
 monitor.subTask("Nearly there");
 }
 Thread.sleep(100);
 monitor.worked(100);
}

Interacting with the User

[130]

2. Run the Eclipse instance, and look at the Progress view. The subtask should be
shown underneath the status bar:

3. When calling another method with a progress monitor, if the monitor is passed as it
is, it can have undesirable effects. Add a new method, checkDozen(), to the Job
of HelloHandler and add a condition in the for loop that breaks out if the number
of execution reaches 12.
protected IStatus run(IProgressMonitor monitor) {
 ...
 } else if (i == 12) {
 checkDozen(monitor);
 }
 ...
}
private void checkDozen(IProgressMonitor monitor) {
 try {
 monitor.beginTask("Checking a dozen", 12);
 for (int i = 0; i < 12; i++) {
 Thread.sleep(10);
 monitor.worked(1);
 }
 } catch (InterruptedException e) {
 } finally {
 monitor.done();
 }
}

4. Run the Eclipse instance, select the Hello menu and open the Progress view and the
progress status completely disappears after it reaches that point:

Chapter 4

[131]

5. To solve this problem, create another IProgressMonitor instance and pass that
into the method call using a SubProgressMonitor instance.
} else if (i == 12) {
 checkDozen(new SubProgressMonitor(monitor, 100));
 continue;
}

6. Now, run the action, and the progress will update as expected. Note, that the
continue statement is used here to avoid calling monitor.worked(100).

What just happened?
The checkDozen() method took an IProgressMonitor instance, and simulated a set
of different tasks (with different units of work). Passing the same monitor instance causes
problems as the work gets missed between the two.

To fix this behavior, a SubProgressMonitor instance was passed in. Because the
SubProgressMonitor got 100 units of work from its parent, when the done() method was
called on the SubProgressMonitor, the parent saw the completion of the 100 units of work.

Importantly, this also allows the child to use a completely different scale of work units and be
completely decoupled from the parent's use of work units.

Time for action – using null progress monitors and submonitors
When a method uses progress monitors extensively, it is inelegant to keep checking
whether the monitor is null or not. Instead, the progress monitor can be replaced with a
NullProgressMonitor, which acts as a no-op for all monitor calls.

1. Update the checkDozen() method to use a NullProgressMonitor,
if null is passed.
private void checkDozen(IProgressMonitor monitor) {
 if(monitor == null)
 monitor = new NullProgressMonitor();

Interacting with the User

[132]

This allows the remainder of the method to run without modification, and saves any
NullPointerExceptions that may result.

2. A similar result is obtained for both the NullProgressMonitor and
SubProgressMonitor with a wrapper/factory class called SubMonitor. This
provides factory methods to wrap the monitor and creates child progress monitors.
protected IStatus run(IProgressMonitor monitor) {
 try {
 SubMonitor subMonitor =
 SubMonitor.convert(monitor,"Preparing", 5000);
 for (int i = 0; i < 50 && !subMonitor.isCanceled(); i++) {
 if (i == 10) {
 subMonitor.subTask("Doing something");
 } else if (i == 25) {
 subMonitor.subTask("Doing something else");
 } else if (i == 40) {
 subMonitor.subTask("Nearly there");
 } else if (i == 12) {
 checkDozen(subMonitor.newChild(100));
 continue;
 }
 Thread.sleep(100);
 subMonitor.worked(100);
 }
 } catch (InterruptedException e) {
 } finally {
 if(monitor != null)
 monitor.done();
 }
}

3. Running the code has the same effect as the previous one, but it's more efficient.
Note that the subMonitor object is used everywhere in the method until the
end, where monitor is used to invoke done(). Since monitor may be null, it is
guarded with a test.

What just happened?
The NullProgressMonitor was replaced with a SubProgressMonitor with a
SubMonitor. To convert an arbitrary IProgessMonitor into a SubMonitor, use the
convert() factory method. This has the advantage of testing for null (and using an
embedded NullProgressMonitor if necessary) as well as facilitating the construction
of SubProgressMonitor instances with the newChild() call.

Chapter 4

[133]

Note that the contract of SubMonitor requires the caller to invoke done() on the
underlying progress monitor at the end of the method, so it gives an error when it's
done an assignment such as monitor = SubMonitor.convert(monitor) in code.

Since the isCancelled() check will ultimately call the parent monitor, it doesn't strictly
matter whether it is called on the submonitor or the parent monitor. However, if the parent
monitor is null, invoking it on the parent will result in a NullPointerException,
whereas the SubProgressMonitor will never be null.

In situations where there will be lots of recursive tasks, the SubProgessMonitor will
handle nesting better than instantiating a SubProgressMonitor each time. That's
because the implementation of the newChild() method doesn't necessarily need to
create a new SubMonitor instance each time; it can keep track of how many times
it has been called recursively.

The SubMonitor also has a setWorkRemaining() call, which can be used to reset the
amount of work for the outstanding progress monitor. This can be useful if the job doesn't
know at the start how much work there is to be done, but it does become known later in
the process.

Time for action – setting job properties
It is possible to associate arbitrary properties with a Job, which can be used to present
its progress in different ways. For example, by specifying a command it's possible to
click on a running Job and then execute something in the user interface, such as a
detailed job description. Job properties are set with setProperty(), and can include any
key/value combination. The keys use a QualifiedName, which is like a pair of strings for
namespace/value. In the case of the Progress view, there is an IProgressConstants2
interface, which defines values that can be set, including COMMAND_PROPERTY, which can
be used to invoke a command.

1. Open the HelloHandler and go to the end of the execute() method. Just before
the Job is scheduled, acquire the Command from the ICommandService and then
stamp it on the Job as a property.
ICommandService service = (ICommandService)
 PlatformUI.getWorkbench().getService(ICommandService.class);
Command command = service == null ? null :
 service.getCommand("com.packtpub.e4.clock.ui.command.hello");
if(command != null) {
 job.setProperty(IProgressConstants2.COMMAND_PROPERTY,command);
}
job.schedule()
return null;

Interacting with the User

[134]

� E4: In E4, the ICommandService can be obtained
via injection, using @Inject ICommandService
service. Injection will be covered in more detail in Chapter 7,
Understanding the Eclipse 4 Model.

2. Run the Eclipse instance, open the Hello command and go to the Progress view.
Nothing will be shown, because the Job expects a ParameterizedCommand
instead. Modify the property value, and using the generateCommand() factory of
ParameterizedCommand.
if(command != null) {
job.setProperty(IProgressConstants2.COMMAND_PROPERTY,command);
 job.setProperty(IProgressConstants2.COMMAND_PROPERTY,
 ParameterizedCommand.generateCommand(command, null));
}

3. Now run the Eclipse instance, go to the Progress view, and click on the Hello
command. Underneath the Progress view, a hyperlink will be provided to
allow firing off another Hello command:

4. If the command has no handler (or the handler is disabled), a pop-up error message
will be shown:

Chapter 4

[135]

5. If the command is handled, clicking on the link will run the command, which in this
case runs the HelloHandler and launches another job instance. Each click will
spawn off a new Job:

6. It's possible to change the icon shown in the view by specifying an
ImageDescriptor as a Job property with the key ICON_PROPERTY. The
image descriptor can be loaded from the createFromURL() method of
ImageDescriptor and set as a property.
job.setProperty(IProgressConstants2.ICON_PROPERTY,
 ImageDescriptor.createFromURL(
 HelloHandler.class.getResource("/icons/sample.gif")));

7. Run the Eclipse instance, go to the Progress view, and then click on the Hello menu.
The icon should be shown against the job:

What just happened?
Setting properties on the running Job allows viewers to extract information and present it in
different ways. Properties are specified with a QualifiedName key and the value is passed
in as an object, which is property specific.

Interacting with the User

[136]

The purpose of the QualifiedName key is to act as a string identifier, but partitioned into
different namespaces. For example, the properties used by the IProgressConstants
use org.eclipse.ui.workbench.progress as the namespace qualifier, and shorter
strings such as command and icon for individual properties. The benefit of this (instead of
org.eclipse.ui.workbench.properties.command) is that the long prefix string is
stored once in memory and so doesn't take up repeated space in either the class file or the
PermGen space, which can be limited on JDK 7. (JDK 8 will remove the PermGen, so it should
be less of an issue in the future.)

Valid values for the Job in the Progress view can be found in the IProgressConstants
and IProgressContstants2 interfaces. Note that this is not a fixed set; additional
Job properties can be added for use both elsewhere in the Eclipse platform and by
independent extensions.

To associate a Command with a Job, set a property which contains a
ParameterizedCommand. The factory method generateCommand() on
the ParameterizedCommand class can be used to convert a command into a
ParameterizedCommand.

The Command can be acquired from the ICommandService, which is acquired via the
PlatformUI workbench or through injection in E4.

Have a go hero – displaying in the taskbar
The IProgressConstants2 interface also defines a property name SHOW_IN_TASKBAR_
ICON_PROPERTY, which shows whether the progress of the Job is exposed to those
operating systems that support it. On OS X, a bar will be shown over the Eclipse application
icon. Set the property to the value Boolean.TRUE and see the effect it has on the Job.

The Job can also indicate if it is running in the foreground or the background, and can query
its state via the Job property PROPERTY_IN_DIALOG. This is not intended to be set by
clients, but can be read and displayed (or different actions be taken).

Pop quiz: understanding jobs
Q1. What is the difference between Display.syncExec() and Display.asyncExec()?

Q2. What is the difference between Display and UISynchronize?

Q3. What is the difference between Job and UIJob?

Chapter 4

[137]

Q4. What is the singleton Status object that indicates everything is ok?

Q5. How is the CommandService obtained in Eclipse?

Q6. How is an icon associated with a Job in the Progress view?

Q7. When should a SubMonitor instead of a SubProgressMonitor be used?

Q8. How frequently should the Job cancellation status be checked?

Reporting errors
As long as everything works as expected, the IDE won't need to tell the user that something
has gone wrong. Unfortunately, even the most optimistic programmer won't believe that the
code will work in every situation. Bad data, threading issues, simple bugs and environmental
issues can result in operations failing, and when it fails, the user needs to be notified.

Eclipse has built-in mechanisms to report problems, and these should be used in response to
a user interaction that has failed.

Time for action – showing errors
So far, the code has been using an information dialog as the demonstration of the handler.
There's an equivalent method that can be used to create an error message instead. Instead
of calling MessageDialog.openInformation(), there's an openError() method, which
presents the same kind of dialog, but with an error message instead:

Interacting with the User

[138]

Using dialogs to report errors may be useful for certain environments, but unless the user has
just invoked something (and the UI is blocked while doing it), reporting errors via a dialog is not
a very useful thing to do. Instead, Eclipse offers a standard way to encapsulate both success
and failure, in the Status object and the interface IStatus that it implements. When a Job
completes, it returns an IStatus object to denote success or failure of the Job execution.

1. Introduce an error into the run() method of HelloHandler, whch will generate a
NullPointerException. Add a catch to the existing try block and use that to
return an error status. Since the OK_STATUS is a singleton instance of Status that
can be used for all successful operations, it is necessary to instantiate a new Status
object with the error information enclosed.
protected IStatus run(IProgressMonitor monitor) {
 try {
 SubMonitor subMonitor =
 SubMonitor.convert(monitor,"Preparing", 5000);
 subMonitor = null; // the bug
 ...
 } catch (NullPointerException e) {
 return new Status(IStatus.ERROR,
 Activator.PLUGIN_ID, "Programming bug?", e);
 } finally {

2. Run the Eclipse instance, and invoke the Hello command. An exception will be
generated, and the status object containing the information needed will be passed
to Eclipse. If the Job is running in the foreground, the job scheduler will present the
status message if it is an error:

Chapter 4

[139]

3. Go to Window | Other | Error Log in the target Eclipse instance to see the error,
which has also been written into the workspace/.metadata/.log file:

4. Double-click on the entry in the error log to bring up specific details:

Interacting with the User

[140]

5. Instead of returning an error status, it's also possible to log the error message
programmatically, using StatusManager. The StatusManager is a service that
can be acquired from a static factory or injected from a service. To just log the
information but keep going, execute the following code snippet:
} catch (NullPointerException e) {
 return new Status(IStatus.ERROR,
 Activator.PLUGIN_ID, "Programming bug?", e);
 StatusManager statusManager = StatusManager.getManager();
 Status status = new Status(IStatus.ERROR,
 Activator.PLUGIN_ID, "Programming bug?", e);
 statusManager.handle(status,
 StatusManager.LOG);
} ...

� E4: StatusManager has been replaced with
StatusReporter, which has a report() method
that is equivalent to the handle() method.

6. Run the Eclipse instance, invoke the Hello action and see the error being logged
without displaying a dialog.

7. Modify the status flags to add SHOW as well:
statusManager.handle(status,
 StatusManager.LOG | StatusManager.SHOW);

8. Re-run the Eclipse instance, invoke the Hello action and the error will be shown as
well as logged.

9. Finally, remove the bug from the HelloHandler so that it doesn't cause errors.
subMonitor = null; // the bug

What just happened?
First, openError() was used to show an error, which is useful for specific cases—such as
when the user is interacting with the UI and has just done an operation that is problematic.

The next step looked at status reporting and handling in Eclipse, including how exceptions
are captured and associated with a specific plug-in. A Status object was used to indicate a
single issue—though there's a MultiStatus, which can be used to add additional Status
instances, if required. Generally, the status should be logged but not shown as dialogs
popping up in the user's screen (especially from a background job) are a UX anti-pattern.

Chapter 4

[141]

These flags can be combined, so LOG indicates that the status message should be logged
but not otherwise displayed to the user, while SHOW indicates that the message should be
shown in the standard dialog. Both of these happen asynchronously; the code will continue
executing after invoking these calls, regardless of how the messages are shown to the user.
There is a BLOCK flag as well, which prevents continued execution of the thread, but this
should not be used as it may lead to inadvertent deadlocks.

Pop quiz – understanding errors
Q1. How is an info/warning/error dialog shown?

Q2. What is the difference between StatusManager and StatusReporter?

Q3. Are status reports asynchronous or synchronous by default?

Q4. How can more than one problem be reported at the same time?

Summary
This chapter covered how the user interfaces respond to user input by defining menus
associated with abstract commands that are associated with handlers to execute code. It also
covered how to run code in the background with jobs, and report the errors via the standard
error reporting mechanism.

The next chapter will look at how to store preferences so that configuration items can be
kept between restarts of the Eclipse platform.

5
Storing Preferences and Settings

An IDE is powerful as it provides a number of different utility windows to help
the developer as they do their job. It becomes more powerful when they can
customize it to their own taste, whether it is something as simple as colors, or
something more targeted such as filters. The preference store in Eclipse allows
users to customize it in the way they want.

In this chapter we shall:

 � Read and write preferences from a PreferenceStore

 � Create a PreferencePage using FieldEditors

 � Implement additional FieldEditors

 � Explain the difference between IEclipsePreferences and IPreferenceStore

 � Cover settings and mementos for storing transient state

Storing preferences
A user preference is a stored configuration option that persists between different Eclipse
runtimes. Preferences are simple values (int, String, boolean, and so on) and are
identified with a String key, typically prefixed with the plug-in's identifier. Preferences
can also be edited via a standard preference panel injected with an extension point. They
can also be imported and exported from an Eclipse workbench using File | Import/Export |
Preferences and saved as an epf (Eclipse Preference File).

Storing Preferences and Settings

[144]

Time for action – persisting a value
To save and load preferences, an instance of IPreferenceStore is typically obtained from
the AbstractUIPlugin subclass, in this case, the Activator of the clock plug-in. The
getPreferenceStore() method returns a store which can be used to persist key/value
pairs. Perform the following steps:

1. Open the Activator of the clock.ui plug-in.

2. Add the following to the start() method to count the number of times the plug-in
has been launched:
int launchCount = getPreferenceStore().getInt("launchCount");
System.out.println("I have been launched "
+ launchCount + "times");
getPreferenceStore().setValue("launchCount",launchCount+1);

3. Run the Eclipse instance and open the Time Zone View.

4. In the host Eclipse, open the Console view. It should say "I have been launched
0 times".

5. Close the Eclipse instance down and run it again (but do not clear the workspace).
Open the Time Zone View again.

6. In the host Eclipse open the Console view. It should now say "I have been launched
1 times".

What just happened?
The IPreferenceStore is usually loaded via the AbstractUIPlugin, which provides
a getPreferenceStore(). This API provides get/set methods for primitive types
(getInt(), getBoolean(), getString(), and so on) as well as setValue() methods
for the same types.

If the class does not have AbstractUIPlugin subclass, it can also be acquired by using the
following code:

IPreferenceStore preferenceStore = new
 ScopedPreferenceStore(InstanceScope.INSTANCE,ID);

In the previous code, ID is the name of the identifier prefix used, typically the bundle's ID.
(In AbstractUIPlugin it is calculated as bundle.getSymbolicName()).

� E4: If using E4, IPreferenceStore can be obtained via
injection. Alternatively, a single preference value can be bound
with @Preference(name) or @Preference to get the
IEclipsePreferences object. It is also possible to track individual
preferences being changed with a method parameter injection.

Chapter 5

[145]

The number of times the plug-in is launched will be stored as a value in the preferences
store. If run from Eclipse, the message, "I have been launched 0 times" is shown the first
time the application is run; the second time, "I have been launched 1 times"; and each
restart will update the counter.

Note that the preferences API generally shouldn't be used to store plug-in specific state.
There's a method getStateLocation() which returns an IPath that can be used for
storing such transient state.

If "I have been launched 0 times" is displayed repeatedly, Clear workspace before launching
may be selected in the launch configurations menu. To disable this, go to Run | Run
Configurations... and in the Main tab ensure that the Clear checkbox is deselected.

Time for action – creating a preference page
Although preferences can be stored, providing a user interface is necessary for end users.
A preference page implements the IPreferencePage interface. The easiest way is to use
FieldEditorPreferencePage as a super class, which provides most of the standard
plug-in behavior needed. Perform the following steps:

1. Open the plugin.xml of the clock.ui plug-in. In order to declare a new
preference page, use the org.eclipse.ui.preferencePages extension point.
Add the following code:
<extension point="org.eclipse.ui.preferencePages">
 <page name="Clock"
 class="com.packtpub.e4.clock.ui.ClockPreferencePage"
 id="com.packtpub.e4.clock.ui.preference.page"/>
</extension>

2. The same effect can be achieved by editing the plugin.xml in the editor
and clicking on Add in the Extensions tab and selecting the preferencePages
extension point.

3. Create a class ClockPreferencePage that extends
FieldEditorPreferencePage in the com.packtpub.e4.clock.ui
package as follows:
public class ClockPreferencePage extends
 FieldEditorPreferencePage
 implements IWorkbenchPreferencePage {
 protected void createFieldEditors() {
 }
 public void init(IWorkbench workbench) {
 }
}

Storing Preferences and Settings

[146]

4. Run the Eclipse application. Go to the preferences window by clicking on Eclipse
| Preferences for OS X, or Window | Preferences for Windows/Linux. In the
preferences list a Clock page should be displayed, although at present there will be
no content.

5. Add a new IntegerFieldEditor for storing the launch count by adding it to the
createFieldEditors() method as follows:
protected void createFieldEditors() {
 addField(new IntegerFieldEditor("launchCount",
 "Number of times it has been launched"
 ,getFieldEditorParent()));
}

6. Run the Eclipse application, go to Preferences and look at the Clock page. To get
it to display the correct value, the FieldEditorPreferencePage needs to be
connected to the plug-in's PreferenceStore as follows:
public void init(IWorkbench workbench){
 setPreferenceStore(
 Activator.getDefault().getPreferenceStore());
}

7. Now run the Eclipse application, go to the Preferences and look at the Clock page.
The number will update based on the number of times the Eclipse application
has launched.

What just happened?
The preferences page was created and connected to the preferences window and the correct
preference store (obtained from the plug-in's Activator). Instances of FieldEditor were
added to display properties on a per-property basis.

The implementation of getFieldEditorParent() is something that needs to be called
each time a field editor is created. It might be tempting to refactor this into a common
variable, but the JavaDoc says that the value cannot be cached. If the FLAT style is used,
then it will create a new instance of the parent each time it is called.

Chapter 5

[147]

Time for action – creating warning and error messages
In free-form text fields it's sometimes possible to input a value that doesn't make sense. For
example, when asking someone for their e-mail address it might be necessary to validate it
against some kind of regular expression like .+@.+ to provide a simplistic test. Perform the
following steps:

1. To test the default validation, run the Eclipse instance and go to the Clock preference
page. Type some text in the numeric field. A warning message will be displayed as
shown in the following screenshot:

2. To add validation, create a new field called offset which allows valid values
between -14 and +12. (By default, IntegerFieldEditor validates against the
range 0 to MAX_INT.) Add the following to the createFieldEditors() method:
IntegerFieldEditor offset = new IntegerFieldEditor("offset",
 "Current offset from GMT", getFieldEditorParent());
offset.setValidRange(-14, +12);
addField(offset);

3. Run the Eclipse instance, go to the Clock preference page and type in an invalid
value as follows:

Storing Preferences and Settings

[148]

What just happened?
Each field editor can determine what is (or is not) valid, and the validity of the page as
a whole is a conjunction of all of the individual field editors' validity. It's also possible to
create custom validation rules by creating a subclass of the appropriate FieldEditor by
overriding the isValid() method appropriately.

The error message will display the warning, "Value must be an Integer between -14 and 12"
at the top of the preference page."

Time for action – choosing from a list
Although free text may be appropriate for some types of preferences, for others, choosing
from a set of values may be more appropriate. ComboFieldEditor can be used to present
the user with a selection, which can be used to represent the user's favourite TimeZone.
The combo dropdown is built from an array of pairs of strings. The first string is the displayed
label in the dropdown, while the second value is the string identifier that will be persisted to
(and loaded from) the preferences store. Perform the following steps:

1. In the createFieldEditors() method of the ClockPreferencePage
class, add the following code to populate a ComboFieldEditor with the
list of TimeZone IDs:
protected void createFieldEditors() {
 String[][] data;
 String[] ids = TimeZone.getAvailableIDs();
 Arrays.sort(ids);
 data = new String[ids.length][];
 for (int i = 0; i < ids.length; i++) {
 data[i] = new String[] { ids[i], ids[i] };
 }
 addField(new ComboFieldEditor("favourite",
 "Favourite time zone", data, getFieldEditorParent()));
}

2. Run the Eclipse instance and go to the Clock preference page. A new dropdown will
allow the user to select their favourite TimeZone. Choose a value, then close and
re-open the Eclipse instance; the previous value should be stored as seen in the
following screenshot:

Chapter 5

[149]

What just happened?
Adding new types of field editor allows different types of data to be edited. Since all of the
preferences are saved as a string, the ComboFieldEditor takes a set of pairs of strings; one
for the display label, and one for the persisted value.

The ComboFieldEditor was initialized with a list of the TimeZone IDs, using the ID for both
the display label and the persisted value. The display could present more information such as
the display name, the offset from GMT, or other metadata. However, the string value which is
persisted to the preferences should be unique and not subject to parsing or loading errors. In
this case, using the ID means that a later iteration of the preferences plug-in could render the
display text in a different form while still persisting the same ID in the preference store.

Storing Preferences and Settings

[150]

Time for action – using a grid
The preference values weren't lined up as expected. This is because the default preference
field editor uses a FLAT style of rendering, which simply lays out the fields similar to a
vertical RowLayout. Perform the following steps:

1. Change it to a more natural look by specifying a GRID style of rendering:
public ClockPreferencePage() {
 super(GRID);
}

2. Now when the preference page is displayed, it will look more natural as seen in the
following screenshot:

What just happened?
The default or FLAT style does not render well. It was added in 2007 (see Eclipse bug
163281) before the popularity of the grid layout increased, and typically needs to be
overridden to provide a decent user interface experience. Switching to GRID does this
by working out the label length, field lengths, and setting up the split accordingly.
Furthermore, the view is resizable with the fields taking up the additional stretch space.

If the layout needs further customization, or the widget set needs to be extended, then it
is possible to create a plain subclass of PreferencePage and create the contents in the
createContents() method. Then apply any changes in the performOk() method or
performApply() methods.

Chapter 5

[151]

Time for action – placing the preferences page
When the preference page is created, if it does not specify a location (known as a category
in the plugin.xml file and manifest editor), it is inserted into the top level. This is
appropriate for some kinds of projects (for example, Mylyn, Java, Plug-in Development);
but many plug-ins should contribute to an existing location in the preference page tree.
Complete the following steps:

1. Preference pages can be nested by specifying the parent preference page's ID. To
move the Clock preference page underneath the General preference page, specify
org.eclipse.ui.preferencePages.Workbench as the category as shown in
the following code:
<extension point="org.eclipse.ui.preferencePages">
 <page name="Clock"
 id="com.packtpub.clock.ui.preference.page"
 category="org.eclipse.ui.preferencePages.Workbench"
 class="com.packtpub.e4.clock.ui.ClockPreferencePage"/>
</extension>

2. Run the Eclipse instance and look in Preferences. The Clock preference page should
now be under the General tree node instead, as seen in the following screenshot:

Storing Preferences and Settings

[152]

What just happened?
The preference page can be placed anywhere in the hierarchy by specifying the parent
page's ID in the category attribute. The parent pages can be listed using Window | Show
View | Other | Console, then opening a Host OSGi console followed by running the
following command:

osgi> pt -v org.eclipse.ui.preferencePages
Extension point: org.eclipse.ui.preferencePages [from org.eclipse.ui]

Extension(s):

null [from org.eclipse.ant.ui]
 <page>
 name = Ant
 class = org.eclipse.ant.internal.ui.preferences.AntPreferencePage
 id = org.eclipse.ant.ui.AntPreferencePage
 </page>

Another way of listing the IDs is to use the Browse button via the plugin.xml editor. From
the extension point defining the Clock preference page, the Browse button next to the
category field will bring up a dialog containing all of the valid IDs, including a search filter to
reduce the number of matches, as shown in the following screenshot:

Chapter 5

[153]

Time for action – using other field editors
The FieldEditorPreferencePage supports other types of field editor. These
different types of editor include BooleanFieldEditor, ColorFieldEditor,
ScaleFieldEditor, FileFieldEditor, DirectoryFieldEditor, PathEditor,
and RadioGroupFieldEditor. Add a sample of each of these types to the
ClockPreferencePage page to find out what they can store. Perform the following steps:

1. Open the createFieldEditors() method of the ClockPreferencePage and
add the following code at the bottom of the method:
addField(new BooleanFieldEditor("tick","Boolean value",
 getFieldEditorParent()));
addField(new ColorFieldEditor("colour", "Favourite colour",
 getFieldEditorParent()));
addField(new ScaleFieldEditor("scale", "Scale",
 getFieldEditorParent(), 0, 360, 10, 90));
 addField(new FileFieldEditor("file", "Pick a file",
 getFieldEditorParent()));
addField(new DirectoryFieldEditor("dir", "Pick a directory",
 getFieldEditorParent()));
addField(new PathEditor("path","Path",
 "Directory",getFieldEditorParent()));
addField(new RadioGroupFieldEditor("group", "Radio choices", 3,
 data,getFieldEditorParent(),true));

2. Run the Eclipse instance and go to the Clock preference page. It should look similar
to the following screenshot:

Storing Preferences and Settings

[154]

What just happened?
This change added different types of standard field editors provided by the JFace package, to
give a flavor of the types of data entry element that can be shown.

Some of the editors are specific to the kinds of entry points that are used in Eclipse itself,
such as file, directory, or path editors. Others are more general such as colour, scale,
boolean, or radio choices.

The values are persisted in the preferences format in a text values, appropriate to the data
type. To see where the values are written to, go to the runtime-EclipseApplication/.
metadata/.plugins/org.eclipse.core.runtime/.settings/com.packtpub.
e4.clock.ui.prefs file. The contents look similar to the following code:

colour=49,241,180
eclipse.preferences.version=1
favourite=Europe/Milton_Keynes
group=Europe/Milton_Keynes
launchCount=28
scale=78
tick=true

The persisted colour value is stored as a red/green/blue triple, while the boolean value is
stored as a true or false value.

Time for action – adding keywords
Eclipse had a search field in the preferences list since version 3.1. This is defined not from UI
but from a separate keyword extension instead. The keyword has an ID and a label, but the
label isn't shown; rather, it's a space separated list of words which can be used in the filtering
dialog. Perform the following steps:

1. To add the keywords offset and timezone to the ClockPreferencePage,
create a new extension point in plugin.xml for org.eclipse.ui.keywords:
<extension point="org.eclipse.ui.keywords">
 <keyword id="com.packtpub.e4.clock.ui.keywords"
 label="offset timezone"/>
</extension>

Chapter 5

[155]

2. Now associate these keywords with the preference page itself as follows:
<extension point="org.eclipse.ui.preferencePages">
 <page name="Clock" ... >
 <keywordReference id="com.packtpub.e4.clock.ui.keywords"/>
 </page>
</extension>

3. Run the Eclipse instance, go to the Preferences page and type timezone and offset
in the search box. The Clock preference page should be shown in both cases:

What just happened?
By providing a list of keywords and associating them with the preferences page the user can
search for the item in the preferences tree. The same keyword support is used to search for
items in other places such as the New dialog wizards and the properties page.

Furthermore, these keywords are internationalizable. By specifying a key with a % name,
Eclipse can load the keywords from an externalized file called plugin.properties. If
%clock.keywords was used as the label and plugin.properties had an entry clock.
keywords=timezone offset, then a French translation of the keywords could be
provided in a plugin_fr.properties file.

Storing Preferences and Settings

[156]

Time for action: using IEclipsePreferences
Although JFace defines IPreferenceStore, there's a lower-level interface called
IEclipsePreferences. The key difference between IPreferenceStore and
IEclipsePreferences is that the latter has support for arbitrary nodes similar to
nested HashMaps. IEclipsePreferences is also based upon the OSGi
Preferences service and can be used without any UI or JFace involvement. When
the IPreferenceStore is obtained from AbstractUIPlugin, it lazily creates a
ScopedPreferenceStore using InstanceScope and the bundle's symbolic name
as the node name. Perform the following steps:

1. Modify clock.ui's Activator:
int launchCount = getPreferenceStore().getInt("launchCount");
IEclipsePreferences eclipsePreferences =
 InstanceScope.INSTANCE. getNode(PLUGIN_ID);
int launchCount2 = eclipsePreferences.getInt("launchCount",-1);
System.out.println("I have been launched " + launchCount +
 " times and " + launchCount2);

2. Run the Eclipse instance and open the Time Zone View.

3. In the host Eclipse instance, go to the Console view, and the output should show the
same value being displayed I have been launched 6 times and 6.

What just happened?
The same preference value was accessed through both as JFace's IPreferenceStore,
which is used by UI plug-ins and extension points such as the PreferencePage and through
the IEclipsePreferences API that can be used by headless plug-ins.

� E4: The IEclipsePreferences is used by
E4 as the default preferences store.

To pass in an existing IEclipsePreferences to an API (like the preference page), an
inverse adaptor can be created using the following code:

public class EclipsePreferencesScope implements IScopeContext {
 private IEclipsePreferences preferences;
 public EclipsePreferencesScope(IEclipsePreferences preferences) {
 this.preferences = preferences;
 }
 public String getName() {
 return "";
 }

Chapter 5

[157]

 public IPath getLocation() {
 return new Path(preferences.absolutePath());
 }
 public IEclipsePreferences getNode(String qualifier) {
 return preferences;
 }
}

Finally the IEclipsePreferences interface is a subtype of Preferences, which is a
standard OSGi service. To compile against just the OSGi runtime, use Preferences as the
declared type for variables instead of IEclipsePreferences. That way, the code can be
compatible with both Eclipse and standard OSGi libraries.

Have a go hero – translating into different languages
Eclipse's internationalization support is provided by a plugin.properties file. In the
plugin.xml, instead of using strings for the values, use %keys. The % instructs the engine
to look up a corresponding entry in plugin.properties to display the value.

To support different languages use plugin_fr.properties, plugin_de.properties
for French and German respectively (don't forget to add these to build.properties
otherwise they won't be found). The keys are still the same, but the values can be localized
appropriately. The search keywords are an example of something that can be searched as
well, so use an online translation service or make-up a translation to test out the effect of
running Eclipse in a different language. (Eclipse can be launched in different languages with
eclipse -nl de on the command line.)

Using IMemento and DialogSettings
Preferences are designed to be values persisted in the workspace (or project) that can be
consumed by both UI and non-UI components. The preference support also handles changes
and default values.

However, it's not always the case that values need to be persisted in the preference store.
Certain values are specific to views such as the order of columns in a table view, or whether
the sort order is increasing or decreasing. Furthermore, it's possible to have multiple views in
different windows that have different sort orders.

IMementos are a means to store view-specific rendering data in a way that can be saved
by the workbench when the window closes, and re-opened when the perspective is
brought back.

DialogSettings are a more general way of storing values. Despite the name, these are
not limited to dialogs.

Storing Preferences and Settings

[158]

Time for action – adding a memento for the Time Zone View
The TimeZoneView, created in Chapter 2, Creating views with SWT, presents a list of regions
as tabs and allows the user to select a region of interest. When the view is closed and then
re-opened, the previously selected tab is not remembered. This is the kind of nugget that
could be persisted in a memento for later re-use. Perform the following steps:

1. To record what the last selected tab was when it is changed; add the variable
lastTabSelected, which contains the last selected tab name, to the
TimeZoneView as follows:
private transient String lastTabSelected;

2. At the end of createPartControl(), add a selection listener to the tab, such that
any time the tab's selection is changed, the name of the tab is remembered:
tabs.addSelectionListener(new SelectionAdapter() {
 public void widgetSelected(SelectionEvent e) {
 if(e.item instanceof CTabItem) {
 lastTabSelected = ((CTabItem)e.item).getText();
 }
 }
});

3. When the workbench is closed, save the state by adding a saveState() method:
public void saveState(IMemento memento) {
 super.saveState(memento);
 memento.putString("lastTabSelected", lastTabSelected);
}

4. Restore the data when the view is opened:
public void init(IViewSite site, IMemento memento) throws
PartInitException {
 super.init(site, memento);
 if(memento != null) {
 lastTabSelected = memento.getString("lastTabSelected");
 }
}

5. Finally, update createPartControl() to set the selected tab when it's opened:
if(lastTabSelected == null) {
 tabs.setSelection(0);
} else {
 CTabItem[] items = tabs.getItems();
 for (CTabItem item : items) {
 if(lastTabSelected.equals(item.getText())) {

Chapter 5

[159]

 tabs.setSelection(item);
 break;
 }
 }
}

6. Run the workbench, show the Time Zone View, select a tab, close the workbench
and re-open, and the last selected tab should be restored.

What just happened?
The IMemento is a way of storing content between launches of the workbench. When the
workbench shuts down, it sends save() to each of the open views and persists the state
such that the workbench state is restored when it is re-opened.

If this behavior is not seen while testing, check that the Eclipse workspace isn't being
automatically cleaned at startup in the launch configuration.

Unfortunately, although the view is saved if it is open when the workbench is closed, if the
view is closed first then nothing is saved. This makes the memento pattern one of the most
useless patterns in Eclipse. The IMemento pattern should not generally be used; instead, use
the preferences store, or the DialogSettings as explained next.

� E4: In E4, the @PostConstruct annotation can be used
to set up values that were saved prior to a view being shut
down, and a @PreDestroy to save any state that is required
for next time. It is not as fragile as the IMemento pattern.

Time for action – using DialogSettings
A more useful alternative to the Memento pattern is DialogSettings, which provides a
properties-like interface for storing strings and other basic primitive values. This stores its
information in an XML file, and can be acquired as a standard extension to the UI plug-in
or created from a file location. The settings store is used to store values persistently, and
is saved automatically when the plug-in shuts down. At startup, it is loaded automatically.
Perform the following steps:

1. To migrate the settings for the last tab selected to use DialogSettings, remove
the init() and save() methods from the TimeZoneView and replace them with
the following in the createPartControl():
final IDialogSettings settings =
 Activator.getDefault().getDialogSettings();
lastTabSelected = settings.get("lastTabSelected");

Storing Preferences and Settings

[160]

2. The call to getDialogSettings() comes from the UIPlugin class. Once the
DialogSettings have been acquired, it can be used to store and retrieve values.
Update the selection listener to store this in the settings instead:
tabs.addSelectionListener(new SelectionAdapter() {
 public void widgetSelected(SelectionEvent e) {
 if (e.item instanceof CTabItem) {
 lastTabSelected = ((CTabItem) e.item).getText();
 settings.put("lastTabSelected", lastTabSelected);
 }
 }
});

3. Now run the Eclipse instance, go to the Time Zone View and note how the settings
are saved when either the view is closed or the application shuts down.

What just happened?
The calls to IMemento were replaced with DialogSettings, a much more useful
mechanism for storing values. In addition, we created a separate group of settings
to create a nested namespace with settings.addNewSection("name") and
with settings.getSection("name").

The name DialogSettings comes from the fact that was initially used by dialogs
with warnings such as "Do not show this message again". In fact, this is so common
that a Dialog with a "Do not show this message again" can be created with a
MessageDialogWithToggle as follows:

if (settings.getBoolean("spamalot")) {
 MessageDialogWithToggle dialog = MessageDialogWithToggle.
 openInformation(Display.getCurrent().getActiveShell(),
 "Spam", "Keep being spammed?", "Do not show this spam again",
 false, null, null);
 boolean spamalot = !dialog.getToggleState();
 settings.put("spamalot",spamalot);
}

The MessageDialogWithToggle also has an option to write this to a preference store
using the store and the key value in the last two values (null in the example).

The DialogSettings can also be used to store items such as the last-value-used or to
restore selection.

Chapter 5

[161]

The key difference between using an IPreferenceStore and using DialogSettings is
that the former can be used for importing/exporting preferences between Eclipse instances,
using the File | Import/Export | Preferences menu. The DialogSettings, on the other
hand, are supposed to be transient and recreatable if they are lost.

� E4: As E4 takes off and provides default support for reading and
writing preferences, expect to see more uses of the preferences for
storing both transient and non-transient preference data.

Pop quiz – understanding preferences
Q1. What is the default style used for the FieldEditorPreferencePage, and how can it
be changed to something more aesthetically pleasing?

Q2. What kinds of primitive values can be edited with a FieldEditorPreferencePage?

Q3. How can a preference value be searched for in the preference page?

Q4. Which is the preferred API for storing view-specific information; IMemento or
IEclipsePreferences?

Q5. Which class provides the "Do not show this message again" support?

Summary
We have covered the mechanisms that Eclipse uses to store metadata values. A preference
store is the key/value pair mechanism used by preference pages, as well as being
interacted programmatically from headless plug-ins. It is also possible to use IMementos or
DialogSettings to store transient information about a view or plug-in. While some code
examples demonstrate IMemento, they are essentially useless and can be substituted with
DialogSettings without any loss of generality. Some plug-ins just use PreferenceStore
and ignore DialogSettings, even though information may not be strictly necessary to
persist or share between instances. For that reason, the MessageDialogWithToggle also
includes the ability to persist into an associated PreferenceStore.

In the next chapter, we will look at how to work with Resources inside Eclipse.

6
Working with Resources

As an IDE, Eclipse is used to work with files and folders. Eclipse creates the
concept of a workspace (a group of related projects), a number of projects,
and then files and folders underneath each. These resources are then used
by builders to be able to create derived resources upon change, which is how
Eclipse compiles .java source files into .class files.

In this chapter we shall:

 � Create a custom editor

 � Read the contents of a file

 � Create a resource file

 � Use a builder to automatically process changes

 � Integrate the builder with a nature

 � Highlight problems in the editor with markers

Using the workspace and resources
Everything in the Eclipse IDE is based on the concept of a workspace which contains
a number of projects, which in turn contain files and folders. Generically, these are all
resources which are represented with a path and then with either a set of contents or
a set of children.

Working with Resources

[164]

Time for action – creating an editor
The example will be based on a (made-up) markup language called minimark, which is
essentially a plain text file with blank delimited paragraphs that can be translated into an
HTML file. This will involve creating an editor for text-based content, for minimark files.
Perform the following steps:

1. Create a new plug-in project called com.packtpub.e4.minimark.ui by going to
File | New | Project | Plug-in project and filling in the following details:

 � Project name: com.packtpub.e4.minimark.ui

2. Click on Next and fill in the following details:

 � ID: com.packtpub.e4.minimark.ui

 � Version: 1.0.0.qualifier

 � Name: Minimark

 � Vendor: PACKTPUB

 � Select the checkbox for Create an Activator

 � Select the checkbox for This plug-in will make contributions to the UI

 � Unselect the checkbox for Create a Rich Client Application

3. Click on Finish and a new plug-in will be created.

4. The next step is to create an editor for the minimark files. Open the plug-in's
manifest by right-clicking on the project and selecting Plug-in Tools | Open Manifest
or by double-clicking on the plugin.xml file.

5. Go to the Extensions tab and click on Add. The extension points dialog will show;
search for editors and it should show up in the list. (If it doesn't, uncheck the
Show only extension points from the required plug-ins and it will prompt
to add org.eclipse.ui.editors to the required dependencies.)

6. Once the extension point has been added, right-click on the extension point and
select New | Editor from the menu. This will add a template extension point; fill it in
as follows:

 � id: com.packtpub.e4.minimark.ui.minimarkeditor

 � name: Minimark

 � extensions: minimark

 � class: com.packtpub.e4.minimark.ui.MinimarkEditor

Chapter 6

[165]

7. The resulting plugin.xml will look like the following code:
<extension point="org.eclipse.ui.editors">
 <editor name="Minimark" extensions="minimark" default="false"
 class="com.packtpub.e4.minimark.ui.MinimarkEditor"
 id="com.packtpub.e4.minimark.ui.minimarkeditor"/>
</extension>

8. Now, add the required dependencies in the Dependencies tab:

 � org.eclipse.jface.text: Provides text-processing libraries

 � org.eclipse.ui.editors: The general editor support

 � org.eclipse.ui.workbench.texteditor: The general text editor

9. Use the File | New | Class wizard to create MinimarkEditor in the
com.packtpub.e4.minimark.ui package as a subclass of AbstractTextEditor:
public class MinimarkEditor extends AbstractTextEditor {
}

10. Run the Eclipse instance, and create a project with File | New | Project | General
Project called EditorTest. Then use the File | New | File to create a file called
test.minimark. Double-click on this file and an error will be seen, as shown
in the following screenshot:

11. This happens because an editor needs to be hooked up to a document provider
which synchronizes the content of the document with any other open editors.
(This allows Eclipse to open multiple editors on the same file and still show the
same changes in both.) To solve the error, add a constructor that sets the editor's
document provider to a general TextFileDocumentProvider:
import org.eclipse.ui.editors.text.TextFileDocumentProvider;
public class MinimarkEditor extends AbstractTextEditor {
 public MinimarkEditor() {
 setDocumentProvider(new TextFileDocumentProvider());
 }
}

Working with Resources

[166]

12. Run the Eclipse instance again, double-click on the test.minimark file and an
empty text editor will be opened.

What just happened?
A basic text editor was created and associated with files ending in .minimark.

To add an editor type, the following bundles are needed:

 � org.eclipse.core.runtime

 � org.eclipse.jface.text

 � org.eclipse.ui

 � org.eclipse.ui.editors

 � org.eclipse.ui.workbench.texteditor

The editor needs to be a subtype of an EditorPart. In this case, AbstractTextEditor
provides the basic functionality for editing text-based files. It also needs to be registered with
the org.eclipse.ui.editors extension point.

Note that building editors and the document providers that underpin them is a book in
its own right; the implementation of the editor here is to support the resource-processing
examples. More information on writing custom editors is available in the online help.

Time for action – writing the markup parser
First, the format of the markup language needs to be explained. The first line will be a title,
and then subsequent paragraphs are blank-line separated. This can be translated into an
HTML file as follows:

minimark source Translated HTML

This is the title

A paragraph with some
text

Another paragraph

<html><head><title>This is the
title</title></head><body><h1>This is
the title</h1><p>
A paragraph with some text
</p><p>
Another paragraph
</p></body></html>

Chapter 6

[167]

Perform the following steps:

1. Create a class called MinimarkTranslator in the com.packtpub.
e4.minimark.ui package as follows:
public class MinimarkTranslator {
 public static void convert(Reader reader, Writer writer)
 throws IOException {
 BufferedReader lines = new BufferedReader(reader);
 String line;
 String title = String.valueOf(lines.readLine());
 writer.write("<html><head><title>");
 writer.write(title);
 writer.write("</title></head><body><h1>");
 writer.write("</h1><p>");
 while (null != (line = lines.readLine())) {
 if ("".equals(line)) {
 writer.write("</p><p>");
 } else {
 writer.write(line);
 writer.write('\n');
 }
 }
 writer.write("</p></body></html>");
 writer.flush();
 }
}

2. Copy the example text from the start of this section and save it as a file input.txt
in the com.packtpub.e4.minimark.ui project.

3. Add a main() method to MinimarkTranslator to read in the input.txt file
and write it out as output.txt:
public static void main(String[] args) throws IOException {
 convert(
 new FileReader("in.txt"),
 new FileWriter("out.txt"));
}

4. Run this as a Java application and refresh the project. The file out.txt should
be shown, and opening it should show an HTML file like the one at the start
of this section.

5. After testing MinimarkConverter works as expected, delete the main() method.
Automated plug-in testing will be covered in more detail in Chapter 9, Automated
Testing of Plug-ins.

Working with Resources

[168]

What just happened?
The minimal markup language can take plain ASCII text and be translated into an HTML file.
The purpose of this exercise is not to define a fully comprehensive markup processor, but
rather to provide a simple translator that can be shown to generate HTML as rendered in a
browser from a plain text file.

Note that the translator has at least one bug; if the file is empty then the title may well be
null, which would result in a title of null in the HTML browser.

The reader is invited to replace the translator with a different implementation, such as one
of the Markdown parsers available on GitHub or Maven Central.

Time for action – building the builder
Compilers (and every other kind of translator) in Eclipse are implemented with builders.
These are notified when a file or a set of files are changed and can take appropriate action.
In the case of the Java builder, it translates the .java source files into the .class files.
Perform the following steps:

1. Open the minimark.ui project's .project file. This is visible in the Navigator
view, but not in the Package Explorer or other views. Builders are associated to a
project within the .project file. The builder ID is referenced via buildCommand,
for example have a look at the following code:
<projectDescription>
 <name>com.packtpub.e4.minimark.ui</name>
 <buildSpec>
 <buildCommand>
 <name>org.eclipse.jdt.core.javabuilder</name>
 </buildCommand>
...

2. To translate a .minimark file into HTML automatically, a builder is needed. A
builder is a class that extends IncrementalProjectBuilder and implements a
build() method. This is called by the framework when files are saved and either
gives a list of changed files or asks that the full project is built. Since this is defined in
the core resources bundle, open plugin.xml and add the org.eclipse.core.
resources bundle to plugin.xml in the dependency list.

3. Create a class in the com.packtpub.e4.minimark.ui package called
MinimarkBuilder:
public class MinimarkBuilder extends IncrementalProjectBuilder {
 protected IProject[] build(int kind, Map<String, String> args,
 IProgressMonitor monitor) throws CoreException {
 return null;
 }
}

Chapter 6

[169]

4. Builds are called with different kinds of flag, which indicates whether the entire
project is being built, or if a subset of the project is being built. For builds that aren't
FULL_BUILD there's also a resource delta, which contains the set of resources that
have been changed. Calculating a resource delta is a non-free operation so should
only be done if needed. The build() method is typically implemented as follows:
protected IProject[] build(int kind, Map<String, String> args,
 IProgressMonitor monitor) throws CoreException {
 if (kind == FULL_BUILD) {
 fullBuild(getProject(), monitor);
 } else {
 incrementalBuild(getProject(), monitor,
 getDelta(getProject()));
 }
 return null;
 }

5. The fullBuild() and incrementalBuild() methods need to be defined. It is
also necessary to handle the case where getDelta() returns a null value, and
invoke the full builder accordingly:
private void incrementalBuild(IProject project, IProgressMonitor
 monitor, IResourceDelta delta) throws CoreException {
 if (delta == null) {
 fullBuild(project, monitor);
 } else {
 System.out.println("Doing an incremental build");
 }
}
private void fullBuild(IProject project, IProgressMonitor monitor)
 throws CoreException {
 System.out.println("Doing a full build");
}

6. Finally, to hook up a builder, declare its reference in an extension point org.
eclipse.core.resources.builders. This defines a reference (via an ID) to a
class that implements IncrementalProjectBuilder. Add the following code to
plugin.xml:
<extension id="MinimarkBuilder"
 point="org.eclipse.core.resources.builders">
 <builder
 callOnEmptyDelta="false"
 hasNature="false"
 isConfigurable="false"
 supportsConfigurations="false">
 <run class="com.packtpub.e4.minimark.ui.MinimarkBuilder"/>
 </builder>
</extension>

Working with Resources

[170]

This extension point requires an ID to be given, since the name
defined in the .project file will be the plug-in's ID concatenated
with the extension ID. It is conventional, but not necessary, for the
full ID to be the name of the class.

7. Run the Eclipse instance. Create a new General project in the test workspace, and
once created open the .project file. Add the builder manually by adding in a
buildCommand with the ID from the extension point:
<buildSpec>
 <buildCommand>
 <name>com.packtpub.e4.minimark.ui.MinimarkBuilder</name>
 </buildCommand>
</buildSpec>

8. The message Doing a full build can be seen in the host console when the builder is
added, or if the project is cleaned. Edit and save a .minimark file, and the message
Doing an incremental build should be displayed.

What just happened?
The builder is capable of being invoked when files in a project are changed. To associate
the builder with the project, it was added as a build command to the project, which is
contained in the .project file. The name used for the builder is the extension's unique ID,
which is formed as a dot-separated concatenation of the plug-in's ID and the element in the
plugin.xml file.

The incremental builder has a standard pattern which allows an implementation to determine
if it is doing a full or incremental build. There is also a clean() method (which wasn't
implemented here) that is used to remove all resources that have been created by a builder.

Time for action – iterating through resources
A project (IProject) is a top-level unit in the workspace (IWorkspaceRoot). These can
contain resources (IResource), which are either folder (IFolder) or file (IFile) objects.
They can be iterated with the members() function, but this will result in the creation of
IResource for every element processed, even if they aren't relevant. Instead, defer to the
platform's internal tree by passing it a visitor that will step through each element required.
Perform the following steps:

1. Create a class, MinimarkVisitor, in the com.packtpub.e4.minimark.ui
package, that implements IResourceProxyVisitor and IResourceDeltaVisitor
interfaces.

Chapter 6

[171]

2. Implement the visit(IResourceProxy) method to get the name of
the resource, and display a message if it finds a file whose name ends with
.minimark. It should return true to allow child resources to be processed:
public boolean visit(IResourceProxy proxy) throws CoreException {
 String name = proxy.getName();
 if(name != null && name.endsWith(".minimark")) {
 // found a source file
 System.out.println("Processing " + name);
 }
 return true;
}

3. Modify incrementalBuild() and fullBuild() to connect the builder to the
MinimarkVisitor class as follows:
private void incrementalBuild(IProject project, IProgressMonitor
monitor, IResourceDelta delta) throws CoreException {
 if (delta == null) {
 fullBuild(project, monitor);
 } else {
 delta.accept(new MinimarkVisitor());
 }
}
private void fullBuild(IProject project, IProgressMonitor monitor)
throws CoreException {
 project.accept(new MinimarkVisitor(),IResource.NONE);
}

4. Run the Eclipse, select a project that has the minimark builder configured and
a .minimark file, and do Project | Clean. The host Eclipse instance should have a
message saying Processing test.minimark in the Console view.

5. Now create a method in MinimarkVisitor called processResource(). This
will get the contents of the file and pass them to the translator. To start with, the
translated file will be written to System.out:
private void processResource(IResource resource) throws
CoreException {
 if (resource instanceof IFile) {
 try {
 IFile file = (IFile) resource;
 InputStream in = file.getContents();
 MinimarkTranslator.convert(new InputStreamReader(in),
 new OutputStreamWriter(System.out));
 } catch (IOException e) {
 throw new CoreException(new Status(Status.ERROR,
 Activator.PLUGIN_ID, "Failed to generate resource", e));

Working with Resources

[172]

 }
 }
}

6. Now modify the visit() method to invoke processResource():
public boolean visit(IResourceProxy proxy) throws CoreException {
 String name = proxy.getName();
 if (name != null && name.endsWith(".minimark") {
 System.out.println("Processing " + name);
 processResource(proxy.requestResource());
 }
 return true;
}

The method is called requestResource() instead of
getResource() to signify that it isn't just a simple accessor,
but that objects are created in calling the method.

7. Run the Eclipse instance, make a change to a .minimark file, and perform a clean
build with Project | Clean. The host Eclipse instance should print the translated
output in the Console view.

What just happened?
When notified of changes in the build, the files are processed with a visitor. This abstracts
away the need to know how the resources are organized. Resources such as team-private
files (.git, .svn, or CVS directories) are automatically excluded from the caller.

Using IResourceProxyVisitor to obtain the content is faster than using
IResourceVisitor, since the former can be used to test for properties on the name.
This provides a much faster way of getting resources that follow a naming pattern as it
does not require the creation of an IResource object for every item, some of which
may not be necessary.

The builder communicates errors through CoreException, which is the standard exception
for many of Eclipse's errors. This takes as its parameter a Status object (with an associated
exception and plug-in ID).

Finally, when a full build is invoked (by performing Project | Clean on the project) the output
is seen in the Console view of the development Eclipse.

Chapter 6

[173]

Time for action – creating resources
The next step is to create an IFile resource for the .html file (based on the name of the
.minimark file). Eclipse uses an IPath object to represent a filename from the root of the
workspace. An IPath of /project/folder/file.txt refers to the file.txt file in a
folder called folder contained within the project called project. The root path represents
the IWorkspaceRoot. Perform the following steps:

1. In the processResource() method of MinimarkVisitor, calculate the new
filename, and use it to create an IFile from the file's parent IContainer:
try {
 IFile file = (IFile) resource;
 String htmlName = file.getName().replace(".minimark", ".html");
 IContainer container = file.getParent();
 IFile htmlFile = container.getFile(new Path(htmlName));

2. To create the contents of the file, an InputStream has to be passed to
the setContents() method. The easiest way to create this is to pass a
ByteArrayOutputStream to MinimarkTranslator, and then use a
ByteArrayInputStream to get the contents to set on the file.

PipedInput/OutputStream are inherently broken because they use a
fixed width pipeline and will block when full.

Make the following changes:
ByteArrayOutputStream baos = new ByteArrayOutputStream();
MinimarkTranslator.convert(new InputStreamReader(in),
 new OutputStreamWriter(System.out));
 new OutputStreamWriter(baos));
 ByteArrayInputStream contents =
 new ByteArrayInputStream(baos.toByteArray());

3. Now the contents need to be set on the file. If the file exists, the contents are set
with setContents(), but if it doesn't create() needs to be called instead:
if (htmlFile.exists()) {
 htmlFile.setContents(contents, true, false, null);
} else {
 htmlFile.create(contents, true, null);
}

Working with Resources

[174]

The true parameter is to force the change; that is, the contents will
be written even if the resource has been updated elsewhere. The
false parameter for the setContents() method is to indicate
that changes should not be recorded, and the final null parameter for
both methods is to pass an optional ProgressMonitor.

4. Finally the resource needs to be marked as derived, which tells Eclipse that this is an
automatically generated file and not a user-edited one:
htmlFile.setDerived(true,null);

5. Run the Eclipse instance, do Project | Clean and the corresponding HTML file
should be generated. Modify the .minimark file, do a clean again, and the
HTML file should be regenerated.

What just happened?
The build was modified to invoke MinimarkTranslator and create a resource in the
filesystem. Since it uses a stream to set the contents a ByteArrayOutputStream is used to
build up the translated contents, and a ByteArrayInputStream is used to read it back for
the purposes of setting the file's contents.

The exists() method check is necessary because setting the contents on a non-existent
file throws a CoreException.

The files are represented as a generic IPath object, which is concretely implemented with
the Path class. Path classes are represented as slash (/) separated filenames, regardless
of the operating system, but each path component needs to obey the local filesystem's
constraints, such as not allowing colons on Windows.

Time for action – implementing incremental builds
The final part of the puzzle is to implement the incremental part of the builder. Most of the
builds that Eclipse performs are incremental, which means that it only compiles the files that
are needed at each point. An incremental build gives a resource delta which says what files
have been modified, added, or removed. This is implemented in IResourceDelta which is
handed to the IResourceDeltaVisitor visit() method. A resource delta combines an
IResource with a flag that says whether it was added or removed. Perform the following steps:

1. Open MinimarkBuilder and go to the visit(IResourceDelta) method. This
is used by the incremental build when individual files are changed. Since the delta
already has a resource, it can be used to determine if the file is relevant, and if so
pass it to the processResource() method:
public boolean visit(IResourceDelta delta) throws CoreException {

Chapter 6

[175]

 IResource resource = delta.getResource();
 if(resource.getName().endsWith(".minimark")) {
 processResource(resource);
 }
 return true;
 }

2. Run the Eclipse instance, and edit and save the .minimark file. The builder's
incremental builder will be invoked with the given resource and the file will be
updated. Eclipse's HTML editor won't automatically refresh the change, but if the
.html file is opened with a text editor, a side-by-side view shows that the file is
being updated with each save.

What just happened?
An incremental build and a full build are very similar; they both process a set of resources.
In the former case, it's the set of files that were changed in a workspace update operation
(such as a Save or Save All). In the latter case, it's all files in an individual project. If building
is done on independent resources which are unrelated then breaking it apart to a single
processResource() method is an efficient way of building new resources.

Time for action – handling deletion
The incremental builder does not handle deletions in its current implementation. To handle
deletion, IResourceDelta needs to be inspected to find out what kind of delta took place,
and the delete handled accordingly.

Perform the following steps:

1. Run the Eclipse instance and delete a .minimark file. An exception is thrown and
reported to the user:

Working with Resources

[176]

2. To fix this issue, modify the check in MinimarkVisitor class'
processResource() method to see if the resource exists or not:
private void processResource(IResource resource) throws
CoreException {
 if (resource instanceof IFile && resource.exists()) {

3. This solves the NullPointerException, but the generated HTML file is left
behind. To clean up the associated .html file if the .minimark file is being
deleted, the resource delta's flags can be inspected to see if it is deleted,
and if so, the corresponding HTML file can be deleted as well. Modify the
visit(IResourceDelta) method as follows:
public boolean visit(IResourceDelta delta) throws CoreException {
 boolean deleted = (IResourceDelta.REMOVED & delta.getKind())!=0;
 IResource resource = delta.getResource();
 String name = resource.getName();
 if (deleted) {
 String htmlName = name.replace(".minimark",".html");
 IFile htmlFile = resource.getParent().
 getFile(new Path(htmlName));
 if (htmlFile.exists()) {
 htmlFile.delete(true, null);
 }
 } else {
 processResource(resource);
 }
 return true;
}

4. Run the Eclipse instance, and create a new test.minimark file. Save it, and a
corresponding test.html file will be created. Delete the test.minimark file,
and the test.html file should also be deleted.

5. Create the test.minimark file again, and the test.html file will be generated.
Delete the test.html file, and it won't be regenerated automatically. To fix this,
IResourceDelta needs to track deletions of .html files as well, and process the
corresponding .minimark resource. Modify the visit(IResourceDelta)
as follows:
public boolean visit(IResourceDelta delta) throws CoreException {
 boolean deleted = (IResourceDelta.REMOVED & delta.getKind())!=0;
 IResource resource = delta.getResource();
 String name = resource.getName();
 if (name.endsWith(".minimark")) {
 if (deleted) {
 String htmlName = name.replace(".minimark",".html");

Chapter 6

[177]

 IFile htmlFile = resource.getParent().getFile(
 new Path(htmlName));
 if (htmlFile.exists()) {
 htmlFile.delete(true, null);
 }
 } else {
 processResource(resource);
 }
 } else if (name.endsWith(".html")) {
 String minimarkName = name.replace(".html",".minimark");
 IFile minimarkFile = resource.getParent().getFile(
 new Path(minimarkName));
 if (minimarkFile.exists()) {
 processResource(minimarkFile);
 }
 }
 return true;
}

6. Run the Eclipse instance and delete the generated test.html file. It should be
automatically regenerated by the MinimarkBuilder/MinimarkVisitor. Now,
delete the test.html file and the corresponding test.minimark file should be
deleted as well.

What just happened?
When a .minimark file was deleted, a NullPointerException was seen. This was fixed
by guarding visit() with a check to see if the resource existed or not.

For consistency, the deletion of associated resources was also handled. If the .html file is
deleted, it is regenerated (but only if a corresponding .minimark file is present). When the
.minimark file is deleted, the corresponding .html file is also deleted.

Have a go hero – builder upgrades
Along with reacting to changes and creating content, builders are also responsible for
removing content when the project is cleaned. The IncrementalProjectBuilder defines
a clean() method, which is invoked when the user performs Project | Clean on either that
specific project or the workspace as a whole.

Implement a clean() method on the MinimarkBuilder which walks the project, and for
each .minimark file, deletes any corresponding .html file. Note that not all .html files
should be deleted as some may be legitimate source files in a project.

Working with Resources

[178]

Using natures
Although builders can be configured on a project manually, they aren't usually added
directly. Instead, a project may have natures which represent a type of dimension that a
project has; and natures can be automatically associated with builders. For example, a Java
project is identified with a Java nature and others (such as the PDE project) are identified as
both a Java project and an additional nature for PDE processing. Other languages have their
own natures, such as C.

Time for action – creating a nature
A nature is created by implementing the IProjectNature interface. This will be used
to create a MinimarkNature, which will allow projects to be associated with the
MinimarkBuilder. Perform the following steps:

1. Create a class called MinimarkNature in the com.packtpub.e4.minimark.ui
package:
public class MinimarkNature implements IProjectNature {
 public static final String ID =
 "com.packtpub.e4.minimark.ui.MinimarkNature";
 private IProject project;
 public IProject getProject() {
 return project;
 }
 public void setProject(IProject project) {
 this.project = project;
 }
 public void configure() throws CoreException {
 }
 public void deconfigure() throws CoreException {
 }
}

2. The purpose of a nature is to assist by adding (or configuring) the builders, which
are associated by an ID. To make cross-referencing possible, define a constant in the
MinimarkBuilder which can be used to refer to it by the nature:
public class MinimarkBuilder extends IncrementalProjectBuilder {
 public static final String ID =
 "com.packtpub.e4.minimark.ui.MinimarkBuilder";

Chapter 6

[179]

3. The way a builder is added to the project is by accessing the project descriptor and
adding a build command. There is no easy way of adding or removing a builder,
so acquire the set of commands, search to see if it is present, and then add or
remove it. Using the Arrays class takes away some of the pain. Implement the
configure() method as follows:
public void configure() throws CoreException {
 IProjectDescription desc = project.getDescription();
 List<ICommand> commands = new ArrayList<ICommand>(
 Arrays.asList(desc.getBuildSpec()));
 Iterator<ICommand> iterator = commands.iterator();
 while (iterator.hasNext()) {
 ICommand command = iterator.next();
 if (MinimarkBuilder.ID.equals(command.getBuilderName())) {
 return;
 }
 }
 ICommand newCommand = desc.newCommand();
 newCommand.setBuilderName(MinimarkBuilder.ID);
 commands.add(newCommand);
 desc.setBuildSpec(commands.toArray(new ICommand[0]));
 project.setDescription(desc,null);
}

4. To deconfigure a project, the reverse is done. Implement the deconfigure()
method as follows:
public void deconfigure() throws CoreException {
 IProjectDescription desc = project.getDescription();
 List<ICommand> commands = new ArrayList<ICommand>(
 Arrays.asList(desc.getBuildSpec()));
 Iterator<ICommand> iterator = commands.iterator();
 while (iterator.hasNext()) {
 ICommand command = iterator.next();
 if (MinimarkBuilder.ID.equals(command.getBuilderName())) {
 iterator.remove();
 }
 }
 desc.setBuildSpec(commands.toArray(new ICommand[0]));
 project.setDescription(desc,null);
 }

Working with Resources

[180]

5. Having implemented the nature, it needs to be defined as an extension point within
the plugin.xml of the minimark.ui project:
<extension id="MinimarkNature"
 point="org.eclipse.core.resources.natures">
 <runtime>
 <run class="com.packtpub.e4.minimark.ui.MinimarkNature"/>
 </runtime>
</extension>

6. To associate the nature with a project, a menu needs to be added to the Configure
menu associated with projects. Create an entry in the plugin.xml file for the
Add Minimark Nature command, and put it in the projectConfigure menu:
<extension point="org.eclipse.ui.commands">
 <command name="Add Minimark Nature"
 defaultHandler="com.packtpub.e4.minimark.ui.AddMinimarkHandler"
 id="com.packtpub.e4.minimark.ui.AddMinimarkNature"/>
</extension>
<extension point="org.eclipse.ui.menus">
 <menuContribution allPopups="false" locationURI=
 "popup:org.eclipse.ui.projectConfigure?after=additions">
 <command label="Add Minimark Nature" style="push"
 commandId="com.packtpub.e4.minimark.ui.AddMinimarkNature"/>
 </menuContribution>
</extension>

7. Create a new class in the com.packtpub.e4.minimark.ui package called
AddMinimarkNature, as follows:
public class AddMinimarkHandler extends AbstractHandler {
 public Object execute(ExecutionEvent event)
 throws ExecutionException {
 ISelection sel = HandlerUtil.getCurrentSelection(event);
 if (sel instanceof IStructuredSelection) {
 Iterator<?> it = ((IStructuredSelection)sel).iterator();
 while (it.hasNext()) {
 Object object = (Object) it.next();
 if(object instanceof IProject) {
 try {
 addProjectNature((IProject) object,MinimarkNature.ID);
 } catch (CoreException e) {
 throw new ExecutionException("Failed to set nature on"
 + object,e);
 }
 }
 }
 }

Chapter 6

[181]

 return null;
 }
 private void addProjectNature(IProject project, String nature)
 throws CoreException {
 IProjectDescription description = project.getDescription();
 List<String> natures = new ArrayList<String>(
 Arrays.asList(description.getNatureIds()));
 if(!natures.contains(nature)) {
 natures.add(nature);
 description.setNatureIds(natures.toArray(new String[0]));
 project.setDescription(description, null);
 }
 }
}

8. Run the Eclipse instance, create a new General project, and open the .project
file using the Navigator view. Now right-click on the project, and select Configure |
Add Minimark Nature to add the nature. When the nature is added, it will add the
commands automatically and the changes will be visible in the .project file.

What just happened?
The MinimarkNature class was created to inject a builder into the project description
when added. Changing the .project file manually does not add the builder, so an action to
programmatically add the nature was created and added to the standard Configure menu.

Both the Nature and the Builder are referred to via IDs; these are stored in the .project
and .classpath files. Since these may be checked into a version control system, the
names of these IDs should be consistent between releases. (It's best practice to add
these to version control.)

The project descriptor contains the content from the .project file and stores an array
of nature IDs and commands. To add a nature to a project, its identifier is appended to
this list. Note that the change only takes effect when the updated project descriptor is
set on the project.

Since the nature's modifications only take effect when set programmatically, the Add
Minimark Nature command was created to add the nature. The command was put into
the menu popup org.eclipse.ui.projectConfigure?after=additions, which is
the standard location for adding and configuring natures. Conventionally, either a separate
command to Add Minimark Nature and Remove Minimark Nature is used, or a Toggle
Minimark Nature could be used for both actions. The advantage of the separate Add/Remove
menu items is that their visibility can be controlled based on whether the project already has
the nature or not.

Working with Resources

[182]

The handler class used HandlerUtil to extract the current selection; though this just
extracts the object from the parameter map via the variable name selection.

To avoid spelling errors, it makes sense to define constants as static final variables. If they are
related with class names, it can be better to use class.getName() as the identifier so that
if they are renamed then the identifiers are automatically updated as well. Alternatively, they
can be created from a concatenation with the plug-in's ID (in this case, via Activator.ID).

Have a go hero – enabling for a selected object type
It is conventional to only show the configure option if it is strictly necessary. In the case
where projects already have MinimarkNature, we should not show the command. Use the
visibleWhen property to target the selection and only enable it if the projectNature of
the selected object is that of the minimark builder.

Using markers
The final section in this chapter is devoted to markers. These are the errors and warnings
that the compiler shows when it detects problems in files. They can be created automatically,
typically from a builder.

Time for action – error markers if the file is empty
Errors and warning markers are used to indicate if there are problems in the source files.
These are used by the Eclipse compiler to indicate Java compile errors, but they are also used
for non-Java errors as well. For example, text editors also show warnings when words are
misspelled. A warning can be shown if the .minimark file is empty and the title is missing.

There isn't a simple way of accessing the file's size in Eclipse, so we'll use a heuristic that if
the generated HTML file is less than about 100 bytes then there probably wasn't much to
start with anyway. Perform the following steps:

1. Open MinimarkVisitor and go to the processResource() method.

2. When the HTML file is generated, put in a test to determine if the size is less than
100 bytes:
ByteArrayOutputStream baos = new ByteArrayOutputStream();
MinimarkTranslator.convert(new InputStreamReader(in),
 new OutputStreamWriter(baos));
ByteArrayInputStream contents = new ByteArrayInputStream(
 baos.toByteArray());
if(baos.size() < 100) {
 System.out.println("Minimark file is empty");
}

Chapter 6

[183]

3. The problem with printing out an error message is that it won't be seen by the user.
Instead, it can represented with an IMarker object, created on the source resource,
and with additional properties to set the type and location of the error:
System.out.println("Minimark file is empty");
IMarker marker = resource.createMarker(IMarker.PROBLEM);
marker.setAttribute(IMarker.SEVERITY,IMarker.SEVERITY_ERROR);
marker.setAttribute(IMarker.MESSAGE,"Minimark file is empty");
marker.setAttribute(IMarker.LINE_NUMBER,0);
marker.setAttribute(IMarker.CHAR_START,0);
marker.setAttribute(IMarker.CHAR_END,0);

4. Run the Eclipse instance and create a new empty .minimark file. When it is saved,
an error will be reported in the Problems view. If it's not shown, it can be opened
with Window | Show View | Other | General | Problems:

What just happened?
A heuristic that detected when the input file was likely to be empty was used to generate a
marker in the build view. While creating an empty file, the builder runs and the problem is
generated in the problems view.

The marker also allows additional fields to be set if the location of the problem is known.
These are optional fields but can be used to give a user more information as to the source of
the problem. In the case of a misspelled word, the CHAR_START and CHAR_END can be used
to pinpoint the exact word on a line; in the case of more general errors the LINE_NUMBER
can be used to indicate the approximate location in the file.

Each time the file is changed, additional markers are created in the problems view. Even if
content is added, the existing errors aren't removed. That will be fixed in the next section.

Working with Resources

[184]

Time for action – registering a marker type
The current implementation has a flaw, in that it doesn't appear to fix the problems after they
have been resolved. That's because the marker types are kept associated with a resource, even
if that resource is changed. The reason this isn't seen in Java files is that the builder wipes out
all (Java) errors prior to the start of a build, and then adds new ones as applicable. To avoid
wiping out other plug-in's markers, each marker has an associated marker type. JDT uses this to
distinguish between its markers and others contributed by different systems. This can be done
for MinimarkMarkers as well. Perform the following steps:

1. Open plugin.xml of the minimark.ui project. Add the following extension to
define a MinimarkMarker:
<extension id="com.packtpub.e4.minimark.ui.MinimarkMarker"
 name="Minimark Marker"
 point="org.eclipse.core.resources.markers">
 <persistent value="false"/>
 <super type="org.eclipse.core.resources.problemmarker"/>
</extension>

2. To use this marker when the error is created, instead of using IMarker.PROBLEM,
use its extension ID from plugin.xml in the processResource() method of the
MinimarkVisitor:
IMarker marker = resource.createMarker(IMarker.PROBLEM);
IMarker marker = resource.createMarker(
 "com.packtpub.e4.minimark.ui.MinimarkMarker");

3. At the start of the processResource() method, flush all the markers associated
with the resource of this type:
resource.deleteMarkers(
 "com.packtpub.e4.minimark.ui.MinimarkMarker",
 true, IResource.DEPTH_INFINITE);

4. Run the Eclipse instance and verify that as soon as some content is put in a
.minimark file that the errors are cleared. Delete the content, save the file,
and the errors should reappear.

5. Finally, the editor doesn't show up warnings in the column. To make that
happen, change the super class of MinimarkEditor from AbstractEditor to
AbstractDecoratedTextEditor. Run the Eclipse instance again. Now errors
will be reported in the editor as well:

Chapter 6

[185]

What just happened?
Now the custom markers for the resource are being deleted at the start of a build and if
there's a problem a marker will be automatically added. When the problem is resolved, the
resource's markers are automatically deleted anyway.

In the deletion code, the boolean argument says whether to delete markers that are a
subtype of that marker type or not. The second argument says what happens in the case that
it's a folder or other container, and if deletion should recurse.

Generally, builders delete and create a specific type of problem marker so that they do not
affect the other that may be associated with that resource. This allows other contributors
(such as the spell checking editor) to raise warnings or informational dialogs that are not
cleaned by a particular builder.

Have a go hero – working out when the file is really empty
Fix the file detection so that it works out when the source file is really empty. Do this by
using EFS and the file's locationURI to get a FileInfo, which contains the file's size.

Working with Resources

[186]

Pop quiz – understanding resources, builders, and markers
Q1. How is an error with a missing document provider fixed?

Q2. What is an IResourceProxy and why is it useful?

Q3. What is an IPath?

Q4. What is a nature, and how is one set on a project?

Q5. How are markers created on a project?

Summary
In this chapter we looked at how resources are accessed, created, and processed. We used
an example of a markup language to associate a builder that translated markup items into
HTML when the source files were saved. We then hooked up the builder with a nature so
that a project can automatically be configured with content when needed.

The next chapter will look at the E4 model, and how it differs from Eclipse 3.x in creating
views and contributing to a Rich Client Platform.

7
Understanding the Eclipse 4 Model

The last major change to Eclipse was with the 3.0 release when it migrated
to OSGi. The Eclipse 4 model provides a significant departure from the Eclipse
3.x line, with the user interface being represented as a dynamic EMF model. In
addition, both the model and views can be represented as simple POJOs with
services provided by dependency injection. There is also a separate rendering
mechanism which allows an E4 application to be hosted by different UIs,
although we'll look at the SWT renderer specifically. In this chapter, we'll take a
look at the differences and how you can evolve Eclipse plug-ins forward.

In this chapter we shall:

 � Set up an Eclipse 4 instance for development

 � Create an E4 application with parts

 � Style UI with CSS

 � Send and receive events

 � Create commands, handlers, and menus

 � Integrate with preferences

 � Inject custom POJOs

Understanding the Eclipse 4 Model

[188]

Working with the Eclipse 4 model
Since Eclipse was first released in November 2001, its user interface has remained mostly
static. Each window has a perspective, which contains zero or one editor area, and zero or
more view parts. In early releases, every perspective had exactly one editor area, and it was
not until the release of Eclipse RCP with Eclipse 3.0 in 2004 that it was possible to disable the
editor, and have a custom application suitable for a non-IDE use.

However, the presentation of the perspective always proved difficult to customize, such as
changing the background color or arrangement of the windows or toolbars.

The Eclipse 4 model provides a way to model an application both at design time, and also
interpret and modify it at runtime. An application has a top-level model, but may also have
additional model fragments contributed by different bundles. Additionally, the separate
rendering framework allows the UI to be represented with different tools such as JavaFX and
HTML. In this book, the default SWT rendering tool will be used, since that closely matches
the existing Eclipse 3.x UI.

The other significant change is that it is no longer necessary to create subclasses of
specific classes to contribute to the Eclipse infrastructure. Instead, classes are created with
dependency injection (similar to how Spring components are configured) and may consume
platform-level services separately to the user interface. Instead of referring to global
singletons through accessor methods, these are now available through injection. This allows
components to be built as simple POJOs (Plain Old Java Objects) which allows them to be
tested headlessly and provides a looser binding to the services that they consume.

Time for action – installing E4 tooling
To work with Eclipse 4 modeled applications, it is necessary to install the E4 tools to allow
the application XMI to be edited through an editor. These are not shipped with the standard
Eclipse distribution package, and must be installed separately.

1. Add the following update site by going to Window | Preferences | Install/Update |
Available Software Sites, then click on Add... and put in:

In OS X, the Preferences menu is located under
the Eclipse menu.

 � Juno (4.2): http://download.eclipse.org/e4/updates/0.13

 � Kepler (4.3): http://download.eclipse.org/e4/updates/0.14

Chapter 7

[189]

Alternatively, the tools can be found by installation through
the Eclipse Marketplace.

2. Click on OK in the Add Site dialog and on OK in the Preferences page to add it. Once
added, go to Help | Install New Software and then select the newly added site in
the list. Select the the following features:

 � CSS file editor

 � CSS spy for Eclipse 4

 � Eclipse 4 core tools

These add the ability to edit both css and e4xmi files, and create Eclipse 4
applications by a wizard, which are used to create and render the user interface
in Eclipse 4.

Understanding the Eclipse 4 Model

[190]

3. Restart Eclipse after the install has completed.

4. Go to File | New | Project and verify that Eclipse 4 | Eclipse 4 Application Project is
seen in the new project wizard's choices.

What just happened?
Installing the Eclipse E4 tools and E4 CSS spy provides a custom editor for e4xmi files, as
well as css files. In addition, the CSS spy can be called with Alt + Shift + F5, or via the Quick
Access search bar.

To run the CSS spy in a launched application, add org.eclipse.e4.tools.css.spy to
the required bundles in the launch configuration. (Don't add them to the product definition
unless the product's end users need to be able to invoke the CSS spy.)

There is also a live EMF editor which can be called with Alt + Shift + F9. This is useful for
exploring the Eclipse runtime, either in the IDE or in the launched application. To add the live
EMF editor, add org.eclipse.e4.tools.emf.liveeditor to the launch configuration.

Don't forget to click on Validate plug-ins and if necessary Add required plug-ins to ensure
that the tools' dependencies are present in the launched product.

Time for action – creating an E4 application
Eclipse applications use an application ID to launch and start execution. For E4 applications,
org.eclipse.e4.ui.workbench.swt.E4Application is used. Since this is specified
within a product, to start with a new E4 application will be created.

1. Go to the File | New | Project... menu and choose Eclipse 4 | Eclipse 4 Application
Project from the list.

Chapter 7

[191]

If the Eclipse 4 Application Project is not shown here, check
that the E4 tools are installed correctly.

2. Create a project with the name com.packtpub.e4.application, and step
through the wizard. Choose the default values for each field.

Understanding the Eclipse 4 Model

[192]

3. On the last page, ensure that the Create sample contents option is selected.
This will ensure that the E4 tools creates standard parts and menus for the
default application.

4. Click on Finish and the project will be created.

5. Right-click on the com.packtpub.e4.application project and choose Run As |
Eclipse Application. This launches a new version of the IDE, which isn't what
might be expected.

Chapter 7

[193]

6. Double-click on the product file (called com.packtpub.e4.application.product) and
click on the run icon in the top-right corner:

If you get a web browser launched when invoking the product, it may be that
RAP is installed. If this happens, the product can be launched by going to the
Run | Run As... and selecting the Eclipse Application type, followed by Run a
product: com.packtpub.e4.application.product. Alternatively, the Overview tab
has a Testing section, which includes a link to Launch an Eclipse Application.

7. When the application runs, an error may be seen:
!MESSAGE Application error
!STACK 1
java.lang.RuntimeException: No application id has been found.

This indicates that the product was missing one or more dependencies in the
product list. Some older versions of the E4 tools did not include required plug-ins
such as javax.xml. As a result, the runtime application fails to install, with the
cryptic error that it can't find the application.

Understanding the Eclipse 4 Model

[194]

8. To resolve the problem, click on the Add Required Plug-ins for the product (the
button on the right of the product editor, as seen in the preceding screenshot).
Now, when it is run, the default window should be shown:

What just happened?
The new E4 wizard created a simple E4 rich client application, including creating
some sample content (menus, commands, and so on). After fixing issues with missing
dependencies, product launch operation starts the application successfully.

When running any kind of Eclipse application, it is good practice to stop the launch when
there are missing dependencies. The launch configuration, visible via the Run | Run
Configurations... menu, has an option on the plug-ins tab Validate plug-ins automatically
prior to launching:

Chapter 7

[195]

Now, when launching the product without adding the necessary plug-ins, a warning will be
shown. Clicking on the Validate Plug-ins button can run this validation at any time.

Time for action – creating a part
Having created a sample application, the next step is to create a view, known as a part in
E4. Parts are the generic name for views, editors, and other grouping components in an E4
application. Unlike views in Eclipse 3, the view class doesn't have to have any references to
the Eclipse APIs. This makes it particularly easy to build and test in isolation.

1. Open the plugin.xml file of the com.packtpub.e4.application project,
and go to the Dependencies tab. Add a dependency to the org.eclipse.ui.di
bundle, if it's not already added.

2. Create a new class called Hello in the com.packtpub.e4.application.parts
package.

3. Add a field called label of type Label.

4. Add a create() method, annotated with @PostConstruct that instantiates the
Label and sets its text to Hello.

If @PostConstruct appears not to work, ensure
javax.annotation is added as a package import to the
bundle (see http://www.vogella.com/articles/
EclipseRCP/article.html#tutorial_api2).

5. Add a focus() method, annotated with @Focus.

The focus() method is required in Eclipse 4.2 but optional
in 4.3 onwards.

6. The class will look like:
package com.packtpub.e4.application.parts;
import javax.annotation.PostConstruct;
import org.eclipse.e4.ui.di.Focus;
import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
public class Hello {
 private Label label;
 @PostConstruct
 public void create(Composite parent) {
 label = new Label(parent, SWT.NONE);

Understanding the Eclipse 4 Model

[196]

 label.setText("Hello");
 }
 @Focus
 public void focus() {
 label.setFocus();
 }
}

7. Double-click on the Application.e4xmi file and it should open up in the
application editor (if it doesn't, install the E4 tools from the update site earlier
in this chapter).

8. Navigate to Application | Windows | Trimmed Window | Controls | Perspective
Stack | Perspective | Controls | PartSashContainer | Part Stack.

9. Delete the Sample Part, if present, by right-clicking on it and choosing Remove.

10. Right-click on the Part Stack, and select Add child followed by Part. The part should
be created as follows:

 � ID: com.packtpub.e4.application.part.0

 � Label: Hello

 � Class URI: Click on Find and enter Hello as the class name, and it will
add bundleclass://com.packtpub.e4.application/
com.packtpub.e4.application.parts.Hello

 � Closeable: Ensure Closeable is not selected

 � To Be Rendered: Ensure To Be Rendered is selected

 � Visible: Keep Visible selected

Chapter 7

[197]

11. Finally, save the e4xmi file and then launch the product. If all has gone well, Hello
should be displayed in the generated window:

12. If nothing is shown, the first debug point is to delete the workspace of the runtime
application. The launch configuration can be set to clear the contents of the
workspace each time it launches, which is a good idea for E4 development as often
the new files aren't copied over or stale files can be left behind.

Understanding the Eclipse 4 Model

[198]

Go to the Run | Run Configurations... menu, select the com.packtpub.
e4.application configuration. On the Main tab there is an option to Clear:

13. Leave the option to Ask for confirmation before clearing selected to be prompted
with a dialog each time the product is run, or deselected to delete the contents of
the runtime workspace each time.

14. If still not shown, put a breakpoint in the @PostConstruct method to verify that
it is being called. If not, check @javax.annotation.PostConstruct annotation
is on the method, that the right class name in the e4xmi file, and that everything is
saved before launching. Another approach is to delete the launch configuration and
launch a new one via the product launch as before.

What just happened?
Eclipse 4 applications are modeled with an e4xmi file, which defines both visual and
non-visual contents. At runtime, an Eclipse 4 application is booted with org.eclipse.
e4.ui.workbench.swt.E4Application, which reads the file specified in the product's
applicationXMI property. The default name created by the wizard is Application.
e4xmi, but this can be replaced if necessary.

Other renderers exist, such as e(fx)clipse's implementation
built on JavaFX.

Chapter 7

[199]

Parts in E4 are the equivalent of views/editors in Eclipse 3.x. The structure of viewable
content in the default E4 application is:

1. Application, which contains

2. (Trimmed) windows, which contains

3. Perspective stacks, which contains

4. Perspectives, which contains

5. PartSashContainer, which contains

6. Part stacks, which contains

7. Parts

In addition, Trimmed Windows can also contain Menus and Menu Items. Menu Items are
covered later in this chapter.

In the default application, the window uses a Trimmed Window, which means it can have
toolbars such as the save and open tools. (These are shown as Handled Tool Item or Direct
in the application editor.) Each element can have a control which allows parts to be mixed
and matched; for example, it's not mandatory for a Window to use any perspectives at all;
they can just contain controls if desired.

The Hello part was created and added into the application by adding it to the model.
At runtime, the class is instantiated, followed by an invocation of the method annotated
with @PostConstruct. Any required arguments are injected in automatically, which are
obtained from the runtime context which is akin to a HashMap of services by class name.
Finally, the @Focus call is invoked when the part gets the focus; it should delegate that call
to the key widget within the part.

Note, that since the hook between the application model and the code is the pointer in
the Class URI reference to the fully qualified class name, when renaming Java class names
or packages, it's important to select the option that allows the fully qualified name to be
replaced in other files, as otherwise links between the application model and the parts may
be broken.

It may be necessary to clear the workspace when starting. This is because the application
model is not only used for an initial starting point of the application; it's also used to model the
runtime of the application as well. Any changes to the model (creating new views, resizing the
parts) updates the runtime model. When the application shuts down normally, the updated
state of the model is saved and used for subsequent launches. As a result, a newly launched
application with the same workspace will show the state of the workspace at the last time it
shut down, not any new state that may have been added at development time.

Understanding the Eclipse 4 Model

[200]

Time for action – styling the UI with CSS
The user interface for Eclipse 4 is styled with CSS. Although this is loosely based on the CSS
syntax used in browsers, the content that can be used is interpreted by the Eclipse 4 runtime.
CSS stylesheets are composed of selectors and style rules. A selector can be one of a widget
name (for example, Button), a model class name (for example, .MPartStack) or an
identifier (for example, #PerspectiveSwitcher).

1. The default Eclipse 4 application generated by the wizard with sample content
will have an empty CSS file called css/default.css. Open this file, and add the
following rule:
Shell {
 background-color: blue;
}

2. Run the application, and the background of the window (Shell) will be shown
in blue.

3. Basic CSS color names are supported, but hex values can also be used. Modify the
default.css file as follows:
Shell {
 background-color: #00FF00;
}

4. Run the application, and the background color will be shown in green.

5. It's possible to support vertical gradients in colors by specifying more than one color
in the list. Modify the default.css as follows:
Shell {
 background-color: yellow blue;
}

6. Run the application, and the background will be a gradient from yellow to blue.

7. The colors split at the 50 percent mark by default, but it is possible to specify where
the break occurs as a percentage. Using 25 percent makes the switch to blue happen
at the top quarter of the screen—conversely, using 75 percent makes the switch
to blue happen at the bottom quarter of the screen. Modify the default.css as
follows:
Shell {
 background-color: yellow blue 25%;
}

8. Run the application, and the background will be a gradient from yellow to blue but
with the split nearer the top.

Chapter 7

[201]

9. If more than two colors are specified, then multiple gradient points are specified.
This creates a rainbow-style effect. Modify the default.css as follows:
Shell {
 background-color: red orange yellow green blue indigo violet
 15% 30% 45% 60% 75% 90%;
}

10. Run the application, and the background will be rainbow style:

11. In addition to using Java class names as selectors, IDs and CSS classes can also
be used. For example, to target the Hello part, its ID can be used. The default one
will be com.packtpub.e4.application.part.0 if it is not explicitly specified
at creation.

Understanding the Eclipse 4 Model

[202]

Go to the Part in the application viewer to see the ID. To translate it to CSS, use
the # selector and replace . with – in the name. To place the rainbow only on that
specific part, use this rule instead:
#com-packtpub-e4-application-part-0 {
 background-color: red orange yellow green blue indigo violet
 15% 30% 45% 60% 75% 90%;
}

The Eclipse 4.2 tools may show this as an error in the CSS file, but this is a
bug in the CSS editor and not in the CSS rule itself running the application,
and the rainbow part should now be targeted to just the Hello part.

12. Another way of coloring each part is to use the pseudo class .MPart, which allows a
rule to be targeted to all parts in the UI:
.MPart {
 background-color: red orange yellow green blue indigo violet
 15% 30% 45% 60% 75% 90%;
}

Chapter 7

[203]

What just happened?
The default.css file, created with the application wizard, was modified to explore how
to style properties declaratively. Although loosely based on the CSS specification, some
differences are apparent. Style selectors can be:

 � Widget (SWT) class names, like Button, Label, and Shell

 � CSS class names like .MPart, .MPartStack, and .MTrimmedWindow

 � CSS IDs like #IDEWindow, #org-eclipse-jdt-ui-MembersViewMStack,
and #left

There is also a "pseudo selector" which can be used. These apply to certain subsets
of the classes:

 � Shell:active used for applying styles to the active Shell

 � Button:checked used if a Button is checked

 � :selected used if a tab folder/item is selected

In addition, CSS selectors can be combined. For example, to have the same rules applied
to .MPart and an .MPartStack, use .MPart, .MPartStack as a selector. The comma
represents "either".

Dependencies can be combined; .MPart Label will apply to Label elements which are
contained (anywhere) inside an .MPart.

To restrict it to direct descendants, use Shell > Label. This will apply only to those Label
elements which are immediately inside a Shell, but not those Label elements which exist
in Container instances in the Shell.

In addition to background-color, other CSS properties can be used, such as:

 � alignment: Used for Buttons (for example, up) or Label (for example left/
right/center)

 � border-visible: Is true if the border should be shown for CTabFolder

 � background-image: An image referenced as a URL url('platform:/plugin/
com.packtpub.e4.application/icons/icon.gif')

 � color: As with background-color; names or hex values

 � font: Used to specify font name (for example, Courier New) and size (for
example, 128px)

 � font-family: The font name (for example, Courier New)

 � font-size: The font size (for example, 128px)

Understanding the Eclipse 4 Model

[204]

 � font-adjust: The font size adjustment, not supported in 4.2 (CSS3 name is
font-size-adjust, so this may change)

 � font-stretch: The font stretch size, not supported in 4.2

 � font-style: Can be italic, or bold

 � font-variant: The font variant, not supported in 4.2 (normal, small-caps, and
inherit)

 � font-weight: The font weight, not supported in 4.2 (normal, bold, bolder,
lighter, and inherit)—use font-style instead

 � margin: The space (in pixels) around the content (-top, -bottom, -left,
and -right)

 � maximized: If the widget is maximized or not

 � minimized: If the widget is minimized or not

 � padding: The space (in pixels) between elements (-top, -bottom, -left, and
-right)

 � text–align: Can be left, right, or center

 � text-transform: Can be capitalize, uppercase, or lowercase

There are also some Eclipse-specific properties as well:

 � eclipse-perspective-keyline-color: The color of perspective lines.

 � swt-background-mode: The background of the composite to be
none, default, or force, corresponding to the Java call Composite.
setBackgroundMode(INHERIT_NONE/DEFAULT/FORCE). This ensures the
background of the children either override or inherit their parent's background.

 � swt-corner-radius: The size (in pixels) of the corner radius.

 � swt-inner-keyline-color: The color of the inside line of the tabs, drawn by the
CTabRenderer (see swt-tab-renderer).

 � swt-keyline-color: The keyline color.

 � swt-maximize-visible: Is true or false if the maximize icon is shown.

 � swt-maximized: Is true or false if the view is maximized (used as a selector)

 � swt-minimize-visible: Is true or false if the minimize icon is shown.

 � swt-minimized: Is true or false if the view is minimized (used as a selector).

 � swt-mru-visible: Is true (for "Indigo-like" tab behavior) or false (default).

 � swt-outer-keyline-color: The color of the outside line of the tabs, drawn by
the CTabRenderer (see swt-tab-renderer)

Chapter 7

[205]

 � swt-selected-tabs-background: The background color of selected tabs.

 � swt-selected-tab-fill: The fill color of the selected tab.

 � swt-show-close: Is true or false if the close icon is shown.

 � swt-shadow-visible: Is true or false if the shadow is visible.

 � swt-shadow-color: The color of shadows, if visible.

 � swt-simple: Is true (for "new style" tabs) or false (for "old style" tabs, default).

 � swt-tab-outline: Is true or false if the tab should have an outline.

 � swt-tab-renderer: Is null for classic style, or a class URL like
url('bundleclass://org.eclipse.e4.ui.workbench.renderers.swt/
org.eclipse.e4.ui.workbench.renderers.swt.CTabRendering').

 � swt-tab-height: Height, in pixels, of the tabs.

 � swt-text-align: Can be left, right, up, down, center, lead, or trail.

 � swt-unselected-close-visible: Is true or false if the close icon is shown
on unselected tabs.

 � swt-unselected-tabs-color: The color of the unselected tabs.

 � swt-unselected-image-visible: Is true or false if the image is shown on
unselected tabs.

The reference to the default.css file is specified in the plugin.xml; the product
property applicationCSS points to the top-level CSS file. It can also be overridden with
command line arguments -applicationCSS and -applicationCSSResources, both of
which use a URL for identifying the location of the main CSS file and its associated resources.

Have a go hero – using the theme manager
Eclipse 4 ships with a "theme manager" which can be used to swap between themes
(in essence, separate CSS files). The theme manager is available for inclusion in E4 based
applications by adding the org.eclipse.e4.ui.css.swt plug-in as a dependency to
the application, and by adding one or more org.eclipse.e4.ui.css.swt.theme
extension points.

To switch between different themes, create a handler that has an org.eclipse.e4.ui.
css.swt.theme.IThemeEngine injected, and invoke engine.setTheme(id,persist),
where id is the reference to the theme defined in the extension point, and persist is a
boolean denoting whether the theme switch should be saved and used by default in the
next launch.

Understanding the Eclipse 4 Model

[206]

Using services and contexts
An IDE is more than a collection of its component parts, and the Eclipse 4 framework allows
these to coordinate and communicate with each other.

In prior releases of Eclipse, the Platform (or PlatformUI) object would act as an oracle
of the known services in the runtime infrastructure, as well as providing hooks for accessing
those services, for example:

IExtensionRegistry registry = Platform.getExtensionRegistry();
IWorkbench workbench = PlatformUI.getWorkbench();

Although this provides a programmatic way of making the services available, it has two
key disadvantages:

 � The provider of the interface is tightly coupled with the bundle containing the
accessor, even if they are unrelated

 � Introducing new services requires a code change to a core object, and has
disadvantages in being introduced to existing systems

The goal of E4 is to decouple service providers and service consumers through the use of
OSGi services. These are contributed to the runtime, and can be looked up via interface
name using either standard OSGi mechanisms, or through E4 injection. Although that is the
general trend, some platform services accessed by the IServiceLocator aren't backed by
OSGi services.

Time for action – adding logging
The OSGi platform defines a LogService which allows messages to be logged to a central
collector. In the E4 platform, an instance of LogService is available as part of the platform,
routing error messages through to the console.

1. Open the Hello class and add a private field LogService log.

2. Add an @Inject annotation above the LogService field.

3. In the create() method, add a call to the log service.

4. The Hello class will look like:
import javax.inject.Inject;
import org.osgi.service.log.LogService;
public class Hello {
 @Inject
 private LogService log;
 @PostConstruct
 public void create(Composite parent) {

Chapter 7

[207]

 label = new Label(parent, SWT.NONE);
 label.setText("Hello");
 log.log(LogService.LOG_ERROR,"Hello");
 }
}

5. Run the application, and a log message will be printed out to the console of the
host Eclipse:
!ENTRY org.eclipse.e4.ui.workbench 4 0 2013-01-24 23:15:51.543
!MESSAGE Hello

What just happened?
The E4 runtime infrastructure injected the reference into the class when it was constructed.
The instance was obtained from the E4 context, which looks through a hierarchy of contexts
until it can find an instance which matches the class type. At the root of the context tree, the
list of OSGi services is consulted.

If a LogService cannot be found in the context, the part will fail to be created with an
error message:

!ENTRY org.eclipse.e4.ui.workbench 4 0 2013-01-24 23:19:04.328
!MESSAGE Unable to create class 'com.pactpub.e4.app.parts.Hello'
 from bundle '29'
!STACK 0
org.eclipse.e4.core.di.InjectionException: Unable to process
 "Hello.log": no actual value was found for the argument "LogService"
 at org.eclipse.e4.core.internal.di.InjectorImpl.
 reportUnresolvedArgument(InjectorImpl.java:394)

To mark the service as optional (that is it can be null), annotate it with @Optional:

import org.eclipse.e4.core.di.annotations.Optional;
public class Hello {
 @Inject @Optional
 private LogService log;
 @PostConstruct
 public void create(Composite parent) {
 if (log != null) {
 log.log(LogService.LOG_ERROR, "Hello");
 }

Remember that @Optional annotated fields or parameters have to be guarded against the
possibility of being null.

If a service arrives after instantiation, the service will be injected into the part.

Understanding the Eclipse 4 Model

[208]

Time for action – getting the window
In an Eclipse 3.x application, the main window is typically accessed via a static accessor
like Display.getDisplay() or workbench.getWorkbenchWindows(). Both of
these assume there is a way of getting to this global list in the first place, often through
tightly coupled code references. In addition to OSGi services, E4 can also be used to inject
references to GUI components. However, rather than accessing the GUI components directly,
models are used instead. As a result, components in E4 tend to start with M (for Model) –
such as MPart, MWindow, and MPerspective.

1. To obtain the reference to the window, add a field MWindow window to the Hello
class, along with an @Inject annotation.

2. Modify the create() method so that the label of the text is taken from the
window's title (label). The class will look like:
import org.eclipse.e4.ui.model.application.ui.basic.MWindow;
public class Hello {
 @Inject
 private MWindow window;
 @PostConstruct
 public void create(Composite parent) {
 Label label = new Label(parent, SWT.NONE);
 label.setText(window.getLabel());
 }
}

3. Run the application, and the name of the label should be the name of the window,
which is com.packtpub.e4.application.

4. Open the Application.e4xmi file, and go to Applications | Windows | Trimmed
Window which is where the label is defined. Modify the label to Hello E4 and save
the file.

5. Run the application, and the name of the label and window should be Hello E4.

6. Go back to the Application.e4xmi file, select the Trimmed Window node and
do Edit | Copy. Select the Windows node and do Edit | Paste. This will create a
duplicate node for the Trimmed Window. Modify the label to Other E4 and save
the file.

7. Run the application, and two windows should be displayed. The first will contain a
label "Hello E4" while the other will contain Other E4.

8. Finally, modify the Other E4 part to be invisible by unchecking the Visible checkbox
on the Trimmed Window.

Chapter 7

[209]

What just happened?
A reference to the enclosing MWindow was acquired, using the same mechanism as for the
OSGi LogService. However, while the LogService is a global instance, the MWindow is
local to the currently selected part.

The lookup strategy for objects follows a hierarchical set of contexts, which are hash table
like structures that contain named objects. These are represented with the MContext
interface, which is implemented by:

 � MApplication

 � MWindow

 � MPerspective

 � MPart

 � MPopupMenu

The context search starts at the most specific element, and works its way up to the top level.
If they aren't found in the MApplication, the OSGi services are consulted.

Each of these are organized into a hierarchy with IEclipseContext, which maintains
parent/child relationships between them. The lookup automatically follows the chain if an
object cannot be located in the current context.

In the last example, having two separate windows means that two contexts are used, and
so although the code is identical between the two, one has the "Hello E4" window model
injected, while the other has the "Other E4" window model injected.

Time for action – obtaining the selection
The current selection can be obtained through the selection service with a listener, similar
to Eclipse 3.x. However, the ISelectionService in Eclipse 3.x has been replaced with an
almost identical ESelectionService in Eclipse 4.x. (Other than the minor lack of JavaDoc
and change of package name, the only significant difference between the two is that there is
no add/removePostSelection methods.)

1. Create a class called Rainbow in the com.packtpub.e4.application.parts
package. Add a static final array of strings with colors of the rainbow.

2. Add a create() method, along with a @PostConstruct annotation, that takes a
Composite parent. Inside, create a ListViewer and set the input to the array of
rainbow colors. The class will look like:
public class Rainbow {
 private static final Object[] rainbow = { "Red", "Orange",
 "Yellow", "Green", "Blue", "Indigo", "Violet" };

Understanding the Eclipse 4 Model

[210]

 @PostConstruct
 public void create(Composite parent) {
 ListViewer lv = new ListViewer(parent, SWT.NONE);
 lv.setContentProvider(new ArrayContentProvider());
 lv.setInput(rainbow);
 }
}

3. Open the Application.e4xmi and go to Application | Windows | Trimmed
Window | Controls | Perspective Stack | Perspective | Controls | Part Stash
Container | Part Stack. Right-click on the Part Stack and choose Add child followed
by Part. Set the label as Rainbow and find the Rainbow class with the Find
button, or by using the bundleclass URI bundleclass://com.packtpub.
e4.application/com.pactpub.e4.app.parts.Rainbow.

4. Run the application, and two tabs should be shown. Next to the Hello tab, the
Rainbow tab will be shown, containing the rainbow colors in a list.

5. To synchronize the selection between the two tabs, add a field of type
ESelectionService called selectionService, along with an @
Inject annotation. In the create() method, add an anonymous
ISelectionChangedListener to the ListViewer, such that if a selection
event is received, the selection is reflected in the selectionService. The
implementation will look like:
@Inject
private ESelectionService selectionService;
@PostConstruct
public void create(Composite parent) {
 ListViewer lv = new ListViewer(parent, SWT.NONE);
 lv.setContentProvider(new ArrayContentProvider());
 lv.addSelectionChangedListener(new ISelectionChangedListener() {
 @Override
 public void selectionChanged(SelectionChangedEvent event) {
 selectionService.setSelection(event.getSelection());
 }
 });
 ...
}

6. When a selection is made on the ListViewer, it will send a selection event to the
platform's selection service. To determine what objects are selected, the Hello part
can register for changes in the selection, and use that to display the text in the label.
Add a setSelection() method on the Hello class as follows:
@Inject @Optional
public void setSelection(

Chapter 7

[211]

 @Named(IServiceConstants.ACTIVE_SELECTION)
 Object selection) {
 if (selection != null) {
 label.setText(selection.toString());
 }
}

7. Run the application, switch to the Rainbow part, and select the Red color from the
list. Switch back to the Hello part and it should show [Red] in the label.

What just happened?
The list viewer is similar to the previous example. Here, a simple array of String values is
being used, backed with an ArrayContentProvider. By creating a new part, it is possible
to switch between the tabs to see the effect of changing the selection.

In order to hook up the viewer's selection with the platform's selection, the viewer's
selectionChanged event needs to be delegated to the platform. To do that, the
ESelectionService needs to be injected.

The E4 context contains a set of name/value pairs (like a HashMap), and one of these is used
to track the current selection. When the selection changes, the new value is set into the
context, and this triggers the method calls on the corresponding parts.

Because there may not be a selection when the part is created, it is necessary to
annotate it with @Optional. If a method is marked with @Optional then it won't
be called at all; if a parameter is marked as @Optional then the method will be called,
but with a null parameter.

In general, for methods that receive events, mark them as @Optional so that they are not
called at creation time.

E4 can automatically inject the active selection as it changes. The context contains an object
with a key of IServiceConstants.ACTIVE_SELECTION (which has the value org.
eclipse.ui.selection), which can be injected as a @Named parameter in a method call.
Since there may not be a selection, the @Optional annotation must be used, as otherwise
exceptions will be reported when the part is created.

Understanding the Eclipse 4 Model

[212]

Time for action – dealing with events
There's a more generic way of passing information between components in Eclipse 4, using
the OSGi EventAdmin service. This is a message bus, like JMS, but operates in memory.
There is also an Eclipse-specific EventBroker, which provides a slightly simpler API to
send messages.

1. Add the following bundles as dependencies to the com.packtpub.
e4.application project, by double-clicking on the project's META-INF/
MANIFEST.MF file and going to the Dependencies tab:

 � org.eclipse.osgi.services

 � org.eclipse.e4.core.services

 � org.eclipse.e4.core.di.extensions

2. Open the Rainbow class and obtain an instance of EventBroker through injection.

3. Modify the selectionChanged() method, so that instead of setting a selection,
it uses the EventBroker to post() the color asynchronously to the rainbow/
colour topic.
public void selectionChanged(SelectionChangedEvent event) {
 selectionService.setSelection(event.getSelection());
 IStructuredSelection sel = (IStructuredSelection)
 event.getSelection();
 Object colour = sel.getFirstElement();
 broker.post("rainbow/colour",colour);
}

4. Open the Hello class, and add a new method receiveEvent(). It should be
annotated with @Inject and @Optional. The parameter should be defined with
an annotation @EventTopic("rainbow/colour") to pick up the data from the
event. It will look like:
@Inject
@Optional
public void receiveEvent(
 @EventTopic("rainbow/colour") String data) {
 label.setText(data);
}

5. Run the application, and switch to the Rainbow tab. Select an item in the list, and go
back to the Hello tab. Nothing will be displayed. Open the Console view in the host
Eclipse, and an error will be visible:
!MESSAGE Exception while dispatching event
 org.osgi.service.event.Event [topic=rainbow/colour] to handler

Chapter 7

[213]

 org.eclipse.e4.core.di.internal.extensions.
 EventObjectSupplier$DIEventHandler@1a91782f
!STACK 0
org.eclipse.e4.core.di.InjectionException:
 org.eclipse.swt.SWTException: Invalid thread access at
org.eclipse.e4.core.internal.di.MethodRequestor.
 execute(MethodRequestor.java:63)

6. This happens because the dispatched event runs on a non-UI thread by default.
There are two ways of solving this problem; either re-dispatch the call to the
UI thread, or use @UIEventTopic instead of @EventTopic. Modify the
receiveEvent() as follows:
public void receiveEvent(
 @EventTopic("rainbow/colour") String data) {
 @UIEventTopic("rainbow/colour") String data) {
 label.setText(data);
}

7. Run the application, go to the Rainbow tab and select a color. Switch back to the
Hello tab and the text of the label will be updated appropriately.

What just happened?
Events allow components to communicate in a highly decoupled mechanism. Using events to
pass data means that the only shared context is the name of the topic.

The OSGi EventAdmin service is a key component and will always be available in current
Eclipse 3.x and E4 applications, since much of the lower-level implementations are based
on events. Either the Eclipse EventBroker wrapper or the EventAdmin can be used,
depending on personal preferences. However, if the code is to be used in other OSGi
systems, building directly on top of the EventAdmin will give the greatest portability.

The Event object is either created automatically using EventBroker or can be created
manually. Each Event has an associated topic, which is a String identifier that allows
producers and consumers to coordinate with each other.

Map<String, Object> properties = new HashMap<String,Object>();
properties.put("message","Hello World");
properties.put(IEventBroker.DATA,"E4 Data Object");
eventAdmin.postEvent(new Event("topic/name",properties));

Note, that if the object passed in is a Map or Dictionary, it gets passed to the EventAdmin
as is. To pass a Map and receive it using the E4 tools, another Map, must be created and
passed in with the IEventBroker.DATA key. Alternatively, the EventAdmin service can be
used directly.

Understanding the Eclipse 4 Model

[214]

The Event can be posted synchronously (that is on the same thread as the delivery agent) or
asynchronously (on a non-background thread).

 � Synchronously, using sendEvent() or send()

 � Asynchronously, using postEvent() or post()

Synchronous or Asynchronous?
Generally using asynchronous delivery is recommended, since
synchronous delivery will block the calling thread. When delivering
events from the UI asynchronous delivery should always be used, since
it is not possible to place any bounds on how long the event receivers
may take to execute.

To receive an event, a listener needs to be registered with the topic. This can be done via the
OSGi EventAdmin service, or with the @EventTopic and @UIEventTopic annotations on
a method marked with @Inject @Optional.

If an Event needs to be processed on the UI thread, it should not be sent synchronously
from the UI thread. Doing so invites delays and blocking the UI, since it is possible for other
listeners to pick up on the event and do excessive computation on an unnecessary thread.
Instead, send it from a non-UI thread, and in the event hander, delegate it to the UI thread or
consume it via the @UIEventTopic annotation.

The topic name is specified in the annotation (or via the subscription in the EventHandler
interface). Topic names can be any string, but are typically separated with / characters.
This is because the OSGi specification allows for subscription to both topics by exact match
and to partial matches. The subscription topic/* will pick up both topic/name and
topic/another/example. Note that it is not a regular expression; the topics are explicitly
delimited by the / character, and /* means "and everything below". So topic/n*e won't
match anything, and nor will topic/*/example.

To be more selective about the topics subscribed, use the EventAdmin EVENT_FILTER
to specify an LDAP-style query. Subscribe to the highest level that makes sense (such as
topic/*) and then use an LDAP filter to refine it further, using event.filter with
(event.topic=topic/n*e).

Currently, the annotations cannot be used to apply an LDAP filter, but it's possible to register
an EventHandler interface which supplies this property.

Finally, it is conventional for the topic name to be constructed from the same kind
of reverse domain names used for bundles, with . replaced with / for example
com/packtpub/e4/app/.

Chapter 7

[215]

Time for action – calculating values on demand
The Eclipse context can supply not only services but also dynamically calculated values.
These are supplied via an interface IContextFuction. By registering a service with that
class name, and a key name with the service.context.key it is possible to create a value
upon request.

1. Create a class called RandomFunction which extends ContextFunction and
which returns a random value:
package com.packtpub.e4.application;
import org.eclipse.e4.core.contexts.IContextFunction;
import org.eclipse.e4.core.contexts.IEclipseContext;
public final class RandomFunction extends ContextFunction {
 @Override
 public Object compute(final IEclipseContext context) {
 return Math.random();
 }
}

2. To allow E4 to recognize the function, register an instance with the OSGi runtime.
This could be done within the Activator, but currently a bug prevents this
from happening. Instead, register it using declarative services. Create a file called
random.xml in a folder called OSGI-INF with the following content:
<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="math.random">
 <implementation
 class="com.packtpub.e4.application.RandomFunction"/>
 <service>
 <provide
 interface="org.eclipse.e4.core.contexts.IContextFunction"/>
 </service>
 <property name="service.context.key" type="String"
 value="math.random"/>
</scr:component>

3. Add the OSGI-INF folder to the build.properties, to ensure that it gets added
when the bundle is built:
bin.includes = OSGI-INF/,\
 META-INF/,\

4. To allow DS to load and create the component, add this header into META-INF/
MANIFEST.MF:
Service-Component: OSGI-INF/*.xml

Understanding the Eclipse 4 Model

[216]

5. Finally, inject this value into the application. In the Hello part, add the following:
@Inject
@Named("math.random")
private Object random;
@PostConstruct
public void create(Composite parent) {
 label = new Label(parent, SWT.NONE);
 label.setText(window.getLabel() + " " + random);
}

6. Run the application, and this time, the Hello tab starts out with a random value
appended to the window's title text. Each time the application is started, a different
value is calculated.

What just happened?
The IEclipseContext can acquire calculated values as well as values inserted
into the runtime. The calculation is done through a function, registered with the
IContextFunction interface—though currently the only way to register it is with the
declarative services model, as shown previously.

The implementation class should extend ContextFunction, as the interface
IContextFunction is marked as @NoImplement. This allows additional
methods to be added. In Eclipse 4.3, a new method was added to the interface
compute(IEclipseContext,String) which was also added to the ContextFunction
parent class.

The OSGi declarative services API allows a service to be created and made available to
clients that need to use it. To register a service with DS, a service document is created (in the
example this is random.xml), and it is referred to with the Service-Component header in
the MANIFEST.MF file. When the plug-in is installed, the DS component notices this header,
reads the service document, and then creates the class. This class then becomes available
through the E4 context for inclusion in the injection of parts.

Note that the value of the calculated function is cached upon first calculation. So even if the
code is changed to inject the value as a method parameter, only the first value calculated
will be seen. Although the IEclipseContext has a method to remove the value, it doesn't
necessarily trigger the removal from all contexts. The recommendation is to use an OSGi
service for data that must be calculated each time.

Chapter 7

[217]

Time for action – using preferences
In addition to injecting in specific elements from the context, it is also possible to acquire
preferences from the Eclipse preference store. Recall that preferences are stored in a
hierarchical node structure, with each node having an identifier (conventionally the plug-in
name) and a number of key/value pairs. An annotation @Preference allows these to be
accessed easily.

1. Add a String greeting field to the Hello part. To obtain a preference, annotate
it with @Inject and @Preference as follows:
@Inject
@Preference(nodePath="com.packtpub.e4.application",
 value="greeting")
private String greeting;

2. Modify the create() method to use this greeting value as the initial value for the
Hello label.
@PostConstruct
public void create(Composite parent) {
 label = new Label(parent, SWT.NONE);
 label.setText(greeting+" "+window.getLabel()+" "+random);

3. Run the application, and the Hello label will show a null value for the greeting.

4. To set a preference value, an IEclipsePreferences object needs to be injected
into the Hello part. Add a new field called prefs which is used to interact with the
preferences store:
@Inject
@Preference(nodePath="com.packtpub.e4.application")
private IEclipsePreferences prefs;

If the preference's nodePath is not specified, a runtime
error occurs.

5. Modify the receiveEvent() method created previously and set the value of the
color as the greeting:
@Inject
@Optional
public void receiveEvent(
 @UIEventTopic("rainbow/colour") String data) {
 label.setText(data);
 prefs.put("greeting", "I like " + data);
 prefs.sync();
}

Understanding the Eclipse 4 Model

[218]

6. Now run the application, go to the Rainbow tab and select a color. Switch back
to the Hello tab and verify that the event was received. Now, close down the
application and re-open the application; the persisted greeting should be visible
(provided that the workspace is not being cleaned upon each launch).

7. Changes to the preference value gets injected dynamically into the part, but as it
stands there is no notification when an injected field value has been changed. To be
notified when a new value is set, the preference can be injected as an annotated @
Preference parameter on an @Optional method:
@Inject
@Optional
void setText(@Preference(nodePath="com.packtpub.e4.application",
 value="greeting") String text) {
 if (text != null && label != null && !label.isDisposed()) {
 // NB Run in UI thread!
 label.setText(text);
 }
}

8. Now, if the preference is set, the label's text will be updated automatically. However,
the preference invocation is not necessarily on the UI thread, so the call should be
delegated appropriately. It may also be the case that this method is called during
startup or as the runtime is closing down, in which case, the setting of any UI
components need to be guarded against either being null or being disposed.

What just happened?
Acquiring preferences with E4 injection makes it trivial to obtain and set preference values.
Using a single preference value is the easiest way to get individual values; however, if the
preferences need to be mutated then a reference to the IEclipsePreferences store
is required.

If the user interface needs to react to changes in the preference, the preference value should
be injected via a setter. When the preference value changes, the setter is invoked and it can
update the UI.

Note that the preference value setter may be invoked on any thread; if the UI needs to
be updated then this should be done via the UI thread. How to do this is covered in the
next section.

Chapter 7

[219]

Time for action – interacting with the UI
Sometimes it is necessary to write code to run in the UI thread, but when called back via a
handler it's not always clear if the method is in the UI thread or not. In Eclipse 3.x there is
a Display.getDefault().syncExec() for running Runnables inside the UI thread,
or .asyncExec() for a non-UI thread. Eclipse 4 introduces the UISynchronize class,
which is an abstract mechanism for executing code on the UI thread. (It's like an interface for
Display, except that Display doesn't implement it and it's not an interface.) This provides
syncExec() and asyncExec() methods which can be used to schedule Runnable events.
If a long calculation needs to update the UI after concluding, using UISynchronize allows
the UI update to be scheduled on the right thread.

1. Create a new Button as a field in the Hello part, and attach a selection listener such
that when it is pressed, it invokes setEnabled(false) on itself. At the same time,
schedule a Job to run after one second that invokes setEnabled(true) again:
private Button button;
@PostConstruct
public void create(Composite parent) {
 button = new Button(parent, SWT.PUSH);
 button.setText("Do not push");
 button.addSelectionListener(new SelectionListener() {
 @Override
 public void widgetSelected(SelectionEvent e) {
 button.setEnabled(false);
 new Job("Button Pusher") {
 @Override
 protected IStatus run(IProgressMonitor monitor) {
 button.setEnabled(true);
 return Status.OK_STATUS;
 }
 }.schedule(1000);
 }
 @Override
 public void widgetDefaultSelected(SelectionEvent e) {
 }
 });
 ...
}

Understanding the Eclipse 4 Model

[220]

2. When the application runs and the button is pushed, the button will be disabled
(grayed out) immediately. One second later, an exception will be logged to the
console with an "Invalid thread access" message:
!MESSAGE An internal error occurred during: "Button Pusher".
!STACK 0
org.eclipse.swt.SWTException: Invalid thread access
 at org.eclipse.swt.SWT.error(SWT.java:4361)

3. The error occurs because the setEnabled() call must be made on the UI thread.
Although Display.getDefault().syncExec() can be used to do this, E4
provides an annotation-based way of doing the same thing. Inject an instance of the
UISynchronize into the Hello part:
@Inject
private UISynchronize ui;

4. Modify the Job implementation in the create() method as follows:
protected IStatus run(IProgressMonitor monitor) {
 ui.asyncExec(new Runnable() {
 @Override
 public void run() {
 button.setEnabled(true);
 }
 });
 return Status.OK_STATUS;
}

5. Now run the application and press the button. It will be disabled for one second,
and then re-enabled afterwards.

What just happened?
Using UISynchronize provides a way to interact with the UI thread safely. Another way of
achieving this would be to use a UIJob.

One advantage of using UISynchronize is that it is not necessarily tied down to SWT. E4
provides the option of having different part renderers, which could allow for future runtimes
based on HTML or Swing, or JavaFX such as e(fx)clipse.

When building plug-ins that will be shared between E4 and Eclipse 3.x systems, continue
to use Display.getDefault() or Display.getCurrent() in order to schedule UI
updates, as the UISynchronize class is not present in earlier releases.

Chapter 7

[221]

Using Commands, Handlers, and MenuItems
The command and handlers in Eclipse 4 work the same way as in Eclipse 3. A command
represents a generic operation, and the handler is the code that implements the operation.
However, the implementation for the handler takes advantage of E4's annotations, instead of
a custom subclass.

Time for action – wiring a menu to a command with a handler
As with Eclipse 3.x, a command has an identifier and an associated Handler class, which can
be bound to Menus. Unlike Eclipse 3.x, it is not specified in the plugin.xml file; instead, it
is specified in the Application.e4xmi file.

1. Open the Application.e4xmi file in the com.packtpub.e4.application
project.

2. Navigate to the Application | Commands node in the tree, and click on Add child to
add a new command:

 � ID: com.packtpub.e4.application.command.hello

 � Name: helloCommand

 � Description: Says Hello

Understanding the Eclipse 4 Model

[222]

3. Create a HelloHandler class in the com.packtpub.e4.application.
handlers package. It doesn't need to have any specific superclass or method
implementation. Instead, create a method called hello()which takes no
arguments, and prints a message to System.out. The method needs the
@Execute annotation:
package com.packtpub.e4.application.handlers;
import org.eclipse.e4.core.di.annotations.Execute;
public class HelloHandler {
 @Execute
 public void hello() {
 System.out.println("Hello World");
 }
}

4. The handler needs to be defined in the Application.e4xmi. Navigate to the
Application | Handlers node in the tree, and right-click and Add child to add a new
handler. Fill in the details as follows:

 � ID: com.packtpub.e4.application.handler.hello

 � Command: helloCommand – com.packtpub.e4.application.
command.hello

 � Class URI: bundleclass://com.packtpub.e4.application/
com.packtpub.e4.application.handlers.HelloHandler

Chapter 7

[223]

5. Finally, to associate the handler with a menu, go into the Application | Windows |
Trimmed Window | Main Menu | File and click on Add child to add a new Handled
MenuItem. This can also be done by right-clicking on the Menu – File node and
choosing Add child | Handled MenuItem. Add it as follows:

 � ID: com.packtpub.e4.application.handledmenuitem.hello

 � Label: Hello

 � Tooltip: Says Hello World

 � Command: helloCommand – com.packtpub.e4.application.
command.hello

6. Save the Application.e4xmi and run the application. Go to the File menu, and
click on Hello from the menu item to display Hello World in the Console view of the
host Eclipse.

What just happened?
The HelloHandler class provides a simple message output and an entry point annotated
with @Execute. The handler can also report whether it can be executed through a boolean
returning method annotated with @CanExecute, but this defaults to true if a handler is
always valid.

Understanding the Eclipse 4 Model

[224]

A command is a generic ID that can be associated with one or more handlers and with
one or more UI elements, such as MenuItems, Buttons, or programmatic execution. The
helloCommand is associated by default to the HelloHandler.

Finally, the command is associated with the File | Hello menu item so that it can be invoked.

Time for action – passing command parameters
Displaying a message to System.out shows that the command works, but what if
the command needed to pick up a local state? Fortunately, the @Named and @Inject
annotations allow objects to be injected into the method when it is called.

1. Modify the hello() method so that instead of printing a message to System.out,
it opens a dialog window, using the active shell:
public void hello(@Named(IServiceConstants.ACTIVE_SHELL) Shell s){
 MessageDialog.openInformation(s, "Hello World",
 "Welcome to Eclipse 4 technology");
}

2. Other arguments can be passed in from the context, managed by the
IEclipseContext interface. For example, using the math.random function from
earlier, a value could be injected into the handler like this:
public void hello(@Named(IServiceConstants.ACTIVE_SHELL) Shell s,
 @Named("math.random") double value) {

3. If the same handler is being used for different functions (for example, Paste
and Paste Special) they can be disambiguated by passing in a hard-coded value
in the command. Modify the helloCommand to add a parameter, by opening
the Application.e4xmi and navigating to the Application | Commands |
helloCommand, right-click and go to Add child | Command Parameter to add a
command parameter:

 � ID: com.packtpub.e4.application.commandparameter.hello.
value

 � Name: hello.value

 � Optional: Ensure that Optional is selected

Chapter 7

[225]

4. To pass a value into the command, go to the Application.e4xmi and navigate to
Application | Windows | Main Menu | Menu (File) | HandledMenuItem (Hello) |
Parameters. Right-click and go to Add child | Parameter to create a parameter:

 � ID: com.packtpub.e4.application.parameter.hello.value

 � Name: com.packtpub.e4.application.commandparameter.hello.
value

 � Value: Hello World Parameter

Understanding the Eclipse 4 Model

[226]

5. Finally, modify the command handler so that it receives the value encoded
with the handler:
public void hello(@Named(IServiceConstants.ACTIVE_SHELL) Shell s,
 @Optional
 @Named(
 "com.packtpub.e4.application.commandparameter.hello.value")
 String hello)
 @Named("math.random") double value) {
 MessageDialog.openInformation(s, "Hello World", hello+value);
 }
}

6. Run the application, and go to the File | Hello menu. The parameter will be passed
in to the handler

What just happened?
Any values can be injected into the method when it is invoked, provided that they are
available in the context when the handler is called. These can be taken from standard
constants (such as those in IServiceConstants) or be custom values injected at runtime.
Other values include:

 � ACTIVE_WINDOW: The currently displayed window

 � ACTIVE_PART: The currently selected part

 � ACTIVE_SELECTION: The current selection

If the values are one of a set of values, they can be encoded in the menu or other command
invocation. They can also be set via code which calls IEclipseContext.set() with an
appropriate value.

Time for action – creating a direct menu and keybindings
Although using commands and handlers provides a generic way for reusing content, it is
possible to provide a shorter route to implementing menus with a Direct MenuItem. The
difference between this and a Handled MenuItem is that Direct just contains a reference to
the @Executable class.

1. To add a new direct menu item, open the Application.e4xmi file and navigate to
the Application | Windows | Trimmed Window | Main Menu | Menu (File). Right-
click on the menu and choose Add child | Direct MenuItem. In the dialog shown, fill
in the details, including the class URI link to the HelloHandler, defined previously:

 � ID: com.packtpub.e4.application.directmenuitem.hello

 � Label: Direct Hello

Chapter 7

[227]

 � Class URI: bundleclass://com.packtpub.e4.application/
com.packtpub.e4.application.handlers.HelloHandler

2. Run the application, choose File | Direct Hello to show the same message as before.

3. Keys can be bound to commands in an application, and can be enabled in one
of the several UI contexts. By default, these include In Dialogs and Windows, In
Dialogs, and In Windows; additional contexts can be created. To set a keybinding
to the menu, open the Application.e4xmi and navigate to the Application |
BindingTables | BindingTable – In Dialog and Windows. Right-click on the binding
table and Add child | KeyBinding. Fill in the fields as follows:

 � ID: leave blank

 � Sequence: M1+L

Understanding the Eclipse 4 Model

[228]

 � Command: helloCommand - com.packtpub.e4.application.
command.hello

4. Run the application, and press M1 + L (Cmd + L on OS X, Alt + L on Windows/Linux).
The Hello command will be run.

What just happened?
A Direct MenuItem is a way of hooking up a menu item directly to an executable method in
a very simple way, without needing to have a separate command and handler defined. For
application-wide operations, such as quitting the application, using a Direct MenuItem may
be appropriate.

However, if the command needs to be handled in a different context then it is more
appropriate to define a handler which can be replaced in different scopes.

Unlike a Handled MenuItem, the Direct MenuItem cannot have command parameters
associated with it. Nor can a Direct MenuItem have a keybinding assigned.

Chapter 7

[229]

To associate a keybinding with a command, an associated context must be selected. This
is typically the In Dialogs and Windows, although other contexts can be selected as well
(such as In Dialogs and In Windows). These are represented as the Binding Table in the
Application.e4xmi node.

The sequence can be a single character, or it can be a sequence of characters. The meta
characters (M1, M2, M3, M4, and so on) are defined in the org.eclipse.ui.bindings
extension point.

 � M1 is the Cmd key on OS X and Ctrl on Windows

 � M2 is Shift on all platforms

 � M3 is Alt on all platforms

 � M4 is Ctrl on OS X

When the binding is invoked, it will execute the command specified in the list. As a
command, it can have associated parameters like the Handled MenuItems.

Time for action – creating a pop-up menu and a view menu
Pop-up and view menus are defined declaratively in the Application.e4xmi file. These
are specific to a part, so the option is defined underneath the part declaration.

1. Open the Application.e4xmi file.

2. Navigate to Application | Windows | Trimmed Window | Controls |
Perspective Stack | Perspective | Controls | PartSashContainer |
Part Stack | Part (Hello) | Menus.

3. Right-click on the Menus node and go to Add child | Popup Menu. Now
right-click on the Popup Menu and do Add child | HandledMenuItem.
This is exactly the same as for other menus; fill in the details as follows:

 � Label: Hello

Understanding the Eclipse 4 Model

[230]

 � Command: helloCommand - com.packtpub.e4.application.
command.hello

4. Right-click on the Menus node again, and go to Add child | View Menu. Give the
menu a label View Menu and right-click to Add child | Handled MenuItem. Use the
same label and command as for the pop-up menu.

5. Run the application. On the top-right, there will be a triangular drop-down icon
which should contain the view menu. However, the pop-up menu won't be
triggered, because the SWT component has to be bound to the pop-up menu
through its ID.

Chapter 7

[231]

6. Go to Popup Menu and set the ID to com.packtpub.e4.application.
popupmenu.hello:

7. Add the org.eclipse.e4.ui.workbench.swt dependency to the dependencies
tab of the plugin.xml editor.

8. Add a line to the Hello class' create() method, that registers the context menu
with the ID specified. To do this, a new parameter EMenuService menu needs to
be passed, from which registerContextMenu() can be called:
public void create(Composite parent, EMenuService menu) {
 menu.registerContextMenu(parent,
 "com.packtpub.e4.application.popupmenu.hello");

9. Run the application, and right-click on the Hello label or elsewhere in the Hello part.
The pop-up menu should be shown, and the Hello command can be run.

What just happened?
The pop-up menu can be associated with a part, but it doesn't get shown by default. Instead,
it has to be registered with a SWT widget. The pop-up menu can be for the entire part's
component, or it can be just for specific components in the part.

Understanding the Eclipse 4 Model

[232]

The EMenuService is the interface to the E4 menus. It gets injected into the creation of the
widget and provides the detector to listen to the mouse and keyboard events that trigger the
pop-up menu.

Adding a View Menu is exactly the same as a Popup Menu, except that no additional code is
required to make it happen.

Creating custom injectable classes
The injection framework in E4 allows custom injectable classes and services. In addition to
registering OSGi services, POJOs can be defined and instantiated on demand.

The rules for allowing a type to be instantiated automatically are:

 � It must be a non-abstract class.

 � It must have a non-private default constructor.

 � It must be annotated with @Creatable.

Time for action – creating a simple service
POJOs can be instantiated and made available in the E4 context, such that they can be
injected into other classes or created on demand. This allows an application to be built in a
flexible manner without tight coupling between services.

1. Create a class in the com.packtpub.e4.application package called
StringService with a @Creatable annotation, and a process() method that
takes a String and returns an upper-case version:
import org.eclipse.e4.core.di.annotations.Creatable;
@Creatable
public class SimpleService {
 public String process(String string) {
 return string.toUpperCase();
 }
}

2. Add an injectable instance of StringService to the Rainbow class:
@Inject
private StringService stringService;

3. Use the injected service to process the string color choice before posting
the event to the event broker:
public void selectionChanged(SelectionChangedEvent event) {
 IStructuredSelection sel = (IStructuredSelection)

Chapter 7

[233]

 event.getSelection();
 Object colour = sel.getFirstElement();
 broker.post("rainbow/colour",
 stringService.process(colour.toString()));
}

4. Run the application. Go to the Rainbow part and select a color; switch back to the
Hello part, and the color should be shown, but in uppercase.

What just happened?
By denoting a POJO with @Creatable, when the dependency injection in E4 needs to satisfy
a type it knows that it can create an instance of the class to satisfy the injection demand. It
will invoke the default constructor and assign the result to the injected field.

Note that the resulting instance is not stored in the context; as a result, if additional
instances are required (either in a separate field in the same part, or in an alternative part)
the dependency injection will create new instances for each injection.

Generally, the use of injectable POJOs in this way should be restricted to stateless services. If
the service needs a state that should be shared by multiple callers, register an OSGi service
instead, or use a singleton service injected in the context.

Time for action – injecting subtypes
Although creating a POJO can be an efficient way of creating simple classes, it can be limiting
to have a concrete class definition scattered through the class definitions. It is a better design
to use either an abstract class or an interface as the service type.

1. Create a new interface in the com.packtpub.e4.application package, called
IStringService. Define the process() method as abstract:
public interface IStringService {
 public abstract String process(String string);
}

2. Modify the reference in the Rainbow class to refer to the
IStringService interface instead of the StringService class:
@Inject
private IStringService stringService;

Understanding the Eclipse 4 Model

[234]

3. Run the application, switch to the Rainbow tab, and a dependency injection fault
will be shown in the host Eclipse instance's Console view:
org.eclipse.e4.core.di.InjectionException:
 Unable to process "Rainbow.stringService":
 no actual value was found for the argument "IStringService".

4. Although the runtime knows that the StringService is a @Creatable instance,
it doesn't look for subtypes of an interface by default. To inject an alternative type,
modify the Activator and add the following:
public class Activator implements BundleActivator {
 public void start(BundleContext bundleContext) throws Exception{
 Activator.context = bundleContext;
 InjectorFactory.getDefault().
 addBinding(IStringService.class).
 implementedBy(StringService.class);
 }
}

5. Run the application and the part should be created correctly.

What just happened?
Using an interface for the service type is best practice, since it further decouples the use
of the service with its implementation. In order for the dependency injection framework
to provide an instance of an abstract type (whether an interface or abstract class, or even
a concrete class without a @Creatable annotation) a binding needs to be created for
the injector.

The binding created above tells the InjectorFactory to create an instance of
StringService when an IStringService is required.

Have a go hero – using the tools bridge
Although Eclipse 3.x parts can run in an Eclipse 4 IDE, to take advantage of the E4 model the
code has to be implemented as a POJO such that it can be registered with a model. To fit an
E4 POJO into an Eclipse 3.x IDE, the E4 bridge has to be used. Install the "Eclipse E4 Tools
Bridge for 3.x" from the E4 update site, which provides the compatibility views.

Now, create a class called HelloView which extends DIViewPart<Hello> and passes the
instance of Hello.class to the superclass' constructor. Register the HelloView in the
plugin.xml as would be the case with Eclipse 3.x views, and the part is now visible either
as a standalone part in Eclipse 4 or as a wrapped view in Eclipse 3.x.

Chapter 7

[235]

Pop quiz – understanding E4
Q1. What is the application model, and what is it used for?

Q2. What is the different between a part and a view?

Q3. Are extension points still used in Eclipse 4?

Q4. How can Eclipse 4 parts be styled?

Q5. What is the Eclipse 4 context?

Q6. What annotations are used by Eclipse 4, and what are their purpose?

Q7. How are preferences accessed in Eclipse 4?

Q8. How can messages be sent and received on the event bus?

Q9. How is the selection accessed in Eclipse 4?

Summary
Eclipse 4 is a new way of building Eclipse applications, and provides a number of features
that make creating parts (views/editors), as well as obtaining service references and
communication between parts much easier. If you are building Eclipse-based RCP
applications, then there is no reason not to jump on the Eclipse 4 framework to take
advantage of its features.

If you are building plug-ins that will run on both Eclipse 3.x and Eclipse 4, then you have to
consider backward compatibility requirements before you can make the switch. One way
of supporting both is to use the workbench compatibility plug-in (which is what Eclipse
4.x uses if you download the SDK or one of the EPP packages) and continue to use the
Eclipse 3.x APIs. However, this means the code cannot take advantage of the Eclipse 4.x
mechanisms. Another approach is to write Eclipse 4 based plug-ins, and then wrap them in
a reverse compatibility layer. Such a layer is provided in the "Eclipse E4 Tools Bridge for 3.x"
feature, which is available from the E4 tools update site. This provides classes DIViewPart,
DISaveableViewPart, and DIEditorPart, which can be used to provide an adapter for
an E4 part in an Eclipse 3.x view extension point.

In the next chapter, we'll look at how to create features and update sites that allows the
plug-ins written so far to be served and installed into other Eclipse applications.

8
Creating Features, Update Sites,

Applications, and Products

Eclipse is much more than just an application; its plug-in architecture allows
additional functionality to be installed. Plug-ins can be grouped into features,
and both can be hosted on an update site. These allow functionality to be
installed into an existing application, but it's also possible to build your own
applications and products.

In this chapter, we shall:

 � Create a feature that combines plug-ins

 � Generate an update site containing features and plug-ins

 � Categorize the update site

 � Create an application

 � Create and export a product

Grouping plug-ins with features
Although functionality is provided in Eclipse through the use of plug-ins, typically individual
plug-ins aren't installed separately. Historically, the Eclipse platform only dealt with features,
a means of grouping a number of plug-ins together. Although the P2 update system (used in
Eclipse since 3.5) is capable of installing plug-ins separately, almost all functionality used in
Eclipse runtimes is installed through features.

Creating Features, Update Sites, Applications, and Products

[238]

Time for action – creating a feature
A feature project is used in Eclipse to create, test, and export features. Features are used to
group many plug-ins together into a coherent unit. For example, the JDT feature consists of
26 separate plug-ins. Features are also used in the construction of update sites, which are
covered later in this chapter.

1. Create a feature project by going to File | New | Project... and then selecting
Feature Project.

2. Name the project com.packtpub.e4.feature and this will be used as the default
name for the Feature ID. As with plug-ins, they are named in reverse domain name
format, though typically they end with feature to distinguish them from the
plug-in that they represent. The version number defaults to 1.0.0.qualifier.
The feature name is used as the text name which is shown to the user when it's
installed, and will default to the last segment of the the project name.

Chapter 8

[239]

3. Click on Next and it will prompt for plug-ins to be chosen. Choose com.packtpub.
e4.clock.ui from the list.

4. Click on Finish to create the feature project.

5. Double-click on the feature.xml file to open it in an editor, go to the Plug-ins tab,
and verify that the clock plug-in has been added as part of the feature.

6. Add additional information such as feature descriptions, copyright notices, and
license agreements via the Information tab.

What just happened?
A feature project called com.packtpub.e4.feature was created with a feature.xml
file. The information specified in the dialog can be seen in this file, and changed later
if necessary.

<feature id="com.packtpub.e4.feature"
 label="Feature"
 version="1.0.0.qualifier"
 provider-name="PACKTPUB">
 <plugin id="com.packtpub.e4.clock.ui"

Creating Features, Update Sites, Applications, and Products

[240]

 download-size="0"
 install-size="0"
 version="0.0.0"
 unpack="false"/>
</feature>

The feature ID must be globally unique, as this is the identifier Eclipse and P2 will use for
installation. The feature version follows the same format as plug-in versions; major.minor.
micro.qualifier, where:

 � Increments of major versions indicate backward incompatible changes

 � Increments of minor versions indicate new functionality with backward compatibility

 � Increments of micro versions indicate no new functionality other than bug fixes

The qualifier can be any textual value. The special keyword qualifier is used by Eclipse to
substitute the build number, which if not specified is formed from the date and timestamp.

The plug-in listed here is the one chosen from the wizard. It will default to 0.0.0—but when
the feature is published, it will choose the highest version available and then replace the
version string for the plug-in.

There may also be other elements in the feature.xml file, such as license,
description, and copyright. These are optional, but if present, will be displayed
in the update dialog when installing.

Time for action – exporting a feature
Once a feature has been created and has one or more plug-ins added, they can be exported
from the workbench. An exported feature can be installed into other Eclipse instances, as the
next section will demonstrate. Note that exporting a feature also builds and exports all the
associated plug-ins as well.

1. To export a plug-in, go to File | Export | Deployable features. This will launch a
dialog with the option to select any features in the workspace.

2. Choose the com.packtpub.e4.feature and give a suitable directory location.

Chapter 8

[241]

3. Click on Finish and the feature and all of its plug-ins will be exported.

4. Open the destination location in a file explorer and see the files created:

 � artifacts.jar

 � content.jar

 � features/com.packtpub.e4.feature_1.0.0.201305070958.jar

 � plugins/com.packtpub.e4.clock.ui_1.0.0.201305070958.jar

What just happened?
The File | Export | Deployable features did a number of steps under the covers. First, it
compiled the referenced plug-ins into their own JARs. It then zipped up the contents of the
feature project, and finally moved them both into the directory under the features and
plugins subdirectories.

When a feature is exported, the associated plug-ins are built, and so problems in exporting
are often caused by problems compiling the plug-ins.

Creating Features, Update Sites, Applications, and Products

[242]

To debug problems with plug-in compilation, check the build.properties file. This is
used to control the ant-based build that PDE uses under the covers. Sometimes, PDE will flag
warnings or errors in this file, especially if the source or compilation folders are moved or
renamed after creating a project.

A build.properties file looks similar to the following:

source.. = src/
output.. = bin/
bin.includes = plugin.xml,\
 META-INF/,\
 .,\
 icons/

If there are any problems, verify that these correspond to paths in the plug-in's directory.
The source.. is actually a reference to the current directory. If there are multiple JARs
being created, then this will read source.ajar and source.anotherjar. The source
directive is used if plug-ins have source exported; classes and other compiled output comes
from the output property. If the output directory is renamed (for example target/
classes) then ensure the output.. property is updated in the build.properties file.

If there are non-Java assets that need to be exported, they must be explicitly listed in this
file. If a directory (such as icons/) is included, then this path will be re-created in the plug-
in's JAR structure when it is created. Individual assets underneath the icons/ folder do not
need to be explicitly listed.

Oracle Java 1.7 on OSX
Exporting a feature on OSX with Oracle's Java 1.7 may give an error such
as, /Library/Java/JavaVirtualMachines/.../Contents/
Home/Classes does not exist. To fix this, go into the Home
directory mentioned in the error, and run sudo ln -s jre/lib
Classes to re-create it.

Time for action – installing a feature
Now that the feature has been exported, it can be installed into Eclipse. Either the current
Eclipse instance can be used for this, or a new instance of Eclipse can be created by running the
eclipse executable with a different workspace. (On OS X double-clicking on the Eclipse.
app will show the current Eclipse instance again; to run a second instance on OSX, open up the
application in the terminal and run eclipse from the home of the application folder.)

1. To install the feature into Eclipse, go to Help | Install New Software....

Chapter 8

[243]

2. In the dialog that appears, type in the directory's URL in the work with box. If the
feature was exported into /tmp/exported, then put file:///tmp/exported
into the work with field. If it was exported on Windows, say to c:\temp\exported
then use a URL such as file:///c:/temp/exported. Note that on Windows the
directory slashes are reversed in the URL.

3. After the URL has been put in, hit Enter. The message may say no categorized
items—but deselect the checkbox at the bottom Group items by category and
the feature should appear:

4. Select the checkbox next to the feature and click on Finish to install the feature and
associated plug-in to the Eclipse workspace.

5. Restart Eclipse to complete the install.

6. Verify that the various Clock views are available by going to Window | Show View |
Other | Timekeeping.

What just happened?
The feature exported from the earlier step was imported from the same location. Unless the
feature is categorized, it won't show up on the list of things to install. Deselecting the Group
items by category checkbox allows all features to be shown, not just categorized ones.

The Feature name here is derived from the default value in the feature.xml file; it can be
replaced with a more appropriate value if desired.

Creating Features, Update Sites, Applications, and Products

[244]

If the Eclipse instance isn't showing changes (for example, because the feature or plug-in has
been modified), go to the preferences and find Install/Update | Available Software Sites and
click on the exported repository. The Reload button on the right-hand side will be enabled,
and clicking on that will refresh from disk the contents of the repository.

Once the repository is reloaded, go back into the Help | Install New Software and the
update should be seen. If it is not, verify that the version ends with .qualifier on the end
of the features' and plug-ins' version number. Without a monotonically increasing version
number, Eclipse gets confused and cannot detect that the plug-in or feature has been
changed and so refuses to re-install it. Check also that the exported version of the plug-in
and feature ends with a more recent date, or remove the contents of the exported folder,
export, and then reload.

Time for action – categorizing the update site
The Group items by category mechanism allows a small subset of features to be shown in
the list, grouped by category. Eclipse is a highly modular application, and a regular install
is likely to include over 400 features and over 600 plug-ins. A one-dimensional list of all of
the features will take up a significant amount of UI space and would not provide the best
user experience; and in any case, many of the features are subsets of the core functionality
(Mylyn alone will install over 150 features depending on what combinations are selected in
the install).

Chapter 8

[245]

This categorization works by providing a category.xml file (also known as site.xml)
which defines a category and a collection of features (from Eclipse 4.3 onwards, plug-ins as
well as features). When the Group items by category checkbox is selected, only the groups
and features defined in the category.xml file are shown, and the rest of the features and
plug-ins are hidden. These are usually done via a separate Update Site Project.

1. Create a new project called com.packtpub.e4.update as an Update Site Project.
This will create a new project with a site.xml file. (If it is renamed from site.xml
to category.xml it will fail; so don't do that.)

2. Double-click on the site.xml file and it will open an editor.

3. Click on the New Category button and enter the following:

 � ID: com.packtpub.e4.category

 � Name: PacktPub Example E4 Category

 � Description: Contains features for the PacktPub E4 book by
Alex Blewitt

4. Ensure that the com.packtpub.e4.category is selected, and click on the Add
Feature button.

Creating Features, Update Sites, Applications, and Products

[246]

5. Select the com.packtpub.e4.feature from the pop-up menu, and this will add it
to the highlighted category:

6. Click on the Build All button, and an update site will be materialized into the
project folder:

7. Finally, check that the categories are set up correctly by going into Help | Install
New Software and placing the path to the workspace in use.

Chapter 8

[247]

8. Ensure the Group items by category checkbox is selected, and the category
containing the feature should be seen:

What just happened?
The site.xml file is not required by modern Eclipse runtimes, but the artifacts.jar
and content.jar contain XML files required by P2 to perform installation. These contain a
list of all of the features and plug-ins, and what constraints are required for their installation
(such as the packages a bundle exports or imports).

Creating Features, Update Sites, Applications, and Products

[248]

P2 generates a categorization from either a site.xml or category.xml file. These are
essentially the same, but the update site has a nicer UI for editing and generating the
content required.

<site>
 <feature id="com.packtpub.e4.feature" version="1.0.0.qualifier"
 url="features/com.packtpub.e4.feature_1.0.0.qualifier.jar">
 <category name="com.packtpub.e4.category"/>
 </feature>
 <category-def name="com.packtpub.e4.category"
 label="PacktPub E4 Example Category">
 <description>
 Contains features for the PacktPub E4 book by Alex Blewitt
 </description>
 </category-def>
</site>

This file contains a list of features (which themselves contain plug-ins) and can be used
to generate an update site, which is a features and plugins directory along with the
top-level content. If the artifacts.jar or content.jar is missing (and there is no
site.xml file), Eclipse will be unable to install content from the repository.

The ability to load content from a repository only containing
a site.xml has been removed from Eclipse 4.3 onwards.

When the update site is built, it will replace the .qualifier with a build identifier, which is
derived and then composed of the year/month/day/time. It is possible to override this with
a different value if desired.

The artifacts.jar and content.jar files are ZIP files which contain a single xml file.
This xml file is put in a JAR solely for compression; it can be served (though less efficiently)
as artifacts.xml or content.xml as well.

This update site can be transferred to host onto a remote server to allow installation into
other Eclipse instances. Eclipse supports HTTP as well as FTP by default, although it can be
extended to allow other protocols.

Generally, only top-level features should be exposed in the update site. These may include
other features or plug-ins, but only the top-level features are shown in the update site and in
the installed list in Eclipse via Help | About | Installation Details.

Chapter 8

[249]

Time for action – depending on other features
If a feature needs functionality provided by another feature, it can be declared via the
feature.xml file of the feature itself. For example, installing the E4 feature may depend
on some runtime components provided by JGit, so installing the JGit feature will mean that
everything required is present. To add JGit as a dependency to the E4 feature:

1. Edit the feature.xml file and go to the Dependencies tab.

2. Click on Add Feature and select org.eclipse.jgit from the list. It will fill in a
version range using the exact version specified in the plug-in; invariably it is better
to substitute that with a lower-bound version number since that will allow the
feature to be installed with a dependency that is slightly lower. This will result in a
feature.xml file that looks similar to the following:
<feature id="com.packtpub.e4.feature" label="Feature"
 version="1.0.0.qualifier" provider-name="PACKTPUB">
 <requires>
 <import feature="org.eclipse.jgit" version="2.0.0"/>
 </requires>
 <plugin id="com.packtpub.e4.clock.ui"
 download-size="0"
 install-size="0"

Creating Features, Update Sites, Applications, and Products

[250]

 version="0.0.0"
 unpack="false"/>
<feature/>

3. Run the Build All again. The features/ directory will contain just the
com.packtpub.e4.feature, and the plugins/ directory will contain
just the com.packtpub.e4.clock.ui plug-in.

4. Install the feature again (or do Help | Check for Updates if the directory has already
been added). This time, as well as installing the E4 feature, it should prompt to
install JGit as well, which it will get from the standard Eclipse update sites.

What just happened?
By adding a dependency on another feature, when it is installed into a running Eclipse
platform it requires that the other feature be present. If the Consult all update sites
checkbox is selected, and if the feature is not installed and cannot be found from the
current update site, other update sites will be consulted to acquire the missing feature.

Note that the JGit feature will not be present in the exported site. This is generally desirable
since it is unnecessary to duplicate features that are available elsewhere. However, if this is
desired then remove the dependency from the Dependency tab and add it to the Included
features tab. This will result in the requires dependency being changed to an includes
dependency in the feature.xml file.

Time for action – branding features
Features generally don't show up in the About dialog of Eclipse, as there is only space for a
handful of features to appear there. Only top-level features which have branding information
associated with them are shown in the dialog.

1. Go to Help | About (on OS X, this is under Eclipse | About Eclipse) and there will be a
number of icons present, consisting of the top-level branded features that have been
installed. These features have an associated branding plug-in which contains a file
called about.ini that supplies the information:

Chapter 8

[251]

2. First, set up an association between the feature and its branding plug-in, by re-using
the com.packtpub.e4.clock.ui plug-in from before. Open the feature.xml
file, go to the Overview tab and add the name of the branding plug-in as com.
packtpub.e4.clock.ui:

Creating Features, Update Sites, Applications, and Products

[252]

3. Now, create a file in the com.packtpub.e4.clock.ui plug-in called about.ini
with the following content:
featureImage=icons/sample.gif
aboutText=\
Clock UI plug-in\n\
\n\
Example of how to use plug-ins to modularise applications\n

4. Build the update site, and install the plug-in into Eclipse. After restarting, go to the
Help | About menu. Unfortunately, the about text won't be present. That's because
despite the about.ini file being part of the plug-in, Eclipse doesn't bundle it
into the plug-in's JAR. There is another change which is required in the build.
properties file in the com.packtpub.e4.clock.ui plug-in to include the
about.ini file explicitly:
bin.includes = plugin.xml,\
 META-INF/,\
 .,\
 icons/,\
 about.ini,\
 ...

5. Export the update site and the plug-in JAR will now have the about.ini included.

6. Reload the update site from the Window | Preferences | Install/Update | Available
Update Sites window and by doing a Reload on the exported repository.

7. Run Help | Check for Updates to pick up the changes, and restart Eclipse.

Chapter 8

[253]

8. Go into the About screen to show the generic icon used by the feature:

What just happened?
A feature is associated with a branding plug-in, which contains a section of text and an icon.
This feature branding consists of an about.ini file, which is included in the associated
branding plug-in, and optionally a 32 x 32 icon.

The icon generated by the same wizard is 16 x 16, so it shows up as a quarter of the size of
other icons in this list. A feature icon should be 32 x 32 size, otherwise the inconsistent size
will be seen. Supplying a 32 x 32 feature icon is left as an exercise for the reader.

Have a go hero – publishing the content remotely
Since update sites can be served on websites, upload the update content to a remote web
server and install it from there. Alternatively, use a web server such as Apache or those built
into the operating system to serve the content via a local web server.

Creating Features, Update Sites, Applications, and Products

[254]

Building applications and products
An Eclipse runtime consists of groups of features which are themselves groups of plug-ins.
The application that they all live within is referred to as the product. A product has top-level
branding, dictates what the name of the application is, and coordinates what platforms
the code will run on, including ensuring that any necessary operating system specific
functionality is present. In the previous chapter, a product based on E4 was created; but
products work in the same way for both Eclipse 3.x and Eclipse 4.x.

Time for action – creating a headless application
A product hands the runtime off to an application, which can be thought of as a custom
Eclipse Runnable class. This is the main entry point to the application which is responsible
for setting up and tearing down the content of the application.

1. Create a new plug-in, called com.packtpub.e4.headless.application. Ensure
that the This plug-in will make contributions to the UI checkbox is deselected and
Would you like to create a rich client application is set to No:

Chapter 8

[255]

2. Click on Finish and the project will be created.

3. Open the project and select Plug-in Tools | Open Manifest and go to the Extensions
tab. This is where Eclipse keeps its list of extensions to the system, and where an
application is defined.

4. Click on Add and then type applications into the box. Ensure the Show only
extension points from the required plug-ins checkbox is deselected. Choose the
org.eclipse.core.runtime.applications extension point:

Creating Features, Update Sites, Applications, and Products

[256]

5. When Finish is selected, a dialog may ask if the plug-in should add the dependency
org.eclipse.equinox.app. If so, say Yes to this:

6. The editor will switch to a tree-based view. Right-click on (application) and choose
New | run to create a new application reference:

Chapter 8

[257]

7. Use com.packtpub.e4.headless.application.Application as the class
name and click on the underlined class*: link on the left to open a new class wizard,
which pre-fills the class name and supplies the IApplication interface:

8. Implement the class as follows:
public class Application implements IApplication {
 public Object start(IApplicationContext c) throws Exception {
 System.out.println("Headless Application");
 return null;
 }
 public void stop() {
 }
}

Creating Features, Update Sites, Applications, and Products

[258]

9. Run the application, by going to the Extensions tab of the manifest and clicking on
the play button at the top right, or via the Launch an Eclipse application hyperlink.
Headless Application will be displayed to the Console view.

What just happened?
Creating an application requires an extension point and a class that implements the
IApplication interface. Using the wizard, an application was created and the start
method was implemented with a simple display message.

When play is clicked, Eclipse will create a new launch configuration which points to
an application:

Chapter 8

[259]

This references the automatically generated ID of the application from the plugin.xml.
When Eclipse starts the runtime, it will bring up the runtime environment and then hand
runtime control over to the application instance. At the end of the start method's execution,
the application will terminate.

Time for action – creating a product
An Eclipse product is a branding and a reference to an application. The product also has
control over what features or plug-ins will be available, and whether those plug-ins will be
started or not (and if so, in what order).

Chapter 7, Understanding the Eclipse 4 Model created a product to bootstrap the E4
application (provided by the org.eclipse.e4.ui.workbench.swt.E4Application
class) but this section will create a product that binds to the headless application created
previously to demonstrate how the linkage works.

1. Use File | New | Other | Plug-in Development | Product Configuration to bring up
the product wizard.

2. Select the com.packtpub.e4.headless.application project and put
headless as the filename.

3. Leave Create a configuration file with the basic settings selected.

4. Click on Finish and it will open up headless.product in an editor.

5. Fill in the details as follows:

 � ID: com.packtpub.e4.headless.application.product

 � Version: 1.0.0

 � Name: Headless Product

6. Click on New on the right of the product definition section, which will launch a
dialog to create a product. Fill in the dialog as follows:

 � Defining plug-in: com.packtpub.e4.headless.application

 � Product ID: product

Creating Features, Update Sites, Applications, and Products

[260]

 � Application: com.packtpub.e4.headless.application.id

It may say id1, id2, and so on. This comes from the plugin.xml
file in the previous step.

7. Click on Run on the top-right corner of the product to launch the product:

Chapter 8

[261]

8. There will be an error reported java.lang.ClassNotFoundException: org.
eclipse.core.runtime.adaptor.EclipseStarter because the runtime can't
find the required plug-ins. Switch to the Dependencies tab, and add:

 � com.packtpub.e4.headless.application

 � org.eclipse.core.runtime

9. Click on Add Required Plug-ins and the rest of the dependencies will be added:

Creating Features, Update Sites, Applications, and Products

[262]

10. Run the product and the same Headless Application should be displayed as before.

11. Export the product, either via File | Export | Plug-in Development | Eclipse Product,
or via the Export button at the top of the product editor, to a local directory.

12. From the directory where the product was exported, run eclipse to see the
message being printed. On Windows, run eclipsec.exe to see the output.
On OS X, run Eclipse.app/Contents/MacOS/eclipse.

What just happened?
Using and running a product may not seem that different from running an application, but
the key difference between the two is that an application is a start point and one which can
be installed into an existing Eclipse runtime, whereas a product is a standalone system that
can be run independently.

A product defines the look and feel of the application's launch icons, specifies what will be
bundled, and how it is launched. The product then hands over control to an application,
which executes the runtime code.

The editor is a GUI for the product file, which is an XML file that will look similar to
the following:

<?xml version="1.0" encoding="UTF-8"?>
<?pde version="3.5"?>
<product name="Headless Product"
 uid="com.packtpub.e4.headless.application.product"
 id="com.packtpub.e4.headless.application.product"
 application="com.packtpub.e4.headless.application.id"
 version="1.0.0"
 useFeatures="false" includeLaunchers="true">
 <configIni use="default"/>
 <launcherArgs>
 <vmArgsMac>-XstartOnFirstThread
 -Dorg.eclipse.swt.internal.carbon.smallFonts</vmArgsMac>
 </launcherArgs>
 <launcher>
 <solaris/>
 <win useIco="false">
 <bmp/>
 </win>
 </launcher>
 <vm/>
 <plugins>
 <plugin id="com.packtpub.e4.headless.application"/>
 <plugin id="org.eclipse.core.contenttype"/>
 <plugin id="org.eclipse.core.jobs"/>

Chapter 8

[263]

 <plugin id="org.eclipse.core.runtime"/>
 <plugin id="org.eclipse.core.runtime.compatibility.registry"
 fragment="true"/>
 <plugin id="org.eclipse.equinox.app"/>
 <plugin id="org.eclipse.equinox.common"/>
 <plugin id="org.eclipse.equinox.preferences"/>
 <plugin id="org.eclipse.equinox.registry"/>
 <plugin id="org.eclipse.osgi"/>
 </plugins>
</product>

Have a go hero – creating a product based on features
The product created previously specified an exact set of plug-ins that are needed to run the
code. Many Eclipse applications are based on features, and products can also be defined by
features as well.

Move the plug-in dependencies from the product to a feature, and then have the product
depend on the feature instead. That way, when the feature is updated, it can be done
externally to the product definition.

Pop Quiz – understanding features, applications, and products
Q1. What is the keyword used in the version number that gets replaced by the timestamp?

Q2. What files get generated in an update site build?

Q3. What is the name of the file that allows an update site to be categorized?

Q4. What is the difference between feature "requires" and "includes"?

Q5. What is the difference between an application and a product?

Q6. What is an application's entry point?

Summary
In this chapter, we covered how to create features and update sites, which allows plug-ins
to be exported and installed into different Eclipse instances. The contents of the update site
can be published to a web server and registered with the Eclipse marketplace to gain wide
visibility. We also covered how to create applications and products which can be used to
export top-level applications.

In the next chapter, we will look at how to write automated tests for Eclipse plug-ins.

9
Automated Testing of Plug-ins

JUnit is the testing framework of choice for Eclipse applications, and can be
used to run either pure Java tests or plug-in tests. If user interfaces need to be
exercised, SWTBot provides a facade onto the underling Eclipse application, and
can be used to drive menus, dialogs and views.

In this chapter, we will do the following:

 � Create a JUnit test running as pure Java code

 � Create a JUnit test running as a plug-in

 � Write a UI test using SWTBot

 � Interrogate views and work with dialogs

 � Wait for a condition to occur before continuing

Using JUnit for automated testing
One of the original automated unit testing frameworks, JUnit has been in use at Eclipse for
over a decade. Eclipse's quality can be partly attributed to the set of automated unit tests
that exercise both UI and non-UI (headless) components.

JUnit works by creating a test case with one or more tests, which usually correspond to a
class or methods respectively. Conventionally, test classes end with Test, but this is not a
requirement. Multiple test cases can be aggregated into test suites, although implicitly a
project becomes its own test suite.

Automated Testing of Plug-ins

[266]

Time for action – writing a simple JUnit test case
This section explains how to write and run a simple JUnit case in Eclipse.

1. Create a new Java project called com.packtpub.e4.junit.example.

2. Create a class called MathUtil in com.packtpub.e4.junit.example.

3. Create a public static method called isOdd() that takes an int value, and
returns a boolean value if it is an odd number (using value % 2 == 1).

4. Create a new class called MathUtilTest in the package com.packtpub.
e4.junit.example.

5. Create a method called testOdd() with an annotation @Test, which is how JUnit 4
signifies that this method is a test case.

6. Click on the quick-fix saying Add JUnit 4 library to the build path, or edit
the build path manually to point to Eclipse's plugins/org.junit_4.*.jar file.

7. Implement the testOdd() method as follows:
assertTrue(MathUtil.isOdd(3));
assertFalse(MathUtil.isOdd(4));

8. Add a static import to org.junit.Assert.* to fix the compile-time errors.

9. Right-click on the project and go to Run As | JUnit Test, and the JUnit test view
should be shown with a green test result:

Chapter 9

[267]

10. Verify that the test works, by modifying the isOdd() method to return false and
re-run it—a red-colored test-failure text should be seen instead.

What just happened?
The example project demonstrated how JUnit tests are written and executed in Eclipse. The
example works for both OSGi and non-OSGi projects, provided JUnit can be resolved and
executed accordingly.

Remember to annotate the test methods with @Test, otherwise they won't run. It can
sometimes be helpful to write a method that knowingly fails at first, and then run the tests,
just to confirm it's actually being run. There's nothing more useless than a green test bar
with tests that are never run, but would fail when they are run.

It is also possible to re-run tests from the JUnit view; the green play button allows all tests
to be re-run, while the one with a red cross allows just the tests that have failed to be re-
executed (shown as disabled in the previous example).

Time for action – writing a plug-in test
Although Java projects and Java plug-in projects both use Java and JUnit to execute,
plug-ins typically need to have access to them (provided by the runtime platform),
which is only available if running in an OSGi or Eclipse environment.

1. Create a new plug-in project called com.packtpub.e4.junit.plugin.

2. Create a new JUnit test called PlatformTest in the com.packtpub.e4.junit.
plugin package.

3. Create a method called testPlatform(), which asserts that the Platform
is running:
@Test
public void test() {
 assertTrue(Platform.isRunning());
}

4. Click on the quick-fix to add org.junit to the required bundles.

 � Alternatively, open up the project's manifest by right-clicking on it and going
to Plug-in Tools | Open Manifest.

 � Go to the Dependencies tab and click on Add, and select org.junit from
the dialog.

 � Ensure that org.eclipse.core.runtime is also added as a dependency.

Automated Testing of Plug-ins

[268]

5. Run the test by right-clicking on the project and going to Run As | JUnit Test. You
will see the error message fail (with an assertion error).

6. Run the test as a plug-in, by right-clicking on the project and going to Run As | JUnit
Plug-in Test. You will see the test pass.

What just happened?
Although the test code is exactly the same, the way in which the tests are run is slightly
different. In the first instance, it uses the standard JUnit test runner, which executes the code
in a standalone JVM. Since this doesn't have the full Eclipse runtime inside, the test fails.

The plug-in test is launched in a different way: a new Eclipse instance is created, the
plug-in is exported and installed into the runtime, the various OSGi services that are needed
to power Eclipse are brought up, and then the test runner executes the plugin in place.

As a result, running a plug-in test can add latency to the test process, because the platform
has to be booted first. Sometimes, quick-tests are run as standalone Java tests, while
integration tests run in the context of a full plug-in environment.

Code sections that depend on OSGi and Platform services need to be run as plug-in tests.

Using SWTBot for user interface testing
SWTBot is an automated testing framework that allows the Eclipse user interface and SWT
applications to be tested in place. Although writing tests and exercising the models behind
an application can be essential, sometimes it is necessary to test the interaction of the user
interface itself.

Time for action – writing an SWTBot test
The first step is to install SWTBot from the Eclipse update site. These examples were tested
with Version 2.1.0, downloaded from http://download.eclipse.org/technology/
swtbot/releases/latest/. Note that Eclipse Kepler (4.3) requires SWTBot 2.1.1
or above.

1. Go to Help | Install New Software and enter the SWTBot update site.

Chapter 9

[269]

2. Select everything except the GEF feature:

3. Click on Next to install SWTBot.

4. Restart Eclipse, when prompted.

5. Add the following bundle dependencies to the plug-in manifest for the com.
packtpub.e4.junit.plugin project:

 � org.eclipse.swtbot.junit4_x

 � org.eclipse.swtbot.forms.finder

 � org.eclipse.swtbot.eclipse.finder

 � org.eclipse.ui

6. Create a class called UITest in the com.packtpub.e4.junit.plugin package.

7. Add a class annotation @RunWith(SWTBotJunit4ClassRunner.class).

8. Create a method called testUI() with an annotation @Test.

9. Inside the testUI() method, create an instance of SWTWorkbenchBot.

Automated Testing of Plug-ins

[270]

10. Iterate through the bot's shells() method and assert that the one that is visible
has a title Java – Eclipse SDK (this is the title of the Eclipse window, and may
be different in your case). Here's what the code looks like:
package com.packtpub.e4.junit.plugin;
import static org.junit.Assert.assertEquals;
import org.eclipse.swtbot.eclipse.finder.SWTWorkbenchBot;
import org.eclipse.swtbot.swt.finder.junit.SWTBotJunit4ClassRunner;
import org.eclipse.swtbot.swt.finder.widgets.SWTBotShell;
import org.junit.Test;
import org.junit.runner.RunWith;
@RunWith(SWTBotJunit4ClassRunner.class)
public class UITest {
 @Test
 public void testUI() {
 SWTWorkbenchBot bot = new SWTWorkbenchBot();
 SWTBotShell[] shells = bot.shells();
 for (int i = 0; i < shells.length; i++) {
 if (shells[i].isVisible()) {
 assertEquals("Java - Eclipse SDK", shells[i].getText());
 }
 }
 }
}

11. Run the test by right-clicking on the project and going to Run As | SWTBot Test.

12. Verify that the JUnit tests have passed.

What just happened?
SWTBot is a UI testing mechanism that allows the state of the user interface to be driven
programmatically. In this test, a new SWTWorkbenchBot was created to interact with the
Eclipse workbench. (For pure SWT applications, there is the SWTBot class.)

The bot iterates through the available shells once the workspace has been opened. Although
more than one shell is returned in the list, only one of them is visible. The shell's title can
be obtained through the getText() method, which returns Java – Eclipse SDK if the
Eclipse SDK package opens on the Java perspective by default—but this value may differ
depending on what perspective and which Eclipse package is being used. Substitute it as
necessary for the title shown in the dialog if the test fails on this specific comparison.

Chapter 9

[271]

This application is similar to an Eclipse product launch; combinations of plug-ins,
start-up properties, and product or application choices can be made via the Run or
Debug configurations menu. As with ordinary JUnit tests, the launch can be invoked
in Debug mode and breakpoints can be set.

Time for action – working with menus
Note that SWTBot works on a non-UI thread by default, so as to avoid a deadlock with modal
dialogs and other user interface actions. If the tests need to interact with specific SWT
widgets, it is necessary to invoke a runnable via the UI thread.

To make this easier, the SWTBot framework has several helper methods that can provide a
facade of the workspace, including the ability to click on buttons and displaying menus.

1. Create a new test method called createProject() in the UITest class with a
@Test annotation.

2. Create a new SWTWorkbenchBot instance.

3. Use the bot's menu() method to navigate to File | Project..., and perform a click().

4. Use the bot's shell() method to get the newly opened shell with a title
New Project. Activate the shell to ensure that it has focus.

5. Use the bot's tree() method to find a tree in the shell and expand the General
node, and finally select Project.

6. Invoke the Next > button with a click() method. Note the space between Next
and the > symbol.

7. Find the label titled Project name: and set its text to SWTBot Test Project.

8. Click on the Finish button.

9. The code will look like the following block:
@Test
public void createProject() {
 SWTWorkbenchBot bot = new SWTWorkbenchBot();
 bot.menu("File").menu("Project...").click();
 SWTBotShell shell = bot.shell("New Project");
 shell.activate();
 bot.tree().expandNode("General").select("Project");
 bot.button("Next >").click();
 bot.textWithLabel("Project name:").
 setText("SWTBot Test Project");
 bot.button("Finish").click();
}

10. Run the test as a SWTBot Test, and verify createProject() success.

Automated Testing of Plug-ins

[272]

What just happened?
After creating the workspace bot, go to File | Project.... Since this opens up a new dialog, a
handle needs to be acquired to point to the newly created shell.

To do this, a new SWTBotShell is created, which is a handle to the displayed shell. The
title is used as a key to find a given shell. If one is not currently visible, it polls (every 500
milliseconds by default) until one is found or the default timeout period (5 seconds) ends
when a WidgetNotFoundException is thrown.

The activate() method waits until the dialog has focus. To navigate through a dialog,
methods such as tree() and textWithLabel() allow specific elements to be pulled out
from the UI, with exceptions being raised if these are not found. If there is only one element
of a particular type, then simple accessors like tree() may be sufficient; if not, there
are xxxWithLabel() and xxxWithId() accessors that can find a specific element in a
particular section.

To set an ID on an object so that it can be found using the withId() method, call widget.
setData(SWTBotPreferences.DEFAULT_KEY,"theWidgetId").

When objects are accessed, they aren't directly the underlying SWT widgets. Instead, they
are wrappers, much like SWTWorkspaceBot is a wrapper for the workspace. Although the
code is calling setText() on what looks like a label, the code is in fact running on a non-UI
thread. It posts a runnable to the UI thread, with an instruction to set the text; all of this is
done "under the covers" by SWTBot.

One thing that's immediately obvious from this is that when using labels, the tests are
highly specific to the localization of the product. The tests will fail if the application is run
in a different language, for example. They are also implicitly tied to the structure of the
application—if the UI changes significantly then it may be necessary to re-write or update
the tests.

Have a go hero – using resources
Automated testing exercises code paths, but it is often necessary to verify that not
only has the user interface reacted in the right way, but also that the side effects
have happened correctly.

In this case, to find out if a project has been created, use the ResourcesPlugin (from the
org.eclipse.core.resources bundle) to get the workspace, from which the root will
provide a means of accessing an IProject object. Use the exists() method of the project
to determine that the project has been successfully created.

Amend the createProject() method to verify that the project does not exist at the start
of the method, and does exist at the end of the method.

Chapter 9

[273]

Note that the getProject() method of IWorkspaceRoot will return a non-null value
regardless of whether the project exists or not.

Working with SWTBot
There are some techniques that help us while writing SWTBot tests, such as organizing
the test code and hiding the welcome screen at the start, which otherwise might distort
the test run.

Time for action – hiding the welcome screen
When Eclipse starts, it typically displays a welcome page. Since this often gets in the way of
automated user testing, it is useful to close this at startup.

1. In the createProject() method, within a try block obtain a view with the
title Welcome.

2. Invoke the close() method.

3. The code will change to look like this:
SWTWorkbenchBot bot = new SWTWorkbenchBot();
try {
 bot.viewByTitle("Welcome").close();
}
catch (WidgetNotFoundException e) {
 // ignore
}

4. Run the test—the welcome screen should be closed before the test is run.

What just happened?
Upon startup, the IDE will show a welcome screen. This is shown in a view with a
Welcome title.

Using the viewByTitle() accessor, the SWTBot wrapper view can be accessed. If
the view doesn't exist then an exception will be thrown for a safety check; catch any
WidgetNotFoundException since not finding the welcome screen is not a failure.

Having found the welcome page, invoking the close() method will close the view.

Automated Testing of Plug-ins

[274]

Time for action – avoiding SWTBot runtime errors
As more test methods are added, the runtime may start throwing spurious errors. This is
because the order of the tests may cause changes, and the ones that ran previously may
modify the state of the workbench. This can be mitigated by moving the common setup and
tear-down routines to a single place:

1. Create a static method beforeClass().

2. Add the annotation @BeforeClass from the org.junit package.

3. Move references to create a SWTWorkbenchBot to the static method, and save
the value in a static field.

4. The code looks like this:
private static SWTWorkbenchBot bot;
@BeforeClass
public static void beforeClass() {
 bot = new SWTWorkbenchBot();
 try {
 bot.viewByTitle("Welcome").close();
 } catch (WidgetNotFoundException e) {
 // ignore
 }
}

5. Run the tests and ensure that they pass appropriately.

What just happened?
The JUnit annotation @BeforeClass allows a single static method to be executed
prior to any of the tests running in the class. This is used to create an instance of
SWTWorkbenchBot, which is then used by all other tests in the class. This is also an
opportune location to close the Welcome view, if it is shown, so that all other tests can
assume that the window has been cleaned up.

Do not call bot.resetWorkbench(), otherwise subsequent tests will fail in the test cases.

Working with views
As with menus and dialogs, views that have been created can be interrogated with SWTBot
as well.

Chapter 9

[275]

Time for action – showing views
To show other views, the same mechanism is followed in the UI tests, as a user would do; by
going to Window | Show View | Other.

1. Create a new method, testTimeZoneView(), with a @Test annotation.

2. From the bot, open the Other dialog by going to Window | Show View.

3. Get the shell with the title Show View and activate it.

4. Expand the Timekeeping node and select the Time Zone View node (the view
created in Chapter 2, Creating Views with SWT).

5. Click on the OK button to have the view shown.

6. Use the bot.viewByTitle() method to acquire a reference to the view.

7. Assert that the view is not null.

8. The code looks like this:
@Test
public void testTimeZoneView() {
 bot.menu("Window").menu("Show View").menu("Other...").click();
 SWTBotShell shell = bot.shell("Show View");
 shell.activate();
 bot.tree().expandNode("Timekeeping").select("Time Zone View");
 bot.button("OK").click();
 SWTBotView timeZoneView = bot.viewByTitle("Time Zone View");
 assertNotNull(timeZoneView);
}

9. Run the tests and ensure that they were successful.

What just happened?
Using the built-in Eclipse mechanism to switch views, the bot navigated to the Time
Zone View menu inside Window | Show View | Other | Timekeeping to bring the
view to the screen.

Once shown, the viewByTitle() method of the bot can be used to get a reference to the
widget; verify that it is not null.

Being able to select a view programmatically is such a common occurrence that it can help to
have a utility method to open a view on demand.

Automated Testing of Plug-ins

[276]

Time for action – interrogating views
Having been able to acquire a reference to the view, the next step is to deal with specific
user-interface components. For standard controls such as Button and Text labels, the bot
provides standard methods. To get hold of other components, the widget hierarchy will have
to be interrogated directly.

1. In the testTimeZoneView() method, get the Widget from the returned
SWTBotView.

2. Create a Matcher that is based on widgetsOfType(CTabItem.class).

3. Use bot.widgets() to search for a list of CTabItem instances in the view's
widget.

4. Ensure that 18 elements are returned. Check the running application to verify how
many tabs there are in the time zone view; there may be more or less, depending on
how many timezones your computer has.

5. The code looks like this:
SWTBotView timeZoneView = bot.viewByTitle("Time Zone View");
assertNotNull(timeZoneView);
Widget widget = timeZoneView.getWidget();
org.hamcrest.Matcher<CTabItem> matcher =
 WidgetMatcherFactory.widgetOfType(CTabItem.class);
final java.util.List<? extends CTabItem> ctabs =
 bot.widgets(matcher,widget);
assertEquals(18,ctabs.size());

6. Run the tests and ensure that they are successful.

What just happened?
It is possible to write code to walk the user interface tree directly. However, because the
widgets have to be interrogated on the UI thread, care has to be taken to find the children.

SWTBot provides a generic Matcher mechanism, which is a predicate that can return true
if a certain condition occurs. The Matcher provided by widgetOfType() matches items
that have a certain class type; similarly many other matchers can be instantiated with the
withXxx() calls, such as withLabel() and withId(). Matchers can be combined with
the allOf() and anyOf() methods, by providing AND/OR logic respectively.

The widgets() call walks through the tree recursively to find all widgets that match a
particular specification. A single-argument version finds all elements from the active shell;
the two-argument version allows a specific parent to be searched, which in this case is the
TimeZoneView itself.

Chapter 9

[277]

Finally, the size of the list is compared with the number of time-zone groups, which in this
case is 18.

Interacting with the UI
While interrogating the user interface, care needs to be taken as to which thread is used to
access the UI. This section will show how to obtain values and wait for asynchronous results
that are to be delivered by the workbench.

Time for action – getting values from the UI
Note that if the test tries to access a property from the returned widget, there may be an
invalid thread-access error. For example, ctabs.get(0).getText() will result in an
Invalid thread access SWT error.

To perform tests on widgets, the code has to be run in the UI thread. Either the Display.
getDefault().syncExec() or the equivalent Synchronizer class can be used, but
SWTBot has a general interface called StringResult, which is like a Runnable method
that can return a String value through syncExec() on the bot.

1. In the last testTimeZone() method of the UITest class, create a new
StringResult and pass it to UIThreadRunnable.syncExec().

2. In the run() method, get the first cTabItem and return its text value.

3. After the Runnable method has been run, assert that the value is Africa.

4. The code looks like this:
String tabText = UIThreadRunnable.syncExec(new StringResult() {
 @Override
 public String run() {
 return ctabs.get(0).getText();
 }
});
assertEquals("Africa", tabText);

5. Run the tests and ensure they are successful.

What just happened?
To interact with widgets, code must be run on the UI thread. To run code on the UI thread
in SWT, it needs to be wrapped into a Runnable, which needs to be posted to the display
(or Synchronizer) and executed there.

Automated Testing of Plug-ins

[278]

Using a syncExec() means that the result is guaranteed to be available for testing. If an
asyncExec() operation is used, the result may not be available by the time the following
assert operation runs.

To pass a value back from the UI thread to a non-UI thread, the result has to be
stored in a variable. This has to be either a field on the class or a value in a final
array. The StringResult of the SWTBot package wraps this up effectively in the
UIThreadRunnable, in which an ArrayList is created to hold the single element.

Java 8 will make this significantly easier in that it will allow for lambda methods to be
executed. At the time of writing, the syntax of Java 8 was not finalized.

Time for action – waiting for a condition
Typically, an action may require a result to happen in the user interface before testing can
continue. Since SWTBot can run much faster than a human can, waiting for a result of an
action may be necessary. To demonstrate this, create a Java project with a single source file
and then use the conditions to wait until the class file is compiled.

1. Create a new method called createJavaProject() in the UITest class.

2. Use the bot to create a new Java project by copying the createProject()
method as a template.

3. Add org.eclipse.core.resources as a dependency to the plug-in.

4. Add a method getProject(), which returns an IProject from
ResourcesPlugin.getWorkspace().getRoot().getProject().

5. Use the getProject() with the test project to get the src folder .

6. If the folder does not exist, create it.

7. Get the file called Test.java from src.

8. Create it with the contents from the "class {}".getBytes() bytes as a
ByteArrayInputStream.

9. Use the bot.waitUntil() call to pass in a new anonymous subclass of
DefaultCondition.

10. In the test() method of the condition, return if the project's bin folder has a file
called Test.class.

11. In the getFailureMessage() of the condition, return a suitable message.

12. The code looks like the following snippet:
@Test
public void createJavaProject() throws Exception {
 String projectName = "SWTBot Java Project";

Chapter 9

[279]

 bot.menu("File").menu("Project...").click();
 SWTBotShell shell = bot.shell("New Project");
 shell.activate();
 bot.tree().expandNode("Java").select("Java Project");
 bot.button("Next >").click();
 bot.textWithLabel("Project name:").setText(projectName);
 bot.button("Finish").click();
 final IProject project = getProject(projectName);
 assertTrue(project.exists());
 final IFolder src = project.getFolder("src");
 final IFolder bin = project.getFolder("bin");
 if (!src.exists()) {
 src.create(true, true, null);
 }
 IFile test = src.getFile("Test.java");
 test.create(new ByteArrayInputStream(
 "class Test{}".getBytes()), true, null);
 bot.waitUntil(new DefaultCondition() {
 @Override
 public boolean test() throws Exception {
 return project.getFolder("bin").
 getFile("Test.class").exists();
 }
 public String getFailureMessage() {
 return "File bin/Test.class was not created";
 }
 });
 assertTrue(bin.getFile("Test.class").exists());
}

13. Run the test and verify that it was successful.

14. Comment out the waitUntil() call and verify that the test fails.

What just happened?
When the Test.java file is created in the project, an event is fired that runs the
Java compiler. This in turn results in the creation of both the bin folder, as well as
the Test.class file that is being tested. However, both of these operations occur on
different threads, and so while the test is running, if it needs to act on the generated file,
it must wait until that file is created.

Automated Testing of Plug-ins

[280]

Although this example could have been implemented outside of SWTBot, it provides a
simple way to block the execution until a particular condition occurs. This can be useful if the
user interface is running some kind of long-running action and the code needs to wait until
a certain dialog message is shown, or something that can be determined programmatically
(such as the file's existence, as in this case).

Other types of conditionals and tests are possible as well; there is a waitWhile(), which is
similar to the bot's waitUntil() but has the opposite behavior.

Note that when the wait condition is commented out, the test fails, because the test
execution thread will hit the assertion before the Java compiler has been run.

One advantage of using the wait code in SWTBot is that if the condition doesn't occur within
a given timeout then an exception is generated and the test will fail. Since the same wait
condition is used elsewhere in SWTBot, the delay is configurable and can be changed externally.

Have a go hero – driving the New Class wizard
Instead of using the source file as a text file, use SWTBot to open the New Class wizard
by going to the File menu. Pass in the name of the project, the package, and the class; the
source and class files should be created in the background. This is how integration tests
(that show the application working from a user's perspective) can be implemented,
instead of having a set of tests that show only the underlying libraries at work.

Pop quiz – understanding SWTBot
Q1. What is the name of the JUnit test runner that is required for SWTBot?

Q2. How are views shown with SWTBot?

Q3. How do you get the text value of a field in a dialog?

Q4. What is a Matcher and when is it to be used?

Q5. How can values from the UI be returned to the user without having to worry about
thread interaction?

Q6. When some asynchronous events are happening in the background, how can the test
wait (without blocking the test) until a particular condition occurs?

Chapter 9

[281]

Summary
Being able to test code automatically is a key part of creating quality software. Whether
the tests exercise the underlying models or the user interface—or ideally a combination
of both—more tests help to highlight problems that occur when changes happen to the
underlying framework, or when dependencies change and introduce unwanted side-effects.

The final chapter will show how to integrate everything to an automated build.

10
Automated Builds with Tycho

The final part of the puzzle is how to build plug-ins automatically. Most
plug-ins are now built with Tycho, a Maven plugin infrastructure for
building Eclipse plug-ins.

In this chapter, we will do the following:

 � Automate a plug-in build

 � Automate a feature build

 � Create an update site

 � Execute UI and non-UI tests

 � Sign the plug-ins

 � Learn how to publish the update site

Using Maven to build Eclipse plug-ins with Tycho
Maven is an automated build tool that builds using a declarative file called pom.xml that
tells it how and what to build. Maven projects have a group, an artifact, and a version, all
of which help in identifying them in repositories such as the Central repository, and also a
packaging type that tells Maven what it is trying to build. The default is jar since the widest
use of Maven is for building Java archives; for Tycho, we need to use a variety of other types.

Maven Tycho is a set of plug-ins that allow the building of Eclipse plug-ins. Tycho requires
at least Maven 3.0 to work; the instructions in this chapter have been tested against Maven
3.0.5 and Tycho 0.18.0.

Automated Builds with Tycho

[284]

Time for action – installing Maven
In this section, we will install and use Maven to build a simple Java project to ensure that the
tool is configured appropriately. The first time it runs, it will cache many JAR files from the
Central repository into a folder ${user.home}/.m2/repository; for subsequent runs it
will be much faster.

1. Go to http://maven.apache.org/ and download the Maven 3.0.5.zip package
(for Windows) or Maven 3.0.5.tgz (for Mac OS X/Linux).

2. Unzip/untar the package and install Maven at a convenient directory, referred to in
these instructions as MAVEN_HOME.

3. Either add MAVEN_HOME/bin to the PATH environment variable or specify the full
path to the Maven executable JAR. Run mvn --version and if all works well, a
version message should be printed out.

4. To create a new Maven project, run mvn archetype:generate
-DarchetypeGroupId=org.apache.maven.archetypes

-DarchetypeArtifactId=maven-archetype-quickstart

-DarchetypeVersion=1.1

5. When prompted for the groupId, enter com.packtpub.e4.

6. When prompted for the artifactId, enter com.packtpub.e4.tycho.

7. When prompted for the version and package, hit Enter to take the defaults of
1.0-SNAPSHOT and com.packtpub.e4 respectively.

8. Finally, hit Enter to create the project:
Define value for property 'groupId': : com.packtpub.e4
Define value for property 'artifactId': : com.packtpub.e4.tycho
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': com.packtpub.e4: :
Confirm properties configuration:
groupId: com.packtpub.e4
artifactId: com.packtpub.e4.tycho
version: 1.0-SNAPSHOT
package: com.packtpub.e4
 Y: : Y

9. Change into the com.packtpub.e4.tycho directory created and run mvn
package to run the tests and create the package:

[INFO] Scanning for projects
[INFO]

Chapter 10

[285]

[INFO] Building com.packtpub.e4.tycho 1.0-SNAPSHOT
[INFO]

 T E S T S

Running com.packtpub.e4.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.009 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] Building jar: com.packtpub.e4.tycho-1.0-SNAPSHOT.jar
[INFO]
[INFO] BUILD SUCCESS
[INFO]
[INFO] Total time: 1.977s
[INFO] Final Memory: 15M/136M

What just happened?
The Maven launcher knows how to connect to the Central repository and download
additional plug-ins. When it is launched for the first time, it will download a set of plug-ins,
which in turn have dependencies on other JAR files that will be resolved automatically prior
to project building.

Fortunately, these are cached in the local Maven repository (~/.m2/repository by
default), so this is done only once. The repository can be cleaned or removed; the next
time Maven runs, it will download any needed plug-ins again.

When mvn archetype:generate is executed, a sample Java project is created. This
creates a pom.xml file with the groupId, artifactId, and version given, and sets
it up for a Java project.

When mvn package is executed, the operation depends on the packaging type of the
project. This will be jar if not specified, and the default package operation for jar is
to run the compile, then the run test, and finally create the JAR file of the package.

The maven quickstart plugin is a useful way of creating a pom.xml file with known good
values, and a way of verifying connectivity to the outside before moving ahead with the
Eclipse-specific Tycho builds. If there's a problem with these steps, check the troubleshooting
guides at http://maven.apache.org/users/ for assistance.

Automated Builds with Tycho

[286]

Time for action – building with Tycho
Now that Maven is installed, it's time to build a plug-in with Tycho. Tycho is a set of
plug-ins for Maven 3 that emulates the older PDE build used by Eclipse. The Eclipse
platform has moved to building with Tycho and Maven 3 under the name Common
Build Infrastructure (http://wiki.eclipse.org/CBI).

1. Change into the com.packtpub.e4.clock.ui project created in Chapter 2,
Creating Views with SWT. (If you don't have this project, see the book's GitHub
repository for sample code.)

2. Create a file called pom.xml at the root of the project, with the following
empty contents:
<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/
 POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
</project>

This can be copied from the pom.xml file generated in the previous section, since
every pom.xml has this same signature.

3. Give the project a unique groupId, artifactId, and version, by placing the
following after the modelVersion tag:
<groupId>com.packtpub.e4</groupId>
<artifactId>com.packtpub.e4.clock.ui</artifactId>
<version>1.0.0-SNAPSHOT</version>

The version here has to match the one in the plugin.xml file, with .qualifier
replaced with -SNAPSHOT.

The artifactId has to be the name of the fully qualified plug-in name
(the Bundle-SymbolicName in the MANIFEST.MF file)

4. Define the packaging type to be eclipse-plugin:
<packaging>eclipse-plugin</packaging>

5. If the build is now run with mvn package, an error message, Unknown
packaging: eclipse-plugin, will be displayed. To fix this, add Tycho
as a build plugin:
<build>
 <plugins>
 <plugin>

Chapter 10

[287]

 <groupId>org.eclipse.tycho</groupId>
 <artifactId>tycho-maven-plugin</artifactId>
 <version>0.18.0</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

6. Run the build again. This time it will complain of an "unsatisfiable" build error:
[ERROR] Internal error: java.lang.RuntimeException:
 "No solution found because the problem is unsatisfiable.":
 ["Unable to satisfy dependency from
 com.packtpub.e4.clock.ui 1.0.0.qualifier to bundle
 org.eclipse.ui 0.0.0."] -> [Help 1]

7. Add the juno (or kepler, luna) release repository:
<repositories>
 <repository>
 <id>juno</id>
 <layout>p2</layout>
 <url>http://download.eclipse.org/releases/juno</url>
 </repository>
 <!-- repository>
 <id>kepler</id>
 <layout>p2</layout>
 <url>http://download.eclipse.org/releases/kepler</url>
 </repository -->
 <!-- repository>
 <id>luna</id>
 <layout>p2</layout>
 <url>http://download.eclipse.org/releases/luna</url>
 </repository -->
</repositories>

8. Now run mvn clean package and the plug-in should be built.

What just happened?
All Maven projects have a pom.xml file that controls their build process, and Eclipse
plug-ins are no different. The header for a pom.xml file doesn't change, and so generally
this is copied from an existing one (or auto-generated by tools) rather than being typed in
by hand.

Automated Builds with Tycho

[288]

Each Maven pom.xml file needs to have a unique groupId / artifactId / version.
For eclipse-plugin projects, the name of the artifactId must be the same as
the Bundle-SymbolicName in MANIFEST.MF, otherwise an error is thrown:

[ERROR] Failed to execute goal
 org.eclipse.tycho:tycho-packaging-plugin:0.18.0:validate-id
 (default-validate-id) on project com.packtpub.e4.clock.uix:
 The Maven artifactId (currently: "com.packtpub.e4.clock.uix")
 must be the same as the bundle symbolic name
 (currently: "com.packtpub.e4.clock.ui") -> [Help 1]

The same is true for the version in the pom.xml file, which must match the version in
MANIFEST.MF. Without this, the build will fail with a different error:

[ERROR] Failed to execute goal
 org.eclipse.tycho:tycho-packaging-plugin:0.18.0:validate-version
 (default-validate-version) on project com.packtpub.e4.clock.ui:
 Unqualified OSGi version 1.0.0.qualifier must match unqualified
 Maven version 1.0.1-SNAPSHOT for SNAPSHOT builds -> [Help 1]

Tycho knows how to build Eclipse plug-ins by setting the packaging type to eclipse-
plugin. However, in order for Maven to know about the eclipse-plugin type, Tycho
has to be defined as a Maven plugin for the build. Importantly, it needs to be defined as an
extension, otherwise it doesn't contribute to the packaging type:

<plugin>
 <groupId>org.eclipse.tycho</groupId>
 <artifactId>tycho-maven-plugin</artifactId>
 <version>0.18.0</version>
 <extensions>true</extensions>
</plugin>

Although it's possible to hard-code the version of the Tycho plug-in like this, it's conventional
to replace it with a property instead. We will replace the version number with a property
when we create the parent project later.

Finally, an Eclipse repository was added to pom.xml so that the build could resolve any
additional plug-ins and features. This needs to be defined as a p2 repository type, to
distinguish it from the default type, which stores Maven artifacts.

Note that it is best practice to not put repositories in pom.xml files in general. Instead, this
can be extracted to a settings.xml file. This allows the same project to be built against
different versions of Eclipse in the future without changing the source, or to run against a
closer mirror of the same. A settings file can be passed to Maven with mvn -s /path/
to/settings.xml that allows the plug-in's dependencies to be varied over time without
mutating the pom.xml file.

Chapter 10

[289]

Have a go hero – using target platforms
Although it is possible to build an Eclipse-based application by pointing to a repository, this
does not provide reproducibility of the build. For example, a build might be run against the
Kepler release repository in July 2013 when Kepler is released as 4.3.0, and the same build
can be run again in December 2013 when Kepler 4.3.1 is released. The results of these two
builds will be different, even if no source code changes have occurred in the meantime.

A target platform can be defined in Eclipse by going to the Target Platform preferences
page by navigating to Window | Preferences | Plug-in Development. Create a new target
definition, consisting of the Base RCP, and then click on Share to allow the .target file to
be saved on the filing system. A corresponding eclipse-target-definition packaging
type can be used to define a GAV co-ordinate for the .target file, and when combined
with the target-platform-configuration plug-in, it can be specified to build just
against those components. See the Tycho documentation or the book's GitHub repository
for more examples.

Building features and update sites with Tycho
The process for building features and update sites is similar to that for plug-ins, but with
different packaging types. However, it's common for features and plug-ins to be built in the
same Maven build, which requires a little reorganization of the projects. These are typically
organized into a "parent" project and then into several "child" projects.

Time for action – creating a parent project
It's common for the parent and child projects to be located outside the workspace. For
historic reasons, Eclipse doesn't deal well with nested projects in the workspace. It's also
common for the parent project to host all the Tycho configuration information, which makes
setting up the child projects a lot easier.

1. Create a General project by navigating to File | New | Project | General | Project.

2. Unselect use default location.

3. Put in a location that is outside the Eclipse workspace.

4. Name the project com.packtpub.e4.parent.

5. Click on Finish.

6. Create a new file pom.xml in the root of the project.

7. Copy the content of the plug-in's pom.xml file to the parent, but change the
artifactId to com.packtpub.e4.parent and the packaging to pom.

Automated Builds with Tycho

[290]

8. Create a properties element in the pom.xml file. Inside, create two child tags:
tycho-version (which has the content 0.18.0) and eclipse (with the value
http://download.eclipse.org/releases/juno).

9. Modify the reference to 0.18.0 in the existing Tycho plugin and replace it with
${tycho-version}.

10. Modify the reference to http://download.eclipse.org/releases/juno in
the existing repositories URL and replace it with ${eclipse}.

11. Move the com.packtpub.e4.clock.ui plug-in underneath the parent project.

12. Add a modules element to the pom.xml file, and underneath a module element
with the value com.packtpub.e4.clock.ui.

13. The parent pom.xml should look like:
<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/
 POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.parent</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <properties>
 <tycho-version>0.18.0</tycho-version>
 <eclipse>http://download.eclipse.org/releases/
 juno</eclipse>
 </properties>
 <modules>
 <module>com.packtpub.e4.clock.ui</module>
 </modules>
 <build>
 <plugins>
 <plugin>
 <groupId>org.eclipse.tycho</groupId>
 <artifactId>tycho-maven-plugin</artifactId>
 <version>${tycho-version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
 <repositories>
 <repository>
 <id>juno</id>

Chapter 10

[291]

 <layout>p2</layout>
 <url>${eclipse}</url>
 </repository>
 </repositories>
</project>

14. Modify the com.packtpub.e4.clock.ui/pom.xml file and add a parent element
with a groupId, artifactId, and version that are the same as the parent. It is
also possible to remove the version and groupId from the child pom.xml file, as
it will default to the parent's groupId and version, if not specified:
<parent>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.parent</artifactId>
 <version>1.0.0-SNAPSHOT</version>
</parent>

15. Remove the plugins and repositories elements from the pom.xml file of com.
packtpub.e4.clock.ui.

16. Now, change into the parent project and run mvn clean package. The parent will
be built, which in turn builds all the modules in the list:
[INFO] Reactor Summary:
[INFO]
[INFO] com.packtpub.e4.parent SUCCESS [0.049s]
[INFO] com.packtpub.e4.clock.ui SUCCESS [1.866s]
[INFO]
[INFO] BUILD SUCCESS

What just happened?
Each plug-in is its own Eclipse project, and therefore its own Maven project. To build a set of
projects together, there needs to be a parent pom.xml file, which acts as an aggregator.

At build time, Maven calculates the order in which projects need to be built, and then
arranges the build steps accordingly.

The other benefit provided by a parent pom.xml is the ability to specify standard build
plug-ins and configuration information. In this case, the parent specifies the link with Tycho
and its versions. This simplifies the implementation of the other plug-ins and features that lie
underneath the parent project.

Automated Builds with Tycho

[292]

Time for action – building a feature
Features can be built in the same way as plug-ins, although this time the packaging type is
eclipse-feature.

1. Move the com.packtpub.e4.feature project underneath the com.packtpub.
e4.parent project.

2. Add the line <module>com.packtpub.e4.feature</module> to the parent
pom.xml file.

3. Copy the pom.xml file from the clock plugin to the feature project.

4. Modify the packaging to <packaging>eclipse-feature</packaging>.

5. Change the artifactId to com.packtpub.e4.feature.

6. The resulting pom.xml file will look like:
<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/
 POM/4.0.0 http://maven.apache.org/xsd/maven-
 4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.parent</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 </parent>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.feature</artifactId>
 <!-- version>1.0.0-SNAPSHOT</version -->
 <packaging>eclipse-feature</packaging>
</project>

7. Run mvn clean package from the parent and it should build both the plug-in and
the feature:
[INFO] Reactor Summary:
[INFO]
[INFO] com.packtpub.e4.parent SUCCESS
[0.070s]
[INFO] com.packtpub.e4.clock.ui SUCCESS
[1.872s]
[INFO] com.packtpub.e4.feature SUCCESS
[0.080s]
[INFO] BUILD SUCCESS

Chapter 10

[293]

What just happened?
By adding the feature into the list of modules, the feature is built at the same time as
everything else. The version of the plug-in built earlier is used to compose the feature
contents. If the plug-in wasn't listed as part of the Maven build modules and it couldn't
be resolved from a remote repository, then the build would fail.

The child module will inherit the groupId and version of the parent project, if specified.
As a result, the version can be commented out (or removed), which makes managing the
versions easier.

At present, the feature and plug-in are built but cannot be easily installed into an existing
Eclipse instance. The assumption is that the plug-ins and features can be tested using PDE
directly in Eclipse, and that, therefore, there's no need to directly install a plug-in or feature
from the result of a build.

It's necessary to define an additional module—an update site—that will allow the plugin to
be installed or hosted.

Time for action – building an update site
The update site created in Chapter 8, Creating Features, Update Sites, Applications, and
Products, is used to provide a standard hosting mechanism for Eclipse plug-ins and features.
This can be built automatically with Tycho as well.

1. Move the com.packtpub.e4.update project underneath the
com.packtpub.e4.parent project.

2. Add the line <module>com.packtpub.e4.update</module> to the parent
pom.xml file.

3. Copy the pom.xml file from the clock plugin to the update project.

4. Modify the packaging to <packaging>eclipse-repository</packaging>.

5. Change the artifactId to com.packtpub.e4.update.

6. The resulting pom.xml file will look like this:
<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/
 POM/4.0.0 http://maven.apache.org/xsd/maven-
 4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.parent</artifactId>
 <version>1.0.0-SNAPSHOT</version>

Automated Builds with Tycho

[294]

 </parent>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.update</artifactId>
 <!-- version>1.0.0-SNAPSHOT</version -->
 <packaging>eclipse-repository</packaging>
</project>

7. Rename the site.xml file to category.xml. (This is an entirely pointless change
required by p2 since the files are identical in format.)

8. Verify that the category.xml file does not contain a url attribute and that
the version attribute is 0.0.0, otherwise the message Unable to satisfy
dependencies may be seen.
<feature id="com.packtpub.e4.feature" version="0.0.0">

9. Run mvn package from the parent project and it should now build the update site
as well:
[INFO] Reactor Summary:
[INFO]
[INFO] com.packtpub.e4.parent SUCCESS [0.048s]
[INFO] com.packtpub.e4.clock.ui SUCCESS [1.416s]
[INFO] com.packtpub.e4.feature SUCCESS [0.074s]
[INFO] com.packtpub.e4.update SUCCESS [2.727s]
[INFO] BUILD SUCCESS

10. In Eclipse, install the update site by going to Help | Install New Software and
typing file:///path/to/com.packtpub.e4.parent/com.packtpub.
e4.update/target/repository into the work with field, and installing the
feature shown there.

What just happened?
Creating an update site is no different from creating a plug-in or feature project. There is a
pom.xml file that defines the name of the update site itself, and it uses or detects the file
called category.xml to generate the update site.

The category.xml file is functionally equivalent to the site.xml file created
previously, and is a name change introduced by p2 some four or five releases ago.
However, the update site project still generates it using the old name, so it may be
necessary to rename it from site.xml to category.xml in order to be built with
Tycho. (There is an eclipse-update-site packaging type that uses the site.xml
file as-is, but this is deprecated and may be removed in future versions.)

Chapter 10

[295]

As with the Eclipse update project, when the update site is built, the versions of the features
and plug-ins in the category.xml file are replaced with the versions of the features and
plug-ins just built.

Time for action – building a product
A product (a branded Eclipse application, or one that is launched from eclipse
-application from the command line) can also be built with Tycho using the eclipse-
repository packaging type. To do this, the app project needs to be built with Tycho and
made available in the feature, and a new project for the product needs to be created.

1. Move the com.packtpub.e4.application project under the
com.packtpub.e4.parent project.

2. Add the line <module>com.packtpub.e4.application</module> to the
parent pom.xml file.

3. Copy the pom.xml file from the clock plugin to the application project.

4. Change the artifactId to com.packtpub.e4.application.

5. The resulting pom.xml file will look like this:
<?xml version="1.0" encoding="UTF-8"?>
 <project
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.parent</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 </parent>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.application</artifactId>
 <!-- version>1.0.0-SNAPSHOT</version -->
 <packaging>eclipse-plugin</packaging>
</project>

6. Modify com.packtpub.e4.feature/feature.xml to add the reference to the
application plug-in:
<feature>
 ...
 <pluginid="com.packtpub.e4.application" download-
 size="0" install-size="0" version="0.0.0"
 unpack="false"/>
</feature>

Automated Builds with Tycho

[296]

7. Run mvn clean package from the parent, and the build should complete with the
application plug-in.

8. Now, create an additional project as a Java plug-in project, called com.packtpub.
e4.product. Move the com.packtpub.e4.application.product file from the
com.pactkpub.e4.application project into the product project.

9. Copy com.packtpub.e4.application/pom.xml into the com.packtpub.
e4.product project, and modify the artifactId to be com.packtpub.
e4.product. Change the packaging type to eclipse-repository.

10. Add the product to the parent by adding the module to the pom.xml file with
<module>com.packtpub.e4.product</module>.

11. Run mvn clean package from the parent, and it will complain with an error:
[ERROR] Failed to execute goal
 org.eclipse.tycho:tycho-p2-publisher-
 plugin:0.18.0:publish-products
 (default-publish-products) on project
 com.packtpub.e4.application:
 The product file com.packtpub.e4.application.product does
 not contain the mandatory attribute 'uid' -> [Help 1]

12. Edit the com.packtpub.e4.application/com.packtpub.e4.application.
product and add uid as a copy of the id attribute.

13. Switch to a feature-based build (if not already done so) and depend on the
org.eclipse.rcp and com.packtpub.e4.feature features, removing
the plugins element:
<product name="com.packtpub.e4.application"
 uid="com.packtpub.e4.application.product"
 id="com.packtpub.e4.application.product"
 application="org.eclipse.e4.ui.workbench.swt.E4Application"
 version="1.0.0.qualifier"
 useFeatures="true"
 includeLaunchers="true">
 <features>
 <feature id="com.packtpub.e4.feature" version="0.0.0"/>
 <feature id="org.eclipse.rcp" version="0.0.0"/>
 </features>
 <plugins/>
 ...
</product>

14. Run mvn package from the parent again, and the build should succeed. The com.
packtpub.e4.product/target/repository now contains the product for the
target platform you're running on.

Chapter 10

[297]

15. To build for more than one platform, add the following to either the product's
pom.xml file, or the parent pom.xml:
<plugin>
 <groupId>org.eclipse.tycho</groupId>
 <artifactId>target-platform-configuration</artifactId>
 <version>${tycho-version}</version>
 <configuration>
 <environments>
 <environment>
 <os>win32</os>
 <ws>win32</ws>
 <arch>x86_64</arch> <!--arch>x86</arch-->
 </environment>
 <environment>
 <os>linux</os>
 <ws>gtk</ws>
 <arch>x86_64</arch> <!--arch>x86</arch-->
 </environment>
 <environment>
 <os>macosx</os>
 <ws>cocoa</ws>
 <arch>x86_64</arch> <!--arch>x86</arch-->
 </environment>
 </environments>
 </configuration>
</plugin>

16. Now, run the build and a product per OS should be built. The example builds for
Windows, Linux and OS X on a 64-bit architecture; to build for the 32-bit versions,
duplicate the environment block and use <arch>x86</arch> instead.

17. To materialize the products, and not just provide a p2 repository for them, add the
materialize-products goal to the com.packtpub.e4.application/pom.
xml file:
<build>
 <plugins>
 <plugin>
 <groupId>org.eclipse.tycho</groupId>
 <artifactId>tycho-p2-director-plugin</artifactId>
 <version>${tycho-version}</version>
 <configuration>
 <formats>
 <win32>zip</win32>
 <linux>tar.gz</linux>
 <macosx>tar.gz</macosx>
 </formats>
 </configuration>
 <executions>

Automated Builds with Tycho

[298]

 <execution>
 <id>materialize-products</id>
 <goals>
 <goal>materialize-products</goal>
 </goals>
 </execution>
 <execution>
 <id>archive-products</id>
 <goals>
 <goal>archive-products</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

18. Run the build from the parent with mvn clean package and the build will create
com.packtpub.e4.application/target/products/os/ws/arch, as well as
creating archives (ZIP files) of them.

19. When running the product that is generated, an error may be seen (or can be seen
running eclipse -consoleLog):
java.lang.IllegalStateException: Unable to acquire
 application service.
Ensure that the org.eclipse.core.runtime bundle is
 resolved and started (see config.ini).

20. This is an Eclipse product error. In essence, Eclipse products need to have a number
of plugins started at boot time in order to run eclipse -application. Add this
to the com.packtpub.e4.application.product file:
<configurations>
 <plugin id="org.eclipse.core.runtime"
 autoStart="true" startLevel="4"/>
 <plugin id="org.eclipse.equinox.common"
 autoStart="true" startLevel="2"/>
 <plugin id="org.eclipse.equinox.ds"
 autoStart="true" startLevel="2"/>
 <!-- for 'dropins' directory support -->
 <!-- plugin id="org.eclipse.equinox.p2.reconciler.dropins"
 autoStart="true" startLevel="4"/ -->
 <plugin id="org.eclipse.equinox.simpleconfigurator"
 autoStart="true" startLevel="1"/>
 <!-- disable old update manager -->
 <property name="org.eclipse.update.reconcile" value="false"/>
 <!-- for 'new' update manager support -->
 <!-- plugin id="org.eclipse.update.configurator"
 autoStart="true" startLevel="4"/ -->
</configurations>

Chapter 10

[299]

21. Run mvn clean package and try running the product again. This time it
should succeed.

What just happened?
Eclipse applications are built and made available as a p2 repository or as archived
downloads. The p2 repository allows the product to be updated using the standard update
mechanisms; this is how updates from 4.2.0 to 4.2.1 to 4.2.2 occur. The archives are used to
provide direct download links, as are found at http://download.eclipse.org for the
standard packages.

For RCP-based applications, it is easier to build on the RCP feature, which provides the
necessary platform-specific fragments for SWT and file-systems. Although building a product
based on plug-ins is possible, almost all RCP and SDK applications are built upon either the
RCP feature or the IDE feature respectively.

For Eclipse to launch successfully, a number of plug-ins need to be started when the
application starts. This is controlled using the config.ini file, which in turn is read by
simpleconfigurator, so this needs to be started at the started at the launch of the
runtime. In addition to this, the E4 platform requires Declarative Services (DS) to be
installed and started, as well as the runtime bundle.

By decomposing the projects into a feature, and then having the same feature used for
both the SWTBot and product definitions, it becomes the de-facto place for adding new
content. Then these changes to the feature are automatically visible in the product, the
automated tests, and in the update site.

Have a go hero – depending on Maven components
Sometimes, it is necessary to depend on components that have been built by ordinary
Maven jobs. Although it's not possible to mix and match Tycho and ordinary Maven reactor
builds in the same build, it is possible to allow Tycho to resolve Maven components as part
of the target platform.

Since ordinary Maven dependencies are represented by the <dependencies> tag, it is
possible to define additional dependencies that can be consumed or used by Tycho builds.
Normally Tycho won't use this information, but to allow Tycho to resolve those and make them
available as OSGi bundles for the purposes of the Eclipse build, modify the configuration for
target-platform-configuration and add the line <pomDependencies>consider</
pomDependencies> to the <configuration> element.

Note that only OSGi bundles are added to the dependencies list; others are silently ignored.

Automated Builds with Tycho

[300]

Testing and releasing
The final step of an Eclipse build is to ensure that all the automated tests are run, and that
all the versions that need to be bumped for the release stage are done prior to the code
being published.

Time for action – running automated tests
Although a plug-in's code-based tests (those under src/test/java) will be run
automatically as part of a Maven build, very often it is necessary to test them in a running
Eclipse application. The previous chapter covered creating automated UI tests; now they will
be run as part of the automated build.

1. Move the com.packtpub.e4.junit.plugin project underneath the com.
packtpub.e4.parent project.

2. Add the line <module>com.packtpub.e4.junit.plugin</module> to the
parent pom.xml file.

3. Add the SWTBot repository to the parent pom.xml file:
 <properties>
 <swtbot>http://download.eclipse.org/technology
 /swtbot/releases/latest</swtbot>
 </properties>
 ...
 <repositories>
 <repository>
 <id>swtbot</id>
 <layout>p2</layout>
 <url>${swtbot}</url>
 </repository>
 </repositories>

For Kepler (4.3), SWTBot must be version 2.1.1 or higher.

4. Copy the pom.xml file from the clock plugin to the junit.plugin project.

5. Modify the packaging to <packaging>eclipse-test-plugin</packaging>.

6. Change the artifactId to com.packtpub.e4.junit.plugin.

http://download.eclipse.org/technology/swtbot/releases/latest
http://download.eclipse.org/technology/swtbot/releases/latest

Chapter 10

[301]

7. To run the Tycho tests, add the following as a build plugin:
<build>
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.eclipse.tycho</groupId>
 <artifactId>tycho-surefire-plugin</artifactId>
 <version>${tycho-version}</version>
 <configuration>
 <useUIHarness>true</useUIHarness>
 <useUIThread>false</useUIThread>
 <product>org.eclipse.sdk.ide</product>
 <application>org.eclipse.ui.ide.workbench</application>
 </configuration>
 </plugin>
 </plugins>
</build>

8. Now, running mvn integration-test should run the tests when not run on OS X.
If run on an OS X, a line must be added to the configuration for JVM:
<configuration>
 <useUIHarness>true</useUIHarness>
 <useUIThread>false</useUIThread>
 <argLine>-XstartOnFirstThread</argLine>
 ...
</configuration>

Although the tests run, they fail, because the SWTBot environment is giving the
bare minimum dependencies required for the JUnit plug-in. In this case, it doesn't
even include the clock plug-in developed earlier. To fix this, a dependency needs
to be added to the pom.xml file so that the runtime can instantiate the correct
workspace, including both the clock plug-in and the Eclipse SDK—since the tests rely
on the workbench for the Open View command and the JDT for the Java project:
<configuration>
 <useUIHarness>true</useUIHarness>
 <useUIThread>false</useUIThread>
 <dependencies>
 <dependency>
 <type>p2-installable-unit</type>
 <groupId>com.packtpub.e4</groupId>
 <artifactId>com.packtpub.e4.clock.ui</artifactId>
 </dependency>
 <dependency>
 <type>p2-installable-unit</type>

Automated Builds with Tycho

[302]

 <artifactId>org.eclipse.sdk.feature.group</artifactId>
 </dependency>
 </dependencies>
 ...
</configuration>

9. Finally, run mvn integration-test and the tests should run and pass.

What just happened?
The tycho-surefire-plugin allows SWTBot applications to be launched. The tests are
executed and then a return value indicates whether or not they were successful to be passed
back to the Maven build process.

Although it may seem that specifying the product or application will also bring in the
necessary dependencies, that isn't the case. When the SWTBot test is run, it appears to
pay no attention to the application or product when considering dependencies. As a result,
these have to be added manually to the pom.xml file so that SWTBot sets up the right
environment for the tests to run.

The SWTBot tests written previously also had an implicit dependency on the SDK, from
asserting the title of the workbench window to expecting the Show View menu to be
present. These are examples of loosely coupled dependencies—they aren't code related,
but to run, they do require the environment to be pre-seeded with the necessary plug-ins
and features.

Normally, if applications or features are being developed then these can be used to add the
required dependencies instead of using individual plug-ins. In the example, the clock.
ui plugin was added explicitly and the org.eclipse.sdk.feature was added as well.
Note that the naming convention for the p2 feature's installable units is to add the suffix
.feature.group to the end of the name; so the clock.ui plug-in dependency could be
replaced with com.packtpub.e4.feature.feature.group as a dependency instead.

Using features for dependencies makes it easier to maintain, as the test project can depend
only on the feature, and the feature can depend on the necessary plug-ins. If a dependency
needs to be added, it need only be added to the feature and it will apply to both the update
site, as well as runtime and test projects.

Finally, it is possible to determine whether or not a build is running on a Mac box
dynamically, and switch in a value for the -XstartOnFirstThread argument. This can be
achieved by setting a property using profiles which are automatically selected based on the
operating system:

<profiles>
 <profile>

Chapter 10

[303]

 <id>OSX</id>
 <activation>
 <os>
 <family>mac</family>
 </os>
 </activation>
 <properties>
 <swtbot.args>-Xmx1024m -XstartOnFirstThread</swtbot.args>
 </properties>
 </profile>
 <profile>
 <id>NotOSX</id>
 <activation>
 <os>
 <family>!mac</family>
 </os>
 </activation>
 <properties>
 <swtbot.args>-Xmx1024m</swtbot.args>
 </properties>
 </profile>
</profiles>

The OSX profile is automatically enabled for the mac family builds, and the NotOSX profile
is automatically enabled for any non-mac family builds (with the negation character ! at the
start of the family name).

Time for action – changing the version numbers
When a new version of the project is released, the plug-in and feature numbers need to be
updated. This can be done manually, or by modifying the pom.xml file and MANIFEST.MF
version numbers, or by running a tool to do this.

1. From the parent directory, run the following (all on one line):
mvn org.eclipse.tycho:tycho-versions-plugin:set-version
 -DnewVersion=1.2.3-SNAPSHOT

2. The output should say SUCCESS for the parent and SKIPPED for the others:
[INFO] Reactor Summary:
[INFO]
[INFO] com.packtpub.e4.parent SUCCESS [5.569s]
[INFO] com.packtpub.e4.clock.ui SKIPPED
[INFO] com.packtpub.e4.junit.plugin SKIPPED
[INFO] com.packtpub.e4.feature SKIPPED
[INFO] com.packtpub.e4.update SKIPPED

Automated Builds with Tycho

[304]

3. Now, run a build to verify that the versions were updated correctly:
[INFO] Building com.packtpub.e4.parent 1.2.3-SNAPSHOT
[INFO] Building com.packtpub.e4.clock.ui 1.2.3-SNAPSHOT
[INFO] Building com.packtpub.e4.junit.plugin 1.2.3-SNAPSHOT
[INFO] Building com.packtpub.e4.feature 1.2.3-SNAPSHOT
[INFO] Building com.packtpub.e4.update 1.2.3-SNAPSHOT
[INFO] Reactor Summary:
[INFO]
[INFO] com.packtpub.e4.parent SUCCESS [0.001s]
[INFO] com.packtpub.e4.clock.ui SUCCESS [0.561s]
[INFO] com.packtpub.e4.junit.plugin SUCCESS [0.176s]
[INFO] com.packtpub.e4.feature SUCCESS [0.071s]
[INFO] com.packtpub.e4.update SUCCESS [2.764s]

4. Finally, once the development is complete, build with a release version:
mvn org.eclipse.tycho:tycho-versions-plugin:set-version
 -DnewVersion=1.2.3.RELEASE

What just happened?
The Tycho set-versions plugin is very similar to the Maven version:set plugin.
However, Tycho makes changes for both META-INF/MANIFEST.MF (needed by Eclipse)
and pom.xml (needed by Maven).

Development version numbers in Maven end in -SNAPSHOT to indicate that they are a
mutable release, and there's special handling in Maven builds to get "the latest" snapshot
build. For Eclipse builds, the equivalent special name is .qualifier, which is appended
onto the end of the plug-in and feature builds.

For simple projects, where there is a single plug-in and feature, it can often make sense to
have the two versions kept in sync. Sometimes, when there are two highly related plug-ins in
the same feature (for example, JDT and JDT UI) then it can also make sense in keeping them
in sync. For larger projects where a single build may have multiple modules, it can make
sense to have different version numbers on a plug-in by plug-in basis.

The version numbers in OSGi and, therefore, Eclipse plug-ins follow semantic versioning
(see http://semver.org), in which the version-number component consists of a major
version, a minor version, and a micro version, as well as an optional qualifier. The
major, minor, and micro versions default to 0 if not present, while the qualifier
defaults to the empty string. Typically, the qualifier is used to encode either a build
timestamp or a build revision identifier (such as that produced by git describe on
modern version control systems). While the major/minor/micro versions are sorted
numerically, the qualifier is sorted alphabetically.

Chapter 10

[305]

Unfortunately, OSGi version numbers and Maven version numbers differ in agreement
on what the "highest" value is. For Maven, the empty qualifier is the highest (that is,
1.2.3.build < 1.2.3), whereas for OSGi it is the other way around (1.2.3.build
> 1.2.3). As a result, organizations such as SpringSource have created a de-facto
policy of using a qualifier of RELEASE to indicate the release build, (1.2.3.build <
1.2.3.RELEASE). They also use M1, M2, and M3 for milestone releases and RC1, RC2 for
release candidates, since all of these are less than RELEASE. As a result, the progression for
Eclipse build qualifiers tends to follow -SNAPSHOT, M1, M2, RC1, RC2, RELEASE.

Have a go hero – enabling builds for other plug-ins
Apply the same pom.xml builds to allow the other plug-ins built in the other chapters as
part of the automated build. This includes the headless application (the product can be
moved into the same product) and the Minimark editor. The standalone JUnit test will need
to be built as a jar instead of an eclipse-plugin, and examples are available at the
Maven homepage or the book's GitHub repository.

Signing update sites
When installing content into a repository, Eclipse will report whether the plug-ins are
"signed" or not. Digital signatures ensure that the content of the plug-ins have not changed,
and the identity of the signer can be verified.

Time for action – creating a self-signed certificate
To sign content, a private key and a public key must be used. The private key is used for
signing the content, and the public key is used for verifying that the content has not been
modified. A key-pair can be created using the Java keytool utility on the command line.

1. Run keytool to see a list of options, and to verify that it is on the path.

2. Create a new key-pair by running the following code (all on one line):
keytool -genkey
 -alias packtpub
 -keypass SayK3ys
 -keystore /path/to/keystore
 -storepass BarC0der
 -dname "cn=packtpub,ou=pub,o=packt"

3. Verify that the key-pair was generated correctly:
keytool -list -keystore /path/to/keystore -
 storepass BarC0der

Automated Builds with Tycho

[306]

4. Create a JAR file for testing purposes, by zipping the contents of the directory:
jar cf test.jar .

5. Sign the JAR file to verify that it works, by running the following command
(all on one line):
jarsigner -keypass SayK3ys -storepass BarC0der
 -keystore /path/to/keystore test.jar packtpub

6. Verify the JAR signature by running the following command:
jarsigner -verify test.jar

What just happened?
The Java keytool program manages keys and certificates for Java programs wanting to sign
content. Each entry in the keystore has an alias (to allow for ease of reference if there are
many) and an associated key password and store password.

The keystore is created at the location given, protected with a store password BarC0der. To
use any of the keys in the keystore, the store needs to be unlocked with this password first.

To use the private key, we need to give the key password, which is SayK3ys. Typically, the
key passwords will be different from the store password. If multiple keys are present, it is
good practice to have a different password for each one.

The distinguished name (dname) is an LDAP identifier for the "owner" of the key. This is
represented as a series of name=value comma-separated pairs. At the minimum, they
need a common name (cn) and then some kind of organizational identifier. In this case, the
organizational unit (ou) is pub and the organization (o) is packt.

Another common way of representing ownership is to use the domain components (dc), so
an alternative is to use something like cn=pakcktpub, dc=packtpub, dc=com where each
element in the packtpub.com domain is split into its own dc element in the distinguished
name. Note that the order of elements is significant.

The jarsigner tool is used to sign a JAR file and needs access to the store, the store's
password, and the key's password. The alias can be supplied, in which case it will use that
one—but if it is left out then it will use any matching key in the chain (which assumes that
the passwords are unique for keys, as is best practice).

Finally, the jarsigner tool can also be used to verify whether a signature is correct or not
using the -verify argument.

Chapter 10

[307]

Time for action – signing the plug-ins
Integrating signatures into a Tycho build is a matter of adding a plug-in to the build script. In
addition, Java properties need to be passed in to provide access to the arguments required
by the jarsigner tool.

1. Add the plug-in to the parent pom.xml file:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jarsigner-plugin</artifactId>
 <version>1.2</version>
 <executions>
 <execution>
 <id>sign</id>
 <goals>
 <goal>sign</goal>
 </goals>
 </execution>
 </executions>
</plugin>

2. Run mvn package and an error is shown:
[ERROR] Failed to execute goal
 org.apache.maven.plugins:maven-jarsigner-
 plugin:1.2:sign (sign)
 on project com.packtpub.e4.parent:
 The parameters 'alias' for goal
 org.apache.maven.plugins:maven-jarsigner-plugin:1.2:sign
 are missing or invalid -> [Help 1]

3. Pass in the arguments required by jarsigner, which are supplied as Java system
properties with a jarsigner prefix as follows (all on one line):
mvn package
 -Djarsigner.alias=packtpub
 -Djarsigner.keypass=SayK3ys
 -Djarsigner.storepass=BarC0der
 -Djarsigner.keystore=/path/to/keystore

4. If it is successful, the output should be as follows:
[INFO] --- maven-jarsigner-plugin:1.2:sign (sign) @
 com.packtpub.e4.clock.ui ---
[INFO] 1 archive(s) processed
[INFO] --- maven-jarsigner-plugin:1.2:sign (sign) @
 com.packtpub.e4.feature ---

Automated Builds with Tycho

[308]

[INFO] 1 archive(s) processed
[INFO] --- maven-jarsigner-plugin:1.2:sign (sign) @
 com.packtpub.e4.update ---
[INFO] 1 archive(s) processed

5. To run the sign step conditionally, a profile can be used. Move the sign plug-in from
build to a separate top-level element profiles in pom.xml:
<profiles>
 <profile>
 <id>sign</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jarsigner-plugin</artifactId>
 ...
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

6. Now run the build with mvn package, and verify that it runs without signing.

7. Run the build with signing enabled by running mvn package -Psign to enable the
sign profile; it should ask for the alias, as before.

8. To automatically enable the sign profile whenever the jarsigner.alias property
is provided, add the following to the profile:
<profile>
 <id>sign</id>
 <activation>
 <property>
 <name>jarsigner.alias</name>
 </property>
 </activation>
 <build>
 ...
 </build>
</profile>

9. Now, run the build as mvn package -Djarstore.alias=packtpub ... to
verify that signing runs without needing to specify the -Psign argument.

Chapter 10

[309]

What just happened?
By adding the maven-jarsigner-plugin to the build, Maven signed any JAR file that was
built (including the content.jar and artifacts.jar files, which don't really need to be
signed). This is a standard pattern for building any signed Java content in Maven and isn't
Tycho or Eclipse-specific.

The parameters to jarsigner are specified as system properties. The -D flag
for Maven, like Java, is used to specify a system property on the command line.
The maven-jarsigner-plugin reads its properties with a prefix of jarsigner,
so the alias is passed as jarsigner.alias and the keystore as jarsigner.store.

Note that the location of the store needs to be specified as a full path, since the plug-in will
run with different directories (specifically the "target" directory of the build). Attempting to
use a relative path will fail.

Time for action – serving an update site
Now that the update site has been developed, tested, and automatically built, the final stage
is to upload the contents of the update site (under com.packtpub.e4.update/target/
repository) and make it available on a website or ftp server so that others can install it. If
Python 2.7 or higher is installed, run a simple web server as follows:

1. Change to the directory com.packtpub.e4.update/target/repository.

2. Run Python's SimpleHTTPServer:
python -m SimpleHTTPServer 8080
Serving HTTP on 0.0.0.0 port 8080 ...

3. Verify the update site by adding http://localhost:8080/ as a remote
update site in Eclipse.

If you don't have Python installed, then some operating systems have a means to serve
web-based content already, or another web server can be used. OS X has Web Sharing where
files in ~/Sites are served from; Linux systems typically have Apache configured to allow
per-user web sharing in ~/public_html, and Microsoft Windows has IIS where the default
location is c:\intepub\wwwroot. See the operating system's documentation for details.

What just happened?
An update site is simply an HTTP server that serves the contents of the content.jar and
artifacts.jar files, along with their plugins and features directories.

Automated Builds with Tycho

[310]

If Python 2.7 is installed, a module called SimpleHTTPServer exists that can be run from
the update/target/repository directory to allow the update site to be installed from
http://localhost:8080/. Uploading the contents of the repository to a remote website is
left as an exercise for the reader. For Python 3, the command is python3 -m http.server.

Finally, once published to a publicly visible website, it's possible to register the location of
the update site at the Eclipse marketplace at http://marketplace.eclipse.org, so
that other Eclipse users can find the update site from the Marketplace client.

Pop quiz – understanding automated builds and update sites
Q1. What is a GroupId, ArtifactId, and Version (GAV)?

Q2. What are the four types of packaging types needed to build plug-ins, features, products,
and update sites?

Q3. How can the version numbers of plug-ins and features be updated in Maven?

Q4. Why and how are JAR files signed?

Q5. How can a simple HTTP server be run in Python?

Q6. Where are Eclipse features typically registered for others to find?

Summary
This chapter concludes the creation of Eclipse plug-ins and features. Since the final step
is building and making it available to others, the steps in this chapter focused on how
to automate the builds with Tycho and then take the published update site and make it
available for others.

Pop Quiz Answers

Chapter 1, Creating Your First Plug-in

Pop quiz – Eclipse workspaces and plug-ins

Q1 An Eclipse workspace is the location where all the projects are stored.

Q2 The naming convention for Eclipse plug-in projects is to use a reverse domain name
prefix, such as com.packtpub. Additionally, UI projects typically have a UI in their
name.

Q3 The three key files in an Eclipse plug-in are META-INF/MANIFEST.MF, plugin.xml,
and build.properties.

Pop quiz – launching Eclipse

Q1 1. Quit the application by navigating to File | Exit.

2. Use the Stop button from the Debug or Console views.

Q2 Launch configurations are similar to precanned scripts, which can start up an application,
set its working directory and environment, and run a class.

Q3 Launch configurations are modified by navigating to the Run | Run Configurations... or
Debug | Debug Configurations... menus.

Pop Quiz Answers

[312]

Pop quiz – debugging

Q1 Navigate to the Debug | Debug configurations or Debug | Debug As... menus.

Q2 Set step filters via the preferences menu to avoid certain package names.

Q3 Breakpoints can be conditional, method entry/exit, enabled/disabled, or number of
iterations.

Q4 Set a breakpoint and set it after a hit count of 256.

Q5 Use a conditional breakpoint and set argument==null as the condition.

Q6 Inspecting an object means opening it up in the viewer so that the values of the object
can be interrogated and expanded.

Q7 The expression watches the window that allows arbitrary expressions to be set.

Chapter 2, Creating Views with SWT
Pop quiz – understanding views

Q1 In the Eclipse 3.x model, views must be subclasses of ViewPart. In the Eclipse 4.x
model, parts do not need to have an explicit superclass.

Q2 In the Eclipse 3.x model, views are registered via an org.eclipse.ui.views
extension point in the plugin.xml file.

Q3 The two arguments that most SWT objects have are a Composite parent and an integer
flags field.

Q4 When a widget is disposed, it will have its native resources released to the operating
system. Any subsequent actions will throw an SWTException with a Widget is
disposed message.

Q5 The Canvas has many drawing operations; to draw a circle, use drawArc() and specify
a full orbit.

Q6 To receive drawing events, a PaintListener must be created and associated with the
control by using the addPaintListener method.

Q7 UI updates not on the UI thread will generate an SWTException with an Invalid
thread access error.

Q8 To perform an update on a widget from a non-UI thread, use the asyncExec() or
syncExec() methods from Display (3.x) or UISynchronize (4.x) to wrap a
runnable that will run on the UI thread.

Q9 SWT.DEFAULT is used to indicate default options in the flags parameter that is passed
to the construction of an SWT widget.

Q10 Create a RowData object with the given size, and associate it with each Widget.

Appendix

[313]

Pop quiz – understanding resources

Q1 Resource leaks occur when an SWT resource is acquired from the OS, but then not
returned to it via a dispose() method prior to the object being garbage collected.

Q2 The different types of resources are Color, Cursor, Font, GC, Image, Path,
Pattern, Region, TextLayout, and Transform.

Q3 Run the Eclipse instance in tracing mode with org.eclipse.ui/debug and org.
eclipse.ui/trace/graphics set, specified in a debug file and launched with
-debug.

Q4 Use the displayed data to get the object's arrays, and iterate through them.

Q5 The right way is to register a dispose listener with the view, and the wrong way is to
override the dispose method.

Pop quiz – understanding widgets

Q1 Use the setFocus() method to set the focus on a particular widget.

Q2 Invoking redraw() will allow the widget to redraw itself.

Q3 The Combo can have a SelectionListener associated with it.

Q4 The widgetDefaultSelected() is what is called when the default value is used,
typically an empty value.

Pop quiz – using SWT

Q1 Use the Tray and TrayItem widgets.

Q2 The SWT.NO_TRIM style means don't draw the edges of the window, or the
close/maximize/minimize buttons.

Q3 Use setAlpha() to control a widget's transparency, including Shell.

Q4 Use setRegion() with a path describing the shape.

Q5 A group allows you to group things together with a standard item.

Q6 Most Composite use a null LayoutManager by default; it's only Shell and
Dialog that have a non-default value.

Q7 Use a ScrolledComposite.

Pop Quiz Answers

[314]

Chapter 3, Creating JFace Viewers
Pop quiz – understanding JFace

Q1 getImage() for showing an Image for an entry, and getText() for showing a text
value of an entry.

Q2 The hasChildren() method is used to determine whether or not an element is shown
with an expandable element, and getChildren() is used to calculate a list of children.

Q3 An ImageRegistry is used to share images between plug-ins or different views in
plug-ins, with a means of clearing up the resources when the view is disposed.

Q4 Entries can be styled with an IStyledLabelProvider.

Pop quiz – understanding sorting and filters

Q1 Specifying a ViewerComparator can allow elements to be sorted in a different order
other than the default one.

Q2 The select() method is used to filter elements, which is originally derived from the
Smalltalk terminology.

Q3 Multiple filters can be combined by setting an array of filters, or by writing a filter to
combine two or more filters together.

Pop quiz – understanding properties

Q1 Add a DoubleClickListener to the view.

Q2 The Dialog subclasses are used to create a dialog with custom content.

Q3 Property descriptors are used to represent keys for properties on a particular object.

Q4 Properties are displayed on a Properties view by having an object that is adaptable (either
directly through the IAdaptable interface, or indirectly via the IAdapterManager)
such that it returns a property source instance, which will return the property descriptors.

Appendix

[315]

Pop quiz – understanding tables

Q1 To get the headers shown, get the Table from the Viewer, and use it to call the
setHeaderVisible(true) method.

Q2 TableViewerColumns are used to set properties on individual columns and to bind
the label provider for the columns.

Q3 Synchronization is achieved by registering the site as a selection provider (so that the
selection events are sent to the workbench) and to listen for incoming selection events
and adjusting the view as necessary. Care must be taken to avoid recursive selection calls
in this case.

Chapter 4, Interacting with the User
Pop quiz – understanding menus

Q1 Action are the old way of attaching executable content to menu items. A command is
an abstract representation of the effect, which does not need to have a UI component.
Action should not be used as they have been depreciated for some time and may be
removed from a future version of the platform.

Q2 A command can be associated with a handler to provide a menu item. Handlers are
indirection mechanisms that allow the same menu (for example, copy) to take on
different commands based on which context they are in. It is also possible to have a
default command ID associated with a menu to avoid this indirection.

Q3 The M1 key is an alias for Cmd on OS X, and for Ctrl on other platforms. When defining
standard commands such as copy (M1 + C) it has the expected behavior on both
platforms (Cmd + C for OS X and Ctrl + C for others).

Q4 Keystrokes are bound to commands via a binding, which lists the key(s) necessary to
invoke and the associated command/handler.

Q5 A menu's locationURI is where it will contribute the entry to the UI. These
are specified either as relative to an existing menu's contribution, or to its generic
additions entry. It is also possible to specify custom ones, which are associated
with custom code.

Q6 A pop-up menu is created by using the special locationURI popup:org.eclipse.
ui.popup.any. Note that the objectContribution is not as flexible and may be
removed from the platform in future.

Pop Quiz Answers

[316]

Pop quiz – understanding jobs

Q1 The syncExec() method will block and wait for the job to complete before continuing
the code. The asyncExec() method will continue to run after posting the job but
before it completes.

Q2 The Display class runs jobs on the SWT UI thread, but the UISynchronize
instance can be used to run jobs on non-SWT UI threads as well. For E4 applications, the
UISynchronize is preferred.

Q3 The UIJob will always run on the UI thread of the runtime, and direct access of widgets
will not run into a thread error. Care should be taken to minimize the amount of time
spent in the UI thread so as not to block Eclipse. The job will run on a non-UI thread, and
so it does not have access to acquire or modify UI threaded objects.

Q4 The Status.OK_STATUS singleton is used to indicate success in general. Although it
is possible to instantiate a Status object with an OK code, doing so only increases the
garbage collection as the Status result is typically discarded after execution.

Q5 The CommandService can be obtained via the general PlatformUI.
getWorkbench().getService() call, which takes a class and returns an instance
of that class. The same technique can be used to acquire a UISynchronize instance.

Q6 An icon can be displayed by setting a property on the job with the name
IProgressConstants2.ICON_NAME.

Q7 SubMonitor are generally easier to use at the start of a method, to ensure that the
monitor being passed in is correctly partitioned as appropriate for the task in hand. The
SubProgressMonitor should generally not be used.

Q8 The cancellation should be checked as frequently as possible so that as soon as the user
chooses to cancel the Job, the Job is aborted.

Pop quiz – understanding errors

Q1 An informational dialog is shown with MessageDialog.openInformation()
(and also .openWarning() and .openError() as well). There is also a
MessageDialog.openConfirmation() call, which returns the value of a yes/no
answer to the user.

Q2 The StatusManager is an Eclipse 3.x class, which is tightly coupled to the UI. The
StatusReporter provides the same basic intent, but without a UI association.

Q3 The status reporting is asynchronous by default; although a BLOCK option exists to make
it synchronous.

Q4 To combine the results of many things into one report, use a MultiStatus object.

Appendix

[317]

Chapter 5, Storing Preferences and Settings
Pop quiz – understanding preferences

Q1 The default style is FLAT but this can be overridden to provide GRID which provides a
better layout for preference pages.

Q2 There are many subclasses of FieldEditor, which include editors for Boolean,
Color, Combo, Font, List, RadioGroup, Scale, String, Integer,
Directory, and File.

Q3 To provide searching in a preference page, keywords must be registered via the
extension point.

Q4 Don't use IMemento for anything. Use anything else including
IEclipsePreferences or DialogSettings.

Q5 The MessageDialogWithToggle class provides the "Do not show this message
again" support.

Chapter 6, Working with Resources
Pop quiz – understanding resources, builders, and markers

Q1 If an editor complains of a missing document provider, install an instance of
TextFileDocumentProvider with the setDocumentProvider() method on
the editor.

Q2 An IResourceProxy is used by a builder to provide a wrapper around an
IResource, but one which doesn't require the construction of an IResource image.

Q3 An IPath is a generic file component that is used to navigate files in folders and projects.

Q4 A nature is a flavor of a project, which enables certain behaviors. It is installed with an
update to the project descriptor for the given project.

Q5 Markers are generally created by a builder though they can be created by any plug-in on a
resource. There is a specific function on resource which can be used to create a marker of
a specific type.

Pop Quiz Answers

[318]

Chapter 7, Understanding the Eclipse 4 Model
Pop quiz – understanding E4

Q1 The application model is stored in the e4xmi file, and provides a way of representing
the entire state of the application's UI. It is also persisted on save and then reloaded at
startup, so positions of parts and their visibility is persisted. The model is also accessible
at runtime via the various M classes such as MApplication and MPart, and can be
queried and mutated at runtime.

Q2 Parts are a more generic form of views and editors. Unlike Eclipse 3.x, not everything
needs to fit into a View or Editor category; they are all just Parts which contain UI
components underneath, and can be organized appropriately.

Q3 Although extension points aren't used for things like commands, keybindings, or
views, they are still used to define other extensions to Eclipse such as builders, marker
types, and language parsers. The only thing that the Eclipse 4 model moves out of the
extension points are the UI-related concepts. Even then, in the Eclipse 4 IDE the backward
compatibility mode ensures that all the UI-related extension points are still rendered. For
developing IDE plugins, the Eclipse 3.x APIs are likely to be around for the next couple of
Eclipse releases.

Q4 The Eclipse 4 parts can be styled with CSS, and the underlying renderer applies the
styles on the fly, including if the CSS styles change. This allows theme managers to apply
different color combinations in Eclipse 4 in ways which are not possible in Eclipse 3.

Q5 The Eclipse 4 contexts are essentially a series of HashMaps that contain values (objects)
associated with keys. Parts can dynamically obtain content from their context, which
include all of the injectable services as well as dynamically changing content such as the
current selection. A context is implicit in every Part, and inherits up the containment
chain, terminating with the OSGi runtime.

Appendix

[319]

Q6 There are several annotations used by Eclipse 4, including:

 � @Inject (used to provide a general "insert-value-here" instruction to Eclipse)

 � @Optional (meaning it can be null)

 � @Named (to pull out a specific named value from the context)

 � @PostConstruct (called just after the object is created)

 � @PreDestroy (called just before the object is destroyed)

 � @Preference (to pull out a specific preference value or the preference store)

 � @EventTopic and @UIEventTopic (for receiving events via the event admin
service and on the UI thread respectively)

 � @Persist and @PersistState (for saving data and viewing data)

 � @Execute and @CanExecute (for showing what method to execute, and a
boolean conditional which has a boolean return to indicate if it can run)

 � @Creatable (to indicate that the object can be instantiated)

 � @GroupUpdate (to indicate that updates can be deferred).

Q7 Preferences are accessed with the @Preference annotation which can inject a value
into a field. If updates are needed it should be set as a method parameter, which will be
called when the preference value is changed.

Q8 Messages are sent via the EventBroker, which is accessible from the injection context.
This can have sendEvent() or postEvent() to send data. On the receiving side,
using the @UIEventTopic or @EventTopic annotations is the easiest way to receive
values. As with preferences, if it's set up as a method parameter then the changes will be
notified.

Q9 Selection can be accessed using the value from the context with a method injection or
value injection using @Named(IServiceConstants.ACTIVE_SELECTION).

Pop Quiz Answers

[320]

Chapter 8, Creating Features, Update Sites, Applications,
and Products
Pop quiz – understanding features, applications, and products

Q1 The keyword qualifier is replaced with a timestamp when plug-ins or features
are built.

Q2 The files are artifacts.jar and content.jar as well as one file per
feature/plug-in built.

Q3 The older site.xml can be used, or a category.xml file which is essentially
equivalent.

Q4 If a feature requires another, then it must be present in the Eclipse instance in order to
install. If a feature includes another, then a copy of that included feature is included in the
update site when built.

Q5 An application is a standalone application which can be run in any Eclipse instance when
it is installed. A product affects the Eclipse instance as a whole, replacing the launcher,
icons, and default application launched.

Q6 An application is a class that implements IApplication and has a start() method.
It is referenced in the plugin.xml file and can be invoked by id with -application
on the command line.

Chapter 9, Automated Testing of Plug-ins
Pop quiz – understanding SWTBot

Q1 The JUnit Runner that is required is SWTBotJunit4ClassRunner, which is set
up with an annotation @RunWith(SWTBotJunit4ClassRunner.class).

Q2 Views are set up by driving the menu to perform the equivalent of navigating to Window
| Show View | Other and driving the value of the dialog.

Q3 To get the text value of a dialog, use textWithLabel() to find the text field next to
the associated label, and then get or set the text from that.

Q4 A Matcher is used to encode a specific condition, such as a view or window with a
particular title. It can be handed over to the SWTBot runner to execute in the UI thread
and return a value when it is done.

Q5 To get values from the UI, use a StringResult (or other equivalent types) and pass
that to the UIThreadRunnable's syncExec(). It will execute the code, return the
value, and then pass that to the calling thread.

Q6 Use the bot's waitUntil() or waitWhile() methods, which block execution of the
test until a certain condition occurs.

Appendix

[321]

Chapter 10, Automated Builds with Tycho
Pop quiz – understanding automated builds and update sites

Q1 The GroupId, ArtifactId, and Version are a set of co-ordinates (collectively
known as GAV) that Maven uses to identify dependencies and plugins. The group is
a means of associating multiple artifacts together, and the artifact is the individual
component name. In OSGi and Eclipse builds, the group is typically the first few segments
of the bundle name, and the artifact is the bundle name. The version follows the same
syntax as the bundle's version, except that .qualifier is replaced with -SNAPSHOT.

Q2 The four types are pom (used for the parent), eclipse-plugin (for plug-ins),
eclipse-feature, (for features) and eclipse-repository (for update sites and
products)

Q3 Version numbers can be updated with mvn org.eclipse.tycho:tycho-
versions-plugin:set-version -DnewVersion=version.number. Note
that while mvn version:set exists, it will not update the plug-in versions, if chosen.

Q4 JAR files are signed to ensure that the contents of the JAR file have not been modified
after creation. Eclipse looks at these JAR files at run-time to ensure that they are not
modified, and warns if they are unsigned or if the signatures are invalid. The standard
JDK tool, jarsigner is used to sign and verify JAR files; the JDK tool, keytool is used to
manipulate keypairs.

Q5 A simple HTTP server can be launched using the command python -m
SimpleHTTPServer. In Python 3.0, the command is python3 -m http.server.

Q6 Eclipse features are typically published in the Eclipse Marketplace at
http://marketplace.eclipse.org. This includes both open
source and commercial plug-ins.

Index
Symbols
.class files 163
@Execute annotation 110
.java source files 163

A
AbstractUIPlugin 144
actions

about 111
creating 109

addColumnTo() method 103
addDoubleClickListener() method 92
addSelectionListener() method 59, 107
automated tests

JUnit, using for 265
running 300-302

B
BooleanFieldEditor 153
bot 270
breakpoint

about 25
method breakpoints 25

builder
building 168-170

builds
enabling, for plug-ins 305

C
Central repository 283

clock.ui plug-in
creating 36

Clock View
custom view, drawing 38-40
second hand, animating 42, 43
second hand, drawing 41, 42
UI thread, running 43, 44

ClockWidget
creating 45, 46
hours hand, drawing 50
layouts, using 47-49
minute hand, drawing 50
updating 60

collapseAll() method 90
collapseToLevel() method 91
ColorFieldEditor 153
ColorRegistry 81
Combo 57
ComboFieldEditor 148
command parameters

passing 224, 226
commands

about 221
binding, to keys 114, 115
contributing, to pop-up menus 121-123
creating 109
creating, for menu bar 111-113
menu, wiring to 221-224

Common Build Infrastructure 286
compare() method 88
compilers 168
Composite 49
computeSize() method 46

[324]

conditional breakpoints
about 26
setting 26-28

ConsoleViewer 76
ContentViewers

TableViewer 76
TreeViewer 76

context
modifying 115-117
using 206
values, calculating on demands 215, 216

context menus
about 110
adding 110, 111

createContents() method 150
createCustomArea() method 93
createFieldEditors() method 146, 147, 153
createPartControl() method 38, 58, 77, 82, 84,

88, 89, 92, 97, 103, 158
customArea() method 93
custom injectable classes

creating 232
service, creating 232, 233
subtypes, injecting 233, 234

D
debugging, Eclipse plug-in

about 18, 20
step filters, using 23

Declarative Services (DS) 299
DelegatingStyledCellLabelProvider 84, 85
DetailedProgressViewer 76
DialogSettings

about 157
using 159, 160

direct menu
creating 226-229

Direct MenuItem 228
DirectoryFieldEditor 153
dispose method 106
dispose() method 50
double-click listener

adding, to tree view 92

E
E4 application

creating 190-194
parts, creating 195-199
theme manager, using 205
UI, styling with CSS 200-205

E4 tooling
installing 188, 189

Eclipse
about 7, 163
feature, creating 238
headless application, creating 254-257
JUnit case, writing 266, 267
launching 15, 17
plug-ins, grouping with features 237
product, creating 259-262

Eclipse 4 model
about 187
working with 188

Eclipse Classic
download link 7

Eclipse plug-in
about 7
breakpoint types, using 25
building, Maven used 283
building, with Tycho 286-288
code, updating in debugger 22
conditional breakpoints, using 26
creating 11-13
debugging 18-21
debugging, step filters used 23
exceptional breakpoints, using 28
key files 13
running 15
signing 307-309

Eclipse SDK
download link 7
setting up 8-10

editor
creating 164-166

epf (Eclipse Preference File) 143
error markers 182, 183
errors

reporting 137-140

[325]

events
dealing with 212-214

exceptional breakpoints
about 28
exceptions, catching 29, 30
Expressions view 32
Variables view 31

execute() method 31
expandAll() method 90
expandToLevel() method 91
expressions

reusing 120, 121

F
feature

about 292
branding 250-253
building 292, 293
creating 238-240
depending, on other features 249, 250
exporting 240-242
installing 242-244
update site, categorising 244-248

FieldEditorPreferencePage 145
field editors

BooleanFieldEditor 153
ColorFieldEditor 153
DirectoryFieldEditor 153
FileFieldEditor 153
PathEditor 153
RadioGroupFieldEditor 153
ScaleFieldEditor 153

FileFieldEditor 153
filtering, JFace 89
FontRegistry 81

G
getAdapter() method 99
getChildren() method 79
getEditableValue() method 96
getElements() method 78
getFieldEditorParent() method 146
getFirstElement() method 95
getFont() method 85

getImage() method 81
getPropertyDescriptors() method 96
getPropertyValue() method 96
getSelection() method 94
getStateLocation() method 145
getStyledText() method 84
getSystemColor() method 50
graphics context (GC) 40

H
Handled MenuItem 228
handlers

about 221
creating 109
creating, for menu bar 111-113
menu, wiring to command 221-224

hasChildren() method 78
headless application

creating 254-257
hookContextMenu() method 110
HTML 188

I
IDoubleClickListener interface 92
IEclipsePreferences

about 156
using 156

ImageRegistry 81
IMementos 157
incremental builds

implementing 174, 175
installation, E4 tooling 188-190
installation, Maven 284, 285
IntegerFieldEditor 147
IPreferenceStore 144
IPropertySource interface 95
IPropertySupport interface 99
isOdd() method 266
isPropertySet() method 96
IStructuredSelection class 94, 95
IStyledLabelProvider interface

adding, to TimeZoneLabelProvider 84
isValid() method 148
ITreeSelection 92, 94

[326]

J
jarsigner tool 306
Java

URL 8
JavaFX 188
java.util.Date() 32
JFace

about 75
festures 75
filtering 89
resource registries 81
sorting 86

JFaceRegistry 82
job properties

setting 133-136
jobs 42, 124
JUnit

about 265
using, for automated testing 265

JUnit case
writing, in Eclipse 266, 267

Juno (4.2)
URL 188

K
Kepler (4.3)

URL 188
keybindings

creating 226-229
key files, Eclipse plug-ins

build.properties 14
META-INF/MANIFEST.MF 13
plugin.xml file 14

keys
commands, binding to 114, 115

keystore 306
keytool program 306

L
LocalResourceManager 82
logging

adding 206, 207
LogService 206

M
MANIFEST.MF file 37
markers

using 182
marker type

registering 184, 185
markup language example

about 164
builder, building 168-170
deletion, handling 175-177
editor, creating 164-166
files, iterating through resources 170-172
incremental builds, implementing 174, 175
markup parser, writing 166, 167
resources, creating 173, 174

markup parser
writing 166, 167

Maven
about 283
installing 284, 285
used, for building Eclipse plug-ins 283

maven quickstart plugin 285
memento

adding, for Time Zone View 158
menu

wiring, to command 221-224
menu items

disabling 118-120
enabling 118-120

MessageDialogWithToggle 160
method breakpoints 25
minimark 164

N
nature

creating 178-181
using 178

New Class wizard
dividing 280

NullPointerException 30
null progress monitors

using 131-133

[327]

O
openInformation() method 31
operations

running, in background 125, 126
OSGi 187
OSGi services

about 206
dealing with, events 212-214
logging, adding 206, 207
selection service, obtaining 209-211
window, obtaining 208, 209

P
paintControl() method 40, 41, 45, 51, 58
parent project

creating 289-291
parts

about 195
creating 195-199

PathEditor 153
performApply() method 150
performOk() method 150
plug-in. See Eclipse plug-in
Plug-in Development Environment (PDE) 8
plug-ins development 7
plug-in test

writing 267, 268
plug-in wizard

MANIFEST.MF 37
plugin.xml file 38

plugin.xml file 38, 109
POJOs (Plain Old Java Objects) 188
pom.xml file 283
pop-menus

command, contributing to 121-123
pop-up menu

about 229
creating 229-231

preferences
about 143
error messages, creating 147
field editors, using 153, 154
grid, using 150
IEclipsePreferences, using 156, 157
keywords, adding 154

list, selecting from 148
preference page, creating 145, 146
preferences page, placing 151
using 217, 218
value, persisting 144
warning, creating 147

product
about 295
building 295-299
creating 259, 261
creating, based on features 263

progress
about 124
reporting, for tasks 127, 128

progress monitor
dealing with cancellations 128, 129

project
about 170
version number, modifying 303-305

public static method 68

R
RadioGroupFieldEditor 153
removeSelectionListener() method 107
resource management, SWT

about 50
colorful option, adding 51
leak, plugging 54-56
leak, searching 52, 54

resource registries
ColorRegistry 81
FontRegistry 81
ImageRegistry 81

resources
about 163
creating 173, 174
files, iterating through 170-172
folders, iterating through 170-172
using 163

reusable widget
creating 45

reveal() method 91, 107

S
saveState() method 158
selectionChanged() method 105

[328]

selectionListener 106
select() method 89
self-signed certificate

creating 305, 306
semantic versioning 304
services

using 206
setFocus() method 38

using 58
setOffset() method 59
setSelection() method 107
setValue() method 144
sorting, JFace

about 87
view-specific sorting 87

SourceViewer 76
step filtering

setting up 23, 24
submonitors

using 131-133
subprogress monitors

using 130, 131
subtasks

about 129
using 130, 131

SWT
about 35
resources, managing 50
reusable widget, creating 45
user interaction 56
view, creating 36

SWTBot
about 265, 268, 270
installing 268
used, for user interface testing 268
welcome screen, hiding 273
working with 273
working with menus 271, 272

SWTBot runtime errors
avoiding 274

SWTBot test
writing 269-271

SWT rendering tool 188
SWT tools update site

referenec link 56
SWT widgets

about 60

groups and tab folders 66-71
items, adding to tray 60, 61
modal window, creating 64
shell effects 64, 65
user, responding to 62, 63

syncExec() method 43

T
TableTreeViewer

creating 100
selection, syncing 104-106
time zones, viewing in tables 100

TableViewer
about 76
creating 76-79
images, adding for regions 86
images, using 81-83
label providers, styling 84, 85

target platform 289
test case

about 265
writing, in Eclipse 266

testOdd() method 266
testPlatform() method 267
test suites 265
TextViewer 76
theme manager

using 205
TimeZoneDisplayNameColumn 103
TimeZoneIDColumn class 103
TimeZoneLabelProvider 81
time zones

displaying, in tables 100-103
Time Zone Table View 100
Time Zone View

memento, adding 158, 159
TimeZoneViewerComparator 88
toolbars

using 124
tools bridge

using 234
toString() method 78, 87
TreeViewer

about 76
double-click listener, adding 92-95
items, filtering 89, 91

[329]

items, sorting 87, 88
properties, displaying 95-99

Tycho
about 283, 286
plug-in, building 286-288

tycho-surefire-plugin 302

U
UI

conditions, using 278, 279
interacting with 277
values, obtaining from 277, 278

UI, for E4 application
interacting with 219, 220
styling, with CSS 200-205

UI job
using 126

update site
about 293
building 293, 294
serving 309
signing 305

user interactions, SWT
about 56
focus, switching 57
input, responding to 58, 59

user interface testing
SWTBot used 268

user preference 143

V
values

obtaining, from UI 277, 278
view

creating 36, 37
custom view, drawing 38
displaying 275
interrogating 276
working with 274

viewByTitle() method 275
ViewerFilter class 89
viewers

ContentViewers 76
view menu

about 229
creating 229-232
using 124

W
warning markers 182
window 208
workspace

about 163
using 163

Thank you for buying

Eclipse 4 Plug-in Development by Example Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Instant Eclipse 4 RCP Development How-to
[Instant]
ISBN: 978-1-78216-952-9 Paperback: 68 pages

Over 10 practical recipes for creating rich client
applications using Eclipse 4

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Produce rich client standalone applications using
Eclipse 4

3. Create an application user interface using an
application model

4. Customize and package your applications for
multiple target platforms

Java EE Development with Eclipse
ISBN: 978-1-78216-096-0 Paperback: 426 pages

Develop Java EE applications with Eclipse and
commonly used technologies and frameworks

1. Each chapter includes an end-to-end sample
application

2. Develop applications with some of the commonly
used technologies using the project facets in
Eclipse 3.7

3. Clear explanations enriched with the necessary
screenshots

Please check www.PacktPub.com for information on our titles

Instant Eclipse Application Testing How-to
[Instant]
ISBN: 978-1-78216-324-4 Paperback: 62 pages

An easy-to-use guide on how to test Java applications
of any scope using Eclipse IDE

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Learn how to install Eclipse and Java for any
platform

3. Get to grips with how to efficiently navigate in the
Eclipse environment using shortcuts

4. Create your own Java sample app and learn how
to test and debug it using a rich set of Eclipse
debugging tools

Getting Started with Eclipse Juno
ISBN: 978-1-78216-094-6 Paperback: 277 pages

A friendly and engaging tutorial on Eclipse Juno IDE
that will help you to get up to speed with Eclipse

1. Learn subjects ranging from basic Java development
to web app development, version control, and GUI
programming

2. Discover how to use Eclipse to develop, test, and
debug basic desktop Java applications proficiently

3. Integrate JUnit 4, the most widely used unit testing
framework, into Eclipse

4. Get to grips with how Eclipse can be used to
develop web-based Java applications that employ
Java Servlets and JavaServer Pages

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Creating Your First Plug-in
	Getting started
	Time for action – setting up the Eclipse SDK environment
	Creating your first plug-in
	Time for action – creating a plug-in
	Running plug-ins
	Time for action – launching Eclipse from within Eclipse
	Debugging a plug-in
	Time for action – debugging a plug-in
	Time for action – updating code in debugger
	Debugging with step filters
	Time for action – setting up step filtering
	Using different breakpoint types
	Time for action – breaking at method entry and exit
	Using conditional breakpoints
	Time for action – setting a conditional breakpoint
	Using exceptional breakpoints
	Time for action – catching exceptions
	Time for action – using watch variables and expressions
	Summary

	Chapter 2:Creating Views with SWT
	Creating views and widgets
	Time for action – creating a view
	Time for action – drawing a custom view
	Time for action – drawing a second hand
	Time for action – animating the second hand
	Time for action – running on the UI thread
	Time for action – creating a reusable widget
	Time for action – using layouts
	Managing resources
	Time for action – getting colorful
	Time for action – finding the leak
	Time for action – plugging the leak
	Interacting with the user
	Time for action – getting in focus
	Time for action – responding to input
	Using other SWT widgets
	Time for action – adding items to the tray
	Time for action – responding to the user
	Time for action – modal and other effects
	Time for action – groups and tab folders
	Summary

	Chapter 3:Creating JFace Viewers
	Why JFace?
	Creating TreeViewers
	Time for action – creating a tree viewer
	Time for action – using Images in JFace
	Time for action – styling label providers
	Sorting and filtering
	Time for action – sorting items in a viewer
	Time for action – filtering items in a viewer
	Interaction and properties
	Time for action – adding a double-click listener
	Time for action – showing properties
	Tabular data
	Time for action – viewing time zones in tables
	Time for action – syncing selection
	Summary

	Chapter 4:Interacting with the User
	Creating actions, commands, and handlers
	Time for action – adding context menus
	Time for action – creating commands and handlers
	Time for action – binding commands to keys
	Time for action – changing contexts
	Time for action – enabling and disabling menu's items
	Time for action – reusing expressions
	Time for action – contributing commands to pop-up menus
	Jobs and progress
	Time for action – running operations in the background
	Time for action – reporting progress
	Time for action – dealing with cancellation
	Time for action – using subtasks and subprogress monitors
	Time for action – using null progress monitors and submonitors
	Time for action – setting job properties
	Reporting errors
	Time for action – showing errors
	Summary

	Chapter 5:Storing Preferences and Settings
	Storing preferences
	Time for action – persisting a value
	Time for action – creating a preference page
	Time for action – creating warning and error messages
	Time for action – choosing from a list
	Time for action – using a grid
	Time for action – placing the preferences page
	Time for action – using other field editors
	Time for action – adding keywords
	Time for action: using IEclipsePreferences
	Using IMemento and DialogSettings
	Time for action – adding a memento for the Time Zone View
	Time for action – using DialogSettings
	Summary

	Chapter 6:Working with Resources
	Using the workspace and resources
	Time for action – creating an editor
	Time for action – writing the markup parser
	Time for action – building the builder
	Time for action – iterating through resources
	Time for action – creating resources
	Time for action – implementing incremental builds
	Time for action – handling deletion
	Using natures
	Time for action – creating a nature
	Using markers
	Time for action – error markers if the file is empty
	Time for action – registering a marker type
	Summary

	Chapter 7:Understanding the Eclipse 4 Model
	Working with the Eclipse 4 model
	Time for action – installing E4 tooling
	Time for action – creating an E4 application
	Time for action – creating a part
	Time for action – styling the UI with CSS
	Using services and contexts
	Time for action – adding logging
	Time for action – getting the window
	Time for action – obtaining the selection
	Time for action – dealing with events
	Time for action – calculating values on demand
	Time for action – using preferences
	Time for action – interacting with the UI
	Using Commands, Handlers, and MenuItems
	Time for action – wiring a menu to a command with a handler
	Time for action – passing command parameters
	Time for action – creating a direct menu and keybindings
	Time for action – creating a pop-up menu and a view menu
	Creating custom injectable classes
	Time for action – creating a simple service
	Time for action – injecting subtypes
	Summary

	Chapter 8:Creating Features, Update Sites, Applications, and Products
	Grouping plug-ins with features
	Time for action – creating a feature
	Time for action – exporting a feature
	Time for action – installing a feature
	Time for action – categorising the update site
	Time for action – depending on other features
	Time for action – branding features
	Building applications and products
	Time for action – creating a headless application
	Time for action – creating a product
	Summary

	Chapter 9:Automated Testing of Plug-ins
	Using JUnit for automated testing
	Time for action – writing a simple JUnit test case
	Time for action – writing a plug-in test
	Using SWTBot for user interface testing
	Time for action – writing a SWTBot test
	Time for action – working with menus
	Working with SWTBot
	Time for action – hiding the welcome screen
	Time for action – avoiding SWTBot runtime errors
	Working with views
	Time for action – showing views
	Time for action – interrogating views
	Interacting with the UI
	Time for action – getting values from the UI
	Time for action – waiting for a condition
	Summary

	Chapter 10:Automated Builds with Tycho
	Using Maven to build Eclipse plug-ins with Tycho
	Time for action – installing Maven
	Time for action – building with Tycho
	Building features and update sites with Tycho
	Time for action – creating a parent project
	Time for action – building a feature
	Time for action – building an update site
	Time for action – building a product
	Testing and releasing
	Time for action – running automated tests
	Time for action – changing the version numbers
	Signing update sites
	Time for action – creating a self-signed certificate
	Time for action – signing the plug-ins
	Time for action – serving an update site
	Summary

	Appendix:Pop Quiz Answers
	Chapter 1, Creating Your First Plug-in
	Chapter 2, Creating Views with SWT
	Chapter 3, Creating JFace Viewers
	Chapter 4, Interacting with the User
	Chapter 5, Storing Preferences and Settings
	Chapter 6, Working with Resources
	Chapter 7, Understanding the Eclipse 4 Model
	Chapter 8, Creating Features, Update Sites, Applications, and Products
	Chapter 9, Automated Testing of Plugins
	Chapter 10, Automated Builds with Tycho

	Index

