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Preface

It is our pleasure to welcome you to the proceedings of the 7th International
Symposium on Engineering Secure Software and Systems (ESSoS 2015). This
event is part of a maturing series of symposia that attempts to bridge the gap
between the software engineering and security scientific communities with the
goal of supporting secure software development. The parallel technical spon-
sorship from ACM SIGSAC (the ACM interest group in security) and ACM
SIGSOFT (the ACM interest group in software engineering) demonstrates the
support from both communities and the need for providing such a bridge.

Security mechanisms and the act of software development usually go hand
in hand. It is generally not enough to ensure correct functioning of the security
mechanisms used. They cannot be blindly inserted into a security-critical sys-
tem, but the overall system development must take security aspects into account
in a coherent way. Building trustworthy components does not suffice, since the
interconnections and interactions of components play a significant role in trust-
worthiness. Lastly, while functional requirements are generally analyzed care-
fully in systems development, security considerations often arise after the fact.
Adding security as an afterthought, however, often leads to problems. Ad hoc de-
velopment can lead to the deployment of systems that do not satisfy important
security requirements. Thus, a sound methodology supporting secure systems
development is needed. The presentations and associated publications at ESSoS
2015 contribute to this goal in several directions: First, improving methodologies
for secure software engineering (such as formal methods and machine learning).
Second, with secure software engineering results for specific application domains
(such as access control, cloud, and password security). Finally, a set of presen-
tations on security measurements and ontologies for software and systems.

The conference program featured two keynotes by Herbert Bos (Vrije Univer-
siteit Amsterdam) and Felix Lindner (Recurity Labs GmbH), as well as research
and idea papers. In response to the call for papers, 41 papers were submitted.
The Program Committee selected 11 full-paper contributions (27%), presenting
new research results on engineering secure software and systems. In addition,
there were five idea papers, giving a concise account of new ideas in the early
stages of research.

Many individuals and organizations contributed to the success of this event.
First of all, we would like to express our appreciation to the authors of the
submitted papers and to the Program Committee members and external refer-
ees, who provided timely and relevant reviews. Many thanks go to the Steering
Committee for supporting this series of symposia, and to all the members of
the Organizing Committee for their tremendous work and for excelling in their
respective tasks. The DistriNet research group of the KU Leuven did an excel-
lent job with the website and the advertising for the conference. Finally, we owe
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gratitude to ACM SIGSAC/SIGSOFT, IEEE TCSP, and LNCS for continuing
to support us in this series of symposia.

December 2014 Frank Piessens
Juan Caballero
Nataliia Bielova
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Formal Verification of Liferay RBAC

Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

Università Ca’ Foscari Venezia

Abstract. Liferay is the leading opensource portal for the enterprise,
implementing a role-based access control (RBAC) mechanism for user
and content management. Despite its critical importance, however, the
access control system implemented in Liferay is poorly documented and
lacks automated tools to assist portal administrators in configuring it
correctly. To make matters worse, although strongly based on the RBAC
model and named around it, the access control mechanism implemented
in Liferay has a number of unconventional features, which significantly
complicate verification. In this paper we introduce a formal semantics for
Liferay RBAC and we propose a verification technique based on abstract
model-checking, discussing sufficient conditions for the soundness and the
completeness of the analysis. We then present a tool, called LifeRBAC,
which implements our theory to verify the security of real Liferay portals.
We show that the tool is effective at proving the absence of security flaws,
while efficient enough to be of practical use.

1 Introduction

Liferay1 is the leading opensource portal for the enterprise, adopted by impor-
tant companies like Allianz, Cisco, Lufthansa and Vodafone, just to name a
few [17]. Liferay allows portal administrators to conveniently manage both users
and contents in a unified web framework. Users are typically structured into
a hierarchy of organizations, where members of a child organization are also
members of the parent organization. Contents, instead, are collected into sites,
built as assemblies of different pages, portlets and social collaboration tools, like
blogs and wikis. Both organizations and sites belong to a top-level company, and
a single portal may host different companies at the same time.

For enterprises, the Liferay portal is at the core of the business process, since
security-critical portlets may allow, for instance, to access sensitive information
and/or to reorganize workflows. To ensure that private contents are only accessed
by the intended recipients and that business processes are only handled by autho-
rized users, Liferay implements a role-based access control (RBAC) mechanism.

1.1 Liferay RBAC

In the standard RBAC model, permissions are assigned to a relatively small and
fixed set of roles, while roles are assigned to a potentially large and dynamic set

1 http://www.liferay.com

F. Piessens et al. (Eds.): ESSoS 2015, LNCS 8978, pp. 1–16, 2015.
c© Springer International Publishing Switzerland 2015



2 S. Calzavara, A. Rabitti, and M. Bugliesi

of users: since user privileges only depend on the assigned roles, this approach
simplifies the access control management task [7]. When role administration is
itself role-based, like in the case of Liferay, the RBAC model is typically called
administrative and abbreviated as ARBAC [20]. For the sake of simplicity and
for consistency with the Liferay documentation, in this paper we uniform the
two models and we just use the acronym RBAC everywhere.

Though extremely popular and widely deployed, real-world RBAC systems
are notoriously difficult to get right, since the set of roles dynamically assignable
to each user is easily under-estimated and occasional changes to the access con-
trol policy may introduce overlooked security flaws. The research community
has then proposed formal methods as an effective tool to strengthen complex
RBAC systems and ensure that they meet their intended goals [3,9,8,2,19].
Notable examples of useful security goals include role (un)reachability, ensur-
ing that a given role granting powerful privileges is never assigned to untrusted
users, or mutual exclusion properties, preventing the assignment of dangerous
combinations of permissions to the same user.

Despite its critical importance and these well-known problems, the access con-
trol system implemented in Liferay is poorly documented and lacks automated
tools to assist portal administrators in configuring it correctly. To make matters
worse, although strongly based on the RBAC model and named around it, the
access control mechanism implemented in Liferay does not constitute, strictly
speaking, an RBAC system. First, users of the portal may be allowed to imper-
sonate other users and inherit all the privileges granted to them: this implies
that, contrary to the RBAC model, the identity of the users is not immaterial
and the verification problem becomes more challenging. Moreover, besides reg-
ular roles, Liferay also features site roles, organization roles and owner roles,
used to constrain access rights exclusively to site members, organization mem-
bers and resource owners respectively. These special roles have an unconventional
semantics, reminiscent of a specific kind of parametrized roles [10,15,22]. Their
introduction breaks a desirable property of the standard RBAC model: user
privileges do not depend only on the assigned roles, but also on the state of the
Liferay portal, which further complicates verification.

1.2 Contributions

Our contributions can be summarized as follows:

1. we define a formal semantics of Liferay RBAC in terms of a state transition
system, which concisely and precisely captures all the subtleties of the access
control model. We additionally discuss how we ensure the adequacy of the
formal semantics with respect to the behaviour of the real portal;

2. we introduce an abstract semantics which provides a finite approximation
of the infinite-state transition system induced by the (concrete) formal se-
mantics. We show that the abstract semantics can be used to soundly verify
useful security properties expressed in a fragment of a standard modal (tem-
poral) logic. Moreover, we prove that, when impersonation is not used, the
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adoption of the abstract semantics does not introduce any loss of precision
in the security analysis;

3. we implement a tool, called LifeRBAC, which leverages the abstract se-
mantics and the modal logic to verify the security of real Liferay portals. We
show that the tool is effective at proving the absence of security flaws, while
efficient enough to be of practical use on a realistic case study.

Structure of the paper. Section 2 defines the formal semantics of Liferay RBAC.
Section 3 introduces the abstract semantics and studies the verification
problem. Section 4 presents the tool and the experiments. Section 5 discussed
related work. Section 6 concludes. The proofs of the formal results are given in
the long version of the paper [4].

2 Semantics of Liferay RBAC

Liferay users are organised into a hierarchy of groups, including companies, or-
ganizations and sites. Similarly, different items in the portal are assigned to
these groups on an ownership basis: for instance, a given portal page may be-
long to the site s, which in turn is under the control of the company c. Liferay
provides various tools to grant or deny access to a given resource based on the
group hierarchy: scoping allows to extend access rights on a group to each item
belonging to that group, while parametrized roles like organization roles and
site roles provide facilities for granting access privileges which are restricted to
organization-specific/site-specific resources and organization/site members. For
example, the assignment of an organization role Reader[o] may allow members
of the organization o to get read access to all the items belonging to o. Finally,
owner roles can be used to define access rights for individual resource owners.

2.1 Syntax

We let Users be an unbounded set of users and (G,�) be a poset of groups.
Groups and their underlying order uniformly model different collections handled
by the portal, i.e., companies, organizations and sites. We assume an unbounded
set Items , which includes a number of resources of interest, e.g., portlets, message
boards, layouts, etc. Each item i belongs to a fixed set of groups, written i.groups .

We assume a set of regular roles RegRoles and a set of role templates [10]. A
role template r[·] ∈ RoleTemps is a role with a hole (the dot): by instantiating
the hole with an object o, we generate a new parametrized role r[o]. As we
formalize below, parametrized roles enforce additional runtime restrictions on
the privileges which are granted by the Liferay portal. We assume that role
templates are sorted, i.e., they are partitioned into two different sets GrpTemps
and {Ownerj [·]}j∈J (with J = {0, . . . , n} for some natural n) with holes of type
G and Items respectively: we let ParRoles be the set of the parametrized roles
obtained by instantiating the holes occurring in role templates with objects of
the correct type. We let R = RegRoles ∪ ParRoles be the set of roles.
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Finally, we let O = Users ∪ Items ∪ G ∪ R be the set of objects. Access to
objects is regulated by permissions, drawn from a set Perms . The scope of a
granted permission can be narrowed or extended using a flag s ∈ {−, ↓}, which
specifies if a permission is given over an individual object or if it can be inherited
through the group hierarchy.

Definition 1 (System). A system is a tuple S = (PR,GR, U, I,UR,UG,UU ):

– PR ⊆ (RegRoles × Perms × O × {−, ↓}) ∪ (RoleTemps × Perms) is the
permission-assignment relation;

– GR ⊆ G× RegRoles is a relation mapping groups to regular roles;
– U ⊆ Users is a finite set of users;
– I ⊆ Items is a finite set of items;
– UR ⊆ U ×R is a relation mapping users to their assigned roles;
– UG ⊆ U ×G is a relation mapping users to the groups they belong to;
– UU ⊆ U ×U is a relation mapping users to users, modelling impersonation.

By convention we assume that ∀p ∈ Perms : (Owner0[·], p) ∈ PR, i.e., the first
owner role template in the system has full permissions.

2.2 Semantics

As per previous studies [3,9], we find it convenient to decouple a system S into a
static policy P and a dynamic configuration σ. A policy is a pair P = (PR,GR),
while a configuration is a 5-tuple σ = (U, I,UR,UG,UU ). The reduction se-

mantics of Liferay RBAC has then the form P � σ
β−→ σ′ for some label β.

To specify the semantics, we start by defining to which groups is assigned a
given object o under a user-to-group mapping UG. Formally, we inductively de-
fine the set groupsUG(o) through the self-explanatory inference rules in Table 1.

Table 1. Group Assignment

(G-Item)

g ∈ i.groups

g ∈ groupsUG(i)

(G-User)

(u, g) ∈ UG

g ∈ groupsUG(u)

(G-Group)

g ∈ groupsUG(g)

(G-Inherit)

g′ � g
g′ ∈ groupsUG(o)

g ∈ groupsUG(o)

We then define when a user u is granted a permission p over an object
o in the system S. The definition of the judgement S � granted(u, p, o) is
in Table 2.

Rule (P-RegI) is standard: it states that, if a user u has a regular role r
which grants permission p on the object o, then u has p on o. Rule (P-RegG)

allows to extend a permission given over a group g to any object o belong-
ing to g: notice that this must be made explicit in the policy, by using the
flag ↓ when assigning the permission. Rules (P-GroupI) and (P-GroupG) are
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Table 2. Permission Granting, where S = (PR,GR, U, I,UR,UG,UU )

(P-RegI)

(u, r) ∈ UR
(r, p, o,−) ∈ PR

S � granted (u, p, o)

(P-RegG)

(u, r) ∈ UR
(r, p, g, ↓) ∈ PR
g ∈ groupsUG(o)

S � granted (u, p, o)

(P-GroupI)

(u, g) ∈ UG
(g, r) ∈ GR

(r, p, o,−) ∈ PR

S � granted (u, p, o)

(P-GroupG)

(u, g) ∈ UG (g, r) ∈ GR
(r, p, g′, ↓) ∈ PR g′ ∈ groupsUG(o)

S � granted (u, p, o)

(P-Template)

(u, r[g]) ∈ UR (r[·], p) ∈ PR
g ∈ groupsUG(u) ∩ groupsUG(o)

S � granted (u, p, o)

(P-Owner)

(u,Ownerj [i]) ∈ UR
(Ownerj [·], p) ∈ PR

S � granted (u, p, i)

(P-Impersonate)

(u, u′) ∈ UU S [UU �→ ∅] � granted (u′, p, o)

S � granted (u, p, o)

Convention: for any u and i occurring in the judgement we require u ∈ U and i ∈ I

the counterparts of (P-RegI) and (P-RegG) for (regular) roles assigned to
groups: they state that any role given to a group is inherited by any user in that
group.

Rule (P-Template) is subtle and defines the semantics of parametrized roles:
if a role template r[·] is given the permission p and the parametrized role r[g] is
assigned to a given user u, then u has p on any object in g, provided that u is
himself a member of that group. In this way, a parametrized role r[g] allows to
constrain the scope of a permission p inside the group g.

Rule (P-Owner) formalizes the intuition behind owner roles: if a role tem-
plate Ownerj [·] is given the permission p and the parametrized role Ownerj [i]
is assigned to a user u for some item i, then u has p on i. Notice that, by the
convention in Definition 1, a user with role Owner0[i] has full permissions on i.

Finally, rule (P-Impersonate) deals with permissions which are granted
upon impersonation: if u is impersonating u′ and u′ has permission p on the
object o, then u has p on o. There is a subtle point to notice though: if u is
impersonating u′ and u′ is impersonating u′′, then u is not granted the permis-
sions of u′′. Formally, this is ensured by emptying the UU component of S before
deriving the judgement in the premises of rule (P-Impersonate). In Liferay,
only the permissions which are statically known to be granted to u′ are inherited
by a user impersonating u′.

Having defined when a user is granted a given permission, the formal se-
mantics is relatively simple. The reduction rules are given in Table 4, we just
comment the most interesting points. First, owner roles can only be assigned
when new items are created and are only removed when items are deleted; we
conservatively assume that the owners of dynamically created items have full
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Table 3. Reduction Semantics of Liferay RBAC

(Assign-Role)

S � granted (u1,AssignRole, r) r 
= Ownerj [i]

P � (U, I,UR,UG ,UU )
assign role(u1,u2,r)−−−−−−−−−−−−−→ (U, I,UR ∪ {(u2, r)},UG ,UU )

(Remove-Role)

S � granted (u1,RemoveRole, r) r 
= Ownerj [i]

P � (U, I,UR,UG ,UU )
remove role(u1,u2,r)−−−−−−−−−−−−−−→ (U, I,UR \ {(u2, r)},UG ,UU )

(Assign-Group)

S � granted (u1,AssignGroup, g)

P � (U, I,UR,UG,UU )
assign group(u1,u2,g)−−−−−−−−−−−−−−→ (U, I,UR,UG ∪ {(u2, g)},UU )

(Remove-Group)

S � granted (u1,RemoveGroup, g)

P � (U, I,UR,UG,UU )
remove group(u1,u2,g)−−−−−−−−−−−−−−−→ (U, I,UR,UG \ {(u2, g)},UU )

(Impersonate)

u1 /∈ dom(UU ) S � granted (u1, Impersonate, u2)

P � (U, I,UR,UG,UU )
impersonate(u1,u2)−−−−−−−−−−−−−→ (U, I,UR,UG ,UU ∪ {(u1, u2)})

(Deimpersonate)

P � (U, I,UR,UG,UU )
deimpersonate(u1,u2)−−−−−−−−−−−−−−→ (U, I,UR,UG ,UU \ {(u1, u2)})

(Add-User)

P � (U, I,UR,UG ,UU )
add user(u)−−−−−−−−→ (U ∪ {u}, I,UR,UG ,UU )

(Remove-User)

u /∈ dom(UU ) UR′ = {(u′, r) ∈ UR | u′ 
= u} UG ′ = {(u′, g) ∈ UG | u′ 
= u}
P � (U, I,UR,UG,UU )

remove user(u)−−−−−−−−−−→ (U \ {u}, I,UR′,UG ′,UU )

(Add-Item)

S � granted (u,AddItem, g) g ∈ i.groups

P � (U, I,UR,UG ,UU )
add item(u,i)−−−−−−−−−→ (U, I ∪ {i},UR ∪ {(u,Owner0[i])},UG ,UU )

(Remove-Item)

S � granted (u,RemoveItem, i) UR′ = {(u′, r) ∈ UR | r 
= Ownerj [i]}
P � (U, I,UR,UG ,UU )

remove item(u,i)−−−−−−−−−−−→ (U, I \ {i},UR′,UG ,UU )

Notation: we assume P = (PR,GR) and S = (PR,GR, U, I,UR,UG ,UU )
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permissions on them, by using the role template Owner0[·] in rule (Add-Item).
We then notice that each user can only impersonate a single user at a time, by the
side-condition u1 
∈ dom(UU ) in rule (Impersonate); this implicitly ensures
that impersonation is not transitive, i.e., if u is impersonating u′ and u′ can
impersonate u′′, then u cannot impersonate u′′. Finally, when removing a user
u, we require that u is not impersonating anyone: this is technically convenient
and not limiting, since we can always apply rule (Deimpersonate) up to a
configuration where u is impersonating none and then remove him. Notice that
no permission is needed to deimpersonate an impersonated user.

We write P � σ
−→
β
=⇒ σ′ if and only if there exist σ1, . . . , σn−1 such that P �

σ
β1−→ σ1 ∧ P � σ1

β2−→ σ2 ∧ . . . ∧ P � σn−1
βn−−→ σ′ for some

−→
β = β1, . . . , βn.

3 Verification of Liferay RBAC

The formal semantics in the previous section can be useful to spot improper
privilege escalations by untrusted users of the portal, but it cannot be directly
used to prove the absence of undesired accesses by an exhaustive state space
exploration, since the corresponding labelled transition system has an infinite
number of states. We now discuss how we tackle the problem of policy verification
by abstract model-checking [6].

3.1 A Modal Logic for Verification

We let the syntax of formulas be defined by the following productions:

State formulas φ ::= granted(u, p, o) | φ ∧ φ | φ ∨ φ,
Path formulas ϕ ::= ♦φ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ.

This is a simple modal logic, where the modality � is equivalent to the “finally”
operator F available in full-fledged temporal logics like CTL, CTL∗ or LTL [5].
The (standard) satisfaction relations for state formulas and path formulas are
defined by the judgements P , σ |= φ and P , σ |= ϕ in Table 4. The path formula
♦φ is satisfied by P , σ whenever there exists a reachable configuration from σ
under P where the state formula φ holds true.

Though simple, the logic above allows to formalize several standard security
properties of interest for RBAC systems. For instance, we have:

– role reachability: user u can never be assigned to regular role r:

P , σ |= ¬♦(granted(u, p∗, o∗)),

where p∗ is a dummy permission on a dummy object o∗ assigned only to r;
– mutual exclusion: user u can never possess both p and p′ on object o:

P , σ |= ¬♦(granted(u, p, o) ∧ granted(u, p′, o))
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Table 4. Satisfaction Relation

(LS-Basic)

P , σ � granted (u, p, o)

P , σ |= granted (u, p, o)

(LS-And)

P , σ |= φ1

P , σ |= φ2

P , σ |= φ1 ∧ φ2

(LS-Or)

P , σ |= φi

P , σ |= φ1 ∨ φ2

(LP-Finally)

P � σ
−→
β
=⇒ σ′ P , σ′ |= φ

P , σ |= ♦φ

(LP-Not)

P , σ 
|= ϕ

P , σ |= ¬ϕ

(LP-And)

P , σ |= ϕ1

P , σ |= ϕ2

P , σ |= ϕ1 ∧ ϕ2

(LP-Or)

P , σ |= ϕi

P , σ |= ϕ1 ∨ ϕ2

Notation: in rules (LS-Or) and (LP-Or) we let i ∈ {1, 2}

– group reachability: user u can never join group g:

P , σ |= ¬♦(granted(u, p∗, g)),

where p∗ is a dummy permission assigned only to the dummy role template
r[·] and the parametrized role r[g] is assigned to u in the configuration σ.

3.2 Abstract Semantics

The abstract semantics builds on two core ideas. First, we observe that the actual
identity of users and items is often immaterial: for instance, two items belongings
to the same groups behave exactly in the same way for Liferay RBAC. Second,
many transitions of the semantics (e.g., removing roles) actually weaken the
privileges granted to a given user, hence they are irrelevant to detect security
violations. Leveraging these two observations, the abstract semantics consists
of: (i) a finite-range abstraction function α : O → O, mapping each object in
the unbounded set O to some canonical representative; and (ii) an abstract re-
duction relation, defining the dynamics of configurations abstracted by α. The
abstraction function can be chosen arbitrarily, as long as it satisfies some syntac-
tic conditions given below: one may choose different trade-offs between precision
and efficiency by using different abstractions for verification.

We presuppose two functions αu : Users → Users and αi : Items → Items .
We then build on top of them an abstraction function α : O → O as follows:

α(o) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αu(u) if o is a user u

αi(i) if o is an item i

r[αi(i)] if o is a parametrized role r[i]

o otherwise.

We extend α to formulas, (sequences of) labels, tuples and sets by applying it
to any object syntactically occurring therein.
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The abstract reduction relation P � σ
α�−→ σ′ is obtained from the rules in

Table 4 by excluding (Remove-Role), (Remove-Group), (Remove-User)

and (Remove-Item), and by dropping the side-condition u1 
∈ dom(UU ) from
rule (Impersonate).

We let P � σ
−→
β

�==⇒ σ′ be the obvious generalization to the abstract semantics of

the relation P � σ
−→
β
=⇒ σ′ defined above. We then let P , σ |=α ϕ be the satisfaction

relation obtained from the rules in Table 4 by replacing (LP-Finally) with:

(ALP-Finally)

α(P) � α(σ)
α(

−→
β )

�====⇒ σ′ α(P), σ′ |= α(φ)

P , σ |=α ♦φ

and by introducing the obvious counterparts of rules (LP-Not), (LP-And) and
(LP-Or). Since any abstraction function has a finite range, it is easy to prove:

Lemma 1. There exists a decision procedureAbs-Sat(α,P , σ, ϕ) for P , σ |=α ϕ.

We verify security properties of the infinite-state concrete semantics by model-
checking the finite-state abstract semantics. To isolate the fragment of the modal
logic amenable for verification, we let negation-free formulas ϕ̂ and rank-1 for-
mulas ψ be defined by the following productions:

Negation-free formulas ϕ̂ ::= ♦φ | ϕ̂ ∧ ϕ̂ | ϕ̂ ∨ ϕ̂,
Rank-1 formulas ψ ::= ¬ϕ̂ | ψ ∧ ψ | ψ ∨ ψ.

We can construct a procedure which determines if an arbitrary rank-1 formula
is satisfied or not by the concrete semantics (see Fig. 1). The next subsections
discuss sufficient conditions for the soundness and the completeness of the al-
gorithm, i.e., conditions on the policy P and the abstraction function α which
ensure that a positive (resp. negative) answer by Sat(α,P , σ, ψ) implies that ψ
is satisfied (resp. not satisfied) by P , σ. Notice that all the example properties
previously described are expressed by a rank-1 formula.

Sat(α,P , σ, ψ):
match ψ with

| ¬ϕ̂ → not Abs-Sat(α,P , σ, ϕ̂)
| ψ1 ∧ ψ2 → Sat(α,P , σ, ψ1) and Sat(α,P , σ, ψ2)
| ψ1 ∨ ψ2 → Sat(α,P , σ, ψ1) or Sat(α,P , σ, ψ2)

Fig. 1. Abstract Model-Checking Algorithm



10 S. Calzavara, A. Rabitti, and M. Bugliesi

3.3 Soundness of Verification

We first prove the soundness of the algorithm in Fig. 1, i.e., we show that,
assuming a mild syntactic restriction on the abstraction function α, a positive
answer by Sat(α,P , σ, ψ) implies that P , σ |= ψ holds true.

Definition 2 (Group-preserving Abstraction). An abstraction function α
is group-preserving iff ∀i ∈ Items : i.groups ⊆ α(i).groups.

Definition 3 (Permission-based Ordering). We let σ �P σ′ if and only if
P , σ � granted(u, p, o) implies P , σ′ � granted(u, p, o) for any u, p and o.

The next theorem states that any behaviour of the concrete semantics has a
counterpart in the abstract semantics. It also ensures that the abstract semantics
over-approximates the permissions granted to each user. The result would not
hold in general if the side-condition of rule (Impersonate) was included in the
abstract semantics: we omit further technical details due to space constraints.

Theorem 1 (Soundness). Let α be group-preserving. If P � σ
−→
β
=⇒ σ′, then

there exists a sub-trace of
−→
β , call it −→γ , such that α(P) � α(σ)

α(−→γ )
�====⇒ σ′′ for

some σ′′ such that α(σ′) �α(P) σ
′′.

Using the theorem above, we can prove the soundness of verification. Notice
that the only assumption needed for soundness is on the abstraction function α:
the result applies to any choice of P , σ and ψ.

Theorem 2 (Sound Verification). Let α be a group-preserving abstraction
function. If Sat(α,P , σ, ψ) returns a positive answer, then P , σ |= ψ.

3.4 Completeness of Verification

We now identify conditions for the completeness of the algorithm in Fig. 1, i.e.,
we discuss under which assumptions a negative answer by Sat(α,P , σ, ψ) ensures
that P , σ 
|= ψ. This is important for the precision of the analysis.

To state and prove the completeness result, we focus on a particular class
of policies which does not allow to impersonate users. We remark that this
corresponds to a realistic use case, since Liferay can be configured to prevent
impersonation by setting the property portal.impersonation.enable to false
in the file webapps/ROOT/WEB-INF/classes/portal-developer.properties.

Definition 4 (Impersonation-free Policy/Configuration). A policy P =
(PR,GR) is impersonation-free iff ∀(r, p, o, s) ∈ PR : p 
= Impersonate and
∀(r[·], p) ∈ PR : p 
= Impersonate. A configuration σ = (U, I,UR,UG,UU ) is
impersonation-free iff UU = ∅.
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Given a configuration σ = (U, I,UR,UG,UU ), let: users(σ) = U ; items(σ) = I;
groupsσ(u) = {g | (u, g) ∈ UG}; and rolesσ(u) = {r | (u, r) ∈ UR}.

The completeness result requires to find sufficient conditions which ensure
that the abstract semantics is under-approximating the concrete semantics. If
impersonation is never used, it is enough to require that each user in the ab-
stract semantics belongs to fewer groups and has fewer roles than one of his
corresponding users in the concrete semantics, as formalized next.

Definition 5 (Abstract Under-Approximation). A configuration σ is an
abstract under-approximation of a configuration σ′, written σ �α σ′, if and
only if both the following conditions hold true:

– ∀u ∈ users(σ) : ∃u′ ∈ users(σ′) : u = α(u′) ∧ groupsσ(u) ⊆ groupsσ′(u′) ∧
rolesσ(u) ⊆ α(rolesσ′(u′));

– ∀i ∈ items(σ) : ∃i′ ∈ items(σ′) : i = α(i′).

Definition 6 (Group-forgetting Abstraction). An abstraction function α
is group-forgetting iff ∀i ∈ Items : α(i).groups ⊆ i.groups.

The next theorem states that any behaviour in the abstract semantics has
a counterpart in the concrete semantics, assuming that impersonation is never
used. It additionally ensures that the desired under-approximation is preserved
upon reduction.

Theorem 3 (Completeness). Let P , σ be impersonation-free and let α be

group-forgetting. If α(σ) �α σ and α(P) � α(σ)
α(

−→
β )

�====⇒ σ′ for some
−→
β and σ′,

then there exists σ′′ such that P � σ
−→
β
=⇒ σ′′ and σ′ �α σ′′.

We need also an additional condition to prove the completeness of verification:
we must ensure that the identity of any object occurring in the formula ψ to
verify is respected by the abstraction function, in the following sense.

Definition 7 (Respectful Abstraction). An abstraction function α respects
an object o iff α(o) = o and ∀o′ ∈ O : o′ 
= o ⇒ α(o′) 
= o. An abstraction
function α respects ψ iff it respects any object occurring in ψ.

Theorem 4 (Complete Verification). Let P , σ be impersonation-free and
let α be a group-forgetting abstraction function which respects ψ. If α(σ) �α σ
and P , σ |= ψ, then Sat(α,P , σ, ψ) returns a positive answer.

Completeness of verification does not hold in general if impersonation is used.
Specifically, if a user u is allowed to impersonate both u1 and u2, he will be able
to do it at the same time in the abstract semantics, thus getting the union of
their privileges; however, the two users cannot be impersonated at the same time
in the concrete semantics, which breaks the intended under-approximation.
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4 Implementation: LifeRBAC

LifeRBAC is a Liferay plugin providing a simple user interface to let portal
administrators input security queries about the underlying RBAC system. The
plugin takes a snapshot of the portal and translates it into a corresponding
representation in our formal model, encoded in the ASLAN specification lan-
guage [18]. The initial state representation is joined with a set of (hand-coded)
transition rules, corresponding to the ASLAN implementation of the abstract se-
mantics, and the query is translated into a modal logic formula, which is verified
using the state-of-art model-checker SATMC [1].

4.1 Implementation Details

LifeRBAC currently supports two different analyses, corresponding to the choice
of two different abstraction functions. In the fast analysis, only the identity of
the users occurring in the security query is preserved by the abstraction function,
while all the other users are abstracted into a super-user with the union of their
privileges. In the precise analysis, the identity of the users occurring in the secu-
rity query is still preserved, but all the other users are abstracted into a canonical
representative sharing their same groups and roles. As to items, in both cases we
preserve their identity when they occur in the security query, while we abstract
them into a canonical representative sharing the same groups otherwise. Observe
that both the choices of the abstraction function satisfy the conditions of Theo-
rem 2, hence both the analyses are sound. Moreover, the precise analysis satisfies
also the conditions of Theorem 4, hence it is complete for any policy which does
not allow to impersonate users.

At the moment LifeRBAC only supports the verification of security queries
predicating over a subset of the objects available in Liferay, i.e., users, groups
and layouts. Including additional types of objects (e.g., portlets) is essentially a
matter of programming.

4.2 Experiments

Inspired by a previously published case study [23], we consider an experimental
setting modelling a hypothetical university with 3 departments and 10 courses.
We represent the university as the only company in the portal and the depart-
ments as three different organizations; then, we create a private site for each
department and a corresponding child site for every course. We consider 15 role
templates: 6 templates are used to generate site roles, while 9 templates are used
to generate organization roles. We also include 14 regular roles to collect per-
missions which are not scoped to any specific site or organization. Overall, we
have 6 ·13+9 ·3+14 = 119 roles; for each of them, we model access permissions
to different resources as read/write privileges on specific web pages in the sites,
and we enable administrative permissions where appropriate, e.g., a user with
role Professor[c] for some course c can assign the parametrized role Student[c].
Finally, we create 1000 users with different role combinations.
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In the experiments, we consider three different security queries:

– q1: can student u1, who is a member of site s1, delete a page from s1?
– q2: can student u2 join site s2 belonging to another department?
– q3: can student u3, who is a member of site s3, assign a user u4 to s3?

All the three queries are performed against three slightly different configura-
tions of increasing complexity. In the first configuration no user is allowed to
impersonate other users or to assign members to existing sites/organizations. In
the second configuration clerks can move users along the group hierarchy, but
no impersonation is possible, while in the third configuration administrators are
allowed to impersonate any user. The last scenario is a “stress test” for our tool,
since unconstrained impersonation leads to a state-space explosion.

The time required to check the three queries against the three described con-
figurations and their results are given in Table 5. In the table, we also keep track
of the number of users obtained after applying the abstraction; all the attacks
have been confirmed by hand on Liferay 6.2 CE. The experiments have been
performed on an Intel Xeon 2.4Ghz running Ubuntu Linux 12.04 LTS.

Table 5. Experimental Results

Fast Analysis Precise Analysis

conf. query #users time attack real #users time attack real

A
q1 3 1m 58s yes yes 62 6m 10s yes yes
q2 3 1m 46s no - 62 1m 52s no -
q3 3 1m 48s no - 62 1m 53s no -

B
q1 3 2m 40s yes yes 62 49m 01s yes yes
q2 3 1m 50s yes yes 62 21m 46s yes yes
q3 3 1m 50s no - 62 22m 30s no -

C
q1 3 2m 53s yes yes 62 182m 21s yes yes
q2 3 1m 59s yes yes 62 56m 02s yes yes
q3 3 2m 37s no - 62 54m 46s no -

A = no impersonate and no groups; B = only groups; C = groups and impersonate
#users = the number of users after the abstraction; real = attack confirmed

For the first configuration, where we do not include Liferay-specific features,
the verification time is very good and in line with previous work on standard
RBAC systems [9]. In the worst case, verification takes around 6 minutes and we
are able to prove the existence of an attack by the completeness result, something
which is beyond previous abstraction-based proposals. Based on the numbers in
the table, we observe that the possibility of assigning and removing groups,
thus activating and deactivating parametrized roles, has a significant impact
on the performances, especially for the precise analysis. Impersonation further
contributes to complicate the verification problem, as the results for the precise
analysis clearly highlight, but it does not hinder too much the performances of
the fast analysis. Remarkably, despite the huge approximation applied by the
fast analysis, we did not identify false positives for these queries (and also for
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other tests we performed). We leave as future work further study on the precise
analysis, to improve its performance by the usage of static slicing techniques [8].

4.3 Discussion: Adequacy of the Semantics

A thorny issue when verifying a complex framework like Liferay RBAC is bridg-
ing the gap between the formal model and the real system. In particular, observe
that: (i) Liferay features many different permissions and it is not obvious which
ones correspond to the few administrative permissions (e.g., AssignRole) we in-
clude in the model; and (ii) the Liferay permission checker is a complicated piece
of code, which selectively grants or denies some permissions based on the type
of the object of an access request, but types have only a marginal role in the
permission granting process formalized in Table 2.

The key insight is that both the problems above can be dealt with just by
carefully constructing the permission-assignment relation PR used in the formal
model. We assessed the adequacy of our solution by testing, an idea proposed
by the programming languages community [12]. Specifically, we created a tool,
LR-Test, which takes a snapshot of the Liferay portal and constructs its cor-
responding representation in our formal model. The tool systematically queries
both the Liferay permission checker and its formal counterpart (deriving the
judgements in Table 2) to detect any mismatch on resource accesses and en-
abled administrative actions. Mismatches may be of two types: false positives
lead to an over-conservative security analysis, while false negatives lead to over-
looking real security flaws. In the current prototype, we eliminated all the false
negatives we identified and we only left a few false positives to be fixed.

5 Related Work

Abstraction techniques as an effective tool for RBAC verification have been
first concurrently proposed by Bugliesi et al. [3] and Ferrara et al. [9]. The first
paper proposes a formal semantics for grsecurity, an RBAC system built on
top of the Linux kernel, and then uses abstract model-checking to verify some
specific security properties of interest. Notably, the abstraction adopted in [3] is
fixed, while the results in this paper are parametric with respect to the choice
of an abstraction function. The authors of [9], instead, do not apply model-
checking techniques, but rather construct an imperative program abstracting
the dynamics of the RBAC system and apply standard results from program
verification to soundly approximate the role reachability problem. The proposed
abstraction is incomplete, i.e., the analysis may produce false positives. In recent
work [8], the same research group presented VAC, a tool for role reachability
analysis, which can be used both to prove RBAC policies correct and to find
errors in them (adopting different analysis backends).

A different approach to RBAC verification is based on SMT solving. Armando
and Ranise proposed a symbolic verification framework for RBAC systems with
an unbounded number of users [2]. More recent research holds great promise in
making similar techniques scale to verify large RBAC policies [19].
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Error finding in RBAC policies is complementary to verification and
abstraction techniques have proved fundamental also for this problem, since plain
model-checking does not scale to the analysis of real systems. The most known
proposal in the area is Mohawk, a tool based on an abstraction-refinement
model-checking strategy [13]. Interestingly,Mohawk has been recently extended
to prove RBAC policies correct [14]. The analysis is limited to separate admin-
istration policies, a restriction which we do not assume in this paper.

To overcome the performance issues affecting RBAC policy verification, many
authors identified tractable fragments of the general RBAC model and presented
different algorithms to answer useful security queries under specific policy restric-
tions [23,11,21,16]. Most of these results are proved for a finite set of users, while
our work assumes an unbounded set of users entering and leaving the system.

6 Conclusion

We presented a formal semantics for Liferay RBAC and we tackled the verifica-
tion problem through abstract model-checking, discussing sufficient conditions
for the soundness and the completeness of the analysis. We then implemented a
tool, LifeRBAC, which can be used to verify the security of real Liferay portals
and we reported on experiments showing the effectiveness of our solution.

As a future work, we plan to strengthen the completeness result to policies
involving impersonation. Moreover, we want to extend LifeRBAC to support
error finding in the underlying RBAC policy, to include a counter-example gen-
eration module for flawed policies, and to make it significantly faster by adapting
static slicing techniques from the literature [8].
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Abstract. Electric vehicles are an up-and-coming technology that pro-
vides significant environmental benefits. A major challenge of these vehi-
cles is their somewhat limited range, requiring the deployment of many
charging stations. To effectively deliver electricity to vehicles and guaran-
tee payment, a protocol was developed as part of the ISO 15118 standard-
ization effort. A privacy-preserving variant of this protocol, POPCORN,
has been proposed in recent work, claiming to provide significant privacy
for the user, while maintaining functionality. In this paper, we outline
our approach for the verification of privacy properties of the protocol. We
provide a formal model of the expected privacy properties in the applied
Pi-Calculus and use ProVerif to check them. We identify weaknesses in
the protocol and suggest improvements to address them.

Keywords: privacy, formal verification, electric vehicle charging.

1 Introduction

In the current practice of charging for electric vehicles, the user of the vehicle
typically has a contract that allows her to charge the vehicle at any compatible
charging station. The contract is comparable to a mobile phone contract, as it
enables roaming by users to charging stations operated by other companies, such
as an electricity provider. However, the current standards for the implementation
of such contracts, which should guarantee energy delivery and payment, do not
fully consider the issue of location privacy for users. For example, a charging
station operator could identify users from specific energy providers, which usually
operate regionally. On the other hand, the company with which the user has a
contract can track her movements through the different charging stations or
energy providers involved.

One of the major challenges to design a protocol for electric vehicle charg-
ing is that the privacy of the user is difficult to express. One of the sources
of this complexity is the potential overlap between the responsibilities of dif-
ferent participants of the protocol. Broadly speaking, two different approaches

F. Piessens et al. (Eds.): ESSoS 2015, LNCS 8978, pp. 17–33, 2015.
c© Springer International Publishing Switzerland 2015



18 M. Fazouane et al.

have been followed to express privacy requirements: the quantitative approach
and the qualitative approach. The first category relies on the definition of
appropriate “privacy metrics”, such as k-anonymity, t-closeness [21], differen-
tial privacy [10,11] or entropy [25]. The second category consists in defining
privacy properties in a suitable language endowed with a formal, mathematical
semantics [32], and to use verification tools to reason about these properties.
This approach is akin to the traditional analysis of security protocols [5]. In this
paper, we take the second approach, and study the application of formal privacy
analysis to protocols, using the POPCORN electric vehicle charging protocol [14]
as a case study. This protocol is based on the current draft standard [15,16] and
is thus much closer to practical application than earlier work on the privacy
analysis of electric vehicle charging protocols [20]. Considering that privacy is a
quite complex and multi-faceted notion, the first challenge in this context is the
definition of appropriate privacy properties. In this paper, we define the privacy
requirements of the protocol as a collection of six privacy properties and propose
a definition of these properties in the applied Pi-Calculus [32]. Then we proceed
with the analysis of the protocol and suggest several modifications to obtain an
enhanced protocol meeting the required properties.

The contribution of the work presented in this paper is threefold:

– On the technical side: we provide the first realistic privacy compliant electric
vehicle charging protocol improving the current draft of the ISO standard.

– On the formal side: we define privacy properties suitable for electric vehicle
charging protocols including a new form of unlinkability (of the users and
their uses).

– On the methodological side: we show how formal verification techniques can
be applied in a “real-world” setting.

Beyond this specific protocol, this work also paves the way for a more general
“privacy by re-design approach”.

The remainder of the paper is structured as follows. Section 2 introduces
POPCORN and discusses the relevant parts of the protocol and their relation to
each other. Section 3 provides the formalization of POPCORN and discusses the
relevant privacy properties. The results of our analysis are presented in Section 4,
followed by suggestions of enhancements in Section 5. Related work is discussed
in Section 6 and concluding remarks in Section 7.

2 Electric Vehicle Charging

In this paper we focus on a charging protocol for electric vehicles, which allows
charging of a vehicle at a charging station in exchange for financial compensa-
tion. In practice, electricity is provided on a contract basis; therefore, financial
compensation is implemented through contracts. Because energy providers of-
ten operate on a regional basis, roaming services are offered through a mobility
operator. Thus, the following parties are involved in such a protocol:
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Electric Vehicle (EV): This is the electric vehicle initiating the charging pro-
tocol.

Energy Provider (EP): The energy provider is the party providing the en-
ergy for recharging. This entity must receive compensation for its energy.

Charging Station (CS): The charging station is the device connecting the
vehicle to the power grid to charge. In some scenarios, this may be operated
by a charging station operator (CSO), although in practice this is usually
the EP, who has complete control over the CS.

Mobility Operator (MO): The MO provides roaming contracts, so that the
user can charge his vehicle with any EP covered by the contract. The MO
has roaming agreements with one or more EPs and takes care of correct
payments to these EPs as they are used by the users with whom the MO
has contracts. In practice, some EPs also offer roaming contracts; thus, in
some transactions, the EP and the MO may be the same entity.

This set of parties is also defined by the industry standard for electric vehicle
charging, ISO 15118 [15,16]. The protocol for charging defined by this standard
is designed in such a way that no party can cheat. However it does not provide
any protection against user tracking. For example, the CS can recognize and
distinguish EVs based on their identifiers, which are used to authenticate the
vehicle and guarantee payments. Similarly, the MO could collect a list of visited
CSs to track the trajectory of an EV. These location privacy issues were not
sufficiently addressed in the standard. Several of these issues were identified by
Höfer et al. [14], who subsequently proposed a more privacy-preserving protocol
called POPCORN.

In POPCORN, several technical and organizational measures were added to
improve the privacy of the charging protocol. The following parties were added:

Dispute Resolver (DR): The dispute resolver is a trusted third party, which
comes into play only if one of the parties tries to cheat (for example, by
not paying, or by claiming missing payment for transactions that were al-
ready paid). The DR can then resolve the identity of the cheating party and
reconstruct the necessary transactions.

Payment Handler (PH): The payment handler is a trusted third party, sim-
ilar to a bank, which handles the payment process between the MO and the
EP. This party should ensure that the MO learns nothing about the EP.
On the other hand, the EP should also not learn from which MO he is paid.
The MO knows the identities of users, but not their locations. In contrast,
the EP knows locations, but is not able to link them to individuals. The PH
plays the role of an intermediary between those two partial datasets.

Although POPCORNdoes introduce additional privacy, as argued by Höfer et al.,
no formal privacy property was defined. The objective of this paper is precisely to
address this issue and to challenge these privacy properties. Let us note also that
the verification of integrity (non cheating) properties is not a goal of our analysis.

We now provide an outline of the different phases of the POPCORN protocol.
A full specification can be found in [14].



20 M. Fazouane et al.

Phase 0: Mobility Contract Establishment. First of all, the EV user signs
a contract with some MO. The EV obtains anonymous contract credentials
from a global certificate authority. This could be done, e.g., with Idemix [8],
which makes it possible to hide the contract credentials from the global
certificate authority to ensure privacy.

Furthermore group signature credentials are installed in the EV, where the
group manager is the DR. These credentials allow the EV to sign messages.
Any actor can then verify that the signatures belong to a member of the
group but only the DR can reveal which EV exactly provided the signature.

Phase 1: Contract Authentication. When an EV is plugged into a CS it
establishes a link over TLS. It then proceeds to prove that its contract and
its anonymous credentials have not expired. The EV does not disclose any
other contract information.

Phase 2: Charging Loop with Meter Receipts. The CS delivers energy to
the EV and every time a fixed quantity has been transferred, the CS sends
a meter reading. The EV then has to sign this meter reading with his group
signature, thus committing to the reading. The CS checks the signature and, if
it is correct, the charging loop continues until the EV is fully recharged or fails
to produce a correct signature.

At the end of the charging loop, the CS sends to the EV a partial service
Detail Record. This partial SDR contains the amount of electricity the EV
has received, the payable amount and the recipient of the payment, i.e., the
EP. Furthermore it contains an identifier, called the transaction id, which
identifies the charging session represented by a specific SDR. The information
about the EP in the SDR is encrypted with the public key of the PH.

Finally, the CS anonymously sends the group-signed commitments and the
partial SDR to the EP.

Phase 3 and 4: SDR Delivery and Payment. After charging, the EV ap-
pends his probabilistically encrypted contract ID to the SDR, signs it, and
forwards it to the MO. The MO can now extract the contract ID and thus
the user but does not learn anything about the CS and the EP. He then
sends the SDR together with the encrypted EP and the transaction number
to the PH1. The payment Handler can then recover the EP and perform the
payment. The mobility Operator obtains a receipt from the PH to confirm
the payment.

Phase 5: Dispute Resolution. This phase is optional: it takes place only if
the payment of the EP does not arrive withing the payment period. In this
case, the EP forwards his partial SDR to the dispute Resolver who can then
uncover the identity of the vehicle, since he is the group manager and the
SDR was signed with the private key of the EV. He then informs the MO
of the missing payment and requests the payment receipt. If the mobility
Operator cannot provide the receipt, he has to settle the missing payment.

1 If the EV tries to cheat here, the dispute resolution phase will allow the parties to
determine the identity of the EV.
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3 Formalization

In this section, we present a general framework for the formal description of
cryptographic primitives and communication protocols. We then introduce pri-
vacy properties suitable for electric vehicle charging and show how to express
them in this framework.

In this paper, we use the Dolev-Yao model, which is one of the standard models
for analysing cryptographic protocols. The Dolev-Yao assumptions are the fol-
lowing: an open and unlimited network in which every agent can intercept, send
and resend any message to any other agent. As a result, active adversaries can
know every message exchanged in the network, and synthesize, modify, reroute,
duplicate or erase messages or even impersonate any other agent. They can also
use an algebraic system to derive new knowledge from the knowledge they al-
ready have. A minimal algebraic system makes it possible to create tuples and
to apply projections to extract information from them. As shown in the next
subsection, more powerful systems typically include cryptographic primitives
and equational theories to reason about them. Even though it involves strong
adversaries, the Dolev-Yao model requires additional assumptions on their com-
putational capabilities:

– They cannot guess random numbers in sufficiently large state spaces.
– They cannot know more than what the algebraic system can prove. Typically,

adversaries cannot extract the key or the plaintext from a ciphertext unless
they already know the key (or the algebraic system includes rules to derive
them).

Symbolic manipulations can be used to capture the properties of crypto-
graphic primitives. Most model checkers and theorem provers used in this context
abstract away from cryptography. However, results that are proven true by these
tools are not necessarily sound with respect to a computational model. The com-
putational soundness of the cryptographic primitives is needed to establish the
soundness of the results. In essence, model checkers and theorem provers assume
that the cryptographic primitives are secure; they only focus on proving that
the protocol is secure, not the primitives on which it relies.

3.1 Modeling Cryptographic Primitives

The abstraction of cryptographic primitives is performed by using equational
theories, which can be introduced by means of proof systems, as shown in the
following. The syntax of terms is defined as follows:

M ::= id |f(M, ...,M) |M{id/id} |Mσ

where id represents variable names and f(M, ...,M) represents function applica-
tion. Renaming is written M{id/id}, i.e., f(x, y){z/y} is equivalent to f(x, z).
Substitutions are written Mσ and can be used to substitute a whole term to a
name: f(x, y){g(t, x)/y} is equivalent to f(x, g(t, x)).
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We introduce two types of sequences: E is a sequence of equations over typed
terms and Σ a sequence of constants and function signatures. We have the
following system, which is a more natural reformulation of the equational theories
discussed in [32]. The system can be easily extended with specific typing or well-
formedness rules.

REFLEXIVITY E,Σ�M=M

AXIOM
(M=N)∈E
E,Σ�M=N

SYMMETRY
E,Σ�M=N
E,Σ�N=M

TRANSITIVITY
E,Σ�M=N, E,Σ�N=L

E,Σ�M=L

APPLICATION
E,Σ�Mi=Ni, E,Σ�Mi:Ti, i=1..k, E,Σ�f :T1×...×Tk→T

E,Σ�f(M1,...,Mk)=f(N1,...,Nk)

SUBSTITUTION
E�M=N

E�Mσ=Nσ

RENAMING
E�M=N

E�M{m/n}=N{m/n}

If the theory E,Σ is decidable, we can define the congruence =E,Σ asM =E,Σ

N ⇐⇒ E,Σ � M = N . We can alternatively introduce this relation by
means of reduction systems and we will require the system to be convergent, i.e.,
confluent and terminating. We will then have M =E,Σ N ⇐⇒ ∃L,M →∗

E,Σ

L ∧N →∗
E,Σ L.

Example. One way to model asymmetric encryption and digital signatures,
uses the following sequences:

Σ = [aenc : Pkey × T → T, adec : Skey × T → T, Pk : Skey → Pkey,

Sign : SKey × T → Signature, CheckSign : Pkey × Signature → Bool,

RecoverData : Signature → T, true : Bool]

E = [adec(x, aenc(Pk(x), y)) → y, CheckSign(Pk(x), Sign(x, y)) → true,

RecoverData(Sign(x, y)) → y]

It is easy to prove that this system is convergent. For a more elaborate exam-
ple, one may want to use automated tools like theorem provers together with
a dedicated language to use equational theories or symbolic representation of
cryptographic primitives.

3.2 Modeling Protocol Interactions and Concurrency

Process algebra provide convenient ways to formally describe high-level process
interaction, communication and synchronization. They are also supported by
useful tools for the formal analysis of processes. The applied Pi-Calculus is a
language of this family and an extension of the well known Pi-Calculus and is
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the formal language that we use to model POPCORN. It has been introduced
in [32]. An Applied Pi-Calculus process is defined by the following syntax:

P ::= 0 | phase n;P | νid : T ; P | let id = M in P

| if M =E,Σ M then P else P | in(id , id : T ); P | out(id ,M); P

| P |P | !P
M ::= id | f(M, . . . ,M)| Const| . . .

Const ::= true | false| . . .

Informally, its semantics is defined as follows:

Null Process: 0 is the null process. It does not reduce to any other process.
This is often omitted after an in() or an out(), i.e., write out(x, y) instead
of out(x, y); 0.

Phase: phase n;P is a synchonization point, i.e., all instructions from the pre-
vious phase are discarded before starting phase n and it behaves as P. By
default, processes run in phase 0. In particular, this will be useful to model
offline attacks.

Restriction: νx : T ; P creates a new typed name x, adds it to the scope of P
and then behaves as P .

Let Definition: let x = M in P binds the value of the term x to the term M ;
then it behaves as P .

IF-THEN-ELSE Statement: if M1 =E,Σ M2 then P1 else P2 reduces toP1

if M1 =E,Σ M2 is provably true in the equation theoryE,Σ. It reduces to P2

otherwise (not only when M1 =E,Σ M2 is false, but also when it is not prov-
able).

Input: in(id1, id2 : T ); P waits on channel id1 for a term of type T to be out-
put, reads its value into the term id2 and then behaves like P .

Output: out(id ,M); P waits for another process to listen to the channel id
(i.e. a process of the form in(id , id2); P2 that runs in parallel). It can then
output the term M in the channel id and behaves like P .

Parallel Composition: P1|P2 basically means that both P1 and P2 run in
parallel.

Replication: !P represents an unbounded number of parallel replications of the
process P .

The Pi-Calculus and the Applied Pi-Calculus have formal semantics defined
by labelled transition systems. The weak bisimilarity ≈ is proven to coincide with
the observational semantics of the language [30,32]. This gives us a mechanical
way to prove observational semantics. The latter basically means that two pro-
cesses are equivalent if and only if no static context (restriction of names and
parallel composition with an arbitrary process) can distinguish between the two
processes. This gives us the ability to express some advanced privacy-related re-
quirements. However, ≈ is undecidable and some advanced methods are needed
to prove observational equivalence. For instance, ProVerif, the automated tool
used in our analysis, applies specific heuristics to prove a stronger notion than
observational equivalence which is decidable. For this reason, ProVerif fails to
prove some valid equivalences.
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3.3 Privacy-Related Properties

We shall present in this subsection the main privacy properties we are interested
in. We shall then show how to express and verify each of them in the Applied Pi-
Calculus. The first five properties have been studied in different papers. As far as
we know, this is not the case for the last property. The properties are the following:

Weak Secrecy/Confidentiality: Active adversaries cannot deduce the com-
plete secret from their interactions with the communicating parties. Or,
equivalently, adversaries cannot output the secret on a public channel [32].
This property is interesting in the context of POPCORN to express the fact
that the identity of the vehicles should remain secret as well as the identities
of the mobility Operator (MO) and the energy Provider (EP) communicating
with a specific vehicle.

Strong Secrecy: This is a stronger notion where adversaries cannot even dis-
tinguish if the secret changes [32]. It provides stronger guarantees on the
confidentiality of the secret, excluding any partial knowledge of the secret.
In contrast, Weak Secrecy is not breached as long as the adversary cannot
deduce the complete secret.

Anonymity: A particular user may use the service without others noticing
him. This means, informally, that he can use the service without disclosing
personally identifiable information during this process [7]. This property is
useful in a scenario where the identity of the user (or vehicle) is known to
the adversary, which can be, for example, a Charging Station (CS) knowing
the identity of the vehicle from a previous interaction through a non-privacy
preserving protocol. In this particular scenario, the adversary should not
know that a specific vehicle has used the service.

Resistance to Offline-Guessing Attacks: Adversaries cannot distinguish
between correct and incorrect guesses [6].

Strong Unlinkability: A user may make multiple uses of a service without
others being able to establish a link between them [7]. This property guar-
antees that users cannot be traced by active adversaries like CSs and EPs.

Unlinkability of uses and users: A user may use the service without others
being able to link him to a particular use. This property is not to be con-
fused with Strong Unlinkability. It guarantees that an active adversary, like
an MO who already knows sensitive data, should not be able to link the
known vehicle to a complete bill which contains charging sessions’ details
and metadata.

In the case of POPCORN we are interested in the first four properties for the
identities of the electric Vehicle (EV), its MO and the CS/EP it may commu-
nicate with. Strong Unlinkability is only studied with respect to the identity of
the user (or EV). The last property will be studied for a particular user and a
particular usage.

The above properties can be expressed as follows in the formal model:

Weak Secrecy/Confidentiality: This property can be expressed as a reach-
ability property [32].
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Strong Secrecy: The unobservability of secret changes can be captured using
observational equivalence [32].
P{M1/secret1, . . . Mn/secretn} ≈ P{M ′

1/secret1, . . . M ′
n/secretn}

The above formula states that it is possible to replace secrets by different
values in the protocol without active adversaries being able to distinguish
these situations, which is exactly Strong Secrecy.

Anonymity: The fact that a particular user can remain unnoticed can be ex-
pressed as: [7]
!(νid ; P )| P{M/id} ≈!(νid ; P )

Resistance to Offline-Guessing Attacks: We can encode guesses by out-
putting the correct or a dummy value on a public channel. The property
is true if and only of the following holds [6]:
P | (phase 1; out(publicChannel, secret)) ≈
P | (phase 1; νdummy. out(publicChannel, dummy))

Strong Unlinkability: This property amounts to checking whether the pro-
tocol is equivalent to a version of itself in which the number of sessions is
limited to one per user [7].
!(νid ; !P ) ≈!(νid ; P )

Unlinkability of Uses and Users: This property expresses the fact that is
a transaction cannot be linked to a given user. Typically, in the case of
POPCORN, we have two bills per charging session: one for the MO and one
for the EP. If an adversary MO knows the EV and both bills, verifying the
property is equivalent to answering the following question: can this adversary
link a bill he knows with the bill containing the detailed charging information
of the vehicle? The property is expressed as follows:
P1 ≈ P2 where

– P1 = C[phase 1; (out(publicChannel, trid CS)| out(publicChannel,
trid EV ))]

– P2 = C[phase 1; (out(publicChannel, dummy1)| out(publicChannel,
dummy2))]

– (trid EV, trid CS) denotes a charging session where trid EV is the trans-
action id on the user side and trid CS is the transaction id on the charging
station side.

– dummy1 and dummy2 are two valid but unlinked charging session identifi-
cations.

– C[] an arbitrary context such that C[0] represents the studied protocol.

As an illustration, a typical adversary would have the following template,
where link() encodes strategies that can link both transactions (in ProVerif
syntax):

l e t Adversary ( . . . ) =
phase 1 ;
in ( publicCh , t r i d 1 : TransactID ) ;
in ( publicCh , t r i d 2 : TransactID ) ;
i f l i n k ( t r id1 , t r id2 , e x t r a i n f o s )=true then
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(∗ s u c c e s s f u l l y l i n k ed the usage to the user ∗)
new message : MSG;
(∗ ’ c ’ i s p u b l i c and not used e l s ewhere ∗)
out ( c , message )

4 Verification of Privacy Policies

The first step of our methodology consists in translating the informal description
of the protocol (which may be unclear or incomplete) to simple diagrams includ-
ing a complete description of each step. This representation is then translated
into the Applied Pi-Calculus. The next step is the definition of the privacy prop-
erties following the approach described in the previous section. These properties
are then submitted to ProVerif for verification. To this aim, we have implemented
a convergent equational theory that captures all cryptographic primitives re-
quired by POPCORN. The properties that cannot be verified by ProVerif can
either be shown to be incorrect or proven by hand. The failure to prove a correct
property can be due either to the limitation of the tool described in Section 3.2
or because of inappropriate design choices for the model of the protocol.

4.1 Minor Problems and Adjustments

It is possible to exploit the signature of the meter readings to generate adversaries
that can invalidate Strong Unlinkability. Indeed, a malicious CS that generates
twice the same meter reading in two different sessions obtains the same signed
value if and only if the EV is the same in both session (and thus iff Strong
Unlinkability is not satisfied). We can easily confirm this claim by submitting
the following equivalence to ProVerif:

f r e e gmsk : gmskey [ p r i v a t e ] . (∗ master key ∗)
equ iva l ence
( (∗ Mul t ip l e s e s s i on s ∗)

! ( new id : ID ;
! ( l e t gsk=GKeygen(gmsk , id ) in

in ( publicChannel ,m: b i t s t r i n g ) ;
out ( publicChannel , (GPk(gmsk ) , Sign ( gsk , m) ) ) ) )

)
( (∗ S in g l e s e s s i on ∗)

! ( new id : ID ;
( l e t gsk=GKeygen(gmsk , id ) in

in ( publicChannel ,m: b i t s t r i n g ) ;
out ( publicChannel , (GPk(gmsk ) , Sign ( gsk , m) ) ) ) )

)

Automated payment gives rise to another weakness. In fact, according to the
ISO/IEC 15118 specification, the EP’s identification number is included in the



Formal Verification of Privacy Properties in Electric Vehicle Charging 27

bill that the EV sends to the MO. In contrast, in POPCORN, an encrypted iden-
tification of the energy provider is sent to the payment Handler (PH). However,
the POPCORN description was imprecise about how this actually works. If a
standard asymmetric encryption is used, the problem again is that even though
an adversary cannot find the secret, he can still detect its changes, which means
that Strong Secrecy is not satisfied. We can confirm this claim using the following
ProVerif program, which attempts to verify observational equivalence:

f r e e sk : skey [ p r i v a t e ] .
f r e e id : b i t s t r i n g [ p r i v a t e ] . (∗ the s e c r e t ∗)
non in t e r f id . (∗ s t rong secrecy ∗)
proce s s

out ( publicChannel , ( Pk( sk ) , aenc (Pk( sk ) , id ) ) )

Possible fixes: The above problems can be fixed as follows. First, a session
number can be added to the data to be signed: Sign(gsk, (session id, m)).
Signatures are now cryptographically linked to a specific session and cannot be
used in two different sessions by a malicious CS/EP. For the encrypted identity
of the EP an option is to use randomized encryption:

νr : nonce; aenc(Pk(sk PH), (r, idEP ))

4.2 Results Using ProVerif

We consider now that the changes presented in the previous subsection have
been added to POPCORN. The analysis of the protocol using ProVerif returns
the following results:

true cannot be
proven

Weak Secrecy (EV,MO) �
Strong Secrecy (EV,MO) �
Resistance to Offline-Guessing Attacks
(EV,MO)

�

Anonymity (EV ) �
Strong Unlinkability (EV ) �
Weak Secrecy (EP) �

4.3 Unlinkability of Uses and Users

In this subsection we show that the remaining property, Unlinkability of uses and
users, does not hold. To do so, we will exploit two different aspects of POPCORN
and prove that minor changes can lead either to a broken protocol or to a variant
of POPCORN that does not verify this property. Therefore, more substantial
changes are needed, which are discussed in the next section.
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Exploiting Automated Payment. Since transaction numbers are contained
in the bills obtained by EPs and MOs, an adversary can simply compare the two
values to link them. The linking function of the typical adversary presented in
Section 3.3 would be:

l e t f u n l i n k ( t r i d 1 : TransactID , t r i d 2 : TransactID)=
t r i d1=t r i d2 .

It is easy to verify that P1 
≈ P2 in this case, because a message is output in
channel c in the first process and not in the second one. Thus, Unlinkability of
uses and users is not satisfied. We must find a way to generate two transaction
identifiers that can only be linked by the actor generating them or by the PH.
The PH should also have the ability to derive one transaction number from the
other one.

Exploiting Dispute Resolution. We consider at this point that all minor
modifications suggested above have been added to POPCORN. During dispute
resolution, as explained in Section 2, the EP contacts the dispute Resolver (DR)
with the unpaid bill. Then the latter unveils the identity of the vehicle and
contacts its MO with the transaction number of the unpaid charging session.
Since dispute resolution must be functional, the MO can verify that the EP-side
transaction number is linked to one of the paid or unpaid sessions. The MO
has the ability to link two transaction numbers. The linking function in that
case would be a function corresponding to the procedure used by the MO. Thus,
even with these minor modifications, Unlinkability of uses and users is still not
satisfied. A remaining option consists in modifying dispute resolution, which is
discussed in the next section.

5 Remedy

The idea behind the suggested remedy is to involve the PH in Dispute Resolution.
To implement this solution, we need a transaction id scheme that can ensure
unlinkability and unforgeability.

create(pk PH, rand, token): this randomized constructor returns (transac-
tID user, transactID server, pi) such that transactID user and transactID
server are two transaction numbers that can only be linked by the PH and
pi is a Zero Knowledge Proof such that
V erifyProof(pk PH ′, token′, transactID server, pi) = true iff
(token, pk PH) = (token′, pk PH ′).

check(pk PH,token, transactID server, pi) returns true iff
∃rand.∃transactID user.
(transactID user, transactID server, pi)= create(pk PH, rand, token).

getUserSideTransactionID(sk PH,transactID server) returns
transactID user such that ∃rand.∃token.∃pi.
(transactID user, transactID server, pi)
= create(Pk(sk PH), rand, token).
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getServerSideTransactionID(sk PH,transactID user) returns
transactID server such that ∃rand.∃token.∃pi.
(transactID user, transactID server, pi)
= create(Pk(sk PH), rand, token).

Some changes have to be made to the protocol to use the above cryptographic
primitives; the corresponding diagrams can be found in Appendix A.

Transaction Numbers Establishment: the CS chooses the token and sends
it to the EV through a secure channel. The latter chooses a random nonce
r and uses it to generate the transaction ids: (trid EV, trid CS, pi) =
create(pk PH, r, token). The electric Vehicle then sends trid CS and pi
to the charging Station. The charging Station checks the validity of the
transaction number before using it: check(pk PH, token, trid CS, pi).

Automated Payment: upon receiving a payment order from an MO, the PH
computes the id of the EP that should be contacted but also the correct
transaction number that should be paid for:
trid CS = getServerSideT ransactionID(sk PH, trid EV ). trid EV be-
ing the transaction id on the mobility Operator side.

Dispute Resolution: during dispute resolution, the DR should contact the PH
with an unpaid trid CS and the identity of the MO that should be contacted.
The PH will compute the correct transaction id for which the MO should
pay: trid EV = getUserSideT ransactionID(sk PH, trid CS).

6 Related Work

The definition of appropriate frameworks to express and reason about privacy
properties has generated a significant interest over the last decade. Indeed,
privacy is a complex and subtle notion, and the first challenge in this area
is defining formal properties that reflect the actual privacy requirements. A
variety of languages and logics have been proposed to express privacy poli-
cies [2,3,4,18,17,23,27,35]. These languages may target citizens, businesses or
organizations. They can be used to express individual privacy policies, corpo-
rate rules or legal rules. Some of them make it possible to verify consistency
properties or system compliance. For example, one may check that an individual
privacy policy fits with the policy of a website, or that the website policy complies
with the corporate policy. These verifications can be performed either a priori,
on the fly, or a posteriori, using techniques like static verification, monitoring
and audits. Similarly, process calculi like the applied Pi-Calculus have already
been applied to define and verify privacy protocols [9]. Process calculi are general
frameworks to model concurrent systems. They are more powerful and versatile
than dedicated frameworks, which is illustrated in this work. The downside is
that specifying a protocol and its expected properties is more complex. To ad-
dress this issue, some authors propose to specify privacy properties at the level
of architectures [1,19]. For example, the framework introduced in [19] includes
an inference system to reason about potential conflicts between confidentiality
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and accountability requirements. Other approaches are based on deontic logics,
e.g. [12], which focuses on expressing policies and their relation to database se-
curity or distributed systems. A difficulty with epistemic logics in this context is
the problem known as “logical omniscience”. Several ways to solve this difficulty
have been proposed [13,31].

Privacy metrics such as k -anonymity [22,33], l-diversity [26] or ε-differential
privacy [10,11] have also been proposed as ways to measure the level of privacy
provided by an algorithm. Differential privacy provides strong privacy guaran-
tees independently of the background knowledge of the adversary. The main
idea behind ε-differential privacy is that the presence or absence of an item in a
database should not change in a significant way the probability of obtaining a
certain answer for a given query. Methods [11,28,29] have been proposed to de-
sign algorithms meeting these privacy metrics or to verify that a system achieves
a given level of privacy [34]. These contributions on privacy metrics are comple-
mentary to our work, as we follow a logical approach here, proving that a given
privacy property is met (or not) by a protocol.

Liu et. al. [20] define a formal model for an electric vehicle charing protocol,
differing in several ways from POPCORN. First, they do not distinguish between
the MO and EP stakeholders, and they do not have a dedicated PH. Therefore
they have only three parties: the user, the supplier, which in POPCORN is called
the EV, and the judging authority, which is comparable to DR in POPCORN.
Their protocol [24] also supports additional functionalities such as traceability (if
the car is stolen), which is not proven to be privacy preserving and discharging
of the EV, i.e., the EV can choose to sell energy back into the grid.

7 Conclusions

This paper presents an application of a formal approach to define a real life
protocol meeting privacy requirements. Our formal model has made it possible
to identify weaknesses in the original POPCORN protocol [14] and to suggest
improvements to address these issues. POPCORN preserves the confidentiality
of its users (Weak Secrecy) but Strong Secrecy and Strong Unlinkability are not
satisfied by the original version of the protocol. However, minor modifications of
the protocol are sufficient to redress these weaknesses. We have also shown that
POPCORN does not ensure a particular form of unlinkability: it does not prevent
an attacker from linking a user to his uses of the system. We have also argued
that more significant changes in the definition of POPCORN are necessary to
address this issue. The mitigation proposed here does not affect the functionality
of the protocol and can be shown to meet the expected unlinkability property.

The work described in this paper can be seen as a contribution to privacy
re-engineering which is of prime importance to enhance legacy systems to deal
with privacy requirements. The next step in this direction would be to go be-
yond this specific protocol and provide a framework for privacy re-engineering.
We believe that the re-design approach presented in [14] in association with the
formal approach described here pave the way for the definition of an iterative
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improvement methodology that could form the core for such a framework. We
would also like to stress that this approach should not be opposed to the “pri-
vacy by design” philosophy. Indeed, privacy requirements very often are (or seem
to be) in conflict with other (functional or non functional) requirements. The
iterative methodology suggested here could be applied at the level of specifica-
tions and seen as a strategy to address the needs on privacy by design in some
situations.

References

1. Antignac, T., Le Métayer, D.: Privacy by Design: From Technologies to Architec-
tures. In: Preneel, B., Ikonomou, D. (eds.) APF 2014. LNCS, vol. 8450, pp. 1–17.
Springer, Heidelberg (2014)
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A POPCORN v2

Fig. 1. Transaction number establishment

Fig. 2. Changes in automated payment

Fig. 3. Changes in dispute resolution
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Abstract. Undesired flows of information between different sensitivity
levels or domains can seriously compromise the security of a system.
Moreover, even if specifications are secure, unwanted flows can still be
present in implementations. In this paper we present a model-based tech-
nique to discover unwanted information flows in specifications and to test
systems for unwanted flows. We base our approach on an unwinding re-
lation for Extended Finite State Machines. We preliminary validate our
approach by means of an implementation that allows us to benchmark
the efficiency of our model-checking algorithm.

1 Introduction

Implicit information flows between different sensitivity levels or domains are
difficult to find, and could imply serious confidentiality or integrity breaches.
Such flows are usually challenging to spot in formal specifications (for instance
with conventional model-checking) because information flow properties (such as
Non-interference [6]) involve pairs of system traces and properties that are not
expressible in conventional temporal logics. A way to cope with this problem
is self-composition originally proposed by Barthe et. al. [1], in the context of
language-based security.

In this paper we propose an alternative model-based approach to detect such
unwanted flows in specifications by a bounded model-checking technique based
on an extended unwinding theorem [9]. Furthermore, we discuss a framework
for model-based testing of information flow properties based on the results of
our model-checking analysis and we discuss structural model coverage criteria
and mutation-based testing based on the extended unwinding analysis.

We preliminary evaluate our approach by means of a prototypical implemen-
tation of the model-checker to both secure and insecure models, by comparing
the execution time of our analysis against a brute-force approach similar to self-
composition. Our experiments indicate that our approach performs better than
brute-forcing for secure models and as the depth of the traces increases.

The rest of the paper is organized as follows: Sect. 2 discusses some prelim-
inaries about non-interference and sets the notation for the rest of the paper.
Sect. 3 presents the approach for model-checking EFSMs based on an extended
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unwinding theorem. In Sect. 4 we show how to model-based test implementa-
tions for non-interference. In Sect. 5 we present the results of our evaluation
experiments. Sect. 6 discusses related work and we conclude in Sect. 7.

2 Preliminaries

Non-interference and EFSMs The notion of information flow security is that an
observer belonging to some security domain should not obtain information about
(or be influenced by) actions happening in some other security domain. The most
common instance is the two-element lattice ({L,H},≤) where I = HI � LI is
partitioned into low and high inputs (and O = HO � LO for the outputs) and
information is allowed to flow from low (L) to high (H) but not vice versa.

Let [ ] : I∗ → O∗ be a function that takes sequences of input events in I into
sequences of output events in O. ·|L is a purging function that deletes elements
in HI from an input sequence (and elements in HO from an output sequence
respectively). Non-interference [6] is the property:

∀ i1, i2 i1|L = i2|L ⇒ [i1]|L = [i2]|L (1)

Definition 1. An Extended Finite State Machine (EFSM) is a tuple

M = (S, S0,V , s0, I = H � L,O,T)

where S is a finite set of states, S0 ∈ S is the initial state, V is a finite set of
variables, which for simplicity we assume to be the same for all states S ∈ S,
s0 : V → Val is the initial valuation of the variables, I is the set of (parametrized)
input symbols where H is the set of high inputs, L is the set of low inputs, and
O is the set of (parametrized) output symbols, and T is a finite set of transitions
{T1, T2, T3, . . . , Tn}. Transitions Ti ∈ T have the form:

(S1, S2, I(α), [C(α,−→x )], −→x := E(α,−→x ), O(F (α,−→x )))

where −→x represents the variables of the state S1, the symbol α represents the
parameter of the input event I, the condition C is a decidable condition over −→x
and α, the expression E is an expression to be assigned to the variable x, and
the expression F is the parameter of the output event O.

A natural semantics is associated with EFSMs, where input symbols trigger
an immediate output and a transition in the machine, according to the value of
the internal variables and the current state.

2.1 Unwinding-Based Verification

In [9] an unwinding theorem for EFSMs is presented that soundly approximates
non-interference. Similarly to the original Unwinding Theorem [7], this extension
constructs a relation between symbolic states and checks for consistency of the
low outputs of related states (output consistency).
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Fig. 1. Discounted consumption

The algorithm for approximating non-interference of [9] can be summarized as
follows: 1. First, compute a minimal unwinding relation of states : two states S1

and S2 are in relation if there is a transition triggered by a high input connecting
them (local consistency) or if they are the goal states of two related states via the
same low input (step consistency). 2. Compute a set T (S) of tainted variables for
each state S where a variable can be tainted if its value is changed as a side effect
of a high transition, or transitively in a transition guarded by a condition reading
from a tainted variable. 3. Check for output consistency of states in a relation
by comparing the outputs of low inputs where the partition of the abstracted
state via the guards is considered: if guards are tainted, all outputs must be
equal regardless of the condition, otherwise syntactically identical guards are
compared pair-wise.

Example. There is a number of consumers of some commodity. When the to-
tal consumption reaches a certain threshold, the price per unit is discounted.
Consumers should not learn about the consumption of the others. This is mod-
elled in Fig. 1, and formalized by establishing that consumeObserver is a low
input, whereas consumeOthersAmount is a parametric high input. Note that the
state normal is not output consistent, since for the low input consumeObserver
guarded by the tainted variable Total, there are two different possible outputs
(info price(normal) and info price(discount)). But can we find two con-
crete traces exhibiting a violation to the security property?

3 Unwinding Based Model Checking

Using the verification results of [9] it is possible to determine whether a spec-
ification is secure. Nevertheless, if a model is considered as flawed, it can be a
false positive, given that the verification algorithm is sound but not complete.
It is in general not trivial to find traces witnessing this violation. In this section
we discuss an approach to generate such counterexamples by using the results
of the unwinding analysis.
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3.1 Trace Generation

To begin with, note that if it is not possible to construct a (minimal) unwinding
relation, then there exists at least a pair of states (S, S′) such that for some low
input the specified outputs are inconsistent. We want to take advantage of this
fact to produce two traces that are input equivalent, but such that they are not
output equivalent for S and S′.

We say that a sequence of transitions T = T1T2T3 . . . is an abstract trace for
the symbolic Mealy machine, if T0 starts in S0 and that Ti starts in the state in
which Ti−1 ends, for i > 0. Two abstract traces T 1 = T1,1T1,2T1,3 . . . and T 2 =
T2,1T2,2T2,3 . . . are said to be low-input-equivalent modulo a set C of constraints

on the parameter symbols αi,j of the transitions, written T 1
i≡L T 2 (mod C) if

the constraint C relates the parameters of low inputs in both abstract traces in a
way that any concretization (variables with a concrete valuation) of the abstract
traces is low-input-equivalent.

One can then consider all abstract traces conducting from the initial state to
S and to S′ respectively, up to a certain length k. From the cartesian product
of those two sets, we compute all possible pairs of abstract traces such that

T 1
i≡L T 2 and the associated set of constraints C as defined by the guards and

side effects of the model. At this point, we have candidates for traces that are
abstractly low equivalent. We now automatically check for satisfiability which
will provide witnesses for the values of the variables and input parameters at
each state thus allowing to produce a fully instantiated pair of traces (if any).

Algorithm 1. Counterexample generation

1: procedure CounterExamples(S, S′)
2: C ← ∅
3: T ← findPaths(S0, S, k)
4: T ′ ← findPaths(S0, S

′, k)
5: for all (T ,T ′) ∈ T × T ′ do
6: if inpEquivalent(T ,T ′) then
7: C ← C ∪ (T ,T ′)
8: end if
9: end for
10: C′ ← SAT(C)
11: return C′

12: end procedure

Formally, we use the Algorithm 1, where findPaths(S0, S, k) returns all ab-
stract traces between S0 and S of length at most k. The function inpEquivalent

compares two abstract traces and determines whether they are low input equiv-
alent. Finally, SAT(C) returns a pair of concrete traces for each satisfiable low
equivalent abstract pair and its associated set of constraints C as defined by the
model, plus the condition that the last output must differ, which will imply a
violation to non-interference.
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Example. Consider the EFSM in Fig. 1. As discussed before, it is not out-
put consistent for S = S′ = normal. We now apply Algorithm 1. It suffices
to find all paths of size k = 1 to normal. We extend these traces with the
non output-consistent transitions of S (S′), in this case the two transitions
triggered by consumeObserver. We set Threshold=10 and run the constraint
solver, obtaining the pair of traces: {(consumeOthersAmount(0) consumeObserver,

consumeOthersAmount(11) consumeObserver)} which constitute a counterexample,
since they produce two different observable outputs for low.

4 Model-Based Non-interference Testing

In this section we discuss model-based testing strategies for non-interference. As
it is the case with testing in general, it is computationally infeasible to exhaus-
tively test the SUT. It is hence necessary to cut down the number and length of
the tests that should be generated by means of selection criteria.

Test selection criteria can be functional, stochastic, structural, or fault-based
[14]. Structural criteria exhibit the advantage that they allow for a fully auto-
mated generation of test cases. The downside is that, because they are not related
to (realistic) fault models, their fault detection ability is usually restricted.

In order to capture the notion of possible fault, fault models can also be used
for the derivation of tests [11]. The idea is to hypothesize the presence of a
specific fault in a system and derive a test case that would find the respective
fault if it was present. Fault models are used for the description of singular faults
whose presence would be catastrophic, and also for the description of recurring
faults. Typical examples include stuck-by-1 and division-by-zero. In a model-
based context, approaches that operationalize fault models often inject faults
and then use the mutated model to derive test cases that potentially violate
given properties [3].

We have thus in principle two possible starting points: 1) because a model is
incorrect, we have one or more counterexamples and want to check whether a
SUT based on the specification is also flawed; or 2) we have a secure model and
want to check if the SUT is secure as well. The first case is trivial: in case of one
or more refinements, we already have two “interesting” abstract traces to start
from. But what about the second case?

4.1 Unwinding-Based Coverage Criteria

Given a secure model, and without any further information, we need to assume
that any pair of states in the EFSM (S1, S2) is potentially output inequivalent for
low events in the implementation. However, we know that the ‘interesting’ pairs
of states are precisely the output-inconsistent pairs in the Unwinding relation.
To try to reach all interesting parts of the model when generating test-cases, we
define the following coverage criteria (similarly as structural coverage criteria for
state-charts [10]).
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Coverage of pairs in the Unwinding relation: All pairs of states in the Unwinding
relation R must be tested at least once, meaning a pair of low-equivalent but
high-inequivalent input traces reaching S1 and S2 for (S1, S2) ∈ R must be
refined and tested; Coverage of low inputs: Given a pair (S1, S2) ∈ R all low
input symbols in S1 ∪ S2 must be tested, meaning that for each symbol L that
is accepted in S1 or S2 there is at least one pair of low-equivalent input traces
reaching S1 and S2 such that the last input is L in both traces; Loop coverage:
Given a pair (S1, S2) ∈ R such that there exist paths with loops from the initial
state to S1 and S2. Then pairs of low-equivalent traces of length up to k are
refined and tested.

4.2 Non-interference and Mutation Testing

In order to generate interesting test cases, Büchler et al. [3] propose to mutate
secure specifications by introducing faults that correspond to common imple-
mentation bugs with an impact to security properties. If M ′ is the result of such
a mutation to a model M , then there are two possibilities. If M ′ |= ϕ, this M ′ is
useless for test case generation. If, in contrast, M ′ 
|= ϕ, then the model checker
will return counterexamples. If the SUT contains the fault, it will (likely) be
found. If not, the test case is still valuable because it tests for a potential fault,
in this case, a violation of the security property ϕ.

Mutation operators that break a secure unwinding relation can be easily con-
structed by violating the output consistency of related states. A full empirical
investigation of this approach is challenging, since any output inconsistency will
lead to a confidentiality/integrity violation. Identifying realistic mutation op-
erators, that reflect common mistakes made by designers/programmers in this
context, is the subject of ongoing work.

5 Preliminary Evaluation

We now compare a prototypical implementation of the unwinding-based model-
checking approach against a naive (bounded) brute-forcing approach similar to
self-composition, which yields preliminar evidence on the usefulness of our ap-
proach. The control algorithm considers all pairs of nodes (Si, Sj) in the model
and compute all symbolic traces reaching Si and Sj respectively that are low
equivalent. Then it solves the constraints (including output inconsistency) to
force a counterexample.

We compare the execution time of our implementation (CTNI) of the pre-
sented algorithm against the brute-force approach for the discounted consump-
tion example presented before, and a further example consisting of an access
control scenario and its mutated insecure counterpart (Profile). Moreover we
consider a bigger random model and its secure and insecure versions.

The results of the experiment are depicted in Fig. 2. We outperform brute-
force as expected for secure models: because of the soundness of the Extended
unwinding approach, it suffices to check the model statically without constraint
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Model Depth CTNI Brute-force

Discount secure 7 0.2s N/A
Discount insecure 7 144s 192s
Profile secure 8 5ms 33.4s
Profile insecure 7 334s 679s
Random 5 states secure 8 1.9ms 45.3s
Random 5 states insecure 7 124s 182s

Fig. 2. Comparison of our approach against brute-forcing

solving, and the verification time stays constant regardless of the path depth. For
the insecure versions, we perform similarly for small models, but we outperform
the brute-force approach as the maximum path depth gets higher.

6 Related Work

Barthe et al. [1] proposed a characterization of non-interference that allows to
express it in terms of a single program run. This is realized by self-composing a
program with itself, and triggered applications also for the event-based, reactive
information-flow domain. Recently, Clarkson et al. [4] proposed an extension
to LTL, called HyperLTL, that allows to specify properties of sets of traces,
including non-interference. They also report on the construction of a prototypical
model-checker for a subset of their logic which uses off-the-shelve model-checkers
and is based on the idea of model self-composition.

In [12] Roscoe et al. propose a characterization of non-interference in terms
of determinism. They formalize these properties in CSP and claim that those
can be efficiently verified by means of the FDR model-checker. However no com-
plexity analysis or experimental data is available. Foccardi and Gorrieri [5] have
also studied information flow in terms of process algebras. In particular, they
generalize non-interference for non-deterministic systems and show how stan-
dard bisimulation checking algorithms can be used to check them. In [13] Ryan
et al. discuss different extensions to non-interference for non-deterministic no-
tions, including the afore mentioned approaches, and provide a proof that the
bisimulation approaches correspond to unwinding theorems.

In [2] Bohannon et al. proposed a notion of reactive non-interference for pro-
grams and a type system to guarantee their security, based on a bisimulation
property. This approach is comparable to the extended unwinding of [9], since
the focus is on a sound approximation to non-interference. However, they do not
provide a methodology to compute counterexamples.

To the best of our knowledge, there are no works in MBT considering in-
formation flow properties. In language-based security, an approach to randomly
test assembly like programs has been proposed by Hritcu et. al. [8]. Different
from their work we focus on a higher abstraction level, using coverage criteria
and mutation.
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7 Conclusions

In this paper we have presented a bounded model-checking approach based on an
unwinding algorithm for EFSMs that allows one to compute counter-examples
for non-interference. We also discuss how these results can be useful to define
test-cases for exercising implementations. We have carried out a preliminary eval-
uation of our approach in terms of efficiency. As a result, we have observed that
our approach performs considerably better than brute-force for secure models
and as the maximum length increases.

There exist several directions towards extending this work: first, we plan to
generalize our approach for weaker security notions such as declassification poli-
cies. On the other hand further applications of mutation-based testing to this
setting are being considered. Finally, an implementation guiding a general pur-
pose model-checker to take into account the unwinding analysis, would allow for
a thorough comparison against self-composition based approaches.
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Abstract. The ability to copy data effortlessly poses significant secu-
rity issues in many applications; It is difficult to safely lend out music
or e-books, virtual credits cannot be transferred between peers without
contacting a central server or co-operation with other network nodes, . . .

Protecting digital copies is hard because of the huge software and
hardware trusted computing base applications have to rely on. Protected-
module architectures (PMAs) provide an interesting alternative by re-
lying only on a minimal set of security primitives. Recently it has been
proven that such platforms can provide strong security guarantees. How-
ever, transferring state of protected modules has, to the best of our
knowledge, not yet been studied.

In this paper, we present a protocol to transfer protected modules
from one machine to another state-continuously; From a high level point
of view, only a single instance of the module exists that executes with-
out interruption when it is transferred from one machine to another. In
practice however an attacker may (i) crash the system at any point in
time (i.e., a crash attack), (ii) present the system with a stale state (i.e.,
a rollback attack), or (iii) trick both machines to continue execution of
the module (i.e., a forking attack). We also discuss use cases of such a
system that go well beyond digital rights management.

Keywords: Protected Module Architecture, State-Continuity, Transfer-
ring State.

1 Introduction

Computer science has transformed the world more rapidly than any technology
before. Online encyclopedia enable worldwide access to knowledge, news travels
faster than ever before and social media provide a global discussion platform.
One key reason for this success is that data can be copied cheaply, easily and
without loss of quality.

Unfortunately this ability also poses a security risk in many use cases. Dig-
ital rights management is the most obvious example: Once released, content
providers cannot prevent that their data is distributed further. But many other
use cases exist as well. We elaborate on valuable applications in Section 2.
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Certain types of data should resemble physical objects; It should not be pos-
sible to create exact copies and once transferred to another party, the sender
should no longer have access. This is hard to guarantee in practice. Security
checks can be added to applications and operating systems, but commodity op-
erating systems are so complex that their correctness cannot be guaranteed.
A determined attacker is likely to find an exploitable vulnerability (e.g, buffer
overflows [13,22]) in this huge trusted computing base (TCB). Alternatively, the
owner itself could have an incentive to break the implemented security features
and launch physical attacks against the machine (e.g., cold boot attacks) [5, 4].

Protected-Module Architectures. Recent advances in security architectures pro-
vide the required building blocks for an alternative approach. Protected-module
architectures (PMAs) avoid a huge TCB by only providing a minimal set of
security properties [12,6,14,11,8,21,20,24,10]. The exact set depends on the ex-
act implementation, but all provide complete isolation of software modules. The
PMA guarantees that modules have full control over their own memory regions;
Any attempt to access memory locations belonging to the protected module at
any privilege level (including from other modules), will be prevented. Protected
modules can only be accessed through the interface that they expose explicitly.

Protected-module architectures can be used to harden security-sensitive parts
of an application. Strackx et al. [20] evaluate a simple use case of a client con-
necting to a protected module. By placing SSL logic inside the protected module,
only SSL packets cross the module’s protection boundaries. Operating system
services are still used to send and receive network packets, but these are not
trusted. As any attempt to access sensitive memory locations in the protected
module will be prevented by the PMA, this effectively reduces the power of a
kernel-level attacker to that of a network-level attacker; Messages can be inter-
cepted, modified, replayed or dropped, but sensitive data cannot be intercepted
by an attacker.

Recently proposed protected-module architectures [14,6] also protect against
sophisticated hardware attacks. Intel SGX, a PMA that is expected to be im-
plemented in Intel processors in the near future, for example, guarantees that
protected modules are only stored unencrypted when they reside in the CPU’s
cache. Before they are evicted to main memory or later to swap disk, they are
confidentiality, integrity and version protected. This prevents many hardware
attacks such as a cold boot attacks [5].

State-Continuity Guarantees. Agten et al. [2, 1] and Patrignani et al. [17, 16]
formally proved that protected-module architectures can guarantee strong secu-
rity properties of modules while they execute continuously. In practice however
machines crash, need to reboot or lose power at unexpected times. To deal with
such events, modules must store their state on disk. However, confidentiality
and integrity protecting module states before they are passed to the untrusted
operating system for storage, is not sufficient. After the system reboots mod-
ules cannot distinguish between fresh and stale states. In many applications this
forms a security vulnerability.
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Parno et al. [15] and Strackx et al. [18, 19] propose a solution and guaran-
tee state-continuous execution; Modules either (eventually) advance with the
provided input or never advance at all.

Our contributions. In this paper we build upon these security primitives and
present a protocol to state-continuously transfer state of protected modules from
one machine to another. At a high level, programmer’s point of view, protected
modules execute without interruption while they are transferred between ma-
chines. In practice however, we assume that an attacker may gain kernel- or
hypervisor-level access to the system, but the underlying guarantees provided
by the protected-module architecture cannot be broken. This implies that an
attacker can (i) crash the system at any point in time, (ii) replay network mes-
sages, (iii) impersonate a remote party, and (iv) attempt to roll back the state of
a module (e.g, by creating a new module and replay network packets). Since such
a powerful attacker can easily launch denial-of-service attacks (e.g, by corrupting
the kernel image), such attacks are not considered.

2 Use Cases

When it can be guaranteed that a protected-module instance cannot be rolled
back nor forked when it is transferred to other machines, previously infeasible
use cases become available.

Changing Machine. Parno et al. [15] and Strackx et al. [18] proposed an algo-
rithm to guarantee state-continuous execution of protected modules. While this
property enables versatile use cases, it prevents protected modules to be passed
to another machine. In practice however, machines need to be replaced. Our pro-
tocol provides such support. Note that backups do not provide a good use case
as they imply that a module could be restored to a previous state. We explicitly
wish to defend against such behavior.

Multi Processor-Package Systems &Cloud Computing. Intel SGX provides strong
security guarantees in face of software and hardware attackers by ensuring that
protected modules are only stored unencrypted in the CPU’s cache. When they
are evicted to untrusted RAM or swap disk, they are confidentiality, integrity and
versionprotected. Unfortunately, this also prevents protectedmodules to be trans-
ferred from one processor package to another on the same machine. A state-
continuous enclave must always be executed on the same CPU package as it was
created on. This poses significant practical challenges as applications can no longer
be migrated from one CPU package to another to load balance execution load.

A similar problem occurs in a cloud computing setting where a virtual machine
may be migrated from one physical server to another. State-continuous transfer
of states can solve such problems.
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Digital Wallets. Cryptocurrencies such as Bitcoin continue to gain traction.
Bitcoins can be transferred from one user to another, but network consensus must
be reached before the transfer can be asserted. This has the disadvantage that
bitcoins cannot be transferred when the sender cannot connect to the network.

By relying on security properties of protected-module architectures, an al-
ternative infrastructure can be built easily. Virtual credits can be stored as a
simple counter in a protected module, completely isolated from the rest of the
system. Transferring credits between peers can then be achieved using a state-
continuous transfer of a portion of the available credits. The protocol presented
in section 3 can be trivially modified to enable such use cases (i.e., the sender
no longer sends its current state, nor will it permanently disable itself after the
protocol completed).

Distributed Capability Systems. King-Lacroix et al. [7] propose BottleCap a
capability-based mechanism for distributed networks. Resources can be accessed
iff the user has the capability to do so. As access right checks are always local to
the data that is accessed, such a system is much more scalable than traditional
user-based authentication.

By placing capabilities in protected modules and transferring their state con-
tinuously, BottleCap’s difficulties can be overcome; Capabilities can be easily
revoked and special transfer policies for capabilities can be implemented easily.

Lending Digital Content. Using the state-continuity properties we provide, digi-
tal content can be lent similar to physical objects; Once content is passed, it can
no longer be accessed by the sender. A book, for example, could be lent out by
state-continuously transferring the protected module it is stored in. When the
user wishes to read a page, it is rendered inside the protected module and only
the resulting image is passed to unprotected code. While significantly raising
the bar for attackers, we acknowledge that this setup does not prevent attackers
from copying the book by copying each rendered page. Additional technologies
such as Intel IPT1 can be used to mitigate such attacks.

3 Transferring State

The protocol that we present only relies on properties (that can be) provided
by almost all protected-module architectures. Therefore, we will not assume any
protected-module architecture in particular when presenting our protocol.

Say we wish to transfer the state of a protected module Msrc from one ma-
chine (i.e., src) to another (i.e., dst). Our protocol operates in two phases. In
the first phase a new instance of module M with a “blank” state module is
created on dst (called Mdst) and a public-private key pair is generated. When
Msrc is guaranteed that the module was deployed correctly, it commits to the
state transfer. This marks the beginning of the second phase where the state is
transferred to Mdst. By encrypting the state with Mdst’s public key, only Mdst

is able to ever resume M’s execution.

1 http://ipt.intel.com/

http://ipt.intel.com/
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(PKsrc,SKsrc)  gen_keys() Mblank, n, PKsrc start Mblank
(PKdst, SKdst)  gen_keys()

attestMdst(PKdst || PKsrc || n), PKdst
check attestation
commit state transfer

SignSKsrc+EncPKdst(stateMsrc), m

attestMdst(stateMsrc|| m) 

check signature
accept stateMsrc

check attestatation
nalize state transfer

destroy Msrc

Msrc Mdst

(3)(1) (2)

(4)
(5)

(6) (7)

(8)
(9)

phase 1

phase 2

Fig. 1. Overview of the protocol where Msrc’s state is transferred continuously to Mdst

The Protocol. Figure 1 displays the protocol graphically in more detail. In the
first step, Msrc generates a public-private key pair (PKsrc, SKsrc) and passes
PKsrc to dst together with Mblank (the module’s code with a “blank” state)
and a nonce n. Endpoint dst loads Mblank in memory and starts its execution
with PKsrc as argument. This public key will later be used to ensure that only
states signed with the related private key will be accepted. The newly created
module Mdst also generates a public-private key pair (PKdst, SKdst) that will be
used to transfer Msrc’s state securely. The three resulting keys are all stored in
Mdst after which its correct execution is attested2 to Msrc (step 4). The enclosed
nonce ensures freshness.

After Msrc verified the attestation and found correct, it stops servicing user
requests and uses the PMA’s state-continuity property to commit to the state
transfer; At some point in the future Msrc will transfer it’s state to a module
M with possession of SKdst, or the module will never advance it’s state again.
In step 6 Msrc’s state is encrypted with PKdst and signed with SKsrc. It is
passed together with a new nonce m to dst. After ensuring that the passed
state originated from Msrc, Mdst decrypts the state and resumes the module’s
execution. To avoid that Msrc continues to attempt to transfer state, the pro-
tocols terminates by attesting that Mdst accepted the state transfer. Msrc can
now permanently disable requests to retry state transfer to Mdst and destruct
itself.

Security Analysis. Safety of our protocol is based on two simple properties.
First, we rely on the ability to create and store cryptographic keys in protected
modules. At the beginning of phase 2 (i.e., after step 5), Msrc is committed to
transfer state from Msrc to Mdst. To ensure that only one module instance can

2 An attestation is a log of inputs and outputs that is signed by a trusted entity (e.g.,
a PMA platform or TPM chip). In a simple implementation a private key is embed-
ded in the trusted entity that is signed by a trusted third party. This allows easy
verification of the attestation log. Implementations such as Intel SGX [3] however
use more complex cryptographic protocols to prevent linkability of attestation logs.
We do not target a single PMA specifically in this section but simply state what
needs to be attested.
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ever resume execution of the module, the state is encrypted using the public
key generated by Mdst. Correct implementation of Mdst guarantees that the
decryption key will never leak. Second, state-continuous execution of Msrc and
Mdst guarantees that neither module will ever be forked.

Loss of power or similar events during the execution of the protocol, may
disrupt execution of the protocol. Such events during the first phase will cancel
the state transfer. Attack events after the state transfer was committed however,
will either (i) eventually result in another attempt to transfer the state to the
same remote module instance (e.g., in case of power or network failure), or (ii)
will lead to a situation where the module will never resume execution (e.g.,
machine dst is physically destroyed).

To ensure that the state originated from Msrc, the protocol passes in step 2
Msrc’s public key to Mdst. This additional security check is not strictly required,
but omitting it leaves the protocol open to a denial-of-service attack from a
remote attacker. As Mdst then would then accept any provided state (and only
accepts a new state once), a remote attacker could send it any state. In that
case Msrc would never be able to complete its state transfer, but it also does not
allow user requests to be handled until the state is transferred.

While guaranteeing that state can be transferred securely, the protocol does
not provide any assurance about the origin of the module’s state. An attacker
masquerading as Msrc could even fabricate a state. In most cases this does not
pose a vulnerability as it only needs to be guaranteed that a specific module
instance will continue to execute continuously while it is transferred from host
to host. For other use cases, a proof of the origin of the module can be easily
added in two ways: (1) Verification of the origin of a module could be built in
the module itself. When the module is initially created, for example, it could
generate a secret shared with a verifier. Even when the module is transferred
from host to host, possession of this secret proves its origin. Or (2) the protocol
could be modified to also attest the correct set up of Msrc to Mdst in step
2. This would prevent the fabrication of states by an attacker, but a verifier
interacting with two module’s over time cannot determine whether they are the
same module instance.

4 Related Work

State-continuous transfer of state is easy when the user can rely on the correct-
ness of the operating system. In practice this assumption is hard to guarantee.
Protected-module architectures provide an interesting alternative, but to the
best of our knowledge, state-continuous transfer has not been addressed in such
a setting.

Related work that relies on a very limited TCB exist, but only provide very
specific security guarantees. Van Dijk et al. [23], for example, present a system
where a central server provide tamper-evident persistent storage. Rollback and
forking attacks of this data is prevented using a trusted time stamping device
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executing on an untrusted third party’s server. Our protocol can achieve similar
guarantees (i.e., clients can pass data with build-in protection against rollback
or forking) but is more flexible. Modules for example, can easily choose to only
transfer their state partially, as was discussed in the digital wallet example of
Section 2. We also do not rely on a central server, which provides significant
scalability advantages.

More recently Kotla [9] presented a way to build the digital equivalent of
scratch-off cards. A client can choose to either use a cryptographic key stored
in the TPM chip but cannot hide its use upon an audit. Or it does not access
the cryptographic key and after this choice is proven to a verifier, access is per-
manently revoked. Such scatch-off cards can, for example, be used to download
digital media and later request a refund if it was never accessed. Again, our pro-
tocol supports similar, but more general use cases; Data can be accessed until it
is transferred to another machine.

5 Conclusion

The ability to endlessly copy data poses security challenges in many settings.
We presented a protocol to state-continuously transfer state of protected mod-
ules from one machine to another. We believe that this new security feature of
protected-module architectures enables many use cases that were not possible
before.
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Abstract. In this paper, we consider the relevance of timeline in the
construction of datasets, to highlight its impact on the performance of
a machine learning-based malware detection scheme. Typically, we show
that simply picking a random set of known malware to train a malware
detector, as it is done in many assessment scenarios from the literature,
yields significantly biased results. In the process of assessing the extent of
this impact through various experiments, we were also able to confirm a
number of intuitive assumptions about Android malware. For instance,
we discuss the existence of Android malware lineages and how they could
impact the performance of malware detection in the wild.

1 Introduction

Malware detection is a challenging endeavor in mobile computing, where thou-
sands of applications are uploaded everyday on application markets [1] and often
made available for free to end-users. Market maintainers then require efficient
techniques and tools to continuously analyze, detect and triage malicious ap-
plications in order to keep the market as clean as possible and maintain user
confidence. For example, Google has put in place a number of tools and pro-
cesses in the Google Play official market for Android applications. However,
using antivirus software on large datasets from Google reveals that hundreds of
suspicious apps are still distributed incognito through this market [2].

Unfortunately, malware pose various threats that cannot be ignored by users,
developers and retailers. These threats range from simple user tracking and
leakage of personal information [3], to unwarranted premium-rate subscription of
SMS services, advanced fraud, and even damaging participation to botnets [4]. To
address such threats, researchers and practitioners increasingly turn to new tech-
niques that have been assessed in the literature for malware detection in the wild.
Research work have indeed yielded promising approaches for malware detection.
A comprehensive survey of various techniques can be found in [5]. Approaches
for large-scale detection are often based on Machine learning techniques, which
allow to sift through large sets of applications to detect anomalies based on
measures of similarity of features [6, 7, 8, 9, 10, 11, 12, 13, 14].

To assess malware detection in the wild, the literature resorts to the 10-Fold
Cross validation scheme with datasets that we claim are biased and yield bi-
ased results. Indeed, various aspects of construction of training datasets are usu-
ally overlooked. Among such aspects is the history aspect which assumes that the

F. Piessens et al. (Eds.): ESSoS 2015, LNCS 8978, pp. 51–67, 2015.
� Springer International Publishing Switzerland 2015
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training dataset, which is used for building classifiers, and the test dataset, which
is used to assess the performance of the technique, should be historically coher-
ent : the former must be historically anterior to the latter. This aspect is indeed a
highly relevant constraint for real-world use cases and we feel that evaluation
and practical use of state-of-the-art malware detection approaches must follow a
process that mimics the history of creation/arrival of applications in markets
as well as the history of appearance of malware: detecting malware before they
are publicly distributed in markets is probably more useful than identifying them
several months after they have been made available.

Nevertheless, in the state-of-the-art literature, the datasets of evaluation are
borrowed from well-known labelled repositories of apps, such as the Genome
project, or constructed randomly, using market-downloaded apps, with the help
of Antivirus products. However, the history of creation of the various apps that
form the datasets are rarely, if ever, considered, leading to situations where some
items in the training datasets are ”from the future”, i.e., posterior,
in the timeline, to items in the tested dataset. Thus, different research
questions are systematically eluded in the discussion of malware detector per-
formance:

RQ-1. Is a randomly sampled training dataset equivalent to a dataset that is
historically coherent to the test dataset?
RQ-2. What is the impact of using malware knowledge ”from the future” to
detect malware in the present?
RQ-3.How can the potential existence of families of malware impact the features
that are considered by machine learning classifiers?
RQ-4. How fresh must be the apps from the training dataset to yield the best
classification results?
RQ-5. Is it sound/wise to account for all known malware to build a training
dataset?

This Paper. We propose in this paper to investigate the effect of ignoring/
considering historical coherence in the selection of training and test datasets
for malware detection processes that are built on top of Machine learning tech-
niques. Indeed we note from literature reviews that most authors do not take
this into account. Our ultimate aim is thus to provide insights for building ap-
proaches that are consistent with the practice of application –including malware–
development and registration into markets. To this end, we have devised several
typical machine learning classifiers and built a set of features which are textual
representations of basic blocks extracted from the Control-Flow Graph of appli-
cations’ byte-code. Our experiments are also based on a sizeable dataset of about
200,000 Android applications collected from sources that are used by authors of
contributions on machine learning-based malware detection.

The contributions of this paper are:

– We propose a thorough study of the history aspect in the selection of training
datasets. Our discussions highlight different biases that may be introduced if
this aspect is ignored or misused.



Are Your Training Datasets Yet Relevant? 53

– Through extensive experiments with tens of thousands of Android apps, we
show the variations that the choice of datasets age can have on the malware
detection output. To the best of our knowledge, we are the first to raise this
issue and to evaluate its importance in practice.

– We confirm, or show how our experiments support, various intuitions on An-
droid malware, including the existence of so-called lineages.

– Finally, based on our findings, we discuss (1) the assessment protocols of
machine learning-based malware detection techniques, and (2) the design of
datasets for training real-world malware detectors.

The remainder of this paper is organized as follows. Section 2 provides some
background on machine learning-based malware detection and highlights the as-
sociated assumptions on dataset constructions. We also briefly describe our own
example of machine-learning based malware detection. Section 3 presents related
work to support the ground for our work. Section 4 describes the experiments
that we have carried out to answer the research questions, and presents the take-
home messages derived from our empirical study. We propose a final discussion
on our findings in Section 5 and conclude in Section 6.

2 Preliminaries

The Android mobile platform has now become the most popular platform with
estimated hundreds of thousands of apps in the official Google Play market alone
and downloads in excess of billions. Unfortunately, as this popularity has been
growing, so is malicious software, i.e., malware, targeting this platform. Studies
have shown that, on average, Android malware remain unnoticed up to 3 months
before a security researcher stumbles on it [15], leaving users vulnerable in the
mean time. Security researchers are constantly working to propose new malware
detection techniques, including machine learning-based approaches, to reduce
this 3-months gap.

Machine Learning: Features & Algorithms: As summarized by Alpaydin, ”Ma-
chine Learning is programming computers to optimize a performance criterion
using example data or past experience” [16]. A common method of learning is
known as supervised learning, a scheme where the computer is helped through a
first step of training. The training data consists of Feature Vectors, each associ-
ated with a label, e.g., in our case, apps that are already known to be malicious
(malware class) or benign (goodware class). After a run of the learning algo-
rithm, the output is compared to the target output and learning parameters
may be corrected according to the magnitude of the error. Consequently, to
perform a learning that will allow a classification of apps into the malware and
goodware classes, the approach must define a correlation measure and a discrim-
inative function. The literature of Android malware detection includes diverse
examples of features, such as n-grams of bytecode, API usages, application per-
mission uses, etc. There also exist a variety of classification algorithms, including
Support Vector Machine (SVM) [17], the RandomForest ensemble decision-trees
algorithm [18], the RIPPER rule-learning algorithm [19] and the tree-based C4.5
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algorithm [20]. In our work, because we focus exclusively on the history aspect,
we constrain all aforementioned variables to values that are widely used in the
literature, or based on our own experiments which have allowed us to select the
most appropriate settings. Furthermore, it is noteworthy that we do not aim for
absolute performance, but rather measure performance delta between several
approaches of constructing training datasets.

Working Example: We now provide details on the machine-learning approach
that will be used as a working example to investigate the importance of history
in the selection of training and test datasets. Practically, to obtain the features
for our machine-learning processes, we perform static analysis of Android appli-
cations’ bytecode to extract an abstract representation of the program’s control-
flow graph (CFG). We obtain a CFG that is expressed as character strings using
a method devised by Pouik et al. in their work on establishing similarity be-
tween Android applications [21], and that is based on a grammar proposed by
Cesare and Xiang [22]. The string representation of a CFG is an abstraction of
the application’s code; it retains information about the structure of the code,
but discards low-level details such as variable names or register numbers. This
property is desirable in the context of malware detection as two variants of a
malware may share the same abstract CFG while having different bytecode.
Given an application’s abstract CFG, we collect all basic blocks that compose it
and refer to them as the features of the application. A basic block is a sequence
of instructions in the CFG with only one entry point and one exit point. It thus
represents the smallest piece of the program that is always executed altogether.
By learning from the training dataset, it is possible to expose, if any, the basic
blocks that appear statistically more in malware.

The basic block representation used in our approach is a high-level abstraction
of the atomic parts of an Android application. A more complete description of
this feature set can be found in [23]. For reproducibility purposes, and to allow
the research community to build on our experience, the data we used (full feature
matrix and labels) is available on request.

Methodology: This study is carried out as a large scale experiment that aims at
investigating the extent of the relevance of history in assessing machine learning-
based malware detection. This study is important for paving the road to a true
success story of trending approaches to Android malware detection. To this end,
our work must rely on an extensive dataset that is representative of real-world
Android apps and of datasets used in the state-of-the-art literature.

Dataset: To perform this study we collect a large dataset of android apps from
various markets: 78, 460 (38.04%) apps from Google Play, 72, 093 (34.96%) from
appchina, and 55, 685 (27.00%) from Other markets1. A large majority of our
dataset comes from Google Play, the official market, and appchina.

An Android application is distributed as an .apk file which is actually a ZIP
archive containing all the resources an application needs to run, such as the appli-
cation binary code and images. An interesting side-effect of this package format

1 Other markets include anzhi, 1mobile, fdroid, genome, etc.
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Table 1. A selection of Android malware detection approaches

Approach Year Sources Historical Coherence

DREBIN [6] 2014 ”Genome, Google Play, Chinese and russian markets, VirusTotal No

[24] 2013 ”common Android Markets” for goodware, ”public databases of antivirus companies” for malware No

[13] 2012 Undisclosed No

DROIDMAT [25] 2012 Contagio mobile for malware, Google Play for goodware No

[26] 2013 Genome, VirusTotal, Google Play No

[27] 2013 Contagio mobile and Genome for malware, Undisclosed for goodware No

[28] 2013 ”from official and third party Android markets” for Goodware, Genome for malware No

[29] 2013 Google Play (labels from 10 commercial Anti virus scanners) No

is that all the files that makes an application go from the developer’s computer
to end-users’ devices without any modification. In particular, all metadata of
the files contained in the .apk package, such as the last modification date, are
preserved. All bytecode, representing the application binary code, is assembled
into a classes.dex file that is produced at packaging-time. Thus the last modi-
fication date of this file represents the packaging time. In the remainder of this
paper, packaging date and compilation date will refer to this date.

To infer the historical distribution of the dataset applications, we rely on compi-
lation date atwhich theDalvik2 bytecode (classes.dexfile) was produced.We then
sent all the app packages to be scanned by virus scanners hosted by VirusTotal 3 .
VirusTotal is a web portal which hosts about 40 products from renown anti virus
vendors, including McAfee�, Symantec� or Avast�. In this study, an application
is labelled as malware if at least one scanner flags it as such.

Machine learning Parameters: In all our experiments, we have used the param-
eters that provided the best results in a previous large-scale study [23]. Thus, we
fixed the number of features to 5,000 and selected the 5,000 features with high-
est Information Gain values as measured on the training sets. The RandomForest
algorithm, as implemented in the Weka4 Framework, was used for all our experi-
ments.

3 Related Work

In this section, we propose to revisit related work to highlight the importance of
our contributions in this paper. We briefly present previous empirical studies and
their significance for the malware detection field. Then we go over the literature
of malware detection to discuss the assessment protocols.

Empirical studies: Empirical studies have seen a growing interest over the years
in the field of computer science. The weight of empirical findings indeed help
ensure that research directions and results are in line with practices. This is
especially important when assessing the performance of a research approach. A
large body of the literature has resorted to extensive empirical studies for devis-
ing a reliable experimental protocol [30, 31, 32]. Recently, Allix et al. have pro-
posed a large-scale empirical studies on the dataset sizes used in the assessment

2 Dalvik is the virtual machine running Android apps.
3 https://www.virustotal.com
4 http://www.cs.waikato.ac.nz/ml/weka/

https://www.virustotal.com
http://www.cs.waikato.ac.nz/ml/weka/ 
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of machine learning-based malware detection approaches [23]. In their work, the
authors already questioned the assessment protocols used in the state-of-the-art
literature. Guidelines for conducting sound Malware Detection experiments were
proposed by Rossow et al [33]. Our work follows the same objectives, aiming to
highlight the importance of building a reliable assessment protocol for research
approaches, in order to make them more useful for real-world problems.

In the field of computer security, empirical studies present distinct challenges
including the scarcity of data about cybercrimes. We refer the reader to a report
by Böhme and Moore [34]. Recently, Visaggio et al. empirically assessed different
methods used in the literature for detecting obfuscated code [35]. Our work is
in the same spirit as theirs, since we also compare different methods of selecting
training datasets and draw insights for the research community.

With regards to state-of-the-art literature tackled in this work, a significant
number of Machine Learning approaches for malware detection [29,6,36,37,38,39]
have been presented to the research community. The feature set that we use in
this paper was evaluated in [23] and achieved better performance than those
approaches. Thus, our experiments are based on a sound feature set for malware
detection. We further note that in the assessment protocol of all these state-of-
the-art approaches, the history aspect was eluded when selecting training sets.

Malware Detection & Assessments: We now review the assessment of malware
detection techniques that are based on machine learning. For comparing per-
formances with our own approach, we focus only on techniques that have been
applied to the Android ecosystem. In Table 1, we list recent ”successful” ap-
proaches from the literature of malware detection, and describe the origin of
the dataset used for the assessment of each approach. For many of them, the
applications are borrowed from known collections of malware samples or from
markets such as Google Play. They also often use scanners from VirusTotal to
construct the ground truth. In our approach, we have obtained our datasets
in the same ways. Unfortunately, to the best of our knowledge and according
to their protocol descriptions from the literature, none of the authors has con-
sidered clearly ordering the data to take into account the history aspect. It is
therefore unfortunate that the high performances recorded by these approaches
may never affect the fight against malware in markets.

In the remainder of this section we list significant related work examples,
provide details on the size of their dataset and compare them to our history-
unaware 10-Fold experiments. None of them has indeed taken into account the
history aspect in their assessment protocol. In 2012, Sahs & Khan [13] built an
Android malware detector with features based on a combination of Android-
specific permissions and a Control-Flow Graph representation. Their classifier
was tested with k-Fold 5 cross validation on a dataset of 91 malware and 2 081
goodware. Using permissions and API calls as features, Wu et al. [25] performed
their experiments on a dataset of 1 500 goodware and 238 malware. In 2013,
Amos et al. [26] leveraged dynamic application profiling in their malware de-
tector. Demme et al. [27] also used dynamic application analysis to perform

5 The value of k used by Sahs & Khan was not disclosed.
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malware detection with a dataset of 210 goodware and 503 malware. Yerima et
al. [28] built malware classifiers based on API calls, external program execution
and permissions. Their dataset consists of 1 000 goodware and 1 000 malware.
Canfora et al. [24] experimented feature sets based on SysCalls and permissions.

M0 M1 M2 .... M9

Whole Dataset

SHUFFLE

Select X Goodware

Select Y Malware

=
M0

R0

=
M0

Fig. 1. Process of constructing a ran-
dom training dataset R0 for comparison
with the training dataset constituted of
all data from month M0

M0 M1 M2 M3 ....

R0 ....

Fig. 2. Classification process: the training
dataset is either the dataset of a given
month (e.g., M0) or a random dataset
constructing as in Figure 1

4 Experimental Findings

In this section, we report on the experiments that wehave conducted, and highlight
the findings. First we discuss to what extent it is important that datasets remain
historically coherent, as opposed to being selected at random (cf. Section 4.1). This
discussion is basedonqualitative aspects aswell asquantitative evaluation. Second,
we conduct experiments that attempt to provide a hint to the existence of lineages
in Android malware in Section 4.2. Subsequently, we investigate in Section 4.3 the
bias in training with new data for testing with old data, and inversely. Finally, we
investigate the limitations of a naive approachwhichwould consist in accumulating
information on malware samples as time goes, in the hope of being more inclusive
in the detection of malware in the future (cf. Section 4.4).

4.1 History-Aware Construction of Datasets

As described in Section 2, a key step of machine-learning approaches is the
training of classifiers. The construction of the corresponding training dataset
is consequently of importance, yet details about how it is achieved are largely
missing from the literature, as was shown in Section 3.

There are two common selection patterns for training datasets: (1) use a col-
lected and published dataset of malware, such as Genome, to which one adds
a subset of confirmed goodware; (2) build the dataset by randomly picking a
subset of goodware and malware from a dataset collected from either an online
market or an open repository. Both patterns lead to the same situations: i.e. that
some items in the training dataset may be historically posterior to items in the
tested dataset. In other words, (1) the construction of the training set is equiv-
alent to a random history-unaware selection from a mix of known malware and
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goodware; and (2) the history of creation/apparition of android applications is
not considered as a parameter in assessment experiments, although the practice
of malware detection will face this constraint.

Following industry practices, when a newly uploaded set of applications must
be analyzed for malware identification, the training datasets that are used are,
necessarily, historically anterior to the new set. This constraint is however eluded
in the validation of malware detection techniques in the research literature. To
clearly highlight the bias introduced by current assessment protocols, we have
devised an experiment that compares the performance of the machine learning
detectors in different scenarios. The malware detectors are based on classifiers
that are built in two distinct settings: either with randomly-constructed training
datasets using a process described in Figure 1 or with datasets that respect the
history constraint. To reduce the bias between these comparisons, we ensure that
the datasets are of identical sizes and with the same class imbalance between
goodware and malware. Thus to build a history-unaware dataset R0 for compar-
ing with training dataset constituted of data from month M0, we randomly pick
within the whole dataset the same numbers of goodware and malware as in M0.
We perform the experiments by training first on M0 and testing on all following
months, then by training on R0 and testing on all months (cf. Figure 2).

Figure 3 illustrates the results of our experiments. When we randomly select
the training dataset from the entire dataset and build classifiers for testing ap-
plications regrouped by month, the precision and recall values of the malware
detector range between 0.5 and 0.85. The obtained F-Measure is also relatively
high and roughly stable. This performance is in line with the performances of
state-of-the-art approaches reported in the literature.
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Reading: The Month0 curve shows the F-Measure for a classfier trained on the
month 0, while the Random0 curve presents the F-Measure for a classifier built with
a training set of same size and same goodware/malware ratio as month 0, but drawn

randomly from the whole dataset.

Fig. 3. Performance of malware detectors with history-aware and with history-unaware
selection of training datasets

We then proceed to constrain the training dataset to be historically coherent
to the test dataset. We select malware and benign apps in the set of apps from a
given month, e.g., M0, as the source of data for building the training dataset for
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the classification. The tests sets remain the same as in the previous experiments,
i.e., the datasets of applications regrouped by month. We observe that as we move
away from M0 to select test data, the performance considerably drops.

We have repeated this experiment, alternatively selecting each different month
from our time-line as the month from which we draw the training dataset. Using
a training set that is not historically coherent always led to significantly higher
performance than using a historically coherent training set.

Finding RQ-1: Constructing a training dataset that is consistent with the his-
tory of apparition of applications yields performances that are significantly worst
than what is obtained when simply randomly collecting applications in markets
and repositories. Thus, without further assessment, state-of-the-art ap-
proaches cannot be said to be powerful in real-world settings.

Finding RQ-2: With random selections, we allow malware ”from the future”
to be part of the training sets. This however leads to biased results since the
performance metrics are artificially improved.

4.2 Lineages in Android Malware

Our second round of experiments has consisted in investigating the capabilities
of a training dataset to help build classifiers that will remain performant over
time. In this step of the study we aim at discovering how the variety of malware
is distributed across time. To this end, we consider building training datasets
with applications in each month and test the yielded classifiers with the data of
each following months.

Figures 4 and 5 provide graphs of the evolution over time of, on the one hand,
F-Measure and, on the other hand, Precision of malware detectors that have
been built with a training dataset at month Mi and applied on months Mk,k>i.
Disregarding outliers which lead to the numerous abrupt rise and breaks in
the curves, the yielded classifiers have, on average, a stable and high Precision,
with values around 0.8. This finding suggests that whatever the combination of
training and test dataset months, the built classifiers still allow to identify with
good precision the malware whose features have been learnt during training.

On the other hand, the F-measure performance degrades over time: for a
given month Mi whose applications have been used for the training datasets,
the obtained classifier is less and less performant in identifying malware in the
following months Mk,k>i. This finding, correlated to the previous one, suggests
that, over time, the features that are learnt in the training dataset correspond less
and less to all malware when we are in the presence of lineages in the Android
malware. We define a lineage as a set of malware that share the same traits,
whether in terms of behavior or of coding attributes. Note that we differentiate
the term lineage from the term family which, in the literature, concern a set
of malware that exploit the same vulnerability. Lineage is a more general term.

The experiments also highlight the bias introduced when training classifiers
with a specific and un-renewed set of malware, such as the Genome dataset,
which is widely used. It also confirms why the random selection of malware
in the entire time-line as presented in Section 4.1, provides good performances:
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Fig. 4. Performance Evolution of malware detectors over time

many lineages are indeed represented in such training datasets, including lineages
that should have appeared for the first time in the test dataset.
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Finding-RQ3: Android malware is diversified. The existence of lineages com-
plicates malware detection, since training datasets must be regularly updated to
include a larger variety of malware lineages representatives.

4.3 Is Knowledge ”from the future” the Grail?

Previous experiments have shown that using applications from the entire time-line,
without any historical constraint, favorably impacts the performance of malware
detectors. We have then proceeded to show that, when the training dataset is too
old compared to the test dataset, this performance drops significantly.We now in-
vestigate whether training data that are strictly posterior to the test dataset could
yield better performance than using data that are historically anterior (coherent).
Such a biased construction of datasets is not fair when the objective is to actively
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keepmalicious apps from reaching the public domain.However, sucha construction
can be justified by the assumption that the presentmight always contain represen-
tatives of malware lineages that have appeared in the past.
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Fig. 6. Performance of malware detectors when using recent data to test on old datasets

In the Android ecosystem, thousands of applications are created weekly by
developers. Most of them, including malware from new lineages, cannot be
thoroughly checked. Nevertheless, after some time, antivirus vendors may iden-
tify the new malware. Machine-learning processes can thus be used to automate
a large-scale identification of malware in applications that have been made avail-
able for some time. Figure 6 depicts the F-Measure performance evolution of the
malware detectors: for each month Mi, that is used for training, the obtained
classifiers are used to predict malware in the previous months Mk,k<i. Overall,
the performance is dropping significantly with the time difference between test
and training datasets.

Finding-RQ4: Apps, including malware, used for training in machine learning-
based malware detection must be historically close to the target dataset that
is tested. Older training datasets cannot account for all malware lineages, and
newer datasets do not contain enough representatives of malware from the past.

4.4 Naive Approaches to the Construction of Training Datasets

Given the findings of our study presented in previous sections, we investigate
through extensive experiments the design of a potential research approach for
malware detection which will be in line with the constraints of industry prac-
tices. At a given time t, one can only build classifiers using datasets that are
anterior to t. Nevertheless, to improve our chances of maintaining performance,
two protocols can be followed:

(1) Keep renewing the training dataset entirely to stay historically close to
the target dataset of test. This renewal process must however be automated to
remain realistic: In this scenario, we assume that a bootstrap step is achieved
with antivirus products at month M0 to provide a first reliable training dataset.
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The malware detection system is then on its own for the following months. Thus,
the classification that is obtained on month M1, using month M0 for training,
will be used ”as is” to train the classifiers for testing applications data of month
M2. This system is iterated until month Mn as depicted in Figure 7, meaning
that, once it is bootstrapped, the detection system is automated and only relies
on its test results to keep training new classifiers. In practice, such an approach
makes sense due to the high precision values recorded in previous experiments.

(2) Include greedily the most knowledge one can collect on malware lineages:
This scenario is also automated and requires bootstrapping. However, instead
of renewing the training dataset entirely each month, new classification results
are added to the existing training dataset and used to build classifiers for the
following month.

Figure 8 shows that the F-measure performance is slightly better for sce-
nario 2. The detailed graphs show that, in the long run, the Recall in scenario 2
is indeed better while the Precision is lower than in scenario 1. In summary,
these two scenarios exhibit different trade-offs between Precision and Recall in
the long run: Scenario 1 manages to pinpoint a small number of malware with
good precision while scenario 2 instead finds more malware at the cost of a higher
false-positive rate.

While of little use in isolation, those scenarios provide insights through empir-
ical evidence on how machine learning-based malware detection systems should
consider the construction of training sets.

Finding-RQ5: Maintaining performance of malware detectors cannot be
achieved by simply adding/renewing information in training datasets based on
the output of previous runs. However, these scenarios have shown interesting
impact on performance evolution over time, and must be further investigated to
identify the right balance.

M0 M1 M2 M3 M4

Fig. 7. Using classification results of Mn−1 as training dataset for testing Mn

5 Insights and Future work

Findings. (1) History constraints must not be eluded in the construction of
training datasets of machine learning-based malware detectors. Indeed, they in-
troduce significant bias in the interpretation of the performance of malware
classifiers. (2) There is a need for building a reliable, and continuously updated,
benchmark for machine learning-based malware detection approaches. We make
available, upon request, the version we have built for this work. Our bench-
mark dataset contains about 200,000 Android applications spanning 2 years of
historical data of Android malware.
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Fig. 8. Comparing two naive approaches

Insights. (1) Machine-learning cannot assure the identification of an entirely
new lineage of malware that is not represented in the training dataset. Thus,
there is need to regularly seed the process with outside information, such as
from antivirus vendors, of new lineages of malware. (2) In real world settings,
practitionners cannot be presented with a reliable dataset for training. Indeed,
most malware are discovered, often manually, by antivirus vendors far later after
they have been available to end-users [15]. Large-scale ML-based malware de-
tection must therefore be used to automate the discovery of variants of malware
which have been authenticated in a separate process.

Threat to Validity. To perform this study, we have considered a unique use-
case scenario for using machine learning-based malware detection. This scenario
consists in Actively preventing malware from reaching markets and is extremely
relevant to most real-world constraints. Indeed, in practice, it is important to
keep the window of opportunity very narrow. Thus, to limit the number of
infected devices, Android malware must be detected as they arrive in the market.
It is therefore important that state-of-the-art approaches be properly assessed,
taking into account history constraints.

There is however a second use-case scenario which concerns online reposito-
ries for research and would consist on cleaning such repositories regularly. In this
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scenario, repositories maintainers attempt to filter malicious apps once a new
kind of malware has been discovered. In such a context, practitionners can af-
ford to wait for a long time before building relevant classifiers for identifying
malware that have been since in the repository. Nevertheless, such repositories
are generally of reasonable size and can be scanned manually and with the help
of anti virus products.

There is a possibility that the results obtained in this paper would not be re-
produced with either a different feature set and/or a different dataset. Nonethe-
less, we have no reason to believe that the way the dataset was collected induced
any bias.

Future Work. (1) Building on the insights of our experiments, we plan to inves-
tigate how to maintain the performance of machine learning-based malware de-
tectors until antivirus vendors can detect a new strain of malware. This research
direction could help bring research work to be applied on real-world processes,
in conjunction with antivirus products which are still widely used, although they
do not scale to the current rates of malware production. (2) To account for the
evolution of representations of malware lineages in training datasets over time,
we plan to investigate a multi-classifier approach, each classifier being trained
with more or less outdated data and weighted accordingly. A first challenge will
be on how to infer or automate the choice of weights for different months in the
timeline to build the most representative training dataset.

6 Conclusion

Given the steady increase in the adoption of smartphones worldwide, and the
growth of application development for such devices, it is becoming important
to protect users from the damages of malicious apps. Malware detection has
thus been in recent years the subject of renewed interest, and researchers are
investigating scalable techniques to spot and filter out apps with malicious traits
among thousands of benign apps.

However, more than in other fields, research in computer security must yield
techniques and approaches that are truly usable in real-world settings. To that
end, assessment protocols of malware detection research approaches must reflect
the practice and constraints observed by market maintainers and users. Through
this empirical study we aim to prevent security research from producing ap-
proaches and techniques that are not in line with reality. Furthermore, given the
performances reported in state-of-the-art literature of malware detection, while
market maintainers still struggle to keep malware out of markets, it is important
to clear the research field by questioning current assessment protocols.

In this paper, we have investigated the relevance of history in the selection of
assessment datasets. We have performed large-scale experiments to highlight the
different bias that can be exhibited by different scenarios of dataset selection.
Our main conclusion is that the assessment protocol used for current approaches
in the state-of-the-art literature is far from the reality of a malware detection
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practice for keeping application markets clean. We have further investigated
naive approaches to training dataset construction and drawn insights for future
work by the research community.
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Abstract. Return-oriented programming (ROP) is the most dangerous
and most widely used technique to exploit software vulnerabilities. How-
ever, the solutions proposed in research often lack viability for real-life
deployment.

In this paper, we take a novel, statistical approach on detecting ROP
programs. Our approach is based on the observation that ROP pro-
grams, when executed, produce different micro-architectural events than
ordinary programs produced by compilers. Therefore, special registers
of modern processors (hardware performance counters) that track these
events can be leveraged to detect ROP attacks. We use machine learning
techniques to generate a model of this different behavior, and develop a
kernel module that detects and prevents ROP at runtime via the learned
model. Our evaluation on real-world programs and attacks shows that
the runtime overhead of this technique and the number false positives
are very low, while preventing all known types of ROP attacks, including
recently developed evasion techniques.

1 Introduction

The discovery of recent zero-day exploits against Microsoft Word [1], Adobe
Flash Player [2] and Internet Explorer [3] demonstrate that return-oriented pro-
gramming (ROP) is the most severe threat to software system security. Also,
Microsoft’s 2013 Software Vulnerability Exploitation trend report [4] found that
73% of all vulnerabilities are exploited via ROP. The core idea of ROP is to
exploit the presence of so-called gadgets, small instruction sequences ending in
a return instruction. By chaining gadgets together, an attacker is able to build
complex exploits. The apparent popularity of ROP is explained by its power to
bypass most contemporary exploit mitigation mechanisms, such as data execu-
tion prevention (DEP) [5] and address space layout randomization (ASLR) [6].
DEP and similar page-protection schemes prevent the execution of injected bi-
nary code, but ROP re-uses code already present in the executable memory
segments, eliminating the need to inject code. ASLR randomizes the location
of most libraries and executables, however, finding code segments left in a few
statically known locations is often enough to leverage a ROP attack [7]. Since
the inception of ROP by Shacham [8], research on ROP resembles an arms race:
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emerging defense techniques are continuously circumvented by increasingly sub-
tle attacks [9,10,11].

In this paper, we take a novel, statistical approach on detecting ROP pro-
grams. Modern microprocessors spend most of their circuits on machinery that
optimizes the execution of programs generated by compilers from “high-level”
languages. Among this machinery are caches, translation look-aside buffers,
branch predictors, and so on. To assist programmers in detecting performance
problems, a modern CPU can record several hundred different kinds of micro-
architectural events that occur during program execution (e.g. mispredicted
branches, L1 cache misses, etc.). These events are counted by the CPU in special
registers, the so-called hardware performance counters (HPCs).

In this paper, we claim and experimentally verify that the execution of a
ROP program triggers such hardware events in a significantly different way
than a conventional program that has been generated by a compiler. Essen-
tially, micro-architectural events are a side channel by which a ROP program
becomes distinguishable from a normal program at run time. There are several
considerations that support this hypothesis: First, ROP programs use only indi-
rect jumps (returns) to control the program flow. Common processor heuristics
to detect the target of the return are useless in a ROP program because they do
not follow the call/return policy. Second, ROP gadgets are small and scattered
all over the code segment. Thus, there is no spatial locality in the executed code
which should be observable in counters relevant to the memory subsystem.

We exploit the deviant micro-architectural behavior of ROP programs by
training (using existing ROP exploits and benign programs) a support vector
machine (SVM) based on profiles of hardware performance counters. Note, that
despite our intuition we did not short-list any HPC types for training. We receive
a classifier to distinguish ROP from benign programs and use it in a monitor
kernel module that tracks the evolution of the performance counters and classifies
them periodically. If the classifier detects a ROP program, defensive actions, like
killing the process, can be taken.

We quantitatively evaluate the performance impact of HadROP on benign
program runs using the SPEC2006 benchmark [12]: HadROP incurs a run time
overhead of 5% on average and of 8% in the worst case. We also establish the
effectiveness and practical applicability of HadROP in several case studies that
show that HadROP detects and prevents the execution of:

– a ROP payload of an in-the-wild exploit on Adobe Flash Player [2].
– 25 new ROP payloads generated by the ROP-payload generator Q [13] that

exploit manually injected vulnerabilities in GNU coreutils.
– Blind ROP [14] of an nginx web server. Using this recent dangerous tech-

nique, even amateurs can perform full-scale remote-code execution exploits.
– Multiple recent enhancements [9,10,11] that allow ROP to bypass previous

hardware-assisted detection schemes. Our diversified monitoring scheme is
not affected by those attacks in any practical scenario.
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In summary, we make the following contributions:

– We present HadROP, a practical and easily deployable ROP defense mecha-
nism, that does neither require instrumentation nor analysis of the code, be
it source or binary.

– HadROP exploits the fact that ROP programs trigger micro-architectural
events in modern micro-processors differently than conventional programs.
Using state-of-the-art machine learning techniques, we train a classifier to
detect these differences, which manifest themselves in the values of the HPC
registers. HadROP’s kernel-level run time monitor identifies ROP programs
by periodically classifying the state of the HPCs.

– In several case studies, we evaluate HadROP on a set of existing and new
ROP exploits for real-world applications. HadROP detected and prevented
all exploits in our benchmark set without reporting a false positive. In a sub-
sequent test of our kernel module on a production machine we encountered
only three false positives in 24 hours. The performance overhead of HadROP
is low, with an average of 5% on a set of computation-intensive benchmarks.

2 Return-Oriented Programming

Runtime attacks change the behavior of running processes. Typically, attack-
ers exploit a buffer overflow vulnerability on the stack to overwrite the return
address [15]. Pointing this address to any memory segment causes the segment
to be interpreted as code, not data. By modifying the address to point towards
a memory segment containing previously injected machine code, attackers are
able to achieve arbitrary execution. Marking memory segments containing user-
supplied data as non-executable prevents such code-injection attacks [5]. Many
modern processors implement this protection mechanism in hardware in the form
of an non-executable bit (NX-bit), which the OS can set for data memory pages.

ROP was developed as a response to circumvent protection mechanisms based
on non-executable data pages [8]. For a ROP attack, the attacker overwrites the
stack with a set of addresses pointing to already existing executable code. ROP
carefully selects this set of addresses by finding suitable code locations to jump
to. These code locations contain a few instructions and end on return, which is
called a gadget. After executing the gadget, the return instruction will jump to
the next address as specified on the stack. The addresses on the stack thereby
effectively determines the program flow.

Figure 1 illustrates the mechanism of ROP. The payload on the stack (depicted
on the the left) contains the addresses of multiple ROP gadgets. In addition to
addresses, the payload may also contain parameters and other data that can
be copied into registers. Upon execution of the ret instruction, the top-most
address is interpreted as the return location. In this case, each return will jump
towards the next gadget, thereby chaining the gadgets together. By combining
appropriate gadgets, it is possible to incrementally build complex functions.

Initial ROP defense attempts primarily tried to prevent execution of mali-
cious code, e.g. by monitoring programs at instruction level while checking for
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Fig. 1. Cross-section of a ROP exploit

an unusually high frequency of return-instructions [16]. However, often even
small adaptations to the ROP paradigm, such as jump-oriented programming
(JOP) [17], undermine the respective defense technique’s core assumption. There-
fore, other research focuses on hardening the program itself, e.g., by enforcing
Control-Flow Integrity (CFI) [18] at runtime, which has been shown to be the-
oretically effective. In practice, the inclusion of code fragments for CFI severely
degrades performance of the target program. Further, the required changes to
the program either depend on access to source code (which is hard for propri-
etary software), or deteriorate compatibility both with other tools and runtime
optimizations. For instance, just-in-time compilation (JIT) becomes impossible,
because the generated JIT code does not include the required instrumentation,
and thus violates the CFI property. As a result, the wide-spread deployment of
those techniques becomes infeasible in practice [19].

3 Our Approach

Our approach builds on the fact that ROP programs differ significantly from con-
ventional programs in terms of micro-architectural events in the CPU. Micro-
architectural events are non-functional effects of the program execution on a
modern CPU such as cache misses or mis-speculated branches. These events are
essentially side channels that can be observed by the HPCs present in every mod-
ern CPU (cf. Section 3.1). However, it is hard to identify one particular kind of
micro-architectural event that reliably indicates the execution of a ROP program
in all its variants [9,10,11]. Therefore, in this work we determine a combination
of different events that is characteristic for ROP execution. However, we do not
start with a predefined conception of the kinds of events but assume that the
exact combination of events is dependent on the CPU the program executes on,
which is confirmed by our evaluation.

To this end, HadROP uses a statistical approach (cf. Fig. 2), that consists of
an offline learning and an online monitoring component. The learning component
records HPC profiles for a given set of ROP and conventional programs. Learning
on the system the monitor is to be deployed on is imperative as other types of
CPUs can lead to different HPC profiles. Then we leverage a SVM to obtain a
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classifier that discriminates ROP programs from benign programs. Once learned,
this classifier remains constant on that particular CPU..

The monitoring component consists of a modified program loader and a ker-
nel module. Whenever a new process is created, the modified program loader
configures the CPU to track the set of HPCs the classifier needs to compute
its result. Furthermore, it tells the CPU to raise an interrupt every N clock
cycles. Upon every interrupt, the kernel module computes the difference of the
current values of the HPCs to the values recorded at the previous interrupt and
feeds those values to the classifier. If the classifier determines that an intrusion
is about to happen, the process can be killed, or—depending on the application
scenario—another defensive action can be taken such as notifying the user, se-
curity personnel, or a security information and event manager, potentially with
additional information like a memory dump. Note that the HPCs are updated
by the CPU itself, i.e., there is no performance overhead incurred by counting.
The only overhead comes from handling the interrupt, reading the counters, and
evaluating the classifier.

3.1 Hardware Performance Counters

The original purpose of HPCs is to non-intrusively profile a program by sam-
pling the counters periodically. Usually, a CPU offers a small number of registers
to count all sorts of micro-architectural events. On current CPUs 6–8 registers
are freely configurable. To find a performance problem in the program, the pro-
grammer configures the HPCs to a certain set of events she deems relevant.
Furthermore she sets a threshold per counter. If a counter reaches its thresh-
old, the CPU resets the counter and raises an interrupt that is handled by the
OS. Note that access to the HPCs is restricted to the operating system. A user-
space program can never configure, read, or tamper with the HPCs. Therefore,



Learning How to Prevent Return-Oriented Programming Efficiently 73

Table 1. Feature vector representation of a program run by collecting minimum and
maximum of number of HPC events observed during a fixed period Δt

Program Run Feature Vector
HPC event Δt Δt Δt Δt · · · (max,min)
BR_MISP 5 1 4 21 · · · (21,1)

· · · · · · · · · · · · · · · · · · · · ·
ITLD_MISS 7 0 1 2 · · · (7,0)

in the case of profiling, the profiler needs to be a privileged application that
communicates with the kernel to access the HPCs.

In general a CPU counts all configured events in the entire system because
a CPU executes obliviously to the concept of a process. To break the counters
down to individual processes they have to virtualized by the operating system:
Each time the OS is entered the values of the HPCs are retrieved and stored
in the process control block of the process that entered the OS. When the OS
yields control to another process, it restores the counter values of this process
from the respective process control block.

3.2 ROP Classification Using HPC Data

The purpose of the offline learning part as illustrated in Fig. 2 is to determine an
unbiased model of which HPCs best indicate ROP attacks. Unbiased means that
we make no pre-selection of a particular subset of HPC event types but treat
them all equally. To determine this model, we use an SVM, a well-known machine
learning technique. SVMs are beneficial here, because the resulting classifier is
fast to evaluate, which is integral to our implementation. An SVM computes a
hyperplane that separates a set of feature vectors into two clusters. In our set-
ting, each feature vector captures the HPC profile of a particular program run.
A feature vector consists of—for each event type—the minimum and maximum
number of events per sampling period. Note that the sampling period has to be
fixed before data collection starts and cannot be changed afterwards. Table 1
shows an example of two event traces of a program run and the corresponding
feature vector. Remember from the last section that in practice this model can
only refer to a small subset of the more than 200 event types available on a mod-
ern CPU. So in order to receive an unbiased model of the best combination, we
sample event types in smaller batches and align the results after the fact. How-
ever, every measurement is noisy for various reasons: the complexity of the CPU
makes it hard to reproduce the exact sequence of mirco-architectural events on
every run. Furthermore, before the HPCs are saved to the process control block,
the context switch might trigger additional events. Because every batch is col-
lected individually, the feature vector of every batch is perturbed in a different
way. Due to the large number of different HPC event types, an exhaustive pro-
cess that trains and compares classifiers for each possible HPC combination is
practically infeasible. As our experimental evaluation shows, this effect does not
impede the ability of HadROP to successfully detect ROP programs.
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Even so, our final classifier must adhere to the constraints of the target CPU,
which means that we need to restrict the number of HPCs in our model to a
small number that depends on the type of processor. This problem is well-known
in machine learning as the feature selection problem [20]. Therefore, instead of
learning a model based on all possible HPC event types, we leverage feature
selection techniques to determine the, e.g., 16-event classifier that best matches
the theoretical 200-event one in terms of predictive power.

After combining the batches into a feature vector for the full set of HPC event
types, we have two kinds of feature vectors, those from ROP and from benign
runs. To train a SVM classifier we feed the two sets of feature vectors into the
learning algorithm, together with parameters like an error penalty C that allows
more or less misclassification. Choosing the right parameters is not trivial, so
we decided to learn these as well as part of our global optimization problem:
Which is the optimal model and subset of features that predicts ROP attacks
best? We solve this optimization problem using a search algorithm called dynamic
oscillating search [21] to guide our feature selection algorithm. As the metric for
this optimization problem we choose 10-fold cross validation, a standard model
validation technique. In cross validation, the data set is partitioned into multiple
subsets, of which a single subset is retained for testing and the remainder is
used for training. This process is repeated until each set was retained at least
once for testing. These evaluation results guide the dynamic oscillating search,
which determines the next set of potentially optimal features and parameters.
Iterating this process results in an error penalty and optimal1 hyperplane based
on a subset of HPC event types of appropriate size.

In practice, we use libSVM [22] to train the classifier, and the Feature Selection
Toolbox [23] to provide the framework and wrapper for the dynamic oscillating
search. Recall that we need to collect the HPC profiles of these program runs
without recompiling or instrumenting these programs. To that end we replace
the monitor in the kernel module presented in the next section with a module
that writes the feature vectors to disk for offline classifier computation.

3.3 Data Collection
Producing a stable classifier requires a large set of benign and malicious (ROP-
affected) behavior. To obtain a sufficiently large training set, we select several
frequent targets of exploits in-the-wild and for which a large set of benign inputs
are available. This gives us a good chance to collect reproducible exploits along
with a number of samples of regular usage, as programs that are frequently ex-
ploited tend to be popular programs in general as well. We select Adobe Reader,
mcrypt, PHP and the libtiff library to obtain a broad range of program usage sce-
narios. The programs and their associated vulnerabilities are outlined in Table 2.
Exploits in-the-wild almost always focus on ROP and rarely use exotic variants
such as jump-oriented programming or similar techniques. To increase the diver-
sity of our training set we add own exploits based on these paradigms by adapting
1 Due to the nature of such search algorithms one might potentially only determine a

local optimum.
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Table 2. Sample programs and their vulnerabilities used to train the ROP classifier

Program Vulnerability Description
Adobe
Reader
9.3

CVE-2010-0188,
CVE-2006-3459

Exploits integer overflow in libtiff library when rendering
TIFF images.
Used as case study for ROPdefender [25].

tiffinfo
3.9.2

CVE-2010-2067 Stack-based buffer overflow due to insufficient bounds
checking during processing of EXIF tags [36].

PHP
5.3.3

CVE-2011-1938 Stack-based buffer overflow in the socket_connect
function. Used as case study for Microgadgets [37].

mcrypt
2.6.8

CVE-2012-4409 Stack-based buffer overflow in command line utility for
encrypted file headers with overly long salt data.

Table 3. Payloads used for different exploit variants
Variant Description
ROP-only payload Fully consists of gagets and does not use libc functions or

injected code segments.
Jump-oriented
Programming

ROP-like code-reuse attack whose gadgets end on indirect
jumps instead of return [17].

Return to mprotect ROP chain loads ordinary shellcode payload into memory,
then calls mprotect to make it executable.

Multi-stage payload
(stack pivoting)

Builds a fixed stack in data section with ROP, then execute
normal ROP payload.

the in-the-wild exploits. Details of the types of payload variants are outlined in
Table 3. On average, these payloads take 2390 instructions to execute the com-
plete ROP shellcode. The samples range from 200 (a libtiff exploit) at the lowest
to over 6000 (an Adobe Reader exploit) at the highest. In addition to malicious
input, we also collect benign input from a number of sources: We collect benign
PDF files from the arXiv archive 2 and the Intel Software Developer Manuals 3,
benign PHP source files from GitHub trending PHP repositories 4, benign TIFF
images from the sample sources of the libtiff library 5 and benign usage samples
of mcrypt by selectively encrypting the other samples.

3.4 Kernel Monitor

The active, online component of HadROP is implemented as a patch to the
Linux kernel. It consists of three main components: a modified program loader,
an extended interrupt handler, and changes to the HPC API.

2 http://arxiv.org/
3 http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html

4 http://github.com/
5 http://www.remotesensing.org/libtiff/

http://arxiv.org/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://github.com/
http://www.remotesensing.org/libtiff/
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The program loader is modified in the routines that start a program. It con-
figures the HPCs needed for the classifier in the monitor. Currently, the con-
figuration is the same for all processes, but virtualized for every thread. This
means that there is no interaction between the program loader and the moni-
tor beyond the initial configuration of the HPCs. After initializing the HPCs,
the program loader proceeds as usual. Note that it is possible to disable this
step by preloading a custom program loader routine using LD_PRELOAD. This is
not a security issue, but a feature of our approach. Since preloading is disabled
for security-critical programs (such as setuid applications), we can give unprivi-
leged applications the ability to disable this protection mechanism. As a result,
HPCs can be configured by programs and their original purpose, performance
evaluations during program development, is preserved.

The interrupt handler in perf_events is patched to recognize the configura-
tion specific to the classifier. Configurations not specific to HadROP are handled
as usual to preserve the original HPC functionality. Interrupts produced by HPCs
are recognized as non-maskable interrupts, which must be handled by the kernel
and cannot be ignored (masked). The monitor containing the classifier is called
from within the interrupt handler. It reads the contents of all relevant HPCs
and applies the SVM classifier on the values. Depending on the outcome of the
classifier, it either terminates the interrupt handler to pass control back to user
mode, or executes a defensive action, e.g. kills the process.

Finally, we change the API that exposes the HPC to user mode. In particu-
lar, we need to restrict processes from modifying their own HPC configuration
during observation of HadROP. This restriction is necessary, since otherwise,
ROP-affected processes could simply mask their execution by changing the HPC
configuration.

4 Evaluation
Our main evaluation environment consists of an Intel Core i7-4800MQ 3.7GHz
system running Linux Mint 15 OS with Linux kernel version 3.11 The evalua-
tion is partitioned into multiple experiments that validate different aspects of
HadROP.

4.1 Learning Environment and Classifier
The measurement period has to be determined experimentally before training
the classifier: since the period affects the magnitude of the measurements, we
cannot treat it as another parameter to be optimized during the feature selection
process. Therefore we repeat the data-collection and the optimization process
multiple times for a selection of different values. We compare the accuracy and
slowdown of those experimental runs in Figure 3.

4.2 Evaluation of HPCs Chosen by the SVM
An evaluation of the classifier entails a thorough analysis of the HPCs used
within the classifier. In particular, we want to answer the following questions:



Learning How to Prevent Return-Oriented Programming Efficiently 77

85.0

43.0

7.8 4.0 2.0

93.0

98.0

97.0
89.0

57.0
50.0

60.0

70.0

80.0

90.0

100.0

0.0

20.0

40.0

60.0

80.0

100.0

15000 30000 60000 120000 256000

Fig. 3. Trade-off between slowdown (bars) and overall detection accuracy (line)

Table 4. Evaluation of our trained classifier

(a) Accuracy of classifiers trained on
CPU X for detection on CPU Y.
�������trained

used CPU 1 CPU 2

CPU 1 97.3 83.9
CPU 2 79.5 98.1

CPU 1&2 78.1 79.6

(b) SPEC2006 Integer Benchmark slowdown in-
duced by our kernel patch.

Benchmark Slowdown Benchmark Slowdown
perlbench 4.98% sjeng 6.60%
bzip 4.60% libquantum 7.67%
gcc 7.32% h264ref 7.32%
mcf 4.95% omnetpp 4.84%
gobmk 8.06% astar 4.62%
hmmer 4.88% xalancbmk 4.53%

Do multiple HPCs event type improve ROP detection? Is the learned information
generic or specific to each processor?

To answer the first questions we analyze the distributions of individual HPC
events for benign and malicious executions. Figure 4 shows box-and-whisker plots
of both (normalized) distributions. We observe that the ROP-affected runs dis-
play little variance. In contrast, benign executions cover a larger portion of the
space. Most importantly, the outliers of benign execution stretch across the re-
gion occupied by malicious execution. Hence we cannot reasonably expect to
infer ROP-execution from only a single measurements without an unreasonably
high false-positive rate. Note that benign execution only shows these outliers on
a small subset of HPC events at the same time. Finding an appropriate subset
that minimizes the correlation of benign outliers maximizes the indicativeness
for ROP-affected behavior. Our automated approach of fine-tuning and opti-
mizing an SVM classifier using feature-selection shows much better performance
than any singular measurement.

To answer the second question we take an experimental approach and compare
the classifiers of two different processors, CPU1 (Core i7-4800MQ 3.7GHz) and
CPU2 (Core i7 860 3.4GHz). Table 4a shows that using the classifier trained on
CPU1 for runs on CPU2 decreases the detection rate significantly. Vice versa,
the converse yields similar results. Even training the classifier on both CPU1
and CPU2 using a combined data set does not improve the detection rate for
either CPU.
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Fig. 4. Distribution of chosen HPCs for benign (1) and ROP-affected (2) runs

4.3 Performance Impact

To assess the overall performance impact of HadROP’s monitor to compute-
intensive applications, we ran the integer benchmarks from the standard per-
formance benchmark suite SPEC2006 [12]. For each benchmark, we measured
the wall-clock-time and compared it to runs during which the monitor was not
active. The results shown in Table 4b illustrate that we have an average over-
head incurred by HadROP of about 5% and a maximum of 8%. This overhead
consists of the context-switch costs, the handling of the interrupt, and the eval-
uation of the classifier. The largest share of this overhead can be attributed to
the context-switch costs. None of these (non-trivial) benchmarks raises a false
positive.

4.4 Obtrusiveness

An important part in the viability of monitoring schemes is how much they
negatively impact everyday usage scenarios. While false positive rates of indi-
vidual classifiers are useful to give a rough idea on the relative performance,
they can and should not be treated as absolutes. Hence we conducted an exper-
iment, wherein patched systems are challenged with typical usage scenarios in a
time frame of 24 hours. Typical usage includes browsing the internet on differ-
ent browsers, coding and debugging and watching videos and listening to audio
files. In the course of 24 hours we were notified of only three false positives. In
all cases, these false positives happened close to system (re-) starts: twice within
a debugger and once during an automated software update. Dumps of the HPC
data showed that during start-up periods more misses and mispredictions were
recorded, although the impact is usually not severe enough to be reported as a
false positive.

4.5 Case Study: Adobe Flash Player

The purpose of this case study is to evaluate the effectiveness of HadROP on
attacks that were not part of the training dataset. We ran (an adaption of) a
recently discovered Adobe Flash Player exploit [2]. In the wild, this attack was
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targeting Windows and OS X systems, but the vulnerability and general proce-
dure is applicable to Linux as well. The attack includes several advanced ROP
techniques, such as stack pivoting, which compiles a ROP-stack in an attacker-
controlled buffer on the heap. We replaced the final code as to open a root shell
and verified that the attacks succeeds on an unpatched system.

Afterwards, we patched the system with our kernel module. Note that the clas-
sifier had not been trained on Adobe-Flash specific HPC data (cf. Section 3.3). As
expected, playing benign swf files was not classified as a ROP attack. However,
opening the malicious swf file, the player was killed by our kernel module before
a root shell could be opened. We conclude that our approach is therefore effec-
tive even for programs whose behavior was not analyzed during the offline training
stage.

4.6 Case Study: Automatically Derived ROP Payloads

In this case study, we demonstrate that HadROP is able to detect very diverse
ROP programs that we generated with state-of-the-art tools. This is conclusive
evidence that HadROP’s classifier is not overfitted to the training set and gener-
alizes well. ROP payload generators such as Q [13] automatically derive payloads
using semantic program verification techniques to identify gadget functionality.
Similar to ROPecker [29], we automatically generate payloads for binaries in
usr/bin/ and bin/. However, while in ROPecker the authors simulate the ex-
ploitation, we manually modified a subset of the binaries to mimic a realistic
vulnerability as faithful as possible. Altogether, we modify 25 binaries such that
they call a vulnerable function leading to a buffer overflow or enable a function
pointer overwrite. We then use Q to automatically derive ROP payloads for those
binaries. Due the restricted number of gadgets available to Q in these binaries, it
is forced to frequently employ different gadget chains and strategies. This yields
a diverse set of gadget behavior beyond the ones frequently employed for the
exploitation of programs with a large code base. Because those small programs
provide only little code that is exploitable by ROP, they pose an additional
challenge to HadROP: TLB-related counters are not triggered as often as for
programs with large code bases. Because HadROP relies on a combination of
counters, it can compensate for this effect. For all executions of ROP payloads
generated by Q, HadROP intervened. Hence we have evidence to claim that
HadROP can even detect previously unseen ROP-attacks even if the exploits
have a different character than those used to train the classifier.

4.7 Case Study: Nginx and Blind ROP

Our final case study is concerned with one of the most dangerous scenarios, in
which a remote service can be exploited without knowledge of the binary. While
automated ROP payload derivation tools such as Q already make it easy for a
semi-experienced hacker to build a functional shellcode, Blind ROP (BROP) [14]
only requires minimal knowledge and can easily be distributed to amateurs.
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A typical BROP attack proceeds in multiple stages. First it searches for the
base address of the executable. During all guessing stages, the attacker monitors
whether the exploited application crashed due to an invalid memory address.
This process will eventually lead to valid addresses. In the following stages, the
exploit searches for specific types of gadgets as ROP building blocks. Afterwards,
it identifies two useful functions that dump the entire binary in order to derive
the final ROP chains for the binary on-the-fly. Note that this exploit consists of
two separate ROP chains: one to search for gadgets and to dump the binary and
one to execute the real exploit built from the dumped binary.

For our evaluation, we apply this attack to the nginx web server vulnerability
CVE-2013-2028. We host the appropriate nginx web service on our machine and
configure it to constantly restart after a crash, to fulfill BROPs requirements.
Afterwards we start the attack remotely. In our experiments, HadROP detected
all malicious queries and the resulting ROP-execution reliably and terminated
the web server before the final ROP chain could be fully executed. Note that
we performed further case studies like the attacks proposed in [9,10,11] (see
discussion in Section 6), for which we do not have space to discuss them in
detail here.

5 Related Work

Runtime Monitoring. Runtime solutions usually monitor execution at the in-
struction level. A sophisticated method to achieve transparent monitoring is
the use of dynamic binary instrumentation frameworks such as Pin [24]. Dyn-
IMA [16] are exemplary of early runtime monitor attempts to detect the exe-
cution of ROP exploits by checking for an abnormally high frequency of return
instructions. ROPDefender [25] instruments call and ret instructions to update
a separately maintained shadow stack; ROP is then detected by comparing the
shadow stack to the actual system stack on every return. All those early tools
do no detect jump-oriented programming and similar ROP variants that do not
use ret gadgets. ROPStop [26] is a sophisticated instrumentation based on a
similar observation as ours: regular, compiler-produced programs adhere to a
set of normal execution behavior, while ROP executes chains of short gadgets
without regarding their location. However, they differ from us in monitoring
these properties by analyzing the program binary, including the extraction of a
control flow graph, at system-call entries. Like similar methods, this approach
is dependent on accurate and fast disassembly. ROPGuard [27] provides a set of
system-call wrappers that verify a set of properties on call, such as the instruc-
tion preceding the return address being a call instruction. This indicates that
the return is targeting a genuine return address.

Hardware-assisted Program Monitoring. A major drawback of most runtime
monitoring solutions is their dependency on program instrumentation and high
runtime overhead. Recently, multiple solutions surfaced which leverage existing
hardware components to enforce security properties. kBouncer [28] utilizes the
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Last Branch Record (LBR) facilities of modern processors, which record the
branch targets of the last 4-16 branch instructions. They verify the validity of
program execution by running heuristics on LBR data upon system API entry.
ROPecker [29] improves on the idea of kBouncer by not only inspecting the
previous indirect branch targets, but also simulating future ones using elabo-
rate prediction mechanisms based on LBR data. Yuan et al. [30] pre-analyze the
binary and store instructions preceding return instructions. It was one of the
first works to identify HPC events as indicators for code injections attacks, but
not ROP. Wicherski [31] successfully links a single branch prediction event to
ROP execution. In contrast to HadROP, all of these systems have been shown
to be susceptible to attacks [9,10,11]. We consider their focus on a single type of
feature as the root cause to their vulnerabilities.

Another security application of HPC was demonstrated by Malone et al. [32],
who pre-record HPC data profiles for individual binaries that can be compared
to the execution traces at runtime. This approach successfully finds minor devi-
ations in runtime behavior, indicating an integrity breach. Demme et al. [33] use
the same technique to extract malware signatures. Both techniques are focused
on intrusion detection instead of attack prevention and therefore orthogonal to
our approach. Furthermore, we do restrict ourselves to the detection of ROP,
but do not need to analyze the binary. As a result, we manage to capture an
intrinsic property of ROP in its effects on HPCs across different programs.

Concurrent work [34] presents a system to detect drive-by attacks in Inter-
net Explorer (and some plugins). While it is close to our research in terms of
technology (leveraging machine learning and HPCs) they concentrate their de-
tection on “phase1” after a ROP attack has already disabled DEP. This reflects
in their results: They can detect malware in “phase1” with very high success
rate, but in the ROP phase their detection rate is low. In contrast, our work
targets ROP purely, in all of its variants (even if they do not disable DEP) and
for all programs on a system, which led to the development of a kernel module.

6 Discussion

As noted in Section 3.1, modern CPUs only make a limited amount of HPCs
available, which are further restricted by non-documented conflicts at measuring
related HPC events. Given that previous generations of processors provided more
registers for concurrent use, this is a negative development. Furthermore, the
accuracy of measurements on the HPCs are subject to noise, i.e., the counters
are not required to perfectly correspond to the executed program. Improvements
in these areas might improve detection accuracy due to measuring less noisy and
more diverse event data, which reduces the number of false positives.

The integration of machine learning techniques also incurs machine-learning
specific limitations. Our classifier was trained on a set of data, which might not be
representative of all possible exploits. In the process of the classifier derivation,
we analyzed roughly 40 exploits based on ROP and its variants. All exploits
were based on real-world exploits and adapted to a Linux operating system
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and variants of ROP exploits that are not encountered in-the-wild (JOP). This
learned classifier thus does not fully guarantee that we will immediately detect
new, as of yet unseen, ROP variants even though we have successfully prevented
a large set of untrained attacks. In the event that a ROP variant is not detected,
however, we can include it in our analysis to produce a classifier capable of
detecting that class of exploits in the future.

The behavior-based detection of HadROP supports an easy adaption to all
currently employed ROP variants, yet it potentially makes it susceptible to at-
tacks that try emulate benign behavior—so-called mimicry attacks. We evaluate
the feasibility of two possible variants of such attacks in the following. Call-
preceded gadgets [9] attack the assumption that gadgets do not form call-return
pairs. As ROPecker and kBouncer do not determine whether the return-location
corresponds to the correct call, their defense mechanisms only limits the number
of useful gadgets. In contrast, TOOL is not affected by call-preceded gadgets,
as the CPUs return-prediction requires actual call-return pairs. History flushing
targets defense mechanisms that only maintain a limited history, such as storing
the last 20 branch targets. Evasion attacks operate similarly, but instead they
evade detection immediately by only using gadgets that directly contradict the
defense’s core assumptions. In our context, an attacker attempting to evade de-
tection must actively manipulate all relevant HPC values for the execution to
seem benign. This process is far from trivial for an LBR record, for multiple
HPCs this becomes onerous. For the target binaries for which history-flushing
and evasion attacks could be constructed, our tests show that these attacks even-
tually become powerful enough to evade detection, but this comes at a price.
Using meaningless but inconspicuous computations to cloak the ROP exploit
leaves an attack with less than 10% effective computation progress as noted
in [9]. When testing this attack pattern to enhance the original flash exploit
from subsection 4.5 we even observed a 20-times slowdown. Thus, the ROP at-
tack does not finish within multiple minutes, during which the process will be
unresponsive. Hence we believe that such attacks cannot be feasibly used in prac-
tice to attack TOOL. Note that all of these studies were performed on a system
with ASLR disabled. Other recent orthogonal techniques (e.g. [35]) render the
construction of these kinds of attacks even more infeasible.

7 Conclusion

ROP exploits are the most severe threat to software security. Traditional tech-
niques that have shown to be effective at preventing ROP require the analysis or
instrumentation of source or binary code, which severely hampers their deploy-
ment. Our approach is novel in using a statistical approach that observes the
micro-architectural events of a CPU, which are abnormal for ROP programs.

We detect ROP programs with very high confidence: In our experiments we de-
tected and prevented all of our real-world benchmark ROP attacks, be it known
exploits or newly-crafted attacks. Our technique produced no false positives on
all benchmark programs and only three false positives in a 24 hour usage test
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but—more importantly—no false negatives. The run time monitor incurs 5%
slow down on average and 8% at maximum. In contrast to related techniques,
we neither require analysis nor modification of the application source or binary
code. Our implementation as a kernel patch makes our system easy to deploy to
production systems.
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A HPCs Chosen by the SVM

Table 5 shows the events our machine learning technique determined to be the
most indicative of ROP computations. Intuitively, we can categorize these event
types in roughly three classes: First, instruction translation look-aside buffer
(ITLB) misses: ROP gadgets are short and jump around “wildly” in memory,
which breaks the common spatial locality properties of conventional code. Fur-
thermore, they use code snippets in libraries that the original program might
not have executed at all. Hence, an increase in ITLB misses is not unexpected.
Full ITLB misses lead to a computationally very expensive page table lookup, in
a process commonly referred to as a page walk. Second, events related to branch
prediction. Indirect jumps executed by ROP programs are inherently unpre-
dictable because they do not follow the common call/return pattern and ROP
programs rarely execute loops that could increase the prediction performance.
Third, stalls in the instruction pipeline, which most likely results from frequent
prediction or cache misses. Note that while these types of events might seem
natural candidates, other types of processors might induce a different optimal
subset of HPC event types for ROP detection. An evaluation on the structurally
very similar i7 860 already shows differences in the selection of the events. While
the branch prediction related events remained the same, ITLB-related events
differ strongly in one event. Note that the actual functionality of HPC events
might differ across processors, even for events of the same mnemonic.

Table 5. HPCs in the classifier for Intel i7 4800MQ (above) and i7 860 (below)
ITLB_MISSES.MISS_CAUSES_WALK Miss in instruction translation look-aside buffer (ITLB)
ITLB_MISSES.LARGE_WALK_COMPLETED ITLB miss causing complete page walk
BR_MISP_EXEC.INDIRECT_NON_CALL.TAKEN Mispredicted indirect non call branch executed
BR_MISP_EXEC.RETURN_NEAR.TAKEN Mispredicted return branch executed
L1I.CYCLES_STALLED Stall in L1I Cache due to ITLB fault or miss
ITLB_MISSES.WALK_COMPLETED ITLB miss causing complete page walk
BR_MISP_EXEC.INDIRECT_NON_CALL.TAKEN Mispredicted indirect non call branch executed
BR_MISP_EXEC.RETURN_NEAR.TAKEN Mispredicted return branch executed

http://vulnfactory.org/blog/2010/06/29/breaking-libtiff/
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Abstract. We re-evaluate the kernelized, multilevel secure (MLS) re-
lational database design in the context of cloud-scale distributed data
stores. The transactional properties and global integrity properties for
schema-less, cloud-scale data stores are significantly relaxed in compar-
ison to relational databases. This is a new and interesting setting for
mandatory access control policies, and has been unexplored in prior re-
search. We describe the design and implementation of a prototype MLS
column-store following the kernelized design pattern. Our prototype is
the first cloud-scale data store using an architectural approach for high-
assurance; it enforces a lattice-based mandatory information flow policy,
without any additional trusted components. We highlight several promis-
ing avenues for practical systems research in secure, distributed archi-
tectures implementing mandatory policies using Java-based untrusted
subjects.

1 Introduction

Resource sharing exists at several layers in the cloud. For example, platform-
as-a-service usually employs virtualization with shared hardware; software-as-
a-service may provide multi-tenant database services (e.g., [37]). Given this
shared resource environment, information leakage is a major concern in a multi-
customer cloud [30,26]. Further, a variety of sensitive data is being managed by
community and private clouds in governments and industries across the globe,
e.g., healthcare organizations in the U.S. and EU [12]. The U.S. government is
using a community cloud infrastructure for processing and sharing intelligence
data [25] and is planning different tactical cloud environments [6,24] for ground
and afloat operations. The output of tactical sensors to these clouds has been
dubbed a “Data Flood” problem [29]. These Big Data challenges go beyond the
need for new analytics: a leak resulting from this flood may pose grave danger
to both human intelligence sources and national security. The need to manage
sensitive and classified data in shared cloud infrastructures motivates enforc-
ing strict, mandatory policies for information flow control, through the use of
systems following the same rigor applied to a security kernel [32].
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It is in this context that we re-explore the design of high-assurance multi-
level secure database systems, adapted for cloud-scale data stores. Prior work
has considered relational database management systems (RDBMS) preserving
mandatory information flow policies (i.e., the Bell-LaPadula model). At the time,
relational databases appeared to be a multi-purpose “one size fits all” solution;
this perspective, however, has substantially waned [35]. An emerging trend is to
select the data model and query model one’s application requires, then to select
a storage back-end appropriate for the situation. Experience has begun to show
that often the resultant model is not relational, nor does the application require
ACID properties (atomicity, consistency, isolation, durability). As a result, var-
ious high-availability, massively-scalable, non-relational (“NoSQL”) databases
have found adoption in a cloud context. These new databases tend to not guar-
antee ACID properties, instead relaxing consistency in favor of availability and
network partition tolerance. The success of non-relational databases to support
a variety of cloud services has demonstrated that many natural and important
applications—e.g., content distribution, content management systems, massively
parallel data mining—are not efficiently maintained as relational models.

Our work makes the following contributions:

– We formulate the problem of multilevel security for cloud data stores—prior
work considered only MLS relational models and MLS transactional systems.

– We propose the design of a scalable data store following BigTable’s design,
capable of enforcing an MLS policy; the design uses a variant of the kernelized
architecture approach, requiring no trusted components external to the OS.

– We implement a prototype of our design using Apache HBase and HDFS,
requiring only small modification to run as MLS-aware untrusted subjects.

– We experimentally evaluate our prototype, verifying compatibility using sev-
eral popular cloud applications (e.g., Titan, Apache Storm) and assessing
performance using known cloud benchmarking tools.

We identify limitations in adapting a large class of cloud applications—i.e., those
making extensive use of in-memory data structures, employing languages like
Java—for kernelized systems. Our performance experiments call into question
the viability of the kernelized design in the context of cloud-scale systems; we
discuss these findings and suggest possible directions for future work.

Our prototype follows the Hinke-Schaefer variant of the kernelized database
architecture pattern. This design pattern allows the entire application to be exe-
cuted without privileges in an MLS environment, while supporting all allowable
access patterns, e.g., read-down. This is motivated by trusted computing base
(TCB) minimization requirements [1,23]. Untrusted applications built around
this pattern are called MLS-aware [21]. We select this MLS database architec-
ture for exploration as it is credited as best facilitating the “retrofit” of existing
code to run on high-assurance systems [15]. It is known to be inefficient when
tuple-level labels are required, as data must be divided among many different
operating system objects [17,15]; thus, our prototype only supports labels at the
coarsest (table-level) granularity. From a security perspective, the only major
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criticism of Hinke-Schaefer relates to support for transactions, which our design
avoids by adopting a weakened consistency model.

2 Related Work

The problem of information flow control has received growing attention in infra-
structure-as-a-service (IaaS) cloud service models. In particular, some projects
have explored the threat of placing co-resident VMs in shared clouds [30,5] for
side-channel attacks [39,40]. The Xenon VMM [26] is a hardened version of Xen
satisfying a separation policy appropriate for controlling these flows. Relatedly,
Wu et al. [38] design a proof-of-concept IaaS system based on Eucalyptus, im-
plementing Chinese Wall rather than a strict separation policy. Watson [36]
proposes a more general set of rules for information flow control between sets of
nodes performing a joint computation in a federated setting. Information flow
control in storage-as-a-service models, however, has not been well-explored, nor
have the lessons of MLS RDBMS research been re-evaluated in this new domain.

Some non-relational data stores support native mechanisms for access con-
trol. Apache Accumulo [2] is a column-store that extends the BigTable design to
support cell-level access control. Each cell is assigned a security label encoding
non-discretionary, attribute-based access control rules; these are not equivalent
to MLS labels, i.e. they are not used to enforce an information flow control pol-
icy. In particular, users with permissions to write a cell can modify its label, or
write this data to a new cell with less restrictive visibility (in MLS terms, ei-
ther violating tranquility or performing a downgrade). Relatedly, Apache HBase
implements access control lists (ACLs) at the table- and column-granularity. As
of v0.98, HBase features both cell-level visibilities, like Accumulo, and ACLs on
cells [3]. These application policies are orthogonal to those considered by our
approach, and could be incorporated for more expressive policies.

Roy et al. [31] present Airavat, a Hadoop-based MapReduce framework with
enhancements for controlling information flow. Airavat runs on SELinux, using
its type enforcement for domain isolation. Airavat modifies HDFS to manage its
own security labels. Using these, it implements a custom policy based on differ-
ential privacy, to minimize leakage of private data during MapReduce computa-
tions. In particular, the MapReduce framework (including Airavat) and reducer
implementations are trusted subjects. In contrast, in MLS-BTC there are no
trusted subjects external to the OS.

3 MLS Architectures Overview

Before discussing a proposed design for an MLS cloud data store, we briefly
review architectures for MLS RDBMS and cloud data stores, generally.

MLS Database Architectures. Several secure architectures have been previ-
ously identified for multilevel databases, i.e., the Woods Hole architectures [9].
Of these designs, the kernelized architecture provides the basis for our work.
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The reader is directed to existing survey work for an in-depth description of
other MLS database architectures, i.e., the trusted subject, integrity lock and
distributed architectures [28]. For a kernelized architecture, multilevel relations
are decomposed into single-level relations managed external to the TCB. Differ-
ent ways to decompose relations, and different ways of managing the resultant
single-level data, lead to variants of the kernelized design. In the Hinke-Schaefer
architecture [18], there are no trusted components outside the kernel; other vari-
ants include SeaView [13] and Lock Data Views [34]. In all variants, multiple
single-level untrusted subjects manage the (decomposed) single-level relations.

MLS Cloud Data Stores. No prior MLS database work applies to data
stores with relaxed ACID properties, to databases that do not encode relational
models, or to databases lacking fixed schemas. We find mandatory access control
(MAC) to be orthogonal to the transactional properties of relational databases,
and believe MLS non-relational stores to be a new and interesting domain.

Indeed, certain design patterns for distributed, cloud data stores seem syn-
ergistic with architectures for multilevel relational databases. For example, in
MLS systems, information flow restrictions require some data and single-level
services to be inaccessible to clients based on its level; data store designs that
accommodate partition tolerance and availability in the presence of failures seem
to accommodate adaptation to these environments.

Data store designs that employ append-only, log-structured storage managed
by the underlying TCB can be implemented using a lock-free design, possibly
allowing access to high-readers while a low-update is in progress. Such concur-
rent access comes at the expense of replacing strong consistency by eventual
consistency, which for many stores is part of the intended design. Thus, sys-
tems whose data structures use write-ahead logs (e.g., to support a crash-only
design [7]) may, in practice, enable eventually-consistent, read-down operations.

For some MLS relational databases, clients access a single database front-
end. Data sharding allows a client to independently determine the location of
nodes in the cluster holding its data, to contact each node directly. In a repli-
cated architecture—in which trusted front-end agents mediate access to un-
trusted backend databases [28]—sharding may entirely eliminate the need for
trusted front-ends, allowing single-level subjects to interact with the services
at their level, directly, to access data at or below their level.

The most common criticism of the Hinke-Schaefer architecture is the diffi-
culty of implementing transactions, due to the need for read-locks and, thus, the
possibility of flows that violate MAC policy [15]. Some NoSQL stores, however,
sacrifice transactions for scalability, foregoing read locks and, thus, this problem.

4 Kernelized MLS Column-Store

We present the design for an MLS column-store following a kernelized architec-
ture. We call this the MLS-aware BigTable Clone (MLS-BTC) design, as it is
largely applicable to any data store following the published design of Google’s
BigTable [8]. To describe MLS-BTC, we adopt basic terminology employed by
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Apache HBase, a popular open-source BigTable clone. In our design, all policy
enforcement is performed by an underlying trusted operating system; it mediates
access to all resources and enforces an MLS policy. Single-level clients interact
with MLS-aware, single-level applications running on each server, which in turn
may access resources using interfaces exposed by the trusted OS. A benefit of this
approach is that applications are not involved in MLS policy enforcement and,
thus, reside outside the TCB and do not need to be engineered to be trustworthy.

4.1 MLS-BTC Design

InMLS-BTC, each table holds timestamped data, organized by rows and columns,
and grouped by column families. Table data is partitioned into regions of contigu-
ous rows. A region server (RS) manages a set of regions, handling all operations
on its assigned regions, and splitting regions that have grown above the configured
region size. For persistence, each region is stored to a distributed file system which
is, itself, an MLS-aware service following a kernelized architecture, i.e., the under-
lying trusted OS enforces the policy for accessing stored objects.

Each MLS-BTC node holds multiple untrusted RS instances, one per level.
Each RS stores its data to a directory associated with its level, using the MLS-
aware distributed file system. There are no explicit labels in the MLS-BTC
columnar data. Rather, following the Hinke-Schaefer design, data is stored to
labeled operating system objects. This approach is known to be inefficient when
database access patterns require data to be labeled at a fine-granularity [17].
In our design, object labels are coarse (per-level tables), the table namespace is
partitioned per level, and the table’s constituent objects are stored to different
per-level file system directories. RS instances access table data at lower levels by
explicitly reading from the appropriate per-level directory.

A dedicated per-level master is responsible for management of RS instances
at its level. These duties include table creation, load-balancing regions across
RS instances, and handling RS failures. As master instances require knowledge
of tables at lower levels, each master is MLS-aware. The master instances and
RS instances coordinate through a distributed locking/synchronization system.

Fig. 1. MLS-BTC Component Relationship



Re-thinking Kernelized MLS Database Architectures 91

MLS-BTC follows a BigTable architecture, using three special classes of region
servers: the Root RS, Meta RS, and User RS. These servers help a client locate
the RS hosting a specific table row, using the same region lookup mechanism
used in BigTable (Fig. 1). A client locates the Root RS for its level via the
distributed synchronization service at its session level. Next, the client contacts
the Root RS to find the appropriate Meta RS for the request. The client contacts
the Meta RS to find the location of the User RS managing the region for the
requested row. Finally, the client contacts the User RS to access the row data.

Concept of Operations. In a typical MLS system, a user session must be
associated with a sensitivity level, used to limit access to resources in accordance
with MLS policy. For the MLS-BTC system, the sensitivity level of a user’s ses-
sion is associated, statically, with the level of the network interface on which
the request is received1. A client communicates with the per-level region servers
to manipulate table data (e.g., get, put, delete, multi-row scan). A single-level
client can write to tables at its session level, and read tables at or below its
session level. A client communicates with a per-level master server to issue cer-
tain administrative functions (e.g., create, list, or delete tables, add to or drop
from column families). The list-tables operation returns data for any tables at
or below the client’s session level.

Design Features. The primary design goals of the MLS-BTC system are:
(a) to defer all MLS policy enforcement to the underlying TCB; (b) to use no
trusted subjects external to the OS, avoiding extending the TCB boundary, e.g.,
no trusted proxies or trusted front-ends to communicate between processes at dif-
ferent levels; (c) re-use existing code for untrusted subjects, minimizing the mod-
ifications required to make these MLS-aware; (d) expose a familiar client API.
We ensure all MLS functionality is deferred to the underling OS by re-designing
MLS-BTC components as untrusted subjects following a Hinke-Schaefer design.
Re-using existing code for untrusted subjects with only small modification al-
lows us to leverage complex, feature-rich server behavior, and future upgrades
to that code, without extending the TCB boundary. A familiar API—such as
one compatible with an existing, column-oriented store—will allow MLS-BTC
to support legacy applications and simplify new application development.

4.2 Prototype Implementation

Each node in an MLS-BTC cluster is a platform running a trustworthy op-
erating system enforcing an MLS policy. The prototype currently implements
this component using SELinux, configured to enforce a MAC policy based on
the Bell-LaPadula confidentiality model [16]. The prototype’s untrusted sub-
jects are based on a number of existing open-source components, running either
unmodified or with small modification:

1 We admit labeling interfaces imposes some deployment inflexibility, adopting it for
simplicity; in Sect. 4.2 (Limitations), we suggest more flexible and complex designs.
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– MLS-aware Master & Region Servers. The prototype re-uses the Master
Server and Region Server (RS) components of HBase [14], modified to be
MLS-aware HBase (MA-HBase) components. This provides clients with a
cross-domain read-down capability, constrained by the SELinux MAC policy.

– MLS-aware Distributed File System. The prototype re-uses components of
the Hadoop Distributed File System [33] (HDFS), modified to produce an
MLS-aware HDFS (MA-HDFS) component. Details for the design and ar-
chitecture of the MA-HDFS component are reported in prior work [27].

– Per-Level Locking/Synchronization Services. The prototype re-uses compo-
nents of Zookeeper [19] to implement a distributed synchronization and lock-
ing service, available at each level. We configure and re-use these components,
wholesale, as single-level subjects on separate nodes.

Fig. 2. MLS-BTC Table Storage

Table and Directory Organization. The MA-HBase cluster jointly man-
ages a set of per-level tables (Fig. 2). As in HBase, there are three types of table:
the root table, the meta table, and the user tables; each are maintained by the
Root RS, Meta RS and User RS, respectively. The root and meta table nam-
ing conventions are unchanged. The user table namespace, however, is divided
by level (level.TableName), to signal to an RS when a read-down operation is
required to access table data at a lower level.

HBase stores all table data under a configurable root location in HDFS. The
directories under this root (e.g., /hbase) include a directory tree holding write-
ahead log (HLog) data, and a tree holding per-region table (HFile) data. The
constituent HLog and HFile objects managed by MA-HDFS are stored under a
per-level root location (e.g., /level/hbase).

For both MA-HBase tables and MA-HDFS directories, the level indicator,
used to partition the namespace and invoke read-down logic, is a human-readable
string administratively associated with an SELinux sensitivity level.
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Information Flow. The information flow between a client application (local
or remote) and an MA-HBase server process is constrained by the system’s MAC
policy (see Fig. 3). An application can only communicate with an MA-HBase
process running at its session level. When the application requires read-access
to a table at a lower level, it must request the RS running at its session level to
perform a read-down on its behalf. If the application attempts to contact an RS
running at some lower level, the underlying trusted OS prohibits this.

Fig. 3. Information Flow in MLS-BTC

The information flow between an MA-HBase RS process and an MA-HDFS
server process is similarly contained: An MA-HBase RS may only communicate
with MA-HDFS processes running at the same level. Thus, RS requests to read
HLog or HFile data at lower levels must be issued from the RS to an MA-HDFS
process at the same level, which in turn performs the read-down operations.

Read-Down Requests. Next, we explain how MLS-BTC handles write, read
and read-down requests. This involves two steps: locating the appropriate User RS
by the client, and handling the request by the User RS. In MA-HBase, we distin-
guish between two types of RS: the authoritative RS and the surrogate RS. The
authoritative RS is the “owner” of an allocated region. It runs at the sensitivity
level of the corresponding table and updates the MA-HDFS files for storing the
row data associated with its regions. The surrogate RS runs at the client’s session
level and is responsible for handling read-down requests for table data managed
by an authoritative RS at a lower level. This is required since a client cannot com-
municate directly with any lower-level authoritative RS instance. The number of
authoritative and surrogate RS instances running on a node is defined administra-
tively through MA-HBase configuration files.

When a client requests access to a row in a table at its session level, it locates
the authoritative User RS associated with the row, via the Root and Meta RS.



94 T.D. Nguyen et al.

When the client requests access to a row in a table at a lower level, i.e., a
read-down operation, the process is slightly different. The Meta RS recognizes
the difference between the client’s session level and table’s level, and responds
to the client with the location of an appropriate surrogate RS, rather than the
authoritative RS. In turn, when the client contacts the surrogate RS with a
request to read a row at a lower level, the surrogate RS performs a read-down
operation to the MA-HDFS resources storing the row data. Since the Meta RS
does not read-down on every meta table scan to retrieve region information at
lower levels, client-side caching of meta table data poses a problem: prior scans
of tables at its session level will not include all available lower regions. Thus, the
MA-HBase client does not cache data obtained from the Root RS and Meta RS.

In HBase, an RS process maintains a database of all active storage objects
associated with its region, called the onlineRegions database. This database is
created during initialization, expanded when a new region is allocated to the
RS, and modified when a region change is made (e.g., when a row is modified or
deleted). During a read request, an RS uses this database to locate the HDFS
resources associated with the requested row. The database is held in private
memory and is not visible to other RS processes.

In MA-HBase, each authoritative RS maintains a new data structure, the
onlineRegionsCache, to expose its region data to surrogate RS instances at higher
levels (see Fig. 4). The onlineRegions database is a complex data structure: a
map of maps of lists of complex nested objects. This structure is located in
the Java heap, and it grows and shrinks dynamically, in each of its dimensions.
To expose its contents to higher levels, some form of IPC must be employed.
Using shared memory (i.e., re-implementing it as a library using the Java Native
Interface) would be non-trivial. For example, POSIX shared memory sizes are
defined at creation time, limiting the dynamic growth of the structure. Further,
such a library would require new, custom logic for memory management; the lack
of coordination between the memory managers—i.e., Java’s garbage collection
and the management of the shared memory pool under the native library—would
be especially problematic. Instead, the data is exposed using file-based IPC.

On a write request, the RS services the request, updates the onlineRegions
database, flushes all recent modifications to MA-HDFS, then serializes the in-
memory onlineRegions database to an onlineRegionsCache file. This file is stored
to a RAM disk, accessible to surrogate RS instances at higher levels. The sur-
rogate RS can read-down to the RAM disk, to de-serialize and interpret the
data structure in response to read-down requests. Using the onlineRegionsCache
database, a surrogate RS locates the MA-HDFS objects associated with table
data at lower levels, and requests these from MA-HDFS processes running at
the surrogate’s level. Serializing the onlineRegions database required developing
a custom serialization class, as standard Java object serialization mechanisms
could not be used: the database contains inner classes with non-serializable at-
tributes. Concurrent access to the onlineRegionsCache by multiple processes is
synchronized using a lock-free, read-and-retry consistency mechanism.
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Fig. 4. Authoritative and Surrogate RS Detail

Limitations. The current MLS-BTC prototype system has a number of prac-
tical limitations, stemming from our objective to develop a functional, proof-of-
concept, non-relational data store that closely follows a kernelized architecture.
We summarize those limitations here.

Scalability. The current prototype accommodates policies with a relatively small
number of sensitivity levels. For simplicity, the client’s session level is associated
with a level assigned to the receiving NIC; thus, the number of levels available
for the system’s policy is constrained by the number of NICs supported by the
underlying trusted platform. To support more complex lattice structures, i.e.,
the “gazillion problem” in MLS design [20], MLS-BTC could be extended with
custom trusted components to associate a remote client with a session level and
to start services dynamically on behalf of those subjects. The MYSEA system
uses such an approach to implement its multilevel LAN concept [22].

Caching. Serializing objects to shared memory and maintaining a consistent
image of in-memory objects accessible to subjects at higher levels comes with a
performance penalty, discussed further in Sect. 4.3

Surrogate RS. To locate surrogate RS instances, each Meta RS uses a static
look-up table providing the authoritative-to-surrogate mappings. For a large
MLS-BTC cluster, a runtime mechanism for constructing and managing this
mapping should be introduced, allowing authoritative and surrogate servers to
enter and leave the system, dynamically.

Meta RS. The current prototype requires all Meta RS instances be co-located,
to facilitate read-down to lower meta tables. For a large MLS-BTC cluster, this
cannot be guaranteed: a low Master may elect to assign a low meta region to
alternate nodes to load-balance. The Master at higher levels could recognize this,
and migrate high meta tables in response. This workaround, however, poses a
problem when Masters at incomparable levels migrate meta regions to different
nodes, forcing higher-level Masters to make an irreconcilable choice regarding
with whom they co-locate.
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Implementation Complexity. The source lines-of-code (SLOC) metric pro-
vides an intuitive measure commonly associated with development cost and soft-
ware complexity. We compare Hbase and HDFS with their MLS-aware counter-
parts (see Table 1) using the CLOC utility2. Summing across the total lines of
source that changed, ∼3% of the untrusted codebase, and none of the untrusted
codebase (i.e., SELinux), required modification for MLS-BTC.

Table 1. SLOC Comparison

Original MLS-aware Δ % Δ

MA-HDFS [27] 89615 92263 3314 3.70%
MA-HBase

Master 8624 8736 116 1.35%
RS 17170 18829 1715 9.99%

Client 7184 7420 270 3.76%
Other 66313 66732 411 0.62%

Total 188906 193980 5826 3.08%

Compatibility. To determine that our prototype data store is functionally
compatible with legacy web-applications, while constraining these according to
MLS policy, we tested three applications: Titan, Storm and AppScale.

Titan. Titan3 is an open-source, distributed graph database designed for storing
and querying large-scale graphs. We configured Titan to use our prototype as
its storage backend. Titan’s Gremlin tool was able to manipulate sample graphs
stored in the data store: read/write graphs held in tables at the client’s level,
and read graphs held in tables at lower levels.

Storm. Storm4 is an open-source, distributed stream processing platform. Storm
does not run on Hadoop; however, using an HBase connector5, Storm can be
configured to use HBase as a storage back-end. We configured Storm to store
processed data in a table at the client’s level. Theoretically, other applications
could read this Storm-processed data, either at or below their level.

AppScale. AppScale6 is an open-source re-implementation of Google’s App En-
gine platform. AppScale supports HBase as a storage back-end, to store a vari-
ety of persistent data used by the platform (e.g., user-uploaded content, system
metadata). We modified AppScale (v1.7.0) to use our prototype as its primary
datastore, rather than the precompiled HBase distributed with AppScale. A sam-
ple GAE application, the guestbook program, was used to test AppScale’s use

2 Count Lines of Code, http://cloc.sourceforge.net
3 Titan, https://thinkaurelius.github.io/titan/
4 Storm, https://storm.incubator.apache.org/
5 https://github.com/jrkinley/storm-hbase
6 AppScale, http://www.appscale.com/

http://cloc.sourceforge.net
https://thinkaurelius.github.io/titan/
https://storm.incubator.apache.org/
https://github.com/jrkinley/storm-hbase
http://www.appscale.com/
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of the HBase API. The program could read and write to the HBase tables con-
taining user messages at the client’s level. Theoretically, the guestbook program
could be modified to perform explicit read-downs to other table data.

4.3 Prototype Evaluation

To measure the performance of the MLS-BTC prototype, we used the Per-
formance Evaluation (PE) benchmark distributed with HBase and the Yahoo!
Cloud Serving Benchmark (YCSB) suite [11].

The PE benchmark implements the same tests used to evaluate performance
for BigTable: a sequential read test (Seq-R), random read test (Rand-R), scan
test (Scan-R), sequential write test (Seq-W) and random write test (Rand-W);
see Chang et al. [8] for details. The benchmark employs a hard-coded table name
in its tests; we added an option to specify the table to use, for testing read-down.

YCSB is a benchmark framework for evaluating the performance and elas-
ticity of cloud storage systems, and has been employed to benchmark systems
like Cassandra, HBase and PNUTS. YCSB provides a set of test workloads, to
evaluate different aspects of a system’s performance. All six workloads use a
similar set of records as test data. For details on the test workloads, see Cooper
et al. [10]. We followed the recommended test order (A, B, C, F, D, E), which
keeps a consistent store size. Test data were loaded prior to running YCSB-A.
Before starting YCSB-E, all tables from previous workloads are removed and
new test data loaded. In YCSB, all workloads require writes before or during
each run; thus, no read-down operation was tested.

Each test in the PE and YCSB benchmarks is executed in one of three sce-
narios: using 100,000 rows (100K), 500,000 rows (500K) and 1 million rows (1M)
workload sizes. Before each trial, all stored HDFS/HBase data are removed, to
start each trial from a comparable initial state.

Test Environment. The test environment consists of twelve nodes evenly
distributed across four server blades in one of two racks. Each node is a virtual
machine hosted on VMware ESXi 5.0.0. One rack contains three server blades
(each, a Dell PowerEdge R710, with 8 CPUs x 2.925 GHz with hyper-threading
active, 48GB RAM and Gigabit Ethernet). The other rack holds the remaining
server blade (a Dell PowerEdge R610, with 8 CPUs x 2.26 GHz with hyper-
threading active, 24GB RAM and Gigabit Ethernet).

Results. Benchmark results for the MLS-BTC prototype are summarized in
Fig. 5. We normalize each trial by the average HBase performance—i.e., mean
of three trials under same test conditions with HBase—to obtain an “overhead
factor,” a positive multiplicand expressing performance relative to HBase. In
general, all tests experience performance degradation, which is expected. The
degree of degradation, however, varies significantly, impacted by the size and
mixture of the workload.

The PE write-tests show substantial degradation, even for the relatively small
100K-row workload. In contrast, the PE read-tests exhibit overheads associated
with both table creation and read performance. For most YCSB workloads, the
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Fig. 5. Prototype performance, normalized by HBase performance

prototype is more than 50× slower than HBase. In all write workloads, per-
formance degradation is the result of both caching the onlineRegions database
(anytime a row is created or modified) and caching the HDFS namespace (any-
time an HBase object stored in HDFS is created or modified). During read-
down, performance degradation is the result of reading the cached onlineRegions
database to handle each read-down request (see Fig. 6). During other reads, the
degradation is attributable to lack of client-side caching of server metadata. In
general, the most significant performance bottlenecks are associated with the
caching of the data structures that maintain the HDFS namespace (FSImage)
on the name node and the location of HDFS blocks (BlockMap) on the data
nodes [27].

Fig. 6. Highlight of Fig. 5, including read-down performance (blue circle)

We note that more data is required for a rigorous characterization of system
performance, but the observed data suggests a rough order-of-magnitude degra-
dation: writes are processed ∼40× slower than HBase; reads are ∼1.5–8× slower,
and mixed read/write workloads can experience ∼10–90× slowdown. In Sect. 5,
we discuss some more general outcomes and lessons learned.
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5 Discussion

We find the general approach of caching objects for Hinke-Schaefer is not appro-
priate for large, distributed systems in Java. In particular, the lack of efficient
IPC mechanisms for object sharing calls into question the viability of the ker-
nelized approach for managing MLS-aware Java applications. Most methods for
IPC in Java are bi-directional (i.e., socket-based IPC) or limited by small buffer
sizes (i.e., I/O-stream based IPC). As Java lacks an API for shared memory,
MLS-BTC re-uses file-based IPC for OS-enforced data sharing. We find this is
inefficient for sharing complex, in-memory objects across levels. We discuss some
alternatives to get more acceptable performance, based on this observation.

The kernelized approach could be explored after enhancing Java with more
flexible OS-enforced IPC interfaces. For example, Kaffe [4] is a research JVM
with a process-level abstraction, allowing different Java processes to communi-
cate via shared memory in a controlled way. Supporting HDFS/HBase on Kaffe
under SELinux may be promising for kernelized MLS designs with Java-based
systems, although Kaffe appears to no longer be maintained.

In the extreme, our experiences could be interpreted as evidence that the
Hinke-Schaefer approach should be abandoned, and others explored. For exam-
ple, using the trusted front-end variant of the kernelized architecture, a carefully-
engineered trusted proxy may significantly improve performance. In MLS-BTC,
such a trusted proxy can forward client requests at different levels to the ap-
propriate RS processes, eliminating the need to cache the onlineRegions data
structure. The challenge is to design a small, covert channel-free subject whose
responsiveness and efficiency removes significant bottlenecks; this is challenging
given that “responsive” and “channel-free” tend to be mutually exclusive.

In the integrity lock architecture—in which an untrusted DBMS stores all
multilevel objects [28]—cryptographic protection on objects prevent untrusted
subjects from processing aggregate queries. This requires the trusted front-end to
be more complex, to perform extra post-query processing. Many key-value mod-
els, however, do not support an API with queries returning aggregate objects:
simple put, get, delete semantics return individual objects. The integrity lock
architecture can be re-explored in this context, re-evaluating all prior criticisms.
In particular, the architecture’s (known) signaling channel could be bounded
with respect to some popular datastore API.

6 Conclusion

We have presented a design for an MLS-aware column-store, faithfully follow-
ing the kernelized design pattern. The resulting system, MLS-BTC, constrains
access to resources at different levels, enabling read-down without any trusted
subjects outside the TCB. Our prototype evaluation questions the practicality
of the kernelized design approach to manage MLS-aware, untrusted Java-based
applications. MLS-BTC is a distributed system based on HBase using SELinux
for MLS policy enforcement; it is the first cloud-scale data store following a
high-assurance design.
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Abstract. The increasing number of cloud service providers (CSP) is creating 
opportunities for multi-cloud deployments, where components are deployed 
across different CSP, instead of within a single CSP. Selecting the right set of 
CSP for a deployment then becomes a key step in the deployment process. This 
paper argues that deployment should take security into account when selecting 
CSP. This paper makes two contributions in this direction. First the paper de-
scribes how industrial standard security control frameworks may be integrated 
into the deployment process to select CSP that provide sufficient levels of secu-
rity. It also argues that ability to monitor CSP security should also be consi-
dered.   The paper then describes how security requirements may be modelled 
as constraints on deployment objectives to find optimal deployment plans. The 
importance of using cloud security standards as a basis for reasoning on re-
quired and provided security features is discussed.  

Keywords: Cloud, Security, Deployment, Optimization, Security controls,  
Security service level agreements, Monitoring. 

1 Introduction 

The growing number of CSP offering infrastructure services (IaaS) opens up oppor-
tunities for benefitting from the advantages of deploying applications over multiple 
CSP. Multi-cloud systems (MCS) [8, 9] involve deploying components of a single 
application on more than one CSP. There are multiple reasons justifying MCS and 
they range from improving fault tolerance, to minimizing cost of deployment, or to 
improving response time by deploying components closer to customer locations.  

However moving to MCS raises new challenges such as being able to deploy, un-
deploy and redeploy easily from one CSP to another. The general approach taken in 
this paper is to build a deployment model that is independent of any specific CSP [7]. 
A deployment process then transforms the CSP independent deployment model into 
an executable deployment plan for a specific CSP. Such a model must capture func-
tional as well as non-functional deployment requirements. In this paper we suggest to 



 Idea: Optimising Multi-Cloud Deployments with Security Controls as Constraints 103 

take security into account by expressing security requirements in terms of cloud secu-
rity control frameworks such as CCM [1].  Such frameworks provide some degree of 
security assurance and transparency, because auditors evaluate the security of a cloud 
service against a set of “controls” chosen from a reference “security control frame-
work”. Security controls remain high level and can be implemented in many different 
ways.  

Workgroups at the European Network and Information Security Agency (ENISA) 
and the National Institute of Standards and Technology (NIST) have identified [3, 4] 
that specifying security service level objectives (SLO) in security Service Level 
Agreements (secSLA) is a useful tool to establish common semantics supporting the 
description of security assurances. In order to present the key elements driving the 
adoption of useful SLO to select cloud providers, this paper explores (i) how security 
controls and security level objectives can be modelled as constraints on a cloud dep-
loyment, and (ii) how these security constraints can be used to select the best set of 
cloud providers on which to deploy the different components of a MCS. The paper 
discusses the use of SLO as a basis for continuous monitoring of cloud service securi-
ty as future work at the end of the paper. The arguments presented in this paper are 
the result of our research and field experience in relevant academic/industrial projects 
(e.g., EU funded SPECS [5], CUMULUS [6] and PAASAGE [7]), standardization 
bodies (e.g., NIST, ETSI and ISO/IEC), and related Cloud Security Alliance 
workgroups (e.g., Cloud Trust Protocol –CTP- and Service Level Agreements). 

This paper is organized as follows: Section 2 describes the concept of multi-cloud 
and identifies challenges for deployment. Section 3 argues that industry standards for 
security controls and security level objectives should be used to allow comparing 
side-by-side cloud providers. Section 4 describes how selecting the best set of cloud 
providers for a cloud deployment can be modelled as a combinatorial optimization 
problem, and that security controls and SLO can be modelled as constraints. The sec-
tion concludes with some preliminary experimental results. 

2 Multi-Cloud Applications and Case Study 

Figure 1 illustrates a MCS where a cloud application is deployed both in private and 
public clouds in different countries and jurisdictions. The objective is to locate the 
web server close to customers in order to reduce response time as much as possible on 
mobile devices such as smartphones and tablets.  The database server (DBS) is kept in 
a private cloud in Spain at the head office of the company while the web servers (WS) 
and application servers (AS) are deployed in public clouds located close to customers 
in the United Kingdom and Germany.  
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Fig. 1. A multi-cloud deployment in Europe 

In this example, it is realistic to suppose that each one of the CSPs involved has 
implemented its own security mechanisms, controls and policies. Under these cir-
cumstances the customer might be also faced with the following security assurance 
challenges: How to select the right public CSP, based on the component’s security 
requirements? How to continuously monitor the overall cloud infrastructure to assess 
that all security requirements are fulfilled? Because each provider in the MCS can 
implement their security controls in a different way, what is the aggregated/overall 
security assurance level provided to the customer?   

The provision of security assurance to the cloud customer in the presented MCS 
scenario covers many challenges such as cloud provider selection, continuous security 
monitoring or aggregation of security levels. This paper focuses on the first challenge 
i.e., selecting the right set of CSP’s so that security requirements are satisfied when 
deploying the application. 

3 Model-Based Deployment of Multi-Cloud Applications 

This section introduces the context of this paper, namely that deployment should be 
based on models, and that deployment models should be optimised with respect to 
objectives and requirements. 

3.1 Model-Based Deployment Workflow 

This section briefly describes the different phases of the deployment workflow and 
components [7]. The figure below shows three workflow phases: configuration, dep-
loyment and execution. The configuration phase involves building a model of the 
application components to be deployed. This involves describing in a model the arti-
facts to be deployed, the communication links between artifacts, the scalability  
requirements of each artifact, … The model includes a description of security re-
quirements for each deployable artefact. In the deployment phase the deployment 
model is analysed by a component called the “Reasoner” to produce an optimal  
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deployment plan that meets deployment objective and constraints defined in the mod-
el. In terms of security the “Reasoner” component will compare and match security 
requirements to CSP features. In the execution phase of the workflow the “Adapter”, 
“Deployer” and “Execution engine” execute the deployment plan resulting in a multi 
cloud deployment that is monitored by the “Adapter”. The “Adapter” controls the run-
time feedback loop by analysing the monitoring data and performs run-time adapta-
tions. From the security point of view monitoring data about security controls is ana-
lysed. If model violations cannot be solved at run-time, then control is passed to a 
design-time feedback loop where the MCS is stopped and the  “Reasoner” calculates a 
new deployment plan that solves the model violations. 
 

 
 
The rest of the paper focuses on the utility function that is used by the “Reasoner” 

to find an optimal deployment plan that includes security constraints. 

3.2 Modelling Deployment Security Requirements 

The MCS is assumed to be composed of several components, and it is assumed that 
each component can be deployed separately on cloud resources. Figure 2 shows a 
fragment of the deployment meta-model that shows how security meta-concepts are 
related to deployable artifacts.  “Components” are deployable artifacts and can “re-
quire” a “security control” in order to be deployed. “Security control” can be “pro-
vided” by “Cloud Providers”. “Security Controls” are abstract and are difficult to mon-
itor. “SLO” on the other hand are measurable and are related to “SecurityControls”.  
 

 

Fig. 2. Security Control Concept in the Meta-model 
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From the security perspective these meta-concepts provide the basis for matching 
required “security controls” and “SLO” with CSP “security controls” and “SLO”.  In 
order to produce an executable deployment plan, a cloud provider must be selected 
for each application component. To address the security assurance and transparency 
issues discussed earlier in the paper, most CSPs would submit their service to certifi-
cation by independent third party auditors, based on well-established standards such 
as ISO/IEC 27001 [10], PCI-DSS [11], or CCM [1] for example. Security control 
frameworks can be complemented with security Service Level Agreements (secSLA). 
This approach is based on the assessment of measurable SLOs in secSLAs.  

4 Optimizing Multi-Cloud Deployments with Security 
Constraints 

4.1 A Cloud Deployment Utility Function with Security Constraints 

As was described in Section 3 the “Reasoner” component analyses the deployment 
model to build a utility function that optimises the deployment objectives and satisfies 
all constraints. The objective function may cover multiple criteria such as cost, avail-
ability or response time. The objective function and constraints are defined by analys-
ing the deployment model. In this section we illustrate the approach by describing a 
specific objective function and constraints for the running case study. The utility func-
tion is then used to produce a deployment plan that makes trade-offs between security 
and other constraints.  

The objective function shown in line (1) of the table below minimises the total  
deployment cost, i.e. the sum of the costs of all the application components. In the 
process it must assign a cloud provider to each component. Line (2) defines the  
deployment cost of a component as the sum of cost for the virtual machines and the 
cost of the storage measured in terms of I/O operations. The function “provider(c)” in 
line (5) returns the cloud provider that has been selected for a given component. Line 
(3) shows that the application to be deployed is composed of three components: two 
application/web servers, and one database server. It also defines “P” the list of 5  
potential cloud providers for deploying the components. Providers 0 and 1 are private 
clouds, and the others are public clouds. Line (4) defines some bounds for the total 
cost of a single deployment. Line (6) shows how an availability constraint may be 
defined for a given component and defines valid values for availability. Line (7) 
shows that security controls are modelled as a Boolean choice: they can be required or 
not for a given component. Requirements on SLO are modelled in the same manner in 
line (8). 
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Fig. 3. Equations for minimising deployment cost and selecting a provider per component 

To illustrate how security is modelled Figure 4 shows a partial decomposition of 
CCM security control AIS-04 into several intermediate security controls, e.g. “Pre-
vent improper disclosure”, and finally into three secSLOs that can be effectively as-
sessed and monitored in a cloud infra-structure (provided they have been documented 
using a model like NIST [8]). Take for example “Country level anchoring” SLO 
which is defined as follows: “this attribute indicates that all processing operations 
applicable to the resource only take place within a set of predefined countries”. The 
value associated with such SLO is “a vector of strings representing a two-letter ISO-
3166-1 country code”. This SLO allows expressing a constraint on the jurisdiction in 
which a cloud deployment can be made, and to subsequently monitor that the dep-
loyment has not moved outside of this jurisdiction. 

 

 

Fig. 4. Decomposition of control AIS-04 into SLOs 

To illustrate how the constraints on SC and SLO are instantiated consider the fol-
lowing constraints “ ሺܽሻ ܥܵ݀݁ݎ݅ݑݍ݁ݎሺݏܽ/ݏݓ, 04ሻܵܫܣ ൌ 1, (b) requiredSLO(ws/as, 
CountryLevelAnchoring, DE)=1”. The first constraint requires that the provider  
that is selected for deploying the “ws/as” component must have implemented the  
 

ሺ1ሻ ݊݅ܯ ෍ comp௖௢௠௣_௠௔௫ݐݏ݋ܿ_ݐ݊݁݉ݕ݋݈݌݁݀_݌݉݋ܿ
௖௢௠௣ୀଵ  

ሺ6ሻ ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܣ݀݁ݎ݅ݑݍ݁ݎሺܿሻ ൒ ܽ, ݁ݎ݄݁ݓ 99,9 ൑ ܽ ൑ 99,9999 ሺ7ሻ ܥܵ݀݁ݎ݅ݑݍ݁ݎሺܿ, ሻܿݏ ൌ ܾ, ݁ݎ݄݁ݓ ܾ א ሼ0,1ሽ, ܽ݊݀ ܿݏ א  ݏ݈݋ݎݐ݊݋ܥݕݐ݅ݎݑܿ݁ܵ

ሺ2ሻ comp_deployment_costሺcሻ ൌ ܯܸ݀݁ݎ݅ݑݍ݁ݎሺܿሻ כ ሺܿሻ൯ݎ݁݀݅ݒ݋ݎ݌൫ݐݏ݋ܿ_݉ݒ ൅ ሺܿሻܱܫ݀݁ݎ݅ݑݍ݁ݎ   ሺܿሻሻሻݎ݁݀݅ݒ݋ݎ݌ሺݐݏ݋ܿ_ܱܫכ
(3) c א C, C={ws/as, ws/as, dbs}, P={0, …, 4} 
ݐݏ݋ܿ_ݐ݊݁݉ݕ݋݈݌݁݀_݌݉݋ܿ (4) א ሺ݉݅݊ݐݏ݋ܥ, ሺܿሻݎ݁݀݅ݒ݋ݎ݌ ሻ, (5)ݐݏ݋ܥݔܽ݉ א  ܲ 
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grainer SLO in the deployment decision making. In future work we could also inte-
grate security properties in the decision making since they have been modelled in the 
security deployment meta-model. Future work will integrate the utility function into a 
cloud deployment platform [7], and will investigate how to make adaptations in the 
run-time feedback loop by analysing SLO monitoring data to solve SLO violations. 
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Abstract. In this paper we propose the concept of an inverted cloud
infrastructure. The traditional view of a cloud is turned upside down: in-
stead of having services or infrastructure offered by a single provider, the
same can be achieved by an aggregation of a multitude of mini providers.
Even though the contribution of an individual mini provider in an in-
verted cloud can be limited, the combination would nevertheless be sig-
nificant. We propose an architecture for an implementation of an inverted
cloud infrastructure to allow mini providers to offer processor time. Se-
curity and efficiency can be achieved by building upon Intel’s new SGX
technology.

Keywords: protected module architectures, cloud computing, secure
execution.

1 Introduction

Cloud computing is a relatively young trend, having gained much traction in the
past few years. Businesses and individuals alike rely on cloud computing for a
variety of tasks. Cloud computing introduces a certain dynamicity to the way we
work with computers. For example, a company might want to ensure availability
of its systems during peak periods. One way of handling this situation consists of
simply leasing additional virtual servers whenever necessary. This both reduces
the total cost of ownership and allows us to deal with unexpected traffic surges
robustly.

While cloud computing offers the financial advantage of sharing hardware
costs among users, a significant investment is unfortunately still required from
cloud providers. Meanwhile, the devices used to access cloud services are them-
selves underutilized. Estimates of the average utilization of computer processors
vary between 5% and 15% [19].

This paper proposes a new approach, called the inverted cloud, which allows
these idle resources to be harvested. The traditional view of a cloud is turned
upside down: Instead of having services offered by a single provider, the same is
achieved by an aggregation of mini providers. Even though the contribution of
an individual mini provider in an inverted cloud can be limited, the combination
would nevertheless be significant. To concretize the idea, this paper works out
an architecture for an inverted cloud system to share processor time.

F. Piessens et al. (Eds.): ESSoS 2015, LNCS 8978, pp. 111–118, 2015.
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Cloud 
Provider

Clients Mini Providers

Fig. 1. An overview of the inverted cloud architecture

The next section investigates the requirements of the proposed architecture.
Section 3 works out the architecture in some detail, building upon Intel’s new
SGX technology to ensure security and efficiency. Section 4 discusses work related
to our proposal, and finally Section 5 concludes the paper.

2 Overview and Requirements

In a standard cloud computing setting, clients send small requests to a cloud
provider where they are processed and their result returned. Due to page con-
straints we take a more abstract approach where clients provide work packages
that need to be executed. In Section 5 we discuss briefly how tasks could be split
in work packages. Note that work packages are not required to be completely
self-contained; They may still access other resources on the network.

In an inverted cloud setting the processing of these work packages is out-
sourced to mini providers. This reduces the task of a cloud provider to tracking
mini providers entering and leaving the network and balancing work loads. Fig-
ure 1 displays an overview of this architecture. Clients and mini providers are
only represented as two disjoint sets for clarity; There is no technical reason that
a client could not also be a mini provider.

In order to be useful, the system must comply with a number of require-
ments. The rest of this section gives an overview of the requirements that were
considered during the design of the communication and execution protocol.

Requirement 1: Secrecy of ComputationMini providers will execute work pack-
ages on behalf of clients, but they should not be able to tell what is being com-
puted. The input data and the algorithm should be kept secret.

Requirement 2: Integrity of Computation Mini providers must attest that the
correct, unmodified work package was executed and produced the returned re-
sult. Any manipulation of the result must be detectable by the cloud provider.
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Requirement 3: Secure Execution The intermediate or output data must not
be leaked; The computation must take place in a protected environment and the
output should be protected.

Requirement 4: Performance The design of the system must allow for an
efficient implementation.

3 Architecture

In order to execute work packages in full isolation on the resources of a mini
provider, many attack vectors need to be addressed. We first introduce recent
advances in protected-module architectures and sandboxing that enable such
strong security guarantees, before discussing how these security primitives can
be combined in a novel way to build an inverted cloud.

3.1 Protected-Module Architectures

Providing strong isolation of code and data on commodity computing devices is
challenging. Operating systems have grown too complex to be able to guarantee
that no defects exist that could compromise this isolation.

Security measures have been proposed to significantly raise the bar for at-
tackers [5, 24, 18, 11, 27], but vulnerabilities (e.g., buffer overflows [13, 25]) in
commodity applications and operating systems continue to be exploited on a
daily basis. Any system relying on such a huge trusted computing base (TCB)
cannot offer the security guarantees required to build a large inverted cloud.

Recent years many research projects have taken an alternative approach. In-
stead of relying on a huge TCB where the operating system provides all possible
required services to applications, protected-module architectures (PMAs) have
been proposed that provide only a minimal set of security primitives, which can
be implemented in hardware [12, 7, 14, 9, 23] or by a very limited-sized hyper-
visor [22, 26, 8]. The exact set of primitives offered depends on the proposed
security architecture, but all provide strong isolation of modules: modules are in
complete control of their own memory space. Any attempt to access their mem-
ory region by code executing outside the module at any privilege level (including
from other modules) will be blocked. Modules can only be accessed through an
interface that they expose explicitly. Hence, even when the system is infested
with malware, secrecy and integrity of protected modules remain guaranteed.1

Recent work by Agten et al. [2,1] and Patrignani et al. [17,16] proves that high-
level software properties can also be guaranteed at low-level by relying on PMA’s
memory protection and inserting proper checks at compile time.

PMAs avoid the snowball effect of ever-growing TCBs by using the operat-
ing system’s services, while not trusting them completely. Strackx et al. [22]
implement an example where an SSL-connection is set up between a protected

1 In practice modules may be manipulated before protection is enabled. Such attacks
are detected when the correct execution of modules is attested to a remote verifier
or when modules attempt to access previously stored secrets.
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module and a remote server. By placing application and SSL logic within pro-
tected modules, only encrypted network packets cross the modules’ protection
boundaries. While the operating system’s services are still relied upon (e.g. for
network access), these services need not be trusted. Even though kernel-level
malware may modify, replay or drop network packets, confidentiality and in-
tegrity of data exchanged is guaranteed. This effectively reduces the power of an
in-kernel attacker to that of a network-level attacker.

In 2013, Intel announced Software Guard eXtensions (SGX), a PMA to be
implemented in their processors in the near future. Intel SGX provides even
stronger security guarantees than most state-of-the-art research architectures.
It not only protects modules (called “enclaves” in SGX terminology) against
software-level attacks, it also guards against hardware-level attacks by ensuring
that enclaves are stored unencrypted only within the processor package.

3.2 Isolating Enclaves

Protected-module architectures provide strong isolation of data stored. To enable
easy integration of protected modules in legacy software, PMAs such as Intel
SGX execute modules in the same address space as the rest of the application.
As a result, inputs to modules do not need to be marshalled but modules can
simply be provided with pointers to unprotected memory areas. Unfortunately,
this also enables malicious modules to extract data stored in the same address
space, or, even more worrysome, to attack the operating system.

Avonds et al. [4] and Strackx et al. [20] propose a mechanism to isolate poten-
tial attack vectors in an application (e.g., parsers) from likely attack targets (e.g.,
cryptographic keys). Using an approach similar to PMAs, they divide large appli-
cations in multiple compartments where each compartment can only be accessed
through the interface they expose explicitly. Access to the operating system is also
heavily restricted: compartments can at initialization time indicate which system
calls will never be issued. Once a system call has been disabled by a compartment,
it can never be re-enabled. An application that is properly compartmentalized will
disable all system calls from likely attack vectors and an attacker will need to com-
promise multiple compartments before reaching attack targets.

For our inverted cloud infrastructure, we will use a similar sandboxing tech-
nique to protect mini providers from potentially malicious work packages. Before
execution, work packages are placed in a compartment without any system call
privileges. Only a very limited interface is provided to return execution results
to the cloud provider.

3.3 Executing Opaque Workloads

In order to guarantee correct and safe execution, our protocol operates in two
phases (see Figure 2). First, at initialization, a container enclave C is deployed on
the mini provider and a public-private key pair is generated. The mini provider is
now part of the inverted cloud and can receive work packages for execution. In the
second phase the private key is used by the cloud provider to send encrypted
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work packages to the mini provider. These work packages will be passed to the
container enclave C where they are decrypted and executed in complete isolation.

n, PKCP,C, signSKCP(C)

PKC, attestC(PKC || n)

Execute C in a compartment:
  (SKC,PKC)  gen_key

EncPKC(WP), signSKCP(Hash(WP))

Cloud
Provider

Mini provider

Check signature
decrypt EncPKC(WP)
r  exec(WP)EncPKCP(r), attestC(r||hash(WP))

1..*
Check attestation

Check attestation
& return r

1
22

3344

66
7

8999

WP

r

55

Fig. 2. The communication protocol to share work packages

Phase 1: Initialization. We assume that the mini provider supports the safe exe-
cution of potentially malicious work packages. Such support can be implemented
as a stand-alone application that provides compartmentalization, or it can be
integrated in an existing application such as a browser.

When the mini provider contacts the cloud provider (CP) to take part in
the inverted cloud, she is provided with a (signed) container C and a nonce n
(step 1 in Figure 2). After the signature of C has been verified, C is placed in
a compartment. Adhering to the principle of least privilege, the compartment
should only provide support to connect to the cloud provider. All system calls
should be disabled.

In step 2, container C is passed to a function in the compartment where it
is loaded in an enclave. Next, a private-public key pair is generated within en-
clave C’s protection boundaries and sealed to its identity, ensuring that the cryp-
tographic keys can be used by future instances of C. The public key is returned
together with an attestation2 guaranteeing thatC was executed correctly (step 3).
The enclosed nonce n ensures freshness. After the cloud provider verified the attes-
tation (step 4) and determined that PKC was generated by a correctly deployed
and unmodified container C, the cryptographic key is stored. Work packages send
to the mini provider will always be encrypted using this public key.

Phase 2: Putting Mini Providers to Work. When a client sends a work pack-
age to the cloud provider, a mini provider is selected and the work package is
encrypted with the mini provider’s public key.3 As this key is only accessible
from container C, attackers intercepting an encrypted work package WP in step

2 An attestation is a log of inputs and outputs signed by a trusted entity (e.g., the
mini provider’s platform). To avoid linkability of attestations, Intel SGX uses a more
privacy-friendly attestation scheme [3]. For clarity, we simply state what is attested.

3 The client could encrypt the work package with the mini-provider’s key when the
cloud provider is not trusted, at the cost of increased communication overhead.
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6 cannot decrypt it. A signature is also provided to guarantee that the work
package originates from the cloud provider.

In step 7, the mini provider checks the signature and decrypts the work pack-
age. Care must be taken to erase the container’s private key before the work
package is executed. Failure to do so may leak the cryptographic key to an
attacker that uses the inverted cloud infrastructure to execute malicious work
packages. As all work packages sent to the mini provider are encrypted with the
same public key, possession of the decryption key would enable an attacker to
extract sensitive information from the work packages.

When the work package finished executing, its result is encrypted with the
cloud provider’s public key. This result is sent back to the client, together with
an attestation that the container executed correctly (step 8). The hash included
in the attestation log ensures that the mini provider executed the correct work
package and does not replay an old result.

The mini provider can now receive its next work package. However, enclave
container C needs to be destroyed and recreated to regain access to the sealed
SKC and PKC keys. Enabling access to the sealed cryptographic keys on disk
poses a security vulnerability as it may be exploited by a malicious work package.

An alternative solution would be to load work packages in their own enclave
in encrypted form. The decryption key could be passed in encrypted form to
container C that provides it to the enclave after its correct set up was verified
using local attestation [3]. Small bootcode at the beginning of the work package
would enable decryption of the rest of the package.

4 Related Work

Outsourcing work packages to other devices is not a new idea, but related work
can either not provide strong security guarantees or incurs significant overhead.
The SETI@Home project, for example, distributes work loads to analyze radio
signals in search for extraterrestrial life. To defend against malicious nodes re-
turning incorrect results, the same work load is send to two different nodes. Only
when both results match, the result is accepted. While effective, this approach
wastes computing power and cannot guarantee confidentiality of work loads.

Recently Miller et al. [10] proposed a modification to Bitcoin. While Bitcoin
clients are only required to execute otherwise useless computational workloads,
they propose Permacoin, a protocol where clients are also required to store large,
arbitrary volumes of data. As data can be easily confidential and integrity pro-
tected, clients can be used to store sensitive data. We propose a complementary
protocol enabling (potentially malicious) mini providers to operate on that data.

Parno et al. [15] take an alternative approach to “instill greater confidence
in computations outsourced to the cloud.” Instead of providing a safe execution
environment, they execute on encrypted data directly. A proof of correct exe-
cution is returned to the requester that requires less computing power than the
original computation. A similar approach could be used to invert the cloud, but
performance overhead to still too huge to be applied in practice.
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The most related work was presented by Dunn et al. [6]. They propose the use
of TPM primitives to prevent the analysis of malware. While similar, their ap-
proach cannot defend against a powerful hardware attacker. Naturally, isolation
of potentially malicious work packages is also not in scope of their work.

5 Conclusion and Future Work

We have presented the concept of an inverted cloud. A major advantage of this
approach is that cloud providers do not have to invest in resources themselves,
but simply allocate resources of so-called mini providers to clients.

We have proposed an architecture for an inverted cloud service where clients
can buy processing time. We have shown that an implementation of this idea is
feasible when taking advantage of the new Intel SGX technology. The proposed
architecture takes into account a number of requirements that ensure the secrecy
and integrity of the computations.

In future work, we will implement and evaluate our proposed architecture.
This will give us more insight in the performance of mini providers and the
overhead induced by the network and communication protocol. We expect that
our approach can be easily applied to solve computationally intensive work loads
that can easily be split in short, parallel tasks. Applications that require long, se-
quential computation power may be harder to port to an inverted cloud setting,
especially when mini providers may unexpectedly disconnect from the cloud net-
work. For such work loads we look into two complementary research directions.
First, mini providers may return intermediate results in the form of new work
packages. Computation may then be continued by other mini providers. Second,
to reduce the impact of network packet overhead and quickly disconnecting mini
providers, we are looking at related work [21] to accompany work packages with
digital credits. Mini providers that successfully finish execution of work packages
or return intermediate results, are awarded a portion of the credits.
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Abstract. Passwords are widely used for user authentication, and will
likely remain in use in the foreseeable future, despite several weaknesses.
One important weakness is that human-generated passwords are far from
being random, which makes them susceptible to guessing attacks. Under-
standing the adversaries capabilities for guessing attacks is a fundamental
necessity for estimating their impact and advising countermeasures.

This paper presents OMEN, a new Markov model-based password
cracker that extends ideas proposed by Narayanan and Shmatikov (CCS
2005). The main novelty of our tool is that it generates password can-
didates according to their occurrence probabilities, i.e., it outputs most
likely passwords first. As shown by our extensive experiments, OMEN
significantly improves guessing speed over existing proposals.

In particular, we compare the performance of OMEN with the Markov
mode of John the Ripper, which implements the password indexing func-
tion by Narayanan and Shmatikov. OMEN guesses more than 40% of
passwords correctly with the first 90 million guesses, while JtR-Markov
(for T = 1 billion) needs at least eight times as many guesses to reach
the same goal, and OMEN guesses more than 80% of passwords correctly
at 10 billion guesses, more than all probabilistic password crackers we
compared against.

Keywords: Authentication, Password guessing, Markov models.

1 Introduction

Password-based authentication is the most widely used form of user authenti-
cation, both online and offline. Despite their weaknesses, passwords will likely
remain the predominant form of authentication for the foreseeable future, due to
a number of advantages: passwords are highly portable, easy to understand for
laypersons, and easy to implement for the operators. In fact, while alternative
forms of authentication can replace passwords in specific scenarios, they have
not been able, so far, to replace them on a large scale [3].

In this work, we concentrate on offline guessing attacks, in which the attacker
can make a number of guesses bounded only by the time and resources she is will-
ing to invest. While such attacks can be improved by increasing the resource with
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which an attacker can generate and verify guesses (e.g., by using specialized hard-
ware and large computing resources [9,8]), we concentrate here on techniques to
reduce the number of guesses required to crack a password. Hence, our approach
reduces the attack time independently of the available resources.

Tools commonly used for password cracking, such as John the Ripper (JtR)
in dictionary mode, exploit regularities in the structure of password by applying
mangling rules to an existing dictionary of words (e.g., by replacing the letter a
with @ or by appending a number). This is used to generate new guesses from
an existing corpus of data, like a dictionary or a previously leaked password
database. Weir et al. [24] demonstrated how to use probabilistic context-free
grammars (PCFG) to automatically extract such mangling rules from a corpus
of leaked passwords, and Narayanan et al. [16] showed that Markov models,
which are known to closely represent natural language, can also be used to guess
passwords efficiently. We will demonstrate that, while these attacks already have
a good guessing efficiency against passwords, the performance can be substan-
tially improved.

This paper presents OMEN, a new Markov model-based password cracker that
generates password candidates according to their occurrence probabilities, i.e.,
it outputs most likely passwords first. As shown by our extensive experiments,
OMEN significantly improves guessing speed over existing proposals.

1.1 Related Work

One of the main problems with passwords is that many users choose weak pass-
words. These passwords typically have a rich structure and thus can be guessed
much faster than with brute-force guessing attacks. Best practice mandates that
only the hash of a password is stored on the server, not the password, in order
to prevent leaking plain-text when the database is compromised.

In this work we consider offline guessing attacks, where an attacker has gained
access to this hash and tries to recover the password pwd . The hash function
is frequently designed for the purpose of slowing down guessing attempts [20].
This means that the cracking effort is strongly dominated by the computation
of the hash function making the cost of generating a new guess relatively small.
Therefore, we evaluate all password crackers based on the number of attempts
they make to correctly guess passwords.

John the Ripper: John the Ripper (JtR) [17] is one of the most popular pass-
word crackers. It proposes different methods to generate passwords. In dictionary
mode, a dictionary of words is provided as input, and the tool tests each one of
them. Users can also specify various mangling rules. Similarly to [6], we discover
that for relatively small number of guesses (less than 108), JtR in dictionary
mode produces best results. In Incremental mode (JtR-inc) [17], JtR tries pass-
words based on a (modified) 3-gram Markov model.

Password Guessing with Markov Models: Markov models have proven
very useful for computer security in general and for password security in par-
ticular. They are an effective tool to crack passwords [16], and can likewise be



OMEN: Faster Password Guessing Using an Ordered Markov Enumerator 121

used to accurately estimate the strength of new passwords [5]. Recent indepen-
dent work [14] compared different forms of probabilistic password models and
concluded that Markov models are better suited for estimating password prob-
abilities than probabilistic context-free grammars. The biggest difference to our
work is that they only approximate the likelihood of passwords, which does not
yield a password guesser which outputs guesses in the correct order, the main
contribution of our work.

The underlying idea of Markov models is that adjacent letters in human-
generated passwords are not independently chosen, but follow certain regulari-
ties (e.g., the 2-gram th is much more likely than tq and the letter e is very
likely to follow the 2-gram th). In an n-gram Markov model, one models the
probability of the next character in a string based on a prefix of length n − 1.
Hence, for a given string c1, . . . , cm, a Markov model estimates its probability
as P (c1, . . . , cm) ≈ P (c1, . . . , cn−1) ·

∏m
i=n P (ci|ci−n+1, . . . , ci−1). For password

cracking, one basically learns the initial probabilities P (c1, . . . , cn−1) and the
transition probabilities P (cn|c1, . . . , cn−1) from real-world data (which should
be as close as possible to the distribution we expect in the data that we attack),
and then enumerates passwords in order of descending probabilities as estimated
by the Markov model. To make this attack efficient, we need to consider a num-
ber of details: Limited data makes learning these probabilities challenging (data
sparseness) and enumerating the passwords in the optimal order is challenging.

Probabilistic Grammars-Based Schemes: A scheme based on probabilistic
context-free grammars (PCFG) [24] bases on the idea that typical passwords
have a certain structure. The likeliness of different structures are extracted from
lists of real-world passwords, and these structures are later used to generate
password guesses.

Password Strength Estimation: A problem closely related to password guess-
ing is that of estimating the strength of a password, which is of central importance
for the operator of a site to ensure a certain level of security. In the beginning,
password cracking was used to find weak passwords [15]. Since then, much more
refined methods have been developed. Typically, so-called pro-active password
checkers are used to exclude weak passwords [22,11,1,18,4]. However, most pro-
active password checkers use relatively simple rule-sets to determine password
strength, which have been shown to be a rather bad indicator of real-world pass-
word strength [23,12,5]. The influence of password policies on password strength
is studied in [10], and [2] proposes new methods for measuring password strength
and applies them to a large corpus or passwords. More recently, Schechter et
al. [21] classified password strength by limiting the number of occurrences of a
password in the password database. Finally, Markov models have been shown to
be a good predictor of password strength while being provably secure [5].

1.2 Paper Organization

In Section 2 we describe the Ordered Markov ENumerator (OMEN) and provide
several experiments for selecting adequate parameters. Section 3 gives details
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about OMEN’s cracking performance, including a comparison with other pass-
word guessers. We conclude the paper with a brief discussion in Section 4.

2 OMEN: An Improved Markov Model Password Cracker

In this section we present our implementation of password enumeration algo-
rithm, enumPwd(), based on Markov models. Our implementation improves pre-
vious work based on Markov models by Narayanan et al. [16] and JtR [17]. We
then present how OMEN, our new password cracker, uses it in practice.

2.1 An Improved Enumeration Algorithm (enumPwd())

Narayanan et al.’s indexing algorithm [16] has the disadvantage of not outputting
passwords in order of decreasing probability. However, guessing passwords in the
right order can substantially speed up password guessing (see the example in
Section 3). We developed an algorithm, enumPwd(), to enumerate passwords
with (approximately) decreasing probabilities.

On a high level, our algorithm discretizes all probabilities into a number of
bins, and iterates over all those bins in order of decreasing likelihood. For each
bin, it finds all passwords that match the probability associated with this bin and
outputs them. More precisely, we first take the logarithm of all n-gram probabili-
ties, and discretize them into levels (denoted η) similarly to Narayanan et al. [16],
according to the formula lvl i = round (log(c1 · probi + c2)) , where c1 and c2 are
chosen such that the most frequent n-grams get a level of 0 and that n-grams
that did not appear in the training are still assigned a small probability. Note
that levels are negative, and we adjusted the parameters to get the desired num-
ber of levels (nbLevel), i.e., the levels can take values 0,−1, . . . ,−(nbLevel−1)
where nbLevel is a parameter. The number of levels influences both the accuracy
of the algorithm as well as the running time: more levels means better accuracy,
but also a longer running time.

For a specific length 
 and level η, enumPwd(η, 
) proceeds as follows1:

1. It computes all vectors a = (a2, . . . , a�) of length 
− 1, such that each entry
ai is an integer in the range [0, nbLevel− 1], and the sum of all elements is η.
Note that the vectors have 
 − 1 elements as, when using 3-grams, we need

− 2 transition probabilities and 1 initial probability to determine the prob-
ability for a string of length 
. For example, the probability of the password
“password” of size 
 = 8 is computed as follows:

P (password) = P (pa)P (s|pa)P (s|as)P (w|ss)P (o|sw)P (r|wo)P (d|or).

2. For each such vector a, it selects all 2-grams x1x2 whose probabilities match
level a2. For each of these 2-grams, it iterates over all x3 such that the 3-gram

1 To ease presentation, we only describe the estimation algorithm for 3-grams. The
generalization to n-grams is straightforward.
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Algorithm 1 Enumerating passwords for level η and length 
 (here for 
 = 4).2

function enumPwd(η, 	)
1. for each vector (ai)2≤i≤� with

∑
i ai = η

and for each x1x2 ∈ Σ2 with L(x1x2) = a2

and for each x3 ∈ Σ with L(x3 | x1x2) = a3

and for each x4 ∈ Σ with L(x4 | x2x3) = a4:
(a) output x1x2x3x4

x1x2x3 has level a3. Next, for each of these 3-grams, it iterates over all x4

such that the 3-gram x2x3x4 has level a4, and so on, until the desired length
is reached. In the end, this process outputs a set of candidate passwords of
length 
 and level (or “strength”) η.

A more formal description is presented in Algorithm 1. It describes the algo-
rithm for 
 = 4. However, the extension to larger 
 is straightforward.
Example: We illustrate the algorithm with a brief example. For simplicity, we
consider passwords of length 
 = 3 over a small alphabet Σ = {a, b}, where the
initial probabilities have levels

L(aa) = 0, L(ab) = −1,
L(ba) = −1, L(bb) = 0,

and transitions have levels

L(a|aa) = −1 L(b|aa) = −1
L(a|ab) = 0 L(b|ab) = −2
L(a|ba) = −1 L(b|ba) = −1
L(a|bb) = 0 L(b|bb) = −2.

– Starting with level η = 0 gives the vector (0, 0), which matches to the pass-
word bba only (the prefix “aa” matches the level 0, but there is no matching
transition with level 0).

– Level η = −1 gives the vector (−1, 0), which yields aba (the prefix “ba” has
no matching transition for level 0), as well as the vector (0,−1), which yields
aaa and aab).

– Level η = −2 gives three vectors: (−2, 0) yields no output (because no initial
probability matches the level −2), (−1,−1) yields baa and bab, and (0,−2)
yields bba.

– and so one for all remaining levels.

2.2 The OMEN Algorithm

As presented previously, the enumeration algorithm, enumPwd(η, 
) uses two
parameters. These two parameter need to be set properly. The selection of 
 (i.e.

2 L(xy) and L(z|xy) are the levels of initial and transition probabilities, respectively.
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the length of the password to be guessed) is challenging, as the frequency with
which a password length appears in the training data is not a good indicator
of how often a specific length should be guessed. For example, assume that are
as many passwords of length 7 and of length 8, then the success probability of
passwords of length 7 is larger as the search-space is smaller. Hence, passwords
of length 7 should be guessed first. Therefore, we use an adaptive algorithm that
keeps track of the success ratio of each length and schedules more passwords to
guess for those lengths that were more effective.

More precisely, our adaptive password scheduling algorithm works as follows:

1. For all n length values of 
 (we consider lengths from 3 to 20, i.e. n =
17), execute enumPwd(0, 
) and compute the success probability sp�,0. This
probability is computed as the ratio of successfully guessed passwords over
the number of generated password guesses of length 
.

2. Build a list L of size n, ordered by the success probabilities, where each
element is a triple (sp, level , length). (The first element L[0] denotes the
element with the largest success probability.)

3. Select the length with the highest success probability, i.e., the first element
L[0] = (sp0, level0, length0) and remove it from the list.

4. Run enumPwd(level0−1, length0), compute the new success probability sp∗,
and add the new element (sp∗, level0 − 1, length0) to L.

5. Sort L and go to Step 3 until L is empty or enough guesses have been made.

2.3 Selecting Parameters

In this section we discuss several parameters choices and examine the necessary
trade-off between accuracy and performance. The three central parameters are:
n-gram size, alphabet size and the number of levels for enumerating passwords.
n-gram size: The parameter with the greatest impact on accuracy is the size of
the n-grams. A larger n generally gives better results as larger n-grams provide
a more accurate approximation to the password distribution. However, it implies
a larger runtime, as well as larger memory and storage requirements. Note also
that the amount of training data is crucial as only a significant amount of data
can accurately estimate the parameters (i.e., the initial probabilities and the
transition probabilities). We evaluated our algorithm with n = 2, 3, 4, results
are depicted in Figure 1 (top).

As expected, the larger n is, the better the results are. We have conducted
limited experiments with 5-grams, which are not depicted in this graph, but
show slightly better results than for 4-grams. As 5-grams require substantially
larger running time and memory requirements, for a small performance increase,
we decided using n = 4.

Alphabet Size: The size of the alphabet is another factor that has the potential
to substantially influence the characteristics of the attack. Larger alphabet size
means that more parameters need to be estimated and that the runtime and
memory requirements increase. In the opposite, a small alphabet size means
that not all passwords can be generated.
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Fig. 1. Comparing different n-gram sizes (top), alphabet sizes (middle), and different
number of levels (bottom), for the RockYou dataset
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We tested several alphabet sizes by setting k = 20, 30, 40, 50, 62, 72, 92, where
the k most frequent characters of the training set form the alphabet. The results
are given in Figure 1 (middle). We clearly see an increase in the accuracy from
an alphabet size k from 20 to 62. Further increasing k does not noticeable in-
crease the cracking rate. This is mainly explained by the alphabet used in the
RockYou dataset where most users favor password with mostly alphanumeric
characters rather than using a large number of special characters. To be data
independent, we opted for the 72 character alphabet. Note that datasets that
use different languages and/or alphabets, such as Chinese Pinyins [13], will have
to set different OMEN parameters.

Number of Levels: A third important parameter is the number of levels that
are used to enumerate password candidates. As for previous parameters, higher
number of levels can potentially increase accuracy, but it also increases runtime.
The results are shown in Figure 1 (bottom). We see that increasing the number
of levels from 5 to 10 substantially increases accuracy, but further increasing to
20 and 30 does not make a significant difference.

Selected Parameters: Unless otherwise stated, in the following we use OMEN
with 4-grams, an alphabet size of 72, and 10 levels.

3 Evaluating OMEN performance

In this section, we present a comparison between our improved Markov model
password cracker and previous state-of-the-art solutions.

3.1 Datasets

We evaluate the performance of our password guesser on multiple datasets. The
largest password list publicly available is the RockYou list (RY), consisting of
32.6 million passwords that were obtained by an SQL injection attack in 2009.
This list has two advantages: first, its large size gives well-trained Markov models;
second, it was collected via an SQL injection attack therefore affecting all the
users of the compromised service. We randomly split the RockYou list into two
subsets: a training set (RY-t) of 30 million and a testing set (RY-e) of the
remaining 2.6 million passwords.

The MySpace list (MS) contains about 50 000 passwords (different versions
with different sizes exist, most likely caused by different data cleansing algo-
rithms or leaked from the servers at different points in time). The passwords
were obtained in 2006 by a phishing attack.

The Facebook list (FB) was posted on the pastebin website
(http://pastebin.com/) in 2011. This dataset contains both Facebook
passwords and associated email addresses. It is unknown how the data was
obtained by the hacker, but most probably was collected via a phishing attack.

http://pastebin.com/
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Table 1. Summary table indicating the percentage of cracked passwords for 1 billion
guesses, or 10 billion when specified

Algorithm Training Set #guesses Testing Set
RY-e MS FB

Omen RY-t 10 billion 80.40% 77.06% 66.75%
RY-t 1 billion 68.7% 64.50% 59.67%

PCFG [24] RY-t 1 billion 32.63% 51.25% 36.4%

JtR-Markov [16] RY-t 10 billion 64% 53.19% 61%
RY-t 1 billion 54.77% 38.57% 49.47%

JtR-Inc RY-t 10 billion 54% 25.17% 14.8%

Ethical Considerations: Studying databases of leaked password has arguably
helped the understanding of users real world password practices and as such, have
been used in numerous studies [24,23,5]. Also, these datasets are already available
to the public. Nevertheless we treat these lists with the necessary precautions
and release aggregated results only that reveal next to no information about the
actual passwords (c.f. [7]).

3.2 Comparing OMEN and JtR’s Markov Mode

Figure 2 (top) shows the comparison of OMEN and the Markov mode of JtR,
which implements the password indexing function by Narayanan et al. [16]. Both
models are trained on the RockYou list (RY-t). Then, for JtR-Markov, we fix
a target number of guesses T (1 billion or 10 billion), and compute the corre-
sponding level (η) to output T passwords, as required by JtR-Markov.

The curve shows the dramatic improvement in cracking speed given by our
improved ordering of the password guesses. In fact, JtR-Markov outputs guesses
in no particular order which implies that likely passwords can appear “randomly”
late in the guesses. This behavior leads to the near-linear curves shown in Fig-
ure 2 (top). One may ask whether JtR-Markov would surpass OMEN after the
point T ; the answer is no as the results do not extend linearly beyond the point T ;
and larger values of T lead to a flatter curve. To demonstrate this claim, we show
the same experiment with T equals to 10 billion guesses (instead of 1 billion).
Figure 3 shows the results for 1 billion guesses (left) as well as 10 billion guesses
(right), and we see that the linear curve becomes flatter.

To show the generality of our approach, we compare the cracking performance
on three different datasets: RY-e, FB and MS. The ordering advantage allows
OMEN to crack more than 40% of passwords (independently of the dataset) in
the first 90 million guesses while JtR-Markov cracker needs at least eight times
as many guesses to reach the same goal. For the RockYou dataset the results
most pronounced: For instance, OMEN cracks 45.2% of RY-e passwords in the
first 10 million guesses (see Figure 3 (right)) while JtR-Markov achieves this
result after more than 7 billion guesses (for T = 10 billion).
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Fig. 2. Comparing OMEN with the JtR Markov mode at 1B guesses (top), with the
PCFG guesser (middle), and with JtR incremental mode (bottom)
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Fig. 3. Comparing OMEN with the JtR Markov mode at 1 billion guesses (left), and
at 10 billion guesses (right)

Fig. 4. Comparing OMEN using 2-grams with JtR Markov mode

In the above comparison, OMEN uses 4-grams (c.f. Section 2.3), while JtR-
Markov uses 2-grams. To see the effects that this difference has, we provide an
additional comparison of OMEN using 2-grams with JtR-Markov, this is given in
Figure 4. The results are as expected: JtR-Markov still gives a straight line, which
means that OMEN has a better cracking speed. The speed advantage of OMEN
can be seen at 1 billion guesses where OMEN cracks 50% of all passwords while
JtR-markov cracks less than 10%. At the point T , i.e., when JtR-Markov stops,
both algorithms perform roughly the same. Note that since not all parameters
(i.e., alphabet size, number of levels etc.) of both models are identical, we have
a small difference in the cracking rate at the point T .

3.3 Comparing OMEN and PCFG

Figure 2 (middle) compares OMEN to the PCFG password guesser of Weir et
al. [24], based on the code available at [19]. We run it using the configuration as
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described in the paper: we use RY-t to extract the grammar and the dictionary
dict-0294 [25] to generate candidate passwords.

Figure 2 shows that OMEN outperforms the PCFG guesser. After 0.2 billion
guesses, OMEN cracks 20% more passwords than PCFG for both RY-e and FB
datasets and 10% more for MS. It is interesting to see the impact of the training
set on PCFG performance: PCFG performs much better on MS than on FB
and RY-e. We believe the reason is that the grammar for PCFG is trained on
a subset of the MS list, and thus the approach is better adapted for guessing
passwords from the MS list. OMEN achieves roughly the same results for all
datasets which proofs the robustness of the learning phase. Finally, note that
PCFG mostly plateaus after 0.3 billion guesses and results hardly improve any
more, whereas OMEN still produces noticeable progress.

3.4 Comparing OMEN and JtR’s Incremental Mode

We also compare OMEN to JtR in incremental mode, see Figure 2 (bottom). Sim-
ilarly to the previous experiments, both crackers were trained on the RockYou
training set of 30 million passwords and tested on RY-e, MS and FB datasets.
Clearly, JtR incremental mode produces worse guesses than OMEN.

4 Discussion and Conclusion

In this work, we have presented an efficient password guesser (OMEN) based
on Markov models, which outperforms all publicly available password guessers.
For common password lists we found that we can guess more than 80% of pass-
words with 10 billion guesses. While Markov models were known [16] to be an
effective tool in password guessing, previous work was only able to output the
corresponding guesses in an order dictated by algorithm internals (and pretty
much unrelated to their real frequency), OMEN can output guesses in order of
(approximate) decreasing frequency and thus dramatically improves real-world
guessing speed. Moreover, we performed a number of experiments to assess the
impact of different parameters on the accuracy of the algorithm and find optimal
parameters. We believe that OMEN can be useful as a preventive measure by
organizations to verify that their members do not select “weak” passwords.
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Abstract. In this paper we analyse the frequency at which vulnerabil-
ities are exploited in the wild by relying on data collected worldwide
by Symantec’s sensors. Our analysis comprises 374 exploited vulnerabil-
ities for a total of 75.7 Million recorded attacks spanning three years
(2009-2012). We find that for some software as little as 5% of exploited
vulnerabilities is responsible for about 95% of the attacks against that
platform. This strongly skewed distribution is consistent for all consid-
ered software categories, for which a general take-away is that less than
10% of vulnerabilities account for more than 90% of the attacks (with
the exception of pre-2009 Java vulnerabilities). Following these findings,
we hypothesise vulnerability exploitation may follow a Power Law dis-
tribution. Rigorous hypothesis testing results in neither accepting nor
rejecting the Power Law Hypothesis, for which further data collection
from the security community may be needed. Finally, we present and
discuss the Law of the Work-Averse Attacker as a possible explanation
for the heavy-tailed distributions we find in the data, and present exam-
ples of its effects for Apple Quicktime and Microsoft Internet Explorer
vulnerabilities.

1 Introduction

Many natural phenomena have been observed to follow heavy-tailed distribu-
tions: some notable examples are the frequency distribution of words in a lan-
guage, the density of metropolitan areas, and the topology of the Internet.
Heavy-tailed phenomena significantly differ from ‘usual’ phenomena that can
be easily described by a few point estimations of the distribution. For example,
one may consider life-expectancy in a particular country as a quantity that varies
only little with respect to the average. In this sense, the average and the standard
deviation of the distribution are enough to ‘give an idea’ of how the distribution
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looks like. For heavy-tailed distributions this does not necessarily hold. For ex-
ample, if one considers GDP worldwide, the infamous Pareto law kicks in (also
known as the 80-20 rule): 20% of the world population owns 80% of the wealth.
In this case, the average income does not provide any real indication of how the
distribution looks like, as the top 20% of the population is orders of magnitude
richer than the remaining 80%. These distributions are often interesting as they
are typically generated by complex phenomena lying behind the observation.

In this paper we provide clear evidence that vulnerability exploitation is de-
scribed by a heavy-tailed distribution and hypothesise that the distribution may
follow a Power Law model. We compare our Power Law hypothesis with two ad-
ditional candidate models for the data: a Log-Normal hypothesis and an Expo-
nential hypothesis. We proceed by rigorously comparing each generating model
against the data, following the methodology described in [8]. We find that the
negative exponential distribution hypothesis is ruled out, and that both the
power law and the log-normal distribution can be suitable models for the data.
These results are in line with those of previous research on malware arrival tim-
ings [15], and point toward more research to further investigate the process that
generates the observed data.

The results presented in this paper have three main implications:

1. Vulnerability exploitation may be described by laws similar to those followed
by natural phenomena (like earthquakes) and self-organizing structures (like
cities). In this sense, much in the same way as most earthquakes do not rep-
resent a threat for the population, most vulnerabilities may carry negligible
risk. This indicates that the classical approach ‘I have a vulnerability’ → ‘I
must fix it’ may be a largely disproportionate reaction to the real threat. An
equivalent to this would be to completely evacuate an area typically affected
by earthquakes even if the almost totality of earthquakes does not represent
a threat for the population.

2. Commonly-used, industry standard definitions of vulnerability risk based
on a single number (e.g. scores assigned by security-testing tools) may be
incapable of describing the distribution of attacks: a point estimate (a score
or an average) is not enough to describe the phenomena and may lead to
substantial overspending / misallocation of resources as most events may be
orders of magnitude away from the point estimate.

3. A deeper understanding of the attack-generating process may be needed to
explain the clear effect we show in the data. In Section 7 we propose the
Law of the Work-Averse Attacker as a first, informal attempt to explain the
heavy-tail effect we observe.

The paper continues as follows: Section 2 introduces the dataset used for the
analysis. Section 3 presents prima facie evidence of the heavy-tailed distribution
of attacks. The paper continues by introducing the models considered for the
data (Section 4) and by presenting the methodology and its limitations (Section
5). Results are presented in Section 6. We then discuss this work’s implications
and present a first attempt to explain the observed effect (Section 7). Related
work is discussed in Section 8. Finally, Section 9 concludes the paper.
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Table 1. Categories for vulnerability classification and respective number of vulnera-
bilities and attacks recorded in WINE

Category Sample of Software names No. Vulns. Attacks (Millions)

PLUGIN Acrobat reader, Flash Player 86 24.75
PROD Microsoft Office, Eudora 146 3.16
WINDOWS Windows XP, Vista 87 47.3
BROWSER Internet Explorer, Firefox 55 0.55

Tot 374 75.76

2 Data Collection

Symantec runs a data sharing program, the Worldwide Intelligence Network
Environment, or WINE in short1. The intrusion-prevention telemetry dataset
within WINE provides information about network-based attacks detected by
Symantec’s products. WINE is indexed by attack signatures IDs, unique identi-
fiers for an attack detected by the firm’s security solutions, which can be linked
to the affected CVE, if any, through Symantec’s Security Response2 dataset.
Further details on the collection process are available in [3]. This experiment’s
data is referenced and available for sharing at Symantec Research Labs under
the WINE Experiment ID WINE-2012-008.

We take additional precautions in handling the data to consider for the fact
that the prevalence of an attack may depend on the affected software’s exposure
to attacks. For example, browsers may be mainly exposed to web attacks, while
productivity software like MS Outlook may be targeted more often through social
engineering and malicious email attachments. We inspected WINE’s vulnerabil-
ities and grouped them in eight software categories: Browser, Plugins, Windows,
Productivity, Other Operating Systems, Server, Business Software, Development
Software. Because WINE consists largely of data from Symantec’s consumer se-
curity products, we may have a self-selection problem in which certain software
categories are not well represented in our sample. We therefore limit our analysis
to the first four categories, for which we consider our sample to be representative
of exploits in the wild: BROWSER, PLUGIN, WINDOWS and PROD(uctivity).
A more detailed discussion on this rationale is given in [5,3]. Our analysis com-
prises 374 vulnerabilities and 75.7 Million attacks recorded from July 2009 to
December 2012. Table 1 reports the identified categories and the number of
respective vulnerabilities in WINE.

3 The Heavy Tails of Vulnerability Exploitation

To visualize the heavy tail distribution effect, we report in Figure 1 the his-
togram distribution of the (logarithmic) attack volumes for each vulnerability

1 https://www.symantec.com/about/profile/universityresearch/sharing.jsp
2 https://www.symantec.com/security_response/

https://www.symantec.com/about/profile/universityresearch/sharing.jsp
https://www.symantec.com/security_response/
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Fig. 1. Top row: histogram distribution of logarithmic exploitation volumes. Bottom
row: Lorentz curves for exploitation volumes in the different categories. p % of the
vulnerabilities are responsible for L(p)% of the attacks.

in the category (top row) and the respective Lorentz curve distribution (bottom
row). The histogram distribution clearly shows that (PLUGIN being an excep-
tion we further investigate in Section 6) for WINDOWS, PROD and BROWSER
the frequency of vulnerabilities with x attacks is inversely proportional to the
logarithm of x. In other words, a (very) small fraction of vulnerabilities is respon-
sible for orders of magnitude more attacks than the remaining vulnerabilities.

A clear way to visualize this is through a Lorentz curve. A Lorentz curve
describes the p percentage of the population (of vulnerabilities) that are respon-
sible for the L(p) percent of attacks. The diagonal represents an ‘equilibrium
state’ where each vulnerability is responsible for the same volume of attacks.
The further away the two curves are, the higher the ‘disparity’ in the distri-
bution of attacks per vulnerability. As depicted in Figure 1, for WINDOWS,
PROD and BROWSER the two curves are very markedly apart, indicating that
the great majority of vulnerabilities are responsible for only a negligible frac-
tion of the risk in the wild. Table 2 reports the distribution of attacks recorded
in the wild per vulnerability. We report the top 20, 10 and 5 percent of vul-
nerabilities and the percentage of attacks in the wild they are responsible for.
The most extreme results are obtained for WINDOWS and PROD, for which
the top 5% vulnerabilities carry more than 90% of the attacks and the top 10%
the almost totality. ‘Milder’ results are obtained for BROWSER: the top 10%
carries 90% of the attacks, but the top 5% carries ‘only’ 68%, meaning that
among the top 10% vulnerabilities attacks are distributed more equally than in
other categories. The less extreme result is obtained for PLUGIN, where the
distribution of exploitation attempts seems more equally distributed among vul-
nerabilities.
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Table 2. p% of vulnerabilities responsible for L(p)% of attacks, reported by software
category.

Category Top p% vulns. L(p)% of attacks

20% 99.6%
WINDOWS 10% 96.5%

5% 91.3%

20% 99.5%
PROD 10% 98.3%

5% 94.4%

20% 97.1%
BROWSER 10% 91.3%

5% 68.2%

20% 46.9%
PLUGIN 10% 31%

5% 24%

With this last exception, we observe that a general rule for vulnerability ex-
ploitation is that, within any software category, less than 10% of attacked vul-
nerabilities are responsible for more than 90% of the attacks.

4 Possible Models for the Data

In general, when looking at empirical data it is often difficult to find a perfect
fit for a specific distribution. The most cautious way to proceed in this case is to
compare different hypotheses against the data. In the heavy-tailed case, models
commonly considered as candidates for the data are the Power Law distribution,
the Log-Normal distribution, and the Exponential distribution [20].

4.1 Power Law Distribution

A power-law distribution describes a phenomenon whereby the probability of
observing an event of size x is proportional to a power of x. Many natural
phenomena are known to follow power-law distributions. Earthquakes are a clear
example: the probability of observing an earthquake of magnitude x rapidly
decreases with the destructiveness of the earthquake3 [20]. In general, a power
law is expressed as:

p(x) ∼ x−α (1)

where x is the measured quantity and α is a scaling factor of the distribution.
It is easy to see that, if one applies the logarithm on both sides of the equation,
one ends up with an equation form of the type ln(p(x)) = −αln(x) + c which

3 ‘Destructiveness’ is expressed by measure of the Richter scale which represents the
base 10 logarithm of the maximum amplitude of a wave as detected by a seismograph.
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is a straight line with (negative) slope α and intercept c. On a log-log plot a
distribution following a power law would therefore follow a straight line.

As to the scaling parameter α, most power-law distributions found in Nature
are in the range 2 ≤ α ≤ 3 [8]. When describing a power law phenomenon
the parameter α has some interesting properties attached to it. By calculating
the second and third momentum of the normalized power law distribution it is
possible to see that depending on the value assumed by α the distribution may
have infinite mean (α < 2) and infinite variance / standard deviation (α < 3).
The interested reader can refer to [20] for further details.

In practical terms, a distribution with infinite mean and variance is a distri-
bution that can not be described by point estimates.

4.2 Log-Normal Distribution

Log-normal distributions can be thought as emerging from a multiplicative effect.
[18] suggests this is for example how one can model biological organisms’ growth
in weight: as a percentage C of the current weight Wt, such as Wt+1 = (C ×
Wt) +Wt. This generates a rapidly growing distribution. If growth in each step
of the process is randomly distributed and has finite mean and variance, than
because of the central limit theorem one ends up with a normal distribution
N(σ, μ) defined in the logarithm of the measure. The function form of a log-
normal distribution can therefore be derived from a normal distribution. For
further details we refer the reader to [18].

A log-normal distribution has always finite mean and variance, which are
therefore more meaningful to consider than in the general power law case.

4.3 Exponential Distribution

An exponential distribution is often used to describe the probability distribution
of the distance between independent events that arrive (on average) at a constant
rate. A negative exponential is often a less good alternative model to a power
law than a log-normal distribution is [8], but we still consider it here for the sake
of completeness.

5 Methodology

The central hypothesis around which we build our analysis is:

Hypothesis 1. Vulnerability exploitation follows a Power Law distribution.

Following the methodology indicated in [8], we: 1) estimate the parameters
for the hypothesised Power Law; 2) Test the suitability of the Power Law model
for the data; 3) Compare the Power Law model with alternative possible expla-
nations (i.e. log-normal and exponential)4.

4 We use the statistical tool R and the PoweRlaw package [26,13]. The scripts are
available at https://securitylab.disi.unitn.it/doku.php?id=software

https://securitylab.disi.unitn.it/doku.php?id=software
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Parameter Estimation. Empirical data is often noisy; in particular when fit-
ting a power law to it, one may find that the data follows a power law only above
a certain threshold xmin. This is intuitive as in the lower tail small variations in
the magnitude of the observation would cause significant noise in the fit. It is
generally observed that data points below xmin are often better modelled by dis-
tributions other than a power law [18]. Exploiting this observation, Clauset et al.
[9] suggest to estimate xmin by selecting the cutoff that minimizes the distance
between the fitted Power Law distribution and the probability distribution of
the data. The distance is calculated as the Kolmogorov-Smirnov (KS) statistic,
which simply returns the maximum absolute distance between two curves. This
way one obtains the xmin cutoff that provides the best fit for all x > xmin. The
scaling parameter α is estimated as the parameter that maximizes the likelihood
of observing the data given a certain value of α (maximum likelihood estimation).

Hypothesis Testing. We now need to estimate how likely the Power Law
model is for the data. Bootstrapping [11] provides a powerful method to verify
the likelihood of the Power Law hypothesis. For each separate data sample DS
(e.g. BROWSER) of length n, a bootstrapped sample is obtained from the data
by randomly choosing with replacement n vulnerabilities from DS. We create
10 thousand bootstrapped samples for each DS. For each bootstrapped sample
we then compute the parameter estimation and the relative KS statistic. Then,
a p-value for the power law hypothesis is obtained by computing the fraction
of KS statistics KS′ obtained from the sample that are above the KS statistic
seen from the data. The closest the p-value is to the unity, the greatest the
evidence for the Power Law Hypothesis5. We reject the power-law hypothesis if
the resulting p-value is below p < 0.1. As noted by Clauset et al., a very good fit
(p > 0.9) is very unlikely to be found in field data such as ours. We will consider
the Power Law model to be not unreasonable for p > 0.1. This threshold is the
same indicated in [8].

Comparison with Other Models. The p-value alone may not be a good-
enough indicator of the models’ suitability, especially when the data is noisy.
Therefore, to more rigorously evaluate the Power Law Hypothesis we compare
it with the alternative distributions defined in Section 4.

To compare the models we perform a log likelihood test. The idea behind a log
likelihood test is to compute the likelihood of observing the data assuming two
different originating models: the model with the highest likelihood is, intuitively,
the preferred one. A way to see this is to compute the difference in the log
likelihoods for the two distributions, R: if R is close to zero, the data has the
same likelihood under the two hypotheses; if R is far from zero, the sign of the
difference indicates which model is the most suitable for the data. We compute
R as R = log(L(PowerLaw))− log(L(Alternative)) where L() is the likelihood
function; therefore, a positive sign favours the Power Law hypothesis; a negative
sign favours the Alternative.

5 An alternative approach would be to measure the fraction of estimated α′ from the
bootstrapped sample higher than the α for the original data.
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Table 3. Power laws’ parameters. The reported α is the median resulting from the
bootstrapped process. Significance is reported in bold for p > 0.1.

Category xmin nx≥xmin α 95% Con. In. p-value

WINDOWS 20 64 1.31 1.22 - 1.64 0.44
BROWSER 1010 19 1.60 1.20 - 2.27 0.52
PLUGIN 118 80 1.35 1.26 - 2.14 0.00
PROD 267 49 1.50 1.34 - 1.78 0.84

The significance of the difference between the two models is given by the size
of |R|. For values of R close to zero, the sign does not indicate a significant
difference between the two models. We use the Vuong test [29] to evaluate the
statistical significance of the sign. If the resulting p-value is below 0.1 (p < 0.1)
we consider the difference to be significant. If not, the two models (Power Law
and the Alternative) are effectively indistinguishable with respect to the data.

Limitations. Fitting models to the data asks for as many data points as possi-
ble. [8] shows that, indicatively, a distribution with at least 100 points is desirable
to make sound conclusions. However, a general estimation of this threshold valid
for any distribution is hard to make. Unfortunately exploitation data, especially
collected on a significant scale (i.e. worldwide), is difficult to find. No precau-
tion can completely rule out the “overfitting” problem caused by too few data
points [8]. In our experiment the worst case is that of BROWSER vulnerabili-
ties, for which we refrain from making any definitive conclusion. ForWINDOWS,
PLUGIN and PROD we will be slightly bolder. To the best of our knowledge,
WINE is the most comprehensive dataset of records of attacks in the wild that
is publicly available.

Another limitation is represented by the data collection itself and, indirectly,
by the type of software and attacks our results can be considered representa-
tive of. The WINE dataset reports mostly attacks recorded against ‘consumer
platforms’, unlikely to receive targeted or 0-days attacks [6]. Our results and
conclusions are therefore relevant only for untargeted attack scenarios, and are
not representative of ‘black swan’ attacks for which a dedicated attacker aims at
a particular target. This is obvious as a single targeted attack is for us negligible,
as it would be in the lower left hand of the Lorentz curves in Figure 1.

6 The Power Law Hypothesis

Parameter Estimation and Hypothesis Testing. Figure 2 reports the log-
log plot and a linear fit for the four categories. Attack volumes are reported
on the x-axis; the y-axis reports the probability of observing an attack volume
equal to x. It is easy to see that for all categories, with the exception of PLUGIN,
the data shows a linear trend, which is expected with a Power Law distribution
[8,18]. Table 3 reports the model parameters for each category and the p-value
for the power law fit. The estimation is done for values x ≥ xmin. This means
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Fig. 2. Log-log plot of vulnerability exploitation by vulnerability rank

that the datasets are further truncated and the estimation is limited to the
datapoints left. These are reported in the table under the column nx≥xmin . The
data points left still allow for an (albeit cautious) discussion. The BROWSER
case is critical, as only 19 vulnerabilities are available for the model fitting. For
this category the resulting p-value (p = 0.52) is higher than the significance
threshold of p > 0.1 identified by [8], but we refrain from considering this as
evidence for the Power Law case. A more significant discussion can be made for
the remaining categories. In particular, the Power Law model could be a good
candidate to explain the WINDOWS and PROD exploitation distributions. For
PLUGIN as a whole, instead, the hypothesis is ruled out completely. We will
analyse this exception in more detail later in this Section. The α parameter lies
in the 1.2-2.2 region for all software categories, indicating a mildly steep to steep
curve.

We do not reject Hyp. 1 in the cases of WINDOWS, BROWSER and PROD
vulnerabilities. We reject Hyp. 1 for PLUGIN.

Comparison with Other Models. In Table 4 we report the results of the log
likelihood comparison between Hyp. 1 and the alternative models. A negative
sign indicates that the evidence points toward the alternative hypothesis; a pos-
itive sign supports the Power Law model. We also report the two-tailed Vuong’s
significance test; the result is considered significant if the p-value is below 0.1.
The log likelihood ratio test for the exponential distribution returns “Not a
number” as the fit between the estimated curve and the data is so poor it tends
to zero, and the logarithm goes to infinity. The log-normal distribution results
slightly favored in the likelihood ratio test for BROWSER and PROD vulnera-
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Table 4. Difference in likelihood of alternative models. ∞ indicates a fit so poor that
the log likelihood for the alternative goes to infinity. We report significant conclusions
for p ≤ 0.1 in bold.

Category Alternative Likelihood difference Favoured Model

WINDOWS Log-normal -1.49 Alternative
Exponential ∞ Power Law

BROWSER Log-normal -0.29 Alternative
Exponential 2.18 Power Law

PLUGIN Log-normal -5.39 Alternative
Exponential ∞ Power Law

PROD Log-normal -0.34 Alternative
Exponential ∞ Power Law

●
●

●
● ●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●
●
●
●

●
●

●
●

●

●

●

●

●

1 100 10000

0
.0

2
0
.0

5
0
.2

0
0
.5

0

MS Office

Attacks (log)

p
(x

)

●
●

● ●●● ●●● ●● ●●
●●●●●●● ● ● ● ●

● ●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

1 100 10000

0
.0

2
0
.0

5
0
.2

0
0
.5

0

Internet Explorer

Attacks (log)

p
(x

)

Fig. 3. Log-log plot of volume of exploits in the wild for Microsoft Office (left) and
Internet Explorer (right)

bilities, but the small distance from 0 does not make for a solid margin, as the
difference may as well be due to sole chance. In general, we find that a log-normal
distribution does not perform significantly better than a Power Law in describing
our data. For WINDOWS vulnerabilities the evidence is more markedly toward
the log-normal distribution, but the difference is again not significant. The case
for PLUGIN is, unsurprisingly, sharply in favor of a log-normal distribution.
With the exception of PLUGIN, none of the alternative hypothesis in Table 4
provides a better explanation to the data than a Power Law distribution does.

We now narrow down the data analysis to single instances of ‘representative’
software in each category. We however do not report any more data-fitting results
as the fewer and fewer data points would make their interpretation a particularly
tricky one.

6.1 Breakdown by Software

Figure 3 reports the distribution of exploitation volume for vulnerabilities af-
fecting Microsoft Office (PROD) and Internet Explorer (BROWSER). For these
two software, the log-log plot shows a good linear fit along the data points.



The Heavy Tails of Vulnerability Exploitation 143

●
●

●

●

●

1e+03 5e+03 5e+04 5e+05

0
.5

0
.6

0
.7

0
.8

0
.9

Java before 2009

Attacks (log)

p
(x

)

●

●

●

●

●

●

●

●

●

1e+04 5e+04 2e+05

0
.2

0
.5

1
.0

Java after 2010

Attacks (log)

p
(x

)

Fig. 4. Log-log plot of volume of exploits in the wild for Java vulnerabilities disclosed
before 31-Dec-2009 (left) and after 1-Jan-2010 (rigth)

The numerical results are equivalent to those reported for the respective macro
categories. Software in WINDOWS, not reported here for brevity, also confirms
the general result. For PLUGIN software, the Power Law fitting is always very
low regardless of the considered software. To further investigate this, in Figure 4
we report the distribution for Java vulnerabilities grouped by year of disclosure.
The different distribution in attacks for vulnerabilities disclosed before and after
2009 is immediate to see. While for 2009 the Power Law model is clearly a bad fit,
for Java vulnerabilities disclosed after 2010 it is supported by the evidence (p =
0.76). Neither the log-normal nor the exponential distribution provide a better
model for the data. A possible explanation to this temporal effect is that software
running in background (such as PLUGIN software generally is) may be seldom
updated by users [30]. This may have an influence on the exploitation volumes
recorded: looking at the Java case, 2009 is the last year Java was owned by
Sun Microsystems, before being acquired by Oracle. This may suggest that pre-
2009 vulnerabilities for Sun Microsystem’s Java accumulated high exploitation
volumes possibly because of users’ latency in switching to Orcale’s Java. For
Java vulnerabilities disclosed after 2010 our results are equivalent to those we
obtained for the other categories. This suggests that the heavy-tail effect we
observe is present regardless of the software type.

7 Discussion

In this paper we presented evidence that vulnerability exploitation follows a
heavy-tailed distribution.

The heavy-tail effect we find is (qualitatively) similar to that shown by the
80-20 Pareto law of income distribution: the majority of the impact is caused
by a small fraction of the population. We showed that, depending on the type of
software affected by the vulnerability, as low as 10% of the vulnerabilities may be
responsible for more than 90% of the attacks in the wild against that software.
The most extreme result is obtained for PROD vulnerabilities, for which 5% of
vulnerabilities account for 95% of the attacks.
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This observation alone could have significant impact on the way security quan-
tification and prioritization is done. Vulnerabilities represent a significant source
of uncertainty when managing infrastructural and system security. Clearly all
vulnerabilities represent a potential risk, but it is effectively unclear how much
risk is attached to a software flaw. Many regulatory and administrative initiatives
try to give an estimate of this by suggesting simple rules to prioritize vulner-
ability treatment. Notable examples of this are the NIST SCAP protocol [25]
and guidance provided by the PCI DSS standard for credit card security [10]: a
high risk score vulnerability is considered on average dangerous enough to need
immediate treatment. This approach has already been questioned in literature
[4], and our results point in the same direction: point estimates of vulnerability
risk may be widely inappropriate in practice.

7.1 An Explanation Attempt: The Law of the Work-Averse
Attacker

We make an attempt at giving an explanation to the possible mechanisms that
underlie the heavy-tail effect shown in this paper. We label this the “Law of the
Work-Averse Attacker”, according to which the average attacker is not interested
in procuring and using new reliable exploits if he or she already owns one. The
rationale behind this is that once the attacker can attack n systems with one
exploit, as long as n is high enough a new reliable (and possibly expensive [2,5])
exploit would not increase n enough to justify the cost (economic or in terms of
effort) of deploying a new attack. The effect of this is that attackers focus their
efforts in attacking a limited set of vulnerabilities for which reliable exploits exist
and are available (for example in the black markets [5]). As a consequence, only
a handful of vulnerabilities are consistently attacked over time, and this may
generate the heavy-tailed effect shown in this paper. In general,

∃v0,t0 , n : P (v0, t0, n) ≈ 1 → ∀vi 
= v0 P (vi, t0, n) ≈ 0 (2)

where P (v, t, n) is the probability that an attack against the vulnerability v is
successful at time t0 against n systems, with n >> 1.

If this holds, by looking at exploitation trends in time we would expect that:

Hypothesis 2. Exploits alternate in ‘popularity’, i.e. a new one appears only
when an old one decays.

Hypothesis 3. No two exploits are at the same level of exploitation at the same
moment.

In Figure 5 we report as an example the trends of exploitation of vulnerabilities
disclosed in 2010 for Internet Explorer and QuickTime. We plot on a logarithmic
scale the volume of attacks against each vulnerability, represented by a distinct
line. A simple illustrative example is that of Quicktime, for which it is visible how
the emergence of the second exploit follows a sharp decline in the popularity of
the already-present one. This same effect can also be found in the more complex
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Fig. 5. Trends in attacks for vulnerabilities disclosed in 2010 for QuickTime and
Internet Explorer

scenario of Internet Explorer: in 2010 we have three main exploits (a fourth is
collapsed several orders of magnitude below the others). Let’s call them A (full
line, dots), B (dashed lined, squares) and C (short dashes, crosses). We note
that:

– when A falls, B rises
– after a sharp decline in B, C rises
– when B goes up again C falls and A disappears
– when B finally dies, first C rises and then A (since then dead) rises up again

We therefore find supporting evidence for Hyp 2. We find Hyp 3 to be sup-
ported as well as in both cases one exploit dominates all the others at least by
one order of magnitude. We keep a more precise and formal characterization of
this model for future research.

8 Related Work

Shahzad et al. [28] have recently presented a general overview of software vulner-
abilities. Many descriptive trends in timings of vulnerability patching and release
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of proof-of-concept exploits are presented. Frei et al. [12] showed that exploits are
often quicker to arrive than patches are. An analysis of the same flavour is pro-
vided by [27] and [7]. Other studies focused on the modeling of the vulnerability
discovery processes. Reference works in this area are [1] and [23]. Current vul-
nerability discovery models are however not general enough to represent trends
for all software [21]. Moreover, vulnerability disclosure and discovery are com-
plex processes [7,22], and can be influenced by {black/white}-hat community
activities [7] and economics [17]. The different risk levels coming from different
vulnerability types and exploit sources is outlined in [4]. Our study, rather than
presenting an overview of vulnerabilities, exploits and patches releases, focuses
on volumes of exploitation attempts in the wild.

By analysing attack data in WINE Nayak et al. [19] concluded that attackers
focus on few vulnerabilities only and that, as a consequence, risk measurements
based solely on knowledge of vulnerability may be inaccurate. Holm [15] analyses
attack data on the systems of an organisation and fits it to several models. His
analysis concerns the time of arrival of malware alerts. His results are on the same
lines as ours: a log-normal distribution and a Pareto distribution are usually a
better fit to the data than other models. Differently from [15], we focus on
the volume of vulnerability exploitation attempts rather than on the timings of
malware detection.

Bilge and Dumitras [6] provide an analysis of 0-day exploits by analysing in
hindsight historical records of attacks in WINE. Provos et al. [24] also provide
a quantitative estimation of cyber-attacks by analysing iFrame traffic; they find
that about 60% of the threats against the final user are web attacks. An analysis
of the mechanisms responsible for the generation of these attacks can be found
in [14], that uncovers the Exploit-as-a-Service architecture for cyberattacks used
by cybercriminals. Following this line of research, an estimation of the fraction
of attacks generated by cybercrime market activities is given in [5]. An in-depth,
empirical analysis of the tools used by cybercriminals to deliver their attacks
is given in [16] and [2]. Rather than focusing on the general volume of attacks
affecting the final user, in this work we evaluate how vulnerability exploitation
is distributed in the wild.

9 Conclusions

In this paper we analysed the frequency with which vulnerabilities are exploited
in the wild. Our findings clearly show that the distribution of attacks follows
a heavily tail distribution, showing that a small fraction of vulnerabilities is
responsible for the great majority of attacks against a software.

We hypothesise that this distribution may follow a Power Law, but this hy-
pothesis is only inconclusively supported by our evidence: an alternative, equally
good explanation to the data may be provided by a log-normal distribution. The
statistical power needed to accept one or the other hypothesis is reduced by the
relatively low number of vulnerabilities present in our dataset which nonetheless
represents, at the best of our knowledge, the most comprehensive collection of
attacks in the wild publicly available at the moment of writing.
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To further explain our results we present the Law of the Work-Averse At-
tacker, according to which attackers only select one vulnerability to exploit at
a time, per software. This results in a distribution of attacks whereby only one
vulnerability out of many represent a relevant risk for the user. This model is
qualitatively supported by the evidence we find by analysing two case scenarios
for Apple Quicktime and Microsoft Internet Explorer. We leave a more formal
analysis of this model to future work.
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Abstract. We present the results of preliminary experiments imple-
menting the Candidate Indistinguishability Obfuscation algorithm re-
cently proposed by Garg et al. [1]. We show how different parameters of
the input circuits impact the performance and the size of the obfuscated
programs. On the negative side, our benchmarks show that for the time
being the algorithm is far away from being practical. On the positive
side, there is still much room for improvement in our implementation.
We discuss bottlenecks encountered and optimization possibilities. In
order to foster further improvements by the community, we make our
implementation public.

1 Introduction

Obfuscation of software, intended as a transformation of a program such that it
is difficult for adversaries to understand details of its logic or internal variables, is
of an increasing practical relevance [2]. Typically obfuscation is associated with
‘security by obscurity’, because of a lack of formal guarantees on the security of
commonly used obfuscation operators [3]. On the theoretical side, it has been
shown by Barak et al. [4] that it is impossible to construct an obfuscator such
that from the obfuscated version of a program implementing a function f , an
adversary can only learn the inputs and outputs to f exclusively.

Recently, Garg et al. [1] proposed a promising approach that offers formal
security guarantees for indistinguishability obfuscation, a particular obfuscation
notion that guarantees that the obfuscations of two programs implementing the
same functionality are indistinguishable. As a basis for their proof, the authors
show that a successful attack to their construction is also an solution to the
multilinear jigsaw problem, which is believed to be computationally hard. The
authors conjecture that this construction provides the expected security for the
obfuscation of most programs.

Although the proposers of indistinguishability obfuscation acknowledge that
their construction is not practical as of today [5], concrete details have so far not
been published. The motivation of our work is thus to better understand how far
is the candidate construction from real applications. To do so, we prototypically
implemented the algorithm described in [1] and benchmarked its space and time
performance depending on various parameters.
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Our contributions can be summarized as follows: a) to our knowledge, we pro-
vide the first open source implementation of the candidate indistinguishability
obfuscation candidate [1], so that the community can gradually improve on it, b)
we provide reproduceable performance benchmarks, which give an upper bound
on the necessary time and space for running/storing obfuscated programs and
c) we discuss potential areas for improvement based on our experiments.

The paper is organized as follows: In Section 2 we give an overview of the
candidate construction. We then present an overview of our implementation in
Section 3 and our benchmarking results in Section 4. We conclude by summariz-
ing our results and giving an overview of ongoing and future work in Section 5.

2 Preliminaries

This section presents the candidate indistinguishability obfuscation construction
developed by Garg et al. [1] applied to boolean circuits in NC1 [6], preceded by
the concepts needed to understand this construction.

A boolean circuit is a directed acyclic graph, where nodes are represented by
conjunction, disjunction and/or negation gates with maximum 2 inputs (fan-in-
2), which process only boolean values. The size of a circuit is equal to the total
number of gates in that circuit. The depth of a circuit is the length of the longest
path from input to output gate, in the circuit.

A uniform probabilistic polynomial-time Turing (PPT) machine iO is called
an indistinguishability obfuscator for a circuit class {Cλ} if: (1) it preserves the
input-output behavior of the unobfuscated circuit and (2) given two circuits
C1, C2 ∈ Cλ and their obfuscated counterparts iO(λ, C1), iO(λ, C2), a PPT ad-
versary will not be able to distinguish which obfuscated circuit originates from
which original circuit with significant probability (the advantage of the adversary
is bounded by a negligible function of the security parameter λ).

Even though an iO applies to boolean circuits, internally it transforms all
circuits into linear branching programs on which it operates. This transformation
is made possible by Barrington’s theorem [7], which states that any fan-in-2,
depth-d boolean circuit can be transformed into an oblivious linear branching
program of length at most 4d, that computes the same function as the circuit.

Definition 1. (Oblivious Linear Branching Program [1]) Let A0, A1 ∈ {0, 1}5×5

be two distinct arbitrarily chosen permutation matrices. An (A0, A1) oblivious
branching program of length n for circuits with �-bit inputs is represented by a
sequence of instructions BP = ((inp(i), Ai,0, Ai,1))n

i=1, where Ai,b ∈ {0, 1}5×5,
and inp : {1, n} → {1, �} is a mapping from branching program instruction index
to circuit input bit index. The function computed by the branching program is

fBP,A0,A1(x) =

⎧
⎨

⎩

0 if Πn
i=1Ai,xinp(i) = A0

1 if Πn
i=1Ai,xinp(i) = A1

undef otherwise

The family of circuits Cλ is characterized by � inputs, λ gates, O(logλ) depth
and one output. Cλ has a corresponding polynomial-sized universal circuit, which
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is a function Uλ : {0, 1}f(λ) × {0, 1}� → {0, 1}, where f(λ) is some function of
λ. Uλ can encode all circuits in Cλ, i.e. ∀C ∈ Cλ, ∀z ∈ {0, 1}�, ∃Cb ∈ {0, 1}f(λ) :
Uλ(Cb, z) = C(z). It is important to note that the input of Uλ is a f(λ) + � bit
string and that by fixing any f(λ) bits, one obtains a circuit in Cλ.

Universal circuits are part of the candidate iO construction, because they
enable running Kilian’s protocol [8], which allows two parties (V and E), to
evaluate any NC1 circuit (e.g. Uλ) on their joint input X = (x|y), without dis-
closing their inputs to each other, where x, y are the inputs of V , respectively
E. This is achieved by transforming the circuit into a branching program BP =
((inp(i), Ai,0, Ai,1))n

i=1 by applying Barrington’s theorem [7]. Subsequently V
chooses n random invertible matrices {Ri}n

i=1 over Zp, computes their inverses
and creates a new randomized branching program RBP =((inp(i), Ãi,0, Ãi,1))n

i=1,
where Ãi,b = Ri−1Ai,bR−1

i for all i ∈ {1, n}, b ∈ {0, 1} and R0 = Rn. It can
be shown that RBP and BP compute the same function. Subsequently, V
sends E only the matrices corresponding to her part of the input {Ãi,b : i ∈
{1, n}, inp(i) < |x|} and E only gets the matrices corresponding to one specific
input via oblivious transfer. E can now compute the result of RBP without
finding out V ’s input. Kilian’s protocol is related to the notion of program ob-
fuscation, if we think of V as a software vendor who wants to hide (obfuscate)
a program that is going to be distributed to end-users (E). However, Kilian’s
protocol [8] is modified in [1], by sending all matrices corresponding to any input
of E, which allows E to run the RBP with more that one input. This modified
version is vulnerable to partial evaluation attacks, mixed input attacks and also
non-multilinear attacks, which extract information about the secret input of V .

To prevent partial evaluation attacks Garg et al. [1] transform the 5 × 5
matrices of BP into higher order matrices, having dimension 2m + 5, where
m = 2n+5 and n is the length of BP . Subsequently, they add 2 bookend vectors
of size 2m + 5 in order to neutralize the multiplication with the random entries
in the higher order matrices. To prevent mixed input attacks a multiplicative
bundling technique is used, which leads to an encoded output of BP . To decode
the output of the BP an additional branching program of equal length with BP ,
that computes the constant 1 function is generated and the same multiplicative
bundling technique is applied to it. Subtracting the results of the two branching
programs executed on the same inputs, will decode the output of BP . To prevent
non-multilinear attacks, the candidate construction of Garg et al. [1] employs the
multilinear jigsaw puzzle (MJP).

An overview of MJP is illustrated in Figure 1 and consists of two entities, i.e.
the Jigsaw Generator (JGen) and the Jigsaw Verifier (JVer). The JGen is part
of the circuit obfuscator. It takes as input a security parameter (λ), a universal
circuit (Uλ) and the number of input bits (�) of any circuit simulated by Uλ. JGen
first applies Barrington’s theorem [7] to transform Uλ into a universal branching
program UBP of length n. Subsequently, the Instance Generator takes λ and the
multilinearity parameter (k = n+2) as inputs and outputs a prime number p and
a set of public system parameters (including a large random prime q and a small
random polynomial g ∈ Z[X ]/(Xm + 1)). Afterwards, UBP is transformed into
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Fig. 1. Overview of the candidate construction for indistinguishability obfuscation

a randomized branching program by: (1) transforming the branching program
matrices into higher order matrices, (2) applying multiplicative bundling and (3)
the first step of Kilian’s protocol. The output of JGen is a set of public system
parameters and the randomized universal branching program (̂RN D(UBPλ))
with all matrices encoded by the Encoder component.

The output of JGen can be used to obfuscate a circuit C ∈ Cλ by fixing a
part of the inputs (garbling) of ̂RN D(UBPλ) such that it encodes C for all
z ∈ {0, 1}�. Garbling is done by discarding the matrices of ̂RN D(UBPλ) which
correspond to values not chosen for the fixed input bits. The result of this step is
iO(λ, C), the candidate of Garg et al. [1]. It is sent to an untrusted party which
evaluates it by fixing the rest of its inputs and providing it as input to the JVer.
The JVer outputs 1 if the evaluation of iO(λ, C) is successful and 0, otherwise.

3 Implementation

Our proof-of-concept implementation was done in Python, leveraging the SAGE
computer algebra system and can be downloaded from the Internet1. It con-
sists of the following modules, corresponding to the light blue rectangles from
Figure 1: (1) building blocks for universal circuit creation, (2) Barrington’s theo-
rem for transforming boolean circuits to branching programs, (3) transformation
from branching program matrices into higher order matrices and applying mul-
tiplicative bundling (4) 1st step of Kilian’s protocol for creating randomized
branching programs from branching programs, (5) instance generator for MJP,
(6) encoder for MJP, (7) circuit encoder into input for universal circuit, (8) par-
tial input fixer for random branching programs, and (9) zero testing of jigsaw
verifier.
1 https://github.com/tum-i22/indistinguishability-obfuscation

https://github.com/tum-i22/indistinguishability-obfuscation
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Fig. 2. Generation of UCs (X-axis: no. inputs (�), no. gates of input circuit (λ))

Technical Challenges Faced. Although commonly used in the literature, we could
not find a readily available implementation of Universal Circuits (UC) that was
easily adaptable to our setting. Therefore we decided to implement our own
UC component, following the less performant algorithm of [9]. For the sake of
performance, this component can be improved by following for instance the more
performant (but more complex) algorithm suggested in [9] or [10].

Challenges Interpreting [1]. We also faced some challenges while interpreting
the candidate construction description, in particular their suggested encoding
function. For instance it was difficult to come up with concrete values for some
parameters, since the relation between them is given using the big O notation.
On the other hand, the Encoder function requires to reduce an element a ∈ Zp

modulo a polynomial g of degree ≥ 1. We could not think of a better canoni-
cal representative for this reduction than a itself, which makes us believe that
either the modulo reduction is redundant or the authors had another canonical
representative in mind (a polynomial) which is unclear how to compute.

Summary of Current Status. Currently, our implementation can perform most
steps of the candidate construction, with the exception of the zero test. We
believe this is a result of an incorrect choice of the canonical representative of a
modulo g or/and of the concrete parameters as discussed above. We have raised
these issues in popular mathematics and cryptography forums and contacted
the authors for clarification with no success at the moment of elaborating this
document. However, note from Figure 1 that the improper functioning of the zero
test does not affect the results of benchmarking the Circuit Obfuscator presented
in the next section, because the it is part of the Jigsaw Verifier.

4 Benchmarking

We executed our experiments on a virtual machine (VM) with 4 cores and 64
GB of memory. The first experiment aims to investigate the resources required
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Fig. 3. Generation of BPs (X-axis: no. inputs (�), no. gates of input circuit (λ))

to obfuscate a circuit consisting only of AND gates as a function of its number of
inputs and gates. As illustrated in Figure 1 the first step of obfuscation consists
of generating the UC, corresponding to the first step of our experiment. The
number of circuit inputs were varied between 2 and 4, while the number of gates
between 1 and 10. The recorded outputs are shown in Figure 2 and consist of the:
number of gates, memory usage, output file and generation time needed for the
UC. Observe that increasing the number of inputs causes a linear increase in each
measured output of the experiment, while increasing the number of gates causes
an exponential increase. The memory usage is around one order of magnitude
higher than the file size due to the compression algorithm we use to store UCs.

The second step of our experiment consisted of transforming the previously
generated UCs into branching programs (BPs) using our implementation of Bar-
rington’s theorem [7]. However, it was infeasible to transform all the previously
generated UCs because of the fast polynomial increase in memory usage and file
size, illustrated in Figure 3. We estimated the size of generating a BP for a UC
which encodes a circuit by applying following recursive formula (corresponding
to our implementation), to the output gate of a UC:

l(gate) =

⎧
⎪⎨

⎪⎩

1 if type(gate) = Input
l(gate.input) if type(gate) = NOT
2l(gate.input1) + 2l(gate.input2) if type(gate) = AND

The estimated memory usage of a universal BP which encodes 4 inputs and 6
gates, corresponding to the largest UC we show in Figure 2, is over 4.47 Peta
Bytes, which is infeasible to generate on our VM.

The third step of our experiment was to transform the BPs generated pre-
viously into randomized branching programs (RBPs) by transforming the BP
matrices into higher order matrices, applying multiplicative bundling and the
first step of Kilian’s protocol [8]. The results of this experiment are shown in
Figure 4. Additionally to the number of inputs and gates, in this experiment
we also have the matrix dimension increase (m) and the choice of the prime (p)
corresponding to Zp in which Kilian’s protocol operates. The choice of m influ-
ences both the generation time and the file size polynomially. Observe that the
memory usage remains constant for different values of m. This is due to com-
patibility issues between SAGE and our memory profiler. However, we observer
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Fig. 4. Generation of RBPs (X-axis: no. inputs (�), no. gates of input circuit (λ), matrix
dimension (m), prime number (p)). Legend is the same as Figure 3.

that the actual memory usage is still one order of magnitude higher than the file
size. p influences the generation time linearly, however, the memory usage and
file size are affected only if the data type width of p grows. Note that, the mem-
ory usage is not shown in Figure 4 since it could not be measured reliably due
to technical limitations of our memory profiler. We estimate that the memory
usage is approximately one order of magnitude higher than the file size.

5 Conclusions and Future Work

In this paper we have presented a non-trivial upper bound on the size and
performance of the obfuscated versions of small circuits. To give an idea about
the practicality of this construction, consider a 2-bit multiplication circuit. It
requires 4 inputs and between 1 and 8 AND gates for each of its 4 output bits.
An obfuscation would be generated in about 1027 years on a 2,6 GHz CPU and
would require 20 Zetta Bytes of memory for m = 1 and p = 1049. Executing
this circuit on the same CPU would take 1.3 × 108 years. This clearly indicates
that for the time being the candidate construction is highly unpractical.

However, this upper bound can still be tightened (perhaps even dramatically)
by improving upon our preliminary implementation. In particular, there exist
better algorithms for the generation of universal circuits, which directly affect
the size of the obfuscation [9, 10]. There is an inherent limitation for this im-
provement due to the fact that the output of gates in UCs are reused by other
gates, which causes duplication of matrices in BPs when using Barrington’s the-
orem [7]. Therefore, one improvement is to avoid using Barrington’s theorem
as suggested by Ananth et al. [11]. On the other hand, we have only imple-
mented the construction for NC1 circuits: the candidate construction includes
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an extension to cope with bigger circuit classes, that includes the use of fully ho-
momorphic encryption. To this date, there exists no practical implementations
of fully homomorphic encryption, although progress has been made since the
original algorithm was proposed [12].

As research advances towards practical fully homomorphic encryption, we
expect our initial and open implementation of the candidate indistinguishability
obfuscation algorithm to foster improvements by the community. Being open,
our implementation is amenable to adaptations to new algorithms based on the
MJP complexity assumption.

At the moment of submission of this manuscript, we are working to make our
implementation fully functional. Avenues for future work include: (1) improving
the UC generation procedure according to [9, 10], (2) engineering more efficient
representations for the matrices and polynomials in memory and disk, (3) im-
proving our optimization technique to reduce obfuscated circuit generation time,
(4) experimenting with various compression techniques and (5) implementing the
technique of Ananth et al. [11], to avoid Barrington’s theorem.
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Abstract. Security is an important issue that needs to be taken into account at 
all stages of information system development, including early requirements 
elicitation. Early analysis of security makes it possible to predict threats and 
their impacts and define adequate security requirements before the system is in 
place. Security requirements are difficult to elicit, analyze, and manage. The 
fact that analysts’ knowledge about security is often tacit makes the task of 
security requirements elicitation even harder. Ontologies are known for being a 
good way to formalize knowledge. Ontologies, in particular, have been proved 
useful to support reusability. Requirements engineering based on predefined 
ontologies can make the job of requirement engineering much easier and faster. 
However, this very much depends on the quality of the ontology that is used. 
Some security ontologies for security requirements have been proposed in the 
literature. None of them stands out as complete. This paper presents a core and 
generic security ontology for security requirements engineering. Its core and 
generic status is attained thanks to its coverage of wide and high-level security 
concepts and relationships. We implemented the ontology and developed an 
interactive environment to facilitate the use of the ontology during the security 
requirements engineering process. The proposed security ontology was 
evaluated by checking its validity and completeness compared to other 
ontologies. Moreover, a controlled experiment with end-users was performed to 
evaluate its usability.  

Keywords: Security, ontology, concepts, security requirements, elicitation. 

1 Introduction 

Security has moved from being considered by Information Systems (IS) designers as 
a technical topic to becoming a critical issue in our society [1]. With the growing 
digitization of activities, IS are getting more and more complex. They must comply 
with new usages, varied needs, and are permanently exposed to new vulnerabilities. 
There is no single week without an announcement indicating that the IS of some 
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private or public organization was attacked. The cost of cybercrime in 2012 reached 
$110B in the world [2]. It has been reported recently that attacks to sensitive data 
increased by 62% in 2013 with 253 incidents observed and 552 million identities 
stolen [44]. A major obstacle that faces analysts, and requirements engineers, is the 
fact that knowledge about security is most often tacit, imprecisely defined and non-
formalized. Among the challenges for security projects is the difficulty of expressing 
security requirements and producing exhaustive specifications. A requirement 
prescribes a condition judged necessary for the system [3]. Security Requirements 
Engineering (SRE) methods derive security requirements using specific concepts, 
borrowed from security engineering paradigms [4]. It is well known that ontologies 
are useful for representing and inter-relating many types of knowledge of a same 
domain. Thus, the research community of information system security [5] urged the 
necessity of having a good security ontology to harmonize the vaguely defined 
terminology, leading to communication troubles between stakeholders. The benefits 
of such a security ontology would be manifold: it would help requirements engineers 
reporting incidents more effectively, reusing security requirements of the same 
domain and discussing issues together, for instance [6]. Several research studies have 
addressed the issue of knowledge for the field of security [7][8]. The research 
presented in this paper is part of a larger ongoing research project that aims at 
proposing a method that exploits ontologies for security requirements engineering [9]. 
In [9], a small security ontology was first used for the elicitation and analysis of 
security requirements.  Being “small”, the ontology used affected the resulting 
requirements and the whole security requirements analysis process.  In a previous 
research, several security ontologies were compared and classified [7]. The paper 
concluded that ontologies are good sources for security requirements engineering. 
However the quality of the resulting security requirements depends greatly on  
the ontologies used during the elicitation and analysis process. To cope with the 
aforementioned issues, this paper proposes a core security ontology that considers  
the descriptions of the most important concepts related to security requirements and 
the relationships among them. “Core” refers to the union of knowledge (high-level 
concepts, relationships, attributes) present in other security ontologies proposed in the 
literature. As Massacci et al. claims, “Although there have been several proposals for 
modeling security features, what is still missing are models that focus on high-level 
security concerns without forcing designers to immediately get down to security 
mechanisms”[15]. Meta-models can be useful since they provide an abstract syntax of 
security concepts. However, we believe that ontologies can be a better option since 
they allow representing, accessing, using and inferring about that knowledge in order 
to develop methods, techniques, and tools for security requirements analysis. 
According to [16], a good security ontology should inter alia include static knowledge 
(concepts, relationships and attributes), and dynamic knowledge (axioms). It must be 
reusable (commented in natural language, and formalized in a standard language). 
The main objective of this paper is to address the following research questions: What 
are the concepts and relations that need to be present in a core security ontology? 
And how to make this ontology easy for requirements engineers to use?  This 
ontology should make it possible to: (a) Create a generic platform of different security 
concepts (threats, risks, requirements, etc.). (b) Create a source of reusable knowledge 
for the elicitation of security requirements in various projects.  
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The rest of the paper is organized as follows: Section 2 presents the construction of 
the ontology, its concepts and relationships. Section 3 reports the evaluation of the 
proposed ontology. Related works are presented in Section 4 through a literature 
review. Finally, Section 5 concludes the paper and describes future work directions. 

2 A Core Security Ontology for Security Requirements 
Engineering 

This section presents the main contribution of this paper, a core security ontology to 
be used particularly for security requirements elicitation process. The method for 
constructing the security ontology is adapted from ontology construction methods 
proposed by Fernandez [25], mixed with key principles of the ones proposed by Jones 
et al. [26]. The construction process contains six main steps: objective, scope, 
knowledge acquisition, conceptualization, implementation, and validation. The 
objective behind the ontology construction must be defined in the beginning, 
including its intended uses, scenarios of use, end-users, etc. The scope stipulates the 
field covered by the ontology. The knowledge acquisition step aims at gathering from 
different sources the knowledge needed for the ontology construction. In the step of 
conceptualization, the knowledge is structured in a conceptual model that contains 
concepts and relationships between them. Ontology implementation requires the use 
of a software environment such as Protégé1; this includes codifying the ontology in a 
formal language (RDF or OWL/XML). Finally, the validation step guarantees that the 
resulting ontology corresponds to what it is supposed to represent. The details about 
how the first five steps were applied to construct our ontology are presented in the 
following sub-sections and the last step is detailed in Section 3.  

2.1 Objective  

The main objective of the target ontology is to provide a generic platform containing 
knowledge about the core concepts related to security (threats, vulnerabilities, 
countermeasures, requirements, etc.). This ontology will be a support for the 
elicitation of security requirements and the development of SRE methods and tools. 
The ontology will be a meta-view for the different security ontologies in the literature. 
It should harmonize the security terminology spread in these ontologies and help 
requirements engineers communicate with each other.  

2.2 Scope of the Ontology 

The ontology covers the security domain in its high level aspects (threats and 
treatments) as well as its organizational ones (security procedures, security 
management process, assets, and persons). The reader will find details on all security 
concepts covered by the ontology in section 2.4.below on. 

                                                           
1 http://protege.stanford.edu/ 
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2.3 Knowledge Acquisition 

The acquisition of the security knowledge started from standards (e.g. ISO27000). 
Other knowledge acquisition sources were the different security ontologies that exist 
in the literature. We analyzed about 20 security ontologies, based on previous 
literature surveys; the full list of these ontologies can be found in [7] and [8]. These 
ontologies are of various levels (general, specific, for a particular domain). Relevant 
concepts and relationships were extracted through a systematic and syntactic analysis 
of the security ontologies (their concepts and relations). Table 8 in the appendix 
presents part of them (13 ontologies). For the sake of space, we cannot provide the 
reader with the description of all the ontologies used as a source of knowledge for the 
ontology. Brief descriptions of some of them are presented in the following:  
- The ISSRM model [27] (top left in Fig. 1.) was defined after a survey of the risk 
management standards, security related standards, and security management methods. 
The three groups of concepts proposed in the ISSRM model (asset related concepts, 
risk related concepts, and risk treatment related concepts) were used to define the 
three dimensions of the ontology (organization, risk, treatment). 
- Fenz et al. [24] have proposed an ontology to model the information security 
domain. We reused some concepts and relationships of that ontology, in particular the 
ones related to the infrastructure of organizations (assets, organization), the 
relationships between threats and assets, and between threats and vulnerabilities. We 
also reused some standard controls used in Fenz’s ontology to define our security 
requirements.  
- Lashras et al.’s security requirements ontology [12] was useful to define the security 
requirements in our ontology. 

Fig. 1 schematizes the knowledge acquisition step and part of the conceptualization 
phase, starting with the knowledge sources (the different ontologies), the concept  
 

 

Fig. 1. Knowledge acquisition and conceptualization phases 
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alignment, and the conceptualization with the help of experts and documents. The 
concepts of the resulting ontology were derived from the alignments of the different 
security ontologies in the knowledge acquisition step. The knowledge and the 
conceptualization steps were performed manually relying essentially on tables to align 
the concepts and relations of the different source ontologies. 

2.4 Conceptualization 

Based on the outcomes of the knowledge acquisition step, concepts were organized 
and structured in a glossary. Various relationships among these concepts were 
considered, and then were put together in a conceptual model of the ontology (Fig. 4 
in the appendix), easy to understand, independently of any implementation language. 
The names of the concepts and the relationships of the security ontology proposed in 
this paper were chosen according to the number of occurrences of names in the source 
ontologies (Table 8 in the appendix). If a concept has different names in the 
ontologies (e.g. impact or consequence, attack method or deliberate attack, or 
SessionIP attack); the most generic or easiest to understand name was chosen (here, 
impact, attack method). Some security experts (5 experts) were consulted to validate 
the choices that were made. The validation was informal and took the form of email 
exchanges, phone and direct discussions. The experts acknowledged most of the 
concepts and relationships between them. Some refinements in the ontology were 
performed after discussion with them. For example, the concept of “Attack” was 
removed, since the experts consider it as an Intentional Threat. Discussions also 
clarified the difference between the concepts of “Security Goal”, “Security Criterion”, 
“Security Requirement” and “Control”. These concepts are frequently mixed up in the 
security requirements elicitation phase and the difference between them is often not 
easy to capture. The concepts were organized around three main dimensions. The 
latter are: Risk dimension, Treatment dimension, and Organization dimension. In 
ontology engineering terms [45]: the Risk, Treatment and Organization dimensions 
are considered as modules. The Risk dimension represents the “dark” face of security; 
it gathers concepts related to threats, vulnerabilities, attacks, and threat agents. 
Treatment dimension is concerned with concepts related to the necessary treatments 
to overcome risks. The concepts are security goals, requirements, controls, and 
security policies. Finally, security is a multifaceted problem; it is not only about 
technical solutions or single assets, but also about the environment where threats 
appear and arise. That is why the Organization dimension is considered. This 
dimension relates to concepts such as person, location, assets, and organization that 
must be analyzed and on which assumptions must be match in a security requirements 
elicitation process. Some ontologies covered only the dimension treatment [12]. The 
security ontology proposed by Fenz et al. [24] groups concepts into three sets 
(security, enterprise and location). The classification into these three dimensions 
(organization, risk and treatment) helps in organizing the knowledge related to 
security; it has been inspired by the security meta-model proposed in [27]. The 
concepts and relationships of the ontology are described in the following sub-section. 
To visualize the different concepts and relations, the reader may refer to Fig.4. 
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1) Concepts of the Security Ontology 

The following summarizes the different concepts identified for the ontology with their 
respective descriptions. These general concepts together with their relations constitute 
the ontology, which presents an overview of the information security in a context-
independent manner. In the following, we describe the concepts dimension by 
dimension.  

a) Organization dimension: This dimension includes the concepts related to the 
organization, its assets and its environment. The concepts are: 
Organization: a structure including human, hardware, and software resources (assets). 
Person: Represents human agents. A person may be internal in the organization (e.g., 
administrator) or external (e.g., customer).  
Asset: a valuable resource, which can be a tangible asset (e.g., air-conditioning, fire 
extinguisher, computers) or an intangible asset. Intangible assets can be, for example, 
software, data, and industrial manufacturing processes. 
Location: Defines the asset’s location. Location can be a brick and mortar physical 
location such as a classroom, data center or office. It can also consist of collaborative 
research materials on a file share or financial information stored in a database [28]. 

b) Risk dimension:   The concepts of the risk dimension are: 
Risk: a combination of a vulnerability and threat causing harm to one or more asset. 
Severity: the level of risk, e.g. high, medium or low. 
Threat: a violation of a security criterion. The threat may be natural, accidental, or 
intentional (attack). 
Vulnerability: a weakness of an asset or group of assets that can be exploited by one 
or more threats [29] (e.g., weak password). 
Impact: the impact may vary from a simple loss of availability to loss of the entire 
information system control. Impact can also be of other types such as harm to the 
image of the company. 
Threat agent: the person (or program) who carries out the threat. The name ‘threat 
agent’ was chosen to cover both types of threat, either intentional (carried out by an 
attacker) or unintentional (carried out by any person, not necessarily an attacker).  
Attack method: Refers to the different methods used by threat agents to accomplish 
their attacks, such as sniffing (which lets threat agents capture and analyze traffic 
transmitted over a network); spoofing (where the threat agent attempts to impersonate 
someone or something else); and social engineering (tricking people into giving 
sensitive information or performing actions on behalf of the threat agent). 
Attack tool: The tool used to perform the attack, e.g. sniffing tool (e.g., Wireshark2), 
spoofing tool (e.g. Subterfuge3), scan port tool (e.g., Nmap4) and others. 
 
 

                                                           
2 http://www.wireshark.org/ 
3 http://code.google.com/p/subterfuge/downloads/list 
4 http://nmap.org/ 
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c) Treatment dimension: 
Security goal: a security goal defines what a stakeholder/organization hopes to 
achieve in the future in terms of security [27], it states the intention to counter threats 
and satisfy security criteria. Security goals are sometimes considered as security 
objectives [47]. 
Security Requirement: a condition defined on the environment that needs to be 
fulfilled in order to achieve a security goal and mitigate a risk. Depending on what we 
want to protect and on the target security level, we define our requirements. They can 
be related to databases, applications, systems, organizations, and external 
environments. For example, “the system shall ensure that personal data can be 
accessed only by authorized users” and “the system shall deliver data in a manner that 
prevents further or second hand use by unauthorized people”. 
Control: a means or a way to secure assets and enable a security requirement, e.g., 
alarm or password. 
Security criterion: defines security properties such as confidentiality, integrity, 
availability, and traceability. It can also be considered as a constraint on assets. 
Requirements document: The document that states in writing the necessary security 
requirements to protect the assets. Two main documents generally contain security 
requirements: 

- Security policy: a security policy expresses the defense strategy or strategic 
directions of the information security board of an organization. 

- Specification document: it gathers the set of requirements to be satisfied by a 
material, design, product, or service. The document contains, inter alia, security 
requirements. 

2) Relationships of the Security Ontology 

High-level relationships between those concepts were defined. They were categorized 
into four kinds: IsA, HasA, SubClassOf and AssociatedTo. The relationships between 
the concepts of the security ontology can be briefly described as follows: An 
organization has assets (Has_Asset). An asset may have a location (Has_Location). 
Tangible and intangible assets are subclasses of the asset concept (SubClassOf). An 
organization also includes persons that it deals with (Has_Person). The persons can be 
internal or external (SubClassOf). An asset is threatened by one or many threats 
(Threatens). These threats exploit vulnerabilities in the assets (Exploits). The threat-
agent leads an attack (LeadBy) and uses attack methods (UseMethod) or attack tools 
(UseTool) to achieve an attack. A threat implies an impact (Implies), for example: “A 
denial of service attack implies a server downtime”. The impact affects one or more 
assets (Affect). A threat can be natural, intentional, or accidental (SubClassOf). A 
threat generates a risk (Generate) with a certain level of severity (HasSeverity). 
Security requirements mitigate a risk (Mitigate) and satisfy (Satisfy) security goals 
expressed by stakeholders (ExpressedBy). Security requirements fulfill (Fulfills) one 
or more security criteria. For instance, the requirement “The application shall ensure 
that each user will be able to execute actions for which he/she has permission at any 
time/every week” satisfies the security criteria Confidentiality and Availability. 
Controls enable a security requirement (Enable). For example, the control “password” 
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enables the requirement “The application shall ensure that each user will be able to 
execute actions for which he/she has permission”. Security policies and specifications 
incorporate (Includes) security requirements; these may either be security software 
requirements (SubClass), which relate to the security of applications or databases, or 
security organizational requirements (SubClass), which relate to assets, persons, or 
buildings. 

3) Attributes and Axioms of the Security Ontology 

In addition to concepts and relationships, an ontology contains axioms and attributes. 
Formal axioms are assertions accepted as true about abstractions of a field. The 
axioms allow us to define the meaning of concepts, put restrictions on the values of 
attributes, examine the conformity of specified information, or derive new concepts 
[30]. As stated before, the ontology proposed in this paper was not created from 
scratch. It was constructed by reusing knowledge of existing security ontologies. In 
particular, some attributes (see Table 1) of the ontology proposed by [31] were 
reused. For instance, a person has a phone number (its type is Integer); a requirements 
document has a version (its type is String). 

Table 1. Part of the table of attributes 

Concept Attribute Value type

Person Phone number Integer 

Software Version String

   

Requirement 
Document 

Version String

  

Password Minimum length Varchar

 
The ontology proposed by [24] was a good source of axioms. Table 2 illustrates 

some axioms with their descriptions and the related concepts. 
 

Table 2. Part of the table of axioms 

 
Fig. 4 in the appendix presents the security ontology proposed in this paper. It 

includes the three dimensions, including concepts and relationships. 



 A Security Ontology for Security Requirements Elicitation 165 

2.5 Implementation of the Ontology 

Among the different editors of ontologies (OntoEdit [32], Ontolingua [33] and 
Protégé [34]). Protégé (version 3.4.8) was chosen since it is an extensible, platform-
independent environment for creating, editing, viewing, checking constraints, and 
extracting ontologies and knowledge bases. Ontologies via Protégé can be developed 
in a variety of formats. OWL 1.0 (Web Ontology Language) was used for the 
development of the ontology as recommended by the World Wide Web Consortium 
(W3C). To test and extract relevant knowledge from the security ontology, SQWRL 
(Semantic Query-Enhanced Web Rule Language) was used. SQWRL is a SWRL-
based (Semantic Web Rule Language) for querying OWL ontologies. The description 
of SQWRL syntax is beyond the scope of the paper; readers may refer to O'Connor et 
al. [35] for further details. Some indicative queries are presented later in the next 
section. Implementing the core security ontology with OWL and Protégé is not 
enough. The target end-users are requirements engineers who are asked to elicit 
security requirements for different projects, on which they have a tacit knowledge. 
The ontology will provide the necessary security knowledge in a formalized and 
explicit form. It also makes available a set of reusable security requirements. To make 
it usable even for end users not familiarized with Protégé and SQWRL, an interactive 
environment based on Eclipse was developed. Fig. 2 illustrates the architecture of the 
tool. The interactive environment facilitates the exploration of the ontology. It 
automatically and dynamically generates the necessary. SQWRL queries and rules for 
obtaining the information related to assets, organization, threats, vulnerabilities, and 
security requirements. The interactive environment makes it possible to generate a 
specification (a Word document) that summarizes the result of the analysis. Protégé 
plays the role of the engine; it is intended to wait for SQWRL queries (it plays a 
passive role in the communication with the end user). Once a query is received,  
 

 

Fig. 2. Architecture of the interactive environment 
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Protégé processes it and then sends the result to the interactive environment. With this 
architecture, Protégé is opaque to the requirements engineers; i.e., the requirements 
engineers do not interact directly with it.  

A screenshot of the user interface is presented in Fig. 3. In particular, this figure 
presents part of the interface; a typical security requirements analysis process was 
performed, with 3 main windows: valuable asset identification (on the left side), risk 
analysis, and security requirements elicitation (on the right side).  

 

  

Fig. 3. A screenshot of the interactive environment5 

The interactive environment allows the user to choose the organization. It displays 
the persons involved and the list of all assets with their corresponding locations. It 
also allows the user to choose valuable assets that he/she wants to protect. The latter 
are displayed on the left. For each asset the environment displays the corresponding 
threats (threat agents, impact and generated risk of each threat). For each chosen 
threat, the environment displays the corresponding vulnerabilities. And finally, for all 
chosen vulnerabilities, the resulting list of security requirements to mitigate them is 
presented. The “Save” button leads to the generation of the specification document 
that summarizes the analysis and the relevant security requirements.  

3 Evaluation  

Given that our goal was to develop an ontology covering the high-level concepts of 
security, and make it (re)usable by the requirements engineering community, the 
focus was on the following criteria: 
                                                           
5 A demonstration video can be viewed at: http://youtu.be/zwGbe0Z_mTE 



 A Security Ontology for Security Requirements Elicitation 167 

• Completeness: this criterion will be evaluated by mapping the target ontology and 
some other ontologies extracted from literature. The focus was mainly on security 
ontologies that have been used in security requirements engineering [9][10][11][12]. 

• Validity: Through this criterion, the ability of the ontology to provide reliable 
answers to a set of questions using its terminology was checked. 

• Usability: This criterion refers to the “extent to which a product can be used by 
specified users to achieve specified goals with effectiveness, efficiency and 
satisfaction in a specified context of use"6. In our case, it demonstrates that the 
ontology can be used for security requirements elicitation, and reused through 
different projects.  

3.1 Completeness  

The completeness criterion verifies that our ontology integrates the knowledge that 
exists in the other ontologies. By completeness, we want to prove that the proposed 
ontology is ‘more’ complete than the ones covered by our literature. An alignment 
table was drawn up, with the concepts of our ontology on one side, and concepts of 
security ontologies found in security requirements engineering literature on the other 
side. Table 3 presents the result of the alignment. 

 

Table 3. The alignment table of the proposed security ontology with ontologies used for 
security requirements elicitation 

Ontologies used for security requirements elicitation 

Concepts of 
the ontology 

Daramola et 
al. [11] 

Ivankina et al. 
[10] 

Lashras et al. 
[12]  

Salini et al. 
[13]  

Dritsas et al. 
[14] 

Asset Asset Asset Asset Asset Asset 
Location - - - - - 
Organization - - - - - 
Person 

- - - Stakeholder Stakeholder 

Threat 
Threat/ 
Active attack 

- Threat Threat 
Threat/ 
Deliberate 
attack 

Vulnerability - Threat causes - Vulnerability Vulnerability 
 Risk  - - Risk - - 
Severity 

- - 
Valuation 
criteria 

- - 

Impact - - - Impact severity - 
Threat agent - - - - Attacker 
Attack tool - - - - - 
Attack 

method 
Code 
injection 

- - - - 

Security goal - - - - Objective 
Security 

criterion 
- - - Security objective 

Security 
requirement 

Security 
requirement 

- Treatment 
Security 
requirement 

Security 
requirement 

- 

Control 
- - Safe guard - Countermeasure 

                                                           
6 According to: ISO 9241-11.   
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Most of the security ontologies used in the SRE contain the concept of “Asset”. 
Given that security issues affect all the infrastructure of organizations, other concepts 
were introduced (with their corresponding sub-classes): Location, Organization and 
Person. While many of the other security ontologies take into consideration the 
concept Threat, most of them neglect the concept Risk generated by a threat, and its 
Severity. Only the ontology proposed by Dritsas et al. [14] uses the concept of 
“Attacker”. Only the ontology used by Daramola et al. [11] includes the concept of 
“Attack Method”. Our proposed security ontology covers the concept “Objective” 
used by Dritsas et al. [13]. The concept “Security Criterion”, missing in the security 
ontologies [11], [10] and [12] was used in [13] and [14]. Note that [14] considers as a 
‘security requirement’ what other sources consider a ‘security criterion’ (availability, 
confidentiality ...).  The concept “Security Requirement” was used in [10], [12] and 
[13]. These results tend to demonstrate that the proposed security ontology is 
complete with respect to the union of all the other security ontologies used in security 
requirements studies, since it incorporates all their concepts. 

3.2 Validity  

According to Uschold & Gruninger [36], informal and formal questions are one way 
to evaluate an ontology. The ontology must be able to give reliable answers to these 
questions using its terminology. The ontology was applied to the maritime domain. 
For now, the application for domain specific cases is done manually, by instantiating 
the concepts of the core ontology with domain concepts. Ongoing work is being 
carried to automatize this instantiation. 

This section lists a number of questions that a requirements engineer is likely to 
encounter during the requirements elicitation phase of a development project. These 
questions should be regarded as indicative of what the ontology can deal with and 
reason about. Table 4 summarizes some of these questions. Each of the questions is 
expressed informally in natural language and formally using SQWRL. The answers to 
the questions are presented in the last column. These queries guide the requirements 
engineer during the security requirements elicitation process. The process includes: i) 
valuable assets identification (what are the assets of the organization? Where are they 
located? What are the persons involved in the organization?), ii) the risk analysis 
(what are the threats that threaten the asset? Who leads the attack? What is the  
attack method used?), and iii) security requirements elicitation (what are the  
security requirements to mitigate the risk? What are the controls needed to implement 
those security requirements? What are the security criteria that those requirements 
fulfill?) 
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Table 4. Informal and formal questions to the ontology 

 Queries Part of result 

V
al

ua
bl

e 
as

se
t 

id
en

ti
fi

ca
ti

on
 

What are the organizations in the scope of the project? Maritime organization X,  

Maritime organization Y  

Organization(?o)  sqwrl:select(?o)

What are the assets to be protected in the maritime organization X? What is 

the location of each asset?  

Ship, Navigation 

maps 

located in the bridge Has_Asset(Maritime_organizationX,?a) •  

Has_Location(?a, ?l)  

sqwrl:select(?a, ?l) 

R
is

k 
an

al
ys

is
 

What are threats that threaten the asset “ship”? Ship hijacking 
threatens(?T,Ship)  sqwrl:select(?T) 

Who is responsible for the threat “Ship hijacking”? Hijacker 

LedBy(Ship_hijacking,?A)sqwrl:select( 

?A) 

What is the method used by the hijacker to attract the ship? Fake distress signal  

Threat(Ship_hijacking)•Uses(Hijacker,?M)  

sqwrl:select (?M) 

What are the impacts of such a threat on the ship? Theft of provision, 

Hostage Implies(Ship_hijacking,?I) sqwrl:select(?I) 

Se
cu

ri
ty

 r
eq

ui
re

m
en

ts
 e

lic
it

at
io

n 

What are the security requirements to consider to mitigate the risk? Req1. 

Every Ship 

should be 

equipped 

with geolocalization 

products. 

Req2. 

Every Ship 

should be 

equipped 

with a 

listening 

system on 

board.

 

Exploits (Ship hijacking, V?) • mitigated_by(?V, 

?R) sqwrl:select(?r) 

 
This section has demonstrated how the security ontology could be exploited in the 

security requirements elicitation phase. This can bring the necessary knowledge to the 
requirements engineers. This sub-section has illustrated one possible application in 
the maritime field. 
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3.3 Usability  

To evaluate the usability of the core security ontology, a controlled experiment was 
performed with end users. The protocol of the experiment was adapted from 
experimental design and analysis methods [42][43]. In order to obtain a representative 
group of participants [37], we contacted by mail and phone people from security and 
requirements engineering communities (laboratories, associations, LinkedIn…). 
People (industrialists or researchers) not related to the field were intentionally 
excluded. We used the profile page, and the job position to include/exclude a 
participant. The day of the experiment, 10 participants were present. The average age 
was 30 years old. Three participants were certified ISO27000, and three had industrial 
experience with EBIOS [38] (a well-known French risk assessment method). Four 
were PhD students working on related subjects. The experiment included a 
presentation of the security ontology (its main concepts and relations), demonstration 
of the interactive environment, and a session of manipulation by the participants. At 
the end of the experiment, participants were asked to fill in a questionnaire7. The 
results extracted from these questionnaires are summed up in Tables 5, 6, 7. 

Table 5. Average grading usability 

 
 
 
 

 
 
 
 
 
 
 
First, the participants were asked to grade the usability of the ontology on a scale 

of 1 to 5 through three main questions:  (i) Do you find that the security ontology 
contains the main concepts for security requirements elicitation? (ii) Does the 
security ontology help in finding new elements (threats, vulnerabilities, security 
requirements, etc.)? (iii) Do you find the interface to access to security ontology easy 
to use? The scale (1 to 5) corresponds to the degree of agreement to the asked 
question. Thus (5 = strongly agree, 4 = agree, 3 = neither agree nor disagree, 2= 
disagree, 1= strongly disagree). Table 5 (page 12) shows a quite high level of 
satisfaction, which is encouraging. Most participants find that the security ontology 
includes the main concepts. It helps in discovering new elements even for those who 
are experts in security since it is not easy to bear in mind hundreds of threats, 

                                                           
7 The questionnaire can be consulted on: 
https://www.dropbox.com/s/cc40n31p3fucf4o/Sec%20Ont%20Evaluation
%20form.pdf?dl=0 
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vulnerabilities, and their corresponding security requirements. Almost all participants 
liked the interactive environment, and revealed that is nice to have the code of the 
ontology (in OWL-Protégé) hidden.  Among the positive qualitative feedbacks that 
were provided by participants:  "I find in the ontology all concepts that are used in 
risk analysis methods such as EBIOS". One participant mentioned that: “The ontology 
seems to have main concepts and individuals, however it would be nice to update it 
constantly, there are new threats appearing every day!”. That was an interesting point 
that could be improved in the future by providing a mechanism to update 
automatically the individuals of the security ontology.  

The second series of questions were particularly devoted to the next stages of the 
research project and their answers constitute an important input for future work. The 
participants were asked: (iv) Does the core security ontology help in building security 
models? Secure Tropos models [39] were taken as an example of a security modeling 
framework.  It was presented to participants who did not know it before.  

 
 
Table 6 reports the results for question (iv). Most participants find it difficult to 

pass from the concepts of the core security ontology to the concepts of Secure Tropos. 
A common answer was: "We understand the existence of connections but the mapping 
from the core security ontology to Secure Tropos is not straightforward". The 
discussion with participants that followed this question shows that, although the 
security ontology has the main concepts, relations and individuals, this is still not 
enough for users to build security models with it. More guidelines or mapping rules 
are necessary, not for the ontology itself but for the process of using it for security 
requirements elicitation. The last question was: (v) does the security ontology help in 
eliciting security requirements for other specific domains (health, military, and 
bank)? We wanted to know if the security ontology helps in providing more security 
domain specific knowledge each time one switches from a domain to another one.  
Table 7 reports results for question (v) and shows that most participants “disagree” on 
the fact that the security ontology by itself is sufficient for eliciting security 

Table 6. Does the core security ontology 
help in building Secure Tropos models?  

Table 7. Does the security ontology 
help in eliciting security requirements 
for other specific domains?
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requirements for different specific domains. One participant mentioned “something 
additional is required for the application to different specific domains”. The ontology 
can be used in different application contexts with some extra collaboration with 
domain experts, consulting documentation. On the current research phases, we are 
trying to make the process automatic by using the core security ontology with 
different domain ontologies.   

4 Security Ontologies: Related Works 

Considerable works have been devoted to knowledge in the field of security. 
Schumacher [46] proposed a security ontology and qualifies it as “Core Ontology”. 
This ontology was a good beginning but omits organizational related concepts and 
some other key concepts such as attack method and attack tool, or security criteria and 
controls. Undercoffer et al. [17] propose an ontology that characterizes the domain of 
computer attacks and intrusions. The ontology covers concepts such as host, system 
component attack, input and consequence. Geneiatakis and Lambrinoudakis [18] 
propose an ontology for SIP-VoIP (Session Initial Protocol-VoIP) based services. 
Denker et al. [19][20] develop several ontologies for security annotations of agents 
and web services, using DAML (DARPA Agent Markup Language) and later OWL. 
Karyda et al. [21] present a security ontology for e-government applications. Tsoumas 
et al. [22] define a security ontology using OWL and propose the security framework 
of an information system which provides security acquisition and knowledge 
management. Herzog et al. [23] propose an ontology based on the following top-level 
concepts: assets, threats, vulnerabilities and countermeasures. Some approaches 
considered modeling security ontologies such as [48]. To our knowledge, ontologies 
of this kind come close to being meta-models, in that they are used more to share a 
common understanding of the structure of the modelling language than to enable 
reuse of knowledge. Fenz and Ekelhart [24] propose an ontology that targets a similar 
goal but attempts to cover a broader spectrum: their ontology models the information 
security domain, including non-core concepts such as the infrastructure of 
organizations. A large part of these studies deal with the development of low-level 
ontologies limited to a particular domain. A previous survey [7] classifies the existing 
security ontologies into eight main families: theoretical basis, security taxonomies, 
general, specific, risk based, web oriented, requirements related and modeling. The 
analysis of these ontologies reveals that they vary a lot in the way they cover security 
aspects as reported in previous work [7]. The results converge with those of Blanco et 
al. who conducted a systematic review of security ontologies [8].  

5 Conclusion and Future Work 

This paper presents a core ontology for the IS security requirements elicitation and 
analysis process. The completeness of this ontology was evaluated with regards to 
existing security ontologies used in security requirements engineering methods. An 
interactive environment was developed to facilitate its use and reuse. The controlled 
experiment demonstrated that the ontology helps requirements engineers in eliciting 
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security requirements by allowing them to exploit security-structured knowledge. 
This was made possible via the interactive environment that dynamically generates 
the necessary queries. Despite all this effort, the goal of constructing this kind of 
security ontologies remains ambitious and was found to be more complex than 
expected. One single team’s work is not enough. This research should be of a more 
collaborative nature including many teams working on security ontologies. A truly 
complete security ontology remains a utopian goal. However, in the case of this 
proposed ontology, it can be improved by considering other sources related to security 
expertise (not mainly ontologies as was the case in this work). The controlled 
experiment could be performed with a larger number of participants to improve the 
validity of the results.   

In future work, we plan to integrate the ontology and its reasoning features with 
existing approaches for security requirements analysis (Secure Tropos, KAOS, and 
others). We plan to make this security ontology more domains-specific by relying on 
domain ontologies. On the technical level, the plan is to keep the ontology up to date 
and perform the necessary migrations to the latest available versions (OWL/Protégé). 
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Appendix 
 
Fig. 4 in the appendix presents the core security ontology. Table 8 in the appendix 
was built up for ontology concepts definition. It includes the ontologies used as an 
entrance point. 
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Abstract. Many security-sensitive programs manage resources on behalf of mu-
tually distrusting clients. To control access to resources, authorization hooks are
placed before operations on those resources. Manual hook placements by pro-
grammers are often incomplete or incorrect, leading to insecure programs. We
advocate an approach that automatically identifies the set of locations to place
authorization hooks that mediates all security-sensitive operations in order to en-
force expected access control policies at deployment. However, one challenge
is that programmers often want to minimize the effort of writing such policies.
As a result, they may remove authorization hooks that they believe are unneces-
sary, but they may remove too many hooks, preventing the enforcement of some
desirable access control policies.

In this paper, we propose algorithms that automatically compute a minimal
authorization hook placement that satisfies constraints that describe desirable ac-
cess control policies. These authorization constraints reduce the space of en-
forceable access control policies; i.e., those policies that can be enforced given a
hook placement that satisfies the constraints. We have built a tool that implements
this authorization hook placement method, demonstrating how programmers can
produce authorization hooks for real-world programs and leverage policy goal-
specific constraint selectors to automatically identify many authorization con-
straints. Our experiments show that our technique reduces manual programmer
effort by as much as 58% and produces placements that reduce the amount of
policy specification by as much as 30%.

1 Introduction

Programs that manage resources on behalf of mutually distrusting clients such as
databases, web servers, middleware, and browsers must have the ability to control
access to operations performed when processing client requests. Programmers place
authorization hooks1 in their programs to mediate access to such operations2. Each au-
thorization hook guards one or more operations and enables the program to decide at
runtime whether to perform the operations or not, typically by consulting an access
control policy. The access control policy is deployment-specific and restricts the set of
operations that each subject is allowed to perform as shown in Figure 1.

1 Authorization Hooks are also known as Policy Enforcement Points.
2 There are several projects specifically aimed at adding authorization hooks to legacy programs

of these kinds [4, 5, 10, 11, 16, 20].
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O1 O2

Access?(Subject, O1)

O1 O2

Access?(Subject, O2)

Access?(Subject, O1)

allow Subject1 O1
allow Subject2 O1
allow Subject3 O1
allow Subject4 O1
allow Subject5 O1

allow Subject1 O2
allow Subject2 O2
allow Subject3 O2
allow Subject4 O2
allow Subject5 O2

allow Subject1 O1
allow Subject2 O1
allow Subject3 O1
allow Subject4 O1
allow Subject5 O1

Access Control Policy Access Control Policy 

(a) Automated Hook Placement (b) Manual Hook Placement

Fig. 1. Figure showing the effect of hook placement granularity on access control policy

There are two main steps programmers perform when placing authorization hooks
in programs. First, they must locate the program operations that are security-sensitive.
Researchers [7–9, 13, 17] have examined different techniques to infer this using a com-
bination of programmer domain knowledge and automated program analysis. Second,
programmers must decide where to place authorization hooks to mediate these security-
sensitive operations. Finding location to place authorization hooks is akin to finding
joinpoints in aspect-oriented programming. Prior automated approaches have suggested
hook placements that are very fine grained when compared to placements generated
manually by programmers. Understanding this difference is crucial to developing tools
for automated hook placement and is the focus of this paper.

The granularity of authorization hook placement affects the granularity of access
control policies that must be written for deploying programs. Placing hooks at a very
fine granularity means that the access control policy that needs to be written to deploy
the program becomes very fine-grained and complex, hindering program deployment.
Consider the example (a) in Figure 1 where an automated approach places hooks at two
distinct security-sensitive operations O1 and O2. If there are five subjects in a deploy-
ment, then the policy may need up to 10 rules to specify that the five subjects should
have access to both operations.

To facilitate widespread adoption of their programs, programmers want to avoid
complex access control policies at deployment. Consequently, they use their domain
knowledge to trade off flexibility of the access control policies in favor of simplified
policies. For example, an expert may know that when policies are specified for the pro-
gram, every subject who is authorized to perform O1 must also be authorized for O2.
With respect to authorization, O1 and O2 are equivalent and therefore it is sufficient to
insert one hook to mediate both operations as shown in part (b) of Figure 1, resulting in
a smaller policy with only five rules.

Minimality in hook placement must be balanced by the two main security require-
ments of enforcement mechanisms - complete mediation [2], which states that every
security-sensitive operation must be preceded by an appropriate authorization hook, and
the principle of least privilege, which states that access control policies only
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authorize permissions needed for a legitimate prurpose. At present, programmers make
these trade-offs between minimality, complete mediation and least privilege manually,
which delays the introduction of needed security measures [16] yet still requires many
refinements after release.

Authorization Constraints. We believe that making the programmers’ domain knowl-
edge explicit is the key to solving the problem of authorization hook placement. We
propose an approach that is based on programmers specifying constraints on program
operations (e.g., structure member accesses), which we call authorization constraints.
Authorization constraints restrict the access control policies that may be enforced over
a set of operations. We use two kinds of constraints in our system. First, operation-
equivalence means that two distinct security-sensitive operations on parallel code paths
must be authorized for the same set of subjects, which enables a single authorization
hook to mediate both. The second kind is operation-subsumption, meaning that a sub-
ject who is permitted to perform one operation must be allowed to perform the second
operation. Therefore, if the second operation follows the first in a code path, then an
authorization hook for the second operation is unnecessary.

To use authorization constraints to place authorization hooks automatically, we have
to overcome two challenges. First, given a set of authorization constraints, a method
needs to be developed to use these constraints to minimize the number of authorization
hooks placed to enforce any policy that satisfies the constraints. Second, there should
be a method to help programmers discover authorization constraints. In this paper, we
provide solutions to both of these challenges.

Minimizing Hook Placement. We address the first challenge by developing an algo-
rithm that uses authorization constraints to eliminate hooks that are unnecessary. Specif-
ically, we show that: (1) when operations on parallel code paths are equivalent, the
hook placement can be hoisted, and (2) when operations that subsume each other also
occur on the same control-flow path, we can remove the redundant hook. This method
is shown to produce a minimal-sized3 hook placement automatically can enforce any
access control policy that satisfies the authorization constraints.

Discovering Authorization Constraints. In order to help programmers avoid the cum-
bersome task of writing complete authorization constraints, we introduce the notion of
constraint selectors. These selectors are able to make a set of constraint choices on
behalf of the programmer based on higher-level goals. For example, suppose the pro-
grammer’s goal is for her program to enforce multi-level security (MLS) policies, such
as those expressed using the Bell-La Padula model [3]. The Bell-La Padula model only
reasons about read-like and write-like operations, so any two security-sensitive oper-
ations that only perform reads (or writes) of the same object are equivalent. Thus, a
constraint selector for MLS guides the method to create equivalence constraints auto-
matically for such operations.

We have designed and implemented a source code analysis tool for producing autho-
rization hook placements that reduce manual decision making while producing place-
ments that are minimial for a given set of authorization constraints. The tool requires

3 Minimality in hook placement is conditional on having precise alias analysis and path sensitive
analysis.
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only the program source code and a set of security-sensitive operations associated with
that code, which can be supplied by one of a variety of prior methods [7–9, 13, 17].
Using the tool, the programmer can choose a combination of constraint selectors, pro-
posed hook placements, and/or hoisting/removal choices to build a set of authorization
constraints. Once constraints are established, the tool computes a complete authoriza-
tion hook placement that has minimum number of hooks with respect to the constraints.
We find that using our tool reduces programmer effort by reducing the number of pos-
sible placement decisions they must consider, by as much as 67%. Importantly, this
method removes many unnecessary hooks from fine-grained, default placements. For
example, simply using the MLS constraint selector removes 124 hooks from the default
fine-grained placement for X Server.

In this paper, we demonstrate the following contributions:

– We introduce an automated method to produce a minimal authorization hook place-
ment that can enforce any access control policy that satisfies a set of authorization
constraints.

– We simplify the task of eliciting authorization constraints from programmers, by
allowing them to specify simple high level security goals that are translated into
authorization constraints automatically.

– We evaluate a static source code analysis that implements the above methods on
multiple programs, demonstrating that this reduces the search space for program-
mers by as much as 58% and produces placements that reduce the number of hooks
by as much as 30%

We believe this is the first work that utilizes authorization constraints to reduce pro-
grammer effort to produce effective authorization hook placements in legacy code.

2 Motivation

2.1 Background on Hook Placement

Authorization is the process of determining whether a subject (e.g., user) is allowed to
perform an operation (e.g., read or write an object)4 by checking whether the subject
has a permission (e.g., subject and operation) in the access control policy that grants
the subject with access to the operation. Authorization is necessary because some op-
erations are security-sensitive operations, i.e., operations that cannot be performed by
all subjects, so access to such operations must be controlled. An authorization hook is
a program statement that submits a query to check for an authorizing permission in the
access control policy. The program statements guarded by the authorization hook may
only be executed following an authorized request (control-flow dominance). Otherwise,
the authorization hook will cause some remedial action to take place.

Related Work: The two main steps in the placement of authorization hooks are the
identification of security-sensitive operations and the identification of locations in the

4 We acknowledge that many access control policies distinguish objects (e.g., files) from the
accesses (e.g., read or write), which are often called operations. We define operations to include
the object and access type in this paper.
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WindowPtr * pChild = 
pWin->firstChild->nextSib

pChild->mapped  = True

PropertyPtr * pProp = 
pWin->userProps->next
       

pProp->data = data
pProp->size = size

pWin->mapped = True

Resource res = ClientTable[i]
WindowPtr * pWin = (WindowPtr *) res

MapSubwindows

MapWindow

ChangeWindowProperty

Fig. 2. Hook Placement for functions MAPWINDOW, MAPSUBWINDOWS, and CHANGE

WINDOWPROPERTY

code where authorization hooks must be placed in order to mediate such operations. Past
efforts focused mainly on the first problem, defining techniques to identify security-
sensitive operations [6–9, 13, 15, 17–19, 23]. Initially, such techniques required pro-
grammers to specify code patterns and/or security-sensitive data structures manually,
which are complex and error-prone tasks. However, over time the amount of infor-
mation that programmers must specify has been reduced. In our prior work, we infer
security-sensitive operations only using the sources of untrusted inputs and language-
specific lookup functions [13].

When it comes to the placement of authorization hooks, prior efforts typically sug-
gest placing a hook before every security-sensitive operation in order to ensure com-
plete mediation. There are two problems with this simple approach. First, automated
techniques often use low-level representations of security-sensitive operations, such as
individual structure member accesses, which might result in many hooks scattered
throughout the program. More authorization hooks mean more work for programmers
in maintaining authorization hooks and updating them when security requirements
change. Second, such placements might lead to redundant authorization, as one hook
may already perform the same authorization as another hook that it dominates. In our
prior work, we have suggested techniques to remove hooks that authorize structure
member accesses redundantly [13]. However, this approach still does not result in a
placement that has a one-to-one correspondence with hooks placed manually by do-
main experts. In X server, it was found that while the experts had placed approximately
200 hooks, the automated technique suggested approximately 500 hooks. In the follow-
ing subsections we discuss some reasons for this discrepancy.

2.2 How Manual Placements Differ

We find that there are typically two kinds of optimizations that domain experts perform
during hook placement. We follow with examples of both cases from the X Server.
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– First, assume there are two automatically placed hooks H1 and H2 such that the
former dominates the latter in the program’s control flow. The placement by the
domain expert has a matching hook for H1 but not for H2. We can interpret this as
the expert having removed (or otherwise omitted) a finer-grained hook because the
access check performed by H1 makes H2 redundant.

– The automated tools place hooks (H1, ..., Hn) at the branches of a control state-
ment. The domain expert has not placed hooks that map to any of these hooks, but
instead, has placed a hook M1 that dominates all of these hooks5. The expert has
hoisted the mediation of operations at the branches to a common mediation point
above the control statement as shown in Figure 1.

First, examine the code snippet in Figure 2. In the figure, hooks placed by the pro-
grammer have prefixes such as m1:: and hooks placed by an automated tool [13]
have prefixes such as h1::. The function MAPWINDOW performs the operation
write(pWin→mapped) on the window, which makes the window viewable. We
see that the programmer has placed a hook m3::(pWin,ShowAccess) that specif-
ically authorizes a subject to perform this operation on object represented by pWin.
Access mode ShowAccess identifies the operation. The requirement of consistency
in hook placement dictates that an instance of hook ShowAccess should precede any
instance of writing to the mapped field of a Window object that is security-sensitive.
MAPSUBWINDOWS performs the same operation on the child windows pChild of a
window pWin. While the automated tool prescribes a hook at MAPSUBWINDOWS,
we find that the domain expert has chosen not to place a corresponding hook.
MAPSUBWINDOWS is preceded by the manual hook m2::(pWin,ListAccess)
for the subject to be able to list the child windows of window pWin, but there is no
hook to authorize the operation write(pChild->mapped)6.

Second, look at the example shown in Listing 1.1. The function COPYGC in the
X server accepts a source and target object of type GC and a mask that is determined by
the user request and, depending on the mask, one of 23 different fields of the source are
copied to the target via a switch-case control statement. Since each branch results
in a different set of structure member accesses, the automated tool infers that each
branch performs a different security-sensitive operation. Therefore, it suggests placing
a different hook at each of the branches. On the contrary, there is a single manually
placed hook that dominates the control statement, which checks if the client has the
permission DixGetAttrAccess on the source object. Therefore a single manually
placed hook replaces 23 automated hooks in this example.

2.3 Balancing Minimality with Least Privilege

We have in the X Server a mature codebase, which has been examined over several years
by programmers in order to reach a consensus on hook placement. We are convinced
that a deliberate choice being made by the experts about where to place hooks and which
hooks to avoid on a case-by-case basis. For example, in CHANGEWINDOWPROPERTY

in Figure 2, a property pProp of pWin is retrieved and accessed. Programmers have

5 There is no hook in the automated placement that matches M1.
6 We discuss the relevance of CHANGEWINDOWPROPERTY below.
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Listing 1.1. Example of manual hoisting in the COPYGC function in the X server
/*** gc.c ***/
int CopyGC(GC *pgcSrc, GC *pgcDst, BITS32 mask){
switch (index2)
{

result = dixLookupGC(&pGC, stuff->srcGC,
client,DixGetAttrAccess);

if (result != Success)
return BadMatch;

case GCFunction:
/* Hook(pgcSrc, [read(GC->alu)]) */
pgcDst->alu = pgcSrc->alu;
break;

case GCPlaneMask:
/* Hook(pgcSrc, [read(GC->planemask)]) */
pgcDst->planemask = pgcSrc->planemask;
break;

case GCForeground:
/* Hook(pgcSrc, [read(GC->fgPixel)]) */
pgcDst->fgPixel = pgcSrc->fgPixel;
break;

case GCBackground:
/* Hook(pgcSrc, [read(GC->bgPixel)]) */
pgcDst->bgPixel = pgcSrc->bgPixel;
break;
/* .... More similar cases */

}
}

placed a finer-grained hook m4::(pProp,WriteAccess) in addition to the hook
m1::(pWin,SetPropertyAccess). Contrast this with the MAPSUBWINDOWS

example where they decided not to mediate the access of a child object.
The fundamental difference between a manually written hook placement and an au-

tomatically generated one is in the granularity at which security-sensitive operations
are defined. When the automated tool chooses to place a hook at each of the branches
of a control statement, it implicitly identifies security-sensitive operations at a finer
granularity than experts. The choice of granularity of security-sensitive operations is an
exercise in balancing the number of hooks placed and least privilege. A fine-grained
placement allows more precision in controlling what a subject can do, but this granu-
larity may be overkill if programmers decide that subjects must be authorized to access
operations in an all-or-nothing fashion. For the switch statement with 23 branches, hav-
ing 23 separate hooks will lead to a cumbersome policy because the policy will have 23
separate entries for each subject. Since the programmers decided that all subjects either
can perform all 23 operations for an object or none, it is preferable to have a single hook
to mediate the 23 branches.

We have also seen that even with manual hook placement multiple iterations may
be necessary to settle on the granularity that balances least privilege and minimality
in hook placement. For example, the X server version of 2007 had only four opera-
tion modes, namely, read, write, create and destroy. But during the subse-
quent release, the programmers replaced these with 28 access modes that were nec-
essary to specify and enforce policies with finer granularity. Since the first release of
X server with the XACE hooks in 2007, the hooks have undergone several changes.
Over 30 hooks were added to the X server code base, and some existing hooks were
also removed, moved or combined with other hooks [22]. Some of these changes are
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documented in the XACE specification [21]. We believe that observing typical policy
specifications at runtime enabled the programmers to add and remove hooks in subse-
quent versions of the application. We want to understand iterative refinement and build
methods to automate some tasks in the process, making programmer decisions explicit.

3 Authorization Hook Placement Problem

Authorization hook placement involves two main steps: a) finding security-sensitive
operations (SSOs) in the program and, b) placement of hooks to satisfy a set of require-
ments. In this section we give a brief background into approaches that tackle the former,
followed by our intuition for how to approach the latter problem.

3.1 Identifying Security-Sensitive Operations

We provide some background on our prior research [13] in automatically identifying
the set O of security-sensitive operations (SSOs) in programs using static analysis.
Each SSO is represented using a variable v and a set of read and write structure mem-
ber accesses on the variable. For example, in the CHANGEWINDOWPROPERTY func-
tion shown in Figure 2, the last two statements produce a security-sensitive operation
pProp:[write(data), write(size)]. There may be multiple instances of an
SSO in a program. Each instance is represented using the tuple (o, l) where o is the SSO
and l is the location (statement) in the code where the instance occurs. Let OL be the
set of all instances of all the SSOs in the program. Our goal is to place authorization
hooks to mediate all the elements of OL.

Definition 1. An authorization hook is a tuple (Oh, lh) where lh is a statement that
contains the hook and Oh ⊆ OL is a set of security-sensitive operation instances medi-
ated by the hook.

A set of authorization hooks is called an Authorization Hook Placement. The ap-
proach in [13] produces a Control Dependence Graph (CDG) of the program to repre-
sent program statements and hooks. A CDG of a program CDG = (L,E) consists of a
set of program statements L and edges E, which represent the control-dependence rela-
tionships between statements. Since this exposes the statements that a given statement
depends upon for execution, it enables computation of authorization hook placements
that mediate all control flows in the program by ensuring that every operating instance
in OL is included in at least one authorization hooks Oh. We will continue to use the
CDG representation in this work for refining hook placements.

3.2 Consolidating Hook Placements

As mentioned in Section 2, the inital placement of hooks by automated techniques is
fine-grained, i.e., typically at every security-sensitive operation instance that is identi-
fied. Our intuition is that constraints on the access control policies to be enforced in
the program can be leveraged to consolidate authorization hooks in order to achieve the
right granularity for hook placements. Let U be the set of all subjects for a hypothetical
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access control policy M for the given program. Let Allowed be a function that maps
each security-sensitive operation in O to subjects U that are allowed to perform the op-
eration according to policy M. We identify two cases that are relevant to the placement
of authorization hooks:

– Invariant I: First, given any two operations o1 and o2, if access control policy M
permits Allowed(o1) = Allowed(o2) then o1 and o2 are equivalent for the purpose
of authorization. This means that any hook that mediates o1 and dominates o2 in
the code automatically authorizes o2 and vice versa.

– Invariant II: Second, given two operations o1 and o2, if access control policy M
permits Allowed(o1) ⊂ Allowed(o2) then operation o1 ‘subsumes’ o2 for the
purpose of authorization. This means that a hook that mediates o1 and dominates
o2 can also mediate o2 but not vice-versa.

As described above, we have observed that programmers often assume that their pro-
grams will enforce access control policies that satisfy Invariant I (e.g., see Listing 1.1)
and Invariant II for every access control policy M that may be enforced by their pro-
grams (see Figure 2). This observation leads us to believe that in order to consolidate
hooks we need to impose equivalence and partial-order relationships between the ele-
ments in O. Therefore, we define a set of authorization constraints as follows:

Definition 2. A set of authorization constraints P is a pair (S,Q) of relationships
between SSOs in the program, where Q stands for equivalence and S stands for sub-
sumption.

We can see that the equivalence relationship Q results in a partitioning of the set
O of security-sensitive operations. Let OQ be the set of partitions produced by Q. The
subsumption relationshipS imposes a partial order between the elements in OQ. We can
use these two relationships to consolidate hooks on parallel code paths to a dominating
program location (hook hoisting operation) or eliminate a redundant hook on a post-
dominating program location (hook removal operation). We describe the technique for
this in the Section 4.

The challenge we address in this paper is how to use authorization constraints to
consolidate hook placements. Our system uses an algorithm that, given a program and
its set of authorization constraints, generates a minimal authorization hook placement
that satisfies complete mediation and least privilege. Complete mediation states that
every SSO instance in a program should be dominated by an authorization hook that
mediates access to it. A placement that enforces least privilege ensures that during an
execution of a program, a user of the program (subject) is only authorized to perform (or
denied from performing) the SSOs requested as part of that execution. This effectively
puts a constraint on how high a hook can be hoisted.

We observe that even though automated placement methods may be capable of pro-
ducing placements that can enforce any policy, and thus can enforce least privilege,
programmers will not accept a hook placement unless there is a justified need for that
hook. Specifically, programmers only want a hook placed if that hook will actually be
necessary to prevent at least one subject from accessing a security-sensitive operation.
That is, while programmers agree that they should give subjects the minimal rights, they
also require that a program should have only the minimal number of hooks necessary
to enforce complete mediation and least privilege.
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4 Design

There are two main inputs to our approach: a) the set O of SSOs and their instances
OL in the program, and b) the control dependence graph CDG of the program. We have
defined these inputs in Section 3.1 and discussed prior work that uses static analysis to
infer them automatically.

Step 1: Generating a Default Placement: First, usingO, OL and CDG, we generate
a default placement. Since the elements in OL are in terms of code locations, and the
nodes in the CDG have location information, we can create a map C2O from each node
si in the CDG to the set of SSO instances in OL that occur in the same location as si.
The default placement D has a hook at each node si where C2O[si] 
= ∅.

Step 2: Generating Constrained Hook Placement: If a set of authorization con-
straints Pi is already available, step 2 of our tool is able to automatically generate
a minimal placement7 Ei that can enforce any access control policy that satisfies the
constraints. Our approach uses the equivalence constraints to perform hoisting and sub-
sumption constraints to perform removal, thereby minimizing the number of hooks.
This procedure is described in Section 4.1. We discuss how we may assist programmers
in selecting authorization constraints for their program using high-level goals encoded
as constraint selectors in Section 4.2.

4.1 Deriving a Constrained Placement

Given default placement D and set of authorization constraints P , our system can de-
rive a candidate constrained placement E that satisfies complete mediation and least
privilege enforcement with the minimum number of hooks (used in step 3 of our de-
sign). The subsumption S and equivalence Q relationships in P enable us to perform
two different hook refinements on D to derive the E . We present the algorithm next and
the proof why it has desired properties is in Appendix A.

Hoisting. The first refinement is called hoisting and it aims to consolidate the hooks
for mediation of equivalent operation instances that are siblings (appear on all branches
of control statements). This lifts hook placements higher up in the CDG based on Q.
Given a node si in the CDG, if each path originating from that node si contains SSOs
that are in the same equivalence class in OQ, then we can replace the hooks at each of
these paths with a single hook at si. This relates to the example in Listing 1.1, where
if the operations along all the 23 branches of the Switch statement are equivalent, then
we can replace the 23 automatically generated hooks at those branches with a single
hook that dominates all of them.

Algorithm 1 shows how hoisting is done. It uses the CDG and the C2O map as
inputs. Accumulator α gathers the set of SSOs at each node si by combining the C2O
of si with the α mapping from the child nodes. The algorithm traverses the CDG in
reverse topological sort order and makes hoisting decisions at each node in the CDG.
We partition the set of nodes in the CDG into two types - control and non-control nodes.
Control nodes represent control statements (such as if, switch etc) where hoisting can

7 Henceforth referred to as a constrained placement.
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Algorithm 1. Algorithm for hoisting
top′ = TopoSortRev(CDG)
while top′ 	= ∅ do

si = top′.pop()
if isControl(si) then

α[si] = C2O[si] ∪
⋂Q

j {α[sj ] | (si, sj) ∈ CDG}
else

α[si] = C2O[si] ∪
⋃

j{α[sj ] | (si, sj) ∈ CDG}
end if

end while

Algorithm 2. Algorithm for removal
top = TopoSort(CDG)
while top 	= ∅ do

si = top.pop()

OD =
⋂QS

j {φ[sj ] | (sj , si) ∈ CDG}
φ[si] = α[si] ∪ OD

OR = ∅
for all om ∈ α[si] do

if ∃on ∈ OD , (on S om) or (on Qom) then
OR = OR ∪ {om}

end if
end for
β[si] = α[si] − OR

end while

be performed. At control nodes8, we perform the intersection operation
⋂Q which uses

the equivalence relation Q to perform set intersection in order to consolidate equivalent
SSOs. Note that this intersection operation limits how high hooks may be hoisted in
the program. At non-control nodes, we accumulate SSOs from children using a union
operation.

Note that this algorithm does not remove any hooks. It places new hooks that dom-
inate the control statements where hoisting occurs. For example, given Listing 1.1, the
algorithm would place a new hook before the Switch statement. The removal operation
which we discuss next will eliminate the 23 hooks along the different branches because
of the new hook that was placed by this algorithm.

Removal. The second refinement is called redundancy removal and aims to eliminate
superfluous hooks from CDG using S. Whenever a node s1 that performs SSO o1 dom-
inates node s2 that performs SSO o2 and o1 either subsumes or is equivalent to o2
according to P , then a hook at s1 for o1 automatically checks permissions necessary
to permit o2 at s2. Therefore, we may safely remove the hook at s2 without violating
complete mediation.

In the example in Figure 2, if we had authorization constraints specify that operation
read(pWin → firstChild) subsumes (or is equivalent to) operationwrite(pChild →
mapped), then we do not need the suggested hook h5.

Algorithm 2 shows how the removal operation is performed. The algorithm takes as
input the CDG and the map α computed by the hoisting phase. It traverses the CDG in
topological sort order (top-down) and at each node si makes a removal decision based
on the set of operations checked by all hooks that dominate si. The accumulator φ

8 Each control node has dummy nodes as children each representing a branch of the control
node.
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stores for each node si the set of operations checked at si and all nodes that dominate si.
While processing each node, the algorithm computes OD, which is the set of operations
checked at dominators to node si. Note that the CDG is constructed interprocedurally
(refer to Section 3.1) and a node can have multiple parents at function calls9. The

⋂QS

that combines authorized operations in case of multiple parents is shown in Algorithm 3.

Algorithm 3. Compute
⋂QS on two sets Oi and Oj . Returns result in OT .

OT = ∅
for all oi ∈ Oi do

for all oj ∈ Oj do
if oi Q oj then

OT = OT ∪ {oi}
end if
if oi S oj then

OT = OT ∪ {oj}
end if
if oj S oi then

OT = OT ∪ {oi}
end if

end for
end for

Next, Algorithm 2 creates the set OR which is the set of operations that do not
have to be mediated at si since they are either subsumed by or equivalent to operations
that have been mediated at dominators to si. The resulting map β from nodes to the
set of operations that need to be mediated at the node gives the final placement. The
constrained placement E suggests a hook at each node si such that β[si] 
= ∅.

Note that both the bottom-up hoisting and top-down removal must be performed in
sequence to get the final mapping from nodes to the set of SSOs that need mediation.

4.2 Helping Programmers Produce Placements

In this section we discuss how a programmer might produce a hook placement using the
approach presented above. More specifically, would the programmer have to manually
generate a fine-grained set of authorization constraints in order to use our approach?
We envision an approach where programmers only need to specify high-level security
goals as opposed to fine-grained set of authorization constraints.

Suppose the programmer wishes to enforce a well-known security policy, such as
Multi-Level Security [12]. In MLS, subjects are assigned permissions at the granularity
of read and write accesses to individual objects. In our method, program objects are
referenced by variables in program operations, so any MLS policy that permits a sub-
ject to read a field of a variable also permits that subject to read any other fields of that
variable; a similar case holds for writes. This means that all read-like (write-like) ac-
cesses of a variable can be treated as equivalent. The programmer can produce a small

9 We avoid cycles in the CDG by eliminating back edges. This is for the purpose of being able
to sort nodes topologically in the CDG. When we perform hook hoisting and removal, it is the
control dominance information in a CDG that gets used in our algorithms; so eliminating back
edges would not affect our analysis.
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Table 1. Table showing the lines of code (LOC), number of manual hooks (MANUAL), de-
fault automated hooks (DEFAULT), and the impact of using the MLS constraint selectors for
hook placement, including the resultant number of hooks (Total), percent reduction in total hooks
(%-Reduction), and the percent reduction in the difference between the manual and automated
placements (%-Difference)

Program LOC MANUAL DEFAULT MLS
Total %-Reduction %-Difference

X Server 1.13 28K 207 420 296 30 58
Postgres 9.1.9 49K 243 360 326 9 29

Linux VFS 2.6.38.8 40K 55 139 135 2 5
Memcached 8K 0 32 30 6 n/a

set of such rules to encode the security policy (we call this a constraint selector) which
serves as an input to the placement approach in lieu of a complete set of authorization
constraints.

Whenever a hoisting or a removal decision needs to be made by the approach, the
constraint selector will serve as an oracle that aids in this decision. The MLS constraint
selectors will stipulate that whenever all the branches perform either only reads or only
writes of the same variable (irrespective of the fields being read) a hoisting operation
should succeed. Similarly, if a hook mediated the read operation of a variable and is
dominated by a hook that mediates the read of the same variable (irrespective of the field
being accessed) the removal operation should succeed. The programmers can create
any such constraint selector that encodes relationships between data types that may be
application specific, or even encode the results or auxiliary static and dynamic analysis.

5 Evaluation

We implemented our approach using the CIL [14] program analysis framework and all
our code is written in OCaml. The CDG construction and default hook placement is
similar to the approach mentioned in prior work [13]. Our prototype implementation
does not employ precise alias analysis or a path sensitive analysis which may produce
some redundant hooks (e.g. in code paths that are not feasible).

Our goal with the evaluation was to answer two questions:
a) Does the approach produce placements that are closer to manually placed hooks?
b) Does the approach reduce programmer effort necessary to place authorization hooks?

In order to evaluate our approach, we compare hook placement produced by using
constraint selectors against the default hook placement produced using the technique
presented in our prior work [13]. We perform this comparison along two dimensions:

– First, we determine the number of hooks produced using both techniques and show
that using constraint selectors reduces the number of hooks by as much as 30%. We
also show that using the constraint selectors reduces the gap between manual and
automated placements by as much as 58% compared to the default approach [13].

– Second, we show that using constraint selectors reduces the programmer effort,
measured in terms of the number of authorization constraint options to manually
consider by as much as 58%.
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Table 2. Table showing the hoisting (HOIST) and removal (REMOVE) suggestions in the default
placement (DEFAULT) and placements generated using the constraint selectors (MLS)

Program DEFAULT MLS
REMOVE HOIST REMOVE HOIST

X Server 1.13 237 55 113 10
Postgres 9.1.9 208 42 146 21

Linux VFS 2.6.38.8 53 4 49 3
Memcached 8 1 6 0

Evaluating Hook Reduction: Table 1 shows the total number of hooks placed for each
experiment. ‘LOC’ shows the number of lines of code that were analyzed, ‘MANUAL’
shows the number of hooks placed manually by domain experts, ‘DEFAULT’ shows the
number of hooks placement in the default case by the automated technique and ‘MLS’
shows how using the constraint selectors affects the total number of hooks and how
this compares with the number of hooks placed manually. Within the ‘MLS’ column,
‘Total’ refers to the total number of hooks placed when using the constraint selectors
‘%-Reduction’ refers to the percentage reduction in number of hooks compared to the
default placement and ‘%-Difference’ refers to percentage reduction in the gap between
automated and manual placement when compared against the default placement. For
example, in the case of X Server we see that in the experiment we considered 28K
lines of code, where programmers had placed 207 hooks manually, whereas the default
placement suggested 420 hooks. When the ‘MLS’ constraint selectors was used, the
number of hooks suggested by the automated technique went down to 296 which is a
30% reduction in the number of hooks compared to manual placement and reduces the
gap between automated and manual hook placements by 58%.

Evaluating Programmer Effort: We define programmer effort as the search space of
authorization constraints that the programmer has to examine manually. Therefore, we
measure the reduction in programmer effort by counting the number of hoisting and
removal choices that the tool automatically makes using the constraint selectors after
the default placement. The results for this experiment are shown in Table 2 with the
number of removal choices (REMOVE) and hoisting choices (HOIST) for each exper-
iment. For example, there were 237 removal choices and 55 hoisting choices available
to the programmer after the default placement for X Server. After applying the pro-
posed placement approach using the MLS constraint selectors, there are 113 removal
and 10 hoisting choices remaining from which the programmer has to select from. This
implies that using the MLS constraint selectors has reduced the number of choices that
the programmer has to make to produce their desired placement. Making some set of
hoisting and removal choices may expose additional choices due to newly introduced
dominance and branch relationships. Therefore the number of choices shown in this
table is not a measure of the total remaining programmer effort but only of the next set
of choices available to the programmer.
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We ran our experiments on four programs:

X Server 1.13. Our results show that we are able to reduce the amount of programmer
effort by 58%. The number of hooks generated is reduced by 30% (reducing the gap
between manual and automated placements by 58% as well).

Postgres 9.1.9. This version has mandatory access control hooks [1] hooks, but these
are incomplete according to the documentation of the module [1]. Therefore, we only
consider discretionary access control hooks. Our experiments show that we are able
to reduce the amount of programmer effort by 32%. The number of hooks generated
is reduced by 15% (reducing the gap between manual and automated placements by
46%).

Linux kernel 2.6.38.8 Virtual File System (VFS). The VFS allows clients to access
different file systems in a uniform manner. The Linux VFS has been retrofitted with
mandatory access control hooks in addition to the discretionary hooks. Our results show
that there is an 17% reduction in programmer effort and four fewer hooks then default
placement.

Memcached. This general-purpose distributed memory caching system does not cur-
rently have any hooks. Our experiments show that constraint selectors are able to reduce
the amount of programmer effort by 33% and the number of hooks by 22%.

In the case of the Linux VFS, ‘MLS’ does not make a significant dent on the removal
choices. All the removal choices in Linux VFS fell into one of three categories. First, 24
of the 49 remaining choices are interprocedural hook dominance relationships where the
security-sensitive objects being guarded by the hooks were of different data types. For
example, the hook in function do rmdir dominates the hook in vfs rmdir, there-
fore there is a removal opportunity. But the hook in the former mediates an object of
type nameidata and the latter mediates an object of type struct dentry *. Our
approach currently only performs removal when the hooks mediate the same variable.
Second, 19 choices are interprocedural hook dominance relationships where the object
mediated is of the same type but because it is across procedure boundaries and our ap-
proach does not employ alias analysis, it conservatively assumes that they are different
objects. Finally, six choices were due to intraprocedural hooks on the same object but
one mediates reads and the other mediates writes. The ‘MLS’ constraint selector forbids
removal in these cases.

6 Conclusion

In this paper we have successfully demonstrated that our automated system can generate
minimal authorization hook placements that satisfy complete mediation and least priv-
ilege guided by authorization constraints. We show that using static and dynamic anal-
ysis techniques to help programmers select these authorization constraints. We show
how our technique can be practically used by programmers to reduce the manual effort
in weighing different authorization hook placement options.
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A Hook Placement Properties

First, we want to prove that the authorization hook placement mechanism satisfies two
goals: least privilege enforcement and complete mediation. We start by showing that
our initial placement satisfies these properties and the subsequent hoisting and removal
phases preserve this property. Least privilege is defined as follows:

Definition 3. In a least privilege placement a hook (Oh, lh) placed at location lh au-
thorizing a set of SSOs Oh implies that for each oi ∈ Oh, on each path in the program
originating from lh, there must be an operation instance (oj , lj) such that (oi S oj) ∨
(oi Qoj) .

Complete mediation is defined as:

Definition 4. Complete Mediation requires that for every operation instance (oi, li),
there exists a hook (Oh, lh) such that lh control flow dominates li and there exists
oh ∈ Oh such that (oi Qoh) ∨ (oh S oi).

Our approach depends on two inputs a) The set of all SSOs in the program b) The au-
thorization constraints that determine all possible optimizations (hoisting and removal)
in hook placement. Our proof assumes that both of these specifications are complete.

Our approach starts by placing a hook at every instance of every SSO in the pro-
gram. First, it is trivial to show that this results in a placement that adheres to complete
mediation since every SSO instance has a corresponding hook. Second, this approach
guarantees least privilege since every hook is post-dominated by the SSO instance for
which it was placed.
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Hoisting. The hoisting in Algorithm 1 hoists the hooks pertaining to equivalent SSOs
on all branches of a control statement in a bottom-up fashion in the CDG. The hoisting
operation introduces a new hook which dominates the control statement. This new hook
preserves least privilege since all the branches of the control statement (therefore all
paths originating from the new hook) must contain instances of operations that are
equivalent to the one mediated by the new hook. This stage does not remove any hooks
so complete mediation is preserved.

Removal. The redundancy removal stage in Algorithm 2 propagates information about
hooks placed in a top-down fashion in the CDG. The removal operation does nothing
to violate least privilege since it does not add additional hooks. When each node n of
the CDG is processed, the set of propagated hooks that reach n represent the hooks
that control dominate n. Therefore, if a hook h placed at node n is subsumed by or
equivalent to any hook in the set of propagated hooks, then h can be safely removed
without violating the complete-mediation guarantee.

Additionally given sound and complete alias analysis we can also guarantee a mini-
mality in hook placement (constrained by complete mediation and least privilege). The
construction of our algorithm guarantees that both hoisting and removal at each node
are performed transitively in the context of all successors and predecessors respectively.
Therefore, using an oracle-based argument similar to the proof in [13] we can show that
with respect to a given set of authorization constraints after using our technique to re-
move hooks, no additional hoisting or removal can be performed, resulting in a minimal
placement.
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Abstract. Access control is key to limiting the actions of users in an
application and attribute-based policy languages such as XACML allow
to express a wide range of access rules. As these policy languages become
more widely used, policies grow both in size and complexity. Modularity
and reuse are key to specifying and managing such policies effectively.
Ideally, complex or domain-specific policy patterns are defined once and
afterwards instantiated by security experts in their application-specific
policies. However, current policy languages such as XACML provide only
limited features for modularity and reuse. To address this issue, we intro-
duce policy templates as part of a novel attribute-based policy language
called STAPL. Policy templates are policies containing unbound vari-
ables that can be specified when instantiating the template in another
policy later on. STAPL supports four types of policy templates with in-
creasing complexity and expressiveness. This paper illustrates how these
policy templates can be used to define reusable policy patterns and val-
idates that policy templates are an effective means to simplify the spec-
ification of large and complex attribute-based policies.

Keywords: Access control, access control policies, attribute-based
access control, reuse, modularity, policy templates.

1 Introduction

Access control is an important part of application-level security that constrains
the actions of authenticated subjects on the resources in the application by
enforcing access rules. Traditionally, access control was tightly coupled with
the application code, making both hard to maintain. To address this, policy-
based access control separates the access rules from the application code into
declarative access control policies [15]. This approach improves modifiability
by allowing the access rules to vary without having to change the application
code. This approach also benefits separation of concerns by allowing application
developers to focus on writing application code and security experts on specifying
the access control policies in separate software modules.

However, while policy-based access control facilitates separation of concerns
between application logic and access control logic, the challenge now is to effec-
tively specify and manage the access control policies themselves. For example,
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When a sub j e c t t r i e s to view the d e t a i l e d s t a tu s o f a p a t i e n t :
1 . Deny i f the sub j e c t i s not a nurse .
2 . Deny i f the owning pat i en t has withdrawn consent f o r the

subject , un l e s s the s t a tu s o f the pat i en t i s c r i t i c a l or
i f the sub j e c t has t r i g g e r e d breaking−the−g la s s , which
should be logged .

3 . Deny i f the sub j e c t i s not on s h i f t .
4 . Permit i f the sub j e c t i s cu r r en t l y t r e a t i n g the owning

pat i en t .
5 . Permit i f the sub j e c t i s o f the emergency department .
6 . Deny otherwi se .

Listing 1.1. A running example of six access control rules from an industrial e-health
case study [6]. The application is a patient monitoring system and the rules are specified
by the hospital that employs the system. The first rule for which the condition holds
should provide the overall decision.

take the access rules of Listing 1.1. These rules are taken from an industrial
e-health case study, i.e., a system provided to hospitals for monitoring patients
at their homes [6]. These six rules are only an excerpt of the complete set of
rules, but already require the concepts of ownership, patient consent, the pa-
tient status, breaking-the-glass procedures, the departments of the hospital and
the treating relationship between physicians and patients. Moreover, these rules
should be combined correctly, in this case being that the first rule for which the
condition holds should provide the overall decision. As a result, current applica-
tions require a policy language in which a wide spectrum of rules can easily be
expressed and combined into one unambiguous composite policy.

Of the current policy languages, XACML [1] partially achieves this. Firstly,
by employing attribute-based access control (ABAC, [11]), XACML supports
most of the rules required by the case study. Secondly, by employing policy trees
(see Figure 1), XACML supports structuring multiple rules and reasoning about
how these relate in case of conflict. However, XACML does not allow to specify
and manage large policies effectively. In the example rules of Listing 1.1, the
roles of a subject are a well-known access control concept [7], the concept of
patient consent is specific to the domain of e-health, the status of a patient is
specific to the patient monitoring system and the departments are specific to the
hospital. Ideally, these concepts are defined once as patterns that can be reused
within their respective domains. Moreover, each pattern is ideally defined by
its respective expert, i.e., an access control expert, an e-health domain expert,
the application provider or an expert of the hospital. In terms of attribute-based
policies, such patterns would consist of rules and the definitions of the attributes
required by these rules. However, XACML does not support attribute definitions
and only allows to include other policies without modification such that slight
variations cannot be modularized in a single pattern.

To address these limitations, this paper introduces policy templates in
attribute-based tree-structured policies as part of a novel policy language called
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Fig. 1. Example of a policy tree that combines the six rules of the introduction. The
leafs of the tree are rules. The intermediate nodes are policies that specify a target and
the combination algorithm to combine the results of their children.

the Simple Tree-structured Attribute-based Policy Language or STAPL. Policy
templates are policies containing unbound variables that can be bound to val-
ues, expressions, rules or even other policies when instantiating the template
later on. In addition, STAPL allows to package these templates in reusable pol-
icy modules. More precisely, STAPL supports four types of policy templates of
increasing expressiveness:

1. simple policy references, which include other policies without modification,
2. simple policy templates, which include variations of policies by extending

policy references with unbound variables,
3. modules of policy templates with attribute definitions, which encapsulate pol-

icy templates and the definitions of the attributes they require,
4. modules of policy templates with specialized types of attributes, which extend

STAPL with specialized attributes and functions that reason about them.

This paper illustrates how these policy templates and modules can be used to
modularize access control patterns and thereby increase policy comprehensibility,
facilitate policy reuse and facilitate separation of concerns between the different
stakeholders in policy specification.

The rest of this paper is structured as follows. Section 2 further illustrates the
problem statement of this work. Section 3 describes STAPL and the different
types of policy templates it supports. Section 4 validates the potential of policy
templates. Section 5 discusses related work and puts the results in a broader
perspective. Section 6 concludes this paper.

2 Context and Problem Illustration

Policy-based access control is an approach to access control in which the access
rules are specified in declarative policies that are enforced and evaluated by
specialized components in the application. As such, the access rules can vary
and evolve separately from the application code and both can be specified by
their respective experts, a principle called separation of concerns [14].

Over the last decades, multiple models have been proposed to reason about
access control and specify access control policies. The state of the art supports
a wide range of complex rules by combining two technologies: attribute-based
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Fig. 2. Our vision on policy specification: an application security expert should be able
to specify policies for his or her specific organization and application by instantiating
policy patterns represented as templates pre-defined by other experts

access control (ABAC, [11]) and policy trees. Firstly, ABAC is a recent access
control model that expresses rules in terms of key-value properties of the subject,
the resource and the environment called attributes. Examples of such attributes
are the subject roles, the resource location and the time. As such, ABAC sup-
ports rules such as identity-based permissions, roles, ownership, time, location,
consent and breaking-the-glass procedures. Secondly, the most widely-used lan-
guage for attribute-based policies XACML [1] additionally allows to combine
multiple attribute-based rules in a single policy as a tree, a concept also present
in the literature (e.g., [4,12]). As illustrated in Figure 1, each element in such a
policy tree defines to which requests it applies and how the results of its children
should be combined, e.g., a permit overrides a deny. As said, these technologies
together support a wide range of rules. However, specifying complex rules such
as the patient consent rule (Rule 2 of Listing 1.1) using these technologies is not
trivial. Consequently, managing large sets of such rules is even more challenging.

Modularization and reuse are key to managing this complexity effectively. To
illustrate this, again take the example rules from Listing 1.1. Parts of these rules
are well-known access control concepts such as the roles of a subject, while other
parts are specific to the domain of e-health, specific to the application or specific
to the hospital. Ideally, these parts are specified once by their respective experts
as patterns that can be reused in multiple policies of their respective domains:

– An access control expert defines patterns for well-known access control con-
cepts, such as ownership and hierarchical roles. These patterns can then be
reused in any access control policy.

– An e-health domain expert defines patterns for frequent e-health rules, such
as patient consent and the breaking-the-glass procedure in the example rules.
These patterns can then be reused in any e-health policy.

– An application provider defines patterns for rules and attributes specific to
its application, such as the status of a patient in the example rules. These
patterns can be reused in any policy that applies to this application.
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– A security expert of the hospital defines patterns for hospital-specific rules
and attributes, such as the shifts of nurses and the departments of the hos-
pital in the example rules. These patterns can be reused in policies for any
application employed by the hospital.

After these patterns have been defined, the application security expert of the
hospital can specify the policy for this hospital and his or her specific application
by simply instantiating these patterns. This vision is illustrated in Figure 2.

However, the state of the art with XACML does not support such patterns.
More precisely, the patterns in the examples above consist of five types of defini-
tions: (1) rules that can be included in other policies without modification, e.g.,
the rule that checks patient consent, (2) rules that can be included in other poli-
cies with slight modifications, e.g., the rule that checks whether the subject is on
shift, in which the shift hours should be specified by the hospital, (3) attributes
that are required by these rules, e.g., the owner of a resource or the current time,
(4) attributes that can be used by other rules later on, e.g., the roles of a subject
or the status of a patient, and (5) the possible values of a certain attribute, e.g,
the departments of the hospital and the roles of the employees in the hospital.
Of these five types, XACML only allows the first, i.e., to include other policies
literally by using policy references. The more advanced ALFA language for gen-
erating XACML policies [8] does support attribute definitions as well, but is still
limited to including policies without modification.

To address these limitations, this paper introduces policy templates in attri-
bute-based tree-structured policies as part of a novel policy language called
STAPL. Policy templates are partially specified policies that contain unbound
variables that can be specified later on. STAPL additionally supports encapsulat-
ing these policy templates with the definitions of the attributes they require into
self-contained policy modules. Policy templates have been put forward in formal
work about policies trees [2] and were part of the Ponder policy language [5],
both more than a decade ago. However, policy templates have not been applied
in state-of-the-art policy languages of which the complexity actually increases
the need for them.

3 Policy Templates in STAPL

This paper introduces policy templates in attribute-based tree-structured poli-
cies as part of a policy language called STAPL1. More precisely, STAPL supports
(1) simple policy references, (2) simple policy templates, (3) modules of policy
templates with the definitions of the attributes they require and (4) the extension
of the previous with specialized types of attributes. This section first introduces
STAPL and then discusses each of these.

STAPL Basics. STAPL is a policy language designed to easily specify
attribute-based tree-structured policies. In other words, STAPL takes on a pol-
icy model similar to XACML, but is designed for easier specification (amongst

1 The code of STAPL publicly is available at https://github.com/stapl-dsl/
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1 act i on . i d = SimpleAttr ibute ( Str ing )

2 r e s ou r c e . owner = SimpleAttr ibute ( Str ing )

3 sub j e c t . t r e a t i n g = L i s tAt t r i bu t e ( Str ing )

4 sub j e c t . r o l e s = L i s tAt t r i bu t e ( Str ing )

5 environment . now = SimpleAttr ibute (Time)

6 . . .

7 Policy := when ( act i on . i d == ”view” and r e s ou r c e . type ==

8 ” pa t i e n t s t a t u s ”) apply F i r s tApp l i c ab l e to (

9 Rule := deny i f f (not ”nurse ” in s ub j e c t . r o l e s ) ,

10 Policy := apply PermitOverr ides to (

11 Rule := deny i f f ( s ub j e c t . i d in

12 r e s ou r c e . owner withdrawn consents ) ,

13 Rule := permit i f f ( r e s ou r c e . p a t i e n t s t a t u s == ”bad ”) ,

14 Rule := permit i f f ( s ub j e c t . t r i g g e r e d b r e a k i n g g l a s s )

15 per forming ( l og ( sub j e c t . i d + ” broke the g l a s s ”))

16 ) ,

17 Rule := deny i f f (not ( environment . now >= 08 :00 and

18 environment . now <= 17 :00 ) ) ,

19 Rule := permit i f f ( r e s ou r c e . owner in s ub j e c t . t r e a t i n g ) ,

20 Rule := permit i f f ( s ub j e c t . department == ”emergency ”) ,

21 Rule := deny

22 )

Listing 1.2. The STAPL definition of the example rules of Listing 1.1 without the use
of policy templates

1 // example d e f i n i t i o n s

2 def defaul tDeny = Rule := deny

3 def denyIfNotOnShi ft = Rule := deny i f f (

4 not ( environment . now >= 08 :00 and environment . now <= 17 :00 ) )

5 def permi t I fTreat ing = Rule := permit i f f (

6 r e s ou r c e . owner in s ub j e c t . t r e a t i n g )

7 // example usage

8 act i on . i d = SimpleAttr ibute ( Str ing )

9 . . .

10 Policy := when ( . . . ) apply F i r s tApp l i c ab l e to (

11 . . .

12 denyIfNotOnShift ,

13 permi t I fTreat ing ,

14 . . .

15 defaul tDeny

16 )

Listing 1.3. Example definitions and usage of policy references
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others). Listing 1.2 shows the STAPL specification of the example rules of List-
ing 1.1. As shown, the attributes to be used in the policy are defined first (lines
1-6). These attributes have a type and can be single-valued or multi-valued. Then
the policy is defined in terms of these attributes (lines 7-22). STAPL employs
policy trees consisting of Policies and Rules: Rules are the basic elements of a
STAPL policy and Policies are collections of multiple Rules or other Policies.
Every Policy specifies to which requests it applies by means of an attribute-
based target (following the keyword when, see lines 7-8) and specifies how to
combine the results of its children by means of a combination algorithm such as
PermitOverrides or FirstApplicable. STAPL is defined as an internal domain-
specific language (DSL) in Scala because of its powerful features for both DSLs
and modularity. Of the different features of STAPL, this paper only focuses on
the policy templates, which are explained next.

Simple Policy References. Policy references are the simplest type of policy
templates provided by STAPL. Similar to XACML, policy references allow poli-
cies to be reused without modification and do not include attribute definitions.
Listing 1.3 illustrates how to define a policy reference (lines 2-6) and use one
(lines 10-16). As shown, policy references are Scala functions (denoted by the
keyword def) that do not require arguments and return a STAPL Rule or Policy.

Simple Policy Templates. Policy templates extend policy references with
unbound variables. These unbound variables can be literal values, attribute ref-
erences, attribute-based expressions or even other Rules or Policies. Listing 1.4
illustrates how to define a policy template (lines 2-9) and use one (lines 11-
18). The first example generalizes denyIfNotOnShift of Listing 1.3, the second
encapsulates the pattern of permitting in a certain condition and denying oth-
erwise. As shown, policy templates are Scala functions that require arguments
and return a STAPL Rule or Policy.

Modules of Policy TemplateswithAttributeDefinitions. Thirdly, STAPL
supports encapsulating policy templates with the definitions of the attributes re-
quired by these templates. This decreases the chance for incorrect attribute def-
initions and fully encapsulates a policy pattern as a reusable and self-contained
module. Listing 1.5 illustrates how to define such a policy module (lines 2-12). As
shown, a policy module is a Scala trait that extends the trait BasicPolicy. A Scala
trait is similar to a class, but allowsmultiple inheritance. The trait BasicPolicy de-
fines the variables subject, resource, action and environment so that policy mod-
ules can assign attributes to them. Listing 1.5 also illustrates how to import the
defined modules, i.e., by extending the scope in which the policies are defined us-
ing the Scala traits (line 14). Since Scala allows multiple inheritance using traits,
the scope can be extended with any number of required modules. Moreover, since
Scala allows traits to extend other traits, policy modules can extend existing mod-
ules as well. Amongst others, this can be used to express that a certain module
depends on other modules, as illustrated by the Treating module (line 9).
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1 // example d e f i n i t i o n s
2 def denyIfNotOnShift ( s t a r t : Time , s t op : Time ) =
3 Rule := deny i f f (not ( environment . now >= s t a r t
4 and environment . now <= stop ) )
5 def denyUnless ( c on d i t i o n : Expr ) =
6 Policy := apply PermitOverr ides to (
7 Rule := permit i f f ( cond i t i on ) ,
8 defaultDeny // see L i s t i n g 1.3
9 )

10 // example usage
11 act ion . id = SimpleAttr ibute ( S t r ing )
12 . . .
13 Policy := when ( . . . ) apply PermitOverr ides to (
14 . . .
15 denyIfNotOnShift (08 :00 , 17 :00 ) ,
16 . . .
17 denyUnless ( sub j e c t . department == ”emergency ”)
18 )

Listing 1.4. Example definitions and usage of policy templates

1 // example d e f i n i t i o n s

2 tra i t Sh i f t s extends Bas i cPo l i cy {
3 environment . now = SimpleAttr ibute (Time)

4 def denyIfNotOnShift ( . . . ) = . . . // see L i s t i n g 1.4

5 }
6 tra i t Ownership extends Bas i cPo l i cy {
7 r e s ou r c e . owner = SimpleAttr ibute ( Str ing )

8 }
9 tra i t Treating extends Ownership {

10 sub j e c t . t r e a t i n g = L i s tAt t r i bu t e ( Str ing )

11 def permi t I fTreat ing = . . . // see L i s t i n g 1.3

12 }
13 // example usage

14 object example extends Bas i cPo l i cy with Sh i f t s with Treating {
15 // no t i c e : no a t t r i b u t e d e f i n i t i o n s here

16 Policy := when ( . . . ) apply PermitOverr ides to (

17 . . .

18 denyIfNotOnShift (08 :00 , 17 : 00 ) ,

19 permi t I fTreat ing ,

20 . . .

21 )

22 }
Listing 1.5. Example definitions and usage of policy modules that contain both policy
templates as well as the definitions of the attributes they require
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1 . . . // d e f i n i t i o n o f the r o l e a t t r i b u t e omi t ted
2 // example d e f i n i t i o n o f the r o l e h i e rarchy
3 val employee = new Role ( )
4 val nurse = new Role ( employee )
5 val headNurse = new Role ( nurse )
6 . . .
7 // example usage
8 Policy := when ( . . . ) apply PermitOverr ides to (
9 // t h i s a p p l i e s to a l l t ypes o f nurses

10 Rule := deny i f f (not sub j e c t . hasRole ( nurse ) )
11 )

Listing 1.6. Example usage of a specialized attribute type for hierarchical roles. The
definition of this attribute type required 35 lines of code and is omitted because of
space limitations. Notice that subject has been extended with a specialized function
to reason about hierarchical roles.

Policy Templates with Specialized Attributes. Finally, policy modules
can extend the core functionality of STAPL (i.e., single-valued or multi-valued
attributes of simple types such as numbers, strings, booleans or dates, and
simple operators such as ==, in and <=) with specialized types of attributes
and functions that reason about these attributes. This functionality can be used
to express for example hierarchical roles. In this case, the application security
expert would like to define the hierarchy of roles and test whether a subject
owns a certain role in this hierarchy. Listing 1.6 shows an example of how such
an attribute could be used. For space reasons, Listing 1.6 omitted the definition
of this specialized attribute, which consists of the definitions of the attribute
itself, the mapping of these attributes to STAPL expressions and the extensions
to subject, resource, action and environment (35 lines of code in total). This
shows that policy modules with specialized attributes are the most expressive
type of policy patterns offered by STAPL, but also the most complex.

4 Validation

The previous section discussed the different types of policy templates supported
by STAPL. This section validates whether they can be used to create reusable
policy modules and that these modules can be used to separate the different
stakeholders involved in policy specification.

4.1 Approach

To validate the potential of policy templates, we applied them to an existing
policy by consistently factoring out rules and attribute definitions into policy
modules. Afterwards, we validated whether each resulting policy module falls
within the expertise of a single stakeholder and that each module can be reused
within its respective domain. If so, this shows that policy templates can separate
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the different stakeholders in policy specification, enable reuse and that realistic
policies can be specified by instantiating such templates. Of course, this process
is mainly meant for validation purposes and STAPL aims for a situation in which
policies are specified using policy templates from the start.

The original policy applies to viewing the status of a patient monitored by a
patient monitoring system. This policy was specified by the authors before the
work on STAPL as part of the e-health case study that was also employed in
the running example of Listing 1.1 [6]. The different stakeholders in this policy
are the five stakeholders identified before: the general access control expert,
the e-health domain expert, the application provider, the security expert of the
hospital and the application security expert of the hospital.

The policy was originally specified in XACML and was first translated to
STAPL literally to achieve a fair evaluation2. In terms of STAPL, the policy
consists of 23 Rules (plus 7 default denies) divided over 12 Policies, resulting in
a policy tree of depth 5. The policy requires 30 different attributes, of which 17
subject attributes, 11 resource attributes, 1 action attribute and 1 environment
attribute.

4.2 Modularization Results

The result of the modularization of the policy is shown in Figure 3. We can make
several interesting observations from this figure.

Observation 1: Separation of concerns. Firstly, Figure 3 shows that it is possible
to apply policy templates so that every policy module can be specified by exactly
one expert. As a result, the different roles of the different experts outlined above
can be separated appropriately:

1. The access control expert specifies the general policy modules such as Roles,
Time, Ownership, Location and GeneralTemplates. GeneralTemplates amongst
others contains the definitions of defaultDeny and denyUnless() shown in
Listing 1.3 and Listing 1.4. Roles defines the specialized attribute for hier-
archical roles.

2. The domain expert specifies the policy modules that apply to the domain of
e-health in general, which in this case is Consent and BreakingGlass.

3. The application provider specifies the policy modules that are specific to
the application, in this case mainly PatientMonitoringSystem, which de-
fines the resource attributes supported by the application. Of these at-
tributes, resource.patient status represents a gradation of patient statuses.
This specialized attribute has been generalized into the separate module
PatientStatus that can be reused by the application provider later on.

4. The security expert of the hospital defines the policy modules that are spe-
cific to the hospital. These comprise the role hierarchy of the employees of
the hospital, its different departments, the definitions of 13 attributes that

2 The original policy and the result of the refactoring are available at
https://distrinet.cs.kuleuven.be/software/stapl/
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Fig. 3. The hierarchy of policy modules resulting from refactoring the original policy
of the e-health case study. Arrows represent a dependency between policy templates
and the colors indicate which policy template fits the expertise of which stakeholder.

apply to its employees (e.g., subject.department and subject.is discharged)
and the rules to reason about shifts and the treating relationship between
medical personnel and patients. Again, the latter have been generalized into
separate modules that can be reused within the hospital.

5. Finally, the application security expert only specifies the specific policy that
holds for the patient monitoring system as used by the hospital. There was
no need to define other attributes, i.e., all attributes used by this policy were
pre-defined in policy modules.

Observation 2: Reusability. As a second observation, the modules defined by
the different experts indeed apply to their own domain and can thus be reused
in these domains. For example, the templates in the modules defined by the
application provider can be reused by any organization using its application and
the templates in the modules defined by the access control expert can be reused
in other access control policies regardless of the application or the domain.

Observation 3: Number of policy modules. Thirdly, Figure 3 shows that it was
possible to extract no less than 14 modules from a policy consisting of 23 rules.
This shows how common reusable patterns are in access control policies and
indicates the potential of policy templates for simplifying policy specification.
However, we do not expect the number of modules that can be extracted from
a larger policy to grow linearly with the number of rules in that policy. On the
contrary, given the reusability of the extracted modules discussed in the previous
observation, we expect the number of defined modules to stagnate, but the reuse
of the templates in these modules to grow.



Improving Reuse of Attribute-Based Access Control Policies 207

Observation 4: Fine-Grained Module Hierarchy. Finally, it is worth noting that
most of the 14 modules only define a small number of templates and attributes.
By employing module dependencies, these fine-grained templates can then be
structured in a hierarchy of modules of gradually increasing size in order to only
include the specific features needed in the final policy.

4.3 Analysis of the Modules

In addition to the resulting module hierarchy, it is also interesting to analyze
the different types of templates used in this hierarchy. More precisely, the 14
modules of Figure 3 define 2 policy references (defaultDeny and defaultPermit),
6 policy templates (e.g., DenyUnless() and denyIfNotOnShift()), 30 definitions
of standard attributes, 3 definitions of specialized attributes (roles, hierarchi-
cal resource types and the status of a patient) and 3 functions for using these
specialized attributes. The final policy did not define any other attributes and
instantiated 0 policy references, 9 policy templates and 9 functions for using the
specialized attributes3. These numbers show four interesting observations:

Observation 1: references vs templates. Apart from defaultDeny and default-

Permit, all other templates required unbound variables in order to be reusable.
This validates the original claim that policy references by themselves are not
powerful enough to provide reusability.

Observation 2: template definition vs instantiation. The number of template
instantiations is significantly higher than the number of template definitions.
This is mainly due to the use of roles (7x) and DenyUnless() (6x) throughout the
policy. Both patterns frequently occurred in the policy, while the other templates
are more specialized and were used only once. In the former case, modularization
provides the benefit of specifying a frequent pattern only once; in the latter case
the benefit is having other experts specify complex rules and instantiating these
using a simple interface.

Observation 3: no attribute definitions in the application policy. Finally, we ob-
serve that all attributes required by the final application policy are defined in
the modules and that the policy did not define any attributes itself. This fits
reality well: a policy cannot simply define a new attribute since the available
resource attributes are determined by the application and defining a new sub-
ject attribute requires assigning values for this attribute to the subjects of the
organization. In fact, policy modules provide a means to actually consolidate
these definitions in both an application-specific or organization-specific module.

4.4 Effect of Templates on the Policy Size

Finally, Table 1 provides metrics about the effect of policy templates on the size
of a policy. Table 1 first compares the number of lines of code required to express

3 The final policy did not employ any policy references because defaultDeny and
defaultPermit were encapsulated in DenyUnless() and PermitUnless().
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Table 1. Metrics about the size of the policy without and with policy templates

Without With

#Lines of code for policy definition 57 56 (98.2%)

#Statements in the policy definition 367 205 (55.6%)

the policy (not counting attribute definitions). As shown, the use of policy tem-
plates does not significantly affect this number. However, as shown next in the
table, the use of policy templates does significantly lower the number of state-
ments required to express the policy (e.g., Policy, when, ==). This is the result
of replacing complex rules or frequently occurring patterns with templates that
require less statements to instantiate, such as the consent rule or DenyUnless() re-
spectively. While these numbers only comprise one case study, they do show that
policy templates have the ability to simplify policy specification significantly.

5 Related Work and Discussion

In the previous sections, we introduced and validated policy templates in
attribute-based tree-structured policy languages as a means to improve reuse
and modularity. To the best of our knowledge, this work is the first to discuss
policy templates in the domain of attribute-based access control. Before this
work, policy templates have also been discussed by Wies et al. [17], Casassa
Mont et al. [3], Bonatti et al. [2] and as part of the Ponder policy language [5].
Similar to our vision, Wies et al. and Casassa Mont et al. discuss policy tem-
plates as part of a larger view on policy management in which templates are a
means to allow different experts to cooperate. Bonatti et al. on the other hand
discuss policy templates as part of their formal work on modular policy compo-
sition using policy trees. As a result, our definition of policy templates aligns to
theirs, but fits in the vision of Wies and Casassa Mont. Finally, Ponder is an ex-
tensive policy language that amongst others also supports policies with unbound
variables, but did not yet employ attribute-based access control or policy trees.
The main difference between this work and these four is our focus on attribute-
based tree-structured policy templates supported by a concrete policy language,
the generalization of policy templates into policy modules and the validation of
the potential of policy templates. In addition to these authors, templates have
also been discussed in the evolution from role-based access control (RBAC, [7])
to ABAC (e.g., [9,13]). Such role templates were eventually generalized into
attribute-based policies, for which STAPL in turn introduces policy templates.

This work started from the observation that state-of-the-art attribute-based
policy languages can express a wide range of rules, but that policy specifica-
tion has also become more complex. This observation aligns to recent visions of
amongst others Sandhu [16]. Sandhu argues that attribute-based access control
can offer numerous benefits, but also provides risks and challenges such as the in-
creased complexity of attribute management. Similarly, NIST recently published
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a guide to ABAC [10] containing open challenges and a vision on the multiple
roles involved in employing ABAC in an enterprise. This work fits into both
visions with a specific focus on efficient policy management and specification.
However, when scoping this work in the visions of Sandhu and NIST, it also
becomes clear that policy templates are only a first step to an effective deploy-
ment of ABAC. For example, while STAPL allows to simply import an attribute
definition, the largest effort will be in providing values for this attribute for the
appropriate subjects or resources. Therefore, the next step for this work is to
extend modular policy management with modular attribute management.

An interesting side-effect of our work on policy modularity is the possibility to
explicitly separate the roles of the provider of an application and the organiza-
tion using it (see Figure 3). In terms of attribute-based policies, the application
provider determines the structure of the resources in the application, i.e., the
types of resources, their attributes and the actions they support. The organiza-
tion on the other hand determines the structure of the subjects, i.e., the types
of subjects and their attributes. The policies then combine both by express-
ing which subjects can perform which actions on which resources. As shown in
our validation, policy templates provide a means to concretize the structure of
the subjects and the resources, which can prove valuable to simplify the cor-
rect specification of access rules, for example by employing this information for
completeness checking. Towards the future, we plan to further investigate this
application of policy templates.

Finally, we want to mention that STAPL is currently built as a Scala DSL.
Scala provides powerful features for both DSLs and modularity and allows
STAPL to be directly employed in Scala or Java applications. However, in the
long run, it is our aspiration that the concepts presented in this paper are in-
corporated in language-independent policy languages, such as XACML itself.

6 Conclusion

In this paper, we introduced policy templates as a means to improve reuse in
attribute-based tree-structured policy languages such as XACML. Our policy
language STAPL supports four types of policy templates ranging from simple
policy references to modules encapsulating policy templates and the specialized
attributes required by these templates. This paper showed that these policy tem-
plates can be used to set up a hierarchy of fine-grained reusable policy modules.
Each such module can encapsulate a policy pattern, can be defined by the ap-
propriate expert and can be reused within the domain of that expert. As such, it
is our aspiration that STAPL is a first step towards a policy specification process
in which policy modules are defined once by experts and access control policies
are composed by instantiating these modules.
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Abstract. Role-based access control (RBAC) is widely used in organi-
zations for access management. While basic RBAC concepts are present
in modern systems, such as operating systems or database management
systems, more advanced concepts like history-based separation of duty
are not. In this work, we present an approach that validates advanced
organizational RBAC policies using a model-based approach against the
technical realization applied within a database. This allows a security
officer to examine the correct implementation – possibly across multiple
applications – of more powerful policies on the database level. We achieve
this by monitoring the current state of a database in a UML/OCL vali-
dation tool. We assess the applicability of the approach by a non-trivial
feasibility study.

Keywords: Model checking for security, Models for security, Verifica-
tion techniques for security properties, Security by design.

1 Introduction

Modeling systems with languages like UML [14] and OCL [15] offers many ad-
vantages for the development process: Models allow developers to state, analyze
and predict interesting characteristics of the system under study before an actual
implementation is done, and models allow developers to specify the implemen-
tation of the intended system.

RBAC (Role-Based Access Control) is a well accepted approach for designing
and implementing access management. Typically, many proposed approaches use
RBAC in the system design phase in a forward engineering way. RBAC, however,
also allows us to monitor access violations in a running system. Monitoring
approaches can be employed for existing systems during running operations.

This contribution puts forward an RBAC modeling approach and is based
on previous foundational work on an RBAC metamodel [11] and on runtime
monitoring using UML and OCL [10]. This new approach combines both lines
of work by integrating them and evaluating the applicability using relational
database systems. We concentrate on databases rather than the application itself
as access violations might also occur at this lower system level; the lower layer
might not respect the policies defined for the application level [2]. The evaluation
is done by a feasibility study on a publicly available moderate sized database [20].

F. Piessens et al. (Eds.): ESSoS 2015, LNCS 8978, pp. 211–226, 2015.
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The rest of this paper is structured as follows. Section 2 introduces the es-
sential RBAC concepts needed in our context and explains a running example.
Section 3 sketches the UML and OCL tool USE (UML-based Specification Envi-
ronment) and its monitoring features. Section 4 explains the details of monitoring
RBAC on a relational database. Special emphasis is laid on dynamic separation
of duty constraints. Section 5 discusses a feasibility study for our approach and
shows that it works in a case study where some 100,000 database tuples are
monitored and some 10,000 access operations on the tuples and violation of
dynamic separation of duty rules are analyzed. Section 6 discusses related work.
Section 7 summarizes the results and gives an outlook on future work.

2 Role-Based Access Control

RBAC is widely used in organizations such as financial institutes or enterprises
for access management. Users do not obtain permissions to access resources
directly, but through roles. Roles often correspond to job functions that a user
holds within her organization. The role concepts have been described in the
RBAC ANSI standard [1]. RBAC comprises the sets Users , Permissions , and
Roles , as well as the relations UA, PA, and RH . UA is a many-to-many relation
which represents the roles assigned to users (“user assignment”). The assignment
of permissions to roles is expressed by the many-to-many relation PA. Further-
more, permissions are often seen as pairs of resources and actions, e. g., the action
“approve” is allowed to be performed on the resource “cheque”.1 RH describes
a role hierarchy relation on the set of Roles , i.e., roles can inherit permissions
from other roles.

The aforementioned RBAC sets and relations are shown in Fig. 1 where we
present a UML-based metamodel of RBAC. For example, the Users and Roles
sets are represented by the User and Role classes; the UA relation is expressed
by the association between both classes. Please note that permissions are repre-
sented by an association class between the resource and action classes.

RBAC also supports advanced access control concepts, such as role hierarchies
and role-based authorization constraints. The role hierarchies are represented
by a senior/junior association from the Role class to itself in Fig. 1. A typical
example of a role hierarchy relation is given by the roles Cashier and Cashier

Supervisor where the former role is junior to the latter.
Authorization constraints allow a security officer to express organizational

rules. The most well-known kind of authorization constraint is separation of
duty (SoD). SoD prevents a user from committing fraud by splitting tasks into
several parts, which must be executed by different users [18]. Two forms of
SoD are usually distinguished, namely, static and dynamic SoD. Static SoD

1 In the literature on access control, usually the terms “object” and “operation” are
used instead of “resource” and “action”. However, we felt that the former terms
could be mixed with the notions of object and operation in UML.
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is often expressed in terms of mutually exclusive roles, e.g., the roles Clerk

and Supervisor. Static SoD is enforced at administration time, i. e., when a
user is assigned to a role. In contrast, dynamic SoD is enforced at runtime. For
example, a banking clerk who has approved a cheque is not allowed to validate
it. Such conditions often need the access history for access decisions [18]. As a
distinguishing feature, the RBAC metamodel given in Fig. 1 also supports this
kind of dynamic SoD, which is represented by the class DynamicSoD.

Figure 2 visualizes our concept of modeling dynamic SoD and is meant for di-
dactic purposes. After a user has applied the action preAct to the resource prop-
erty preProp belonging to a resource of type preT, she is not permitted to apply
postAct to the resource property postProp of a resource of type postT (dy-
namic SoD constraint). In the aforementioned example, the resource types preT
and postT equal “cheque”. The preaction is “approve”, whereas the postaction
is “validate”. The properties are then “approved” and “validated”, respectively.

3 USE

3.1 Validation and Verification with USE

Modeling features and their analysis through validation and verification is sup-
ported by the tool USE (UML-based Specification Environment) [7]. Within
USE, UML class, object, statechart, sequence, and communication diagrams
extended with OCL are available. USE assists the developer in order to val-
idate and verify model characteristics. Validation and verification can be re-
alized in USE by employing a model validator based on relational logic and
SMT solvers. Model properties to be inspected include consistency, redundancy
freeness, checking consequences from stated constraints, and reachability. These
properties are handled on the conceptual modeling level, not on an implementa-
tion level. Employing these instruments, central and crucial model characteristics
can be successfully and efficiently analyzed and checked.

3.2 Monitoring with USE

The USE Monitor project was started as a USE plug-in to support runtime
verification of Java applications [10]. The monitor allows a developer to attach
to a running application, take a snapshot of its current state and validate this
snapshot against defined constraints. Using the monitor, an application can be
verified at a more abstract level than the code, because the used model can be a
small part of the overall system, by dropping unnecessary details. For example,
a huge inheritance hierarchy can be compressed to those super classes required
for the validation task. After an initial snapshot has been taken, the suspended
application can be resumed to monitor changes in the system. While listening to
change events, like the creation of new instances or operation calls, constraints
defined in the model are validated, e. g., when the monitor receives an opera-
tion call event to an operation that is considered in the model, it evaluates the
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Fig. 2. Realizing dynamic SoD in our RBAC metamodel

defined preconditions and, if present, possible state machine transitions for this
operation. The user of the monitor is informed immediately about any unex-
pected behavior of the application, i. e., about model constraint violation. While
the first version of the monitor was limited to the Java runtime environment,
the current version allows for an easy integration of other target platforms. This
is achieved by using so-called adapters. These adapters detach the monitor from
a concrete target platform by hiding the concrete communication between the
target platform and the monitor. Moreover, an adapter can map non object-
oriented platforms (i. e., relational databases) to the object-oriented world of
UML and OCL as it is done in this work.

4 Monitoring RBAC Constraints with UML and OCL
Models

This section describes our approach of verifying RBAC policies defined on an
abstract level against low level implementations in a step-wise manner. Figure 3
shows an overall picture of it. A central part of this approach is the RBAC
metamodel described in detail in [11].

An excerpt of a slightly modified and extended version of this metamodel can
be seen in Fig. 1. A central extension was done by integrating type information
into the metamodel by adding the classes ResourceType and ResourceProperty.
The RBAC specification is very general about the concrete meaning of a resource,
but for our approach we need to distinguish between the permissions on a type,
in our example a table, and the permissions on access to an instance, i. e. a table
entry, of these types.

Before we discuss the steps in detail, we briefly describe the overall workflow.
In Step 1, the USE monitor is utilized to retrieve any information that is relevant
to the overall RBAC policies from a database. Relevant information include
defined roles, tables, columns and database users. These elements are created
within the USE tool as objects according to the RBAC metamodel.
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Step 1: Retrieve RBAC relevant information from database
Step 2: Apply organization RBAC policies
Step 3: Validate DB permissions against RBAC policies
Step 4: Generate test cases for dynamic aspects
Step 5: Runtime verification of dynamic RBAC policies

Fig. 3. Overview of the verification process

After this, the developer applies the organization RBAC policies to the in-
formation extracted from the database in Step 2. These organization policies
contain rules that cannot be specified in the database. Examples are static and
dynamic SoD constraints, which cannot be expressed in most database systems.
Simple mismatches between the organization policies and the database security
configuration, like missing roles or resources can already be identified in this
phase of the process.

In Step 3, basic and extended verification jobs of the organization policies can
be run. The basic verification evaluates the defined invariants on the metamodel
in order to discover violations of static RBAC constraints, e. g., the violation of
mutually exclusive roles defined in the organization policies. Extended verifica-
tion applies more powerful model finding techniques to verify assumptions about
the configuration, e. g., whether a given workflow is executable with the current
security settings.

The same model finding approach is used in the optional step 4 to generate test
cases for validating dynamic RBAC policies. It can be used to generate scenarios
(workflows) that violate a given dynamic policy. These scenarios can be used to
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test if the applications using the database take into account the organizational
dynamic RBAC policies.

For Step 5 the USE monitor is utilized to listen to database changes. After
interesting change events, USE can validate the organizational dynamic RBAC
policies at runtime and report violations to the developer. This step allows an
application-independent runtime verification of dynamic policies. The test cases
generated in Step 4 can be used as a test driver or the monitoring is done during
“ordinary work”, if the performance impact of the monitoring is not an issue.

After this summary of the overall process, we now discuss each step in detail.

4.1 Retrieve RBAC Relevant Information from a Database

To be able to verify more general security settings, i. e., RBAC policies, against
the concrete permissions present in the database, the concrete permissions need
to be available to a verification tool. For our approach we developed an SQL
RBAC adapter that reads the database schema, the defined permissions and – if
required – the current database state. Table 1 shows the currently used mappings
from relational database elements to the metaclasses of our RBAC metamodel.

Table 1. Element mapping from Database elements to RBAC metamodel classes

Element Catalog Item → RBAC metamodel class

Table information schema.tables → ResourceType
Column information schema.columns → ResourceProperty
User∗ pg user → User
Role∗ pg group → Role
Permission Kind Fixed values (INSERT, ...) → Action
Table Permission information schema.table privileges → TypePermission
Tuple∗ → Resource
Value∗ → ResourcePropertyValue
∗These elements require special treatment and are described in Sect. 4.1.

This table is just a brief overview to illustrate the idea of the mapping. It does
not contain all relevant information. For example, we do not provide information
about the role membership and role hierarchy. For this kind of relation, the map-
ping is typically done by using foreign key information of the corresponding re-
lations. The information for the metaclasses ResourceType, ResourceProperty
and TypePermission can be retrieved by querying the database information
schema as it is defined in the SQL standard (c. f. [8]). Each returned tuple is
considered as a new instance of the mapped metaclass. Figure 5 shows the ob-
ject diagram that is extracted by the monitor after it was applied to a database
containing the table shown in Fig. 4.

In the upper part of this figure, the table structure can be seen. Directly below
the structure of the table, its content is shown. In the example the content of the
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Fig. 4. Table cheque with sample data

table consists of two entries. The cheque with the number 100005 and amount

150.00 has been approved (the property approved 
= 0) but not validated (the
property validated = 0). The other cheque with number 100006 about 120.00
has already been validated and approved. The values of a table can be extracted
by taking into account the information about the table schema and constructing
corresponding SQL statements. Since not all data contained in a database are
required for the following tasks, adequate filters could be used to reduce the
overall size of the resulting object diagram. Specifically, the applicability of model
finding during some tasks depends on this reduction.

The permissions on resource types, i. e., tables, can be retrieved by query-
ing the default information scheme, too. However, the concrete users and roles
are not easy to query using the SQL standard. In our work, we used the views
pg roles and pg users which are specific to the database system PostgreSQL2.
Since the possible actions on tables are defined in the SQL standard, they can be
defined beforehand. In our example, the defined permissions (instances of asso-
ciation class ResourcePermission) and their assignments to roles (represented
as links) can be seen on the left side of Fig. 5. One can retrieve that the role
Supervisor has the following permissions on table cheque: DELETE (object tp3),
UPDATE (tp2), and SELECT (tp4), whereas, the role Clerk has the permissions
SELECT (tp4), INSERT (tp1), and UPDATE (tp2).

4.2 Apply Organizational RBAC Policies

In this step, the developer enriches the monitored information with RBAC poli-
cies from the organization that cannot be expressed in the used database system.
For example, the RBAC concept of dynamic SoD with respect to access history
is unsupported in database systems.

To apply these more general policies, the developer needs to modify the in-
stance of our RBAC metamodel read in Step 1. She can set attribute values of
already present metamodel elements, such as roles, define new rules by creating
rule objects and, link instances to fit the organization needs. Please note that
a developer only needs to configure instances of provided rules. She does not
need to write policy rules in OCL, since these rules are already defined in the
metamodel. Further, we only show one example of a policy (DynamicSoD), but
other policies can be integrated easily by a metamodel designer into the RBAC

2 Using Microsoft SQL Server the corresponding system view is syslogins. The col-
umn issqlrole determines if an entry is a role or a user.
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Fig. 5. The table shown in Fig. 4 as an instance of the RBAC metamodel, generated
with the USE tool
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metamodel, if required. After these policies have once been defined, they can
automatically be applied in another verification session by our tool chain.

Suppose that the two roles Clerk and Supervisor are defined as mutually
exclusive (static SoD) by organizational rules. For this, a developer needs to
create an instance of the association class MutualExclusive between both roles.

More advanced policies can be defined by creating instances of the class
DynamicSoD. This class enforces a dynamic SoD constraint. An example of such
a dSoD constraint is shown in Fig. 6. This figure is a more specific version of
the one shown in Fig. 2. Using natural language, this dSoD constraint states:
“If a user approves a cheque, she is not allowed to validate it.” For the database
schema model, this rule is defined by specifying the action UPDATE and the re-
source property approved as the preceding access and the same action together
with the resource property validated as a forbidden posterior access.

rp3:ResourceProperty
name='approved'
position=3

rt1:ResourceType
name='cheque'

rule1:DynamicSoD
name='No approve and validation'

a6:Action
name='UPDATE'
isCreation=false
isDeletion=false

rp4:ResourceProperty
name='validated'
position=4

postAction

postProperty

preAction

preProperty

Fig. 6. Modeled dynamic separation of duty policy

In the following sections we describe how the policies explained in this section
are used to validate the overall security settings. Before this, we would like
to mention that already at this stage in the process, mismatches between the
database configuration and the policy level can be detected. A possible mismatch
is the absence of a role in the database, which is used in the organization policies.
The same holds for resource types and properties. These dependencies between
elements at the policy level and elements at the database schema level can be
seen in Fig. 1. Classes and associations that cross the highlighted levels are used
in both levels.

4.3 Validate Database Permissions against RBAC Policies

After the concrete database settings have been merged successfully with
the RBAC policies, a developer can now verify the validity of the policies w. r. t.
the current database configuration. Note that in this step no dynamic policies
can be verified because the monitored data contain no information about past
events. However, some useful static policies can be verified. As most database
systems do not allow an administrator to specify a maximum number of users
for a role, e. g., only two supervisors are allowed in a given company, these orga-
nization policies can now be verified. Our RBAC metamodel contains invariants
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specified in OCL for several extended RBAC policy types, including the maxi-
mum number of roles a user can be a member of, mutually exclusive roles and
role hierarchies.

Using our validation and verification tool USE, violations of these invariants
can be discovered. USE evaluates the given invariants against the system state
which was created in the previous step. If a constraint fails, USE provides a
rich set of functionality to discover the violating elements. The outcome of this
phase can be used to give advice to database administrators how to change the
security settings within the examined database.

Another question which can be answered in this step is if a given workflow
is executable w. r. t. current database permissions. For our example, we want to
know, if a cheque can be approved and afterwards be validated. For this small
example a database administrator might directly see that the workflow is exe-
cutable. However, for more complex workflows automatic verification techniques
are needed. Our toolchain supports this task by using the model validator plug-
in described in Sect. 3.2. To do so, a developer needs to specify the workflow
to validate by means of declarative assumptions that need to be fulfilled. The
workflow to validate a cheque requires to describe a correct execution, i. e., it
has to be specified that a cheque is approved and validated. This can be done
by defining an invariant that enforces two access actions to the same resource
of type named cheque: one for the update of the resource property approved

and one for the update of the property validated. This invariant together with
other settings, like bounds for the number of instances for each type, are provided
to the model validator, which then tries to find a valid object diagram w. r. t.
the default RBAC constraints and the additional invariant. The model validator
uses the previously created object diagram as a starting point, a so-called par-
tial solution. If the model validator finds a solution within the provided bounds,
the workflow is executable under the current permissions of the database. If
it does not find a solution, one cannot directly state that the workflow is not
executable, because the search space of the model validator is limited by the
provided bounds. This means, a valid solution might exist outside the config-
ured bounds. A developer can now increase the bounds until it is likely that no
valid solution exists. Hints to the developer why a given setup is not satisfiable
can also be provided by the model validator.

4.4 Generate Test Cases for Dynamic Aspects

The model validator can be used for test case generation, too. For this task, the
approach described in the previous section is slightly changed: instead of pro-
viding information about a valid workflow, the model validator is now used to
find a solution that does not fulfill a given constraint, e. g., the invariant or in-
variants that define a dynamic SoD policy. This negation of invariants is directly
supported by the model validator, since it is useful for several examination tasks
in the context of model finding.

Figure 7 shows a resulting test case using the cheque example. The model
validator extended the object diagram shown in Fig. 5 by several instances.
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Note that we do not show all instances again. Only the relevant ones for the
invalid workflow are displayed. All other are hidden in the object diagram, but
are present in the used system state. In detail, the model validator added three
access objects each representing an access to a resource or resource property
of the resource type cheque by the user bob. The first access (time=2) creates
resource r1 using the INSERT action (a3). Afterwards, the access sequence vi-
olating the dynamic SoD rule shown in Fig. 6, which updates the properties
approved (at time 28) and validated (at time 32) occur. These generated test
cases can be seen as basic execution sequences that violate a given high-level
policy. The concrete workflow execution, possibly using different applications,
depends on the application landscape present. Therefore, a security officer needs
to map the generated basic access operations to a business workflow to execute
the test case.

access3:Access
time=32

rt1:ResourceType
name='cheque'

a3:Action
name='INSERT'
isCreation=true
isDeletion=false

access10:Access
time=2

access1:Access
time=28

u1:User
name='bob'
maxRoles=32
maxRolesRespectingHierarchy=true

rp3:ResourceProperty
name='approved'
position=3

a6:Action
name='UPDATE'
isCreation=false
isDeletion=false

r1:Resource
name='100006'

rp4:ResourceProperty
name='validated'
position=4

Fig. 7. Generated test case for an invalid dSoD policy

4.5 Runtime Verification of Dynamic RBAC Policies

Until now, we only considered the database state as it is. However, using the
monitor plug-in dynamic verification could be applied, too. For this, the database
management system needs to provide a notification mechanism that allows an
application to register for interesting events. These events include statements for
the actions INSERT, UPDATE, and DELETE. An example of such mechanism are the
Microsoft Notification Services [12] provided by SQL Server 2005. Starting with
SQL Server 2008 these services are integrated into the SQL Server Reporting
Services [13]. Using PostgreSQL a notification infrastructure can, for example,
be built by using the non-standard SQL command NOTIFY [19]. Both mecha-
nisms have in common that the notifications are sent asynchronously. Since our
approach is designed to identify policy violations and not to prevent them, this
asynchronous behaviour fits well. Only the sequence of access must be correct.
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In addition, using asynchronous notifications reduces the overhead for the run-
ning applications, since the validation can be done independently.

Using such an appropriately configured infrastructure, the monitor could re-
act on events by notifying the USE tool about changes. USE could then validate
all defined RBAC policy rules based on its knowledge about the history of exe-
cuted commands. This history would be built incrementally starting at the first
received command. Commands executed before cannot be considered. Therefore,
to verify a complete workflow, this workflow needs to be executed as a whole
during the runtime verification task. One benefit of this runtime verification
approach would be that the correct implementation of RBAC policies within a
single application or across multiple applications using the same data source can
be checked, because the evaluation of the policies is done on the database layer.

5 Feasibility Study

Until now, we only showed small examples adequate for presenting the over-
all ideas and explained concepts of a possible runtime verification task. To get
an early impression about the database sizes that our approach can handle,
we extracted database information of various sizes and generated 10,000 access
operations. Afterward, we ran a complete validation of the structure, i. e., we
checked the extracted object diagram against the multiplicity constraints and
the (OCL) invariants present in our metamodel. Further, we ran these valida-
tions using different numbers of RBAC policy rules. Starting with seven rules
and ending with 28. Table 2 summarizes our results. All performance evaluations,
except the second row, were executed on a workstation powered by a Pentium
DualCore E5300 with 2.6GHz with 4GB RAM running Ubuntu 14.04LTS. USE
was executed using Oracle JRE 1.7 with an allowed heap memory size of 2GB.
The results in the second row of the table are collected from a notebook with a
similar configuration, but running Windows 7 32bit, which only allows a max-
imum Java heap size of some 1GB. The complete RBAC metamodel including
detailed information about the evaluation can be found online [9].

Table 2. Performance evaluation

Validation time with n policy rules

Structure Invariants

#Rec. #Inst. #Links read 7 14 21 28 7 14 21 28

74,964 638,897 75,009 52s 1s 1s 1s 1s 4.7s 8.8s 12.1s 15.5s

(Windows 7) (53s) (1.6s) (1.6s) (1.6s) (1.6s) (6.4s) (11.5s) (17.4s) (23.1s)

89,222 769,329 89,267 60s 1.4s 1.4s 1.3s 1,2s 5s 9.6s 12.7s 16.8s

112,366 986,206 112,409 78s 1.6s 1.6s 1.5s 1.5s 4.7s 8.7s 12.8s 17.1s
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In summary, we can state that our approach is able to validate RBAC policies
in about 20 seconds on a moderate sized database (with about 100,000 tuples
taking into account 10,000 access operations) and including on the RBAC side
about 30 dynamic SoD rules (following the template in Fig. 2 and instantiated in
example form in Fig. 6). Given the presented results, one can see that both the
creation of the database state (column read) and the validation of the invariants
grow linear. Further, the measured durations are still acceptable when taking
into account that they represent a validation of the whole system state.

Currently, the memory consumption of USE in combination with the RBAC
monitor is quite large. Using 1GB heap space, only the first database state
containing roughly 75,000 records is manageable. This number can be increased,
since the RBAC monitor currently keeps a copy of all read database rows for
performance reasons. USE as a standalone application or used as a library can
still handle more instances.

6 Related Work

Our approach builds on an RBAC metamodel [11] that we have extended with
the notions of ResourceType and ResourceProperty (see Section 4). Several
other works exist that model RBAC policies with UML and OCL [4,3,17,6].
Some of those approaches also target at validating RBAC policies, e. g., [3].
However, none of those works deal with runtime monitoring and they do not
support dynamic SoD constraints based on the access history.

Only simple SoD concepts have been implemented in database management
systems (DBMS) until now, such as mutually exclusive roles w.r.t. role mem-
bership (static SoD) or role activation (simple dynamic SoD). Advanced role-
based authorization constraints, such as history-based dynamic SoD, are not
supported. RBAC concepts for relational databases have also not been discussed
much in scientific literature in recent years. In older work, Ramaswamy and
Sandhu discuss RBAC concepts that are supported by commercial DBMS [16].
Later, Bertino and Sandhu came to the conclusion that commercial DBMS use
only limited RBAC concepts [5]. Our experience with current versions of DBMS
still supports this statement as mentioned before.

7 Conclusion

We have employed a UML and OCL model monitor for RBAC in relational
databases. The approach can detect, for example, the violation of dynamic mu-
tually exclusive roles specified as organizational policies. We have performed a
feasibility study where a moderate relational database with some 100,000 tu-
ples together with about 10,000 database access operations have been moni-
tored in our tool USE. The approach allows one to check the consistency of the
specified policies with actual workflows. We have concentrated on dynamic SoD
constraints with respect to an access history.
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The current approach is only a first step towards monitoring RBAC policies
during runtime. Future work should study further types of RBAC constraints
which can be captured by our metamodel. Currently, the formulation of the
organizational policies in form of object diagrams is not user-friendly. A better
syntactical presentation should be developed. The utilization of the model valida-
tor and its features could also be improved, and further steps in the monitoring
process, like schema and constraint extraction, could be automatized.
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