
Essential Skills for
3D MODELING,
RENDERING,
and ANIMATION
Nicholas Bernhardt Zeman

Essential Skills for
3D MODELING,
RENDERING,
and ANIMATION
Nicholas Bernhardt Zeman

Computer Graphics

The Key to Fully Understanding the Basics of a 3D World

Prominently used in games, movies, and on television, 3D graphics are tools of creation
used to enhance how material and light come together to manipulate objects in 3D
space. A game-changer written for the non-technical mind, Essential Skills for 3D
Modeling, Rendering, and Animation examines the complexities of 3D computer-
generated art, and outlines the basics of how things work and are used in 3D. This text
describes the three cornerstones of 3D—modeling, rendering, and animation; focuses
on common elements; and provides a full understanding of the foundational concepts
involved. Detailing the skills and knowledge needed to become an accomplished 3D
artist, it includes step-by-step instruction with ample examples, and allows absolute
beginners to move at their own pace.

Master Anything You Are Tasked to Model

The author incorporates historical information—presenting a contextual understanding
of the various techniques and methodologies in their historical place. Each chapter
builds on the fundamentals of 3D computer graphics and augments skills based on the
concepts, enabling the student to learn both theory and application simultaneously. The
book highlights two basic geometry types, polygons and NURBS surfaces, showing the
student basic modeling techniques with both. While more techniques are available, an
artist can cover any model by grasping these basic techniques.

Essential Skills for 3D Modeling, Rendering, and Animation offers a fundamental
understanding of the mechanics of 3D graphics to modelers, animators, texture artists,
render artists, game developers, and production artists, as well as educators teaching an
undergrad or tech course in 3D animation.

“Zeman’s instruction took me
from a complete novice, having
only dreamed of using 3D,
to a proficient modeler, rigger,
and animator for indie game
development, and has given
me the foundational information
to be able to quickly learn any
3D program.”

—Nick Brummer, Indie Game
Designer, Curriculum Developer

K22359

Essential Skills for 3D MODELING, RENDERING, and ANIMATION

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A N A K P E T E R S B O O K

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140923

International Standard Book Number-13: 978-1-4822-2414-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

v

Contents

Preface, xi

About the Author, xv

Introduction, xvii
WHAT IS 3D ART? HOW DOES IT WORK?	 xvii

RENDERING, LIGHTING, AND MATERIALS	 xviii

ANIMATION	 xviii

Chapter 1  ◾   �Understanding 3D Space	 1
HOW DO WE KNOW WHERE THINGS ARE IN 3D GRAPHICS?	 1

Cartesian Mapping and 3D Coordinates	 1
HOW DO WE DETERMINE THESE POSITIONS?	 1

The Grid	 1
WHAT ARE THE COORDINATE SYSTEMS? ARE THERE
MORE THAN JUST ONE?	 4

Global and Local Coordinate Systems	 4
WHAT IS LOCAL SPACE?	 7

Hierarchies and Local Transforms	 7
HOW DO I CHANGE AN OBJECT’S POSITION IN SPACE?	 8

Transforms	 8
FROM WHERE DOES AN OBJECT MOVE WHEN YOU
MOVE IT?	 11

Pivots and Snaps	 11
CAN I RESET THE TRANSFORMS AFTER MOVING MY OBJECT?	 13

Freezing and Re-Setting Transforms	 13

www.allitebooks.com

http://www.allitebooks.org

vi    ◾    Contents

EXERCISE: TRANSFORMING OBJECTS IN SPACE WITH MAYA	 14

Step 1	 15
Step 2	 15
Step 3: Type-in Transforms	 18
Step 4: The Pivot, the Manipulator, and Transforming in 3D
Space	 18
Step 5: Adjusting the Pivot	 20
Step 6: Building a Staircase	 20
Conclusion	 22

Chapter 2  ◾   �Polygonal Geometry	 23
WHAT IS A MODEL?	 23

Basic Polygon Concepts	 23
BUT HOW CAN TRIANGLES BUILD SMOOTH SURFACES?	 25

Triangulation and Polygons	 25
HOW DO I CREATE POLYGON MODELS?	 30

Polygon Primitives	 30
HOW DO I EDIT POLYGON MODELS?	 35

Sub-Object Editing	 35
Chamfer and Bevel	 35
Extrude	 40
Combining and Merging Multiple Polygon Objects	 44
Advanced Polygon Modeling Tools	 46
Smoothing	 52

EXERCISE: MODELING WITH POLYGON TOOLS	 58

Step 1: Create Polygon Tool	 59
Step 2: Extruding the Object	 59
Step 3: Beveling Edges	 60

Chapter 3  ◾   �NURBS and Curve-Based Geometry	 63
QUESTIONS TO BE ANSWERED	 63

WHAT IS A CURVE?	 64

www.allitebooks.com

http://www.allitebooks.org

Contents    ◾    vii

WHAT ARE NURBS CURVES AND HOW DO THEY WORK?	 67

HOW DO YOU CREATE NURBS CURVES?	 72

HOW DO I EDIT NURBS CURVES?	 73

WHAT ARE NURBS CURVES USED FOR? WHAT DO I DO
WITH THEM?	 75

WHAT ARE NURBS SURFACES? HOW ARE THEY CREATED?	 78

HOW DO I EDIT NURBS SURFACES?	 86

HOW DO I CREATE NURBS SURFACES OUT OF MY
CURVE OUTLINES?	 88

IS THERE A WAY TO CUT A HOLE IN A NURBS SURFACE?	 96

Projected Curves and Trim Surfaces	 96
HOW DO I CONVERT NURBS INTO POLYGONS?	 102

NURBS CONCEPTS CONCLUSION—WHEN DO I USE
NURBS?	 106

EXERCISE: THE WINE GLASS	 107

Step 1: Creating the Profile Curve	 107
Step 2: Re-Building the Curve	 107
Step 3: Creating the Surface	 110

Chapter 4  ◾   �Lighting, Materials, Textures, and UVs	 111
WHAT IS “RENDERING”?	 111

GPU vs. CPU Rendering	 113
WHAT ARE THE THINGS REQUIRED TO RENDER A SCENE?	 115

Lights, Camera, Materials!	 115
HOW DO CAMERAS WORK IN 3D?	 117

Cameras and Camera Attributes	 117
WHAT IS SHADING?	 121

The Polygon Normal	 121
WHAT ARE LIGHTS?	 126

Lights and Lighting	 126
Types of Lights	 127

Ambient Light	 127
Directional Light	 127

www.allitebooks.com

http://www.allitebooks.org

viii    ◾    Contents

Point Light	 129
Spotlight	 130

Common Light Attributes	 130
Spotlight-Specific Parameters	 133
Shadows	 135

WHEN DO I USE DEPTH MAP SHADOWS? WHEN DO I
USE RAY TRACING?	 140

Choosing Shadow Types	 140
Shaders and Materials	 141
Non-Specular Shaders	 142
Specular Shaders	 142
Materials	 147
Common Material Properties and Channels	 148
Specular Material Channels	 153

WHAT ARE TEXTURES?	 156

Effective Texture Use	 158
WHAT IS “UV MAPPING”?	 162

UV Mapping	 162
WHEN DO I NEED TO CREATE UV MAPPING?	 163

HOW DO I CREATE UV MAPS?	 166

HOW DO I CREATE MORE COMPLEX UV MAPPINGS?	 171

HOW DO I RENDER AN IMAGE?	 172

Software Rendering	 172
EXERCISE: CREATING A COMPLEX MATERIAL	 174

Step 1: Set up Scene and Lighting	 174
Step 2: Creating a Material Network and Assigning It to Your
Object	 174
Step 3: Editing your Material	 175

WHAT YOU LEARNED	 180

Chapter 5  ◾   �Animation	 181
WHAT IS ANIMATION?	 181

Definition and Basic Concepts	 181

www.allitebooks.com

http://www.allitebooks.org

Contents    ◾    ix

HOW DO YOU ANIMATE?	 184

Keyframes and Keyframing	 184
WHAT CAN I ANIMATE?	 185

WHAT ARE THE DIFFERENT METHODS OF ANIMATING?	 185

Pose-Based Animation	 186
WHAT ARE OTHER WAYS TO ANIMATE?	 192

Rotoscoping and Motion Capture	 192
HOW DO I CREATE GREAT HAND-KEYFRAMED
ANIMATIONS?	 195

Editing Your Motion Curves	 195
HOW DO I CREATE ACCELERATION AND DECELERATION?	 198

Graph Curves and Tangents	 198
HOW DO I BECOME A GOOD ANIMATOR?	 206

Final Words about Animation	 206
EXERCISE: THE BALL THAT BOUNCES ITSELF	 207

Step 1: Set up the Ball	 207
Step 2: Setting the Key Poses	 208
Step 3: Setting up Tangents for Editing	 211
What You Learned	 212
Step 4: Acceleration and Deceleration	 212
What You Learned	 214
Step 5: Generating Cycles	 214

Chapter 6  ◾   �Conclusion	 215

xi

Preface

Late at night, 1997, in some little one-bedroom apartment on Lexington
Avenue, in Lexington, Kentucky, I installed my very first 3D software on
my self-built HP Windows 95 workstation. It had 64 megabytes of RAM
and an Intel Pentium 32 gigahertz processor. Caligari Truespace was
an ancient VRML (Virtual Reality Markup Language) authoring soft-
ware that I had downloaded for free. It was my very first experience with
3D graphics.

I had seen it in movies. I had seen it in video games. But I had never
really held the tools of creation in my hands and manipulated objects in
3D space before. I eagerly navigated around the interface of the default
scene file, which was strewn with various old-timey 3D objects: a teapot,
a house, a spider, and a roller coaster. I selected the spider and chose the
“rotate” tool, and for the very first time in my life, I manipulated a model
in three dimensions on a computer screen.

There was no going back. From that one particular moment in time
and space, a light went on in my head and I was obsessed. I could not
stop thinking about 3D animation. The possibilities exploded. The next
14 years of my life would be a single-minded drive down that same road,
without ever stopping to wonder if I was on the right path. 3D graphics
were my passion and aspiration. And although that path was ultimately
successful, I had a long way to go in terms of my basic understanding.

Here is the problem: I had no idea what I was doing. I didn’t know a
damn thing about 3D graphics. I didn’t know what a vertex was, I didn’t
know how materials and lights worked, and I didn’t know the difference
between Euler and Quaternion rotations or how to edit tangents in a
motion graph. I knew, essentially, bupkiss. I bought books, but they were
so technical that I had no idea what they were saying. I was not a stu-
pid person. But even a smart person cannot learn 30 years of computer
graphics by reading a technical manual on VRML specifications. In 1997,

xii    ◾    Preface

there were no Art Institutes, no ITT classes, and no university courses that
could make any sense of all this new stuff I was being exposed to. There
was no YouTube. There was no Google. There was no resource for a guy
like me.

So, I taught myself. But in doing so, I tried to create 3D animations
and effects without having any idea exactly how to do it. I didn’t know the
basics. I just wanted to make something “cool.” But when you try to make
art without knowing how to paint, you don’t usually do a very good job.

I began to learn things from experience—my first jobs, my first work
with other 3D artists who showed me a few things. I learned how to do
specific jobs on specific software, but my general understanding of how all
this stuff “worked” was vague and sketchy. When you learn to use specific
software to do specific things, you can do a good job, but you end up a lot
like a trained monkey. You can push buttons in a sequence without really
knowing what they are for. I wanted more than that.

Time went on, and my skills and understanding grew. I was working full
time by then for Red Zone, a game developer for Playstation (which was
eventually bought by Sony Computer Entertainment America). I learned
some new things, new skills, and new specifics. We ran into problems with
things, and the solutions to those problems made sense in various ways,
but despite my skills and technical expertise that grew as a result of my
daily involvement with games and game development, I was still lacking
a fundamental understanding of the mechanics going on under the hood.
I could drive the car, but I had no idea how the engine worked! A great
racecar driver can succeed without ever peeking under the hood, but if the
car breaks down he or she will be stranded.

The years went on, and my knowledge was constantly and exponen-
tially increased by the daily grind and repetition of various problems that
occur in modeling, rendering, and animation. I knew how to fix all kinds
of problems, but I had never learned certain basic elements of 3D graphics.

Fast forward several years, after my exit from my career as a game
developer and the beginning of my academic career. My master’s degree
was in instructional design, which I had never thought I would use again,
but I was asked to create a curriculum for learning the “basics” of 3D
graphics. As I started work on this curriculum, I realized that there was a
lot of stuff I still didn’t know! Luckily, with my 14 years of experience as
a modeler, animator, and rigger, I knew enough to piece together what I
didn’t know. As I transitioned into the role of a professor, I began teaching

Preface    ◾    xiii

these essential skills and knowledge blocks, and tweaking them as I saw
how people learned and reconstructed my lessons on their own.

The result is this book, which I have thoughtfully constructed to give
the complete novice and even the experienced artist a basic foundational
understanding of all things that make up the core of 3D computer graph-
ics, written for the non-technical mind. It is written to impart everything
you need to know about 3D graphics, without being tied to an individ-
ual piece of software. While the examples are specifically taken from
Autodesk Maya, they rarely mention anything tied to the specific soft-
ware tools (the most notable exception is in the Rendering and Materials
section), but instead focus on the common elements of all 3D graphics and
how they work.

As you go through this book, keep in mind that this stuff isn’t simple—​
in fact, it is extremely complex. This book is intended to distill that com-
plexity and focus on only the essential skills and knowledge that you will
need to start your path down the road to becoming a skilled 3D artist.
Good luck! It is not a quick path. My best advice is to learn the basics,
gather your skills in what suits you the best, and focus on that one thing.

Additional material is available from the CRC Web site: http://www.
crcpress.com/product/ISBN/9781482224122.

xv

About the Author

Nicholas Bernhardt Zeman started
his career in 3D graphics at the
University of Kentucky, where dur-
ing graduate school he began work-
ing in 3D Studio Max for the first
time. Determined to make 3D graph-
ics and games his career path, he left
Kentucky for San Diego, where he was
offered a job at Red Zone Interactive, a
then-small company making the NFL
Gameday series for Sony Computer
Entertainment. He continued work-
ing for them as an expert in character
rigging, facial rigging, and facial ani-
mation after they were purchased by
SCEA until the team was disbanded and the NFL Gameday series was
cancelled after losing rights to EA for the football franchise. After that, he
worked briefly as an animator and facial rigger for SCEA’s motion capture
and cinematic studio, working on SOCOM 3, among other titles. He was
quickly hired by Take Two Interactive in San Rafael, where he continued to
develop and manage character rigs on the NBA 2K series, All-Pro Football
2K8, MLB 2K9-10, and NHL 2K9. After almost 12 years in character rig-
ging for sports games, he decided to leave the employment of game devel-
opers and focus on the academic pursuit of interactive development as
a Professor at Northern Kentucky University in the Media Informatics
Department and begin his own digital media technology company, RHZ
Development LLC, where he continues to consult and produce functional
games through gamification, mobile apps, and mobile games under the
studio brand “Little Fish Games” and RHZ Development.

xvii

Introduction

WHAT IS 3D ART? HOW DOES IT WORK?
3D computer-generated art is a complex thing. We see it all the time in
games, in movies, and on TV, but to the aspiring 3D artist or game devel-
oper, the entirety of it can be a little daunting. In order to start understand-
ing the individual elements of 3D, you have to understand the big picture.
3D art is divided into three separate elements: modeling (geometry), ren-
dering, and animation.

Modeling and geometry are the description of objects and the space
they occupy. To understand this part requires some aspects of sculpting, or
knowing how a surface or object flows in 3D space. First, you must under-
stand the basic tenets of the space within which your objects and geometry
exist, and then you must learn the tools with which to build and edit those
objects and geometry. Modeling is the first step in the field because with-
out geometry and objects there is nothing to render or animate.

Key elements of 3D modeling that you will learn in this book:

	 1.	3D space, the grid, and coordinate systems

	 2.	Polygon modeling

	 3.	Polygonal modeling tools and techniques

	 4.	Non-uniform rational b-splines (NURBS) curves and curve-based
modeling

	 5.	NURBS modeling techniques

	 6.	Tesselation and adaptive geometry

xviii    ◾    Introduction

RENDERING, LIGHTING, AND MATERIALS
Rendering is the second part of this textbook. Rendering is essentially
converting the geometry into pixels on a screen, which requires lights and
materials. Setting up lights and materials is done for the primary purpose
of turning your geometry into pixels on the screen, which will then appear
to be an object. Materials and lighting can go very deep, but never forget
that your intended objective is to set up the geometry to be seen, whether
in real-time for a game or in a series of images for a video or film. Without
lighting or rendering, you would not be able to see the geometry at all
(although it would still technically be there).

Key elements of rendering you will learn in this book are as follows:

	 1.	Normals and the essence of shading

	 2.	3D lights and light properties

	 3.	Cameras and camera properties

	 4.	Materials and shaders

	 5.	Texture maps

	 6.	UV mapping techniques

	 7.	Real time vs. software rendering

ANIMATION
Animation adds the fourth dimension to your 3D art: time. The values
of things change over time, and the animator controls those changes by
setting keyframes at certain places. The software figures out the places
in between the saved keyframes, and plays the animation by rendering a
frame for every frame of the animation, which is then played at a certain
rate. It is no different from old-school hand-drawn animation; it just uses
the computer to do all the grunt work for you.

Key elements of animation you will learn in this book are as follows:

	 1.	Keyframing and interpolation

	 2.	Hand-animation and key poses

	 3.	Graph editing and motion curves

	 4.	Acceleration and deceleration

www.allitebooks.com

http://www.allitebooks.org

Introduction    ◾    xix

Using this book, you will not become a fabulous modeler, material edi-
tor, or animator. Rather, this book is designed to teach you how all these
things work together to form the basis of 3D computer art. The funda-
mentals are often overlooked by those entering the field, if for no other
reason than a lack of content that clearly and definitively states them in a
conceptual manner. I wish I had had a guideline to foundational concepts
when I had started, so I am writing this to make it easier for the beginner
or even the experienced artist to continue his or her pursuit of excellence
in games, video, or design.

1

C h a p t e r 1

Understanding 3D Space

HOW DO WE KNOW WHERE THINGS
ARE IN 3D GRAPHICS?

Cartesian Mapping and 3D Coordinates

If I asked you, “Where is the Earth?” what would you say?
You might say, “In relation to what?” The sun? Mars? Anywhere?

Nowhere? This might start to sound like an exercise in philosophy, but
the point I am trying to make is that location is relative. We know where
things are because we can measure them against various reference points
(which can be as simple as our own position).

In the real world, we don’t have any finite points in space where we
can measure things from—we simply create a relative idea of position by
measuring it from another point. Imagine, for instance, we had a duplicate
of ourselves somewhere on Mars. Let us also assume that Earth and Mars
were not moving at all. How would we know where our doppelganger was,
relative to where we were? We could stretch an imaginary tape measure
between us, and then we could get an exact distance. We can measure all
things from our precise position and get an idea of where the Martian ver-
sion of us is, relative to where we are, as shown in Figure 1.1.

HOW DO WE DETERMINE THESE POSITIONS?

The Grid

Much like this method of locating things, the world of 3D graphics
depends on a giant “grid” or location coordinate system, to exist. The 3D
grid is an extension of our method of measuring distance; essentially, it is

2    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

a giant graph that encompasses the entirety of the 3D world. This grid is
known as Cartesian mapping.

The grid is separated into three dimensions: x, y, and z. These three
dimensions are responsible for locating everything that ever goes into 3D
graphics. You see, in a 3D world you have a single point in space from
which all other things are measured. This point in space is called the
world origin. In Figure 1.2, you can see the world origin where the lines
in bold intersect. Everything in 3D space is located from this point, which
never changes. This is called the global coordinate system.

When working with 3D graphics, there are two types of coordinate sys-
tems: Y-up and Z-up. Y-up is generally the standard for animation, and
Z-up is generally the standard for architecture and engineering. Why?
Let’s look at the 2D grid system and see why.

A 2D grid is always flat. The X-axis is horizontal, and the Y-axis is verti-
cal. Pretty simple, right? Let’s make it more complex by adding the third
dimension, Z. Now, if you are an animator you see the grid as a screen,
facing toward your field of vision. In this case, to your right is the posi-
tive X, to your left is the negative X. Straight up is the positive Y, and
straight down is the negative Y. Where is the Z? The Z is away from you
or towards you. Therefore, as objects move away from you on the screen
they are moving in the negative Z-axis. The arrows in Figure 1.3 are color-
coded, where X is red, Y is green, and Z is blue.

FIGURE 1.1  You and your Martian clone with a line drawn between you—it is
easy to calculate distance when you are not in motion!

Understanding 3D Space    ◾    3  

FIGURE 1.2  The Cartesian mapping system allows us to map coordinates in 3D
space by choosing a single point from which all other locations are measured.

FIGURE 1.3  A manipulator handle in Maya. Most 3D software uses this color-
coding and appearance to give you the ability to move objects around in 3D space
using a mouse. The arrows constrain the movement to one axis.

4    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

If you are an architect and you are laying out a plan for the design of a
building, chances are that you are using a blueprint. When you are look-
ing at a blueprint, the positive X-axis is to your right and the negative is to
your left. The positive Y-axis is toward you, and the negative Y-axis is away
from you. The positive Z-axis is up, and the negative is down. This is differ-
ent from the animator’s view because you are looking down on the blue-
print and making it 3D would extrude the building towards you.

For the sake of this book, we will always be working in the Y-up world.
However, you should always be aware of the Z-up world and how to deal
with information from it.

WHAT ARE THE COORDINATE SYSTEMS?
ARE THERE MORE THAN JUST ONE?

Global and Local Coordinate Systems

OK, so now that we start to understand the setup of this coordinate sys-
tem, let’s look at how the grid operates. The grid is an infinite set of coordi-
nates that determines where a transform is. A transform is simply a point
in space. That point in space can be moved, and anything that is con-
nected to that transform will move with it. A transform has no volume,
and it takes up no space. It is simply a way of determining where an object
is in space. If we create an object in any 3D software, it will create a trans-
form for us that is associated with that object. That transform will then be
measured from the world origin in global space. Therefore, the transform
will be given three sets of coordinates, corresponding to the three axes
in the following order: x, y, z. It is written in code form as (x, y, z). So we
can say our transform here has a global space value of (0, 0, 0), shown in
Figures 1.4 and 1.5.

If we move this object, the world space coordinates will reflect this
movement. You can see that I have moved the object three units in the
X-axis and now the global coordinates are (3, 0, 0). If I move it around in
the other two dimensions, it will be located at (4, 1, 5). You can see that no
matter where I put this object in the world, it will be located by its trans-
form, which is a single point in space and will always have coordinates
based on the world origin. This is how the computer calculates everything
in 3D graphics; without this transform and world origin, movement and
position could not be determined! (See Figures 1.6 and 1.7.)

Understanding 3D Space    ◾    5  

FIGURE 1.4  Transforms with the translate, rotate, and scale listed in numerical
value. They are always read in values of (x,y,z).

FIGURE 1.5  A polygon sphere on the grid.

6    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 1.7  Manually transforming the object with a mouse; in Maya, this method
uses what is called a manipulator.

FIGURE 1.6  Numerical values entered into the transforms of pSphere1.

Understanding 3D Space    ◾    7  

WHAT IS LOCAL SPACE?

Hierarchies and Local Transforms

The global (or world) coordinate system is not the only way to locate an
object. There are relative locations for every point in space, especially
if they are attached to another object. We call this the local coordinate
system, which determines where an object is in relation to another object
to which it is attached. You can think of this as we are “attached” to Earth.
If you are living on Earth, then you are definitely attached to Earth and
your position is changing every second, relative to some point off Earth
(let’s say the Sun). Because you cannot be separated from Earth (and if you
did it would be very unfortunate for you), we consider you to be a “child”
of Earth, and Earth is called your parent. In this relationship, known as a
hierarchy, you inherit all the movements of the parent object. Your posi-
tion, relative to Earth, is your local position because it is measured from
your parent object. Therefore, you might be standing still, which means
that you aren’t moving relative to your parent, but your global position
(measured from some other stable position like the Sun) would be in a
constant state of flux because Earth is rotating around its own axis and
around the Sun as well.

Just like this relationship between you and Earth, the relationship
between a transform of an object and the pieces that make up that object
is both global and local. An object in 3D graphics consists of sub-objects,
which construct it in some way (we will explore this later); the sub-object
points that construct it have positions that are relative to the object trans-
form and to the world origin.

Hierarchies and coordinate systems may seem complex, and in fact,
they can get quite difficult to understand. However, the basic notion of
one object being connected to another should be quite familiar to us. For
instance, look at your hand. Your hand can move around the space in your
body while your body stands still. We can say then that your hand is mov-
ing in local space. However, if you start walking around and waving your
hand, your hand is moving both in relationship to your body, and moving
with your body. It is permanently connected. Therefore, the wave is the
wave no matter where you do it, but your body is moving in global space
(and, hence, so is your hand). This idea of hierarchies should be natural to
us because this is how our own skeletal system works.

8    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

HOW DO I CHANGE AN OBJECT’S POSITION IN SPACE?

Transforms

There are three basic ways we can transform an object: translate, rotate,
and scale. These are considered the basic transforms. Each transform type
has a pivot, or place from where the transform is calculated. Generally,
the transform pivots are all in the same location, but some programs allow
you to put each transform in different places. This pivot is essentially the
transform node, as discussed before. What is really changing in any 3D
object is the components of which that object consist, while keeping their
relative positions from one another. The transform node is just a way of
making them translate, rotate, or scale from a single point in space. In
Figure 1.8, you can see that the points which make up this cube are in a
different place than the pivot, which is indicated by the yellow box with
the arrows sticking out (in Maya this is called a manipulator). All of the
points of the cube in Figure 1.8 will move with this pivot when the trans-
form object is moved. If the cube is rotated, the points making up the cube
will be rotated around this point in space while keeping their relative posi-
tions to one another—that is, the cube will still be a cube, but it will rotate
around the transform pivot point. The same goes for the scale. The points
in space will scale inward or outward from the pivot point.

FIGURE 1.8  The points that make up the object, called vertices, inherit the trans-
forms from the transform node, which transforms them in space relative to the
pivot point, as indicated by the position of the manipulator handle.

www.allitebooks.com

http://www.allitebooks.org

Understanding 3D Space    ◾    9  

Translation is the simplest transform. It is just moving an object in
space. All of the sub-objects of the transform move along, keeping their
relative distances from one another (which are their local coordinates).
You can translate any object on the X-, Y-, or Z-axes. These are separated
into three channels that can be edited independently. You can translate
an object on the global or the local coordinate system. It will be the same
as long as these two are aligned. This gets more complicated as we start to
rotate the object.

Rotation is an interesting transform. Rotating an object is really just
translating it, but around a specific point in space. Therefore, wherever
your pivot is, the object will translate itself in orbit, around that pivot.
Imagine a ball on a string. If you spin the ball on that string, it will be
moving in space. However, it will be moving around the point at which
you are spinning it, in a perfect circle. This is how rotation works—it spins
the object around a point in space. This happens like a nail with a string
in it; if you hold on to the string and walk, you will always form a perfect
circle around the point where the nail is set. This nail represents the pivot
point of the object. In Figure 1.9, you can see how the points of the cube
revolve around the pivot point but maintain their respective distances
from each other perfectly. This is an example of a hierarchy. The points
inherit the movement of the transform.

Rotation happens in degrees—0 for the initial point and 360 for the
point at which it has rotated once, but is in that same position. There are

FIGURE 1.9  A cube showing the planes of rotation.

10    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

two types of rotation calculations in 3D graphics: Euler and Quaternion.
Euler (pronounced “oiler”) separates the rotation into three channels: x,
y, and z. Quaternion is a different system, but we are going to be working
strictly in Euler for the sake of this book (and Euler is the more common
system for animation). That means we have three channels in which to
rotate an object (x, y, and z).

Now here is the complicated thing—and why we need to have a good
understanding of global vs. local coordinates. When you rotate an
object 45 degrees in the Y-axis, the orientation changes. Notice how in
Figures 1.10 and 1.11 the arrows are pointing in different directions? What
has happened is that the orientation of the cube has changed in its object
or local space (sometimes the two terms can mean different things) and is
no longer aligned with the world axis.

This means that the cube can now be translated in one of two coor-
dinate systems—see how the translate X is different between global and
local? If you translate X in the global coordinate system, it moves along
the world X-axis. However, if you move it in the local coordinate system,
which is unique to the cube, it will move it on a diagonal! This is because
the orientation of the pivot has changed and the cube’s X-axis no longer
matches up with the world X-axis. When you transform an object, you
always have a choice about which coordinate system you are transform-
ing it on. All software programs allow you at least to choose between the
global and the local coordinate system. Some, like Maya, also allow you to

FIGURE 1.10  The world and the object are lined up.

Understanding 3D Space    ◾    11  

move the object based on its parent axis (which Maya calls “local”) and its
local axis (which Maya calls “object” space).

Scale is a transform that changes the relative spacing between sub-
objects, but increases the space between components. Like the real world,
it changes how “big” something is, or how much “space” is between the
components that make up that space. Scale can occur on the local or
global coordinate system, and scale can occur in a non-uniform man-
ner; that is, you can scale independently on the X-, Y-, or Z-axis, both
locally and globally. The default or “zero” value for scale is 1. Changing
scale values to less than 1 makes it smaller, and larger than 1 makes it big-
ger. This refers to percentage, and a value of 1 equals 100%. If you scale an
object to 0, it will essentially disappear because all of the components that
it consists of will be scrunched into a single point in space (which will cor-
respond to the pivot point of the x form.)

FROM WHERE DOES AN OBJECT
MOVE WHEN YOU MOVE IT?

Pivots and Snaps

Because we now know that pivots are the point in space from which the
geometry is calculated, we can now look at pivot mode, or the act of chang-
ing the pivot point of an object while leaving the object in the same spot.
We change the position of the pivot relative to the object in order to adjust

FIGURE 1.11  Our object is no longer aligned with the world—its object trans-
forms are now different so if you move it along the Object X axis, it will not move
along the World X axis.

12    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

from which point the transformations occur. In most 3D programs, there
is a pivot mode or other manner in which to transform the pivot while leav-
ing the object alone. As you can see in Figures 1.12 and 1.13, I have moved
the pivot of our cube to the lower point of the cube (using the point snap
as detailed next). Now when I make any transform, such as a scale, you can
clearly see that the action has happened from a different location than the
center of the object where the pivot was originally located.

FIGURE 1.13  The result of scaling from the altered pivot point is drastically dif-
ferent from scaling from the center.

FIGURE 1.12  The pivot point of a cube moved to the corner point. Now every-
thing will transform relative to that point.

Understanding 3D Space    ◾    13  

Snaps are a way of aligning specific points to other specific points.
The most commonly used snaps in 3D are Grid, Point/Vertex, and Curve
(although we will explore Curve Snaps later in the book). A snap is sim-
ply a method to ensure a single point in space, like a Transform Node, is
placed exactly onto another point in space, such as a grid point or a ver-
tex (part of geometry). They are there to allow the 3D developer to know
exactly where objects exist and are transformed from, especially when
aligning them to one another. Without snaps, it would be very difficult for
the modeler or developer to ensure that things are exactly where they need
to be in relation to other things. “Eyeballing” is a term commonly used
in 3D art to refer to the act of lining up two or more objects in a scene by
using the unconstrained move tool and your eye to determine their prox-
imity. Eyeballing is really a bad way of doing this because it takes longer
to get right and ultimately lacks a lot of precision. Precision is something
important in all 3D, regardless of whether you are working in games, film,
or engineering. We all want to be creative, but the trick is to organize your
scenes and 3D objects in such a way as to facilitate that creativity. If you
do not align things and snap things, your scene is likely to be a mess and
cause problems down the road with rendering and other calculations. An
experienced 3D artist relies heavily on snapping and precise transforms
for this reason.

CAN I RESET THE TRANSFORMS
AFTER MOVING MY OBJECT?

Freezing and Re-Setting Transforms

In many 3D programs, there is an ability to change the local transforms of
the object to a value of zero, without changing the position of the object.
This is often referred to as “freezing” or “re-setting” the transforms. This
creates an under-the-hood offset for the transforms, which allows the ani-
mator to animate from a value of 0 instead of something weird like 102.44.
If you are animating an object’s translate X, you would much rather use
0 as your starting value than 102.44. It makes more sense and it is much
easier to calculate in your head. However, if your object was positioned
somewhere in your scene properly and the translate X value is something
arbitrary like 102.44, you can “freeze” the transforms, which will report a
local value of 0 in the translate X channel. The global position of the object
will be the same because it is always absolute; however, the local position
will report 0.0 and allow you to offset values from that value from that

14    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

point on. Sometimes, however, when moving data back and forth from
program to program (especially to and from game engines) these inter-
nal offsets are disregarded and your object will appear to be in a different
place. This is when you must re-set the transforms.

“Re-setting” transforms of a 3D object puts the pivot point back at the
world origin and removes all offset values, without moving the object.
This option is to remove all those internal offsets that have possibly been
created when working with the object in space. It is very important to be
able to perform this because often many programs will not accept these
internal offsets, and characters you have created and animated will not
come in the appropriate places from software to software. This is espe-
cially important in modern workflows where you may use one program
to model, one to rig, one to animate, one to do motion capture, and one to
develop your game. You must have the basic transform structure of your
models and objects set properly in order to be consistent among them all.
Because of this issue, most major software programs have built-in tools to
adjust your local transforms without changing the actual position of the
objects you have created.

EXERCISE: TRANSFORMING OBJECTS IN SPACE WITH MAYA
This video-based tutorial will illustrate how to move objects in basic 3D
space, and how all of the transforms are calculated using Maya 2014. I do
not have specific instructions on how to use Maya itself (which would take
its own book!) but more specific step-by-step instructions on how to do
the specific task in Maya. I highly suggest going through the introductory
5-minute training videos that come with Maya, just to learn how to navigate
through 3D space and easily perform the selections, transforms, and opera-
tions that I will be going through. Using Maya is very much like driving
a stick-shift car; it requires one hand on the keyboard and one hand on a
3-button mouse in order to use it properly. There are hundreds of keyboard
shortcuts and commands, which I will instruct you to use as we go through
the exercises. These exercises are meant to be used in conjunction with the
training videos on the website, which you will follow along with the step-by-
step instructions in this book. The keyboard shortcuts and mouse controls
will be illustrated on the screen as the videos play to make it easier for you
to catch what is happening with the controls. The images and videos are
taken from the Mac OSX version of the software, which looks slightly differ-
ent from the Windows version, but should be close enough for you to follow
along. There really is not much discernible difference in the Windows and

Understanding 3D Space    ◾    15  

Mac interface, but there are a few keyboard commands that differ due to
the Mac proprietary keyboard. Note that all keyboard shortcuts described
are using lowercase letters unless specifically stated otherwise, in which case
it would be denoted as “shift + w,” and not “W.”

Step 1

Make sure that you are in the “polygons” module of Maya, which you can
choose on the upper left-hand corner of the menu (see Figure 1.14).

Step 2

Go to the “Create” menu, which will be a pull-down menu on the top
panel of the software. Choose Create > Polygon Primitives > Cube. This
will allow you to drag a cube on the grid in the perspective view. Your first
click and drag will control the depth and width of the cube, after which
the release of the mouse and subsequent click will control the height of
the cube. On the left-hand side of the screen, you will see the Tool Box,
or where the tools to select and transform your object are (Figure 1.17).
On the right-hand side of the screen you will see the Channel Box, which
is where all of the transforms are listed numerically and can be edited
that way (Figure 1.18). The transform values you see here will reflect local
values, which are derived from the parent of the object. If the object is a
parent of the world, which means it has no parent, then these values will
reflect the world space coordinates as measured from the world origin.

In order to switch between shaded 3D mode and wireframe 3D mode,
use the hotkeys “4” and “5,” respectively.

The keyboard shortcuts to select, translate, rotate, and scale your objects
are “q,” “w,” “e,” and “r,” respectively.

FIGURE 1.14  The polygons sub-module.

16    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 1.16  The cube as created by dragging the window.

FIGURE 1.15  The Create Polygon Primitive Menu.

Understanding 3D Space    ◾    17  

FIGURE 1.17  The Tool Box where you can select, translate, rotate, or scale objects.

FIGURE 1.18  The Channel Box has the transforms available for type-in value
changes. It also contains the construction history of an object, which has all
of the operations that are “stacked” or put in order to create the final output of
an object.

18    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Step 3: Type-in Transforms

Experiment by typing transform values into the translate, rotate, and scale
values in the Channel Box. Note how it affects the object.

Step 4: The Pivot, the Manipulator, and Transforming in 3D Space

The pivot of an object is the point in space from which the transforms of
the object are measured. This is your very first important lesson in 3D
space and coordinates—that point is not only vital to how the object trans-
forms, but also it is transformable itself! Notice that when you choose the
Move Tool and select your cube by dragging over the object, a colored-
crosshair with arrows on the ends will appear at the center (Figure 1.19).
This is called a manipulator. You can translate, rotate, and scale an object
in 3D space with the manipulator. The translate manipulator looks like
Figure 1.19, with arrows coming out of the crosshair and those arrows
allow you to constrain the object to one dimension at a time, for greater
accuracy when manipulating the object in 3D space. The rotation and scale
manipulator are shown in Figures 1.20 and 1.21, respectively, and they all
use the color-coding of red = X-axis, green = Y-axis, and blue = Z-axis.
Use these manipulators to practice translating, rotating, and scaling your
object in 3D space. In the Tool Settings, you can choose which coordi-
nate space on which to transform your object—World, Local, Object, and
Normal (and some other custom options). World is global space, which is
measured against the world origin when translating, or against the world

FIGURE 1.19  The translate manipulator.

www.allitebooks.com

http://www.allitebooks.org

Understanding 3D Space    ◾    19  

direction axis when rotating or scaling. Local is based on the coordinates
of the object’s parent, which is important to keep in mind, but also all
exercises in this book will assume that the objects are not parented to any-
thing else, which means they are parented to the world, which also means
that their local coordinates and the world coordinate space are identical.
Object space changes with the object, and is easy to understand if you
rotate your object in local space and then try to translate it in object space
it will move along its own axis instead of the world.

FIGURE 1.20  The rotate manipulator.

FIGURE 1.21  The scale manipulator.

20    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

In order to “snap” the object to grid points, hold down the “x” key while
using the translate manipulator.

Step 5: Adjusting the Pivot

OK, now that we know how to move objects around and manipulate them
in Maya, we can learn how to change the position of that pivot. Why
would you want to do this? Well, because the object is manipulated from
that point in space, changing its location will vastly alter how your trans-
forms affect it. It will also give you the ability to create a point of reference
from which you can “snap” your object to other positions in space or other
objects. Using the “insert” key on a PC, or the “fn – left arrow” key combo
on a Mac, you will enter pivot mode. Pivot mode switches your ability to
transform the object with the ability to transform the pivot of that object.
When you are in pivot mode, you can move the pivot anywhere you like.
We are going to snap the pivot, using the Point Snap Tool, to the cube’s
lower-right corner (by holding down the “v” key while moving it). Once
you have “snapped” the pivot to the intended point, you can exit pivot
mode and see the changes when you transform it, most especially rotating
and scaling the object.

Holding the “v” key down engages your point snap.
On a Mac, “fn left arrow” or “insert” on a PC enters pivot mode.

Step 6: Building a Staircase

Now that we have all that, we are going to build a simple staircase with the
tools we have learned how to use. Scale and position your box on the grid
as it looks in Figure 1.22, with the pivot point at the rear corner. Make sure
the box is snapped to the grid securely by using your grid snap option.

Now you will duplicate this big, flat cube by going to the Edit > Duplicate
pull-down menu, or using the “control – d” keyboard shortcut. This will
duplicate the object exactly on top of the current object. Once you have
duplicated the object, move it using the point snap option (“v” key) and
snap it to the box below it. Now you can scale your second cube, con-
strained in the Z-axis, and see how it will change the size in only one direc-
tion, which will make a two-stair staircase, as you can see in Figure 1.23.

Now repeat this process, as many times as you like, making sure that
the snaps are on when you translate the next box, and scale it only in the
Z-axis to change the depth of the stair piece. Eventually you will have a
perfectly aligned staircase, like Figure 1.24.

Understanding 3D Space    ◾    21  

FIGURE 1.22  Snap the pivot to the lower corner.

FIGURE 1.23  Now duplicate the object and snap it to the one below it using the
point snap. The two will be perfectly aligned, based on the corner point.

22    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Conclusion

In this exercise, you have learned the following skills using Maya:

•	 How to create primitive polygonal objects

•	 How to use the Channel Box or 3D manipulators to translate, rotate,
and scale objects in 3D space

•	 How to snap to the grid and to points

•	 How to adjust the location of an object’s pivot

•	 How to duplicate objects

•	 How to snap objects to other objects

FIGURE 1.24  Continue to duplicate and snap, scaling the cubes in the Z-axis as
you go. You will have created a simple staircase.

23

C h a p t e r 2

Polygonal Geometry

WHAT IS A MODEL?

Basic Polygon Concepts

In order to answer that question, we are going to have to get down and
dirty with something most of us creative types loathe: mathematics. But
don’t worry; math is not so hard when the computer gives you all the cor-
rect answers. A computer, after all, is simply a giant, fancy calculator with
a bunch of graphics working on top of it. All it can really do is calculate
equations. The good news is that we do not have to do that hard math
work. However, we do need to know how to tell it to work for us. It is like
driving a car. You don’t need to know the chemistry behind a combustion
engine, but you do need to know which pedal is the gas and which one is
the brake (or else your morning commute is going to be really interesting!).

A model is anything in your 3D software package that is constructed of
geometry. Remember geometry in high school? Wasn’t that fun? If you are
a creative type, like me, I doubt that it was very much fun at all. Geometry
is an offshoot of math that deals with shapes. Moreover, shapes are what
rule the world of modeling, from the most detailed Pixar characters to
the most basic of iPhone games. The one, single important shape that is the
building block for all others, the “atom” of the 3D geometrical world, is
the triangle (Figure 2.2).

A triangle is just what is seems. It is a shape with three sides. In 3D
graphic-speak we call this a polygon. A polygon is any multisided object
that consists of triangles, which is the basic building block of all 3D shapes.
Here are the components of the polygon:

24    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

	 1.	Vertex: The most important aspect of a polygon, the vertex is a point
in space that has coordinates. These points in space are connected
and create the objects you see.

	 2.	Edge: An edge connects two vertices together.

	 3.	Face: The face is all of the space in between the connected vertices.
This is what is turned into pixels and displayed on your screen.

FIGURE 2.1  A polygon torus or donut shape.

FIGURE 2.2  A polygon triangle.

Polygonal Geometry    ◾    25  

	 4.	Normal: The normal is the perpendicular, or 90-degree angle to
the face. The normal is a derived value, or something that changes
because of the positions of the other sub-objects. It cannot be trans-
formed by itself.

So, those are the pieces that make up our friend, the triangle. The poly-
gon could not exist without all three of them. We can transform them
each using translate, rotate, and scale. Only the vertex, however, will move
independently; the rest are dependent upon their connected vertices. This
is why a good modeler, or digital sculptor, will mostly do transforma-
tions at the vertex level. It is far more dependable. There are exceptions, of
course, but generally the modeler sees the object in terms of points, even
when there are thousands of them. This is because everything about a
model is dependent on these points. The vertices exist independently of
one another. All of the other sub-objects, edges, faces, and normals, are
completely dependent on a vertex to exist. An edge requires two vertices,
and a face requires at least three vertices. A vertex, however, requires noth-
ing but itself. A model consists of those points, strung together by edges,
which form faces, which are defined by the space in between the edges.

BUT HOW CAN TRIANGLES BUILD SMOOTH SURFACES?

Triangulation and Polygons

Now, everything you see that has been created in 3D at one point is broken
down into triangles (yes, even Toy Story 3 and Shrek). The reason for this
is that the computer does not understand anything else in terms of 3D
graphics. In order for any object to be displayed on your screen, it must
be broken down into the simplest element possible, which is a triangle.
Even when you have quads, which are four-sided polygons, they are being
broken down into triangles for you (you just don’t see it happening). Take
the sphere in Figure 2.3, for example. It has six sides, each side having four
faces. If you notice, however, when I turn on “show triangles” you can
see that the computer is secretly subdividing the sphere into triangles in
Figure 2.4. This is called triangulation, and it can happen automatically
or you can manually convert it.

Just because everything gets broken down into triangles, however,
doesn’t necessarily mean that we have to work in triangles. The art of
modeling is much like the art of sculpting. We want to create geometry in

26    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

a nice, fluid, organic manner. Moving a bunch of triangles around doesn’t
sound very fun, does it? (See Figure 2.5.)

Figure 2.5 is comprised of many quads, nicely and evenly spaced. This
is what we call a mesh. It is called that because it resembles a fine mesh
cloth. Now, if we display it in triangles as in Figure 2.6, it becomes much

FIGURE 2.3  A sphere made of quads, or 4-sided polygons.

FIGURE 2.4  A sphere made of triangles, or 3-sided polygons. Quads are simply
two triangles, without the triangle edge showing.

Polygonal Geometry    ◾    27  

more confusing to the eye (for the sake of visualization, I have reduced the
amount of polygons).

The reason for this is that it loses that nice flowing surface appearance,
and the triangles ruin the visual directional flow. It is very hard to work
with only triangles, and for that reason, modeling is generally done in
quads when possible. Oftentimes, in modeling, when exporting to differ-
ent formats, the models are automatically converted into triangles. When
you import this model into another program, these triangles make it very
difficult to edit the model in any reasonable manner; it is very difficult
to de-triangulate a 3D model, while it only requires the click of a button to
triangulate it.

FIGURE 2.5 (SEE COLOR INSERT)  Minnow Pete, modeled by the author.

FIGURE 2.6 (SEE COLOR INSERT)  A lower polygon, triangulated version of
Minnow Pete.

28    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

A polygon can have as many sides as you want it to. The caveat here
is that everything is always broken down into triangles in the end. As in
Figures 2.7 and 2.8, the five-sided polygon is really a collection of triangles
that are being hidden.

If the polygon is planar, or all vertex positions occur in a single plane
(essentially being flat), it is no big deal. The big problem comes when the
polygon is non-planar, as in Figure 2.9. Maya is essentially triangulating
all faces with more than three sides all the time automatically. However, if
you have a quad, or four-sided polygon like Figure 2.9 that is non-planar,

FIGURE 2.7  Five-sided polygons shown without hidden triangles.

FIGURE 2.8  Hidden triangles now showing.

www.allitebooks.com

http://www.allitebooks.org

Polygonal Geometry    ◾    29  

where will that quad be divided into its two triangles? You have a quan-
dary—it will be either convex (Figure 2.10) or concave (Figure 2.11).
Because the software automatically does this for you, it can flicker between
the two states when previewing. This is an important thing to resolve
when modeling, especially for organic shapes where the difference can be
very noticeable.

We prefer to keep all geometry in 3D to three or four sides per polygon.
This is known as good topology. Although we want to work strictly in

FIGURE 2.9  A non-planar quad. Note the shape—it is neither concave nor convex.

FIGURE 2.10  The triangle edge is now defined, making this shape convex.

30    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

quads if we can, sometimes we have to use triangles to close off shapes
properly. However, we never want to have polygons with more than four
sides if we can help it. The only time where it is essentially OK to do so is
in the case where the polygon is completely flat, in which case it will have
little effect. Regardless, even in these cases it is best to convert them to
four- and three-sided polygons. When and where to do this is based on
the user’s experience.

HOW DO I CREATE POLYGON MODELS?

Polygon Primitives

There are many ways to create polygonal models. The first and most com-
mon way to do so is by using primitives. Every 3D software program has
primitives. Primitives are common shapes such as planes, cubes, spheres,
and cylinders that save time by providing a starting point for various 3D
models. The nice thing about primitives is that they have parameters,
or values, that can be changed, edited, and tweaked before the geometry
itself is touched. All primitives have the ability to be subdivided in various
ways to increase the amount of detail available for editing the shape. We
could definitely model all of this stuff ourselves if we wanted to waste the
time and energy, but there is no reason to keep reinventing the wheel, so to
speak. One of the nice things about working with computers is that com-
monly needed tasks are always compiled into easier, automated features.
Primitives are so important because they offer you the speed and flexibil-
ity of generating commonly used 3D shapes with the ability to change the
basic construction quickly using history.

FIGURE 2.11  If the triangle edge is flipped, it becomes concave.

Polygonal Geometry    ◾    31  

You can see in Figure 2.12 that I have created a primitive sphere. This
sphere can have as many subdivisions in both the vertical and horizontal
as I choose which I can change by accessing the input node, shown here
in my history. History is a very convenient way of working with models
because it allows you to go back along the things you have done and tweak
them later. One thing to note is that once you change the shape node of a
primitive object by moving the vertices around, it will completely destroy
the positions of those vertices if you decide to go back and change how

FIGURE 2.12  A polygon primitive sphere.

FIGURE 2.13  The input node allows changes to the shape to be made, as long as
the history is intact.

32    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

many polygons are generated by increasing the subdivisions. You will have
to do that on top of the primitive in the history “stack.” It is called a stack
because it is like a stack. Operations happen on top of previous operations.
You can clear the history at any point and convert your object into an
independent polygon object. This is often done frequently in order to clear
out any possible errors and speed up interactivity, which tends to slow
down when there are too many operations being calculated.

Notice I have created a primitive cylinder (Figure 2.14). I can edit or
adjust the values of the primitive in the history, changing the amount
of subdivisions and the size and radius of creation. I am adding more
divisions in the horizontal so that I have more detail available to adjust
the shape of the object. Each horizontal slice of vertices offers me more
ability to tweak the shape of the object. Polygons are essentially linear,
which means that you need several points in order to generate a smooth
appearance. Generally, you need a minimum of five points to generate
the appearance of a curve, as seen in Figure 2.16. The five points create
a curved appearance, although more points would improve the rounded
look. As you can see, polygons tend to look very angular. Keep this in
mind when we look at non-uniform rational b-splines (NURBS) surfaces.

Some other primitive shapes to look for in the creation of a polygon are
text objects, which will generate 3D text for you very quickly, and gener-
ally have a plethora of creation options. Text is a very complex thing to
create from the ground up, so most 3D programs have a simple interface
for typing in text and generating polygon geometry from it.

FIGURE 2.14  A primitive cylinder with several divisions added along the height.

Polygonal Geometry    ◾    33  

Point-to-point creation is another way to create your initial polygo-
nal model. Point-to-point creation isn’t nearly as quick or easy as creating
primitives and editing them, but it is useful in various places. The point-
to-point operation leaves a vertex every place you click the mouse, con-
necting the current vertex to the previous vertex with an edge and filling
in the space between the first three points with a triangle. Each subsequent
point clicked will create another triangle, which will be filled in until com-
pleted. In Figure 2.17, I have created a point-to-point outline of a staircase.

FIGURE 2.15  The input node for the cylinder. Each primitive type will have dif-
ferent options.

FIGURE 2.16  Adding more points allows more control over the shape with
greater detail.

34    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

I then use a function called extrude to pull the two-dimensional shape
into a three-dimensional one (more on this function later).

Most software programs will end up creating this polygon as a multi-
sided face and not triangulating it, like Figure 2.18. However, in reality,
it will look like Figure 2.19 to the software handling the geometry. The
triangles are simply hidden from your view. Notice how uneven the divi-
sion of triangle is? Oftentimes it is far better to have an even distribution of
triangles, even if it means adding more. When modeling polygonal geom-
etry, we strive to have even distribution of polygons as well as economy

FIGURE 2.17  The shape of a staircase, drawn point by point.

FIGURE 2.18  The staircase is made 3 dimensional by using the extrude action.

Polygonal Geometry    ◾    35  

of polygons. Sometimes one is more important than the other is. It will
largely depend on the circumstances.

HOW DO I EDIT POLYGON MODELS?

Sub-Object Editing

There are literally hundreds of ways to edit polygons, and each software
package has its own unique set of tools and actions to do so. More impor-
tant than how to edit polygons is the question: What are you trying to
model? What kind of object is it? Inanimate and simple? Or organic and
complex? Is it symmetrical or branching? I could go on like this for pages,
but I hope that you get the gist of it. Every type of object has its own set of
challenges, and likewise a series of possible approaches. In this book, we
will study three basic modeling techniques: basic building, curve-based
modeling, and organic modeling. There are more techniques than this, but
this covers the basics, and knowing all three you can cover anything you
are given to model. When you are first modeling an object and learning
how polygons work, it is best to start with something simple.

Chamfer and Bevel

Chamfer and bevel are two operations that do similar things, just in
slightly different contexts. Essentially, they take sharp corners and make
them rounded. Chamfer uses a vertex and bevel uses an edge. Look at

FIGURE 2.19  The triangles on the staircase being displayed. All objects are
always broken down into triangles automatically.

36    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Figure 2.20. You can see a polygon plane (which is actually two triangles
but we are displaying it as a quad). I have selected one of the vertices and
chosen the chamfer action from the Edit Mesh menu in Maya. You can
see in Figure 2.21 that the corner vertex was converted into two verti-
ces. This is pretty much exactly what chamfer does—it turns each vertex
selected into two separate vertices, in effect rounding out a sharp corner.
When I chamfer all of the vertices in this plane at once, it will round out
all selected corners uniformly.

Bevel is an operation that works in a similar manner, but it rounds out
an edge. In Figure 2.23, I have selected the edge of a cube. In order for
bevel to work properly, there must be at least three faces attached to this

FIGURE 2.20  Selecting the corner to chamfer.

FIGURE 2.21  The chamfered vertex becomes two vertices.

Polygonal Geometry    ◾    37  

edge. When I bevel the edge, you can see in Figure 2.24 that the edge
becomes rounded, effectively creating more faces in order to do so. In
Figures 2.25 and 2.26, I have done this operation in Maya to all the verti-
cal edges simultaneously in order to make them all even. If I do this opera-
tion to each edge separately, it will not be even due to the way the bevel
is calculated. In Figure 2.27, you can see that it is possible to increase the
amount of divisions that are created when beveling the edge, which results
in a smoother corner (at the expense of extra polygons).

FIGURE 2.22  All of the chamfers have been done simultaneously to keep them
even.

FIGURE 2.23  The edge to be beveled.

38    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 2.24  The resulting bevel.

FIGURE 2.25  In order to keep the edges beveled evenly, all of the horizontal
edges should be selected at once.

www.allitebooks.com

http://www.allitebooks.org

Polygonal Geometry    ◾    39  

FIGURE 2.26  The resulting beveled edges on the cube.

FIGURE 2.27  Adding more divisions to the bevel will make the edges much
smoother.

40    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Extrude

Extrude gets its own section because it is such a powerful tool in model-
ing. Extrude can be done on a vertex, an edge, or a face, but primarily this
operation is done on faces. Extrude “pulls out” the vertex, edge, or face of a
polygon while creating connecting faces that create a 3D shell around your
component. It is far easier to illustrate this with pictures than with words,
so you will see in Figures 2.28 through 2.33 an example of an extruded
vertex, edge, and face, respectively.

Extrusions are very important in modeling because it is the only way
to create branching geometry. Branching geometry is essential in creat-
ing organic shapes, like a human torso or a piece of coral. When making
extrusions, most 3D tools allow you to choose between generating shells
for each selected face and generating a single shell for connected faces.
In Figure 2.34, I have selected four faces and extruded them, keeping the
shell connected between them (in Maya, this is done by turning on “keep
faces together” in the Edit Mesh window). In Figure 2.35, I have selected
four faces and turned the “keep faces together” option off, which creates
an individual shell of polygons for each face. This is an important fea-
ture because it is necessary to create shapes with multiple branches, like a
squid’s tentacles or a human hand.

FIGURE 2.28  Vertex for extrusion selected.

Polygonal Geometry    ◾    41  

FIGURE 2.29  Vertex extruded.

FIGURE 2.30  Edges selected for extrusion.

42    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 2.31  Edges extruded.

FIGURE 2.32  Face selected.

Polygonal Geometry    ◾    43  

FIGURE 2.33  The face extruded.

FIGURE 2.34  Faces extruded as a single shell.

44    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Extrusions also let you take simple shapes, such as our 2D staircase in
Figure 2.17, and pull them out to 3D shells, such as in Figure 2.18. This is
the best way to make simple 3D objects with non-uniform shapes (like
those stairs).

Combining and Merging Multiple Polygon Objects

Thus far in our learning of polygons, we have been dealing with objects
that are all connected. This means that there is a contiguous connection
of the vertices in our object, which is generally known as a shell. This is
not always necessary, however, and you can have a single object with mul-
tiple shells. To understand how to merge vertices and create bridges, we
must first learn how to combine two objects. You can select two indepen-
dent objects in your software package and choose a command that com-
bines them. All this does is take both shells and put them under the same
transform node. Remember when we learned how all of the components
are children of the transform node? Well, here we are simply putting both
objects’ components under the same parent transform. This is the only
way we will be able to apply operations between their components. You
can see in Figure 2.36 I have combined two separate objects, which were

FIGURE 2.35  Faces extruded with independent shells (great for things like fin-
gers and tentacles).

Polygonal Geometry    ◾    45  

cubes made from primitives. These have now become a single object, and I
can then apply the next two operations, merge and bridge, to them.

Merge is a tool that works on vertices, sometimes known as “weld.”
Essentially, you will select two vertices (Figure 2.37) and choose to merge
or “weld” them together (Figure 2.38). This will combine them into a
single vertex. It is also possible to merge multiple vertices together by a
certain threshold, which is very useful when multiple vertices are set up
to be connected to one another (such as mirroring geometry when using
symmetrical modeling).

FIGURE 2.36  The two objects to merge/bridge.

FIGURE 2.37  Vertices are selected for welding.

46    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Bridging is the creation of a “bridge” polygon between two selected
edges. It allows the user to connect to parts of a model that are not previ-
ously connected. You can see in Figure 2.39 I have selected two edges for
bridging. In Maya, you cannot create a bridge unless it is a border edge,
which means that it has a side without a connection to a face. For this
reason, you can clearly see that both of the inner faces of the cubes have
been deleted for the purpose of this demonstration. Some other software
programs do not have this limitation, and you may bridge any two selected
edges together. In Figure 2.41, you can see that multiple divisions are pos-
sible with the bridging operation, as are other adjustments such as taper
and twist.

Advanced Polygon Modeling Tools

When working with polygon models, there are several methods to insert
polygons into existing polygons for adding more detail. These are essential
tools in the modeling process because they allow the modeler to increase
detail in certain areas while leaving other areas with less detail.

The slice/scalpel/split tool is the basic foundation for creating more
geometry in an existing model. There are several terms for it because vari-
ous software programs call it different things. However, they all effectively
perform the same function, which is to cut a single face into multiple faces

FIGURE 2.38  Vertices have been welded together.

Polygonal Geometry    ◾    47  

FIGURE 2.39  The two top edges are selected for bridging.

FIGURE 2.40  The two edges bridged.

48    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

by clicking on it. I am using Maya as an example, and in it, I am using
the interactive split tool, but this is available in almost all polygon model-
ing software packages. This tool allows you to click on an edge of a poly-
gon and insert a vertex into that edge. Each subsequent click will create
another vertex on another edge and generate an edge in between those
two vertices. In Figure 2.42, I have a polygon into which I have cut a face
using the interactive split tool. You can see how the split has occurred in
the top face, leaving two more vertices and an extra edge. One important
note about splitting an edge like this is that it leaves a vertex in the middle
of the opposing edge. This is known as a “T-Edge,” and you can clearly see
that the side edge of the cube now has an extra face due to this new vertex.
In Figures 2.43 and 2.44, you can see how the 3D software triangulates the
resulting faces differently. Figure 2.43 shows an even distribution of space
for the triangulation while Figure 2.44 shows an uneven distribution of
space in triangulation. While this may seem unimportant when dealing
with a planar face, it is an extremely important distinction when the face
is non-planar. It is generally considered good topology to resolve such
issues by manually triangulating the faces and maintaining even spacing
as much as possible.

FIGURE 2.41  You can choose to have multiple segments for a bridge.

www.allitebooks.com

http://www.allitebooks.org

Polygonal Geometry    ◾    49  

Another way to increase the amount of polygons locally is to add divi-
sions (sometimes known as subdivide) to a polygon face. You can sub
divide a single face as many times as you want, and it will only add detail
to the selected face. In Figure 2.45 I have selected the top face of the cube,
and in Figure 2.46 I have subdivided it once. Figure 2.47 shows it being

FIGURE 2.42  The split being made in the top face.

FIGURE 2.43  Even triangulation on one side.

50    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 2.44  Uneven triangulation on the other side.

FIGURE 2.45  Face selected for subdivision.

Polygonal Geometry    ◾    51  

FIGURE 2.46  Face subdivided once.

FIGURE 2.47  Face subdivided twice.

52    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

subdivided twice. Keep in mind that the more times you subdivide a single
polygon, the more T-face will occur in the surrounding faces. Those result-
ing triangles will most likely not be even, as you can see in Figure 2.48.

Oftentimes, a many-sided face will need to have an even distribution
of triangles. Most triangulation of multi-sided faces, such as the 12-sided
face shown in Figure 2.49, is incredibly uneven. You can see the natural
triangulation of this geometry in Figure 2.50, where the triangles all
form uneven strips to a single vertex on one of the corners. This creates
a very uneven flow of triangles for the total face surface area, which can
cause major problems down the road (especially in the area of UV texture
mapping). What we really want for this face is to have a center vertex that
acts as the crux around which the face can be evenly divided, forming a
“pie” shape as shown in Figure 2.51. The operation poke face does this
easily, creating a vertex in the center of the selected face and dividing the
rest into triangles.

Smoothing

Smoothing faces or entire models is a very common polygon-editing tool.
Smoothing works by increasing the number of faces in a polygon model
and rounding those resulting faces out. In Figure 2.52 you can see a cube
selected, and in Figure 2.53 you can see that same cube after running
smooth on it. Figure 2.54 has that same cube smoothed again. Notice how
the square edges get rounder and rounder as the smoothness increases?

FIGURE 2.48  Resulting triangulation. Notice the unevenness.

Polygonal Geometry    ◾    53  

FIGURE 2.49  Twelve-sided faces for 3D object.

FIGURE 2.50  Automatic triangulation of face.

54    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 2.52  Polygon cube before running a smooth operator.

FIGURE 2.51  Poke face applied. Notice the even distribution of triangles.

Polygonal Geometry    ◾    55  

FIGURE 2.53  Smoothing the cube, with 1 iteration.

FIGURE 2.54  Smoothing the cube, with 2 iterations.

56    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

This is because of an important aspect of turning a flat edge into a
rounded edge. If you have three vertices, such as you see in Figure 2.55,
you can move the center one offset from the other two and it will create
a shape like you see in Figure 2.56. Double your geometry and offset the
other two vertices, and you will have an even rounder appearance, as in
Figure 2.57. Smoothing geometry does this operation automatically across

FIGURE 2.55  Three vertices are needed to create a curved appearance.

FIGURE 2.56  By generating a triangular shape, the semblance of a curve can
begin to be created.

Polygonal Geometry    ◾    57  

all of the faces that you select, effectively allowing you to model a relatively
low-resolution model and then automatically converting it into a much
smoother, high-resolution one. In Figure 2.58 you can see the low resolu-
tion of a fish character model for a game in progress. Figure 2.59 is that
same model with a global smooth operation on it.

FIGURE 2.57  More vertices allow greater curvature.

FIGURE 2.58 (SEE COLOR INSERT)  Original, low-poly models by author.

58    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

EXERCISE: MODELING WITH POLYGON TOOLS
In this exercise, you will learn some simple, but essential polygon model-
ing tools. This tutorial, along with all the other exercises, is meant to go
hand in hand with the videos on the website, so please make sure to use
them concurrently. It is far more effective to show you all the clicks, tools,
and options in a video with audio while describing what I am doing than
it is to write every last action down! Let’s begin.

Remember that simple staircase we built with polygon primitives? Let’s
try it again, only this time we can do it with pure polygonal modeling tools
(no primitives allowed!). The first tool we will use is the create polygon
tool. The create polygon tool is a simple tool, which allows us to “draw”
a polygon by clicking to slap down a vertex, which will always be con-
nected to the last vertex set down. The first and last vertices will always be
connected when the tool is completed, by hitting the “enter” key. Hitting
“enter” while in any tool automatically ends the tool by entering the input
into the parameters. A tool in Maya is an operation that requires some user
input before completing, while an action happens at once, after applying
it. Some actions, however, can have a manipulator, which can be accessed
and edited after the action has been performed (more on this later).

FIGURE 2.59 (SEE COLOR INSERT)  Same models after smoothing. The angular
edges are gone, but the polygon count has almost tripled! Always strive to use the
least polygons possible when modeling.

Polygonal Geometry    ◾    59  

Step 1: Create Polygon Tool

The create polygon tool can snap its vertices to the grid or points by using
the snap options, which will ensure that each vertex is aligned with that
grid point or points. Change your view to orthographic side and use
the grid snap to create a polygon with the create polygon tool as illustrated
in Figure 2.60. The side view will ensure that all points snap to the grid
and that our staircase is aligned with the world properly.

Step 2: Extruding the Object

Now you can return to the perspective view in order to see what you have
created. Don’t forget to turn shaded mode (“4” key) on to see the polygonal
face colored in! We seem to have a staircase here, but it looks like some-
body sliced off the end like a piece of bread. We don’t have any depth! The
way to create depth from a flat polygon is to use the Edit Mesh > Extrude
action. An extrude “pulls” out the selected polygonal face and creates what
is known as a “shell” or connected faces with depth. The face you extrude
is duplicated and connected to new faces to give it depth. Figure 2.61 is
an image of what happens when you extrude the polygon we just created.
Extrude is one of the actions that has its own manipulator, which allows
you to transform the new face as you create it, in the 3D view. Move the
translate Z outward and you will see the staircase magically create depth,
turning it into a bona fide 3D object.

FIGURE 2.60  Snap the points to the grid using the create polygon tool.

60    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Step 3: Beveling Edges

Next, we will perform an action known as beveling. Beveling is taking
a hard edge and “rounding” it out. Many hard edges on objects such as
walls, floors, and furniture, and structural items such as buildings, stairs,
and other manufactured items look unnatural if left with sharp edges.
Beveling is an action in Maya, found under Edit Mesh > Bevel, which will
perform a rounding action on any selected edge. To select the sub-object
polygon edge of the stairs object, you can right-click over the object and
hold, which will bring up the marking menu. Select “edge” and you will
then be able to select the edges of the polygon. Alternately, you can hit
the “f10” key, which is the shortcut to select sub-objects of type “edge.”
Once you have selected the lip edges of the stairs model, open up the bevel
action options (which will be a small box next to the menu item). Choose
a width of .1 and 1 segment. Click on apply, and you will see the result as
in Figure 2.63.

Congratulations! You have now created a modestly complex polygo-
nal staircase with a few modest tools and actions. Physical structures
like architectural elements are a great place to learn polygonal modeling
because they are flat on many surfaces, which allows you to see things in

FIGURE 2.61  Don’t forget to move the extruded face out from its position—it
doesn’t happen by default, which causes many of my students infinite grief when
they think that they haven’t created the extrusion and end up having two sets
of faces right on top of each other! It completely whacks out your geometry and
makes it very hard to continue a model down the road.

Polygonal Geometry    ◾    61  

a solid, structural way. When you move on to organic modeling, things
begin to get a lot more difficult due to the complex curvature and sur-
face flow.

Things learned in this exercise:

•	 Create polygon tool

•	 Polygonal extrusion

•	 Sub-object selection (edge)

•	 Edge beveling

FIGURE 2.62  Preparing the bevels.

FIGURE 2.63  Resulting bevels.

63

C h a p t e r 3

NURBS and Curve-
Based Geometry

QUESTIONS TO BE ANSWERED

What are curves? NURBS, Bézier

How are curves represented in 3D? Bézier Handles, CVs, EPs

How are surfaces generated in 3D? Lofting and all derivative actions

What are the properties of a NURBS surface? What is tessellation? Why
NURBS is different from polygons

What are the advantages of NURBS? Surface-based modeling

What are the disadvantages of NURBS modeling?

How can NURBS be converted into polygons? Conversion parameters
and their meanings

Now that we have gone through the basic elements of polygonal-based mod-
eling, we need to learn the second major type of modeling methodology—
curve-based modeling.

Usually known as NURBS modeling, although the curves themselves
need not actually be NURBS curves, curve-based modeling is a very dif-
ferent method of generating geometry. The resulting geometry is known
as a surface or a skin and although it is ultimately converted into polygons,
it is a very different beast from polygonal modeling.

64    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Surfaces are adaptive, which means that they can be broken down
into as many subdivisions as necessary to produce smooth results. This
is very different from polygonal smoothing because it constantly changes
the number of triangles generated based on various parameters. However,
before we can understand surfaces, we really need to understand curves
and their properties.

WHAT IS A CURVE?
In terms of computer graphics, curves are entities that have a shape and
properties based on points in space. Those points are called control points
or control vertices (CVs). These points on a curve are what determine
the shape of that curve. There are different types of curves, which use dif-
ferent calculations to determine the shape, and therefore have different
controls over that curve. The two main types of curves are Bézier curves
and NURBS curves. Every type of graphics program, including Adobe
Illustrator, Photoshop, and After Effects, has some implementation of
these types of curves and editing capabilities. Generally speaking, 2D
curves use Bézier and 3D curves use NURBS implementation, although
Autodesk Maya is now fully supporting Bézier curves in its 3D surface
implementation. We will be studying NURBS implementation as a rule
for 3D surface creation.

When understanding curves as a general concept, the important thing
to keep in mind is this: A computer can’t really draw a curve. In fact,
a computer has no real understanding of a “curve” in the sense that we
understand it. A computer, by its nature, can only understand points in
space and straight lines drawn between them. In Figure 3.1 you can see
an arc curve created in Maya. The curve looks like a curve to our eye;
however, as you can see in Figure 3.2, it is actually a bunch of straight
lines, drawn in between points, which appear to be a curve from far away
because our eye cannot distinguish between a lot of straight lines and a
curve when the distance is too great. Our brain actually fills in the details
and makes it look like a curve.

Now, if we want to create a curve in 3D, we must draw a whole bunch of
points close together, and draw straight lines through those points. If you
have enough of those points, the line drawn between them will appear to
be a curve to the human eye, even though it is really a bunch of straight
lines. Bézier and NURBS curves are essentially a mathematical method
of generating large amounts of points in space from only a few main con-
trol points. This is an important part of curve-based modeling because

NURBS and Curve-Based Geometry    ◾    65  

it means that the curve information we create from a few points is com-
pletely adaptive. Adaptive means that we can subdivide the spaces between
the main control vertices or control points as many times as we need to
in order to make it appear smooth. The computer draws the curve to the
screen using pixels, but because the pixels are generated by the equation

FIGURE 3.1  Simple arc curves.

FIGURE 3.2  A closer look reveals what is really going on—it isn’t a curve at all!

66    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

of the curve it can change the amount of pixels generated depending on
how much of the screen the curve is taking up. That is to say, the number
of pixels can increase or decrease to adapt to the needs of the moment,
which ensures that the resulting image is always smooth. This adaptive
rendering (or converting into pixels) of the curve is the heart of vector-
based graphics, which is essentially the 2D version of surface-based mod-
eling. A good example of something commonly using vector graphics is
computer text. No matter how much you zoom in, the resolution remains
the same. If the text were based on pixels, it would get fuzzier and fuzzier
if you zoomed into it.

To illustrate this concept, let’s look at a couple of images. In Figure 3.3
you can see an example of a vector-based text word I created in Photoshop.
In Figure 3.4 I scaled this same text much larger, which you can see results
in the rounded edges of the letter “e” being just as smooth as they were at
a smaller size. This is because of the concept of adaptive rendering. The
pixels, which are the square dots filled with a color, are constantly being
updated to be drawn inside the lines of the text. When I rasterize the
image, or convert it completely into pixel information, I lose the ability
to adaptively convert the text into as many pixels as I need and suddenly
the closer you get to the text (or the more you scale it), the more you can
clearly see the boxes (or pixels) that make up the text as it is displayed. The
sides no longer continue to get smoother on the letter “e” but now appear
jagged, as in Figure 3.5.

FIGURE 3.3  Vector-based text.

NURBS and Curve-Based Geometry    ◾    67  

WHAT ARE NURBS CURVES AND HOW DO THEY WORK?
NURBS curves are special curves that use “control points” to determine
the shape of the curve. Each NURBS curve consists of multiple control
points and a curve drawn between them. There are two basic types of
NURBS curves: linear and smooth.

Also called a 1-degree curve, a linear curve is where the lines are drawn
straight through the CVs and there is no actual “curve.” Figure 3.6 is an
example of a 1-degree or linear curve with four CVs.

Also called a 3-degree surface, a smooth curve is where there is a curve
determined through the CVs. Notice that in a 3-degree curve it requires

FIGURE 3.4  Vector-based text enlarged.

FIGURE 3.5  Rasterized text enlarged. Note the jagged edges.

68    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

four CVs to generate a single curve or span—the first and second CV, and
then two more. Therefore, every span consists of a number of CVs equal
to the degree of the curve –1. There are 5- and 7-degree curves, which are
used when much higher degrees of accuracy are called for (like in design-
ing industrial molds and microchip circuitry); however, 3 is the usual stan-
dard. This means that you cannot have what we consider a “curve” until
you have at least four CVs, which will then equal a span. When you have
a longer, more complex curve, what is really happening is that you have
multiple spans being strung together. Notice that in a 3-degree or higher

FIGURE 3.6  Example of a 1-degree or linear curve with four control vertices (CVs).

FIGURE 3.7  Four control vertices have formed a curved line between them,
based on some “math stuff”—note the linear version of the curve is always still
there (known as the hull).

NURBS and Curve-Based Geometry    ◾    69  

curve, the CVs do not lie on the curve itself—they exist slightly outside of it.
This is a lot harder to edit than polygonal vertices, which lie exactly where
the edges intersect. In Figure 3.7 you can see the same curve as Figure 3.6;
however, this curve is a cubic, or 3-degree curve, so it has a curved shape
instead of a linear one. Notice that the 1-degree shape is still there in a cubic
curve, only now it is known as the hull, or linear connection between the
CVs. Also, note that the CVs of a 3-degree curve don’t lie on the curve, but
rather off the curve that they are representing.

Curves can be open, closed, or periodic. Periodic and closed are very
similar, in that the end and beginning knots are in the exact same place;
however, there are some slight differences mathematically and periodic
is the standard type used for any curve that has the same beginning and
ending place. Technically speaking, a curve must have a beginning CV
and an ending CV, so the curve can never be truly a circle—it just appears
to be one. For this reason, a surface generated from curves can never be
truly “seamless.” It will always have a seam somewhere on the edge. In
Figure 3.8, you can see a NURBS curve that is open. In Figure 3.9, you can
see that I have changed it to periodic by choosing Close Curve.

Curves are generated by the CVs, but they have several other sub-objects
that determine their shape and properties (just keep in mind that these

FIGURE 3.8  This curve is open because it has a different beginning and end.

70    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

are always derived from the CVs in the way that polygon vertices con-
trol the shape of polygonal geometry). Hulls are the straight lines drawn
between CVs (even when the curves are smooth or 3 degrees) and edit
points are the places where curves with more than one span are attached.
Very rarely, however, are curves edited with hulls or edit points. Rather,
they are indicators of the curve shape and complexity. In Figure 3.10, you
can see the Edit Point of a cubic curve, where they lay on the curve, as
opposed to the CVs, which are off the curve.

A curve point is a sub-object that cannot be edited, rather it is a derived
object, which gets its values from another object. In this case, the curve
point derives its position from the curve—it can be ANY point that lies
on the curve. This is a huge difference from the control vertex, which
lies off the curve. The Control Vertex determines the shape of the curve.
The curve point is a position that lies on the curve (determined by the
position of those control vertices), which you will then use in operations
which detach the curve at that point, or insert knots (adding more CV’s)
in that place. Inserting a knot inserts a control vertex at the location of the
curve point. In Figure 3.11, I have selected a curve point, and in Figure 3.12
I have inserted an extra CV where that selection was.

FIGURE 3.9  This is a periodic curve, in which the beginning and end are the
same.

NURBS and Curve-Based Geometry    ◾    71  

FIGURE 3.10  Edit points lay on the curve.

FIGURE 3.11  Curve point is selected on the curve.

72    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

HOW DO YOU CREATE NURBS CURVES?
You can use various methods to create NURBS curves. The most common
method of creating curves is by laying down CVs by snapping to the grid
using a Create CV Curve Tool, but maintaining the curve degree to 1. This
makes the curves easily controlled at first, allowing the placement of the
points to be symmetrical and exact. The curve can then be converted (see
editing NURBS curves) into 3-degree curves after the fact. The reason for
creating the curve as a 1-degree and then converting to 3 degrees is that
it is very hard to control the shape of a curve with placement of CVs in
3 degrees because it requires 4 of them to define the shape of the curve. If
you create the curve in 1 degree and convert to 3 degrees, you can be much
more accurate during the initial creation.

There are also “pencil drawing tools” that allow you to create curves by
drawing a shape. These curves are generally poorly created and uneven
in the CV placement, but the ability to rebuild a curve makes this a rea-
sonable method of generating curves as well (see the next section for an
explanation of rebuilding curves).

FIGURE 3.12  A new control vertex is created where the curve point was. Note
how it does not lay on the curve, but slightly off the curve (because this is a
cubic curve).

NURBS and Curve-Based Geometry    ◾    73  

HOW DO I EDIT NURBS CURVES?
Editing a NURBS curve is largely dependent on what you need to do with
it. Since we still have not gotten to the useful part of a NURBS curve, we
still have to think about it in a theoretical sense more than a practical
sense. The simplest method of editing a curve is to transform the CVs.

Each CV has its own independent transform, which can be changed just
like a polygonal vertex. These changes in the CVs will change the shape
of the resulting curve, but not always exactly the way you intend! Because
a 3-degree curve requires four CVs to form a smooth curve, changes in a
single CV will not always give you the control over the shape as you might
hope. Generally, you will make adjustments to all the CVs governing the
curve in order to create the appearance you want.

Sometimes you will want to increase the number of CVs in a curve. You
can do this in a number of ways. The simplest is to select a curve point
somewhere on the curve, and choose the Insert Knot command. This will
add a single CV at the selected curve point, which you can then edit to
further refine that part of your curve.

Another way to increase the complexity, and one of the most impor-
tant properties about NURBS curves, is known as rebuilding a curve.
Rebuilding a curve is taking an existing curve and changing the number
of CVs in it, while matching the shape of that curve as much as possible.
This allows you to take a curve and specify how many spans and CVs it has
while keeping the same basic shape. This is very important for a number
of reasons (and carries over into surfaces as well). Oftentimes a curve is
not uniform when you create it—the process of generating a curve with a
pencil tool or the create curve tool will leave the curve with very uneven
distances between the CVs of a curve. Editing the CVs manually can also
tweak the total space between CVs, which is known as parameterization.
Parameterization is the spacing between CVs on a curve or curves on a
surface. It is very important for many reasons, chief among them is to pro-
vide a nice, even distribution of the sub-objects that determine the shape
of your model. Without proper parameterization, it is very difficult to do
things down the road, such as convert your model to polygons or texture
it properly.

In Figure 3.13, I have a curve that has been drawn in with the pencil tool.
Notice how uneven and inefficient the CVs are. Using the rebuild curve
action, I can preserve the basic shape while ensuring that the spacing is

74    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

nice and even while drastically reducing the amount of CVs. Figure 3.14
illustrates the result of the rebuilt curve. This is a vital feature of NURBS
curves and surfaces, giving the user a lot of flexibility in tweaking the
shape and subsequently “smoothing” out the parameterization (or even
spacing). You cannot do this with polygons!

The problem with NURBS is that the process of creating and editing
them leads to very uneven parameterization. Rebuilding the curve is a
good fix for this because it can retain the basic shape while creating uni-
form spacing between the CVs. It also allows you to reduce curves with
extremely large amounts of CVs into something more editable.

Another important aspect of rebuilding curves is the ability to convert
curves from 1 degree to 3 degrees. This is a very useful tool because when
you create curves, initially you can be very precise about where you place
the points by using a 1-degree curve. You can snap the points to a grid
and then use the rebuild operation to convert your curve to a 3-degree
curve, which will make it smooth. In Figure 3.15, I have created the out-
line of a wine glass as a 1-degree (linear) curve. Using the rebuild feature
of NURBS curves, I have converted it into a smooth curve in Figure 3.16.

FIGURE 3.13  Notice how many CVs there are.

NURBS and Curve-Based Geometry    ◾    75  

WHAT ARE NURBS CURVES USED FOR?
WHAT DO I DO WITH THEM?
Now you know what a NURBS curve is and how to create it. So, what do you
do with them? Because although you can create incredibly complex net-
works of curves, without actual geometry all you have is a bunch of curves
that outline the shape of an object. This is actually a very good time to get
into describing the workflow of NURBS-based modeling, which is signifi-
cantly different from polygonal modeling. The purpose of NURBS is to
create a network of curves that define the object you are trying to model,
be it a shoe, iPhone case, or creature. The process of NURBS modeling
is to define that outline with as many curves as possible, using reference
images or just your talent as a digital sculptor, and then turning them into
surfaces by stretching an imaginary skin or canvas between them using
an operation called a loft. Figure 3.17 illustrates a network of curves that

FIGURE 3.14  The same shape as in Figure 3.13, but much less CVs means less
work adjusting it.

76    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 3.16  Rebuilt as a cubic or smooth curve using rebuild curve.

FIGURE 3.15  Created by clicking CVs in linear mode.

NURBS and Curve-Based Geometry    ◾    77  

outline the complex curvature of an iPhone case, while Figure 3.18 illus-
trates that same network of curves that have been converted into a surface.
Figure 3.19 illustrates that same NURBS surface converted into polygo-
nal geometry.

NURBS modeling is pretty difficult and complex, with dizzying
amounts of parameters, tools, options, and methodologies, but it is
important to understand what all of them are doing. Before you get lost
in a NURBS modeling program, you should know what the fundamental

FIGURE 3.17  Curve outline of an iPhone case drawn with NURBS.

FIGURE 3.18  Surfaces have been created from the outlines, forming a solid object.

78    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

strategy is in order to get anything out of it. You want to create a model
by outlining its shape with curves and then go about creating geometry
between those curves to create a 3D model. You can do all sorts of other
things with NURBS curves and surfaces, but this was the original inten-
tion for using them, and this is how they are used in modeling in 99%
of the cases. Part of the intention of this book is not only to give you a good
foundation about how the basic understanding of how things work in 3D,
but also how these things are used. Many earlier tutorials about modeling
and NURBS surfaces used very clunky examples of things that were not
really following the professional workflow of use. Because 3D computer
graphics is such a gigantic area of knowledge, it is just as important to
filter out what you don’t need as is what you do!

WHAT ARE NURBS SURFACES? HOW ARE THEY CREATED?
So, we have generated the curves necessary to create our object (we will
get more specific in the Exercise part of this section) and now we need to
create a surface between them. First we have to understand what a surface
is and how it works.

Remember how we talked about those vector graphics vs. bitmap graph-
ics? And how a vector is a representative of pixels, based on how many of
them need to be generated? Well, a NURBS surface is a lot like that vector.
Essentially, a NURBS surface is a skin, or the space between two or more
curves which is generated with an action called a loft. In Figure 3.20, you
can see two curves with a smooth surface area being rendered in between

FIGURE 3.19  The polygonal version of the surfaces (in triangles). Note how there
are more triangles in the areas where more detail is needed to form smooth curves.

NURBS and Curve-Based Geometry    ◾    79  

them. The surface is the smooth area in between the curves. It works by
creating polygons in the area between the curves, which are then displayed
to your screen as pixels, which is known as “rendering” (see Chapter 4 for
more on this). The different between this NURBS surface and a straight
polygonal object is that the polygon surface has a finite amount of verti-
ces, edges, and faces; that is, each vertex is accounted for by its transform.
In a NURBS surface, however, the amount of vertices and triangles are
completely mutable. They are being generated in real time, as many as nec-
essary to display the object in a perfectly smooth way, just as a curve gen-
erates enough pixels to display a smooth line. Figure 3.21 shows this same
surface’s polygon tessellation displayed. Tessellation is the dynamic con-
version of a surface into polygon triangles so that they can be displayed to
the screen. This is an extremely important concept to understand because
it is the basis of the distinction of NURBS and polygons, which is that the
NURBS are being converted into polygons continuously and adaptively,
which means that the amount can be increased or decreased depending
on how many are needed to make the object smooth when being displayed
to the screen. This can be dynamically edited for any surface, as you can
see in Figure 3.22, which is the same surface as in Figure 3.21 with the
adaptive tessellation setting turned up a couple of notches. These settings
can create as many polygons as necessary to create a smooth look from
any distance, making NURBS the best option for objects that must be ren-
dered at extremely high resolutions.

A loft, in its simplest execution, defines a space between two curves
with the same amount of knots. Each span is connected to the span in the

FIGURE 3.20  A loft between two curves generates this surface.

80    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 3.22  The same lofted surface, with the tessellation turned up a few notches.

FIGURE 3.21  The tessellated version of the surface. (I have turned on “display
tessellation” so you can see the surface as Maya generates the polygons from the
curve information.)

NURBS and Curve-Based Geometry    ◾    81  

second curve as the loft occurs. Cross-spans are created, which connect
from one curve to another, based on the edit points (EPs) and the direc-
tion of the curve (where the first knot is). Although some modeling pro-
grams can loft two curves together that do not have the same number of
spans, it is very unreliable and tends to make the resulting surface very
uneven. Most lofts are done between curves with identical numbers of
spans, and oftentimes a curve is duplicated and offset in some way to gen-
erate to a second curve. In Figure 3.23, you can see two curves, highlighted
in green, which have been lofted together. In Figure 3.24, you can see the
result of several curves lofted together to form a surface. These lofts were
created by duplicating a single curve (which ensures that they all contain
the same amount of spans and CVs, which will also be lined up to make
the loft clean and even). Keep in mind that the loft is the primary method
of generating a surface—all modeling techniques we use subsequently
(revolve/lathe, extrusion, birail, etc.) are simply complex versions of the
loft operation which are automated to make your life easier.

The NURBS surface, if there is modeling history in your software, will
be dependent on the curves you used to create it. This, however, is only
temporary and not necessary because when made independent (history
deleted), the surface will contain all of the curves inherently as hulls, or
an entire line of CVs. Figure 3.25 illustrates the V (or vertical) hull of a
lofted surface, while Figure 3.26 illustrates a hull in the U (horizontal).

FIGURE 3.23  Two curves lofted together to create a NURBS surface.

82    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 3.24  Multiple curves lofted together to create a cubic NURBS surface.

FIGURE 3.25  A hull is all of the CVs in a line on any surface. This is the V, or
vertical direction.

NURBS and Curve-Based Geometry    ◾    83  

Those hulls will define the surface continuously, which is constantly being
tessellated and displayed to the scene. So the NURBS surface has its own
inherent curves that control it, as it is essentially always being lofted and
displayed based on the curves of which it consists. Most modeling pack-
ages allow you to create the surfaces with a history, which will update as
the shape of the curve updates. Once you make the surface independent, it
will retain those initial curves as the sub-objects that construct it.

ALL NURBS surfaces are essentially flat ribbons, which are constantly
being subdivided into polygons that follow the lines of the curves of which
they consist. When laid out flat, they have U (horizontal) and V (vertical)
space. They cannot be a “solid,” or a completely closed surface on all sides,
because of their basic nature. You can have a closed or periodic surface
(which will happen if your lofting curves are closed or periodic), but like
a curve there must be a beginning and an end, and where the two meet
there will be seam, which you can see as in Figure 3.27. So essentially, you
can fool the eye into believing that the surface is “closed,” but in reality,
it will still really be just a flat ribbon! The NURBS cylinder in Figure 3.27
is really a flat ribbon wrapped around a cylindrical shape and connected
at the seams, which you see highlighted. Figure 3.28 shows you the two
seams, split apart. If you unravel this surface, it would just be a long rib-
bon. It appears to us as a cylinder, however, because the beginning and end

FIGURE 3.26  A hull in the U, or horizontal direction.

84    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 3.27  It looks like a closed cylinder.

FIGURE 3.28  NURBS has fooled you into believing that the cylinder was closed!
It really looks like this.

NURBS and Curve-Based Geometry    ◾    85  

of the surface are moving together, fooling us into believing they are the
same. To all rendered appearances, this is a cylinder, and it is how NURBS
surfaces appear to be solid objects. A NURBS surface can only be closed
in one direction, the U or the V, so like that flat ribbon it can never be a
solid object.

If you had to model every 3D object with long ribbons that could be
twisted and turned into any shape desirable, you would either have to
use a big surface with a lot of extra hulls added (which can’t be closed in
both directions), or you would have to have many pieces, stuck together
like patchwork. This problem with the nature of NURBS makes it very
convenient to do certain types of modeling (like cars, or for engineer-
ing devices) and very bad for others (like organic shapes). The upside of
NURBS modeling is that you can continuously subdivide the surfaces to
create a smooth appearance no matter how close or far away the model is
from the camera displaying it (we will visit this concept later). In addition,
U and V coordinates are very easily generated with NURBS surfaces for
texture mapping and other purposes (more on this in Chapter 4).

A NURBS surface behaves and is edited much like a NURBS curve,
with the exception that it has curves in the U and V, which are what gen-
erate the polygons that allow you to “see” a surface at all. Any line that
you select on a surface, U or V, is called an isoparm, which is much like a
curve point on a curve. You can manipulate CVs on a surface, and a sur-
face can be linear or smooth (3-degree). In a linear surface, the CVs are on
the surface, while on a smooth surface the CVs are off the surface.

FIGURE 3.29  Linear and smooth NURBS surfaces adjacent to one another.

86    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

HOW DO I EDIT NURBS SURFACES?
You can edit NURBS surfaces a number of ways. The most common way
is to use construction history and to edit the curves that generate the sur-
faces as much as possible, only making the surface independent when nec-
essary. Surface shape can be edited with the transform of CVs and hulls
(which just transform all the CVs of a single span in U or V). It is also pos-
sible to rebuild a surface, just like a curve, only now you have to determine
both U and V parameters. Once you have worked with NURBS surfaces,
you can begin to see how similar they are to NURBS curves, the only dif-
ference being that the surface is generating triangles, which are displayed
on your screen.

Surfaces (as well as curves) can be attached, which allows you to snap
them together and combine them like a jigsaw puzzle, as long as they
are lined up correctly. When attaching surfaces you have to determine
whether you will insert a new span in the area you intend to attach them
(which will be necessary for preserving the shape if the curve is smooth).
Generally, you want as few surfaces in a model as possible, and the ulti-
mate goal is to have a single, flowing surface that has spans evenly dis-
tributed throughout. Figure 3.30 shows two NURBS surfaces before being
attached, and Figure 3.31 shows them after being joined. Notice the extra
span created in between.

FIGURE 3.30  Two curves to be attached.

NURBS and Curve-Based Geometry    ◾    87  

Surfaces (and curves) can also be detached, which splits the surface at
the isoparm you have selected, effectively acting like a scalpel in either the
U or V of a surface. Figure 3.32 shows an isoparm selected on a surface,
and Figure 3.33 shows those surfaces split along that same isoparm, gen-
erating two distinct surfaces.

FIGURE 3.31  Curves attached, with extra spans created to blend in the attached
area.

FIGURE 3.32  The isoparm selected to separate the surfaces.

88    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

HOW DO I CREATE NURBS SURFACES
OUT OF MY CURVE OUTLINES?
The basic creation tool, the loft, has already been discussed. This, in itself,
is enough to generate every surface you would ever need, if you could
outline a curve for every contour of the object you are trying to create.
The problem, however, is that creating a curve for every single contour
on every single part of your model is tedious and slow (although this is a
valid modeling method and probably the most reliable when working with
NURBS). In NURBS modeling, we want to make use of some automati-
cally generated forms of lofting that help in the creation of certain types
of models and shapes.

Revolve, extrude, and birail are three tools for surface creation we
will look at. It is important, however, to keep in mind that these are all
just extensions of the loft, as are all other NURBS creation tools. They are
operations that generate and loft together curves based on some kind of
automated action.

Revolve, or in some programs a lathe, is a tool that takes a single pro-
file curve and turns it into a symmetrical surface by copying the curve,
duplicating it a certain number of times, rotating those duplicates around
a fixed axis, and then lofting all of those duplicate curves together into a
surface. While this can be done manually step by step, it is a lot easier to

FIGURE 3.33  Two surfaces created from one by separating them along a selected
isoparm.

NURBS and Curve-Based Geometry    ◾    89  

click a button than to spend an hour setting it all up. Instead of doing all
that work, I can create a single profile curve outlining the shape I want
to create, as I have in Figure 3.34. In Figure 3.35, I have used a revolve
operation. You can see how the shape of the surface generated matches my
profile curve exactly, forming a symmetrical shape that is even on all sides.
This is the result of that duplicating, rotating, and lofting of the original

FIGURE 3.34  The original profile curve to shape the wine glass.

FIGURE 3.35  The resulting wine glass surface generated by using a revolve or
lathe surface creation.

90    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

profile curve, just compacted into a single operation. Because of the con-
struction history, which is set up to keep the operation separate from the
original shape, subsequent changes to the profile curve will change the
shape of the NURBS object. If the construction history is turned off or
deleted, the surface will become independent and it will no longer be
adjustable from a single CV from a single curve. This is also an advantage
of doing this operation vs. lofting the curves yourself because it allows you
to make changes to a single point and have them ripple down the chain to
adjust the entire surface. Notice how quick and easy this method is in cre-
ating a symmetrical surface. Figure 3.36 illustrates how changing a single
CV on the initial curve can change the shape of the entire surface. It is a
quick and easy way to adjust the total shape with a single point in space.
We will go over this particular example in this chapter’s exercise.

Extrude is a method of creating a surface similar to the polygons
extrude we studied earlier, but with NURBS instead. It requires two
curves—a profile curve and a path curve. If you had Play-Doh® as a kid, or
own a pasta-maker now, you will understand the basic method of extrud-
ing along a path. The profile curve provides the shape of the surface, and
the path curve is the tube along which it extrudes. Just like squeezing
out Play-Doh or pasta from that shape, the surface will be generated and
follow along the path curve based on the profile curve shape, making a

FIGURE 3.36  Transforming this one CV can alter the entire surface shape!

NURBS and Curve-Based Geometry    ◾    91  

tube. While there are several very specific options for the results of this
operation, essentially (just like the revolve) the surface is being generated
by a loft. The profile curve is being duplicated and moved along the path
curve, after which the loft will happen between all the duplicated curves.
The resulting surface will have as many spans as the profile curve has.
Figure 3.37 shows the profile and path curve, while Figure 3.38 shows the
resulting extruded surface. Figure 3.39 illustrates what is really happen-
ing when you create the extruded surface—the profile curve is duplicated
and moved along the path curve (one for each span), and then they are all
lofted together to form the surface. See how every surface creation tool is
simply an automated version of a complex loft? It so much easier to use
extrude, though, than to waste all that time duplicating and transforming
the curves.

Birail, while a much more complex method of generating a surface,
deserves mention because it is a unique way of generating a surface. Similar
to an extrude, a birail uses a profile curve and a path curve. However,
in this case, there are two path curves and infinite amounts of profile
curves. This allows you to create a very complex shape along two “rails”
(hence the name), which changes as it lofts itself along from one shape
curve to another. Since birail is such a complex tool, it generally requires
a lot of pre-planning and specific objective needs in order to use it prop-
erly. One of the most important things to understand about creating the
birail surface is that the curves must be connected to one another, which

FIGURE 3.37  The star-shaped profile curve and the squiggly path curve are selected.

92    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 3.38  An extrude surface is made just like squeezing Play-Doh® or pasta
through a cutout shape.

FIGURE 3.39  Under the hood, this is what is really happening. The profile curve
is duplicated, positioned along the path curve, and the loft is made between
them all.

NURBS and Curve-Based Geometry    ◾    93  

is accomplished by making sure that the beginning and end CVs of the
curve are snapped to the rail curves, which most programs offering this
type of surface will have a way to do. C is the hotkey for the curve snap
tool in Maya, which will make any object (including sub-objects like the
CV) “ride” along the curve rail like a roller coaster. Figure 3.40 is an exam-
ple of a birail preparation with two rail curves on either side, and a pro-
file curve in the center (notice how the ends are all touching). Figure 3.41
shows the birail surface generated. Birails can have as many profile curves
as you want, which allows a staggering amount of control over the sur-
face contour before creating it. Designs for car bodies are a good exam-
ple of a practical application of this tool. Figures 3.42 and 3.43 show a
birail 3-tool setup and completion, in which there are 3 profile curves and
2 rail curves.

Boundary surfaces are surfaces that are created by choosing three or
four curves that are connected by their start and end knots. As you can see
in Figure 3.45, this allows a surface to be generated by choosing the outline
curves. Like the birail, the outline curves must be connected by having
the start or end knots in the exact same location, something that can be
accomplished by using the curve snap. Figure 3.44 shows four curves with
the corners that are connected together, like a postage stamp. Figure 3.45
shows a boundary surface created from these four curves.

FIGURE 3.40  Two rail curves and one profile curve, with the profile touching
the rails on the ends—this is a birail 1.

94    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 3.41  The resulting birail 1 surface.

FIGURE 3.42  All the profile curves are lined up along the rail curves.

NURBS and Curve-Based Geometry    ◾    95  

FIGURE 3.43  See how the birail 3 allows the profile to change shape over the
length of the rails. It would be very hard to do this with precision just by moving
the point around!

FIGURE 3.44  Four separate curves, intersecting at the end points.

96    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

IS THERE A WAY TO CUT A HOLE IN A NURBS SURFACE?

Projected Curves and Trim Surfaces

Although NURBS surfaces thus far have been pretty useful and shown to
build complex surfaces fairly easily, there are a few things that are difficult
to do. Unlike polygons, with their face extrusions, NURBS have a really
hard time having branching geometry; there is only so much you can do
with a ribbon, even if you can adjust it in a dozen ways with its U and
V curves. What about at least putting a hole in the surface? What about
extending a surface from a surface? Projected curves and trim surfaces
allow us to accomplish these otherwise difficult tasks.

Projecting a curve is taking a NURBS curve and making a duplicate of
it that conforms to the shape of the surface. This is accomplished by using
the U and V elements of the surface to contour the curve to the shape.
Because every NURBS surface is essentially a flat ribbon, we can take
any curve and “stick” it to that surface. After doing so, the “projected”
curve will automatically adhere itself to the 2D surface, and will only be
able to move in the NURBS surface U and V (it will no longer have three
axes of movement). Figure 3.46 shows a NURBS curve that has been pro-
jected onto a NURBS surface, and the resulting curve-on-surface has been

FIGURE 3.45  The resulting boundary surface, made from the intersecting curves.

NURBS and Curve-Based Geometry    ◾    97  

highlighted. Notice that there are now two curves—the original 3D curve
and the new 2D curve, which can only move along the surface. The 2D, or
projected curve, retains its shape from the original curve because of his-
tory, but it also continuously conforms to the surface on which it has been
projected. This is because the curve is actually being calculated on the U
and V of the surface in two dimensions, as you can see in Figure 3.47. Every
NURBS surface is just a flat plane that has been wrapped around curves

FIGURE 3.46  The projected curve, which is highlighted, is conforming to the
shape of the surface.

FIGURE 3.47  Because the NURBS surface is just a flat ribbon, it can be laid out
in 2D with a U and V direction.

98    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

like wires, and because of this, it is very easy to adhere a projected curve
to the shape of the surface. The curve will maintain the surface contour if
the surface is changed.

What can we do with this curve now that it has been projected? The
first thing we do is use it to create a trim. In order to create a trim, we
need a closed or periodic curve. You can see how generating a trim sur-
face will “cut” a hole in that surface in the exact shape of the curve.
Alternatively, you can create a surface with just the projected curve, which
will leave you with a surface in the shape of the projected curve, with the
same contours of the surface. Think of this like a donut—you can have
either the donut or the donut hole. We have a use for both. This, inci-
dentally, is the only way that we can create a surface that does not have
square edges! Mathematically what is happening when you trim the sur-
face is that the resulting polygonal surface (which is being tessellated) will
approximate the shape of the cutout with as many polygons as necessary
to generate the smoothed curve. Figure 3.48 shows the projected curve
from Figure 3.47 after it has been turned into a hole with a NURBS trim.
Figure 3.49 shows the inverse—only the shape of the projected curve is
preserved and the rest has been trimmed away. When you create a trim
surface, you create a new sub-object called a trim edge. A trim edge is the
place where the projected curve was turned into a trim surface. You can
see in Figure 3.50 the resulting trim edge (which is the same whether you

FIGURE 3.48  The trim being made. This trim kept the object and put a hole
where the projected curve was.

NURBS and Curve-Based Geometry    ◾    99  

cut the hole or cut out the hole). You can select that sub-object and per-
form surface creation actions to it (see next in the following paragraph on
fillets). You can continue the trim process with as many as you want, but
the process gets more complex each time you run it and heavily trimmed
surfaces can become slow when processing. This is often the case when
building a surface with a lot of precision detail for engineering, which is
one reason why they require a lot of computing power.

FIGURE 3.49  The hole kept and the object trimmed.

FIGURE 3.50  The resulting trim edge.

100    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

The second reason for using a projected curve on surface is for creating
branching geometry. While there can be no true branching of NURBS
geometry like you can do with polygonal geometry, you can create multi-
ple surfaces with seamless transitions that provide the illusion of branch-
ing geometry. This is important because it is the only way you will be able
to make a branching model using only NURBS. A surface is generated
from a curve that has been projected onto another surface. When the sec-
ond surface is created, it will appear as if the two surfaces are smoothly
branched or connected. Figure 3.51 shows a NURBS surface that has been
connected between one surface and another, appearing to be branching
out from it. There is a pitcher, which has had a handle extended from the
top portion. There are actually three surfaces here: the original pitcher,
the intermediate surface, and the handle surface. The handle was extruded
from a copy of the curve that was projected onto the pitcher surface, and
the intermediate surface was lofted between them. Figure 3.52 shows the
duplicated surface curve, and Figure 3.53 shows the extruded handle sur-
face. Figure 3.54 shows the intermediate surface, which is generated by
lofting together the curve on the surface and the profile curve of the extru-
sion. The intermediate surface was slightly tweaked in order to create the
smoothed transition from the surface of the pitcher to the extruded tubu-
lar handle.

FIGURE 3.51  Two surfaces, one “extruding” from the other by using projected
curves.

NURBS and Curve-Based Geometry    ◾    101  

FIGURE 3.52  A curve in the surface is used to create a tube extrusion along a
path.

FIGURE 3.53  The resulting tube-extruded surface.

102    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

HOW DO I CONVERT NURBS INTO POLYGONS?
While polygon models are not immediately convertible into NURBS mod-
els, the opposite is quite a different story. Remember what we learned ear-
lier about NURBS and tessellation? NURBS surfaces are constantly being
converted into polygon triangles as you work with them. In fact, they have
to in order to be displayed on the screen (see the rendering section). So,
converting a NURBS model into polygons is actually very simple—it is
already being done for you all the time! Most programs allow you to make
a one-time conversion when you want to generate a polygonal model from
your curve-based one. The hardest thing to determine is how detailed you
want the resulting model to be and what mode of conversion you want
to use.

There is a dizzying array of options when converting your NURBS
surface to polygons, but the real question is whether you want a uni-
form conversion or an adaptive one. Remember that NURBS surfaces are
descriptions of areas that are constantly being converted into polygons.
When you are converting a surface to a polygon, you are just solidifying
that adaptive tessellation into a new polygon-only object. It is important
to know what you are planning to do with the object after conversion if

FIGURE 3.54  A third surface is created to transition between the two surfaces in
order to appear seamless.

NURBS and Curve-Based Geometry    ◾    103  

you want to have a good guideline for what options to use. The nice thing
about the history feature is that you can keep creating new versions of your
converted surface by tweaking the settings and see it update in real time.

Uniform polygon tessellation uses the spans of the NURBS surface to
generate the polygons. Each CV of the surface you are converting will gen-
erate a polygon vertex, which also means that each hull of the surface will
create an edge loop. This is by far the most common way to convert simple
NURBS objects such as our water pitcher. In Figure 3.55, you can see the
pitcher converted using a uniform method. You can increase or decrease
the amount of edge loops generated by the conversion in both the U and
V, giving you a good deal of flexibility in how detailed or simple you want
the polygon version to appear. Figure 3.56 shows you the same conversion,
but this time the settings have been turned up to create three edge loops
for every one span in the U and V. Uniform conversion is great for objects
on which you intend to do texture coordinates and possibly deform for
character animation. It also works well for simple objects like this pitcher,
which can benefit from having uniform spacing for all of the polygon
edge loops.

Adaptive tessellation is uneven. It uses a series of equations to find the
areas where you need more polygons to make certain areas of your object

FIGURE 3.55  The pitcher on the left is NURBS and the pitcher on the right
is polygons, uniformly converted with one edge loop per span in the U and V.
Notice how much smoother the NURBS pitcher is.

104    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

smoother, and it uses fewer polygons where you need less. The advantage
to this is that it can reduce the overall polygon count, but the disadvan-
tage is that the result will be completely uneven, and in many cases create
bad topology and split faces when using quad polygons (as opposed to
triangles). The place that adaptive tessellation is important is when you
have trim surfaces. Trim surfaces require far more polygons in the area
of the trim than they do in other areas of the surface, making it impor-
tant to subdivide the trim area heavily while leaving the rest of the object
less detailed. In Figure 3.57, you can see the trim hole on the pitcher as it
appears when converted to polygons using a uniform type of conversion
setting. You can see how jagged the trim hole is. If we wanted the trim hole
to be very smooth and everything to be uniform, we would have to sub
divide the object so many times it would be incredibly dense, as you can
see in Figure 3.58. Figure 3.59 shows the solution to this problem; by adap-
tively converting the polygons you can see that the faces are subdivided
more in the trim area than in the rest of the object, which saves over 3000
polygons while keeping the trim hole just as smooth.

FIGURE 3.56  The amount of edge loops generated has been increased to three
per NURBS span in the U and V.

NURBS and Curve-Based Geometry    ◾    105  

FIGURE 3.57  Uniformly converted, but the trim hole is very jagged!

FIGURE 3.58  We can turn up the amount of subdivisions, but now we have way
more polygons than we need.

106    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

NURBS CONCEPTS CONCLUSION—
WHEN DO I USE NURBS?
NURBS is one method of modeling among many. In this chapter, you have
learned the basic underpinnings of the curve-based system of modeling.
There are clear advantages to this style of modeling, and clear disadvan-
tages. One of the greatest things about NURBS and curve-based model-
ing is that it can be extremely accurate, which makes it a great tool for
modeling things that will have to become real-world objects, like bicycle
seats, airplane wings, and even iPhone cases you print out on a 3D printer.
Another advantage to NURBS is that it can be constantly tessellated dur-
ing render times, which makes it important for film output, and compa-
nies such as Pixar have long used NURBS in production due to their ability
to always be smooth at high resolutions no matter how close the camera
gets to them. On the other hand, NURBS can be very difficult to model
with, and the rules of the surface are not very flexible in creating detail
only in specific areas, which leaves the other areas with less. Polygons are
best suited for this, as well as for creating branching geometry for organic
surfaces such as arms and legs, fingers, antennae, and all other extrusions
from a branch. Knowing when to model with what technique is often a

FIGURE 3.59  Adaptive conversion.

NURBS and Curve-Based Geometry    ◾    107  

result of experience and knowing the intended output. When you are first
starting out, it will seem challenging just trying to figure out what type
of modeling you will choose. Generally, the best advice is to give it some
thought before you decide, and look over your options. Some universal
rules can apply. NURBS is great for inanimate objects, while polygons are
good for organic models. There is no reason that you cannot create any
model with either of these two methods, however, and the most important
thing to keep in mind as a modeler is that your skill, experience, and abil-
ity will make the most difference in the end.

EXERCISE: THE WINE GLASS
This quick tutorial is a great way to understand several aspects of NURBS
curves and surface generation. We are going to create a wine glass out
of NURBS.

Step 1: Creating the Profile Curve

Make sure that you are in the “surfaces” module, which you can locate
on the upper left-hand menu. One of the best things about NURBS and
curve-based modeling is that we can define the shape of a surface by
the curve in the simplest form possible. The first thing we are going to do
is create a curve that defines the shape of the wine glass. Go to the front
orthographic view and choose Create > CV Curve, using the linear option
for type. We use linear curves when creating a CV curve because it is far
easier to envision the final shape when doing it in a linear manner. You
can also easily use the grid snap option to make sure that the CV curves
you draw are aligned nicely. Draw the outline of the wine glass, to the left
of the central Y-axis, as in Figure 3.61.

Step 2: Re-Building the Curve

Once you have successfully created the curve, you will need to re-build
it using the Rebuild Curve action. This will allow you to convert it into a
cubic, or smooth curve. This step makes it easy to take any curve and re-
build it with a dizzying array of parameters—the procedural control over
NURBS curve and surfaces is their best feature! Select your curve, open
the Edit Curve > Rebuild Curve option box, and choose the options as
shown in Figure 3.62. This will rebuild your curve as a smooth curve with
the same amount of CV points. The curve will now be cubic, or drawn
with smooth lines instead of straight ones, as it appears in Figure 3.63.

108    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 3.61  Linear curve drawn in the shape of a wine glass.

FIGURE 3.60  Options to create a CV curve.

NURBS and Curve-Based Geometry    ◾    109  

FIGURE 3.62  There are many options, but make sure that Keep: NumSpans is
selected and Degree: Cubic is checked!

FIGURE 3.63  The linear curve is now smooth (or cubic).

110    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Step 3: Creating the Surface

OK, now that we have a curve that nicely defines the shape of our wine glass
from the front, we are going to generate the surface from it. Remember
that the surface is always generated from some form of loft operation,
which creates a “skin” between two or more curves. In this case, we are
going to use the Surfaces > Revolve Surface Action, which will generate a
NURBS surface by duplicating your profile curve several times, rotating
that curve around an axis, and then lofting them all together to form a
closed surface, or “skin.” Sometimes this action is called a “lathe” because
of its similarity to a lathe saw. Notice how the surface now looks just like
your profile. Because of the construction history aspect of Maya, you can
edit the original curve and you will see the entire surface update as a result.

Congratulations! In a few simple steps, you have created a nicely mod-
eled NURBS wine glass. Notice how the surface has no depth. One of the
things we have learned about NURBS is that it cannot have depth at all;
making it more like a “skin” or a canvas stretched over a set of wires that
define its shape.

FIGURE 3.64  The revolve surface options and the resulting wine glass surface
created.

111

C h a p t e r 4

Lighting, Materials,
Textures, and UVs

WHAT IS “RENDERING”?
You will often hear the term “rendering” in connection to 3D computer
graphics. It is tossed around a lot, often without any real subjective expla-
nation. After a while (say, 10 years), you start to get what rendering is, but
you might be embarrassed that you can’t clearly define it in dictionary-like
terms. Rendering is the act of converting any geometry (2D or 3D) into
pixels on your screen or saved in an image file. Although this sounds incred-
ibly simple, the calculations needed to perform this operation are incredibly
complex, and have been in the process of development for almost 50 years.
It takes many calculations just to make a single pixel appear on your screen
based on geometry in a 2D or 3D computer graphics package.

The important thing to understand first, in terms of 3D geometry and
rendering, is that the stuff you see on your screen isn’t really the same
thing as the geometry. It is the visual representation of math stuff going on
underneath the hood. Your surfaces and polygons exist without pixels—
they are all just plotted points in space and mathematical equations. There
are no pixels associated with them in their raw state, just a bunch of num-
bers in a format based on a Cartesian grid. It is important to remember
that because if you do, you will start to peel back the mystical connec-
tion between what you see on your screen and what the computer sees.
In Figure 4.1, you can see the text description of a sphere in Maya. In
Figure 4.2, you can see that sphere appear on your screen.

112    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 4.1  3D is mostly numbers.

FIGURE 4.2  Those numbers converted into an image on the screen.

Lighting, Materials, Textures, and UVs    ◾    113  

So how does this stuff get to the screen? Well, that is where render-
ing comes into play. Unless you are some kind of mathematical genius
who can see grid numbers in 3D space in your head, you will need some
visual method of making sense of all these plotted points for geometry.
That is where the rendering “engine” comes into play. It is called an engine
because it does a lot of work. It draws lines between those points in space
(as NURBS curves or polygon edges) and shows them to you by calculat-
ing pixels to the monitor in RGB data. It also fills in all those spaces in
between the lines, which are being calculated as triangles, with pixels too.
This is why we can see a 3D image that seems to have depth and volume—
we call this shading, and we will talk about it in detail later.

GPU vs. CPU Rendering

Now that we know what rendering is and how the computer calculates all
of those points in space to pixels, we need to understand a little bit about
where those pixels are going. In the previous example, I used the screen
as the depository of that information, so let’s start with that. When your
computer calculates pixels and displays them to your screen, it is doing so
on the fly, or as you are looking at it. This is called “real-time” graphics,
and it is generally handled on the graphics processing unit (GPU). This is
the processor on your video card, which is highly tuned to do the neces-
sary calculations for turning 3D information into pixels, which then feed
a video signal to your monitor. The GPU has to calculate this at 60 Hz, or
60 images per second, because it has to keep up with what you are doing in
the software. Every time you move the camera around and look at an object
it will change what you are seeing, which is happening at a very fast rate.
This is also what is happening when you play a game on a PC or console.
The game is calculating everything in real-time because you as the player
are making changes to the view, pressing buttons to control the character,
and seeing updates on your Heads Up Display. All of this is being rendered
by your GPU, and very quickly. For this reason, the GPU can only handle
a limited amount of calculations at a time. Too much would overwhelm
it or slow it down to a crawl. This is why real-time graphics never look as
good as movies—although this will change in the years to come as GPUs
get faster and smarter. However, as it stands, the GPU is geared more for
speed than quality because you would always prefer better interaction
than quality when playing a game or working with a 3D program. So those

114    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

pixels are being calculated lightning fast in order to allow you to interact
with the 3D world you are developing.

There are specific calculations in specific mathematical models or APIs
that are designed to handle all of this information quickly. The two cur-
rent popular models are OpenGL and Direct3D by Microsoft. You don’t
need to know extremely detailed facts about these APIs; however, it is nice
to understand that these are the predetermined calculations that are set
up to deliver the pixels to your graphics card so you can see the 3D objects.

The second type of rendering is known as software rendering. It occurs
mainly on the central processing unit (CPU) inside your computer. This
is when you take all of the lighting, shadows, extra material options, tex-
tures, and filters and calculate them into a single bitmap image (like a tif
or jpg file). Software rendering takes a lot longer than real-time render-
ing (sometimes hours per individual frame), but it can produce amazingly
rich, realistic results. Look at Figure 4.4 and see the amazing amount of
realism and depth. This could never happen in real-time because the cal-
culations would simply take too long. However, when we render to images
we are not trying to make it interactive, we are trying to get the best pos-
sible result we can in either a single still image or a sequence of images,
which we would then turn into a film or video. Software rendering is
known to take so long that there are giant rendering farms at big CG stu-
dios, multiple computers in banks, crunching away at multiple frames for
playback as the movie develops. It takes a lot of memory as well to render
high-resolution images.

FIGURE 4.3 (SEE COLOR INSERT)  Real-time rendering of a game in develop-
ment by the author.

Lighting, Materials, Textures, and UVs    ◾    115  

WHAT ARE THE THINGS REQUIRED TO RENDER A SCENE?

Lights, Camera, Materials!

Rendering is not a simple process. Every 3D scene, regardless of the soft-
ware package, must have certain items in it in order to generate pixels. It is
important to understand how each of them affects the resulting image in
either real-time or software rendering. Following is a list of the necessary
components for rendering any 3D object and scene. We will explore all of
these items in depth later in the chapter.

	 1.	Geometry—It would seem obvious, but sometimes it is important
to realize that there is only one thing that can be rendered in a 3D
scene, and that is 3D geometry. All of the following items are specifi-
cally designed to perform the rendering operation.

	 2. 	Cameras—Cameras are just what they say they are—projection cam-
eras that mimic the perspective of the human eye or a movie camera.
A camera is necessary to produce the visual aspect of the geometry
in order to render it into pixels. It creates the parallax and perspec-
tive that gives the 3D look to objects. Although the camera is neces-
sary in order for us to see the geometry in a scene, it does not mean

FIGURE 4.4 (SEE COLOR INSERT)  Software rendering. Notice the high quality of
this render. It could never be achieved at 60 frames per second (fps) with today’s
hardware.

116    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

that it does not exist without us seeing it. It is the old, “If a tree falls
in a forest and nobody is there to hear it fall, does it make a sound?”
In this case, the question is, “If there is no camera in a 3D scene with
which we can preview the geometry, is the geometry really there?” In
this case, the answer is absolutely yes! The geometry exists as math-
ematical data, regardless if there is a camera in the scene. It is not
that valuable to us if we cannot see it, but it is important to under-
stand that it would still be there, as data, even if the camera were
not. Cameras generally have aspects to them that mimic real world
cameras—focal length, field of view, depth of field, etc. We will study
the camera attributes that are common to all software programs.

	 3. 	Lights—Lights are how a scene is “illuminated.” Without any
lights in a scene, everything would appear to be dark. Light bounces
off the geometry, using the normal information of the vertices to cal-
culate the shading, which generates light and dark information about
the pixels being rendered. Most 3D programs have default lights set
up so that when interacting with the software and test rendering you
can see the objects in question. However, when you create your own
lights those default lights are turned off. This is confusing to most
people when they first start using a 3D program because it is never
made clear that without any lights at all, the scene would be dark.
We will spend a lot of time on lights and lighting in the next section
because they are so important in making a 3D scene look appealing.

	 4. 	Shaders—Shaders are mathematical calculations that take the infor-
mation from the lights and apply it in certain ways to the 3D object,
which is ultimately broken down into polygonal triangles in order to
create pixels from the lighting information. Shaders are important
because they provide the basis for what kind of calculation will occur—
shiny, known as specular or non-shiny (non-specular). There are
many different shaders used in various software packages, but the most
common non-specular shaders are called Lambert, and the most com-
mon specular shaders are known as Blinn, Phong, and Anisotropic.

	 5. 	Materials—Materials are how color, texture, and all other infor-
mation are prepared for a rendering pipeline. Materials first use one
type of shader, which determines which attributes are available.
This is true across the board in terms of applications, even game

Lighting, Materials, Textures, and UVs    ◾    117  

middleware such as Unreal and Unity, which have a much more
optimized material pipeline for real-time than animation produc-
tion material editors, such as 3D Studio Max or Maya. When you
choose what shader you will be using for a material, it will deter-
mine what options are available for you to edit. In production soft-
ware geared a little more toward software rendering, you will get a
lot more options for a standard material, whereas in programs such
as Unity or Unreal, you will get extremely limited options that help
streamline the process for resource conservation. Materials are sev-
eral channels, which are combined together in the rendering pipe-
line (real-time or software) in order to generate the pixels that will
make up the final rendered image.

HOW DO CAMERAS WORK IN 3D?

Cameras and Camera Attributes

When setting up a 3D scene to render, it is necessary to understand
through what perspective you are rendering your scene. Since the camera
tends to be an “invisible” object, most learning users tend to ignore it or
not be aware of its presence. When modeling, you are constantly looking
through the camera without realizing that it is there, and when it comes
to setting up a scene for rendering the tendency is to overlook the vital
job of setting up a specific camera for rendering the scene.

Cameras are like cameras in real life. They have similar properties and
those properties can be adjusted. The most important thing to understand
when dealing with cameras is parallax. Parallax is the visual effect of
converging lines. When you are looking through a perspective camera,
the scene is displayed as you see it in the real world. That is, objects that
are further away from you are smaller than ones that are closer to you.
Figure 4.5 illustrates this effect with two identical spheres. One of them is
further away on the Z-axis than the other one. Because of the difference
in distance, the one further away looks smaller. Perspective cameras are
usually used to render scene into images for animation, and they repre-
sent film cameras or our own eyes. The other kind of camera is called
orthographic. This is when all of the objects in a scene are seen from a
flat point of view, in which distance from the camera does not change the
size of the object in the viewport. Generally, orthographic cameras are for
modeling and object layout or alignment. Figure 4.6 illustrates the view of

118    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

the same two spheres, but this time in a front orthographic view. Notice
that the spheres are the same size in the viewport, despite one of them
being very further away from the camera.

Camera attributes will drastically change the way the objects and scene
are drawn in the viewport. Because of the necessity for calculations simi-
lar to the real world, there are certain attributes that are universal for the

FIGURE 4.6  This is an orthographic view of the same scene, but because it lacks
parallax the spheres are the same size.

FIGURE 4.5  The sphere on the right is smaller because it is further away from
the camera. This is known as parallax.

Lighting, Materials, Textures, and UVs    ◾    119  

cameras to function, which are accessible in all 3D programs. These attri-
butes with their respective descriptions are listed here.

Focal Length—The focal length refers the length of the lens, which in
turn affects the angle of view. This will change how much you can
fit into your camera’s view. For instance, a wide, panoramic-style
shot would require a much smaller focal length but cause major dis-
tortion around the edges (of a convex nature). A much tighter shot
would require a much bigger focal length but would also have distor-
tion of a concave nature around the edges of the shot (also known as
a “fish-eye” lens). In the real world, you would have to change lenses
on the camera, but in 3D, we can simply dial it higher or lower as
needed. The standard, and default in many 3D packages, is 35 milli
meters, which is closest to the human eye. Any custom changes in
this and you will be able to create some interesting shots, but you
may want to take at least a crash course in cinematography or tradi-
tional photography first.

Clipping Planes—This is always a concern when creating 3D content
because there has to be a point at which the camera decides not to
display or render something. There is always a near and a far clipping
plane, and these clipping planes determine when the camera ceases
to draw to the screen. If you are working with very small objects in
the viewport, like individual vertices, sometimes you will have to

FIGURE 4.7  Small focal length and a fish-eye appearance as the closer objects
appear distorted.

120    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

move the near clipping plane closer to the camera in order to zoom
in on them. The opposite goes for objects very far away from the
camera. Objects that are distant could cease to draw if they are fur-
ther from the camera than the clipping plane. Figure 4.9 illustrates a
camera in 3D with a near and far clipping plane. Only objects inside
the two planes (representing near and far clipping planes) will be
rendered by the camera.

FIGURE 4.9  Clipping planes tell the camera where to render and where not to
render objects.

FIGURE 4.8  Large focal length and the scene becomes less angular and more
orthographic, with relative distance being harder to see.

Lighting, Materials, Textures, and UVs    ◾    121  

Depth of Field—Depth of field is a phenomenon that focuses the cam-
era on a single point in space, making the objects grow more blurry
as they get further from the point in focus or if they are closer to the
camera. This is the same effect as looking through the windshield of
your car when a bug splatters onto it—looking at the bug, which is
just a couple of feet from your face, causes the cars in the distance
to get blurry. The same thing occurs when you look back to traffic
and the bug on the windshield gets blurry while the objects far away
come into focus. You can mimic this effect at render time with the
depth of field setting, which is altered from the focal point setting,
which sets the point at which the camera is fully focused. Figure 4.10
shows the effect of setting a depth of field focal point for a render.

WHAT IS SHADING?

The Polygon Normal

Shading and shader are words that you will hear in conjunction with 3D
graphics a lot, but rarely will a 3D artist be able to clearly define what a
shader is and what it does. A shader breaks down the geometry, lighting,
and camera information in the scene and applies the appropriate level of
light, dark, and color pixels to the rendering pipeline. It is a mathematical
formula that converts the rendering items (camera, lights, and polygon
normal information) into pixels based on attributes or channels that cal-
culate what color each pixel should be. There are many different kinds of

FIGURE 4.10  Objects further away are blurry when the depth of field is turned on.

122    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

shaders, and there are ways to write custom shading equations for special
information and effects.

The first important element that controls shading is the polygon nor-
mal. The normal is a sub-object of the polygon of sorts, in that it is select-
able and editable, but it is separate from the vertex, edge, and face in that
it is derived or calculated from the angle of the face. This is important
because it does not control the shape of the polygon; rather, the shape of
the polygon controls it.

The first type of normal for us to look at is the face normal. The face
normal is the perpendicular angle of the polygon face. In Figure 4.11, you
can see a single polygon triangle in perspective with the normal show-
ing. The normal, as you can see, looks like a hair sticking straight out of
the polygon face. Since the triangle is always planar (flat), you can always
calculate the 90-degree angle from its flat face. When dealing with a quad,
or multi-sided polygon, the normal of that face will be an average of all
the triangles of which it consists. You can see in Figure 4.12 that the non-
planar polygon with two triangle has two normals, but when it is displayed
as a quad in Figure 4.13 it only has a single normal, averaged from the
values of the two implied triangles. It is notable to remember that you can
move a polygon face along the normal in most software packages. This
allows you to move geometry based on the way it is already facing, instead
of trying to move it based on the world or local coordinates, and allows a
great deal of flexibility with organic shapes, which are rarely aligned with
the world axis.

FIGURE 4.11  A single polygon triangle with the face normal showing.

Lighting, Materials, Textures, and UVs    ◾    123  

A vertex normal is the second type of normal. It is derived from the
face normal. Now here is where it gets confusing—you can have more than
one normal per vertex! In fact, the basic normal configuration without any
smoothing (more on that later) is to have a normal for each face to which
the vertex is attached. You can see in Figure 4.14 that this vertex, part of a
polygon sphere, has a normal for each face to which it is attached, giving it
four total normals. Each of those normals has the exact same angle as the
face with which they are associated.

Most software packages, and the standard setup for primitive objects,
is to have the vertex normal smoothed where the surface is round. This
means that all four normals from Figure 4.15 will be combined, each one

FIGURE 4.12  A quad divided into two triangles with each possessing its own
face normal.

FIGURE 4.13  A quad without triangulation showing a single combined face nor-
mal, which is averaged from the two triangular face normals.

124    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

averaged together to make a single value. This is most common in smooth
objects, like the sphere we are looking at. In Figure 4.16, we can see the
same vertex, with combined normal so that the flow of angles from nor-
mal to normal is consistent. This is necessary for the image to appear as if
it is smooth because if all the normal were split, you would see this object
as it would appear in the real world, which is just a bunch of flat planes

FIGURE 4.14  When normals have been set on a per-face basis, there is a single
vertex normal for every face connected to it.

FIGURE 4.15  Normals that are averaged have only one per vertex.

Lighting, Materials, Textures, and UVs    ◾    125  

welded together. Figure 4.17 shows how a sphere appears when all of the
normals are set to the individual vertices. Notice how it looks like a bunch
of flat squares that have been glued together. This is what it looks like when
the shading is not smoothed across the vertices by averaging the normal
and combining them into a single value.

FIGURE 4.16  A faceted appearance is the result of having a single normal
per face.

FIGURE 4.17  This is the same geometry, but with normals averaged.

126    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

So the real question, you might be asking yourself, is what do the nor-
mals have to do with shading? The answer is everything. The normal creates
angles from which the lights in the scene strike the object. The light rays hit
the vertex normal and the vertex is told to be rendered a certain way with
certain color pixels, which is in turn based on the angle of that particular
vertex to the angle of the light rays. When a light ray hits the normal, it will
give a brightness value based on a range between 180 degrees (light is directly
striking it and brightness is 100%), or 90 degrees (light is perpendicular and
brightness is at 0%). Without that normal information, lighting and shading
could not be calculated. The shader tells the rendering pipeline what pixels to
put to the screen or still image based on the information in the normals and
the lighting. Those pixels will be lighter or darker, depending on the angle of
the light. As the light moves across the surface, it renders darker and darker
pixels when the angles of the normal reach 90 degrees. This creates a smooth
transition from bright to dark area, and this process is known as shading.
You can see in Figures 4.16 and 4.17 how the difference between smoothing
the normal changes the appearance of the sphere significantly.

WHAT ARE LIGHTS?

Lights and Lighting

Lighting is one of those aspects of 3D that is so large it is hard to tackle
in conceptual, beginner terms. The most important thing to understand

FIGURE 4.18  A simple scene setup to learn lighting and light properties.

Lighting, Materials, Textures, and UVs    ◾    127  

about lights is that they are responsible for creating brightness in the
scene—without any lights, there would be nothing to render. Lights are
set up to provide a more realistic 3D appearance to your models. Without
changes in light, dark, and shadow, your objects would not appear to be
3D at all (even though they still would be 3D data). One confusing thing
when working in 3D is that most software packages have auto-lighting
enabled, which uses a standard 3-light setup to preview your objects in the
modeling view. Without these auto-lights, you would have nothing to see.
Usually these auto lights are killed when an actual light is created.

There are four traditional, core types of lights: ambient, directional,
point, and spot. Many more types have been in use for years (global illu-
mination, area lights, etc.) but they are generally specialized to high-level
realistic lighting simulations that are outside the scope of this book. We
want to deal with the old-school lights because not only are they the most
commonly used but they are the only kind used in real-time gaming plat-
forms. Real-time (GPU) lighting cannot calculate the super-realistic light-
ing models that rendered images can take advantage of. Someday perhaps
they will, but for now, we want to stick to the basics.

Types of Lights
Ambient Light
The ambient light is the simplest of lights. It casts light everywhere all
at once, from every direction. Ambient lighting does not produce areas
of light and shadow because it does not come from a direction. It is best
used for brightening up or tinting a scene globally. Some game systems use
pre-lighting, or baking the light information into the textures that are on
the geometry. In this case, the ambient light alone works well and saves
valuable calculation time. In Figure 4.19, you can see two spheres being
lit with an ambient light. It is very washed out and lacks a 3D appearance.
This is because there is no change of lighting across the surface at all. The
light casts in all angles to all vertex normals at once, which makes the illu-
mination completely even. Ambient lighting can be used to boost natural
lighting conditions or to globally brighten a scene without changing the
existing light setup.

Directional Light
Directional light casts light in a vector, or direction, infinitely. It means
that no matter where the light is in space, the rays are always coming at a
certain angle, determined by the rotation of the light node. You can see in

128    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Figure 4.20, there are two spheres, both being lit by the same directional
light (which is in between them). Despite the fact that the light is in front
of the sphere to the right of the screen, it is still lit the exact same way
as the sphere in front of it. This is because the angle of the light controls
how the light affects the object, and not the position of the light. If you
rotate the light, however, as you see in Figure 4.21, you will notice that the
direction the light is coming from changes (equally for both spheres). A
directional light is often used to simulate the Sun because its properties

FIGURE 4.19  Two spheres lit by an ambient light. The light is completely even
across the surface.

FIGURE 4.20  A directional or parallel light, evenly lighting both spheres.

Lighting, Materials, Textures, and UVs    ◾    129  

are similar, and the time of day can be animated by simply rotating the
directional light. For that reason, outdoor scenes are generally lit primar-
ily with a single directional light (although a second helper light is also
sometimes employed).

Point Light
A point light is very similar to a light bulb. It is a point in space, which
is emanating light in all directions, but only from the point in space.
Translating the light will change the affect on the shaded objects (unlike
the directional light), but rotating the light will not do anything because it
is always casting the light in all directions. You can see in Figure 4.22 there
are several images of the spheres being lit by a single point light in differ-
ent places; unlike the directional light, the point light shines on different
parts of the two spheres in the image because the light is being cast from a
point in space instead of an angle. Point lights are generally used for open
sources of indoor light, such as a light bulbs, candles, or similar objects.

Point lights are the most expensive to calculate in rendering because
every angle of light to every polygon normal must be calculated. This is
important when trying to create low-imprint scenes in 3D. You have to
use your resources wisely, or it will be too much for the rendering sys-
tem to handle properly. Although the hardware and software capabilities
have increased exponentially over the past decade, devices like the iPhone,
iPad, and Android do not have the same graphics processing power as a

FIGURE 4.21  Changing the angle of the light changes its lighting effect.

130    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

full computer. Therefore, when developing games for them conservation
of resources is still very much an issue. Point lights can often be used to
simulate the effect of light coming from a single, naked source, such as
a light bulb, match, candle, or lantern. It generally is not a natural light,
however, and when trying to create a sunlight or outdoor appearance, it
would not be the best light to choose.

Spotlight
A spotlight is exactly what it sounds like. Essentially, a spotlight is a cone
of light created by taking a point light and only emanating light from a
certain angle, which forms a circular cone. It is very useful for generating
the effect of a spotlight, headlight, or flashlight. In Figure 4.23, you can
see the spotlight and its effect on the polygon sphere. Spotlights are faster
to calculate than point lights because the light rays only need to be calcu-
lated as emanating from them at angles inside the radius angle.

Common Light Attributes

All lights share some attributes, and some are unique to the individual
type of light. Here is a list of several attributes that can be edited, what
they do, and which light uses them.

Color—All light types have this attribute, which determines the RGB
value of the color being emitted by the light. This mixes with the
shading information and the normal values to produce the pixels
on the screen. Most natural light is in the yellow to white spectrum,

FIGURE 4.22  The position of a point light drastically changes the lighting result.

Lighting, Materials, Textures, and UVs    ◾    131  

and most bulb-style light is as well. Florescent can be a tad on the
blue range. Despite all of this, it is very noticeable when you change
the color of a light, so unless you are deliberately setting up a col-
ored light or need to create a mood it would be a bad idea to change
this value from pure white. Stick to pure white when dealing with
standard illumination like the sun or indoor lighting. In Figure 4.24,
you can see the effect of color on a light. Stick to using this for very
specific purposes, and unless the lights in your scene are actually
colored when rendering, natural light values of white to slightly blue
are better. This affects the shading of vertices by adding light to the
pixel values.

Intensity—This is the multiplier for the light, which is part of the entire
lighting to pixel equation. It is how bright the light is. Every light
uses this attribute.

Decay rate—Decay is how the intensity of the light is reduced as the
distance from the light is increased. Although this value is turned
off by default, it is a more realistic model of how light actually occurs
in the real world. In Figures 4.25 and 4.26 you will see a scene lit by
a single point light. In Figure 4.25 the light has no decay, while in

FIGURE 4.23  The spotlight shines light in a cone, which you can see the result
of on the sphere above.

132    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Figure 4.26 there is a linear decay rate. You can clearly see that the
object further away from the lights grows dimmer, which simulates
a real world light, in which the light scatters as it moves away from
the source, growing dimmer and dimmer. One thing to note in the
decay rate is that the faster the decay rate, the higher the value of

FIGURE 4.25  Point light without decay.

FIGURE 4.24 (SEE COLOR INSERT)  The effects of using colored lights are very
noticeable. Use it sparingly.

Lighting, Materials, Textures, and UVs    ◾    133  

intensity will need to be in order for the light to illuminate the area
because the light will decay so fast it will not light anything at all.
In Figure 4.25 the intensity value is set to 1, yet in Figure 4.26 the
intensity value is set to 600. If the value were to be set to 1 in the
light using decay, it would appear completely dark because the decay
would cause the intensity value of the light to reach zero before it
reached the objects. There are several variations on decay speed, and
as the rate increases, so will the intensity need to be cranked up in
order to see anything in the scene. Decay is only available in lights
that emit from a point in space; therefore, only the point light and
spotlight can use it.

Spotlight-Specific Parameters

Cone angle—This determines how broad the angle of light will be.
A value of 0 will illuminate nothing, while a value of 180 will illu-
minate everything in a plane, essentially turning a spotlight into a
directional light.

Penumbra angle—Penumbra angle is the point at which a spotlight
begins to fade out to zero. Without a value here, the spotlight will
retain the same brightness across the entire illuminated area.

FIGURE 4.26  Point light with decay on. Notice how the closer objects are illu-
minated more than the further objects. This is what occurs in real life, and is a
more realistic model.

134    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Figure 4.27 shows a spotlight hitting an object with no penumbra
angle. Figure 4.28 shows the same scene with a penumbra angle of
–8 (negative being a value that happens inside the radius perimeter,
and positive being a value that will occur after the perimeter). The
penumbra softens the light as it reaches the edges.

FIGURE 4.27  A spotlight, which emits light in a cone.

FIGURE 4.28  Notice the softening of the edges around the perimeter of the light
angle. This is due to the penumbra effect.

Lighting, Materials, Textures, and UVs    ◾    135  

Dropoff—This parameter changes the rate of falloff from a light to its
perimeter. A high dropoff will fade the light out very quickly and
make the edges very diffuse.

Shadows

What is a shadow? Or rather, what isn’t a shadow? A shadow, whether
in the real world or the simulated world of 3D graphics, is a place where
light cannot reach for some reason. Usually that reason is a solid object
that is in the way of the light. As the light rays hit the solid object, they do
not illuminate the objects behind. The reality of this may be simple, but
the physics of this are incredibly complex. While we do not need to com-
prehend the theory of relativity to understand the concepts of shadows,
when you are working with light and trying to understand it, things can
get very deep very fast. Luckily, it is not so important to us in what we are
trying to achieve when we light a scene in 3D. Our intention is to create a
simulation, not recreate the physics of the real world and how light trav-
els. There are, in fact, systems that do this (known as radiosity and global
illumination), but they are very advanced and beyond the scope of this
book. We are here to get a basic understanding of 3D concepts and skills.
Therefore, we are going to stick to our good, old-fashioned classic light
types and tricks to make this work.

Shadows in 3D are calculated in a manner that simulates the way they
look in the real world, just like the vertex normal and the lights simulate
real world lights. In order to make a scene look realistic in any way, the
lighting is going to have to look very good, and in order for lighting to
work in three dimensions you are going to have to create shadows to give
the scene perspective and a sense of parallax. In Figure 4.29, you can see a
simple rendered scene without shadows. Notice how the objects touching
the ground look odd, awkward, and as if they are floating. In Figure 4.30,
you can see that same scene rendered with shadows. Notice how much
better it looks? How much more realistic? This is because shadows being
rendered do much to recreate the appearance of objects as they would
appear in the real world.

There are two kinds of shadows rendered by software programs: depth
map shadows and ray-traced shadows. Each of the shadow types can be
changed on a per-light basis, and they are calculated by both the GPU and
CPU, although the GPU is extremely limited in this capacity with cur-
rent technology. Depth map shadows are the cheapest way to calculate

136    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

shadows, in terms of processing power. They are generated by creating ren-
ders of the scene from each view of a light in your scene. When the images
are rendered, they are then calculated in terms of depth from the light
source, and an image file is saved with that depth information. That file is
then projected by the light-based view onto the scene with proper depth
information, which is converted into pixels to the camera from which you

FIGURE 4.29  Notice the softening of the edges around the perimeter of the
light angle.

FIGURE 4.30  The greater the dropoff, the faster the intensity of the light value
changes to 0.

Lighting, Materials, Textures, and UVs    ◾    137  

are rendering the scene, and rendered as dark pixels where the light would
not fall. If this sounds complex, it is! It is a very complex set of mathemati-
cal formulae and conversions being done; however, this is the fastest and
most efficient way of generating shadows because only small amounts of
information need to be calculated, and the depth maps that are calcu-
lated can be constantly re-used as long as the lights stay in the same place.
Figure 4.32 is an illustration of the calculations that create the depth map
shadows. As you can see, it involves a lot of calculation, but it generally
produces decent results.

FIGURE 4.31  Depth map shadows turned on.

Depth Map

Light

Object

Eye

di2

di1

do2

do1

s2

s1

FIGURE 4.32  Did somebody say “math?” Simple explanation of depth maps…

138    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Depth map shadows have the following limitations:

	 1.	Cannot calculate semi-transparent objects—An object’s transpar-
ency is ignored with depth map shadows because the depth map
shadow is just a texture projected onto the screen.

	 2.	Limited by the resolution—The resolution of the depth maps must
be high enough to match your output render resolution, or you can
get very bad aliasing (choppy appearance) around the edges. Turning
your depth map resolution can help this, but it eats up memory at
render time.

Ray-traced shadows are the second kind of shadows. Ray tracing is
a method of rendering that uses straight lines, or “rays,” which are cal-
culated through every pixel from the flat plane of the camera and light
in the scene. You can see in Figure 4.33 the basic structure of the ray-
tracing algorithm in conceptual terms (although the truth is much more
“mathy” of course). Ray tracing not only generates shadows because it
calculates every line of every light to every object in your scene, but also
can produce reflections and refractions with extreme accuracy. For this
reason, it is used in high-level rendering to produce very realistic results.
The problem with ray tracing is that calculating all of this takes a lot of
time, and images are very slow to be rendered, which makes it useless for
GPU rendering (at least with the current level of technology). Generally,
ray tracing is reserved for software rendering, which is used to produce
animations and films in image sequences. Figure 4.34 has an illustration
of a scene rendered with ray-traced shadows, while Figure 4.35 shows the

Image
Camera Light Source

View Ray Shadow Ray

Scene Object

FIGURE 4.33  More math! Ray tracing is slow.

Lighting, Materials, Textures, and UVs    ◾    139  

same scene rendered with depth map shadows. Because the ray-traced
shadows are produced by calculating a line through every pixel, they are
far more accurate, but the edges of the shadows tend to be crisp, and there-
fore do not always look natural. Depth map shadows can have a “fuzzy”
appearance, which will resemble real-world shadows better because in the
real world most shadows are affected by light bouncing off other surfaces
(called radiosity).

FIGURE 4.34  Depth map shadows produce softer, but less accurate, results.

FIGURE 4.35  Ray-traced shadows are slower to render, but produce more accu-
rate results. Also, they are not soft around the edges, which can be unrealistic in
less harsh lighting situations.

140    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

WHEN DO I USE DEPTH MAP SHADOWS?
WHEN DO I USE RAY TRACING?

Choosing Shadow Types

Determining which type of shadow to use is something the new user often
asks. However, when setting up a scene for rendering, the answer is usually
very subjective to the look you are trying to achieve and the desired real-
ism of the final product. Software rendering is very time-consuming and
requires a lot of planning to create a realistic scene with realistic lighting.
The simplest rule in any 3D production work is to start with the simplest
and cheapest solution (in this case, depth map shadows) and if that is not
sufficient, then layer on more complex solutions. If you can get away with
the simplest solution, then it works much better than over-thinking or
over-complicating things. When a totally photo-real lighting solution is
necessary, you can look for the complex solutions. If you just want to ren-
der a ball bouncing on a floor, then why over-do it? I often feel that I can-
not get the ideal appearance by using just one type of shadow. Luckily,
you don’t have to! One thing I often do is mix the ray-traced shadows with
depth map shadows to create a more rounded appearance, with the depth
map shadows providing the fuzzy edges and the ray-traced shadows mak-
ing them accurate (Figure 4.36).

FIGURE 4.36  Here I mixed the depth map and ray-traced shadows in order to
create a more natural appearance. Make sure you halve the intensity of the lights,
however, if you do this.

Lighting, Materials, Textures, and UVs    ◾    141  

Shaders and Materials

We have talked about shading, but now we need to understand what a
shader is. Shading takes place when calculating the pixels in the spaces
between the vertices (called polygon faces). The pixels get their RGB color
value from the lighting information and the material information. A
material is a series of channels that are applied to an object to create a final
rendered appearance. A material uses a shader to know what channels
of information are available to the user to change. Materials being used
for GPU rendering are a lot different from materials being used for CPU
software rendering, and generally must be treated very specifically for the
intended output. This is mostly because the GPU, or real-time rendering
system, can only handle a fraction of the calculations that are used in soft-
ware rendering, and must be tailored to run as fast as they possibly can. We
will be mostly covering materials and shaders as they are implemented in
Autodesk’s Maya software, which uses software rendering for its material
editor, but keep in mind that shading and materials can be vastly different
from one 3D program to another, and in fact, this is one of the areas that
shows the greatest differentiation between them. This is mostly because
they are using their own software-rendering engine, which requires cer-
tain channels of information to be calculated certain ways.

Shaders are mathematical formulae that take information from the
light and the geometry normal, and convert it into color pixels on your
screen. These shaders have been written to mimic the real-world properties
of various appearances, the most important of which are shiny and non-
shiny materials, also known as specular and non-specular. Specularity
is the property of being shiny, or having specular highlights, which are
places where the light reflects from the shiny surface and you see a bright
white area and possibly a reflection. Figure 4.37 has two spheres that have
been rendered in 3D. The sphere on the right has been rendered with a
Lambert, or non-specular shader (sometimes known as a diffuse shader),
while the sphere on the left has been rendered with a specular shader. Notice
the circular area that is white on the sphere on the left. This is the specular
highlight area, and it can make a surface look shiny just by virtue of hav-
ing brighter pixels than the surrounding areas. The whiter and smaller the
circular area, the shinier an object will appear to be. Examples of specular
surfaces in real life are water, plastic, metal, and tile. Examples of non-
specular materials in real life are plaster, stucco, paper, carpet, most cloth-
ing, and grass or dirt. Human skin is also specular (but it is much more

142    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

complex than just that). It is important to note that reflection is a prop-
erty of all specular surfaces in the real world; however, in 3D we can only
achieve that with certain techniques, which will be discussed later.

Every software program has its own shaders, but there are “classic”
shaders that are universal, and widely used in real-time engines. The shad-
ers are generally split into two categories: specular and non-specular, and
there are several listed next so that you can become familiar with their
names, which are often derived from the person who first wrote the cal-
culations for them.

Non-Specular Shaders

Lambert is the standard “diffuse-only” shader, which calculates the color
values of the pixels without any calculation of reflection. It is the simplest
shader, and used to render objects and surfaces that do not have any reflec-
tive or shiny properties at all. Figure 4.39 shows our two spheres with blue
and red Lambert shaders applied.

Specular Shaders

Phong is the most commonly used specular shader. It is much like Lambert,
except that it has a value and a color for the specular channels. Specular
channels control the amount and color of the reflective brightness on an
object. With cosine power, or specular size, Phong can control the size

FIGURE 4.37 (SEE COLOR INSERT)  The sphere on the left has a specular or
“shiny” shader, while the sphere on the right has a non-specular shader.

Lighting, Materials, Textures, and UVs    ◾    143  

of the circular specular highlight generated when light reflects from the
source to the camera as well as the color of that reflected highlight. In
Figure 4.40, you can see the basic diagram for a Phong shader, which is
mathematically derived from the camera view of the scene and the light
bouncing off of the object. While we do not really need to know all this
“mathy” stuff, it is always nice to have a visual model of what is happening
at the nuts and bolts level of anything we are working on. Figure 4.41 shows

FIGURE 4.38 (SEE COLOR INSERT)  Images of various specular and non-specular
objects.

FIGURE 4.39 (SEE COLOR INSERT)  Lambert shaders do not have specularity.

144    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

our two spheres again, this time with the shaders converted to Phong. The
specular cosine power has been changed to a value of 2 on the sphere on
the left (the blue one), and a value of 27 on the sphere on the right (the red
one) to illustrate the resulting effect on the specular highlight. The smaller
the cosine power, the bigger the area of the highlight. In addition to the
cosine power, you can specify the RGB color of the specular highlight,
which will be different for different types of surfaces. Metallic surfaces

FIGURE 4.41 (SEE COLOR INSERT)  The cosine power is higher on the right and
lower on the left.

FIGURE 4.40 (SEE COLOR INSERT)  Calculations for specularity on a Phong
shader.

Lighting, Materials, Textures, and UVs    ◾    145  

tend to reflect the same color light as the object, while plastics and glass or
water will reflect a gray-scale color (mostly near-white). Figure 4.42 shows
the two spheres, this time both rendered with a gold RGB color value, but
one with the specular color as white, and the other with a specular color
matching the RGB color. The sphere on the left looks more metallic because
it has a specular color matching the diffuse color (appearing more like gold).

Blinn is an addition to Phong, in that more of the specular highlight
can be controlled. It allows you to control the eccentricity, or spread of
the circular highlight, as well as the roll-off, which is how fast from the
center of the circle to the edge of the circle the brightness decreases. This
added flexibility creates a more realistic depiction of shiny surfaces, and
is the preferred shader for specularity in Maya. In Figure 4.43, you can
see the same two spheres as before, but this time with a Blinn instead of a
Phong shader, and the added control over the specular roll-off increases
the level of realism when rendered.

Anisotropic is worthy of mention because it is commonly used to ren-
der objects that have multiple grooves, like a CD or a record. Because of
the grooves in these objects, the effect shining back at the user can produce

FIGURE 4.42 (SEE COLOR INSERT)  The sphere on the left looks more like gold,
while the sphere on the right looks more like plastic. This is due to the difference
in the specular color.

146    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

very unique visual effects (like the rainbow reflection from a brand-new
tea kettle) and must be specifically calculated in this special shader.
Figure 4.44 shows the spheres again, this time with the sphere on the left
having an Anisotropic shader. The specular highlight is greatly changed
when there are multiple grooves in an object surface because the light con-
forms to the grooves differently.

FIGURE 4.44 (SEE COLOR INSERT)  The ball on the left is using Anisotropic
shading.

FIGURE 4.43 (SEE COLOR INSERT)  Blinn shaders have more sophisticated spec-
ular controls.

Lighting, Materials, Textures, and UVs    ◾    147  

Materials

Materials and shaders are oftentimes confused when talking about 3D
graphics, and for good reason. They are often used interchangeably when
talking about rendering graphics, but they are definitely not the same
thing at all. A material is a network or stack of calculations that are man-
aged in a render pipeline, which do all the calculations that convert the 3D
and lighting information into pixels. Now that sounds a lot like a shader,
but a material uses a shader to determine what channels are available to
calculate and apply to an object in 3D. The material is what is assigned
to the object, and this is assigned at the face level. Each polygon face has a
number ID, which then is assigned a material ID, which is using a shader
to calculate all those pixels. If it sounds confusing, then join the club.
Rendering pipelines, materials, and shaders is probably the most technical

FIGURE 4.45 (SEE COLOR INSERT)  The material editor in Maya (called the
Hypershade). Often the materials are called shading networks because the infor-
mation is stored in various nodes, which are then connected together to form
a network.

148    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

and least “art-based” part of 3D graphics. The good news is that we do not
have to know every little detail of the mechanics in order to set up good
materials for our scenes. You do not need to know how spark plugs are
manufactured in order to put a new set in your engine; you just need to
know where they go and how to put them there.

Common Material Properties and Channels

Since we have multiple shaders that we can use in any given material, we
will study the most common material channels and how they affect the
outcome of the result. Materials work by calculating individual “channels”
of data, which are in the form of RGB or alpha data. RGB uses three chan-
nels, each of which go from 0 to 255 in value. Mixing the values of these
three channels together can create 16.77 million total different colors.
Alpha values are only black and white values, which have a total of 256
different levels. Some channels only need alpha values, which take up less
room and less time to calculate. Channels are calculated by the render-
ing pipeline in certain order, receiving some of the calculation equations
from the shaders, which also determine which channels will be available
to the user.

The standard material in most software-rendering-based 3D programs
has the following key channels.

Color—Also known as the “diffuse” channel, this is as simple as it
sounds. This determines the RGB color of the material, and this
color is the basis of all further calculations. This is the only RGB
value allowed in the material, with the exception of the specular
color, and any other changes to the material channels will generally
only change the lightness and darkness of that material on any object
(unless it is specular and has specular color information).

Transparency—An object can be transparent or opaque, and this chan-
nel uses alpha data to determine if you can see objects behind it.
In Maya, the white alpha value stands for transparent, while black
stands for opaque, although many programs have this value reversed.

Ambient color—Ambient color is an RGB value that multiplies the
RGB color value of the material with the lighting, which means
that the higher the value, the brighter the object will appear, but it
will include the light and dark areas of the light information. If the

Lighting, Materials, Textures, and UVs    ◾    149  

value is turned to completely white, the object with this material will
appear uniformly in the RGB color value, but it will have areas of
light and dark as defined by the lighting (however, the “dark” areas
will be multiplied with the color value). In Figure 4.46, you can see
a rendered image of our two spheres with the ambient color channel
on the left-hand sphere set to 0, or black. In the sphere on the right
side of the screen, you can see the ambient color value turned up to
~75%, or an RGB value of (175,175,175). Notice how the dark areas
are red? The value of the ambient color is multiplied by the value to
only the value of the diffuse color before rendering. Ambient color
is a good channel to create effects where an object has a very bright
surface but still needs to be affected by the lighting around it (like a
low-emission light bulb). Sometimes ambient color value is known
as self-illumination.

Incandescence—Incandescence is similar to ambient color, but the color
value is multiplied on top of the lighting, which causes the object to
get completely white when this value is turned up to white. The RGB
color value is multiplied on top of the material color value and will
wash out the lighting if turned up all the way. Figure 4.47 shows this
effect, with the same values as the ambient color setting in Figure 4.46.
Notice the difference in effect? The incandescent value multiplies all
color information including lighting (instead of just the diffuse color

FIGURE 4.46 (SEE COLOR INSERT)  The ambient color value on the right sphere
is turned up, which multiplies the value of the diffuse color after the lighting is
calculated, which is why this sphere is red.

150    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

channel), so it becomes white. Simulating self-illumination, how-
ever, does not actually light the objects in the scene; it just creates the
illusion that the object for which you are setting up material proper-
ties is a source of illumination. You will still have to create a light or
series of lights that send light out from that object’s area. This can be
done with the standard lights we have learned, or by using advanced
lighting technique known as area lighting.

Bump mapping—Also known as normal mapping, the bump value uses
alpha information from a texture (more on textures later) to create
the illusion of “bumpiness” on a surface. It does so by creating fake
normal information based on grayscale values to raise up or indent
areas on your object. The advantage in using a bump map is that you
can create very complex visual effects with a very small amount of
geometry. Creating something like a ridged or textured appearance
with bump maps instead of actual geometry is very efficient and the
preferred way of handling this kind of effect. In Figure 4.48, you can
see two panels side-by-side, on the left of which is a simple polygon
plane, and on the right of which is that same plane with a material
and a bump map applied. Despite only having a few polygons, this
image shows how powerful the bump map can be in depicting real-
life texture on an object. The grayscale values of the bump map cre-
ate the high and low bumps and divots on the surface, which appear

FIGURE 4.47 (SEE COLOR INSERT)  Incandescence multiplies the value on top of
the entire rendered sphere, making all of the pixels brighter at once.

Lighting, Materials, Textures, and UVs    ◾    151  

to be actually there, but in reality are created from faking extra nor-
mals generated from a texture containing alpha information. We
will explore bump mapping in more detail in the exercise for this
chapter, where we create the tile floor effect from a simple material
and shading network.

Diffuse—Diffuse is the overall brightness of the color in the color
channel. It is generally used to create areas where the surface of your
object is “dirty” or where the color is duller than other areas. Dirt
maps need to be very subtly created to identify areas of high and low
color output, and these are usually painted onto a texture by hand in
a 2D image editing program such as Photoshop (Figure 4.49).

Translucence—Translucence is the visual effect where an object is not
transparent, but it allows light to pass through. This effect is evident
if you hold something thin, like the leaf of a plant, up to a bright light.
The light penetrates the leaf, but the leaf is not transparent. If you
have an object with a translucent area, you can use this to recreate
the visual effect. Figure 4.50 shows a scene with two spheres, the left
of which has translucence on (reversed from our other figures thus

FIGURE 4.48 (SEE COLOR INSERT)  Notice that the illusion of “texture” or
dimples and grooves is created without heavy geometry. This is done using a
bump map.

152    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

far because the light source is in front of the spheres). Translucence
depth is how far from the point of light the light will penetrate the
object, and translucence focus is how far from the point of light
penetration the light will spread (like falloff). Figure 4.51 shows the
same scene as Figure 4.50, but with the translucency focus adjusted
to have the light only partially shining through the object.

FIGURE 4.50 (SEE COLOR INSERT)  The sphere on the right has no translucency
while the sphere on the left does.

FIGURE 4.49 (SEE COLOR INSERT)  Illustration of a dirt map in use.

Lighting, Materials, Textures, and UVs    ◾    153  

Specular Material Channels

Remember, specular information is the bright circular highlights that
stem from shiny objects. Anything that is changed here will alter the spec-
ular highlight portion of the rendered pixels. A Phong shader only has
the cosine power, which controls the radius of the specular circle that will
reflect from the light to the camera. The Blinn shader, however, allows you
to edit the eccentricity and roll-off, which have greater control over the
spread and “hotness” of the highlight.

Cosine power (Phong only)—As stated before, this channel controls
the radius of the circular highlight.

Eccentricity (Blinn only)—Eccentricity is the Blinn equivalent of
cosine power, and it also controls the radius of the specular highlight.

Specular roll-off—Specular roll-off controls the fading of the specular
highlight from the epicenter to the edge. This controls how bright the
specular color information is as it spreads out from the center.

Specular color—The specular color is an RGB channel that controls
both the color of the specular highlight and the brightness of that
highlight. One important tip about specular color—metallic objects
(like gold) tend to emit the same color in their specular channels as

FIGURE 4.51 (SEE COLOR INSERT)  The translucency focus has been increased to
allow the light penetration to fall off over the surface.

154    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

the main color channel, while glossy objects (like a pool ball) tend to
emit grayscale values (like grey to white). For this reason, the specu-
lar channel would be set to the color of the object if you want it to
appear metallic or just plain white or near white if you want to depict
a glossy object.

Reflection—Reflection is the amount, in a range of 0 to 1, a material
reflects its surroundings, where 0 is not reflective at all and 1 is like
a polished mirror. Reflections occur in two ways in Maya—with
reflection maps, which are simulated reflections based on 3D textures
(more on this later), or with ray tracing. Like calculating shadows, ray
tracing does a calculation for every ray of light occurring in the scene
for both casting shadows and reflecting objects in the surface of other
objects. Ray tracing, when turned on, can be very expensive in terms
of processing power, and for that reason is often the last solution to be
used. Another thing to remember is that the reflection value is simply
how “reflective” the surface is, and this value is only available when
using ray tracing to calculate reflections or using a texture map in con-
junction with a reflection map (for more information on this, see the
Texture section of this chapter). You can use an alpha-value texture
map to generate areas on a material that are more or less reflective.
Figure 4.52 shows an example of two different reflectivity settings,
with a value of 1 being a complete mirror and 0 being non-reflective.
Figure 4.53 also shows the effect of using a texture map to determine
reflective and non-reflective areas of the surface of an object.

Reflection color—Reflection color uses RGB information to tint the
color of a reflection. It can also be used to create a reflection map,
or an image that will appear to be reflected in the object with the
material’s surface. Reflection mapping is a technique used to simu-
late a reflection in order to save time and processing power by not
using ray tracing, which is an expensive way to calculate reflectivity.
Reflection mapping is also commonly used in real-time rendering,
such as gaming, where the reflections are key in creating realistic
lighting effects but they must be calculated at 60 frames per second
(fps). Figure 4.54 shows an environment reflection map being used
to enhance the realism of a reflective surface, without needing to
calculate reflections through ray tracing.

Lighting, Materials, Textures, and UVs    ◾    155  

FIGURE 4.52 (SEE COLOR INSERT)  The sphere on the left has a reflection value
of .3, while the sphere on the right has a reflectivity value of 1.

FIGURE 4.53 (SEE COLOR INSERT)  An area has been defined telling the reflec-
tion where to be, and where not to be, using an alpha value to put a white square
on a black background, white denoting a full reflective value and black denoting
no reflectivity.

156    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

WHAT ARE TEXTURES?
In computer graphics, we heard the term “texture” used a lot, but it is
often poorly defined or explained, except to say that they are files the artist
uses somehow to enhance the material information. Textures are, in fact,
2D images that are calculated in the many material slots we just talked
about. Each of those material slots accepts alpha (black and white) or RGB
data, which then gets calculated just like a color or value would. Texture
maps can be external image files, which get loaded into the texture map
channel, they can be procedural, or 2D images that are generated using
mathematical formulas, which result in pixels. Procedural textures, unlike
image files, can be changed, edited, and animated in real-time and can
adjust their properties as part of your animation or scene. File textures are
accessed externally, and must be linked to the particular texture channel
slot by a “file” node or texture node, which contains information about
how to process the information as it is calculated. Although there are
usually some color correction tools and options for each file texture cre-
ated, most of the information in a file image is derived from the file itself.
Most pixel-image file formats are accessible, including the universal .jpg,
.tif, .tga, and various other proprietary or less common formats. A movie
sequence or movie file can also be used as a texture.

FIGURE 4.54 (SEE COLOR INSERT)  The sky texture is placed as a reflection color
on the sphere on the right, which “fakes” the reflection instead of using ray trac-
ing to generate it.

Lighting, Materials, Textures, and UVs    ◾    157  

There are many different types of procedural texture generators in 3D
programs, but the most common and heavily used are noise generators
and gradient generators. One thing to keep in mind is that these are very
general terms; that is, in each 3D program the terms will be slightly dif-
ferent. The important thing is to know what they do and what kind of
images they can produce. Noise generation is the creation of randomness
in a 2D image. There are usually several types of noise, which are gener-
ated by varying equations. Fractal is one of the most common types of
noise, with Perlin and Marble being two other options. This random gen-
eration of pixels can be animated over time, which allows the information
to be used for multiple applications. A ramp, or gradient, is another type of
procedural texture, and it consists of a gradual change from one color to
another. Ramps in Maya are very useful, and can be manipulated to gener-
ate all kinds of interesting effects. Figure 4.55 shows a ramp setup in Maya,
which allows the user to gradually change from one color (or even another

FIGURE 4.55 (SEE COLOR INSERT)  A ramp texture in Maya.

158    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

texture) to another with varying levels of complexity. Figure 4.56 shows a
fractal noise generated texture, which is one of several different random-
izing textures that can be created procedurally.

Each 2D texture is placed into one of the material channels (as described
earlier). Each material slot will be calculated into the shading “network”
and rendered by the software or hardware rendering pipeline. Slots that
take alpha information will be calculated as such, even if the image itself
is RGB (only the grayscale values will be calculated).

Effective Texture Use

So now that we know what “textures” are and how they fit into the render-
ing pipeline and shading network, how do we use them? Most effective
texture use is done by careful planning and tweaking essential elements
of an object’s material appearance to make it more realistic. Careful plan-
ning of the textures is necessary when generating or manipulating the
texture image. The most important thing to consider, as a texture art-
ist, is what kind of material properties your surface or object will have.
What is it made out of? Is it metallic or plastic? Is it shiny or matte? Does
it have a rough, indented, or raised texture? How does it react to the light?
Is it reflective? Is it shinier in certain areas than others? Is the shine from
the surface colored or white? Is it more reflective in certain areas than
others? A good texture artist can deconstruct the appearance of an object

FIGURE 4.56 (SEE COLOR INSERT)  A fractal texture with it applied to a polygon
plane on the left.

Lighting, Materials, Textures, and UVs    ◾    159  

and separate it into certain layers, which are then specifically tweaked and
exported from an image program (like Photoshop) as individual texture
maps, with the unique information encoded into each one.

The key to creating a great look for your surface is to use the three most
important channels first: color, bump, and specularity (provided that your
material is specular). In the exercise for this chapter, you will see how these
three channels are vital for creating a rich, layered texture appearance to
give the illusion of a complex surface without actually having anything
other than a single polygon quad being rendered. The trick is to start with
the color map—the most basic level of appearance—and work back from
there. Figure 4.57 illustrates the completed rendering of an orange, which
was textured using the three main channels—color, bump, and specular
color. Figures 4.58, 4.59, and 4.60 are the color, bump, and specular color
texture maps, respectively, which were used to generate the surface.

The color channel provides the basic color information about the object.
In this case, what we really want to see is the organic shifting between the
two prominent colors of the orange surface, which are orangish-red and
orangish-yellow. It is possible to use a gradient to produce this appearance,
but the regularity of the information would be less realistic than an actual
photograph. One thing to note about using photographs of shiny objects
for color information is that the natural specular highlights are mostly
unwanted in a shading network because they are baked into the color
channel and not dynamic, which means that they will not change with the

FIGURE 4.57 (SEE COLOR INSERT)  The rendered orange with skin textures.

160    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

light source. These highlights are most effective when put into the specular
color channel, and are often removed from the color information by the
texture artist.

The bump map, as we discussed earlier, creates the raised and indented
areas of the object by simulating them by a process called normal mapping,
which in simplest terms is creating vertex normal information to simu-
late more geometry than exists in the object you are rendering. Textured
bump mapping uses alpha values to determine height. You can see that
the black areas represent indented areas of a surface, while the white areas
represent raised areas on a surface. Any gray areas will be the exact depth
of the surface rendered. The orange bump map texture has tiny dark dots
all over it because it is an indented surface, which you can see if you look
closely at the skin of an orange.

FIGURE 4.58 (SEE COLOR INSERT)  A ramp was used to generate a soft gradient
from darker orange to lighter orange.

Lighting, Materials, Textures, and UVs    ◾    161  

The specular color map is perhaps the most overlooked and underused
type of texture map, but it is vital in creating realistic shiny objects. Most
objects are not uniformly shiny at all. They are shinier in certain areas
than in others. A specular color map will determine where the specularity
is brighter or darker, but also its color as well. A tip for the RGB coloring of
a specular highlight is that metallic objects generally have specular colors
that are the same color as the metal, while glossy or shiny objects (such
as our orange skin) have mostly white specular highlights. This is impor-
tant when generating a specular map for metallic objects. Another thing
to consider is that shiny objects tend to shine more in areas where they
are raised up—the light hits the raised areas first, plus the raised areas are
more likely to be brighter because they have more contact with objects
that would polish them and keep them bright. This is not an absolute, but
a general rule that allows us to use the bump texture map of a material as a
starting place for our specularity map. Sometimes the fastest way to cre-
ate a richer specular appearance is simply to copy the bump map into the
specular map channel, which provides a minimal level of spec map that
will shine brighter on the raised-up areas and darker on the divots. If you
look at Figure 4.60, which is the specular map for the orange, you can see

FIGURE 4.59  This very stark contrast tiling texture map was made from a real
orange skin photo. It is used as the bump map.

162    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

that it is subtly different from the bump map (Figure 4.59), but it uses very
similar data. Using the same bump and specular map can produce nice
results, but varying the two slightly makes things even more realistic.

WHAT IS “UV MAPPING”?

UV Mapping

So now you know all about lighting, shading, materials, and textures. You
thought we were done, right? That would be nice because it would be a
lot easier to teach and understand, but unfortunately for us there is still
one little problem—texture coordinates. Applying textures to materials
is one thing, but getting them to show up on 3D objects is a completely
different problem. The problem is that we have 2D texture maps that
exist as flat images applied to 3D objects, which have coordinates in 3D
Cartesian space. When you render anything to screen or image, you are
rendering back to a 2D flat image, calculated in screen space. How do you
know which pixels to put where? How is a flat image wrapped around a
3D object and re-rendered into pixels? This was the original question that

FIGURE 4.60  A less contrast-heavy version of the bump map was used as the
specular map. In this case, the shiny areas were not in need of stark differentia-
tion because an orange is uniformly shiny. The higher areas, however, should be
shinier than the divots because they are closer to the light.

Lighting, Materials, Textures, and UVs    ◾    163  

early pioneers in 3D graphics faced, and the solution was the creation of a
method of “mapping” pixels onto polygonal objects by placing the vertices
and faces into a flattened space, known as “UV space,” which is defined as
the 2D plane upon which 3D objects are projected. The U-axis is the hori-
zontal axis, and the V-axis is vertical (which is a nice mnemonic device to
use if you get confused). NURBS have a natural U and V space because
they are just flat planes to begin with, but polygons have no such mapping
naturally. Without some way of determining where parts of images go on
what objects, there really is no way of knowing what goes where. Good UV
mapping is essential in creating proper materials for objects.

WHEN DO I NEED TO CREATE UV MAPPING?
UV mapping must be created when you have a polygonal object that has
a material applied that uses any textures. Materials without any textures
at all do not require UV mapping to be present, but there are very few
instances where you will be creating a material that does not have any
textures at all (although there will be somewhere this will be the case).

FIGURE 4.61 (SEE COLOR INSERT)  A snapshot of the shading network as it
appears in Maya. This is why they call it a network. It is many nodes for just one
material.

164    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

In addition, NURBS surfaces have inherent UV mapping coordinates
based upon their nature, so you do not have to create UVs for them either.
Polygon primitive objects are usually created with pre-existing UVs, so
if you do not intend to alter them much from their intended state you
will not need to generate new UVs. Any custom-modeled polygon object,
however, or even a heavily altered primitive object, must have UV maps
applied to it in order for any of the textures to be calculated when render-
ing. Objects like humanoid and organic creatures are some of the most
difficult things to UV map due to the multiple planes and surfaces, and
often a dedicated individual or team of individuals is necessary to create
proper UV mapping for high-level games and cinema.

I know at this point in your learning experience you are probably get-
ting frustrated. Don’t panic. This is normal. UV space and mapping is, in
my experience, one of the hardest things to get your head around in the
3D graphics world. It would be almost cruel of me to lay out all the techni-
cal aspects of UV mapping and coordinates without at least breaking here
to say that this is not easy stuff to conceptualize. It took me 10 years to
understand it, and I still struggle with putting it anywhere high on my list
of priorities when it comes to creating art, which is usually reserved for the
glamour jobs of modeling and animating. However, it needs to happen—
you can’t do much without good texture maps, and you can’t have good
texture maps without good mapping, and that takes a solid knowledge of
UV space, UV mapping, and how to prepare for it from the very begin-
ning. I cannot say that what you are learning here is going to make you a
fabulous UV mapper—there are much better books out there for that kind
of thing. However, I want to help you understand how it works, as well as
the basic tools for creating and managing your UVs. At the very least, you
should understand it.

A good visual tool for understanding UV mapping is the checkerboard
texture, as it appears on different objects. In Figure 4.62, you can see a
simple flat checkerboard texture, as it has been applied to a sphere, a cube
(one repetition for each side), and a tube primitive. The less the texture
stretches or warps, the better placed the coordinates are. Many artists
use this checkerboard approach when laying out UV coordinates because
it gives them a visual clue as to where they need to tweak the layout in
order to keep distortion from happening. The sphere is the most difficult
object to map properly because of the pinching possibility at the poles,
which is solved with various methods in the mapping. Tiling of a texture
map occurs in the parameters of the texture node, and it allows you to

Lighting, Materials, Textures, and UVs    ◾    165  

repeat the texture in the U and V as many times as you want, making
patterns that are tileable (like floor tiles, brick walls, or floorboards) easy
to adjust in scale to the environment. Figure 4.63 shows the effect of til-
ing the checkerboard texture several times on the same three objects as
Figure 4.62.

FIGURE 4.62  Parade of the checkerboards.

FIGURE 4.63  Doubling the UV tiling makes the image duplicate itself in the
horizontal (U) and vertical (V).

166    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

HOW DO I CREATE UV MAPS?
Projections are the primary method of generating UV coordinates. A
projection is the flattening of an object into U and V space. The idea of
“generating” UV coordinates happens when each vertex is assigned at
least one UV point. A vertex can have as many UV coordinates assigned
to it as it has faces to which it is attached because each face can have its
own separate “shell” or connected UV points. If this sounds confusing,
it is! As you go through this segment, you will start to understand how it
works. When creating a projection for an object (or a selection of faces),
it is important to know your three main types of projections: planar,
cylindrical, and spherical. These are the three main ways to project UV
coordinates onto your models because they are the three most common
uber-shapes of objects, which means that any surface or 3D model can be
broken down into these three types of special relationships.

A plane is just that—a simple, flat plane onto which coordinates are
projected. In Figure 4.64, you can see that I have a model of a soda can and
texture for the top of the can. I have selected the faces of the top of the can
and projected a planar UV mapping onto it, choosing the Y-axis. I have
displayed the UV texture editor, where you can always see the relationship
between the UV grid and the 3D object you are editing. This is impor-
tant to understand where the individual pixels on your image file are

FIGURE 4.64 (SEE COLOR INSERT)  The left side is the UV editor view, which
displays the 2D texture image and the faces as they relate to it. The right-side view
is the 3D view, where the pixels of the image are re-rendered on the 3D object as
mapped out in the UV editor.

Lighting, Materials, Textures, and UVs    ◾    167  

corresponding to the 3D sub-objects, and hence how they will be rendered
on the screen. Figure 4.64 shows that relationship and how the planar
project has slapped that image of a soda can top directly onto the selected
faces. You can see that every pixel of the image is re-rendered to the screen
in 3D, each pixel being told where to be rendered by its place in the UV
coordinate space. The top of the can, which has been assigned a material
with the associated texture in the color RGB channel, can now display the
image when rendering the object.

A cylinder is a plane that has been wrapped around a tube, kind of like
the label of a can. Cylindrical mapping takes the flat, square 2D image and
“wraps” it around the selection of faces in a tubular manner. For this rea-
son, I used it to create the mapping for the tubular part of the can, where
the label would go. You can see in Figure 4.65 the selected faces, the texture
map, and the resulting projection. Figure 4.65 has the UV texture editor
and the faces as they are being projected. Notice that the top of the can is
still showing up in the UV editor. The reason for this is that a single poly-
gon object will reveal all UV coordinates, not just the one on which you
are working. I have a material with the soda can texture assigned to the
selected faces. The cylinder wraps the texture around the can by reversing
the process. It unravels the selected faces based on the cylindrical shape
and flattens them out along the UV texture coordinate space. This is very
much like how a NURBS surface works, and if you understand that, you
will have an easier time understanding how UV coordinates are generated.

FIGURE 4.65 (SEE COLOR INSERT)  The 2D image of the can is wrapped around
the cylindrical projection.

168    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

I applied the cylindrical UV projection to the selected faces, and as you
can see in the following images the image of the can label easily wrapped
around the full length of the can, based on a cylindrical shape. A cylinder
is a very convenient tool for beginning your UV coordinates, especially for
parts of models with cylindrical shapes like arms legs, and fingers.

Spherical UV projections are the final primary form of 3D projection
shapes, and they are used almost exclusively for spherical or hemispherical
objects. The main difference between this type of projection and the cylin-
drical is the “pinching” at the top of the object, generally known as the
poles. The poles present a unique problem because in order to get them to
appear properly, the texture map has to be carefully set up to stretch across
the area without distorting. This is not a new problem—globe-makers
have been dealing with it for years! This is why a flat map is not the exact
image used to make the image on a globe. Instead, the map is deliberately
warped to fit a spherical shape. Alternatively, in effect, as must be done in
3D, the flat map itself is altered in order to flatten out the proportions of
a spherical shape, and the map is distorted to maintain similar propor-
tions (because we know the Earth is round, right?). So here’s the catch
when looking at the pole of a spherical object/projection. Figure 4.66 is an
image of a spherical-specific texture map of the Earth, as seen from space,

FIGURE 4.66 (SEE COLOR INSERT)  The “saw-tooth” UV coordinates allow each
triangle to have its own set of UV points, making the spread even on this texture.

Lighting, Materials, Textures, and UVs    ◾    169  

with images of the UV projection and the coordinates in the UV editor.
The little pieces at the end are called “saw-tooth” because they resemble
a saw. What is occurring at the poles is that the vertex, which connects
all of the triangles, has multiple UV points created for it (one for each
triangle to which it is connected). Those points all line up to keep the pix-
els from being stretched too thin (called streaking) across the triangles
if there were only a single UV point, as you can see in Figure 4.67, which
illustrates what this would look like without the saw-tooth.

It is a good time to point out here that pixel streaking is a huge problem
for 3D beginners when they apply texture maps or make botched attempts
at generating UV mapping for an object. The tendency is to just click the
“project” button when trying to get a texture to show up on an object with-
out planning it out. Another common pitfall is to have bad triangulation
or modeling issues, which cause extremely long triangles to be formed
on a model. This causes the pixels to streak or warp when the rendering
engine is trying to figure out what to put where. Properly setting up UV
coordinates is a lengthy and difficult process, and most definitely needs to
be approached with a plan. A good word of advice is to put some thought
into the different flat planes your surface consists of, and where the best
places to sew those planes together will be. Figure 4.70 shows an example
of how poorly plotted UV points can result in distorted and streaked pix-
els in the 3D rendering.

FIGURE 4.67 (SEE COLOR INSERT)  The pinched UV coordinates at the poles of a
sphere create only a single UV point for all the triangles at the poles, which result
in warped texture coordinates.

170    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

FIGURE 4.69 (SEE COLOR INSERT)  An unobscured view of the pinched pole
UVs from Figure 4.67.

FIGURE 4.68 (SEE COLOR INSERT)  An unobscured view of the saw-tooth UVs
from Figure 4.66.

Lighting, Materials, Textures, and UVs    ◾    171  

HOW DO I CREATE MORE COMPLEX UV MAPPINGS?
UV mapping can be edited point by point in any UV editing window,
which most 3D content creation software will provide. One thing to men-
tion here is that game developer middleware, most significantly Unity
3D and Unreal Engine, do not have built-in UV editors (although plug-
ins might exist). Usually UVs and polygons are sent to game developers
already complete.

Although advanced UV editing is a science unto itself, and it falls out-
side the scope of this book, it is important enough to mention it in order
to understand the mechanism, if not fully learn the techniques. It takes
some time and practice to understand fully the relationship between
UV space and how a texture appears on your 3D object, and even longer
to be able to perform the more advanced UV editing that is necessary to
properly texture complex organic objects. What the beginning 3D student
should understand, however, is how to avoid poor UVs which will result in
stretching, streaking, and distortion of the texture as it is rendered in 3D.
If you follow the exercise in Chapter 3, which takes you through the pro-
cess of creating UV coordinates for an object, you will get a clear under-
standing of how to create proper UVs on an object.

FIGURE 4.70 (SEE COLOR INSERT)  The poor UV layout on the left results in
distortion and streaking on the right.

172    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

HOW DO I RENDER AN IMAGE?

Software Rendering

Here we are—the final output. You have your lights, you have your materi-
als, you have your texture maps, and they are properly UV mapped. How
then, do you go about turning all of that into an image file? This is where
software rendering comes into play.

Thus far, we have just been seeing our objects and things in our preview
window through hardware rendering, which is a good way to judge basic
elements of our scene. However, the real test of high-level image produc-
tion for video or film is to software render it into an image. One thing
to note, however, is that this is completely different than creating these
elements for a real-time game. Remember, we are using two entirely dif-
ferent methods of production. Software rendering happens when you
open your render view (called different things in different 3D programs)
and hit the render button. The program, called a “rendering engine,” of
which there are several options, will compile all of your objects, materials,
textures, and any post-processing elements like fog or optical effects, and
then calculate pixels based on all of this information, through the camera
or cameras you have set up, and ultimately spit out a single or series of still
images. Sounds complex, doesn’t it? It is. There are some people whose job
it is to do nothing else but set up, tend, and manage renders as they hap-
pen. It is a big part of the video and film production process, but it is not
always a glamorous job. It is another one of those little things about the
3D graphics industry that is overlooked often but takes up an incredible
amount of time.

There are several mechanics of rendering to an image that you should
at least understand, even if you do not intend to muck around with the
minutia of render settings. Everyone needs to know certain aspects of
the rendering process in order to check their own work, so I will list sev-
eral vital aspects of rendering that you should know.

Rendering engine—The rendering engine is the specific piece of soft-
ware that turns all of your geometry, lights, and material networks
into a still image, or sequence of still images. Most major software
packages offer a variety of rendering engines to use. Maya, 3D Studio
Max, and Softimage all have proprietary software rendering images,
with the option also to use Mental Ray. Mental Ray is an independent

Lighting, Materials, Textures, and UVs    ◾    173  

rendering engine that reproduces complex physical-based lighting
simulations on top of higher-level volumetric effects. Since most ren-
dering is very software-specific, I will not go into render settings and
such in detail, but it begs at least a brief discussion and illumination
on the process and quality levels available. Each rendering engine
will be able to do specific things that will enhance the final rendered
image, making it far higher quality than your interactive real-time
rendering engine can possibly achieve. The more detail and quality
you seek, however, the longer the rendering will take. Some high-def
high-quality images can takes hours each. Therefore, setting up ren-
dering requires serious attention paid to efficiency on top of quality.
Some of the common options most major rendering engine possess
are listed here, in order to make you aware of the options and their
effect on the final output and length of time it will take.

Resolution—This is the pixel resolution of an object, and the higher
you go, the more calculation time it will take to generate it. One tip is
to keep your test renders to smaller resolutions in order to cut down
your rendering times.

Multi-pass filtering—Sometimes known as “anti-aliasing,” this param-
eter softens the jagged lines of textures and rendered images in order
to enhance the final output. This drastically slows down your render
times, and it is more of a global than a local option (which means it
requires a lot less tampering or adjusting), so the best option is to
keep it off until the final render.

Motion blur—Motion blur is the phenomenon of fast-moving objects
appearing to be rendered in several areas at once with varying levels
of transparency. This blur is the result of the object moving faster
than the shutter speed and leaving a “ghost” trail as it is partially
picked up by the exposure. In 3D, it must be simulated in either
2D or 3D. 2D motion blur is fast and simple, being good for simple
effects on single objects that do not have transparency. More com-
plex scenes, and especially ones that are going out to cinema films
like Star Wars, demand high-level accuracy in motion blur calcula-
tion and must use 3D motion blur, which simulates the shutter speed
of the camera (which is adjustable). 3D motion blur, however, will
often double to triple your rendering times so use it only if you must.

174    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Ray tracing—Shadows and reflections can be calculated separately,
and you can determine how many iterations or levels of calculations
you want to provide for each. The higher the level, the more accurate
and smoother the resulting images, but of course, it will exponen-
tially increase your rendering times. Generally, a good strategy is to
test render at the lowest levels and move up if necessary to improve
image quality.

EXERCISE: CREATING A COMPLEX MATERIAL

Step 1: Set up Scene and Lighting

Start a new scene in Maya. The first thing we will do is create a simple
polygon plane and a light in the scene (so that we can see the specular
highlight a little better). Create a primitive polygon plane and size it to
match the entire grid (Figure 4.71). You will also create a directional light
and rotate its X-axis to a value of –135. This is all the geometry we need for
the scene. We will do the rest in materials. The texture maps used in this
exercise are available on the website.

Step 2: Creating a Material Network and Assigning It to Your Object

Now that we have set up the scene to preview our materials, we will need
to create a new Blinn material. Open the Hypershade and choose Create >
Materials > Blinn. A new material with a Blinn shader will be created in
the Hypershade. “tile_MAT” is what you should name this new material.

FIGURE 4.71 (SEE COLOR INSERT)  Poly plane and directional light at an angle.

Lighting, Materials, Textures, and UVs    ◾    175  

The “_MAT” is useful in denoting objects of type material, and is a very
good practice when you eventually work with highly complex scenes. Now
we need to apply our material to the polygon plane in our scene. Select the
object in the scene, and right-click over the material in the Hypershade
and choose “apply material to selection” from the marking menu that
pops up in the window. This will apply the material to the object so that
you may see it in the 3D perspective view. You will also make sure to set
your perspective view renderer to “high quality” if you are using a Mac,
or “Viewport 2.0” if you are using a PC. This will allow you to see bump
and specular textures interactively in the perspective window. Also, make
sure that you choose “hardware texturing” and “use lighting” for the shad-
ing options (keyboard shortcuts “6” and “7,” respectively). This will also
ensure you can see hardware textures and lights in your scene.

Step 3: Editing your Material

When we edit materials, we generally do it with the Hypershade and the
attribute editor (Figure 4.72). Make sure that they are both open so that
you are able to quickly make changes in the material settings.

In order to make this material, you will need to download the textures
available on the website. The first file you will need to download is the

FIGURE 4.72 (SEE COLOR INSERT)  Hypershade and attribute editor open in Maya.

176    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

tile_color.jpg image. We will be loading that into the color channel of
the material, by clicking on the tiny checkerboard on the right of the color
channel in the attribute editor. A new window will pop up, asking you to
define what kind of texture you will be using. Choose “File” and two new
nodes will be created, a “fileTextureNode” and a “place2DTextureNode.”
You can access the material network by right-clicking over the material
node in the Hypershade and choosing “graph network,” which will graph
the shader network in the panel below, as you can see in Figure 4.73.

Choose the tile_color_map.jpg, as shown in Figure 4.74, for the file
here. This will load it into the material and display it on the shader ball
in the Hypershade as well as on the polygon plane in your scene. Select
the “place2DTextureNode” and change the U and V tiling levels to 3. This
will multiply the times the texture is repeated on any object assigned this
material (Figure 4.75). The place2DTextureNode is always created with
every texture, and it contains all information pertinent to the placement
of the texture in 3D space as far as it affects the image. However, it does not
change the actual UV coordinates of the object itself.

Next, you will create a new file texture, this time in the bump map
channel. Choose tile_texture_bump.jpg in the file location dialogue
(Figure 4.76). You will notice that when you create a bump map texture, it

FIGURE 4.73 (SEE COLOR INSERT)  Creating the file texture.

Lighting, Materials, Textures, and UVs    ◾    177  

not only creates a file node and a place2DTextureNode, but it also creates
a bump2D node. This extra node has all the information about the “fake”
normal of the object, which will be generated by the black and white infor-
mation from the texture map you chose. Select the bump2D node and
change the bump depth to around .3, which will give you a reasonable

FIGURE 4.75 (SEE COLOR INSERT)  Repeating color tile texture on object.

FIGURE 4.74 (SEE COLOR INSERT)  Color tile texture map.

178    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

height/depth ratio of the black and white values you are seeing on the tex-
ture map. Next, make sure that the place2DTextureNode for the bump
map texture has been tiled 3 in the U and V settings as well, so it will
match the color map. It should create a “crunchiness” to the image, where
the brighter parts will be raised up on the surface and the darker parts will
have divots, as you can see in Figure 4.77.

The last important map to create is a specular color map. This tells
the object where to be shiny, and what color to shine. The specular color
map channel accepts RGB information, but unless your object is metal-
lic or a special case, the specular color emitted will be mostly white.
Therefore, we will plan to make the bump map texture play double-duty
here, and middle-mouse drag it onto the specular color channel from the
Hypershade. This is a sure-fire trick to spice up your specular bump mate-
rials because the bumpiness of an object gives it a natural place where the
light will reflect and where it won’t—the raised areas will be shinier and
the lower areas will be less shiny. Since this is a tile floor, the grouting will
not shine at all. All of this makes it a great place to simply copy over the
bump map into the specular color map (Figures 4.78 and 4.79).

And now you can congratulate yourself! You have put together a com-
plex material appearance with a couple of simple texture maps. What was

FIGURE 4.76  The bump map is always an alpha, or grayscale value texture.

Lighting, Materials, Textures, and UVs    ◾    179  

once a single polygon plane has now taken on the appearance of a gritty,
shiny, and complex tile floor. The important lesson to take away from this
is that much of the visual complexity of your work can be completed in
materials, and does not have to be done in the geometry. The rule of thumb
is always go for the simplest method of creating the best result.

FIGURE 4.77 (SEE COLOR INSERT)  Look how much detail we can get with a
bump texture map. It looks like a much more complex piece of geometry.

FIGURE 4.78 (SEE COLOR INSERT)  The completed shading material network.

180    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

WHAT YOU LEARNED

•	 Creating textures

•	 Editing UV tiling

•	 Creating bump maps

•	 Using textures in more than one material channel

FIGURE 4.79 (SEE COLOR INSERT)  The completed real-time render. The specu-
lar map is subtle but makes a big difference.

181

C h a p t e r 5

Animation

WHAT IS ANIMATION?

Definition and Basic Concepts

Animation, in its simplest definition, is change over time. Anything that
we see on TV, games, or film that is not captured from video is considered
animation. The distinction between video and animation is that video
and film are “captured” images from real life, while animation images are
“generated” either by hand or by a computer. Animation images are played
back at a certain rate and movement is created (Figures 5.1 and 5.2).

The speed at which the animation is played back will greatly alter the
speed at which the eye interprets that animation. Twenty-four fps is the
standard real-time speed of animation. This is the speed at which film is
played when you go to a theater. It is considered real-time because this is
very close to the speed that our eyes process images. Therefore, if you film
a person walking across a room at 24 fps, and then play it back at the same
speed while the person walks across the room at the same speed, they will
both arrive at the same place at the same time. If you were to capture the
same movement at a different speed or play it back at a different speed, the
actual person would not be in sync with the film person. The pioneers of
cinematography (Figure 5.3) and the creation of film spent a lot of time
working with high-speed capture of human and animal motion so that
they could play it back and determine these kinds of factors.

Other animation speed formats, and ones that are important to note,
are 30 fps, which was most widely used in pre-LCD and pre-HD screens

182    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

for NTSC video interlaced format, and 60 fps, which is widely used in
gaming for 60-Hz LCD and HD screens. If the screen refreshes itself
60 times per second, then the best frame rate to be generating or replaying
images is 60 fps, instead of 24 fps because the motion will be smoother.
If this sounds confusing, don’t despair. It is confusing for everyone in the

FIGURE 5.1 (SEE COLOR INSERT)  Bouncing ball animation with ghosting.

FIGURE 5.2 (SEE COLOR INSERT)  Ghosted character animation.

Animation    ◾    183  

industry and frame rate of animation vs. frame rate of output is always a
cause for concern. The best way to deal with this is to make the determina-
tion beforehand and choose a method from there. It is very important to
understand frame rate and how it will affect the ultimate outcome of your
work when you are done.

On great thing about working with computers is the scalability of your
work. When choosing the frame rate of animation, you can be confident
that it will not be very difficult to change to a different frame rate while
keeping the same relative timing of your animation. Most 3D animation
programs have the ability to shift the time scale while retaining relative
time between the keyframes. While this does not get you off the hook for
not pre-planning your animation project, it should at least give you some
flexibility to fix a project if you realize at some point your 24 fps anima-
tion needs to be changed to 30 fps. Manually adjusting all the keyframes
to fit the exact same timing would be very time-consuming, but when
dealing with a computer it is generally simple. The most important thing
to remember is that ultimately you will be playing this animation via some
device, be it digital video, DVD, film, or in a game.

For all purposes in this book, we will plan to use the time scale of
30 fps, for the reason that it is a more scalable frame rate than 24 fps. If

FIGURE 5.3  Muybridge was an early pioneer in photography and study in ani-
mal and human motion.

184    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

you are developing for digital output (YouTube or streaming) or if you are
developing for a game, this is more convenient than 24 fps, which is only
used in film.

HOW DO YOU ANIMATE?

Keyframes and Keyframing

Animation happens when you save an attribute’s values at a certain time,
and then save a different value at a different time. The values change over
the time elapsed between them, between the first value and the second
value. This saved value at a particular point in time is called a keyframe.
The change in value over the period of time in between the keyframes is
called interpolation. These keyframes and values are expressed in a sim-
ple graph, as you can see in Figure 5.4.

The X, or horizontal axis, represents time, while the Y, or vertical, axis
represents value. The two points represent two keyframes, and the curve in
between them is called a motion curve. The motion curve is derived from
two very important elements: interpolation, which is the creation of val-
ues based on the keyframes, and keyframe tangents, which are the Bézier
handles used to determine the shape of the curve. The places where the
curves intersect the graph are the values that are generated by interpolation.
Interpolation creates values in between keyframes, where there are no saved
values, but there are implied values because we know that the values will
change as time moves (moving forward at 30 fps). Therefore, for every key-
frame that occurs, your computer is interpolating the value of your attribute
based on where that motion curve is. So you can see in Figure 5.5 that the

FIGURE 5.4  The points on this graph are keyframes, or saved value at a point
in time. This forms a simple graph, with time being horizontal and value
being vertical.

Animation    ◾    185  

motion from Figure 5.4 was a translate X motion, which was interpolated
to move from one point in space to another over 30 frames, which equals
1 second.

WHAT CAN I ANIMATE?
You can animate pretty much anything that has a numerical value in
most software packages. Anything that has a value in a 3D package can
be animated. The most commonly animated properties in what we gener-
ally consider “animation” are transforms of objects. However, animation
is not limited to just transforms. One thing that is important in becoming
a good animator is to think about everything as being able to be animated.
This makes it possible to include subtle actions that raise the bar of the
animation. Character animation is done mostly through the rotation of
transforms, most specifically the rotation of joints that make up the skel-
eton of the character. Figure 5.6 shows a character and a skeleton, which is
mostly controlled by animation of the rotation of the skeletal joints.

WHAT ARE THE DIFFERENT METHODS OF ANIMATING?
Animation has many purposes. You can animate characters for games
and for film. You can animate a fly-through for previewing architectural
designs. You can animate robotic equipment for mechanical renderings.
You can even animate subatomic particles for the 3D visualization of data
from the Hadron Super-Collider (that was a discussion I once had with the
Physics Department at a college that had a NASA grant). What you ani-
mate and for what purpose will determine how you animate. Animation

FIGURE 5.5  The values between the keyframes are determined by interpolation,
which is determined by the shape of the curve.

186    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

needs to be approached, like everything else in 3D graphics, with a lot of
pre-planning and forethought. Next are some methods of creating and
organizing animation data.

Pose-Based Animation

The classic method of character animation, and my personal choice when
doing most organic motion, is to use the time-honored tradition pio-
neered by great animators like Walt Disney and others in the 1920s and
1930s. Pose-based animation is a great way to start learning how to ani-
mate characters and character-like objects (which we are going to do in
the exercise at the end of this chapter). It is also a great way to understand
how animation applications were first brought to the computer. You see, in
the old Disney days of animation, there had to be a master animator and
an apprentice animator. The master animator would draw the main poses
of the character animating, such as you see in Figure 5.7. The master ani-
mator would take these drawing to the apprentice animator, who would
then slave away late into the night (much like your author is doing right
now) drawing the “tween frames” or all the steps in between the main
poses. Remember, in film it takes 24 images per second to make a real-
time moving object, so every second of animation requires 24 drawings.
Sometimes animators (Hanna-Barbera is a great example of this) chop the

FIGURE 5.6 (SEE COLOR INSERT)  A character rigged with joints that are ani-
mated by rotation. (Character design and model by Bert Farache, rig and skeleton
by author.)

Animation    ◾    187  

amount of images into 12 fps and “double-up” on frames, which means
they display each frame twice and play it at 24 fps. This is mainly done
to save time doing those tedious drawings. However, the lower the frame
rate, the lower the overall quality of the cartoon.

Now when early animation software was being developed, you can see
how the animators, who were coming from traditional methods, might
look at the computer as an animation tool. The saw it as a way to save time
and work. Essentially the computer becomes your apprentice animator,
slaving away and doing all the work late into the night while you relax by
the pool. Or so we would hope. However, the truth is technology in terms
of saving us time and energy just added all kinds of new layers on top of
what we already had to contend with. It became the animator’s job to set
up the master key poses, now called “keyframes,” and the computer’s job
to do all the work in between. Only now, we have to come in and make
the computer’s work look less mechanical and boring (more on how to do
this later).

So now, we come to the setting of the “key poses.” Key poses are strong,
definitive moments in kinetic action. Every time a character performs an
“action” or makes a movement, certain points in that action are visual
clues into what is happening. In animation, like in all art, there is a certain

FIGURE 5.7 (SEE COLOR INSERT)  Early cell drawings of cartoon characters would
be done in “key poses” or important breaks in movement. The apprentice would
frantically sketch in all the “tween poses.” (Courtesy of artist, Topher Putnam.)

188    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

need for exaggeration or an over-statement of what is happening. Because
animation is a recreation of reality, it needs a little bit of over-the-top
appearance to make it read well on the screen to the human eye. This is
like how actors exaggerate their emotions on screen—they need to over-
emphasize the occurrence for the viewer to feel the impact. We could all
use a little drama in our life!

There are two types of basic classic animation setups: single action and
cycles. Single actions are things that are done once, and looping anima-
tion is repetitive action that you can have happen exactly the same way,
repeatedly. A single action is a baseball pitch being thrown, and a cycle
is a person walking, running, or swimming. Single actions can be strung
together to create a complete character animation, and they can also be
mixed with cycle animations, as long as the points in between match up
to make a transition.

Both single action and cycle animation are done with five main poses:
rest, anticipation, action, follow through, and rest (again). The poses run
in that order for single actions, but are shifted a bit in cycling animations
(more on that later).

Let’s look at this like we are at a baseball game and watching the pitcher
on the mound. The pitcher stands at rest, preparing to throw the ball. Rest
is our first pose, where he is a body at rest, just hanging out there, doing
nothing (Figure 5.8).

FIGURE 5.8  Pitcher at rest, preparing to throw the pitch. (Image by Atoine Letarte,
CC BY 3.0.)

Animation    ◾    189  

Then he winds up, which is anticipation, or the preparation for a
kinetic action (Figure 5.9). He is preparing to throw that ball at 100 miles
per hour, so he needs to wind his body up tightly in order to deliver that
amount of energy. Now I realize most of the time humans do not make
such exaggerated kinetic anticipation to do something (imagine winding
up to staple your homework). However, there is a significant need to pre-
pare for any strong kinetic action, like throwing a punch or swinging a
sword around. You must create some kind of initial movement in order to
perform an action, usually in the reverse of that action. In animation, we
need to really exaggerate that wind-up because it creates an action, like
a rubber band, which telegraphs to the viewer what to prepare for next.
Without that wind-up, the animation will end up looking flat and life-
less. Watch some Pixar movies, and you will see some great anticipatory
action, which is why they have such life-like characters.

Action is the next step in the process. The action is what this whole
thing is about—it defines the animation. This is the maximum point of
kinetic release. If you were jumping, it would be the top of your jump. If
you were our pitcher, it would be the moment the ball is released from the
hand, like in Figure 5.10.

Follow-through is what happens when you release all of that kinetic
energy. If you can throw a baseball 100 mph (and I can’t), your body isn’t
going to just stop on a dime. It will continue to move, even if you try

FIGURE 5.9  Pitcher winding up to throw, coiling like a spring to generate
kinetic energy.

190    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

to stop it. Making a strong kinetic action requires that your body con-
tinues through that arc until gravity, friction, or the dampening effect of
muscles and bones absorbs the energy. That is why the pitcher is always in
that crazy position right after the pitch—he has released so much kinetic
energy throwing the ball that fast that his body can’t just stop right after
he releases the ball; it has to keep going until the energy is dispersed by the
body’s natural shock-absorber (Figure 5.11).

Now we are back to rest. Once the kinetic energy has dispersed, the
body is once again at rest. If you are animating another action happening
right after this one, then you might have rest as more of a transition—the
point between one kinetic action and another. In classic animation, you
can string together one action and another in a sequence, with the second
rest post being the point in between. Game animations often have this
pose the same for almost all animations, so that each can be triggered by
the user as they occur and you can have a seamless transition between one
and another. Sports games, like football, basketball, and baseball all have
thousands of animations, which rely on having one or more rest poses
the player can transition between when the game is going.

Cycling an animation is all about creating a loop that can be played
continuously. If you have ever seen any of those old Hanna-Barbera car-
toons like the Flintstones or Scooby Doo, or even Warner Brother’s Bugs

FIGURE 5.10  A 100 mph fastball. That is a lot of kinetic energy. The pitcher is
using his arm like a giant pendulum, just about to release the ball at the end of
that pendulum swing.

Animation    ◾    191  

Bunny, you have seen plenty of animation cycles. Any animation of a
character walking, running, or repeating an action (like pumping one of
those railroad carts) is a cycle. It is very similar to a single-action ani-
mation, with the difference that the start and end position is always the
same, allowing the animator to play it on a loop and make the character
appear to be moving with some form of locomotion. The nice thing about
cycling animations is that they only have to be animated once, and can
then be played endlessly anywhere you need the character to be moving
in the story. Typically, the action pose is the initial pose, and then the rest
of the poses cycle afterward, alternating left and right if the character is
humanoid or a quadruped. Figure 5.12 shows a typical cycle animation
action. (See also Figures 5.13 and 5.14.)

FIGURE 5.11  It looks funny but this is how Major League Baseball pitchers end
up after the throw. You cannot just stop right after you deliver that heavy amount
of kinetic energy. You have to keep going until the energy is absorbed through
you and into the ground.

FIGURE 5.12  The same sequence as the pitcher, only simplified—rest, anticipa-
tion, action, follow-through, and rest again.

192    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

WHAT ARE OTHER WAYS TO ANIMATE?

Rotoscoping and Motion Capture

Rotoscoping is an animation method that takes live video or film and
animates the character or action on top of the live action. Ralph Bakshi
made good use of the technique in his popular films during the late 1970s
and early 1980s, and there is a great Betty Boop cartoon widely available
online with Cab Calloway as the rotoscoped reference for the ghost walrus
rendition of Minnie the Moocher. One of the nice things about rotoscop-
ing is that it provides you with detailed, real-time motion, which you can
use to match timing and keyframing. This is completely different from
pose-based animation because your main goal is to match the underlying
live video, which has subtleties of movement that are very hard to match
when doing pose-based animation. Rotoscoped animation has a decidedly

FIGURE 5.13  3D man running. Notice how the beginning and end frames are in
a similar position, which is what makes this animation cycleable.

FIGURE 5.14  The steps in a very simple “bounce” animation, where the first and
last poses are identical. This is a shift from Figure 5.12, in which the rest poses
were removed. If played on a loop, this animation will continuously cycle.

Animation    ◾    193  

different feel from pose-based animation, and an experienced animator
can spot it right away. Generally, the action is matched with heavy key-
framing or what I like to call the “brute-force” technique, where you create
many keyframes to match each frame of the film action you are matching.
Not only do you have to set tons of keyframes, but also it is very time-
consuming . In Figures 5.15 and 5.16, you can see the technique of roto-
scoping put to good use for a very difficult motion to animate, which is
that of a galloping horse.

Motion capture is the last animation technique we will discuss. Motion
capture involves the 3D capture of human motion onto a skeleton using
one of several techniques, generally with a body actor wearing magnetic or
optical data points on a suit. This motion is tracked and converted to skel-
etal joint rotation data, and then run through a “solver,” which determines
where these joints are based on algorithmic data, and converted into key-
frames. It is the most data-dense form of animation, consisting of thou-
sands and thousands of keyframes, usually one for every frame. Motion
capture for film characters was best exemplified when Andy Serkis played
Gollum, which is probably one of the best-known digital characters ever to
grace the silver screen. Motion capture is one of the least time-consuming
ways to animate because there is no initial animation time at all. It all is
captured in real-time. No animator is needed. The time it saves in ani-
mation, however, generally is eaten up in setup time and fiddling with

FIGURE 5.15  Horse animation, which was hand-drawn over video footage.

194    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

multiple solutions to get the motion to solve accurately. It also requires an
animator to take the initial data and turn it into a useful animation, so you
don’t save a whole lot of time in the end, but you do have a vastly different
methodology of production. Motion capture studios that have solid setups
tend to get the most out of this type of animation process, and I feel small
studios are better off exploring hand-keyframed animation (Figures 5.17
and 5.18).

FIGURE 5.16  The original Muybridge motion study of the galloping horse.

Animation    ◾    195  

HOW DO I CREATE GREAT
HAND-KEYFRAMED ANIMATIONS?

Editing Your Motion Curves

Now we know how to create keyframes based on pose animation, and we
know what those keyframes should be, but we still do not have the total
package. You see, the problem with motion, especially organic kinetic
motion, is that it does not happen at a constant rate. In Figure 5.19, you
can see a robot arm that has been rigged with a simple skeleton that

FIGURE 5.17  Motion capture actor in the motion capture studio with suit on.

FIGURE 5.18  Motion capture data in a graph editor. The data is very dense due
to a keyframe being generated per frame.

196    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

you can rotate. This robot arm does not need to create kinetic energy. It
gets its movements from a series of motors and hydraulic pumps, which
are all controlled by a computer. If this robot arm moves around, you
will clearly see that it is a robot. The motion will look stiff and “robotic”
(you see, we even have a term for this type of motion!). Now, you have to
ask yourself, why does the motion look this way? What differentiates the
robotic movement from more natural organic motion? Well, for one thing,
human movement uses that rubber-band action we talked about previ-
ously. It winds up, generating energy, then releases it and continues to
follow through that energy until the momentum is absorbed. A robot does
not do any of that—it moves slowly and steadily at the same rate. The rate
at which the action happens is very important because I can move from
one point to another over a period of 1 second, but as a human, I will have
moments of acceleration and deceleration, as opposed to a robot, which
would have the same speed the entire action.

Think about it like this—you and I are racing cars, we both leave at the
same time, and we both cross the finish line at the same time. During
the 60 seconds it takes us to get there, I took off like a bat out of hell at
a rate of 100 mph and you only took off at 60 mph. However, during the
course of the race, I had to slam on my brakes a few times to avoid los-
ing control and you steadily increased your speed. We both arrived at
the same place at the same time, but the distance we had traveled from the

FIGURE 5.19  Robot arm rigged.

Animation    ◾    197  

beginning would have been vastly different at any given time during the
race except at the finish line, when we both crossed at the same time. This
is because our acceleration and deceleration varied greatly, even though
our end and beginning positions were the same. Remember our motion
graph we discussed earlier? Well, the motion of the cars in the race would
look a lot like Figures 5.20 and 5.21.

FIGURE 5.20  The motion curve of the car that went fast at first, but slammed on
the brakes a few times to keep from losing control.

FIGURE 5.21  The motion curve of the car that steadily increased speed to the
finish line.

198    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Acceleration and deceleration is a natural part of organic kinetic motion.
This is because of that rubber-band action we talked about in pose-based
animation. The organic creature must wind up energy and then expend
it, so the amount of that energy is not applied in a uniform manner, as it
is with the robot. The kinetic energy accelerates to a point of maximum
velocity (like our baseball pitcher when he releases the ball), then deceler-
ates to rest. For this reason, we must create this effect in our animation or
we run the risk of creating boring, lifeless, and robotic motion. The hall-
mark of good animators is their ability to create acceleration and decel-
eration in organic motion, and to know just where to use each. Without
quality animation like this, there would have been no Disney, no Pixar,
and no Saturday morning cartoons. This is a vital aspect of stylized and
hand-keyed animation.

HOW DO I CREATE ACCELERATION AND DECELERATION?

Graph Curves and Tangents

In motion capture and rotoscoping, the sheer number of the keyframes
creates the acceleration and deceleration naturally. Figure 5.22 illustrates a
graph curve generated from motion capture. Notice how the rate of change
is all over the place. When you capture a keyframe per frame of anima-
tion, the data is so dense that it will naturally reflect the motion of what-
ever was captured. There is no need to create acceleration and deceleration
because it will mimic the film or video you are overlaying, which creates a
natural acceleration model.

The one type of animation that does not have a natural flow of accel-
eration and deceleration is the pose-based animation, where we create

FIGURE 5.22  Motion capture data in the motion graph curve.

Animation    ◾    199  

the keys for the main poses and let the computer do all the interpola-
tion. This interpolation is the key element. It may be that our animation
software is the apprentice animator, but that apprentice isn’t very good!
At least, he is a whiz at mathematical calculations, but he does not know
the first thing about natural motion. Our apprentice animator can only
divide the frames between A and B based on a mathematical equation.
This equation is what we call a tangent. The tangent value tells him how to
divide the interpolated frames and create the motion curve, which in turn
determines exactly which value to put in at which frame of the animation.
Remember, our animation software determines all of the values between
keyframes. The tangent of the keyframe is what we use to sculpt those
values to our content.

In order to understand keyframes and tangents, we first have to step
backward a bit in time. Back to 1962, where a French engineer named Pierre
Bézier first started using a universal curve system, now known as Bézier
curves, in production at the Renault auto company. He was searching for a
mathematical description of a curve, which would result in the exact same
values no matter how big or small the drawing of that curve was, and he
found several variations of algorithms to do so, implementing them in his
auto body design work. That is a gross over-simplification of a very com-
plex geometrical mathematical series of calculations, but don’t forget that
we are not here to do the math. We just want to know how it works and
how we can use it. The point of this is that the curves, as they were then
implemented afterward, were known as Bézier curves and they are used
almost unilaterally in computer graphics to describe 2D and 3D curves.
Bézier curves are used in a multitude of places, and we briefly discussed
them in Chapter 3, where we went over NURBS curves and surfaces
(Bézier is actually a different type of curve than NURBS). Here, however,
we want to know about Bézier curves because they are almost unilaterally
used in the creation of motion curves (sometimes called graph curves).
Bézier curves consist of handles, also known as tangents, which is the
mathematical term for the operation that determines the type of inter-
polation. Figure 5.23 is a motion graph curve from the Autodesk Maya
software that illustrates the handles of the keyframes, which are the points
on the graph, determine the rate of change from one to another. There is a
tangent handle on either side of the keyframe, which shapes the curve as it
goes toward the keyframe in time, and one that shapes the curve as it goes
away from the keyframe in time.

200    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

The tangent handles of any keyframe can be edited in a multitude of
ways, and they can be custom tailored to produce the exact change in rate
of the value over time. However, there are several key automatic settings
for the tangents that are commonly used in most animations. Remember
that changing the tangent changes the rate at which the value changes
over time. Following are several main types of tangents, with their associ-
ated nomenclature. Each software package has varying levels of tangent
control, some more than others, but the following are the primary tools
for creating and editing your animations in a life-like or heavily stylized
manner. It is important to note that it is very difficult to demonstrate
how an animation will look by using a still image. Once you are famil-
iar enough with graph curves, you will start to be able to build an image
model in your head of how the motion will feel by only looking at a Bézier
curve, but for now you should experiment with your software of choice
to get a better idea of what I am talking about. In the exercise material of
this chapter, you will do a step-by-step animation that should teach you
the basics.

Break/unify tangents—By default, tangents are unified, so changing
the angle or weight value of the tangent will mirror the effect on the
opposite tangent exactly. Breaking the tangents allows you to make
the in and out tangent of each keyframe completely different, which

FIGURE 5.23  The points represent keyframes and the cross extending from
them is the tangent handle. These can be edited to produce acceleration and
deceleration.

Animation    ◾    201  

makes it possible to have a different rate of change going in to the
keyframe, and a different rate of change going out from the key-
frame (which is often used in effects like bouncing). You can break
or unify tangents at will on any keyframe (Figure 5.24).

Linear tangents—Linear tangents are actually not tangents. There is no
curve at all, and the values change in a completely even way from one
keyframe to another. This produces no acceleration or deceleration
effect at all, which reads as very “robotic.” When animating some-
thing with precise mechanical movement, linear tangents are often
used (Figure 5.25).

FIGURE 5.24  Broken tangents allow completely different in and out tangents
from a keyframe.

FIGURE 5.25  Example of linear tangents.

202    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Stepped tangents—Stepped tangents are not only lacking in tangent,
but they are lacking in interpolation. The keyframe just switches
values from one keyframe without any gradual change over time.
Stepped values are great for things like visibility changes or telepor-
tation, like whether it is visible, just “pops” on or off, or just material-
izes on the screen (Figure 5.26).

Smooth tangents—Smooth tangents change the selected tangent han-
dle to be perpendicular to the normal of the animation curve, which
usually results in completely smooth motion. It is smooth because the
rate of change stays steady from one point to another, even through
one keyframe to another. The rate of change stays the same not just
from one keyframe to another, but throughout multiple keyframes
(which is why it is often known as “smooth”). Figure 5.27 shows a
simple smooth tangent on an animated motion graph curve. One
important thing to note is that two keyframes with exactly the same

FIGURE 5.26  Stepped tangents.

FIGURE 5.27  Example of smooth tangents at work.

Animation    ◾    203  

value will not stay the same when interpolated as a smooth tangent.
This means that if you have a car keyframed in one spot at frame 1,
and the same spot in frame 10, the car will move when the animation
is played, even though you have not keyframed any movement at
all. This is the source of much head scratching and frustration with
beginning animators because even though you have not created a
movement for the object, it moves when you hit “play.” The problem
is in the math of the smooth tangent, which will not allow it to exit
the keyframe as linear, or at least to retain the same value from one
key to the next. You can see in Figure 5.28 how this problem occurs.
The value should remain the same between the key at frame 1 and the
key at frame 10, but if you played this animation, it would move as
you see the motion curve indicating. The way to fix this is to change
the out tangent to another type; in this case, linear or flat would
work just fine.

Flat tangents—Flat tangents maintain a completely horizontal level in
and out of each keyframe, which creates a natural acceleration and
deceleration curve (sometimes these are called “ease in” and “ease
out.” In Figure 5.29 you can see the flat tangents and how they create
a natural speed up and slow down change of rate between the values
of keyframes. Flat tangents are better for organic motion because of
this ease in and ease out. However, if over-used they become as bor-
ing and predictable (and therefore unrealistic) as linear tangents.

FIGURE 5.28  Example of the clamp problem, where the keyframes in the middle
have the same value but the motion graph does not hold the value due to the tan-
gents trying to evaluate smoothly between the keyframes, which will result in a
“slip” of motion when playing back the animation.

204    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Tangent weights—In the more standard, non-weighted mode, the tan-
gent handles have a fixed length, which makes only a certain combi-
nation of curve shapes possible between keyframes. Many times this
is all that is required, and the default of most programs is to either
not use tangent weights at all or have them disabled. Some software
packages, however, allow you to make use of weighted tangents,
which allows for far greater flexibility in tweaking and customiz-
ing your animations. Once tangent weighting is enabled, the tangent
weights must be “freed” and you will be able to adjust the length of
the tangent handles to create quite exaggerated motion curves, which
are essential in creating certain effects like “hang-time” for objects
that are jumping or thrown upward, or rapid acceleration curves
(Figure 5.30).

FIGURE 5.30  Weighted tangents allow extreme and custom acceleration and
deceleration to occur without extra keyframes.

FIGURE 5.29  Flat tangents.

Animation    ◾    205  

Acceleration curves are created by tweaking the tangents to create an
increased rate of change between one keyframe and another. Visually it
looks like a steep upward or downward curve, which increases steepness
as it reaches the next point. Figure 5.31 illustrates an upward acceleration
curve and a downward acceleration curve, side by side. It is sometimes
confusing to see acceleration curves as upward or downward because
although the rate of change is increasing, the value the curve is moving
from is not always increasing. An acceleration curve is generally placed
between the rest and anticipation key poses, where the energy is being
wound up, and the anticipation to the action poses, where the kinetic
energy is being brought to its utmost velocity.

Deceleration curves are simply the inverse of acceleration curves—the
rate of change decreases from one key to another, creating a “slow-down”
effect. This is very useful for any action that has a kinetic absorption fac-
tor, like the follow-through pose we discussed earlier. Once the kinetic
motion is expended, the body naturally comes back to rest and the energy
is absorbed (Figure 5.32).

FIGURE 5.31  Acceleration curves.

FIGURE 5.32  Deceleration curve.

206    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

HOW DO I BECOME A GOOD ANIMATOR?

Final Words about Animation

When stepping out on the road to becoming an animator, many people
ask me this kind of question. How can I become a good animator? Should
I go to school? What books should I read? What should I do? It is a very
good question. First, traditional animation is an art form. 3D animation,
at its core, is no different. The best animators are always artists, and many
artists get into animation at an early age. However, if you are not artisti-
cally gifted or inclined and still want to be an animator, do not despair!
Animation has many aspects, and being a good traditional artist is not
always a prerequisite for doing good animation work. 3D animation is
partially an art form, but it is also very technical. It must be technical,
just because of the way it is done (on computers). So, the non-artistic ani-
mator might spend more time getting into character rigging or motion
captures editing. Or the technical artist might spend his or her time work-
ing on procedural animation, which is based more on expressions and
behavior scripting than pose-based keyframing. There are all kinds of
places to excel in the field of animation. If you really love the idea of being
an animator, however, you must spend a lot of time doing animation.
People I have worked with in game development who were in the anima-
tion department spend hours animating every day. Whether they hand
keyframed their animation or edited motion capture all day, they were
immersed in it constantly. The problems that all animators face were dealt
with so often, they had practiced solutions to them and those problems are
universal in the world of 3D animation. I think that animation, more than
modeling or rendering/lighting/materials, requires endless hours of expe-
rience in the practice of doing. It is a field that can only be truly evaluated
in motion, and the ability to develop the eye to see art in motion as well as
produce art in motion just takes time to develop. The one universal word
of advice I give to aspiring animators is simply to constantly animate. Do
not worry about modeling; do not worry about skinning, physics, cloth,
fluids, or particle effects. Just concentrate on being the best animator you
can be. If you animate a character made out of boxes but you animate
it well, it will be more impressive than a half-done animation of a fully
skinned character. You need to work on your ability to keyframe poses,
create exaggerated motion, and edit your motion curves to produce eye-
catching motion.

Animation    ◾    207  

EXERCISE: THE BALL THAT BOUNCES ITSELF
In order to teach all the primary principles of classic keyframed anima-
tion, I have devised this simple exercise in Maya that goes over the follow-
ing vital elements:

	 1.	Setting keyframes

	 2.	Squash and stretch

	 3.	Pose-based animation

	 4.	Acceleration and deceleration

We will be creating a “character” out of a simple sphere. This sphere will
represent a squishy ball, which has the capacity for kinetic movement. We
will create the illusion of a self-propelled character by using the elements
of squash and stretch and exaggeration.

Step 1: Set up the Ball

First, create a polygon primitive sphere, and rotate 90 degrees in the
X-axis so that the “pole” is facing the positive Z. Then enter pivot mode
(“insert” on windows and “fn-left arrow” on Mac) and snap the pivot to
the bottom-most vertex, using the point snap option (shortcut key “v”).
Next, exit pivot mode and snap the entire object to the world origin, at the
crosshairs of the grid as in Figure 5.33. This pivot placement allows us to

FIGURE 5.33  The pivot is at the lowest vertex and snapped to the world origin.

208    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

generate the squash and stretch from the contact with the ground, which
will assist in the illusion of kinetic energy. Finally, choose Edit > Freeze
Transforms in order to reset the local transforms to values of 0 in both
rotate and translate channels, which will allow all subsequent keyframe
values to start from this value.

Step 2: Setting the Key Poses

Now we are prepared to animate our ball. Remember those important key
poses in our section on pose-based animation? We will be creating the
illusion that this ball must generate its own kinetic energy by setting key
poses of rest, anticipation, action, follow-through, and rest. Since this ini-
tial state is our first key pose of rest, we can set keyframes for the translate
Y and scale X, Y, and Z channels. Select the channels in the Channel Box
and right click, choosing “key selection.” You will see the channels turn
red, which means that they have been given animation data (Figure 5.34).

Next, scrub the time slider to frame 6 and set your anticipation pose.
This will be your ball gathering kinetic energy, which is done in this case
by squishing itself down into the ground. If the ball is made of elastic
material, this will gather kinetic energy like pushing on an inflated ball.
When you let go it will pop up off the ground. To accomplish this, we will
set a keyframe at frame 6 with the scale Y at .5. Now, here we must main-
tain volume—the scale X and scale Z must also be keyed, but they must

FIGURE 5.34  Key selected channels.

Animation    ◾    209  

be keyed at the inverse values of 1.5 for each. This is called squash and
stretch. The basic formula I am using is as follows: scale.X and scale.Z =
1 + (1 – scale.Y). This is not the only squash and stretch formula out there,
but it works well enough. Whatever scale you remove from Y you add to
X and Z, and whatever scale you add to Y you take away from X and Z.
This, combined with the pivot point being set to the ground contact of the
sphere, will give the illusion that it is being squashed from its contact with
the ground. Make sure you set keyframes at this pose (Figure 5.35).

The next pose is the action pose. What are we building all this kinetic
energy for? So that we can jump off the ground. Go to frame 14 and set the
translate Y to a value of 11. Since we have “popped” off the ground, we now
need to stretch our squishy ball because like a rubber band, the energy
has snapped and the ball has bounced off the ground. We want the scale
of Y to be 1.5, which in scale terms is the opposite of a value of .5 because
we have added value to 1 instead of subtracting it. Now do not forget our
squash and stretch ratio. We want the scale X and scale Z to be set to .5 so
that as our ball stretches longer, it also gets skinnier (Figure 5.36).

Now here, because we have a bounce, we have an extra rest pose. It
is important to create this pose because we are dealing with physics and
our squishy ball cannot really squish until it hits the ground. So, go to
frame 20 and keyframe the exact same values as our original rest pose—
translate Y is 0 and scale X, Y, and Z are all at a value of 1.

FIGURE 5.35  The anticipation pose. I gave our squishy ball an eyeball texture,
just to be cool. Now he is short and fat.

210    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Our next goal is to create the follow-through. The follow-through for
every kinetic action is a little different, but in this case, we have some phys-
ics to recreate, namely the act of our ball squishing as it hits the ground.
The good news is that we can simply copy the same values from our antici-
pation pose to our follow-through here because it is essentially identical.
Go to frame 24 and set the same values for scale X, Y, and Z (1.5 ,.5, and
1.5, respectively) as you did for the anticipation pose. See Figure 5.35 again
for reference.

Now, finally, we can achieve rest pose once more as the ball springs
back to its original shape. Go to frame 29 and set the rest pose as before—
translate Y at a value of 0 and scale X, Y, and Z at a value of 1.

Congratulations! You have completed an animation. There is just
one problem—why does it look so bad when you hit play? Good ques-
tion. The problem is that while we have completed two out of three steps
for animation—set key poses and tweaked timing (I cheated a little here
and gave you the correct time for the keys)—we have not completed the

FIGURE 5.36  Actions. Our eyeball at full kinetic energy expenditure, bouncing
upward and stretched all thin and svelte.

Animation    ◾    211  

all-important last step: creating acceleration and deceleration. Without
editing tangents and tweaking the rate at which our ball squashes,
stretches, and moves in the Y-axis, we cannot really make it a good anima-
tion. Right now, the motion looks flat and boring. We need to add the flair.

Step 3: Setting up Tangents for Editing

Open up the preset window configuration in Maya on the left-hand side
of the interface, which has Perspective and graph editor, which will look
like Figure 5.37.

We need to create a sense of acceleration and deceleration in order for
our animation to have some kinetic energy along with our squishy ball—
the rate of motion has to snap like a rubber band too. By default, Maya
uses an “auto” key type, which sets the tangents of your curve mostly to
be flat. This means that the in and out of each keyframe has an “ease-in”
and “ease-out” curve that slows the rate of change from one point to
another as it reaches the keyframe. This is great for mediocre, middle-of-
the-road animation, but we need something a little snazzier if we want to
make this animation pop (no pun intended). Your curves will look like
Figure 5.38, where the tangents are all flat.

In order to get full access to our tangents, which will give us full control
of the acceleration and deceleration, first we must set them up properly.
Select the translate Y channel in the graph editor and select all the key-
frames in the curve, which you can do by making a marquee selection of

FIGURE 5.37  The bottom part of our interface is the graph editor, where all
those tangents are accessible for editing.

212    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

any part of the curve. Once all the keys are selected, you must first enable
tangent weighting (which allows full control of the curves) by choosing the
graph editor pull-down menu: Curves > Weighted Tangents. The tangent
handles will have a filled circle appear on the end of each one, denoting
that they are now “weighted.” Once this is done, go to Tangents > Free
Tangent Weight, which will free the weight to be edited. This will appear
as an open square on the edge of each handle. The next thing you will do
is break the tangents. This allows the in and out curve of each keyframe to
be entirely separate. If we have them independent, we can be completely
free to sculpt our motion as we see fit. This process must be followed for
each motion curve that we want to edit properly.

What You Learned

•	 How to turn on weighted tangents

•	 How to free tangent weights

•	 How to break tangents

Step 4: Acceleration and Deceleration

The last and final step is to manipulate your tangents to create acceleration
and deceleration. We will do this with our translate Y curve first, which
is what controls the upward movement of our squishy ball. We need to
create the illusion of physical forces affecting our ball, mainly gravity. For
this reason, you will turn the curve into a “bell” shape by turning the
outgoing tangents to be 90 degrees and shifting the weights of the handles
of the middle keyframe outward until there is a sharp deceleration curve
going into the keyframe at the top of the jump and a sharp acceleration

FIGURE 5.38  Flat tangents.

Animation    ◾    213  

curve going out of this keyframe. This will create the illusion of “hang
time” or time when the force of gravity catches up with the upward kinetic
force and starts to pull our ball back down toward the ground. Figure 5.39
shows you what this will look like in terms of a motion graph.

Are we done yet? Almost! The only thing you have left to do is to create
the acceleration and deceleration action for the squash and stretch. There
is a deceleration between rest and anticipation and a deceleration between
anticipation and action. It is that rubber-band effect—it decreases veloc-
ity as it squashes and gathers energy, holds for a second, and then zzang!
Explosive energy occurs, which slows down to a crawl before falling back
to earth. Between the second rest post and the squash effect, you once
again have an acceleration because the ball hits the ground and its squash-
ing will “bounce” back to the rest pose. Therefore, between the follow-
through pose and the final rest pose you have acceleration because the
kinetic energy will be harder to gather as it squashes, and then snaps back
as it stretches into the final rest pose. Figure 5.40 illustrates the proper
squash and stretch curve of the scale, which you can follow along with the
video tutorial.

What You Learned

•	 Creating acceleration and deceleration

•	 Simulating the force of gravity with motion curves

FIGURE 5.39  The proper “hang time” curve for upward Y movement.

214    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

Step 5: Generating Cycles

The very last thing we will do is convert this animation to a cycle. It will be
short, I promise! The great thing about the cycle is that we already have it.
We just have to shift our time a little in order to see it. The cycle we can cre-
ate, without generating a single keyframe, is to shift our range slider to start
at frame 6 and end at frame 23 (omitting the last frame will prevent a hiccup
from occurring when the first and last frame of the animation are the same).
Now when you play the animation on a loop, you will see that it constantly
plays repeatedly, as if the squishy ball were bouncing contentedly forever.

In order to do this within any range length of animation, we can simply
choose a method of infinity. Infinity allows us to cycle or offset an anima-
tion forever after the last keyframe. In order to set up the style of infinity,
you must choose Curves > Post Infinity > Cycle (or other option) and the
curve will repeat itself indefinitely throughout the animation. You might
need to tweak it a bit to get the curves to match up properly (Figure 5.41).

And that’s it! You have completed your exercise-based guide to core
animation skills in Maya.

FIGURE 5.41  Infinity settings.

FIGURE 5.40  The scale X, Y, and Z curve showing the inverse relationship of the
scale values to maintain volume using squash and stretch.

215

C h a p t e r 6

Conclusion

You made it! This is the final part of the book, where we wrap up
everything we have learned and give some sage advice to young,

aspiring 3D artists. I assume now you must be an accomplished modeler,
rendering guru, and animation master, right?

If only it were that easy. My point here, at the end of the book, is that
you will have become none of those things by reading through this book
and doing the contained exercises. You should, however, have a very solid
foundational and conceptual knowledge of how basic 3D graphics work,
and how to approach certain tasks with certain tools in any 3D software
package. Modeling, rendering, and animation are the three key disciplines
in 3D graphics, and now you know the important aspects of each and how
to go about reasonably creating content. Many aspiring 3D artists ask me
questions about what they should do and how they should go about get-
ting a job or furthering their knowledge in 3D art, and I always have the
same advice. Find out what you are good at, and specialize in that. Not
many people out there are good at modeling, lighting, material editing,
UV texturing, and animation. People have specific skills in specific areas
(or at least a pressing interest), and when they pursue that aspect over oth-
ers they often excel more in it. You do need to learn how everything works,
though, which is the purpose of this book. If you do not know anything
about geometry you can never be a good texture artist, and if you do not
know animation you will not be able to model properly because you will
not see the object or character in motion—you will always see it as a static
model. When you know how everything works, you become much better
at your special area of expertise. So pick an area in which you would like

216    ◾    Essential Skills for 3D Modeling, Rendering, and Animation﻿

to specialize and focus on taking your learning in that direction. There
is so much room to learn, grow, and even innovate in the broader field of
computer graphics that you can pursue one aspect of it for a decade and
not really scratch the surface. I have been working with 3D graphics in one
capacity or another since 1996, and there are aspects of it I have never used
at all. It is a big field, and narrowing down what you really want to do early
is a great way to get good at it without clogging up your brain with aspects
that are not that important, like cloth simulation, facial animation, fluid
effects, or subsurface scattering. The three cornerstones of 3D, however,
are modeling, rendering, and animation, as described in this book, and if
you have these under your belt as foundational knowledge, then I am sure
you can learn the rest when and if the time comes. Good luck on your path
to becoming a great 3D artist!

FIGURE 2.5  Minnow Pete, modeled by the author.

FIGURE 2.6  A lower polygon, triangulated version of Minnow Pete.

FIGURE 2.58  Original, low-poly models by author.

FIGURE 2.59  Same models after smoothing. The angular edges are gone, but the
polygon count has almost tripled! Always strive to use the least polygons possible
when modeling.

FIGURE 4.3  Real-time rendering of a game in development by the author.

FIGURE 4.4  Software rendering. Notice the high quality of this render. It could
never be achieved at 60 frames per second (fps) with today’s hardware.

FIGURE 4.24  The effects of using colored lights are very noticeable. Use it sparingly.

FIGURE 4.37  The sphere on the left has a specular or “shiny” shader, while the
sphere on the right has a non-specular shader.

4 cm

3 cm

2 cm

1 cm

0 cm

44
Remington

44 Mag
Norma

38–40
Winchester

357 Mag 45 38 Smith &
Wesson

7.65 6.35

FIGURE 4.38  Images of various specular and non-specular objects.

FIGURE 4.39  Lambert shaders do not have specularity.

FIGURE 4.41  The cosine power is higher on the right and lower on the left.

N

R

V

L

Light
Source

di�use = (N.L)
specular = (V.R), R = L – 2*(N.L)*N

luminance =
a0 + a1 *r + a2*r2

Ka + Intensity*(Kd*di�use + Ks* specularNs)

Camera

FIGURE 4.40  Calculations for specularity on a Phong shader.

FIGURE 4.42  The sphere on the left looks more like gold, while the sphere on the
right looks more like plastic. This is due to the difference in the specular color.

FIGURE 4.43  Blinn shaders have more sophisticated specular controls.

FIGURE 4.44  The ball on the left is using Anisotropic shading.

FIGURE 4.45  The material editor in Maya (called the Hypershade). Often the
materials are called shading networks because the information is stored in vari-
ous nodes, which are then connected together to form a network.

FIGURE 4.46  The ambient color value on the right sphere is turned up, which
multiplies the value of the diffuse color after the lighting is calculated, which is
why this sphere is red.

FIGURE 4.47  Incandescence multiplies the value on top of the entire rendered
sphere, making all of the pixels brighter at once.

FIGURE 4.48  Notice that the illusion of “texture” or dimples and grooves is cre-
ated without heavy geometry. This is done using a bump map.

FIGURE 4.49  Illustration of a dirt map in use.

FIGURE 4.50  The sphere on the right has no translucency while the sphere on
the left does.

FIGURE 4.51  The translucency focus has been increased to allow the light pen-
etration to fall off over the surface.

FIGURE 4.52  The sphere on the left has a reflection value of .3, while the sphere
on the right has a reflectivity value of 1.

FIGURE 4.53  An area has been defined telling the reflection where to be, and
where not to be, using an alpha value to put a white square on a black back-
ground, white denoting a full reflective value and black denoting no reflectivity.

FIGURE 4.54  The sky texture is placed as a reflection color on the sphere on the
right, which “fakes” the reflection instead of using ray tracing to generate it.

FIGURE 4.55  A ramp texture in Maya.

FIGURE 4.56  A fractal texture with it applied to a polygon plane on the left.

FIGURE 4.57  The rendered orange with skin textures.

FIGURE 4.58  A ramp was used to generate a soft gradient from darker orange
to lighter orange.

FIGURE 4.61  A snapshot of the shading network as it appears in Maya. This is
why they call it a network. It is many nodes for just one material.

FIGURE 4.64  The left side is the UV editor view, which displays the 2D texture
image and the faces as they relate to it. The right-side view is the 3D view, where
the pixels of the image are re-rendered on the 3D object as mapped out in
the UV editor.

FIGURE 4.65  The 2D image of the can is wrapped around the cylindrical
projection.

FIGURE 4.66  The “saw-tooth” UV coordinates allow each triangle to have its
own set of UV points, making the spread even on this texture.

FIGURE 4.67  The pinched UV coordinates at the poles of a sphere create only
a single UV point for all the triangles at the poles, which result in warped tex-
ture coordinates.

FIGURE 4.68  An unobscured view of the saw-tooth UVs from Figure 4.66.

FIGURE 4.69  An unobscured view of the pinched pole UVs from Figure 4.67.

FIGURE 4.70  The poor UV layout on the left results in distortion and streaking
on the right.

FIGURE 4.71  Poly plane and directional light at an angle.

FIGURE 4.72  Hypershade and attribute editor open in Maya.

FIGURE 4.73  Creating the file texture.

FIGURE 4.74  Color tile texture map.

FIGURE 4.75  Repeating color tile texture on object.

FIGURE 4.77  Look how much detail we can get with a bump texture map. It
looks like a much more complex piece of geometry.

FIGURE 4.78  The completed shading material network.

FIGURE 4.79  The completed real-time render. The specular map is subtle but
makes a big difference.

FIGURE 5.1  Bouncing ball animation with ghosting.

FIGURE 5.2  Ghosted character animation.

FIGURE 5.6  A character rigged with joints that are animated by rotation.
(Character design and model by Bert Farache, rig and skeleton by author.)

FIGURE 5.7  Early cell drawings of cartoon characters would be done in “key
poses” or important breaks in movement. The apprentice would frantically sketch
in all the “tween poses.” (Courtesy of artist, Topher Putnam.)

Essential Skills for
3D MODELING,
RENDERING,
and ANIMATION
Nicholas Bernhardt Zeman

Essential Skills for
3D MODELING,
RENDERING,
and ANIMATION
Nicholas Bernhardt Zeman

Computer Graphics

The Key to Fully Understanding the Basics of a 3D World

Prominently used in games, movies, and on television, 3D graphics are tools of creation
used to enhance how material and light come together to manipulate objects in 3D
space. A game-changer written for the non-technical mind, Essential Skills for 3D
Modeling, Rendering, and Animation examines the complexities of 3D computer-
generated art, and outlines the basics of how things work and are used in 3D. This text
describes the three cornerstones of 3D—modeling, rendering, and animation; focuses
on common elements; and provides a full understanding of the foundational concepts
involved. Detailing the skills and knowledge needed to become an accomplished 3D
artist, it includes step-by-step instruction with ample examples, and allows absolute
beginners to move at their own pace.

Master Anything You Are Tasked to Model

The author incorporates historical information—presenting a contextual understanding
of the various techniques and methodologies in their historical place. Each chapter
builds on the fundamentals of 3D computer graphics and augments skills based on the
concepts, enabling the student to learn both theory and application simultaneously. The
book highlights two basic geometry types, polygons and NURBS surfaces, showing the
student basic modeling techniques with both. While more techniques are available, an
artist can cover any model by grasping these basic techniques.

Essential Skills for 3D Modeling, Rendering, and Animation offers a fundamental
understanding of the mechanics of 3D graphics to modelers, animators, texture artists,
render artists, game developers, and production artists, as well as educators teaching an
undergrad or tech course in 3D animation.

“Zeman’s instruction took me
from a complete novice, having
only dreamed of using 3D,
to a proficient modeler, rigger,
and animator for indie game
development, and has given
me the foundational information
to be able to quickly learn any
3D program.”

—Nick Brummer, Indie Game
Designer, Curriculum Developer

K22359

Essential Skills for 3D MODELING, RENDERING, and ANIMATION

	Front Cover
	Contents
	Preface
	About the Author￼
	Introduction
	Chapter 1: Understanding 3D Space
	Chapter 2: Polygonal Geometry
	Chapter 3: NURBS and Curve-­Based Geometry
	Chapter 4: Lighting, Materials, Textures, and UVs
	Chapter 5: Animation
	Chapter 6: Conclusion
	Back Cover

