
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

Chapter 1: Configuration, Settings, and Environments ■ 1

Chapter 2: Working with Middleware ■ ... 21

Chapter 3: Template Engines and Consolidate.js ■ 49

Chapter 4: Parameters and Routing ■ ... 63

Chapter 5: Express.js Request Object: req ■ 81

Chapter 6: Response ■ ... 97

Chapter 7: Error Handling and Running an App ■ 121

Index .. 135

www.allitebooks.com

http://www.allitebooks.org

xvii

Introduction

Please read this Introduction carefully to avoid any confusion. Read it especially if you
are considering buying this book to make sure it perfectly suits your level of expertise and
needs. If you bought Express.js Deep API Reference already, then congratulations! As a
reader of this book you are in a great position to dig deeper into the most popular web
framework for the fastest growing platform.

he demand for the skills in these technologies grows along with both categories
of employers (startups and big corporations) adopting Node.js. he reason for that is
that there’s always a gap between early adopters and mainstream ones. We are rapidly
approaching the mainstream (it’s 2014-2015 during this writing). he earlier you, as a
developer, jump on Node.js, the better, because if you aren’t growing, you are dying.

In this Introduction, I’ll cover the following topics that will help you to get the most
of the book:

Why This Book Was Written
Experss.js Deep API Reference is a derivative work from Pro Express.js. his means that
this book is a more focused and concise manual for the Express.js framework. But this
book has started as Express.js Guide a few years ago.

he Express.js Guide (2013) was on of the irst books on Express.js, which is the most
popular Node.js web framework yet (as of this writing, December of 2014). hat book
was one of the irst solely dedicated to the framework. Back in the day, Express.js’ oicial
website (expressjs.com) had only bits of insights, and those were for advanced Node.js
programmers. So no wonder that I’ve found that many people — including those who go
through the HackReactor8 program and come to my Node.js classes at General Assembly
and pariSOMA — were interested in a deinitive manual; one that would cover how all the
diferent components of Express.js work together in real life. he goal of he Express.js
Guide was to be that resource.

After the Express.js Guide became the Amazon.com #1 Best Seller in its category,
Apress approached me to write this book. Express.js Deep API Reference is much more
than a revision or an update of Express.js Guide. It’s a complete remake, because this
book includes more things like: comments, descriptions, examples, and extras. he new
book also has better-reviewed code and text, and up-to-date versions of the libraries
(e.g., Express.js v4.8.1).

Many things have changed between writing the two books. Node.js was forked at
io.js. TJ Holowaychuk, the creator of Express.js, stopped being actively involved with
Node.js and StrongLoop maintains the framework’s repository. he development on
Express.js is as rapid as ever. It’s more stable and more secure. And I see nothing but a
brighter future for Express.js and Node.js!

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xviii

Who Should Own This Book
his book is intended for software engineers and web developers already luent in
programming and front-end JavaScript. To get the most of the beneits of Express.js Deep
API Reference, readers must be familiar with basic Node.js concepts, like process and
global, and know core modules, including stream, cluster, and bufer.

If you’re thinking about starting a Node.js project or about rewriting an existing one,
and your weapon of choice is Express.js — this guide is for you! It will answer most of your
“how” and “why” questions.

What This Book Is
Express.js Deep API Reference is a concise book on one particular library. Unlike
Practical Node.js (Apress, 2014) which covered many libraries, Express.js Deep API
Reference is focused only on the single module — Express.js. Of course, in places where
it’s necessary to cover other related libraries, like middleware, the book touches on those
as well, but not as extensively as on the framework itself.

Express.js Deep API Reference covers coniguration, settings, middleware, rendering
templates, request and response objects, routing, extracting params from dynamic URLs,
and error handling.

here are seven chapters in Express.js Deep API Reference:

Coniguration, Settings and Environments1.

Working with Middleware2.

Template Engines and Consolidate.js3.

Parameters and Routing4.

Request5.

Response6.

Error Handling and Running an App7.

For more details on what the book covers, please refer to the Table of Contents.

What This Book is Not
his book is not an introduction to Node.js, nor is it a book that covers all aspects of
building a modern-day web application in great details, e.g., websockets, databases, and
(of course) front-end development. Also, keep in mind that readers won’t ind in Express.js
Deep API Reference aids for learning programming and/or JavaScript fundamentals here,
because this is not a beginners’ book.

For an introduction to Node.js, MongoDB, and front-end development with
Backbone.js, you might want to take a look at Azat’s book, Rapid Prototyping with JS:
Agile JavaScript Development10, and the Node Program (nodeprogram.com) in person
and online courses.

www.allitebooks.com

https://nodeprogram.com
http://www.allitebooks.org

■INTRODUCTION

xix

In the real world, and especially in Node.js development, due to its modularized
philosophy, we seldom use just a single framework. In this book, we have tried to stick to
Express.js and leave everything else out as much as possible, without compromising the
usefulness of the examples. herefore, we intentionally left out some important chunks of
web development — for example, databases, authentication and testing. Although these
elements are present in tutorials and examples, they’re not explained in detail. For those
materials, you could take a look at the books in the Appendix A: Related Reading and
Resources at the end of this book.

Examples
he Express.js Deep API Reference book is full of code snippets and run-ready examples.
Most of them are abridged code examples that serve the purpose of illustrating a
particular point.

he bulk of the source code is available in the GitHub repository at github.com/
azat-co/expressapiref under ch1-ch7 (for chapters 1 to 7).

he provided examples were written and tested only with the given, speciic versions
of dependencies. Because Node.js and its ecosystem of modules are being developed
rapidly, please pay attention to whether new versions have breaking changes. Here is the
list of versions that we’ve used:

Express.js v4.8.1

Node.js v0.10.12

NPM v1.2.32

MongoDB v2.6.3

Redis v2.6.7

Stylus v0.47.3

Jade v1.5.0

Foreman v0.75.0

Google Chrome Version 39.0.2171.7

Errata and Contacts
If you get stuck on an exercise, make sure to check the GitHub repository. It might have
more recent code and answers in the GitHub Issues section. Also, by submitting your
issues you can help the experience better for you fellow programmers:
http://github.com/azat-co/expressapiref/issues.

As for the pesky typos, which I’m sure will still remain no matter how many times we
edited the manuscript, submit them to Apress or GitHub Issues.

www.allitebooks.com

https://github.com/azat-co/expressapiref
https://github.com/azat-co/expressapiref
http://github.com/azat-co/expressapiref/issues
http://www.allitebooks.org

■ INTRODUCTION

xx

Finally, let’s be friends on the Internet! It’s lonely to code in isolation. Here are some
of the ways to reach the author:

Write an Amazon.com review: • http://amzn.to/1vVVKCR

Join HackHall.com: community for programmers, hackers, •
and developers

Tweet Node.js question on Twitter: • @azat_co

Follow Azat on Facebook: • facebook.com/164048499437

Visit the Express.js Deep API Reference website: •
http:// expressapiref.com

Visit the Azat’s website: • http://azat.co

Star Express.js Deep API Reference GitHub repository: •
github.com/azat-co/expressapiref

Email Azat directly: • hi@azat.co

Sign up for the blog’s newsletter: • webapplog.com

It’s the end of the Introduction. hank you for reading it. You can share that you’re
about to start learning Express.js on Twitter by clicking on this link: http://ctt.ec/09Sc5.

www.allitebooks.com

http://amzn.to/1vVVKCR
https://facebook.com/164048499437
http://%20expressapiref.com
http://azat.co
https://github.com/azat-co/expressapiref
https://hi@azat.co
http://webapplog.com
http://ctt.ec/09Sc5
http://www.allitebooks.org

1

CHAPTER 1

Configuration, Settings,
and Environments

This chapter is all about different ways of configuring Express.js settings. As you might
have heard, Express.js positions itself as a configuration over convention framework.
So, when it comes to configurations in Express.js, you can configure pretty much anything!
To do so, you use configuration statements and know the settings.

What are the settings? Think of settings as key-value pairs that typically act in a
global or application-wide manner. Settings can augment behavior of the server, add
information to responses, or be used for references later.

There are two types of settings: Express.js system settings that the framework uses
behind the scene, and arbitrary settings that developers use for their own code. The
former come with default values so that if you don’t configure them—the app will still run
okay! Therefore, it’s not a big deal if you don’t know or don’t use some of the Express.js
settings. For this reason, don’t feel like you must learn all the settings by heart to be able
to build Express apps. Just use this chapter as a reference any time you have a question
about a specific method or a system setting.

To progress from simple to more complex things, this chapter is organized as follows:

• Configuration: Methods to set settings values and to get them

• Settings: Names of the settings, their default values, what they
affect, and examples of how to augment values

• Environments: Determining an environment and putting an
application in that mode is an important aspect of any
serious application.

The examples for this chapter are available in the ch1/app.js project, which is in the
GitHub repository at http://github.com/azat-co/proexpressjs.

Configuration
Before you can work with settings, you need to learn how to apply them on an Express.js app.
The most common and versatile way is to use app.set to define a value and use app.get
to retrieve the value based on the key/name of the setting.

www.allitebooks.com

http://github.com/azat-co/proexpressjs
http://www.allitebooks.org

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

2

The other configuration methods are less versatile, because they apply only to
certain settings based on their type (boolean): app.enable() and app.disable().

app.set() and app.get()
The method app.set(name, value) accepts two parameters: name and value. As you
might guess, it sets the value for the name. For example, we often want to store the value
of the port on which we plan to start our server:

app.set('port', 3000);

Or, for a more advanced and realistic use case, we can grab the port from system
environment variable PORT (process.env.PORT). If the PORT environment variable is
undefined, we fall back to the hard-coded value 3000:

app.set('port', process.env.PORT || 3000);

The preceding code is a shorter equivalent to using an if else statement:

if (process.env.PORT) {
 app.set(process.env.PORT);
} else {
 app.set(3000);
}

The name value could be an Express.js setting or an arbitrary string. To get the value,
we can use app.set(name) with a single parameter, or we can use the more explicit
method app.get(name), as shown in the following example:

console.log('Express server listening on port ' + app.get('port'));

The app.set() method also exposes variables to templates application-wide;
for example,

app.set('appName', 'HackHall');

will be available in all templates, meaning this example would be valid in a Jade template
layout:

doctype 5
html
 head
 title= appName
 body
 block content

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

3

app.enable() and app.disable()
There are some system Express.js settings that have the type of boolean true and false,
instead of the string type, and they can only be set to boolean false or true. For such flags,
there are shorthand versions; for example, as an alternative to the app.set(name, true)
and app.set(name, false) functions, you can use the concise app.enable(name) and
app.disable(name) calls accordingly. I recommend using app.set() because it keeps the
code consistent no matter what is the type of the setting.

For example, the etag Express.js setting is a boolean. It turns ETag headers on and
off for browser caching (more on etag later). To turn this caching off with app.disable()
write a statement:

app.disable('etag');

app.enabled() and app.disabled()
To check whether the aforementioned values equal true or false, we can call methods
app.enabled(name) and app.disabled(name). For example,

app.disable('etag');
console.log(app.disabled('etag'));

will output true in the context of the Express.js app.

Settings
There are two categories of settings:

• Express.js system settings: These settings are used by the
framework to determine certain configurations. Most of them
have default values, so the bare-bones app that omits configuring
these settings will work just fine.

• Custom settings: You can store any arbitrary name as a setting for
reference later. These settings are custom to your application, and
you first need to define them to use.

Coverage of system settings is one of the most obscure parts of Express.js documentation,
because some of the settings are not documented at all (as of this writing). Express.js is
flexible enough so that you don’t have to know all the settings in order to write apps.
But after you’ve learned about all the setting and have begun to use the ones that you
need, you will be more confident in configuring your server. You’ll understand the inner
workings of the framework better.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

4

In this section, you’ll learn about the following settings:

• env

• view cache

• view engine

• views

• trust proxy

• jsonp callback name

• json replacer and json spaces

• case sensitive routing

• strict routing

• x-powered-by

• etag

• query parser

• subdomain offset

To illustrate settings in action, we wrote a ch1/app.js example. To avoid confusion,
we’ll refrain from showing the whole file now, and instead provide the source code at the
end of this section for reference.

env
This variable is used to store the current environment mode for this particular Node.js
process. The value is automatically set by Express.js from process.env.NODE_ENV (which
is fed to Node.js through an environment variable on the executing machine) or, if that is
not set, to the development value.

The other most common values for env setting are as follows:

• development

• test

• stage

• preview

• production

The “production” and “development” values are used by Express.js for certain
settings’ defaults (view cache is one of them). The other values are just convention,
meaning you’re free to use whatever you want, as long as you are consistent. For example,
instead of stage you can use qa.

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

5

We can augment the env setting by adding app.set('env', 'preview'); or
process.env.NODE_ENV=preview in our code. However, the better way is to start an app
with $ NODE_ENV=preview node app or to set the NODE_ENV variable on the machine.

Knowing in what mode the application runs is very important because logic related
to error handling, compilation of style sheets, and rendering of the templates can differ
dramatically. Obviously, databases and hostnames are different from environment to
environment.

The app.get('env') setting is illustrated in the ch1/app.js example as

console.log(app.get('env'));

This line outputs

"development"

The preceding line is printed if NODE_ENV is set to development when we launch the
process with $ NODE_ENV=development node app.js or when NODE_ENV is not set. In the
latter case, the reason for the "development" value is that Express.js defaults the setting to
"development" when it’s undefined.

view cache
This flag, if set to false, allows for painless development because templates are read each
time the server requests them. On the other hand, if view cache is set to true, it facilitates
template compilation caching, which is a desired behavior in production. If the env
setting is production, then view cache is enabled by default. Otherwise it is set to false.

view engine
The view engine setting holds the template file extension (e.g., 'ext' or 'jade') to utilize
if the file extension is not passed to the res.render() function inside of the request
handler.

For example, as shown in Figure 1-1, if we comment out the line from the
cli-app/app.js example:

// app.set('view engine', 'ejs');

The server won’t be able to locate the file because our instructions in
cli-app/routes/index.js are too ambiguous:

exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

6

We can fix this by adding an extension to the cli-app/routes/index.js file:

exports.index = function(req, res){
 res.render('index.ejs', { title: 'Express' });
};

For more information on how to apply different template engines, please refer to the
Chapter 3.

views
The views setting has an absolute path (starts with / on Mac and Unix) to a directory with
templates. This setting defaults to the absolute path of the views folder in the project’s
root (where the main application file, e.g., app.js, is).

In Express.js, changing the template folder name is trivial. Typically, when we set
the custom value for views in app.js, we use path.join() and the __dirname global
variable—which gives us the absolute path to the folder where app.js is. For example,
if you want to use folder templates use this configuration statement:

app.set('views', path.join(__dirname, 'templates'));

Figure 1-1. The result of not having a proper template extension set

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

7

trust proxy
Set trust proxy to true if your Node.js app is working behind reverse proxy such
as Varnish or Nginx. This will permit trusting in the X-Forwarded-* headers, such as
X-Forwarded-Proto (req.protocol) or X-Forwarder-For (req.ips). The trust proxy
setting is disabled by default.

If you want to turn it on (when you have a proxy server) you can use one of these
statements:

app.set('trust proxy', true);
app.enable('trust proxy');

jsonp callback name
If you’re building an application (a REST API server) that serves requests coming from
front-end clients hosted on different domains, you might encounter cross-domain
limitations when making XHR/AJAX calls. In other words, browser requests are limited
to the same domain (and port). The workaround is to use cross-origin resource sharing
(CORS) headers on the server.

If you don’t want to apply CORS headers to your server, then the JavaScript object
literal notation with prefix (JSONP) is the way to go. Express.js has a res.jsonp() method
that makes using JSONP a breeze.

Tip ■ To find out more about CORS, go to http://en.wikipedia.org/wiki/

Cross-origin_resource_sharing.

The default callback name, which is a prefix for our JSONP response, is usually
provided in the query string of the request with the name callback; for example,
?callback=updateView. However, if you want to use something different, just set the
setting jsonp callback name to that value; for example, for the requests with a query
string param ?cb=updateView, we can use this setting:

app.set('jsonp callback name', 'cb');

That way, our responses would be wrapped in updateView JavaScript code
(with the proper Content-Type header, of course) as shown in Figure 1-2.

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

8

Figure 1-2. Using cb as the query string name for the callback

In most cases, we don’t want to alter this value because the default callback value is
somewhat standardized by jQuery $.ajax JSONP functions.

If we set jsonp callback name to cb in the Express.js setting configuration, but make
a request with a different property, such as callback, then the route won’t output JSONP.
It will default to JSON format, as shown in Figure 1-3, without the prefix of the function
call, which we saw in Figure 1-2.

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

9

json replacer and json spaces
Likewise, when we use the Express.js method res.json(), we can apply special
parameters: replacer and spaces. These parameters are passed to all JSON.stringify()
functions1 in the scope of the application. JSON.stringify() is a widely used function for
transforming native JavaScript/Node.js objects into strings.

The replacer parameter acts like a filter. It’s a function that takes two arguments: key
and value. If undefined is returned, then the value is omitted. For the key-value pair to
make it to the final string, we need to return the value. You can read more about replacer
at Mozilla Developer Network (MDN).2

Express.js uses null as the default value for json replacer. I often use
JSON.stringify(obj, null, 2) when I need to print pretty JSON.

The spaces parameter is in essence an indentation size. Its value defaults to 2 in
development and to 0 in production. In most cases, we leave these settings alone.

Figure 1-3. Without the proper callback parameter, JSONP defaults to JSON

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/JSON/stringify
2https://developer.mozilla.org/en-US/docs/Using_native_JSON#The_replacer_
parameter

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Using_native_JSON#The_replacer_parameter
https://developer.mozilla.org/en-US/docs/Using_native_JSON#The_replacer_parameter

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

10

In our example app ch1/app.js, we have a /json route that sends us back an object
with a book’s information. We define a replacer parameter as a function that omits
the discount code from the object (we don’t want to expose this info). And the spaces
parameter is set to 4 so that we can see JSON that is nicely formatted for humans instead
of some jumbled code. The resulting response for the /json route is shown in Figure 1-4.

Figure 1-4. JSON output with replacer and spaces set

These are the statements used in the example app:

app.set('json replacer', function(key, value){
 if (key === 'discount')
 return undefined;
 else
 return value;
});
app.set('json spaces', 4);

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

11

If we remove json spaces, the app will produce the results shown in Figure 1-5.

Figure 1-5. JSON output without spaces set

case sensitive routing
The case sensitive routing flag should be self-explanatory. We disregard the case of
the URL paths when it’s false, which is the default value, and do otherwise when the
value is set to true. For example, if we have app.enable('case sensitive routing');,
then /users and /Users won’t be the same. It’s best to have this option disabled for the
sake of avoiding confusion.

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

12

strict routing
The next setting (or a flag because it has the boolean meaning) strict routing deals
with cases of trailing slashes in URLs. With strict routing enabled, such as
app.set('strict routing', true');, the paths will be treated differently; for example,
/users and /users/ will be completely separate routes. In the example ch1/app.js, we
have two identical routes but one has a trailing slash. They send back different strings:

app.get('/users', function(request, response){
 response.send('users');
})
app.get('/users/', function(request, response){
 response.send('users/');
})

As a result, the browser will have different messages for /users and /users/, as
shown in Figure 1-6.

Figure 1-6. With strict routing enabled, /users and users/ are different routes

By default, this parameter is set to false, which means that the trailing slash
is ignored and those routes with a trailing slash will be treated the same as their
counterparts without a trailing slash. My recommendation is to leave the default
value; that is, treat the routes with slashes the same as the routes without slashes. This
recommendation doesn’t apply if your API architecture requires them to be treated
differently.

x-powered-by
The x-powered-by option sets the HTTP response header X-Powered-By to the Express
value. This option is enabled by default, as you can see in Figure 1-7.

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

13

If you want to disable x-powered-by (remove it from the response)—which
is recommended for security reasons, because it’s harder to find vulnerabilities if
your platform is unknown—then apply app.set('x-powered-by', false) or
app.disable('x-powered-by'), which removes the X-Powered-By response header
(as in the example ch1/app.js and as shown in Figure 1-8).

Figure 1-7. X-Powered-By Express is enabled (by default)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

14

etag
ETag3 (or entity tag) is a caching tool. The way it works is akin to the unique identifier
for the content on a given URL. In other words, if content doesn’t change on a specific
URL, the ETag will remain the same and the browser will use the cache. Figure 1-7 and
Figure 1-8 include an example of the ETag response header. The code for this example is
available in ch1/app.js.

If someone doesn’t know what ETag is or how to use it, then it’s better to leave
the Express.js default etag setting as it is, which is on (boolean true). Otherwise, to
disable ETag, use app.disable('etag');, which will eliminate the ETag HTTP
response header.

Figure 1-8. X-Powered-By Express is disabled and there’s no response header

3http://en.wikipedia.org/wiki/HTTP_ETag

http://en.wikipedia.org/wiki/HTTP_ETag

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

15

By default, Express.js uses “weak” ETag. Other possible values are false (no ETag),
true (weak ETag), and strong (strong ETag). The last option (for advanced developers)
that Express.js provides is using your own ETag algorithm:

app.set('etag', function (body, encoding) {
 return customEtag(body, encoding); // you define the customEtag function
})

If you’re not familiar with what weak or strong means, here’s the short explanation
of the differences between these types of ETags: an identical strong ETag guarantees
the response is byte-for-byte the same, while an identical weak ETag indicates that the
response is semantically the same. So you’ll get different levels of caching with weak and
strong ETags. Of course, this is a very brief and vague explanation. Please do you own
research if this topic is important for your project.

query parser
A query string is data sent in the URL after the question mark (for example,
?name=value&name2=value2). This format needs to be parsed into JavaScript/Node.js
object format before we can use it. Express.js automatically includes this query parsing
for our convenience. It does so by enabling the query parser setting.

The default value for query parser is extended, which uses the qs module’s
functionality.4 Other possible values are

• false: Disable parsing

• true: Uses qs

• simple: Uses the core querystring module’s functionality
(http://nodejs.org/api/querystring.html)

It’s possible to pass your own function as an argument, in which case your
custom function will be used for parsing instead of parsing libraries. If you pass your
own function, your custom parsing function must take a string argument and return
a JavaScript/Node.js object similar to the parse function’s signature from the core
querystring module.5

The following are examples in which we set query parser to use querystring, no
parsing and a custom parsing function:

app.set('query parser', 'simple');
app.set('query parser', false);
app.set('query parser', customQueryParsingFunction);

4https://github.com/hapijs/qs
5http://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options

http://nodejs.org/api/querystring.html
https://github.com/hapijs/qs
http://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

16

subdomain offset
The subdomain offset setting controls the value returned by the req.subdomains
property. This setting is useful when the app is deployed on multiple subdomains, such
as http://ncbi.nlm.nih.gov.

By default, the last two “subdomains” (the two extreme right parts) in the hostname/URL
are dropped and the rest are returned in reverse order in the req.subdomains; so for our
example of http://ncbi.nlm.nih.gov, the resulting req.subdomains is ['nlm', 'ncbi'].

However, if the app has subdomain offset set to 3 by app.set('subdomain
offset', 3);, the result of req.subdomains will be just ['ncbi'], because Express.js will
drop the three (3) parts starting from the right (nlm, nih, and gov).

Environments
As many of you know, most applications don’t run in a single environment. Those
environments usually include at least development, testing and production. Each of the
environments puts a different requirement on the app. For example, in development
the app error messaging needs to be as verbose as possible, while in production it needs
to be user friendly and not compromise any system or user’s personally identifiable
information (PII)6 data to hackers

The code needs to accommodate different environments without us, the developers,
having to modify it every time we deploy to a different environment.

Of course, we can write up some if else statements based on the
process.env.NODE_ENV value; for example:

if ('development' === process.env.NODE_ENV) {

If the line above seems strange to you, keep in mind that it’s the exact equivalent
of process.env.NODE_ENV === 'development'. Alternatively, you can use
process.env.NODE_ENV == 'development' which will convert the NODE_ENV to string
for you, before the comparison (if for some reason it’s not a string already).

 // Connect to development database
} else if ('production' === process.env.NODE_ENV) {
 // Connect to production database
 }; // Continue for staging and preview environments

Or using the Express.js env param (refer to the “env” section earlier in the chapter):

// Assuming that app is a reference to Express.js instance
if ('development' === app.get('env')) {
 // Connect to development database
} else if ('production' === app.get('env')) {
 // Connect to production database
 }; // Continue for staging and preview environments

6http://en.wikipedia.org/wiki/Personally_identifiable_information

http://ncbi.nlm.nih.gov/
http://ncbi.nlm.nih.gov/
http://en.wikipedia.org/wiki/Personally_identifiable_information

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

17

Another example of app.get('env') is one from the skeleton Express.js Generator
app. It applies a more verbose error handler (sends the whole stacktrace from the
err object) for the development environment than one for production or any other
environment:

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

If the environment is anything but development, instead of the error handler above,
Express.js will use this one in which no stacktraces are leaked to a user:

app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

APP.CONFIGURE

The app.configure() method, which allows for more elegant environmental

configuration, is deprecated in Express.js 4.x. However, you should still know how it

works, because you might encounter it in older projects.

When the app.configure() method is invoked with one parameter it applies the

callback to all environments. For example, if you want to set an author email and

app name for any environment, then you can write:

app.configure(function(){
 app.set('appName', 'Pro Express.js Demo App');
 app.set('authorEmail', 'hi@azat.co');
});

However, if we pass two parameters (or more) with the first being an environment

and the last one is still a function, the code will be called only when the app is in

those environment modes (e.g., development, production).

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

18

For example, you can set different dbUri values (database connection strings) for

development and stage with these callbacks:

app.configure('development', function() {
 app.set('dbUri', 'mongodb://localhost:27017/db');
});
app.configure('stage', 'production', function() {
 app.set('dbUri', process.env.MONGOHQ_URL);

});

Tip ■ Express.js often uses the difference in the number of input parameters and their

types to direct functions’ behavior. Therefore, pay close attention to how you invoke your

methods.

Now that you’re familiar with the settings, here’s the demo kitchen-sink application.
In it we gathered all the aforementioned settings to illustrate the examples. As you inspect
the code, notice the order of the configuration statements in the file! They must be after
the var app instantiation, but before middleware and routes. Here’s the full source code
of the example server ch1/app.js:

var book = {name: 'Practical Node.js',
 publisher: 'Apress',
 keywords: 'node.js express.js mongodb websocket oauth',
 discount: 'PNJS15'
}
var express = require('express'),
 path = require('path');

var app = express();

console.log(app.get('env'));

app.set('view cache', true);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.set('port', process.env.PORT || 3000);

app.set('trust proxy', true);
app.set('jsonp callback name', 'cb');
app.set('json replacer', function(key, value){

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

19

 if (key === 'discount')
 return undefined;
 else
 return value;
});
app.set('json spaces', 4);

app.set('case sensitive routing', true);
app.set('strict routing', true);
app.set('x-powered-by', false);
app.set('subdomain offset', 3);
// app.disable('etag')

app.get('/jsonp', function(request, response){
 response.jsonp(book);
})
app.get('/json', function(request, response){
 response.send(book);
})
app.get('/users', function(request, response){
 response.send('users');
})
app.get('/users/', function(request, response){
 response.send('users/');
})
app.get('*', function(request, response){
 response.send('Pro Express.js Configurations');
})

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}
var server = app.listen(app.get('port'), function() {
 console.log('Express server listening on port ' + server.address().port);
});

CHAPTER 1 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

20

Summary
In this chapter, we covered how to configure Express.js system settings using methods
such as app.set(), app.disable(), and app.enable(). You learned how to get the settings
values with app.get() and app.enabled() and app.disabled(). Then, we covered all the
important Express.js settings, their meaning and values. You also saw that settings can be
arbitrary and used for storing app-specific custom info (e.g., port number or app name).

In a structure of a typical Express.js app, the middleware goes after the configuration
section in the main Express.js app file. Both third-party middleware and custom
middleware are available to use with Express.js. When you write your own middleware,
it’s a way to reuse and organize the code.

There is abundance of third-party Express.js middleware modules on NPM. They
can do many tasks from parsing to authentication. By using third-party middleware, you
are enhancing and customizing the behavior of your application. So middleware can
be considered as configuration of its own kind (configuration on steroids!). Read on to
master the most commonly used middleware!

21

CHAPTER 2

Working with Middleware

Middleware is an amazingly useful pattern that allows developers to reuse code within
their applications and even share it with others in the form of NPM modules. The
essential definition of middleware is a function with three arguments: request (or req),
response (res), and next. If you’re writing your own middleware, you can use arbitrary
names for arguments, but it’s better to stick to the common naming convention. Here’s an
example of how to define your own middleware:

var myMiddleware = function (req, res, next) {
 // Do something with req and/or res
 next();
};

When writing your own middleware, don’t forget to call the next() callback
function. Otherwise, the request will hang and time out. The request (req) and response
(res) objects are the same for the subsequent middleware, so you can add properties to
them (e.g., req.user = 'Azat') to access them later.

In this chapter we’ll cover the following topics:

• Applying middleware: How to use middleware in Express.js apps

• Essential middleware: The most commonly used middleware,
Connect.js middleware, and the middleware that was part of
Express.js before version 4.x

• Other middleware: The most useful and popular third-party
middleware

Unlike a traditional technical book chapter that describes how to build a single
large project, this chapter extensively describes the most popular and used middleware
modules. Similar to Chapter 1, this chapter is something akin to a reference. To demo
you the middleware’s features, there’s a kitchen sink—meaning it has lots of different
things—example in the ch2 folder. As usual, the code will be listed in the book and
available in the GitHub repo at https://github.com/azat-co/express-api-ref.

https://github.com/azat-co/express-api-ref

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

22

Applying Middleware
To set up middleware, we use the app.use() method from the Express.js API. This is
applicable to both third-party middleware and in-house middleware.

The method app.use() has one optional string parameter path and one mandatory
function parameter callback. For example, to implement a logger with a date, time,
request method, and URL, we use the console.log() method:

// Instantiate the Express.js app
app.use(function(req, res, next) {
 console.log('%s %s — %s', (new Date).toString(), req.method, req.url);
 return next();
});
// Implement server routes

On the other hand, if we want to prefix the middleware, a.k.a. mounting, we can
use the path parameter, which restricts the use of this particular middleware to only
the routes that have such a prefix. For example, to limit the logging to only the admin
dashboard route /admin, we can write

// Instantiate the Express.js app
app.use('/admin', function(req, res, next) {
 console.log('%s %s — %s', (new Date).toString(), req.method, req.url);
 return next();
});
// Actually implement the /admin route

Writing everything from scratch, even as trivial as logging and serving of the static
files, is obviously not much fun. Therefore, instead of implementing our own modules,
we can utilize express.static() and morgan middleware functions. Here’s an example of
using express.static() and morgan middleware:

var express = require('express');
var logger = require('morgan');
// Instantiate and configure the app
app.use(logger('combined'));
app.use(express.static(__dirname + '/public'));
// Implement server routes

Note ■ In Express.js version 3.x and earlier (i.e., before version 4.x), logger was part of

Express.js and could be called with express.logger().

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

23

Static is the only middleware that remains bundled with Express.js version 4.x. Its
NPM module is serve-static. Static middleware enables pass-through requests for static
assets. Those assets are typically stored in the public folder (please refer to the Chapter 2
of Pro Express.js (Apress, 2014) for more information on recommended folder structure).

Here’s a more advanced static middleware example that restricts assets to their
respective folders. This is called mounting and achieved by providing two arguments to
app.use(): route path and middleware function:

app.use('/css', express.static(__dirname + '/public/css'));
app.use('/img', express.static(__dirname + '/public/images'));
app.use('/js', express.static(__dirname + '/public/javascripts'));

A global path avoids ambiguity, which is why we use __dirname.
The pattern that static middleware is using behind the scenes is another good trick

to have in your sleeves when you write your own middleware. This is now how it works:
if you look closely, express.static() accepts a folder name as a parameter. This enables
the middleware to change its behavior or modes dynamically. This pattern is called a
monad, although people familiar with functional programming might argue that monad
is something different. Anyway, the main idea here is that we have a function that stores
data and returns another function.

The way this pattern is implemented in JavaScript/Node.js and modules like
serve-static is with the return keyword. Here’s an example where a custom myMiddleware
function takes a parameter, and returns either different middleware A or the default
middleware depending on whether or not the argument deep equals (===) to A:

var myMiddleware = function (param) {
 if (param === 'A') {
 return function(req, res, next) { // <---Middleware A
 // Do A stuff
 return next();
 }
 } else {
 return function(req, res, next) { // The default middleware
 // Do default stuff
 return next();
 }
}

The ch2/app.js example, shown next, demonstrates how to apply (app.use()) the
middleware static, morgan and other. The parameters and routes for each middleware
used in the example are covered in their respective sections.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

24

The full source code of the ch2/app.js to demo how to apply middleware (and to
give you something working for the other middleware modules):

// Import and instantiate dependencies
var express = require('express'),
 path = require('path'),
 fs = require('fs'),
 compression = require('compression'),
 logger = require('morgan'),
 timeout = require('connect-timeout'),
 methodOverride = require('method-override'),
 responseTime = require('response-time'),
 favicon = require('serve-favicon'),
 serveIndex = require('serve-index'),
 vhost = require('vhost'),
 busboy = require('connect-busboy'),
 errorhandler = require('errorhandler');

var app = express();
// Configure settings
app.set('view cache', true);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.set('port', process.env.PORT || 3000);
app.use(compression({threshold: 1}));
app.use(logger('combined'));
app.use(methodOverride('_method'));
app.use(responseTime(4));
app.use(favicon(path.join('public', 'favicon.ico')));
// Apply middleware
app.use('/shared', serveIndex(
 path.join('public','shared'),
 {'icons': true}
));
app.use(express.static('public'));
// Define routes
app.use('/upload', busboy({immediate: true }));
app.use('/upload', function(request, response) {
 request.busboy.on('file', function(fieldname, file, filename, encoding,
mimetype) {

 file.on('data', function(data){
 fs.writeFile('upload' + fieldname + filename, data);
 });
 file.on('end', function(){
 console.log('File ' + filename + ' is ended');
 });

 });

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

25

 request.busboy.on('finish', function(){
 console.log('Busboy is finished');
 response.status(201).end();
 })
});

app.get(
 '/slow-request',
 timeout('1s'),
 function(request, response, next) {
 setTimeout(function(){
 if (request.timedout) return false;
 return next();
 }, 999 + Math.round(Math.random()));
 }, function(request, response, next) {
 response.send('ok');
 }
);

app.delete('/purchase-orders', function(request, response){
 console.log('The DELETE route has been triggered');
 response.status(204).end();
});

app.get('/response-time', function(request, response){
 setTimeout(function(){
 response.status(200).end();
 }, 513);
});

app.get('/', function(request, response){
 response.send('Pro Express.js Middleware');
});
app.get('/compression', function(request, response){
 response.render('index');
})
// Apply error handlers
app.use(errorhandler());
// Boot the server
var server = app.listen(app.get('port'), function() {
 console.log('Express server listening on port ' + server.address().port);
});

Now that you know how to apply both third-party and in-house middleware, the
next step is to identify which third-party middleware is essential. And what is available
to developers and allows them to save themselves and teammates from the “fun” of
implementing, maintaining, and testing the functionality that the NPM modules provide.

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

26

Essential Middleware
As you’ve seen in the previous section, middleware is nothing more than a function
that takes req and res objects. Express.js version 4.x provides only one middleware
function out of the box: express.static(). Most of the middleware needs to be installed
and imported. The essential middleware usually stems from Sencha’s Connect library:
http://www.senchalabs.org/connect/ (NPM: https://npmjs.org/package/connect;
GitHub: https://github.com/senchalabs/connect).

The main thing to remember when using middleware is that the order in which
middleware functions are applied with the app.use() function matters, because this is the
order in which they'll be executed. In other words, developers need to be cautious about the
sequence of the middleware statements (in app.js), because this sequence will dictate the
order in which each request will go through the corresponding middleware functions.

Are you confused already? Look at this example: a session (express-session) must
follow a cookie (cookie-parser), because any web session depends on the cookies for
storing the session ID (and it is provided by cookie-parser). If we move them around the
sessions won’t work! Another example is Cross-Site Request Forgery middleware csurf
that requires express-session.

To make the point completely clear, middleware statements go before routes for the
exact same reason. If you put static (express.static() or serve-static) middleware
after a route definition, then the framework will finish the request flow by responding and
the static assets (e.g., from /public) won’t be served to the client.

Let’s dig deeper into the following middleware:

• compression

• morgan

• body-parser

• cookie-parser

• express-session

• csurf

• express.static or serve-static

• connect-timeout

• errorhandler

• method-override

• response-time

• serve-favicon

• serve-index

• vhost

• connect-busboy

http://www.senchalabs.org/connect/
https://npmjs.org/package/connect
https://github.com/senchalabs/connect

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

27

compression
The compression middleware (NPM: http://npmjs.org/compression) gzips transferred
data. Gzip or GNU zip is a compression utility. To install compression v1.0.11, run this
command in your terminal in the project’s root folder:

$ npm install compression@1.0.11 --save

Do you remember that the order of the middleware statements matters? That’s why
the compression middleware is usually placed at the very beginning of an Express.js app
configuration so that it precedes the other middleware and routes. The compression is
utilized with the compression() method:

var compression = require('compression');
// ... Typical Express.js set up...
app.use(compression());

Tip ■ You need to install the compression NPM module in the project (i.e., local)

node_modules folder. You can do so with $ npm install compression@1.0.10 --save or

by putting the line "compression": "1.0.10" into the package.json file and running

$ npm install.

The compression() method is good to go without any extra parameters, but if
you are an advanced Node.js programmer, you may want to use the gzip options for
compression:

• threshold: The size in kilobits at which to start compression (i.e.,
the minimum size in kilobits that can go uncompressed)

• filter: Function to filter out what to compress; the default filter
is compressible, available at https://github.com/expressjs/
compressible.

Gzip uses the core Node.js module zlib (http://nodejs.org/api/zlib.html#zlib_options)
and just passes these options to it:

• chunkSize: Size of the chunks to use (default: 16*1024)

• windowBits: Window size

• level: Compression level

• memLevel: How much memory to allocate

• strategy: What gzip compression algorithm to apply

• filter: Function that by default tests for the Content-Type
header to be json, text, or javascript

http://npmjs.org/compression
https://github.com/expressjs/compressible
https://github.com/expressjs/compressible
http://nodejs.org/api/zlib.html#zlib_options

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

28

For more information on these options, please see the zlib docs at
http://zlib.net/manual.html#Advanced.

In the ch2 project, we create an index.jade file with some dummy text, then add the
following to the app.js file:

var compression = require('compression');
// ... Configurations
app.use(compression({threshold: 1}));

The views/index.jade file will render h1 and p HTML elements with some Lorem
Ipsum text, as follows:

h1 hi
p Lorem Ipsum is simply dummy text of ...

Tip ■ For a thorough Jade template engine tutorial, consult Practical Node.js (Apress, 2014).

As a result of applying compression, in the Chrome browser Developer Tools console
you can see the Content-Encoding: gzip response header, as shown in Figure 2-1.

Figure 2-1. Content-Encoding is gzip with the compression middleware in use

http://zlib.net/manual.html#Advanced

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

29

morgan
The morgan middleware (https://www.npmjs.org/package/morgan) keeps track of all
the requests and other important information depending on the output format specified.
To install morgan v1.2.2, use

$ npm install morgan@1.2.2 --save

Morgan takes either an options object or a format string (common, dev, etc.);
for example,

var logger = require('morgan');
// ... Configurations
app.use(logger('common'));

or

var logger = require('morgan');
// ... Configurations
app.use(logger('dev'));

or

var logger = require('morgan');
// ... Configurations
app.use(logger(':method :url :status :res[content-length] - :response-time ms'));

Supported options to pass to the morgan function (logger() in the previous
example) are as follows:

• format: A string with an output format; see the upcoming list of
token string and predefined formats.

• stream: The output stream to use defaults to stdout, but could be
anything else, such as a file or another stream.

• buffer: The number of milliseconds for the buffer interval;
defaults to 1000ms if not set or not a number.

• immediate: Boolean value, that when set to true, makes the
logger (morgan) write log lines on request instead of response.

The following are the available format string parameters or tokens:

• :req[header] (e.g., :req[Accept])

• :res[header] (e.g., :res[Content-Length])

• :http-version

• :response-time

https://www.npmjs.org/package/morgan

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

30

• :remote-addr

• :date

• :method

• :url

• :referrer

• :user-agent

• :status

The following are the predefined formats/tokens that come with Morgan:

• combined: Same as :remote-addr - :remote-user [:date]
":method :url HTTP/:http-version" :status
:res[content-length] ":referrer" ":user-agent"

• common: Same as :remote-addr - :remote-user [:date]
":method :url HTTP/:http-version" :status
:res[content-length]

• short: Same as :remote-addr :remote-user :method :url
HTTP/:http-version :status :res[content-length] -
:response-time ms

• tiny: Same as :method :url :status :res[content-length] -
:response-time ms

• dev: Short and colored development output with response
statuses, same as :method :url :status :response-time ms -
:res[content-length]

You could also define your own formats. For more information, please refer to the
morgan documentation at https://www.npmjs.org/package/morgan.

body-parser
The body-parser module (https://www.npmjs.org/package/body-parser) is probably
the most essential of all the third-party middleware modules. It allows developers to
process incoming data, such as body payload, into usable JavaScript/Node.js objects.
To install body-parser v1.6.1, run this command:

$ npm install body-parser@1.6.1

The body-parser module has the following distinct middleware:

• json(): Processes JSON data; e.g., {"name": "value", "name2":
"value"}

• urlencoded(): Processes URL-encoded data; e.g.,
name=value&name2=value2

https://www.npmjs.org/package/morgan
https://www.npmjs.org/package/body-parser

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

31

• raw(): Returns body as a buffer type

• text(): Returns body as string type

If the request has a MIME type of application/json, the json() middleware will try
to parse the request payload as JSON. The result will be put in the req.body object and
passed to the next middleware and routes.

We can pass the following options as properties:

• strict: Boolean true or false; if it’s true (default), then a 400
status error (Bad Request) will be passed to the next() callback
when the first character is not [or {.

• reviver: A second parameter to the JSON.parse() function that
transforms the output; more info is available at MDN.1

• limit: Maximum byte size; disabled by default.

• inflate: Inflates the deflated body; default is true.

• type: Content-Type to parse; default is json.

• verify: A function to verify the body.

For example, if you need to skip the private methods/properties (by convention they
begin with the underscore symbol, _), apply nonstrict parsing, and have a limit of 5,000 bytes,
you could enter the following:

var bodyParser = require('body-parser');
// ... Express.js app set up
app.use(bodyParer.json({
 strict: false,
 reviver: function(key, value) {
 if (key.substr(0,1) === '_') {
 return undefined;
 } else {
 return value;
 }
 },
 limit: 5000
}));
// ...Boot-up

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/JSON/parse

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

32

urlencoded()
This body-parser module’s urlencoded() middleware parses only requests with the
x-ww-form-urlencoded header. It utilizes the qs module’s (https://npmjs.org/package/qs)
querystring.parse() function and puts the resulting JS object into req.body.

In addition to limit, type, verify, and inflate, urlencoded() takes an extended
boolean option. The extended option is a mandatory field. When it is set to true (the
default value), body-parser uses the qs module (https://www.npmjs.org/package/qs)
to parse query strings.

If you set extended to false, body-parser uses the core Node.js module querystring
for parsing of URL-encoded data. I recommend setting extended to true (that is, to use qs)
because it allows objects and arrays to be parsed from URL-encoded strings.

If you forget what a URL-encoded string looks like, it’s a name=value&name2=value2
string after the question mark (?) in the URL.

We can also pass the limit parameter to urlencoded(). The limit option works
similarly to the limit in the bodyParser.json() middleware which you saw in the
previous code snippet. For example, to set the limit to 10,000:

var bodyParser = require('body-parser');
// ... Express.js set up
app.use(bodyParser.urlencoded({limit: 10000});

Caution ■ In older versions, bodyParser.multipart() middleware is known to be prone to

malfunctioning when handling large file uploads. The exact problem is described by Andrew

Kelley in the article “Do Not Use bodyParser with Express.js.”2 The current versions of

Express.js v 4.x unbundled support for bodyParser.multipart(). Instead, the Express.js team

recommends using busboy,3 formidable,4 or multiparty.5

cookie-parser
The cookie-parser middleware (https://www.npmjs.org/package/cookie-parser)
allows us to access user cookie values from the req.cookie object in request handlers.
The method takes a string, which is used for signing cookies. Usually, it’s some clever
pseudo-random sequence (e.g., very secret string). To install cookie-parser v1.3.2,
run this command:

$ npm install cookie-parser@1.3.2

2http://andrewkelley.me/post/do-not-use-bodyparser-with-express-js.html
3https://www.npmjs.org/package/busboy
4https://www.npmjs.org/package/formidable
5https://www.npmjs.org/package/multiparty

https://npmjs.org/package/qs
https://www.npmjs.org/package/qs
https://www.npmjs.org/package/cookie-parser
http://andrewkelley.me/post/do-not-use-bodyparser-with-express-js.html
https://www.npmjs.org/package/busboy
https://www.npmjs.org/package/formidable
https://www.npmjs.org/package/multiparty

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

33

Use it like this:

var cookieParser = require('cookie-parser');
// ... Some Express.js set up
app.use(cookieParser());

or with the secret string (arbitrary random string, usually stored in an environment
variable):

app.use(cookieParser('cats and dogs can learn JavaScript'));

Caution ■ Avoid storing any sensitive information in cookies, especially user-related

information (personally identifiable information) such as credentials or their preferences.

In most cases, use cookies only to store a unique and hard-to-guess key (session ID)

that matches a value on the server. That enables you to retrieve a user session on

subsequent requests.

In addition to secret, the cookieParser() also takes these options as a second
parameter:

• path: A cookie path

• expires: Absolute expiration date for the cookie

• maxAge: Relative maximum age of the cookie

• domain: The web site domain for the cookie

• secure: Boolean indicating whether the cookie is secure or not

• httpOnly: Boolean indicating whether HTTP only or not

cookie-parser has some additional methods:

• JSONCookie(string): Parse string into a JSON data format

• JSONCookies(cookies): Same as JSONCookie(string) but for
objects

• signedCookie(string, secret): Parse a cookie value as a signed
cookie

• signedCookies(cookies, secret): Same as
signedCookie(string, secret) but for objects

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

34

express-session
The express-session middleware (https://www.npmjs.org/package/express-session)
allows the server to use web sessions. This middleware must have cookie-parser
enabled before its definition (higher in the app.js file). To install express-session v1.7.6,
run this command:

$ npm install express-session@1.7.6 --save

The express-session v1.7.6 middleware takes these options:

• key: Cookie name, defaulting to connect.sid

• store: Session store instance, usually a Redis object (covered in
detail in Chapter 12 of Pro Express.js (Apress, 2014))

• secret: Used to sign the session cookie, to prevent tampering;
usually just a random string

• cookie: Session cookie settings, defaulting to { path: '/',
httpOnly: true, maxAge: null }

• proxy: Boolean that indicates whether to trust the reverse proxy
when setting secure cookies (via "X-Forwarded-Proto")

• saveUninitialized: Boolean that forces the saving of a new
session (default is true)

• unset: Controls if you want to keep the session in the store after
unsetting the session with possible values keep and destroy
(default is keep)

• resave: Boolean that forces the saving of the unmodified session
(default is true)

• rolling: Boolean that sets a new cookie on each request which
resets the expiration (default is false)

• genid: A function that generates session ID (default is uid2:
https://www.npmjs.org/package/uid2, https://github.com/
coreh/uid2)

By default, sessions are stored in the memory. However, we can use Redis for
persistence and for sharing sessions between multiple machines. For more information
on Express.js sessions, please refer to Pro Express.js (Apress, 2014) Part 3, particularly
Chapter 12.

https://www.npmjs.org/package/express-session
https://www.npmjs.org/package/uid2
https://github.com/coreh/uid2
https://github.com/coreh/uid2

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

35

csurf
Cross-site request forgery (CSRF) occurs when a client still has session information
from a protected web site, such as a bank’s web site, and a malicious script submits
data on the client’s behalf, which could even be a money transfer. The attack succeeds
because the bank’s server can’t distinguish between the client’s valid request from the
bank’s web site and the malicious request from some compromised or untrustworthy
web site. The browser has the right session, but the user wasn’t on the bank’s
website’s page!!!

To prevent CSRF, we can enable CSRF protection by using a token with each request
and validating that token against our records. This way we know that we served the page
or resource from which the subsequent request with submitted data is coming. For more
information, please refer to the Wikipedia CSRF entry at http://en.wikipedia.org/
wiki/Cross-site_request_forgery.

The CSRF protection with the csurf module (https://www.npmjs.org/package/csurf)
is handled by Express.js by putting a _csrf token in the session (req.session._csrf) and
validating that value against values in req.body, req.query, and the X-CSRF-Token header.
If the values don’t match, the 403 Forbidden HTTP status code is returned, which means
that the resource is forbidden (see, e.g., http://en.wikipedia.org/wiki/HTTP_403). The
csurf middleware doesn’t check GET, HEAD, or OPTIONS methods by default. To install
csurf v1.6.0, run this command:

$ npm install csurf@1.6.0 --save

The most minimal examples of using csurf v1.6.0 is as follows:

var csrf = require('csurf');
// ... Instantiate Express.js application
app.use(csrf());

The csurf v1.6.0 takes the following additional parameters:

• value: A function that takes request (req) as an argument, checks
for the presense of the token, and returns the value true (found)
or false (not found). Look at the example below.

• cookie: Specifies to use the cookie-based store instead of the
default session-based one (not recommended)

• ignoreMethods: An array of HTTP methods to ignore when
checking for the CSRF token in requests (default value is
['GET', 'HEAD', 'OPTIONS'])

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
https://www.npmjs.org/package/csurf
http://en.wikipedia.org/wiki/HTTP_403

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

36

You can override the default function that checks the token value presence by
passing a callback function in a value property; for example, to use a different name and
check against only the request body, you can use

var csrf = require('csurf');
// ... Instantiate Express.js application
app.use(express.csrf({
 value: function (req) {
 return (req.body && req.body.cross_site_request_forgery_value);
 }
}));

The csrf middleware must be after express-session, cookie-parser, and optionally
(meaning if you plan to support tokens in the body of requests) after body-parser
middlewares:

var bodyParser = require('body-parser');
var cookieParser = require('cookie-parser');
var session = require('express-session');
var csrf = require('csurf');
// ... Instantiate Express.js application
app.use(bodyParser.json());
app.use(cookieParser());
app.use(session());
app.use(csrf());

express.static()
The express.static() or serve-static as a stand-alone module (https://www.npmjs.org/
package/serve-static) is the only middleware that comes with Express.js version 4.x,
so you don’t have to install it. In other words, under the hood, express.static() is a
serve-static module: https://github.com/expressjs/serve-static. We already covered
the express.static(path, options) method that serves files from a specified root path to
the folder, such as:

app.use(express.static(path.join(__dirname, 'public')));

or (not recommended because this might not work on Windows):

app.use(express.static(__dirname + '/public'));

A relative path is also an option:

app.use(express.static('public'));

https://www.npmjs.org/package/serve-static
https://www.npmjs.org/package/serve-static
https://github.com/expressjs/serve-static

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

37

The express.static(path, options) v1.5.0 (for Express.js v4.8.1) method takes
these options:

• maxAge: Number of milliseconds to set for browser cache maxAge,
which defaults to 0

• redirect: Boolean true or false (default is true) indicating
whether to allow a redirect to a trailing slash (/) when the URL
pathname is a directory

• dotfiles: Indicates how to treat hidden system folders/files (e.g.,
.gitignore); possible values are ignore (default), allow, and deny

• etag: Boolean indicating whether or not to use ETag caching
(default is true)

• extensions: Boolean indicating whether or not to use the default
file extensions (default is false)

• index: Identifies the index file; default is index.html; an array, a
string and false (disable) are possible values

• setHeaders: A function to set custom response headers

Here’s an example of the express.static() advanced usage with some arbitrary values:

app.use(express.static(__dirname + '/public', {
 maxAge: 86400000,
 redirect: false,
 hidden: true,
 'index': ['index.html', 'index.htm']
}));

connect-timeout
The connect-timeout module (https://www.npmjs.org/package/connect-timeout)
sets a timeout. Use of this middleware is recommended only on specific routes
(e.g., '/slow-route') that you suspect might be slower than average ones. To use
connect-timeout v1.2.2, install it with:

$ npm install connect-timeout@1.2.2 --save

In your server file, write these statements as shown in example ch2/app.js:

var timeout = require('connect-timeout');
// ... Instantiation and configuration
app.get(
 '/slow-request',
 timeout('1s'),
 function(request, response, next) {

https://www.npmjs.org/package/connect-timeout

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

38

 setTimeout(function(){
 if (request.timedout) return false;
 return next();
 }, 999 + Math.round(Math.random()));
 }, function(request, response, next) {
 response.send('ok');
 }
);
// ... Routes and boot-up

Run the server with $ node app. Then, from the separate terminal, send a few GET
requests with CURL:

$ curl http://localhost:3000/slow-request -i

The response should time out about half of the time with a 503 Service Unavailable
status code. The good response returns status code 200. Both are shown in Figure 2-2. It’s
possible to customize the message in the error handlers.

Figure 2-2. The responses when the timeout middleware is in action and when it’s not

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

39

errorhandler
The errorhandler middleware (https://www.npmjs.org/package/errorhandler)
can be used for basic error handling. This is especially useful in development and for
prototyping. This module doesn’t do anything that you can’t do yourself with custom
error-handling middleware. However, it will save you time. For production environments,
please consider customizing error handling to your needs.

The errorhandler v1.1.1 module installation is done with the following NPM
command:

$ npm install errorhandler@1.1.1 --save

We apply it in the server file like this:

var errorHandler = require('errorhandler');
// ... Configurations
app.use(errorHandler());

Or, only for development mode:

if (app.get('env') === 'development') {
 app.use(errorhandler());
}

It’s trivial to write your own error handlers. For example, this is a primitive handler
that renders an error template with an error message:

app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

As you can see, the method signature is similar to request handlers or middleware,
but has four arguments instead of three, like middleware, or two, like a core Node.js
request handler. This is how Express.js determines that this is an error handler and not
middleware—four parameters in the function definition: error (err), request (req),
response (res), and next.

This error handler is triggered from inside of the other middleware by calling next()
with an error object; for example, next(new Error('something went wrong')). If we
call next() without arguments, Express.js assumes that there were no errors and
proceeds to the next middleware in the chain.

https://www.npmjs.org/package/errorhandler

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

40

method-override
The method-override middleware (https://www.npmjs.org/package/method-override)
enables your server to support HTTP methods that might be unsupported by clients—for
example, systems where requests are limited to GET and POST (such as an HTML form in
the browser). To install method-override v2.1.3, run:

$ npm install method-override@2.1.3 --save

The method-override module can use the X-HTTP-Method-Override=VERB header
from the incoming requests:

var methodOverride = require('method-override');
// ... Configuratoins
app.use(methodOverride('X-HTTP-Method-Override'));

In addition to the header, we can use a query string. For example, to support requests
with ?_method=VERB:

var methodOverride = require('method-override');
// ... Configuratoins
app.use(methodOverride('_method'));

In ch2/app.js, after we install, import, and apply the method-override middleware
with the query string approach and _method name, we can define a DELETE route like
this:

app.delete('/purchase-orders', function(request, response){
 console.log('The DELETE route has been triggered');
 response.status(204).end();
});

After we start the app with $ node app, we submit the POST request with CURL in a
separate terminal window. In the URL, we specify the _method as DELETE:

$ curl http://localhost:3000/purchase-orders/?_method=DELETE -X POST

This CURL request is treated by Express.js as the DELETE HTTP method request, and
we will see the following message on the server:

The DELETE route has been triggered

For Windows users, CURL can be installed from http://curl.haxx.se/download.html.
Or, you can use jQuery’s $.ajax() function from the Chrome Developer Tools.

5

https://www.npmjs.org/package/method-override
http://curl.haxx.se/download.html

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

41

response-time
The response-time middleware (https://www.npmjs.org/package/response-time)
adds the X-Response-Time header with the time in milliseconds from the moment the
request entered this middleware.

To install response-time v2.0.1, run

$ npm install response-time@2.0.1 --save

The response-time() method takes a number of digits after the point that need to be
included in the result (3 is the default). Let’s ask for 4 digits:

var responseTime = require('response-time');
// ... Middleware
app.use(responseTime(4));

To illustrate this middleware in action, run ch2/app.js with $ node app. The server
has these statements pertaining to the response-time middleware:

app.use(responseTime(4));
// ... Middleware
app.get('/response-time', function(request, response){
 setTimeout(function(){
 response.status(200).end();
 }, 513);
});

The idea behind the preceding /response-time route is to delay the response by 513 ms.
Then, in a separate terminal window, run the curl command with -i to make a GET request
and output response information:

$ curl http://localhost:3000/response-time -i

As shown in Figure 2-3, this header appears in the response:

X-Response-Time: 514.3193ms

https://www.npmjs.org/package/response-time

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

42

serve-favicon
The serve-favicon middleware (https://www.npmjs.org/package/serve-favicon)
enables you to change the default favorite icon in the browser into a custom one.

To install the static-favicon v2.0.1 module, run:

$ npm install serve-favicon@2.0.1 --save

To include and apply the middleware, run

var favicon = require('serve-favicon');
// ... Instantiations
app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));

The serve-favicon v2.0.1 module has two parameters:

• path: The path to the favorite icon file, or Buffer with the icon data
(Buffer is a Node.js binary type)

• options: maxAge in milliseconds—how long to cache the favorite
icon; the default is 1 day

When you run ch2/app.js, you should see the webapplog.com logo on the tab, as
shown in Figure 2-4.

Figure 2-3. HTTP response with the X-Response-Time header that shows response time

https://www.npmjs.org/package/serve-favicon
http://webapplog.com/

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

43

serve-index
The serve-index middleware (https://www.npmjs.org/package/serve-index) enables
you to create a directory listing based on a particular folder’s content. Think about it as
a terminal $ ls command (or dir on Windows). You can even customize the look with
your own template and style sheet (the options are discussed later in this section).

To install serve-index v1.1.6, run:

$ npm install serve-index@1.1.6 --save

To apply the middleware, write these lines in your server file:

var serveIndex = require('serve-index');
// ... Middleware
app.use('/shared', serveIndex(
 path.join('public','shared'),
 {'icons': true}
));
app.use(express.static('public'));

In the serveIndex statement, specify the '/shared' folder and pass the
path.join('public', 'shared'); path to the public/shared folder in the project
directory. A value of true for icons (icons: true) means to display icons. The static
middleware is needed to display the actual file.

These lines of code are taken from ch2/app.js, and if you run it and navigate
to http://localhost:3000/shared, you’ll see a web interface with the folder name
(shared) and file name (abc.txt) as shown in Figure 2-5.

Figure 2-4. Favorite icon with the serve-favicon middleware in use

www.allitebooks.com

https://www.npmjs.org/package/serve-index
http://www.allitebooks.org

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

44

If you resize the browser to be narrow enough, the interface should change—
responsiveness! Also, there’s the search bar thanks to the default serve-index interface.

Clicking the file name abc.txt should open the file displaying the message “secret
text,” as shown in Figure 2-6. This is a a result of using the expsess.static() middleware,
and not serve-index.

Figure 2-5. The default serve-index web interface with folder and a file

Figure 2-6. Text file served by the static middleware

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

45

The serve-index middleware takes an options object as a second parameter
(the first is the path). The options can have the following properties:

• hidden: Boolean indicating whether or not to display hidden (dot)
files; defaults to false

• view: Display mode (tiles or details); defaults to tiles

• icons: Boolean indicating whether or not to show icons next to
file names/folder names; defaults to false

• filter: A filter function; defaults to false

• stylesheet: Path to a CSS style sheet (optional); defaults to the
built-in style sheet

• template: Path to an HTML template (optional); defaults to the
built-in template

In the template, you can use: {directory} for the name of the directory, {files} for
the HTML of an unordered list () of file links, {linked-path} for the HTML of a link
to the directory, and {style} for the specified stylesheet and embedded images.

Caution ■ Don’t use serve-index liberally on system folders and secret files. It’s good to

keep it constrained to a certain subfolder, such as public.

vhost
The vhost middleware (https://www.npmjs.org/package/vhost) enables you to use a
different routing logic based on the domain. For example, we can have two Express.js
apps, api and web, to organize code for different routes based on the domain,
api.hackhall.com or www.hackhall.com, respectively:

var app =express()
var api = express()
var web = express()
// ... Configurations, middleware and routes
app.use(vhost('www.hackhall.com', web))
app.use(vhost('api.hackhall.com', api))
app.listen(3000)

To install vhost v2.0.0, run:

$ npm install vhost@2.0.0 --save

https://www.npmjs.org/package/vhost
http://api.hackhall.com/
http://www.hackhall.com/
http://www.hackhall.com/
http://api.hackhall.com/

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

46

The vhost v2.0.0 middleware takes two parameters (as shown in the previous example):

• domain: String or RegExp; for example, *.webapplog.com

• server: Server object (express or connect); for example, api or web

connect-busboy
The connect-busboy module (https://www.npmjs.org/package/connect-busboy)
is connect.js/Express.js middleware that is built to be used with busboy form parser
(https://www.npmjs.org/package/busboy). The busboy form parser basically takes the
incoming HTTP(S) request multipart body and allows us to use its fields, uploaded files,
and so forth. To install the connect-busboy v0.0.1 middleware, which already includes
busboy, run

$ npm install connect-busboy@0.0.1 --save

Then, in your server file (app.js), write something similar to the following to
implement a file upload functionality on the /upload route:

var busboy = require('connect-busboy');
// ... Configurations
app.use('/upload', busboy({immediate: true }));
app.use('/upload', function(request, response) {
 request.busboy.on('file', function(fieldname, file, filename, encoding,
mimetype) {

 file.on('data', function(data){
 fs.writeFile('upload' + fieldname + filename, data);
 });
 file.on('end', function(){
 console.log('File ' + filename + ' is ended');
 });

 });
 request.busboy.on('finish', function(){
 console.log('Busboy is finished');
 response.status(201).end();
 })
});

The preceding example writes the file to the disk and outputs 201 to the client upon
finishing. In the terminal, we should see the file name with the word “ended”.

To simulate a file upload without the web page form, we can use our good old friend
CURL (one-line command):

$ curl -X POST -i -F name=icon -F filedata=@./public/favicon.ico
 http://localhost:3000/upload

http://*.webapplog.com
https://www.npmjs.org/package/connect-busboy
https://www.npmjs.org/package/busboy

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

47

The file that we’re uploading is in ch2/public/favicon.ico. This is the favorite
icon from the earlier serve-favicon example. As a result, there should be a file named
uploadfiledatafavicon.ico in the project folder. And in your terminal on the server
window, you should see messages:

File favicon.ico is ended
Busboy is finished

In your terminal on the client (i.e., curl window), you'll see 201 Created.

Note ■ In addition to the ch2 example, please see the chapters in Pro Express.js

(Apress, 2014) Part 4 for more advanced examples on middleware.

Other Middleware
There are many other noteworthy modules that are compatible with Connect.js and
Express.js. The following is only a brief list of some of the currently popular modules;
many more are coming out every month, and some are being discontinued or
abandoned, so check NPM for updates regularly. You can find each of these modules at
https://www.npmjs.org/package/package name, where package name is the name of
the module in the following list.

• cookies and kegrip: Alternatives to cookie-parser
(https://www.npmjs.org/package/cookies,
https://www.npmjs.org/package/keygrip,
https://www.npmjs.org/package/cookie-parser)

• cookie-session: Cookie-based session store
(https://www.npmjs.org/package/cookie-session)

• raw-body: For requests as buffers
(https://www.npmjs.org/package/raw-body)

• connect-multiparty: Uses mutliparty and acts as an alternative
to connect-busboy
(https://www.npmjs.org/package/connect-multiparty,
https://www.npmjs.org/package/multiparty,
https://www.npmjs.org/package/connect-busboy)

• qs: Alternative to query and querystring
(https://www.npmjs.org/package/qs,
https://www.nodejs.org/api/querystring.html)

• st, connect-static, and static-cache: Caching of static assets
(https://www.npmjs.org/package/st,
https://www.npmjs.org/package/connect-static, and
https://www.npmjs.org/package/static-cache)

https://www.npmjs.org/package/package name
https://www.npmjs.org/package/cookies
https://www.npmjs.org/package/keygrip
https://www.npmjs.org/package/cookie-parser
https://www.npmjs.org/package/cookie-session
https://www.npmjs.org/package/raw-body
https://www.npmjs.org/package/connect-multiparty
https://www.npmjs.org/package/multiparty
https://www.npmjs.org/package/connect-busboy
https://www.npmjs.org/package/qs
https://www.nodejs.org/api/querystring.html
https://www.npmjs.org/package/st
https://www.npmjs.org/package/connect-static
https://www.npmjs.org/package/static-cache
https://www.npmjs.org/package/static-cache

CHAPTER 2 ■ WORKING WITH MIDDLEWARE

48

• express-validator: Incoming data validation/sanitation
(https://www.npmjs.org/package/express-validator)

• everyauth and passport: Authentication and authorization
middleware (https://www.npmjs.org/package/everyauth and
https://www.npmjs.org/package/passport)

• oauth2-server: OAuth2 server middleware
(https://www.npmjs.org/package/oauth2-server)

• helmet: Collection of security middleware
(https://www.npmjs.org/package/helmet)

• connect-cors: Cross-origin resource sharing (CORS) support for
Express.js servers (https://www.npmjs.org/package/connect-cors)

• connect-redis: Redis session store for Express.js sessions
(https://www.npmjs.org/package/connect-redis)

Summary
This chapter covered how to create and apply your own custom middleware and how to
install and apply third-party middleware from NPM. You learned how the most essential
middleware works, which parameters their functions take, and how they behave.
You might have noticed that we used a small template for the error page and for the
compression page in the ch2 example project.

The next chapter is a continuation of the configuration and middleware theme.
Those are distinct parts of virtually any Express.js app (or server.js or index.js,
meaning the main Express.js file). The next topic is all about configuring views that
are facilitated by templates. Chapter 3 is an immersion into how we can use different
template engines. We explore how to utilize the most popular options with Express.js,
such as Jade and Handlebars, and other libraries.

https://www.npmjs.org/package/express-validator
https://www.npmjs.org/package/everyauth
https://www.npmjs.org/package/passport
https://www.npmjs.org/package/oauth2-server
https://www.npmjs.org/package/helmet
https://www.npmjs.org/package/connect-cors
https://www.npmjs.org/package/connect-redis

49

CHAPTER 3

Template Engines and
Consolidate.js

Template engines are libraries that allow us to use different template languages
(EJS, Handlebars, Jade, etc.). But what is a template language? Template language is a
special set of instructions (syntax and control structures) that tells the engine how to
process data. The language is specific to a particular template engine. The instructions in
the template are usually used to present data in a better format suitable for end-users. In
the case of web apps such final representation format is HTML. So basically, we have some
data (JSON or JavaScript/Node.js objects), and templates (EJS, Handlebars, Jade, etc.).
When they are combined, we get the output, which is good old HTML.

The process of combining data with templates is called rendering. Some template
engines have functionality to compile templates as an extra step before rendering.
Compilation is similar to caching and is geared towards optimizing for frequent reuse.

“Why the heck use templates?” you might ask if you haven’t used them before. There
are multiple advantages of using templates over not using them, the most important
of which is that you can reuse code—for example, menus, headers, footers, buttons
and other form elements, and so forth. This way, if you need to make a change later,
you’ll have to update code in only one place instead of changing it in every file. Another
advantage is that, depending on what library you’re using, you can make templates more
dynamic. This means that you can add some logic to the template and make it smarter
(e.g., a for loop to iterate over each row of the table).

Jade allows pretty much any JavaScript/Node.js in its code; that is, the developers
can harness the full power of rich JavaScript API in the templates!

This comes as a startling contrast to the approach used by Handlebars, which won’t
allow you to use JavaScript/Node.js functions in its templates. Although Handlebars’
philosophy is to limit standard functions, it allows registering custom functions in the
JavaScript/Node.js code (i.e., outside of the template itself).

Embedded JavaScript (EJS) is another popular choice for Node.js apps and it might
be a better alternative when performance is important because in benchmark tests EJS
performs better than Jade. Most of these template engines are suited for both browser
JavaScript and Node.js.

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

50

In this chapter we’ll cover the following topics:

How to use template engines: Plugging different template engines •
into Express.js projects

Uncommon libraries: Using rare template engines with Express.js•

Template engine choices: Different stand-alone template engine •
libraries

Consolidate.js: a one-stop library for seamless integration of •
virtually all template engines with Express.js

How to Use Template Engines
Some of the examples from the previous chapters used these two configuration statements:

app.set('views', path);
app.set('view engine', name);

Or, with values:

var path = require('path')
// ... Configurations
app.set('views', path.join(__dirname, 'templates'));
app.set('view engine', 'ejs');

where path is a path to the folder with the templates, and name is a template filename
extension and an NPM library name (e.g., jade is both an extension and an NMP name).

These two lines were enough to make Express.js render EJS or Jade templates.
We didn’t even have to import Jade in the app.js files. (But we still need to install the
modules locally!) This is because, under the hood, the Express.js library imports the
libraries based on the extension (the exact way it works is described in the next section
of this chapter):

require('jade');

or

require('ejs');

There are two approaches to specifying a template engine extension:

With the • render() function

With the • view engine setting

c

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

51

Usually the file extension is the NPM module name for that template engine. Here’s
an example of the first approach where the extension can be simply put after the file
name in the render function’s argument:

response.render('index.jade');

The response.render is called inside of the route request handler. More details on
render and other response object methods are provided later in the chapter.

If we use this approach (i.e., full file names with the extension), we can omit this line:

app.set('view engine', 'jade');

You can mix and match different template engines in one Express.js application.
Of course, the libraries that Express.js calls need to be installed in the local

node_modules folder. For example, to install jade v1.5.0, we have to define it in the
package.json and then run:

$ npm install

Here’s the line from ch2/package.json:

"jade": "1.5.0",

To use any other template engine, make sure that you install that module with NPM,
preferably by adding it to package.json as well, either manually or with npm install
name --save.

Interestingly enough, Express.js uses views as the default value. Therefore, if you
have templates in the views folder, you can omit this line:

app.set('views', path.join(__dirname, 'views'));

You know how to use app.set() for EJS and Jade templates, so now let’s cover how to
use alternative template engines with the configuration method: app.engine().

app.engine()
The app.engine() method is a lower-level method for setting up template engines.
Express.js uses this method under the hood.

By default, Express.js will try to require a template engine based on the extension
provided (the template engine NPM module name—that’s why we use this name as
the extension!). For example, when we call res.render('index.jade'); (more on this
method later) in the request handler of the route or in middleware with the index.jade
file name as an argument, the framework is calling require('jade') internally.

The full statement in the Express.js code (you don’t need to implement it yourself
just yet) is something like this: app.engine('jade', require('jade').__express);,
where __express is a convention that template libraries should implement.

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

52

Let’s say you prefer *.html or *.template instead of *.jade for your Jade files. In
this case you can use app.set() and app.engine() to overwrite the default extension. For
example, to use *.html, write these statements:

app.set('view engine', 'html');
app.engine('html', require('jade').__express);

and then, in each route, write something like this to render index.html:

response.render('index');

Or, for the '*.template' example, you can use an alternative approach without
the view engine and with the full file name in the request handler (basically copying the
internal Express.js code):

app.engine('template', require('jade').__express);

The following is the request handler call:

response.render('index.template');

This overwriting is especially cool for Handlebars and other template engines that
take plain HTML, because you can reuse your legacy HTML files without much of a hassle.

Uncommon Libraries
Now let’s cover the use of uncommon template engines. You can safely skip the rest of
this section if you plan to use only common libraries such as Jade or EJS.

Less common Node.js choices of libraries need to expose the _express method, which
is the common convention to indicate that a template library supports this Express.js
format. So check if the template engine has __express() on the source file that you import
with require(). If the __express() method is present, then the contributors made this
library compatible with Express.js. Again, most of the libraries are already outfitted to work
with Express.js and they have __express().

What if the library of your choice doesn’t have __express? If the template module
has a method with a signature similar to the __express method signature, you can easily
define your template engine’s method with app.engine; for example, in swig
(https://github.com/paularmstrong/swig), it’s the renderFile() method. So,
considering that renderFile in a template engine library of your choice supports a
function signature with these arguments:

• path: Path to a template file

• locals: Data to use for rendering HTML

• callback: The callback function

https://github.com/paularmstrong/swig

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

53

you can write code like this to apply this library as Express.js middleware:

// ... Declare dependencies
// ... Instantiate the app
// ... Configure the app
app.engine('swig', require('swig').renderFile);
// ... Define the routes

The example in the ch3 folder shows how you can use multiple template engines and
various extensions. This is the scoop of the app.js statements:

// ... Declare dependencies
// ... Instantiate the app
// ... Configure the app
var jade = require('jade');
var consolidate = require('consolidate');

app.engine('html', jade.__express);
app.engine('template', jade.__express);
app.engine('swig', consolidate.swig);
// ... Define the routes
app.get('/', function(request, response){
 response.render('index.html');
});

app.get('/template', function(request, response){
 response.render('index.template');
});

app.get('/swig', function(request, response){
 response.render('index.swig');
})

The consolidate library will be explained later in this chapter.
The package.json file has the following dependencies (install them with npm install):

{
 "name": "template-app",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "consolidate": "^0.10.0",
 "errorhandler": "1.1.1",

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

54

 "express": "4.8.1",
 "jade": "1.5.0",
 "morgan": "1.2.2",
 "swig": "^1.4.2",
 "serve-favicon": "2.0.1"
 }
}

Starting the application with $ node app should start the server that will render
“Hi, I'm Jade from index.html” when you go to the home page (see Figure 3-1).

Figure 3-1. Jade template rendered from the index.html file

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

55

And lastly, it should render “hi, I’m Jade in index.template file” when you go to the
/template (see Figure 3-3).

Figure 3-2. Swig template rendered from the index.swig file

Also, the server should render “Hi, I’m Swig from index.swig” when you go to the
/swig (see Figure 3-2).

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

56

This is probably an over-the-top example, because you will rarely use more than one
template engine in a single Express.js app. However, it’s good to know that the framework
is flexible enough to allow you to implement it with just a few configuration statements.

It’s worth noting, in our expressapiref/ch3 example, both Jade files index.html and
index.template use the so-called top-down inclusion via include filename (without
quotes). This allows us to reuse the Lorem Ipsum text of the paragraph in the
lorem-ipsum.html file.

The file in our example is just a plain text file, but it can have Jade template content
in it. The index.html looks like this:

h1 Hi, I'm Jade from index.html file
p
 include lorem-ipsum.html

And the index.temlate is similar:
h1 hi, I'm Jade in index.template file
p
 include lorem-ipsum.html

Figure 3-3. Jade template rendered from the index.jade file

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

57

INCLUSIONS, LAYOUTS AND PARTIALS

Top-down inclusion is a standard inheritance pattern in which the parent object

commands where and what to do with the child (the object that is included). So, for

example, you have a file A that includes file B (a partial), and file A will do with file B

what it wants. This is what you’ll use in most template languages.

The alternative to top-down inclusion is the bottom-up pattern. Not all languages

support it. In this case, file A is a larger and higher-up-the-chain entity (a layout), and

file B is a smaller piece of the puzzle, but file B will dictate what it wants.

You can also think about the top-down approach as overwriting some methods in a

child class when you extend those methods from the parent class, while leaving the

others intact.

In Jade, bottom-up is implemented with a set of extend, layout, and block

statements. For deep coverage on Jade, refer to Practical Node.js (Apress, 2014).

Template Engine Choices
This section briefly introduces the libraries that support Express.js without any
modifications. This list of choices is derived from the list at the Express.js wiki page:
https://github.com/strongloop/express/wiki#template-engines.

Jade
Jade (https://github.com/jadejs/jade) is a Haml-inspired template engine. It’s very
powerful because it has two types of inheritances, supports all JavaScript/Node.js, and
requires a minimum number of symbols/characters due to treating whitespace and
indentation as part of the language.

Haml.js
Haml.js (https://github.com/tj/haml.js) is a Haml implementation. Haml is a
standard choice for Rails developers. This language treats whitespace and indentation
as part of the language, which makes code more compact and less prone to typos, thus
making it more pleasurable to write.

EJS
EJS (https://github.com/tj/ejs) is an embedded JavaScript template engine. According
to some benchmark performance tests, EJS is faster than Jade or Haml (see, for example,
http://paularmstrong.github.io/node-templates/benchmarks.html).

https://github.com/strongloop/express/wiki#template-engines
https://github.com/jadejs/jade
https://github.com/tj/haml.js
https://github.com/tj/ejs
http://paularmstrong.github.io/node-templates/benchmarks.html

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

58

Handlebars.js
Hbs (https://github.com/donpark/hbs) is an adapter for Handlebars.js, which is an
extension of the Mustache.js template engine. By design, Handlebars prohibits putting
complex logic in the templates. Instead, developers need to write functions outside of
templates and register them. This is the easiest template engine to learn. It’s often used in
reactive templates. If you’re familiar with (or plan to use) Angular.js, Meteor, or DerbyJS,
this choice might be better for you because it is similar to what they use.

Alternative adapter is express-hbs (https://github.com/barc/express-hbs) which
is the Handlebars with layouts, partials. blocks for Express 3 from Barc
(http://barc.com).

Another adapter is express-handlebars (https://github.com/ericf/express-handlebars).

Hogan.js Adapters
h4e (https://github.com/tldrio/h4e) is an adapter for Hogan.js, with support for
partials and layouts. Hulk-hogan (https://github.com/quangv/hulk-hogan) is an
adapter for Twitter’s Hogan.js (Mustache syntax), with support for partials.

Combyne.js
The Combyne.js (https://github.com/tbranyen/combyne.js) is a template
engine that hopefully works the way you’d expect. And combynexpress
(https://github.com/tbranyen/combynexpress) is an Express library for Combyne.js.

Swig
Swig (https://github.com/paularmstrong/swig) is a fast, Django-like template engine.

Whiskers
Whiskers (https://github.com/gsf/whiskers.js) is small, fast, and
mustachioed (looks like Handlebars or Mustache). It is faster than Jade
(per http://paularmstrong.github.io/node-templates/benchmarks.html).

Blade
Blade (https://github.com/bminer/node-blade) is an HTML template compiler,
inspired by Jade and Haml that treats whitespace as part of the language.

http://github.com/donpark/hbs
https://github.com/barc/express-hbs
http://barc.com/
https://github.com/ericf/express-handlebars
https://github.com/tldrio/h4e
https://github.com/quangv/hulk-hogan
https://github.com/tbranyen/combyne.js
https://github.com/tbranyen/combynexpress
https://github.com/paularmstrong/swig
https://github.com/gsf/whiskers.js
http://paularmstrong.github.io/node-templates/benchmarks.html
https://github.com/bminer/node-blade

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

59

Haml-Coffee
Haml-Coffee (https://github.com/netzpirat/haml-coffee) provides Haml templates
in which you can write inline CoffeeScript. It is perfect if you’re using CoffeeScript for
your Node.js code (the benefits of CoffeeScript are highlighted in this presentation:
http://www.infoq.com/presentations/coffeescript-lessons).

Webfiller
Webfiller (https://github.com/haraldrudell/webfiller) is a plain HTML5 dual-side
rendering engine with self-configuring routes, organized source tree. Webfiller is 100% JS.

Consolidate.js
In case the template engine of your choice does not provide an __express() method, or
you’re not sure and don’t want to bother finding out, consider the consolidate library
(https://npmjs.org/package/consolidate; GitHub:
https://github.com/tj/consolidate.js).

The consolidate library streamlines and generalizes a few dozen template engine
modules so that they “play nicely” with Express.js. This means there’s no need to look up
the source code to search for the presence of the __express() method. All you need to do
is require consolidate and then map the engine of your choice to the extension.

Here is a Consolidate.js example:

var express = require('express');
var consolidate = require('consolidate');

var app = express();

// ... configure template engine:
app.engine('html', consolidate.handlebars);
app.set('view engine', 'html');
app.set('views', __dirname + '/views');

That’s it; res.render() is ready to use Handlebars!
The template engines that Consolidate.js supports, as of this writing, are shown in

Table 3-1 (compiled from the Consolidate.js GitHub page:

https://github.com/tj/consolidate.js/blob/master/Readme.md).

https://github.com/netzpirat/haml-coffee
http://www.infoq.com/presentations/coffeescript-lessons
https://github.com/haraldrudell/webfiller
https://npmjs.org/package/consolidate
https://github.com/tj/consolidate.js
https://github.com/tj/consolidate.js/blob/master/Readme.md

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

60

Table 3-1. Template Engines Supported by Consolidate.js

Template Engine GitHub Web Site (if applicable)

atpl https://github.com/soywiz/
atpl.js

dust https://github.com/akdubya/
dustjs

http://akdubya.github.io/
dustjs/

eco https://github.com/
sstephenson/eco

ect https://github.com/baryshev/ect http://ectjs.com

ejs https://github.com/tj/ejs http://www.embeddedjs.com

haml https://github.com/tj/haml.js http://haml.info

haml-coffee https://github.com/9elements/
haml-coffee

http://haml.info

handlebars.js https://github.com/wycats/
handlebars.js/

http://handlebarsjs.com

Hogan.js https://github.com/twitter/
hogan.js

http://twitter.github.io/
hogan.js

Jade https://github.com/jadejs/
jade

http://jade-lang.com

jazz https://github.com/shinetech/
jazz

jqtpl https://github.com/kof/jqtpl

JUST https://github.com/baryshev/
just

liquor https://github.com/chjj/
liquor

lodash https://github.com/lodash/
lodash

https://lodash.com

mustache https://github.com/janl/
mustache.js

http://mustache.github.io

nunjunks http://mozilla.github.io/
nunjucks/

QEJS https://github.com/jepso/QEJS

ractive https://github.com/ractivejs/
ractive

(continued)

https://github.com/soywiz/atpl.js
https://github.com/soywiz/atpl.js
https://github.com/akdubya/dustjs
https://github.com/akdubya/dustjs
http://akdubya.github.io/dustjs/
http://akdubya.github.io/dustjs/
https://github.com/sstephenson/eco
https://github.com/sstephenson/eco
https://github.com/baryshev/ect
http://ectjs.com/
https://github.com/tj/ejs
http://www.embeddedjs.com/
https://github.com/tj/haml.js
http://haml.info/
https://github.com/9elements/haml-coffee
https://github.com/9elements/haml-coffee
http://haml-lang.com/
https://github.com/wycats/handlebars.js/
https://github.com/wycats/handlebars.js/
http://handlebarsjs.com/
https://github.com/twitter/hogan.js
https://github.com/twitter/hogan.js
http://twitter.github.io/hogan.js
http://twitter.github.io/hogan.js
https://github.com/jadejs/jade
https://github.com/jadejs/jade
http://jade-lang.com/
https://github.com/shinetech/jazz
https://github.com/shinetech/jazz
https://github.com/kof/jqtpl
https://github.com/baryshev/just
https://github.com/baryshev/just
https://github.com/chjj/liquor
https://github.com/chjj/liquor
https://github.com/lodash/lodash
https://github.com/lodash/lodash
https://lodash.com/
https://github.com/janl/mustache.js
https://github.com/janl/mustache.js
http://mustache.github.io/
http://mozilla.github.io/nunjucks/
http://mozilla.github.io/nunjucks/
https://github.com/jepso/QEJS
https://github.com/ractivejs/ractive
https://github.com/ractivejs/ractive

CHAPTER 3 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

61

Jade template language is quite extensive in itself and is beyond the scope of this
book. To learn about every feature and the differences between extend and include
(top-down and bottom-up), refer to Practical Node.js (Apress, 2014), which has a whole
chapter dedicated to Jade and Handlebars.

Summary
Templates are a staple of modern web development. Without them developers would
have to write way more code and the maintenance would be painful. When it comes to
Node.js, Jade—a close relative to Ruby on Rails’ Haml—is a powerful choice. This is due
to its rich set of features and elegance of style (whitespaces and indentations are part of
the language). But don’t attempt to write Jade without learning it first. It might be painful.

Express.js supports different approaches to configuring the location of templates and
file extensions. Also, Express.js shines when it comes to configuring different pieces of the
puzzle; changing a template engine is a matter of a few lines of code.

The NPM userland provides tons of template engine choices—there are dozens
of other template libraries that are easily compatible with Express.js, as you saw in
the “Consolidate.js” section. They have different styles, design, and performances.
For example, Swig, EJS, and some other libraries often outperform Jade in benchmark
tests. And if you get used to the {{...}}} style of Handlebar and Mustache (e.g., from
Angular.js)—or you don’t have the time to learn Jade properly—then you can use
those libraries right away!

This chapter concludes the configuration section of the app.js file. We move on to
the routes. We’ll start with the definition of routes and the extraction of parameters
from URLs.

Table 3-1. (continued)

Template Engine GitHub Web Site (if applicable)

swig https://github.com/
paularmstrong/swig

http://paularmstrong.
github.com/swig/

templayed http://archan937.github.io/
templayed.js/

toffee https://github.com/
malgorithms/toffee

underscore https://github.com/jashkenas/
underscore

http://documentcloud.
github.io/underscore/

walrus https://github.com/
jeremyruppel/walrus

http://documentup.com/
jeremyruppel/walrus/

whiskers https://github.com/gsf/
whiskers.js/

https://github.com/paularmstrong/swig
https://github.com/paularmstrong/swig
http://paularmstrong.github.com/swig/
http://paularmstrong.github.com/swig/
http://archan937.github.io/templayed.js/
http://archan937.github.io/templayed.js/
https://github.com/malgorithms/toffee
https://github.com/malgorithms/toffee
https://github.com/jashkenas/underscore
https://github.com/jashkenas/underscore
http://documentcloud.github.io/underscore/
http://documentcloud.github.io/underscore/
https://github.com/jeremyruppel/walrus
https://github.com/jeremyruppel/walrus
http://documentup.com/jeremyruppel/walrus/
http://documentup.com/jeremyruppel/walrus/
https://github.com/gsf/whiskers.js/
https://github.com/gsf/whiskers.js/

63

CHAPTER 4

Parameters and Routing

To review, the typical structure of an Express.js app (which is usually a server.js or
app.js file) roughly consists of these parts, in the order shown:

1. Dependencies: A set of statements to import dependencies

2. Instantiations: A set of statements to create objects

3. Configurations: A set of statements to configure system and
custom settings

4. Middleware: A set of statements that is executed for every
incoming request

5. Routes: A set of statements that defines server routes,
endpoints, and pages

6. Bootup: A set of statements that starts the server and makes it
listen on a specific port for incoming requests

This chapter covers the fifth category, routes and the URL parameters that we define
in routes. These parameters, along with the app.param() middleware, are essential
because they allow the application to access information passed from the client in the
URLs (e.g., books/proexpressjs). This is the most common convention for REST APIs.
For example, the http://hackhall.com/api/posts/521eb002d00c970200000003 route
will use the value of 521eb002d00c970200000003 as the post ID.

Parameters are values passed in a query string of a URL of the request. If we didn’t
have Express.js or a similar library, and had to use just the core Node.js modules, we’d have
to extract parameters from an HTTP.request (http://nodejs.org/api/http.html#http_
http_request_options_callback) object via some require('querystring').parse(url)
or require('url').parse(url, true) function “trickery.”

Let’s look closer at how to define a certain rule or logic for a particular URL parameter.

Parameters
The first approach to extracting parameters from the URLs is to write some code in the
request handler (route). In case you need to repeat this snippet in other routes, you can
abstract the code and manually apply the same logic to many routes. (To abstract code
means to refactor the code so that it can be reused in other places and/or be organized
better. This improves maintainability and readability of the code.)

http://hackhall.com/api/posts/521eb002d00c970200000003
http://nodejs.org/api/http.html#http_http_request_options_callback
http://nodejs.org/api/http.html#http_http_request_options_callback

CHAPTER 4 ■ PARAMETERS AND ROUTING

64

For example, imagine that we need user information on a user profile page
(/v1/users/azat defined as /v1/users/:username) and on an admin page
(/v1/admin/azat defined as /v1/admin/:username). One way to do this is to define a
function that looks up the user information (findUserByUsername) and call this function
twice inside of each of the routes. This is how we can implement it (example ch4/app.js):

var users = {
 'azat': {
 email: 'hi@azat.co',
 website: 'http://azat.co',
 blog: 'http://webapplog.com'
 }
};

var findUserByUsername = function (username, callback) {
 // Perform database query that calls callback when it's done
 // This is our fake database
 if (!users[username])
 return callback(new Error(
 'No user matching '
 + username
)
);
 return callback(null, users[username]);
};

app.get('/v1/users/:username', function(request, response, next) {
 var username = request.params.username;
 findUserByUsername(username, function(error, user) {
 if (error) return next(error);
 return response.render('user', user);
 });
});

app.get('/v1/admin/:username', function(request, response, next) {
 var username = request.params.username;
 findUserByUsername(username, function(error, user) {
 if (error) return next(error);
 return response.render('admin', user);
 });
});

www.allitebooks.com

http://azat.co/
http://webapplog.com/
http://www.allitebooks.org

CHAPTER 4 ■ PARAMETERS AND ROUTING

65

This example is also avalilable at https://github.com/azat-co/expressapiref/
tree/master/ch4. You can run the app from the ch4 folder with $ node app command.
Then, open a new terminal tab/window, and CURL a GET request with:

$ curl http://localhost:3000/v1/users/azat

To see this:

<h2>user profile</h2><p>http://azat.co</p><p>http://webapplog.com</p>

And with

$ curl http://localhost:3000/v1/admin/azat

To see this:

<h2>admin: user profile</h2><p>hi@azat.co</p><p>http://azat.co</p>
<p>http://webapplog.com</p><div><Practical>Node.js is your step-by-step
guide to learning how to build scalable real-world web applications, taking
you from installing Express.js to writing full-stack web applications
with powerful libraries such as Mongoskin, Everyauth, Mongoose, Socket.IO,
Handlebars, and everything in between.</Practical></div>

Note ■ Windows users can download CURL from http://curl.haxx.se/download.html.

Alternatively, you can use the Postman Chrome extension at http://bit.ly/JGSQwr.

Or, for GET requests only, you can use your browser—just go to the URL. The browser won’t

make PUT or DELETE requests, and it will make POST requests only if you submit a form.

The last approach is to use jQuery to make AJAX/XHR requests, but be mindful
about the cross-origin limitations, which means using the same domain, or CORS
headers on the server. Or you could simply go to http://localhost:3000/v1/users/azat
(see Figure 4-1) and http://localhost:3000/v1/admin/azat (see Figure 4-2) in your
browser.

x

https://github.com/azat-co/expressapiref/tree/master/ch4
https://github.com/azat-co/expressapiref/tree/master/ch4
http://azat.co
http://webapplog.com
http://azat.co</p><p>http://webapplog.com</p><div><Practical>Node.js
http://webapplog.com
http://curl.haxx.se/download.html
http://bit.ly/JGSQwr

CHAPTER 4 ■ PARAMETERS AND ROUTING

66

Figure 4-1. Username URL parameter is parsed and used to find information displayed on
the user page (example ch4)

Figure 4-2. Username URL parameter is parsed and used to find information displayed on
the admin page (example ch4)

CHAPTER 4 ■ PARAMETERS AND ROUTING

67

The admin.jade template (Figure 4-2) has slightly different content from user.jade
(Figure 4-1) to help you differentiate between the two pages/routes so you can be assured
that both of them parse and use the parameters correctly.

Even after abstracting the bulk of the code into the findUserByUsername()
function, we still ended up with ineloquent code. If we use the middleware approach,
the code becomes a little bit better. The idea is to write a custom middleware
findUserByUsernameMiddleware and use it with each route that needs the user
information. Here’s how you can refactor the same two routes and use the /v2 prefix
(prefixes are usually used to differentiate REST API versions):

var findUserByUsername = function (username, callback) {
 // Perform database query that calls callback when it's done
 // This is our fake database!
 if (!users[username])
 return callback(new Error(
 'No user matching '
 + username
)
);
 return callback(null, users[username]);
};
var findUserByUsernameMiddleware = function(request, response, next){
 if (request.params.username) {
 console.log('Username param was detected: ', request.params.username)
 findUserByUsername(request.params.username, function(error, user){
 if (error) return next(error);
 request.user = user;
 return next();
 })
 } else {
 return next();
 }
}
// The v2 routes that use the custom middleware
app.get('/v2/users/:username',
 findUserByUsernameMiddleware,
 function(request, response, next){
 return response.render('user', request.user);
});
app.get('/v2/admin/:username',
 findUserByUsernameMiddleware,
 function(request, response, next){
 return response.render('admin', request.user);
});

CHAPTER 4 ■ PARAMETERS AND ROUTING

68

The middleware findUserByUsernameMiddleware checks for the presence of the
parameter (request.params.username) and then, if it’s present, proceeds to fetch the
information. This is a better pattern because it keeps routes lean and abstracts logic.
However, Express.js has an even better solution. It’s similar to the middleware method, but
it makes our lives a bit easier by automatically performing the parameter presence checks
(i.e., a check to see if the parameter is in the request). Meet the app.param() method!

app.param()
Anytime the given string (e.g., username) is present in the URL pattern of the route, and
server receives a request that matches that route, the callback to the app.param() will
be triggered. For example, with app.param('username', function(req, res, next,
username){...}) and app.get('/users/:username', findUser) every time we have a
request /username/azat or /username/tjholowaychuk, the closure in app.param() will
be executed (before findUser).

The app.param() method is very similar to app.use() but it provides the value
(username) in our example) as the fourth, last parameter, to the function. In this snippet,
the username will have the value from the URL (e.g., 'azat' for /users/azat):

app.param('username', function (request, response, next, username) {
 // ... Perform database query and
 // ... Store the user object from the database in the req object
 req.user = user;
 return next();
});

No need of extra lines of code since we have req.user object populated by the
app.param():

app.get('/users/:username', function(request, response, next) {
 //... Do something with req.user
 return res.render(req.user);
});

No need for extra code in this route either. We get req.user for free because of the
app.param() defined earlier:

app.get('/admin/:username', function(request, response, next) {
 //... Same thing, req.user is available!
 return res.render(user);
});

CHAPTER 4 ■ PARAMETERS AND ROUTING

69

Here is another example of how we can plug param middleware into our app:

app.param('id', function(request, response, next, id){
 // Do something with id
 // Store id or other info in req object
 // Call next when done
 next();
});

app.get('/api/v1/stories/:id', function(request, response){
 // Param middleware will be executed before and
 // We expect req objects to already have needed info
 // Output something
 res.send(data);
});

Tip ■ If you have a large application with many versions of API and routes (v1, v2, etc.),

then it’s better to use the Router class/object to organize the code of these routes. You

create a Router object and mount it on a path, such as /api or /api/v1. Router is just a

stripped-down version of the var app = express() object. More details about the Router

class are provided later in the chapter.

The following is an example of plugging param middleware into an app that has a
Mongoskin/Monk-like database connection in req.db:

app.param('id', function(request, response, next, id){
 req.db.get('stories').findOne({_id: id}, function (error, story){
 if (error) return next(error);
 if (!story) return next(new Error('Nothing is found'));
 req.story = story;
 next();
 });
});

app.get('/api/v1/stories/:id', function(request, response){
 res.send(req.story);
});

CHAPTER 4 ■ PARAMETERS AND ROUTING

70

Or we can use multiple request handlers, but the concept remains the same: we can
expect to have a req.story object or an error thrown prior to the execution of this code,
so we abstract the common code/logic of getting parameters and their respective objects.
Here is an example:

app.get('/api/v1/stories/:id', function(request, response, next) {
 //do authorization
 },
 //we have an object in req.story so no work is needed here
 function(request, response) {
 //output the result of the database search
 res.send(story);
});

Note ■ Authorization and input sanitation are good candidates for residing in the

middleware. For extensive examples of OAuth and Express.js, refer to Practical Node.js1

(Apress, 2014).

The param() function is especially cool, because we can combine different variables
in the routes; for example:

app.param('storyId', function(request, response, next, storyId) {
 // Fetch the story by its ID (storyId) from a database
 // Save the found story object into request object
 request.story = story;

});
app.param('elementId', function(request, response, next, elementId) {
 // Fetch the element by its ID (elementId) from a database
 // Narrow down the search when request.story is provided
 // Save the found element object into request object
 request.element = element;
});
app.get('/api/v1/stories/:storyId/elements/:elementId', function(request,
response){
 // Now we automatically get the story and element in the request object
 res.send({ story: request.story, element: request.element});
});
app.post('/api/v1/stories/:storyId/elements', function(request, response){
 // Now we automatically get the story in the request object
 // We use story ID to create a new element for that story
 res.send({ story: request.story, element: newElement});
});

1http://practicalnodebook.com

http://practicalnodebook.com/

CHAPTER 4 ■ PARAMETERS AND ROUTING

71

To summarize, by defining app.param once, its logic will be triggered for every
route that has the matching URL parameter name. You might be wondering, “How is it
different from writing your own function and calling it, or from writing your own custom
middleware?” They will both execute the code properly, but param is a more elegant
approach. We can refactor our earlier example to show the difference.

Let’s go back to the ch4 project. If we refactor our previous example from ch4/app.js
and use v3 as a new route prefix, we might end up with elegant code like this:

app.param('v3Username', function(request, response, next, username){
 console.log(
 'Username param was is detected: ',
 username
)
 findUserByUsername(
 username,
 function(error, user){
 if (error) return next(error);
 request.user = user;
 return next();
 }
);
});

app.get('/v3/users/:v3Username',
 function(request, response, next){
 return response.render('user', request.user);
 }
);
app.get('/v3/admin/:v3Username',
 function(request, response, next){
 return response.render('admin', request.user);
 }
);

So, extracting parameters is important, but defining routes is more important.
Defining routes is also an alternative to using app.param() to extract values from URL
parameters—this method is recommended when a parameter is used only once. If it’s
used more than once, param is a better pattern.

A lot of routes have already been defined in the three previous chapters. In the
next section, we’ll explore in more detail how to define various HTTP methods, chain
middleware, abstract middleware code, and define all-method routes.

CHAPTER 4 ■ PARAMETERS AND ROUTING

72

Routing
Express.js is a Node.js framework that, among other things, provides a way to organize routes
into smaller subsections (Routers—instances of Router class/object). In Express.js 3.x and
earlier, the only way to define routes is to use the app.VERB() pattern, which we’ll cover next.
However, starting with Express.js v4.x, using the new Router class is the recommended way to
define routes, via router.route(path). We’ll cover the traditional approach first.

app.VERB()
Each route is defined via a method call on an application object with a URL pattern as
the first parameter (regular expressions2 are also supported); that is, app.METHOD(path,
[callback...], callback).

For example, to define a GET /api/v1/stories endpoint:

app.get('/api/v1/stories/', function(request, response){
 // ...
})

Or, to define an endpoint for the POST HTTP method and the same route:

app.post('/api/v1/stories', function(request, response){
 // ...
})

DELETE, PUT, and other methods are supported as well. For more information, see
http://expressjs.com/api.html#app.VERB.

The callbacks that we pass to get() or post() methods are called request handlers
(covered in detail in Chapter 5), because they take requests (req), process them, and write
to the response (res) objects. For example:

app.get('/about', function(request, response){
 res.send('About Us: ...');
});

We can have multiple request handlers in one route. All of them except the first and
the last will be in the middle of the flow (order in which they are executed), hence the
name middleware. They accept a third parameter/function, next, which when called
(next()), switches the execution flow to the next handler. For example, we have three
functions that perform authorization, database search and output:

app.get('/api/v1/stories/:id', function(request, response, next) {
 // Do authorization
 // If not authorized or there is an error

2http://en.wikipedia.org/wiki/Regular_expression

http://expressjs.com/api.html#app.VERB
http://en.wikipedia.org/wiki/Regular_expression

CHAPTER 4 ■ PARAMETERS AND ROUTING

73

 // Return next(error);
 // If authorized and no errors
 return next();
}), function(request, response, next) {
 // Extract id and fetch the object from the database
 // Assuming no errors, save story in the request object
 request.story = story;
 return next();
}), function(request, response) {
 // Output the result of the database search
 res.send(response.story);
});

The name next() is an arbitrary convention, which means you can use anything else
you like instead of next(). The Express.js uses the order of the arguments in the function
to determine their meaning. The ID of a story is the URL parameter , which we need for
finding matching items in the database.

Now, what if we have another route /admin. We can define multiple request
handlers, which perform authentication, validation, and loading of resources:

app.get('/admin',
 function(request, response, next) {
 // Check active session, i.e.,
 // Make sure the request has cookies associated with a valid user session
 // Check if the user has administrator privileges
 return next();
 }, function(request, response, next){
 // Load the information required for admin dashboard
 // Such as user list, preferences, sensitive info
 return next();
 }, function(request, response) {
 // Render the information with proper templates
 // Finish response with a proper status
 res.end();
 })

But what if some of the code for /admin, such as authorization/authentication,
is duplicated from the /stories? The following accomplishes the same thing, but is much
cleaner with the use of named functions:

var auth = function (request, response, next) {
 // ... Authorization and authentication
 return next();
}
var getStory = function (request, response, next) {
 // ... Database request for story
 return next();
}

CHAPTER 4 ■ PARAMETERS AND ROUTING

74

var getUsers = function (request, response, next) {
 // ... Database request for users
 return next();
}
var renderPage = function (request, response) {
 if (req.story) res.render('story', story);
 else if (req.users) res.render('users', users);
 else res.end();
}

app.get('/api/v1/stories/:id', auth, getStory, renderPage);
app.get('/admin', auth, getUsers, renderPage);

Another useful technique is to pass callbacks as items of an array, made possible
thanks to the inner workings of the arguments JavaScript mechanism:3

var authAdmin = function (request, response, next) {
 // ...
 return next();
}
var getUsers = function (request, response, next) {
 // ...
 return next();
}
var renderUsers = function (request, response) {
 // ...
 res.end();
}
var admin = [authAdmin, getUsers, renderUsers];
app.get('/admin', admin);

One distinct difference between request handlers in routes and middleware is that
we can bypass the rest of the callbacks in the chain by calling next('route');. This
might come in handy if, in the previous example with the /admin route, a request fails
authentication in the first callback, in which case there’s no need to proceed. You can also
use next() to jump to the next route if you have multiple routes matching the same URL.

Please note that if the first parameter we pass to app.VERB() contains query strings
(e.g., /?debug=true), that information is disregarded by Express.js. For example,
app.get('/?debug=true', routes.index); will be treated exactly as app.get('/',
routes.index);.

3Seehttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_
and_function_scope/arguments

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments

CHAPTER 4 ■ PARAMETERS AND ROUTING

75

The following are the most commonly used Representational State Transfer (REST)
server architecture HTTP methods and their counterpart methods in Express.js along
with the brief meaning:

GET: • app.get()—Retrieves an entity or a list of entities

HEAD: • app.head()—Same as GET, only without the body

POST: • app.post()—Submits a new entity

PUT: • app.put()—Updates an entity by complete replacement

PATCH: • app.patch()—Updates an entity partially

DELETE: • app.delete() and app.del()—Deletes an
existing entity

OPTIONS: • app.options()—Retrieves the capabilities of
the server

Tip ■ An HTTP method is a special property of every HTTP(S) request, similar to its

headers or body. Opening a URL in your browser is a GET request, and submitting a form

is a POST request. Other types of requests, such as PUT, DELETE, PATCH, and OPTIONS,

are only available via special clients such as CURL, Postman, or custom-built applications

(both front-end and back-end).

For more information on HTTP methods, please refer to RFC 2616
(http://tools.ietf.org/html/rfc2616) and its “Method Definitions” section (section 9).

app.all()
The app.all() method allows the execution of specified request handlers on a particular
path regardless of what the HTTP method of the request is. This procedure might be a
lifesaver when defining global or namespace logic, as in this example:

app.all('*', userAuth);
...
app.all('/api/*', apiAuth);

Trailing Slashes
Paths with trailing slashes at the end are treated the same as their normal counterparts
by default. To turn off this feature, use app.enable('strict routing'); or app.
set('strict routing', true);. You can learn more about setting options in Chapter 1.

http://tools.ietf.org/html/rfc2616

CHAPTER 4 ■ PARAMETERS AND ROUTING

76

Router Class
The Router class is a mini Express.js application that has only middleware and routes.
This is useful for abstracting certain modules based on the business logic that they
perform. For example, all /users/* routes can be defined in one router, and all /posts/*
routes can be defined in another. The benefit is that after we define a portion of the URL
in the router with router.path() (see the next section), we don’t need to repeat it over
and over again, such as is the case with using the app.VERB() approach.

The following is an example of creating a router instance:

var express = require('express');
var router = express.Router(options);
// ... Define routes
app.use('/blog', router);

where options is an object that can have following properties:

• caseSensitive: Boolean indicating whether to treat routes with
the same name but different letter case as different, false by
default; e.g., if it’s set to false, then /Users is the same as /users.

• strict: Boolean indicating whether to treat routes with the same
name but with or without a trailing slash as different, false by
default; e.g., if it’s set to false, then /users is the same as /users/.

router.route(path)
The router.route(path) method is used to chain HTTP verb methods. For example, in
a create, read, update, and delete (CRUD) server that has POST, GET, PUT, and DELETE
endpoints for the /posts/:id URL (e.g., /posts/53fb401dc96c1caa7b78bbdb), we can use
the Router class as follows:

var express = require('express');
var router = express.Router();
// ... Importations and configurations
router.param('postId', function(request, response, next) {
 // Find post by ID
 // Save post to request
 request.post = {
 name: 'PHP vs. Node.js',
 url: 'http://webapplog.com/php-vs-node-js'
 };
 return next();
});

http://webapplog.com/php-vs-node-js

CHAPTER 4 ■ PARAMETERS AND ROUTING

77

router
 .route('/posts/:postId')
 .all(function(request, response, next){
 // This will be called for request with any HTTP method
 })
 .post(function(request, response, next){
 })
 .get(function(request, response, next){
 response.json(request.post);
 })
 .put(function(request, response, next){
 // ... Update the post
 response.json(request.post);
 })
 .delete(function(request, response, next){
 // ... Delete the post
 response.json({'message': 'ok'});
 })

The Router.route(path) method provides the convenience of chaining methods,
which is a more appealing way to structure, your code than re-typing router for
each route.

Alternatively, we can use router.VERB(path, [callback...], callback) to
define the routes just as we would use app.VERB(). Similarly, the router.use() and
router.param() methods work the same as app.use() and app.param().

Going back to our example project (in the ch4 folder), we can implement
v4/users/:username and v4/admin/:username with Router:

router.param('username', function(request, response, next, username){
 console.log(
 'Username param was detected: ',
 username
)
 findUserByUsername(
 username,
 function(error, user){
 if (error) return next(error);
 request.user = user;
 return next();
 }
);
})
router.get('/users/:username',
 function(request, response, next){
 return response.render('user', request.user);
 }
);

CHAPTER 4 ■ PARAMETERS AND ROUTING

78

router.get('/admin/:username',
 function(request, response, next){
 return response.render('admin', request.user);
 }
);
app.use('/v4', router);

As you can see, router.get() methods include no mention of v4. Typically, the
router.get() and router.param() methods are abstracted into a separate file. This way,
the main file (app.js in our example) stays lean and easy to read and maintain—a nice
principle to follow!

Request Handlers
Request handlers in Express.js are strikingly similar to callbacks in the core Node.js
http.createServer() method, because they’re just functions (anonymous, named, or
methods) with req and res parameters:

var ping = function(req, res) {
 console.log('ping');
 res.end(200);
};

app.get('/', ping);

In addition, we can utilize the third parameter, next(), for control flow. It’s closely
related to the topic of error handling, which is covered in Chapter 7. Here is a simple
example of two request handlers, ping and pong where the former just skips to the latter
after printing a word ping:

var ping = function(req, res, next) {
 console.log('ping');
 return next();
};
var pong = function(req, res) {
 console.log('pong');
 res.end(200);
};
app.get('/', ping, pong);

When a request comes on the / route, Express.js calls ping(), which acts as
middleware in this case (because it’s in the middle!). Ping, in turn, when it’s done, calls
pong with that finished response with res.end().

CHAPTER 4 ■ PARAMETERS AND ROUTING

79

The return keyword is also very important. For example, we don’t want to continue
processing the request if the authentication has failed in the first middleware:

// Instantiate app and configure error handling

// Authentication middleware
var checkUserIsAdmin = function (req, res, next) {
 if (req.session && req.session._admin !== true) {
 return next (401);
 }
 return next();
};

// Admin route that fetches users and calls render function
var admin = {
 main: function (req, res, next) {
 req.db.get('users').find({}, function(e, users) {
 if (e) return next(e);
 if (!users) return next(new Error('No users to display.'));
 res.render('admin/index.html', users);
 });
 }
};

// Display list of users for admin dashboard
app.get('/admin', checkUserIsAdmin, admin.main);

The return keyword is essential, because if we don’t use it for the next(e) call, the
application will try to render (res.render()) even when there is an error and/or we don’t
have any users. For example, the following is probably a bad idea because after we call
next(), which will trigger the appropriate error in the error handler, the flow goes on and
tries to render the page:

var admin = {
 main: function (req, res, next) {
 req.db.get('users').find({}, function(e, users) {
 if (e) next(e);
 if (!users) next(new Error('No users to display.'));
 res.render('admin/index.html', users);
 });
 }
};

We should be using something like this:

if (!users) return next(new Error('No users to display.'));
res.render('admin/index.html', users);

CHAPTER 4 ■ PARAMETERS AND ROUTING

80

or something like this:

if (!users)
 return next(new Error('No users to display.'));
else
 res.render('admin/index.html', users);

Summary
In this chapter we covered two major aspects of the typical structure of an Express.js
app: defining routes and extracting URL parameters. We explored three different ways of
how to get them out of the URL and use them in request handlers (req.params, custom
middleware and app.param()). You learned how to define routes for various HTTP
methods. Finally, we delved deep into the Router class, which acts as a mini Express.js
application, and implemented yet another set of routes for the example project using the
Router class.

Every time we defined a router (or a middleware), we used either an anonymous
function definition or a named function in callbacks to define the request handler. The
request handler usually has three parameters: request (or req), response (or res), and
next. In the next chapter, you’ll learn more about these objects, and how, in Express.js,
they are different from the core Node.js http module’s request and response. Knowing
these differences will give you more features and functionality!

81

CHAPTER 5

Express.js Request
Object

The Express.js request object (req for short) is a wrapper for a core Node.js http.request
object which is the Node.js representation of the incoming HTTP(S) request. In web, the
request has these parts:

Method: GET, POST or others•

URI: the location for example • http://hackhall.com/api/posts/

Headers: host: • www.hackhall.com

Body: content in the urlencoded, JSON or other formats•

The Express.js request object has some additional neat functionality, but essentially
it supports everything that the native http.request object can do.

For example, Express.js automatically adds support for query parsing, which is
essential when the system needs to access data in the URL in the following format
(after the question mark): http://webapplog.com/?name1=value&name2=value.

Here the list of methods and objects of the Express.js request object that we’ll cover
in this chapter:

• request.query: query string parameters

• request.params: URL parameters

• request.body: request body data

• request.route: the route path

• request.cookies: cookie data

• request.signedCookies: signed cookie data

• request.header() and request.get(): request headers

http://hackhall.com/api/posts/
http://www.hackhall.com/
http://webapplog.com/?name1=value&name2=value

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

82

Tip ■ When you see request.doSomething in the code, don’t confuse the Express.js

request object with Mikeal Roger’s request module

(https://github.com/mikeal/request) or with the core Node.js http module’s request

(http://nodejs.org/api/http.html#http_event_request).

To better understand the request object, let’s create a brand new Express.js app with
Express.js version 4.8.1. This is the package.json file of the project (ch5/package.json):

{
 "name": "request",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "express": "4.8.1",
 "errorhandler": "1.1.1",
 "jade": "1.5.0",
 "morgan": "1.2.2",
 "serve-favicon": "2.0.1",
 "cookie-parser": "1.3.2",
 "body-parser": "1.6.5",
 "debug": "~0.7.4",
 "serve-favicon": "2.0.1"
 }
}

Next we install the modules with NPM into our local project node_modules folder:

$ npm install

Now start the app with $ node app. It should display a standard Express.js Generator
page with the text “Welcome to Express” (on http://localhost:3000). The full source
code of app.js is provided for reference at the end of this chapter. You can download it
from GitHub at https://github.com/azat-co/expressapiref.

request.query
The query string is everything to the right of the question mark in a given URL; for
example, in the URL https://twitter.com/search?q=js&src=typd, the query string is
q=js&src=typd. After the query string is parsed by Express.js, the resulting JS object
would be {q:'js', src:'typd'}. This object is assigned to req.query or request.
query in your request handler depending on what variable name you used in the function
signature.

https://github.com/mikeal/request
http://nodejs.org/api/http.html#http_event_request
https://github.com/azat-co/expressapiref
https://twitter.com/search?q=js&src=typd

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

83

By default, the parsing is done by the qs module (http://npmjs.org/qs) which is
used by Express.js behind the scenes via the express/lib/middleware/query.js internal
module. This setting can be changed by the query parser setting, about which you
learned in Chapter 1 (hopefully).

The way request.query works resembles body-parser’s json() and cookie-parser
middleware in that it puts a property (query in this case) on a request object req that is
passed to the next middleware and routes. So without query parsing of some sort we can’t
access the request.query object. Again, Express.js uses qs parser by default—no extra
code is needed on our part.

To illustrate request.query in an example, we can add a search route that will
print the incoming search term in a query data format. The data is this example is q=js,
q=nodejs, and q=nodejs&lang=fr. The server sends back JSON with the same query
string data that we sent to it. We can add this route to any Express.js server, such as the
one we’ve created with the CLI (i.e., ch5/request):

app.get('/search', function(req, res) {
 console.log(req.query)
 res.end(JSON.stringify(req.query)+'\r\n');
})

Tip ■ The \n and \r are line feed and carriage return symbols, respectively, in ASCII and

Unicode. They allow the text to start on a new line. For more information, please refer to

http://en.wikipedia.org/wiki/Newline and http://en.wikipedia.org/wiki/Carriage_

return.

Keep the server running ($ node app to start it), and in another terminal window,
make the following GET requests with CURL:

$ curl -i "http://localhost:3000/search?q=js"
$ curl -i "http://localhost:3000/search?q=nodejs"
$ curl -i "http://localhost:3000/search?q=nodejs&lang=fr"

The result of CURL GET requests is shown in Figure 5-1, and the result of the server
output is shown in Figure 5-2.

http://npmjs.org/qs
http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Carriage_return
http://en.wikipedia.org/wiki/Carriage_return

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

84

Figure 5-1. Client-side results of running CURL commands with the query string parameters

Figure 5-2. Server-side results of running CURL commands with the query string parameters

request.params
Chapter 4 covered how to set up middleware to process data taken from the URLs of the
requests. However, sometimes it’s more convenient just to get such values from within a
specific request handler directly. For this, there’s a request.params object, which is an
array with key/value pairs.

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

85

To experiment with the request.params object, we can add a new route to our
ch5/request application. This route will define URL parameters and print them in the
console. Add the following route to request/app.js:

app.get('/params/:role/:name/:status', function(req, res) {
 console.log(req.params);
 res.end();
});

Next, run the following CURL terminal commands, as shown in Figure 5-3:

$ curl http://localhost:3000/params/admin/azat/active
$ curl http://localhost:3000/params/user/bob/active

Figure 5-3. Sending GET requests with CURL (client window)

As shown in Figure 5-4, we see these server logs of the request.params object:

[role: 'admin', name: 'azat', status: 'active']
[role: 'user', name: 'bob', status: 'active']

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

86

request.body
The request.body object is another magicical object that’s provided to us by Express.
js. It's populated by applying the body-parser (express.bodyParser() in Express.js 3.x)
middleware functions. The body-parser module has two functions/middleware:

• json(): For parsing HTTP(S) payload into JavaScript/Node.js objects

• urlencoded(): For parsing URL-encoded HTTP(S) requests’ data
into JavaScript/Node.js objects

In both cases the resulting objects and data are put into the request.body
object—extremely convenient!

To use request.body, we need to install body-parser separately (if you’re using ch5,
you can skip this step because the generator put it in package.json for us):

$ npm install body-parser@1.0.0

Then we need to import and apply it:

var bodyParser = require('body-parser');
// ...
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());

Figure 5-4. Server result of processing request.params

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

87

You don’t have to use both the json() and urlencoded() methods. Use only the one
that is needed if that is sufficient.

To illustrate request.body in action, let’s reuse our previous project and add the
following route to see how the request.body object works, remembering that both
bodyParser() middleware functions have been applied to the Express.js app already and
are in the code:

app.post('/body', function(req, res){
 console.log(req.body);
 res.end(JSON.stringify(req.body)+'\r\n');
});

Again, submit a couple of HTTP POST requests with CURL or a similar tool:

$ curl http://localhost:3000/body -d 'name=azat'
$ curl -i http://localhost:3000/body -d 'name=azat&role=admin'
$ curl -i -H "Content-Type: application/json"
-d '{"username":"azat","password":"p@ss1"}' http://localhost:3000/body

Tip ■ A brief CURL tip: The -H option sets headers, -d passes data, and -i enables

verbose logging.

The preceding commands yield request.body objects as you can see in the client
terminal in Figure 5-5 and in the server terminal in Figure 5-6:

{ name: 'azat' }
{ name: 'azat', role: 'admin' }
{ username: 'azat', password: 'p@ss1' }

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

88

Figure 5-5. Sending POST requests with CURL (client logs)

Figure 5-6. Result of processing request.body (server logs)

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

89

request.route
The request.route object simply has the current route’s information, such as:

• path: Original URL pattern of the request

• method: HTTP method of the request

• keys: List of parameters in the URL pattern (i.e., values prefixed with :)

• regexp: Express.js-generated pattern for the path

• params: request.params object

We can add the console.log(request.route); statement to our request.params route
from the example in the previous section like this:

app.get('/params/:role/:name/:status', function(req, res) {
 console.log(req.params);
 console.log(req.route);
 res.end();
});

Then, if we send the HTTP GET request

$ curl http://localhost:3000/params/admin/azat/active

we should get the server logs of the request.route object, which has path, stack, and
methods properties:

{ path: '/params/:role/:name/:status',
 stack: [{ method: 'get', handle: [Function] }],
 methods: { get: true } }

The request.route object might be useful when used from within middleware—that
is, used on multiple routes—to find out which route is currently used.

request.cookies
The cookie-parser (formerly express.cookieParser() in Express.js 3.x and earlier)
middleware (https://www.npmjs.org/package/cookie-parser, https://github.com/
expressjs/cookie-parser) allows us to access requests’ cookies in a JavaScript/Node.
js format. The cookie-parser is required for express-session middleware, because web
sessions work by storing their session ID in the browser cookies.

With cookie-parser installed (with NPM), imported (with require()), and applied
(with app.use()), we get access to the HTTP(S) request cookies (user-agent cookies) via
the request.cookies object. Cookies are automatically presented as a JavaScript object;
for example, you can extract the session ID with:

request.cookies['connect.sid']

https://www.npmjs.org/package/cookie-parser
https://github.com/expressjs/cookie-parser
https://github.com/expressjs/cookie-parser

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

90

Caution ■ Storing sensitive information in browser cookies is discouraged because

of security concerns. Also, some browsers impose a limitation on the size of a cookie,

which might lead to bugs (Internet Explorer!). I usually use request.cookie only for the

request.session support.

Note ■ Refer to Chapter 2 for more information on how to install and apply middleware.

The cookie info can be stored using response.cookie() or res.cookie(). The
Express.js response object is covered in Chapter 6. To illustrate request.cookies, we can
implement a /cookies route that will increment a counter, change the value of a cookie,
and display the result on a page. This is the code that you can add to ch5/request:

app.get('/cookies', function(req, res){
 if (!req.cookies.counter)
 res.cookie('counter', 0);
 else
 res.cookie('counter', parseInt(req.cookies.counter,10) + 1);
 res.status(200).send('cookies are: ', req.cookies);
})

Tip ■ The parseInt() method is needed to prevent JavaScript/Node.js from treating the

number value as a string, which would result in 0, 01, 011, 0111, etc. instead of 0, 1, 2, 3,

etc. Using parseInt() with the radix/base (second argument) is recommended to prevent

numbers from being converted wrongly.

As a result of going to http://localhost:3000/cookies and refreshing it a few
times, you should see the counter increment from 0 up, as shown in Figure 5-7.

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

91

Inspection of the Network or Resource tab in Chrome Developer Tools will reveal the
presence of a cookie with the name connect.sid (see Figure 5-7). The cookies are shared
between browser windows, so even if we open a new window, the counter will increment
by 1 from the value in the original window.

request.signedCookies
request.signedCookies is akin to request.cookies, but it’s used when the secret string
is passed to the express.cookieParser('some secret string'); method. To populate
request.signedCookies, you can use response.cookie with the flag signed: true.
Here’s how we can modify our previous route to switch to signed cookies:

app.use(cookieParser('abc'));
// ... Other middleware
app.get('/signed-cookies', function(req, res){
 if (!req.signedCookies.counter)
 res.cookie('counter', 0, {signed: true});
 else
 res.cookie('counter', parseInt(req.signedCookies.counter,10) + 1,
{signed: true});
 res.status(200).send('cookies are: ', req.signedCookies);
});
// ... Server boot-up

Figure 5-7. Cookie value is saved in the browser and incremented by the server on each request

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

92

So, all we did was change request.cookies to request.signedCookies and add
signed: true when assigning cookie values on response. The parsing of the signed
cookies is done automatically, and they are placed in plain JavaScript/Node.js objects.
Note that 'abc' is an arbitrary string. You can use $ uuidgen on Mac OS X to generate a
random key to sign your cookies or web-based services like Random.org
(http://bit.ly/1F1fbL8).

Caution ■ Signing a cookie does not hide or encrypt the cookie. It’s a simple way to

prevent tampering by applying a private value. Signing (or hashing) is not the same as

encryption. The former is for identification and tampering prevention, and the latter is for

hiding the content from unauthorized recipients (see, e.g., http://danielmiessler.com/

study/encoding_encryption_hashing). You can encrypt your cookie data on the server

(and decrypt it when reading), but hypothetically this is still vulnerable to brute-force

attacks. The level of vulnerability depends on the encryption algorithm that you use.

request.header() and request.get()
The request.header() and request.get() methods are identical and allow for retrieval
of the HTTP(S) requests’ headers by their names. Fortunately, the header naming is
case insensitive:

request.get('Content-Type');
request.get('content-type');
request.header('content-type');

Other Attributes and Methods
We’ve covered the most commonly used and most important methods and objects of the
Express.js request object. They should suffice in the majority of cases. But the list doesn’t
stop there. For convenience, there are plenty of sugar-coating objects in the Express.js
request (see Table 5-1). Sugar-coating means that most of the functions of these objects
can be implemented with the foundational methods, but they are more eloquent than the
foundational methods. For example, the request.accepts can be replaced with if/else
and request.get(), which gives us request headers. Of course, if you understand these
methods, you can use them to make your code more elegant and easier to read.

http://bit.ly/1F1fbL8
http://danielmiessler.com/study/encoding_encryption_hashing
http://danielmiessler.com/study/encoding_encryption_hashing

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

93

Table 5-1. Other Attributes and Methods in the Express.js Request

Attribute/Method Conditions/Definition API

request.accepts() true if a passed string (single or
comma-separated values) or an
array of MIME types (or extensions)
matches the request Accept
header; false if there’s no match

http://expressjs.com/
api.html#req.accepts

request.accepted An array of accepted MIME types http://expressjs.com
/api.html#req.accepted

request.is() true if a passed MIME type string
matches the Content-Type header
types; false if there’s no match

http://expressjs.com
/api.html#req.is

request.ip The IP address of the request;
see trust proxy configuration in
Chapter 1

http://expressjs.com
/api.html#req.ip

request.ips An array of IPs when trust proxy
configuration is enabled

http://expressjs.com
/api.html#req.ips

request.path String with a URL path of the
request

http://expressjs.com
/api.html#req.path

request.host Value from the Host header of the
request

http://expressjs.com
/api.html#req.host

request.fresh true if request is fresh based on
Last-Modified and ETag headers;
false otherwise

http://expressjs.com
/api.html#req.fresh

request.stale Opposite of req.fresh http://expressjs.com
/api.html#req.stale

request.xhr true if the request is an AJAX call
via X-Requested-With header and
its XMLHttpRequest value

http://expressjs.com
/api.html#req.xhr

request.protocol Request protocol value
(e.g., http or https)

http://expressjs.com
/api.html#req.protocol

request.secure true if the request protocol is
https

http://expressjs.com
/api.html#req.secure

request.subdomains Array of subdomains from the
Host header

http://expressjs.com
/api.html#req.subdomains

request.originalUrl Unchangeable value of the
request URL

http://expressjs.com
/api.html#req.originalUrl

(continued)

http://expressjs.com/api.html#req.accepts
http://expressjs.com/api.html#req.accepts
http://expressjs.com/api.html#req.accepted
http://expressjs.com/api.html#req.accepted
http://expressjs.com/api.html#req.is
http://expressjs.com/api.html#req.is
http://expressjs.com/api.html#req.ip
http://expressjs.com/api.html#req.ip
http://expressjs.com/api.html#req.ips
http://expressjs.com/api.html#req.ips
http://expressjs.com/api.html#req.path
http://expressjs.com/api.html#req.path
http://expressjs.com/api.html#req.host
http://expressjs.com/api.html#req.host
http://expressjs.com/api.html#req.fresh
http://expressjs.com/api.html#req.fresh
http://expressjs.com/api.html#req.stale
http://expressjs.com/api.html#req.stale
http://expressjs.com/api.html#req.xhr
http://expressjs.com/api.html#req.xhr
http://expressjs.com/api.html#req.protocol
http://expressjs.com/api.html#req.protocol
http://expressjs.com/api.html#req.secure
http://expressjs.com/api.html#req.secure
http://expressjs.com/api.html#req.subdomains
http://expressjs.com/api.html#req.subdomains
http://expressjs.com/api.html#req.originalUrl
http://expressjs.com/api.html#req.originalUrl

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

94

We’ve been making small adjustments to the ch5 project throughout this chapter, so
now it’s time to see the whole picture. Therefore, here’s the full source code of the final
request server from the ch5/app.js file (available at https://github.com/azat-co/
expressapiref):

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');

var app = express();

// View engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.use(logger('combined'));
app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));
app.use(cookieParser('abc'));
app.use(express.static(path.join(__dirname, 'public')));

Table 5-1. (continued)

Attribute/Method Conditions/Definition API

request.
acceptedLanguages

Array of language code
(e.g., en-us, en) from the request’s
Accept-Language header

http://expressjs.
com/api.html#req.
acceptedLanguages

request.
acceptsLanguage()

true if a passed language code is in
the request header

http://expressjs.
com/api.html#req.
acceptsLanguage

request.
acceptedCharsets

Array of charsets (e.g., iso-8859-5)
from the request’s Accept-Charset
header

http://expressjs.
com/api.html#req.
acceptedCharsets

request.
acceptsCharset()

true if a passed charset is in the
request header

http://expressjs.
com/api.html#req.
acceptsCharset

https://github.com/azat-co/expressapiref
https://github.com/azat-co/expressapiref
http://expressjs.com/api.html#req.acceptedLanguages
http://expressjs.com/api.html#req.acceptedLanguages
http://expressjs.com/api.html#req.acceptedLanguages
http://expressjs.com/api.html#req.acceptsLanguage
http://expressjs.com/api.html#req.acceptsLanguage
http://expressjs.com/api.html#req.acceptsLanguage
http://expressjs.com/api.html#req.acceptedCharsets
http://expressjs.com/api.html#req.acceptedCharsets
http://expressjs.com/api.html#req.acceptedCharsets
http://expressjs.com/api.html#req.acceptsCharset
http://expressjs.com/api.html#req.acceptsCharset
http://expressjs.com/api.html#req.acceptsCharset

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

95

app.use('/', routes);

app.get('/search', function(req, res) {
 console.log(req.query);
 res.end(JSON.stringify(req.query)+'\r\n');
});

app.get('/params/:role/:name/:status', function(req, res) {
 console.log(req.params);
 console.log(req.route);
 res.end();
});

app.post('/body', function(req, res){
 console.log(req.body);
 res.end(JSON.stringify(req.body)+'\r\n');
});

app.get('/cookies', function(req, res){
 if (!req.cookies.counter)
 res.cookie('counter', 0);
 else
 res.cookie('counter', parseInt(req.cookies.counter,10) + 1);
 res.status(200).send('cookies are: ', req.cookies);
});

app.get('/signed-cookies', function(req, res){
 if (!req.signedCookies.counter)
 res.cookie('counter', 0, {signed: true});
 else
 res.cookie('counter', parseInt(req.signedCookies.counter,10) + 1,
{signed: true});
 res.status(200).send('cookies are: ', req.signedCookies);
});

/// Catch 404 and forward to error handler
app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

/// Error handlers

CHAPTER 5 ■ EXPRESS.JS REQUEST OBJECT

96

// Development error handler
// Will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// Production error handler
// No stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

var debug = require('debug')('request');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

Summary
Understanding and working with HTTP requests is at the foundation of web development.
The way in which Express.js approaches requests is by adding objects and properties.
Developers use them inside of the request handlers. Express.js provides many objects and
methods in the request, and in areas where it does not, there are plenty of
third-party options.

In the next chapter we’ll cover the Express.js response. The response object is the
counterpart of the request object. Response is the stuff that we actually send back to
the client. Similar to request, the Express.js response object has special methods and
objects as its properties. We’ll cover the most important and then list the rest of the
built-in properties.

97

CHAPTER 6

Response

The Express.js response object (res for short)—which is an argument in the request
handler callbacks—is the same good old Node.js http.response object1 on steroids. This
is because the Express.js response object has new methods. In other words, the Express.js
response object is the extension of the http.response class.

Why would some use these additional methods? Indeed, you can use the
response.end() method2 and other core methods, but then you'll have to do write
more code. For example, you would have to add Content-Type header manually.
But with the Express.js response object which contains convenient wrappers,
such as response.json() and response.send(), appropriate Content-Type is
added automatically.

In this chapter, we’ll cover the following methods and attributes of the Express.js
response object in great details:

• response.render()

• response.locals

• response.set()

• response.status()

• response.send()

• response.json()

• response.jsonp()

• response.redirect()

To demonstrate these methods in action, they are used in the kitchen-sink app
ch6/app.js. The code is also available at https://github.com/azat-co/expressapiref/
tree/master/ch6. Other methods and properties along with their meanings will be listed
in the Table 8-1. At the end of the chapter, we'll cover how to work with streams and
Express.js response.

1http://nodejs.org/api/http.html#http_class_http_serverresponse.
2http://nodejs.org/api/http.html#http_response_end_data_encoding.

https://github.com/azat-co/expressapiref/tree/master/ch6
https://github.com/azat-co/expressapiref/tree/master/ch6
http://nodejs.org/api/http.html#http_class_http_serverresponse
http://nodejs.org/api/http.html#http_response_end_data_encoding

CHAPTER 6 ■ RESPONSE

98

To start with the example app, create a brand new Express.js app with express-
generator and the $ express response terminal command. Obviously, now you need
to run $ cd response && npm install to download the dependencies. The initial
ch6/app.js app will be identical to the initial app from Chapter 5.

response.render()
The response.render() method is the staple of Express.js. From our previous examples
and from the function’s name, you could guess that it has something to do with
generating HTML out of templates (such as Jade, Handlebars, or EJS) and data.

The response.render(name, [data,] [callback]) method takes three parameters,
but only one is mandatory and it's the first parameter: name, which is the template name
in a string format. The other parameters are data and callback. If you omit data but have
callback, then callback becomes the number two argument.

The template name can be identified with or without an extension. For more
information on template engine extensions, please refer to Chapter 3.

To illustrate the most straightforward use case for response.render(), we’ll create a
page that shows a heading and a paragraph from a Jade template.

First, add a route. Here is an example of a simple setup for the home page route in
the response/app.js file:

app.get('/render', function(req, res) {
 res.render('render');
});

Then, add a new views/render.jade file that looks static for now (i.e., it has no
variables or logic):

extends layout

block content
 h1= 'Pro Express.js'
 p Welcome to the Pro Express.js Response example!

Finally, start the response application with $ node app and go to
http://localhost:3000 in a browser. You should see the welcome message
shown in Figure 6-1.

CHAPTER 6 ■ RESPONSE

99

Note ■ Jade uses Python/Haml-like syntax, which takes into account whitespace and

tabs—be careful with the markup. We can use = as a print command (h1 tag) or nothing

(p tag). For more information, please visit the official documentation (http://jade-lang.com/)

or check out Practical Node.js (Apress, 2014)3.

In addition to the mandatory name parameter, response.render(), has two optional
parameters, data and callback. The data parameter makes templates more dynamic
than static HTML files, and allows us to update the output. For example, we can pass title
to overwrite the value in the default value:

app.get('/render-title', function(req, res) {
 res.render('index', {title: 'Pro Express.js'});
});

The index.jade file remains the same. It prints the title value, and looks like this:

extends layout

block content
 h1= title
 p Welcome to #{title}

The result of the /render-title route is shown in Figure 6-2. The h1 title text has
changed to Pro Express.js.

Figure 6-1. The result of plain response.render() call without parameters

3http://practicalnodebook.com.

http://jade-lang.com/
http://practicalnodebook.com/

CHAPTER 6 ■ RESPONSE

100

Figure 6-2. The response.render() example with the data parameter that has a title property

The response.render() callback parameter accepts two parameters itself: error
and html (an HTML string which is the output). This example is not in the res/app.js
project, but shows how to pass callbacks to response.render():

app.get('/render-title', function(req, res) {
 res.render('index', {title: 'Pro Express.js'}, function (error, html) {
 // Do something
 });
});

Caution ■ The properties of the data parameter are your locals in the template. In other

words, if you want to access a value of a title inside of your template, the data object must

contain a key/value pair. Nested objects are supported by most of the template engines.

The callback can take the place of the data because Express.js is able to determine
the type of the parameter. This example is not within response/app.js but shows how to
pass callbacks with our data:

app.get('/render-title', function(req, res) {
 res.render('index', function (error, html) {
 // Do something
 });
});

CHAPTER 6 ■ RESPONSE

101

Behind the scenes, response.render() calls response.send() (which is covered
later in this chapter) for successful compilation of HTML strings or calls req.next(error)
for failure, if the callback is not provided. In other words, the default callback to response.
render() is code from the version 3.3.5 location on GitHub at https://github.com/
visionmedia/express/blob/3.3.5/lib/response.js#L753:

// Default callback to respond
fn = fn || function(err, str){
 if (err) return req.next(err);
 self.send(str);
};

Looking at this code, you can see that it’s easy to write your own callback to do just
about anything as long as there’s an ending to the response (response.json, response.
send, or response.end).

response.locals
The response.locals object is another way to pass data to the templates so that both the
data and the template can be compiled into HTML. You already know that the first way is
to pass data as a parameter to the response.render() method, as previously outlined:

app.get('/render-title', function(req, res) {
 res.render('index', {title: Pro Express.js'});
});

However, with response.locals, we can achieve the same thing. Our object will be
available inside of the template:

app.get('/locals', function(req, res){
 res.locals = { title: 'Pro Express.js' };
 res.render('index');
});

Again, the index.jade Jade template remains the same:

extends layout

block content
 h1= title
 p Welcome to #{title}

https://github.com/visionmedia/express/blob/3.3.5/lib/response.js#L753
https://github.com/visionmedia/express/blob/3.3.5/lib/response.js#L753

CHAPTER 6 ■ RESPONSE

102

You can see the web page that has the Pro Express.js title in Figure 6-3. But if nothing
has changed, then what is a benefit of response.locals? The advantage is that we can
expose (i.e., pass to templates) info in one middleware, but render the actual template
later in another request handler. For example, you can perform authentication without
rendering (this code is not in the ch6/app.js):

app.get('/locals',
 function(req, res){
 res.locals = { user: {admin: true}};
 next();
 }, function(req, res){
 res.render('index');
});

Figure 6-3. The response.locals example renders the same page as the response.render()
example

Tip ■ Sometimes for debugging it’s useful to see a list of all the variables available in a

particular Jade template. To do so, simply insert this log statement: - console.log(locals);.

For more information on Jade, please refer to Practical Node.js (Apress, 2014)4.

4http://practicalnodebook.com.

http://practicalnodebook.com/

CHAPTER 6 ■ RESPONSE

103

response.set()
The response.set(field, [value]) method is an alias of response.header() (or the
other way around) and serves as a wrapper for the Node.js http core module’s response.
setHeader() function5. The main difference is that Express.js’ response.set() is smart
enough to call itself recursively when we pass multiple header-value pairs to it in the form
of an object. See the CSV example later in this section if the previous sentence didn’t
make much sense to you.

Here is an example from ch6/app.js of setting a single Content-Type response
header to text/html and then sending some simple HTML to the client:

app.get('/set-html', function(req, res) {
 // Some code
 res.set('Content-Type', 'text/html');
 res.end('<html><body>' +
 '<h1>Express.js Guide</h1>' +
 '</body></html>');
});

You can see the results in the Network tab of Chrome Developer Tools, under
the Headers subtab, which says Content-Type: text/html (see Figure 6-4). If we
didn’t have response.set() with text/html, then the response would still have the
HTML but without the header. Feel free to comment the response.set() and see it
for yourself.

5http://nodejs.org/api/http.html#http_response_setheader_name_value.

http://nodejs.org/api/http.html#http_response_setheader_name_value

CHAPTER 6 ■ RESPONSE

104

The Content-Type disappears when we don't set it explicitly with response.set(),
because Express.js' response.send() automatically adds Content-Type and other headers,
but core response.end() does not. More on response.send() later in this chapter.

Often though, our servers need to provide more than one header so that all the
different browsers and other HTTP clients process it properly. Let’s explore an example of
passing multiple values to the response.set() method.

Imagine that the service we are building sends out comma-separated value (CVS)
files with books’ titles and their tags. This is how we can implement this route in the
ch6/app.js file:

app.get('/set-csv', function(req, res) {
 var body = 'title, tags\n' +
 'Practical Node.js, node.js express.js\n' +
 'Rapid Prototyping with JS, backbone.js node.js mongodb\n' +
 'JavaScript: The Good Parts, javascript\n';

Figure 6-4. The response.set() example rendering HTML with the Content-Type: text/html
header

CHAPTER 6 ■ RESPONSE

105

 res.set({'Content-Type': 'text/csv',
 'Content-Length': body.length,
 'Set-Cookie': ['type=reader', 'language=javascript']});
 res.end(body);
});

Now if you steer Chrome to http://localhost:3000/set-csv, the browser will
recognize the CSV MIME type and download the file instead of opening it (at least with
the default Chrome settings and without extra extensions). You can see the headers
in Figure 6-5.

Figure 6-5. The response.set() example rendering Content-Length, Content-Type, and
Set-Cookie headers with CSV data

CHAPTER 6 ■ RESPONSE

106

response.status()
The response.status() method accepts an HTTP status code6 number and sends it in
response. The most common HTTP status codes are:

• 200: OK

• 201: Created

• 301: Moved Permanently

• 401: Unauthorized

• 404: Not Found

• 500: Internal Server Error

You can find a lengthier list of HTTP statuses in Chapter 7. The only difference
between its core counterpart7 is that response.status() is chainable. Status codes are
important for building REST APIs because they enable you to standardize the outcome of
the request.

Let’s demo how response.status() works on the pulse route, which returns 200
(OK) if the server is still up and running. This route won’t send back any text or HTML on
purpose. We use response.end() because response.send() will automatically add the
proper status code 200:

app.get('/status', function(req, res) {
 res.status(200).end();
});

If you go to http://localhost:3000/status, you’ll see a green circle and the
number 200, as shown in Figure 6-6.

6http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.
7http://nodejs.org/api/http.html#http_response_statuscode.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://nodejs.org/api/http.html#http_response_statuscode

CHAPTER 6 ■ RESPONSE

107

response.send()
The response.send() method lies somewhere between high-level response.render()
and low-level response.end(). The response.send() method conveniently outputs any
data application thrown at it (such as strings, JavaScript objects, and even Buffers)
with automatically generated proper HTTP headers (e.g., Content-Length, ETag, or
Cache-Control).

Due to its omnivorous (consumes any input) behavior (caused by arguments.
length), response.send() can be used in countless ways with these input parameters:

• String: response.send('success'); with text/html

• Object: response.send({message: 'success'}); or response.
send({message: 'error'}); with JSON representation

• Array: response.send([{title: 'Practical Node.js'},
{title: 'Rapid Prototyping with JS'}]); with JSON
representation

• Buffer: response.send(new Buffer('Express.js Guide'));
with application/octet-stream

Tip ■ Sending numbers with response.send(number) as a status code is deprecated in

Express.js 4.x. Use response.status(number).send() instead.

Figure 6-6. The response.status() example response

c

CHAPTER 6 ■ RESPONSE

108

The status code and data parameters can be combined in a chained statement;
for example:

app.get('/send-ok', function(req, res) {
 res.status(200).send({message: 'Data was submitted successfully.'});
});

After adding the new send-ok route and restarting the server, you should be able to
see the JSON message when you go to /send-ok. Notice the Status Code and the Content-
Type header. Although 200 will be added automatically, it’s recommended to set statuses
for all other cases, such as 201 for Created or 404 for Not Found.

Figure 6-7. The response.send() 200 status code example response

The following is an example of sending the 500 Internal Server Error status code
along with the error message (used for server errors):

app.get('/send-err', function(req, res) {
 res.status(500).send({message: 'Oops, the server is down.'});
});

Again, when you check this route in the browser, there’s a JSON content type but now
you see a red circle and the number 500.

CHAPTER 6 ■ RESPONSE

109

The headers generated by response.send() might be overwritten if specified
explicitly before. For example, the Buffer type will have Content-Type as application/
octet-stream, but we can change it to text/plain with

app.get('/send-buf', function(req, res) {
 res.set('Content-Type', 'text/plain');
 res.send(new Buffer('text data that will be converted into Buffer'));
});

The resulting content type and text are shown in Figure 6-9.

Figure 6-8. The response.status(500).send() 500 status code example response

CHAPTER 6 ■ RESPONSE

110

Note ■ Virtually all core Node.js methods (and Connect.js methods as well) are

available in Express.js objects. Therefore, we have access to response.end() and other

methods in the Express.js response API.

response.json()
The response.json() method is a convenient way of sending JSON data. It’s
equivalent to response.send() when data passed is Array or Object type. In other cases,
response.json() forces data conversion with JSON.stringify(). By default, the header
Content-Type is set to application/json, but can be overwritten prior to response.
json() with response.set().

If you remember our old friends from Chapter 1, json replacer and json spaces,
that’s where these settings are taken into account (i.e., used).

Figure 6-9. The response.send() Buffer example response

CHAPTER 6 ■ RESPONSE

111

The most common use of response.json() is with appropriate status codes:

app.get('/json', function(req, res) {
 res.status(200).json([{title: 'Practical Node.js', tags: 'node.js express.js'},
 {title: 'Rapid Prototyping with JS', tags: 'backbone.js node.js mongodb'},
 {title: 'JavaScript: The Good Parts', tags: 'javascript'}
]);
});

Please note the JSON Content-Type and Content-Length headers produced by
response.json() in Figure 6-10.

Figure 6-10. The result of using response.json(): automatically generated headers

Note ■ The screenshot of the response.json() example in Figure 6-10 was taken after

adding the route to the ch6/app.js file of the ch6/app.js project. You are encouraged to

try doing this on your own.

CHAPTER 6 ■ RESPONSE

112

Other uses of response.json() are possible as well— for example, with no status code:

app.get('/api/v1/stories/:id', function(req,res){
 res.json(req.story);
});

Assuming req.story is an array or an object, the following code would produce
similar results as the preceding snippet (no need to set the header to application/json
in either case):

app.get('/api/v1/stories/:id', function(req,res){
 res.send(req.story);
});

response.jsonp()
The response.jsonp() method is similar to response.json() but provides a JSONP
response. That is, the JSON data is wrapped in a JavaScript function call; for example,
processResponse({...});. This is usually used for cross-domain calls support. By
default, Express.js uses a callback name to extract the name of the callback function.
It’s possible to override this value with jsonp callback name settings (more about it in
Chapter 1).
If there is no proper callback specified in the query string of the request
(e.g., ?callback=cb), then the response is simply JSON.

Assume that we need to serve CSV data to a front-end request via JSONP (status(200)
is optional, because Express will automatically add the proper status of 200 by default):

app.get('/', function (req, res) {
 res.status(200).jsonp([{title: 'Express.js Guide', tags: 'node.js express.
js'},
 {title: 'Rapid Prototyping with JS', tags: 'backbone.js, node.js,
mongodb'},
 {title: 'JavaScript: The Good Parts', tags: 'javascript'}
]);
});

Note ■ The screenshot of the response.json() example in Figure 6-11 was taken

after adding the route to the index.js file of the ch2/cli-app/app.js project. You are

encouraged to try doing this on your own.

CHAPTER 6 ■ RESPONSE

113

Figure 6-11. The result of response.jsonp() and ?callback=cb is a text/javascript header
and JavaScript function prefix

response.redirect()
Sometimes we simply need to redirect users/requests to another route. We can use
absolute, relative, or full paths:

res.redirect('/admin');
res.redirect('../users');
res.redirect('http://rapidprototypingwithjs.com');

By default, response.redirect() sends the 302 (Found/Temporarily Moved) status
code8. Of course, we can configure it to our liking in the same manner as response.send();
that is, pass the first status code number as the first parameter (301 is Moved Permanently):

res.redirect(301, 'http://rpjs.co');

8http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

http://rapidprototypingwithjs.com/
http://rpjs.co/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

CHAPTER 6 ■ RESPONSE

114

Table 6-1. Method and property alternatives

Method/Property Description/Conditions API

response.get() String value of response header for a
passed header type

http://expressjs.com/
api.html#res.get

response.cookie() Takes cookie key/value pair and sets
it on response

http://expressjs.com/
api.html#res.cookie

response.
clearCookie()

Takes cookie key/name and optional
path parameter to clear the cookies

http://expressjs.
com/api.html#res.
clearCookie

response.location() Takes a relative, absolute, or full
path as a string and sets that value to
Location response header

http://expressjs.com/
api.html#res.location

response.charset The charset value of the response http://expressjs.com/
api.html#res.charset

response.type() Takes a string and sets it as a value of
Content-Type header

http://expressjs.com/
api.html#res.type

response.format() Takes an object as a mapping of types
and responses and executes them
according to Accepted request header

http://expressjs.com/
api.html#res.format

response.
attachment()

Takes optional file name as a string
and sets Content-Disposition (and
if file name provided, Content-Type)
header(s) to attachment and file type
accordingly

http://expressjs.
com/api.html#res.
attachment

response.sendfile() Takes path to a file on the server
and various options and callback
parameters, and sends the file to the
requester

http://expressjs.com/
api.html#res.sendfile

response.download() Takes same parameters as response.
sendfile(), and sets Content-
Disposition and calls response.
sendfile()

http://expressjs.com/
api.html#res.download

response.links() Takes an object of URLs to populate
Links response header

http://expressjs.com/
api.html#res.links

Other Response Methods and Properties
Most of the methods and properties outlined in Table 6-1 are convenient alternatives to
the methods covered already in the book. In other words, we can accomplish most of the
logic with the main methods, but knowing the following shortcuts can save developers a
few keystrokes and improve readability. For example, response.type() is a niche case of
response.header() for a Content-Type only header.

http://expressjs.com/api.html#res.get
http://expressjs.com/api.html#res.get
http://expressjs.com/api.html#res.cookie
http://expressjs.com/api.html#res.cookie
http://expressjs.com/api.html#res.clearCookie
http://expressjs.com/api.html#res.clearCookie
http://expressjs.com/api.html#res.clearCookie
http://expressjs.com/api.html#res.location
http://expressjs.com/api.html#res.location
http://expressjs.com/api.html#res.charset
http://expressjs.com/api.html#res.charset
http://expressjs.com/api.html#res.type
http://expressjs.com/api.html#res.type
http://expressjs.com/api.html#res.format
http://expressjs.com/api.html#res.format
http://expressjs.com/api.html#res.attachment
http://expressjs.com/api.html#res.attachment
http://expressjs.com/api.html#res.attachment
http://expressjs.com/api.html#res.sendfile
http://expressjs.com/api.html#res.sendfile
http://expressjs.com/api.html#res.download
http://expressjs.com/api.html#res.download
http://expressjs.com/api.html#res.links
http://expressjs.com/api.html#res.links

CHAPTER 6 ■ RESPONSE

115

You can find the full source code for this chapter’s example in the ch6 folder and on
GitHub (https://github.com/azat-co/expressapiref/tree/master/ch6). Listing 6-1
shows what the ch6/app.js file looks like (including other examples).

Listing 6-1. ch6/app.js File

var express = require('express');
var fs = require('fs');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');

var largeImagePath = path.join(__dirname, 'files', 'large-image.jpg');

var app = express();

// View engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.use(logger('combined'));
app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));
app.use(cookieParser('abc'));
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);

app.get('/render', function(req, res) {
 res.render('render');
});

app.get('/render-title', function(req, res) {
 res.render('index', {title: 'Pro Express.js'});
});

https://github.com/azat-co/expressapiref/tree/master/ch6

CHAPTER 6 ■ RESPONSE

116

app.get('/locals', function(req, res){
 res.locals = { title: 'Pro Express.js' };
 res.render('index');
});

app.get('/set-html', function(req, res) {
 // Some code
 res.set('Content-Type', 'text/html');
 res.end('<html><body>' +
 '<h1>Express.js Guide</h1>' +
 '</body></html>');
});

app.get('/set-csv', function(req, res) {
 var body = 'title, tags\n' +
 'Practical Node.js, node.js express.js\n' +
 'Rapid Prototyping with JS, backbone.js node.js mongodb\n' +
 'JavaScript: The Good Parts, javascript\n';
 res.set({'Content-Type': 'text/csv',
 'Content-Length': body.length,
 'Set-Cookie': ['type=reader', 'language=javascript']});
 res.end(body);
});

app.get('/status', function(req, res) {
 res.status(200).end();
});

app.get('/send-ok', function(req, res) {
 res.status(200).send({message: 'Data was submitted successfully.'});
});

app.get('/send-err', function(req, res) {
 res.status(500).send({message: 'Oops, the server is down.'});
});

app.get('/send-buf', function(req, res) {
 res.set('Content-Type', 'text/plain');
 res.status(200).send(new Buffer('text data that will be converted into
Buffer'));
});

app.get('/json', function(req, res) {
 res.status(200).json([{title: 'Practical Node.js', tags: 'node.js express.js'},
 {title: 'Rapid Prototyping with JS', tags: 'backbone.js node.js mongodb'},
 {title: 'JavaScript: The Good Parts', tags: 'javascript'}
]);
});

CHAPTER 6 ■ RESPONSE

117

app.get('/non-stream', function(req, res) {
 var file = fs.readFileSync(largeImagePath);
 res.end(file);
});

app.get('/non-stream2', function(req, res) {
 var file = fs.readFile(largeImagePath, function(error, data){
 res.end(data);
 });
});

app.get('/stream1', function(req, res) {
 var stream = fs.createReadStream(largeImagePath);
 stream.pipe(res);
});

app.get('/stream2', function(req, res) {
 var stream = fs.createReadStream(largeImagePath);
 stream.on('data', function(data) {
 res.write(data);
 });
 stream.on('end', function() {
 res.end();
 });
});

/// Catch 404 and forward to error handler
app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

/// Error handlers

// Development error handler
// Will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

CHAPTER 6 ■ RESPONSE

118

// Production error handler
// No stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

var debug = require('debug')('request');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

Streams
As far as sending nonstreaming responses between response.send() and response.
end(), you should be well covered from the previous discussion. However, for streaming
data back, response.send() is not going to work; instead, you should use the response
object (which is a writable stream and inherited from http.ServerResponse):

app.get('/stream1', function(req, res) {
 var stream = fs.createReadStream(largeImagePath);
 stream.pipe(res);
});

Alternatively, use event handlers with data and end events:

app.get('/stream2', function(req, res) {
 var stream = fs.createReadStream(largeImagePath);
 stream.on('data', function(data) {
 res.write(data);
 });
 stream.on('end', function() {
 res.end();
 });
});

CHAPTER 6 ■ RESPONSE

119

The nonstreaming equivalent might look like this:

app.get('/non-stream', function(req, res) {
 var file = fs.readFileSync(largeImagePath);
 res.end(file);
});

For this demo we’re using a relatively large image of 5.1MB, which is located at
ch6/files/large-image.jpg. Notice the drastic difference in waiting time between
streaming, shown in Figure 6-12, and nonstreaming, shown in Figure 6-13. The
nonstreaming route waited for the whole file to load and then sent the whole file back
(~49ms), while the streaming route waited much less (only ~7ms). The fact that we use
a synchronous function in the nonstreaming example shouldn’t matter because we load
pages serially (one by one).

Figure 6-12. Streaming an image shows a faster waiting time than nonstreaming

CHAPTER 6 ■ RESPONSE

120

Figure 6-13. Nonstreaming an image shows a slower waiting time than streaming

Tip ■ In addition to using streams for response, streams can be use for requests as well.

Streaming is useful when dealing with large amounts of data (video, binary data, audio,

etc.) because the streams allow processing to start without finishing transfers. For more

information about streams, check out https://github.com/substack/stream-handbook

and https://github.com/substack/stream-adventure.

Summary
If you’ve made it thus far through each of the properties of the response, you probably
know more than an average Express.js developer. Congratulations! Understanding
request and response is the bread and butter (or meat and veggies for paleo lifestyle
people) of the Express.js development.

We’re almost done with the Express.js interface (a.k.a. API). The remaining pieces
are error handling and actually starting the app.

https://github.com/substack/stream-handbook
https://github.com/substack/stream-adventure

121

CHAPTER 7

Error Handling and
Running an App

Good web applications must have informative error messages to notify clients exactly
why their request has failed. Errors might be caused either by the client (e.g., wrong input
data) or by the server (e.g., a bug in the code).

The client might be a browser, in which case the application should display an HTML
page. For example, a 404 page should display when the requested resource is not found.
Or the client might be another application consuming our resources via the REST API.
In this case, the application should send the appropriate HTTP status code and the message
in the JSON format (or XML or another format that is supported). For these reasons, it’s
always the best practice to customize error-handling code when developing a serious
application.

In a typical Express.js application, error handlers follow the routes. Error handling
deserves its own section of the book because it’s different from other middleware.
After the error handlers, we’ll cover the Express.js application methods and ways to start
the Express.js app. Therefore, the major topics of this chapter are as follows:

Error handling•

Running an app•

Error Handling
Because of the asynchronous nature of Node.js and callback patterns, it’s not a trivial
task to catch and log for future analysis the state in which errors happen. The use of
domains for error handling in Express.js is a more advanced technique and, for most
implementations right out of the box, framework’s built-in error handling might prove
sufficient (along with custom error handling middleware).

m

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

122

We can start with the basic development error handler from our cli-app example
(https://github.com/azat-co/expressapiref/tree/master/cli-app). The error
handler spits out the error status (500, Internal Server Error), stack trace, and error
message. It is enabled by this code only when the app is in development mode:

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

Tip ■ app.get('env') is a convenient method for process.env.NODE_ENV; in other words,

the preceding line can be rewritten with process.env.NODE_ENV === 'development'.

This makes sense because error handling is typically used across the whole
application. Therefore, it’s best to implement it as middleware.

For custom error-handler implementations, the middleware is the same as any other
except that it has one more parameter, error (or err for short):

// Main middleware
app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 res.status(500).send();
});
// Routes

We can use res.status(500).end() to achieve a similar result, because we’re not
sending any data (e.g., an error message). It’s recommended to send at least a brief error
message, because it will help the debugging process when problems occur. In fact, the
response can be anything: JSON, text, a redirect to a static page, or something else.

For most front-end and other JSON clients, the preferred format is, of course, JSON:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 res.status(500).send({status:500, message: 'internal error',
type:'internal'});
})

https://github.com/azat-co/expressapiref/tree/master/cli-app

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

123

Note ■ Developers can use the req.xhr property or check if the Accept request header

has the application/json value.

The most straightforward way is to just send a text:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 res.status(500).send('internal server error');
})

Or, if we know that it’s secure to output the error message, we could use the following:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 res.status(500).send('internal server error: ' + err);
})

To simply render a static error page with the name 500 (template is the file 500.jade,
the engine is Jade) and the default extension, we could use

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 // Assuming that template engine is plugged in
 res.render('500');
})

Or we could use the following, if we want to overwrite the file extension, for a full
filename of 500.html:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 // Assuming that template engine is plugged in
 res.render('500.html');
})

We can also use res.redirect():

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 res.redirect('/public/500.html');
})

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

124

Always using proper HTTP response statuses such as 401, 400, 500, and so on, is
recommended. Refer to Table 7-1 for a quick reference.

Table 7-1. Main HTTP Status Codes

Code Name Meaning

200 OK Standard response for successful HTTP requests

201 Created Request has been fulfilled. New resource created

204 No Content Request processed. No content returned

301 Moved Permanently This and all future requests directed to the given URI

304 Not Modified Resource has not been modified since last requested

400 Bad Request Request cannot be fulfilled due to bad syntax

401 Unauthorized Authentication is possible, but has failed

403 Forbidden Server refuses to respond to request

404 Not Found Requested resource could not be found

500 Internal Server Error Generic error message when server fails

501 Not Implemented Server does not recognize method or lacks ability
to fulfill

503 Service Unavailable Server is currently unavailable

Tip ■ For the complete list of available HTTP methods, please refer to RFC 2616 at

www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

This is how we can send the status 500 (Internal Server Error) without sending back
any data:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 res.end(500);
})

To trigger an error from within our request handlers and middleware, we can just call

app.get('/', function(req, res, next){
 next(error);
});

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

125

Or, if we want to pass a specific error message, then we create an Error object and
pass it to next():

app.get('/', function(req,res,next){
 next(new Error('Something went wrong :-('));
});

It would be a good idea to use the return keyword for processing multiple error-prone
cases and combine both of the previous approaches. For example, we pass the database
error to next(), but an empty query result will not cause a database error (i.e., error will
be null), so we check for this condition with !users:

// A GET route for the user entity
app.get('/users', function(req, res, next) {
 // A database query that will get us any users from the collection
 db.get('users').find({}, function(error, users) {
 if (error) return next(error);
 if (!users) return next(new Error('No users found.'));
 // Do something, if fail the return next(error);
 res.send(users);
});

For complex apps, it’s best to use multiple error handlers. For example, use one for
XHR/AJAX requests, one for normal requests, and one for generic catch-everything-else.
It’s also a good idea to use named functions (and organize them in modules) instead of
anonymous ones.

Tip ■ There’s an easy way out in regards to managing error handling that is especially

good for development purposes. It’s called errorhandler (https://www.npmjs.org/

package/errorhandler) and it has the default error handlers for Express.js/Connect.js.

For more information on errorhandler, refer to the Chapter 2.

Running an App
The Express.js class provides a few app-wide objects and methods on its object, which
is app in our examples. These objects and methods are recommended because they can
improve code reuse and maintenance. For example, instead of hard-coding the number
3000 everywhere, we can just assign it once with app.set('PORT', 3000);. Then, if we
need to update it later, we have only one place where it needs to be changed. Therefore,
we’ll cover the following properties and methods in this section:

app.locals

app.render()

app.mountpath

https://www.npmjs.org/package/errorhandler
https://www.npmjs.org/package/errorhandler

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

126

app.on('mount', callback)

app.path()

app.listen()

The source code for this example is in the ch7 and https://github.com/azat-co/
expressapiref/tree/master/ch7.

app.locals
The app.locals object is similar to the res.locals object (discussed in Chapter 6) in the
sense that it exposes data to templates. However, there’s a main difference: app.locals
makes its properties available in all templates rendered by app, while res.locals restricts
them only to that request. Therefore, developers need to be careful not to reveal any
sensitive information via app.locals. The best use case for this is app-wide settings such
as locations, URLs, contact info, and so forth. For example:

app.locals.lang = 'en';
app.locals.appName = 'HackHall';

The app.locals object can also be invoked like a function:

app.locals([
 author: 'Azat Mardan',
 email: 'hi@azat.co',
 website: 'http://proexpressjs.com'
]);

app.render()
The app.render() method is invoked either with a view name and a callback or with a
view name, data, and a callback. For example, the system might have an e-mail template
for a “Thank you for signing up” message and another for “Reset your password:”

var sendgrid = require('sendgrid')(api_user, api_key);

var sendThankYouEmail = function (userEmail) {
 app.render('emails/thank-you', function (err, html){
 if (err) return console.error(err);
 sendgrid.send({
 to: userEmail,
 from: app.get('appEmail'),
 subject: 'Thank you for signing up',
 html: html // The html value is returned by the app.render
 }, function(err, json) {

https://github.com/azat-co/expressapiref/tree/master/ch7
https://github.com/azat-co/expressapiref/tree/master/ch7
http://proexpressjs.com/

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

127

 if (err) { return console.error(err); }
 console.log(json);
 });
 });
};

var resetPasswordEmail = function(userEmail) {
 app.render('emails/reset-password', {token: generateResetToken()},
function(err, html){
 if (err) return console.error(err);
 sendgrid.send({
 to: userEmail,
 from: app.get('appEmail'),
 subject: 'Reset your password',
 html: html
 }, function(err, json) {
 if (err) { return console.error(err); }
 console.log(json);
 });
 });
};

Note ■ The sendgrid module used in the example is available at NPM1 and GitHub.2

app.mountpath
The app.mountpath property is used in the mounted/sub apps. Mounted apps are
sub-apps that can be used for better code reuse and organization. The app.mountpath
property returns the path on which app is mounted.

For example, in ch7/app-mountpath.js there are two sub applications: post and
comment. The post is mounted on the /post path of app, while comment is mounted on
/comment of post. As a result of logs, mountpath returns values /post and /comment:

var express= require('express'),
 app = express(),
 post = express(),
 comment = express();

app.use('/post', post);
post.use('/comment', comment);

1https://www.npmjs.org/package/sendgrid
2https://github.com/sendgrid/sendgrid-nodejs

https://www.npmjs.org/package/sendgrid
https://github.com/sendgrid/sendgrid-nodejs

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

128

console.log(app.mountpath); // ''
console.log(post.mountpath); // '/post'
console.log(comment.mountpath); // '/comment'

app.on(‘mount’, function(parent){...})
The mount is triggered when the sub app is mounted on a specific path of a parent/main
app. For example, in ch7/app-on-mount.js, we have two sub apps with on mount event
listeners that print parents’ mountpaths. The values of the paths are / for post’s parent
(app) and /post for comment’s parent (post):

var express= require('express'),
 app = express(),
 post = express(),
 comment = express();

post.on('mount', function(parent){
 console.log(parent.mountpath); // '/'
})
comment.on('mount', function(parent){
 console.log(parent.mountpath); // '/post'
})

app.use('/post', post);
post.use('/comment', comment);

app.path()
The app.path() method will return the canonical path for the Express.js application. This
is useful if you are using multiple Express.js apps mounted to different routes (for better
code organization).

For example, you have comments resource (routes related to comments) for posts by
the way of mounting the comment app on the /comment path of the post app. But you can
still get the “full” path with comment.path() (from ch7/app-path.js):

var express= require('express'),
 app = express(),
 post = express(),
 comment = express();

app.use('/post', post);
post.use('/comment', comment);

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

129

console.log(app.path()); // ''
console.log(post.path()); // '/post'
console.log(comment.path()); // '/post/comment'

app.listen()
The Express.js app.listen(port, [hostname,] [backlog,] [callback]) method is
akin to server.listen()3 from the core Node.js http module. This method is one of the
ways to start an Express.js app. The port is a port number on which the server should
accept incoming requests. The hostname is the name of the domain. You might need to
set it when you deploy your apps to the cloud. The backlog is the maximum number of
queued pending connections. The default is 511. And the callback is an asynchronous
function that is called when the server is booted.

To spin up the Express.js app directly on a particular port (3000):

var express = require('express');
var app = express();
// ... Configuration
// ... Routes
app.listen(3000);

This approach is used by Express.js Generator. In it, the app.js file doesn’t start a
server, but it exports the object with

module.exports = app;

We don’t run the app.js file with $ node app.js either. Instead, we launch a shell
script www with $./bin/www. The shell script has this special string on its first line:

#!/usr/bin/env node

The line above turns the shell script into a Node.js program. This program imports
the app object from the app.js file, sets the port, and starts the app serverwith listen()
and a callback:

var debug = require('debug')('cli-app');
var app = require('../app');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

3http://nodejs.org/api/http.html#http_server_listen_port_hostname_backlog_callback

http://nodejs.org/api/http.html#http_server_listen_port_hostname_backlog_callback

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

130

Having your server object exported as a module is necessary when another process
requires the object, e.g., a testing framework. In the previous example, the main server file
(cli-app/app.js) exported the object and there is was no way of starting the server with
$ node app. If you don’t want to have a separate shell file for launching the server, but still
want to export the server when you need to, you can use the following trick. The gist of this
approach is to check whether the module is a dependency with require.main === module
condition. If it’s true, then we start the application. If it’s not, then we expose the methods
and the app object.

var server = http.createServer(app);
var boot = function () {
 server.listen(app.get('port'), function(){
 console.info('Express server listening on port ' + app.get('port'));
 });
}
var shutdown = function() {
 server.close();
}
if (require.main === module) {
 boot();
} else {
 console.info('Running app as a module');
 exports.boot = boot;
 exports.shutdown = shutdown;
 exports.port = app.get('port');
}

Another way to start a server besides app.listen() is to apply the Express.js app
to the core Node.js server function. This is useful for spawning an HTTP server and an
HTTPS server with the same code base:

var express = require('express');
var https = require('https');
var http = require('http');
var app = express();
var ops = require('conf/ops');
//... Configuration
//... Routes
http.createServer(app).listen(80);
https.createServer(ops, app).listen(443);

You can create a self-signed SSL certificate (for example, the server.crt file) to test your
HTTPS server locally for development purposes with OpenSSL by running these commands:

$ sudo ssh-keygen -f host.key
$ sudo openssl req -new -key host.key -out request.csr
$ sudo openssl x509 -req -days 365 -in request.csr -signkey host.key -out
server.crt

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

131

The OpenSSL is an open-source implementation of Secure Socket Layer (SSL)
protocol and a toolkit. You can find more about it at https://www.openssl.org. When
you use OpenSSL, Chrome and many other browsers will complain with a warning about
self-signed certificates—you can ignore it by clicking Proceed anyway (see Figure 7-1).

Tip ■ To install OpenSSL on Mac OS X, run $ brew install OpenSSL. On Windows,

download the installer from http://gnuwin32.sourceforge.net/packages/openssl.htm.

On Ubuntu, run apt-get install OpenSSL.

After server.crt is ready, feed it to the https.createServer() methods like this
(the ch7/app.js file):

var express = require('express');
var https = require('https');
var http = require('http');
var app = express();
var fs = require('fs');

Figure 7-1. You can ignore this warning cause by a self-signed SSL certificate

https://www.openssl.org/
http://gnuwin32.sourceforge.net/packages/openssl.htm

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

132

var ops = {
 key: fs.readFileSync('host.key'),
 cert: fs.readFileSync('server.crt') ,
 passphrase: 'your_secret_passphrase'
};

app.get('/', function(request, response){
 response.send('ok');
});
http.createServer(app).listen(80);
https.createServer(ops, app).listen(443);

The passphrase is the one you used during the certificate creation with OpenSSL.
Leave it out if you didn’t put in any passphrase. To start the process, you might have to
use sudo, such as $ sudo node app.

If everything worked well, you should see an okay message as shown in Figure 7-2.

Finally, if your application performs a lot of blocking work, you might want to start
multiple processes with cluster module.

Figure 7-2. Using self-signed SSL certificate for local development

CHAPTER 7 ■ ERROR HANDLING AND RUNNING AN APP

133

Summary
This chapter covered multiple ways to implement error handlers, the app object
interface, and ways to start the Express.js server. This concludes Express.js Deep API
Reference. Hopefully, you’ve learned many new properties and methods of the Express.
js framework’s objects, such as response, request, and the app itself. If you had any
doubts about middleware, then Chapter 2 cleared any concerns. Last but not least, we
covered routing, error handling and template utilization topics. All these topics built your
foundation so you can apply this knowledge to creating amazing and exciting new apps
with Express.js.

If you like this reference book but wish for more more practical and complex topics,
which include “how to use X” or “how to do Y” examples. I highly recommed you to read
the Pro Express.js and Practical Node.js books from Apress and me.

A, B���������
app.conigure() method, 17

C, D���������
Coniguration methods, 1–2

app.conigure(), 17
app.enable() and app.disable(), 3
app.set() and app.get(), 2

console.log(request.route) statement, 89
Create, read, update, and

delete (CRUD), 76
Cross-origin resource sharing (CORS), 7
Cross-site request forgery (CSRF), 35

E���������
Environments, 1, 16
Error handling

HTTP status codes, 124
JSON, 122–123
middleware, 122
return keyword, 125
uses, 121

Express.js request object, 81
attributes and methods, 92
$ npm installation, 82
package.json ile, 82
request.body, 81, 86
request.cookies, 81, 89
request.get() method, 81, 92
request.header() method, 81, 92
request.params, 81, 84
request.query, 81–82
request.route, 81, 89
request.signedCookies, 81, 91
source code, 94

Express.js response object, 97
kitchen-sink app, 97
methods and properties, 114
response.json() method, 97, 110
response.jsonp() method, 97, 112
response.locals object, 97, 101
response.redirect() method, 97, 113
response.render() method, 97–98
response.send() method, 97, 107
response.set() method, 97, 103
response.status() method, 97, 106–107
source code, 115
streaming vs. nonstreaming, 118–120

F, G���������
indUserByUsername() function, 67

H���������
HTTP methods, 71

I, J���������
500 Internal Server Error status, 108

K, L���������
Kitchen-sink app, 97

M���������
Middleware, 21

app.use() method, 22
body-parser module, 30
compression() method, 27
connect-busboy module, 46
connect-cors, 48

Index

135

connect-multiparty, 47
connect-redis, 48
connect-timeout module, 37
cookie-parser, 32
cookies and, 47
cookie-session, 47
CSRF, 35
errorhandler, 39
everyauth and passport, 48
express-session, 34
express.static() method, 36
express-validator, 48
helmet, 48
method-override, 40
morgan, 29
oauth2-server, 48
query and querystring, 47
raw-body, 47
response-time, 41
serve-favicon, 42
serve-index, 43
static assets, 47
urlencoded(), 32
vhost, 45

N, O���������
Node.js http.createServer() method, 78

P���������
Parameters, 63

admin.jade template, 67
app.param() method, 68
indUserByUsername() function, 67
middleware method, 68
request handlers, 78

param() function, 70

Q���������
Query string, 82

R���������
Representational State

Transfer (REST), 75
request.get() method, 92
request.header() methods, 92

response.end() method, 97
response.render() callback

parameter, 100
Routing, 72

app.all() method, 75
app.VERB() method, 72

get()/post() methods, 72
REST, 75

router class, 76
router.route(path) method, 76
trailing slashes, 75

Running applications, 125
app.listen() function

app.js ile, 129
asynchronous function, 129
https.createServer() methods, 131
HTTP server, 130
SSL protocol, 131–132

app.locals object, 126
app.mountpath property, 127–128
app.on(‘mount’, callback), 128
app.path() method, 128
app.render() method, 126–127

S���������
Secure Socket Layer (SSL) protocol, 131–132
Settings, 1, 3

custom, 3
Express.js system, 3

case sensitive routing, 11
env variable, 4
etag, 14
jsonp callback name, 7
query parser, 15
replacer parameter, 9
spaces parameter, 9
strict routing, 12
subdomain ofset, 16
trust proxy, 7
view cache, 5
view engine, 5
views, 6
x-powered-by option, 12

T, U, V, W, X, Y, Z���������
Template engines

app.engine() method, 51
Blade, 58

■INDEX

136

Middleware (cont.)

Combyne.js, 58
coniguration statements, 50
consolidate js, 59
EJS, 57
__express() method, 59
Haml-Cofee, 59
Haml.js, 57
Handlebars.js, 58
Hogan.js adapters, 58

Jade, 54, 56–57
overview, 49
renderFile() method, 52
render()function, 50
Swig, 55, 58
top-down inclusion, 57
view engine setting, 50
Webiller, 59
Whiskers, 58

■INDEX

137

Express.js Deep API

Reference

Azat Mardan

Express.js Deep API Reference

Copyright © 2014 by Azat Mardan

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied speciically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0782-6

ISBN-13 (electronic): 978-1-4842-0781-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the beneit of the trademark owner, with no intention of
infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identiied as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. he publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Peter Elst
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: William McManus
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

v

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

Chapter 1: Configuration, Settings, and Environments ■ 1

Configuration ... 1

app.set() and app.get() ... 2

app.enable() and app.disable() .. 3

app.enabled() and app.disabled() .. 3

Settings ... 3

env .. 4

view cache.. 5

view engine .. 5

views .. 6

trust proxy .. 7

jsonp callback name ... 7

json replacer and json spaces .. 9

case sensitive routing... 11

strict routing ... 12

x-powered-by ... 12

■ CONTENTS

vi

etag... 14

query parser ... 15

subdomain offset .. 16

Environments .. 16

Summary ... 20

Chapter 2: Working with Middleware ■ ... 21

Applying Middleware ... 22

Essential Middleware .. 26

compression ... 27

morgan ... 29

body-parser .. 30

urlencoded() ... 32

cookie-parser ... 32

express-session.. 34

csurf ... 35

express.static() ... 36

connect-timeout ... 37

errorhandler .. 39

method-override ... 40

response-time .. 41

serve-favicon .. 42

serve-index ... 43

vhost ... 45

connect-busboy .. 46

Other Middleware .. 47

Summary ... 48

■CONTENTS

vii

Chapter 3: Template Engines and Consolidate.js ■ 49

How to Use Template Engines ... 50

app.engine() ... 51

Uncommon Libraries .. 52

Template Engine Choices .. 57

Jade .. 57

Haml.js .. 57

EJS.. 57

Handlebars.js .. 58

Hogan.js Adapters... 58

Combyne.js ... 58

Swig .. 58

Whiskers ... 58

Blade... 58

Haml-Coffee .. 59

Webfiller ... 59

Consolidate.js .. 59

Summary ... 61

Chapter 4: Parameters and Routing ■ ... 63

Parameters .. 63

app.param() .. 68

Routing .. 72

app.VERB().. 72

app.all() .. 75

Trailing Slashes .. 75

■ CONTENTS

viii

Router Class ... 76

router.route(path) .. 76

Request Handlers .. 78

Summary ... 80

Chapter 5: Express.js Request Object: req ■ 81

request.query ... 82

request.params .. 84

request.body ... 86

request.route .. 89

request.cookies .. 89

request.signedCookies ... 91

request.header() and request.get() .. 92

Other Attributes and Methods ... 92

Summary ... 96

Chapter 6: Response ■ ... 97

response.render() ... 98

response.locals ... 101

response.set()... 103

response.status() .. 106

response.send() .. 107

response.json() ... 110

response.jsonp() ... 112

response.redirect() ... 113

Other Response Methods and Properties ... 114

Streams ... 118

Summary ... 120

■CONTENTS

ix

Chapter 7: Error Handling and Running an App ■ 121

Error Handling ... 121

Running an App ... 125

app.locals ... 126

app.render().. 126

app.mountpath ... 127

app.on(‘mount’, function(parent){...}) .. 128

app.path() ... 128

app.listen() ... 129

Summary ... 133

Index .. 135

xi

About the Author

Azat Mardan has over a dozen years of experience
in web, mobile, and software engineering. With a
Bachelor of Science in Informatics and a Master of
Science in Information Systems Technology, Azat
possesses deep academic knowledge as well as
extensive practical experience. He is the author of
eight other books on JavaScript and Node.js, including
Practical Node.js (Apress, 2014), and Rapid Prototyping
with JS, an Amazon.com #1 Best Seller in its category.

Currently, Azat teaches the Node Program
(http://nodeprogram.com) and creates online courses,
while also working as a Team Lead at DocuSign.com.

His team rebuilds a 50 million user product (DocuSign web app) using the cutting-edge
tech stack of Node.js, Express.js, Backbone.js, CofeeScript, Jade, Stylus, and Redis.

Recently, Azat worked as an engineer at the curated social media news aggregator
web site Storify.com (acquired by LiveFyre.com in 2013), which is used by BBC, NBC,
CNN, he White House, and others. Storify is a partner of Joyent.com (Node.js maintainer)
and runs completely on Node.js, (whereas most companies that use Node.js use it only for
certain tasks). Storify.com is the company behind the open source library jade-browser.

Prior to his stint at Storify.com, Azat developed mission-critical applications for
government agencies in Washington, DC, including the National Institutes of Health,
the National Center for Biotechnology Information, and the Federal Deposit Insurance
Corporation, as well as for Lockheed Martin.

Azat has received acclaim for teaching programming classes at Marakana (acquired
by Twitter in 2013), pariSOMA, General Assembly San Francisco, and Hack Reactor. In his
spare time, Azat writes about technology on his blog http://webapplog.com.

Azat is the creator of several open source Node.js projects, including ExpressWorks,
mongoui, HackHall.com, and NodeFramework.com, and is a contributor to express,
oauth, jade-browser, and other NPM modules.

http://nodeprogram.com
http://webapplog.com

xiii

About the Technical
Reviewer

Peter Elst is a web standards enthusiast coming from a
multimedia and application development background
and works as a Web Solutions Engineer in Creative
Innovation at Google.

With well over a decade experience, Peter is a
regular technical reviewer, co-authored a number
of books including “HTML5 Solutions - Essential
Techniques for HTML5 Developers” and is a well
respected speaker at many industry events. You can
ind out more about his latest interests and ongoing
projects on his personal blog peterelst.com.

peterelst.com

xv

Acknowledgments

his book would not be possible without the existence of my parents, the Internet and
JavaScript. Furthermore, I acknowledge the geniuses of Ryan Dahl (Node.js) and TJ
Holowaychuk (Express.js).

I express my gratitude to Apress editors who persuaded me to continue with
publishing this book as a remake of Express.js Guide, and who have put a lot of energy
into making the book great: Christine Ricketts, Peter Elst, and William McManus. Also
special thanks to Tom Rutka.

Last but not least, I would like to thank my high school teacher who always had many
toy problems for us to solve using Turbo Pascal.

	Express.js Deep API Reference
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

