
www.allitebooks.com

http://www.allitebooks.org

Ext JS 4 Web
Application
Development
Cookbook

Over 110 easy-to-follow recipes backed up with real-life
examples, walking you through basic Ext JS features to
advanced application design using Sencha's Ext JS

Stuart Ashworth

Andrew Duncan

BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

Ext JS 4 Web Application Development
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2012

Production Reference: 1170812

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-686-0

www.packtpub.com

Cover Image by Ed Maclean (edmaclean@gmail.com)

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Stuart Ashworth

Andrew Duncan

Reviewers
Aafrin Fareeth

Yiyu Jia

Peter Kellner

Joel Watson

Acquisition Editor
Usha Iyer

Lead Technical Editor
Dayan Hyames

Technical Editors
Apoorva Bolar

Madhuri Das

Project Coordinator
Michelle Quadros

Proofreader
Martin Diver

Indexer
Hemangini Bari

Graphics
Manu Joseph

Production Coordinators
Shantanu Zagade

Aparna Bhagat

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Stuart Ashworth is a professional web developer and an all-round web geek currently
living in Glasgow, Scotland with his girlfriend Sophie and wee dog, Meg. After graduating with
a first-class honors degree in Design Computing from the University of Strathclyde, he earned
his stripes at a small software company in the city.

Stuart has worked with Sencha technologies for over three years, creating various large and
small-scale web applications, mobile applications, and framework plugins along the way.

At the end of 2010, Stuart and Andrew formed SwarmOnline, later becoming an official
Sencha partner. Since then they have worked on projects with a number of local, national,
and international clients ranging from small businesses to large multinational corporations.

Stuart enjoys playing football, snowboarding, and visiting new cities. He blogs about Sencha
technologies on the SwarmOnline website as much as possible and can be contacted through
Twitter, e-mail, or the Sencha forums.

Andrew Duncan’s passion for the Internet and web development began from a young age,
where he spent much of his time creating websites and installing/managing a 2 km square
wireless mesh network for his local, rural community.

After graduating in Business and Management from the University of Glasgow, Andrew
was inspired to set up a business offering web development, training, and consultancy as
SwarmOnline. During expansion, he partnered with Stuart at the end of 2010. His experience
is now expansive, having worked with a large variety of small, medium, and multinational
businesses for both the public and private-sector markets.

Sencha’s technologies first became of interest to Andrew more than three years ago.
His knowledge and enthusiasm was recognized in the Sencha Touch App contest where
SwarmOnline secured a top 10 place. This talent did not go unrecognized as Sencha soon
signed SwarmOnline as their first official partner outside the US.

When not immersed in technology, Andrew lives in Glasgow’s West End with his girlfriend,
Charlotte. He enjoys skiing, curling, and DIY projects. Andrew can be found on swarmonline.
com/blog, by e-mail, and on Twitter.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Aafrin Fareeth is a self-made programmer who fell in love with codes during his high
school. Since then he has mastered several languages, such as C++, Java, PHP, ASP, VB,
VB.NET, and is on a quest to master more languages. He specializes in web application
development, security testing, and forensic analysis.

I would like to thank my family and friends who have been very supportive,
Nor Hamirah for her continuous encouragement and motivation, Jovita
Pinto, and Reshma Sundaresan for this wonderful opportunity.

Yiyu Jia has been developing web applications since 1996. He worked as a technical
leader and solutions architect on various projects with Java and PHP as the major backend
languages. He also has professional experience in interactive TV middleware and home
gateway projects. He is especially interested in designing multi-channel web applications.

Yiyu Jia is also the main founder of the novel data-mining research topic—Promotional
Subspace Mining (PSM), which aims at finding out useful information from subspaces in very
large data sets. He can be reached at the given e-mail address—yiyu.jia@gmail.com. His
blog and website are http://yiyujia.blogspot.com and http://www.idatamining.
org respectively.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

mailto:yiyu.jia@gmail.com
http://yiyujia.blogspot.com/
http://www.idatamining.org/
http://www.idatamining.org/
http://www.allitebooks.org

Peter Kellner, a Microsoft ASP.NET MVP since 2007, is founder and president of
ConnectionRoad, and a seasoned software professional specializing in high quality, scalable,
and extensible web applications. His experience includes building and leading engineering
teams both on and off shore. Peter is actively engaged in the software community being the
primary leader of Silicon Valley Code Camp, which attracted over 2,000 people in 2011 with
over 200 sessions. He also organizes the San Francisco Sencha Users Group. In his free time
he and his wife Tammy can be found biking the Santa Cruz Mountains. In 2003 they rode
across the United States in 27 days.

Joel Watson is a web enthusiast, working for the past eight years in website design and
development. He loves exploring web technologies of all sorts, and particularly enjoys creating
web experiences that leverage the newest features of HTML5 and its related technologies.

When he’s not coding, Joel enjoys spending time with his wife and two daughters, playing
guitar, and watching cheesy sci-fi and anime.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com, and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read, and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

For Charlotte, Sophie, and our families.
Thank you for the support and encouragement you gave us while writing this book.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Table of Contents
Preface	 1
Chapter 1: Classes, Object-Oriented Principles and
Structuring your Application	 7

Introduction	 8
Creating custom classes using the new Ext JS class system	 8
Using inheritance in your classes	 15
Adding mixins to your class	 19
Scoping your functions	 22
Dynamically loading Ext JS classes	 27
Aliasing your components	 29
Accessing components with component query	 31
Extending Ext JS components	 37
Overriding Ext JS' functionality	 40

Chapter 2: Manipulating the Dom, Handling Events,
and Making AJAX Requests	 45

Introduction	 46
Selecting DOM elements	 46
Traversing the DOM	 49
Manipulating DOM elements	 51
Creating new DOM elements	 55
Handling events on elements and components	 58
Delegating event handling of child elements	 60
Simple animation of elements	 64
Custom animations	 67
Parsing, formatting, and manipulating dates	 70
Loading data with AJAX	 73
Encoding and decoding JSON data	 75

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

ii

Table of Contents

Chapter 3: Laying Out Your Components	 79
Introduction	 79
Using a FitLayout to expand components to fill their parent	 80
Creating flexible vertical layouts with VBoxes	 82
Creating flexible horizontal layouts with HBoxes	 85
Displaying content in columns	 88
Collapsible layouts with accordions	 91
Displaying stacked components with CardLayouts	 94
Anchor components to their parent's dimensions	 98
Creating fullscreen applications with the BorderLayout	 103
Combining multiple layouts	 107

Chapter 4: UI Building Blocks—Trees, Panels, and Data Views	 113
Introduction	 114
Loading a tree's nodes from the server	 114
Sorting tree nodes	 117
Dragging-and-dropping nodes within a tree	 120
Using a tree as a menu to load content into another panel	 123
Docking items to panels' edges	 126
Displaying a simple form in a window	 130
Creating a tabbed layout with tooltips	 132
Manipulating a tab panel's TabBar	 134
Executing inline JavaScript to in an XTemplate customize appearance	 138
Creating Ext.XTemplate member functions	 140
Adding logic to Ext.XTemplates	 144
Formatting dates within an Ext.XTemplate	 146
Creating a DataView bound to a data store	 147
Displaying a detailed window after clicking a DataView node	 152

Chapter 5: Loading, Submitting, and Validating Forms	 157
Introduction	 157
Constructing a complex form layout	 158
 Populating your form with data	 163
Submitting your form's data	 167
Validating form fields with VTypes	 170
Creating custom VTypes	 171
Uploading files to the server	 175
Handling exception and callbacks	 178

Chapter 6: Using and Configuring Form Fields	 183
Introduction	 183
Displaying radio buttons in columns	 184
Populating CheckboxGroups	 189

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

iii

Table of Contents

Dynamically generate a CheckboxGroup from JSON	 193
Setting up available date ranges in Date fields	 199
Loading and parsing Dates into a Date field	 202
Entering numbers with a Spinner field	 204
Sliding values using a Slider field	 207
Loading server side data into a combobox	 210
Autocompleting a combobox's value	 212
Rendering the results in a combobox	 216
Rich editing with an HTML field	 219
Creating repeatable form fields and fieldsets	 221
Combining form fields	 224

Chapter 7: Working with the Ext JS Data Package	 229
Introduction	 229
Modeling a data object	 230
Loading and saving a Model using proxies	 234
Loading cross-domain data with a Store	 238
Associating Models and loading nested data	 241
Applying validation rules to Models' fields	 248
Grouping a Store's data	 253
Handling Store exceptions	 259
Saving and loading data with HTML5 Local Storage	 262

Chapter 8: Displaying and Editing Tabular Data	 265
Introduction	 265
Displaying simple tabular data	 266
Editing grid data with a RowEditor	 269
Adding a paging toolbar for large datasets	 276
Dealing with large datasets with an infinite scrolling grid	 278
Dragging-and-dropping records between grids	 282
Creating a grouped grid	 288
Custom rendering of grid cells with TemplateColumns	 291
Creating summary rows aggregating the grid's data	 295
Displaying full-width row data with the RowBody feature	 300
Adding a context menu to grid rows	 304
Populating a form from a selected grid row	 308
Adding buttons to grid rows with action columns	 312

Chapter 9: Constructing Toolbars with Buttons and Menus	 319
Introduction	 319
Creating a split button	 319
Working with context menus	 324

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

iv

Table of Contents

Adding a combobox to a toolbar to filter a grid	 328
Using the color picker in a menu	 333

Chapter 10: Drawing and Charting	 337
Introduction	 337
Drawing basic shapes	 338
Applying gradients to shapes	 343
Drawing paths	 346
Transforming and interacting with shapes	 352
Creating a bar chart with external data	 356
Creating a pie chart with local data	 360
Creating a line chart with updating data	 365
Customizing labels, colors, and axes	 370
Attaching events to chart components	 375
Creating a live updating chart bound to an editable grid	 379

Chapter 11: Theming your Application	 383
Introduction	 383
Compiling SASS with Compass	 384
Introduction to SASS	 388
Using Ext JS' SASS variables	 395
Using the UI config option	 398
Creating your own theme mixins	 403
Restyling a panel	 406
Creating images for legacy browsers	 410

Chapter 12: Advanced Ext JS for the Perfect App	 413
Introduction	 414
Advanced functionality with plugins	 414
Architecting your applications with the MVC pattern	 420
Attaching user interactions to controller actions	 424
Creating a real-life application with the MVC pattern	 431
Building your application with Sencha's SDK tools	 441
Getting started with Ext Direct	 445
Loading and submitting forms with Ext Direct	 449
Handling errors throughout your application	 455

Index	 459

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Preface
Ext JS 4 is Sencha's latest JavaScript framework for developing cross-platform web
applications. Built upon web standards, Ext JS provides a comprehensive library of user
interface widgets and data manipulation classes to turbo-charge your application's
development. Ext JS 4 builds on Ext JS 3, introducing a number of new widgets and features
including the popular MVC architecture, easily customizable themes, and plugin-free charting.

This book works through the framework from the fundamentals to advanced features and
application design. More than 110 detailed and practical recipes demonstrate all of the key
widgets and features the framework has to offer. With this book, and the Ext JS framework,
you will learn how to develop truly interactive and responsive web applications.

Starting with the framework fundamentals, you will work through all of the widgets and
features the framework has to offer, finishing with extensive coverage of application design
and code structure.

Over 110 practical and detailed recipes describe how to create and work with forms, grids,
data views, and charts. You will also learn about the best practices for structuring and
designing your application and how to deal with storing and manipulating data. The
cookbook structure is such that you may read the recipes in any order.

The Ext JS 4 Web Application Development Cookbook will provide you with the knowledge to
create interactive and responsive web applications, using real-life examples.

What this book covers
Chapter 1, Classes, Object-Oriented Principles, and Structuring your Application, covers how
to harness the power of Ext JS 4's new class system, architect your application using the
Model-View-Controller (MVC) pattern, and extend the framework's functionality.

Chapter 2, Manipulating the Dom, Handling Events, and Making AJAX Requests, covers
topics such as working with the Document Object Model (DOM), selecting, creating, and
manipulating elements. We'll look at how to add built-in animations to your elements and
how to create custom animations.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Preface

2

We'll talk through creating your first AJAX request and encoding/decoding the data either in
JSON or HTML format.

Other topics include handling events, working with dates, detecting browser features,
and evaluating object types/values.

Chapter 3, Laying Out your Components, explores the layout system in Ext JS 4
and demonstrates how to use these layouts to place your user-interface components.
The layouts we will work with are FitLayout, BorderLayout, HBoxLayout, VBoxLayout,
ColumnLayout, TableLayout, AccoridionLayout, CardLayout, AnchorLayout, and
AbsoluteLayout. The final recipe will combine a number of these layouts to create
a framework for a rich desktop-style application.

Chapter 4, UI Building Blocks – Trees, Panels, and Data Views, looks at how creating and
manipulating the basic components that Ext JS provides is fundamental to producing a rich
application. In this chapter, we will cover three fundamental Ext JS UI components and explore
how to configure and control them within your applications.

Chapter 5, Loading, Submitting, and Validating Forms, introduces forms in Ext JS 4. We begin
by creating a support-ticket form in the first recipe.

Instead of focusing on how to configure specific fields, we demonstrate more generic tasks
for working with forms. Specifically, these are populating forms, submitting forms, performing
client-side validation, and handling callbacks/exceptions.

Chapter 6, Using and Configuring Form Fields, will focus on how we configure and use Ext JS
4's built-in form fields and features to hone our forms for a perfect user experience.

We will cover various form fields and move up from configuring the fields using their built-in
features to customizing the layout and display of these fields to create a form that creates a
smooth and seamless user experience.

Chapter 7, Working with the Ext JS Data Package, will cover the core topics of the Data
Package. In particular, we will demonstrate Models, Stores, and Proxies, and explain how
each is used for working with your applications' structured data.

Chapter 8, Displaying and Editing Tabular Data, will cover the basics of simple grids to
advanced topics such as infinite scrolling and grouping. We will also demonstrate how to edit
data easily, customize how we present data, and link your grids with other Ext JS components.

Chapter 9, Constructing Toolbars with Buttons and Menus, looks at toolbars, buttons, and
menus as they are the foundation for giving users the means to interact with our applications.
They are a navigation and action-launching paradigm that almost all computer users are
familiar with, and so making use of them in your applications will give users a head start in
finding their way around.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Preface

3

This chapter will explore these crucial components and demonstrate how to add them to your
application to provide an interactive and dynamic user experience.

Chapter 10, Drawing and Charting, will demonstrate the new charting and drawing features
introduced to Ext JS 4. In particular, you will discover how to chart data for presentation in
numerous ways.

We will take you through the Ext.draw package which, as you will learn, is used as the basis
of the charting package that we explore later. The first recipes introduce the tools available
for drawing shapes and text before moving onto the fully featured Ext.chart classes that
enable you to quickly create and integrate attractive, interactive charts into your apps.

Chapter 11, Theming your Application, describes the tasks involved in customizing the look
and feel of your Ext JS application. You will learn the basics of SASS and Compass and move
on to compiling the framework's SASS. We will then explore how to customize your theme
with SASS options and custom mixins. Finally we will demonstrate how to take care of legacy
browsers using the Sencha SDK Tools' slicer tool.

Chapter 12, Advanced Ext JS for the Perfect App, covers advanced topics in Ext JS that will
help make your application stand out from the crowd. We will start by explaining how to extend
and customize the framework through plugins where we will write a plugin to toggle textfields
between an editable and display state. The next recipes will focus on the MVC pattern that has
become the recommended way of structuring your applications. These recipes will start by
explaining the file and class structure we need leading into how to connect your application's
parts together. Finally we will take one of our earlier examples and demonstrate how to create
it while following the MVC pattern. We will also focus on Ext.Direct and how it can be used
to handle server communications in conjunction with forms and stores. Other advanced topics
such as state, advanced exception handling, history management, and task management will
also be described.

Appendix, Ext JS 4 Cookbook - Exploring Further, contains an additional 20 recipes with more
useful hints and tips to help you to get the most out of Sencha's Ext JS 4 framework. Following
the same format as the book, these extra recipes cover a wide variety of topics and we hope
they further broaden your knowledge of the framework.

This appendix is not present in the book but is available as a free
download from http://www.packtpub.com/sites/default/
files/downloads/Appendix_Ext JS 4 Cookbook_Exploring
Further.pdf.

What you need for this book
Before getting started with this book make sure you have your favorite text editor ready and
a browser with some developer tools and a JavaScript debugger. We recommend Google
Chrome (with Developer Tools) or Firefox (with Firebug).

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Preface

4

All the recipes require the Ext JS 4 SDK. This is available as a free download from Sencha's
website http://www.sencha.com/products/extjs/. Additionally, some make use of the Sencha
SDK Tools, which can be downloaded from http://www.sencha.com/products/sdk-tools/.

Although each recipe is a standalone example, we need to include the SDK and add the Ext.
onReady method to our HTML file, which will execute the passed function when everything is
fully loaded. Prepare an HTML file with the following, which can be used as the starting point
for most of the recipes:

<html>
<head>
<link rel="stylesheet" type="text/css" href="extjs/resources/css/ext-
all.css">
 <script type="text/javascript" src="extjs/ext-all-debug.js">
 </script>
 <script type="text/javascript">

 Ext.onReady(function () {

 //Recipe source code goes here

 });
 </script>
</head>
<body>
</body>
</html>

The example source code supplied with this book can be executed as a standalone project or
by importing each chapter's folder into the Ext JS SDK package's examples folder.

Who this book is for
The Ext JS 4 Web Application Development Cookbook is aimed at both newcomers and
those experienced with Ext JS who want to expand their knowledge and learn how to create
interactive web applications with Ext JS 4.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

http://www.sencha.com/products/extjs/
http://www.sencha.com/products/sdk-tools/

Preface

5

A block of code is set as follows:
Ext.define('Cookbook.Smartphone', {

 mixins: {
 camera: 'HasCamera'
 }

});

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

...
fields: [...
{
 name: 'PublishDate',
 type: 'date',
 dateFormat: 'd-m-Y'
}
...]
...

Any command-line input or output is written as follows:

Windows: gem install compass

Mac OS X: sudo gem install compass

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The repeated questions will
be dynamically added to the form by pressing an Add Another Guest button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

Preface

6

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Classes,

Object-Oriented
Principles and

Structuring your
Application

In this chapter, we will cover:

ff Creating custom classes using the new Ext JS class system

ff Using inheritance in your classes

ff Adding mixins to your classes

ff Scoping your functions

ff Dynamically loading Ext JS classes

ff Aliasing your components

ff Accessing components with component query

ff Extending Ext JS components

ff Overriding Ext JS functionality

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

8

Introduction
In this chapter, you will learn how to harness the power of Ext JS 4's new class system, and
extend the framework's functionality.

Creating custom classes using the new
Ext JS class system

Although JavaScript is not a class-based language, it is possible to simulate classes using its
prototypal structure. Ext JS 4 introduces an entirely new way of defining classes, compared
with Ext JS 3. Consequently, when developing with Ext JS 4 your JavaScript's structure will
be more closely in line with that of other object oriented languages.

This recipe will explain how to define classes using the new system, and give some detail
about the features it has to offer. We will do this by creating a custom class to model a
vehicle, with a method that will alert some details about it.

How to do it...
The Ext.define method is used to define new classes. It uses a string-based definition,
leaving the framework to take care of the namespacing and concrete defining of the class:

1.	 Call the Ext.define method with our class name and configuration object.
// Define new class 'Vehicle' under the 'Cookbook' namespace
Ext.define('Cookbook.Vehicle', {
 // class configuration goes here
});

2.	 Add properties and methods to the configuration object:
Ext.define('Cookbook.Vehicle', {
 Manufacturer: 'Aston Martin',
 Model: 'Vanquish',

 getDetails: function(){
 alert('I am an ' + this.Manufacturer + ' ' + this.Model);
 }
});

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

9

3.	 We now add the Ext.define method's optional third parameter, which is a function
that is executed after the class has been defined, within the scope of the newly
created class:
Ext.define('Cookbook.Vehicle', {
 Manufacturer: 'Aston Martin',
 Model: 'Vanquish',

 getDetails: function(){
 alert('I am an ' + this.Manufacturer + ' ' + this.Model);
 }
}, function(){
 Console.log('Cookbook.Vehicle class defined!');
});

4.	 Finally, we create an instance of the new class and call its getDetails method:
var myVehicle = Ext.create('Cookbook.Vehicle');

alert(myVehicle.Manufacturer); // alerts 'Aston Martin'

myVehicle.getDetails(); // alerts 'I am an Aston Martin Vanquish'

How it works...
1.	 The Ext.define method handles the creation and construction of your class,

including resolving the namespaces within your class name.

Namespaces allow us to organize classes into logical
packages to keep code organized and prevents the global
scope from becoming polluted. In our example, Ext JS will
create a package (essentially just an object) called Cookbook,
which contains our Vehicle class as a property. Your
namespaces can be infinitely deep (that is, as many dots as
you wish) and are automatically created by the framework.

2.	 The first parameter of this method identifies the class name as a string. Class
names are always given as strings (when defined and when instantiated) so they
can be dynamically loaded when needed, meaning you can start to instantiate a
class before it has been loaded.

3.	 The second parameter of this method accepts a standard JavaScript object that
defines all of the properties and methods of your class. These can be accessed,
as you would expect, from an instance of the class.

4.	 The third parameter of Ext.define's is an optional callback function that gets
executed once the class has been fully defined and is ready to be instantiated.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

10

5.	 Internally every class that is defined is turned into an instance of the Ext.Class
class by the Ext.ClassManager. During this process, the manager runs through
a series of pre and post processing steps. These processors each take care of
initializing one part of the class and are called in the following order:

�� Loader: Loads any other required classes if they don't already exist,
recursing through this process for each class loaded

�� Extend: Now that all the required classes have been loaded, we can extend
from them as required by our extend config option

�� Mixins: Any Mixins that have been defined are now handled and merged into
our class

�� Config: Any properties in the config configuration option are processed and
their get/set/apply/reset methods are created

�� Statics: If the class has any static properties or methods these are handled
at this stage

6.	 Once all of these pre-processors have completed their work our new class is ready
to be instantiated. However, it will continue to work through its post-processors that
perform the following actions:

�� Aliases: It creates the necessary structure to allow the class to be created
through an xtype

�� Singleton: If the class has been defined as a singleton its single instance is
created here

�� Legacy: To help with backward compatibility a class can have alternate
names that are mapped to the class

At this point our class is fully created, and all that is left to do is to execute the callback
function (defined as the third parameter to Ext.define) to signal the class definition
being complete. The full process can be seen in the following diagram:

Ext.Class

Ext.define

Callback

Pre-Processors Post-Processors

Loader Aliases

Singleton

Legacy

Extend

Mixins

Config

Statics

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

11

This model is extremely flexible and allows you to include your own pre or post
processor at any stage in the sequence by using the registerPreProcessor
and registerPostProcessor methods.

All Ext JS 4 classes inherit from a common base class, named Ext.Base. This class
contains several methods that provide basic functionality to all created subclasses, for
example override and callParent. When we define a new class using the Ext.define
method, and don't specify an explicit base class, then the framework will automatically use
Ext.Base as its base inside the Extend preprocessor. If we do specify a base class then that
class will, at the root of its inheritance tree, extend Ext.Base. The following diagram shows
how our custom class fits into this structure:

Ext.Base

Cookbook.Vehhicle

extends

There's more...
The new Ext JS class system also takes care of a lot of the heavy lifting for you when it
comes to defining your properties, configuration options, and their associated getter and
setter methods.

If you define these configuration options within a config object, the class system (inside its
Config pre-processor) will automatically generate get, set, reset, and apply methods. This
reduces the amount of code that needs to be maintained and downloaded.

The following code sample utilizes this config option and takes advantage of the free code
that the framework will create. This code is initialized by calling the initConfig method
within the constructor, which is executed when your class is instantiated.

Constructors are special methods that are executed when a
class is instantiated (either using the Ext.create(..) or new
syntax) and are used to prepare the object in any way needed. For
example, it could be used to set up default property values.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

12

Ext.define('Cookbook.Vehicle', {
 config: {
 Manufacturer: 'Aston Martin',
 Model: 'Vanquish'
 },

 constructor: function(config){
 // initialise our config object
 this.initConfig(config);
 },

 getDetails: function(){
 alert('I am an ' + this.Manufacturer + ' ' + this.Model);
 }
});

// create a new instance of Vehicle class
var vehicle = Ext.create('Cookbook.Vehicle');

// display its details
vehicle.getDetails();

// update Vehicle details
vehicle.setManufacturer('Volkswagen');
vehicle.setModel('Golf');

// display its new details
vehicle.getDetails();

By using this approach it is the equivalent of defining your class with the explicit methods
shown as follows:

Ext.define('Cookbook.Vehicle', {
 Manufacturer: 'Aston Martin',
 Model: 'Vanquish',

 getManufacturer: function(){
 return this.Manufacturer;
 },
 setManufacturer: function(value){
 this.Manufacturer = value;
 },

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

13

 resetManufacturer: function(){
 this.setManufacturer('Aston Martin');
 },
 applyManufacturer: function(manufacturer){
 // perform some action to apply the value (e.g. update a DOM
element)
 return manufacturer;
 },

 getModel: function(){
 return this.Model;
 },
 setModel: function(value){
 this.Model = value;
 },
 resetModel: function(){
 this.setModel('Vanquish');
 },
 applyModel: function(model){
 // perform some action to apply the value (e.g. update a DOM
element)
 return model;
 },

 getDetails: function(){
 alert('I am an ' + this.Manufacturer + ' ' + this.Model);
 }
});

Notice that we return the property's value within our
apply methods. This is important as this method is
called by the property's set method, so the new value is
applied appropriately, and its return value is stored as the
property's value.

Sometimes we will want to perform some extra actions when calling these generated
methods. We can do this by explicitly defining our own version of the method that will
override the generated one. In our example, when calling the apply method, we want to
update a DOM element that contains the Vehicle's name, so the change is reflected on
the screen. First we add some markup to hold our Vehicle's data:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

14

Now we override the applyManufacturer and applyModel methods to perform an update
of each DOM element when the properties are changed:

Ext.define('Cookbook.Vehicle', {
 config: {
 Manufacturer: 'Aston Martin',
 Model: 'Vanquish'
 },

 constructor: function(config){
 // initialise our config object
 this.initConfig(config);
 },

 getDetails: function(){
 alert('I am an ' + this.getManufacturer() + ' ' + this.
getModel());
 },

 applyManufacturer: function(manufacturer){
 Ext.get('manufacturer').update(manufacturer);
 return manufacturer;
 },
 applyModel: function(model){
 Ext.get('model').update(model);
 return model;
 }
});
// create a Vehicle and set its Manufacturer and Model
var vehicle = Ext.create('Cookbook.Vehicle');
vehicle.setManufacturer('Volkswagen');
vehicle.setModel('Golf');

See also
ff The next recipe explaining how to include inheritance in your classes.

ff The Adding mixins to your class recipe, which describes what Mixins are
and how they can be added to your classes.

ff Dynamically Loading ExtJS Classes which explains how to use the dynamic
dependency loading system that the framework provides.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

15

Using inheritance in your classes
More often than not when defining a new class, we want to extend an existing Ext JS class or
component so that we inherit its current behavior and add our own new functionality.

This recipe explains, how to extend an existing class and add new functionality through new
methods and by overriding existing ones.

We will define a very simple class that models a Vehicle, capturing its Manufacturer,
Model, and Top Speed. It has one method called travel, which accepts a single parameter
that represents the distance to be travelled. When called, it will show an alert with details of
the vehicle, how far it travelled, and at what speed.

How to do it...
1.	 Define our base Vehicle class, which provides us with our basic functionality and

from which we will extend our second class:
Ext.define('Cookbook.Vehicle', {
 config: {
 manufacturer: 'Unknown Manufacturer',
 model: 'Unknown Model',
 topSpeed: 0
 },

 constructor: function(manufacturer, model, topSpeed){
 // initialise our config object
 this.initConfig();

 if(manufacturer){
 this.setManufacturer(manufacturer);
 }
 if(model){
 this.setModel(model);
 }
 if(topSpeed){
 this.setTopSpeed(topSpeed);
 }
 },

 travel: function(distance){
 alert('The ' + this.getManufacturer() + ' ' + this.
getModel() + ' travelled ' + distance + ' miles at ' + this.
getTopSpeed() + 'mph');
 }

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

Classes, Object-Oriented Principles and Structuring your Application

16

}, function(){
 console.log('Vehicle Class defined!');
});
var vehicle = Ext.create('Cookbook.Vehicle', 'Aston Martin',
'Vanquish', 60);
vehicle.travel(100); // alerts 'The Aston Martin Vanquish
travelled 100 miles at 60mph

2.	 Define a sub-class Cookbook.Plane that extends our base Vehicle class and
accepts a fourth parameter of maxAltitude:
Ext.define('Cookbook.Plane', {
 extend: 'Cookbook.Vehicle',

 config: {
 maxAltitude: 0
 },

 constructor: function(manufacturer, model, topSpeed,
maxAltitude){
 // initialise our config object
 this.initConfig();

 if(maxAltitude){
 this.setMaxAltitude(maxAltitude);
 }

 // call the parent class' constructor
 this.callParent([manufacturer, model, topSpeed]);
 }
}, function(){
 console.log('Plane Class Defined!');
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

17

3.	 Create an instance of our Cookbook.Plane sub-class and demonstrate that it has
the properties and methods defined in both the Vehicle and Plane classes:

var plane = Ext.create('Cookbook.Plane', 'Boeing', '747', 500,
30000);

plane.travel(800);

Alerts The Boeing 747 travelled 800 miles at 500mph (inherited from the Vehicle class)

alert('Max Altitude: ' + plane.getMaxAltitude() + ' feet');

Alerts 'MaxAltitude: 30000 feet' (defined in the Plane class)

How it works...
The extend configuration option, used when defining your new subclass, tells the
Ext.Class' Extend preprocessor (which we talked about in the previous recipe) what
class your new one should be inherited from. The preprocessor then merges all of the
parent class' members into the new class' definition, giving us our extended class.

By extending the Vehicle class in this way our class diagram will look like the one shown
as follows. Notice that the Plane class still inherits from the Ext.Base class through the
Vehicle class' extension of it:

Ext.Base

Cookbook.Vehhicle

extends

Cookbook.Plane

extends

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

18

The callParent method is a very quick way of executing the parent class' version of the
method. This is important to ensure that the parent class is constructed correctly and will
still function as we expect. In previous versions of Ext JS, this was achieved by using the
following syntax:

Plane.superclass.constructor.apply(this, arguments);

The new callParent method effectively still does this but it is hidden from the developer,
making it much easier and quicker to call.

There's more...
We can expand on this idea by adding new functionality to the Plane class and override the
base class' travel method to incorporate this new functionality.

A plane's travel method is a little more complicated than a generic vehicle's so we're going
to add takeOff and land methods to the class:

Ext.define('Cookbook.Plane', {
 ...

 takeOff: function(){
 alert('The ' + this.getManufacturer() + ' ' + this.getModel()
+ ' is taking off.');
 },

 land: function(){
 alert('The ' + this.getManufacturer() + ' ' + this.getModel()
+ ' is landing.');
 }

 ...
});

We can then override the travel method of the Vehicle class to add in the takeOff and
land methods into the Plane's travel procedure:

Ext.define('Cookbook.Plane', {
 ...

 travel: function(distance){
 this.takeOff();

 // execute the base class’ generic travel method
 this.callParent(arguments);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

19

 alert('The ' + this.getManufacturer() + ' ' + this.getModel()
+ ' flew at an altitude of ' + this.getMaxAltitude() + 'feet');

 this.land();
 }

 ...
});

This method extends the travel functionality given to us by the Vehicle class by alerting
us to the fact that the plane is taking off, flying at a specific altitude, and then landing again.

The important part of this method is the call to the callParent method. This executes
the base class' travel method, which runs the Vehicle's implementation of the travel
method. Notice that it passes in the arguments variable as a parameter. This variable is
available in all JavaScript functions and contains an array of all the parameters
that were passed into it.

We can see this in action by creating a new Plane object and calling the travel method:

var plane = Ext.create('Cookbook.Plane', 'Boeing', '747', 500, 30000);

plane.travel(800); // alerts 'The Boeing 747 is taking off'
 // 'The Boeing 747 travelled 800 miles at 500mph'
 // 'The Boeing 747 flew at an altitude of 30000 feet'
 // 'The Boeing 747 is landing.'

See also
ff The very first recipe in this chapter that covers how classes work.

ff The recipe describing Dynamically loading Ext JS classes, which teaches you about
how these classes can be loaded on the fly.

ff The Extending Ext JS components recipe, which explains how to use inheritance to
extend the functionality of the framework.

Adding mixins to your class
Mixins are classes that can be included in another class, merging its members (methods
and properties) into it. This technique provides us with a form of multiple inheritance
where the mixin class' methods and properties can be accessed as if they were part
of the parent class.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

20

By making use of mixins we can package small and reusable bits of functionality into an
encapsulated class, and merge it into classes which require that functionality. This reduces
repetition and removes the need for the class to be extended directly. One example of a
Mixin used within the framework is the Ext.form.Labelable class, which gives the
component it is mixed into the ability to have a label attached to it.

How to do it...
1.	 Define our simple mixin class called HasCamera with a single method

called takePhoto:
Ext.define('HasCamera', {
 takePhoto: function(){
 alert('Say Cheese! Click!');
 }
});

2.	 Define a skeleton class and use the mixins configuration option to apply our
HasCamera mixin to our Cookbook.Smartphone class.
Ext.define('Cookbook.Smartphone', {
 mixins: {
 camera: 'HasCamera'
 }
});

3.	 We can now call our mixin's takePhoto method as part of the Smartphone's class
within a useCamera method:
Ext.define('Cookbook.Smartphone', {
 mixins: {
 camera: 'HasCamera'
 },

 useCamera: function(){
 this.takePhoto();
 }
});

4.	 Instantiate the Smartphone class and call the useCamera method:
var smartphone = Ext.create('Cookbook.Smartphone');
smartphone.useCamera(); // alerts 'Say Cheese! Click!'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

21

How it works...
By using the mixins configuration option we tell the class defining process to use the mixins
preprocessor to merge all of the mixin class' members into the main class. This now means
that all of the methods and properties defined as part of the HasCamera class can be
accessed directly from the parent class' instance.

The name we give to our mixin in this configuration object allows us to reference it within our
class' code. We will explore this later in the recipe.

Step 4, shows how we can access the HasCamera class' methods from the parent class by
simply calling them as if they are part of the Smartphone class itself.

There's more...
We might be required to override the functionality provided by our mixins class as we often
would when using traditional inheritance.

In our example, we might want to introduce a focus routine into the takePhoto process to
ensure that our subject is in focus before taking a photo. As we have done in previous recipes,
we declare a method called takePhoto that will override the one added by the HasCamera
Mixin, and another method to perform our focus operation:

Ext.define('Cookbook.Smartphone', {
 mixins: {
 camera: 'HasCamera'
 },

 useCamera: function(){
 this.takePhoto();
 },

 takePhoto: function(){
 this.focus();

 this.takePhoto();
 },

 focus: function(){
 alert('Focusing Subject...');
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

22

At this point we are in trouble because our new takePhoto method needs to reference the
original takePhoto method defined in the HasCamera class. However, at the moment it is
pointing back to itself and will cause an infinite loop.

We get around this by calling the mixins method directly from its prototype, which can be
accessed using the name we assigned it in Step 3. Our takePhoto method now becomes:

takePhoto: function(){
 this.focus();

 this.mixins.camera.takePhoto.call(this);
}

See also
ff The first recipe, Creating custom classes using the new Ext JS class system, for a

recap about defining classes.

ff Overriding Ext JS' functionality describes how to customize the framework's default
behaviour by defining new versions of key methods.

ff See the Adding functionality with plugins recipe, in Chapter 12, Advanced Ext JS for
the Perfect App to help understand how plugins can be used and how they differ
from mixins.

Scoping your functions
Making sure that you execute your functions in the correct scope is one of the harder tasks
faced by new (and experienced!) JavaScript developers.

We would recommend studying the scoping rules of JavaScript to get a full understanding of
how it works, but we will start this recipe with an explanation of exactly what scope is, how it
changes, and how it affects our code.

What is Scope?
Scope refers to the context that a piece of code is executing in and decides what variables are
available to it. JavaScript has two types of scope: global scope and local scope. Variables and
functions declared in the global scope are available to code everywhere. Common examples
are the document and window variables. Local Scope refers to variables and functions that
have been declared within a function, and so are contained by that function. Therefore, they
can't be accessed from code above it in the scope chain.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

23

The scope chain is the way that JavaScript resolves variables. If
you are trying to access a variable within a function, which has not
been declared as a local variable within it, the JavaScript engine
will traverse back up the chain of functions, (that is, scopes)
looking for a variable matching its name. If it finds one then it will
be used, otherwise an error will be thrown. This also means that
local variables will take precedence over global variables with the
same name.

We will explore a couple of examples to demonstrate how this works.

1.	 The first example shows a simple variable being declared in the global scope and it
being alerted—no surprises there!
var myVar = 'Hello from Global Scope!';
alert(myVar); //alerts 'Hello from Global Scope!'

2.	 If you run the next example, you will now see two alerts; the first will say Hello from
Global Scope! and the second Hello from MyFunction!. Our myFunction
function is able to access the myVar variable because it was declared in the global
scope and so can be found on the function's scope chain:
var myVar = 'Hello from Global Scope!';

function myFunction(){
 myVar = 'Hello from MyFunction!';
}

alert(myVar); //alerts 'Hello from Global Scope!'

myFunction();

alert(myVar); //alerts 'Hello from MyFunction!'

3.	 We now add an alert to the myFunction function and add the var keyword in front
of the myVar assignment within it. This keyword creates a local variable as part of the
myFunction's scope with the same name as the one created in the global scope.
The alert inside the myFunction function will now alert Hello from MyFunction!
But the two alerts outside the function will alert the original global myVar's value.
This is because the myVar variable that was modified in the myFunction function is
a new local variable, and so doesn't affect the global version:
var myVar = 'Hello Global Scope!';

function myFunction(){
 var myVar = 'Hello from MyFunction!';
 alert(myVar);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

24

}

alert(myVar); //alerts 'Hello from Global Scope!'

myFunction(); //alerts 'Hello from MyFunction!'

alert(myVar); //alerts 'Hello from Global Scope!'

4.	 Finally, we will demonstrate the use of the this keyword. This keyword exists
everywhere and provides us with a reference to the context (or scope) that the
current piece of code is executing in. Consider the following example where a
new object is created using the MyObject's constructor function. If we then
console.log the contents of the this keyword, we see that it refers to the
new object that we have created. This means that we can define properties on
this object and have them contained within this object, and so, inaccessible from
any other scope:
function MyClass(){
 console.log(this);
}

var myClass = new MyClass();

5.	 If we add a property to the this object in our constructor, we can alert it once a new
instance has been created. Notice that if we try to alert this.myProperty outside
the scope of the MyClass object, it doesn't exist because this now refers to the
browser window:

function MyClass(){
 console.log(this);
 this.myProperty = 'Hello';
}

var myClass = new MyClass();

alert(myClass.myProperty); // alerts 'Hello'

alert(this.myProperty); // alerts 'undefined'

Scope and Ext JS
When dealing with scope in Ext JS we are generally concerned with making sure our functions
are executing in the scope of the correct class (whether it is a component, store, or controller).
For example, by default an Ext.button.Button's click event will execute its handler
function in the scope of itself (that is, this refers to the Ext.button.Button instance).
It's likely that we want the button's handler to execute in the scope of the parent class (for
example, a grid panel) and so we must force a different scope upon it.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

25

We will now explore ways in which we can change the scope a function executes in using
Ext JS' in-built functionality. By following these steps we will see how Ext JS makes it easy
to ensure this refers to what you want it to!

How to do it...
Ext JS provides us with a method that allows us to force a function to execute in the scope we
specify, meaning we can specify what the this keyword refers to within the function.

1.	 Define two objects, each with a property and a function:
var cat = {
 sound: 'miaow',
 speak: function(){
 alert(this.sound);
 }
};
var dog = {
 sound: 'woof',
 speak: function(){
 alert(this.sound);
 }
};

cat.speak(); // alerts 'miaow'
dog.speak(); // alerts 'woof'

2.	 Use the Ext.bind method to force the dog object's speak method to execute in the
scope of the cat object by passing it as its second parameter:

Ext.bind(dog.speak, cat)(); // alerts 'miaow'

How it works...
The Ext.bind method creates a wrapper function for the speak method that will force it
to have its scope set to the object that is passed in, overriding the default scope value. This
new function can be executed immediately (as our example did) or stored in a variable to be
executed at a later point.

By using it we redefine the this keyword used within the function to refer to what was passed
in as the second parameter. This is the reason that in Step 2 the alert displayed the value
stored in the cat's sound property rather than the dog's.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

Classes, Object-Oriented Principles and Structuring your Application

26

There's more...
Getting the scope of a function correct is especially important within event handlers. Ext JS
provides a scope config option that can be used to explicitly set the scope an event handler
is executed in.

Consider the following example where we define a button and attach a handler to its click
event, which will show an alert of the current scope's text property:

var button = Ext.create('Ext.button.Button', {
 text: 'My Test Button',
 listeners: {
 click: function(button, e, options){
 alert(this.text);
 }
 },
 renderTo: Ext.getBody()
});

button.show();

By default, this refers to the button itself and displays My Test Button. But what if we want
to execute the function in the scope of another object, like this one?

var exampleObject = {
 text: 'My Test Object'
};

Our initial reaction would be to use the Ext.bind method, which we looked at earlier in the
recipe, and would look something like this:

listeners: {
 click: Ext.bind(function(button, e, options){
 alert(this.text);
 }, exampleObject)
}

This technique works well and functions correctly. However, there is a more succinct method
in the form of the scope config option, which can be added as shown in the following code:

listeners: {
 click: function(button, e, options){
 alert(this.text);
 },
 scope: exampleObject
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

27

The scope object is effectively a short hand way of using Ext.bind and gives us the same
outcome with less code.

If you were to include multiple event handlers within the listeners property the scope
value would be applied to them all. If you want to specify a different scope value for each
event, you can use the following syntax:

listeners: {
 click: {
 fn: function(button, e, options){
 alert(this.text);
 },
 scope: this
 },
 afterrender: {
 fn: function(button, options){
 // do something...
 },
 scope: otherObject
 }
}

See also
ff The recipe Handling event on elements and components in Chapter 2, Manipulating

the Dom, Handling Events, and Making AJAX Requests for further examples.

Dynamically loading Ext JS classes
Ext JS 4 gives us the ability to only load the parts of the framework we need, as and when we
need them. In this recipe, we will explore how to use the framework to automatically load all
our class dependencies on the fly.

How to do it...
We are going to use the Vehicle and Plane classes that we created in the Using inheritance
recipe earlier to demonstrate dynamic loading.

1.	 Configure the Ext.Loader class to enable it and map our namespaces to a physical
path. This should be added before your Ext.onReady call:
Ext.Loader.setConfig({
 enabled: true,
 paths: {
 'Cookbook': 'src/Cookbook'
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

28

2.	 Create individual files in the src/Cookbook folder for the Vehicle and Plane
classes, naming each the same as the class name (excluding the namespace).

3.	 Call the Ext.require method, inside our Ext.onReady function, passing in the
class we need, and a callback function, which is executed after the class and all its
dependencies have loaded, containing our code:
Ext.require('Cookbook.Vehicle', function(){
 var van = Ext.create('Cookbook.Vehicle', 'Ford', 'Transit',
60);
 van.travel(200);
});

4.	 Execute the code and monitor your Developer Tools console and HTML tabs and you
will see the Ext.define's callback being displayed and the new script tag being
injected into the HTML:

How it works...
The initial configuration of the Ext.Loader class is vital for our classes to be loaded
correctly, as it defines how class names are mapped to file locations so the Loader class
knows where to find each class it is required to load. It also highlights the need for strict
naming conventions when it comes to creating your files.

In our example, the paths configuration tells the Loader that any required classes within the
Cookbook namespace should be loaded from the src/Cookbook directory.

We then call the Ext.require method, (an alias of the Ext.Loader.require method)
which takes the class name specified and resolves its URL based on the paths configuration,
and if it hasn't already been loaded previously, injects a script tag into the HTML page to load
it. Once this load has happened the specified callback function is executed where you can
create instances of the class with the knowledge that it has been fully loaded.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

29

The Ext.require method accepts either a single or array of string values that will all be
loaded prior to the callback being executed.

There's more...
One of the great things about the Ext.Loader class is that it is recursive and won't stop until
all the files needed by the original required classes are loaded. This means that it will load all
classes referenced in the extend, mixins, and requires configuration objects.

We will demonstrate this by creating an instance of Cookbook.Plane, which extends the
Cookbook.Vehicle class. If we execute the following code, and monitor your developer
tool as we did before, we will see both classes being loaded and created:

Ext.require('Cookbook.Plane', function(){
 var plane = new Ext.create('Cookbook.Plane', 'Boeing', '747', 500,
35000);
 plane.travel(200);
});

See also
ff See the very first recipe covering the details of how to define and work with classes.

ff A fixed folder structure is required for dynamic loading. See the recipe Creating your
application's folder structure in Appendix, Ext JS 4 Cookbook-Exploring Further for a
detailed explanation.

Aliasing your components
Aliasing allows you to define a shorthand name for a component class. This is particularly
useful as it means you don't always have to reference the full class name, which, if you are
following Sencha's naming convention, can become fairly long. Additionally, aliasing allows
you to define an xtype for your component.

This xtype is not only a shortcut to the full component name but brings advantages such as
improved performance.

Instead of explicitly creating components during initialization a component with an xtype
can be created implicitly as an object config. If you don't instantiate everything as an object,
you can defer creation and rendering of the component to save resources until they are
actually required.

We will demonstrate aliasing by creating a panel inside a viewport.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

30

How to do it...
1.	 We start by defining our class and specifying an alias config option with a

"widget" prefix:
Ext.define('Customer.support.SupportMessage', {
 extend: 'Ext.panel.Panel',
 alias: 'widget.supportMessage',
 title: 'Customer Support',
 html: 'Customer support is online'
});

2.	 The panel Customer.support.SupportMessage can be instantiated lazily by
using its xtype:
Ext.application({
 name: 'Customer',
 launch: function(){
 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [{
 xtype: 'supportMessage'
 }]
 });
 }
});

How it works...
Ext.reg() doesn't exist in Ext JS 4, instead we register aliases with the alias config option.

When the application is first loaded, the class definitions are parsed and a dictionary of
class aliases is created. This is contained within the framework's component manager
(Ext.ComponentManager).

We're required to name our aliases with a prefix, "widget." However, when using the alias the
prefix is not required.

The aliases are, as you would expect, simply a reference to the class. As we haven't
instantiated the class (yet) we're able to save memory and resources. This is particularly
helpful when our widgets are nested deeply as resources are not wasted on components
that are not required or even rendered.

As we destroy our components, the framework releases the resources, but keeps the alias
reference in the component manager, so that we can re-create the same component time
and time again.

Calling the alias is done using the xtype config option, which is where you provide the
alias name.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

31

There's more...
There are other ways to define aliases for your components.

ff Ext.ClassManager.setAlias(string class, string alias): This
registers the alias for a class

ff Ext.Base.createAlias(string/object alias, string/object
origin): This will create an alias for existing prototype methods.

See also
ff Aliasing is used throughout this book in a variety of topics and recipes, however, the

recipe Constructing a complex form layout, in Chapter 5, Loading, Submitting, and
Validating Forms is a good example of using xtypes.

Accessing components with component
query

Ext JS 4 introduces a new helper class called Ext.ComponentQuery, which allows us
to get references to Ext JS Components using CSS/XPath style selector syntax. This new
class is very powerful and, as you will find out, is leveraged as an integral part of the MVC
architecture system.

In this recipe we will demonstrate how to use the Ext.ComponentQuery class to get
references to specific components within a simple application. We will also move onto
exploring how this query engine is integrated into the Ext.Container class to make
finding relative references very easy.

Finally we will look at adding our own custom selector logic to give us fine-grain control over
the components that are retrieved.

Getting ready
We will start by creating a simple application, which consists of a simple Ext.panel.Panel
with a toolbar, buttons, a form, and a grid. This will form the basis of our examples as it has a
number of components that we can query for.

var panel = Ext.create('Ext.panel.Panel', {

 height: 500,
 width: 500,
 renderTo: Ext.getBody(),

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

32

 layout: {
 type: 'vbox',
 align: 'stretch'
 },
 items: [{
 xtype: 'tabpanel',
 itemId: 'mainTabPanel',
 flex: 1,
 items: [{
 xtype: 'panel',
 title: 'Users',
 id: 'usersPanel',
 layout: {
 type: 'vbox',
 align: 'stretch'
 },
 tbar: [{
 xtype: 'button',
 text: 'Edit',
 itemId: 'editButton'
 }],
 items: [{
 xtype: 'form',
 border: 0,
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Name',
 allowBlank: false
 }, {
 xtype: 'textfield',
 fieldLabel: 'Email',
 allowBlank: false
 }],
 buttons: [{
 xtype: 'button',
 text: 'Save',
 action: 'saveUser'
 }]
 }, {
 xtype: 'grid',
 flex: 1,
 border: 0,
 columns: [{
 header: 'Name',
 dataIndex: 'Name',
 flex: 1
 }, {
 header: 'Email',
 dataIndex: 'Email'
 }],

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

33

 store: Ext.create('Ext.data.Store', {
 fields: ['Name', 'Email'],
 data: [{
 Name: 'Joe Bloggs',
 Email: 'joe@example.com'
 }, {
 Name: 'Jane Doe',
 Email: 'jane@example.com'
 }]
 })
 }]
 }]
 }, {
 xtype: 'component',
 itemId: 'footerComponent',
 html: 'Footer Information',
 extraOptions: {
 option1: 'test',
 option2: 'test'
 },
 height: 40
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

34

How to do it...
The main method of the Ext.ComponentQuery class is the query method. As we
have mentioned, it accepts a CSS/XPath style selector string and returns an array of
Ext.Component (or subclasses of the Ext.Component class) instances that match
the specified selector.

1.	 Finding components based on xtype: We generally use a component's xtype as
the basis for a selector and can retrieve references to every existing component
of a xtype by passing it in to the query method. The following snippet will retrieve
all Ext.Panel instances:
var panels = Ext.ComponentQuery.query('panel');

2.	 Just like in CSS we can include the concept of nesting by adding a second xtype
separated by a space. In the following example, we retrieve all the Ext.Button
instances that are descendants of an Ext.Panel instance:
var buttons = Ext.ComponentQuery.query('panel button');

If you have custom classes whose xtypes include
characters other than alphanumeric (for example, a dot
or hypen) you cannot retrieve them in this way. You must
instead query the xtype property of the components using
the following syntax:
var customXtypeComponents = Ext.
ComponentQuery.query('[xtype="My.Custom.
Xtype"'];

3.	 Retrieving components based on attribute values: Along with retrieving references
based on xtype, we can query the properties a component possesses to be more
explicit about which components we want. In our sample application we have given
the Save button an action property to distinguish it from other buttons. We can
select this button by using the following syntax:
var saveButton = Ext.ComponentQuery.query('button[action="saveUs
er"]');

This will return all Ext.Button instances that have an action property with a value
of saveUser.

4.	 Combining selectors: It is possible to combine multiple selectors into one query in
order to collect references to components that satisfy two different conditions. We
do this by simply comma separating the selectors. The following code will select all
Ext.Button and Ext.form.field.Text component instances:
var buttonsAndTextfields = Ext.ComponentQuery.query('button,
textfield');

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

35

5.	 Finding components based on ID: A component's id and itemId can be included in
a selector by prefixing it with the # symbol. This syntax can be combined with all the
others we have seen so far but IDs should be unique and so should not be necessary.
The following code snippet will select a component with an ID of usersPanel:
var usersPanel = Ext.ComponentQuery.query('#usersPanel');

6.	 Retrieving components based on attribute presence: One useful feature of the
component query engine is that we can select components based on an attribute
simply being present, regardless of its value. This can be used when we want to find
components that have been configured with specific properties but don't know the
values they might have. We can demonstrate this with the following code that will
select all Ext.Component that have the property extraOptions.
var extraOptionsComponents = Ext.ComponentQuery.query('component[e
xtraOptions]');

7.	 Using Components' Member Functions: It's also possible to execute a component's
member function as a part of the selection criteria. If the function returns a truthy
result then that component will be included (assuming the other criteria is met) in the
result set. The following code shows this in action and will select all text fields who
are direct children of a form and whose isValid method evaluates to true:
var validField = Ext.ComponentQuery.query('form >
textfield{isValid()}');

How it works...
The Ext.ComponentQuery is a singleton class that encapsulates the query logic used in our
examples. We have used the query method, which works by parsing each part of the selector
and using it in conjunction with the Ext.ComponentManager class. This class is responsible
for keeping track of all the existing Ext.Component instances, and is used to find any
matching components.

There's more...
There is one other method of the Ext.ComponentQuery class to introduce and a further
four methods that are part of the Ext.container.AbstractContainer class.

Evaluating a component instance's type
The component query class allows us to evaluate a component reference we already have
to find out if it matches a certain criteria. To do this we use the is method, which accepts a
selector identical to the ones that the query method accepts and will return true if it does
match. The following code determines if our main Ext.Panel (referenced in the panel
variable) has an xtype of panel.

var isPanel = Ext.ComponentQuery.is(panel, 'panel');

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

Classes, Object-Oriented Principles and Structuring your Application

36

Ext.container.AbstractContainer ComponentQuery methods
There are four methods available in the Ext.container.AbstractContainer class
(which all container classes extend from; for example panels), which utilizes the component
query engine and allow us to query using that component as the root. These methods are
query, child, up and down. The query method is identical to the query method available
in the Ext.ComponentQuery class but uses the container instance as the root of the query
and so will only look for components under it in the hierarchy.

The up and down methods retrieve the first component, at any level, either above or below the
current component in the component hierarchy that matches the selector passed in.

Finally, the child method retrieves the first direct child of the current instance that matches
the selector.

Using and creating the pseudo-selectors
Pseudo-selectors allow us to filter the retrieved result array based on some criteria that may
be too complex to represent in a plain selector. There are two built-in pseudo-selectors: not
and last. These can be added to a selector using a colon. The following example shows a
selector that will retrieve the last text field.

var lastTextfield = Ext.ComponentQuery.query('textfield:last');

It is very simple for us to create our own custom pseudo-selectors; we will demonstrate how
to add a pseudo-selector to retrieve components that are visible.

We start by creating a new function on the Ext.ComponentQuery.pseudos object called
visible, which accepts one parameter that will contain the array of matches found so far.
We will then add code to loop through each item, checking if it's visible and, if it is, adding it
to a new filtered array. We then return this new filtered array.

Ext.ComponentQuery.pseudos.visible = function(items) {
 var result = [];

 for (var i = 0; i < items.length; i++) {

 if (items[i].isVisible()) {
 result.push(items[i]);
 }
 }

 return result;
};

We can now use this in a selector in the same way as we did before. The following query will
retrieve all visible components:

var visibleComponents = Ext.ComponentQuery.query('component:visible');

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

37

See also
ff The recipes about MVC in Chapter 12, Advanced Ext JS for the Perfect App make use

of component queries extensively.

Extending Ext JS components
It is regarded as best practice to create each of your components as extensions of Ext JS' own
components and store them in separate files. This approach aids code reuse, helps organize
your code and makes maintenance a much easier task. In this recipe, we will discuss how to
go about extending an Ext JS component to create a pre-configured class and then configuring
it to make our own custom component.

How to do it...
We will define an extension of the Ext.panel.Panel class to create a simple display panel.

1.	 Define a new class under the Cookbook namespace, which extends the Ext.
panel.Panel class:
Ext.define('Cookbook.DisplayPanel', {
 extend: 'Ext.panel.Panel'
});

2.	 Override the Ext.panel.Panel's initComponent method and call the parent
class' initComponent method:
Ext.define('Cookbook.DisplayPanel', {
 extend: 'Ext.panel.Panel',

 initComponent: function(){
 // call the extended class' initComponent method
 this.callParent(arguments);
 }
});

3.	 Add our own component configuration to the initComponent method by applying it
to the class itself:
initComponent: function(){
 // apply our configuration to the class
 Ext.apply(this, {
 title: 'Display Panel',
 html: 'Display some information here!',
 width: 200,
 height: 200,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

38

 renderTo: Ext.getBody()
 });

 // call the extended class' initComponent method
 this.callParent(arguments);
}

4.	 Create an instance of our preconfigured class and show it:

var displayPanel = Ext.create('Cookbook.DisplayPanel');
displayPanel.show();

How it works...
Our first step creates our new class definition and tells the framework to give our new
class all the functionality that the Ext.panel.Panel has, through the use of the
extend config option.

We then introduce an override for the initComponent method, which is used by each
component to add its own configuration and perform any actions that are needed to set
the component up. In order to ensure that this component behaves as it should, we call
the parent class' initComponent method (in this case, Ext.panel.Panel) using the
callParent method.

Next, we give our new class the configuration we want. We do this by using the Ext.apply
method, which merges our configuration object into the class itself.

We are now able to instantiate our new class using its defined name and it will automatically
be configured with all the properties we applied in the initComponent method. This means
we can create a DisplayPanel anywhere in our code and only have to define it once.

There's more...
We can take this idea further by integrating our own functionality into an extended component
by overriding its functions. We are going to create a custom TextField that includes some
information text below the field to help the user complete the form field correctly:

1.	 First we create our basic structure for extending the Ext.form.field.Text
component:
Ext.define('Cookbook.InfoTextField', {

 extend: 'Ext.form.field.Text'

});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

39

2.	 Next, we override the onRender function, which is used to render the component
to the page. In our override, we immediately call the parent's onRender method, so
the field is fully rendered before our code is executed. We then use the Ext.core.
DomHelper class to insert a new div element, after the textfield, containing the
value from the component's infoText property:
Ext.define('Cookbook.InfoTextField', {
 extend: 'Ext.form.field.Text',
 onRender: function(){
 this.callParent(arguments);

 // insert our Info Text element
 Ext.core.DomHelper.append(this.getEl(), '<div>' + this.
infoText + '</div>');
 }
}, function(){
 console.log('Cookbook.InfoTextField defined!');
});

3.	 We can now create our new InfoTextField class wherever we like and display any
value that we would like using the infoText config option, like this:

var infoTextField = Ext.create('Cookbook.InfoTextField', {
 renderTo: Ext.getBody(),
 fieldLabel: 'Username',
 infoText: 'Your Username must be at least 6 characters long.'
});

infoTextField.show();

See also
ff Creating custom classes with the new Ext JS class system for an explanation on

creating classes and their structure.

ff We extend classes throughout this book, however, if you would like to see it in action
we suggest you take a look at Modeling a data object, in Chapter 7, Working with the
Ext JS Data Package.

ff The next recipe covers overriding in more detail.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

40

Overriding Ext JS' functionality
To save the hassle of editing the framework directly (not recommended) when you are looking
to alter its behaviour Ext JS provides a very useful override feature. By keeping framework
behaviour changes separate you can remove them easily if necessary and keep track of
your updates when upgrading to a newer version of the framework.

Altering framework code is strongly discouraged as other developers may not realize your
changes and be unpleasantly surprised by the non-standard behavior!

Overriding allows you to take an existing class and either modify the behavior of existing
functions or add completely new ones. This greatly increases the flexibility of the framework
as it provides a very straightforward way to completely alter the out-the-box behaviour.

Achieving this in Ext JS 4 is done with the Ext.override method, which is an alias of
Ext.Base.override.

Ext.override(Object originalCls, Object overrides) takes the original class
and merges the new (or updated) functions you wish to create for the class.

It's perhaps worth pointing out that Ext.override will overwrite any members with the
same name, so if you wish to simply extend their functionality you may be required to
include the code from the original function.

To demonstrate overriding we will add new functions to an existing class.

How to do it...
1.	 Let's start by defining a class and giving it a welcome method:

Ext.define('Simple.Class', {
 welcome: function() {
 alert('Welcome to the app');
 }
});

2.	 We provide Ext.override with the original class and add new functions:
Ext.override(Simple.Class, {
 goodBye: function() {
 alert('Goodbye');
 },

 runAll: function() {
 this.welcome();
 this.goodBye();
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

41

3.	 Next, instantiate our class and call the new runAll() method:
var app = new Simple.Class();
app.runAll(); // Welcome to the app
 // Goodbye

4.	 The override can also be written like this:

Simple.Class.override({
 //New members...
});

How it works...
The override method of Ext.Base takes the original class and loops around the new
functions that you've created by adding them to the prototype of the existing class and
replacing any existing ones with the new definitions.

There's more...
There are a number of other features in the framework that help you override and perform
similar tasks.

Ext.Base.callParent
If you are looking to extend the behavior of an existing function, you can now easily call the
original function passing any required arguments using the callParent method.

Let's take the example from the recipe Extending Ext JS Components. The recipe shows how
to add information text under a specified text field.

We can amend that example and force our information text to appear on all text fields
throughout the application with a very simple override.

Ext.define('Cookbook.overrides.TextField', {
 override: 'Ext.form.field.Text',

 onRender: function(){
 this.callParent(arguments);

 Ext.core.DomHelper.append(this.el, '<div>' + this.infoText +
'</div>');
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Classes, Object-Oriented Principles and Structuring your Application

42

We use the usual Ext.define function and give our override a name; this
can be any name we want. Instead of including an extend configuration
like we normally would, we add the override option, which is a string
representation of the class we want to apply the override to.

Just like the Extending Ext JS Components recipe we override the text field's onRender
function and want to call the parent's onRender method so the field is fully rendered before
our code is executed. We do this by including this.callParent(arguments), which will
execute the Ext.form.field.Text class' onRender function.

If we wanted to skip the Ext.form.field.Text class' onRender function and execute its
parent class' (that is, Ext.form.field.Base) onRender function, (if we were, for example,
providing a complete customization of the text Field's rendering process) we do this by calling
Ext.form.field.Text.superclass.onRender.apply(this, arguments).

Now we define infoText in our text field's config options and it will display the field;

Ext.application({
 launch: function(){
 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [{
 xtype: 'form',
 defaultType: 'textfield',
 items: [{
 fieldLabel: 'Security Question',
 name: 'securityQuestion',
 allowBlank: false,
 infoText: 'You are required to write a security
question for your account.'
 }, {
 fieldLabel: 'Security Answer',
 name: 'securityAnswer',
 allowBlank: false,
 infoText: 'Please provide the answer to your
security
 }]
 }]
 });
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 1

43

Ext.Base.borrow
With Ext.Base.borrow you can borrow another class' members and add them directly to
the prototype of your class.

Ext.Base.implement
Ext.Base.implement is similar to override, but will always replace members with the same
name and not give you the ability to call the original method. Just like Ext.Base.override,
it's intended for adding methods or properties to the prototype of a class.

See also
ff Creating custom classes using the new Ext JS class system, explains how the class

system works and its structure.

ff The recipe Handling session timeouts with TaskManager in Appendix, Ext JS 4
Cookbook-Exploring Further, is a further demonstration on overriding classes.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

2
Manipulating the Dom,

Handling Events,
and Making AJAX

Requests

In this chapter, we will cover:

ff Selecting DOM elements

ff Traversing the DOM

ff Manipulating DOM elements

ff Creating new DOM elements

ff Handling events on elements and components

ff Delegating event handling of child elements

ff Simple animation of elements

ff Custom animations

ff Parsing, formatting, and manipulating dates

ff Loading data through AJAX

ff Encoding and decoding JSON date

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

Manipulating the Dom, Handling Events, and Making AJAX Requests

46

Introduction
This chapter will cover topics about working with the Document Object Model (DOM),
selecting, creating, and manipulating elements. We'll look at how to add built-in
animations to your elements and how to create custom animations.

We'll walk through creating your first AJAX request and encoding/decoding the data either in
JSON or HTML format.

Other topics include, handling events, working with dates, detecting browser features, and
evaluating object types/values.

Selecting DOM elements
When creating interactive and responsive web applications it's vital to be able to access
DOM elements for manipulation and processing. Ext JS provides multiple methods of
retrieving references to those DOM elements, which we will explore in this recipe.

Ext JS wraps basic DOM elements up in a class called Ext.Element, which is what we
generally deal with when retrieving DOM elements and manipulating them. It provides
a large number of helpful methods to make life easy for us.

How to do it...
Imagine an HTML page, with the Ext JS 4 library loaded into it, containing the following
HTML fragment:

<h1 id="book-title">Ext JS 4 Cookbook</h1>
<h2>Authors</h2>
<ul id="authors">
 Stuart Ashworth
 Andrew Duncan

<h2>What's new in Ext JS 4?</h2>
<ul id="whats-new">
 Charting
 Drawing
 Data Package
 Enhanced Grid
 Powerful Theming

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

47

We will now use the Ext.get() method to retrieve a reference to the div containing the
book's title and alert it to the user:

var bookTitleEl = Ext.get('book-title');
alert('Book Title ID: ' + bookTitleEl.id);

How it works...
The Ext.get() method accepts a single parameter that can be either a DOM element's
ID, a DOM node, or an existing Ext.Element instance. The method returns an instance of
Ext.Element, which wraps the underlying DOM node, giving it additional functionality for
further manipulation.

The Ext.Element's underlying DOM node can be
accessed through the dom property of an Ext.Element
instance. For example, varbookTitleDomNode = Ext.
get('book-title').dom.

When an ID is passed into this method, the framework uses the browser's document.
getElementById method, and after retrieving the DOM node, it creates a wrapping
Ext.Element instance and then caches it to make future retrievals faster.

If a DOM node is given to the method, then the framework skips the initial step outlined
above and simply wraps the DOM node in an Ext.Element instance and caches it.

Finally, when an Ext.Element instance is passed to the method, it refreshes the element's
dom property with the latest contents using the document.getElementById method.

The Ext.get method only returns a single element, so when you want to deal with multiple
matches consider using either the Ext.select or Ext.query methods, which we will
describe further.

There's more...
There are two other noteworthy methods provided by the framework that makes much more
advanced DOM node retrieval possible.

Ext.select
The Ext.select method allows us to retrieve a collection of DOM nodes based on
CSS selectors. The returned object from this method is an instance of either the
Ext.CompositeElement or Ext.CompositeElementLite class.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

48

These two classes contain a collection of DOM elements (all wrapped in Ext.Element
instances) that were matched and allows us to perform any method available on all of the
elements in the collection. Both classes support all the methods of the Ext.Element and
Ext.fx.Anim classes.

If, for example, we wanted to hide all the author tags in our previous HTML snippet,
we can do so by calling the Ext.select method passing in a CSS selector. We are then
able to call the hide method, which is added to the Ext.CompositeElement class from
the Ext.Element class.

var authorsListItemEls = Ext.select('ul#authors li');
authorsListItemEls.hide();

The Ext.select method accepts two further parameters:The second parameter is a
Boolean value that determines if each node is given its own unique Ext.Element instance.
When true, an Ext.CompositeElement instance is returned, giving each selected element
its own wrapping Ext.Element instance. When false, an Ext.CompositeElementLite
instance is returned, which uses the shared flyweight object to wrap each node.

The last parameter allows you to specify the root that the select will start from. This accepts
either an ID or an Ext.Element object.

It is also useful to note that an Ext.Element instance has its own select method which
forces itself to be the root of the select and so will only look at elements below it in the
DOM's hierarchy.

Ext.query
Ext.query, an alias for Ext.DomQuery.select, selects an array of raw DOM nodes based
on the specified CSS/XPath selector. This method is ideal when you require fast performance
and only need to deal with DOM nodes directly without the framework's wrapping class
and functionality.

The previous example can be rewritten using Ext.query and the console output seen in the
following screenshot, showing an array of DOM node references:

console.log(Ext.query('ul#authors li'));

Similarly to the select method an Ext.Element instance has its own query method, which
forces the query's root to be that element.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

49

The Ext JS 4 documentation has numerous examples of selector
syntax that this method can accept.

See also
ff The next three recipes, which explain how to traverse, manipulate, and create

DOM elements.

Traversing the DOM
It is important to be able to move around the DOM based on the current context and retrieve
references to surrounding elements. In this recipe, we will discover how to use Ext JS to
traverse the DOM and access elements based on the context of the current element we
are working with.

Getting ready
We will use the HTML snippet from the previous recipe, Selecting DOM elements, to
demonstrate how to traverse the DOM, so make sure it is handy!

How to do it...
We will first discuss how to access a DOM element's siblings.

1.	 First we retrieve the Ext.Element instance that will be the root of our traversal.
In this case we will use the Data Package item in the "What's new in Ext JS 4" list,
simply because it is in the middle of the list. We do this using the item method
which returns the item at the specified position in our returned collection:
var dataPackageEl = Ext.select('ul#whats-new li').item(2);

2.	 Get the previous list item ('Drawing') using the prev method:
var drawingEl = dataPackageEl.prev();
alert(drawingEl.dom.innerHTML); // alerts 'Drawing'

3.	 Get the next list item ('Enhanced Grid') using the next method:
var enhancedGridEl = dataPackageEl.next();
alert(enhancedGridEl.dom.innerHTML); // alerts 'Enhanced Grid'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

50

4.	 It is also possible to get the first and last child of an Ext.Element using the first
and last methods respectively:
var whatsNewEl = Ext.get('whats-new');
var chartingEl = whatsNewEl.first();
alert(chartingEl.dom.innerHTML); // alerts 'Charting'

var owerfulThemingEl = whatsNewEl.last();
alert(powerfulThemingEl.dom.innerHTML); // alerts 'Powerful
Theming'

Each of the methods described can be passed a selector string
in order to be more specific about the element returned. For
example, using el.next('.my-class') will return the next
element with the my-class CSS class.

How it works...
Each of the methods described use the Ext.Element's matchNode method to navigate the
DOM until it finds the relevant element that is being asked for.

Both the next and prev methods described only retrieve elements that are siblings of the
root element, that is moving sideways in the DOM hierarchy rather than up or down). The
first and last methods deal with the first level of children contained in the root element.

There's more...
In addition to traversing siblings (that is, accessing elements on the same level within the
DOM hierarchy) Ext JS offers ways of moving up and down the tree gaining access to parents
and children of an element.

Direct parents and children
We can demonstrate this by retrieving the parent element of one list element using the
parent method of the Ext.Element class:

var dataPackageEl = Ext.select('ul#whats-new li').item(2);
alert(dataPackageEl.parent().id); // alerts 'whats-new'

We are also able to move back down the tree by using the child() method, which returns
the first element that matches the specified selector, as follows:

var whatsNewEl = Ext.get('whats-new');

// get the first child LI element
var firstListItemChildEl = whatsNewEl.child('li');

alert(firstListItemChildEl.dom.innerHTML); // alerts 'Charting'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

51

The child method only returns direct children of the root
element and so won't go deeper than one level.

Multiple level traversal
It is often necessary to traverse the DOM without restricting the number of levels we pass
through in order to find a match. Fortunately, Ext JS provides us with the up and down
methods, which don't impose such restrictions

The up method moves up the tree from the current Ext.Element until it finds an element
matching the specified selector, which it then returns. If it fails to find a match it will return
null. We can also specify the maximum depth the traversal will go to, as the method's second
parameter, in terms of a number or as a specific Element that we don't want to go past.

The down method works in a very similar way but moves down the hierarchy to any depth until
it finds a matching element without the option to restrict it.

See also
ff The previous recipe which discusses how to retrieve references to specific

DOM elements.

ff To find out about manipulating DOM elements see the next recipe which explains this
in detail.

ff To learn about creating your own DOM elements on the fly, go to the Creating new
DOM elements recipe later in this chapter.

Manipulating DOM elements
So far we have discussed selecting elements and traversing through them. We will now
explore how to manipulate those elements once we have got our hands on them.

We will start by changing the style of an element by updating its inline styles and then by
adding CSS classes. Following this we will explore how to show and hide elements.

Getting ready
Once again we will use the HTML snippet defined in the Selecting DOM elements recipe.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

52

How to do it...
1.	 Firstly, we will make the book's title bigger, color it red, and give it a bottom border by

updating those specific styles using the setStyle method.

2.	 Retrieve a reference to the element, in this case the book's title heading:
var bookTitleEl = Ext.get('book-title');

3.	 Update the element's font-size style by itself.
bookTitleEl.setStyle('font-size', '1.5em');

4.	 Make the heading red and give it a bottom border at the same time:
bookTitleEl.setStyle({
 color: 'red',
 borderBottom: '3px solid red'
});

5.	 Finally, we will change the styling of the heading by adding a new CSS class to its
element that will center the book's title. Define our new CSS class in the head of
our HTML document:
<style type="text/css">
 .book-title
 {
 text-align: center;
 }
</style>

6.	 Add the class to our book title element using the addCls method:
bookTitleEl.addClass('book-title');

You can remove the class again by using the removeCls
method, passing it the name of the CSS class that you
would like to remove.

How it works...
The setStyle method can either accept two parameters, acting as a name/value pair, or a
single parameter with multiple styles in a configuration object format.

In step 2, we make the change by specifying the CSS style we want to update and the new
value we want to give it.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

53

Step 3 makes use of the alternative syntax where a configuration object containing multiple
name/value pairs is passed to the method, which loops through them, updating them each
in turn.

Notice that we specified the border-bottom CSS style as a camel-
cased property name (borderBottom). This is because JavaScript
doesn't allow hyphens in property names and so Ext JS converts this
for us using the normalize method of Ext.Element.

Under the surface, the framework is simply accessing the DOM's style collection and
updating the individual styles. The following code snippet is taken directly from the
framework and shows the styles being updated:

me.dom.style[ELEMENT.normalize(style)] = value;

Finally, the addCls method updates the DOM node's className property with the specified
class name. Alternatively, the method accepts an array of class names and will apply all of
these to the element.

After executing the code in this recipe, you can inspect the HTML from FireBug
(or Developer Tools) and you will see that the styles and classes have been applied.
The following screenshot shows the HTML after this code has been executed:

There's more...
There are a huge number of further possibilities for manipulating DOM elements,
unfortunately, too many to discuss in this recipe. However, we will go over a few of
the most popular methods and how to use them.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

54

Showing and hiding an element
The following code snippet will hide the book's title and then, after three seconds, show it
again with a simple animation:

bookTitleEl.hide();

setTimeout(function(){
 bookTitleEl.show(true)
}, 3000); // execute after 3000 ms

We pass true to the show method to indicate that we want it to animate the transition.
This could also be a proper animation config object, allowing you to customize the transition.

The visibility mode of an Ext.Element instance becomes
important when hiding it. This setting determines whether the CSS
style properties—visibility or display are used or if an offset value
is used to hide it. By passing Ext.Element.VISIBILTY to the
setVisibilityMode method of an Ext.Element instance,
the element is hidden but retains its space in the document. Using
Ext.Element.DISPLAY will mean that the element does not
retain any space and the document's elements will rearrange to
suit. Finally, the Ext.Element.OFFSETS will move the element
off-screen so it isn't visible.

Updating the contents of an element
The Ext.Element class provides us with a handy update method, which updates the
element's innerHTML property with the new HTML we pass it:

bookTitleEl.update('How to Make AWESOME Web Apps');

See also
ff The previous two recipes discussing selecting DOM elements and traversing them.

ff The Chapter 3, Laying Out Your Components, which discusses how to create your
own DOM elements.

ff To read more about the animation options that could have been used with the hide
method discussed in the There's More... section, see the two animation recipes, later
in this chapter.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

55

Creating new DOM elements
After working through examples for selecting, traversing, and manipulating DOM elements,
we will now move onto creating new ones and injecting them into our pages.

Initially, we will demonstrate how to create a simple list item element with some basic
configuration. We will then move onto exploring how to control the position of our
new element.

Getting ready
As with the previous DOM recipes, we will use the same HTML snippet defined in the first
recipe of this chapter.

How to do it...
In this recipe, we are going to add a new item to the What's new in Ext JS 4? list:

1.	 First, we define the configuration of our new element using a simple
JavaScript object:
var newClassSystemConfig = {
 tag: 'li',
 html: 'New Class System'
};

2.	 Next, we get a reference to the element we want to insert our new element into. In
this case our What's New list:
var whatsNewListEl = Ext.get('whats-new');

3.	 Finally, we use the Ext.core.DomHelper class to create a new element, based
on our configuration (in the newClassSystemConfig variable), and append it
to the list:
var newClassSystemEl = Ext.core.DomHelper.append(whatsNewListEl,
newClassSystemConfig);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

www.allitebooks.com

http://www.allitebooks.org

Manipulating the Dom, Handling Events, and Making AJAX Requests

56

4.	 By inspecting the HTML with our browser's developer tools, we can see the newly
inserted HTML (highlighted in the following screenshot):

How it works...
The Ext.core.DomHelper class provides us with various methods to make creating and
inserting new elements very quick and easy. Inside the framework, the append method calls
the class' createDom method, which parses our configuration object and builds a DOM node
to match the specification. It is then inserted into the page as the last child of the element
passed. In this case our What's New list element.

The createDom method parses all the properties of the configuration object as attributes of
the newly created DOM element except for four reserved properties, which are:

ff tag: this is used to define the element's tag (for example, div)

ff children (or cn): this is used to define an array of sub elements defined in the
same way

ff cls: this will be mapped to the element's class attribute

ff html: the content to be assigned to the inner HTML of the element

The append method can also accept a plain HTML string, instead of a configuration object,
which will be inserted into the document in exactly the same way. For example:

var newClassSystemEl = Ext.core.DomHelper.append(whatsNewListEl,
'New Class System');

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

57

There's more...
The framework gives us full control over where new elements are inserted. By utilizing other
methods of the Ext.core.DomHelper class, we can create new elements anywhere on
our page.

It also provides a way for leveraging the power of the Ext.Template class by compiling
element configurations into reusable templates.

Inserting a new element before or after an existing element
The insertBefore method of Ext.core.DomHelper allows us to insert a new element
before an existing element, as a sibling to it. For example, we can insert a new What's New
list item at the top of the list (that is, before the first item):

var whatsNewListEl = Ext.get('whats-new');

Ext.core.DomHelper.insertBefore(whatsNewListEl.first(), {
 tag: 'li',
 html: 'Infinite Scrolling'
});

The insertAfter method can be used in exactly the same way to insert the new element
after the one passed in as the first parameter.

Using templates to insert elements
Templates allow us to create HTML strings that contain data placeholders. These templates
can be merged with a data object giving us an HTML string with its placeholders replaced
with the values from the data object.

The Ext.Template class can be used to append (or insertBefore/insertAfter)
the output of this merge process to an existing element. We can use Ext.core.
DomHelper'screateTemplate method to initially generate this template.

We start by creating a template using the same configuration object syntax that we used
earlier. Our template has one placeholder, named newFeature:

var itemTpl = Ext.core.DomHelper.createTemplate({
 tag: 'li',
 html: '{newfeature}'
});

We then use the Ext.Template's append() method to insert the new element. The method
accepts an ID or element as its first parameter to indicate which element the output should be
appended to. The second parameter provides the data object to be applied to the template:

itemTpl.append('whats-new', {newFeature: 'Row Editor'});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

58

See also
ff The previous three recipes, which go into further details about selecting, traversing,

and manipulating DOM elements.

ff The recipes in Chapter 4, UI Building Blocks—Trees, Panels, and Data Views,
explaining templates in more detail.

Handling events on elements and
components

Ext JS is an event driven framework and so it is important to be able to listen for raised
events and react to them to control the flow of your application. These events could be raised
through user interaction, for example, a button being clicked or keyboard keys being pressed,
or internally within the framework, for example a store being loaded with data or a component
being hidden.

In this recipe, we will explain how to listen for components' events and execute code when
they are raised.

We will start off by listening for a simple click event on an element to explain the syntax and
composition of an event handler. We will then move on to alternative ways of defining listeners.

Getting ready
We will set up a simple HTML page, which references the library and contains a single
element within the <body> tag as shown as follows:

<div id="my-div">Ext JS 4 Cookbook</div>

How to do it...
1.	 Firstly, inside the Ext.onReady function, we retrieve a reference to the element

(in the form of an Ext.Element instance). See the Selecting DOM Elements recipe,
for more details:
var el = Ext.get('my-div');

2.	 We then attach an event handler function to the click event of the element using the
on method. In our example, the function will show an alert when the event is raised:

el.on('click', function(e, target, options){
 alert('The Element was clicked!');
 alert(this.id);
}, this);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

59

Notice the output of the alert(this.id); line. The scope,
defined by this being passed in as the third parameter, is
the browser's window. Try changing this parameter to el and
see what the alert displays.

How it works...
The Ext.Element's on method is an alias of the addListener method, and comes from
the mixed in Ext.util.Observable class. This method tells the element that whenever
the element's click event (defined by the first parameter) is raised, execute the function that is
supplied as the second parameter. This can be either an anonymous function or a reference
to a previously defined function.

The third parameter indicates what scope the handling function will execute in (that is, what
the this keyword will refer to). See the Scoping your functions recipe, in Chapter 1.

There's more...
It is possible to attach handlers to multiple events at once and to also define these handlers
when configuring components at the start of their lifecycle. We will now demonstrate how
to achieve this with two short examples.

Defining multiple event handlers at once
The on method also accepts an alternative parameter set that allows multiple event
handlers to be assigned at once. By specifying a JavaScript object as the first parameter,
with name/value pairs specifying the event name and its handling function, they will all be
assigned at once. By defining a scope property within this object the handler functions will
all be executed within this scope.

el.on({
 click: function(e, target, options){
 alert('The Element was clicked!);
 alert(this.id);
 },
 contextmenu: function(e, target, options){
 alert('The Element was right-clicked!');
 alert(this.id);
 },
 scope: this
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

60

Defining event handlers in config objects
Ext JS components (for example, grids, panels, stores, and so on) all allow event handlers to
be defined when they are configured using the listeners config option. Event handlers are
defined in this config option in an identical fashion to the method described earlier.

In the following short example, we create a simple Ext.panel.Panel and bind an event
listener to its afterrender event, showing an alert:

Ext.create('Ext.panel.Panel', {
 title: 'Ext JS 4 Cookbook',
 html: 'An Example Panel!',
 renderTo: Ext.getBody(),
 width: 500,
 listeners: {
 afterrender: function(){
 alert('The Panel is rendered!');
 },
 scope: this
 }
});

See also
ff The first recipe of this chapter explaining how to select DOM elements.

ff The Scoping your functions recipe in Chapter 1, Classes, Object-Oriented Principles
and Structuring your Application.

Delegating event handling of child elements
Event handlers are a common cause of memory leaks and can cause performance
degradation when not managed carefully. The more event handlers we create the more
likely we are to introduce such problems, so we should try to avoid creating huge numbers
of handlers when we don't have to.

Event delegation is a technique where a single event handler is created on a parent element,
which leverages the fact that the browser will bubble any events raised on one of its children
to this parent element. If the target of the original event matches the delegate's selector then
it will execute the event handler, otherwise nothing will happen.

This means that instead of attaching an event handler to each individual child element,
we only have to create a single handler on the parent element and then, within the handler,
query which child element was actually clicked, and react appropriately.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

61

In this recipe, we will discover how to make use of event delegation when attaching event
handlers to the items within a list. We will listen for click events on each of the list items
and alert their innerHTML contents when they are clicked.

Getting ready
Once again we will make use of the HTML snippet from the first recipe of this chapter.

How to do it...
1.	 Retrieve a reference to the What's New list element:

var whatsNewEl = Ext.get('whats-new');

2.	 Attach an event handler to the list's click event and specify we want to delegate
this event to the list items (that is LI tags), by passing a configuration object to
the on method's fourth argument, containing the delegate property:
whatsNewEl.on('click', function(e, target, options){
 alert(target.innerHTML);
}, this, {
 delegate: 'li'
});

When you run this code and click each of the list items you will see an alert with each
of the items' contents.

How it works...
When attaching event handlers the framework builds up a dynamic function based on the
configuration options passed in.

In our example, only the delegate option has been used, but you can also specify additional
options such as:

ff - stopEvent

ff - preventDefault

ff - stopPropagation

ff - delay

ff - buffer

When a delegate is specified, the dynamic function contains a simple call to the
Ext.EventObject's getTarget method passing in the contents of the delegate property.
If this call returns a value then we know that the event has occurred on a valid element and
so it is fired, passing in this target element into the handler as the second argument.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

62

In our example, the dynamically generated function contains the following code:

// output of the Ext.EventManager.createListenerWrap() method
if (!Ext) {
 return;
}

e = Ext.EventObject.setEvent(e);

var t = e.getTarget("li", this);
if (!t) {
 return;
}
fn.call(scope || dom, e, t, options);

As you can see, the highlighted line shows the delegate being used and the function only
actually calling the event's handler function (fn) if a match was made.

We could achieve identical functionality if we omitted the delegate option and included the
getTarget call in our own handler function. An equivalent event handler is shown in the
following code block:

whatsNewEl.on('click', function(e, target, options){
 var t = e.getTarget("li", this);

 if (!t) {
 return;
 }

 alert(target.innerHTML);
}, this);

There are couple of obvious advantages of using this technique over attaching an event
handler to each element:

ff We create fewer event handlers which means less memory is used and fewer
opportunities exist for memory to leak

ff If you were to add new child elements, the event handler is already set up to react to
events on this new element

There's more...
When using event delegation we often need to perform different actions depending on which
of the child elements the event is raised upon. For example, if we had the following toolbar,
we would want to execute a different function when each of the links were clicked:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

63

<div id="toolbar">
 Add |
 Edit |
 <a href="javascript:void(0);"Delete
</div>

Firstly, we decorate each of the links with a class to distinguish it from the others. This will be
used when deciding which of the links was actually clicked:

<div id="toolbar">
 Add |
 Edit |
 Delete
</div>

We then add our click event handler to the toolbar div and delegate it with an a tag selector:

toolbarEl.on('click', function(e, target, options){

}, this, {
 delegate: 'a'
});

We use the getTarget method of the Ext.EventObject parameter to decide which of
the child elements the event originated from. We do this by passing a selector to it which will
return a matching element if it was found in the chain of elements involved in the event. When
the getTarget call returns an element (which evaluates to true in an IF statement) we can
then call the correct method for that link.

toolbarEl.on('click', function(e, target, options){
 if(e.getTarget('a.add')){
 addItem();
 } else if(e.getTarget('a.edit')){
 editItem();
 } else if(e.getTarget('a.delete')){
 deleteItem();
 }
}, this, {
 delegate: 'a'
});

See also
ff The previous recipe titled, Handling events on elements and components.

ff The recipe in Chapter 1, called Scoping your functions.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

64

Simple animation of elements
Animating elements can be achieved easily with Ext JS. This recipe will demonstrate adding
simple animations and transitions to an element or Ext JS component.

How to do it...
1.	 Start by adding an element to the body of your HTML:

<div id="animate"></div>

2.	 Now style the DIV to help us see the animations working:
<style type="text/css">
 #animate {
 margin: 50px auto;
 width: 200px;
 background-color: #444;
 height: 200px;
 }
</style>

3.	 Inside your Ext.onReady function get the element:
var el = Ext.get('animate');

4.	 The first animation to try is puff. This effect expands the element in all directions
while fading it out. Call the puff method passing in some FX options:
el.puff({
 easing: 'easeOut',
 duration: 1000,
 useDisplay: false
});

5.	 Having seen the box 'puff' we can substitute the method for one of the many other
pre-defined animations. Remove or comment-out el.puff():
/*
el.puff({
 easing: 'easeOut',
 duration: 1000,
 useDisplay: false
});
*/

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

65

6.	 Add the following to make your element switch off. This will collapse your element
into itself, in the same way a TV might:
el.switchOff({
 easing: 'easeIn',
 duration: 2000,
 remove: false,
 useDisplay: false
});

7.	 Having tried both puff and switchOff now try any of the following (remembering to
comment out the animations you are not trying to use):
// slides the element into view from the direction specified
// t = top, b = bottom, l = left, r = right
el.slideIn('t', {
 easing: 'easeOut',
 duration: 500
});

// slides the element out of view in the direction specified
el.slideOut('t', {
 easing: 'easeOut',
 duration: 500,
 remove: false,
 useDisplay: false
});

// pulses a gray border (first parameter) 10 times (second
parameter)
el.frame("#444", 10, {
 duration: 1000
});

// fades the element out
el.fadeOut({
 opacity: 0,
 easing: 'easeOut',
 duration: 2000,
 remove: false,
 useDisplay: false
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

66

8.	 To see animations working on Ext JS components add an animation to an alert:

var messageBox = Ext.Msg.alert('Alert', 'This Message Box has an
animation');

messageBox.getEl().frame("red", 3, {
 duration: 500
});

How it works...
Ext.fx.Anim is the class that manages the animation of the element. It's made available to
us through the use of Ext.Element.

Ext.Element has a number of methods that can be used for animating the element
as we've seen in the examples. Depending on the method you are calling you can either
animate it by passing true to the animate parameter or by passing it an object literal with
animation options.

When the animation is called on the element, Ext JS, in essence, goes through a process
of updating aspects of the element (for example, it's CSS) which alters its appearance on
the browser. Each step of the process changes the element slightly to give the user the
impression of a smooth transition.

There are a number of animation options that can be set to alter the behavior of your
animation. The common config options we set were:

ff useDisplay: Boolean: when this is set to false the element will be hidden using
the hide method after the animation is complete, otherwise it will be hidden using
setDisplayed(false), which uses the CSS display property. By setting this to
true the element will not take up any space in the document after it is hidden.

ff duration: Number: this is the time (in milliseconds) that the animation will last.

ff easing: String: the easing of the animation is a description of how the animation
should calculate the intermediate values for the process. This gives you the ability to
alter how the animation changes speed during the animation. We can set this with
values such as, backIn, easeIn, easeOut, bounceOut, or elasticeIn.

See also
ff The four recipes at the beginning of this chapter explaining DOM retrieval

and manipulating.

ff The next recipe, which goes into more detail about creating custom animations.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

67

Custom animations
Ext JS 4 introduces a brand new animation builder which allows us to build keyframe
animations in a similar style to those available with CSS3.

In this recipe, we will create a simple keyframe animation using the Ext.fx.Animator
class. We will then move on to discuss how to have your application react to these custom
animations by harnessing the built-in events and callbacks.

Keyframe animation is when the animator defines the characteristics (position, size, color,
and so on) of the elements involved in the animation at specific points in time. The software
(in this case the Ext JS framework) then uses these key points to calculate the characteristics
of elements in the frames between the two keyframes. This creates a smooth transition
between the two (or more) key frames and gives us a nice animation.

The example we will create in this recipe is that of a simple bouncing ball, which will change
color after each bounce.

How to do it...
1.	 We start by creating an element to represent our ball and giving it some basic styles:

<style type="text/css">
 #ball
 {
 border-radius: 50px;
 width: 100px;
 height: 100px;
 background-color: red;
 position: absolute;
 y: 50px;
 x: 100px;
 }
</style>

<div id="ball"></div>

2.	 We next create a new instance of Ext.fx.Animator and target the new ball DIV as
the element we want to animate:
Ext.create('Ext.fx.Animator', {
 target: 'ball'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

68

3.	 We can now start defining our animation's duration and first and last keyframes.
These two keyframes will define the start and end point of the animation:
Ext.create('Ext.fx.Animator', {
 target: 'ball',
 duration: 5000,
 keyframes: {
 0: {
 y: 50
 },
 100: {
 y: 300
 }
 }
});

4.	 Finally, we add the intermediate keyframes to produce the bouncing effect and
color changes:

Ext.create('Ext.fx.Animator', {
 target: 'ball',
 duration: 5000, // 5 seconds
 keyframes: {
 0: {
 y: 50
 },
 20: {
 y: 300
 },
 40: {
 y: 175,
 backgroundColor: '#0000FF'
 },
 60: {
 y: 300
 },
 80: {
 y: 275,
 backgroundColor: '#00FF00'
 },
 100: {
 y: 300
 }
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

69

How it works...
We initially tell our Ext.fx.Animator instance that the element we want to animate is the
element with an ID of ball using the target config option. We also define the duration, in
milliseconds, that our animation will run for.

Our keyframes configuration takes a JavaScript object defining properties based on the
percentage of time elapsed and a configuration object defining the element's characteristics
at that point.

For example, our 0 property tells the animator that after 0 percent of the 5 second duration
(that is, at the very beginning) the element should have a y value of 50. The 100 property
tells it that after 100 percent of our 5 second animation (that is, at the end) it should have
a y value of 300.

It is mandatory to define a 0 and 100 keyframe, so the animation
has an explicit start and end point.

Each of the intermediate keyframes tell the animator what the element should look like
after that amount of time (for example, 20 => 20% of 5 second animation = 1 second).
If a characteristic has a different value from the previous keyframes, then the animator
will animate the transition between the two, be it moving it from position x to position y
or changing color from red to blue.

Internally, the framework builds up a collection of Ext.fx.Anim instances based on these
keyframe definitions and the animation's other properties (duration, easing, and so on) and
executes them one after another creating this smooth animation.

There's more...
There are several other options and events available to customize our animations even
further, and integrate them into our application's process. We will explore a few of these
options further.

easing
The animation's easing config option allows us to define how the animator calculates
the frames between the defined keyframes. This gives us control over the speed in which
the transition occurs, for example, whether it speeds up in the middle or if it bounces back
once reaching its desired position.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

70

iterations
This config option allows you to have the animation repeat itself this number of times.

beforeanimate and afteranimate events
These two events allow you to execute some code before the animation starts and after it has
completed. This allows us to perform application logic once an animation has taken place, for
example, after animating the removal of an Ext.view.View item, we could make an AJAX
call to the server removing the item from our database using this event.

keyframe event
The keyframe event fires before performing the animation between two keyframes. It passes
in a reference to the Ext.fx.Animator itself and the current keyframe's index as its first
and second parameters respectively.

See also
ff The previous recipe, which covered simple animations on HTML elements.

ff To read about how to listen for the beforeanimate and afteranimate events see
the recipe called Handling events on elements and components.

Parsing, formatting, and manipulating dates
Dates crop up in every application in some form or another. Ext JS 4 provides a useful
Ext.Date class that enhances the JavaScript Date object's functionality with a series
of useful methods to help when working with dates.

If you already have experience with PHP, you will be pleased to know
that the formatting syntax for Ext.Date is a (comprehensive) subset
of those available in PHP's date function.

How to do it...
1.	 Start by instantiating the Date object, passing in numbers to represent the year,

month, day, hour, and minute:
var date = new Date(2011, 6, 6, 22, 30);

2.	 Add the following date/time patterns for formatting dates:
Ext.Date.patterns = {
 ISO8601Long: "Y-m-d H:i:sP",

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

71

 ISO8601Short: "Y-m-d",
 ShortDate: "n/j/y",
 FullDateTime: "l, F d, Y g:i:s A",
 LongTime: "g:i:s A",
 SortableDateTime: "Y-m-d\\TH:i:s",
 UniversalSortableDateTime: "Y-m-d H:i:sO"
};

3.	 With our defined patterns we can format the date and view our browser's
console output:
// 2011-07-06 22:30:00+01:00
console.log(Ext.Date.format(date, Ext.Date.patterns.ISO8601Long));

//2011-07-06
console.log(Ext.Date.format(date, Ext.Date.patterns.
ISO8601Short));

//7/6/11
console.log(Ext.Date.format(date, Ext.Date.patterns.ShortDate));

//Wednesday, July 06, 2011 10:30:00 PM
console.log(Ext.Date.format(date, Ext.Date.patterns.
FullDateTime));

//10:30:00 PM
console.log(Ext.Date.format(date, Ext.Date.patterns.LongTime));

//2011-07-06T22:30:00
console.log(Ext.Date.format(date, Ext.Date.patterns.
SortableDateTime));

//2011-07-06 22:30:00+0100
console.log(Ext.Date.format(date, Ext.Date.patterns.
UniversalSortableDateTime));

//Wednesday, the 6th of July 2011 10:30:00 PM
console.log(Ext.Date.format(date, 'l, \\t\\he jS \\of F Y h:i:s
A'));

4.	 Parse the following strings as dates with the Ext.Date.parse() method:
//Mon Mar 07 2011 00:00:00 GMT+0000 (GMT Standard Time)
console.log(Ext.Date.parse("3", 'n'));

//Mon May 17 2010 00:00:00 GMT+0100 (GMT Daylight Time)
console.log(Ext.Date.parse("2010-05-17", "Y-m-d"));

//output: null as the date is invalid
console.log(Ext.Date.parse("2011-11-31", "Y-m-d", true));

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

72

5.	 Ext JS adds further functionality for working with dates:
//true
console.log(Ext.Date.between(new Date('07/01/2011'), new
Date('05/01/2011'), new Date('09/01/2011')));

//Thu Sep 30 2010 00:00:00 GMT+0100 (GMT Daylight Time)
console.log(Ext.Date.add(new Date('09/30/2011'), Ext.Date.YEAR,
-1));

//Sun Jul 31 2011 00:00:00 GMT+0100 (GMT Daylight Time)
console.log(Ext.Date.getLastDateOfMonth(new Date('07/01/2011')));

// true
console.log(Ext.Date.isDST(new Date('07/01/2011')));

//false
console.log(Ext.Date.isValid(2011, 29, 2));

How it works...
The Ext.Date.patterns object we defined in step 2 is our working set of recognized
formats for our application. These aren't provided in the framework, however, they can be
found on the Ext.Date documentation page for copying and editing. Ext.Date in Ext JS
4 is a series of static methods that are written specifically to manipulate and work with a
JavaScript Date instance. Ext.Date.parse takes three arguments:

ff input: string

ff format: string

ff strict: boolean (optional)

The purpose of Ext.Date.parse is to take a string input and return it as a Date object.
We need to specify a format to allow the parser to ensure the date it returns is what we
expect. Ext JS follows the same formatting syntax as PHP. So, if the input is 3 and the format
is n (numeric representation of a month, without leading zeros), then the parser will interpret
this as March. If the input were 3 and the format m (numeric representation of a month, with
leading zeros) and strict were true, then parsing would fail as our input string would require
the leading zero to be valid.

The complete list of formats can be found in the Ext.Date documentation.

There's more...
A useful property in Ext.Date is defaultFormat. When used with Ext.util.Format.
dateRenderer and Ext.util.Format.date, dates will appear in a format you specify.

Setting a default format helps by ensuring your application displays dates in a format suited
to the locale, for example, Ext.Date.defaultFormat = 'd/m/Y';.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

73

Ext.Date has many other features that haven't been looked at in our examples, such as:

ff getDayOfYear(Date date) is used for getting the numeric day of the year.

ff getDaysInMonth(Date date) is used for getting the number of days in a
given month.

ff getElapsed(Date dateA, [Date dateB]) is used for finding out the number
of milliseconds between two dates. If you don't include the dateB parameter, it will
default to the current date.

ff getGMTOffset(Date date, [Boolean colon]) is used for getting the GMT
offset of a given date (for example, +02:00). If you exclude the colon parameter
the output would be +0200.

ff getTimezone(Date date) will return the abbreviated timezone name.

See also
ff The recipe Loading and Parsing Dates into a Date field in Chapter 6, Using and

Configuring Form Fields.

Loading data with AJAX
In this recipe, we will discover how to load data asynchronously using the Ext.Ajax class.
We will demonstrate how to use the Ext.Ajax.request method for loading data and how
to process the XMLHttpRequest response that's returned. Additionally, we will learn how to
handle errors.

Getting ready
Make sure you have a web server installed and running on your development computer.

For the purposes of this demonstration your web server will need to serve JSON files.
If you run into problems you may need to add a MIME type for JSON (application/json).

How to do it...
1.	 Create a file called ajaxRequest.json and add some JSON:

{
 "id": 1,
 "firstname": "John",
 "lastname": "Smith"
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

74

2.	 Create an Ajax request with Ext JS by adding the following inside the
Ext.onReady function:

Ext.Ajax.request({
 url: 'ajaxRequest.json',
 success: function(response, options){
 console.log('The Success function was called.');
 console.log(response.responseText);
 },
 failure: function(response, options){
 console.log('The Failure function was called.');

 var statusCode = response.status;
 var statusText = response.statusText;
 console.log(statusCode + ' (' + statusText + ')');
 },
 callback: function(options, success, response){
 console.log('The Callback function was called.');
 console.log('Successful Request? ' + success);
 },
 timeout: 60000 //60 seconds (default is 30)
});

How it works...
Ext.Ajax is a singleton and a subclass of Ext.data.Connection that creates, opens, and
sends the request using the XMLHttpRequest object in JavaScript. As a result, the request is
made asynchronously.

Processing the response is done using the callback property and the success/failure
properties.

In each of these the response parameter is the XMLHttpRequest objects response data.
The data returned by the server is available in the responseText property.

There's more...
When making AJAX requests there are a number of other features in Ext JS for posting JSON
or XML, caching, and cross-domain requests.

POST JSON or XML data
Defining the params config of an Ext.Ajax.request allows you to add parameters to a
request. However, if you wish to POST JSON or XML, simply define either xmlData (object)
or jsonData (object/string) properties in your Ext.Ajax.request.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

75

If you define xmlData or jsonData and params at the same time all params will be
appended to the URL.

Disabling client-side caching of Ajax requests
Adding disableCaching: true to an Ext.Ajax.request will add a unique parameter
to the URL for GET requests. This can be of particular use for ensuring the client is always
receiving up-to-date data.

Use Ext.data.JsonP for cross-domain
If you are looking to make cross-domain requests, you'll need to use JSONP. Ext JS
provides an Ext.data.JsonP class for this purpose with similar configuration to
Ext.Ajax. Here's a quick example:

Ext.data.JsonP.request({
 url: 'http://www.example.com/api/example',
 params: {
 apiKey: '1234'
 },
 callbackKey: 'myCallbackFn',
 success: function(){
 //task on successful request
 },
 failure: function(){
 //task on failed request
 },
 scope: this
});

See also
ff The next recipe, for learning how to encode and decode JSON data.

ff Chapter 7, Working with the Ext JS Data Package, explores the Ext JS 4 data package
in further depth and demonstrates Models, Proxies, and Stores.

Encoding and decoding JSON data
JavaScript Object Notation (or JSON) is a lightweight data interchange format that's human
readable and very useful for representing simple data structures and data objects.

As JSON is language independent, it's ideal for use with frameworks such as Ext JS.

Ext JS has an excellent range of functions that work with JSON. However, let's start at the
beginning with encoding and decoding data in JSON format.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Manipulating the Dom, Handling Events, and Making AJAX Requests

76

A useful tool when working with JSON is the online JSON
validator JSON Lint, which validates and formats JSON. This is
available at www.jsonlint.com.

How to do it...
1.	 Start by creating a JavaScript object. We're going to encode this object as JSON:

var objToEncode = {
 foo: "bar",
 id: 1,
 today: new Date(),
 isJson: true,
 size: ["Small", "Medium", "Large"],"
 obj: {
 item: "My Item"
 }
};

2.	 Encode the object as JSON using Ext.encode:
console.log(encodedJson);

/*
{
 "foo": "bar",
 "id": 1,
 "today": "2011-07-09T15:01:21",
 "isJson": true,
 "size": [
 "Small",
 "Medium",
 "Large"
],
 "obj": {
 "item": "My Item"
 }
}
*/

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 2

77

3.	 Decode the JSON back to an object using Ext.decode():

var decodedJson = Ext.decode(encodedJson);

console.log(decodedJson.foo); //bar
console.log(decodedJson.id); //1
console.log(decodedJson.size[0]); //Small
console.log(decodedJson.obj.item); //My Item

How it works...
To demonstrate encoding and decoding JSON data we started by creating an object with
a variety of data types.

The encoding and decoding is done by the Ext.JSON class. However, we've used the
shorthand methods Ext.encode and Ext.decode. Encoding is done by the doEncode
method, which determines what it's to be encoded to (for example, string, array, and so on)
and returns the item as a string in JSON format.

Decoding is done by the doDecode method, which evaluates the JSON using the
eval method:

doDecode = function(json) {
 return eval("(" + json + ')');
},

There's more...
The Ext.JSON class provides another useful method for encoding dates—encodeDate. This
method returns a date as a JSON string in the following format: yyyy-mm-ddThh:mm:ss. It's
easy to override the default date by setting your own, for example:

Ext.JSON.encodeDate = function(d) {
 return d.format('"d/m/Y"');
};

See also
ff The next recipe as it demonstrates encoding/decoding HTML.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

3
Laying Out Your

Components

In this chapter, we will cover:

ff Using a FitLayout to expand components to fill their parent

ff Creating flexible vertical layouts with VBoxes

ff Creating flexible horizontal layouts with HBoxes

ff Displaying content in columns

ff Collapsible layouts with accordions

ff Displaying stacked components with the CardLayout

ff Anchor components to their parent's dimensions

ff Creating fullscreen applications with the BorderLayout

ff Combining multiple layouts

Introduction
This chapter explores the layout system in Ext JS 4 and demonstrates how to use these
layouts to place your user interface components. The layouts that we will be working with are
FitLayout, BorderLayout, HBox layout, VBox layout, ColumnLayout, TableLayout,
AccoridionLayout, CardLayout, AnchorLayout, and AbsoluteLayout. The
final recipe will combine a number of these layouts to create a framework for a rich
desktop-style application.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

80

Using a FitLayout to expand components to
fill their parent

The FitLayout makes it possible for you to expand a component to fill its parent container.
The FitLayout is easy to use and requires no configuration. The screenshot shows how a
FitLayout can be used to automatically expand a panel to take up its parent's entire area:

How to do it...
1.	 Start by creating a simple Ext.panel.Panel and render it to the document's body.

This panel will be the parent item that contains our inner, expanded-to-fit component:
Ext.create('Ext.panel.Panel', {
 title: 'Fit Layout',
 width: 500,
 height: 200,
 renderTo: Ext.getBody()
});

2.	 Now, add the inner panel by adding it to the parent's items collection:
Ext.create('Ext.panel.Panel', {
 title: 'Fit Layout',
 width: 500,
 height: 200,
 items: {
 title: 'Inner Panel',
 html: 'Panel content',
 bodyPadding: 10,
 border: true
 },
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

81

3.	 Finally, apply the fit layout to the parent panel to have the inner panel expand:

Ext.create('Ext.panel.Panel', {
 title: 'Fit Layout',
 width: 500,
 height: 200,
 layout: 'fit',
 items: {
 title: 'Inner Panel',
 html: 'Panel content',
 bodyPadding: 10,
 border: true
 },
 renderTo: Ext.getBody()
});

The difference between step two and three can be seen by observing the border.

How it works...
The FitLayout works by defining the layout config option as fit in the parent container.
This tells Ext JS that the child item should expand to fill the entire space available from
its parent.

In the example, the parent panel has a fixed height and width. When layout: 'fit' is set,
the child panel automatically expands to fill the space within the parent component.

There's more...
It's worth noting that the FitLayout will only work for the first child item of the parent
container. If you have multiple items defined, the first will be displayed (as it will expand
into the remaining space of its parent) and the others will not be visible.

See also
ff The recipe demonstrating the CardLayout shows how the FitLayout can

be extended.

ff Displaying a simple form in a window recipe in Chapter 4, UI Building Blocks—Trees,
Panels, and Data Views, is another example of the FitLayout in action.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

82

Creating flexible vertical layouts with
VBoxes

The VBoxLayout allows you to align components vertically down a container. The following
screenshot shows three panels vertically aligned, dividing the available space between them:

How to do it...
1.	 Start by creating a Viewport:

Ext.create('Ext.container.Viewport', {});

2.	 Define a layout for the Viewport with the following configuration:
Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'vbox',
 align: 'stretch',
 padding: 10
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

83

3.	 Finally add panels to the items collection and give them a height or
flex configuration:

Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'vbox',
 align: 'stretch',
 animate: true, //{ duration: 2000, easing: 'easeIn' },
 padding: 10
 },
 items: [{
 xtype: 'panel',
 title: 'Panel One',
 height: 100
 }, {
 xtype: 'panel',
 title: 'Panel Two',
 flex: 1
 }, {
 xtype: 'panel',
 title: 'Panel Three',
 frame: true,
 flex: 3
 }]
});

How it works...
The Viewport automatically consumes all available space in the browser. We've added
a layout object to the Viewport with the type defined as a vbox. The Vbox layout
automatically arranges child items vertically within their parent.

The align config option in this case is set to stretch. This means that all child items will be
stretched horizontally to fill the width of the parent container (in this case the full width of the
browser window).

The padding config option adds padding to all child items in the example. A value of 10
adds padding of 10px to the parent container giving a small space between the parent
and its children.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

84

Finally, and most importantly, the height or flex is set for each child. In this example, panel
one has a fixed height of 100px. No matter how the height is defined for the other children,
panel one will always be 100px high.

Panel two and panel three have a flex value defined. The flex config option relatively flexes
the items vertically in the container. Panel two has flex: 1 and Panel three has flex: 3,
therefore, 25 percent of the remaining parent space (remember we've already used 100px
with panel one) is given to panel two and 75 percent of the space is given to panel three.

Flex values are calculated by ((Container Height – Fixed Height of Child
Components) / Sum of Flexes) * Flex Value (assume parent is 1000px
high). For example, ((1000 – 100) / (1 + 3)) * 1 (or 3).

There's more...
The VBox layout has some useful configuration options that are described as follows:

align: String
The align config option controls how child items are horizontally aligned in a VBox layout.
Valid values are:

ff left: This is the default value. All items in the VBox layout will be horizontally
aligned to the left of the container and will use their width config to define how
wide they are.

ff center: All items will be horizontally aligned to the middle (or center) of
the container.

ff stretch: Each item will be horizontally stretched to fit the width of the container.

ff stretchmax: This horizontally stretches all items to the width of the largest item
creating a uniform look without having to individually define a width for each item.

pack: String
The pack config option controls how the child items are packed together. If the items do not
stretch to the full height of the parent container (that is, have no flex values), it's possible to
align them to the top, middle, or bottom using this option. Valid values are:

ff start: This is the default value. It will align all items to the top of the parent container

ff center: Center aligns all items to the middle (or center) of the container

ff end: Aligns all items to the bottom of the container

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

85

See also
ff The next recipe demonstrating the HBoxLayout.

Creating flexible horizontal layouts with
HBoxes

The HBox layout allows you to align components horizontally across a container. The
screenshot shows three panels horizontally aligned, dividing the available space
between them:

How to do it...
1.	 Start by creating a Viewport:

Ext.create('Ext.container.Viewport', {});

2.	 Define an HBox layout in the Viewport with the following configuration:
Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'hbox',
 align: 'stretchmax',
 pack: 'center'
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

86

3.	 Add three panels to the items collection, the first and third with fixed widths, and the
second with a flex of 1 to take up the remaining browser space:

Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'hbox',
 align: 'stretchmax',
 padding: 10
 },
 items: [{
 xtype: 'panel',
 title: 'Panel One',
 height: 200,
 width: 100
 }, {
 xtype: 'panel',
 title: 'Panel Two',
 flex: 1
 }, {
 xtype: 'panel',
 title: 'Panel Three',
 width: 100
 }]
});

How it works...
The Viewport automatically consumes the space available in the browser window. Defining
an HBox layout ensures that Ext JS horizontally positions each child item giving the feeling of
columns in this example.

The align configuration is stretchmax meaning that all child items will automatically
be stretched to the height of the tallest child. Panel one's height is defined as 200. With
align: 'stretchmax', panel two and three will also be stretched to 200px high.

Panel one and panel three both have their width defined as 100. These panels now have
a set width of 100px even when the user resizes their browser. They are not fluid.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

87

Panel two, on the other hand, is set to flex with flex: 1. The HBox layout will calculate a
width for panel two and will update this value when the user resizes the browser. Full details
on how flex widths are calculated is provided in the recipe demonstrating the VBox layout.

There's more...
The HBox layout has some useful configuration options that are described as follows.
These options are the same as the Vbox layout. However, they work on a horizontal layout.

align: String
The align config option controls how child items are vertically aligned in an HBox Layout.
Valid values are shown as follows:

ff top: This is the default value. All items in the HBox layout will be vertically aligned to
the top of the container.

ff middle: All items will be vertically aligned to the middle (or center) of the container.

ff stretch: Each item will be vertically stretched to fit the height of the container.

ff stretchmax: This vertically stretches all items to the height of the largest item
creating a uniform look without having to individually define a height for each item.

pack: String
The pack config option controls how the child items are packed together. If the items do not
stretch to the full width of the parent container, it's possible to align them to the left, middle,
or right using this option. Valid values are as follows:

ff start: This is the default value. It will align all items to the left of the parent container.

ff center: This aligns all items to the middle of the container.

ff end: It aligns all items to the right of the container.

See also
ff The previous recipe on VBoxLayout. This recipe also explains in further detail

how flex works.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

88

Displaying content in columns
The ColumnLayout is used for creating multi-column layouts. The width of each column can
be specified as fixed (in pixels), as a percentage, or a mixture of both.

This recipe will demonstrate creating a three column layout with one fixed width column and
two columns with widths specified as percentages:

How to do it...
1.	 Start by creating a panel rendered to the document's body:

Ext.create('Ext.Panel', {
 title: 'Column Layout',
 width: 500,
 height: 200,
 renderTo: Ext.getBody()
});

2.	 Add three child panels to the parent's items collection:
Ext.create('Ext.Panel', {
 title: 'Column Layout',
 width: 500,
 height: 200,
 items: [{
 title: 'Panel One',
 html: 'Panel One Content'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

89

 title: 'Panel Two',
 html: 'Panel Two Content'
 }, {
 title: 'Panel Three',
 html: 'Panel Three Content'
 }],
 renderTo: Ext.getBody()
});

3.	 Give the parent a ColumnLayout configuration and define column widths for
each child:
Ext.create('Ext.Panel', {
 title: 'Column Layout',
 width: 500,
 height: 200,
 layout: 'column',
 items: [{
 title: 'Panel One',
 columnWidth: .2,
 html: 'Panel One Content'
 }, {
 title: 'Panel Two',
 columnWidth: .8,
 html: 'Panel Two Content'
 }, {
 title: 'Panel Three',
 width: 100,
 html: 'Panel Three Content'
 }],
 renderTo: Ext.getBody()
});

4.	 The layout can be enhanced by giving each panel a frame and defining a fixed height
for the child items:

Ext.create('Ext.Panel', {
 title: 'Column Layout',
 width: 500,
 height: 200,
 layout: 'column',
 frame: true,
 defaults: {
 height: 165,
 frame: true
 },

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

90

 items: [{
 title: 'Panel One',
 columnWidth: .2,
 html: 'Panel One Content'
 }, {
 title: 'Panel Two',
 columnWidth: .8,
 margin: '0 5 0 5',
 html: 'Panel Two Content'
 }, {
 title: 'Panel Three',
 width: 100,
 html: 'Panel Three Content'
 }],
 renderTo: Ext.getBody()
});

How it works...
Steps 3 and 4 are where the magic happens. The parent panel's layout config is set to
column. Ext JS now looks for either the width or columnWidth config option for child panels.

A fixed width is set on column three (width: 100). The framework now calculates the
space remaining and assigns it to the first and second columns. The columnWidth property
is a percentage (although represented as a decimal) and must total 1 (100 percent) across
the items.

Panel one is 20 percent (defined as .2) and Panel two is 80 percent (defined as .8). Ext JS can
now calculate the pixel widths for panel one and two and assign them accordingly.

In step 4, we further enhance the layout by adding frame: true (adds a frame to the panel)
to the parent and defaults config object.

The default option is an object of config options that will be applied to the child items (not the
parent panel). This is where the fixed height for each column is set and a frame added to the
child panels.

Finally, the margin config option in panel two adds a 5px margin to the left and right of the
component. The margin could have been defined as a number; however, this numeric value
would apply the same margin to all four sides of the component.

See also
ff The HBox layout is an alternative method of creating columns. See the previous

recipe for more information.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

91

Collapsible layouts with accordions
Accordion layouts allow us to present multiple containers in a fashion where only one of
the containers is expanded and visible at any one time. The other containers are collapsed,
leaving only their headers visible, each of which can be clicked on to expand that content area
and collapse the others.

This layout style is useful when only one area of content is required to be displayed at once.
This might be because there isn't enough space to display everything at once or only one area
is relevant at a time.

In this recipe, we will describe how to create an accordion layout to display some simple
information about Sencha products. A screenshot of our final goal can be seen as follows:

How to do it...
1.	 Once again we start by creating a simple Ext.panel.Panel and render it to

the document's body. This panel will be the parent item that contains each of
our accordion items:
Ext.create('Ext.panel.Panel', {
 title: 'Accordion Layout',
 width: 350,
 height: 400,
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

92

2.	 Next, we create the four panels that will make up the accordion structure and add
them to the parent panel's items collection:
Ext.create('Ext.panel.Panel', {
 title: 'Accordion Layout',
 width: 350,
 height: 400,
 renderTo: Ext.getBody(),
 items: [{
 title: 'Ext JS 4',
 html: 'Ext JS 4 ...' // full content omitted
 }, {
 title: 'Sencha Touch',
 html: 'Sencha Touch ...'
 }, {
 title: 'Ext Designer',
 html: 'Ext Designer ...'
 }, {
 title: 'Sencha Animator',
 html: 'With Sencha Animator...'
 }]
});

3.	 Note that we use the title option to give our accordion items a header bar that
provides a clickable area to expand and collapse the content pane.

4.	 After creating this structure, our panel looks like the following screenshot. By default,
it has adopted an Auto layout and the panels flow one after the other.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

93

5.	 Finally, we apply the accordion layout to the parent panel and the framework takes
care of the rest! It is simply a case of setting the layout configuration option to
'accordion':

Ext.create('Ext.panel.Panel', {
 title: 'Accordion Layout',
 width: 350,
 height: 450,
 layout: 'accordion',
 renderTo: Ext.getBody(),
 items: [{
 title: 'Ext JS 4',
 html: 'Ext JS 4 ...'
 }, {
 title: 'Sencha Touch',
 html: 'Sencha Touch ...'
 }, {
 title: 'Ext Designer',
 html: 'Ext Designer ...'
 }, {
 title: 'Sencha Animator',
 html: 'With Sencha Animator ...'
 }]
});

How it works...
By setting an Ext.panel.Panel's layout to accordion, the framework automatically
adds a +/- button to each child item's header and makes it clickable allowing the item to be
expanded and collapsed. It also ensures that only one panel's content is visible at a time by
collapsing the open panel when another is clicked.

We can also set the layout's titleCollapse configuration option to true, to make a click
anywhere on the entire title bar collapse or expand, that accordion item.

See also
ff The recipe covering the VBox layout, which the accordion layout extends from.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

94

Displaying stacked components with
CardLayouts

Ext JS gives us the ability to stack components on top of one another allowing us to only show
a single item at once and have the option to switch between them as we wish. There are
several possible use cases for this type of layout, for example, a wizard style form, a content
carousel, or a tabbed layout.

The Ext.tab.TabPanel component is in fact based on the card layout and uses it to
manage the tabs' layout.

In this recipe, we will demonstrate how to use the Ext.layout.container.Card layout
manager to create a simple account creation wizard as shown in the following screenshot:

How to do it...
1.	 We start by creating our wrapping Ext.panel.Panel which will contain each of

our cards:
var panel = Ext.create('Ext.panel.Panel', {
 title: 'Account Creation Wizard - Card Layout',
 width: 350,
 height: 300,
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

95

2.	 We now create our three cards that will form each screen of our wizard. The
first contains three form fields to gather the user's first and last names and
an e-mail address:
var card1 = new Ext.panel.Panel({
 bodyStyle: 'padding: 20px',
 title: 'Personal Info',
 items: [{
 xtype: 'textfield',
 fieldLabel: 'First Name'
 }, {
 xtype: 'textfield',
 fieldLabel: 'Last Name'
 }, {
 xtype: 'textfield',
 fieldLabel: 'Email Address',
 vtype: 'email'
 }]
});

3.	 The second card contains two fields for the user's username and password:
var card2 = new Ext.panel.Panel({
 bodyStyle: 'padding: 20px',
 title: 'Account Info',
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Username'
 }, {
 xtype: 'textfield',
 fieldLabel: 'Password',
 inputType: 'password'
 }]
});

4.	 Finally, we create a third card with a simple success message:
var card3 = new Ext.panel.Panel({
 bodyStyle: 'padding: 20px',
 title: 'Account Creation Successful!',
 html: 'Success!'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

96

5.	 Now that we have our three cards defined we can add them to the wrapper panel we
created earlier within its items array:
var panel = Ext.create('Ext.panel.Panel', {
 title: 'Account Creation Wizard - Card Layout',
 width: 350,
 height: 300,
 renderTo: Ext.getBody(),
 items: [card1, card2, card3]
});

6.	 If we looked at our progress so far in the browser, we will see the panels flow
one after the other in the same way as the accordion example. To turn this into a
CardLayout, we simply add the layout config option and assign it a value of
'card' and it will transform the child panels, making them fill the parent and
hide all except the first one:
var panel = Ext.create('Ext.panel.Panel', {
 title: 'Account Creation Wizard - Card Layout',
 width: 350,
 height: 300,
 layout: 'card',
 renderTo: Ext.getBody(),
 items: [card1, card2, card3]
});

7.	 After applying the Ext.layout.container.Card class to the parent panel we
can see that the child panels are stacked on top of each other. We will now add some
navigation buttons so that the user can move between the three cards as you would
in a wizard. We do this by creating a toolbar and two buttons which, when pressed,
tell the layout to move to the next or previous card, if one exists:
var panel = Ext.create('Ext.panel.Panel', {
 title: 'Account Creation Wizard - Card Layout',
 width: 350,
 height: 300,
 layout: 'card',
 renderTo: Ext.getBody(),
 items: [card1, card2, card3],
 bbar: ['->', {
 xtype: 'button',
 text: 'Previous',
 handler: function(btn){
 var layout = panel.getLayout();

 if (layout.getPrev()) {
 layout.prev();
 }
 }
 }, {
 xtype: 'button',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

97

 text: 'Next',
 handler: function(btn){
 var layout = panel.getLayout();

 if (layout.getNext()) {
 layout.next();
 }
 }
 }]
});

How it works...
The Ext.layout.container.Card layout extends the Ext.layout.container.Fit
layout and so forces each of the parent panel's children to fill its available space. The layout
then hides all but one of these children, giving the effect of a stack.

If you inspect our small example with your developer tools, you will see that each of the
three cards have exactly the same dimensions but the second and third are set to
"display: none":

By calling the next, prev, or setActiveItem methods, the layout switches which of the
cards is visible and hides the rest.

There's more...
The Card layout gives us the option to defer the rendering of its cards until they are activated.
This is extremely useful when the cards have large amounts of content or lots of components
within them as it means the browser isn't required to deal with laying out and rendering
markup that is not immediately visible. This will give us a performance boost when dealing
with such content-heavy card layouts.

To use this feature we simply set the deferredRender option to true within the
layoutConfig configuration object. This config option is only applicable to card
layouts and the components that use them (for example, tab panels).

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

98

See also
ff The first recipe in this chapter that explores the FitLayout, which this layout

extends from.

ff The Creating a tabbed layout recipe in the next chapter which uses the
Ext.tab.Panel component that is built upon the card layout.

Anchor components to their parent's
dimensions

We can use the Ext.layout.container.Anchor class to size a child component relative
to the dimensions of its parent. This class inherits from the Ext.layout.container.
Container layout which means that by default a component that has the Anchor layout
will have its children flow vertically within it one after another.

The Anchor layout gives us four options for defining the size of a child component. The first,
and most popular, is a simple percentage value which is used to calculate the child's width
and height based on the parent's dimensions (or the defined anchorSize property, see
There's more... for further details).

The second option is a basic offset value that will size the child to the parent's full width
(or height) minus the offset value, with the component anchored to the parent's left edge.

The third variation allows the child to be sized based on its static width and height and its
parent's width and height by providing a value of bottom or right. Alternatively, a shorthand
value of b or r can be used. This alternative can only be used when the child component has
a fixed size or the parent component has an anchorSize defined.

Finally, we are able to specify a combination of percentages and offsets to give us maximum
control over the layout.

During this recipe, we are going to walk through creating an anchor layout that makes use of
these variations and demonstrates how to create a simple fluid layout.

How to do it...
We will create each of our example panels within an Ext.window.Window component,
which is a subclass of the Ext.panel.Panel class that we have used in the previous
recipe. By doing this, we can easily resize them to see the effect of our anchor configuration
in real time.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

99

1.	 We first create a panel anchored using percentages to its parent (an instance of
Ext.window.Window). We apply the Anchor layout using the layout config option
and configure the panel with the anchor property, passing it a string containing two
percentages, in this case 100% and 35%, representing the width and height. Note that
the width value comes first and the height second:
var win = Ext.create('Ext.window.Window', {
 x: 0,
 y: 0,
 width: 400,
 height: 400,
 title: 'Anchor Layout Panel - Percentages',
 layout: 'anchor',
 items: [{
 xtype: 'panel',
 title: 'Percentages',
 html: 'Panel Content',
 anchor: '100% 35%'
 }]
});

win.show();

2.	 Next, we create a panel anchored using offsets. This time we give the anchor
configuration option a string value containing two numbers, -150 and -100:
var win = Ext.create('Ext.window.Window', {
 x: 500,
 y: 0,
 width: 400,
 height: 400,
 title: 'Anchor Layout Panel - Offsets',
 layout: 'anchor',
 items: [{
 xtype: 'panel',
 title: 'Offsets',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

100

 html: 'Panel Content',
 anchor: '-150 -100'
 }]
});

win.show();

3.	 The use of the Sides variation can be demonstrated using the following code,
where the child Panel is given a fixed height and width and the anchor option
defined as r b:
var win = Ext.create('Ext.window.Window', {
 x: 0,
 y: 500,
 width: 400,
 height: 400,
 title: 'Anchor Layout Panel - Sides',
 layout: 'anchor',
 items: [{
 xtype: 'panel',
 title: 'Sides',
 height: 200,
 width: 200,
 html: 'Panel Content',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

101

 anchor: 'r b'
 }]
});

win.show();

4.	 Finally, we can anchor a panel using a combination of offsets and percentages. We
do this in exactly the same manner as the previous examples, separating the width
and height of anchor values with a space:
var win = Ext.create('Ext.window.Window', {
 x: 500,
 y: 500,
 width: 400,
 height: 400,
 title: 'Anchor Layout Panel - Combination',
 layout: 'anchor',
 items: [{
 xtype: 'panel',
 title: 'Combination',
 html: 'Panel Content',
 anchor: '75% -150'
 }]
});

win.show();

How it works...
This layout works by parsing the defined anchor values and using them to calculate the
child's dimensions based on the parent container's sizes. The first anchor value specifies the
component's width and the second its height. These calculated dimensions are then applied
to the component.

In Step 1, we use percentage values. These are used to calculate the final dimensions in the
following way:

Width = 100% of Parent's Width (400px) = 400px
Height = 35% of Parent's Height (400px) = 140px

Step 2 shows our example use of offsets to calculate its dimensions, as follows:

Width = Parent's Width (400px) - 150px = 250px
Height = Parent's Height (400px) - 100px = 300px

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

102

In Step 3, the anchor config is given a value of r b. This is used in conjunction with the child
components fixed dimensions and sizes them based on the difference between the parent
and child's starting width subtracted from the parent container's actual width. This is shown
in the following formula:

Width = Parent's actual width - (Parent's defined width – Child's
defined width)
Height = Parent's actual height - (Parent's defined height – Child's
defined height)

There's more...
Rather than having the parent's actual dimensions determining the children components size
we can give the parent an additional configuration option called anchorSize. At present, this
property will take the place of the parent's actual width and height when the layout calculates
the relative sizes of its children.

The anchorSize configuration can be specified in two ways:

ff The first way is:
anchorSize: 200 // if a single number is specified it defaults to
the component's width

ff And the second way is:

anchorSize: {
 width: 200,
 height: 200
} // width and height explicitly set

See also
ff See the next recipe that outlines how to use the Absolute layout to position

components precisely within their container.

ff The first recipe, in Chapter 5, Loading, Submitting and Validating Forms discusses
constructing forms, which use the Anchor layout as their default.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

103

Creating fullscreen applications with the
BorderLayout

If you are looking to create a desktop style experience with your user interface then the
BorderLayout is for you.

The BorderLayout is very much an application-oriented layout, supporting multiple nested
panels, the ability to collapse regions by clicking on the regions' header or collapse icon, and
the resizing of regions by clicking-and-dragging the splitter bar between them.

This recipe will demonstrate a simple BorderLayout using the maximum number of
regions configurable (north, south, east, west, and center). The west and east regions will be
collapsible, with the east region loading pre-collapsed. Resizing will be demonstrated on the
south and west regions. These four borders will surround the center region, which regardless
of your configuration is required for a BorderLayout to work:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

104

How to do it...
1.	 Start by creating a Viewport:

Ext.create('Ext.container.Viewport', {});

2.	 Set the layout to border and add a center region to the items collection:
Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [{
 title: 'Center',
 region: 'center'
 }]
});

A requirement of the BorderLayout is that it has a child item with a center region .

3.	 Next, add four further regions (north, south, east, and west) to the items collection.
Specify a height, width, or flex for these regions:
Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [{
 region: 'north',
 height: 100,
 xtype: 'container'
 }, {
 title: 'West',
 region: 'west',
 flex: .3
 }, {
 title: 'Center',
 region: 'center'
 }, {
 title: 'East',
 region: 'east',
 width: 200
 }, {
 title: 'South',
 region: 'south',
 flex: .3
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

105

4.	 The north and south regions can have a height or flex value to calculate height
whereas west and east regions can have a width or flex value to calculate width.

5.	 Spread the regions apart with a 5px margin.
Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [{
 region: 'north',
 margins: 5,
 height: 100,
 xtype: 'container'
 }, {
 title: 'West',
 region: 'west',
 margins: '0 5 0 5',
 flex: .3
 }, {
 title: 'Center',
 region: 'center'
 }, {
 title: 'East',
 region: 'east',
 margins: '0 5 0 5',
 width: 200
 }, {
 title: 'South',
 region: 'south',
 margins: '0 5 5 5',
 flex: .3
 }]
});

6.	 Additional functionality, such as resizing and collapsing regions, can be added in the
following way:

Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [{
 region: 'north',
 margins: 5,
 height: 100,
 }, {
 title: 'West',
 region: 'west',
 margins: '0 5 0 5',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

106

 flex: .3,
 collapsible: true,
 split: true,
 titleCollapse: true
 }, {
 title: 'Center',
 region: 'center'
 }, {
 title: 'East',
 region: 'east',
 margins: '0 5 0 5',
 width: 200,
 collapsible: true,
 collapsed: true
 }, {
 title: 'South',
 region: 'south',
 margins: '0 5 5 5',
 flex: .3,
 split: true
 }]
});

How it works...
The BorderLayout, as the name suggests, creates a layout of components that borders a
center component. Therefore, a requirement of the BorderLayout is that one item must be
specified as the center.

A Viewport renders itself to the document's body and automatically consumes the
viewable area.

The center region, which you must include for a BorderLayout to work, automatically
expands to consume the empty space left over from the other regions in your layout. It
does this by having a pre-defined flex value of 1 for both height and width.

The north and south regions take a height or flex configuration. In this example, north has
a fixed height of 100px and south a flex of 3. The south and center's heights are calculated
based on the height remaining in the browser window. In this example, the height of south is
just under a third of the height of the center. The west and east regions, instead, take a width
or flex configuration.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

107

We add further functionality with collapsed: true, collapsible: true, split:
true, and titleCollapse: true specified in the desired regions' configuration. They do
the following:

ff collapsed: true means the region will start collapsed (the regions need to be
Ext.panel.Panel to be collapsible)

ff collapsible: true allows the user to expand/collapse the panel by clicking on
the toggle tool that's added to the header

ff titleCollapse: true makes the panel collapse no matter where the user clicks
on the panel's header

ff split: true makes the region resizable by allowing the users to click-and-drag the
dividing bar between regions

See also
ff The next recipe, which expands on what we have covered here.

Combining multiple layouts
This chapter has demonstrated how to use individual layouts with Ext JS, however, it's time to
bring everything together, combining some of the layouts to create the beginning of a desktop
style Ext JS application.

This recipe will start with an Ext.Viewport to form the basis of a single page web
application because it is a component that always expands to fill the browser window.
We will then look at using a BorderLayout and combining it with:

ff An AccordionLayout in the west region as a main menu

ff A CardLayout in the center region

ff A combination layout with the HBoxLayout and VBoxLayout, also in the
center panel

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

108

ff An Ext.tab.Panel to navigate between screens:

How to do it...
1.	 Start by specifying the panel for the west region. In this case, the west region will be a

main menu:
var mainMenu = Ext.create('Ext.panel.Panel', {
 title: 'Main Menu',
 region: 'west',
 margins: '0 5 5 5',
 flex: .3,
 collapsible: true,
 titleCollapse: true,
 layout: 'accordion',
 layoutConfig: {
 animate: false,
 multi: true
 },
 items: [{
 title: 'Product Management'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

109

 title: 'User Management'
 }, {
 title: 'Settings'
 }]
});

2.	 Next, add the panels that will make up the CreateUserWizard wizard. This
CardLayout will eventually sit in the center region:
var card1 = new Ext.panel.Panel({
 bodyStyle: 'padding: 20px',
 title: 'Personal Info',
 border: false,
 items: [{
 xtype: 'textfield',
 fieldLabel: 'First Name'
 }, {
 xtype: 'textfield',
 fieldLabel: 'Last Name'
 }, {
 xtype: 'textfield',
 fieldLabel: 'Email Address',
 vtype: 'email'
 }]
});
var card2 = new Ext.panel.Panel({
 bodyStyle: 'padding: 20px',
 title: 'Account Info',
 border: false,
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Username'
 }, {
 xtype: 'textfield',
 fieldLabel: 'Password',
 inputType: 'password'
 }]
});

var card3 = new Ext.panel.Panel({
 bodyStyle: 'padding: 20px',
 title: 'Account Creation Successful!',
 border: false,
 html: 'Success!'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

110

var createUserWizard = Ext.create('Ext.panel.Panel', {
 title: 'Create User Wizard',
 layout: 'card',
 deferredRender: true,
 items: [card1, card2, card3],
 bbar: ['->', {
 xtype: 'button',
 text: 'Previous',
 handler: function(btn){
 var layout = cardPanel.getLayout();

 if (layout.getPrev()) {
 layout.prev();
 }
 }
 }, {
 xtype: 'button',
 text: 'Next',
 handler: function(btn){
 var layout = cardPanel.getLayout();

 if (layout.getNext()) {
 layout.next();
 }
 }
 }]
});

3.	 This step defines the User Management screen, which also sits in the center region:
var userManagementPanel = Ext.create('Ext.panel.Panel', {
 title: 'User Management',
 layout: {
 type: 'hbox',
 align: 'stretch',
 padding: 10
 },
 defaults: {
 flex: 1
 },
 items: [{
 xtype: 'container',
 margins: '0 5 0 0',
 layout: {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 3

111

 type: 'vbox',
 align: 'stretch',
 animate: true
 },
 defaults: {
 flex: 1,
 frame: true
 },
 items: [{
 title: 'User Contact Information',
 margins: '0 0 5 0'
 }, {
 title: 'Session Log'
 }]
 }, {
 xtype: 'container',
 layout: {
 type: 'vbox',
 align: 'stretch',
 animate: true
 },
 defaults: {
 flex: 1,
 frame: true
 },
 items: [{
 title: 'Account Privileges',
 margins: '0 0 5 0'
 }, {
 title: 'Purchase History',
 }]
 }]
});

4.	 Now, add the center region. We'll make the center region a basic Ext.tab.Panel
with the CreateUserWizard and UserManagementPanel as separate tabs:
var contentPanel = Ext.create('Ext.tab.Panel', {
 region: 'center',
 margins: '0 5 5 0',
 items: [createUserWizard, userManagementPanel]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Laying Out Your Components

112

5.	 Finally, bring everything together by creating an Ext.container.Viewport and
specifying a BorderLayout for the viewport:

Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [{
 region: 'north',
 margins: 5,
 height: 100,
 xtype: 'container',
 html: 'Logo Here'
 }, mainMenu, contentPanel]
});

How it works...
Ext JS allows us to nest all layout types within one another as deeply as we like. This allows
us to create complex layouts.

When the browser window, or a component that contains children, is resized; new items
added or existing items removed, the framework will automatically recalculate each child
layout recursively, until each level has been computed. This means that, once configured,
the layouts will always remain up-to-date.

This behavior is accomplished by executing the doLayout() method which triggers this
recalculation process. We should never call this method manually within our application
code as the framework calls it whenever it is required.

See also
ff See all of the previous recipes in this chapter for details of each layout used.

ff The Constructing a complex form layout recipe in Chapter 5, Loading, Submitting,
and Validating Forms, which makes use of a variety of layouts.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

4
UI Building Blocks—

Trees, Panels, and
Data Views

In this chapter, we will cover:

ff Loading a tree's nodes from the server

ff Sorting Tree nodes

ff Dragging-and-dropping nodes within a tree

ff Using a tree as a menu to load content into another panel

ff Docking items to a panel's edges

ff Displaying a simple form in a window

ff Creating a tabbed layout with tooltips

ff Manipulating a tab panel's TabBar

ff Executing inline JavaScript in an XTemplate to customize appearance

ff Creating Ext.XTemplate member functions

ff Adding logic to XTemplates

ff Formatting dates within an XTemplate

ff Creating a DataView and binding it to a data store

ff Displaying a detailed window after clicking on a Data View node

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

114

Introduction
Creating and manipulating the basic components that Ext JS provides is fundamental to
producing a rich application. In this chapter, we will cover three fundamental Ext JS UI
components and explore how to configure and control them within your applications.

We will start by exploring the Ext.tree.Panel class and demonstrate how to populate a
tree with server-side data. From there we will delve into manipulating the tree component
through filtering and sorting, and then by dragging-and-dropping individual nodes. Finally, we
will show you how to incorporate a tree into a more real-life scenario by using it as a menu and
loading another panel following node clicks.

The Ext.panel.Panel class will be focused on next where we will discover how to configure
its headers, dock items to its edges, and to create tab panels. We will then go on to look
at ways in which these tab panels can be customized with things like tooltips, icons, and
tab positions.

Before moving onto the Ext.view.View component. We will talk about XTemplates,
which allow us to create dynamic HTML very easily. We will discuss various features of
the Ext.XTemplate class and how to use it.

This will lead us nicely into the Ext.view.View class, which makes heavy use of
XTemplates, and is used to bind a data store to a presentation generator. We will also
look into handling events on a View and how to integrate custom plugins to enrich our
users' experience.

Loading a tree's nodes from the server
Creating a tree in your user interface is achieved using a Tree Panel. This recipe gives you the
knowledge required to create and configure a Tree Panel and load JSON data asynchronously
from your server to the tree. The final tree will look like the following screenshot:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

115

Getting ready
Make sure you have a web server installed and running on your development computer.
For the purposes of this demonstration, your web server will need to serve JSON files.
If your server is not capable, add a MIME type for JSON (application/json).

How to do it...
1.	 Start by defining an Ext.data.TreeStore to load our data into:

var store = Ext.create('Ext.data.TreeStore', {
 proxy: {
 type: 'ajax',
 url: 'treeData.json'
 },
 root: {
 text: 'Countries',
 expanded: true
 }
});

2.	 The treeData.json file that we are loading from contains a simple array of data,
some of these objects contain nested data that will form our tree structure. A sample
can be seen as follows:
[{
 "text": "United Kindom",
 "children": [{
 "text": "Glasgow",
 "leaf": true
 }, {
 "text": "Edinburgh",
 "leaf": true
 }, {
 "text": "London",
 "leaf": true
 }],
 "leaf": false
},
{
 "text": "France",
 "leaf": true
}
...
]

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

116

3.	 Create the Tree Panel and render it to the document's body.
Ext.create('Ext.tree.Panel', {
 title: 'Countries & Cities',
 width: 500,
 height: 300,
 store: store,
 rootVisible: false,
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

How it works...
The Ext.tree.Panel class holds the configuration required for the tree. The simple tree
demonstrated in this recipe is bound to a TreeStore.

All Tree Panel's must be bound to an Ext.data.TreeStore instance.

The Ext.data.TreeStore is used to load nodes into the tree and by default, if no other
Model is provided, uses an implicit Model that implements the Ext.data.NodeInterface
class, which provides a range of methods for working with the data in your tree.

This store has a proxy and a root defined. As we are working with server-side data the
proxy's type is configured as ajax. The url is the location of the remote data (in this case
treeData.json).

The root contains the root node—Countries for this dataset. As we want the child
data that's loaded to be visible immediately, we set expanded: true. We've also set
rootVisible: false in the Tree Panel which hides Countries from view, but still
shows its children.

The data in our treeData.json file contains a JSON object for each tree node. The text
property is displayed in the tree for each node. The leaf property indicates whether or not
the node has any children. By setting this to false, the node will not be expandable. Finally,
the children property contains an array of nodes, defined in the same way, which are
displayed as children of the parent node.

See also
ff You may be interested in visiting Chapter 7, Working with the Ext JS Data Package, to

learn more about the framework's data package.

ff The next three recipes in this chapter, which explore the TreePanel in further detail.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

117

Sorting tree nodes
Sorting the data that's asynchronously loaded to a tree is straight-forward with Ext JS. This
recipe, demonstrates how to sort a tree's data on the client-side.

How to do it...
1.	 Create a store with the sorters configuration option defined with an object

specifying property and direction values:
var store = Ext.create('Ext.data.TreeStore', {
 proxy: {
 type: 'ajax',
 url: 'treeData.json'
 },
 root: {
 text: 'Countries',
 expanded: true
 },
 sorters: [{
 property: 'text',
 direction: 'ASC' //for descending change to 'DESC'
 }]
});

2.	 Create a tree to load the sorted data to.
Ext.create('Ext.tree.Panel', {
 title: 'Countries',
 width: 500,
 height: 200,
 store: store,
 rootVisible: false,
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

How it works...
The sorting in this example is carried out by an Ext.util.Sorter that's defined in
the sorters property of the TreeStore. The Sorter requires either a property or
sorterFn option.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

118

The sorter is configured with a property, which is the name of the field that we would like to
sort by. The direction property sets the sorting direction for the sorter. This will default to
ASC (ascending) if it's omitted from the Sorter configuration.

There's more...
Sorting data on the client side can be enhanced further with:

Complex and custom sorting
It's possible to customize the sorter and make complex comparisons by removing the
property configuration and replacing it with the sorterFn option and assigning it a
function that performs our sorting comparisons. The arguments of sorterFn are the
two objects being compared and it should return:

ff -1 if objectOne is less than objectTwo

ff 0 if objectOne is equal to objectTwo

ff 1 if objectOne is greater than objectTwo

A simple example of this can be written to sort our list of countries by the length of their name
which isn't possible using a simple property sort. We start by defining our sorter function,
which we will compare two countries names and output the correct value either -1, 0, or 1:

var nameLengthSorter = function(objectOne, objectTwo){

 var objectOneLength = objectOne.get('text').length,
 objectTwoLength= objectTwo.get('text').length;

 if(objectOneLength=== objectTwoLength){
 return 0;
 } else if(objectOneLength<objectTwoLength){
 return -1;
 } else {
 return 1;
 }
};

We could combine this if-else block into a single line by using a ternary if statement and
save some space:

return (objectOneLength === objectTwoLength) ? 0 : (objectOneLength <
objectTwoLength? -1 : 1);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

119

Next, we apply this sorter to our store by replacing the property config with the sorterFn
option and assigning it a reference to our new sorter function.

...
 sorters: [{
 sorterFn: nameLengthSorter,
 direction: 'ASC' //for descending change to 'DESC'
 }
...

Our new sorted tree can be seen in the following screenshot:

Sorting by multiple fields
It's possible to sort by multiple fields. If we added an extra field to the JSON called
continent, we could sort by country name and continent as shown as follows:

...
 sorters: [{
 property: 'text',
 direction: 'ASC'
 }, {
 property: 'continent',
 direction: 'DESC'
 }]
...

Sorting on demand
We've demonstrated how to sort the data as the TreeStore is loaded. However, you may wish
to add a button or toggle to allow users to sort the data on demand. Ext.data.TreeStore
provides a sort method for this very purpose.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

120

We could add a button to the page and sort the data when the button is pressed using the
store's sort method:

Ext.create('Ext.Button', {
 text: 'Sort Tree',
 renderTo: Ext.getBody(),
 handler: function() {
 //this will toggle ASC & DESC automatically for you.
 store.sort('text');

 //or we can force a direction like so:
 store.sort('text', 'DESC');
 }
});

See also
ff The previous recipe which introduces the Tree Panel.

ff The recipe Loading data into a Store from a server, in Chapter 7, for more information
on stores.

Dragging-and-dropping nodes within a tree
Dragging-and-dropping nodes within a tree or between trees can help make your application
more interactive for your users. Ext JS has built-in drag-and-drop nodes making it easy for
developers to add this functionality. Here, we will learn how to drag nodes from one tree
to another.

How to do it...
1.	 Create a store and define some dummy inline data for the first tree:

var storeForTreeA = Ext.create('Ext.data.TreeStore', {
 root: {
 expanded: true,
 children: [{
 text: "Item 1",
 leaf: true
 },{
 text: "Item 2",
 leaf: true
 },{
 text: "Item 3",
 leaf: true
 },{

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

121

 text: "Item 4",
 leaf: true
 }]
 }
});

2.	 Create a tree and add the Ext.tree.plugin.TreeViewDragDrop plugin:
var treeA = Ext.create('Ext.tree.Panel', {
 title: 'Tree One (drag from here)',
 store: storeForTreeA,
 width: 500,
 height: 200,
 viewConfig: {
 plugins: {
 ptype: 'treeviewdragdrop'
 }
 },
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

3.	 Define a second store for the second tree:
var storeForTreeB = Ext.create('Ext.data.TreeStore', {
 root: {
 expanded: true,
 children: [{
 text: "Item 5",
 leaf: true
 }]
 }
});

4.	 Add a second tree, also with the Ext.tree.plugin.TreeViewDragDrop
plugin defined:
var treeB = Ext.create('Ext.tree.Panel', {
 title: 'Tree Two (drop here)',
 width: 500,
 height: 200,
 store: storeForTreeB,
 viewConfig: {
 plugins: {
 ptype: 'treeviewdragdrop',
 enableDrop: true,
 enableDrag: false,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

122

 allowContainerDrop: true
 }
 },
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

5.	 Now, try clicking-and-dragging nodes from the first tree and dropping them into
the second.

How it works...
The drag/drop functionality is provided by the Ext.tree.plugin.TreeViewDragDrop
class which is packaged with the framework. This functionality is included as a plugin so it
can be separated from the main tree code and leverages the flexible plugin system provided
by the library.

This plugin provides the functionality to the Ext.tree.View instance that is encapsulated by
the Tree Panel. Therefore, it is defined in the viewConfig property of the Tree Panel.

The TreeViewDragDrop plugin can be configured with a number of options. In this example,
the second tree has the following configuration set:

ff enableDrop: true sets the tree to accept drop gestures

ff enableDrag: false stops the users from dragging nodes within/from
this TreeView

ff allowContainerDrop: true allows the user to drop anywhere in the
tree's container

As a TreePanel must be bound to a TreeStore, this example only works if two TreeStores
are defined (one for each TreePanel). As the user drags a node from the first tree to the
second the node is removed from the first store and inserted (at the correct position) into
the second store.

See also
ff The first recipe in this chapter Loading a tree's nodes from the server for an

introduction to using a Tree Panel.

ff For a more advanced look at plugins, we recommend reading the recipe Advanced
functionality with plugins, in Chapter 12.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

123

Using a tree as a menu to load content into
another panel

Having your application perform an action when the user clicks a node in a tree can be done by
listening for the events raised by the Ext.tree.Panel class.

This recipe gives some insight on how to listen for these events, have them interact with
a second panel, and have it create a new tab in it. For the purposes of this demonstration,
the new tab we create will have its HTML property set to the text from the node's record. It
would be straight-forward to extend this example for adding more complex components to
your TabPanel.

How to do it...
1.	 Define a TreeStore with some example nodes for the tree:

var store = Ext.create('Ext.data.TreeStore', {
 root : {
 expanded :true,
 children : [{
 text : "Menu Item A",
 leaf :true
 }, {
 text : "Menu Item B",
 leaf :true
 }, {
 text : "Menu Item C",
 leaf :true
 }, {
 text : "Menu Item D",
 leaf :true
 }]
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

124

2.	 Create a tree for the west region with the logic to create new tabs when the node
is clicked:
var westPanel = Ext.create('Ext.tree.Panel', {
 title : 'Application Menu',
 region : 'west',
 margins : '0 5 0 0',
 width : 200,
 store : store,
 rootVisible :false,
 listeners : {
 itemclick : function(tree, record, item, index, e,
options) {

 var nodeText = record.data.text,
 tabPanel = viewport.items.get(1),
 tabBar = tabPanel.getTabBar(),
 tabIndex;

 for (vari = 0; i<tabBar.items.length; i++) {
 if (tabBar.items.get(i).getText() === nodeText) {
 tabIndex = i;
 }
 }

 if (Ext.isEmpty(tabIndex)) {
 tabPanel.add({
 title :record.data.text,
 bodyPadding : 10,
 html :record.data.text
 });

 tabIndex = tabPanel.items.length - 1;
 }

 tabPanel.setActiveTab(tabIndex);
 }
 }
});

3.	 Add a BorderLayout to the Viewport with a TabPanel in the center region and our tree
in the west:
var viewport = Ext.create('Ext.container.Viewport', {
 layout : 'border',
 items : [westPanel, {
 xtype : 'tabpanel',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

125

 region : 'center'
 }]
});

How it works...
The Viewport has a BorderLayout with a west region (for the TreePanel) and a center region
(for the TabPanel).

As with the previous three recipes, the TreePanel must be bound to a TreeStore which we have
defined with some static data.

The focus of this recipe is listening for the itemclick event on the TreePanel. When the user
clicks on a node in the tree the itemclick event is fired passing the following parameters
to its handler functions:

ff this : Ext.view.View

ff record : Ext.data.Model

ff item : HTMLElement

ff index : Number

ff e: Ext.EventObject

ff options : Object

The logic in the itemclick function has two outcomes:

ff If the tab already exists then set it as the active tab

ff If the tab doesn't exist then add it to the TabPanel and set it as the active tab

Firstly, we get the text field value from the record, the TabPanel, and TabBar components
from the center region. We also create a local variable that will hold the tab index of our
existing tab. We'll need these later on:

var nodeText = record.data.text,
 tabPanel = viewport.items.get(1),
 tabBar = tabPanel.getTabBar(),
 tabIndex;

The for loop iterates through all the tabs in the TabBar to determine if a tab for the node
already exists (based on the Tab's title). If it does, our tabIndex variable is set to the index
in the TabBar's items collection:

for(var i = 0; i < tabBar.items.length; i++) {
 if (tabBar.items.get(i).getText() === nodeText) {
 tabIndex = i;
 }
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

126

Having looped through the tabs, we now know whether the tab exists or not. If tabIndex is
empty (null, undefined, and so on) then we'll add a new tab using the TabPanel's add method.
Here we specify the config options for the tab's panel. The tabIndex is then set to the
index of the last item added to the items collection:

if(Ext.isEmpty(tabIndex)) {
 tabPanel.add({
 title: nodeText,
 bodyPadding: 10,
 html: nodeText
 });

 tabIndex = tabPanel.items.length - 1;
}

Finally, we call the setActiveTab method, passing it the index of the tab we wish to activate
for our user:

tabPanel.setActiveTab(tabIndex);

See also
ff If you're not fully up to speed with trees yet it may be worth reading the first recipe in

the chapter, Loading a Tree's nodes from the server.

ff We've listened for the itemclick event on the tree in this example. If you want to
know more about handling events the recipes Handling Events on Elements and
Components in Chapter 2, Manipulating the Dom, Handling Events, and Making
AJAX Requests, may be useful.

ff TabPanels are discussed in more detail later in this chapter. The recipe Creating a
tabbed layout with tooltips, is particularly a good place to start.

Docking items to panels' edges
This recipe demonstrates how to dock items to the edges of a panel. We will show this by
adding a toolbar to a panel's edges.

How to do it...
1.	 Create a panel and render it to the document's body:

Ext.create('Ext.panel.Panel', {
 title: 'Panel Header',
 width: 500,
 height: 200,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

127

 bodyPadding: 10,
 html: 'Panel Content',
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

2.	 Dock a toolbar to the top of the panel:
Ext.create('Ext.panel.Panel', {
 title: 'Panel Header',
 width: 500,
 height: 200,
 bodyPadding: 10,
 html: 'Panel Content',
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'button',
 text: 'Click me'
 }, '->', 'Docked toolbar at the top']
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

When creating a toolbar, any component configuration
added to the items array without an xtype will default
to being a button.

3.	 Add another item to the dockedItems collection. This time dock it to the bottom of
the panel:
Ext.create('Ext.panel.Panel', {
 title: 'Panel Header',
 width: 500,
 height: 200,
 bodyPadding: 10,
 html: 'Panel Content',
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 text: 'Click me'
 }, '->', 'Docked toolbar at the top']
 }, {
 xtype: 'toolbar',
 dock: 'bottom',
 items: [{

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

128

 xtype: 'button',
 text: 'Click me'
 }, '->', 'Docked toolbar at the bottom']
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

The string -> in our items array is automatically converted
into an instance of the Ext.toolbar.Fill class,
which is a simple component with a flex of 1. This forces
all the toolbar items after it to the right side of the toolbar.
Other useful toolbar shortcuts that can be included in its
items array are -, which will create an Ext.toolbar.
Separator instance that displays a vertical separator
line, and (a space), which equates to an Ext.toolbar.
Spacer instance that adds a space between components.

4.	 Add a footer bar to the panel using the fbar config option. The footer bar appears
beneath the panel:

Ext.create('Ext.panel.Panel', {
 title: 'Panel Header',
 width: 500,
 height: 200,
 bodyPadding: 10,
 html: 'Panel Content',
 fbar: ['Docked toolbar at the bottom (on footer)', {
 xtype: 'button',
 text: 'Click Me'
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

129

5.	 Ext JS provides further shortcuts for adding items to the left, right, top, and bottom
of a panel:
Ext.create('Ext.panel.Panel', {
 title: 'Panel Header',
 width: 500,
 height: 200,
 bodyPadding: 10,
 html: 'Panel Content',
 lbar: ['lbar'],
 rbar: ['rbar'],
 tbar: ['tbar'],
 bbar: ['bbar'],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

How it works...
In steps 2 and 3 the toolbar is defined in the panel's dockedItems collection. We specify
where the item will be docked using the dock config option which takes the following values:
'left', 'right', 'top', or 'bottom'. Step three demonstrates how it's possible to define
multiple items in the dockedItems collection and specify a different position for each.

The fbar config option highlighted in step 4 shows that it's possible to dock a toolbar to a
panel's bottom edge conveniently, without having to specify it in the dockedItems collection.
It creates a docked item for you that is docked to the bottom with the ui config option set
to 'footer'.

The final step shows four other convenient methods provided in the framework for quickly
specifying docked items on all sides of a panel.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

130

There's more…
It's also possible to add dockeditems to your Panels at runtime, which means you can
dynamically specify the dockedItems depending on specified criteria.

var panel = Ext.create('Ext.panel.Panel', {
 title: 'Panel Header',
 width: 500,
 height: 200,
 bodyPadding: 10,
 html: 'Panel Content',
 renderTo: Ext.getBody()
});

panel.addDocked({
 dock: 'top',
 xtype: 'toolbar',
 items: [{
 text: 'button'
 }]
});

The addDocked method simply adds the docked item to the container. You must not forget
to configure your component with the dock config option ('left', 'right', 'top' or
'bottom') to ensure the component is docked in the correct position.

Displaying a simple form in a window
Most websites and applications make use of windows and forms on a regular basis. Here
you'll learn the basics for creating a simple form and window with Ext JS and combining the
two to display the form to the user.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

131

How to do it...
1.	 Start by creating a simple form with two fields and a button.

var form = Ext.create('Ext.form.Panel', {
 bodyPadding: 10,
 border: false,
 defaultType: 'textfield',
 items: [{
 fieldLabel: 'Username',
 name: 'username',
 allowBlank: false
 }, {
 fieldLabel: 'Password',
 name: 'password',
 inputType: 'password',
 allowBlank: false
 }],
 buttons: [{
 text: 'Login',
 formBind: true,
 disabled: true,
 handler: function(){
 alert('Login Button Pressed');
 }
 }]
});

2.	 Create an Ext.window.Window with the form in its items collection and display it
to the user using the show method:
Ext.create('Ext.window.Window', {
 title: 'Login Window',
 height: 140,
 width: 300,
 layout: 'fit',
 items: [form]
}).show();

How it works...
There are two main components in this recipe, the form, and the window. As you can see from
the code above it's very straight-forward creating and configuring both.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

132

This recipe doesn't demonstrate how to populate or submit
the form. The next chapter holds all the information you
require to make the form actually work.

Firstly, we create an Ext.form.Panel. This will contain the configuration for the form.
The form fields are specified in the panel's items collection. Setting defaultType:
'textfield' saves us from having to specify xtype: 'textfield' on each item.
The benefits of defaultType are really seen when you have a large form with lots of
similar fields.

Although the Password field is a textfield remember to set inputType: 'password'
to ensure the password isn't displayed.

The buttons collection contains our form's buttons. In this example we've set formBind:
true. This ensures the button remains disabled until the form is valid.

Each field has allowBlank: false configured, making the field required before the form
validates. Additionally, to ensure the button starts inactive disabled: true must be set
on the button.

Step two shows how to create a window with Ext JS. The form is added to the window's items
collection. Finally, to display the window we call the show method.

See also
ff Forms and form fields are covered in greater depth over the next two chapters. The

recipe Constructing a complex form layout in Chapter 5 may be particularly useful.

Creating a tabbed layout with tooltips
Creating a tabbed layout and adding tooltips to the tabs is straight-forward with Ext JS 4. In
this recipe we will show you how to create a tab panel with multiple tabs, add tooltip text,
and have the framework display the text as you hover over a tab.

How to do it...
1.	 Initialize the global QuickTipManager instance. We need this for the tooltips to

be displayed:
Ext.tip.QuickTipManager.init();

2.	 Create an Ext.tab.Panel with two tabs (added to the Panel's items collection)
and render it to the document's body:
Ext.create('Ext.tab.Panel', {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

133

 width: 500,
 height: 200,
 style: 'margin: 50px',
 renderTo: Ext.getBody(),
 items: [{
 title: 'Tab One'
 }, {
 title: 'Tab Two'
 }]
});

3.	 In tab two add a tooltip to the tabConfig config option. tabConfig takes
configuration options that are applied to the Panel's Ext.tab.Tab instance:
Ext.create('Ext.tab.Panel', {
 width: 500,
 height: 200,
 style: 'margin: 50px',
 renderTo: Ext.getBody(),
 items: [{
 title: 'Tab One'
 }, {
 title: 'Tab Two',
 tabConfig: {
 tooltip: 'Tab Two Tooltip Text'
 }
 }]
});

4.	 Customize the tooltip with configuration options from Ext.tip.QuickTip class:
Ext.create('Ext.tab.Panel', {
 width: 500,
 height: 200,
 style: 'margin: 50px',
 renderTo: Ext.getBody(),
 items: [{
 title: 'Tab One'
 }, {
 title: 'Tab Two',
 tabConfig: {
 tooltip: 'Tab Two Tooltip Text'
 }
 }, {
 title: 'Tab Three',
 tabConfig: {
 tooltip: {
 title: 'Tooltip Header',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

134

 text: 'Tab Three Tooltip Text'
 }
 }
 }]
});

How it works...
Creating a tab panel in Ext JS is done using the Ext.tab.Panel class. Each tab is defined
in the panel's items collection and has an associated Ext.tab.Tab instance created
automatically, which represents the tab element that allows it to be activated.

In step three, we add the tabConfig config option to the second tab. Inside the tabConfig
object we can specify configuration for the Ext.tab.Tab class. From here we've added
a tooltip with a string value. Step 4 shows how it's possible to customize a tooltip by
assigning an object literal with configuration from the Ext.tip.QuickTip class.

Don't forget to initialize the QuickTipManager instance
otherwise your tooltips won't appear. This is done by calling
Ext.tip.QuickTipManager.init(); at the start of
your code (as seen in step one).

See also
ff The next recipe, which covers techniques on how to manipulate a TabBar.

Manipulating a tab panel's TabBar
A tab panel's TabBar is the area at the top of its content, which displays a button or tab for
each of the child panels within it. By clicking on these tabs the relevant panel is displayed.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

135

These tabs can be extensively customized, and in this recipe, we will discuss how to achieve
the following:

ff Configure a tab with an icon
ff Dynamically switch icons
ff Set tabs' widths
ff Change the position of the tab bar
ff Show and hide tabs on the fly

How to do it...
To start with we will create a basic Ext.tab.Panel with three child panels. We will use this
as the base for all our examples:

var tabPanel = Ext.create('Ext.tab.Panel', {
 width: 500,
 height: 200,
 style: 'margin: 50px',
 renderTo: Ext.getBody(),
 items: [{
 title: 'Tab One',
 html: 'This is Tab One'
 }, {
 title: 'Tab Two - has a very, very long and silly title',
 html: 'This is Tab Two'
 }, {
 title: 'Tab Three',
 html: 'This is Tab Three'
 }]
});

Configure a tab with an icon
We will now add an icon to the first tab by creating a CSS class, with the icon defined as a
background image, and applying it to the tab by using the tabConfig configuration option:

<style type="text/css">
 .icon-refresh {
 background-image: url('refresh.png');
 background-repeat: no-repeat;
 }
</style>

...
{
 title: 'Tab One',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

136

 tabConfig: {
 cls: 'x-btn-text-icon',
 iconCls: 'icon-refresh'
 },
 html: 'This is Tab One'
}
...

The result of this can be seen as follows:

Dynamically switch icons
Although we have specified this refresh icon at configuration time, we can also change it at
runtime by using the setIconCls method of the Tab component. We can access a panel tab
by using its tab property. We will demonstrate this by adding a button to the tab panel's tbar
that switches the icon class to another. In the following code snippet tabPanelIcon contains
the original tab panel's instance:

tbar: [{
 text: 'Switch Icon',
 handler: function(){
 tabPanelIcon.items.get(0).tab.setIconCls('icon-tick');
 }
}]

Set tabs' widths
Ext JS gives us the option to control the minimum and maximum width of any tab in a tab
panel's tab bar. We can do this by using the minTabWidth and maxTabWidth config
options on the tab panel itself:

...
minTabWidth: 100,
maxTabWidth: 200
...

We are also able to specify the absolute width of individual tabs by defining the width option
within the panel's tabConfig property:

...
tabConfig: {
 width: 150
}
...

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

137

We can see in the screenshot that the first tab has its width constrained by the minTabWidth
option. The second is constrained by the maxTabWidth value, which means some of its title
is cut off. The third is set by the explicit value given.

Change the position of the tab bar
It is possible to reposition the tab bar to the bottom of the tab panel rather than having it at
the top. This is very simple to accomplish by using the tabPosition config option of the
Ext.tab.Panel class, and providing it with a value of bottom or top:

...
tabPosition: 'bottom'
...

Show and hide tabs on the fly
One new feature of the Ext JS 4's tab panel is that we are able to show and hide tabs on the
fly. We can do this simply by calling the show, hide, or setVisible method on the child
panels' Tab component.

We will demonstrate this by adding a button that toggles the visibility of the second tab:

tbar: [{
 text: 'Toggle Tab Two',
 handler: function(){
 var tab = tabPanelVisibility.items.get(1).tab;

 tab.setVisible(!tab.isVisible());
 }
}]

The second tab is hidden from view as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

138

How it works...
When a panel is added to a tab panel it has an Ext.tab.Tab instance created to represent
it in the tab bar. This class extends the Ext.button.Button class and gives us access to
a selection of the properties and methods from this class. The Ext.tab.Tab's instance is
accessible through the panel's tab property as we have seen in our examples.

We can configure the Ext.tab.Tab by defining the tabConfig option in the panel's
definition. This object is automatically applied to the Ext.tab.Tab instance when it is
created and so through this, we can configure it how we need.

Executing inline JavaScript to in an
XTemplate customize appearance

Within an Ext.XTemplate's HTML we are able to include small pieces of JavaScript that
will be executed when the template is processed. This feature is extremely useful for adding
things such as, conditional formatting, simple member manipulation, or formatting.

In this recipe, we are going to demonstrate how to include some inline JavaScript within an
Ext.XTemplate, in order to format our output dynamically based on the data's values.

The example that we will use is a simple bug list. We will use inline JavaScript code to color
each row based on the severity of the bug.

How to do it...
1.	 We start by defining an array of bugs that we will use in our template (we have only

shown one to demonstrate the structure):
var bugData = [{
 id: 1,
 title: 'Bug 1',
 description: 'Bug 1 Description',
 status: 'In Progress',
 severity: 1
}
...
]

2.	 Next, we create our template, containing a simple HTML table, to display our
bug details. We then use overwrite method of the Ext.XTemplate to insert
the generated HTML into the document's body element, replacing any HTML
already there:
var tpl = new Ext.XTemplate(

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

139

 '<table>',
 '<tr>',
 '<td>Title</td>',
 '<td>Description</td>',
 '<td>Severity</td>',
 '</tr>',
 '<tpl for=".">',
 '<tr>',
 '<td>{title}</td>',
 '<td>{description}</td>',
 '<td>{severity}</td>',
 '</tr>',
 '</tpl>',
 '</table>');

tpl.overwrite(Ext.getBody(), bugData);

3.	 We now add a background style to the status cell and add some inline JavaScript to
either color the background green when the status is complete or transparent when
it isn't:
var tpl = new Ext.XTemplate(
 '<table>',
 '<tr>',
 '<td>Title</td>',
 '<td>Description</td>',
 '<td>Severity</td>',
 '</tr>',
 '<tpl for=".">',
 '<tr>',
 '<td style="background-color: {[values.status
=== "Complete" ? "green" : "transparent"]};">{title}</td>',
 '<td>{description}</td>',
 '<td>{severity}</td>',
 '</tr>',
 '</tpl>',
 '</table>');

tpl.overwrite(Ext.getBody(), bugData);

How it works...
The Ext.XTemplate class evaluates anything within the tags {[...]} as JavaScript
code and executes it within the scope of the template itself (see the next recipe,
Creating Ext.XTemplate member functions, for more details).

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

140

In our example we use a simple ternary if statement to decide what color to use depending
on the status property's value. We access the current data object and its properties through
the values keyword which references the current object.

There's more...
As well as the values object there are several other variables that can be used to access
helpful bits of information within an XTemplate:

ff parent: the current data object's parent object. For example, if we were looping
through an array the parent variable would refer to the data object that contains
the array as a property

ff xindex: when inside a loop, this variable contains the current (1-based) index

ff xcount: when inside a loop, this variable contains the total number of items in the
array that is being iterated over

See also
ff The next recipe, to discover how to work with member functions in Ext.XTemplates.

ff The recipe, Adding logic to Ext.XTemplates, for other methods of customizing the
Ext.XTemplate.

Creating Ext.XTemplate member functions
Ext.XTemplates can be configured to contain functions and properties that are enclosed
within the scope of the template itself. These functions can be used to encapsulate
presentation logic, formatting, and other simple template data processing.

We are going to demonstrate how these functions can be included in an XTemplate's definition
and how to access them within our template's code.

We will do this by building upon the example that we created in the previous recipe. Our
goal is to highlight each of the rows that are deemed by our manager as high priority,
in our situation this means any bug with a severity rating of 4 or 5.

How to do it...
1.	 We begin by creating our sample data and our basic Ext.XTemplate in the same

way as we did in the previous recipe:
var bugData = [{
 id: 1,
 title: 'Bug 1',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

141

 description: 'Bug 1 Description',
 status: 'In Progress',
 severity: 1
}
...
];

var tpl = new Ext.XTemplate(
 '<table>',
 '<tr>',
 '<td>Title</td>',
 '<td>Description</td>',
 '<td>Severity</td>',
 '</tr>',
 '<tpl for=".">',
 '<tr>',
 '<td style="background-color: {[values.status ===
"Complete" ? "green" : "transparent"]};">{title}</td>',
 '<td>{description}</td>',
 '<td>{severity}</td>',
 '</tr>',
 '</tpl>',
 '</table>');

tpl.overwrite(Ext.getBody(), bugData);

2.	 Next, we define a configuration object containing a simple function called
isHighPriority, which accepts one argument called severity. We then
include this object as the final parameter of our XTemplate's constructor call:
var tpl = new Ext.XTemplate(
 '<table>',
 '<tr>',
 '<td>Title</td>',
 '<td>Description</td>',
 '<td>Severity</td>',
 '</tr>',
 '<tpl for=".">',
 '<tr>',
 '<td style="background-color: {[values.status ===
"Complete" ? "green" : "transparent"]};">{title}</td>',
 '<td>{description}</td>',
 '<td>{severity}</td>',
 '</tr>',
 '</tpl>',
 '</table>',
 {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

142

 isHighPriority: function(severity){
 return severity > 3
 }
 }
);

tpl.overwrite(Ext.getBody(), bugData);

3.	 Finally, we use the <tpl> tag's if attribute, to call our function and add some style
markup if it evaluates to true. In this situation, we will add a red border and pink
background if the bug is deemed to be of a high priority:
var tpl = new Ext.XTemplate('<table>',
 '<table>',
 '<tr>',
 '<td>Title</td>',
 '<td>Description</td>',
 '<td>Severity</td>',
 '</tr>',
 '<tpl for=".">',
 '<tr <tpl if="this.isHighPriority(values.
severity)">style="background-color: pink; border: 2px solid
#FF0000;"</tpl>>',
 '<td style="background-color: {[values.status ===
"Complete" ? "green" : "transparent"]};">{title}</td>',
 '<td>{description}</td>',
 '<td>{severity}</td>',
 '</tr>',
 '</tpl>',
 '</table>',
 {
 isHighPriority: function(severity){
 return severity > 3
 }
 }
);

tpl.overwrite(Ext.getBody(), bugData);

4.	 We are also able to call our member functions within the inline JavaScript that we
spoke of in our last recipe, as those code snippets are executed in the scope of the
XTemplate. Our example could be rewritten as:

{[this.isHighPriority(values.severity) ? "style="background-color:
pink; border: 2px solid #FF0000; " :""]}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

143

How it works...
If we pass an object to the constructor of Ext.XTemplate's (at any position) it is applied to
the XTemplate's definition, in a similar manner to defining your own custom methods when
extending a class.

By applying these configuration options the methods can be executed anywhere in the
template from within <tpl> tags or in inline code blocks.

Properties can also be defined in this configuration object.
These can come in use when state is required to be preserved
while a template is generated.

There's more...
Another valuable use of member functions is in formatting values before they are presented. If
we were to consider using a member function to format the description of a bug, only the first
ten characters would be displayed as shown in the following code:

// function defined in the constructor’s config object
formatDescription: function(description){
 return description.substring(0, 10);
}

// code within your template
{[this.formatDescription(values.description)]}

This approach is perfectly valid and will function perfectly. However, Ext JS provides us with a
clever short-hand syntax for achieving this goal:

{description:this.formatDescription}

When parsing this code, the XTemplate knows to execute the formatDescription method
and pass the specified field (in this case the description) into it as its first parameter.

If your function accepts additional parameters, such as a length to decide how many
characters to show, they can be added to the code in the following way:

// function defined in the constructor's config object
formatDescription: function(description, numberOfChars){
 return description.substring(0, numberOfChars);
}

// code within your template
{description:this.formatDescription(10)}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

144

The field's value is always passed to the function as its first parameter, with the extra values
following after it.

Adding logic to Ext.XTemplates
When presenting data, it is important to be able to include logic to allow different markup to
be created depending on the data given to it.

Ext JS' Ext.XTemplate provides that functionality in an easy to use way, which we shall
explore in this recipe.

We will show this functionality by adding an additional column to our bug table from our
previous two recipes, to display the owner of the bug. If that owner is the same as the current
user (which we will define as a member property) then we will display Me otherwise we will
display the owner's name.

Getting ready
We will base this recipe heavily on the examples created in the previous two recipes. So make
sure you have a look at them and remind yourself what we did!

How to do it...
1.	 We will start by adding an owner property to each of our bug data objects and a

currentUser property to our XTemplate's configuration object.
var bugData = [{
 title: 'Bug 1',
 description: 'Bug 1 Description',
 status: 'In Progress',
 severity: 1,
 owner: 'Bob'
}
...
];

{
 // member property added to the XTemplate'sconfig object
 currentUser: 'Bob'
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

145

2.	 Next, we add the extra owner column to our markup and add the first condition for
displaying the owner. Initially, we will tell the template to display the word Me when
the owner property matches the template's currentUser property:
...
'<td>',
 '<tpl if="owner == this.currentUser">Me</tpl>',
'</td>',
...

3.	 Finally, we add the else statement to display the plain owner name, if it didn't match
the currentUser's value:
...
'<td>',
 '<tpl if="owner === this.currentUser">',
 'Me',
 '<tplelse>',
 '{owner}',
 '</tpl>',
'</td>',
...

How it works...
We can perform logic using the <tpl if="condition"></tpl> tags, which will output the
content of the tags if the condition inside the if attribute evaluates to true.

We can also build up an if/else construct by adding further tpl tags with the else keyword
within it. We do this in Step 3 to output the owner's name, if it isn't the current user's name.
The else's tpl tag comes within the initial if's closing tpl tag and simply has the attribute
else inside it.

We can add further else-if blocks by adding additional tpl tags in exactly the same way as
earlier but include an elseif attribute and add another condition as its value. For example,
<tpl elseif="owner === \'Everyone\'">Me*</tpl> would display Me* if the owner
was set to Everyone.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

146

There's more…
We're not limited to just the use of an if/else statement. We could have coded this recipe with
a switch statement:

...
'<td>',
 '<tplswitch="owner">',
 '<tplcase="this.currentUser">',
 'Me',
 '<tpldefault>',
 '{owner}',
 '</tpl>',
'</td>',
...

Formatting dates within an Ext.XTemplate
Dates are one of the most common data types that need formatting before being displayed to
the user. This is no different when creating Ext.XTemplates for use in plain components or
more complex components such as Data Views.

This recipe will describe the best way to perform this formatting within an Ext.XTemplate.

How to do it...
1.	 First, we will create a simple Ext.XTemplate and render it to the document's body,

applying a simple data object, containing a date:
var data = {
 date: '5/8/1986 12:30:00'
};

var tpl = new Ext.XTemplate('{date}');

tpl.overwrite(Ext.getBody(), data); // outputs '5/8/1986 12:30:00'

2.	 We then use the date function, passing it a formatting string to format the
date property:
var tpl = new Ext.XTemplate('{date:date("Y-m-d")}');

tpl.overwrite(Ext.getBody(), data); // outputs '1986-08-05'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

147

3.	 We can also use the globally defined patterns that we used in Chapter 2,
Manipulating the Dom, Handling Events, and Making AJAX Requests, by
concatenating them into the XTemplate's HTML string.
var tpl = new Ext.XTemplate('{date:date("' + Ext.Date.patterns.
LongDate + '")} ');

tpl.overwrite(Ext.getBody(), data); // outputs 'Tuesday, August
05, 1986'

How it works...
We discussed adding and using member functions within Ext.XTemplates in a previous
recipe and you will notice this technique uses identical syntax. The framework provides us
with a built-in member function called date, which, just like in the previous recipe, passes
the date value into the function as parameter one and returns it in the specified format
from parameter two.

We simply have to pass it a valid formatting string and the function will output the
formatted string.

See also
ff The recipe, Parsing, formatting, and manipulating dates in Chapter 2, Manipulating the

Dom, Handling Events, and Making AJAX Requests, for a more detailed introduction to
working with dates.

Creating a DataView bound to a data store
DataViews are a very useful component that allow us to render markup that is bound to an
Ext.data.Store instance. This means that the View renders a defined template for each
of the Model instances within the store and will automatically react to changes made to the
store, and its data, by refreshing the rendered markup to reflect these changes.

By using this approach we can concentrate on manipulating data without needing to worry
about how that data is presented because the framework takes care of it for us.

In this recipe, we will create a simple store containing data about software bugs and bind it to
a data view that will display each of the bugs. We will then demonstrate how changes to the
underlying data are automatically reflected in the data view's rendered markup.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

148

How to do it...
1.	 We start by creating a simple Ext.data.Model to represent our bug data. This

Model contains five fields—id, title, description, severity, and status:
Ext.define('Bug', {
 extend: 'Ext.data.Model',
 fields: ['title', 'description', 'status', 'severity']
});

2.	 Now that we have a Model, we can create an Ext.data.Store that will encompass
a collection of bug Models and give it an array of bugs to be populated with:
var bugData = [{
 id: 1,
 title: 'Bug 1',
 description: 'Bug 1 Description',
 status: 'In Progress',
 severity: 1
}
...
]; // only one item shown for brevity

var bugStore = new Ext.data.Store({
 model: 'Bug',
 data: bugData
});

3.	 Our next step is to define our Data View, which will be an instance of the Ext.view.
View class. This attaches our previously defined store to it and defines the markup
that will be generated for each Model:
var dataview = Ext.create('Ext.view.View', {
 store: bugStore,
 tpl: '<tpl for=".">' +
 '<div class="bug-wrapper">' +
 '{title}' +
 '<span class="severity severity-
{severity}">{severity}' +
 '{description}'
+
 '<span class="status {[values.status.
toLowerCase().replace(" ", "-")]}">{status}' +
 '</div>' +
 '</tpl>',
 itemSelector: 'div.bug-wrapper',
 emptyText: 'Woo hoo! No Bugs Found!',
 deferEmptyText: false
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

149

4.	 Now that we have our Data View defined, we can add it to a wrapping panel that will
render it to our document's body:
var panel = Ext.create('Ext.panel.Panel', {
 renderTo: Ext.getBody(),
 title: 'Creating a DataView bound to a data Store',
 height: 500,
 width: 580,
 layout: 'fit',
 style: 'margin: 50;',
 items: [dataview]
});

5.	 At the moment, if you run this code, our data will look pretty horrible! We can sort this
by adding some simple CSS styles targeting the HTML contained in the tpl tag just
as we would in a normal HTML page:
<style type="text/css">
 div.bug-wrapper
 {
 float: left;
 width: 150px;
 height: 150px;
 background-color: #eee;
 margin: 20px;
 border: 2px solid #eee;
 }

 div.bug-wrapper.x-item-selected
 {
 border: 2px solid #000;
 }

 div.bug-wrapperspan.title
 {
 font-size: 1.2em;
 font-weight: bold;
 text-align: center;
 display: block;
 }

 div.bug-wrapperspan.severity
 {
 display: block;
 width: 80%;
 height: 50px;
 color: white;
 font-weight: bold;
 font-size: 3em;
 text-align: center;

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

150

 margin: 10px 10%;
 }

 div.bug-wrapper span.severity.severity-1 {background-color:
green;}
 div.bug-wrapper span.severity.severity-2 {background-color:
yellow;}
 div.bug-wrapper span.severity.severity-3 {background-color:
orange;}
 div.bug-wrapper span.severity.severity-4 {background-color:
pink;}
 div.bug-wrapper span.severity.severity-5 {background-color:
red;}

 div.bug-wrapperspan.description
 {
 padding: 5px;
 display: block;
 text-align: center;
 }

 div.bug-wrapperspan.status
 {
 display: block;
 width: 60%;
 margin: 10px 20%;
 padding: 3px;
 text-align: center;
 color: white;
 font-weight: bold;
 }

 div.bug-wrapperspan.status.open{background-color: green;}
 div.bug-wrapper span.status.in-progress {background-color:
yellow;}
 div.bug-wrapperspan.status.complete{background-color: black;}
</style>

6.	 Although not beautiful, this is a lot better. Finally, we can demonstrate the brilliance
of Data Views and the benefit of using them to display data contained in a store. We
will add some buttons that will sort, filter, and update the store and we will see how
the View redraws itself immediately. We do this by adding the following code to the
wrapping panel:
..
tbar: [{
 xtype: 'combo',
 name: 'status',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

151

 width: 200,
 labelWidth: 100,
 fieldLabel: 'Severity Filter',
 store: ['1', '2', '3', '4', '5'],
 queryMode: 'local',
 listeners: {
 select: function(combo, value, options){
 dataview.getStore().clearFilter(); // remove current
filters
 dataview.getStore().filter('severity', combo.
getValue());
 }
 }
}, '-', {
 text: 'Sort by Severity',
 handler: function(){
 dataview.getStore().sort('severity', 'DESC');
 }
}, {
 text: 'Open all Bugs',
 handler: function(){
 dataview.getStore().each(function(model){
 model.set('status', 'Open');
 model.commit();
 }, this); }
 }, '->', {
 text: 'Clear Filter',
 handler: function(){
 dataview.getStore().clearFilter();
 }
}]
...

The following screenshot shows our final DataView with its CSS styles applied and toolbar
buttons along the top:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

152

How it works...
The Ext.view.View works by rendering a node based on the defined template (within
the tpl config option) for each of the store's Models. The View then binds to the store's
change events (add, remove, data changed, and so on) and, when fired, refreshes the
markup displayed.

We can see this happening with the addition of the store manipulations in Step 5. We have
only performed a simple sort, filter, or update on the store and the view is automatically
updated to reflect this without any prompting from us.

See also
ff The data package is explored in further detail in Chapter 7, Working with the Ext JS

Data Package. The recipes Modeling a data object and loading data into a store from
a server, are particularly relevant to this example.

Displaying a detailed window after clicking
a DataView node

In almost every web application, we will want to allow the user to select some data and edit it.
Data Views expose a variety of events on each of the rendered nodes and by using these we
can give the user the opportunity to interact with the View and perform any number of actions.

This recipe, will build on our previous bugs example and will add new functionality; presenting
the user with a simple form, allowing them to change, and save the data stored about a
specific bug. We will display this form after a single-click on a node and populate the form
with that particular node's data.

Getting ready
We will be building on top of the previous DataView recipe so you may want to look back and
quickly refresh your memory.

How to do it...
1.	 We start by creating an instance of Ext.form.Panel containing four form fields,

one for each of the bug's data members. The form contains a text field for the bug's
title, a text area for its description, a number field to define the bug's severity, and a
combo box to allow the status to be changed:
var editForm = Ext.create('Ext.form.Panel', {
 border: false,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

153

 items: [{
 xtype: 'textfield',
 name: 'title',
 width: 300,
 fieldLabel: 'Title'
 }, {
 xtype: 'textarea',
 name: 'description',
 width: 300,
 height: 100,
 fieldLabel: 'Description'
 }, {
 xtype: 'numberfield',
 name: 'severity',
 width: 300,
 fieldLabel: 'Severity',
 value: 1,
 minValue: 1,
 maxValue: 5
 }, {
 xtype: 'combo',
 name: 'status',
 width: 300,
 fieldLabel: 'Status',
 store: ['Open', 'In Progress', 'Complete'],
 queryMode: 'local'
 }]
});

2.	 We then create an Ext.window.Window instance and add the editForm
component to its items collection. This window will be shown when a node is
clicked and hidden again after saving. Notice that we have left the save button's
handler blank. We will revisit this at the end and add the necessary code:
var win = new Ext.window.Window({
 height: 250,
 width: 500,
 title: 'Edit Bug',
 modal: true,
 items: [editForm],
 closeAction: 'hide',
 buttons: [{
 text: 'Save',
 handler: function(){
 // save logic here
 }
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

154

3.	 Now that we have our form ready, we can attach an event handler to the itemclick
event of the DataView (stored in the dataview variable). When the item (or node)
is clicked we populate the editForm with the clicked node's record using the
loadRecord method and then show the window (shown in the following screenshot).
This code can be added anywhere in our onReady function after the DataView has
been instantiated:
dataview.on({
 itemclick: function(view, record, item, index, e, opts){

 // populate the form with the clicked record
 editForm.loadRecord(record);

 win.show();
 }
});

4.	 Finally, we implement the Save button's handler code. This code basically updates
the bug record that we initially clicked on (that is, the one that is selected) and then
closes the window:
handler: function(){
 // save data
 var selectedRecord = dataview.selModel.getSelection()[0];

 selectedRecord.set(editForm.getValues());

 // refilter
 dataview.getStore().filter();

 win.close();
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 4

155

How it works...
The DataView's itemclick event is fired whenever a single-click is made on any of the
rendered nodes. The handlers for this event are passed various useful parameters, such as
the record associated with the clicked node, the HTML element of the node, and the index
of it.

Remember we discussed event delegation in Chapter 2? The
Ext.view.View class is a prime example of that concept in
action. It uses the defined itemSelector config option to pick
out the events on its nodes and fire its own custom events back
to us.

By using these parameters we are able to use the loadRecord method of
Ext.form.Panel, which takes a Model instance (or record) and matches its fields with
the corresponding form fields in the panel. This relationship is based on each form field's
name property.

When saving the edited values (Step 4) we retrieve the record that is currently selected
in the DataView by accessing its selection model (through the selModel property) and
subsequently the getSelection method. Once this has been retrieved we can use its set
method, which accepts a JavaScript object of name/value pairs, among other formats, to
update it with the edit form's values.

There's more...
DataViews expose a huge number of other useful events that we can bind to and have our
application react appropriately. We will describe a couple of the most popular here. For a full
list of events and their parameters check out the online documentation.

itemcontextmenu
This event fires when an item is right-clicked by the user. This event could be used to create
and display a menu with various actions.

itemdblclick
When an item is double-clicked this event is fired.

selectionchange
This is a very useful event that fires whenever the DataView's selected node(s) changes. We
could, for example, listen for this event in order to maintain a status bar containing a count of
the selected items, similar to Windows Explorer.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

UI Building Blocks—Trees, Panels, and Data Views

156

See also
ff If you want to know more about handling events, the recipe Handling events on

elements and components in Chapter 2, may be useful.

ff Forms and form fields are covered in greater depth over the next two chapters. The
recipe Constructing a complex form layout, in Chapter 5, Loading, Submitting, and
Validating Forms, is a good place to start.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

5
Loading, Submitting,
and Validating Forms

In this chapter, we will cover the following topics:

ff Constructing a complex form layout

ff Populating your form with data

ff Submitting your form's data

ff Validating form fields with VTypes

ff Creating custom VTypes

ff Uploading files to the server

ff Handling exceptions and callbacks

Introduction
This chapter introduces forms in Ext JS 4. We begin by creating a support ticket form in the
first recipe. To get the most out of this chapter you should be aware that this form is used
by a number of recipes throughout the chapter.

Instead of focussing on how to configure specific fields, we demonstrate more generic tasks
for working with forms. Specifically, these are populating forms, submitting forms, performing
client-side validation, and handling callbacks/exceptions.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

158

Constructing a complex form layout
In the previous releases of Ext JS, complicated form layouts were quite difficult to achieve.
This was due to the nature of the FormLayout, which was required to display labels and
error messages correctly, and how it had to be combined with other nested layouts.

Ext JS 4 takes a different approach and utilizes the Ext.form.Labelable mixin, which
allows form fields to be decorated with labels and error messages without requiring a specific
layout to be applied to the container. This means we can combine all of the layout types
the framework has to offer (which are discussed in detail in Chapter 3, Laying Out your
Components) without having to overnest components in order to satisfy the form field's
layout requirements.

We will describe how to create a complex form using multiple nested layouts and
demonstrate how easy it is to get a form to look exactly as we want. Our example will
take the structure of a Support Ticket Request form and, once we are finished, it will
look like the following screenshot:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

159

How to do it...
1.	 We start this recipe by creating a simple form panel that will contain all of the layout

containers and their fields:
var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Support Ticket Request',
 width: 650,
 height: 500,
 renderTo: Ext.getBody(),
 style: 'margin: 50px',
 items: []
});

2.	 Now, we will create our first set of fields—the FirstName and LastName fields.
These will be wrapped in an Ext.container.Container component, which is
given an hbox layout so our fields appear next to each other on one line:
var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Support Ticket Request',
 width: 650,
 height: 500,
 renderTo: Ext.getBody(),
 style: 'margin: 50px',
 items: [{
 xtype: 'container',
 layout: 'hbox',
 items: [{
 xtype: 'textfield',
 fieldLabel: 'First Name',
 name: 'FirstName',
 labelAlign: 'top',
 cls: 'field-margin',
 flex: 1
 }, {
 xtype: 'textfield',
 fieldLabel: 'Last Name',
 name: 'LastName',
 labelAlign: 'top',
 cls: 'field-margin',
 flex: 1
 }]
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

160

3.	 We have added a CSS class (field-margin) to each field, to provide some
spacing between them. We can now add this style inside <style> tags in the
head of our document:
<style type="text/css">
 .field-margin {
 margin: 10px;
 }
</style>

4.	 Next, we create a container with a column layout to position our e-mail address
and telephone number fields. We nest our telephone number fields in an
Ext.form.FieldContainer class, which we will discuss later in the recipe:
items: [
...
{
 xtype: 'container',
 layout: 'column',
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Email Address',
 name: 'EmailAddress',
 labelAlign: 'top',
 cls: 'field-margin',
 columnWidth: 0.6
 }, {
 xtype: 'fieldcontainer',
 layout: 'hbox',
 fieldLabel: 'Tel. Number',
 labelAlign: 'top',
 cls: 'field-margin',
 columnWidth: 0.4,
 items: [{
 xtype: 'textfield',
 name: 'TelNumberCode',
 style: 'margin-right: 5px;',
 flex: 2
 }, {
 xtype: 'textfield',
 name: 'TelNumber',
 flex: 4
 }]
 }]
}
...
]

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

161

5.	 The text area and checkbox group are created and laid out in a similar way to the
previous sets, by using an hbox layout:
items: [
...
{
 xtype: 'container',
 layout: 'hbox',
 items: [{
 xtype: 'textarea',
 fieldLabel: 'Request Details',
 name: 'RequestDetails',
 labelAlign: 'top',
 cls: 'field-margin',
 height: 250,
 flex: 2
 }, {
 xtype: 'checkboxgroup',
 name: 'RequestType',
 fieldLabel: 'Request Type',
 labelAlign: 'top',
 columns: 1,
 cls: 'field-margin',
 vertical: true,
 items: [{
 boxLabel: 'Type 1',
 name: 'type1',
 inputValue: '1'
 }, {
 boxLabel: 'Type 2',
 name: 'type2',
 inputValue: '2'
 }, {
 boxLabel: 'Type 3',
 name: 'type3',
 inputValue: '3'
 }, {
 boxLabel: 'Type 4',
 name: 'type4',
 inputValue: '4'
 }, {
 boxLabel: 'Type 5',
 name: 'type5',
 inputValue: '5'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

162

 boxLabel: 'Type 6',
 name: 'type6',
 inputValue: '6'
 }],
 flex: 1
 }]
}
...
]

6.	 Finally, we add the last field, which is a file upload field, to allow users to
provide attachments:

items: [
...
{
 xtype: 'filefield',
 cls: 'field-margin',
 fieldLabel: 'Attachment',
 width: 300
}
...
]

How it works...
All Ext JS form fields inherit from the base Ext.Component class and so can be included
in all of the framework's layouts. For this reason, we can include form fields as children of
containers with layouts (such as hbox and column layouts) and their position and size
will be calculated accordingly.

Upgrade Tip: Ext JS 4 does not have a form layout meaning
a level of nesting can be removed and the form fields'
labels will still be displayed correctly by just specifying the
fieldLabel config.

The Ext.form.FieldContainer class used in step 4 is a special component that allows
us to combine multiple fields into a single container, which also implements the Ext.form.
Labelable mixin. This allows the container itself to display its own label that applies
to all of its child fields while also giving us the opportunity to configure a layout for its
child components.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

163

See also
ff The recipe explaining mixins found in Chapter 1, Classes, Object-Oriented Principles,

and Structuring your Application.

ff You may also find Chapter 3, Laying Out your Components useful, which explains
how each of the layouts used here work, in particular those about the hbox and
column layouts.

ff For more details about how to use form fields and elements take a look at Chapter 6,
Using and Configuring Form Fields.

 Populating your form with data
After creating our beautifully crafted and user-friendly form we will inevitably need to populate
it with some data so users can edit it. Ext JS makes this easy, and this recipe will demonstrate
four simple ways of achieving it.

We will start by explaining how to populate the form on a field-by-field basis, then move on
to ways of populating the entire form at once. We will also cover populating it from a simple
object, a Model instance, and a remote server call.

Getting ready
We will be using the form created in this chapter's first recipe as our base for this section,
and many of the subsequent recipes in this chapter, so please look back if you are not
familiar with it.

All the code we will write in this recipe should be placed under the definition of this
form panel.

You will also require a working web server for the There's More example, which loads data
from an external file.

How to do it...
We'll demonstrate how to populate an entire form's fields in bulk and also how to populate
them individually.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

164

Populating individual fields
1.	 We will start by grabbing a reference to the first name field using the items

property's get method. The items property contains an instance of Ext.util.
MixedCollection, which holds a reference to each of the container's child
components. We use its get method to retrieve the component at the
specified index:
var firstNameField = formPanel.items.get(0).items.get(0);

2.	 Next, we use the setValue method of the field to populate it:

firstNameField.setValue('Joe');

Populating the entire form
1.	 To populate the entire form, we must create a data object containing a value for

each field. The property names of this object will be mapped to the corresponding
form field by the field's name property. For example, the FirstName property of our
requestData object will be mapped to a form field with a name property value of
FirstName:
var requestData = {
 FirstName: 'Joe',
 LastName: 'Bloggs',
 EmailAddress: 'info@swarmonline.com',
 TelNumberCode: '0777',
 TelNumber: '7777777',
 RequestDetails: 'This is some Request Detail body text',
 RequestType: {
 type1: true,
 type2: false,
 type3: false,
 type4: true,
 type5: true,
 type6: false
 }
};

2.	 We then call the setValues method of the form panel's Ext.form.Basic instance,
accessed through the getForm method, passing it our requestData variable:
formPanel.getForm().setValues(requestData);

How it works...
Each field contains a method called setValue, which updates the field's value with the value
that is passed in. We can see this in action in the first part of the How to do it section.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

165

A form panel contains an internal instance of the Ext.form.Basic class (accessible through
the getForm method), which provides all of the validation, submission, loading, and general
field management that is required by a form.

This class contains a setValues method, which can be used to populate all of the fields that
are managed by the basic form class. This method works by simply iterating through all of the
fields it contains and calling their respective setValue methods.

This method accepts either a simple data object, as in our example, whose properties are
mapped to fields based on the field's name property. Alternatively, an array of objects can
be supplied, containing id and value properties, with the id mapping to the field's name
property. The following code snippet demonstrates this usage:

formPanel.getForm().setValues([{id: 'FirstName', value: 'Joe'}]);

There's more...
Further to the two previously discussed methods there are two others that we will
demonstrate here.

Populating a form from a Model instance
Being able to populate a form directly from a Model instance is extremely useful and is very
simple to achieve. This allows us to easily translate our data structures into a form without
having to manually map it to each field.

We initially define a Model and create an instance of it (using the data object we used earlier
in the recipe):

Ext.define('Request', {
 extend: 'Ext.data.Model',
 fields: [
 'FirstName',
 'LastName',
 'EmailAddress',
 'TelNumberCode',
 'TelNumber',
 'RequestDetails',
 'RequestType'
]
});

var requestModel = Ext.create('Request', requestData);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

166

Following this we call the loadRecord method of the Ext.form.Basic class and supply
the Model instance as its only parameter. This will populate the form, mapping each Model
field to its corresponding form field based on the name:

formPanel.getForm().loadRecord(requestModel);

Populating a form directly from the server
It is also possible to load a form's data directly from the server through an AJAX call.

Firstly, we define a JSON file, containing our request data, which will be loaded by the form:

{
 "success": true,
 "data": {
 "FirstName": "Joe",
 "LastName": "Bloggs",
 "EmailAddress": "info@swarmonline.com",
 "TelNumberCode": "0777",
 "TelNumber": "7777777",
 "RequestDetails": "This is some Request Detail body text",
 "RequestType": {
 "type1": true,
 "type2": false,
 "type3": false,
 "type4": true,
 "type5": true,
 "type6": false
 }
 }
}

Notice the format of the data: we must provide a success property to indicate that the load
was successful and put our form data inside a data property.

Next we use the basic form's load method and provide it with a configuration object
containing a url property pointing to our JSON file:

formPanel.getForm().load({
 url: 'requestDetails.json'
});

This method automatically performs an AJAX request to the specified URL and populates the
form's fields with the data that was retrieved. This is all that is required to successfully load
the JSON data into the form.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

167

The basic form's load method accepts similar configuration options to
a regular AJAX request, which are discussed in the Loading Data through
AJAX recipe, in Chapter 2.

See also
ff The previous recipe, which shows how to create the form we have used in this

recipe's examples.

ff The recipes explaining the Ext.data package, which include details of Models.

ff To learn about submitting forms see the next recipe in this chapter.

Submitting your form's data
Having taken care of populating the form it's now time to look at sending newly added or
edited data back to the server. As with form population you'll learn just how easy this is
with the Ext JS framework.

There are two parts to this example. Firstly, we will submit data using the options of the basic
form that wraps the form panel. The second example will demonstrate binding the form to a
Model and saving our data.

Getting ready
We will be using the form created in the first recipe as our base for this section, so refer to the
Constructing a complex form layout recipe, if you are not familiar with it.

How to do it...
1.	 Add a function to submit the form:

var submitForm = function(){
 formPanel.getForm().submit({
 url: 'submit.php'
 });
};

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

168

2.	 Add a button to the form that calls the submitForm function:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 buttons: [{
 text: 'Submit Form',
 handler: submitForm
 }],
 items: [
 ...
]
});

How it works...
As we learned in the previous recipe, a form panel contains an internal instance of the
Ext.form.Basic class (accessible through the getForm method).

The submit method in Ext.form.Basic is a shortcut to the Ext.form.action.Submit
action. This class handles the form submission for us. All we are required to do is provide it
with a URL and it will handle the rest.

It's also possible to define the URL in the configuration for the
Ext.form.Panel.

Before submitting, it must first gather the data from the form. The Ext.form.Basic class
contains a getValues method, which is used to gather the data values for each form field.
It does this by iterating through all fields in the form making a call to their respective
getValue methods.

There's more...
The previous recipe demonstrated how to populate the form from a Model instance. Here we
will take it a step further and use the same Model instance to submit the form as well.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

169

Submitting a form from a Model instance
1.	 Extend the Model with a proxy and load the data into the form:

Ext.define('Request', {
 extend: 'Ext.data.Model',

 fields: ['FirstName', 'LastName', 'EmailAddress',
 'TelNumberCode', 'TelNumber', 'RequestDetails', 'RequestType'],
 proxy: {
 type: 'ajax',
 api: {
 create: 'addTicketRequest.php',
 update: 'updateTicketRequest.php'
 },
 reader: {
 type: 'json'
 }
 }
 });

var requestModel = Ext.create('Request', {
 FirstName: 'Joe',
 LastName: 'Bloggs',
 EmailAddress: 'info@swarmonline.com'
});

formPanel.getForm().loadRecord(requestModel);

2.	 Change the submitForm function to get the Model instance, update the record with
the form data, and save the record to the server:
var submitForm = function(){
 var record = formPanel.getForm().getRecord();
 formPanel.getForm().updateRecord(record);
 record.save();
};

See Also
ff The previous recipe which shows how to create the form we have used in this

recipe's examples.

ff The basic form's submit method accepts similar configuration options as a
regular AJAX request which are discussed in the Loading data through AJAX
recipe, in Chapter 2.

ff To learn about loading forms see the previous recipe in this chapter.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

170

Validating form fields with VTypes
In addition to form fields' built-in validation (such as allowBlank and minLength), we can
apply more advanced and more extensible validation by using VTypes. A VType (contained in
the Ext.form.field.VTypes singleton) can be applied to a field and its validation logic
will be executed as part of the field's periodic validation routine.

A VType encapsulates a validation function, an error message (which will be displayed if the
validation fails), and a regular expression mask to prevent any undesired characters from
being entered into the field.

This recipe will explain how to apply a VType to the e-mail address field in our example form,
so that only properly formatted e-mail addresses are deemed valid and an error will be
displayed if it doesn't conform to this pattern.

How to do it...
1.	 We will start by defining our form and its fields. We will be using our example form

that was created in the first recipe of this chapter as our base.

2.	 Now that we have a form we can add the vtype configuration option to our e-mail
address field:
{
 xtype: 'textfield',
 fieldLabel: 'Email Address',
 name: 'EmailAddress',
 labelAlign: 'top',
 cls: 'field-margin',
 columnWidth: 0.6,
 vtype: 'email'
}

3.	 That is all we have to do to add e-mail address validation to a field. We can see the
results in the following screenshot, with an incorrectly formatted e-mail address on
the left and a valid one on the right:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

171

How it works...
When a field is validated it runs through various checks. When a VType is defined the
associated validation routine is executed and will flag the field invalid or not .

As previously mentioned, each VType has an error message coupled with it, which is
displayed if it is found to be invalid, and a mask expression which prevents unwanted
characters being entered.

Unfortunately, only one VType can be applied to a field and so, if multiple checks are required,
a custom hybrid may need to be created. See the next recipe for details on how to do this.

There's more...
Along with the e-mail VType, the framework provides three other VTypes that can be applied
straight out of the box. These are:

ff alpha: this restricts the field to only alphabetic characters

ff alphnum: this VType allows only alphanumeric characters

ff url: this ensures that the value is a valid URL

See also
ff See the next recipe that demonstrates how to create your own custom VTypes.

ff The recipe about displaying validation alerts to the user later in this chapter.

Creating custom VTypes
We have seen in the previous recipe how to use VTypes to apply more advanced validation
to our form's fields. The built-in VTypes provided by the framework are excellent but we will
often want to create custom implementations to impose more complex and domain specific
validation to a field.

We will walkthrough creating a custom VType to be applied to our telephone number field to
ensure it is in the format that a telephone number should be.

Although our telephone number field is split into two (the first field for the area code and the
second for the rest of the number), for this example we will combine them so our VType is
more comprehensive.

For this example, we will be validating a very simple, strict telephone number format of
"0777-777-7777".

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

172

How to do it...
1.	 We start by defining our VType's structure. This consists of a simple object

literal with three properties. A function called telNumber and two strings
called telNumberText (which will contain the error message text) and
telNumberMask (which holds a regex to restrict the characters allowed
to be entered into the field) respectively.
var telNumberVType = {
 telNumber: function(val, field){
 // function executed when field is validated
 // return true when field's value (val) is valid
 return true;
 },

 telNumberText: 'Your Telephone Number must only include
numbers and hyphens.',

 telNumberMask: /[\d\-]/
};

2.	 Next we define the regular expression that we will use to validate the field's value.
We add this as a variable to the telNumber function:
telNumber: function(val, field){
 var telNumberRegex = /^\d{4}\-\d{3}\-\d{4}$/;

 return true;
}

3.	 Once this has been done we can add the logic to this telNumber function that will
decide whether the field's current value is valid. This is a simple call to the regular
expression string's test method, which returns true if the value matches or false
if it doesn't:
telNumber: function(val, field){
 var telNumberRegex = /^\d{4}\-\d{3}\-\d{4}$/;

 return telNumberRegex.test(val);
}

4.	 The final step to defining our new VType is to apply it to the Ext.form.field.
VTypes singleton, which is where all of the VTypes are located and where our
field's validation routine will go to get its definition:
Ext.apply(Ext.form.field.VTypes, telNumberVType);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

173

5.	 Now that our VType has been defined and registered with the framework, we can
apply it to the field by using the vtype configuration option. The result can be seen
in the following screenshot:

{
 xtype: 'textfield',
 name: 'TelNumber',
 flex: 4,

 vtype: 'telNumber'
}

How it works...
A VType consists of three parts:

ff The validity checking function

ff The validation error text

ff A keystroke filtering mask (optional)

VTypes rely heavily on naming conventions so they can be executed dynamically within a
field's validation routine. This means that each of these three parts must follow the standard
convention. The validation function's name will become the name used to reference the VType
and form the prefix for the other two properties. In our example, this name was telNumber,
which can be seen referencing the VType in Step 5.

The error text property is then named with the VType's name prefixing the word Text (that is,
telNumberText). Similarly, the filtering mask is the VType's name followed by the word Mask
(that is, telNumberMask).

The final step to create our VType is to merge it into the Ext.form.field.VTypes singleton
allowing it to be accessed dynamically during validation. The Ext.apply function does this
by merging the VType's three properties into the Ext.form.field.VTypes class instance.

When the field is validated, and a vtype is defined, the VType's validation function is
executed with the current value of the field and a reference to the field itself being passed in.

If the function returns true then all is well and the routine moves on. However, if it evaluates to
false the VType's Text property is retrieved and pushed onto the errors array. This message
is then displayed to the user as our screenshot shown earlier.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

174

This process can be seen in the code snippet as follows, taken directly from the framework:

if (vtype) {
 if(!vtypes[vtype](value, me)){
 errors.push(me.vtypeText || vtypes[vtype +'Text']);
 }
}

There's more...
It is often necessary to validate fields based on the values of other fields as well as their own.
We will demonstrate this by creating a simple VType for validating that a confirm password
field's value matches the value entered in an initial password field. We start by creating our
VType structure as we did before:

Ext.apply(Ext.form.field.VTypes, {
 password: function(val, field){
 return false;
 },

 passwordText: 'Your Passwords do not match.'
});

We then complete the validation logic. We use the field's up method to get a reference to its
parent form. Using that reference, we get the values for all of the form's fields by using the
getValues method:

password: function(val, field){
 var parentForm = field.up('form'); // get parent form

 // get the form's values
 var formValues = parentForm.getValues(); 
 return false;
}

The next step is to get the first password field's value. We do this by using an extra property
(firstPasswordFieldName) that we will specify when we add our VType to the confirm
password field. This property will contain the name of the initial password field (in this
example Password). We can then compare the confirm password's value with the
retrieved value and return the outcome:

password: function(val, field){
 var parentForm = field.up('form'); // get parent form

 // get the form's values

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

175

 var formValues = parentForm.getValues();

 // get the value from the configured 'First Password' field
 var firstPasswordValue = formValues[field.firstPasswordFieldName];

 // return true if they match
 return val === firstPasswordValue;
}

The VType is added to the confirm password field in exactly the same way as before but we
must include the extra firstPasswordFieldName option to link the fields together:

{
 xtype: 'textfield',
 fieldLabel: 'Confirm Password',
 name: 'ConfirmPassword',
 labelAlign: 'top',
 cls: 'field-margin',
 flex: 1,

 vtype: 'password',
 firstPasswordFieldName: 'Password'
}

See also
ff For an introduction to VTypes see the previous recipe.

ff The recipe titled Displaying validation alerts to the user, in this chapter.

Uploading files to the server
Uploading files is very straightforward with Ext JS 4. This recipe will demonstrate how to create
a basic file upload form and send the data to your server:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

176

Getting Ready
This recipe requires the use of a web server for accepting the uploaded file. A PHP file is
provided to handle the file upload; however, you can integrate this Ext JS code with any
server-side technology you wish.

How to do it...
1.	 Create a simple form panel.

Ext.create('Ext.form.Panel', {
 title: 'Document Upload',
 width: 400,
 bodyPadding: 10,
 renderTo: Ext.getBody(),
 style: 'margin: 50px',
 items: [],
 buttons: []
});

2.	 In the panel's items collection add a file field:
Ext.create('Ext.form.Panel', {
 ...
 items: [{
 xtype: 'filefield',
 name: 'document',
 fieldLabel: 'Document',
 msgTarget: 'side',
 allowBlank: false,
 anchor: '100%'
 }],
 buttons: []
});

3.	 Add a button to the panel's buttons collection to handle the form submission:
Ext.create('Ext.form.Panel', {
 ...
 buttons: [{
 text: 'Upload Document',
 handler: function(){
 var form = this.up('form').getForm();
 if (form.isValid()) {
 form.submit({
 url: 'upload.php',
 waitMsg: 'Uploading...'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

177

 });
 }
 }
 }]
});

How it works...

Your server-side code should handle these form submissions
in the same way they would handle a regular HTML file
upload form. You should not have to do anything special to
make your server-side code compatible with Ext JS.

The example works by defining an Ext.form.field.File (xtype: 'filefield'), which
takes care of the styling and the button for selecting local files.

The form submission handler works the same way as any other form submission; however,
behind the scenes the framework tweaks how the form is submitted to the server.

A form with a file upload field is not submitted using an XMLHttpRequest object—instead
the framework creates and submits a temporary hidden <form> element whose target is
referenced to a temporary hidden <iframe>. The request header's Content-Type is set to
multipart/form. When the upload is finished and the server has responded, the temporary
form and <iframe> are removed.

A fake XMLHttpRequest object is then created containing a responseText property
(populated from the contents of the <iframe>) to ensure that event handlers and
callbacks work as if we were submitting the form using AJAX.

If your server is responding to the client with JSON, you must ensure that the
response Content-Type header is text/html.

There's more...
It's possible to customize your Ext.form.field.File. Some useful config options are
highlighted as follows:

buttonOnly: Boolean
Setting buttonOnly: true removes the visible text field from the file field.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

178

buttonText: String
If you wish to change the text in the button from the default of "Browse…" it's possible to do so
by setting the buttonText config option.

buttonConfig: Object
Changing the entire configuration of the button is done by defining a standard Ext.button.
Button config object in the buttonConfig option. Anything defined in the buttonText
config option will be ignored if you use this.

See also
ff The recipe covering form submission earlier in this chapter.

Handling exception and callbacks
This recipe demonstrates how to handle callbacks when loading and submitting forms. This is
particularly useful for two reasons:

ff You may wish to carry our further processing once the form has been submitted (for
example, display a thank you message to the user)

ff In the unfortunate event when the submission fails, it's good to be ready and inform
the user something has gone wrong and perhaps perform extra processing

The recipe shows you what to do in the following circumstances:

ff The server responds informing you the submission was successful
ff The server responds with an unusual status code (for example, 404, 500, and so on)
ff The server responds informing you the submission was unsuccessful (for example,

there was a problem processing the data)
ff The form is unable to load data because the server has sent an empty data property
ff The form is unable to submit data because the framework has deemed the values in

the form to be invalid

Getting ready
The following recipe requires you to submit values to a server. An example submit.php file
has been provided. However, please ensure you have a web server for serving this file.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

179

How to do it...
1.	 Start by creating a simple form panel:

var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Form',
 width: 300,
 bodyPadding: 10,
 renderTo: Ext.getBody(),
 style: 'margin: 50px',
 items: [],
 buttons: []
});

2.	 Add a field to the form and set allowBlank to false:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Text field',
 name: 'field',
 allowBlank: false
 }],
 buttons: []
});

3.	 Add a button to handle the forms submission and add success and failure
handlers to the submit method's only parameter:
var formPanel = Ext.create('Ext.form.Panel', {
...
buttons: [{
 text: 'Submit',
 handler: function(){
 formPanel.getForm().submit({
 url: 'submit.php',
 success: function(form, action){
 Ext.Msg.alert('Success', action.result.message);
 },
 failure: function(form, action){
 if (action.failureType === Ext.form.action.Action.
CLIENT_INVALID) {
 Ext.Msg.alert('CLIENT_INVALID', 'Something
has been missed. Please check and try again.');
 }

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Loading, Submitting, and Validating Forms

180

 if (action.failureType === Ext.form.action.Action.
CONNECT_FAILURE) {
 Ext.Msg.alert('CONNECT_FAILURE', 'Status: ' +
action.response.status + ': ' + action.response.statusText);
 }
 if (action.failureType === Ext.form.action.Action.
SERVER_INVALID) {
 Ext.Msg.alert('SERVER_INVALID', action.result.
message);
 }
 }
 });
 }
}]
});

3.	 When you run the code, watch for the different failureTypes or the
success callback:

�� CLIENT_INVALID is fired when there is no value in the text field.
�� The success callback is fired when the server returns true in the

success property.
�� Switch the response in submit.php file and watch for SERVER_INVALID

failureType. This is fired when the success property is set to false.
�� Finally, edit url: 'submit.php' to url: 'unknown.php' and

CONNECT_FAILURE will be fired.

How it works...
The Ext.form.action.Submit and Ext.form.action.Load classes both have a
failure and success function. One of these two functions will be called depending
on the outcome of the action.

The success callback is called when the action is successful and the success property is true.

The failure callback, on the other hand, can be extended to look for specific reasons why
the failure occurred (for example, there was an internal server error, the form did not pass
client-side validation, and so on). This is done by looking at the failureType property of
the action parameter.

Ext.form.action.Action has four failureType static properties: CLIENT_INVALID,
SERVER_INVALID, CONNECT_FAILURE, and LOAD_FAILURE, which can be used to compare
with what has been returned by the server.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 5

181

There's more...
A number of additional options are described as follows:

Handling form population failures
The Ext.form.action.Action.LOAD_FAILURE static property can be used in the
failure callback when loading data into your form. The LOAD_FAILURE is returned as
the action parameter's failureType when the success property is false or the data
property contains no fields. The following code shows how this failure type can be caught
inside the failure callback function:

failure: function(form, action){
 ...
 if(action.failureType == Ext.form.action.Action.LOAD_FAILURE){
 Ext.Msg.alert('LOAD_FAILURE', action.result.message);
 }
 ...
}

An alternative to CLIENT_INVALID
The isValid method in Ext.form.Basic is an alternative method for handling
client-side validation before the form is submitted. isValid will return true when
client-side validation passes:

handler: function(){
 if (formPanel.getForm().isValid()) {
 formPanel.getForm().submit({
 url: 'submit.php'
 });
 }
}

See also
ff The recipes Submitting your form's data and Populating your form with data,

in this chapter.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

6
Using and Configuring

Form Fields

In this chapter, we will cover:

ff Displaying radio buttons in columns
ff Populating CheckboxGroups
ff Dynamically generate a CheckboxGroup from JSON
ff Setting up available date ranges in Date fields
ff Loading and parsing Dates into a Date field
ff Entering numbers with a Spinner field
ff Sliding values using a Slider field
ff Loading server side data into a combobox
ff Autocompleting a combobox's value
ff Rendering the results in a combobox
ff Rich editing with an HTML field
ff Creating repeatable form fields and fieldsets
ff Combining form fields

Introduction
Forms make up a huge part of most web applications and are a fundamental part of how
users interact with the web. This chapter will focus on how we configure and use Ext JS 4's
built-in form fields and features to make our forms hone for a perfect user experience.

We will cover various form fields and move up from configuring the fields using their built-in
features to customizing the layout and display of these fields to create a form that creates
a smooth and seamless user experience.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

184

Displaying radio buttons in columns
Displaying radio buttons in columns is an easy task with Ext JS 4. This recipe aims to
demonstrate how to render your radio buttons in columns both horizontally and vertically.

How to do it...
1.	 Create a RadioGroup using the default layout:

var radioGroupAutoLayout = Ext.create('Ext.form.Panel', {
 title: 'Radio Group Columns',
 width: 500,
 autoHeight: true,
 bodyPadding: 10,
 items: [{
 xtype: 'radiogroup',
 fieldLabel: 'Gender',
 items: [{
 boxLabel: 'Male',
 name: 'gender',
 inputValue: 'male'
 }, {
 boxLabel: 'Female',
 name: 'gender',
 inputValue: 'female'
 }]
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

2.	 Create a RadioGroup with columns arranged horizontally:
var radioGroupMultiColumn = Ext.create('Ext.form.Panel', {
 title: 'Radio Group Columns (horizontal)',
 width: 500,
 autoHeight: true,
 bodyPadding: 10,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

185

 items: [{
 xtype: 'radiogroup',
 columns: 3,
 items: [{
 boxLabel: 'Option 1',
 name: 'option',
 inputValue: 1
 }, {
 boxLabel: 'Option 2',
 name: 'option',
 inputValue: 2
 }, {
 boxLabel: 'Option 3',
 name: 'option',
 inputValue: 3
 }, {
 boxLabel: 'Option 4',
 name: 'option',
 inputValue: 4
 }, {
 boxLabel: 'Option 5',
 name: 'option',
 inputValue: 5
 }, {
 boxLabel: 'Option 6',
 name: 'option',
 inputValue: 6
 }]
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

3.	 Create a RadioGroup with columns arranged vertically:
var radioGroupVerticalColumn = Ext.create('Ext.form.Panel', {
 title: 'Radio Group Columns (vertical)',
 width: 500,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

186

 autoHeight: true,
 bodyPadding: 10,
 items: [{
 xtype: 'radiogroup',
 columns: 3,
 vertical: true,
 items: [{
 boxLabel: 'Extra Small',
 name: 'size',
 inputValue: 'xs'
 }, {
 boxLabel: 'Small',
 name: 'size',
 inputValue: 's'
 }, {
 boxLabel: 'Medium',
 name: 'size',
 inputValue: 'm'
 }, {
 boxLabel: 'Large',
 name: 'size',
 inputValue: 'l'
 }, {
 boxLabel: 'Extra Large',
 name: 'size',
 inputValue: 'xl'
 }, {
 boxLabel: 'Extra Extra Large',
 name: 'size',
 inputValue: 'xxl'
 }]
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

187

4.	 Create a RadioGroup with custom columns:

var radioGroupCustomColumn = Ext.create('Ext.form.Panel', {
 title: 'Radio Group Columns',
 width: 500,
 autoHeight: true,
 bodyPadding: 10,
 items: [{
 xtype: 'radiogroup',
 layout: 'column',
 defaultType: 'container',
 items: [{
 columnWidth: 0.5,
 items: [{
 xtype: 'component',
 html: 'Drink',
 cls: 'x-form-check-group-label'
 }, {
 xtype: 'radiofield',
 boxLabel: 'Beer',
 name: 'drink',
 inputValue: 'beer'
 }, {
 xtype: 'radiofield',
 boxLabel: 'Wine',
 name: 'drink',
 inputValue: 'wine'
 }]
 }, {
 columnWidth: 0.5,
 items: [{
 xtype: 'component',
 html: 'Food',
 cls: 'x-form-check-group-label'
 }, {
 xtype: 'radiofield',
 boxLabel: 'Pizza',
 name: 'food',
 inputValue: 'pizza'
 }, {
 xtype: 'radiofield',
 boxLabel: 'Burger',
 name: 'food',
 inputValue: 'burger'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

188

 }]
 }]
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

How it works...
The Ext.form.RadioGroup is an extension of Ext.form.FieldContainer and provides
the layout we need for arranging radio buttons into columns.

The first example highlights the default behaviour of the RadioGroup, which is to render all
radio buttons on one row (one per column). The radio buttons will be evenly distributed across
the row.

The second and third example shows how you can specify the number of columns for the
RadioGroup. As we created six radio buttons and three columns the framework automatically
distributes the radio buttons over two rows.

The difference between the second and third example is vertical: true. Setting this config
option makes the framework fill a column at a time before moving onto the next. Instead of
rendering the second item in the top-middle space, it's rendered in the bottom left.

The final example demonstrates how to set the RadioGroups's layout and set custom columns.
The columnWidth for both columns is 0.5 (50 percent) but depending on your form it's easy
to change this (or set a fixed width for a column).

The column headings are made with an Ext.Component that has the class x-form-
check-group-label. This class provides a bottom border, padding, and margins so the
HTML of the component is in keeping with the RadioGroup.

See Also
ff The next recipe about CheckboxGroups, which has many common characteristics.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

189

Populating CheckboxGroups
CheckboxGroups are very similar to RadioGroups but allows a user to select as many options
as they want. Populating these CheckBoxGroups is notoriously difficult because mapping a
dataset to the group can be done in various ways and depends on the dataset's structure.

This recipe will demonstrate how to overcome these difficulties and various ways of populating
a CheckboxGroup:

How to do it...
1.	 We will start by creating a form containing a CheckboxGroup listing some

technologies that will form the base of our examples. We will then add this
group to a Form Panel:
var checkboxGroup = new Ext.form.CheckboxGroup({
 columns: 2,
 fieldLabel: 'Technologies',
 name: 'technologies',
 style: {
 padding: '5px 10px 5px 10px'
 },
 items: [{
 xtype: 'checkbox',
 boxLabel: 'JavaScript',
 name: 'technologies',
 inputValue: 'javascript'
 }, {
 xtype: 'checkbox',
 boxLabel: 'C#',
 name: 'technologies',
 inputValue: 'c#'
 }, {
 xtype: 'checkbox',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

190

 boxLabel: 'HTML',
 name: 'technologies',
 inputValue: 'html'
 }, {
 xtype: 'checkbox',
 boxLabel: 'SQL',
 name: 'technologies',
 inputValue: 'sql'
 }, {
 xtype: 'checkbox',
 boxLabel: 'Python',
 name: 'technologies',
 inputValue: 'python'
 }, {
 xtype: 'checkbox',
 boxLabel: 'CSS',
 name: 'technologies',
 inputValue: 'css'
 }]
});

var formPanel = new Ext.form.Panel({
 renderTo: Ext.getBody(),

 title: 'Technologies',

 tbar: [{
 text: 'Submit',
 handler: function(){
 console.log(formPanel.getValues());
 }
 }],

 items: [checkboxGroup]
});

2.	 We can now call the CheckboxGroup's setValue method to pre-check some of
the checkboxes:

checkboxGroup.setValue({
 technologies: ['javascript', 'css']
});

You can make a checkbox checked by default, by configuring it
with checked: true.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

191

How it works...
In our example you will notice that each of the checkboxes' name property matches that of
the CheckboxGroup. As in traditional HTML, by giving multiple fields the same name they will,
when submitted, be combined into an array. When this is the case the inputValue is the
property that is used to differentiate the fields. This then becomes the value that must be
passed to the setValue method to tell the framework which of the child checkboxes
to check.

As mentioned, the output from this situation is an array of values which means that our i
nput to the setValue method must also be an array of values, with each value mapping
to a checkbox's inputValue property. If the value can be mapped to a checkbox then that
box is checked, otherwise it is unchecked.

There's more...
There are a number of ways, in addition to the one just outlined, of populating checkboxes.
To demonstrate these we will take our initial form code and modify it so that not all of the
checkboxes share the same technologies name as the parent CheckboxGroup. We will also
remove the inputValue configuration from the HTML and SQL checkboxes:

var checkboxGroup = new Ext.form.CheckboxGroup({
 columns: 2,
 fieldLabel: 'Technologies',
 name: 'technologies',
 style: {
 padding: '5px 10px 5px 10px'
 },
 items: [{
 xtype: 'checkbox',
 boxLabel: 'JavaScript',
 name: 'javascript',
 inputValue: 'javascript'
 }, {
 xtype: 'checkbox',
 boxLabel: 'C#',
 name: 'c#',
 inputValue: 'c#'
 }, {
 xtype: 'checkbox',
 boxLabel: 'HTML',
 name: 'html'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

192

 xtype: 'checkbox',
 boxLabel: 'SQL',
 name: 'sql'
 }, {
 xtype: 'checkbox',
 boxLabel: 'Python',
 name: 'technologies',
 inputValue: 'python'
 }, {
 xtype: 'checkbox',
 boxLabel: 'CSS',
 name: 'technologies',
 inputValue: 'css'
 }]
});

var formPanel = new Ext.form.Panel({
 renderTo: Ext.getBody(),

 title: 'Technologies',

 tbar: [{
 text: 'Submit',
 handler: function(){
 console.log(formPanel.getValues());
 }
 }],

 items: [checkboxGroup]
});

When a checkbox has an inputValue property, such as our JavaScript checkbox, we can
use this to check it by passing in a name/value pair made up of the field's name and its
inputValue to the setValue method:

checkboxGroup.setValue({
 javascript: 'javascript'
});

Equally, we can pass in a Boolean value instead of the string 'javascript' in this example
and this will check/uncheck the box accordingly:

checkboxGroup.setValue({
 javascript: true
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

193

When a checkbox does not have an inputValue, such as the HTML checkbox in our
example, then a Boolean must be used to indicate its checked status.

Finally, all of these techniques can be combined into one single setValue call if there is a
mixture of checkbox configurations. The following code will check the HTML, JavaScript, CSS,
and Python checkboxes, leaving the rest unchecked:

checkboxGroup.setValue({
 javascript: 'javascript',
 html: true,
 technologies: ['css', 'python']
});

See also
ff The recipe explaining how to Displaying radio buttons in columns, which can also be

applied to CheckBoxGroups.

ff The Populating your form with data recipe in the previous chapter.

Dynamically generate a CheckboxGroup
from JSON

When creating real-world applications with Ext JS, it is often the case that we don't know how
forms and UI elements are going to look at design time and so must be generated at runtime,
based on data stored in a database.

In the previous chapter we looked at dynamically creating components from configurations
loaded directly from the server. In this recipe, we will go into more detail by looking at how to
create checkbox groups which are often required to be generated from lists of possible values
stored in a database.

Imagine you are creating a social networking website and are creating an area where users
can send a message to one or more of their friends by ticking a checkbox beside their name
to include them in the recipients list. Obviously the number of friends and who they are will be
different for each user and will also change over time.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

194

This is a prime example of where this technique will be needed. We will demonstrate it in this
recipe. We will load a list of friends through an AJAX call and create an appropriate number of
checkboxes based on the result.

How to do it...
1.	 Back in Chapter 1, we demonstrated how to extend Ext JS components to create your

own custom components. Using this technique we will create a simple form with a
title and a send button which will log the form's current values to the console. We
will then instantiate this component which will be rendered to the document's body:
Ext.define('Ext.ux.MessagePanel', {

 extend: 'Ext.form.Panel',

 initComponent: function(){
 Ext.apply(this, {
 renderTo: Ext.getBody(),
 title: 'Message',

 tbar: [{
 text: 'Send',
 handler: function(){
 console.log(this.getValues());
 },
 scope: this
 }],

 items: []
 });

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

195

 this.callParent(arguments);
 }
});
var messagePanel = new Ext.ux.MessagePanel();

2.	 Before we start coding the guts of the recipe, we will create a simple JSON file that
will be the target of our AJAX call. It will contain a simple list of names, IDs, and
selected flags. A snippet is shown as follows:
{
 "success": true,
 "recipients": [{
 "fullName": "Stuart Ashworth",
 "userID": 1,
 "selected": true // check the generated CheckBox
 }, {
 "fullName": "Andrew Duncan",
 "userID": 2,
 "selected": false
 }
 ...
]
}

3.	 Our next step, is to create an AJAX call that will load our JSON file and then use it to
create our form. We start by creating a loadCheckboxes method as part of the
class we defined in step 1. This will make our AJAX call and output the response to
the console so that we can see what's happening:
loadCheckboxes: function(){

 Ext.Ajax.request({
 url: 'recipients.json',
 success: function(response){
 console.log(response);
 },
 scope: this
 });
}

4.	 We can now call this method just after our callParent call in the initComponent
method so the data loading process starts as soon as possible:
this.loadCheckboxes();

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

196

5.	 At the moment, after our AJAX call has received its response all we do is log its
output. We will now replace this placeholder method and create an onLoad method
that will process this response and start to create our checkboxes. Initially we will
define our onLoad method to decode the JSON response and check whether it
was successful.
onLoad: function(response){
 var jsonResponse = Ext.decode(response.responseText);

 if (jsonResponse.success) {
 // success
 }
}

6.	 We can then wire this method up to the AJAX request's success handler that we
defined in the previous step:
Ext.Ajax.request({
 url: 'recipients.json',
 success: this.onLoad,
 scope: this
});

7.	 Now we get to the important part where we create our checkbox group. All we must
do is, after the onLoad method's success check, define the configuration for the
group and pass it as a parameter to the form's add method:
var checkboxGroup = {
 xtype: 'checkboxgroup',
 columns: 2,
 fieldLabel: 'Recipients',
 name: 'recipients',
 style: {
 padding: '10px'
 },
 items: []
};
this.add(checkboxGroup);

8.	 We can now see our empty checkbox group in our form, so our final step is to use our
loaded data to create its checkboxes. We do this by looping around the elements in
the recipients array and pushing a checkbox configuration onto the items array
of checkboxGroup. We do this before calling the form's add method:
var i, len = jsonResponse.recipients.length, recipient;
for (i = 0; i < len; i++) {
 recipient = jsonResponse.recipients[i];

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

197

 checkboxGroup.items.push({
 xtype: 'checkbox',
 boxLabel: recipient.fullName,
 name: 'recipients',
 inputValue: recipient.userID,
 checked: recipient.selected
 });
}

9.	 Now that our form is complete we can see what would be posted back to the server
through a submit action by clicking the Send button. The following screenshot shows
how the checkboxes get combined into a single parameter named recipients
containing an array of userID:

How it works...
The code we have created works very well by creating JavaScript configuration objects that the
Ext JS framework will parse when passed to a container's add method. This technique shows
the flexibility and convenience of the xtype system and why it is important to get to grips with
it early on in your Ext JS learning.

When dealing with checkboxes and CheckboxGroups it's crucial to name your items
consistently so, when it comes to form submission and population, they are combined into
a single parameter. In our example, we want to have our server deal with a single array
of userID that our message will be sent to which is why the CheckboxGroup and all the
checkboxes share the same name.

If we had named each checkbox by the userID that it represents then we would have
multiple name/value pairs being sent to the server (see the following screenshot). While
this is ok for static types, it would be very difficult for the server to parse this data when
the number and variety of recipients is always changing.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

198

There's more...
With a situation similar to the one we have explored previously, it's possible that the number
of checkboxes could grow to large numbers. If a user wanted to send a message to all of their
friends then that equates to a lot of checkbox clicking. This is a tedious task and so we will
demonstrate how to implement a Check /Uncheck All button to make our users' lives easier:

We start by creating a second button on the top toolbar with the enableToggle configuration
option set to true. This will make the button into a toggle button, which will toggle between a
pressed state and a non-pressed state:

{
 text: 'Check/Uncheck All',
 enableToggle: true
}

We will now implement the logic that clicking on this button will follow. We use the button's
toggleHandler, which is a shortcut to binding a listener to the toggle event, to attach a
function that will execute when the button is toggled. This function accepts two parameters—a
reference to the button and a Boolean determining if the button is in a pressed state or not:

{
 text: 'Check/Uncheck All',
 enableToggle: true,
 toggleHandler: function(button, pressed){
 },
 scope: this
}

We must now loop through each checkbox within the CheckBoxGroup and set the value of it to
the value contained in the pressed variable:

this.items.get(0).items.each(function(checkbox){
 checkbox.setValue(pressed);
}, this);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

199

See also
ff The two recipes before this explaining RadioGroups and CheckboxGroups in

more detail.

ff The recipe in Chapter 5, Loading, Submitting, and Validating Forms, demonstrating
how to dynamically create forms from JSON data.

Setting up available date ranges in Date
fields

When using Date fields we will often want to restrict the dates that a user can pick from.

In this recipe we will explain how to configure a Date field to only have a specific range
of dates available for selection and how to extend this functionality with advanced
date disabling.

How to do it...
1.	 First of all we create a very simple Date field and render it to the document's body.

Ext.create('Ext.form.field.Date', {
 fieldLabel: 'Pick a Date',

 value: new Date(2011, 7, 8),

 renderTo: Ext.getBody()
});

2.	 We can now introduce the minValue and maxValue configuration options to restrict
the available dates.

Ext.create('Ext.form.field.Date', {
 fieldLabel: 'Pick a Date',

 minValue: new Date(2011, 7, 5),
 maxValue: new Date(2011, 7, 17),

 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

200

How it works...
When defined, the minValue and maxValue are used to disable any dates later than the
maxValue or earlier than the minValue. These values are inclusive and so, in our example,
we are still able to select the 5th and 17th of August 2011.

Useful tip: Months in JavaScript are zero based, so 7 is August.

The following screenshot is the result of our date restrictions in Step 2 and shows the
unavailable dates greyed out:

There's more...
As well as allowing one specific range of dates, Ext JS allows us to be more specific and
disable dates individually and by using regular expressions. This section will focus on
examples of how to achieve this.

Disabling specific dates
The Date field's disabledDates config option can be used to define an array of specific
dates that will be unavailable for selection by the user. The date strings specified in this
array must follow the format defined by the Date field, either by its configured format or its
default (m/d/y).

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

201

The following code shows how to disable the 8th, 10th, and 12th of August 2011 using the
standard British date format:

Ext.create('Ext.form.field.Date', {
 fieldLabel: 'Pick a Date',

 format: 'd/m/Y',
 disabledDates: ['08/08/2011', '10/08/2011', '12/08/2011'],

 renderTo: Ext.getBody()
});

Disabling specific days
It is also possible to disable all dates that fall on a particular day of the week. The
disabledDays configuration option accepts an array of numbers representing days
of the week, with 0 representing Sunday and 6, Saturday, that will be disabled.

The following example shows how to disable all Mondays, Wednesdays, and Fridays within
the Date field:

Ext.create('Ext.form.field.Date', {
 fieldLabel: 'Pick a Date',

 disabledDays: [1, 3, 5],

 renderTo: Ext.getBody()
});

Advanced Date Disabling with Regular Expressions
In addition to accepting explicit date values, the disabledDates configuration can also
contain regular expressions which will be matched to the dates that are currently on display
and, if they are matched, are disabled.

We will not go into details about how to construct regular expressions (as that is a book in
itself!) but we will demonstrate a couple of examples of putting this technique to use. The
following example disables the first date in every month in every year:

// disable first of every month
Ext.create('Ext.form.field.Date', {
 fieldLabel: 'Pick a Date',

 format: 'd/m/Y',
 disabledDates: ['^01'],

 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

202

This following disabledDates configuration will disable the entire months of August and
September every year:

disabledDates: ['../08/..', '../09/..']

Finally, this config disables dates between 10 and 19 of each month:

disabledDates: ['^1.']

If your date format includes any reserved regular expression
characters then they must be escaped.

See Also
ff The next recipe that explains how to load and parse dates with the Date field.

Loading and parsing Dates into a Date field
Dates are notoriously difficult to work with, especially when dealing with multiple and
non-standard formats. This recipe will explore how to set the value of a date picker and
how to use it in combination with different date formats.

How to do it...
1.	 We start by creating a simple Date Picker:

var dateField = Ext.create('Ext.form.field.Date', {
 fieldLabel: 'Pick a Date',
 renderTo: Ext.getBody()
});

2.	 Now we can use the Date Picker's setValue method to give it a value. We will use
British date formatting in this example with our date formatted as dd/mm/yyyy.
dateField.setValue('31/01/2011');

3.	 After running this code we see that the field doesn't understand the format and so
does not display or select a value.

4.	 To solve this problem we can specify the format that the date picker expects the
values being passed to the setValue method are in. We do this by using the
format configuration option.
var dateField = Ext.create('Ext.form.field.Date', {
 fieldLabel: 'Pick a Date',
 renderTo: Ext.getBody(),

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

203

 format: 'd/m/Y'
});
dateField.setValue('31/01/2011');

5.	 When we run this code we see that our date field contains the correct value.

How it works...
When we try to set the value of a date field, the field parses that value into a proper date
object. By default the field uses the standard American date format of mm/dd/yyyy, which is
why our initial attempt in step 2, displayed the incorrect value. By explicitly specifying a date
format the field can then interpret the value as we expect it to.

The format config option also controls how the date is displayed
to the user after being selected.

There's more...
It is possible to specify multiple formats that are valid for a particular date field. This can come
in handy when you are not in control of how users enter dates and so the field can be flexible
enough to accommodate different formats.

We can demonstrate this by passing a date formatted with hyphens instead of slashes to the
field's setValue method:

dateField.setValue('31-01-2011');

This results in the same outcome as we just saw in step 2 because the field isn't able to
understand that the date is in dd-mm-yyyy format.

This is easy to rectify by making use of the altFormats configuration option which
accepts a string of alternative date formats, separated by a pipe character (|). We can
demonstrate this in action by setting altFormats to accept the date we passed above
and see it display properly:

var dateField = Ext.create('Ext.form.field.Date', {
 fieldLabel: 'Pick a Date',
 renderTo: Ext.getBody(),

 format: 'd/m/Y',
 altFormats: 'd-m-Y|dmY'
});
//Both are valid.
dateField.setValue('31-01-2011');
dateField.setValue('31012011');

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

204

Our date field now understands the format we are giving it and displays the correct value
to the user.

See also
ff The previous recipe on using a Date field and setting date ranges.

ff The recipe Populating your form with data in Chapter 5, Loading, Submitting, and
Validating Forms, for more information on how to remotely load data into your form.

Entering numbers with a Spinner field
In this recipe, we will demonstrate how to use Ext JS' number field to enter numbers. The
number field is an extended Spinner field and provides enhanced functionality to the user
with very simple configuration.

The Spinner allows users to increase/decrease values by using the arrow buttons, the arrow
keys on the keyboard, or by rotating the mouse wheel. Of course, it's also possible to turn
these options off:

How to do it...
1.	 Create a form panel:

var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Spinner Field Example',
 width: 350,
 height: 100,
 bodyPadding: 10,
 defaults: {
 labelWidth: 150
 },
 items: [],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

205

2.	 Add a number field to the form panel's items collection:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 xtype: 'numberfield',
 fieldLabel: 'Card Expiry Date',
 minValue: 2011,
 maxValue: 2020
 }],
 ...
});

3.	 Create a second number field and customize it with extra configuration:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 xtype: 'numberfield',
 fieldLabel: 'Card Expiry Date',
 minValue: 2011,
 maxValue: 2020
 }, {
 xtype: 'numberfield',
 fieldLabel: 'Weight (KG)',
 minValue: -100,
 maxValue: 100,
 allowDecimals: true, //Default behaviour
 decimalPrecision: 1,
 step: 0.5
 }],
 ...
});

How it works...
The number field behaves the same as a text field with a number of additional features. The
field has built-in filtering for values that are not numeric.

In Ext JS 4 the number field extends the Ext.form.field.Spinner class that provides a
set of up and down spinner buttons to the field.

The minValue and maxValue config options allow us to define a range of valid values for
the field. Should the user attempt to enter a value that is outside the boundaries, the field
will not validate.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

206

The second example demonstrates three extra config options: allowDecimals,
decimalPrecision, and step:

ff allowDecimals determines whether the field should be capable of taking decimal
digits. Setting allowDecimals: false ensures that the field will only accept
whole numbers.

ff decimalPrecision gives you the ability to define how precise you require the
number to be. In our example, we accept numbers with one digit to the right of the
decimal point.

ff step is used to determine how much the value of the field is increased or decreased
when the spinner is invoked. The example of step: 0.5 ensures that the increment
is 0.5 when the user moves up or down the values.

There's More…
By default, the number field provides the Spinner functionality, however, it's possible to turn
this off. The hideTrigger, keyNavEnabled, and mouseWheelEnabled configuration can
be set accordingly:

var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 xtype: 'numberfield',
 fieldLabel: 'Card Expiry Date',
 minValue: 2011,
 maxValue: 2020,
 hideTrigger: true,
 keyNavEnabled: false,
 mouseWheelEnabled: false
 }],
 ...
});

This example will create a text field with the pre-configured validation required for a number
field but render it without the spinner buttons or the keyboard arrows/mouse wheel listeners.

See Also
ff As an alternative to the Spinner field you could try the Slider field which is discussed

in the next recipe.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

207

Sliding values using a Slider field
Ext JS Ext.slider package provides a simple way for allowing users to enter numeric values
and value ranges. This recipe will look at configuring this component to allow single and
multiple values, as well as demonstrating how we can react to a user changing these values.

How to do it...
1.	 We start by instantiating the Ext.slider.Single class, a subclass of

Ext.slider.Multi, and giving it a width, a label, and rendering it to the
body of our document:
Ext.create('Ext.slider.Single', {
 fieldLabel: 'Maximum Price',

 width: 400,
 renderTo: Ext.getBody()
});

2.	 We now provide the field with a default value and some constraints as to what
value can be chosen. This is done by using the value, minValue, and maxValue
configuration options respectively:
Ext.create('Ext.slider.Single', {
 fieldLabel: 'Maximum Price',
 value: 100,
 minValue: 0,
 maxValue: 500,
 width: 400,
 renderTo: Ext.getBody()
});

3.	 Finally, we restrict the user even further by configuring an increment value that
specifies by how much the slider's value changes as the thumb is dragged:

Ext.create('Ext.slider.Single', {
 fieldLabel: 'Maximum Price',
 value: 100,
 minValue: 0,
 maxValue: 500,
 increment: 10,
 width: 400,
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

208

How it works...
The Ext.slider.Single class inherits from the Ext.form.field.Base class and
so inherits all of the features of form fields, such as labels and values, as well as being
a Component class and therefore, able to be added as a child to any container and be
included in layouts.

When created with basic configuration, as in step 1, the Slider acquires default values for
value, minValue, maxValue, and increment. This produces a Slider ranging from 0 to
100 and giving an incremental change of 1.

By default a tip will be displayed when you drag the slider. If you
don't want to show tips you can turn them off by configuring the
slider with useTips: false.

There's more...
So far we have described how to create a Slider allowing a user to select a single value. We
are now going to demonstrate how to allow a Slider to contain multiple thumbs to define value
ranges. We will also discuss how to react to the dragging of a slider's thumbs by listening to
the drag event.

Defining Multiple Thumbs
1.	 First we create a very basic slider as we did in the first examples but by using the

Ext.slider.Multi class instead of the Ext.slider.Single class:
var priceRangeSlider = Ext.create('Ext.slider.Multi', {
 fieldLabel: 'Price Range',
 minValue: 0,
 maxValue: 500,
 increment: 10,
 width: 400,
 renderTo: Ext.getBody()
});

2.	 Next, we define the starting values of our slider's thumbs. We do this by passing
an array of values to the values config option. The slider class will create a
thumb for each element in the array and place it on the slider at its appropriate
numeric position:

var priceRangeSlider = Ext.create('Ext.slider.Multi', {
 fieldLabel: 'Price Range',
 values: [100, 200],
 minValue: 0,
 maxValue: 500,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

209

 increment: 10,

 width: 400,
 renderTo: Ext.getBody()
});

If we require more thumbs we can simply add another item to
the values array or, at runtime, use the addThumb method.

Reacting to a thumb being dragged
We will start from where we had left off earlier with the simple multi-thumb slider.

1.	 We must first create a component that we will use to display the current values of
the slider and which will get updated as the thumbs are moved. This component
has a simple template and a starting value to match the slider's (this could be set
dynamically on creation):
var valueDisplayComponent = Ext.create('Ext.Component', {
 tpl: 'Current Price Range: £{min} - £{max}',
 data: {min: 100, max: 200},
 renderTo: Ext.getBody()
});

2.	 Now, we add a listener to the slider's drag event, which is fired when a thumb is
moved to a new value. In this listener function, we gather the values of the slider
using the getValues method and update the display component using its
update method:

var priceRangeSlider = Ext.create('Ext.slider.Multi', {
 ...
 listeners: {
 drag: function(slider, e, opts){
 // get the slider's thumbs' values
 var vals = slider.getValues();

 // update the display container
 valueDisplayContainer.update({
 min: vals[0],
 max: vals[1]
 });
 }
 }
 ...
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

210

The getValues method returns an array containing each thumb's
value. The ordering of this mirrors the order that the values were
defined in the configuration.

See Also
ff For a simpler way of gathering a numeric value see the recipe discussing the Spinner

field earlier in this chapter.

Loading server side data into a combobox
A combobox's selection list can be loaded from locally defined data (in JavaScript) or remotely
from a web server. This recipe provides an introduction on how to load JSON data from a
server into the combobox's selection list.

Getting ready
The following recipe requires you to interact with a web server. Please ensure you have a
running web server for serving the users.json file. The file should contain:

{
 "success": true,
 "users": [{
 "fullName": "Joe Bloggs",
 "userID": 1
 }, {
 "fullName": "John Smith",
 "userID": 2
 }]
}

How to do it...
1.	 Start by defining a model.

Ext.define('User', {
 extend: 'Ext.data.Model',
 fields: [{
 type: 'string',
 name: 'fullName'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

211

 type: 'int',
 name: 'userID'
 }]
});

2.	 Create an Ext.data.Store that is linked to the User model:
var store = Ext.create('Ext.data.Store', {
 model: 'User',
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 root: 'users'
 }
 }
});

3.	 Create a form panel with a ComboBox and bind it to the store we created above:

var formPanel = Ext.create('Ext.form.Panel', {
 title: 'ComboBox with server side data example',
 width: 350,
 autoHeight: true,
 bodyPadding: 10,
 items: [{
 xtype: 'combobox',
 fieldLabel: 'Select User',
 displayField: 'fullName',
 valueField: 'userID',
 store: store,
 queryMode: 'remote', //default behavior
 forceSelection: true,
 anchor: '100%'
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

212

How it works...
The combobox's selection list is populated using an Ext.data.Store. To make the
combobox retrieve data from the server, we have defined, in this case, a remote store
with an AJAX proxy.

When the user clicks on the trigger field of the combobox for the first time, the store makes
a call to the server and turns the returned data into a collection of Model instances that are
then loaded into the store.

The displayField config option is used to determine which of our model's fields we wish to
present to the user (in this case, the fullName field) and the valueField is used for setting
the hidden data value that represents the value selected by the user. When we eventually
submit the form the value submitted is the userID.

The config option forceSelection: true ensures that the user is only able to select and
submit the combobox from the predefined list of options and isn't allowed to type in their
own value.

Finally, it's worth noting that the queryMode: 'remote' option tells the framework to load
the store dynamically when the field is triggered. By default, the queryMode for a combobox
is 'remote', however, if you do not want to load remote data it is recommended this option
is set to 'local' for increased responsiveness.

See also
ff Learn how to add auto-complete to your comboboxes in the next recipe.

ff The next chapter, which explains the data package in further detail.

Autocompleting a combobox's value
ComboBoxes are a very handy control to use when creating a form, giving the user a
convenient list of values you want them to choose from. However, these lists grow very
long and the convenience starts to shrink as they are forced to trawl through a lengthy
list of options.

Ext JS has provided us with the ability to allow comboboxes to autocomplete and select an
option as we type, so we can find the correct value faster. This recipe will demonstrate how
to set up this functionality.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

213

How to do it...
1.	 Our first step is to create an Ext.data.Store, which we will bind to our combobox

to give it its list of values. Our example will display a list of car manufacturers:
var carManufacturersStore = Ext.create('Ext.data.Store', {
 fields: ['name'],
 data: [{
 name: 'Aston Martin'
 }, {
 name: 'Bentley'
 }, {
 name: 'Daimler'
 }, {
 name: 'Jaguar'
 }, {
 name: 'Lagonda'
 }, {
 name: 'Land Rover'
 }, {
 name: 'Lotus'
 }, {
 name: 'McLaren'
 }, {
 name: 'Morgan'
 }, {
 name: 'Rolls-Royce'
 }]
});

2.	 We then create a very simple combobox bound to this store and rendered to the
document's body:
Ext.create('Ext.form.ComboBox', {
 fieldLabel: 'Car Manufacturer',
 store: carManufacturersStore,
 queryMode: 'local',
 displayField: 'name',
 valueField: 'name',

 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

214

3.	 Now, we configure the combobox to find the nearest match after the user has started
typing, and set the value of the combobox's text field. We do this by adding the
typeAhead configuration option:
Ext.create('Ext.form.ComboBox', {
 fieldLabel: 'Car Manufacturer',
 store: carManufacturersStore,
 queryMode: 'local',
 displayField: 'name',
 valueField: 'name',

 typeAhead: true,

 renderTo: Ext.getBody()
});

4.	 The following screenshot shows the result of using this simple configuration option:

How it works...
When we set typeAhead to true, the combobox performs some extra processing when
a query is run that filters the drop-down list. The routine uses the store's findRecord
method to retrieve the first matching record, comparing the entered value and the record's
displayField. It then changes the field's value to the complete entry and highlights the
text that wasn't entered by the user.

The natural functionality of the browser then takes over as the user continues typing and
so replacing the highlighted, autocompleted text.

There's more...
The Ext.form.field.ComboBox class offers various other useful configuration options
that complement the autocomplete setup. We will now look at making the autocomplete
process more responsive and how to remove the trigger button to make the combobox
more like a text field with a lookup.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

215

Increasing autocomplete response time
The combobox component has a typeAheadDelay configuration option that accepts a
numeric value defining the number of milliseconds before the auto-completed text is displayed
in the text field. By setting this to a lower number your application will appear quicker and
more responsive:

Ext.create('Ext.form.ComboBox', {
 fieldLabel: 'Car Manufacturer',
 store: carManufacturers,
 queryMode: 'local',
 displayField: 'name',
 valueField: 'name',

 typeAhead: true,
 typeAheadDelay: 100,

 renderTo: Ext.getBody()
});

Defining the minimum characters before autocompleting
By default, when using a queryMode of local, the minimum number of characters that a user
must enter before the field is autocompleted is 0. However, this may not always be desirable
so it can be configured using the minChars option, which accepts a numeric value.

Removing the combobox's trigger button
ComboBoxes can have their trigger button (the down arrow on the right hand side) hidden
if required. This is particularly useful when using the autocomplete options as you may wish
the field to become more of an assisted TextField rather than a combobox.

This can be achieved by setting the hideTrigger option to true.

Ext.create('Ext.form.ComboBox', {
 fieldLabel: 'Car Manufacturer',
 store: carManufacturers,
 queryMode: 'local',
 displayField: 'name',
 valueField: 'name',

 typeAhead: true,
 typeAheadDelay: 100,
 hideTrigger: true,

 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

216

See Also
ff See the previous recipe about loading comboboxes' values from a server.

ff To read more about stores and models, take a look at the next chapter, which focuses
on the Ext.data package.

Rendering the results in a combobox
By default, the ComboBox component provides a neatly presented list of options for a user
to choose from based on the value in the displayField giving the same experience as the
HTML <select> tag.

However, there are occasions when we may wish to present more to the user or customize the
styling of the results. This recipe aims to demonstrate how to tackle this problem and produce
a combobox with a customized list of results.

How to do it...
1.	 Define an Issue Model:

Ext.define('Issue', {
 extend: 'Ext.data.Model',
 fields: ['id', 'raisedBy', 'title', 'body', 'status']
});

2.	 Create a store and add some data for local loading:
var store = Ext.create('Ext.data.Store', {
 model: 'Issue',
 data: [{
 id: 1,
 raisedBy: 'Joe',
 title: 'Registration Form Not Emailing User',
 body: 'The registration email is not being sent to users
upon regisration.',
 status: 'Open'
 }, {
 id: 2,
 raisedBy: 'John',
 title: 'Account Details Loading Issue',
 body: 'The account details page is not loading data from
the server.',
 status: 'Closed'
 }, {
 id: 3,
 raisedBy: 'Fred',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

217

 title: 'Account Details Missing Email Field',
 body: 'The account details page is missing a field to
allow the user to update their email address.',
 status: 'Open'
 }]
});

3.	 Add the combobox to a form panel and customize the combo's list through Ext.
view.BoundList (accessible through the listConfig config option):
var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Custom ComboBox Results',
 width: 500,
 autoHeight: true,
 bodyPadding: 10,
 items: [{
 xtype: 'combobox',
 fieldLabel: 'Select Issue',
 displayField: 'title',
 store: store,
 queryMode: 'local',
 anchor: '100%',
 listConfig: {
 getInnerTpl: function(){
 return '<h3>{title} ({status})</h3>' +
 '<div class="reportedBy">Reported by
 {raisedBy}</div>' +
 '{body}';
 }
 }
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

218

How it works...
The list component of Ext.form.field.ComboBox is an Ext.view.BoundList. The
BoundList class is extended from the Ext.view.View (DataView) class and has been
specifically written for the combobox. The DataView gives us a wealth of possibilities for
customizing how the list is presented and how we work with the list.

To configure the DataView we use the listConfig config option in the Ext.form.field.
ComboBox class. The configurable properties in the listConfig object are applied to
the BoundList.

The example shows, in its list, a series of issues or support tickets. However, instead of simply
displaying the issue title we are looking to show more information. Achieving this was done by:

ff Defining the necessary fields in our Issue Model

ff Creating a store for the combobox (with some predefined data for loading into
the Model)

ff Applying a custom template to the DataView through the combo's listConfig
property

The custom template is applied by overriding the BoundList class' getInnerTpl method.
By default, the getInnerTpl method returns the value of the combobox's displayField.
The framework code is:

getInnerTpl: function(displayField) {
 return '{' + displayField + '}';
},

If we had set displayField: 'title' in the combo this method would have added
{title} automatically to the list's Ext.XTemplate for us. However, by overriding this
method in the listConfig configuration we are able to provide the BoundList with
further fields and a layout of our choice.

See Also
ff The last two recipes discussing loading and adding autocomplete to comboboxes.

ff The recipes in Chapter 4, UI Building Blocks—Trees, Panels, and Data Views.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

219

Rich editing with an HTML field
The framework provides a lightweight text editor for use in forms. The Ext.form.field.
HtmlEditor enhances the user experiences giving them the capability to:

ff Format text as bold, italics, or underlined

ff Add links to content

ff Change the font, font color, and font size

ff Create ordered and unordered lists

ff Left, center, or right align text

This recipe will explain how to use the HTML editor field in your form for a rich text
editing experience.

How to do it...
1.	 Initialize the QuickTipManager:

Ext.tip.QuickTipManager.init();

2.	 Create a narrow form panel and add an HtmlEditor field to the panel's
items collection:
var formPanelNarrow = Ext.create('Ext.form.Panel', {
 title: 'HTML Editor (narrow)',
 width: 350,
 height: 200,
 layout: 'fit',
 items: [{
 xtype: 'htmleditor'
 }],
 renderTo: Ext.getBody()
});

3.	 Create a second form panel with the HtmlEditor but this time set the width
to 600:
var formPanelWide = Ext.create('Ext.form.Panel', {
 title: 'HTML Editor (wide)',
 width: 600,
 height: 200,
 layout: 'fit',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

220

 items: [{
 xtype: 'htmleditor'
 }],
 renderTo: Ext.getBody()
});

4.	 Create a third form panel with an HTML editor but customize the toolbar options
as follows:
var formPanelCustomOptions = Ext.create('Ext.form.Panel', {
 title: 'HTML Editor (customising the toolbar)',
 width: 600,
 height: 200,
 layout: 'fit',
 items: [{
 xtype: 'htmleditor',
 enableSourceEdit: false,
 enableColors: false,
 enableLinks: false,
 fontFamilies: ["Arial", "Tahoma", "Verdana"]
 }],
 renderTo: Ext.getBody()
});

How it works...
The reason we initialized the Ext.tip.QuickTipManager in Step 1 is because the
toolbar buttons have predefined buttonTips, which will not display until the global
QuickTipManager is initialized. For example, if you hover the mouse over the bold
button the tip appears as shown as follows:

The first example of the HtmlEditor shows the editor in a form panel that is 350 pixels wide.
In this instance the toolbar will automatically overflow the remaining toolbar buttons into a
drop-down menu. This menu is accessible from the right pointing guillemet:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

221

The second example, on the other hand, demonstrates the toolbar without overflow.

The final example shows how you can customize the toolbar buttons with the configuration
options available in the Ext.form.field.HtmlEditor class. Setting the options
enableSourceEdit, enableColors, and enableLinks to false turns off the source
editing, text color editing, and the create link features respectively. The fontFamilies
option accepts an array of font names that will be made available for users to select from:

Creating repeatable form fields and fieldsets
It is sometimes necessary to gather repeating data from a user. For example, a booking form
(for a hotel, restaurant, or attraction) sometimes requires the total number of guests and
information about each individual. More often than not these questions are the same for
each person.

This example will demonstrate how to create a form panel with a set of repeating questions.
The repeated questions will be dynamically added to the form by pressing an Add Another
Guest button. The fields will sit inside a FieldSet that has reference to the number of
repeated items.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

222

How to do it...
1.	 Start by creating a form panel and rendering it to the document's body:

var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Reservation Form',
 width: 350,
 autoHeight: true,
 bodyPadding: 10,
 defaults: {
 labelWidth: 150
 },
 items: [],
 renderTo: Ext.getBody()
});

2.	 Add some fields to the form's items collection to capture name and Ticket Type
for the first person:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Your Name',
 name: 'name'
 }, {
 xtype: 'radiogroup',
 fieldLabel: 'Ticket Type',
 items: [{
 boxLabel: 'Adult',
 name: 'type',
 inputValue: 'adult'
 }, {
 boxLabel: 'Child',
 name: 'type',
 inputValue: 'child'
 }]
 }],
 ...
});

3.	 Create our GuestFieldSet by extending the Ext.form.FieldSet class:
Ext.define('GuestFieldSet', {
 extend: 'Ext.form.FieldSet',
 alias: 'widget.GuestFieldSet',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

223

 initComponent: function(){
 Ext.apply(this, {
 title: 'Guest ' + this.guestCount,
 collapible: true,
 defaultType: 'textfield',
 defaults: {
 anchor: '100%'
 },
 layout: 'anchor',
 items: [{
 fieldLabel: 'Guest ' + this.guestCount + ' Name',
 name: 'name-' + this.guestCount
 }, {
 xtype: 'radiogroup',
 fieldLabel: 'Ticket Type',
 items: [{
 boxLabel: 'Adult',
 name: 'type-' + this.guestCount,
 inputValue: 'adult'
 }, {
 boxLabel: 'Child',
 name: 'type-' + this.guestCount,
 inputValue: 'child'
 }]
 }]
 });
 this.callParent(arguments);
 }
});

4.	 Finally, add a button under the fields in the form panel to allow the user to add
a second guest. The button's handler function contains the logic to add the
additional fields:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 ...
 }, {
 xtype: 'button',
 text: 'Add Another Guest',
 margin: '0 0 5 0',
 handler: function(){
 guestCount = formPanel.items.length - 2;
 formPanel.add({

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

224

 xtype: 'GuestFieldSet',
 guestCount: guestCount
 });
 }
 }],
 ...
});

How it works...
The button we added in step 3 is where the magic happens in this recipe. The button's
handler function makes a call to the add method of Ext.form.Panel.

The add method is used for adding components to the end of the panel's items collection.
In this instance our component is GuestFieldSet.

The GuestFieldSet class is an extension of the Ext.form.FieldSet class, which wraps
our repeatable fields (guest name and ticket type). We are able to lazily instantiate this class
because it has an alias configured—widget.GuestFieldSet. When we add the component
we do so through the xtype configuration option, defined as GuestFieldSet (which is the
alias for the class).

The guestCount variable is used for determining the number of fieldsets the user has
added. This variable is used for two purposes in this example:

ff To give the user a visual indication of which guest the FieldSet is referring to.
This can be seen in the guest name fieldLabel and in the FieldSet's legend.

ff To name the fields dynamically for each guest. When we submit the form with one
guest, for example, the parameters passed will be:

�� name

�� type

�� name-1 (guest one)

�� type-1 (guest one)

Combining form fields
Every now and then we may want to group a set of related fields together and present them
with one label. This example aims to show you how to make a form that combines three
number fields (separated by hyphens) for gathering a UK banking sort code.

This will gather the three parts of the sort code as separate fields and present it in a user
friendly manner to the user.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

225

Getting ready
As this recipe is a form to collect a UK bank account number and sort code we have written
a custom VType for the sort code. If you are not already familiar with how to write or use a
VType you'll find the two recipes in Chapter 5, Loading, Submitting, and Validating Forms,
useful. The code for this VType is shown as follows:

Ext.apply(Ext.form.field.VTypes, {
 SortCode: function(val){
 var sortCodeRegex = /^(([0-9][0-9])|(99))$/;
 return sortCodeRegex.test(val);
 },
 SortCodeText: 'Must be a numeric value between 00 and 99',
 SortCodeMask: /[\d]/i
});

How to do it...
1.	 Create a form panel:

var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Combining Form Fields',
 width: 350,
 autoHeight: true,
 bodyPadding: 10,
 defaults: {
 anchor: '100%',
 labelWidth: 100
 },
 items: [],
 renderTo: Ext.getBody()
});

2.	 In the panel's items collection add a FieldContainer with an hbox layout:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 xtype: 'fieldcontainer',
 fieldLabel: 'Sort Code',
 combineErrors: true,
 layout: 'hbox',
 defaults: {
 hideLabel: true,
 vtype: 'SortCode'
 },

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

226

 items: []
 }],
 ...
});

3.	 In the items collection of FieldContainer, add the fields for gathering the
Sort Code:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 ...
 items: [{
 xtype: 'textfield',
 name: 'sortcode1',
 allowBlank: false,
 flex: 1
 }, {
 xtype: 'displayfield',
 value: '-',
 margin: '0 0 0 3',
 width: 10
 }, {
 xtype: 'textfield',
 name: 'sortcode2',
 allowBlank: false,
 flex: 1
 }, {
 xtype: 'displayfield',
 value: '-',
 margin: '0 0 0 3',
 width: 10
 }, {
 xtype: 'textfield',
 name: 'sortcode3',
 allowBlank: false,
 flex: 1
 }]
 }],
 ...
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 6

227

4.	 Finally, add a second field to the panel's items collection for gathering the
account number:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 items: [{
 ...
 }, {
 xtype: 'numberfield',
 name: 'accountNumber',
 fieldLabel: 'Account Number',
 msgTarget: 'side',
 minValue: 10000000,
 maxValue: 99999999,
 hideTrigger: true,
 keyNavEnabled: false,
 mouseWheelEnabled: false,
 allowBlank: false
 }],
 ...
});

How it works...
The custom VType tests the value against a regular expression that expects two digits
(between 0 and 9) in the field. We make reference to this VType in the form by setting
the relevant fields with vtype: 'SortCode'.

To achieve the grouping effect for the sort code we put the three fields in a
FieldContainer. The Ext.form.FieldContainer class is extended from the
Container class with the added benefit of containing the Labelable mixin.

By defining an hbox layout on the FieldContainer, we are ensuring that the components
are set out in columns. To ensure each field has the same width, the flex is set to the same
for each (that is, 1). Over and above the three text fields we have added two display fields with
hyphens to give the form the appearance of a sort code. The fixed width and margins ensure
that they consume a minimal amount of space.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Using and Configuring Form Fields

228

The config option combineErrors: true of FieldContainer ensures that when any of
the fields are invalid the error messages are combined and presented to the user as a single
error message.

See also
ff Chapter 5, Loading, Submitting, and Validating Forms, contains a number of

examples on how to use and write custom VTypes.

ff The recipe on complex form layouts in Chapter 5, which uses a FieldContainer.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

7
Working with the

Ext JS Data Package

In this chapter, we will cover:

ff Modeling a data object

ff Loading and saving a Model using proxies

ff Loading cross-domain data with a Store

ff Associating Models and loading nested data

ff Applying validation rules to Models' fields

ff Grouping a Store's data

ff Handling Store exceptions

ff Saving and loading data with HTML5 local storage

Introduction
Ext JS 4 introduces a new comprehensive and extensive data package for modeling, storing,
validating, and persisting your applications' data.

This chapter will cover the core topics to help you get a solid understanding of some of the
components found in the Ext.data package. In particular, we will demonstrate Models,
Stores, and proxies, and explain how each is used for working with your applications'
structured data.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

230

Modeling a data object
In previous versions of Ext JS, a data store's Ext.data.Record class would be defined
implicitly based on the fields that were supplied on its creation. This approach meant that the
data structures the application represented took a back seat, and it simply became a means
to have a store hold your data.

In Ext JS 4, the Ext.data.Record has been superseded by the Ext.data.Model class,
which acts in a very similar way but introduces a whole host of new capabilities and becomes
a much more prominent part of an application's design. It introduces new concepts such as
validation, proxies, and relationships, which we will discuss throughout this chapter.

The Ext.data.Model class is used to represent an entity within your application, be it a
user, a vehicle, or a group of settings, and an instance of it contains the data relating to one
of those entities. Data stores are simply made up of a collection of these Model instances
and are manipulated by the store as required.

This recipe will demonstrate how to define a Model class to represent a Book and how we can
create new instances of it.

How to do it...
1.	 As always we will start with a simple HTML page with the Ext JS 4 library referenced

and add our code to the onReady function.

2.	 We start by using the Ext.define function to create a new class that extends the
base Ext.data.Model class:
Ext.define('Book', {
 extend: 'Ext.data.Model'
});

3.	 We continue by defining the fields property and supplying it with an array of
configuration objects. These objects will be used to create Ext.data.Field
instances and define how the data will be made up:
Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'Title',
 type: 'string'
 }, {
 name: 'Publisher',
 type: 'string'
 }, {
 name: 'ISBN',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

231

 type: 'string'
 }, {
 name: 'PublishDate',
 type: 'date',
 dateFormat: 'd-m-Y'
 }, {
 name: 'NumberOfPages',
 type: 'int'
 }, {
 name: 'Read',
 type: 'boolean'
 }]
});

In our example we have defined each field with a name and
type. By including the field type the framework will convert
and store the data as a specified data type. It is also acceptable
to supply the fields property with an array of strings, which
will be automatically used as field names and given a data type
of auto. This type means that no conversion will take place
before the value is stored in the Model instance.

4.	 Now that we have defined our data Model we can create an instance of it containing
data about this book in the same way that we would any other class:
var book = Ext.create('Book', {
 Title: 'Ext JS 4 CookBook',
 Publisher: 'Packt Publishing',
 ISBN: '978-1-849516-86-0',
 PublishDate: '01-01-2012',
 NumberOfPages: 300,
 Read: false
});

5.	 We are able to call any of the Ext.data.Model class methods on our book instance
to retrieve or set its data:
console.log('Title: ' + book.get('Title'));
//outputs ‘Title: Ext JS CookBook’

console.log('Publish Date: ' + book.get('PublishDate'));
 // outputs 'Publish Date: Sun Jan 01 2012 00:00:00 GMT+0000 (GMT
Standard Time)'

console.log('Read: ' + book.get('Read'));
// outputs 'Read: false'
book.set('Read', true);

console.log('Read: ' + book.get('Read'));
// outputs 'Read: true'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

232

How it works...
Creating a new Model is identical to extending any other Ext JS class or component and so
follows exactly the same pattern. The Ext.define method will define our class and resolve
any namespaces that we include.

The fields property is where the main focus is placed as this defines the structure of our
data. We can supply this property with an array of configuration objects containing config
options of the Ext.data.Field class, a simple array of strings, or a combination of both.

By specifying a type for each field, the field's value will be parsed into this type before it is
stored. For example, by specifying the type as 'date' the loaded value will be parsed into
a real date object.

As with any class definition it can be instantiated using the Ext.create method. When using
this with Models, the configuration passed as the second parameter is used as the model
data and mapped to the model's fields.

There's more...
A Model and its fields can be configured in various ways, which we will look at here.

Setting the Model's uniquely identifying property
Models support the notion of having a unique property. This can be used to navigate to a
particular Model instance when it is part of a collection, that is, in a Store. This acts as a
primary key would in a database.

By default, this is set to the id field but can be customized as required by your data structure
by specifying the idProperty configuration option. In our example, we could set our ISBN
field as the ID field using the following code:

Ext.define('Book', {
 extend: 'Ext.data.Model',

 idProperty: 'ISBN',

 fields: [{
 name: 'Title',
 type: 'string'
 }, {
 name: 'Publisher',
 type: 'string'
 }, {
 name: 'ISBN',
 type: 'string'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

233

 name: 'PublishDate',
 type: 'date',
 dateFormat: 'd-m-Y'
 }, {
 name: 'NumberOfPages',
 type: 'int'
 }, {
 name: 'Read',
 type: 'boolean'
 }]
});

Parsing date fields correctly
When including date fields in your Models you may need to explicitly tell the model what
format the dates being loaded in will have. This is important to remember if your dates
are going to be in non-standard formats. It is very easy to achieve this by including the
dateFormat configuration option in the field's definition. This string will then be used
in conjunction with the Ext.Date.parse method when the field's data is loaded:

fields: [
...
{
 name: 'PublishDate',
 type: 'date',
 dateFormat: 'd-m-Y'
}
...
]

Processing a field's data before loading
A field's value can be manipulated very easily before it is loaded into a Model instance by
using the convert option when defining the field. This option accepts a function that takes
two parameters—the field's value and the Model instance as it stands.

The model instance passed into this function might not be
complete depending on the order that the reader has parsed the
fields. If you need to perform processing based on other fields,
you must make sure that the field order is correct to ensure the
field's value exists.

This function can perform any necessary manipulation to the field's value and return it to have
the Model store the changed value.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

234

An example of this can be seen as follows, where we define a convert function to pre-pend
the Book's ISBN number to its Title:

...
{
 name: 'Title',
 type: 'string',
 convert: function(v, record){
 return record.get('ISBN') + ' :: ' + v;
 }
}
...

See also
ff See the recipe titled Associating Models and loading nested data to learn about how

to define relationships between Models.

ff The Loading and saving a Model using proxies recipe, which explains how to link
model's to a server.

ff Learn about how to validate a Model's fields in the Applying Validation Rules to
Models' Fields recipe.

Loading and saving a Model using proxies
Another huge advantage of the new Ext.data.Model class is that it is capable of saving
and loading its own data without having to be attached to a data store.

This means that we can create new data objects anywhere within our code and easily send
them to the defined URL to be saved by the server. This results in much less code and
duplication, which is always a good thing!

This recipe will show this piece of functionality in action, building on our Book model that was
used in previous recipe.

Getting ready
This recipe requires a running web server. There are four PHP files (which are supplied) that
will be used for loading data into our Model.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

235

How to do it...
1.	 We start by defining our Model. We will use the Book model used in the previous

recipe but will update it by adding an extra field called BookID and assign this
as the idProperty:
Ext.define('Book', {
 extend: 'Ext.data.Model',
 idProperty: 'BookID',
 fields: [{
 name: 'BookID',
 type: 'int'
 }, {
 name: 'Title',
 type: 'string'
 }, {
 name: 'Publisher',
 type: 'string'
 }, {
 name: 'ISBN',
 type: 'string'
 }, {
 name: 'PublishDate',
 type: 'date',
 dateFormat: 'd-m-Y'
 }, {
 name: 'NumberOfPages',
 type: 'int'
 }, {
 name: 'Read',
 type: 'boolean'
 }],
 validations: [{
 type: 'length',
 field: 'Title',
 min: 1
 }, {
 type: 'presence',
 field: 'Publisher'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

236

2.	 Our next task is to define the Model's proxy. This will define how the Model will load
or save itself when asked to. We will use a simple AJAX proxy with a URL defined for
each of the four CRUD (Create, Read, Update, Delete) actions:
...
proxy: {
 type: 'ajax',
 api: {
 read: 'bookRead.php',
 create: 'bookCreate.php',
 update: 'bookUpdate.php',
 destroy: 'bookDestroy.php'
 }
}

3.	 Now that we have a Proxy set up we can use the Book's static load method to call
the server and fetch a Book's data based on the ID passed in, as in our first example.
As the call is asynchronous we use a callback function to simply log the loaded model
instance once the AJAX call is complete:
Book.load(1, {
 callback: function(book, operation){
 console.log(book);
 }
});

4.	 If we manually create a new Book model instance, and include a BookID in its data,
we can call the save method and see the bookUpdate.php file being called, with
the Book's data being posted to it:
var book = Ext.create('Book', {
 BookID: 1,
 Title: 'Ext JS 4 CookBook',
 Publisher: 'Packt Publishing',
 ISBN: '978-1-849516-86-0',
 PublishDate: '01-01-2012',
 NumberOfPages: 300,
 Read: false
});
book.save();

5.	 Similarly, if we create a Book without a BookID and call the save method, the
bookCreate.php file with be called with the Book's data passed to it.
var book = Ext.create('Book', {
 Title: 'Ext JS 4 CookBook',
 Publisher: 'Packt Publishing',
 ISBN: '978-1-849516-86-0',
 PublishDate: '01-01-2012',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

237

 NumberOfPages: 300,
 Read: false
});
book.save();

6.	 Finally, we can delete a Book record by calling the destroy method of the Book
instance, which will cause an AJAX call to be made to the configured destroy URL:

var book = Ext.create('Book', {
 BookID: 1,
 Title: 'Ext JS 4 CookBook',
 Publisher: 'Packt Publishing',
 ISBN: '978-1-849516-86-0',
 PublishDate: '01-01-2012',
 NumberOfPages: 300,
 Read: false
});
book.destroy();

How it works...
A Proxy takes care of the interaction between our application and an external data source. They
come in several varieties but the most common is the AJAX proxy, which allows data to be saved
through an AJAX call to a web server, and this is the one we have used in this example.

The type configuration tells the Model what type of proxy we require, and will be used to
internally instantiate the Ext.data.proxy.Ajax class.

The api option is used to define the URLs that the Proxy will use to carry out each of the
CRUD operations. It is equally possible to specify a single url configuration that will be
used for all of the operations. In our case, we have a PHP file to handle each action.

Now that we have the interaction setup, we are able to start using them to load and save data.

Each Model class has a static load method, which is used to retrieve a Model instance
from its defined data source. It accepts an ID as its first parameter and a configuration object,
which is applied to the request's options, as its second. The ID we specify is included in the
AJAX call and used on the server to retrieve the correct record. You can see the AJAX call in
the following screenshot:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

238

The _dc parameter is also supplied, and is used for
cache busting.

As this is an AJAX call, the results must be consumed in a callback function that will be
executed when the request is complete.

The key to the next operation is the presence of the BookID, which was defined as the Model's
ID property. This property is used to decide which CRUD operation is needed to save the
current Model.

If a BookID is present then it is assumed the Model already exists on the server and so an
update is carried out. Similarly, if the BookID is missing then the Model will be saved using
the create URL and will expect its new BookID to be returned after the create request
was successful.

The delete operation is a special case and uses its own method called destroy. When called,
this will immediately make the proxy carry out its destroy routine, in this case, a call to the
server with the details of the record being deleted, as seen here:

See also
ff The previous recipe, Loading and saving a Model using proxies.

ff Learn about defining relationships between Models and loading nested data in this
chapter's recipe, Associating Models and loading nested data.

Loading cross-domain data with a Store
Now that we have a Model, the next step is to load some data into it for use throughout our
applications. An Ext.data.Store is an ideal way of doing this. It has all the features we
require to load and save data and can be linked with a proxy to determine how we may
wish to do this (for example, through AJAX, JSONP, and so on)

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

239

This recipe will demonstrate how to load data that originates from a different domain
directly into your application using JSONP. We are going to use Flickr's API feeds for our
cross-domain data.

JSONP is a method for making cross-domain AJAX requests.

How to do it...
1.	 Start by defining a model to define the data we are loading:

Ext.define('Flickr', {
 extend: 'Ext.data.Model',

 fields: [{
 name: 'title',
 type: 'string'
 }, {
 name: 'link',
 type: 'string'
 }]
});

2.	 Create a store with a JSONP proxy:
var JSONPStore = Ext.create('Ext.data.Store', {
 model: 'Flickr',
 proxy: {
 type: 'jsonp',
 url:
'http://api.flickr.com/services/feeds/photos_public.gne',
 callbackKey: 'jsoncallback',
 extraParams: {
 tags: 'swan',
 tagmode: 'any',
 format: 'json'
 }
 },
 reader: {
 type: 'json',
 root: 'items'
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

240

3.	 Load data into the Store by calling the store's load method:
JSONPStore.load();

4.	 Finally, once the load has finished check to make sure that the data has loaded
correctly by returning the first record from the Model:
JSONPStore.on('load', function(){
 var record = JSONPStore.getAt(0);
 console.log(record.data.title + ' ' + record.data.link);
}, this);

How it works...
The JSONP proxy allows us to load cross-domain data directly into our app. This could, for
example, save you from having to process the remote data on your server before serving it to
the client. There are two main tasks that the framework undertakes to load data successfully:

ff A temporary <script> tag is inserted in the DOM

ff A temporary callback function is created, which is called as a result of the request

The proxy inserts a <script> tag into the DOM to make the request using the
createScript method of the Ext.data.JsonP class:

createScript: function(url, params) {
 var script = document.createElement('script');
 script.setAttribute("src", Ext.urlAppend(url, Ext.Object.
toQueryString(params)));
 script.setAttribute("async", true);
 script.setAttribute("type", "text/javascript");
 return script;
}

In our case this will return:

<script src="http://... &jsoncallback=Ext.data.JsonP.callback1"
async="true" type="text/javascript"></script>

The JSON returned by Flickr looks something like the following code snippet:

Ext.data.JsonP.callback1({
 "items": [{
 "title": "",
 "link": ""
 }]
})

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

241

When this data is returned it will automatically run the Ext.data.JsonP.callback1
function passing the JSON in as a parameter. This is the temporary callback that the
framework has made for us in order to load the data into the Model.

There's more...
You need to be careful when using JSONP as there are a few security risks to loading data in
this way. Make sure you trust the source of the data as the script they return could, potentially,
contain malicious JavaScript.

See also
ff The first recipe of this chapter explaining how to define Models.

ff The Handling Store exceptions recipe to learn about how to react to things
going wrong.

Associating Models and loading nested data
Ext JS 4 provides a straight forward way for defining relationships between two or more Data
Models. This book, for example has two authors, which can be expressed as a one-to-many
relationship between a book and its authors with Model associations. The framework has
support for three common relationships:

ff One-to-many (Ext.data.HasManyAssociation)

ff Many-to-one (Ext.data.BelongsToAssociation)

ff Has-one (Ext.data.association.HasOne)

This recipe will provide a basic demonstration of linking two Models together and adding
associated data to the second, associated, Model from an instance of the first Model. The
last part of the recipe will explore loading nested data into these associated Models.

Getting ready
This recipe requires the use of a web server for serving the provided books.json file.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

242

How to do it...
1.	 The first step in linking two Models together is to define them. Start by defining a

Book model:
Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'Title',
 type: 'string'
 }, {
 name: 'Publisher',
 type: 'string'
 }, {
 name: 'ISBN',
 type: 'string'
 }, {
 name: 'PublishDate',
 type: 'date',
 dateFormat: 'd-m-Y'
 }, {
 name: 'NumberOfPages',
 type: 'int'
 }, {
 name: 'Read',
 type: 'boolean'
 }]
});

2.	 The second Model, Author, should be defined next:
Ext.define('Author', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'Title',
 type: 'string'
 }, {
 name: 'FirstName',
 type: 'string'
 }, {
 name: 'LastName',
 type: 'string'
 }, {
 name: 'book_id',
 type: 'int'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

243

3.	 Add an association to the Book Model:
Ext.define('Book', {
 ...
 associations: [{
 type: 'hasMany',
 model: 'Author',
 name: 'authors'
 }]
});

We could also have written this relationship as
hasMany: ['Author']

4.	 Now that we have defined the Book Model, we can create an instance of it containing
some data about this book:
var book = Ext.create('Book', {
 Title: 'Ext JS 4 CookBook',
 Publisher: 'Packt Publishing',
 ISBN: '978-1-849516-86-0',
 PublishDate: '01-01-2012',
 NumberOfPages: 300,
 Read: false
});

5.	 Run the book.authors() function, which returns a Store for the authors:
var authors = book.authors();

6.	 Add two authors to the Author Store. These authors will be linked to the book
through a foreign key book_id:
authors.add({
 Title: 'Mr',
 FirstName: 'Andrew',
 LastName: 'Duncan'
}, {
 Title: 'Mr',
 FirstName: 'Stuart',
 LastName: 'Ashworth'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

244

7.	 Create a Store with a Book Model and load the provided books.json file:
var store = Ext.create('Ext.data.Store', {
 model: 'Book',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'books.json'
 }
});

8.	 When the load event has been fired we will do some processing to ensure that the
data has been loaded into its respective Models:

store.on('load', function(){
 var record = store.getAt(0);
 console.log(record);
 console.log(record.get('Title'));

 var authors = record.getAssociatedData();
 console.log(authors);

 var author = record.authors().getAt(0);
 console.log(author.get('FirstName'));
});

How it works...
The association between the two models is defined in the first model (Book). The
associations array in this model contains configuration from the Ext.data.
HasManyAssociation class. Here we have set the type, model, and name:

ff type is either hasMany, hasOne or belongsTo depending on the association type

ff model is the name of the model we wish to associate to

ff name is the function name that will create the child Store

Now that we have defined the relationship the framework adds a new method to the
parent Model. As we have set name: 'authors', this method will be authors. When
called, authors will return a Store instance, configured with the relationship's model type,
and will be dynamically filtered to only contain associated data.

When we load the books.json file into the Store, the two Models are populated with
data even though we have only specified the Book model to the Store. The load routine
recognizes the array of author data in the authors property (based on the association's
name configuration) as an association and so loads it into the authors child store. We can
verify this by looking at the data in the Store.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

245

At present you cannot send your associated/nested data
back to the server. Each model has to be handled individually
when syncing.

There's more…
The previous example has focused on looking at the hasMany association. The belongsTo
association can be used in a very similar fashion. The following example will, once again,
demonstrate an association between an author and a book. By using a belongsTo
association, we are able to load the associated book model for that author:

1.	 Start by defining an Author Model. The Author Model will belong to the
Book Model:
Ext.define('Author', {
 extend: 'Ext.data.Model',

 fields: [{
 name: 'Title',
 type: 'string'
 }, {
 name: 'FirstName',
 type: 'string'
 }, {
 name: 'LastName',
 type: 'string'
 }, {
 name: 'book_id',
 type: 'int'
 }],
 belongsTo: 'Book'
});

2.	 Next, define the second model, Book, with an AJAX proxy. We'll use this proxy later for
loading data:
Ext.define('Book', {
 extend: 'Ext.data.Model',

 fields: [{
 name: 'Title',
 type: 'string'
 }],

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

246

 proxy: {
 type: 'ajax',
 url: 'books.json'
 }

});

3.	 Create an instance of the Author model that includes a book_id in its data:
var author = Ext.create('Author', {
 Title: 'Mr',
 FirstName: 'Joe',
 LastName: 'Bloggs',
 book_id: 1
});

4.	 Call the getBook method (that's automatically created by the framework) to initiate a
request to the server with the request parameter id=1:
author.getBook();

The authors associated data is loaded when we make a call to the getBook method. The
getBook method is an automatically generated get method that loads data through the
model's proxy.

When running the example, look at the network tab on your browser's Developer Tools. After
the getBook method is called a request is made with the parameter id: 1 to books.json.
This request is made because we've assigned book_id: 1 to our author.

Ext.data.association.HasOne
The HasOne association type allows us to link one model instance directly to another in a
one-to-one relationship. We will now discuss how to use this association type, once again
using our book and author example. In this example, we will assume that a book has
one author.

We start by defining our Book model as we have done before, but we will add a new
foreign key field that will link our Book and Author models together and define the
HasOne association on the Book model.

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [
 ...
 {
 name: 'author_id',
 type: 'int'
 }],

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

247

 associations: [{
 type: 'hasOne',
 model: 'Author',
 name: 'author'
 }]
});

Next, we define our Author model and give it a proxy that will be used to load the author data.
In this case we will point it to a simple JSON file that contains a standard response with a
success flag and a rows array containing a single Author:

Ext.define('Author', {
 extend: 'Ext.data.Model',

 fields: [{
 name: 'Title',
 type: 'string'
 }, {
 name: 'FirstName',
 type: 'string'
 }, {
 name: 'LastName',
 type: 'string'
 }],

 proxy: {
 type: 'ajax',
 url: 'author.json',
 reader: {
 type: 'json',
 root: 'rows'
 }
 }
});

The contents of the author's json in the authors.json file is:

{
 "success": true,
 "rows": [{
 "Title": "Mr",
 "FirstName": "Andrew",
 "LastName": "Duncan"
 }]
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

248

By defining a HasOne association between these two models, a new method is automatically
created in the Book class called getAuthor. This method will use the author model's proxy
and the foreign key defined (either explicitly defined by the foreignKey config or the default
one which is "<association name>_id") to load the associated record.

We can use this method and a callback function to retrieve and then use the associated
record as the following code demonstrates:

var book = Ext.create('Book', {
 Title: 'Ext JS 4 CookBook',
 Publisher: 'Packt Publishing',
 ISBN: '978-1-849516-86-0',
 PublishDate: '01-01-2012',
 NumberOfPages: 300,
 Read: false,
 author_id: 1
});

book.getAuthor(function(author, operation){
 console.log(author); // our new Author model instance
});

Once loaded the getAuthor method will return the associated
record directly without the need for a callback.

See also
ff For a detailed introduction to Models we recommend you read the first recipe in this

chapter, Modeling a data object.

Applying validation rules to Models' fields
A huge advantage of the new data modeling class is that validation rules can be applied
directly to the Model's fields. By centralizing the validation of data fields we are able to
reduce code duplication and keep our application much more organized.

This recipe will cover how to define validation rules on each of our Model's fields and also how
we can create our own validation rules.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

249

How to do it...
1.	 We will start this recipe with the Book Model class we defined in the previous recipes:

Ext.define('Book', {
 extend: 'Ext.data.Model',

 fields: [{
 name: 'Title',
 type: 'string'
 }, {
 name: 'Publisher',
 type: 'string'
 }, {
 name: 'ISBN',
 type: 'string'
 }, {
 name: 'PublishDate',
 type: 'date',
 dateFormat: 'd-m-Y'
 }, {
 name: 'NumberOfPages',
 type: 'int'
 }, {
 name: 'Read',
 type: 'boolean'
 }]
});

2.	 Now we use the validations configuration to define a minimum length of 1 on the
book's title and make the Publisher field mandatory:
Ext.define('Book', {
 extend: 'Ext.data.Model',

 fields: [{
 name: 'Title',
 type: 'string'
 }, {
 name: 'Publisher',
 type: 'string'
 }, {
 name: 'ISBN',
 type: 'string'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

250

 name: 'PublishDate',
 type: 'date',
 dateFormat: 'd-m-Y'
 }, {
 name: 'NumberOfPages',
 type: 'int'
 }, {
 name: 'Read',
 type: 'boolean'
 }],

 validations: [{
 type: 'length',
 field: 'Title',
 min: 1
 }, {
 type: 'presence',
 field: 'Publisher'
 }]
});

3.	 We can now demonstrate the validation being executed by using the validate
method of the Ext.data.Model class. This method returns an Ext.data.Errors
instance which contains any errors that were found based on the defined rules:
var book = Ext.create('Book', {
 Title: '', // invalid Title
 Publisher: 'Packt Publishing',
 ISBN: '978-1-849516-86-0',
 PublishDate: '01-01-2012',
 NumberOfPages: 300,
 Read: false
});
console.log(book.validate());

var book = Ext.create('Book', {
 Title: '', // invalid Title
 // missing Publisher
 ISBN: '978-1-849516-86-0',
 PublishDate: '01-01-2012',
 NumberOfPages: 300,
 Read: false
});
console.log(book.validate());

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

251

How it works...
The validations array that we populated in step 2 is processed and mapped to the
methods and properties contained in the Ext.data.validations singleton.

The field property is used to link the validator to one of the Ext.data.Fields defined on
the Model. This is a string value that corresponds to the field's name.

The type property determines which validation routine is to be applied to the specified field.
This string relates to a method of the Ext.data.validations singleton.

Any other properties defined in these objects are passed to the validation method and can be
used to customize the validation. In our example, we have defined the min property which is
used to determine what an invalid string length is.

There's more...
A Model and its fields can be validated in various further ways that we will look at here.

Other built-in validators
There are a total of six built-in validators that can be applied to a Model's fields. In our
previous example, we encountered two of them—presence and length. The other four are
outlined as follows:

ff email: validates that the field contains a valid e-mail address

ff exclusion: accepts a list configuration containing an array of values and will
return true if the field's value is not in the list

ff inclusion: identical to exclusion but evaluates to true if the field's value is present
in the list array

ff format: accepts a matcher configuration option that should contain a regex for the
field's value to be matched against

Creating a custom validator
Although the built-in validators cover the majority of cases, we may need to create our own
custom validation routine for special fields. We will walk through how to create a validation
routine to validate our ISBN field.

Before we begin we will define the rules that will make our ISBN valid (ISBN numbers are more
complex than this but we'll use these simplified rules to demonstrate this technique):

ff It must contain 13 digits

ff It must be split into five sections by hyphens

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

252

The structure of our validation is similar to that of a VType—it has two parts that follow a
specific naming convention so they can be referenced easily.

The first part is the validation method itself, whose name will be used to reference it in the
validations array. This function accepts two parameters and must return a Boolean value.
The first parameter contains the configuration object that was defined in the validations
array. This can contain any extra properties that we might need to perform our validation,
for example, a minimum length. The second parameter contains the actual value of the
field that we are validating.

In addition to our validation method we must define an error message that will be used if the
field is invalid. This property must be named in the same way as the method with the word
Message appended to it (that is, if our validator was named isbn, our error message would
be named isbnMessage).

Unfortunately, because the Ext.data.validations class is a singleton, we cannot use
the usual Ext.override method to add new properties. Instead we shall simply define the
new validation method and properties that we need on the class instance itself.

All singleton classes in Ext JS are named with a lowercase
first letter that allows them to be easily identifiable within the
documentation and code base.

So, using this technique and following the naming guidelines, our ISBN validation will look
like this:

Ext.data.validations.isbnMessage = 'is not a valid ISBN Number';
Ext.data.validations.isbn = function(config, value){
 return true;
};

We can now flesh out the validation function with some simple code to validate the ISBN
number based on our defined rules:

Ext.data.validations.isbn = function(config, value){
 var valid = false;

 valid = value.length === 17; // 13 digits + 4 hyphens
 valid = valid && (value.split('-').length === 5); // contains 4
hyphens
 return valid;
};

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

253

Using our new validation is done by including the following configuration item in the
validations array:

...
{
 type: 'isbn',
 field: 'ISBN'
}
...

Accessing error details
After executing a Model's validate method an instance of the Ext.data.Errors class is
returned, which contains details of any validation errors that were found. This class extends
the Ext.util.MixedCollection class and essentially contains a collection of error
messages as a result of any failing validation routines. We can interrogate this class to find
out if the Model is indeed valid by using the isValid method, which returns a Boolean value.

We are also able to get any validation errors for a particular field by calling the getByField
method, which accepts the field's name as a parameter.

See also
ff The first recipe of this chapter that demonstrates how to define a data model.

ff The Creating custom VTypes recipe in Chapter 5, which explains how to define our
own VTypes to validate form fields.

Grouping a Store's data
In Ext JS 3, data grouping was achieved by using the specialist GroupingStore. As a result,
grouping data could not be done with more general Store classes. Fortunately, Ext JS 4
encapsulates this grouping functionality into the base Store class so groupings can now be
defined on any Store.

We will delve into groupings with a simple example that loads some XML data taken from the
Twitter API. We will then continue to demonstrate how to group by specific fields, examine the
groupings' data, and manipulate these groupings on the fly.

We will then investigate how we can use these groupings to perform aggregate operations.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

254

Getting ready
We will be loading our XML data through an AJAX call and so you must run these examples on
a web server.

Unfortunately, the Twitter API doesn't handle JSONP calls when requesting XML data, so we
will be loading the Twitter data manually and pasting it into a static XML file for use in our
examples. Our data contains the latest Tweets referring to Sencha.

You can hook this demo up to the live Twitter API using the JSON
format and take advantage of the JSONP proxy if you wish.

How to do it...
1.	 We will start by examining the XML output of the Twitter API and identifying which

fields we want and how it is structured. A sample of the data can be seen as follows
(some data has been omitted to save space):
<entry>
 <published>
 Published Date
 </published>
 <title>
 Tweet Contents
 </title>
 <author>
 <name>
 Username
 </name>
 </author>
</entry>

2.	 Our first step is to define a Model that will contain our Twitter feed data. We will only
map the useful fields that we included, which contain the user, the tweet itself, and
the published date:
Ext.define('Tweet', {
 extend: 'Ext.data.Model',

 fields: [{
 name: 'user',
 mapping: 'author/name',
 type: 'string'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

255

 name: 'tweet',
 mapping: 'title',
 type: 'string'
 }, {
 name: 'published',
 type: 'date'
 }]
});

3.	 We now create an Ext.data.Store that will be made up of Tweet models and have
it load the Tweets with an AJAX proxy, pointing to our static twitterData.xml file:
var twitterStore = Ext.create('Ext.data.Store', {
 model: 'Tweet',
 proxy: {
 type: 'ajax',
 url: 'twitterData.xml',
 reader: {
 type: 'xml',
 record: 'entry'
 }
 }
});

twitterStore.load();

4.	 Now we can define how we would like to group the store's data. We will group it on the
user field and, after it has loaded, we will log the grouped data to the console:
var twitterStore = Ext.create('Ext.data.Store', {
 model: 'Tweet',
 proxy: {
 type: 'ajax',
 url: 'data.xml',
 reader: {
 type: 'xml',
 record: 'entry'
 }
 },
 groupers: [{
 property: 'user'
 }]
});

twitterStore.load({

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

256

 callback: function(){
 console.log(twitterStore.getGroups());
 }
});

The output of the previous code can be seen in the following screenshot :

5.	 Finally, we will demonstrate how to group the Store at runtime using the group
method. We will remove our groupers configuration and add a grouping on the
published field:

var twitterStore = Ext.create('Ext.data.Store', {
 model: 'Tweet',
 proxy: {
 type: 'ajax',
 url: 'twitterData.xml',
 reader: {
 type: 'xml',
 record: 'entry'
 }
 }
});

twitterStore.load({
 callback: function(){
 twitterStore.group('published');

 console.log(twitterStore.getGroups());
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

257

The output from the getGroups method can be seen as follows:

We can remove the defined groupings by calling the store's
clearGrouping method. This will fire the groupchange
event (which is also fired when groupings are added using the
group method) allowing you to have your UI react accordingly.

How it works...
When you define the groupers configuration option the framework creates an Ext.util.
Grouper object for each item in the array. This class is an extension of the Ext.util.
Sorter class and works by adding a new sorter (that is, itself) to the beginning of the
Store's sorter array, ensuring it is used first. Once the Store has been sorted, a call to the
getGroups method can be made, making the Store process the records and collect each
set of records whose grouped fields match.

Although the groupers configuration option can accept an array
of definitions it is only capable of one level of grouping and so the
first one is always used.

The Store's group method allows it to be grouped at runtime. It accepts a single parameter
containing one of the Model's field names. When this is called, the current set of groupers is
thrown away and the new one put in its place.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

258

Extracting Records from XML
If you examine the twitterData.xml file, you will see that the data is not structured in the
way we are used to with JSON data as there is no records array containing each set of data. To
get around this, and allow the XML reader to find each record, we define the record option
and set it to the element's name that contains the repeating record data.

Field Mapping
You may have noticed that the name of the Twitter user is nested within the author
element but is still loaded into the model's user field. This is achieved by using the mapping
configuration option, which allows us to define a path to the piece of data we want to fill
the field with. In our example, we have used XML data and so this option uses an XPath
expression to navigate down from the record's root to the correct node. If JSON data had been
used, we would have used the object dot notation (for example, author.name) to achieve
the same result.

There's more...
Being able to calculate aggregate values on a collection of data is very useful and allows us
to easily provide summary data to users.

The Ext.data.Store class contains five aggregate methods allowing the minimum (min),
maximum (max), sum, count, and average of a field's values to be calculated.

All of these methods, except count, take two parameters. The first contains the name of
the field to be aggregated and the second a Boolean deciding if the aggregate should be
calculated on a per group basis. The count method does not need the first parameter as
it is not specific to a field and so only accepts a Boolean value.

The following example shows minimum and maximum published dates being calculated for
our Twitter data:

twitterStore.min('published'); // returns a single Date
twitterStore.max('published'); // returns a single Date
twitterStore.min('Published', true); //returns an Object

To have the results returned on a per group you would simply pass true into each method,
as seen in the third example, and the results would be returned as an object containing
name/value pairs of the grouped value and the aggregate value.

See also
ff The recipe Loading and saving a Model using proxies.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

259

Handling Store exceptions
Unfortunately we cannot guarantee that the server will process our stores' requests correctly
100 percent of the time. When the server returns an error or fails to respond, it's useful to be
ready to inform our users that something has not worked as expected and perhaps perform
extra processing or tidying up. This recipe demonstrates how to handle proxy exceptions and
present an error message to the user.

Getting ready
To demonstrate exception handling you will need to ensure that you have a running web
server to host the example and serve the provided error-response.json file.

How to do it...
1.	 Define the Model that we will attempt to load data into:

Ext.define('Book', {
 extend: 'Ext.data.Model',

 fields: [{
 name: 'Title',
 type: 'string'
 }]
});

2.	 Add an AJAX Proxy to the Model, defining the url config option as
error-response.json:
Ext.define('Book', {
 ...
 proxy: {
 type: 'ajax',
 url: 'error-response.json'
 }
});

3.	 Listen for the exception event on the AJAX proxy. The exception event will be fired
should the server return an exception:
proxy: {
 ...
 listeners: {
 'exception': function(proxy, response, operation, eOpts){
 }
 }
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

260

4.	 Add logic to the function to change the behavior depending on the type of error.
'exception': function(proxy, response, operation, eOpts){
 if (response.status !== 200) {
 alert(response.status + ' ' + response.statusText);
 } else {
 var responseText = Ext.decode(response.responseText);
 alert(responseText.error);
 }
}

If the server responds with a 200 Status Code and the exception event has been fired then it
is safe to assume that the responses success property is set to false. In this case, we will
output the error value in the responseText property. However, should the server respond
with another Status Code (for example, 404, 500…) then we will output the Status Code and
Status Text.

How it works...
The AJAX proxy's superclass Ext.data.proxy.Server contains an exception event that
is fired when the server responds with an error (that is, the success property is false) or
an HTTP exception.

By listening for this event we can perform some additional processing on the response
and, if desired, alert the user to the fact that there has been a problem. This is done in the
exception event's handler.

The response parameter contains the response from the AJAX request. We can check the
HTTP status code sent from the server by reading the status property (response.status)
and get access to the text body of the response with the responseText property. As error-
response.json returns JSON, we can decode this with the Ext.decode() method and
work with the data that is returned.

For a different outcome to the previous example try changing the
name of the URL we are calling to a non-existent file or altering the
error-response.json to return "success": true

There's more...
To help you get the most out of exception handling there are a couple of extra pieces of
information that are worth noting.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

261

Add a generic response handler to all AJAX proxies
If the way you wish to handle exceptions to requests made from an AJAX proxy remains fairly
consistent throughout your application, you could write a generic exception handler. This
piece of code will fire the GenericReponseHandler function when the exception event
is fired from an AJAX proxy in your app. The magic happens in Ext.util.Observable.
observe(Ext.data.proxy.Ajax).

Here, the observe method allows us to centrally handle events fired on any instance of the
Ext.data.proxy.Ajax class:

var GenericResponseHandler = function(proxy, response, operation,
eOpts){
 if (response.status !== 200) {
 alert(response.status + ' ' + response.statusText);
 }
 else {
 var responseText = Ext.decode(response.responseText);
 Ext.Msg.alert('Generic Response', responseText.error);
 }
};
Ext.util.Observable.observe(Ext.data.proxy.Ajax);
Ext.data.proxy.Ajax.on('exception', GenericResponseHandler);

Ext.data.proxy.Server's afterRequest method
The subclasses of Ext.data.proxy.Server inherit its afterRequest method which is
called when the server's response is processed. You can override this method in your proxy
instance to perform some extra logic after each request is made.

The afterRequest is called regardless of the response from
the server. You can use the success parameter that is passed in to
determine the outcome of the response. This will help you customize
the clean-up routine based on the response outcome.

See also
ff The recipe explaining how to load and save models using proxies.

ff The recipe about App Wide Exception Handling in Chapter 12.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

262

Saving and loading data with HTML5
Local Storage

Ext JS 4 provides a new LocalStorageProxy (Ext.data.proxy.LocalStorage) which allows
you to save data to the client's browser with the HTML5 localStorage API.

This recipe demonstrates how to use this proxy to save and retrieve your user's settings.

How to do it...
1.	 Start by defining the UserSetting model with the following fields. We are going to

assign userID as the idProperty and you will see why this is important later.

If we do not assign our own id field the Ext.data.Model will
create one automatically for us called id.

Ext.define('UserSetting', {
 extend: 'Ext.data.Model',

 idProperty: 'userID',

 fields: [{
 name: 'userID',
 type: 'int'
 }, {
 name: 'fontSize',
 type: 'string'
 }, {
 name: 'theme',
 type: 'string'
 }, {
 name: 'language',
 type: 'string'
 }, {
 name: 'dateFormat',
 type: 'string'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 7

263

2.	 Add a proxy to the UserSetting model, setting the proxy type to localstorage.
We need to give the proxy a unique key prefix for storing items in localStorage. To do
this set id: 'user-settings'.
Ext.define('UserSetting', {
 ...
 proxy: {
 type: 'localstorage',
 id: 'user-settings'
 }
});

3.	 Now create an instance of the UserSetting model and assign it to the
settings variable.
var settings = Ext.create('UserSetting', {
 userID: 1,
 fontSize: 'medium',
 theme: 'default',
 language: 'en-gb',
 dateFormat: 'd/m/Y'
});

4.	 Call the save method on the model instance to persist the data to localStorage.
settings.save();

Having saved the model instance to localStorage we can see the values by looking at your
browser's Developer Tools. As you can see the unique key prefix user-settings (set on
the proxy) appears in the Key column. In addition to this a -1 has appeared at the end of the
user-settings Key in the first row. This value is the userID or idProperty set on the
model. The second row contains an index of all UserSetting records stored in localStorage.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Working with the Ext JS Data Package

264

5.	 Having saved data to localStorage it is now time to retrieve it. Load the data by
calling the load method on the UserSetting class. Pass in the userID to the first
parameter and a load configuration object to the second parameter. Add a callback
to the load configuration object to prove that we are able to retrieve the data.
UserSetting.load(1, {
 callback: function(model, operation){
 console.log(model.get('language'));
 }
});

How it works...
HTML5 Local Storage provides a method to store named key/value pairs locally on the
browser. One particularly useful feature of Local Storage is persistent data. Even when the
browser is closed the data will become accessible again when the user next visits your app.

There are size restrictions to Local Storage, usually 5 or 10 megabytes.

Harnessing HTML5 Local Storage is done by using a LocalStorageProxy. The
LocalStorageProxy performs two main tasks:

ff Communication with the browser's Local Storage (retrieving/storing data)

ff Serializing and de-serializing data

The second task is particularly helpful as it means we're not limited to working with simple
key/value pairs. The LocalStorageProxy allows us to work with complex data objects as
we would with other proxies.

HTML5 Local Storage is not supported by all web browsers, notably
Internet Explorer 6 and 7. Before using the LocalStorageProxy
you will need to ensure support for the browser(s) you are targeting
otherwise an error will be thrown.

See also
ff The recipe Loading and saving a Model using proxies.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

8
Displaying and Editing

Tabular Data

In this chapter, we will cover:

ff Displaying simple tabular data

ff Editing grid data with a RowEditor

ff Adding a paging toolbar for large datasets

ff Dealing with large datasets with an infinite scrolling grid

ff Dragging-and-dropping records between grids

ff Creating a grouped grid

ff Custom rendering of grid cells with template columns

ff Creating summary rows aggregating the grid's data

ff Displaying full-width row data with the RowBody feature

ff Adding a context menu to grid rows

ff Populating a form from a selected grid row

ff Adding buttons to grid rows with action columns

Introduction
Displaying tabular data is a very common task in modern web applications and has made the
Ext.grid.Panel one of the most popular and heavily used components in the framework.
Sencha has worked hard on perfecting the performance and features of the data grid bundled
with Ext JS 4.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

266

This chapter will cover the basics of simple grids and move on to advanced topics, such as
infinite scrolling and grouping. We will also demonstrate how to edit data easily, customize
how we present the data, and link your grids with other Ext JS components.

Displaying simple tabular data
This recipe walks you through the steps required to display tabular data using a grid
component in Ext JS 4. Grids allow us to display data and allow the user to interact
with it through various plugins and features.

To demonstrate displaying simple tabular data, we will create a straightforward grid
panel (with the Ext.grid.Panel class). The grid will display a list of invoices with
the following columns:

ff Client

ff Date

ff Amount

ff Status

The final grid is shown in the following screenshot:

Getting ready
This recipe uses a generic Ext.data.Store and Ext.data.Model, which can be found in
the invoices-store.js and invoices-model.js files, respectively. We have bundled
these with the resources for this chapter.

How to do it...
1.	 Include the invoices-model.js file. This model will define the fields that we are

expecting to load:
<script type="text/javascript" src="invoices-model.js">
</script>

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

267

The code that we are including is shown as follows:

Ext.define('Invoice', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'InvoiceID',
 type: 'string'
 }, {
 name: 'Client',
 type: 'string'
 }, {
 name: 'Description',
 type: 'string'
 }, {
 name: 'Date',
 type: 'date',
 dateFormat: 'c'
 }, {
 name: 'Amount',
 type: 'float'
 }, {
 name: 'Currency',
 type: 'string'
 }, {
 name: 'Status',
 type: 'string'
 }]
});

2.	 Include the invoices-store.js file. This will define the store for loading data into
the grid:
<script type="text/javascript" src="invoices-store.js">
</script>

The code that we are including is shown as follows:
var invoiceStore = Ext.create('Ext.data.Store', {
 autoLoad: true,
 autoSync: true,
 model: 'Invoice',
 groupField: 'Client',
 proxy: {
 type: 'ajax',
 url: 'invoices.json',
 reader: {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

268

 type: 'json',
 root: 'rows'
 },
 writer: {
 type: 'json',
 writeAllFields: false
 }
 }
});

We configure our store with autoSync: true for use in
the next few recipes. By setting this to true the store will
automatically send any changes to the server as soon as
they are made.

3.	 Create a grid panel that is bound to our invoiceStore and render it to the
document's body. We do this by instantiating the Ext.grid.Panel class.
We also define our grid's columns that match the invoice model's data:

Ext.create('Ext.grid.Panel', {
 title: 'Chapter 8 - Grids',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client'
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }]
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

269

How it works...
A grid panel is a data-bound component and is linked to an Ext.data.Store instance. In
this case our invoiceStore is the data source used for rendering the grid rows. The grid will
render a row for each of the Model instances contained in the data store.

Apart from the store option, columns is the only other configuration option needed to have
a grid display a store's data. This option takes an array of Ext.grid.column.Column class
configurations, namely including a header, which is displayed at the top of each column, and
a dataIndex. This option maps to an Ext.data.Field that exists in the store's Model and
indicates what data will be displayed in the column.

See also
ff The previous chapter for a more detailed look at models and stores.

Editing grid data with a RowEditor
The grid panel has built-in features to allow users to amend data directly from the grid.
Over and above single-cell editing, Ext JS 4 introduces a new row-editing plugin, which
renders a row's fields as editable and displays an Update and Cancel button for when
the user is finished.

The RowEditor turns each cell into an editable field (Ext.form.field), which the user
can interact with when editing data. The fields are not limited to textfields either as it's
possible to add any type of field, such as datefields, numberfields, or comboboxes.

This recipe will demonstrate how to turn a basic grid panel into an editable grid using
the RowEditor plugin. We will demonstrate how to render different field types and
configurations, depending on the type of data in the column. By the end of the recipe, the
edited data will be sent to the server for processing through the grid's store and proxy:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

270

Getting ready
We are going to use the Invoice example that we have used throughout this chapter. We will
start by including the Model and Store files to our HTML page:

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

How to do it...
1.	 We need to ensure that the store is ready for submitting saved data to the server. In

this case we are going to define a JsonWriter on the store. Set the writer to only
submit changed fields to the server:
var invoiceStore = Ext.create('Ext.data.Store', {
 ...
 proxy: {
 ...
 writer: {
 type: 'json',
 writeAllFields: false
 }
 }
});

As we only want to submit the rows we have edited, we will
need to ensure that the Model has the correct idProperty
defined. Set idProperty: 'InvoiceID' in the model.
Failing to do this will result in all records being sent to
the server.

2.	 The next step is to create the RowEditing plugin. It's possible to add custom
configuration to the plugin. For example, set clicksToEdit: 1 so that the
RowEditor will appear after a click to a cell:
var rowEditing = Ext.create('Ext.grid.plugin.RowEditing', {
 clicksToEdit: 1
});

3.	 Create a grid panel that is bound to the invoiceStore.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

271

4.	 Add the rowEditing plugin and set the Grid's selection model to rowmodel.
Ext.create('Ext.grid.Panel', {
 title: 'Row Editing Example',
 height: 300,
 width: 600,
 store: invoiceStore,
 plugins: [rowEditing],
 selType: 'rowmodel',
 columns: [],
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

5.	 Finally, define the columns for the grid. We also add an editor configuration to each
of the columns that require editing capabilities. These editors are the fields rendered
when in edit mode:
Ext.create('Ext.grid.Panel', {
 ...
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1,
 editor: {
 allowBlank: false
 }
 }, {
 header: 'Date',
 dataIndex: 'Date',
 format: 'd/m/Y',
 xtype: 'datecolumn',
 editor: {
 xtype: 'datefield',
 format: 'd/m/Y',
 allowBlank: false
 }
 }, {
 header: 'Amount',
 dataIndex: 'Amount',
 xtype: 'numbercolumn',
 editor: {
 xtype: 'numberfield',
 allowBlank: false,
 hideTrigger: true,
 minValue: 1,
 maxValue: 150000

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

272

 }
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 ...
});

Ext.create('Ext.grid.Panel', {
 ...
 plugins: [cellEditing],
 selType: 'cellmodel',
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1,
 editor: {
 allowBlank: false
 }
 }, {
 header: 'Date',
 dataIndex: 'Date',
 format: 'd/m/Y',
 xtype: 'datecolumn',
 editor: {
 xtype: 'datefield',
 format: 'd/m/Y',
 allowBlank: false
 }
 }, {
 header: 'Amount',
 dataIndex: 'Amount',
 xtype: 'numbercolumn',
 editor: {
 xtype: 'numberfield',
 allowBlank: false,
 hideTrigger: true,
 minValue: 1,
 maxValue: 150000
 }
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

273

 header: 'Status',
 dataIndex: 'Status'
 }],
 ...
});

If no xtype is defined the editor will default to
being a TextField.

How it works...
There are three key points to note about using a RowEditor to update grid data:

1.	 Ensure that the proxy and store are ready: To enable the grid to write the data back
to our server we need to check that:

�� The proxy has a writer. You may also wish to consider setting
writeAllFields: false if you only want to send the updated data back
to the server (as opposed to the entire record).

�� If your identity field is not named id, make sure you have set the
idProperty. Failure to do so will result in all records being sent to the
server.

�� Unless you intend to manually send the data to the server it can be helpful
to define autoSync: true on the store. On every update the store will
synchronize the data with the server.

Having set the proxy and store we can now save the data. When we change the
Client field for the third invoice, the following data is submitted:

After processing your submitted data, your server must respond with the
complete record so that the store can complete the save process. By doing this
the records will be marked as clean again and any IDs generated for new records
will be assigned to the record.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

274

2.	 Configure the Row Editing plugin on the grid: Adding the RowEditing plugin and
RowEditor to a grid requires little configuration. Achieving this is done by creating
an instance of Ext.grid.plugin.RowEditing in the grid's plugins collection.

We've configured this RowEditing plugin to activate on a click of the mouse
(on a cell) by setting clicksToEdit: 1.

It's important to ensure that the selection model for the
grid is rowmodel when using a RowEditor.

The RowEditing plugin will now handle the rest for us by rendering a floating
dialog to present the editable fields with an Update and Cancel button.

3.	 Define editors for the editable columns: The editors are the configuration for
Form fields that will be rendered when the RowEditing plugin is active. The editor
defaults to textfield, however it's possible to replace this with any field and
configuration specific to the field type. This has been demonstrated with the date
field and number field, which were applied to the Date and Amount columns.

There's more...
The RowEditor provides an excellent way to update the data across all columns of a
row. However, there are some instances where we may wish to edit a grid's data on
a cell-by-cell basis.

Editing grid data with a celleditor
In this example, when the user clicks on a cell, the cell's editor will be activated:

To achieve this, all that we are required to do is swap out the RowEditing plugin for a
CellEditing plugin and change the row-selection model to a cell-selection model:

var cellEditing = Ext.create('Ext.grid.plugin.CellEditing', {
 clicksToEdit: 1
});

Ext.create('Ext.grid.Panel', {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

275

...
 plugins: [cellEditing],
 selType: 'cellmodel',
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1,
 editor: {
 allowBlank: false
 }
 }, {
 header: 'Date',
 dataIndex: 'Date',
 format: 'd/m/Y',
 xtype: 'datecolumn',
 editor: {
 xtype: 'datefield',
 format: 'd/m/Y',
 allowBlank: false
 }
 }, {
 header: 'Amount',
 dataIndex: 'Amount',
 xtype: 'numbercolumn',
 editor: {
 xtype: 'numberfield',
 allowBlank: false,
 hideTrigger: true,
 minValue: 1,
 maxValue: 150000
 }
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 ...
});

See also
ff For a reminder on using the Form fields in this example take a look at Chapter 6,

Using and Configuring Form Fields.

ff A more detailed explanation of models and stores can be found in the
previous chapter.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

276

Adding a paging toolbar for large datasets
When you need to load a large dataset there are a number of options available to enhance
the experience for the user and reduce load on the server. A paging toolbar (Ext.toolbar.
Paging) enables you to request that a limited number of records returned from the server.
The toolbar will then display a series of buttons to allow the user to move from page to page.

In this recipe, we will render a grid with a paging toolbar that loads a maximum of 50 records
at a time.

Getting ready
We are going to use the Invoice example that we have used throughout this chapter. So we will
start by including the Model file to our HTML page:

<script type="text/javascript" src="invoices-model.js">
</script>

Additionally, the Store will request data from invoices.php, which is provided, to return
6,000 dynamically generated records and handle the requests from the client. For more
information on creating the large dataset see Dealing with large datasets with an infinite
scrolling grid.

How to do it...
1.	 Define a Store with an AjaxProxy for binding to the grid. Set the store's pageSize

configuration option to 50. Assign the store to the variable invoiceStore:
var invoiceStore = Ext.create('Ext.data.Store', {
 autoLoad: true,
 model: 'Invoice',
 pageSize: 50,
 proxy: {
 type: 'ajax',
 url: 'invoices.php',
 reader: {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

277

 type: 'json',
 root: 'rows'
 }
 }
});

2.	 Create a grid that is bound to the invoiceStore (created in step 1) with the
following column configuration:
Ext.create('Ext.grid.Panel', {
 title: 'Paging Toolbar',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 renderTo: Ext.getBody()
});

3.	 In the grid's configuration add an Ext.PagingToolbar docked to the bottom of the
grid through the bbar config option. The paging toolbar should also be bound to the
same Store as the grid (invoiceStore):

Ext.create('Ext.grid.Panel', {
 ...
 bbar: Ext.create('Ext.PagingToolbar', {
 store: invoiceStore,
 displayInfo: true,
 displayMsg: 'Displaying Invoices {0} - {1} of {2}',
 emptyMsg: "No invoices to display"
 })
 ...
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

278

How it works...
As the example shows, it's very straightforward adding a paging toolbar to a grid. The requests
made to the server have three additional parameters when a paging toolbar is defined:

ff page

ff start

ff limit

On the invoiceStore (an instance of Ext.data.Store) we are only required to define the
pageSize. The pageSize is used for the limit parameter that is sent to the server, which
is in this case 50. Therefore, the user interface is requesting up to 50 records at a time.

When the data is returned from the server you must ensure that the total property contains
the total number of possible records in the dataset.

{
 "success": true,
 "total": 6000,

 "rows": [{}]
}

The paging toolbar uses the value of total to calculate the page we are on, the records
we are viewing, and the total number of pages available. In this case, it calculates
total/pageSize = 120.

The start parameter is used to inform the server where we want to start the dataset from. It
could, for example, start from record 300 with a limit of 50 therefore return rows 300 to 350.

See also
ff The next recipe for an alternative to paging.

ff The Creating a DataView bound to a Data Store recipe in Chapter 4, UI Building
Blocks—Trees, Panels, and Data Views, which includes details about adding
filtering controls to a toolbar.

Dealing with large datasets with an infinite
scrolling grid

Coping with large amounts of data has always been a problem in web applications. We are
often faced with extensive datasets that the browser simply can't cope with rendering all
at once.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

279

We have already explored a traditional solution for combating this by paging the data and
offering the user previous/next buttons that navigate them to the next subset of data. This
approach has proven its success across the web, with the majority of the big players using it
across their sites. We will demonstrate a slightly different approach to solving this problem
that removes the paging interaction of the user.

The infinite scrolling grid is designed to trick the user into thinking that they are dealing with
one large data grid containing all of their data. However, what is actually happening is that
they are seeing many smaller datasets, stitched together and dynamically loaded as the
scroll position changes.

This recipe is going to show how this technique can be achieved to create a data grid that will
progressively load thousands of records.

Getting ready
There are a couple of tasks we must do before we start creating our grid, namely creating a
data source and importing our Invoice Model:

Creating a large data source: In order to demonstrate the infinite scrolling in action, we
are going to need a large dataset. We are going to stick with our Invoice Management grid
example; but we will cheat a little bit and create a PHP file, which will generate the set of
data that we are looking for with some indexes in the Client field so we can see it is changing.
We will be sending up a limit and start parameter to let the server know what slice of the
result set the grid requires, and so we will use these to loop on and create an array of data.
The following code snippet demonstrates this loop:

$total = 6000;
$limit = $_GET['limit'];
$start = $_GET['start'];
$invoices = array();
$statuses = array('Paid', 'Viewed', 'Draft', 'Partial');

for($i = $start; $i< $start + $limit; $i++){
 $invoice = array('InvoiceID' => ($i),
 'Client' => 'Global Interactive Technologies (' . ($i) . ')',
 'Description' => 'Creating an Invoice management system',
 'Date' => date("c", rand(time()-63113851,time())),
 'Amount' =>number_format((rand()+1)/100, 2),
 'Currency' => 'GBP',
 'Status' => $statuses[rand(0,3)]);
 $invoices[] = $invoice;
}

echo json_encode(array('success' => true, 'total' => $total,
'rows' => $invoices));

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

280

Importing our Invoice Model: We are going to reuse the Invoice Model we created in
this chapter's first recipe and so we must include the invoice-model.js file into
our HTML page.

How to do it...
Now that we have a large data source and our Invoice Model set up we can start to create our
infinite scrolling grid.

1.	 We start by creating an Ext.data.Store with an AJAX proxy pointing to our
invoices.php file discussed in the Getting Started section. The store includes two
new options that we haven't seen before. The buffered and pageSize options are
required for the store to load a page at a time. We also give the store the autoLoad:
true configuration so it will load our data immediately.
var invoiceStore = Ext.create('Ext.data.Store', {
 model: 'Invoice',
 pageSize: 50,
 buffered: true,
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'invoices.php',
 reader: {
 type: 'json',
 root: 'rows'
 }
 }
});

2.	 All we need to do now is to create a very simple Ext.grid.Panel, bound to the
invoiceStore, with a simple column configuration. If we load up our example
and start scrolling we will see the data load as we scroll down.
Ext.create('Ext.grid.Panel', {
 title: 'Chapter 8 - Grids',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client'
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

281

 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 renderTo: Ext.getBody()
});

How it works...
As already mentioned, the infinite scrolling grid works by tricking the user into thinking that
they are scrolling through the complete data set when actually they are only actually scrolling
through a small subset with the next portion being loaded as it is needed.

If you dig into the HTML that is generated for this grid you will notice that the scrollbar and the
actual grid rows are completely separate. The visible scrollbar is actually scrolling a very tall,
narrow div, which represents the height the grid would be, if the entire dataset were to be
loaded and rendered at once.

The highlighted element in the following screenshot shows this div, with a height of
120,000 pixels:

As the user moves the scrollbar and starts to near the end of the rendered rows the store is
notified and it sends a call to the server requesting the next page of data adjusting the start
parameter as needed.

If a user was to scroll down the grid very quickly, the scroller is clever enough to realize that
it doesn't need any of the rows in between the old scroll position and the new, so misses out
these pages and only loads the one that equates to its new position.

The Ext.grid.PagingScroller class is responsible for applying this functionality to the
grid and is created internally when a buffered store is used. We can configure this class by
supplying an object literal to the verticalScroller configuration of the grid panel.

The Ext.data.Store requires very few configuration changes to get this functionality
working. The Store has a pageSize defined, which is used as the limit parameter that
is sent to the server. By tweaking this option you can optimize the performance of the grid
loading to suit the height of your grid. If your grid is taller than our example, you will want
to increase this value so more records are fetched with each store load so a new set isn't
fetched as often.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

282

The buffered option tells the Store that it will be used in conjunction with a view that will be
progressively loading records as they are needed.

There's More…
It is possible to further tune the behavior of the paging scroller through a few of its
configuration options. These can be applied by including the verticalScroller
option in the grid's configuration:

ff leadingBufferZone: This represents the number of rows to render ahead of the
leading side of the scrolling view's visible area.

ff trailingBufferZone: This represents the number of rows to render behind the
scrolling view's visible area.

ff scrollToLoadBuffer: This determines the number of milliseconds to buffer the
next page load. We can use this to avoid wasted AJAX calls when scrolling very fast
through a list.

In addition to tweaking the paging scroller's configuration we can also tune our grid's
performance by adding some config options to our data store:

ff leadingBufferZone: This determines how many records are cached ahead of
the grid view's visible area. By increasing this number you will require fewer server
requests as the user scrolls.

ff trailingBufferZone: Similarly, this will determine how many records are retained
behind the view's visible area.

Try playing with the values of these properties to see how the number of AJAX requests and
the number of table rows in the DOM changes.

See also
ff The first recipe in this chapter that focuses on the basics of grid panels.

ff The previous recipe provides an example of paging a grid and contains further
background information that you might find useful.

Dragging-and-dropping records between
grids

Allowing users to drag-and-drop items from one container to another is a very visual and
user-friendly way of manipulating data. Ext JS provides us with very easy-to-use drag-and-drop
classes that make including this functionality in grids simple.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

283

Once again we will base our example on the Invoice Management scenario and we will create
two grids. The first will contain unpaid invoices and the second paid invoices. We are going to
set up drag-and-drop to allow the user to move an invoice from the unpaid invoices grid to the
paid invoices grid and vice versa.

Getting ready
We are going to use the Invoice example that we have used throughout this chapter, so we will
start by including the Model and Store files to our HTML page:

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

How to do it...
1.	 Having included our basic Invoice Store and Model, our first step is to create our two

grids. The first, containing unpaid invoices, will be bound to our invoicesStore,
and the second bound to a new empty store:
var unpaidInvoicesGrid = Ext.create('Ext.grid.Panel', {
 title: 'Unpaid Invoices',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client'
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 renderTo: Ext.getBody()
});

var paidInvoicesGrid = Ext.create('Ext.grid.Panel', {
 title: 'Unpaid Invoices',
 height: 300,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

284

 width: 600,
 store: new Ext.data.Store({
 model: 'Invoice'
 }),
 columns: [{
 header: 'Client',
 dataIndex: 'Client'
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 renderTo: Ext.getBody()
});

2.	 Next, we configure the Ext.grid.plugin.DragDrop plugin as part of each
grid's view configuration. It takes two options, in addition to its ptype value,
namely dragGroup and dropGroup:
// Unpaid Invoices Grid
...
viewConfig: {
 plugins: [{
 ptype: 'gridviewdragdrop',
 dragGroup: 'unpaid-group',
 dropGroup: 'paid-group'
 }]
}
...

// Paid Invoices Grid
...
viewConfig: {
 plugins: [{
 ptype: 'gridviewdragdrop',
 dragGroup: 'paid-group',
 dropGroup: 'unpaid-group'
 }]
}
...

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

285

3.	 With the Ext.grid.plugin.DragDrop plugin configured on both grids, the
drag-and-drop functionality is complete and rows can be dragged from one grid
to another as shown as follows:

How it works...
The Ext.grid.plugin.DragDrop plugin encapsulates the drag-and-drop functionality and
gives us a simple interface to create draggable grid rows.

The dragGroup and dropGroups work together across all the created DragDrop plugin
instances to link grids together in terms of where rows can be dragged to and from.

In our unpaid grid we gave it a dragGroup of unpaid-group; we then specify a dropGroup
of unpaid-group in our paid grid. By giving these properties equivalent values, it tells the
plugin that any rows of dragGroup unpaid-group can be dropped in any grid that has a
dropGroup of unpaid-group too.

Similarly the unpaid grid has a dropGroup matching the paid grid's dragGroup to allow rows
to be dragged back again.

When a row is dragged from one grid to another, the Model that the row represents is
removed from its original grid's data store and added to the destination grid's store. If we
have autoSync set to true on these stores, and a proxy defined, you will see an AJAX call
being made to save the newly added record in the target store and a delete call being made
for the source store's removed record.

There's more...
We will now explore how to perform some actions after a row has been successfully
dropped and also how to enable rows to be dropped within the same grid allowing rows
to be reordered.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

286

Updating a row's data after dropping
The Ext.grid.plugin.DragDrop plugin adds two events to the grid's view
class—beforedrop and drop. We will use the drop event to update our dropped
model instance with its new status:

1.	 We start by adding a listener for the drop event to the viewConfig of the unpaid
invoices grid:
...
viewConfig: {
 plugins: [{
 ptype: 'gridviewdragdrop',
 dragGroup: 'unpaid-group',
 dropGroup: 'paid-group'
 }],
 listeners: {
 drop: function(node, data, overModel, dropPosition){
 }
 }
}
...

2.	 We can now access an array of the models that are being dragged from the data
parameter's records property. We will then iterate through this array and update
each model's Status field to Unpaid:
...
drop: function(node, data, overModel, dropPosition){
 var records = data.records;
 Ext.each(records, function(record){
 record.set('Status', 'Unpaid');
 });
}
...

3.	 We can add the same code to the paid invoices grid; but replacing the Unpaid string
with Paid:
...
 drop: function(node, data, overModel, dropPosition){
 var records = data.records;
 Ext.each(records, function(record){
 record.set('Status', 'Unpaid');
 });
 }
...

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

287

Allowing rows to be reordered with drag-and-drop
In our first example, we defined our DragDrop plugins to allow dragging between the
two grids by matching the dragGroup and dropGroup values. We can define as many
Ext.grid.plugin.DragDrop instances as we like to allow dragging between any
number of grids within your application.

By simply defining another Ext.grid.plugin.DragDrop instance with the dragGroup
and dropGroup set to the same value, we are able to drag-and-drop within the same
grid. The following code shows this second plugin instance configured to allow rows to
be reordered:

viewConfig: {
 plugins: [{
 ptype: 'gridviewdragdrop',
 dragGroup: 'unpaid-group',
 dropGroup: 'paid-group',
 }, {
 ptype: 'gridviewdragdrop',
 dragGroup: 'unpaid-group',
 dropGroup: 'unpaid-group',
 }],
 listeners: {
 drop: function(node, data, overModel, dropPosition){
 var records = data.records;

 Ext.each(records, function(record){
 record.set('Status', 'Unpaid');
 });
 }
 }
}

See also
ff The previous chapter for more information on models and stores.

ff The final chapter of the book, which discusses how to create your own plugins.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

288

Creating a grouped grid
Grouping data together helps present the information clearly to users. Ext JS 4 provides a
grouping feature (Ext.grid.feature.Grouping) that groups records using the Store's
groupers and displays a title for each group:

To demonstrate the grouping feature we will group all invoices by Client.

Getting ready
We are going to use the Invoice example that we have used throughout this chapter so we will
start by including the Model and Store files to our HTML page:

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

How to do it...
Now that you have included the necessary Model and Store we need to make a few changes:

1.	 Add a groupField to the invoiceStore. We will group this grid by the
Client field. It is also possible to define more elaborate groupers using the
Ext.util.Grouper class.
var invoiceStore = Ext.create('Ext.data.Store', {
 ...
 groupField: 'Client',
 proxy: {
 ...
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

289

2.	 Assign a grouping feature to the variable grouping. The configuration of this
grouping feature will give the group a customized header to display the client
name and number of invoices in that group:
var grouping = Ext.create('Ext.grid.feature.Grouping', {
 groupHeaderTpl: 'Client: {name} ({rows.length}
Invoice{[values.rows.length> 1 ? "s" : ""]})'
});

3.	 Create a basic grid bound to the invoiceStore. Include the grouping feature
created above by adding the grouping variable to the features collection:

Ext.create('Ext.grid.Panel', {
 title: 'Grouping Example',
 height: 300,
 width: 600,
 store: invoiceStore,
 features: [grouping],
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1
 }, {
 header: 'Date',
 dataIndex: 'Date',
 xtype: 'datecolumn',
 format: 'd/m/Y'
 }, {
 header: 'Amount',
 dataIndex: 'Amount',
 xtype: 'numbercolumn'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],

 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

How it works...
The grouping feature makes use of grouped data that is aggregated by the groupers we set
on the Store. To achieve this grouping we have defined the groupField property as Client.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

290

With the grouped data ready (in the store) the grid panel's grouping feature takes care of
the rest. It's simply a case of adding the feature to the grid's features collection. It is also
possible to do this inline in the grid in the following way:

features: [{
 ftype: 'grouping',
 groupHeaderTpl: '...'
}]

An ftype is a shorthand way of instantiating a feature
in the same way as an xtype is used for widgets and
a ptype is used for plugins.

The Ext.grid.feature.Grouping that we created has a customized group header,
which was created by defining the groupHeaderTpl property. The underlying processing for
groupHeaderTpl is done with an Ext.Template. Therefore, we are able to customize the
output of this with the passed values.

For more information about templates please refer to
Chapter 4, where they are discussed in greater depth.

There's more...
The grouping feature adds a number of extra events that are fired when the user interacts
with the group. For instance, when the group is clicked or expanded we can add additional
custom processing to create the desired experience. A number of methods are also inherited
in the grouping feature.

Making use of the grouping feature events and methods
When grid grouping is enabled five additional events are available to the grid. These can be
accessed by adding a listener to the grid's configuration like so:

Ext.create('Ext.grid.Panel', {
 ...
 listeners: {
 groupclick: function(grid, node, group){
 alert(group);
 }
 },
 ...
});

The groupclick listener is fired every time the user clicks on the group header. In this
example the group name appears in a JavaScript alert.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

291

We can also add additional configurations to the grouping feature. The startCollapsed
config option here collapses all the groups when first rendered:

var moreGrouping = Ext.create('Ext.grid.feature.Grouping', {
 groupHeaderTpl: 'Client: {name}',
 startCollapsed: true
});

The buttons in this top toolbar call the enable and disable methods available to the
instantiated grouping feature:

Ext.create('Ext.grid.Panel', {
 ...
 features: [moreGrouping],
 tbar: [{
 text: 'Enable Groups',
 handler: function(){
 moreGrouping.enable();
 }
 }, {
 text: 'Disable Groups',
 handler: function(){
 moreGrouping.disable();
 }
 }],
 ...
});

See also
ff You may find the recipes in Chapter 4 useful when working with XTemplates.

Custom rendering of grid cells with
TemplateColumns

The Ext.grid.column.Template class is a new column type that has been introduced
in Ext JS 4. It allows a very easy mechanism for formatting a grid's columns with an
Ext.XTemplate so you can have full control over your grid's displayed data.

We will continue with our Invoice Management example, and in this recipe we are going to
explore how to use this new class to add extra information and formatting to the Client and
Amount grid columns.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

292

Getting ready
As with all the recipes in this chapter so far, we are going to use the generic Invoices
Ext.data.Model and Ext.data.Store, which can be found in the invoices-store.js
and invoices-model.js. These have been bundled with the resources for this chapter and
both files will need to be included in your HTML like so:

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

How to do it...
1.	 Now we have the Model and Store in place. We can create a basic grid panel that is

bound to our invoiceStore. This grid has columns defined for four of the Model's
fields: Client, Date, Amount, and Status:
Ext.create('Ext.grid.Panel', {
 title: 'Chapter 8 - Grids',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client'
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }]
});

2.	 Now we have our basic structure in place we can define the Client column as an
Ext.grid.column.Template column. We do this by adding an xtype to its
column definition and giving it the value templatecolumn:
...
xtype: 'templatecolumn',
...

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

293

3.	 We can add the tpl configuration option and assign it a string containing
our template. We will simply display the client's value and then the invoice's
description in a span under it. We are also going to add a QuickTip to it in case
it is too long for the cell to contain:
{
 xtype: 'templatecolumn',
 header: 'Client',
 dataIndex: 'Client',
 tpl: '{Client}
<span class="description" data-qtip="{Descr
iption}">{Description}'
}

4.	 Finally, we'll add a quick CSS style to make it look a bit better:
.description {
 color: #666;
 font-size: 0.9em;
 margin-top: 4px;
}

5.	 We can now see the output in the following screenshot:

How it works...
Although it gives us a lot of control over our grid cells, the Ext.grid.column.Template
class must be one of the smallest in the framework. It extends the base Ext.grid.column.
Column class and naturally can be configured with all of its options.

The Ext.grid.column.Template class makes use of the base column's renderer option
and creates a new renderer function that applies the current grid row's Model instance (and
all of its loaded associated data) to the column's tpl property. If this property is a string it is
used to create a new Ext.XTemplate instance, otherwise the instance is used directly. The
output of applying the Model's data to this template is then displayed in the cell.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

294

The renderer option of a column allows the cell's data
and appearance to be manipulated before it is rendered to
the screen. For example, it can be used to apply conditional
styles to a cell or to calculate a new value based on other
data in the Model instance.

There's more...
As well as accepting a string the tpl option can accept an actual Ext.XTemplate instance.
We will show this in action by converting the Amount column into a template column,
and using an explicit Ext.XTemplate instance to format the currency and add the
Currency field:

1.	 As before, we start by adding the Ext.grid.column.Template column's xtype
(templatecolumn) to the column.

2.	 Our next step is to assign the tpl option an Ext.XTemplate object and define the
template string itself:
...
tpl: new Ext.XTemplate(
 '{Amount}',
 '{Currency}'
)
...

3.	 If you view this you will see the Currency field showing but our Amount field is not
showing two decimal places. We can fix this by adding a formatting function as part of
our Ext.XTemplate (as we have done in previous chapters) and use this to format
our float:
tpl: new Ext.XTemplate(
 '{Amount:this.formatAmount}',
 '{Currency}', {
 formatAmount: function(val){
 return val.toFixed(2);
 }
)

4.	 As in the first example, we will add some CSS styling to format our currency type and
the outcome can be seen in the following screenshot:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

295

See also
ff For a more detailed explanation of XTemplates, it's worth looking back to Chapter 4

where we've provided a number of useful examples.

Creating summary rows aggregating the
grid's data

It is often useful to summarize data that is displayed in a grid. For example, you may wish
to display the number of rows, sum the values in a column, or calculate the average (mean)
for a column.

Ext JS 4 provides a useful feature for grids to allow us to display a summary row in the last row
or, if it is a grouped grid, in the last row of each group. The Ext.grid.feature.Summary
and Ext.grid.feature.GroupingSummary classes provide the tools required to do so:

This recipe will demonstrate how to add a summary row to your grid and perform custom
rendering on the value.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

296

Getting ready
We are going to use the Invoice example that we have used throughout this chapter so we will
start by including the Model and Store files to our HTML page:

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

How to do it...
1.	 Create a grid panel with the following configuration and column configuration:

Ext.create('Ext.grid.Panel', {
 title: 'Summary Example',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1
 }, {
 header: 'Date',
 dataIndex: 'Date',
 xtype: 'datecolumn',
 format: 'd/m/Y'
 }, {
 header: 'Amount',
 dataIndex: 'Amount',
 xtype: 'numbercolumn'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

2.	 In the grid's features collection add summary as ftype. Then add a summaryType
and custom summaryRenderer to the Amount column to sum the total value of
all invoices:
Ext.create('Ext.grid.Panel', {
 ...

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

297

 features: [{
 ftype: 'summary'
 }],
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1
 }, {
 header: 'Date',
 dataIndex: 'Date',
 xtype: 'datecolumn',
 format: 'd/m/Y'
 }, {
 header: 'Amount',
 dataIndex: 'Amount',
 xtype: 'numbercolumn',
 summaryType: 'sum',
 summaryRenderer: function(value, summaryData, field){
 return '£' + Ext.Number.toFixed(value, 2);
 }
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 ...
});

3.	 Finally, add a count summary to the Client column and apply a custom
summaryRenderer to display the total number of invoices in this grid:
Ext.create('Ext.grid.Panel', {
 ...
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1,
 summaryType: 'count',
 summaryRenderer: function(value, summaryData, field){
 return Ext.String.format('{0} Invoice{1}', value,
value !== 1 ? 's' : '');
 }
 },
 ...
]
 ...
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

298

4.	 To customize the style of the summary row, add the following CSS in the HEAD
element of your HTML page:

<style type="text/css">
 .x-grid-row-summary .x-grid-cell-inner {
 font-weight: bold;
 }
</style>

How it works...
The summary-row feature is added to the grid by adding ftype: 'summary' to the grid's
features collection. Having done this, it's now simply a case of adding the summaryType
option to the desired column's configuration.

Ext JS 4 provides five built-in summary types that are listed as follows:

ff count

ff sum

ff min

ff max

ff average

These perform the calculation on the specified record's fields. Of course, it is possible to write
a custom summaryType by supplying a function definition, for example:

summaryType: function(value) { // Calculation code here }

We use the summaryRenderer to customize the output value of the summary.

The Amount column's summaryRenderer ensures that the summed value is displayed to two
decimal places with a pound sterling symbol.

In the Client column, we define our parameterized string ({0} Invoice{1}) and pass the
desired arguments to replace the parameters. The first parameter is replaced with value (the
count of all rows) and the second is replaced with the outcome of the following condition:

value !== 1 ? 's' : ''

This enables us to display the word Invoices when the number of rows is greater than one.

There's more...
In addition to adding a summary to the last row of a grid, it's also possible to summarize the
data in a grouping grid.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

299

Summary data in a grouping grid
Swap out the grouping ftype from the features collection for a groupingsummary ftype.
We can define other grouping configuration options (such as the groupHeaderTpl)
here as well. The summaryType and summaryRenderer are the same as the standard
summary feature:

Ext.create('Ext.grid.Panel', {
 ...
 features: [{
 groupHeaderTpl: 'Client: {name}',
 ftype: 'groupingsummary'
 }],
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1,
 summaryType: 'count',
 summaryRenderer: function(value, summaryData, field){
 return Ext.String.format('{0} Invoice{1}', value,
 value !== 1 ? 's' : '');
 }
 }, {
 header: 'Date',
 dataIndex: 'Date',
 xtype: 'datecolumn',
 format: 'd/m/Y'
 }, {
 header: 'Amount',
 dataIndex: 'Amount',
 xtype: 'numbercolumn',
 summaryType: 'sum',
 summaryRenderer: function(value, summaryData, field){
 return '£' + Ext.Number.toFixed(value, 2);
 }
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 ...
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

300

Displaying full-width row data with the
RowBody feature

Although grids are generally about rows and columns of individual values, we often have a
need to display some extra information that describes the entire row rather than a single
column. In a traditional HTML table we could display this as a second TR containing a cell
spanning all of the table's columns. This would then allow extra information, which might
be too large for a single cell to display, alongside the separate cell values.

Ext JS contains a similar feature that allows us to create a full-width row below the
column-separated row to display additional information relating to that row.

This recipe will show how we can achieve this to display one of our Model's fields, and
then how to expand it to contain HTML generated from an Ext.XTemplate. The following
screenshot shows our final goal:

Getting ready
We will include the standard Invoices Model and Store we have used throughout this chapter
into our HTML page with the following code.

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

301

How to do it...
1.	 As before we start with a basic grid, containing four columns, which is bound to our

Invoice's Store:
Ext.create('Ext.grid.Panel', {
 title: 'Chapter 8 - Grids',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1
 }, {
 header: 'Date',
 dataIndex: 'Date',
 width: 200
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 renderTo: Ext.getBody()
}];

2.	 Our next step is to create a new Ext.grid.feature.RowBody instance and add it
to our grid's features configuration option:
...
features: [Ext.create('Ext.grid.feature.RowBody', {})],
...

3.	 If we view the result so far, we can see the RowBody being added but it is empty.

4.	 We must now configure it to display the data we want. We do this by overriding the
getAdditionalData method of the Ext.grid.feature.RowBody class, which
returns an object literal that is applied to the RowBody's markup template. We set
the rowBody property of the returned object to the description contained in our
Model's data.
features: [Ext.create('Ext.grid.feature.RowBody', {
 getAdditionalData: function(data){
 var headerCt = this.view.headerCt,
 colspan = headerCt.getColumnCount();

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

302

 return {
 rowBody: data.Description,
 rowBodyCls: this.rowBodyCls,
 rowBodyColspan: colspan
 };
}

5.	 Our result now looks much better with each Invoice's description being displayed
under its main row. However, the two rows look very disconnected and the grid's
selection model does not include the RowBody in its selection styling:

6.	 We solve this problem by adding another grid feature called the Ext.grid.
feature.RowWrap to the grid's features array. We do this by using its ftype
(which, as mentioned earlier, is similar to an xtype but is specific for features):

...
{
 ftype: 'rowwrap'
}
...

How it works...
The Ext.grid.features.RowBody class works by injecting extra HTML into the grid's view
based on the returned template from the class's getRowBody method. This template is used
in conjunction with the data object that is created within the getAdditionalData method
that we created in step 4. The important output of this method is the rowBody property of the
returned object. This value is used to replace the RowBody's main template placeholder and
forms the content of the new row.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

303

The other two properties of the returned object, rowBodyCls
and rowBodyColspan, are used to define the CSS class applied
to the RowBody's TR element and the number that is given to the
table cell's colspan property respectively.

The final step adds the Ext.grid.feature.RowWrap class that wraps the grid's row
content with a child table element containing the grid's normal row, and the extra row added
by the RowBody feature. By using this feature it makes the RowBody part of the selectable
area and combines the two rows in a much more visually appealing way.

There's more...
The value of the rowBody property discussed in step 4 above is simply injected into the row's
only cell and so can contain any text or markup that we want. We will demonstrate this by
creating a simple Ext.XTemplate, which will allow us to format the content of the RowBody:

1.	 We start by creating an Ext.XTemplate as a property of the
Ext.grid.feature.RowBody instance applied to the grid:
Ext.create('Ext.grid.feature.RowBody', {
 rowBodyTpl: new Ext.XTemplate('<span style="font-weight:
bold;">Description: {Description}'),

 getAdditionalData: function(data){
 var headerCt = this.view.headerCt,
 colspan = headerCt.getColumnCount();

 return {
 rowBody: data.Description,
 rowBodyCls: this.rowBodyCls,
 rowBodyColspan: colspan
 };
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

304

2.	 We can then access this template, apply the data parameter to it, and assign the
output to the rowBody property:
Ext.create('Ext.grid.feature.RowBody', {
 rowBodyTpl: new Ext.XTemplate('<span style="font-weight:
bold;">Description: {Description}'),

 getAdditionalData: function(data){
 var headerCt = this.view.headerCt,
 colspan = headerCt.getColumnCount();

 return {
 rowBody: this.rowBodyTpl.apply(data),
 rowBodyCls: this.rowBodyCls,
 rowBodyColspan: colspan
 };
 }
});

3.	 The output of this shows a bold Description label beside each row's description value
as seen in the screenshot at the beginning of the recipe.

The getAdditionalData method runs in the scope of the
Ext.grid.feature.RowBody's instance and so allows us
to access the Ext.XTemplate stored in the rowBodyTpl
property using the this keyword.

See also
ff For further information on XTemplate's please refer back to Chapter 4.

Adding a context menu to grid rows
Context menus are a huge part of desktop computing: often, when we right-click on an object,
we expect to see a list of actions that can be performed.

This recipe is going to explain how we can create a context menu that will be shown when the
user right-clicks on a row, and that will allow them to instigate an action upon it.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

305

Getting ready
We are going to use the Invoice example that we have used throughout this chapter, so we will
start by including the Model and Store files to our HTML page:

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

How to do it...
1.	 Our first step is to create a basic grid, such as the one we created in the first recipe

of this chapter:
var invoicesGrid = Ext.create('Ext.grid.Panel', {
 title: 'Chapter 8 - Grids',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client'
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 renderTo: Ext.getBody()
});

2.	 We now instantiate an Ext.menu.Menu object and configure it with a height, width,
and a collection of Ext.menu.Items that will be our action buttons:
var contextMenu = Ext.create('Ext.menu.Menu', {
 height: 100,
 width: 125,
 items: [{
 text: 'View Invoice',
 icon: 'icons/document-text.png'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

306

 }, {
 text: 'Edit Invoice',
 icon: 'icons/pencil.png'
 }, {
 text: 'Re-Send Invoice',
 icon: 'icons/envelope-label.png'
 }, {
 text: 'Delete Invoice',
 icon: 'icons/minus-circle.png'
 }]
});

3.	 We can now hook the right-click event of the grid to a function that will show our
menu. This event is named itemcontextmenu and will fire when a grid row is
right-clicked.

4.	 We add a handler by using the grid's on method and make two method calls
inside it. The first, stopEvent, prevents the right-click event from showing the
browser's native context menu; and the second displays our menu at the position
the right-click occurred:
invoicesGrid.on({
 itemcontextmenu: function(view, record, item, index, e){
 e.stopEvent();

 contextMenu.showAt(e.getXY());
 }
});

5.	 Our final step is to handle each of our menu items' click event, so that we can perform
an action. We will do this by using the defaults option of the Ext.menu.Menu class
and define a click handler that will log the text of the button that was clicked:
defaults: {
 listeners: {
 click: function(item){

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

307

 console.log(item.text + ' Clicked!');
 }
 }
},

How it works...
The important part of this recipe is the itemcontextmenu event of the Ext.grid.Panel
class. This allows us to react to a user's right-click and displays a menu when it occurs.

The call to the Ext.EventObject's stopEvent method stops the event from cascading to
other components and also stops the browser handling the event itself, thus preventing the
browser's native context menu from appearing.

In step 4 we have made use of the defaults configuration option, which every subclass
of Ext.container.AbstractContainer has. This option allows a set of properties to
be defined in one place, and they will be applied to each of the container's child items. In
our case, this meant we only had to define the menu items' click handler once, reducing the
amount of code we have to write and maintain.

There's more...
Obviously when a user right-clicks on a specific row and chooses an option, we want to pass
information about the targeted row to the action's code. We will now demonstrate a quick way
of getting the selected record, which can then be passed through and used in
our action code:

1.	 We start by adding an itemId to each of our menu items. This will allow us to figure
out which button was clicked while maintaining a single-click handling function:
[{
 text: 'View Invoice',
 icon: 'icons/document-text.png',
 itemId: 'viewButton'
}, {
 text: 'Edit Invoice',
 icon: 'icons/pencil.png',
 itemId: 'editButton'
}, {
 text: 'Re-Send Invoice',
 icon: 'icons/envelope-label.png',
 itemId: 'resendButton'
}, {
 text: 'Delete Invoice',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

308

 icon: 'icons/minus-circle.png',
 itemId: 'deleteButton'
}]

2.	 Next, we use the getSelection method of the grid's selection model class to return
an array of the selected rows. In our example, only one row is selectable at a time and
this selection changes on each right-click:
var selectedRecords = invoicesGrid.getSelectionModel().
getSelection();

3.	 Finally, we check to ensure that there is a row selected and use the first one in a
switch statement to execute the correct code for the clicked menu item:
if (selectedRecords.length > 0) {
 var record = selectedRecords[0];
 switch (item.itemId) {
 case 'viewButton':
 // Do View logic
 break;
 case 'editButton':
 // Do Edit logic
 break;
 case 'resendButton':
 // Do Re-Send logic
 break;
 case 'deleteButton':
 // Do Delete logic
 break;
 }
 console.log(Ext.String.format('{0} - {1} for {2} {3}', item.
text, record.get('Client'), record.get('Amount'), record.
get('Currency')));
}

See also
ff We explore buttons and menus in more detail in Chapter 9, Constructing Toolbars

with Buttons and Menus.

Populating a form from a selected grid row
Binding grid data to other components provides a useful way to display data differently or
enable users to edit the data away from the grid. This recipe will demonstrate how to bind
a grid to a form, update the record, and have the grid reflect the changes.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

309

Getting ready
We are going to use the Invoice example that we have used throughout this chapter. So we will
start by including the Model and Store files to our HTML page:

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

How to do it...
1.	 Create a grid bound to the invoiceStore with the following column configuration:

var grid = Ext.create('Ext.grid.Panel', {
 title: 'Chapter 8 - Grids',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

2.	 Create a form panel with the following field configuration. Ensure the field names
map directly between the Model and the Form. Additionally, the date field's
submitFormat must be the same as the Model's date format:
var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Invoice Form',
 bodyPadding: 5,
 width: 350,
 layout: 'anchor',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

310

 defaults: {
 anchor: '100%'
 },
 defaultType: 'textfield',
 items: [{
 fieldLabel: 'Client',
 name: 'Client'
 }, {
 fieldLabel: 'Date',
 name: 'Date',
 xtype: 'datefield',
 submitFormat: 'c'
 }, {
 fieldLabel: 'Amount',
 name: 'Amount',
 xtype: 'numberfield',
 hideTrigger: true,
 keyNavEnabled: false,
 mouseWheelEnabled: false
 }, {
 fieldLabel: 'Status',
 name: 'Status',
 xtype: 'displayfield'
 }],

 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

3.	 Ensure the grid has a row selection model and add a listener to listen to the
select event of Ext.selection.RowModel. When a row is selected we load
the record into the form panel:
var grid = Ext.create('Ext.grid.Panel', {
 ...
 selType: 'rowmodel',
 listeners: {
 select: function(RowModel, record, index, eOpts){
 formPanel.loadRecord(record);
 }
 },
 ...
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

311

4.	 Add a button to the form panel to submit the data back to the Model. This will update
the grid and submit the data to the server.
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 buttons: [{
 text: 'Update Data',
 handler: function(){
 var form = this.up('form').getForm();
 var recordIndex = form.getRecord().index;
 var formValues = form.getValues();
 var record = grid.getStore().getAt(recordIndex);

 record.beginEdit();
 record.set(formValues);
 record.endEdit();
 }
 }],
 ...
});

The up method used in the previous function allows us to move up
the tree of components; looking for the first component that matches
the specified Ext.ComponentQuery selector. In our example
we are looking for a component with an xtype of form, which
will return the button's parent form panel. Similarly, components
have a down method that works the same way but looks for a child
component that matches the selector.

How it works...
When populating a form with data from a grid we use the select event that is fired when
the user clicks a row. This select event is provided by the Ext.selection.RowModel
(rowmodel) class which is applied to the grid using the selType configuration option.

By calling the loadRecord method of the Form panel, we are able to load the record
directly into the form. Populating the fields is taken care of by the framework where it
loops through the form, mapping the model field to the form field by name.

We then let the user edit data with the form and update the Model. When the Model is
updated we can send the newly edited data to the server through the AJAX proxy. We have
done this by defining autoSync: true on the Store, however, if required this can be
done manually.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

312

We can split the update handler down into three tasks:

1.	 Get the form values:
var form = this.up('form').getForm();
var formValues = form.getValues();

2.	 Get the correct record from the grid's store using the store's getAt method:
var recordIndex = form.getRecord().index;
var record = grid.getStore().getAt(recordIndex);

3.	 Set the newly updated values to the Model and, if desired, write the data to the
server through the proxy:
record.beginEdit();
record.set(formValues);
record.endEdit();

We have called the beginEdit and endEdit methods to ensure that the data is sent to the
server in one batch. By calling these methods no events are raised to the parent store until
the endEdit method is called, at which point the events will fire.

See also
ff To learn more about forms and populating forms it's worth having a look at Chapter 5.

ff We've described form fields in greater detail in Chapter 6.

ff A similar example can be found in Chapter 4 in the recipe titled Displaying a detailed
window after clicking a DataView node.

Adding buttons to grid rows with action
columns

The action column enables you to define a column with a series of clickable icons that allow
users to interact with the grid on a row-by-row basis.

This example will demonstrate how to create an action column for a grid with multiple icons
that can be clicked:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

313

Getting ready
We are going to use the Invoice example that we have used throughout this chapter so we will
start by including the Model and Store files to our HTML page:

<script type="text/javascript" src="invoices-model.js">
</script>
<script type="text/javascript" src="invoices-store.js">
</script>

How to do it...
1.	 Initialize the QuickTipManager to ensure that tooltips are displayed:

Ext.tip.QuickTipManager.init();

2.	 Create a basic grid that is bound to the invoiceStore with the following
columns configuration:
Ext.create('Ext.grid.Panel', {
 title: 'Action Column Example',
 height: 150,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],

 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

314

3.	 Add a fifth column to the column configuration. This will be an actioncolumn with
a pencil icon. The action's click handler will display a JavaScript alert:
Ext.create('Ext.grid.Panel', {
 ...
 columns: [
 ...
 {
 xtype: 'actioncolumn',
 icon: 'icons/pencil.png',
 tooltip: 'Edit',
 handler: function(grid, rowIndex, colIndex){
 alert('Show "Edit Invoice" component');
 }
 }]
 ...
});

4.	 We can add multiple icons to an actioncolumn by defining the actions in the
Ext.grid.column.Action's items collection. Each action will have its own
click handler:
Ext.create('Ext.grid.Panel', {
 ...
 columns: [
 ...
 {
 xtype: 'actioncolumn',
 items: [{
 icon: 'icons/pencil.png',
 tooltip: 'Edit',
 handler: function(grid, rowIndex, colIndex){
 alert('Show "Edit Invoice" component');
 }
 }, {
 icon: 'icons/minus-circle.png',
 tooltip: 'Delete',
 handler: function(grid, rowIndex, colIndex){
 Ext.Msg.show({
 title: 'Delete Invoice',
 msg: 'Confirm deleting this invoice',
 buttons: Ext.Msg.YESNO,
 icon: Ext.Msg.QUESTION
 });
 }
 }, {
 icon: 'icons/money.png',
 tooltip: 'Enter Payment',
 handler: function(grid, rowIndex, colIndex){

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

315

 Ext.Msg.prompt('Enter Payment', 'Payment
Amount:');
 }
 }]
 }]
 ...
});

How it works...
The action column is defined in the grid's column collection. We're using lazy instantiation
by creating a column with xtype: 'actioncolumn', which will have the configuration and
click handler(s) required.

Firstly, we need to ensure that the action displays an icon to the user. This is done by
defining the icon config option. For example, icon: 'icons/pencil.png' will display
the pencil.png image located in the icons directory.

Secondly, if the user were to click on the icon, we may wish to carry out a task (for example,
display a message). The handler function is used for this purpose. It will be called every
time the icon is clicked.

ff Multiple actions in one column: We are able to add multiple icons to one column
with individual click handlers. This is done by defining each individual icon/
handler inside the items collection of the actioncolumn.

ff Icon tooltips: The tooltip config option of an actioncolumn adds a tooltip
message to the icon when the user hovers over the icon. In order for this to display
you must initialize the Ext.tip.QuickTipManager.

There's more...
It's possible to take this one step further and configure the actioncolumn to switch between
icons dynamically.

Change the icon dynamically
Here we can see that a green tick appears when the data in the Status column is Paid and
a red cross for all other Status types:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Displaying and Editing Tabular Data

316

1.	 We need to create a CSS class for each of our dynamic icons/actions:
<style type="text/css">
 .paid {
 background-image: url(icons/tick.png);
 width: 16px;
 }

 .not-paid {
 background-image: url(icons/cross.png);
 width: 16px;
 }
</style>

2.	 The action column uses a getClass function to return the desired CSS class
depending on the value in the Status field. It is also possible to set a different
tooltip for each case. The click handler applies to all icons for this action, however, it
would be straightforward to add a similar switch statement to customize the outcome
of the click.
LC: please replace the entire block with :

Ext.create('Ext.grid.Panel', {
 ...
 columns: [{
 xtype: 'actioncolumn',
 hideable: false,
 items: [{
 getClass: function(v, meta, rec){
 switch (rec.get('Status')) {
 case 'Paid':
 this.items[3].tooltip = 'This invoice has
been paid.';
 return 'paid';
 default:
 this.items[3].tooltip = 'This invoice has
not yet been paid.';
 return 'not-paid';
 }
 },
 handler: function(grid, rowIndex, colIndex){
 var rec = grid.getStore().getAt(rowIndex);
 alert('Status: ' + rec.get('Status'));
 }
 }]
 }],
 ...
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 8

317

Prevent the column appearing in the hide/show column menu
By default, the action column will appear in the above list. Furthermore, because we have
not assigned a column header the column name will be empty. To hide the column from this
menu set hideable: false in the actioncolumn configuration:

See Also
ff For another way of displaying actions relating to a grid row see the recipe Adding a

context menu to grid rows.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

9
Constructing Toolbars

with Buttons and
Menus

In this chapter, we will cover:

ff Creating a split button

ff Working with context menus

ff Adding a combobox to a toolbar to filter a grid

ff Using the color picker in a menu

Introduction
Toolbars, buttons, and menus are the foundation for giving users the means to interact
with our applications. They are a navigation and action-launching paradigm that almost all
computer users are familiar with and so making use of them in your applications will give
users a head start in finding their way around.

This chapter will explore these crucial components and demonstrate how to add them to your
application to provide an interactive and dynamic user experience.

Creating a split button
Split buttons are a great way of offering the user multiple actions while keeping the most
common default action at the top level, and minimizing the number of buttons cluttering
up the viewport.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Constructing Toolbars with Buttons and Menus

320

This recipe will explain how to create a simple split button offering the user a choice of which
format they would like to save their document.

How to do it...
1.	 We start with a blank HTML document with the Ext JS framework included and an

onReady function ready to have our code added.

2.	 Now we have our structure, we create a new Ext.button.Split instance with
some simple configuration. We start by giving it a text value, a tooltip, and
a handler function:
var splitButton = Ext.create('Ext.button.Split', {
 text: 'Save...',
 tooltip: 'Click the arrow to choose what format to save
in...',
 handler: function(){
 console.log('Save as Default');
 }
});

3.	 Now we have our button we will create a simple Ext.panel.Panel with a toolbar to
contain our button:
var panel = Ext.create('Ext.panel.Panel', {
 renderTo: Ext.getBody(),
 height: 300,
 width: 400,
 html: 'Panel Contents',
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [splitButton]
 }]
});

4.	 We can now see the button in place and the console log when the button is clicked:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 9

321

5.	 We continue by configuring our split button to have an Ext.menu.Menu instance
attached to its menu property. This menu will be shown when the split button's
arrow is clicked:
var splitButton = Ext.create('Ext.button.Split', {
 text: 'Save...',
 tooltip: 'Click the arrow to choose what format to save
in...',
 handler: function(){
 console.log('Save as Default');
 },
 menu: Ext.create('Ext.menu.Menu', {
 items: [{
 text: 'Save as Image',
 handler: function(){
 console.log('Save as Image');
 }
 }, {
 text: 'Save as PDF',
 handler: function(){
 console.log('Save as PDF');
 }
 }, {
 text: 'Save as Word Document',
 handler: function(){
 console.log('Save as Word Document');
 }
 }]
 })
});

6.	 Now that we have added our menu we can see it appear when we click the split
button's arrow:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Constructing Toolbars with Buttons and Menus

322

How it works...
The split buttons work by having an Ext.menu.Menu instance attached to them, which is
displayed under the main button, when its arrow is clicked. This menu can be configured in
exactly the same way as if were it being placed anywhere in your application (for example,
as a context menu or directly on a toolbar).

The handler option that we gave to the button in step 2 is the function that will be
executed when the button's main body (that is, not the arrow) is clicked. This allows us
to assign the default behavior of the button. Each of the menu's items contains their
own handler functions, which will be executed when each of them is clicked.

Just like a regular Ext.button.Button we can configure a
split button to display an icon by adding the icon or iconCls
configuration options.

There's more...
We will now look into how to remove the split button's default behavior and instead always
have the menu display on a click. We will also explore the Ext.button.Cycle component,
a subclass of the Ext.button.Split component, and demonstrate an example using it.

Removing the default action and always showing the menu
1.	 We will start with the simple split button that we created in step 3, but we will

remove the handler configuration:
var splitButton = Ext.create('Ext.button.Split', {
 text: 'Save...',
 tooltip: 'Click the arrow to choose what format to save
in...',
 menu: Ext.create('Ext.menu.Menu', {
 items: [{
 text: 'Save as Image',
 handler: function(){
 console.log('Save as Image');
 }
 }, {
 text: 'Save as PDF',
 handler: function(){
 console.log('Save as PDF');
 }
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 9

323

 text: 'Save as Word Document',
 handler: function(){
 console.log('Save as Word Document');
 }
 }]
 })
});

2.	 We will now bind a function to the button's click event:
splitButton.on({
 click: function(){

 },
 scope: this
});

3.	 We can now complete the task by adding a call to the showMenu method of the
Ext.button.Split class,which will display the configured menu below the
button when the button, as well as the arrow, is clicked:

splitButton.on({
 click: function(){
 splitButton.showMenu();
 },
 scope: this
});

Using the Ext.button.Cycle component
The Ext.button.Cycle class is a subclass of the Ext.button.Split class. It alters the
behavior so that when we press the button, the next item in the menu becomes active. We
create a similar Save button using this component with the following code:

var cycleButton = Ext.create('Ext.button.Cycle', {
 showText: true,
 prependText: 'Save as ',
 menu: {
 items: [{
 text: 'Image'
 }, {
 text: 'PDF'
 }, {
 text: 'Word Document'
 }]
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Constructing Toolbars with Buttons and Menus

324

The showText option determines whether the active item's text is displayed as the main
button's text. The prependText value is used to prefix the active item's text value. By default
the first item is considered the active item but this can be determined by adding checked:
true to one of the menu items.

The menu is defined as a simple object literal rather than a
concrete Ext.menu.Menu instance. This is required for the
cycle button to work.

There are several useful methods and events that can be used to hook into the button's
cycling functionality:

ff changeHandler: A function set to this option gets attached to the button's change
event and is executed whenever the button's active item is changed. Alternatively the
change event can be listened for explicitly.

ff getActiveItem/setActiveItem: These two methods allow the active item to be
retrieved or set.

ff toggleSelected: This method lets us programmatically toggle the active item
to the next one in the menu.

Working with context menus
A context menu is a menu that contains actions that are specific to the item the cursor is
pointing at. These menus are normally accessed through the right mouse button.

This recipe builds upon the example Adding a context menu to grid rows from Chapter 8,
Displaying and Editing Tabular Data by showing a context menu when the user right-clicks
on a row. Depending on the values in the selected row we will enable/disable certain options
from the menu. The final result can be seen in the following screenshot:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 9

325

Getting ready
To get us up and running quickly we will reuse the Invoices Model and Store that we used in
the previous chapter. If you aren't familiar with them please revisit that chapter and remind
yourself of their code.

How to do it...
1.	 We start by including the Invoices Model and Store files into our HTML file. The code

for these files can be seen in Chapter 8.
<script type="text/javascript" src="invoices-model.js"></script>
<script type="text/javascript" src="invoices-store.js"></script>

2.	 The next step is to create a basic grid and render it to the document's body:
var invoicesGrid = Ext.create('Ext.grid.Panel', {
 title: 'Chapter 9',
 height: 300,
 width: 600,
 store: invoiceStore,
 columns: [{
 header: 'Client',
 dataIndex: 'Client',
 flex: 1
 }, {
 header: 'Date',
 dataIndex: 'Date',
 xtype: 'datecolumn',
 dateFormat: 'd/m/Y'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],

 renderTo: Ext.getBody()
});

3.	 We now instantiate an Ext.menu.Menu object and configure it with a height, width,
and a collection of Ext.menu.Items that will be our action buttons:
var contextMenu = Ext.create('Ext.menu.Menu', {
 height: 100,
 width: 125,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Constructing Toolbars with Buttons and Menus

326

 items: [{
 text: 'View Invoice'
 }, {
 text: 'Edit Invoice'
 }, {
 text: 'Re-Send Invoice'
 }, {
 text: 'Archive Invoice'
 }, {
 text: 'Delete Invoice'
 }]
});

4.	 We can now hook the right-click event (itemcontextmenu) of the grid to a function
that will show our menu. This function contains the logic to enable/disable the
buttons depending on the values in the row:

invoicesGrid.on({
 itemcontextmenu: function(grid, record, item, index, e, eOpts)
 {
 e.stopEvent();

 var viewBtn = contextMenu.items.get(0);
 var editBtn = contextMenu.items.get(1);
 var resendBtn = contextMenu.items.get(2);
 var archiveBtn = contextMenu.items.get(3);
 var deleteBtn = contextMenu.items.get(4);

 var status = record.get('Status');

 switch (status) {
 case 'Paid':
 viewBtn.enable();
 editBtn.disable();
 resendBtn.disable();
 archiveBtn.enable();
 deleteBtn.disable();
 break;
 case 'Sent':
 viewBtn.enable();
 editBtn.enable();
 resendBtn.enable();
 archiveBtn.disable();
 deleteBtn.enable();
 break;

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 9

327

 case 'Viewed':
 viewBtn.enable();
 editBtn.enable();
 resendBtn.enable();
 archiveBtn.disable();
 deleteBtn.enable();
 break;
 default:
 }

 contextMenu.showAt(e.getXY());
 }
});

How it works...
To invoke the context menu we listen for the itemcontextmenu event of the Ext.grid.
Panel class. This allows us to react to a user's right-click and display a menu when it occurs.

The call to the stopEvent method of the Ext.EventObject class stops the event from
bubbling to other components and also stops the browser handling the event itself, thus
preventing the browser's native context menu from appearing.

We use the get method on the items collection of contextMenu to create a reference to
the individual menu items. This is done for convenience.

To determine the value of the Status column we call record.get('Status'). The
record is passed as a parameter on the itemcontextmenu event. We then use a switch
statement calling the enable or disable method on each button depending on the value
of Status.

The call to contextMenu.showAt(e.getXY()) displays our menu at a position where the
right-click happened.

See also
ff For a detailed look at grids we recommend you refer back to the previous chapter.

ff The recipe Adding a context menu to grid rows in Chapter 8, Displaying and Editing
Tabular Data introduces the context menu on a grid.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Constructing Toolbars with Buttons and Menus

328

Adding a combobox to a toolbar to filter
a grid

As well as buttons and text, form fields can be easily added to toolbars. We will use this recipe
to show you how to place a combobox on a panel's docked toolbar that will then be used
to filter the contents of a grid.

We will then expand on this by adding a free-text filter to the grid by positioning a text field on
the toolbar.

Getting ready
To get us up and running quickly we will reuse the Invoices Model and Store we used in the
previous chapter. If you aren't familiar with them please revisit that chapter and remind
yourself of the code.

How to do it...
1.	 We start by including the Invoices Model and Store files into our HTML file:

<script type="text/javascript" src="invoices-model.js"></script>
<script type="text/javascript" src="invoices-store.js"></script>

2.	 As we are creating a combobox we will need a data store for it to bind to. We
will create a simple store with some static data representing the possible status
values of our Invoices:
var statusStore = Ext.create('Ext.data.Store', {
 fields: ['Status'],
 data: [{
	 Status: 'All'
 }, {
 Status: 'Paid'
 }, {
 Status: 'Viewed'
 }, {
 Status: 'Sent'
 }, {
 Status: 'Draft'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 9

329

3.	 Next we create an Ext.form.field.ComboBox bound to our new store, with its
displayField and valueField properties set to our store's only field:
var filterCombo = Ext.create('Ext.form.field.ComboBox', {
 fieldLabel: 'Status Filter',
 labelWidth: 70,
 queryMode: 'local',
 displayField: 'Status',
 valueField: 'Status',
 store: statusStore
});

4.	 Now we create a simple grid panel, bound to the Invoices Store that we included in
step 1. We also create a toolbar as part of the dockedItems collection, which has
one child item—filterCombo:
var invoicesGrid = Ext.create('Ext.grid.Panel', {
 title: 'Chapter 9',
 height: 300,
 width: 600,
 store: invoiceStore,
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [filterCombo]
 }],
 columns: [{
 header: 'Client',
 dataIndex: 'Client'
 }, {
 header: 'Date',
 dataIndex: 'Date'
 }, {
 header: 'Amount',
 dataIndex: 'Amount'
 }, {
 header: 'Status',
 dataIndex: 'Status'
 }],

 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Constructing Toolbars with Buttons and Menus

330

We can see the outcome of this in the following screenshot:

5.	 Our next step is to listen for the combobox's select event and then filter the Invoices
Store based on the chosen value. We start by using the on method to attach a
handler function to the event:
filterCombo.on('select', function(combo, records, opts){

});

6.	 Finally, we perform the filter by first clearing any existing filters. Following this we use
the grid's store's filter method to exclude any records with Statuses that don't
match our chosen item:
filterCombo.on('select', function(combo, records, opts) {
 invoicesGrid.getStore().clearFilter();
 // if there are selected records and the first isn't
 // 'All' then apply the filter
 if(records.length > 0 && records[0].get('Status') !== 'All') {
 var filterStatus = records[0].get('Status');
 invoicesGrid.getStore().filter('Status', filterStatus);
 }
});

How it works...
Comboboxes extend the Ext.Component class, along with the entire framework's other
widgets. This common base class means that any Ext.Component can be nested inside
any Ext.Container class and be successfully laid out using the framework's layout classes.

This hierarchy means that the combobox can be added to containers, such as toolbars, as
easily as they can be to forms.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 9

331

The combobox's select event is fired when an option is chosen from its drop-down list.
It passes three parameters to any handler functions—the combobox itself, an array of the
selected records, and an options object.

In our handler function, we clear the filters currently applied to the store of invoiceGrid. This
is necessary to prevent the next added filter being applied in addition to the previous ones.

Next we check that at least one record is present in the records array and that the selected
status does not equal 'All'. By doing this we leave the store unfiltered if the user chooses
the All option.

Finally, the filter is applied by passing the field name to be filtered on and the selected status's
value to the store's filter method.

There's more...
We will now demonstrate how to add a text field to our grid's toolbar and use it to allow users
to filter the grid by typing the start of a client's name and having the grid filter in real-time.

1.	 We start by creating a text field:
var searchTextField = Ext.create('Ext.form.field.Text', {
 fieldLabel: 'Client Search'
});

2.	 Next we enable the field's key events (for example, keydown, keypress, and keyup)
so we can use them to perform our filtering:
var searchTextField = Ext.create('Ext.form.field.Text', {
 fieldLabel: 'Client Search',
 enableKeyEvents: true
});

3.	 Now we attach a listener to the field's keyup event. This will fire after the user
presses a key and then lets us filter the grid based on the value entered:
var searchTextField = Ext.create('Ext.form.field.Text', {
 fieldLabel: 'Client Search',
 enableKeyEvents: true,
 listeners: {
 keyup: {
 fn: function(field, e){

 }
 }
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Constructing Toolbars with Buttons and Menus

332

4.	 We use the grid store's filterBy method that allows us to define our own function,
which is executed for every record in the store and, if true is returned from it, we will
include that record in its filtered collection:
fn: function(field, e){
 var val = field.getValue();

 invoicesGrid.getStore().filterBy(function(record){
 return record.get('Client').substring(0, val.length) ===
val;
 }, this);
}

5.	 We want to prevent this handler from being run if lots of characters are being typed in
quick succession. We can do this by providing a buffer option that tells the handler
to only run after this number of milliseconds has elapsed. If the event is fired again,
before this time has passed, then the timer will start again and the previous event
does not execute:
…
keyup: {
	 fn: function(field, e){
		 …
	 },
	 buffer: 250
}
…

6.	 Lastly, we add the text field to the grid's toolbar:

invoicesGrid.getDockedItems()[1].add(searchTextField);

The following screenshot shows the text field in place and a filter applied:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 9

333

See also
ff For more information on grids take another look at Chapter 8. The recipe Displaying

simple tabular data is a particularly good starting point.

ff Models and Stores are covered in greater depth in Chapter 7, Working with the Ext JS
Data Package.

Using the color picker in a menu
The Color Picker component provides a straightforward way for the user to select a color from
a defined array of color hex codes:

This recipe will demonstrate how to use the color picker in a menu to change the body
background color. We will use the default 40-color palette that is provided by the framework.

How to do it...
1.	 Start by creating a button and add a new instance of a ColorPicker to the button's

menu property:
var button = Ext.create('Ext.button.Button', {
 text: 'Change the Background Color',
 menu: new Ext.menu.ColorPicker({
 ...
 })
});

2.	 Create a Panel with the button in a toolbar that's docked to the top.
var panel = Ext.create('Ext.Panel', {
 height: 300,
 width: 400,
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [button]

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Constructing Toolbars with Buttons and Menus

334

 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

3.	 Add a handler to the ColorPicker to change the body background color to the
selected color:
...
menu: new Ext.menu.ColorPicker({
 handler: function(picker, color){
 Ext.getBody().setStyle('background-color', '#' + color);
 }
})
...

How it works...
The color picker is defined in the menu property of the button. The resulting output of this is a
button that, when clicked, displays an Ext.picker.Color component.

However, as this particular example demonstrates the color picker as a menu, we create a
new instance of Ext.menu.ColorPicker, which is a menu (Ext.menu.Menu) containing
our Ext.picker.Color component.

When a color is selected the select event is fired. We see this behavior in the handler we
specified. The color parameter in the select event contains the selected hex code, which
we use to set the body's background color.

The hex code does not contain the hash (#) symbol.

In the body's element (retrieved through Ext.getBody()) we call the setStyle method,
specifying the CSS attribute that we wish to set:

Ext.getBody().setStyle('background-color', '#' + color);

The value is a concatenation of a # symbol and the selected color (from the color parameter).

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 9

335

There's more…
It's possible to customize the colors available to pick from by defining an array of hex codes in
the colors property:

var redHuePicker = new Ext.menu.ColorPicker({
 componentCls: 'x-color-picker custom',
 colors: ['E78A61', 'F9966B', 'EE9A4D', 'F660AB', 'F665AB',
'E45E9D', 'C25283', '7D2252', 'E77471', 'F75D59', 'E55451', 'C24641',
'FF0000', 'F62217', 'E41B17', 'F62817', 'E42217', 'C11B17', 'FAAFBE',
'FBBBB9', 'E8ADAA', 'E7A1B0', 'FAAFBA', 'F9A7B0', 'E799A3', 'C48793',
'C5908E', 'B38481', 'C48189', '7F5A58', '7F4E52', '7F525D'],
 handler: function(picker, color){
 Ext.getBody().setStyle('background-color', '#' + color);
 }
});

As there are less than 40 colors in the palette, we will also assign a custom CSS class to
resize the height and width of the component:

x-color-picker.custom {
 width: 150px;
 height: 70px;
 cursor: pointer;
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

10
Drawing and Charting

In this chapter, we will cover:

ff Drawing basic shapes

ff Applying gradients to shapes

ff Drawing paths

ff Transforming and interacting with shapes

ff Creating a bar chart with external data

ff Creating a pie chart with local data

ff Creating a line chart with updating data

ff Customizing labels, colors, and axes

ff Attaching events to chart components

ff Creating a live updating chart bound to an editable grid

Introduction
This chapter will demonstrate the new charting and drawing features introduced to Ext JS 4.
In particular, you will discover how to chart data for presentation in numerous ways.

We will take you through the Ext.draw package which, as you will learn, is used as the basis
of the charting package that we explore later. The first recipes introduce the tools available
for drawing shapes and text before moving onto the fully featured Ext.chart classes that
enable you to quickly create and integrate attractive, interactive charts into your apps.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

338

Drawing basic shapes
Ext JS 4 introduces a brand new drawing package that gives us the opportunity to create
complex graphics directly in the browser. The framework itself leverages this package to
render all of the new charts.

This recipe will explore how we go about using this new package to draw some simple shapes.
Before this, we will explain what classes the package consists of and how they work and
fit together:

ff Ext.draw.Surface: The surface class provides us with an abstracted interface
into the underlying drawing technology, which changes across different browsers
depending on what technologies they support. The concrete implementations of the
surface class use SVG (Ext.draw.engine.Svg) in all capable browsers with VML
(Ext.draw.engine.Vml) being used in the remaining incapable ones (namely,
Internet Explorer 6, 7, and 8). This abstraction lets us only worry about what we
want to draw and leave the responsibility of how to actually draw it to the framework.

ff Ext.draw.Sprite: A sprite is an entity that is drawn onto the drawing surface. In
terms of the drawing package, this could be a circle, a rectangle, a square, some text,
or an arbitrary path. Sprites expose various methods and events for manipulating and
interacting with them, which we will explore later in this chapter.

ff Ext.draw.Component: The draw package's component class references an
instance of Ext.draw.Surface (available from the component's surface
property) and allows sprites to be added to it in the same way we would add
other components to containers.

has instance of

Ext.draw.Component

Ext.draw.Surface

renders multiple

Ext.draw.Sprite Ext.draw.Sprite Ext.draw.Sprite

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

339

How to do it...
We will demonstrate how to create a couple of basic shapes (or sprites) by creating a very
simple map-pin icon consisting of a circle and a rectangle:

1.	 We start by creating an instance of the Ext.draw.Component class that we render
to the document's body:
var mapPin = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 500,
 viewBox: false
});

The viewBox configuration option tells the component
whether to scale its sprites to fill the component's size
or not (while maintaining the aspect ratio). For example,
with viewBox set to false our shapes will be sized by our
configuration. However, if we set it to true our shape will
scale to fill its parent component.

2.	 Next we create our map pin's head. We define a sprite, with a type of 'circle'
and some basic sizing and styling configuration, and add it to the component's
items collection:
var mapPin = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 500,
 viewBox: false,

 items: [{
 type: 'circle',
 x: 50,
 y: 50,
 radius: 10,
 fill: '#2D00B3'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

340

3.	 We now add the pin. This will be made up of a single rectangular sprite, positioned
under the circle. Note that we add it before the circle so it appears behind it:
var mapPin = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 500,
 viewBox: false,
 items: [{
 type: 'rect',
 x: 49,
 y: 58,
 width: 3,
 height: 30,
 fill: '#999'
 }, {
 type: 'circle',
 x: 50,
 y: 50,
 radius: 10,
 fill: '#2D00B3'
 }]
});

4.	 Finally, we add a small rotation to the pin so that it looks more realistic. We do this by
adding the rotate configuration option and giving it a value of -7 degrees:
var mapPin = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 500,
 viewBox: false,
 items: [{
 type: 'rect',
 x: 52,
 y: 58,
 width: 3,
 height: 30,
 fill: '#999',
 rotate: {
 degrees: -7
 }
 }, {
 type: 'circle',
 x: 50,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

341

 y: 50,
 radius: 10,
 fill: '#2D00B3'
 }]
});

How it works...
The mapPin variable holds a reference to our Ext.draw.Component instance, which
can have any number of Ext.draw.Sprite instances added to it and have them drawn
to the browser.

The type option of the sprite configuration tells the class what kind of shape to draw. Each
of the types (rect, circle, square, text, and path) offer slightly different options.

All types accept positioning coordinates through the x and y options. These determine the
sprite's position within the Ext.draw.Component. They also may have a fill value,
which should be a string containing a color.

The rectangle type accepts a width and height option that will determine the dimensions
of the shape.

A circle sprite accepts a radius configuration, which establishes the size of the circle from
its center that corresponds to the provided x and y values.

Sprites can be added to Ext.draw.Component instances at
runtime by using the Ext.draw.Surface's add method:

var sprite = drawingComponent.surface.add({…});
sprite.show();

In step 4 we configured the pin to be rotated by 7 degrees. This was achieved by using the
rotate option which accepts a configuration object containing a degrees property, defining
the number of degrees to rotate the shape by, and, optionally, an x and y property that allows
us to move the center of rotation.

Two additional transformation options exist to allow us to scale and
translate sprites. They both accept an object containing x and
y properties defining the scale factor or translation distance in the
horizontal and vertical planes.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

342

In modern browsers the drawing is created using SVG markup. The output of this drawing
can be seen in the following screenshot. We will see in the Drawing paths recipe how closely
related the Ext JS syntax for creating drawings is to the commands used when creating regular
SVG drawings:

There's more...
As well as basic shapes, Ext JS draw package allows us to draw text and configure and
manipulate it in the same way as other sprites. We will now demonstrate how to define
a text sprite and how it can be configured:

1.	 We start by creating our usual Ext.draw.Component instance, which will give us
our drawing surface:
var textComponent = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 250,
 viewBox: false,
 items: []
});

2.	 We then use the 'text' type to define our new sprite and position it within our
component with a fill color of black:
var textComponent = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 250,
 viewBox: false,
  items: [{
 type: 'text',
 x: 100,
 y: 100,
 fill: '#000'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

343

3.	 So far we won't see any output from our code, so we must add the text
configuration. This defines what text will be drawn onto the drawing surface. We
also add the font option to draw our text in the lovely Times New Roman font:
var textComponent = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 250,
 viewBox: false,
  items: [{
 type: 'text',
 x: 100,
 y: 100,
 font: '32px "Times New Roman"',
 text: 'Ext JS 4 Cookbook',
 fill: '#000'
 }]
});

See also
ff The next recipe, which enhances this example by adding a gradient to the map pin.

Applying gradients to shapes
Gradients can help add realism to drawings or provide the final polish for a design. They can
be easily added to any sprite created with the Ext.draw package.

We will continue to work on our map-pin example from the previous recipe and add gradients
to its sprites to make them appear a little more realistic.

How to do it...
1.	 We will start with our finished map pin from the first recipe:

var mapPin = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 500,
 viewBox: false,

 items: [{
 type: 'rect',
 x: 52,
 y: 58,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

344

 width: 3,
 height: 30,
 fill: '#999',
 rotate: {
 degrees: -7
 }
 }, {
 type: 'circle',
 x: 50,
 y: 50,
 radius: 10,
 fill: '#2D00B3'
 }]
});

2.	 We now define a gradient for the map pin's pin. We want a linear gradient going
across the pin to give the effect of it being metal. We add this to the gradients
collection of Ext.draw.Component:
...
gradients: [{
 id: 'pin-gradient',
 type: 'linear',
 angle: -7,
 stops: {
 0: {
 color: '#eee'
 },
 100: {
 color: '#999'
 }
 }
}]
...

3.	 This gradient can now be attached to the pin sprite by referencing its id in the
sprite's fill config:
...
fill: 'url(#pin-gradient)'
...

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

345

4.	 The map pin's head requires a radial gradient to give it the effect of being a sphere,
rather than a flat circle. We add this as a second item in the gradients array:
...
{
 id: 'head-gradient',
 type: 'radial',
 centerX: '25%',
 centerY: '25%',
 focalX: '60%',
 focalY: '60%',
 radius: 4,
 stops: {
 0: {
 color: '#9F80FF'
 },
 25: {
 color: '#2D00B3'
 },
 100: {
 color: '#2D00B3'
 }
 }
}
...

5.	 This gradient is added to the pin's head sprite in the same way as we did for the pin.
...
fill: 'url(#head-gradient)'
...

6.	 The final result can be seen below.

How it works...
Gradients are defined in the gradients configuration option of the Ext.draw.Component
class. Any gradients you want to apply to a sprite must be declared here.

There are two gradient types, linear and radial, which both accept an id, a type, and a
stops object literal.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

346

The stops object defines the colors that the gradient will have at specific points across it.
These are defined by providing the gradient's properties at individual percentage points. In
our linear gradient we define that the gradient's color will be #EEE 0% of the way across the
shapes length (i.e. at the start) and that it will end with a color of #999 (at 100%). We can
add as many of these stops as we like to achieve any gradient style.

Finally our gradient can be applied to a sprite by referencing its ID using the special syntax
fill: 'url(#gradient-id-here)'.

Linear gradients also accept an optional option of angle, which we have used in our map pin's
gradient. This will define the angle (in degrees) that the gradient will run in.

See also
ff The previous recipe, Drawing basic shapes, for a more detailed explanation on how to

draw the map pin used in this example.

Drawing paths
As well as simple geometric shapes the Ext.draw package allows us to create any shape we
can think of using the 'path' sprite type. This type of sprite lets us use an SVG-like syntax to
define the points that the path will pass through.

We will first explore how to create simple straight-line shapes and then move on to create
more complex curved paths.

How to do it...
In our example we will draw a simple house with a sky and some grass that a 3-year-old would
be embarrassed to call his own:

1.	 We start by creating an Ext.draw.Component to contain our sprites:
var house = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 800,
 height: 550,
 viewBox: false,
 items: []
});

2.	 Next we add two rectangles, one blue and one green, to represent the sky and
grass respectively:
var house = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

347

 width: 800,
 height: 550,
 viewBox: false,
 items: [{
 type: 'rect',
 x: 200,
 y: 0,
 width: 500,
 height: 250,
 fill: '#3BB9FF'
 }, {
 type: 'rect',
 x: 200,
 y: 250,
 width: 500,
 height: 100,
 fill: '#7CFC00'
 }]
});

3.	 We now add a sprite of type 'path' to the items collection. We give it a fill, stroke
color, and a stroke width:
...
{ type: 'path',
 fill: '#98AFC7',
 stroke: '#000',
 'stroke-width': 2 
}
...

4.	 Finally, we define the path configuration that accepts a string containing the
instructions on how to draw the shape we want, in our case a house. We define this
as an array of strings with a call to its join method that will concatenate them all
together. By doing this it makes it easier to follow what each instruction is doing and
to edit them later.
{
 type: 'path',
 fill: '#9B4645',
 stroke: '#000',
 "stroke-width": 2,
 path: [
 'M 300 290', // Point 1
 'l 0 -60', // Point 2
 'l -10 0', // Point 3

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

348

 'l 60 -40', // Point 4
 'l 60 40', // Point 5
 'l -10 0', // Point 6
 'l 0 60', // Point 7
 'l -100 0', // Point 8
 'm 43 0', // Point 9
 'l 0 -25', // Point 10
 'l 15 0', // Point 11
 'l 0 25' // Point 12
].join(' ')
}

This path should give us the following output:

How it works...
Paths are defined in exactly the same way as all of the other sprites we have seen except for
one important detail—the path configuration. This configuration accepts a string containing a
series of commands, which effectively guides the pen across the drawing surface and tells it
how and where to draw the lines.

The first command is M 300 290. The M command tells the pen to lift off the page and
move to a specific coordinate location within the drawing surface in the format 'x y'. So this
command moves the pen to position 1 in the following diagram. The other numbers on the
diagram relate to the instructions (within step 4's code listing) that got the path to that point:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

349

The drawing surface's 0,0 position is located in the top left.

It is important to note that a lowercase m would move the pen by the amount specified relative
to its current position. So, if our example was 'm 300 290', we would move 300 pixels to the
right and 290 pixels down, rather than to the coordinate 300, 290. This rule can be applied
to all of the command letters.

The next series of items use the l command. This command draws a line from the pen's
current position to a new position decided by the numbers that follow it.

We have used a lowercase l so the first command tells us to move 0 pixels on the x-axis
and -60 pixels on the y-axis. In other words, stay in the same horizontal position but move
60 pixels up. This command takes us to position 2.

You can follow the next six commands clockwise around the outside of the house shape and
back to our starting position.

Your path will automatically be closed by the most direct
route if you don't complete it yourself.

The next command moves the pen into the center of the house to draw the door. It does this
by moving 43 pixels horizontally, relative to its last position.

There's more...
It is also possible to draw curved lines using the path sprite. We will draw a simple moon using
two Bezier curves to achieve the following drawing:

1.	 We once again start by creating an Ext.draw.Component with a simple rectangle
sprite to give us a blue background:
var moon = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

350

 height: 500,
 viewBox: false,

 items: [{
 type: 'rect',
 x: 0,
 y: 0,
 width: 500,
 height: 500,
 fill: '#060429'
 }]
});

2.	 We then add our path sprite and define a starting point of (300, 180) using the
command M 300 180:
var moon = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 500,
 viewBox: false,
 items: [{
 type: 'rect',
 x: 0,
 y: 0,
 width: 500,
 height: 500,
 fill: '#060429'
 }, {
 type: 'path',
 fill: '#FEF6B1',
 path: [
 'M 300 180'
].join(' ')
 }]
});

3.	 Now we add our first Bezier curve to create the inner arc of the moon (highlighted in
light grey):

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

351

Simple Bezier curves work by adding an invisible control point to the end points of
a line. These control points influence the magnitude and direction of the curve. The
following diagram shows the approximate position of the curves' control points:

EP
1/2

C1

C1

C2

C2

1

2

1

2

4.	 To create this we use the C command, which accepts three sets of x y pairs. The first
pair defines the coordinates (or relative coordinates if you use a lowercase 'c') of the
starting point's control point (shown as C1 in the diagram). The second pair defines
the end point's control point (C2), and the third identifies the position the line will
finish (EP). Using this structure, the command we use to create the first line can be
seen as follows:
C 350 110, 350 170, 300 180

5.	 Similarly our outer line is defined using the same format and can be seen as follows:

C 380 200, 380 80, 300 180

The complete code for the drawing is as follows:
var moon = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 500,
 height: 500,
 viewBox: false,
 items: [{
 type: 'rect',
 x: 0,
 y: 0,
 width: 500,
 height: 500,
 fill: '#060429'
 }, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

352

 type: 'path',
 fill: '#FEF6B1',
 path: [
 'M 300 180',
 'C 350 110, 350 170, 300 180',
 'C 380 200, 380 80, 300 180'
].join(' ')
 }]
});

See also
ff The next recipe, to learn how to animate your drawings.

ff The first recipe, Drawing basic shapes, for a quick reminder on the basics of the
Ext.draw package.

Transforming and interacting with shapes
Once we have created a drawing we will sometimes want to update it to reflect a change in
the data it is representing or a change in the situation the shape finds itself in. Whatever
the reason, the drawing package allows us to easily reconfigure a sprite's characteristics
programmatically, both instantly and through a progressive animation.

We will demonstrate how to achieve this by changing the properties of a simple rectangle
sprite. The first method we will use is the setAttributes method of the Ext.draw.
Sprite class and then we will move on to using the animate method.

How to do it...
1.	 Our first step is to create a sprite to work with. We will create a very simple dark blue

rectangle and add it to an Ext.draw.Component instance:
var rectangle = Ext.create('Ext.draw.Sprite', {
 type: 'rect',
 x: 150,
 y: 150,
 width: 100,
 height: 30,
 fill: '#060429'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

353

var shape = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 1000,
 height: 500,
 viewBox: false,

 items: [rectangle]
});

2.	 We will start by scaling the rectangle to three times its original dimensions. We can
use the reference to the rectangle sprite (rectangle) to call its setAttributes
method passing in a configuration object telling it to scale its height (y) and width (x)
by a factor of 3:
rectangle.setAttributes({
 translate: {
 x: 200,
 y: 50
 }
}, true);

3.	 Other attributes that can be updated are the rotation and fill of the sprite. The
following code demonstrates how to update these two attributes with a single
call rotating the shape by 30 degrees and turning it green:
rectangle.setAttributes({
 rotate: {
 degrees: 30
 },
 fill: '#3B5323'
}, true);

4.	 The final attribute we can transform is the sprite's position. We use
the translate property to instruct the sprite to be moved by x pixels
horizontally and y pixels vertically:
rectangle.setAttributes({
 translate: {
 x: 200,
 y: 50
 }
}, true);

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

354

5.	 These transformations can be combined with the Ext.util.Animate class's
included functionality (as it is a mixin. See Chapter 1, Classes, Object-Oriented
Principles, and Structuring your Application for more details on mixins) to make
them animated. We simply call the sprite's animate method passing in a
configuration object:

rectangle.animate({
 to: {
 fill: '#FF0000'
 },
 duration: 2000,
 callback: function(){
 rectangle.setAttributes({
 rotate: {
 degrees: 60
 }
 }, true);
 }
}, true);

This code will fade our rectangle's fill color from green to red, after which it will rotate
60 degrees.

How it works...
The setAttribute method allows us to redefine any of the characteristics we set on a sprite
when it was first created, namely the rotation, scale, translation, and fill color. Any number of
these attributes can be set in a single call to the method.

You can retrieve references to individual sprites that have been added
to Ext.draw.Component by querying the items collection of
its Ext.draw.Surface class, accessible through the surface
property. For example, drawComponent.surface.items.get(0).

The second parameter of the setAttribute method is a Boolean value that tells the
sprite whether it should redraw itself immediately. By setting this to true you will instantly
see the results of the transformation. However, if you are applying many updates you may
see a performance improvement by delaying a redraw until the last transformation has
been applied.

Our final animation example shows the animate method being passed a configuration object
specifying the state the rectangle will be in after the animation is complete (found in the to
property), allowing it to calculate the intermediate stages.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

355

The callback option is also used to perform further transformations after the animation
(which will last for two seconds) has completed.

There's more...
Sprites expose various events allowing us to capture and react to user interaction with each
shape we create. This opens up huge possibilities for how we can utilize the drawing package
in our applications and plays a large role in the charting package, which we will discuss later
in this chapter.

We are going to work through an example where we change the color of a shape when the
user hovers over it and, when clicked, animates the shape scaling to twice its original size:

1.	 First of all we create a simple, blue rectangular sprite with dimensions of 100 pixels
by 30 pixels:
var rectangle2 = Ext.create('Ext.draw.Sprite', {
 type: 'rect',
 x: 150,
 y: 150,
 width: 100,
 height: 30,
 fill: '#060429'
});

2.	 Next we add a listeners configuration, like we have done with many of the other
widgets of Ext JS, and add handlers for the mouseover and mouseout events. In
these events we add a function to change the shape's fill color to green and then
back to blue on mouseout:
var rectangle2 = Ext.create('Ext.draw.Sprite', {
 type: 'rect',
 x: 150,
 y: 150,
 width: 100,
 height: 30,
 fill: '#060429',
 listeners: {
 mouseover: function(){
 rectangle2.setAttributes({
 fill: '#3B5323'
 }, true);
 },
 mouseout: function(){

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

356

 rectangle2.setAttributes({
 fill: '#060429'
 }, true);
 }
});

3.	 We also add a listener for the mouseup event (fired when the left mouse button is
clicked and released) and call the sprite's animate method with the new width and
height values:
...
mouseup: function(){
 rectangle2.animate({
 to: {
 width: 200,
 height: 60
 },
 duration: 2000
 }, true);
}
...

4.	 Lastly, we can add the rectangle to an Ext.draw.Component instance and see our
code in action!
var shape2 = Ext.create('Ext.draw.Component', {
 renderTo: Ext.getBody(),
 width: 1000,
 height: 500,
 viewBox: false,

 items: [rectangle2]
});

Creating a bar chart with external data
A bar chart is an incredibly useful way of presenting quantitative data to users. This recipe will
demonstrate how to create a bar chart and have it load data asynchronously from your server.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

357

Getting ready
This recipe requires the use of a web server for serving the chart's data. A JSON file is
provided with example data.

How to do it...
1.	 Start by defining a model to define the data we are loading:

Ext.define('Chart', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'name',
 type: 'string'
 }, {
 name: 'value',
 type: 'int'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

358

2.	 Create a store with an AJAX proxy:
var store = Ext.create('Ext.data.Store', {
 model: 'Chart',
 proxy: {
 type: 'ajax',
 url: 'BarChart.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 },
 autoLoad: true
});

3.	 Create a panel with a fit layout and render it to the document's body:
var panel = Ext.create('Ext.Panel', {
 width: 600,
 height: 400,
 title: 'Bar Chart from External Data',
 layout: 'fit',
 items: [
 ...
],
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

4.	 In the panel's items collection add a basic chart bound to the store created in
step 2. The chart requires numeric and category axes and a bar series:
var panel = Ext.create('Ext.Panel', {
 ...
 items: {
 xtype: 'chart',
 animate: true,
 store: store,
 axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['value'],
 title: 'Value'
 }, {
 type: 'Category',
 position: 'left',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

359

 fields: ['name'],
 title: 'Name'
 }],
 series: [{
 type: 'bar',
 axis: 'bottom',
 xField: 'name',
 yField: 'value'
 }]
 },
 ...
});

How it works...
We have started by defining a Model to represent an individual record being retrieved by the
store. As the data that we return from the server has a name and value field we have defined
these here.

The next piece of the puzzle is an Ext.data.Store that we use as the client-side cache
for our data. We associate the chart model to the Ext.data.Store to ensure that it
understands how the data is represented. The AJAX proxy (Ext.data.proxy.Ajax)
is used for loading data into the store.

Now that the store is ready we just need a component to bind it to. We have created our
component from the Ext.chart.Chart class using xtype: 'chart'. This gives us
basic charting functionality, which we add our store, axes, and series to.

The axes are used to define the boundaries of the chart and, in this instance, create the
horizontal and vertical axes. There are four types of axis available to us: numeric, category,
time, and gauge. We have used the numeric and category types in our example and they
allow us to plot numeric data and data representing names and other non-quantitive values.

The series handles the rendering of the data points across the chart. Here we've used the
Ext.chart.series.Bar class to create a simple bar chart.

See also
ff It may be worth reminding yourself of the data package for more information on

working with Stores and Models. The first few recipes in Chapter 7, Working with
the Ext JS Data Package, will be particularly useful.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

360

Creating a pie chart with local data
The pie chart is a very common chart type and is very good at representing proportional data
where each slice of the pie equates to the percentage that particular slice holds against the
sum of the entire dataset.

This recipe is going to demonstrate how to create a pie chart representing the distribution of
GitHub repositories across programming languages.

How to do it...
1.	 As with all of our data-bound examples, we start by creating an Ext.data.Model.

We give it two fields—Language and Percentage:
Ext.define('LanguageShare', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'Language',
 type: 'string'
 }, {
 name: 'Percentage',
 type: 'int'
 }]
});

2.	 Now we define a data set to display in our chart. I have omitted some of the data
for brevity:
var languageShareData = [{
 Language: 'C',
 Percentage: 7
},
...
{
 Language: 'Others',
 Percentage: 22
}];

3.	 Next we create an Ext.data.Store and load in our dataset. This will be used to
bind to our chart:
var languageShareStore = Ext.create('Ext.data.Store', {
 model: 'LanguageShare',
 data: languageShareData
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

361

4.	 Define an Ext.Panel containing an Ext.chart.Chart configuration object, using
its xtype, as its only item:
var panel = Ext.create('Ext.Panel', {
 width: 600,
 height: 400,
 title: 'Pie Chart - Language\'s Share of GitHub Repositories',
 layout: 'fit',
 items: [{
 xtype: 'chart'
 }],
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

5.	 We can now bind our chart to the Store we created in Step 3:
...
{
 xtype: 'chart',
 store: languageShareStore
}
...

6.	 Our next step is to create our Ext.chart.series.Pie instance that will tell the
chart that we want the data to be represented as a pie chart. We tell it that the
Percentage field is the one to use to calculate the size of each slice:
{
 xtype: 'chart',
 store: languageShareStore,
 series: [{
 type: 'pie',
 angleField: 'Percentage'
 }]
}

7.	 At this stage our pie chart will render our data but, by default, won't have any labels
attached so we don't know which slice refers to which data! We can add a label to
each slice by using the label property and configuring it with the field to grab the
label value from and some other display properties:
{
 type: 'pie',
 angleField: 'Percentage',
 label: {
 display: 'rotate',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

362

 contrast: true,
 field: 'Language'
 }
}

Our final pie chart can be seen in the following screenshot:

Pie Chart - Language’s Share of GitHub Repositories

Ja
va

S
c
ri
p
t

Ja
va

C++

C

O
thers

S
h
e
ll

R
ub

y

Python

PHP

Perl
O
b
je

ctive
-C

How it works...
As with all of the other chart types the Ext.chart.Chart class provides the infrastructure
and canvas for our specific chart type to be rendered to.

We use the pie series type to have the Ext.chart.series.Pie class process the records
contained in the bound store and turn it into a series of sprites to form a chart. This series
will convert each of the records in the Store into a slice of the pie. All of the work to create
the sprites is taken care of by the framework and so we don't need to work with the drawing
package directly.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

363

The most important configuration of this series type is the angleField. This tells the series
which of our model fields holds the value that will be used when calculating the size of each
record's slice.

We add labels to the chart by using the labels configuration that is used to configure the
Ext.chart.Label mixin, which is applied to the Ext.chart.series.Pie class. These
options allow us to configure how the labels are positioned and styled.

By choosing the rotate value for the display property the labels are positioned along the
length of the slice. We also choose to set the contrast property to true so that the labels'
colors are tailored to suit the underlying slice's color and therefore they can be easily read.

There's more...
The pie series offers us numerous other options to customize and tart up our charts. We will
now explore two of these options to add that extra bit of flair to our pie chart.

Highlight each slice as users hover
We can easily apply styles to a pie's slice when the user hovers over it by using the
highlight configuration option of the series. We pass this a segment object literal
containing the styles we would like to apply to the segment when it is hovered over:

highlight: {
 segment: {

 }
}

We are going to apply a margin of 40 pixels to our slices so they slide outwards, exposing the
slice individually, allowing a better look at its size:

highlight: {
 segment: {
 margin: 40
 }
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

364

We can see the outcome in the following diagram:

Pie Chart - Language’s Share of GitHub Repositories

Ja
va

S
c
ri
p
t

Ja
va

C++

C

O
thers

S
h
e
ll

R
ub

y

Python

PHP

Perl
O
b
je

ctive
-C

Scaling the slices in line with their magnitude
The pie series offers another piece of functionality that allows us to vary the size of the slice
depending on the value contained in one of the model's fields. We will apply this feature
simply based on the Percentage field, but it could equally be a different field.

We utilize the lengthField configuration of the pie series and pass it the name of the
desired field as a string value. The following code demonstrates this:

...
lengthField: 'Percentage',
...

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

365

As we can see from the screenshot, this effect serves to exaggerate and emphasize each
slice's size, or it can allow us to incorporate a second value in the same graph if we use a
different lengthField.

Python

PHP

Ja
v
a

S
c
ri

p
t

Ja
va

C++

C

Perl
O

b
je

ctive
-C

R
ub

y

O
thers

S
h

e
ll

Creating a line chart with updating data
Line charts are one of the most commonly used types of graphs and are most suited to
represent trending data, which is often regularly updated and required to be analyzed in
real time.

In this recipe, we will look into creating a line chart that polls the server every second to
retrieve a new record and plots that new point on the graph.

We will use the scenario of a heart-rate monitor, displaying someone's current heart rate at
a specific time after loading the chart.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

366

Getting ready...
We will be using a small PHP script to generate our data and will supply our Ext JS code with
a single record on each load. The script accepts a single parameter called currentCount to
ensure the SecondsElapsed field is correctly populated with the next value, but this would
not be necessary if we were querying a real data source.

$currentCount = $_GET['currentCount'];
$min = 150;
$max = 180;

$data = array();

$data[] = array(
 'SecondsElapsed' => $currentCount,
 'BeatsPerMinute' => rand($min, $max)
);

$output = array(
 'success'=> true,
 'data' => $data,
 'results' => count($data)
);

print json_encode($output);

How to do it...
1.	 We start by creating a simple Ext.data.Model to represent our HeartRate

data object:
Ext.define('HeartRate', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'SecondsElapsed',
 type: 'int'
 }, {
 name: 'BeatsPerMinute',
 type: 'int'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

367

2.	 Next we create an Ext.data.Store that we will bind to our chart. We set this up to
point to our HeartRate.php file discussed earlier. We also attach a handler function
to our store's beforeload event where we increment the currentCount variable
and attach it as a parameter to our AJAX calls:
var currentCount = 0;
var maxDisplayCount = 20;
var heartRateStore = Ext.create('Ext.data.Store', {
 model: 'HeartRate',
 proxy: {
 type: 'ajax',
 url: 'HeartRate.php',
 reader: {
 type: 'json',
 root: 'data'
 }
 },
 autoLoad: true,
 listeners: {
 beforeload: function(store, operation, opts){
 currentCount++;
 operation.params = {
 currentCount: currentCount
 };
 }
 }
});

3.	 Now we add a listener to the store's load event. This listener will be tasked with
updating the chart's x-axis' minimum and maximum values so that they stay in sync
with the data and only show 20 values at a time (defined by our maxDisplayCount
variable). We then redraw the chart:
load: function(store, records){
 var chart = panel.items.get(0),
 secondsElapsedAxis = chart.axes.get(1),
 secondsElapsed = records[0].get('SecondsElapsed');

 secondsElapsedAxis.maximum = store.getCount() < maxDisplayCount
? maxDisplayCount : secondsElapsed;
 secondsElapsedAxis.minimum = store.getCount() < maxDisplayCount
? 0 : secondsElapsed - maxDisplayCount;

 chart.redraw();
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

368

4.	 The next step is to create an Ext.Panel with an Ext.chart.Chart instance within
it. The chart should then be bound to heartRateStore:
var panel = Ext.create('Ext.Panel', {
 width: 600,
 height: 400,
 title: 'Line Chart - Heart Rate Monitor',
 layout: 'fit',
 items: [{
 xtype: 'chart',
 animate: true,
 store: heartRateStore
 }],
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

5.	 We are now able to define the chart's series as the 'line' type and set its xField
and yField to be the SecondsElapsed and BeatsPerMinute fields respectively:
...
series: [{
 type: 'line',
 smooth: false,
 axis: 'left',
 xField: 'SecondsElapsed',
 yField: 'BeatsPerMinute'
}]
...

6.	 The chart's numeric axes are now declared. The y-axis is bound to the
BeatsPerMinute field and given a position of left. The x-axis is bound
to the SecondsElapsed field and positioned at the bottom:
...
axes: [{
 type: 'Numeric',
 grid: true,
 position: 'left',
 field: ['BeatsPerMinute'],
 title: 'Beats per Minute',
 minimum: 0,
 maximum: 200,
 majorTickSteps: 5
}, {
 type: 'Numeric',
 position: 'bottom',
 fields: 'SecondsElapsed',
 title: 'Seconds Elapsed',
 minimum: 0,
 maximum: 20,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

369

 decimals: 0,
 constrain: true,
 majorTickSteps: 20
}],
...

7.	 Finally, we make the magic happen by creating a repeating function using
the setInterval function. We pass this a simple function that calls the
heartRateStore's load method, which is configured to append the newly
loaded records to the existing ones, instead of replacing them:

setInterval(function(){
 heartRateStore.load({
 addRecords: true
 });
}, 1000);

How it works...
The line chart we have created is setup in a fairly standard way. The two numeric
axes bind to the integer fields within the HeartRate model and are displayed by
the Ext.chart.series.Line class.

The hard work is done by our store's load event handler. This method effectively moves the
chart's visible x-axis numbers to the left by one on each store load, where a new record is
added. This gives the effect of the chart scrolling sideways.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

370

We achieve this by retrieving a reference to the x-axis instance through the Ext.chart.
Chart class' axes property. We then update its minimum and maximum values (these
provide the range of numbers that are shown at the bottom), which will be updated when
the chart is redrawn.

The other key area is the addRecords configuration passed into the heartRateStore's load
method. By setting this property to true any new records retrieved by the load operation are
appended to the existing dataset rather than replacing what is already there, which is the
default behavior.

See also
ff For more information on Stores and Models we recommend you revisit

Chapter 7, Working with the Ext JS Data Package. The first few recipes in
the chapter are particularly useful.

Customizing labels, colors, and axes
With little configuration it is possible to customize the look and feel of your chart. This recipe
will demonstrate how easy it is to apply different themes, tweak colors, add grid lines, and
ensure that your axes are presented neatly for a bar chart.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

371

Getting ready
A web server is required for this recipe so the sample JSON data can be loaded. This is
supplied in separate JSON file.

How to do it...
1.	 Start by defining a model to define the data we are loading:

Ext.define('Chart', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'name',
 type: 'string'
 }, {
 name: 'value',
 type: 'int'
 }]
});

2.	 Create a store with an AJAX proxy:
var store = Ext.create('Ext.data.Store', {
 model: 'Chart',
 proxy: {
 type: 'ajax',
 url: 'BarChart.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 },
 autoLoad: true
});

3.	 Create a chart bound to the store and render it to the document's body:
var chart = Ext.create('Ext.chart.Chart', {
 width: 600,
 height: 400,
 animate: true,
 store: store,
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

372

4.	 Add the theme config to the chart and set it to red, then apply a gradient to
the background:
var chart = Ext.create('Ext.chart.Chart', {
 ...
 theme: 'Red',
 background: {
 gradient: {
 angle: 30,
 stops: {
 0: {
 color: '#FFFFFF'
 },
 100: {
 color: '#FFDBDB'
 }
 }
 }
 }
});

5.	 We need axes for the bar chart. Add a Numeric and Category axis as follows:
var chart = Ext.create('Ext.chart.Chart', {
 ...
 axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['value'],
 title: 'Value',
 minimum: 1,
 maximum: 35,
 decimals: 0,
 majorTickSteps: 10,
 minorTickSteps: 5,
 grid: {
 'stroke-width': 2
 }
 }, {
 type: 'Category',
 position: 'left',
 fields: ['name'],
 title: 'Name',
 label: {
 rotate: {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

373

 degrees: 315
 }
 }
 }]
});

6.	 Finally, add a bar series. The label, in this case, adds the values for each bar:
var chart = Ext.create('Ext.chart.Chart', {
 ...
 series: [{
 type: 'bar',
 axis: 'bottom',
 xField: 'name',
 yField: 'value',
 label: {
 field: 'value',
 display: 'insideStart',
 orientation: 'horizontal',
 color: '#333'
 }
 }]
});

How it works...
We've started by defining an Ext.data.Model and Ext.data.Store that we are using to
remotely load data for our bar chart. We can split the results of this recipe into three sections:

ff Changing the colors and theme: Step 4 above demonstrates how straightforward it
is to change the theme of the charts. The theme configuration option of Ext.chart.
Chart takes a string, which is the name of the theme you desire. The framework is
supplied with a variety of themes such as Base, Green, Sky, Red, and Purple. A
full list of supplied themes is available in the Ext.chart.Chart documentation.
By default the theme is Base. It's also possible to create your own theme if required.
This is explained in more detail in the following There's More section.

The background gradient is applied through the background config option. The
gradient is created with the Ext.draw.Component. The angle property is used to
ensure that the gradient starts in the top left and goes to the bottom right. The value
is set in degrees. The stops object takes keys (in our case 0 and 100) that contain
the desired style variations. In this example our gradient starts at white (#FFFFFF)
and ends pink (#FFDBDB).

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

374

ff Configuring the Axes: We have configured the numeric axis and defined a maximum
(35) and minimum (1) for the axis. The majorTickSteps and minorTickSteps
properties allow us to present the axis to the user in a fixed manner. In this case for
each major tick there will be five minor ticks. Further configuration is available from
the Ext.chart.axis.Axis class.

ff Adding Labels: The label property in the Ext.chart.series.Series class allows
us to add a label to the chart's item showing the value of a field. In this example we
have added a label to display the columns value by setting the Ext.chart.Label
class's field property to value.

There's more...
As mentioned above we're going to see what's required to create our own custom theme for a
chart using the Ext.chart.theme.Theme class.

Creating a bespoke theme
Creating a bespoke theme is done by extending the Ext.chart.theme.Base class and
adding your own custom styles/colors to its various properties.

The following theme is by no means complete. However, it illustrates how to go about
creating one:

Ext.define('Ext.chart.theme.MyTheme', {
 extend: 'Ext.chart.theme.Base',

 constructor: function(config){

 this.callParent([Ext.apply({
 axis: {
 fill: '#ccc',
 stroke: '#ccc'
 },
 colors: ['#111', '#333', '#555', '#777', '#000']
 }, config)]);
 }
});

Now that we have defined the class Ext.chart.theme.MyTheme, we can use it in our
charts by specifying theme: 'MyTheme'. For a complete listing of the configurable properties
we recommend you to look at the source code in the Ext.chart.theme.Base class.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

375

See also
ff The comprehensive guide in the Ext JS documentation, which goes into great detail

on the options available.

ff The Creating a bar chart with external data recipe for an introduction into
creating charts.

ff For further details about Models and Stores look back at Chapter 7, Working with the
Ext JS Data Package.

ff To learn about theming a full application see Chapter 12, Advanced Ext JS for the
Perfect App.

Attaching events to chart components
It's possible to listen out for events on charts allowing users to interact with the data being
presented. This includes interactions, such as clicking on charts' series (bars, lines, and
so on) and hovering over specific areas of a graph.

By adding support for these types of interactions to your charts you will enhance the user
experience and allow more in-depth data to be revealed when it's needed.

This example will demonstrate how to listen for various mouse events, such as clicking
and hovering.

Getting ready
This recipe requires the use of a web server for serving the charts data. A JSON file is provided
with example data.

How to do it...
1.	 Start by defining a model for the data we are loading into the chart:

Ext.define('Chart', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'name',
 type: 'string'
 }, {
 name: 'value',
 type: 'int'
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

376

2.	 Create a store with an AJAX proxy. Set autoLoad: true to load the
data automatically:
var store = Ext.create('Ext.data.Store', {
 model: 'Chart',
 proxy: {
 type: 'ajax',
 url: 'BarChart.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 },
 autoLoad: true
});

3.	 Create a basic chart rendered to the document's body. Give it a Numeric and
Category axis and set a bar series:
var chart = Ext.create('Ext.chart.Chart', {
 width: 600,
 height: 400,
 animate: true,
 store: store,
 axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['value'],
 title: 'Value'
 }, {
 type: 'Category',
 position: 'left',
 fields: ['name'],
 title: 'Name'
 }],
 series: [{
 type: 'bar',
 axis: 'bottom',
 xField: 'name',
 yField: 'value'
 }],
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

377

4.	 In the bar series add a listener and listen for the itemmouseup event. When the
mouse click is released the function will be called passing the item argument:
var chart = Ext.create('Ext.chart.Chart', {
 ...
 series: [{
 type: 'bar',
 axis: 'bottom',
 xField: 'name',
 yField: 'value',
 listeners: {
 itemmouseup: function(item){
 console.log('Column Value: ' + item.value[1] + ',
Column Name: ' + item.value[0]);
 }
 }
 }],
 ...
});

5.	 Run the code in a browser and watch the console as you click on the bars. The output
will be like this:

6.	 To demonstrate this working in a line chart change the series to the following:
var chart = Ext.create('Ext.chart.Chart', {
 ...
 series: [{
 type: 'line',
 axis: 'left',
 xField: 'name',
 yField: 'value',
 listeners: {
 itemmousedown: function(item){
 console.log('Mouse Pressed');
 },
 itemmouseup: function(item){
 console.log('Mouse Up');
 },

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

378

 itemmouseout: function(item){
 console.log('Mouse Out');
 },
 itemmouseover: function(item){
 console.log('Mouse Over');
 }
 }
 }],
 ...
});

7.	 When looking at the console in the browser the output will be determined by how you
move the mouse and where you click:

How it works...
This works by listening to the events available in the Ext.chart.series.Series class.
When the event is triggered, for example, by mouse interaction, the getItemForPoint
method is called, which finds the corresponding item in the series.

The item returned from this method is passed into our function, which is then fired. From here
we can do additional processing or display feedback/messages to the user.

Inside our event handler we can use the object passed in to determine more information
about the item that was retrieved. The item object contains the series object, a value
object with the item's value(s), the x/y coordinates or point, and the item's rendering sprite.

See also
ff The recipes on event handling in Chapter 2, Manipulating the DOM, Handling Events,

and Making AJAX Requests, which explores the finer details of listening for, and
binding handlers to, events.

ff The Creating bar charts with external data recipe for an introduction into
creating charts.

ff To find out more about data storage see Chapter 7.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

379

Creating a live updating chart bound to an
editable grid

While the animations in Ext JS 4's charts might be pleasant to watch it's often useful to have
charts updating on the fly as your users manipulate data. Here we'll explore how to bind a
chart to an editable grid. The user will make changes to the data in the grid and the pie chart
will immediately reflect the change.

While you may wish to save the changes made in the grid to your database, you'll notice that
the store doesn't need to be reloaded for the pie chart to change.

GitHub Language Share

Ja
va

S
c
ri
p
t

Ja
va

C++

C

O
thers

S
h
e
ll

R
ub

y
Python

PHP

Perl
O
b
je

ctive
-C

Language Percentage

C

C++

Java

JavaScript

Objective-C

Perl

PHP

Python

Ruby

Shell

Others

7

4

7

20

2

5

7

9

16

8

22

How to do it...
1.	 Start by defining a model for the data we are loading into the chart and grid:

Ext.define('LanguageShare', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'Language',
 type: 'string'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

380

 }, {
 name: 'Percentage',
 type: 'int'
 }]
});

2.	 Now define a dataset for the chart and grid:
var languageShareData = [{
 Language: 'C',
 Percentage: 7
}, {
 Language: 'C++',
 Percentage: 4
}, {
 Language: 'Java',
 Percentage: 7
}, {
 Language: 'JavaScript',
 Percentage: 20
}, ...];

3.	 Create an Ext.data.Store and load in our dataset. This will be used to bind the
data to the grid and chart:
var languageShareStore = Ext.create('Ext.data.Store', {
 model: 'LanguageShare',
 data: languageShareData
});

4.	 Create a basic chart with a pie series. Assign it to the variable chart:
var chart = Ext.create('Ext.chart.Chart', {
 height: 400,
 width: 400,
 store: languageShareStore,
 animate: true,
 series: [{
 type: 'pie',
 angleField: 'Percentage',
 label: {
 display: 'rotate',
 contrast: true,
 field: 'Language'
 }
 }]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 10

381

5.	 Create a grid panel with a CellSelectionModel and CellEditing plugin. Ensure
that the Percentage column is editable by adding a numberfield. Assign the
editor grid to the variable grid:
var grid = Ext.create('Ext.grid.Panel', {
 store: languageShareStore,
 height: 400,
 width: 400,
 border: 0,
 columns: [{
 header: 'Language',
 dataIndex: 'Language',
 flex: 1
 }, {
 header: 'Percentage',
 dataIndex: 'Percentage',
 flex: 1,
 field: {
 xtype: 'numberfield',
 allowBlank: false
 }
 }],
 selType: 'cellmodel',
 plugins: [Ext.create('Ext.grid.plugin.CellEditing', {
 clicksToEdit: 1
 })]

});

6.	 Finally, create a panel with an hbox layout and render it to the document's body.
Add the grid and chart to the panel's items collection:
var panel = Ext.create('Ext.Panel', {
 width: 800,
 height: 427,
 title: 'GitHub Language Share',
 layout: {
 type: 'hbox',
 align: 'stretch'
 },
 items: [grid, chart],
 style: 'margin: 50px',
 renderTo: Ext.getBody()
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Drawing and Charting

382

How it works...
As you can see it's surprisingly straightforward to produce a dynamic chart that changes
as the stores data changes. In this example, both grid and chart are bound to the
same store—languageShareStore. When the values in the grid are changed the
languageShareStore is updated to reflect the new value, which consequently
results in the pie chart being redrawn with the updated data.

See also
ff To see further examples of each of the chart types see the earlier recipes in

this chapter.

ff Chapter 8, Displaying and Editing Tabular Data, explains how to use and configure
grids and editor grids.

ff For more details about data modeling and storage revisit Chapter 7.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

11
Theming your

Application

In this chapter, we will cover:

ff Compiling SASS with Compass

ff Introduction to SASS

ff Using Ext JS' SASS variables

ff Using the UI config option

ff Creating your own theme mixins

ff Restyling a panel

ff Creating images for legacy browsers

Introduction
Changing the look and feel of an Ext JS application has always been a big task involving
getting your hands dirty, trawling through CSS styles, and creating custom image sprites to
support those pesky legacy browsers. Ext JS 4 has addressed this problem in a spectacular
fashion and it is now very easy to move away from the default theme.

This chapter describes the tasks involved in customizing the look and feel of your Ext JS
application. You will learn the basics of SASS and Compass, and move on to compiling the
framework's SASS. We will then explore how to customize your theme with SASS options and
custom mixins. Finally, we will demonstrate how to take care of legacy browsers using the
Sencha SDK tools' slicer tool.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

384

Compiling SASS with Compass
Ext JS 4's entire style set is built upon SASS and Compass and makes changes to the
framework's style a walk in the park. By utilizing these technologies the look and feel of
your Ext JS application can be altered with extreme flexibility. It will also help in increasing
the maintainability of your code because of the reduction in code needed and the
greater organization.

This recipe will start by explaining what SASS and Compass are and how they fit into the
web-development workflow. We will then move on to learn how to set up your development
environment to take advantage of these two tools. Finally, we will move onto compiling our
complete framework's CSS stylesheet, ready for customization following the subsequent
recipes in this chapter.

Getting ready
It is important to understand how these two tools fit together and how they can play such
a big role in making our application's style so flexible.

What is SASS?
SASS (Syntactically Awesome Stylesheets) is an enhancement of the CSS language that
extends it by adding additional functionality and capabilities. SASS introduces the idea of
variables, mixins, and maths to our CSS while also bringing in a nested syntax and selector
inheritance allowing us to remove large amounts of duplication.

This extended CSS syntax is then compiled into regular CSS, which can then be included in
your website.

A simple SASS snippet with its compiled CSS equivalent can be found as follows:

// Sass
table
{
 width: 100%;
 color: #3F4E5E;
 background-color: #EEE;

 tbody
 {
 td
 {
 border-bottom: 1px solid #999;
 border-left: 1px solid #000;
 }

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

385

 }
}

// Generated CSS
table {
 width: 100%;
 color: #3F4E5E;
 background-color: #EEE;
}

table tbody td {
 border-bottom: 1px solid #999;
 border-left: 1px solid #000;
}

What is Compass?
Compass is a CSS authoring framework that uses SASS as its foundation and provides us with
a whole host of helper functions, mixins, cross-browser compatibility tools, and a lot more. All
these features make creating CSS even simpler.

How to do it...
First we will look at setting up our development environment so we can use SASS and
Compass. If you are on a Windows machine you will first have to install Ruby; for Mac OS X
users this comes preinstalled so you can skip to step 4:

1.	 Compass is written in Ruby, so we must first install Ruby on our machines. To do this,
simply navigate to http://rubyforge.org/frs/?group_id=167 and download
the latest version.

2.	 Once downloaded run the executable and follow the wizard to install, accepting all of
the default settings.

3.	 Now Ruby is installed, we must open the command prompt with Ruby by using the
Start Command Prompt with Ruby shortcut created within Ruby's start menu folder:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

386

4.	 SASS and Compass are both installed through RubyGems so we can install
them by typing the following into the command prompt (or Terminal, if you are
on OS X) window:

Windows: gem install compass

OS X: sudo gem install compass

5.	 With Ruby and Compass installed we can now start using it to compile Ext JS
stylesheets. We will demonstrate this by simply recreating the standard theme
from our own .scss file.

6.	 Ext JS provides sample config.rb and my-ext-theme.scss files, which are
needed to configure Compass and define how our SASS will be compiled. We will start
by copying these files from the resources\themes\templates\resources\
sass folder within the Ext JS SDK (left-hand side of the following image) into another
folder that we will name cookbook in the main resources folder, shown on the
right. We have then renamed the .scss file to cookbook-theme.scss.

.scss is the file extension given to SASS stylesheets. This
file type can be compiled into regular CSS.

7.	 Next we open the config.rb file and edit the $ext_path variable, which defines
how Compass can get from this file's location to the root of the Ext JS SDK. In our
case we change this to move up two folder levels:
$ext_path = "../.."

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

387

8.	 The cookbook-theme.scss file contains the style definitions that Compass will
compile. This file contains definitions to import all of Ext JS SASS components.

9.	 Our last step is to compile our SASS and have it generate our cookbook-theme.
css file containing the framework's complete styles. First, within our Ruby command
prompt, we navigate to our new cookbook folder. Next, we use the command
compass compile, which will start to compile the SASS. We can then look in the
resources/css folder and find our newly created cookbook-theme.css file:

How it works...
The config.rb file contains all the configuration options that will be used when Compass is
executed and our SASS is compiled. There are a variety of options that can be set, which will
affect how the CSS is built.

The .scss file contains the entire SASS markup that will be compiled into a plain CSS file.
This sample file basically imports all of the required SASS mixins provided by the framework
from other .scss files, resulting in a full CSS file.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

388

See also
ff The Compass homepage (http://compass-style.org), which has lots of

resources available from getting started guides to advanced usage examples.

ff The next recipe, Introduction to SASS, which will explain the syntax and main
features of SASS.

Introduction to SASS
As we have mentioned, SASS is an enhancement to the CSS language that, when compiled,
produces CSS style rules ready for inclusion in our websites. By using it we gain access to a
huge range of powerful features to make creating CSS styles much quicker, easier, and which
will increase the maintainability of your app's styles greatly.

This recipe will be a short introduction to the main syntax and concepts of SASS, which
are used within Ext JS' styles. By mastering these basics it will make theming our Ext JS
applications a breeze and allow us to customize them with the same levels of flexibility.

Getting ready
This recipe will require SASS and Compass to be set up so we can compile our SASS
stylesheets. If you haven't already done so, please revisit the first recipe in this chapter
and follow the instructions to get you started.

In addition to setting up SASS and Compass, we are going to need to create a config.rb
file within the directory that we are running this example from. The contents of this file simply
need to contain the location of the SASS files, the output location, and the output mode:

sass_path = File.dirname(__FILE__)

css_path = sass_path

output_style = :expanded

How to do it...
To demonstrate how to style an HTML page with SASS we are going to create a very simple
page with some details about this chapter of the book:

1.	 We start by defining an HTML page that contains a couple of heading elements,
a div element, and a list of the chapter's recipes:
<div class="cookbook">

 <h1>Ext JS 4 Cookbook</h1>

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

389

 <div class="chapter">

 <h2>Theming your Application</h2>

 <div class="description">
 This chapter describes the tasks involved for customizing
the look and feel of an Ext JS application.
 </div>

 <ul class="recipes">
 Compiling SASS with Compass
 <li class="current-recipe">Introduction to SASS
 Using SASS Variables in Ext JS
 Using the UI Config Option
 Creating your own Theme Mixins
 Restyling a Panel
 Creating images for Legacy Browsers

 </div>

</div>

2.	 Next we create a .scss file which will contain our SASS code. We create this in the
same folder as our HTML file to keep things simple.

3.	 We can now start writing our SASS styles. We start by importing the Compass library
so we can take advantage of all its built-in mixins and functions. Then we define a
variable containing a base color that our page will use:
@import "compass";
$base-color: #545454;

4.	 We define our first style to attach to elements with the cookbook class. This is
done using a familiar CSS syntax. We then give it a color using our $base-color
variable and define its font style using SASS's nested syntax:
.cookbook
{
 color: $base-color;
 font: {
 family: Helvetica;
 size: 0.9em;
 }
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

390

5.	 Now we define the style of the H1 tags within the cookbook DIV. We do this by
nesting the H1 tag within the curly braces of the cookbook's style. We give this style
a font-size of 2.5em and a color value 20 percent darker than our predefined
base color using Compass's darken function:
.cookbook
{
 color: $base-color;
 font: {
 family: Helvetica;
 size: 0.9em;
 }
 h1
 {
 font-size: 2.5em;
 color: darken($base-color, 20%);
 }
}

6.	 Once again nested within the .cookbook's curly braces we define the styles for our
chapter class. We set this to have a width of 50% and a box shadow using the
box-shadow mixin, which produces full cross-browser box-shadow CSS:
.chapter
{
 @include box-shadow(0 0 3px darken($base-color, 40%));
 width: 50%;
}

7.	 We now define the style for a chapter's H2, UL, and DIV tags. We do this by simply
nesting the selectors within the chapter's definition. We use another function of
Compass—the complement function. This takes our base color and returns a
complementing color:
 h2
 {
 font-size: 1.5em;
 color: complement($base-color);
 }

 ul, div
 {
 margin: 0 30px;
 }

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

391

8.	 Our next element is our recipe list. We style this by nesting the LI selector inside UL
and give it some padding:
ul
{
 li
 {
 padding: 5px 0;
 }
}

9.	 Finally, in our HTML, you will see we have added a current-recipe class to the
second recipe LI. We can define this element's style by using the & selector, which
adds a reference to the current selector's parent selector and combines them:
ul
{
 li
 {
 padding: 5px 0;
 &.current-recipe
 {
 background-color: yellow;
 }
 }
}

10.	 If we now compile our SASS (using the compass compile command), it will produce
a raw CSS file with the following styles:

.cookbook {
 color: #545454;
 font-family: Helvetica;
 font-size: 0.9em;
}
.cookbook h1 {
 font-size: 2.5em;
 color: #212121;
}
.cookbook .chapter {
 -moz-box-shadow: 0 0 3px black;
 -webkit-box-shadow: 0 0 3px black;
 -o-box-shadow: 0 0 3px black;
 box-shadow: 0 0 3px black;
 width: 50%;
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

392

.cookbook .chapter h2 {
 font-size: 1.5em;
 color: #545454;
}
.cookbook .chapter ul, .cookbook .chapter div {
 margin: 0 30px;
}
.cookbook .chapter ul li {
 padding: 5px 0;
}
.cookbook .chapter ul li.current-recipe {
 background-color: yellow;
}

The result of all these steps can be seen in the following screenshot:

How it works...
Now, that was a lot to take in one go, so we will take each main concept individually and
explain how it works:

ff Variables: Our very first step was to define a variable that would control the base
color of our page. SASS variables work as they do in any other language, in that
they can be referenced instead of a hard value and assigned to at any point.

They must be prefixed with a $ symbol and are assigned to using a colon instead
of an equals (=) symbol as you will probably be used to.

ff Nesting: As you have seen we have used a lot of nesting in our SASS stylesheet. By
nesting selectors SASS combines the preceding parent selectors with the current
one, to produce a fully qualified CSS selector.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

393

In our simple example's output, you can see that the .cookbook .chapter ul
selector is written three times and we are only applying three styles! By nesting our
styles we remove this repetition, which previously had to be entered by hand, and let
SASS take care of it for us. In addition to the nesting of selectors you will also have
noticed the way we defined the font property using a JS-style object literal. By using
this syntax SASS will combine the parent property-name (that is, font) with each of
the object's properties to produce individual CSS properties:
font: {
 family: Helvetica;
 size: 0.9em;
}

becomes
font-family: Helvetica;
font-size: 0.9em;

ff Functions: We have made use of two of SASS's built-in functions, namely darken
and complement. These work in the same way as any other language's functions.
They accept parameters within parenthesis and return a value. The darken function
takes a color and a percentage value and returns a color that is darker than the
original by the percentage value. Similarly the complement function accepts a
color and returns its complementary color.

ff Mixins: Mixins are a very important feature of SASS and are used heavily within
Ext JS, as you will find out in the later recipes. Mixins are similar to functions but
can return a series of CSS statements rather than just a single value. In our example
we use the built-in box-shadow mixin. This allows us to specify our box shadow's
characteristics once and have SASS extrapolate that into all of the separate rules
required for cross-browser compatibility. We can see below our single mixin call
and then the output once it has been compiled:
@include box-shadow(0 0 3px darken($base-color, 40%));

// output
-moz-box-shadow: 0 0 3px black;
-webkit-box-shadow: 0 0 3px black;
-o-box-shadow: 0 0 3px black;
box-shadow: 0 0 3px black;

This quickly saves us a lot of hassle in both maintenance and the headache of having
to remember all of the different prefixes and rule syntaxes. SASS offers a mixin for
almost all of the usual CSS3 properties, making writing it much quicker!

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

394

ff & Selector: The & selector is used to reference the parent of our current selector.
By adding the & character before a selector its parent's selector will be added to its
definition allowing us deeper control over our selectors. In our example, we wanted
to give a specific style to the LI element that had the class current-recipe. If
we had omitted the & keyword we would have had a simple nested statement of
.cookbook .chapter ul li .current-recipe, which would not have worked.
By including the & keyword we combine the parent selector (li) with our .current-
recipe class producing .cookbook .chapter ul li.current-recipe.

There's more...
Another feature of SASS that we did not use in our previous example is its maths support.
SASS enables us to perform simple calculations that allow us to have our style's sizing and
layout properties adjust dynamically based upon a master value.

We will demonstrate this with a slightly contrived example using the HTML we created at the
beginning of this recipe. Imagine we always want to keep the top and bottom padding of our
LI elements exactly 1/6th of our UL's left margin.

Traditionally we would have to remember to update our LI's padding value if our margin
changed. In this example, this isn't a huge problem but in large applications this can
quickly become a maintenance nightmare. We use SASS's maths support to have this
ratio maintained automatically:

ff First we define a variable to hold our UL's left and right margin values:
$element-side-margin: 30px;

ff Next we set our LI's top and bottom padding to this variable's value, divided by six.
The syntax for this is identical to most other languages, using the traditional
maths operators:
padding: $element-side-margin / 6;

If we now compile this, we will see the padding value has compiled to 5 px. Try updating the
variable's value and recompiling, and you will see the padding value adjusting accordingly.

See also
ff The SASS homepage (http://sass-lang.com) to get more information of SASS

and its features.

ff The previous recipe that will walk you through setting up Compass so that you can
compile your SASS stylesheets.

ff The next recipe in this chapter looks at utilizing variables in SASS with a focus on
using the SASS variables that control Ext JS styles.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

395

Using Ext JS' SASS variables
One of the main reasons that Ext JS theming is so flexible is that it extracts almost every
detail of each component's style into its own SASS variable. This means that we can configure
the entire framework by simply setting some variables to our desired value and have them
propagate throughout the stylesheet when it is compiled.

This recipe will highlight some of the most important global variables that can be used to
customize the default Ext JS theme.

Getting ready
We start by making a copy of the template config.rb and my-ext-theme.scss
files, which will be used as our base. These can be found in the resources\themes\
templates\resources\sass folder of your Ext JS SDK.

We copy them into a new folder and rename the .scss file to cookbook-theme.scss.

Next we must compile this SASS file using the compass compile command to produce a
cookbook-theme.css file.

To demonstrate our examples we have copied the "themes" example from the "examples"
folder and referenced our new CSS file from it. We are now able to see all of the framework's
widgets on one page with the default theme. We can now start to customize it using variables.

How to do it...
We will take a few of the main SASS variables in turn and show how to set them and what
effect they will have on our app.

$base-color
This is the most influential SASS variable and affects almost every component in the
framework. By updating this color value all the components will be updated relative
to it and provides us a quick and easy way to customize our entire application's look.

We can see this by assigning a new color to it at the start of our .scss file to a light
purple color:

$base-color: #B89FED;

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

396

After recompiling our SASS and reloading our themes example, we can see our application's
look has changed completely:

You must include any variable definitions before importing
ext/default/all into our custom.scss file.

$font-size and $font-family
We can also globally control the size and style of the application's font by setting the
$font-size and $font-family variables at the start of our SASS file. We can demonstrate
this by increasing the font size from its default 12 to 16 pixels and changing the font to Times
New Roman:

$font-size: 16px;
$font-family: Times New Roman;

Widgets
Each widget in the framework has its own set of variables that define how it looks. All of these
can be customized within our SASS file and the CSS will be altered accordingly. For example,
a simple button has almost 100 variables that can be used to change its appearance. The
following list contains some of the variables that are available to change a small button:

ff $button-small-border-radius

ff $button-small-border-width

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

397

ff $button-small-padding

ff $button-small-text-padding

ff $button-small-font-size

ff $button-small-font-size-over

ff $button-small-font-size-focus

ff $button-small-font-size-pressed

ff $button-small-font-size-disabled

ff $button-small-font-weight

ff $button-small-font-weight-over

ff $button-small-font-weight-focus

ff $button-small-font-weight-pressed

ff $button-small-font-weight-disabled

ff $button-small-font-family

ff $button-small-font-family-over

ff $button-small-font-family-focus

ff $button-small-font-family-pressed

ff $button-small-font-family-disabled

ff $button-small-icon-size

We can assign a new value to these in the same way we have done in our previous examples
and recompile our CSS to see the changes. We will change the border radius of our buttons to
15 pixels as a demonstration:

$button-small-border-radius: 15px;

How it works...
Ext JS defines all of its variables and their default values in separate files, which are included
at the beginning of the project when the _all.scss file is imported with the call @import
'ext4/default/all';. Any custom definitions must therefore come before this so they
can be used within all of the subsequently imported SASS files.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

398

See also
ff The first two recipes of this chapter that explain how to set up Compass, and give an

introduction into SASS and how to use it.

Using the UI config option
Sencha provide a series of mixins with Ext JS 4 that allow you to quickly and easily create
custom styles for a wide range of components. These mixins can be used to create custom
UI styles, which you can apply to panels, buttons, and so on.

For example, the default styling for a button is available for a variety of sizes of
button. However, in each case the color is the same. By creating a button ui with the
extjs-button-ui mixin you can create a button with a different color for use with a
different action. This recipe will demonstrate the principles and steps required to use the
ui mixins and apply them to your components.

Getting ready
This recipe will require SASS and Compass to be set up so we can compile our SASS
stylesheets. If you haven't already done so, please revisit the first recipe in this chapter
and follow the instructions to get you started.

You'll need to prepare a config.rb file for compiling your SASS like so:

$ext_path = "../extjs"
sass_path = File.dirname(__FILE__)
css_path = sass_path
output_style = :expanded
load File.join(File.dirname(__FILE__), $ext_path, 'resources',
'themes')

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

399

How to do it...
1.	 Start by creating a .scss file called CustomTheme.scss and adding some basic

configuration to it:
$include-default: false;

@import 'ext4/default/all';

@include extjs-panel;
@include extjs-button;

2.	 Compile the SASS with the compass compile command so that the file
CustomTheme.css is generated.

3.	 Include the stylesheet in your HTML file:
<link rel="stylesheet" type="text/css" href="CustomTheme.css">

4.	 Render a panel to the document's body with buttons in the panel's buttons collection:
Ext.onReady(function(){
 Ext.create('Ext.panel.Panel', {
 title: 'Buttons Example',
 width: 400,
 height: 100,
 buttons: [{
 text: 'No UI'
 }, {
 text: 'Reject Changes'
 }, {
 text: 'Accept Changes'
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
 });
});

5.	 Using the extjs-button-ui mixin, create a UI to apply custom styles to the button.
Place this inside your SASS file and pass it the desired configuration. This will create
the necessary styles for a green button:
@include extjs-button-ui(
 'accept-small',

 $border-radius: $button-small-border-radius,
 $border-width: $button-small-border-width,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

400

 $border-color: #90EE90,
 $border-color-over: #90EE90,
 $border-color-focus: #90EE90,
 $border-color-pressed: #90EE90,
 $border-color-disabled: #90EE90,

 $padding: $button-small-padding,
 $text-padding: $button-small-text-padding,

 $background-color: #90EE90,
 $background-color-over: #90EE90,
 $background-color-focus: #90EE90,
 $background-color-pressed: #90EE90,
 $background-color-disabled: #90EE90,

 $background-gradient: $button-default-background-gradient,
 $background-gradient-over: $button-default-background-
gradient-over,
 $background-gradient-focus: $button-default-background-
gradient-focus,
 $background-gradient-pressed: $button-default-background-
gradient-pressed,
 $background-gradient-disabled: $button-default-background-
gradient-disabled,

 $color: #333,
 $color-over: #333,
 $color-focus: #333,
 $color-pressed: #333,
 $color-disabled: #333,

 $font-size: $button-small-font-size,
 $font-size-over: $button-small-font-size-over,
 $font-size-focus: $button-small-font-size-focus,
 $font-size-pressed: $button-small-font-size-pressed,
 $font-size-disabled: $button-small-font-size-disabled,

 $font-weight: $button-small-font-weight,
 $font-weight-over: $button-small-font-weight-over,
 $font-weight-focus: $button-small-font-weight-focus,
 $font-weight-pressed: $button-small-font-weight-pressed,
 $font-weight-disabled: $button-small-font-weight-disabled,

 $font-family: $button-small-font-family,
 $font-family-over: $button-small-font-family-over,
 $font-family-focus: $button-small-font-family-focus,
 $font-family-pressed: $button-small-font-family-pressed,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

401

 $font-family-disabled: $button-small-font-family-disabled,

 $icon-size: $button-small-icon-size
);

6.	 Do the same again to create the styles for a red button (some configuration options
have been omitted for brevity).
@include extjs-button-ui(
 'reject-small',

 ...

 $border-color: #F08080,
 $border-color-over: #F08080,
 $border-color-focus: #F08080,
 $border-color-pressed: #F08080,
 $border-color-disabled: #F08080,

 ...

 $background-color: #F08080,
 $background-color-over: #F08080,
 $background-color-focus: #F08080,
 $background-color-pressed: #F08080,
 $background-color-disabled: #F08080,

 ...

 $color: #333,
 $color-over: #333,
 $color-focus: #333,
 $color-pressed: #333,
 $color-disabled: #333,

 ...
);

7.	 Re-compile the SASS using the command compass compile.

8.	 We're now ready to apply the UIs to the buttons. This is achieved via the ui
config option. Update the buttons on the panel with their respective UIs.
Ext.create('Ext.panel.Panel', {
 ...
 buttons: [{
 text: 'No UI'
 }, {
 text: 'Reject Changes',
 ui: 'reject'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

402

 }, {
 text: 'Accept Changes',
 ui: 'accept'
 }],
 ...
});

How it works...
The ui config option allows you to set the style for a component. By default the buttons
element will have the CSS class x-btn-default-small; however, by changing the ui value,
the framework will replace that class with x-btn-accept-small or x-btn-reject-small
and apply the styles associated with those classes.

We create the custom classes using the extjs-button-ui mixin provided in the
framework's SASS definition and pass various arguments into it. The first argument
taken is the UI's name, which is what will be used in the ui config option.

We have named our UIs "accept-small" and "reject-small"
because it is possible to have small, medium, and large
buttons. This provides flexibility to stylize each size separately.

We can see what other arguments the extjs-button-ui accepts by looking in the
_button.scss file provided with the framework files. It's located in resources\themes\
stylesheets\ext4\default\widgets_button.scss.

We can find all the ui mixins for other components by looking
through the SASS files in this directory.

When the SASS is compiled the stylesheet is updated with additional classes, which are
based on the values we passed into the mixin:

/* Default style example */
.x-btn-default-small {
 border-color: #d1d1d1;
}

/* Accept style example */
.x-btn-accept-small {
 border-color: #90ee90;
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

403

/* Reject style example */
.x-btn-reject-small {
 border-color: #f08080;
}

See also
ff For more information about creating buttons, check out Chapter 9, Constructing

Toolbars with Buttons and Menus.

ff The earlier recipes in this chapter give insight into the basics of SASS and Compass,
which you will require for this recipe.

Creating your own theme mixins
Mixins are a feature of SASS that allow you to easily re-use CSS styles, properties, and
selectors without the need for unnecessary duplication.

This recipe will demonstrate how to make use of mixins in your SASS and how to make use
of the compiled CSS in your application.

Getting ready
This recipe will require SASS and Compass to be set up so we can compile our SASS
stylesheets. If you haven't already done so, please revisit the first recipe in this chapter
and follow the instructions to get you started. You'll need to prepare a config.rb file for
compiling your SASS like so:

sass_path = File.dirname(__FILE__)

css_path = sass_path

output_style = :expanded

How to do it...
1.	 Start by creating a SASS file called CustomTheme.scss.

2.	 In your SASS file style the body by adding a background color to the body selector:
body {
 background-color: #CCC
}

3.	 Compile your SASS with the command compass compile.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

404

4.	 Create an HTML file and reference the newly generated stylesheet. Your browser will
display a blank page with a gray background:
<html>
<head>
 <title>5. Creating your own Theme Mixins</title>
 <link rel="stylesheet" type="text/css" href="CustomTheme.css">
</head>
<body>
</body>
</html>

5.	 We are now going to create a mixin for our emphasized text. In your SASS file add
a mixin with the @mixin directive called emphasis-text. The font color can be
defined as a global variable and referenced inside the mixin:
...
$font-color: #3868AA;

@mixin emphasis-text {
 font: {
 family: arial;
 weight: bold;
 }
 color: $font-color;
}

6.	 Include the mixin, using the @include directive, in a rule for heading tags and a
title class:
h1, h2, h3, span.title {
 @include emphasis-text;
}

7.	 Re-compile the SASS with the command compass compile.

8.	 Add some content to your HTML to see the new styles applied:
<body>
<h1>ExtJS 4 Cookbook</h1>
 <h2>Chapter 11 - Theming Your Application</h2>
 <h3>Creating your own Theme Mixins</h3>
 emphasis-text mixin
 <p>Paragraph text</p>
</body>

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

405

9.	 It is also possible to pass arguments into a mixin that will be available within the
mixin as variables. Create a second mixin for a text shadow with default values for
each argument:
@mixin text-shadow($color: white, $h: 1px, $v: 1px, $blur: 0px) {
 text-shadow: $h $v $blur $color;
}

10.	 Call the mixin from a rule for h1 and h3 selectors. We can even add further styling
to each:
h1 {
 @include text-shadow(#333, 3px, 3px, 2px);
 font-size: 3.5em;
 margin: 0px;
}

h3 {
 text-transform: uppercase;
 @include text-shadow;
}

11.	 Re-compile the SASS with the command compass compile. The output should be:

How it works...
A mixin is defined using the @mixin directive and called using the @include directive. The
first mixin, emphasis-text, demonstrates how we make use of a mixin to re-use the same
styles again and again without the need to repeat them. Although the example is very simple
you can imagine how this might help when working with many more styles. As soon as you
need your class to emphasize the text, it's a simple case of including the mixin.

A mixin's arguments are very similar to arguments in JavaScript. We separate each variable
name with a comma but we can also define default values for each argument. The variable
is now available for use within the mixin:

@mixin text-shadow($color: white) {}

This mixin takes a color argument, but will default it to white if no value is passed in. This
is demonstrated in the example on the h3 selector, which has @include text-shadow;
without any arguments passed to the mixin.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

406

See also
ff The first two recipes of this chapter go into detail about setting up Compass and

getting start with SASS. This will be useful to learn about some of the terms used
in this recipe.

ff The Compass API documentation that details the huge range of mixins built into
the framework.

Restyling a panel
Restyling a panel with SASS and Ext JS 4 is surprisingly straightforward. By following the
examples shown throughout this chapter, in particular the recipe demonstrating SASS
variables, you are likely to find that panels and other components in your app will already
be restyled.

This recipe will demonstrate the specific steps you need to take in order to restyle a panel
and how to make use of more than one style set with panels.

We will not go as far as demonstrating support for legacy
browsers (for example, Internet Explorer 6) in this recipe as
this is covered in a later recipe.

Getting ready
As with previous recipes we will be using SASS with Compass so please ensure that you
have everything setup on your development computer.

You'll need to prepare a config.rb file for compiling your SASS like so:

$ext_path = "../extjs"

sass_path = File.dirname(__FILE__)

css_path = sass_path

output_style = :expanded

load File.join(File.dirname(__FILE__), $ext_path, 'resources',
'themes')

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

407

How to do it...
1.	 Start by creating a panel and rendering it to the document's body. This will show

a panel:
Ext.onReady(function(){
 Ext.create('Ext.panel.Panel', {
 width: 200,
 height: 100,
 title: 'Panel Example',
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
 });
});

2.	 Now create an SCSS file called CustomTheme.scss and add SCSS configuration to
it. We're only going to include the styles required for panels here:
$include-default: false;
$include-missing-images: true;
$theme-name: 'LegacyBrowsers';
$base-color: lighten(#BADA55, 15);

@import 'ext4/default/all';

@include extjs-panel;

We have named this theme LegacyBrowsers to
make this example compatible with the next recipe in
this chapter.

3.	 Compile your SASS by running the command compass compile. This will generate a
file called CustomTheme.css.

4.	 Swap the CSS file for the newly generated one:
<link rel="stylesheet" type="text/css" href="CustomTheme.css">

5.	 Refreshing your browser should now show you a panel with pink styling:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

408

6.	 Now add an extjs-panel-ui mixin to the SASS with the following configuration
and re-compile using the command compass compile:
@include extjs-panel-ui(
 'warning',

 $ui-base-color: $base-color,

 $ui-border-color: #EB5982,
 $ui-border-radius: 6px,
 $ui-border-width: 1px,

 $ui-header-color: #6E0C24,
 $ui-header-font-family: 'georgia, serif',
 $ui-header-font-size: 12px,
 $ui-header-font-weight: bold,
 $ui-header-border-color: #EB5982,
 $ui-header-background-color: #EB5982,
 $ui-header-background-gradient: matte,
 $ui-header-inner-border-color: null,

 $ui-body-color: null,
 $ui-body-border-color: #EB5982,
 $ui-body-border-width: 1px,
 $ui-body-border-style: solid,
 $ui-body-background-color: #F7CBD6,
 $ui-body-font-size: null,
 $ui-body-font-weight: bold
);

7.	 Set the ui config option to warning and add some text to the panel's body:
Ext.create('Ext.panel.Panel', {
 width: 200,
 height: 100,
 title: 'System Status',
 ui: 'warning',
 bodyPadding: 5,
 html: 'We are currently investigating a service outage.',
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

409

8.	 Refresh your browser to see the updated panel:

How it works...
When we compile the SASS with Compass a CSS file is produced that contains all the
styles we need from the default Ext JS 4 theme but with our customizations (for example,
the theme's base-color). This means we can completely remove the default CSS
stylesheet and replace it with our newly generated one.

We can see how SASS alters the CSS by looking at the differences between the two
stylesheets. An example class can be seen below, the first snippet from the CustomTheme.css
file and the second from the stylesheet shipped with the framework (the comments regarding
the color have been added by us).

/* CustomTheme.css */
.x-panel-body-default {
 background: white;
 border-color: #f47095; /* Pink */
 color: black;
 border-width: 1px;
 border-style: solid;
}

/* ext-all.css */
.x-panel-body-default {
 background: white;
 border-color: #99bce8; /* Blue */
 color: black;
 border-width: 1px;
 border-style: solid
}

With the new stylesheet applied, our browser will render the panel in our custom color.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Theming your Application

410

See also
ff The Compiling SASS with Compass and Introduction to SASS recipes will help remind

you of the steps needed to set up the Compass and the SASS syntax used to create
these styles.

Creating images for legacy browsers
As we all know, web developers are constantly battling with legacy browsers to make their
designs consistent across all platforms. The abilities of CSS3 are well known and we want
to use it as often as possible to easily create beautiful interfaces with rounded corners,
gradients, and shadows, but Internet Explorer quickly stops us in our tracks.

Sencha also feels this pain and have created an ingenious slicer tool that allows us to think
purely in terms of CSS3 and lets it take care of generating and slicing the images required to
have those gradients and other CSS3 styles displayed exactly as we want in the older browsers.

The framework's new Split DOM feature, which causes each component's markup to be
rendered differently based on the current browser's capabilities, means the images are
used only as a fallback when necessary and the competencies of each individual browser
are utilized to their fullest. This recipe will step through the process of using this SDK tool
to generate the required images for our previously created custom theme making it fully
compatible with IE6 and other legacy browsers.

Getting ready
Before we can use the slicing tool we must have a compiled Ext JS theme stylesheet, which
the tool will use to create the images from. We are going to use the custom theme created
in the previous recipe but you can apply the same steps to your own custom theme, being
careful to alter the paths accordingly.

How to do it...
1.	 First we must download and install the Sencha SDK tools. This can be found on the

Sencha website (http://www.sencha.com/products/sdk-tools/).

2.	 Once installed, open a new command prompt/Terminal window and navigate to this
chapter's source folder.

You can execute the slicer tool from any location—it doesn't
have to be the location of your CSS file. Choose a location that
makes it easy to configure the relative paths correctly.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 11

411

3.	 Next we execute the following command that tells the slicer where to find the Ext JS
directory, our custom CSS file, and where we want our images to be created:
sencha slice theme -d extjs -c LegacyBrowsers/LegacyBrowsers.css
-o extjs/resources/themes/images/LegacyBrowsers -v

4.	 While the tool does its work we will see each of the theme's images appearing in the
output folder. Once it is complete we are able to navigate to our application in IE6 and
see the theme appear exactly as it does in a modern browser.

How it works...
The slicer SDK Tool works by rendering each of Ext JS components in memory with the custom
theme applied. It then starts slicing the rendered output into individual images. These images
are then combined into sprites as needed and saved to your output folder.

The 'slice theme' command accepts various arguments to configure the tool's process:

ff -c: This configures the path to your theme's custom CSS file (including the file
name itself).

ff -d: The path to the Ext JS framework directory.

ff -m: This allows you to specify the path to a custom manifest file. This is used when
we have defined custom UIs and allows us to define which components should be
sliced using these new UIs. For example, indicating that the tool should slice a button
with a new UI of 'fancy-button'. This is optional and if omitted will use the default
manifest file.

ff -o: The path to the folder the generated images will be saved to.

ff -v: If included, a message will be displayed in the console as each image is created.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

12
Advanced Ext JS

for the Perfect App

In this chapter, we will cover:

ff Advanced functionality with plugins

ff Architecting your applications with the MVC pattern

ff Attaching user interactions to controller actions

ff Creating a real-life application with the MVC pattern

ff Optimizing and building your application for a production environment with
Sencha's SDK tools

ff Getting started with Ext Direct

ff Loading and submitting forms with Ext Direct

ff Handling errors throughout your application

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

414

Introduction
This chapter will cover advanced topics in Ext JS that will help make your application stand
out from the crowd. We will start by explaining how to extend and customize the framework
through plugins, where we will write a plugin to toggle text fields between an editable and
display state.

The next recipes will focus on the MVC pattern that has become the recommended way of
structuring your applications. These recipes will start by explaining the file and class structure
we need, leading into how to connect your application's parts together. Finally we will take one
of our earlier examples and demonstrate how to create it following the MVC pattern.

We will also focus on Ext.Direct and how it can be used to handle server communications
in conjunction with forms and stores.

Other advanced topics such as state, advanced exception handling, history management, and
task management will also be described.

Advanced functionality with plugins
Ext JS' functionality can be easily extended and modified by attaching plugins to components.
Plugins allow us to create reusable code that will modify or add to a component's look and
behavior during or after its instantiation.

The Ext JS community is prolific in their creation of plugins to extend the framework and there
are some excellent contributions with both open source and commercial licenses. You can
browse through the available plugins (and submit your own!) on the Sencha forums or on the
Sencha marketplace (http://market.sencha.com/).

In this recipe, we are going to create a plugin called Ext.ux.ReadOnlyField that can be
attached to text fields. This will allow them to be switched between a read-only mode, which
hides the input field, and an edit mode. The plugin will create a new DIV element as part of
the field and show and hide it when the mode is changed.

The following screenshot shows the plugin in action with the left image showing the text field
in edit mode and the right in read-only mode:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

http://market.sencha.com/

Chapter 12

415

Getting ready
We will first need a simple form to demonstrate our plugin in action so we will start by creating
one with a simple text field and three buttons, which we will attach functionality to later.

var form = Ext.create('Ext.form.Panel', {
 renderTo: Ext.getBody(),
 bbar: [{
 xtype: 'button',
 text: 'Edit'
 }, {
 xtype: 'button',
 text: 'Save'
 }, {
 xtype: 'button',
 text: 'Cancel'
 }],
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Email Address'
 }]
});

How to do it…
1.	 Plugins are simply classes, in the same way that all components are, so we start

by defining our Ext.ux.ReadOnlyField class that will, by default, extend the
Ext.Base class:
Ext.define('Ext.ux.ReadOnlyField', {
});

It is generally a good practice to create plugins in the Ext.ux
namespace so they can be included in future projects easily and
to ensure that they won't conflict with built-in framework classes.

2.	 The next step is to define our plugin's init method, which is the starting point
of every plugin. To start with, we simply cache a reference to the plugin's parent
component (that is, the text field) so we can easily access it later:
Ext.define('Ext.ux.ReadOnlyField', {
 init: function(parent){
 this.parent = parent;
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

416

3.	 We will use the parent component's render event to create our plugin's extra
markup. We attach a handler method that creates a new DIV element inside
the field's body element:
Ext.define('Ext.ux.ReadOnlyField', {
 init: function(parent){
 this.parent = parent;
 this.initEventHandlers();
 },

 initEventHandlers: function(){
 this.parent.on({
 render: this.onParentRender,
 scope: this
 });
 },

 onParentRender: function(field){
 field.displayEl = Ext.DomHelper.append(field.bodyEl, {
 tag: 'div',
 style: {
 height: '22px',
 "line-height": '18px',
 margin: '2px 0 0 5px'
 }
 }, true).setVisibilityMode(Ext.Element.DISPLAY);

 field.inputEl.setVisibilityMode(Ext.Element.DISPLAY);
 }
});

4.	 We now add three methods, which will switch between read-only and edit modes.
These methods show and hide the appropriate elements and set the values of them
as needed:
...
edit: function(){
 if(this.rendered){
 this.displayEl.hide();
 this.inputEl.show();

 this.cachedValue = this.getValue();
 }
},

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

417

save: function(){
 if(this.rendered){
 this.displayEl.update(this.getValue());

 this.displayEl.show();
 this.inputEl.hide();
 }
},
cancel: function(){
 if(this.rendered){

 this.setValue(this.cachedValue);

 this.displayEl.show();
 this.inputEl.hide();
 }
}
...

5.	 In order for these methods to be called from the field directly we create a reference to
them in the field's class inside the init method:
init: function(parent){
 this.parent = parent;
 this.initEventHandlers();
 this.parent.edit = this.edit;
 this.parent.save = this.save;
 this.parent.cancel = this.cancel; }

6.	 We can now add handlers to our three toolbar buttons to call the relevant method:
...
bbar: [{
 xtype: 'button',
 text: 'Edit',
 handler: function(){
 form.items.get(0).edit();
 }
}, {
 xtype: 'button',
 text: 'Save',
 handler: function(){
 form.items.get(0).save();
 }
}, {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

418

 type: 'button',
 text: 'Cancel',
 handle: function(){
 form.items.get(0).cancel();
 }
}]
...

7.	 Finally, we attach the plugin to our text field by creating a new plugin instance and
including it in the field's plugins array:

{
 xtype: 'textfield',
 fieldLabel: 'Email Address',
 plugins: [Ext.create('Ext.ux.ReadOnlyField')]
}

How it works...
Plugins must be a class and, as a minimum, have an init method. This method is called
within the component's constructor, just before its initComponent method, and provides
the opportunity to perform the setup required to make the plugin function correctly. The init
method is passed one parameter, which is a reference to the component that it is attached to,
in our case the text field.

In our plugin's init method we cache a reference to the parent text field and attach a listener
function to the field's render event. Our handler function performs the modifications to the
field's markup required for our plugin to work.

We use the append method of Ext.DomHelper to add a new HTML element to the field's
body element. The new element is configured by the second parameter that contains the
desired tag and some styling. The following screenshot shows the result of this code, with
the new, hidden div at the bottom:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

419

We then call the setVisibilityMode on the new displayEl and the inputEl's
Ext.Element so they do not take up space when they are hidden.

The display mode of an element can be set to either Ext.Element.
VISIBILITY, Ext.Element.DISPLAY, Ext.Element.OFFSETS, or
Ext.Element.ASCLASS. The first uses the visibility: hidden CSS
property, which means the element still takes up space. The second uses the
display: none property, which means the element does not take up any
space. The third option uses offset positions to hide the element by moving
it off-screen. The final choice means that a CSS class will be applied to the
element in order to hide it.

Finally we call the field's edit method to force it into edit mode from the start. The behavior
of the plugin is controlled by the edit, save, and cancel methods. We will take these in
turn and explain how they work:

ff The edit method starts by checking if the component is rendered or not. If it isn't
then our displayEl won't be created, so we don't have to do anything. If it is
rendered, then we hide the displayEl (our custom div) and show the inputEl.
We also store a copy of the field's current value in case we want to cancel the change
and revert back to its previous value.

ff The save method starts with the same check and if it is rendered then the save
method updates the contents of the displayEl with the field's value. It then hides
the inputEl and shows the displayEl.

ff The cancel method reverts the field's changes back to what it was before the edit
and shows the displayEl again. It does this by passing the cached value (set in the
edit method) to the field's setValue method. It then shows the displayEl and
hides the inputEl.

In order for these three methods to be called from the field itself, we create references to
them on the field's class so they can be called directly without having to go through the
plugin's instance. By doing this, the scope that the functions will be executed in is the field
instance itself, not the plugin (that is, "this" will refer to the field).

See also
ff For more information about extending Ext JS classes using inheritance see the

Utilizing inheritance in your classes recipe in Chapter 1, Classes, Object-Oriented
Principles, and Structuring your Application.

ff If you need to change some of the internal workings of the framework in your plugin,
check out the recipe titled Overriding Ext JS' functionality, also in Chapter 1.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

420

ff Plugins often require the need to create custom HTML so the recipes at the start of
Chapter 2, Manipulating the Dom, Handling Events, and Making AJAX Requests will
help you get started.

Architecting your applications with the MVC
pattern

Ext JS 4 introduces the MVC application architecture, which Sencha define as:

ff Model: A model contains the definition of your data, which is, in effect a definition of
a data entity. In Ext JS 4 models can link to each other through associations and will
remain persistent. Most commonly a model will be bound to a store, which can be
used in components such as grids.

ff View: Views are your UI components/widgets, for example, panels, forms, grids,
and windows.

ff Controller: A controller pulls everything together. They contain your application's logic
and will perform tasks, such as referencing your stores and models from views. They
will also be in charge of listening for events from views (for example, button clicks,
grid selections, and so on) and hooking actions up to them.

In this recipe we are going to demonstrate how to architect a simple Enhancement Log
application consisting of a grid displaying a list of enhancements.

Getting ready
Create the MVC file and folder structure described in the recipe Creating Your Application's
Folder Structure in Chapter 1.

How to do it...
1.	 Start by editing index.html and add the files we require for our app:

<html>
 <head>
 <title>Enhancement Log</title>

 <!-- Library Files -->
 <link rel="stylesheet" type="text/css" href="extjs/
resources/css/ext-all.css">
 <script type="text/javascript" src="extjs/ext-all-debug.
js"></script>

 <script type="text/javascript">
 Ext.Loader.setConfig({

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

421

 enabled: true
 });

 </script>

 <!-- Application Logic -->
 <script type="text/javascript" src="app.js"></script>
 </head>
 <body>
 </body>
</html>

2.	 We start the application with an instance of the Ext.app.Application class.
This contains our application name, a reference to the controller(s), and the launch
method that runs once everything has loaded. In app.js add:
Ext.application({
 name: 'EnhancementLog',

 controllers: ['Enhancement'],

 launch: function(){
 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [{
 xtype: 'EnhancementGrid'
 }]
 });
 }
});

3.	 Now that we have our application defined and ready to launch, let's deal with the
controller. Add the following code to Enhancement.js in the controller directory:
Ext.define('EnhancementLog.controller.Enhancement', {
 extend: 'Ext.app.Controller',

 stores: ['Enhancement'],

 models: ['Enhancement'],

 views: ['enhancement.EnhancementGrid'],

 init: function() {
 //initialization code
 }

});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

422

4.	 Then define the view (in our case an enhancement grid) in EnhancementGrid.js:
Ext.define('EnhancementLog.view.enhancement.EnhancementGrid', {
 extend: 'Ext.grid.Panel',
 alias: 'widget.EnhancementGrid',

 title: 'System Enhancements',
 store: 'Enhancement',

 columns: [{
 header: 'Title',
 dataIndex: 'title',
 flex: 1
 }, {
 header: 'Enhancement Description',
 dataIndex: 'description',
 flex: 3
 }]
});

5.	 We now need to create a model and bind it to a store. The model is defined as follows:
Ext.define('EnhancementLog.model.Enhancement', {
 extend: 'Ext.data.Model',
 fields: ['id', 'title', 'description']
});

6.	 Finally we define a store (with some pre-defined data) like so:
Ext.define('EnhancementLog.store.Enhancement', {
 extend: 'Ext.data.Store',

 model: 'EnhancementLog.model.Enhancement',

 data: [{
 id: 1,
 title: 'Search Field Autocomplete',
 description: 'Could the main search field have an
autocomplete facility to increase my productivity.'
 }]
});

With all the pieces put together, when we run the application, you will see a grid with a list of
enhancement requests:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

423

How it works…
There are four key aspects to this MVC application.

Firstly, the application definition in app.js starts with the Application class. This class is
where we put the main application logic and define key components:

ff The application has a name EnhancementLog; this is the global namespace for
the application.

ff We then tell our application about its controllers. We only have one controller—
Enhancement (if we had more than one, we'd simply add them to the array). If we
have the Ext.Loader enabled, the classes in this array will be automatically loaded.

ff Finally, in the launch property we add a function that creates the viewport for the
application with our grid xtype. The launch property is automatically called as soon
as the application is ready (that is, has loaded).

The xtype is the alias (without the widget. prefix) that we
defined in the EnhancementGrid class.

Now that the application knows about our the Enhancement controller, we add the second
piece of the puzzle. The controller should contain a reference to its views and its models:

ff Firstly, in the controller, we indicate the store(s) and model(s) it requires (these will
be picked up by Ext.Loader if you wish—see the recipe on Dynamically Loading
Ext JS Classes).

ff We finish off by telling it about the view(s) it requires.

ff The init method can be used to perform any pre-launch initialization and is run
before your application launches.

With the controller ready, we create the view to display the enhancement requests. In this
case, we've created a simple grid to list our enhancement requests. To create the grid we
first extend Ext.grid.Panel and define the configuration it requires:

ff We alias our grid with widget.EnhancementGrid so we can call the alias
EnhancementGrid anywhere in our app

ff Our grid has a title and columns (this configuration is explained in Chapter 8)

ff Finally, we bind the grid to our store so it knows where to get its data from

The last part is adding the model that we referenced in our controller and a store to bind
to the grid. The model is where we add the data definition. We start by extending the
Ext.data.Model class. It's then simply a case of listing the fields our data contains.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

424

With the model in place we add a store by extending Ext.data.Store. First we tell the
store where to get the data definition from; in this case it's EnhancementLog.model.
Enhancement. Next we add the method for retrieving the data. For the purposes of this
demonstration we have defined some inline data. Chapter 7, Working with the Ext JS Data
Package explains data and stores in more detail.

The controller is capable of dynamically loading stores, models, and views by adding an
array for each. It's able to do this so long as your folder structure and class names adhere
to Sencha's conventions. For example, the controller contains the following code:

stores: ['Enhancements'],

The framework will load and instantiate our enhancements store, which is named as
EnhancementLog.store.Enhancement and located in the enhancementLog/app/
store/Enhancement.js file.

See Also
ff For more information on using MVC and Ext JS it's worth looking at Sencha's MVC

guide that is supplied with the documentation.

ff For more information about stores and models look back to Chapter 7, Working with
the Ext JS Data Package.

Attaching user interactions to controller
actions

The MVC architecture provides us with a standard way of organizing our applications and
means that the code can be easily read and understood by other developers because things
are always in the same place.

After creating our application's views we must start handling events raised after a user
interacts with them, and use our controller actions to provide a path through our application.

Before the MVC architecture existed, this interaction was usually dealt with inside the view
itself, that is, a tight coupling between application logic and presentation definitions. MVC
allows us to remove this coupling and let views solely focus on displaying data and have the
controllers tie everything together.

In this recipe, we will demonstrate how to listen for user interactions on our views and have
the controller deal with the logic needed to move the user through our application.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

425

Getting ready
We will start by creating a very simple MVC application structure to which we will add
code to during this recipe. Our application will have one controller and one view that will
display a login form to the user. Our folder structure can be seen as follows with the
various files we will need:

Our app.js file contains our Ext.Loader configuration and the application's definition using
the following code:

Ext.Loader.setConfig({
 enabled: true
});

Ext.application({

 name: 'Cookbook',

 autoCreateViewport: true,

 launch: function(){
 console.log('App Launch');
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

426

We have named the application as Cookbook and so will use this as its root namespace
with all views, models, and controllers coming underneath this. We also set the
autoCreateViewport config to true so the framework will look for a view called
Cookbook.view.Viewport and automatically create it. We have created two
views—Viewport and LoginForm. The Viewport view is automatically
created and contains an instance of the LoginForm view.

Ext.define('Cookbook.view.Viewport', {
 extend: 'Ext.container.Viewport',

 initComponent: function(){

 Ext.apply(this, {
 layout: 'fit',
 items: [Ext.create('Cookbook.view.LoginForm')]
 });

 this.callParent(arguments);
 }
});

The LoginForm view extends the Ext.form.Panel class and contains a Username and
Password field and a Login button:

Ext.define('Cookbook.view.LoginForm', {
 extend: 'Ext.form.Panel',

 initComponent: function(){

 Ext.apply(this, {
 items: [{
 xtype: 'textfield',
 name: 'Username',
 fieldLabel: 'Username'
 }, {
 xtype: 'textfield',
 inputType: 'password',
 name: 'Password',
 fieldLabel: 'Password'
 }, {
 xtype: 'button',
 text: 'Login',
 action: 'login'
 }]
 });

 this.callParent(arguments);
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

427

If we now add references to the framework's JS file and app.js within our index.html and
open it, we will see our application's login form:

Now that we have this structure in place, we can look into hooking up a click of our Login
button to a controller action.

How to do it...
1.	 We start by creating a controller that will contain our login logic. We do this by

creating a file in our controller folder called Main.js and define a class called
Cookbook.controller.Main extending from the Ext.app.Controller class:
Ext.define('Cookbook.controller.Main', {
 extend: 'Ext.app.Controller',
});

2.	 Next we add the init method to our controller, which will be executed when the
controller is loaded:
Ext.define('Cookbook.controller.Main', {
 extend: 'Ext.app.Controller',

 init: function(){
 console.log('Main Controller Init');
 }
});

3.	 Add a configuration option called controllers to our application definition, located
in our app.js file. This will tell our application that we have a controller called Main
to load and initialize:
Ext.application({

 name: 'Cookbook',

 autoCreateViewport: true,
 controllers: ['Main'],

 launch: function(){
 console.log('App Launch');
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

428

4.	 Now that our controller is being initialized, we can hook up the Login
button's click event to an action. We start by creating an action method
called onLoginButtonClick in our Main controller and simply output
a console message:
...
onLoginButtonClick: function(){
 console.log('Log me in!');
}
...

5.	 Now, in our Main controller's init method we use the control method to attach
this action method to the Login button's click event:

...
init: function(){
 console.log('Main Controller Init');

 this.control({
 'button[action=login]': {
 click: this.onLoginButtonClick,
 scope: this
 }
 });
}
...

How it works...
Once we have defined our controller we use the controllers configuration to have it
dynamically loaded and initialized by our application. This process will automatically call
the controller's init method, allowing us to add our event handlers.

You can add as many controllers to this array and each will be loaded and initialized in turn.

The control method forms part of the Ext.app.Controller class and allows us to target
specific components, using the Ext.ComponentQuery syntax, and attach handlers to their
various events.

We do this by passing an object literal containing a component query as the key and another
object literal as the value. This object is identical to the one you might give to a component's
listeners configuration or the on method.

In our example we target the Login button by looking for all components with an xtype of
button and with an action property set to login. If this query returned multiple components,
they will all have their events bound.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

429

Although executed when the controller is created, the targeted
components don't have to exist at this point for the control
method call to bind the event handlers. It works in a similar way
to event delegation and so will still execute the handlers if the
components are instantiated after this is called.

The object literal tells the control method that the onLoginButtonClick method will be
bound to any click events raised on the queried component(s) and executed in the scope of
the controller.

Any number of component queries can be included in this object
literal with each of them binding to any number of events.

It is important to note that by using these component queries we are coupling our controllers
to the views by varying degrees. In order to reduce this coupling and minimize the knowledge
of the view's structure given to the controller, we should use as simple queries as possible to
target the correct component. For example, it would be perfectly valid, but unwise, to target
the button with a query such as:

...
'viewport > form > button[action=login]': {
 click: this.onLoginButtonClick,
 scope: this
}
...

By using a query such as this, we are forcing the view structure to remain as it is, meaning
that this code must be changed if we wanted to, for example, introduce another level
of nesting.

There's more...
At the moment all our Login button does is log a message to say it has been clicked.
Obviously to make this functional we will need to collect the values entered in the Username
and Password fields. We will now introduce the refs configuration option and show how this
can be used to get references to components.

The refs config allows us to specify a component query string, which is used to automatically
get a reference to a component. It accepts an array of object literals that must each have a
ref and selector property. The ref property defines what name will be used to access this
reference and the selector indicates the component query used to find it.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

430

The following code shows this in action within our Main controller to create refs to our
Username and Password fields:

...
refs: [{
 ref: 'usernameField',
 selector: 'textfield[name=Username]'
}, {
 ref: 'passwordField',
 selector: 'textfield[name=Password]'
}]
...

When our controller is constructed these refs are processed and a get method
(getUsernameField and getPasswordField) is created for each of them that
returns the reference found.

It is important to note that, in a similar way as the control method
works, the targeted component does not have to exist at the time the
controller is instantiated as the get methods will execute the query
when called and cache its result. If the component has been destroyed
since the last execution, it will be run again to get the new component.

We can now use these getter methods in our onLoginButtonClick method to get the value
entered into each field:

onLoginButtonClick: function(){
 console.log('Log me in!');

 console.log(this.getUsernameField().getValue());
 console.log(this.getPasswordField().getValue());
}

See also
ff Be sure to read about creating the standard application folder structure in the

Creating your Application's folder structure recipe found in Appendix, Ext JS 4
Cookbook-Exploring Further.

ff See the Architecting your applications with the MVC pattern recipe.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

431

Creating a real-life application with the
MVC pattern

Having talked through how to structure a MVC application and how we hook up our
controller's actions to the application views' events, we are now going to look at creating
a more real-life example.

In Chapter 4, UI Building Blocks—Trees, Panels, and Data Views we created a data view to
display bugs, which links into a form for editing each bug. We are now going to port that
application into the MVC architecture and show how we go about using the MVC pattern
with an application with multiple views and user interactions.

If you aren't already familiar with the recipe from Chapter 4 we recommend you revisit it and
familiarize yourself with it before starting.

Getting ready
We will start by creating our standard application folder structure with folders for our
controllers, models, stores, and views. We will also require an HTML file that references the
Ext JS framework's JS and CSS files, and which also enables the Ext.Loader class so our
files will be automatically loaded when required. To do this we add the following code snippet
to the HEAD of the document:

<script type="text/javascript">
 Ext.Loader.setConfig({
 enabled: true,
 paths: {
 Ext: '../../../src'
 }
 });
</script>

In the original recipe in Chapter 4, UI Building Blocks—Trees, Panels, and Data Views, we also
added some CSS styling to make our DataView look a little nicer. We will also require you to
add these styles to a CSS file and link to it in the index.html file.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

432

How to do it...
1.	 Our first step is to create our app.js file, which will provide our application's

launch point. We create this file in the root of our application alongside our
index.html. At this stage we will give our application the name BugTracker
and an empty launch function:
Ext.application({
 name: 'BugTracker',
 launch: function(){
 console.log('App Launch');
 }
});

2.	 Next we will define our bug model and store. These will be placed in two files named
Bug.js in the model folder and BugStore.js in the store folder respectively. The
contents of each can be seen as follows:
// model/Bug.js
Ext.define('BugTracker.model.Bug', {
 extend: 'Ext.data.Model',
 fields: [
 'title',
 'status',
 'description',
 'severity'
]
});

// store/BugStore.js
Ext.define('BugTracker.store.BugStore', {
 extend: 'Ext.data.Store',
 model: 'BugTracker.model.Bug',
 data: [...]
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

433

3.	 We have created our main model and store, now we want to make the application
aware of them so the framework loads them when required. We do this by adding
stores and models configs to the Ext.application call of app.js. These
configs accept an array of strings that are then fully qualified with the relevant
namespace (for example, MyModel becomes BugTracker.model.MyModel).
Ext.application({
 name: 'BugTracker',
 models: [
 'Bug'
],
 stores: [
 'BugStore'
],
 launch: function(){
 console.log('App Launch');
 }
});

If your models or stores are contained in further
namespaces (for example, BugTracker.model.
AdminApp.Bug) then you must include all
namespaces after the default BugTracker.model
for the Ext.Loader to load them correctly.

4.	 Our next step is to create our views. In our application we have a DataView that
displays our set of bugs, a panel to wrap the DataView, a Form panel to allow us to
edit a bug, a window to house the Form panel when it is displayed, and a Viewport
container. We are going to create each of these views as their own class, extending
the relevant framework class, starting with our BugDataView:
// view/BugDataView.js
Ext.define('BugTracker.view.BugDataView', {

 extend: 'Ext.view.View',

 alias: 'widget.BugDataView',

 config: {

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

434

 store: Ext.create('BugTracker.store.BugStore'),
 tpl: '<tpl for=".">' +
 '<div class="bug-wrapper">' +
 '{title}' +
 '{severity}</
span>' +
 '{description}' +
 '<span class="status {[values.status.toLowerCase().
replace(" ", "-")]}">{status}' +
 '</div>' +
 '</tpl>',
 itemSelector: 'div.bug-wrapper',
 emptyText: 'Woo hoo! No Bugs Found!',
 deferEmptyText: false
 }
});

5.	 Next we create the BugPanel that will have an instance of the BugDataView within
it. Notice the new action config we have given to each of the toolbar buttons; we will
use these later on to hook up their click events:
// view/BugPanel.js
Ext.define('BugTracker.view.BugPanel', {
 extend: 'Ext.panel.Panel',
 alias: 'widget.BugPanel',
 config: {
 title: 'Current Bugs,
 height: 500,
 width: 580,
 layout: 'fit',
 style: 'margin: 50;',
 tbar: [{
 xtype: 'combo',
 name: 'status',
 width: 200,
 labelWidth: 100,
 fieldLabel: 'Severity Filter',
 store: ['1', '2', '3', '4', '5'],
 queryMode: 'local'
 }, '-', {
 text: 'Sort by Severity',
 action: 'sortBySeverity'
 }, {
 text: 'Open all Bugs',
 action: 'openAllBugs'

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

435

 }, '->', {
 text: 'Clear Filter',
 action: 'clearFilter'
 }],
 items: [{
 xtype: 'BugDataView'
 }]
 }
});

6.	 The Bug form panel is next and we follow the same pattern as the other views and
create it in its own file whose name matches the class name that it contains:
// view/BugForm.js
Ext.define('BugTracker.view.BugForm', {

 extend: 'Ext.form.Panel',

 alias: 'widget.BugForm',

 config: {
 border: 0,
 items: [{
 xtype: 'textfield',
 name: 'title',
 width: 300,
 fieldLabel: 'Title'
 }, {
 xtype: 'textarea',
 name: 'description',
 width: 300,
 height: 100,
 fieldLabel: 'Description'
 }, {
 xtype: 'numberfield',
 name: 'severity',
 width: 300,
 fieldLabel: 'Severity',
 value: 1,
 maxValue: 5,
 minValue: 1
 }, {
 xtype: 'combo',
 name: 'status',
 width: 300,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

436

 fieldLabel: 'Status',
 store: ['Open', 'In Progress', 'Complete'],
 queryMode: 'local'
 }]
 }
});

7.	 Now we create a window that contains an instance of the BugForm as well as a
single Save button:
Ext.define('BugTracker.view.BugFormWindow', {
 extend: 'Ext.window.Window',
 alias: 'widget.BugFormWindow',
 config: {
 height: 250,
 width: 500,
 title: 'Edit Bug',
 modal: true,
 items: [{
 xtype: 'BugForm'
 }],
 closeAction: 'hide',
 buttons: [{
 text: 'Save',
 action: 'saveBug'
 }]
 }
});

8.	 Our Viewport container is our final view and is a simple component that extends the
Ext.container.Viewport class and creates an instance of the BugPanel class
within its items collection. To have this class instantiated automatically we also add
the autoCreateViewport: true configuration to our application definition in
app.js:
// view/Viewport.js
Ext.define('BugTracker.view.Viewport', {
 extend: 'Ext.container.Viewport',

 initComponent: function(){
 Ext.apply(this, {
 layout: 'fit',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

437

 items: [{
 xtype: 'BugPanel'
 }]
 });

 this.callParent(arguments);
 }
});

9.	 At this point if we open our index.html page we will see the application displaying
our bugs, but clicking on the buttons or bugs doesn't do anything! To bring it all to
life we need to create a controller, which will tie everything together. Start by creating
a new file called Bugs.js in the controller folder and give it the following skeleton
code. At this point we must also add a controllers config to the application
definition of app.js with a value of ['Bugs'] so the controller is automatically
loaded and initialized:
// controller/Bugs.js
Ext.define('BugTracker.controller.Bugs', {
 extend: 'Ext.app.Controller',
 views: [
 'BugDataView',
 'BugPanel',
 'BugForm',
 'BugFormWindow'
],
 init: function(){
 console.log('Bugs Controller Init');
 }
});

10.	 Next we use the refs config option to adds some accessor methods for each of the
main components so we can access references to them in our action methods:
refs: [{
 ref: 'bugDataView',
 selector: 'BugPanel BugDataView'
}, {
 ref: 'bugFormPanel',
 selector: 'BugFormWindow BugForm'
}, {
 ref: 'bugFormWindow',
 selector: 'BugFormWindow'
}]

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

438

11.	 We now use the control method (which we introduced in the previous recipe) to
wire up our button clicks to a controller action. We use a simple component query to
target the correct button using the action property that we gave each button and
then hook its click event to a method within the controller:
init: function(){
 console.log('Bugs Controller Init');
 this.control({
 'BugPanel button[action="sortBySeverity"]': {
 click: this.onSortBySeverityButtonClick,
 scope: this
 }
 });
},

onSortBySeverityButtonClick: function(btn){
 this.getBugDataView().getStore().sort('severity', 'DESC');
}

onSortBySeverityButtonClick: function(btn){
 this.getBugDataView().getStore().sort('severity', 'DESC');
}

12.	 We do this for the remaining buttons, the DataView's itemclick event and the
comboboxes' change event:
init: function(){
 console.log('Bugs Controller Init');

 this.control({
 'BugPanel BugDataView': {
 itemclick: this.onBugDataViewItemClick,
 scope: this
 },
 'BugPanel button[action="sortBySeverity"]': {
 click: this.onSortBySeverityButtonClick,
 scope: this
 },
 'BugPanel button[action="openAllBugs"]': {
 click: this.onOpenAllBugsButtonClick,
 scope: this
 },
 'BugPanel button[action="clearFilter"]': {
 click: this.onClearFilterButtonClick,
 scope: this
 },
 'BugPanel combo[name="status"]': {
 change: this.onBugStatusComboboxChange,

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

439

 scope: this
 },
 'BugFormWindow button[action="saveBug"]': {
 click: this.onSaveBugButtonClick,
 scope: this
 }
 });
},

onSaveBugButtonClick: function(btn){
 var form = this.getBugFormPanel();

 // get the record loaded into the form
 var selectedRecord = form.getRecord();

 selectedRecord.set(form.getValues());

 // refilter
 this.getBugDataView().getStore().filter();

 this.getBugFormWindow().close();
},

onBugDataViewItemClick: function(view, record, item, index,e){
 var win = this.getBugFormWindow();

 if(!win){
 win = Ext.create('BugTracker.view.BugFormWindow');
 }

 win.show();

 // populate the form with the clicked record
 this.getBugFormPanel().loadRecord(record);
},

onSortBySeverityButtonClick: function(btn){
 this.getBugDataView().getStore().sort('severity', 'DESC');
},

onOpenAllBugsButtonClick: function(btn){
 this.getBugDataView().getStore().each(function(model){
 model.set('status', 'Open');
 model.commit();

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

440

 }, this);
},

onClearFilterButtonClick: function(btn){
 this.getBugDataView().getStore().clearFilter();
},

onBugStatusComboboxChange: function(combo, value, options){
 this.getBugDataView().getStore().clearFilter();

 this.getBugDataView().getStore().filter('severity', combo.
getValue());
}

How it works...
As we have done in the previous MVC recipes each type of class (models, stores, views,
and controllers) is defined in its own separate file that mirrors the class's namespace
structure. This keeps our code separated and easy to follow without cluttering any one
file with too much code.

We have taken the views that we created in the Chapter 4 recipe and split them into their own
files and turned them into classes, extending their relevant base class. Each of them is also
given an alias, which we make use of when instantiating them in other views.

In the views that have buttons we have also added an action property to each button that
is used to identify that button when we go to target it, using the ComponentQuery syntax.
Using action is simply a handy property that isn't used by the framework but could equally
be replaced with something of your own choosing.

We have also removed all event-handling code from these views to maintain the separation of
concerns demanded by the MVC pattern. The views should only be in charge of presentation
and so this logic does not belong here.

The logic we removed from these event handlers is moved into the Bugs controller and is
hooked up using the control method, which uses component queries to target the specific
component and attach handling functions to its events.

We have also made use of the refs configuration, which allows us to have accessor methods
automatically created for components that match the given ComponentQuery selector. We
have created refs for the BugDataView, BugForm, and BugFormWindow views so they can
be easily accessed from our controller's action methods.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

441

You can see these in use in the onBugDataViewItemClick method, which accesses the
BugFormWindow component through the getBugFormWindow method that is automatically
created for us. If no component matching the query is found then null is returned. We use
this fact to determine if we have to create an instance of the BugFormWindow after a Bug is
clicked. If a component is returned then we can simply repopulate it and show it again rather
than creating a new one.

See also
ff The Displaying a detailed Window after clicking a Data View node in Chapter 4, which

forms the basis of this recipe.

ff The previous two recipes about the MVC pattern, which explain how to structure your
application, have more detailed information about the control method and the
refs configuration option.

Building your application with Sencha's
SDK tools

Sencha's SDK tools, which we introduced with our recipe on theming for legacy browsers,
provide two commands for preparing your application for use in a production environment—
create jsb and build.

These commands allow us to create a custom build of the Ext JS framework, so we only
include the components and classes that we have used, and minify the code to reduce
its file size.

In this recipe we will take a very small 'Hello World!' example application and demonstrate
the steps needed to build and minify it for use in production.

Getting ready
This recipe requires you to have the Sencha SDK Tools installed on your development
machine. They can be found on the Sencha website (http://www.sencha.com/
products/sdk-tools/).

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

http://www.sencha.com/products/sdk-tools/

Advanced Ext JS for the Perfect App

442

Our sample application will be very simple and follow the standard MVC folder structure,
as the following screenshot shows:

We have two views (Viewport.js and HomeScreen.js) with the following definitions:

Ext.define('Cookbook.view.Viewport', {
 extend: 'Ext.Viewport',
 requires: ['Cookbook.view.HomeScreen'],
 layout: 'fit',
 items: [{
 xtype: 'HomeScreen'
 }]
});

Ext.define('Cookbook.view.HomeScreen', {
 extend: 'Ext.Panel',
 alias: 'widget.HomeScreen',
 html: 'Hello World!'
});

Our app.js configures the Ext.Loader class and defines our application, which simply
creates and shows our Cookbook.view.Viewport component:

// Enable & configure the Loader
Ext.Loader.setConfig({ enabled: true });

// Create our Application
Ext.application({
 name: 'Cookbook',

 launch: function() {
 // create and show our Viewport
 Ext.create('Cookbook.view.Viewport').show();
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

443

Finally, our index.html references the framework's ext.js and our app.js files, along
with the ext-css.css stylesheet:

<html>
<head>
 <title>SDK Tools</title>

 <link rel="stylesheet" type="text/css" href="../extjs/resources/
css/ext-all.css">
 <script type="text/javascript" src="../extjs/ext.js"></script>
 <script type="text/javascript" src="app.js"></script>
</head>
<body>
</body>
</html>

There are a few important things to note about this basic application, namely:

ff We are using the Ext.Loader class to dynamically load the framework's and our
own classes

ff We are including the ext.js library file, which contains only the very basic
framework code, as opposed to the ext-all(-debug).js file, which has the
complete library

ff We have followed the standard of adding the required configuration containing any
classes that the component uses so these can be dynamically loaded

ff We instantiate classes using the Ext.create syntax

These points are very important as the SDK tools rely on these to parse your application and
find all of its dependencies.

How to do it...
Now that we have our simple application up and running we can start using the SDK tools to
create our application's 'dependency list' in the form of a JSB3 file, which can then be used to
build it into a single, minified file:

1.	 First we must open a command-line window and navigate to our application's
source folder.

2.	 Once there we run the following command:
sencha create jsb -a http://localhost/sdk-tools-app/index.html -p
app.jsb3 –v

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

444

Notice that we used a URL instead of simply index.html. By
doing this we ensure that the paths to the source files are correct.

3.	 Once this process has completed you will notice a new file called app.jsb3 in your
application's folder. If you open this you will see a list of all the Ext JS framework files
that our application requires to run. A small sample of it can be seen as follows:
{
 "projectName": "Project Name",
 "licenseText": "Copyright(c) 2011 Company Name",
 "builds": [
 {
 "name": "All Classes",
 "target": "all-classes.js",
 "options": {
 "debug": true
 },
 "files": [
 {
 "path": "../extjs/src/util/",
 "name": "Observable.js"
 }
 ...
]
 }
 ...
]
}

4.	 Our next step is to use this definition file to build our application into a single, minified
file. We do this by running the following command:

sencha build -p app.jsb3 –d .

How it works...
The first command we used, create jsb, generates a JSON definition file that can be
parsed by JSBuilder and is used to decide what the build output will be like, what files
will be included, and how it will be processed. The command accepts four arguments:

ff -app-entry (-a): defines the HTML page of the application

ff -project (-p): defines the location and name of the outputted JSB3 file

ff -target (-t): defines the JSB build target

ff -verbose (-v): output is printed to the command line

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

445

The SDK tool creates this file by parsing the application's index.html file and following
all of the required classes (this is possible because we used the requires option and
the Ext.create syntax in our definitions) and builds a list of them, in a similar way as
the framework does at runtime when the classes are loaded.

The JSB3 file that is created contains a property called builds. This property contains an
array of objects that define a single file that will be output by the build process. In our file
there are two items in this array—All Classes and Application.

The All Classes definition tells the builder to create a file called all-classes.js (our
target), to build in debug mode and to include all the files in the files property. This file
contains all of the Ext JS classes that are required and all of our custom application classes.

The second tells the builder that a compressed file (app-all.js) will be built containing the
all-classes.js file outputted from the first build item and the app.js file.

Step 4 shows the command to process this JSB3 definition file and have JSBuilder combine
and minify the files based on its contents.

The command to perform this action is sencha build and accepts two required arguments:

ff -deployDir (-d): defines where the combined and minified output files will
be saved

ff -projectFile (-p): defines the path and name of the JSB3 file

Getting started with Ext Direct
Ext Direct allows you to seamlessly integrate your Ext JS frontend with the server-side
technologies running the backend.

As you already know, it's not possible to have our JavaScript make calls to methods in our
server code directly. At present the requests we make call the necessary method and return
the results back to the browser.

Ext Direct helps by exposing server-side classes and methods and allowing you to call them
directly from your JavaScript, for example, ClassName.MethodName(). You'll have neat
code, consistent naming between the client and server-side, and having invested a small
amount of time in setup/configuration, you will undoubtedly save time in the long run.

It's straightforward working with Ext Direct no matter what your
server-side environment is. Integration is already provided for PHP,
.NET, Ruby, ColdFusion, Java, and others.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

446

We're going to use this recipe to demonstrate how to use Ext Direct in your application.
For the purposes of this recipe we will use a server-side stack for PHP. However, you can
download a stack for your environment from Sencha's website: www.sencha.com/forum/
showthread.php?67992-Ext.Direct-Server-side-Stacks.

Getting ready
For this recipe you will require a working web server capable of parsing PHP and the server-
side stack entitled "Extremely Easy Ext.Direct integration with PHP." The stack is provided by
community member j.bruni and can be downloaded from here: http://www.sencha.com/
forum/showthread.php?102357-Extremely-Easy-Ext.Direct-integration-
with-PHP.

How to do it...
1.	 Start by extracting the downloaded server stack to the directory Server.

2.	 Create a PHP file called GettingStarted.php and add the following code.
The class GettingStarted will be exposed to the client side with Ext Direct:
<?php

require 'Server/ExtDirect.php';

class GettingStarted {

 public function simple() {
 return "Returned a String";
 }

 public function parameterExample($name) {
 return "Your Name is " . $name;
 }

}

ExtDirect::provide('GettingStarted');
?>

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

http://www.sencha.com/forum/showthread.php?67992-Ext.Direct-Server-side-Stacks
http://www.sencha.com/forum/showthread.php?102357-Extremely-Easy-Ext.Direct-integration-with-PHP
http://www.sencha.com/forum/showthread.php?102357-Extremely-Easy-Ext.Direct-integration-with-PHP

Chapter 12

447

3.	 In your HTML file include the GettingStarted.php file inside a <script> tag.
Pass the parameter javascript to ensure that the PHP file returns JavaScript
(this is handled by the server-side stack we downloaded):
<link rel="stylesheet" type="text/css" href="../../../resources/
css/ext-all.css">
<script type="text/javascript" src="../../../ext-all-debug.js"></
script>

<script type="text/javascript" src="GettingStarted.
php?javascript"></script>

4.	 Now that Ext Direct is ready to use, we'll call the simple method from our
GettingStarted class. The default namespace (Ext.php) is required, however,
this is configurable from the server-side stack. The parameter is used for a callback
function to display the output of the request:
Ext.php.GettingStarted.simple(function(result) {
 console.log(result);
});

5.	 To demonstrate passing a parameter via Ext Direct call the parameterExample
method. The first argument is parameter one and the second argument is our
callback function. In this case we'll pass the string Joe to the server-side. The
server-side is ready to parse the parameter and return a result accordingly:
Ext.php.GettingStarted.parameterExample("Joe", function(result,
response) {
 console.log(result);
});

6.	 Run the code on your web server and your console should display Returned a String
and Your Name is Joe.

How it works...
Having run the previous code you now have an, albeit basic, app running with Ext Direct. We've
successfully managed to call a class and its methods directly from the client side.

There are three core components that we must be aware of before we can use Ext Direct with
our server-side code:

1.	 Configuring our server side correctly so it exposes the correct components to the
client side. We've done this by including the ExtDirect.php stack and exposing
the GettingStarted class with ExtDirect::provide('GettingStarted');

2.	 The API that we use to generate a client-side descriptor of the server side based on
the configuration. The API, in our example, is generated dynamically by including the
file GettingStarted.php?javascript as in step 3 above.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

448

3.	 The router for directing requests to the appropriate class and method. In this case
we don't need to worry too much about the router because the server-side stack
(ExtDirect.php) is taking care of that for us. The API that's generated by the server-
side stack outputs the following:

if (Ext.syncRequire)
 Ext.syncRequire('Ext.direct.Manager');

Ext.namespace('Ext.php');
Ext.php.REMOTING_API = {
 "url":"\/ExtDirect\/GettingStarted.php",
 "type":"remoting",
 "namespace":"Ext.php",
 "descriptor":"Ext.php.REMOTING_API",
 "actions":{
 {"name":"simple","len":0},
 {"name":"parameterExample","len":1}
]
 }
};
Ext.Direct.addProvider(Ext.php.REMOTING_API);

There are four items to note here:

ff Ensure Ext Direct is ready to run on the client side as the class Ext.direct.
Manager is required.

ff Define a namespace for the components we may wish to call. In our example we
have used the default namespace, Ext.php, from the stack. If you wish to change
this add the line ExtDirect::$namespace = 'MyNamespace.Name'; to your
configuration.

ff The REMOTING_API is simply an output of the stubs that the client side needs to
create everything we need. As you can see here, we have a reference to the URL
that the framework must route all requests to and the various actions available.
The number of parameters for a method is also described here.

ff We must add the RemotingProvider to ensure Ext JS creates the necessary
proxy and stub methods that will call the server-side methods. This is done using
the addProvider method in Ext.direct.Manager.

Now that the framework knows what classes and methods are available it's an easy task for
us to make requests to the server.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

449

Ext Direct does other clever things for us, such as method batching. This
reduces the number of requests to a server by batching all requests within
a certain time period together. This defaults to 10-millisecond batches,
however, this is easily configurable with the enableBuffer configuration.

See also
ff The next recipe in this chapter that focuses on loading and submitting forms

with Ext.Direct.

Loading and submitting forms with Ext
Direct

Loading and submitting forms with Ext Direct is relatively simple and this recipe will show
you how and what you need to look out for. We'll make a simple contact form that is capable
of loading and submitting data to and from our server with Ext Direct. The requests will also
include a UserID parameter as we may wish to use this for loading/submitting data against
a specific account.

Getting ready
We're going to need our working web server again that's capable of parsing PHP and the
server-side stack entitled "Extremely Easy Ext.Direct integration with PHP." The stack is
provided by community member j.bruni and can be downloaded here: http://www.
sencha.com/forum/showthread.php?102357-Extremely-Easy-Ext.Direct-
integration-with-PHP.

If you followed the steps successfully in the previous recipe, you should have this already.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

http://www.sencha.com/forum/showthread.php?102357-Extremely-Easy-Ext.Direct-integration-with-PHP
http://www.sencha.com/forum/showthread.php?102357-Extremely-Easy-Ext.Direct-integration-with-PHP

Advanced Ext JS for the Perfect App

450

How to do it...
1.	 We're going to need server-side code for this to run. Create a FormClass class and

configure it for Ext Direct:
<?php

require 'Server/ExtDirect.php';

class FormClass {

 public function load($UserID) {

 $data = array(
 'FirstName' => 'Joe',
 'LastName' => 'Bloggs',
 'EmailAddress' => 'example@me.com',
 'TelNumberCode' => '0141',
 'TelNumber' => '333 2211');

 $arr = array('success' => true, 'data' => $data);
 return $arr;

 }

 public function submit($UserID, $FirstName, $LastName,
$EmailAddress, $TelNumberCode, $TelNumber) {
 return array('success' => true);
 }

}

ExtDirect::$form_handlers = array('FormClass::submit');
ExtDirect::provide('FormClass');

?>

2.	 Add the API configuration to your HTML file, placed inside a <script> tag:
<script type="text/javascript" src="FormRouter.php?javascript"></
script>

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

451

3.	 Create a Form panel with some fields. Render the panel to the document's body:
var formPanel = Ext.create('Ext.form.Panel', {
 title: 'Contact Form',
 width: 650,
 height: 200,
 bodyPadding: 10,
 items: [{
 xtype: 'container',
 layout: 'hbox',
 items: [{
 xtype: 'textfield',
 fieldLabel: 'First Name',
 name: 'FirstName',
 labelAlign: 'top',
 cls: 'field-margin',
 flex: 1
 }, {
 xtype: 'textfield',
 fieldLabel: 'Last Name',
 name: 'LastName',
 labelAlign: 'top',
 cls: 'field-margin',
 flex: 1
 }]
 }, {
 xtype: 'container',
 layout: 'column',
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Email Address',
 name: 'EmailAddress',
 labelAlign: 'top',
 cls: 'field-margin',
 columnWidth: 0.6,
 msgTarget: 'side'
 }, {
 xtype: 'fieldcontainer',
 layout: 'hbox',
 fieldLabel: 'Tel. Number',
 labelAlign: 'top',
 cls: 'field-margin',

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

452

 columnWidth: 0.4,
 items: [{
 xtype: 'textfield',
 name: 'TelNumberCode',
 style: 'margin-right: 5px;',
 flex: 2
 }, {
 xtype: 'textfield',
 name: 'TelNumber',
 flex: 4
 }]
 }]
 }],
 renderTo: Ext.getBody(),
 style: 'margin: 50px'
});

4.	 Add an api configuration to your BasicForm with references to the load and
submit stubs:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 api : {
 load : Ext.php.FormClass.load,
 submit : Ext.php.FormClass.submit
 },
 ...
});

5.	 Add the paramOrder configuration to ensure that we are able to submit a UserID
with every request:
var formPanel = Ext.create('Ext.form.Panel', {
 ...
 paramOrder : ['UserID'],
 ...
});

6.	 Use the load method to load the form:
formPanel.getForm().load({
 params : {
 UserID : 1
 }
});

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

453

7.	 Add a button for submitting the form:

var formPanel = Ext.create('Ext.form.Panel', {
 ...
 buttons : [{
 text : 'Submit Form',
 handler : function() {
 formPanel.getForm().submit({
 params : {
 UserID : 1
 }
 });
 }
 }],
 ...
});

How it works...
We've started by providing the framework with our RemotingProvider
(Ext.php.REMOTING_API). This describes the server-side classes
and methods we are exposing to the client side.

The output from the server-side stack is:

{
 "url": "/ExtDirect/FormRouter.php",
 "type": "remoting",
 "namespace": "Ext.php",
 "descriptor": "Ext.php.REMOTING_API",
 "actions": {
 "FormClass": [
 {
 "name": "load",
 "len": 1
 },
 {
 "name": "submit",
 "len": 6,
 "formHandler": true
 }
]
 }
}

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

454

We have two actions in the FormClass action.

1.	 The load method accepts one parameter, which is represented by the key/value pair
"len": 1. The method is looking for the value $UserID. When we populate the
form using the load method the output from FormRouter.php is:
{
 "type": "rpc",
 "tid": 1,
 "action": "FormClass",
 "method": "load",
 "result": {
 "success": true,
 "data": {
 "FirstName": "Joe",
 "LastName": "Bloggs",
 "EmailAddress": "example@me.com",
 "TelNumberCode": "0141",
 "TelNumber": "333 2211"
 }
 }
}

The data that our form works with is found inside the result object. As you might
expect it requires a success flag and a data object before the form is populated
with data.

2.	 The submit method accepts six parameters (five form fields and one additional
parameter for UserID). Note the "formHandler": true. Our server-side stack
has added that for us because we have configured it to know that the submit
method is for submitting form data. We added ExtDirect::$form_handlers =
array('FormClass::submit'); to our PHP for this reason. When we press the
submit button our form submit method is called and the following data is posted to
the router for parsing:

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

455

See also
ff For an introduction to Ext.Direct take a look at the previous recipe.

ff To learn about how to use Ext.Direct in conjunction with stores and grids, read
through the next recipe.

ff For details about exception handling with Ext.Direct see the recipe titled Handling
Exceptions with Ext Direct later in this chapter.

Handling errors throughout your application
Reporting feedback to the user is, as I am sure you already know, vital in Rich Internet
Applications (RIA). We must always prepare for the worst when the application doesn't
function as expected and in these situations feedback is important to stop the user getting
frustrated when they later learn that their work or data couldn't be saved, for example.

If you are already building an application with Ext JS, You've probably already given this some
thought and have already implemented a method for reporting feedback to users when there
are errors between the client side and server side.

In a large application it can be cumbersome, however, to write and maintain individual error
response handlers for all your AJAX requests as it's likely you'll have hundreds.

In this recipe we will show a few techniques you can use to implement application-wide error
handling and provide consistency and clarity to your users.

How to do it...
1.	 Register the 'Cookbook' namespace:

Ext.ns('Cookbook');

2.	 Define a default error message for unknown situations:
Cookbook.SYSTEM_GENERIC_ERROR = 'Unknown Error, contact support.';

3.	 Write a function that we can use for displaying an error message to the user. We need
to keep this fairly generic so it can be used for all error messages. If something goes
wrong, we'll display the generic system error here:
Cookbook.GenericErrorMessage = function(message) {

 if(Ext.isEmpty(message)) {
 message = Cookbook.SYSTEM_GENERIC_ERROR;
 }

 Ext.Msg.show({

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

456

 title : 'An Error has occurred',
 msg : message,
 modal : true,
 icon : Ext.Msg.ERROR,
 buttons : Ext.Msg.OK
 });

};

4.	 We now require a function that will process failures with our AJAX requests. This
function can be split in two:

�� If the connection is successful but the server returns an error message.

�� If the connection is unsuccessful.

Either way the outcome is that we require an error message to display to the user.
Cookbook.DataConnectionFailureHandler = function(response,
options) {
 if(Ext.isEmpty(response.status)) {
 response = options.response;
 }
 if((message === undefined || message === '') && response.status
=== 200) {
 if(!Ext.isEmpty(response.responseText)) {
 jsonResponse = Ext.util.JSON.decode(response.responseText);
 }
 displayMessage = jsonResponse.msg;
 } else if(response.status !== 200 && response.status !==
undefined && response.status !== null) {
 displayMessage = response.statusText;
 }

 //Display a message to the user
 Cookbook.GenericErrorMessage(displayMessage);
};

5.	 When a store request fails this function will be called. Just as the previous function
this is also capable of handling errors when the HTTP response code is 200:
Cookbook.StoreExceptionHandler = function(proxy, response,
operation, eOpts) {

 if(response.status !== 200) {
 // call the AJAX Error Handler
 Cookbook.DataConnectionFailureHandler(response, null);
 } else {
 //Read the contents of the "msg" returned from the server
 var displayMessage = response.raw.msg;

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Chapter 12

457

 Cookbook.GenericErrorMessage(displayMessage);
 }

};

6.	 Now we'll prepare a basic handler for Ext Direct exceptions:
Cookbook.DirectExceptionHandler = function(eventException) {
 // call the Generic Response Handler
 Cookbook.GenericErrorMessage(eventException.message);

};

7.	 Finally, we're going to listen out for the firing of an exception event from the
ServerProxy. When the event is fired we'll call the StoreExceptionHandler
function above. We can do the same for Ext Direct:
Ext.util.Observable.observe(Ext.data.proxy.Server);
Ext.data.proxy.Server.on('exception', Cookbook.
StoreExceptionHandler);

Ext.Direct.on('exception', Cookbook.DirectExceptionHandler);

How it works...
Although the previous example is relatively basic, it demonstrates how straightforward it is to
add generic exception handling for the data requests in your app.

The line Ext.util.Observable.observe(Ext.data.proxy.Server); is extremely
useful as it allows us to centrally manage the firing of the exception event from all instances
of the Ext.data.proxy.Server class.

When the application encounters a problem the StoreExceptionHandler is fired, which
determines if the error is because our server side is reporting a handled error (in the form of a
msg) or if it's an error where the HTTP status code is not 200 (that is, OK). No matter what the
outcome we are able to extract some form of error message from one of the following sources:

ff response.responseText.msg: a message returned in the JSON

ff response.statusText: the associated text that accompanies the HTTP status
code, for example, 404 "Not Found"

ff If something goes wrong and we are unable to figure out what error message we
should be displaying to the user then we'll fallback to a generic system message
that is found in the global variable Cookbook.SYSTEM_GENERIC_ERROR

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Advanced Ext JS for the Perfect App

458

See also
ff For a more detailed example of handing exceptions in forms, see the last recipe in

Chapter 5, Loading, Submitting, and Validating Forms.

ff The recipe Handling store load exceptions in Chapter 7, Working with the Ext JS Data
Package, explores how exception handling can be added to store loads.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Index
Symbols
$base-color variable 395
$button-small-border variable 396
$button-small-font-family-disabled variable

397
$button-small-font-family-focus variable 397
$button-small-font-family-over variable 397
$button-small-font-family-pressed variable

397
$button-small-font-family variable 397
$button-small-font-size-disabled variable 397
$button-small-font-size-focus variable 397
$button-small-font-size-over variable 397
$button-small-font-size-pressed variable 397
$button-small-font-size variable 397
$button-small-font-weight-disabled variable

397
$button-small-font-weight-focus variable 397
$button-small-font-weight-over variable 397
$button-small-font-weight-pressed variable

397
$button-small-font-weight variable 397
$button-small-icon-size variable 397
$button-small-padding variable 397
$button-small-text-padding variable 397
$button-small-width variable 396
$font-family variable 396
$font-size variable 396
2 Bezier curves

using, for drawing simple moon 349-352
<script> tag 240

A
action column

about 312

creating 312
display, preventing in hide/show column

menu 317
icon,changing dynamically 315, 316
icon tooltips 315
multiple actions, in one column 315
working 315

addCls method 53
addDocked method 130
addListener method 59
advanced date disabling

regular expressions, used 201
afteranimate events 70
afterRequest method 261
Ajax proxies

generic response handler, adding 261
ajaxRequest.json 73
aliases 10
allowDecimals 206
animation options 66
append method 418
Application class 423
associations array 244
authors() 244
axes

configuring 374
customizing 370-373

B
bar chart

about 356
creating, with external data 356-359
working 359

basic shapes
drawing 338-342

beforeanimate events 70

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

460

belongsTo association 245
bespoke theme

creating 374
book.authors() function 243
Book model

building 234-238
BoundList class 218
BugDataView 440
BugForm 440
BugFormWindow 440
built-in validators

about 251
email 251
exclusion 251
format 251
inclusion 251

buttonConfig: Object 178
buttonOnly: Boolean 177
buttons

adding, to grid rows with action columns
312-314

buttons collection 132
buttonText: String 178

C
callbacks

handling 178-180
callParent method 18
cancel method 419
celleditor

used, for editing grid data 274
changeHandler function 324
chart components

events, attaching 375-378
CheckboxGroups

about 189
generating, from JSON 193-197
populating 189, 190
working 191-193

child method 36
client side

tree's data, sorting on 117
client-side caching, Ajax requests

disabling 75
code sample 11

Color Picker component
about 333
using 333
working 334

colors
changing 373
customizing 370-373

combobox
adding, to toolbar 328-330
results, rendering 216-218

combobox trigger button
removing 215

combobox value
autocomplete response time, increasing 215
autocompleting 212, 214
minimum characters, defining 215

Compass 385
compass compile command 399
complex form layout

constructing 158-162
ComponentQuery selector 440
components

accessing, with component query 31-34
aliasing 29, 30
Ext.Base.createAlias 31
Ext.ClassManager.setAlias 31

config 10
config object 11
config option

utilizing 11-14
configuration options, paging scroller

leadingBufferZone 282
scrollToLoadBuffer 282
trailingBufferZone 282

constructors 11
context menu

about 324
adding, to grid rows 304-307
working with 324-327

controller actions
user interactions, attaching 424-428

Cookbook.Plane class 29
Cookbook.Plane sub-class 16
Cookbook.Smartphone class 20
Cookbook.Vehicle class 29
Cookbook.view.Viewport component 442

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

461

createDom method 56
properties 56

createScript method 240
cross-domain data

loading, with store 238-240
currentUser property 144
custom animations

about 67
creating 67, 69

custom classes
creating, Ext JS class system used 8-11

custom theme mixins
creating 403, 404
working 405

custom validator
creating 251, 252

custom VTypes
creating 171, 172
working 173

D
data

loading, through AJAX 73, 74
data object

modelling 230, 231
Data Store

DataView bound, creating to 147-152
DataView bound

creating, to Data Store 147-152
DataView node click

detailed window, displaying after 152-155
DataViews 147
date fields

parsing 233
Date fields

advanced date disabling, with regular
expressions 201

date ranges, setting up 199, 200
dates, loading 202, 203
dates, parsing 202, 203
specific dates, disabling 200
specific days, disabling 201

date ranges
setting up, in Date fields 199, 200

dates
about 146

formatting 70, 72
formatting, within Ext.XTemplate 146, 147
loading, into date field 202, 203
manipulating 70, 72
parsing 70, 72
parsing, into date field 202, 203

decimalPrecision 206
destroy method 237
detailed window

displaying, after clicking DataView node
152-155

direction property 118
disabledDates configuration 202
document.getElementById method 47
Document Object Model. See DOM
doDecode method 77
DOM

about 46
traversing 49, 50

DOM elements
content, updating 54
creating 55, 56
Ext.query 48
Ext.select method 47
hiding 54
inserting 57
manipulating 51-53
selecting 46
showing 54
templates, using for inserting elements 57
working 47

DOM element siblings
accessing 49

DOM traversing
direct parents and children 50
multiple level traversal 51

drag-and-drop
data row, updating 286
rows, reordering 287

drag/drop functionality
performing, on nodes within tree 120-122

E
easing config option 69
edit method 419

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

462

elements
animating 64-66

email, built-in validators 251
Enhancement controller 423
EnhancementGrid class 423
Enhancement Log application

architecting, with MVC pattern 420-422
EnhancementLog.model.Enhancement 424
error details

accessing 253
error handling

about 455, 456
working 457

event handling, child elements
delegating 60-63

event handling, on elements and components
event handlers, defining in config objects 60
multiple event handlers, defining 59

events
attaching, to chart components 375-378

events, on elements and components
handling 58

exception
handling 178-180

exclusion, built-in validators 251
Ext.Ajax class 73
Ext.Ajax.request method 73
Ext.app.Controller class 428
Ext.Base.borrow 43
Ext.Base.callOverridden 41
Ext.Base.implement 43
Ext.bind method 25
Ext.button.Button 322
Ext.button.Cycle component

about 322
using 323, 324

Ext.button.Split class 323
Ext.button.Split component 322
Ext.chart.Chart class 362
Ext.chart.Label mixin 363
Ext.chart.series.Pie class 362
Ext.Class class 10
Ext.ClassManager 10
Ext.Component class 330
Ext.ComponentQuery

about 31
component instances type, evaluating 35

component's member function, using 35
Ext.container.AbstractContainer

ComponentQuery methods 36
finding, based on ID 35
finding, xtype based 34
pseudo-selectors, creating 36
pseudo-selectors, using 36
retrieving, based on attribute presence 35
retrieving, based on attribute values 34
selectors, combining 34
used, for accessing components 31
working 35

Ext.ComponentQuery syntax 428
Ext.CompositeElement class 47
Ext.CompositeElementLite class 47
Ext.container.AbstractContainer

ComponentQuery methods
about 36
child 36
up and down methods 36

Ext.Container class 31, 330
Ext.container.Container component 159
Ext.core.DomHelper class 39, 56, 57
Ext.create method 232
Ext.data.association.HasOne 246-248
Ext.data.Errors class 253
Ext.data.HasManyAssociation class 244
Ext.data.JsonP

using, for cross-domain 75
Ext.data.JsonP.callback1 function 241
Ext.data.JsonP class 240
Ext.data.Model class 230, 423
Ext.data.NodeInterface class 116
Ext.data.proxy.Ajax class 237
Ext.data.proxy.Server 260
Ext.data.Record class 230
Ext.data.Store 238
Ext.data.TreeStore instance 115, 116
Ext.Date

about 72
features 73
getDayOfYear(Date date) 73
getDaysInMonth(Date date) 73
getElapsed(Date dateA, [Date dateB]) 73
getGMTOffset(Date date, [Boolean colon]) 73
getTimezone(Date date) 73

Ext.Date.parse 72

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

463

Ext.Date.parse method 233
Ext.Date.patterns object 72
Ext.define function 230
Ext.define method 8, 232
Ext Direct

about 445
forms, loading 449-452
forms, submitting 449-452
using, in Ext JS application 446
working 447, 448

Ext.direct.Manager 448
Ext.draw.Component 338
Ext.draw package

about 337
axes, customizing 370
bar chart, creating with external data 356
basic shapes, drawing 338
colors, customizing 370
events, attaching to chart components

375-377
Ext.draw.Component 338
Ext.draw.Sprite 338
Ext.draw.Surface 338
gradients, applying to shapes 343
labels, customizing 370
line chart, creating with updating data 365
live updating chart bound, creating 379
paths, drawing 346
pie chart, creating with local data 360
shapes, interacting with 352
shapes, transforming 352

Ext.draw.Sprite 338
Ext.draw.Surface 338
Ext.Element 46, 66
Ext.Element instance 48
extend 10
Ext.EventObject class 327
Ext.form.action.Action

failureType static properties 180
Ext.form.action.Action.LOAD_FAILURE 181
Ext.form.action.Load class 180
Ext.form.action.Submit class 180
Ext.form.field.Base class 208
Ext.form.field.ComboBox 329
Ext.form.field.ComboBox class 214
Ext.form.FieldContainer 188
Ext.form.FieldContainer class 160

Ext.form.field.HtmlEditor 219
Ext.form.field.HtmlEditor class 221
Ext.form.field.Spinner class 205
Ext.form.field.Text component 34
Ext.form.field.VTypes class 173
Ext.form.Labelable class 20
Ext.form.Labelable mixin 162
Ext.form.Panel class 426
Ext.form.RadioGroup 188
Ext.fx.Anim 66
Ext.fx.Animator class 67
Ext.get method 47
Ext.get() method 47
Ext.grid.column.Template class 291
Ext.grid.column.Template column 292
Ext.grid.features.RowBody class

working 302
Ext.grid.PagingScroller class 281
Ext.grid.Panel class 327
Ext.grid.plugin.DragDrop plugin 284

working 285
Ext JS

alternative to CLIENT_INVALID 181
callbacks, handling 178, 180
context menu 324
combobox, adding to toolbar 328
complex form layout, constructing 158-160
Color Picker component 333
custom VTypes, creating 171-173
data package 229
exception, handling 178, 180
files, uploading to server 175-177
form fields, validating with VTypes 170, 171
form, populating with data 163, 164
form population failures, handling 181
form's data, submitting 167, 168
scope, dealing with 24-27
split button, creating 319

Ext JS 4
about 8
available date ranges, setting up in

Date fields 199
CheckboxGroups, generating from JSON

193-197
CheckboxGroups, populating 189, 190
combobox value, autocompleting 212-214
Ext JS 4custom animations 67

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

464

form fields, combining 224-227
HTML editor field, using 219, 220
MVC application architecture 420
numbers, entering with Spinner field

204, 205
radio buttons, displaying in columns

184-187
repeatable form fields and fieldsets, creating

221-223
results, rendering in combobox 216-218
server side data, loading into combobox

210-212
values, sliding using Slider field 207

Ext JS application
building, Sencha's SDK tools used 441-444
Ext Direct, using 445-447
theming 383

Ext JS application, theming
custom theme mixins, creating 403
images, for legacy browsers 410
panel, restyling 406
SASS, compiling with Compass 384
SASS, introducing 388
SASS variables, using 395
UI config option, using 398

extjs-button-ui mixin 398
using 399

Ext JS class
creating 8
inheritance, using 15-18
loading 27, 28
Mixins, adding 19-22

Ext JS Components
accessing, with component query 31, 34
extending 37-39

Ext JS data package
cross-domain data, loading with store

238-240
data, loading with HTML5 Local Storage

262, 263
data object, modelling 230
data, saving with HTML5 Local Storage

262, 263
store data, grouping 253-256
store exceptions, handling 259, 260

Ext JS functionality
extending, with plugins 414-419

overriding 40, 41
Ext.Loader class 27
Ext.menu.Menu instance 322
Ext.menu.Menu object 325
Ext.onReady function 28
Ext.override method 40
Ext.panel.Panel 31
Ext.panel.Panel class 37 114
Ext.query 48
Ext.query methods 47
extraOptions property 35
Ext.require method 28
Ext.select method 47
Ext.slider.Single class 208
Ext.Template class 57
Ext.tree.Panel class 116, 123
Ext.util.Grouper object 257
Ext.util.MixedCollection class 253
Ext.util.Observable class 59
Ext.util.Sorter class 257
Ext.ux.ReadOnlyField class 415
Ext.ux.ReadOnlyField plugin

creating 414, 415
Ext.view.View class 114
Ext.view.View component 114
Ext.XTemplate

about 140
dates, formatting within 146, 147
member functions, creating 140-143

Ext.XTemplates
logic, adding to 144, 145

F
failure callback 180
failureType static properties, Ext.form.action.

Action
CLIENT_INVALID 180
CONNECT_FAILURE 180
LOAD_FAILURE 180
SERVER_INVALID 180

Field Mapping 258
field property 251
field's data

prosessing 233
fields property 232

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

465

files
uploading, to server 175-177

filterBy method 332
findRecord method 214
for loop 125
form

entire form, populating 164
individual fields, populating 164
populating, from selected grid row 308-311
populating, from Model instance 165
populating, from server 166
populating, with data 163

format, built-in validators 251
FormClass class 450
form fields

combining 224-227
validating, VTypes used 170, 171

FormLayout 158
form's data

submitting 167, 168
submitting, from Model instance 169

full-width row data
displaying, RowBody feature used 300-302

functions
scoping 22-24

G
GenericReponseHandler function 261
getActiveItem method 324
getBook method 246
getBugFormWindow method 441
getByField method 253
getClass function 316
getForm method 165
getGroups method 257
getSelection method 155
getValues method 174
global scope 22
gradients

about 343
adding, to shapes 343, 344
working 345

grid
records, dragging-and-dropping 282-285
simple tabular data,displaying 266,-268

grid cells
custom rendering,TemplateColumns used

291-294
grid data

editing, RowEditor used 269-271
editing, with celleditor 274
summarizing 295-298

grid panel 269
grid rows

buttons, adding with action columns 312-314
context menu, adding 304-306

groupclick listener 290
grouped grid

creating 288, 289
grouped grid data

summarizing 299
grouping feature

using, for events and methods 290

H
HasCamera class 20
hasMany association 245
has-one association 241
hide method 137
hideTrigger 206
HTML5 localStorage

used, for saving and loading data 262, 263
working 264

HtmlEditor field 219
HTML editor field

using 219
working 220, 221

I
icon

tab, configuring with 135
switching, dynamically 136

if-else block 118
if statement 118
images

creating, for legacy browsers 410
inclusion, built-in validators 251
infinite scrolling grid

about 279

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

466

used, for dealing with large datasets
279, 280

working 281
InfoTextField class 39
inheritance

using, in ExtJS class 15-18
initComponent method 37, 418
initConfig method 11
init method 415
inline JavaScript

executing, for customizing appearance
138, 139

inputEl Ext.Element 419
inputValue property 191
insertBefore method 57
interations config option 70
Invoice Model

importing 280
isHighPriority function 141
isValid method 35, 181
itemclick event 125, 126, 154, 155
itemclick function 125
itemcontextmenu event 155, 307, 327
itemdblclick event 155
items

docking, to panels' edges 126-129

J
JSON data

decoding 75, 77
encoding 75, 77

JSONP 239
JSONP proxy 239

working 240

K
keyframe event 70
keyNavEnabled 206

L
labels

adding 374
customizing 370-373

large datasets
dealing with,infinite scrolling grid used

278-280
paging toolbar, adding for 276, 277

large data source
creating 279

legacy 10
line chart

about 365
creating, with updating data 365-368
working 369

live updating chart bound
creating 379-381
working 382

loader 10
load event 244
load method 237, 454
loadRecord method 154, 155, 311
local scope 22
LocalStorageProxy 264
logic

adding, to Ext.XTemplates 144, 145
LoginForm view 426

M
many-to-one association 241
mapPin variable 341
matchNode method 50
menu

tree, using as 123-126
MIME type 115
minTabWidth option 137
mixins

about 10, 403
adding, to class 19, 21

Model
associating 241-243
loading 234
nested data, loading 241-244

Model association
working 244

Model class
date fields, parsing 233
defining 230, 231

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

467

field's data, processing 233, 234
uniquely identifying property, setting 232
working 232

Models' fields
validation rules, applying 248-250

Model-View-Controller (MVC) pattern 8
mouseWheelEnabled 206
MVC application

key aspects 423
working 423

MVC application architecture
about 420
controller 420
model 420
views 420

MVC pattern
used, for creating real-life application, creating

431-438
working 440

MyClass object 24
myFunction function 23
myVar variable 23

N
namespaces 9
nested data

loading 241-244
numbers

entering, with Spinner field 204, 205

O
onBugDataViewItemClick method 441
one-to-many association 241
onLoginButtonClick method 429, 430
onReady function 154, 230, 320
owner property 144

P
paging scroller

configuration options 282
paging toolbar

about 276
adding, forlarge datasets 276, 277
working 278

panel
restyling 406-408
working 409

panels' edges
items, docking to 126-129

paths
about 348
drawing 346, 347
working 348

pie chart
about 360
creating, with local data 360, 361
slice, highlighting 363
slice, scaling 364
working 362

Plane class
takeOff and land methods, adding 18, 19

plugins
about 414
adding, to functionality 414

POST JSON data 74
Proxy 237
pseudo-selectors

about 36
creating 36
using 36

Q
query method 34, 35

R
radio buttons

displaying, in columns 184-187
working 188

real-life application
creating, with MVC pattern 431-438

record
dragging-and-dropping,between grids

282-285
extracting, from XML 258

ref property 429
registerPostProcessor method 11
registerPreProcessor method 11
RemotingProvider 448
render event 416, 418

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

468

repeatable form fields
creating 221-223

repeatable form fieldsets
creating 221-223

response.responseText.msg 457
response.statusText 457
responseText property 260
Rich Internet Applications (RIA) 455
RowBody feature

used, for displaying full-width row data
300-302

RowEditing plugin
about 270
configuring,on grid 274

RowEditor
about 269, 274
editors,defining 274
proxy and store, checking 273
used, for editing grid data 269-271
RowEditorworking 273, 274

runAll() method 41

S
SASS

& selector 394
about 384
compiling, with Compass 384-387
features 394
function 393
HTML page, styling 388-392
introducing 388
mixins 393
nesting 392
URL 394
variables 392
working 387, 392, 393

SASS variables
$base-color 395
$font-family 396
$font-size 396
set of variables 396
using 395
working 397

save method 419
scope

about 22

dealing with 24-27
scope chain 23
scope object 27
SDK tools, Sencha

installing 441
used, for building Ext JS application 441-443
working 444, 445

selected grid row
form, populating from 308-311

select event 331
selectionchange event 155
Sencha marketplace

URL 414
Sencha SDK tools

installing 410
URL 410

server
tree's nodes, loading from 114-116

server side data
loading, into combobox 210-212

setActiveItem method 324
setActiveTab method 126
setAttribute method 354
setIconCls method 136
setStyle method 52
setValue method 190, 419
setValues method 165
setVisibilityMode 419
setVisible method 137
shapes

color, changing 355, 356
interacting with 352-354
transforming 352-354

showMenu method 323
show method 137
showText option 324
Simple Bezier curves 351
simple form

displaying, in Window 130, 131
simple tabular data

displaying 266-268
singleton 10
skeleton class 20
slicer SDK Tool

working 411
Slider field

multiple thumbs, defining 208

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

469

thumb, reacting to 209
used, for sliding values 207, 208

sorterFn option 118
sorter function 118
sorters property 117
sort method 119
specific dates

disabling 200
specific days

disabling 201
Spinner field

using, for entering numbers 204, 205
split button

about 319
creating 320, 321
default action, removing 322, 323
Ext.button.Cycle component, using 323, 324
menu, displaying 323
working 322

sprites 355
start parameter 278
statics 10
step 206
stopEvent method 307, 327
store data

grouping 253-256
store exceptions

handling 259, 260
submitForm function 169
submit method 454
success callback 180
success property 260
summary row feature

working 298
summary rows, grid data

creating 295-297
Syntactically Awesome Stylesheets. See SASS

T
tab

configuring, with icon 135
tab bar

position, modifyng 137
TabBar, tab panel

manipulating 134

tabbed layout
creating, with tooltips 132-134

tabConfig property 136
tabIndex variable 125
tab property 136
tabs

displaying 137, 138
hiding 137, 138
width, setting 136

takePhoto method 20
TemplateColumns

used, for custom rendering grid cells
291, 292

theme
changing 373

toggleHandler 198
toggleSelected method 324
tooltips

tabbed layout, creating with 132-134
travel method 18
treeData.json file 115
Tree Panel 114
trees

drag/drop functionality, performing on
120-122

used, as menu for loading another panel
123-126

tree's data
sorting, on client-side 117

tree's data, sorting on client side
complex sorting 118, 119
custom sorting 118, 119
sorting, by multiple fields 119
sorting, on demand 119

tree's nodes
loading, from server 114-116

TreeViewDragDrop plugin 122
type property 251

U
UI config option

using 398-401
working 402

uniquely identifying property, Model
setting 232

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

470

up and down methods 36
useCamera method 20
UserID parameter 449
user interactions

attaching, to controller actions 424-428
working 428

UserSetting class 264

V
validation rules, Models' fields

applying 248-250
validations array 251
values

sliding, Slider field used 207
Vehicle class 15
viewConfig property 122
Viewport view 426
VTypes

alpha 171
alphnum 171
url 171
used, for validating form fields 170, 171

W
welcome method 40
Window

simple form, displaying in 130, 131

X
x-form-check-group-label class 188
XML

records, extracting from 258
XML data 74
XTemplates 114

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Thank you for buying

Ext JS 4 Web Application
Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what you
need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home to books
published on software built around Open Source licences, and offering information to anybody from
advanced developers to budding web designers. The Open Source brand also runs Packt's Open
Source Royalty Scheme, by which Packt gives a royalty to each Open Source project about whose
software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Ext JS 4 First Look
ISBN: 978-1-84951-666-2 Paperback: 340 pages

A practical guide including examples of the new features
in Ext JS 4 and tips to migrate from Ext JS 3

1.	 Migrate your Ext JS 3 applications easily to Ext JS
4 based on the examples presented in this guide

2.	 Full of diagrams, illustrations, and step-by-step
instructions to develop real word applications

3.	 Driven by examples and explanations of how
things work

Sencha Touch Mobile
JavaScript Framework
ISBN: 978-1-84951-510-8 Paperback: 316 pages

Build web applications for Apple iOS and Google Android
touchscreen devices with this first HTML5 mobile
framework

1.	 Learn to develop web applications that look and
feel native on Apple iOS and Google Android
touchscreen devices using Sencha Touch through
examples

2.	 Design resolution-independent and graphical
representations like buttons, icons, and tabs of
unparalleled flexibility

3.	 Add custom events like tap, double tap, swipe, tap
and hold, pinch, and rotate

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

Learning Ext JS 3.2
ISBN: 978-1-849511-20-9 Paperback: 432 pages

Build dynamic, desktop-style user interfaces for you
data-driven web applications using Ext JS

1.	 Learn to build consistent, attractive web
interfaces with the framework components

2.	 Integrate your existing data and web services with
Ext JS data support

3.	 Enhance your JavaScript skills by using Ext's DOM
and AJAX helpers

4.	 Extend Ext JS through custom components

Ext JS 3.0 Cookbook
ISBN: 978-1-847198-70-9 Paperback: 376 pages

109 greate recipes for building impressive rich internet
applications using the Ext JS JavaScript library

1.	 Master the Ext JS widgets and learn to create
custom components to suit your needs

2.	 Build striking native and custom layouts, forms,
grids, listviews, treeviews, charts, tab panels,
menus, toolbars and much more for your real-
world user interfaces

3.	 Packed with easy-to-follow examples to exercise
all of the features of the Ext JS library

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Gauthier Giacomoni on 11th September 2012

47 gordon street #4, Allston, 02134

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Classes,
Object-Oriented Principles and Structuring your Application
	Introduction
	Creating custom classes using the new
Ext JS class system
	Using inheritance in your classes
	Adding mixins to your class
	Scoping your functions
	Dynamically loading Ext JS classes
	Aliasing your components
	Accessing components with component query
	Extending Ext JS components
	Overriding Ext JS' functionality

	Chapter 2: Manipulating the Dom, Handling Events, and Making AJAX Requests
	Introduction
	Selecting DOM elements
	Traversing the DOM
	Manipulating DOM elements
	Creating new DOM elements
	Handling events on elements and
components
	Delegating event handling of child elements
	Simple animation of elements
	Custom animations
	Parsing, formatting, and manipulating dates
	Loading data with AJAX
	Encoding and decoding JSON data

	Chapter 3: Laying Out Your Components
	Introduction
	Using a FitLayout to expand components to fill their parent
	Creating flexible vertical layouts with
VBoxes
	Creating flexible horizontal layouts with HBoxes
	Displaying content in columns
	Collapsible layouts with accordions
	Displaying stacked components with
CardLayouts
	Anchor components to their parent's
dimensions
	Creating fullscreen applications with the BorderLayout
	Combining multiple layouts

	Chapter 4: UI Building Blocks—Trees, Panels, and Data Views
	Introduction
	Loading a tree's nodes from the server
	Sorting tree nodes
	Dragging-and-dropping nodes within a tree
	Using a tree as a menu to load content into another panel
	Docking items to panels' edges
	Displaying a simple form in a window
	Creating a tabbed layout with tooltips
	Manipulating a tab panel's TabBar
	Executing inline JavaScript to in an
XTemplate customize appearance
	Creating Ext.XTemplate member functions
	Adding logic to Ext.XTemplates
	Formatting dates within an Ext.XTemplate
	Creating a DataView bound to a data store
	Displaying a detailed window after clicking a DataView node

	Chapter 5: Loading, Submitting, and Validating Forms
	Introduction
	Constructing a complex form layout
	 Populating your form with data
	Submitting your form's data
	Validating form fields with VTypes
	Creating custom VTypes
	Uploading files to the server
	Handling exception and callbacks

	Chapter 6: Using and Configuring Form Fields
	Introduction
	Displaying radio buttons in columns
	Populating CheckboxGroups
	Dynamically generate a CheckboxGroup from JSON
	Setting up available date ranges in Date fields
	Loading and parsing Dates into a Date field
	Entering numbers with a Spinner field
	Sliding values using a Slider field
	Loading server side data into a combobox
	Autocompleting a combobox's value
	Rendering the results in a combobox
	Rich editing with an HTML field
	Creating repeatable form fields and fieldsets
	Combining form fields

	Chapter 7: Working with the
Ext JS Data Package
	Introduction
	Modeling a data object
	Loading and saving a Model using proxies
	Loading cross-domain data with a Store
	Associating Models and loading nested data
	Applying validation rules to Models' fields
	Grouping a Store's data
	Handling Store exceptions
	Saving and loading data with HTML5
Local Storage

	Chapter 8: Displaying and Editing Tabular Data
	Introduction
	Displaying simple tabular data
	Editing grid data with a RowEditor
	Adding a paging toolbar for large datasets
	Dealing with large datasets with an infinite scrolling grid
	Dragging-and-dropping records between grids
	Creating a grouped grid
	Custom rendering of grid cells with
TemplateColumns
	Creating summary rows aggregating the grid's data
	Displaying full-width row data with the
RowBody feature
	Adding a context menu to grid rows
	Populating a form from a selected grid row
	Adding buttons to grid rows with action
columns

	Chapter 9: Constructing Toolbars with Buttons and Menus
	Introduction
	Creating a split button
	Working with context menus
	Adding a combobox to a toolbar to filter
a grid
	Using the color picker in a menu

	Chapter 10: Drawing and Charting
	Introduction
	Drawing basic shapes
	Applying gradients to shapes
	Drawing paths
	Transforming and interacting with shapes
	Creating a bar chart with external data
	Creating a pie chart with local data
	Creating a line chart with updating data
	Customizing labels, colors, and axes
	Attaching events to chart components
	Creating a live updating chart bound to an editable grid

	Chapter 11: Theming your Application
	Introduction
	Compiling SASS with Compass
	Introduction to SASS
	Using Ext JS' SASS variables
	Using the UI config option
	Creating your own theme mixins
	Restyling a panel
	Creating images for legacy browsers

	Chapter 12: Advanced Ext JS
for the Perfect App
	Introduction
	Advanced functionality with plugins
	Architecting your applications with the MVC pattern
	Attaching user interactions to controller
actions
	Creating a real-life application with the
MVC pattern
	Building your application with Sencha's
SDK tools
	Getting started with Ext Direct
	Loading and submitting forms with Ext
Direct
	Handling errors throughout your application

	Index

