
M A N N I N G

Jesus Garcia
Grgur Grisogono
Jacob K. Andresen

IN ACTION
SECOND EDITION

Covers EXT JS version 4.0

www.allitebooks.com

http://www.allitebooks.org

Ext JS in Action, Second Edition

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Ext JS in Action,
Second Edition

JESUS GARCIA
GRGUR GRISOGONO
JACOB K. ANDRESEN

M A N N I N G

SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964

Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Sebastian Stirling, Frank Pohlman

20 Baldwin Road Copyeditor: Tiffany Taylor

PO Box 261 Proofreader: Melody Dolab

Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617290329

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

v

brief contents
PART 1 INTRODUCTION TO EXT JS 4.01

1 ■ A framework apart 3

2 ■ DOM manipulation 28

3 ■ Components and containers 45

PART 2 EXT JS COMPONENTS ..65

4 ■ Core UI components 67

5 ■ Exploring layouts 91

6 ■ Forms in Ext JS 119

7 ■ The data store 147

8 ■ The grid panel 168

9 ■ Taking root with trees 196

10 ■ Drawing and charting 218

11 ■ Remote method invocation with Ext Direct 251

12 ■ Drag-and-drop 269

PART 3 BUILDING AN APPLICATION.311

13 ■ Class system foundations 313

14 ■ Building an application 337

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

contents
preface xv
acknowledgments xvi
about this book xix
about the cover illustration xxiii

PART 1 INTRODUCTION TO EXT JS 4.0.1

1 A framework apart 3

1.1 Looking at Ext JS 4

Rich API documentation 5 ■ Rapid development
with prebuilt widgets 7

1.2 What you need to know 7

1.3 A tour of the Ext JS widgets 7

Containers and layouts at a glance 9 ■ Other containers
in action 10 ■ Data-bound views 11 ■ Make like
a tree panel and leaf 13 ■ Form input fields 14
Other widgets 16

1.4 What’s new in Ext JS 4.0 17

Poof goes the adapter layer! 17 ■ New class system 17
Data package 18 ■ Layouts: an explosion of code 19
New docking system 19 ■ Grid panel improvements 19

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

Tree panel now closer to grids 20 ■ Draw and charts 21
New CSS styling architecture 22 ■ New MVC architecture 22
Bundled packaging tool 22

1.5 Downloading and configuring 22

1.6 Take it for a test drive 24

1.7 Summary 26

2 DOM manipulation 28

2.1 Let Ext JS kick off your code 29

2.2 Managing DOM elements with Ext.Element 31

The heart of the framework 31 ■ Using Ext.Element for
the first time 31 ■ Creating child nodes 33
Removing child nodes 35 ■ Using Ajax with Ext.Element 37

2.3 Using templates and XTemplates 38

Using templates 38 ■ Looping with XTemplates 41
Advanced XTemplate usage 42

2.4 Summary 44

3 Components and containers 45

3.1 The Component model 46

XTypes and ComponentManager 47 ■ Component rendering 49

3.2 The component life cycle 50

Initialization 51 ■ Render 53 ■ Destruction 56

3.3 Containers 57

Building a container with child items 57
Dealing with children 59

3.4 Querying for components 60

3.5 The viewport container 62

3.6 Summary 64

PART 2 EXT JS COMPONENTS.......................................65

4 Core UI components 67

4.1 The panel 68

Building a complex panel 69 ■ Adding buttons and tools 71
Docking items to a panel 72 ■ Weight matters! 75

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

4.2 Displaying window dialogs 77

Building a window 77 ■ Further window configuration 79

4.3 MessageBox 80

Alerting your users 81 ■ Advanced MessageBox techniques 82
Showing an animated wait message box 84

4.4 Components can live in tab panels too 85

Building your first tab panel 86 ■ Tab management methods
you should know 89

4.5 Summary 89

5 Exploring layouts 91

5.1 How layout managers work 92

Component layouts 92 ■ Container layouts 92

5.2 The Auto layout 92

5.3 The Anchor layout 94

5.4 The Absolute layout 98

5.5 The Fit layout 99

5.6 The Accordion layout 100

5.7 The Card layout 102

5.8 The Column layout 105

5.9 The HBox and VBox layouts 107

5.10 The Table layout 110

5.11 The Border layout 113

5.12 Summary 117

6 Forms in Ext JS 119

6.1 Basic input fields 120

Input fields and validation 120 ■ Password and
file-select fields 123 ■ Building a text area 123
The convenient number field 124

6.2 Type-ahead with the ComboBox 124

Building a local ComboBox 125 ■ Implementing a remote
ComboBox 127 ■ The ComboBox deconstructed 130
Customizing your ComboBox 130

6.3 The time field 131

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

6.4 The HTML Editor 132

Constructing your first HTML Editor 132
Dealing with lack of validation 133

6.5 Selecting a date 133

6.6 Checkboxes and radio buttons 134

6.7 The form panel 136

Reviewing what you’re building 137 ■ Constructing the
fieldsets 137 ■ Creating the tab panel 140

6.8 Data submission and loading 142

Submitting the good old way 142 ■ Submitting via Ajax 143
Loading data into your form 144

6.9 Summary 146

7 The data store 147

7.1 Introducing the data store 148

The supporting classes 148 ■ How data flows 149
All about data proxies 150 ■ Models and readers 152

7.2 Loading and saving data 153

Reading array data 153 ■ Reading JSON data 156
Reading XML data 158

7.3 A store with Writer 159

Validating your model data 161 ■ Syncing your data 163

7.4 Associating data 164

7.5 Summary 167

8 The grid panel 168

8.1 Introducing the grid panel 169

Looking under the hood 169

8.2 Building a simple grid panel 170

8.3 Advanced grid panel construction 172

What you’re building 172 ■ The required data store
and model 173 ■ Setting up columns 174
Configuring your advanced grid panel 175
Configuring a container for your grid panel 176
Buffered paginated scrolling 178 ■ Applying event
handlers for interaction 180

CONTENTS xi

8.4 Editing data in the grid panel 183

Enabling the editing plug-in 183 ■ Navigating your editable
grid panel 188

8.5 Getting the CRUD in 189

Adding save and reject logic 189 ■ Saving or rejecting
your changes 190 ■ Adding create and delete 190
Using create and delete 193

8.6 Summary 195

9 Taking root with trees 196

9.1 Tree panel theory 196

Tree panel keywords 197 ■ Looking under the roots 198

9.2 Planting your first tree panel 198

9.3 Growing dynamic tree panels 201

Creating a remote-loading panel 201 ■ Fertilizing the
tree panel 203

9.4 Implementing CRUD on a tree panel 205

Displaying context menus 205 ■ Wiring up the edit logic 209
Tackling delete 213 ■ Creating nodes for your tree panel 215

9.5 Summary 217

10 Drawing and charting 218

10.1 Drawing shapes 219

10.2 Drawing concepts 219

10.3 Surfacing sprites 220

Drawing a sprite 221 ■ Managing positioning and sizing 222
Automatically sizing sprites 224

10.4 Sprite interactions 225

10.5 Mastering the path 228

10.6 A deep dive into charts 231

10.7 Implementing Cartesian charts 233

Configuring the axes 233 ■ Adding series 236
Improving visual aids 237 ■ Adding custom shapes 240
Multiple series on the same chart 242

10.8 Custom themes 244

10.9 Pie charts 248

10.10 Summary 250

CONTENTSxii

11 Remote method invocation with Ext Direct 251

11.1 Making the two ends meet 252

11.2 Ext Direct vs. REST 252

11.3 Server-side setup 255

How it works 255 ■ Remote method configuration 255
Routing 256

11.4 Working with remote methods 257

Setting up the router 257 ■ Enabling Ext Direct 259

11.5 Directly invoking remote methods 262

11.6 CRUD-enabled Ext.data.DirectStore 265

11.7 Summary 268

12 Drag-and-drop 269

12.1 The drag-and-drop workflow 270

The drag-and-drop life cycle 270 ■ A top-down view of
the drag-and-drop classes 271 ■ It’s all in the overrides! 274
Drag-and-drop always works in groups 275

12.2 Drag-and-drop: a basic example 275

Creating a small workspace 275 ■ Configuring items
to be draggable 277 ■ Analyzing the Ext.dd.DD DOM
changes 277 ■ Adding the pool and hot tub drop targets 279

12.3 Finishing your drag-and-drop implementation 280

Adding the drop invitation 281 ■ Adding a valid drop 283
Implementing an invalid drop 285

12.4 Using DDProxy 286

Implementing DDProxy and the drop invitation 286

12.5 Drag-and-drop with views 290

Constructing the views 290 ■ Adding drag gestures 294
Applying drop 297

12.6 Drag-and-drop with grid panels 301

Constructing the grid panels 301

12.7 Drag-and-drop with tree panels 304

Constructing the tree panels 305 ■ Enabling drag-and-drop 306
Employing flexible constraints 307

12.8 Summary 310

CONTENTS xiii

PART 3 BUILDING AN APPLICATION311

13 Class system foundations 313

13.1 Classic JavaScript inheritance 314

Creating a base class 314 ■ Creating a subclass 315

13.2 Inheritance with Ext JS 317

Creating a base class 317 ■ Creating a subclass 319

13.3 Extending Ext JS components 320

Thinking about what you’re building 321
Extending GridPanel 322 ■ Your extension in action 324

13.4 Plug-ins to the rescue 326

The anatomy of a plug-in 326 ■ Developing a plug-in 327

13.5 Dynamically loading classes with the Ext JS loader 330

Loading everything dynamically 330 ■ Thou shalt require
only what’s needed 332 ■ Taking the hybrid approach 333

13.6 Summary 335

14 Building an application 337

14.1 Thinking as a web UI developer 338

14.2 Application (infra)structure 338

Development within a namespace 339
Dynamic dependency loading 341

14.3 Kicking off the Survey app 344

From idea to code 344 ■ Moving to the fast track
with Sencha Cmd 345 ■ Bootstrapping Survey 348
Data-driven application model 351 ■ Adding models
to the application 352 ■ Adding data stores 356
Creating the authentication form 357 ■ Plugging in
the first controller 359 ■ Survey views 360
 Survey controllers 364

14.4 Packaging 370

14.5 Summary 371

index 373

xv

preface
I started my career in the world of Sencha back in 2006 when the precursor to what is

known as Ext JS today (Sencha’s desktop JavaScript framework) was something of an

experiment. Soon after my introduction, I became addicted to the design patterns

that were promoted by the quickly evolving framework. But, more importantly, I fell in

love with the thriving community of developers looking to give back.

 I was inspired by many of the active members in the community, and decided to

become a contributing member myself, spending tens of hours per week answering

questions, writing blog posts, and eventually publishing instructional screencasts. Times

were certainly interesting back then, as design patterns emerged from the community.

 This second edition of Ext JS in Action, originally published in 2010, reflects a new

era of desktop web front-end development that was ushered in by Ext JS 4.0. This ver-

sion brought forth an extremely robust class system and offers many capabilities that

extend those of JavaScript. Add to that a very well-designed event system, data pack-

age, UI, and MVC, and in Ext JS 4.0 you have a powerful framework that will allow you

to develop applications to be used for many years to come.

 We are delighted to share our knowledge of Ext JS with you and hope you enjoy

this journey.

—JAY GARCIA

xvi

acknowledgments
The authors would like to thank the following:

■ The Sencha Community—Without you, this book would simply not have

been possible.

■ Sebastian Sterling—The publication of this book has taken a lot longer than we

anticipated. As our primary developmental editor at Manning, you challenged

our writing and helped us bring out the best content. Thank you for all of your

hard work. Thanks also to Frank Pohlman, who helped usher this book through

its final stages and hand it off to production.

■ The Manning production team—You guys are absolutely amazing! We feel very

fortunate to have had the opportunity to work with you, on this book as well as

our previous ones, and we value the work you’ve done through the years. Thank

you so very much!

■ Our MEAP (Manning Early Access Program) readers—Thank you for your help-

ful corrections and comments in the Author Online forum.

■ Our reviewers—They read the manuscript in its various stages during develop-

ment and contributed insights and feedback that helped make this a better

book. Thanks to Bradley Meck, Brian Crescimanno, Brian Daley, Brian Forester,

Chad Davis, Darragh Duffy, Efran Cobisi, Jeet Marwah, John J. Ryan III, Loiane

Groner, Mary Turner, Raul Cota, Robby O’Connor, and Todd Hill.

■ Doug Warren—Your technical proofread and thorough review of the chapters

and the code during production has proved invaluable to us. Thank you!

ACKNOWLEDGMENTS xvii

Jay Garcia

Writing this book took a lot of effort on my part, but I certainly wouldn’t have been

able to do it without the help and contributions of others. I owe each of the following

a personal thank you:

■ My wife—Erika, this book has been in the works for a few years. When people

congratulate me, they often don’t recognize that I couldn’t have written this

book had you not provided the much-needed support for me to do so. I love

you with all of my heart and am very grateful to have you in my life.

■ My sons—Takeshi, Kenji: I won’t forget the constant running around the house

as I wrote this book. I thank you for your sacrificed time with me to allow me to

complete it. You boys are the reason I work so hard, and I love you very much.

■ Mitchell Simoens—I’m grateful to call you my friend. Watching your develop-

ment both professionally and personally has been something I’ve taken great

pride in. Always remember to push the envelope with your knowledge.

■ Abe Elias—I have been amazed to see you evolve as you worked through the

many years with Sencha to lead a team of top-notch professional engineers.

Whenever I talk about great people, you’re one of the names that always comes

to mind. Keep staying awesome!

■ Grgur Grisogono—Meeting you has changed my life for the better. I’m grateful

to your friendship and look forward to many more years.

■ Jacob Andresen—Your contributions to this manuscript have been valuable,

and I thank you for the hard work you put in to get chapters cranked out.

■ Don Griffin—Thank you for allowing me to take part in conversations regard-

ing Sencha Cmd and other Ext JS–related tools.

Grgur Grisogono

I want to thank my loving wife Andrea and kids Laurenco and Paulina for their con-

stant support and encouragement. They provided me with the resources and the love

that I needed to generate, channel, and renew energy to write the content for this

book. I’m forever indebted to the incredible reviewers who shared their energy and

knowhow to make a much better book for the good of the community.

 I would also like to extend my gratitude to Modus Create for supporting me and

granting me new challenges that have made me a better professional. Special thanks

to Sencha and its core team engineers, who have been incredibly helpful, providing

insight into the latest and greatest to make the content of this book up to date with

the most recent Ext JS and Sencha Cmd upgrades.

 The most sincere appreciation is due to two of the most prominent Ext JS com-

munity members and tremendous people: my coauthors, Jesus Garcia and Jacob

Andresen. They were a tremendous team to work with, the perfect guides and review-

ers, and the never-tiring locomotive that constantly pushed the project forward.

ACKNOWLEDGMENTSxviii

 And finally, I’m forever indebted to my incredible friend, role model, and co-worker,

Jay G. for his amazing support, energy, and patience. His insights have been a constant

source of awe, sharp observations, and great ideas.

Jacob Andresen

First of all, I would like to thank Jesus Garcia for allowing me to tag along on the ride.

Contributing to this book has given me the opportunity to study the craft of writing

and observe how Jesus has curated the amount of technical detail that has gone into

this book. I would also like to thank Grgur Grisogono for the effort he put into this

book, as well as his work in the international Sencha community.

 Speaking of the community, there is no escaping Mats Bryntse, Fredric Berling,

and Emil Pennlöv here in Scandinavia—thank you for all the good times.

 Most important of all, thanks to my wife Anita for understanding why I spend all

those long nights programming.

xix

about this book
The purpose of this book is to inform and educate you about the flexible and power-

ful desktop framework, Ext JS. This book is designed to walk you through the basics of

using this framework all the way through to developing and deploying production

applications with Sencha Cmd. After you’ve read this book, you should be able to

develop robust desktop web applications. This revised edition covers the many new

features of Ext JS 4.0.

Who should read this book

This book is intended for developers who want to use Ext JS to create rich desktop web

applications that feel native. Although Ext JS is themed and highly customized, this

book is targeted to those who primarily perform the programming aspect of specifica-

tion implementation.

 We assume that you already have a working understanding of how websites interact

with web servers. To be most effective in writing robust and responsive applications,

you need a solid background with core technologies like HTML, CSS, JavaScript, and

JSON. The only time we talk in detail about these core technologies is in chapter 13,

where we discuss prototypal inheritance with JavaScript, a prerequisite to the Ext JS

class system.

What you’ll need

In the book, we’ll walk you through many hands-on examples. In order to get the

most out of them, the following items should be set up on your computer:

www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx

■ A web server—We recommend Apache HTTPD or Microsoft IIS.

■ An intelligent IDE—We recommend Webstorm or Aptana.

■ A copy of Sencha Cmd installed—It’s available at www.sencha.com/products/sencha-

cmd/download.

That’s pretty much it!

Roadmap

This book is designed to give you a guided tour of Ext JS, updated for version 4.0.

Along the way, we’ll focus on many of the rich features that Ext JS provides, including

UI widgets and supportive classes such as data stores, models, and proxies. This tour

consists of 14 chapters.

 Chapter 1 is an introductory chapter, focused on getting you familiar with the

framework. We’ll take a top-down view of the framework and discuss many of the com-

monly used widgets.

 Chapter 2 is designed to get your feet wet with the framework. We’ll take a good

look at how the framework is delivered to you and identify its contents. We’ll also walk

through the basics of DOM manipulation and work our way up to using the Ext JS tem-

plate engines, Template and XTemplate, to render data in the DOM.

 Chapter 3 is about Component and Container, both base classes for the Ext JS UI.

We’ll discuss the component lifecycle and look at how to use Container and its utility

methods to manage and query for child components.

 Chapter 4 builds on chapter 3. We’ll discuss core UI components such as panels,

windows, message boxes, and tab panels. These are all fundamental widgets that

extend Container and allow you to present your UIs with more functionality than

Container provides.

 Chapter 5 covers the various layout managers that Ext JS provides, which are used

to organize components on screen. After reading this chapter, you’ll be able to con-

struct complex user interfaces with the many Ext JS widgets.

 Chapter 6 revolves around the form panel and the various input fields. We’ll look

at how to set up validations with input fields, and you’ll learn how to load and save

data with form panels.

 Chapter 7 focuses on the Ext JS data package. You’ll learn about the core data

classes—Model, Proxy, Reader, and Store—all of which are used to supply data to vari-

ous UI components.

 Chapter 8 builds on chapter 7, and you’ll learn about the grid panel. We’ll explore

the various classes that support the grid panel, and you’ll learn to use many common

implementation patterns.

 Chapter 9 is the root source for learning about Ext JS tree panels. We’ll dive into

how to use the data TreeStore class to support hierarchical data to the tree panel

widget and end the chapter with tree data manipulation via implementation of an

Ext JS menu.

www.sencha.com/products/sencha-cmd/download
www.sencha.com/products/sencha-cmd/download

ABOUT THIS BOOK xxi

 Chapter 10 covers the Ext JS Draw and Charting package. You’ll draw simple

shapes as we explore how to draw on a canvas using the Ext JS Draw API. Afterward,

you’ll learn how to implement the many charts that Ext JS provides.

 Chapter 11 focuses on direct web remoting with Ext JS. We’ll explore what it takes

to integrate server-side logic with the client to allow the server code to dictate API

calls to the client.

 Chapter 12 covers drag-and-drop with Ext JS. We’ll look at how to implement the

basic drag-and-drop classes and then dive into using drag-and-drop with grids, trees,

and data views.

 Chapter 13 focuses on the Ext JS class system. We begin by covering basic

JavaScript prototypal inheritance and elevate your knowledge up to developing Ext

JS classes. You’ll learn how to extend Ext JS components and develop plug-ins to

the framework.

 Chapter 14 will take you through what it’s like to develop an application using

Sencha Cmd and the Ext JS MVC system. You’ll learn how to set up the basic appli-

cation scaffolding, develop an app using MVC, and then produce testing and pro-

duction builds.

Code conventions

All source code in this book is in a fixed-width font like this, which sets it off from

the surrounding text. In many listings, the code is annotated to point out the key con-

cepts. We have tried to format the code so that it fits within the available page space in

the book by adding line breaks and using indentation carefully. Sometimes, however,

very long lines include line-continuation markers.

Getting the latest examples

The examples in this book are designed to be easy to navigate. Each chapter is its own

folder, with each example named according to the listing it corresponds to.

 We’ll work to keep the examples up to date as the framework is upgraded. To

get the latest version of the examples, you can fork the following GitHub repo:

https://github.com/ModusCreateOrg/extjs-in-action-examples. You can also download

a zip file with the code examples from the publisher’s website at www.manning.com/

ExtJSinActionSecondEdition.

Author Online

Purchase of Ext JS in Action, Second Edition includes free access to a private web

forum run by Manning Publications where you can make comments about the book,

ask technical questions, and receive help from the authors and from other users.

To access the forum and subscribe to it, point your browser to www.manning.com/

ExtJSinActionSecondEdition. This page provides information on how to get on the

forum once you’re registered, what kind of help is available, and the rules of con-

duct on the forum.

www.manning.com/ExtJSinActionSecondEdition
www.manning.com/ExtJSinActionSecondEdition
www.manning.com/ExtJSinActionSecondEdition
www.manning.com/ExtJSinActionSecondEdition
https://github.com/ModusCreateOrg/extjs-in-action-examples

ABOUT THIS BOOKxxii

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialog between individual readers and between readers and the authors can take

place. It’s not a commitment to any specific amount of participation on the part of the

authors, whose contribution to the AO remains voluntary (and unpaid). We suggest

you ask the authors challenging questions lest their interest stray!

About the authors

Jay Garcia is CTO and cofounder of Modus Create, a company focused on deliver-

ing high-end solutions with Sencha products. Jay’s involvement with the world of

Sencha started in 2006. Since then, Jay has been focused on knowledge sharing

through books, blog articles, screencasts, meetups, and conferences. His blog is at

http://moduscreate.com/.

Grgur Grisogono is a principal at Modus Create and a web technology evangelist.

Grgur has been involved with Ext JS since 2007 and has successfully organized three

Sencha-focused conferences in Europe.

Jacob Andresen resides in Germany and is an Ext JS enthusiast. He works on various

projects and contributes to the community via blog posts and the Sencha forums.

http://moduscreate.com/

xxiii

about the cover illustration
The figure on the cover of Ext JS in Action, Second Edition is captioned “Le voyageur,”

which means a traveling salesman. The illustration is taken from a 19th-century edi-

tion of Sylvain Maréchal’s four-volume compendium of regional dress customs pub-

lished in France. Each illustration is finely drawn and colored by hand. The rich

variety of this collection reminds us vividly of how culturally apart the world’s towns

and regions were just 200 years ago. Isolated from each other, people spoke different

dialects and languages. In the streets or in the countryside, it was easy to identify

where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time,

has faded away. It is now hard to tell apart the inhabitants of different continents, let

alone different towns or regions. Perhaps we have traded cultural diversity for a more

varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers based

on the rich diversity of regional life of two centuries ago, brought back to life by illus-

trations from collections such as this one.

Part 1

Introduction to
Ext JS 4.0

This book thoroughly explains and demonstrates how to develop JavaScript

applications using the powerful Ext JS framework. The extensive practical exam-

ples will help you understand its components and containers, and, even more

important, how they can be used together.

 Chapter 1 provides an overview of what’s new with Ext JS 4.0. It also covers

the fundamental concepts and widgets of the framework, and helps you develop

a “Hello World” application. Chapter 2 addresses the basics needed for the foun-

dation of any Ext JS application, such as initialization, DOM element manipula-

tion, and injecting HTML fragment templates with Ajax server data. Chapter 3

explores components and the life cycle of UI building blocks such as viewports,

panels, menus, tabs, data grids, dynamic forms, and stylized pop-up windows, as

well as containers and layout controls that manage child items.

 After reading the chapters in part 1, you’ll see how Ext JS works from the inside

out and be ready to explore the many widgets that compose the Ext JS framework.

3

A framework apart

Envision a scenario where you’re tasked to develop an application with many of the

typical user interface (UI) widgets such as menus, tabs, data grids, dynamic forms,

and stylized pop-up windows. You want something that allows you to programmati-

cally control the position of widgets, which means it has to have layout controls.

You also want detailed and organized centralized documentation to ease your

learning curve with the framework. Finally, your application needs to look mature

and go into beta phase as quickly as possible, which means you don’t have a lot of

time to toy with HTML and CSS. Before entering the first line of code for the proto-

type, you need to decide on an approach for developing the frontend. What are

your choices?

 You do some recon on the common popular frameworks and libraries on the

market and quickly learn that all of them can manipulate the DOM, but only two of

them have mature UI widgets: Yahoo! User Interface (YUI) and Ext JS.

This chapter covers

■ Learning what’s new in Ext JS 4.0

■ Obtaining the source code

■ Exploring a “Hello world” example

4 CHAPTER 1 A framework apart

 With your first glance at YUI, you might think you needn’t look any further. You

play with the examples and notice that they look mature but aren’t exactly profes-

sional quality, which means you’ll need to modify CSS. No way. Next, you look at the

documentation. It’s centralized and technically accurate, but it’s far from user-

friendly. You notice all of the scrolling required to locate a method or class. Some

classes are even cut off because the left navigation pane is too small.

 In this chapter, we’ll take a good look at Ext JS, and you’ll learn about some of the

widgets that compose the framework. After we finish the overview, you’ll download

Ext JS and take it for a test drive.

1.1 Looking at Ext JS

To develop a rich internet application (RIA) with a set of rich UI controls, you turn to

Ext JS and find that, out of the proverbial box, Ext JS provides a rich set of DOM utili-

ties and widgets. Although you can get excited about what you see in the examples

page, it’s what’s under the hood that’s most exciting. Ext JS comes with a full suite of

layout management tools to give you full control over organizing and manipulating

the UI as requirements dictate. One layer down exist what are known as the Compo-

nent model and Container model, each playing an important role in managing how

the UIs are constructed.

Almost all UI widgets in the framework are highly customizable, giving you the option

to enable and disable features, override functions, and use custom extensions and

plug-ins. One example of a web application that takes full advantage of Ext JS is con-

joon. Figure 1.1 shows a screenshot of conjoon in action.

 conjoon is an open source personal information manager and can be considered

the epitome of web applications developed with Ext JS. It uses just about all of the

framework’s native UI widgets and demonstrates how well the framework can inte-

grate with custom extensions such as YouTubePlayer, LiveGrid, and ToastWindow.

 You’ve learned that Ext JS can be used to create a full-page web application. It’s

quite easy to see that a lot can be achieved using this framework. As you’ll soon

learn, the framework is pretty vast, and the API documentation will become your

best friend.

 Speaking of the API documentation, let’s switch gears and take a glance at it.

Component and Container models

The Component and Container models play a key role in managing UIs with Ext JS and

are part of the reason Ext JS stands out from the rest of the Ajax libraries and frame-

works. The Component model dictates how UI widgets are instantiated, rendered,

and destroyed in what’s known as the component life cycle. The Container model con-

trols how widgets can manage (or contain) other child widgets. These are two key

areas for understanding the framework, which is why we’ll spend a lot of time on

these two topics in chapter 3.

5Looking at Ext JS

1.1.1 Rich API documentation

With the 4.0 version of the framework, the API documentation is new and improved.

When opening the API documentation for the first time, you get a sense of the frame-

work’s polish. Unlike competing frameworks, the Ext JS API documentation uses its

own framework to present a clean and easy-to-use documentation tool that uses Ajax

to provide the documentation.

 We’ll explore all of the features of the API and talk about some of the components

used in this documentation tool. Figure 1.2 illustrates some of the components used

in the Ext JS API documentation application.

 The API documentation tool is chock-full of gooey GUI goodness and incorporates

six of the most commonly used widgets, including the text input field, tree panel, tab

panel, panel, and toolbar with embedded buttons.

You’re probably wondering what all of these are and what they do. Let’s take a moment

to discuss these widgets before we move on.

History support

The Ext JS 4.0 documentation now includes browser history support. This means that

you can use the browser’s forward and back buttons to walk up and down your API

documentation breadcrumbs.

YouTubePlayer

extension

ToastWindow extension

LiveGrid extension

Figure 1.1 conjoon is an open source personal information manager that’s a great example of

a web application that uses the Ext JS framework to manage a UI which uses 100 percent of

the browser’s viewport. You can download it at http://conjoon.org/.

www.allitebooks.com

http://conjoon.org/
http://www.allitebooks.org

6 CHAPTER 1 A framework apart

 The text input field is a widget that wraps the native browser text input form control,

adding features such as validation. In the API documentation, it’s used to perform live

searches against the tree panel and is custom styled. We’ll talk more about tab panels

in chapter 4.

 The tree panel widget displays hierarchical data visually in the form of a tree much

like Windows Explorer displays your hard drive’s folders. The tab panel provides a

means to have multiple documents or components on the canvas but allows only one

to be active at a time, though in the API documentation, it displays only one item.

 The panel is a workhorse of Ext JS. It’s flexible and contains many areas to display

content, including the dock and the content body. The dock is where items like tool-

bars are typically placed, and the content body is the area where content or child wid-

gets are typically rendered. In the case of the API documentation, the content body

contains the documentation for the framework.

 The Toolbar class provides a means to present commonly used UI components such

as buttons and menus, but it can also contain, as in this case, any of the Ext.form.Field

subclasses. You can think of the toolbar as a place for the common file-edit-view menus

that you see in popular operating systems and desktop applications.

 Using the API is a cinch. To view a document, click the class node on the tree.

Doing so invokes an Ajax request to fetch the documentation for the desired class.

Each document for the classes is an HTML fragment (not a full HTML page).

 So the documentation is thorough. But what about rapid application develop-

ment? Can Ext JS accelerate your development cycles?

Text input field

Buttons

ToolbarTab panel

Tree panel

Panel

Figure 1.2 The Ext JS API documentation contains a wealth of information and is a great resource

for learning more about components and widgets.

7A tour of the Ext JS widgets

1.1.2 Rapid development with prebuilt widgets

Ext JS can help you jump from conception to prototype because it offers many of the

required UI elements already built and ready for integration. Having these UI widgets

prebuilt, instead of having to engineer them, saves you a lot of time. In many cases, the

UI controls are highly customizable and can be modified to your application’s needs.

1.2 What you need to know

Although being an expert in web application development isn’t required to develop

with Ext JS, developers should have some core competencies before attempting to

write code with the framework.

 The first of these skills is a basic understanding of Hypertext Markup Language

(HTML) and Cascading Style Sheets (CSS). It’s important to have some experience

with these technologies because Ext JS, like any other JavaScript UI library, uses HTML

and CSS to build its UI controls and widgets. Although its widgets may look like and

mimic typical modern operating system controls, it all boils down to HTML and CSS in

the browser.

 Because JavaScript is the glue that holds Ajax together, we recommend you have a

solid foundation in JavaScript programming. Again, you needn’t be an expert, but you

should have a good grasp of key concepts such as arrays, references, and scope. It’s a

plus if you’re familiar with object-oriented JavaScript fundamentals such as objects,

classes, and prototypal inheritance. If you’re new to JavaScript, you’re in luck. Java-

Script has existed nearly since the dawn of the internet. An excellent place to start is

W3Schools.com, which offers a lot of free online tutorials and even has sandboxes for

you to play with JavaScript online. You can visit them at http://w3schools.com/JS/.

 If you need to develop code for the server side, you must have a server-side solu-

tion for Ext JS to interact with as well as a way to store data. To persist data, you’ll

need to know how to interact with a database or filesystem via your server-side lan-

guage of choice.

 Naturally, the range of solutions available is quite large. For this book, we won’t focus

on a specific language. Instead, we’ll use online resources at http://ExtJSinaction.com,

where we’ve done the server-side work for you. This way, all you have to focus on is

learning Ext JS. Along the way, we’ll provide specific API URLs for you to use.

 We’ll begin our exploration of Ext JS with a bird’s-eye view of the framework,

where you’ll learn about the categories of functionality.

1.3 A tour of the Ext JS widgets

The story of Ext JS main codebase begins in early 2010, during the development of

Sencha Touch, the world’s first HTML5 mobile framework (released in November

2010). Sencha Touch brought forth the base underpinnings, known as Sencha Plat-

form (see figure 1.3), which contains many of the critical features that Ext JS and Sen-

cha Touch both use. Such common features include DOM and event management,

the Component model, and layouts, all of which we’ll be diving into later in this book.

http://w3schools.com/JS/
http://ExtJSinaction.com

8 CHAPTER 1 A framework apart

The Ext JS framework provides not only UI widgets but also a host of other features.

These fall into seven major areas of purpose: core, UI components, web remoting,

data services, drag-and-drop, draw and charts, and general utilities. Figure 1.4 illus-

trates the seven areas of purpose.

 Knowing what the different areas of purpose are and what they do will give you an

edge when developing applications, so we’ll take a moment to discuss them.

CORE

The first feature set is the Ext JS core, which comprises many basic features such as Ajax

communication, DOM manipulation, and event management. Everything else is depen-

dent on the core of the framework, but the core isn’t dependent on anything else.

UI COMPONENTS

The UI components contain all of the widgets that interface with the user.

WEB REMOTING

Web remoting is a means for JavaScript to remotely execute method calls that are

defined and exposed on the server, which is commonly known as a remote procedure

call (RPC). It’s convenient for development environments where you’d like to expose

your server-side methods to the client and not worry about all of the fuss of Ajax

method management. This package is known as Ext Direct.

DATA SERVICES

The data services section takes care of all your data needs, which include fetching,

parsing, and loading information into stores. With the Ext JS data services classes you

can read Array, XML, and JavaScript Serialized Object Notation (JSON), which is a

Ext JS Sencha Touch

Sencha Platform

Figure 1.3 Ext JS 4.0 and Sencha

Touch both branch off of Sencha

Platform, a common base for the Sencha

family of HTML5 frameworks.

Web remoting

General utilities

Drag and drop UI components

Data services

Draw and chartsExt JS core

Figure 1.4 The seven areas of purpose for Ext JS classes

9A tour of the Ext JS widgets

data format that’s quickly becoming the standard for client-to-server communication.

Stores typically feed UI components.

DRAW AND CHARTS

This all-new package encompasses the Ext JS cross-browser drawing engine compatible

with Vector Markup Language (VML) and Scalable Vector Graphics (SVG). With Draw, you

can generate your own data visualizations, but its primary purpose is to act as a foundation

for the Charting package. The Charting package comes complete with many popular

charts including Cartesian (Bar, Line, Column, and so on), Pie, Area, Scatter, and others.

DRAG-AND-DROP

Drag-and-drop is like a mini-framework inside Ext JS, where you can apply drag-and-

drop capabilities to an Ext JS component or any HTML element on the page. It

includes all the necessary members to manage the entire gamut of drag-and-drop

operations. Drag-and-drop is a complex topic; we’ll spend the entirety of chapters 13

and 14 on this subject alone.

UTILITIES

The utilities section consists of cool utility classes that help you more easily perform some

of your routine tasks. An example is Ext.util.Format, which allows you to format or trans-

form data easily. Another neat utility is the CSS singleton, which lets you create, update,

swap, and remove style sheets as well as request the browser to update its rule cache.

 Now that you have a general understanding of the framework’s major areas of

functionality, let’s look at commonly used UI widgets that Ext JS has to offer.

1.3.1 Containers and layouts at a glance

Even though we’ll cover these topics in detail in chapter 3, let’s spend a little time

here talking about containers and layouts. The terms container and layout are used

extensively throughout this book, and we want to make sure you have at least a basic

understanding of them before we continue. Afterward, we’ll begin our exploration of

visual components of the UI library.

CONTAINERS

Containers are widgets that can manage one or more child items. A child item is gen-

erally any widget or component that’s managed by a container or parent; thus the

parent-child paradigm. You’ve already seen this in action in the API. The tab panel is a

Get your JSON on!

Even though JSON has been around for many years, if this is the first time you’ve

heard of it we encourage you to visit http://json.org, the go-to source for information

on this ubiquitous data exchange format. If you’re interested in learning how to imple-

ment JSON in your server-side language of choice, there are a ton of JSON implemen-

tations, most of which are documented and explained online. We suggest searching

Google using a query like “PHP JSON.”

http://json.org

10 CHAPTER 1 A framework apart

container that manages one or more child items, which can be accessed via tabs.

Please remember this term, because you’ll use it a lot when you start to learn more

about how to use the UI portion of the framework.

LAYOUTS

Layouts are implemented by a container to visually organize the child items in the

container’s content body. Ext JS has a whopping 33 layouts in the library! The good

news is that you only have to learn 13 of them, which we’ll go into in great detail about

in chapter 5, where we show the ins and outs of each layout.

 Now that you have a high-level understanding of containers and layouts, let’s look at

some containers in action. In figure 1.5 you see two subclasses of Container—Panel and

Window—each engaged in parent-child relationships, demonstrating the power of the

Container class and various layouts.

 The Panel (left) and Window (right) in figure 1.5 each manage two child items.

Child Panel 1 of each parent container contains HTML. The children with the title Child

Panel 2 manage one child panel each using AutoLayout, which is the default container

layout. This parent-child relationship is the crux of all the UI management of Ext JS and

will be reinforced and referenced repeatedly throughout this book.

 You learned that containers manage child items and use layouts to visually orga-

nize them. Now that you have these important concepts down, we’ll see and discuss

other containers in action.

1.3.2 Other containers in action

You saw the Panel and Window subclasses used when you learned about Containers.

Figure 1.6 shows some other commonly used subclasses of Container.

 In figure 1.6 you see the form panel, tab panel, window, toolbar, and field con-

tainer widgets. The form panel works with the Basic Form class to wrap fields and other

child items with a form element. All of these widgets are contained by an instance of

Ext.window.Window.

 You’ll spend some time building a complex UI in chapter 6, where you’ll learn

more about form panels. For now, let’s move on to see what data-presentation widgets

the framework has to offer.

Parent containers

Child containers

Child of

child panel 2

Figure 1.5 Here you see two parent Containers, Panel (left) and Window (right),

managing child items, which include nested children.

11A tour of the Ext JS widgets

1.3.3 Data-bound views

You’ve already learned that the data services portion of the framework is responsible

for the loading and parsing of data. Ext JS 4.0 has a lot of widgets that are bound to

data stores, known as views. Many of the views that you’ll deploy include the data view,

grid panel, and tree panel. If your application requires charts, you’ll be pleased to

learn that all of the charts in the framework are also considered views and are bound

to data stores. Figure 1.7 shows the Ext JS grid panel in action.

 The newly refactored GridPanel is a subclass of Panel and presents data in a table-

like format, but its functionality extends far beyond that of a traditional table, offering

sortable, resizable, and movable column headers and selection models such as Row-

SelectionModel and CellSelectionModel. You can customize its look and feel and

couple it with a paging toolbar to allow large datasets to be segmented and displayed

in pages. It contains many features and plug-ins, allowing you to do tasks such as edit

by row or cell, or lock a column. The data view shown in figure 1.8 renders photos and

other bits of data for various phones on the market.

 The DataView class consumes data from a store, paints it onscreen using a class

known as XTemplate, and provides a simple selection model. The Ext JS XTemplate

is an HTML fragment-generation utility that allows you to create a template with

Window
(fit layout)

Form panel
(anchor layout)

Field container
(field layout)

Tab panel
(card layout)

Toolbar
(HBox layout)

Figure 1.6 Commonly used subclasses of Container—FormPanel, TabPanel,

FieldContainer, and Toolbar—and the layouts used to compose this UI window. We’ll

build this in chapter 6, when you learn about forms.

12 CHAPTER 1 A framework apart

placeholders for data elements, which can be filled in by individual records in a store

and stamped out on the DOM.

The grid panel and data view are essential tools for painting data onscreen, but they

do have one major limitation: they can show only lists of records and can’t display

hierarchical data. This is where the tree panel fills the gap.

Gone is the list view widget!

If you’re coming from Ext JS 3, you may wonder where the list view widget is. The sim-

ple answer is that the list view, providing faster table rendering in Ext JS 3.0, was

removed from 4.0, in favor of refactoring the grid panel for much faster performance.

Figure 1.7 The grid panel as seen in the Buffered Grid example in the Ext JS SDK

Data view

Figure 1.8 The data view as demonstrated in the Ext JS SDK examples

13A tour of the Ext JS widgets

1.3.4 Make like a tree panel and leaf

The tree panel widget is an exception to the list of UI widgets that consume data in

that it doesn’t consume data from a data store. Instead, it consumes hierarchical data

via the use of the TreeStore class. Figure 1.9 shows an example of an Ext JS tree panel

widget. Here, the tree panel is being used to display the parent-child data inside the

directory of an installation of the framework.

 For Ext JS 4.0, it has been completely rebuilt and is now a close cousin to the grid

panel. Figure 1.10 demonstrates the versatility of the new tree panel.

Figure 1.9 An Ext JS tree,

which is an example from

the Ext JS SDK

Figure 1.10 A tree panel with columns

14 CHAPTER 1 A framework apart

You already saw text fields when we discussed containers. Next, we’ll look at some of

the other input fields that the framework has to offer.

1.3.5 Form input fields

Ext JS has a palette of eight input fields. They range from simple text fields, as

you’ve already seen, to complex fields such as the ComboBox and the HTML Editor.

Figure 1.11 shows the Ext JS form field widgets available out of the box.

 As you can see in figure 1.11, some of the form input fields look like stylized ver-

sions of their native HTML counterparts. The similarities end there, though. With the

Ext JS form fields, there’s much more than meets the eye.

 Each of the Ext JS fields (except for the HTML Editor) includes a suite of utilities to

perform actions such as getting and setting values, marking the field as invalid, reset-

ting, and performing validations against the field. You can apply custom validation to

the field via regex or custom validation methods, giving you complete control over the

data being entered into the form. The fields can validate data as it’s being entered,

providing live feedback to the user.

TEXTFIELD AND TEXTAREA

The TextField and TextArea classes can be considered extensions of their generic

HTML counterparts that include extra features like validation. The TextField class is

the base for many other complex widgets, such as the ComboBox, Number field, and

Time field.

Display field

TextArea field

Text field

ComboBox

Time field

Date field

Number field

Spinner field

File field

Slider field

Radio field

Checkbox field

HTML Editor

Figure 1.11 The out-of-the-box form elements displayed in an encapsulating window

15A tour of the Ext JS widgets

RADIO AND CHECKBOX

Like the text field, radio and checkbox fields are extensions of the out-of-the-box

HTML radio and checkbox, but they include all of the Ext JS element management

goodness and have convenience classes to assist with the creation of checkbox and

radio groups with automatic layout management. Figure 1.12 shows a small sample

of how the Ext JS CheckboxGroup and RadioGroup classes can be configured with

complex layouts.

HTML EDITOR

The HTML Editor is WYSIWYG, like the text area on steroids. The HTML Editor uses

existing browser HTML editing capabilities and can be considered somewhat of a

black sheep when it comes to fields. There’s much more to discuss about this field,

which we’re going to save for chapter 6. But for now, let’s circle back to ComboBox and

its subclass, TimeField.

TRIGGERFIELD FAMILY OF FIELDS

The TriggerField class is the base class responsible for rendering a button to the

right of a text field. Its subclasses are broken up into two groups, pickers and spinners.

Included in the list of pickers are the ComboBox and the date field. The spinners

include the spinner and number fields.

 The ComboBox is easily the most complex and configurable form input field. It

can mimic traditional option drop-down boxes or can be configured to use remote

datasets via the data store. It can be configured to autocomplete text (known as type-

ahead) entered by the user and to perform remote or local filtering of data. It can also

be configured to use your own instance of an Ext JS XTemplate to display a custom list

in the drop-down area, known as the bound list. Figure 1.13 shows an example of a cus-

tom ComboBox in action, being used to search the Ext JS forums..

 The ComboBox here shows information like the post title, date, and author, and a

snippet of the post in the list box. Because some of the dataset ranges are so large, it’s

configured to use a paging toolbar, allowing users to page through the resulting data.

Figure 1.12 An example of the Checkbox and RadioGroup convenience

classes in action with automatic layouts

www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1 A framework apart

Because the ComboBox is so configurable, you could also include image references to

the resulting dataset, which can be applied to the resulting rendered data.

 Here we are, on the last stop of our UI tour. Now let’s take a peek at some of the

other UI components that work anywhere.

1.3.6 Other widgets

A bunch of UI controls stand out that aren’t major components but that play support-

ing roles in the grander scheme of a UI. Look at figure 1.14 for a palette of the various

widgets rendered onscreen.

 You’ve learned how Ext JS can help you get the job done through a large palette of

widgets. You’ve learned that you could elect to use Ext JS to build an application with-

out touching an ounce of HTML. You also got a top-down view of the framework,

which included a UI tour. All of the material discussed thus far existed for Ext JS 3.0.

Let’s take a moment to discuss what’s new in Ext JS 4.0.

ComboBox

Picker

Paging toolbar

Figure 1.13 A custom ComboBox, which includes an integrated paging toolbar, as shown in

the downloadable Ext JS examples

Toolbar

Button

Toolbar

Message box

Button

Progress bar

Color picker

Menu

Slider

Figure 1.14 Miscellaneous UI widgets and controls

17What’s new in Ext JS 4.0

1.4 What’s new in Ext JS 4.0

We aren’t exaggerating when we say that Ext JS 4.0 is a revolution for JavaScript frame-

works. There are so many enhancements to the framework that it’s sometimes hard to

grasp all that’s changed. A lot of the changes are beneath the presentation layer, in

the deepest, darkest caverns of the Ext JS codebase, a place where you rarely venture

due to its sometimes mind-bending complexity.

 Next, we’ll look at some of the most drastic transformations that the framework

has undergone. If you have experience in version 3.0, you may have wondered why the

size of the framework has grown. You’ll learn the reason in the next few sections.

1.4.1 Poof goes the adapter layer!

Through the use of an adapter layer, Ext JS 2.0 and 3.0 were able to ride on top of the

jQuery, Prototype, and YUI libraries. With Ext JS 4.0, this is no longer the case.

 Though heralded by developers migrating from those libraries, the adapter layer

has always been a source of contention for a number of reasons. The main issue with

the adapter layer has been that the versions of the base libraries would change and

introduce bugs into Ext JS.

 Another well-known issue is the problem of framework namespace collision. Ext JS

1.0–3.0 added to JavaScript by injecting methods into the Function, String, and Array

prototypes. Because other libraries took the same action with similar method names,

Ext JS trampled on the changes that the base libraries made.

 The Sencha development team made sure to prevent such collisions and sources

of tension with other libraries by moving said features into the Ext.util namespace as

String, Function, and Array singletons. With such changes, the Sencha team decided

to remove the adapter layer and make Ext JS work alongside any other library, allow-

ing you to use any version of those libraries without fear that an upgrade of those

libraries would cause problems with your Ext JS code.

1.4.2 New class system

Ext JS 4.0 comes with an entirely new class system that includes features such as depen-

dency injection and on-the-fly class loading, a must-have for internet-facing RIAs built

with Ext JS 4.0.

 Along with dynamic class loading comes the concept of mixins, a modern object-

oriented programming pattern that allows for multiple inheritance. This concept has

allowed the Sencha development team to be much more creative when developing

the framework, reducing the amount of duplicate code while increasing the level of

functionality and sometimes the ease of use for some classes and widgets.

Learn about mixins!

If you’re new to the concept of mixins, the following article explains this programming

concept very well: http://en.wikipedia.org/wiki/Mixin.

http://en.wikipedia.org/wiki/Mixin

18 CHAPTER 1 A framework apart

Although the new class system provides many new features, it comes at a cost: new pat-

terns. The new class system promotes vastly different patterns compared to those of

Ext JS 3.0 when it comes to instantiation or defining a class. These new patterns can

make the learning curve for Ext JS 4.0 steeper, but rest assured that they’ll allow you to

be more creative with your application code.

 Speaking of classes, Ext JS 4.0 has a completely refactored data class system, which

we discuss next.

1.4.3 Data package

The all-new data package in Ext JS 4.0 can trace its origins back to Sencha Touch,

which used terms such as model in place of record. The changes to the data package

bring functionality and organization far beyond that of Sencha Touch, however.

 The Ext JS 4.0 data package incorporates an explosion of classes, and it includes

new members such as the LocalStorage proxy and tree store. The LocalStorage proxy

allows data to be stored and retrieved using the browser’s local storage feature,

whereas the tree store replaces the Ext JS 3.0 tree loader, allowing you to do a lot more

with trees than ever before.

 The data package comes with added features, such as associations and validations,

along with a well-thought-out reorganization of functionality. Figure 1.15 illustrates

how features and functions of the data package are segmented and related. We’ll be

going over this package in greater detail later on; we just wanted to whet your appetite

with some detail.

 In Ext JS 4.0, models can directly use proxies, whereas they couldn’t in previous

versions of the framework. Likewise, validations and associations are now performed

at the model level.

 The data package has seen a lot of attention, but the layout namespace has seen a

lot of refactoring love as well.

Association

Reader

Sorter

Filter

Store

Proxy

Model

Validation

Writer

Grouper

Figure 1.15 The Ext JS 4.0

data package

19What’s new in Ext JS 4.0

1.4.4 Layouts: an explosion of code

As we discussed earlier, Ext JS 4.0 comes jam-packed with 33 new layout managers, but

there are only 13 that you need to be aware of. This is because layouts are broken up

into two main areas of functionality: component and container layouts.

 The component and container layouts play two completely different roles in the

framework. Component layouts are responsible for arranging the HTML for compo-

nents, whereas container layouts are responsible for managing the location and size of

child components.

 While we’re on the topic of layouts, let’s shed some light on the new docking sys-

tem that Ext JS 4.0 brings to the table.

1.4.5 New docking system

Originating in Sencha Touch, panels in Ext JS can have widgets such as toolbars

arranged on the outside of the area known as the content body, affording more UI

arrangement flexibility than ever before with this widget. Figure 1.16 shows three tool-

bars docked on the top, bottom, and left of a panel. This arrangement wasn’t possible

with any previous versions of Ext JS without deep nesting of containers and layouts.

This is all made possible via the component layout known as Dock.

 Though using the Dock layout is something that you might be able to envision tak-

ing full advantage of, if your application uses grid panels what we’re about to discuss

next might excite you.

1.4.6 Grid panel improvements

The Sencha development team literally worked night and day on features like the grid

panel, and the results show, especially after taking a good look at what’s changed since

Ext JS 3.0.

Figure 1.16 Demonstrating the new docking feature of the Ext JS panel

20 CHAPTER 1 A framework apart

Features new to the grid panel include what’s known as the infinite grid, which allows

you to paginate through large datasets without having to include a paging toolbar.

Other new features include a reorganization of the namespace for better grouping of

classes (see figure 1.17).

 The grid area of code has been segmented by groups of code, including column

types, plug-ins, and features. Even though not technically in the grid namespace, data

Store is a supporting class for GridPanel, so we included it in figure 1.17.

 This level of organization of the grid package means that you have more flexibility

in configuring grid panels, allowing Ext JS to implement only code that’s required.

For instance, if you want to allow cell editing, you include the CellEditing plug-in in

your grid panel configuration. Likewise, if you want to include drag-and-drop func-

tionality, include the DragDrop plug-in.

 Other bits of functionality were migrated to the so-called feature namespace, which is

somewhat similar to plug-ins. We don’t want to muddy the waters with details of how

features work, but it’s good to note that grid goodies like row grouping and providing

a summary row of your data can be engaged only if you desire them to be.

 As you just learned, the grid panel endured a lot of changes. The story of major

change doesn’t end here. The tree panel has undergone some serious changes as well!

1.4.7 Tree panel now closer to grids

The code for the Ext JS tree panel has stayed rela-

tively the same for Ext JS versions 1.0 through 3.0,

but the Ext JS 4.0 tree panel code has been com-

pletely rewritten. Applying a family tree analogy to

the difference between the grid and tree panels in

prior Ext JS versions, we could say that they were, at

best, third cousins. In Ext JS 4.0, they’re siblings!

 As illustrated in figure 1.18, the grid and tree

panels are siblings because they share the same

superclass, meaning they share the same base code.

The good news is that once you learn one of the

two, the learning curve is reduced for the other. Having the grid and tree panels share

the same base code means that you can have things like columns in your tree views.

Grid panel

Grid

features

Grid

plug-ins

Column

types

Data

store
Figure 1.17 The grid panel’s areas

of functionality

Ext.panel.Panel

Ext.panel.Table

Ext.grid.Panel Ext.tree.Panel

Figure 1.18 The tree and grid panels

share the same superclass.

21What’s new in Ext JS 4.0

That said, the tree panel doesn’t contain a lot of the functionality that the grid panel sports,

such as the summary row plug-in or column locking. In addition, the tree panel must use

the TreeStore class from the data package to manage and display hierarchical data.

 We just covered two of the major data-bound views that have been with the frame-

work since its early days. Next we’ll tackle the all-new charting package.

1.4.8 Draw and charts

Charts were first introduced in Ext JS 3.0 with relatively little fanfare. There were two

reasons for this. The first is that they were Flash-based charts repackaged from the YUI

library. The second is that upgrades to the YUI packaged charts often lagged behind a

few revisions, frustrating developers.

 With Ext JS 4.0, the YUI charting package was tossed and rebuilt from scratch in two

major sections. The first is Ext Draw, which is a mini-framework inside Ext JS that has its

roots in lessons learned by RaphaelJS, a Sencha labs project for drawing in the browser

using Vector Markup Language (VML), Scalable Vector Graphics (SVG), or Canvas.

 The second is the charting package, which uses Ext Draw as a base. With the new

charting package come two new graphs: scatter and radar. Figure 1.19 shows the

radar chart.

 We’ve discussed many elements from the UI widgets, but there are others under

the hood that are worth mentioning.

Figure 1.19 Ext JS contains new charts that don’t use Flash.

22 CHAPTER 1 A framework apart

1.4.9 New CSS styling architecture

Ext JS uses Sass (Syntactically Awesome Stylesheets) to allow both the Sencha develop-

ment team and users to create custom themes. This means that if you want to change

your entire color scheme, you can do so with relative ease if you know Sass.

Custom style sheets and widgets enable you to develop applications with Ext JS. They need

something to tie them together, and with Ext JS 4.0, Sencha has delivered such a tool.

1.4.10 New MVC architecture

One of the things that Ext JS has lacked is a solid pattern for developing applications

with the framework. This isn’t the case with Ext JS 4.0. Using the lessons learned with

Sencha Touch, Ext JS 4.0 comes with a solid MVC architecture that lets you develop

code using the tried-and-true MVC pattern. We’ll go over this in great detail in the last

two chapters of this book.

 The new stuff for Ext JS 4.0 doesn’t apply just to what can be used in the browser. The

framework comes with other tools that you can use in your application build process.

1.4.11 Bundled packaging tool

Earlier, you learned that Ext JS 4.0 comes with a dynamic class-loading system. The

class loader is a great solution for internet-based Ext JS applications, but intranet-

based applications often have higher demands on response times, which is why Sen-

cha now includes its popular JSBuilder packaging and minification tool, the same tool

it uses to build and package Ext JS and Sencha Touch.

 We’ve spent a lot of time looking at what’s new in the framework. It’s time that you

download it and begin using it.

1.5 Downloading and configuring

Even though downloading Ext JS is a simple process, configuring a page to include

Ext JS isn’t as simple as referencing a single file in HTML. Now you’ll learn about con-

figuration, the folder hierarchy, and what folders are and what they do.

 The first thing you need to do is get the source code. To do so, visit www.sencha

.com/products/ExtJS/download/. The downloaded file will be the SDK in zip format,

which weighs in at over 30 MB in size. We’ll explain why this file is so large in a

moment. Now extract the file to a place where you serve JavaScript. To use Ajax and

view the documentation without having to visit sencha.com, you’re going to need a

web server. We typically use Apache configured locally on our computer, which is free

and cross-platform, but IIS for Windows will do.

Learn more about Sass

Sass has taken the world of style sheet management by storm and has arguably rev-

olutionized how people style their web pages and apps. To learn more about this util-

ity, check out Sass and Compass in Action (Manning, 2013).

www.sencha.com/products/ExtJS/download/
www.sencha.com/products/ExtJS/download/

23Downloading and configuring

If you’re like us, you probably checked the size of the files extracted from the down-

loaded SDK zip file. If your jaw dropped, feel free to pick it back up. Yes, over 30 MB is

rather large for a JavaScript framework. Pay no attention to the size for now; fig-

ure 1.20 shows what was extracted.

 Looking at the contents of the SDK, you see a lot of stuff. The reason there are so

many folders and files is that the downloadable package contains a few copies of the

entire codebase and CSS. It’s done this way because you have the freedom to build or

use Ext JS any way you see fit. Table 1.1 explains what each of the folders is and what

each one does.

Table 1.1 The contents of the Ext JS SDK

Folder What it does

build Contains the necessary scripts to use JSBuilder to concatenate and minify your appli-

cation code.

builds Contains three different builds of the Ext JS framework. First is the sandbox version,

where you can run Ext JS 4.0 inline with Ext JS 3.0 to mitigate migration risk. The

second is the core of the library. The core contains DOM management and various

utilities in the framework. The last item is Ext JS foundation, which is the base of the

Ext JS framework.

docs, overview,

and welcome

The docs folder holds the full API documentation, and the overview directory contains

a quick introduction to the framework. The welcome folder contains the necessary

resources to support the framework’s splash screen, which you make visible by

double-clicking index.html.

Figure 1.20 A view of the Ext JS

SDK contents

24 CHAPTER 1 A framework apart

Although there are quite a few files and folders in the distribution, you need only a

few of them to get the framework running in your browser. Now is a good time to look

at using Ext JS for the first time.

1.6 Take it for a test drive

For this exercise you’re going to create an instance of Ext.form.Panel, which will be

rendered inside an Ext.window.Window. The form panel will contain two text input

fields and a button to provide some feedback once clicked. The following listing dem-

onstrates how you’ll bootstrap the application code.

<link rel="stylesheet" type="text/css"
 href="/ExtJS/resources/css/ext-all.css" />
<script type="text/javascript"
 src="/ExtJS/ext-all-debug.js"></script>
<script type="text/javascript" src='hello_world.js'>
</script>

Listing 1.1 shows the HTML markup for a typical Ext JS–only setup, which includes the

concatenated CSS file, ext-all.css, and the required JavaScript file, ext-all-debug.js.

Last, it includes your soon-to-be-created hello_world.js file.

 The listing uses /ExtJS as the absolute path to the framework code. Be sure to

change it if your path is different. Create a script tag pointing to the hello_world.js

file, which will contain your main JavaScript code.

examples Holds all of the example source code.

jsbuilder Contains the binaries and source code for JSBuilder.

locale Contains 45 spoken language translations to replace various texts in

the framework.

pkgs Contains the entire framework, in minified and concatenated chunks to allow

for browser consumption over slower connections. It’s broken up into foundation,

DOM, classes, and extras. Classes is by far the largest of the sets, containing all

of the widgets and store code, and extras contains utilities like JSON and the Ext JS

MVC application.

resources Contains the CSS, images, and Sass source code.

ext*.js There are various ext*.js files in the root of the Ext JS distribution. Know that anything

with “-debug” in the name is a nonminified version of that file. These can be broken

down into two groups. First are ext.js and ext-debug.js. These two contain the founda-

tion of the framework. Include these when you want to use the Ext JS class loader.

The ext-all* files are the entire library packaged into one file. You’ll use ext-all-debug

for the exercises.

Listing 1.1 Creating hello_world.html

Table 1.1 The contents of the Ext JS SDK (continued)

Folder What it does

25Take it for a test drive

 Next you’re going to create the hello_world.js file in two phases. The first, shown in

the next listing, is the construction of the form panel and its related child components.

var tpl = Ext.create('Ext.Template', [
 'Hello {firstName} {lastName}!',
 ' Nice to meet you!'
]);
var formPanel = Ext.create('Ext.form.FormPanel', {
 itemId : 'formPanel',
 frame : true,
 layout : 'anchor',
 defaultType : 'textfield',
 defaults : {
 anchor : '-10',
 labelWidth : 65
 },
 items : [
 {
 fieldLabel : 'First name',
 name : 'firstName'
 },
 {
 fieldLabel : 'Last name',
 name : 'lastName'
 }
],
 buttons : [
 {
 text : 'Submit',
 handler : function() {
 var formPanel = this.up('#formPanel'),
 vals = formPanel.getValues(),
 greeting = tpl.apply(vals);

 Ext.Msg.alert('Hello!', greeting);
 }
 }
]
});

Listing 1.2 shows the code needed to configure a form panel that contains two input

fields and a button. First, you create an instance of Ext.Template B, which you’ll use

later to create a dynamic dialog text body. Next, you create an instance of Ext.form

.FormPanel c, which contains two text input fields d and a button e. The button is

configured with a handler that uses the template you configured earlier and values

from the form panel to display an Ext.Msg alert dialog f.

 You’re almost done with the “Hello world” example. Your form hasn’t been ren-

dered onscreen yet. For this, you need to call Ext.onReady. You’ll also wrap the

form panel inside the window to demonstrate the flexibility of the framework in

the next listing.

Listing 1.2 Creating hello_world.js

Creates instance
of Templateb

Configures
form panelc

Sets up two
input fieldsd

Configures
feedback button

e

Shows Ext.Msg
alert dialogf

www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 1 A framework apart

Ext.onReady(function() {

 Ext.create('Ext.window.Window', {
 height : 125,
 width : 200,
 closable : false,
 title : 'Input needed.',
 border : false,
 layout : 'fit',
 items : formPanel
 }).show();

});

Listing 1.3 contains code to render your form panel

inside an Ext JS window. You first call Ext.onReady B
and pass in an anonymous function, which gets exe-

cuted when Ext JS deems that the browser is ready to

have the DOM manipulated. Inside this anonymous

function is where you create your Ext.window.Window

instance c, which contains your FormPanel instance d.

Figure 1.21 shows the example rendered with the child

form panel.

 Figure 1.22 shows the “Hello world” example ren-

dered onscreen. To exercise the Submit button handler you need to enter data in the

two input fields and click the Submit button. If you’ve done everything correctly, you

should see the Ext.Msg alert dialog using the data that you placed in the form.

There you have it! You just used Ext JS to render a form panel with related input fields

and a button inside an Ext JS window. Though this example was simple in nature, it

shows you the power of Ext JS.

1.7 Summary

In this introduction to Ext JS, you learned how it can be used to build robust web

applications. You also learned how it measures up against other popular frameworks

Listing 1.3 Putting it all together

Calls
Ext.onReadyb

Renders
windowc

Includes
form panel

d

Figure 1.21 The example

window rendering the

form panel

Figure 1.22 The final result of the “Hello world” example

27Summary

on the market and that it’s the only UI-based framework to contain UI-centric support

classes such as the Component, Container, and Layout models.

 You explored many of the core UI widgets that the framework provides and

learned that the many prebuilt widgets help rapid application development efforts.

We also investigated some of the changes that Ext JS 4.0 has implemented, such as all-

new non-Flash charts and the MVC package.

 Finally, you saw how to download and set up the framework with each base

framework. You created a “Hello world” example of how to use an Ext JS window to

render a form panel with a button that displays an Ext.Msg alert dialog with some

simple JavaScript.

 In the chapters to follow, you’ll explore how Ext JS works from the inside out.

This knowledge will empower you to make the best decisions when building well-

constructed UIs and better enable you to use the framework effectively. This will be

a fun journey.

28

DOM manipulation

When working on applications, you may think metaphorically to help you develop

parallels for concepts in your mind. For instance, we like to think of the timing of

an application’s launch as similar to that of the space shuttle’s launch, where tim-

ing can mean the difference between success and frustration. Knowing when to ini-

tialize your JavaScript is critical when dealing with anything that manipulates the

DOM. In this chapter you’ll learn how to launch your JavaScript using Ext JS to

ensure your application code initializes at the right time on each browser. Then

we’ll discuss using Ext.Element to manipulate the DOM.

 As you know, DOM manipulation is one of the tasks that web developers are

required to code for most of the time. Whether it’s the addition or removal of ele-

ments, I’m sure you’ve felt the pain of performing these tasks with the out-of-the-box

This chapter covers

■ Bootstrapping JavaScript code

■ Managing DOM elements with Ext.Element

■ Loading HTML fragments via Ajax

■ Achieving a highlight effect on an HTML

element

■ Implementing templates and XTemplates

29Let Ext JS kick off your code

JavaScript methods. After all, DHTML has been at the center of dynamic web pages for

ages now.

 We’ll look at the heart of Ext JS, known as the Ext.Element class, which is a robust,

cross-browser, DOM element-management suite. You’ll learn to use Ext.Element to add

nodes to and remove them from the DOM, and you’ll see how it makes this task easier.

 Once you’re familiar with the Ext.Element class, you’ll learn how to use tem-

plates to stamp out HTML fragments into the DOM. We’ll also dive deep into the use

of the XTemplate, and you’ll learn how to use it to easily loop through data and

inject behavior-modification logic while you’re at it. This is going to be a fun chap-

ter. Before you can begin coding, we need to discuss how to bootstrap Ext JS–enabled

web applications.

2.1 Let Ext JS kick off your code

Since the early days, to initialize JavaScript most developers would add an onLoad attri-

bute to the <body> tag of the HTML page that’s loading:

<body onLoad="initMyApp();">

Although this method of invoking JavaScript works, it’s not ideal for Ajax-enabled

Web 2.0 sites or applications because the onLoad code is generally fired at different

times for different browsers. For instance, some browsers fire this method when the

DOM is ready and all content has been loaded and rendered by the browser. For Web

2.0, this isn’t a good thing, because the code generally wants to start managing and

manipulating DOM elements when the DOM is ready but before any images are

loaded. Here’s where you can achieve the right balance of timing and performance.

We like to call this the “sweet spot” in the page-loading cycle.

 Like many things in the world of browser development, each browser generally has

its own way of knowing when its DOM nodes can be manipulated.

 Native browser solutions are available for detecting that the DOM is ready, but they

aren’t implemented uniformly across each browser. For instance, Firefox and Opera

fire the DOMContentLoaded event. Internet Explorer requires a script tag to be placed

in the document with a defer attribute, which fires when its DOM is ready. WebKit

fires no event but sets the document.readyState property to complete, so a loop must

be executed to check for that property and fire off a custom event to tell your code

that the DOM is ready. Boy, what a mess!

 Luckily, you have Ext.onReady, which solves the timing issues and serves as the

base from which to launch your application-specific code. Ext JS achieves cross-

browser compatibility by detecting on which browser the code is executing and man-

aging the detection of the DOM-ready state, executing your code at just the right time.

Ext.onReady is a reference to Ext.EventManager.onDocumentReady and accepts

three parameters: the method to invoke, the scope from which to call the method,

and any options to pass to the method. The second parameter, scope, is used when

you’re calling an initialization method that requires execution within a specific scope.

http://www.w3.org/TR/2005/WD-css3-selectors-20051215/#selectors
http://www.w3.org/TR/2005/WD-css3-selectors-20051215/#selectors

30 CHAPTER 2 DOM manipulation

All of your Ext JS–based JavaScript code can be anywhere below (after) the inclusion

of the Ext JS script. This positioning is important because JavaScript files are requested

and loaded synchronously. Trying to call any Ext JS methods before Ext JS is defined in

the namespace will cause an exception, and your code will fail to launch. Here’s an

example of using Ext.onReady to fire up an Ext JS MessageBox alert window:

 Ext.onReady(function() {
 Ext.Msg.alert('Hello', 'The DOM is ready!');
 });

In the preceding example, you pass what’s known as an anonymous function to

Ext.onReady as the only parameter, which will be executed when the DOM is ready to be

manipulated. Your anonymous function contains a line of code to invoke an Ext JS

MessageBox, as shown in figure 2.1.

An anonymous function is any function that has no variable reference to it or key ref-

erence in an object. Ext.onReady registers your anonymous function, which is to be

executed when the internal docReadyEvent event is fired. In short, an event is like a

message that something has occurred. A listener is a method that’s registered to be

executed, or called, when that event occurs, or fires.

 Ext JS fires this docReadyEvent event when it finds exactly the right time (remem-

ber the sweet spot) in the page-loading cycle to execute your anonymous method

and any other registered listeners. If the concept of events sounds a bit confusing,

don’t be alarmed. Event management is a complex topic, and we’ll cover it later in

chapter 3.

 We can’t stress enough the importance of using Ext.onReady. All of the example

code has to be launched this way. Moving forward, if Ext.onReady isn’t explicitly

detailed in the examples, please assume that you must launch the code with it and

wrap the example code in the following manner:

Ext.onReady(function() {
 // ... Some code here ...
});

Getting a handle on scope

The concept of scope is something that many JavaScript developers wrestle with

early in their careers. It’s a concept that every JavaScript developer should master.

You’ll find a great resource to learn about scope at www.digital-web.com/articles/

scope_in_javascript/.

Figure 2.1 The result of your Ext.onReady

call, an Ext.MessageBox window

www.digital-web.com/articles/scope_in_javascript/
www.digital-web.com/articles/scope_in_javascript/

31Managing DOM elements with Ext.Element

Now that you’re comfortable with using Ext.onReady to launch your code, let’s spend

some time exploring the Ext.Element class. This is essential knowledge that’s used

everywhere in the framework where DOM manipulation occurs.

2.2 Managing DOM elements with Ext.Element

All JavaScript-based web applications revolve around a nucleus, which is the HTML

Element. JavaScript’s access to the DOM nodes gives you the power and flexibility to

perform any action against the DOM you wish. Such actions could include adding,

deleting, styling, or changing the contents of any node in the document. The tradi-

tional method to reference a DOM node by ID is as follows:

 var myDiv = document.getElementById('someDivId');

The getElementById method lets you perform basic tasks such as changing the

innerHTML or styling and assigning a CSS class. But what if you want to do more with

the node, such as manage its events, apply a style on mouse click, or replace a single

CSS class? You’ll have to manage all of your own code and constantly update to make

sure your code is fully cross-browser compatible. We can’t think of another thing that

we’d want to spend less time on. Thankfully, Ext JS takes care of this for you.

2.2.1 The heart of the framework

Let’s turn to the Ext.Element class, which is known to many in the Ext JS community

as the heart of the framework because it plays a role in every UI widget and can be

generally accessed by the getEl method or the el property.

 The Ext.Element class is a full DOM element-management suite, which includes a

treasure chest of utilities, enabling the framework to work its magic on the DOM and

provide the robust UI that we’ve come to enjoy. This toolset and all of its power are

available to you, the end developer.

 Because of its design, its capabilities aren’t relegated to simple management of

DOM elements but to performing complex tasks such as managing dimensions, align-

ments, and coordinates with relative ease. You can also easily update an element via

Ajax, manage child nodes, animate, enjoy full event management, and much more.

2.2.2 Using Ext.Element for the first time

Using Ext.Element is easy and makes some of the hardest tasks simple. To take

advantage of Ext.Element, you need to set up a base page. Set up a page where you

include the Ext JS and CSS, as we discussed in chapter 1. Next, include the following

CSS and HTML:

<style type="text/css">
 .myDiv {
 border: 1px solid #AAAAAA;
 width: 200px;
 height: 35px;
 cursor: pointer;
 padding: 2px 2px 2px 2px;

32 CHAPTER 2 DOM manipulation

 margin: 2px 2px 2px 2px;
 }
 </style>
 <div id='div1' class='myDiv'> </div>

With this code, you’re setting the stage for this book’s examples by ensuring your tar-

get div tags have specific dimensions and a border so you can clearly see them on the

page. You include one div with the id of 'div1', which you’ll use as a target. If you set

up your page correctly, the stylized div should be clearly visible, as shown in figure 2.2.

This figure shows the generic HTML box, which you’ll use to exercise the fundamental

Ext.Element methods.

NOTE All of the Ext.Element example code will reference the base page you
just set up. If you’re interested in watching changes to the DOM occur live, we
suggest using the multiline Firebug text editor in Firefox with these examples.
If you’re unfamiliar with Firebug, you can learn about it at http://getfirebug
.com/wiki. Or you can place these examples inside generic script blocks. Just
be sure to use Ext.onReady.

According to the CSS, any div with the class myDiv is set to 35 pixels high and 200 pix-

els wide and looks a bit odd. Let’s make that element perfectly square by setting the

height to 200 pixels:

var myDiv1 = Ext.get('div1');
myDiv1.setHeight(200);

The execution of the previous two lines is pretty important. The first line uses

Ext.get, to which you pass the string 'div1', and returns an instance of Ext.Element

referenced by the variable myDiv1. Ext.get uses document.getElementById and

wraps it with the Ext JS element-management methods.

 Use your newly referenced instance of Ext.Element, myDiv1, and call its set-

Height method, passing it an integer value of 200, which grows the box to 200 pixels

tall. Alternatively, you could use its setWidth method to change the width of the ele-

ment, but we’ll skip that and jump to something more fun.

 “Now it’s a perfect square. Big deal!” you say. Well, suppose you change dimensions

again; this time you’ll use setSize. Make the width and height 350 pixels. Use the

already created reference, myDiv1:

myDiv1.setSize(350, 350, {duration: 1, easing:'bounceOut'});

Our stylized div
element

Figure 2.2 Your base

page with your stylized

div ready for some Ext

JS Element action

http://getfirebug.com/wiki
http://getfirebug.com/wiki

33Managing DOM elements with Ext.Element

What happens when you execute this line of code? Does it animate and have a bounc-

ing effect? That’s better!

 Essentially, the setSize method is the composite of setHeight and setWidth. For

this method, you passed the target width and height, and an object with two proper-

ties, duration and easing. A third property, if defined, will make setSize animate

the size transition of the element. If you don’t care for animation, omit the third argu-

ment and the box will change size instantly, much like when you set the height.

 Setting dimensions is a single facet of the many sides of element management with

the Element class. Some of Ext.Element’s greatest power comes from its ease of use

for full CRUD (create, read, update, and delete) of elements.

2.2.3 Creating child nodes

One of the great uses of JavaScript is the ability to manipulate the DOM, which

includes the creation of DOM nodes. JavaScript provides many methods natively that

give you this power. Ext JS conveniently wraps many of these methods with the

Ext.Element class. Let’s have some fun creating child nodes.

 To create a child node, use Element’s createChild method:

 var myDiv1 = Ext.get('div1');
 myDiv1.createChild('Child from a string');

This code adds a string node to the innerHtml of your target div. What if you wanted

to create an element? Easy as pie:

 myDiv1.createChild('<div>Element from a string</div>');

This use of createChild will append a child div with the string 'Element from a

string' to the innerHtml of div1. We don’t like to append children this way because

we find the string representation of elements to be messy. Ext JS helps you with this

problem by accepting a configuration object instead of a string:

myDiv1.createChild({
 tag : 'div',
 html : 'Child from a config object'
});

Here, you’re creating a child element by using a configuration object. You specify the

tag property as 'div' and html as a string. This technically does the same thing as

the prior createChild implementation but is cleaner and self-documenting. What if

you wanted to inject nested tags? With the configuration object approach, you can

achieve this with ease:

myDiv1.createChild({
 tag : 'div',
 id : 'nestedDiv',
 style : 'border: 1px dashed; padding: 5px;',
 children : {
 tag : 'div',
 html : '...a nested div',

34 CHAPTER 2 DOM manipulation

 style : 'color: #EE0000; border: 1px solid'
 }
});

In this code you’re creating one last child, with an id, a bit of styling applied, and a

child element, which is a div with some more styling. Figure 2.3 illustrates what the

changes to the div look like. You see all of the additions to myDiv1, including the live

DOM view from Firebug, showing that you added a string node and three child divs,

one of which has its own child div.

 If you wanted to inject a child at the top of the list, you’d use the convenience

method insertFirst, like this:

myDiv1.insertFirst({
 tag : 'div',
 html : 'Child inserted as node 0 of myDiv1'
});

Element.insertFirst will always insert a new element at position 0, even when no

child elements exist in the DOM structure.

 If you want to target the insertion of a child node at a specific index, the create-

Child method can take care of that task. All you need to do is pass it the reference of

where to inject the newly created node, like this:

myDiv1.createChild({
 tag : 'div',
 id : 'removeMeLater',
 html : 'Child inserted as node 2 of myDiv1'
}, myDiv1.dom.childNodes[3]);

Figure 2.3 A composite of

the element additions using

myDiv1.createChild

35Managing DOM elements with Ext.Element

In this code, you’re passing two arguments to createChild. The first is the configura-

tion object representation of the newly created DOM element, and the second is the

DOM reference of the target child node that createChild will use as the target to

inject the newly created node. Please keep in mind the id that you set for this newly

created item; you’ll use it in a bit.

 Notice that you’re using myDiv1.dom.childNodes. Ext.Element gives you the

opportunity to use all of the generic browser element-management goodness by

means of the dom property.

NOTE The Element.dom property is the same DOM object reference that’s
returned by document.getElementById().

Figure 2.4 shows what the inserted nodes look like in both the page view and the DOM

hierarchy using the Firebug DOM inspection tool. As you can see, the node insertions

functioned as intended. You used insertFirst to inject a new node at the top of the

list and createChild to inject a node above child node 3. Remember always to start

with the number 0 instead of 1 when counting child nodes.

 Adding is something that you do often as a web developer. After all, this is part of

what DHTML is all about. But it’s equally important to know how to remove some-

thing. Let’s see how to remove some of the child elements using Ext.Element.

2.2.4 Removing child nodes

Removing nodes could be considered much easier than adding them. All you need to

do is locate the node with Ext JS and call its remove method. To test out removal of

Figure 2.4 The results

of the targeted DOM

element insertions

with createChild

using an index and

insertFirst

www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 2 DOM manipulation

child nodes, you’ll start with a clean and controlled slate. Create a new page with the

following HTML:

<div id='div1' class="myDiv">
 <div id='child1'>Child 1</div>
 <div class='child2'>Child 2</div>
 <div class='child3'>Child 3</div>
 <div id='child4'>Child 4 </div>
 <div>Child 5</div>
</div>

Examining this HTML, you find a parent div with the id of 'div1'. It has five direct

descendants, the first of which has the id of 'child1'. The second and third children

have no ids, but they have CSS classes of 'child2' and 'child3'. The fourth child ele-

ment has an id of 'child4' and a CSS class of 'sameClass'. Likewise, it has a direct

child with an id of "nestedChild1" and the same CSS class as its parent. The last child

of div1 has no id or CSS class. The reason you have all this stuff going on is that you’re

going to start to use CSS selectors as well as directly target the ids of the elements.

 In the examples where you add child nodes, you always reference the parent div

(id='div1') by wrapping it in an Ext.Element class and using its create methods. To

remove a child node, the approach is different. You need to specifically target the

node that’s to be removed. Using the new DOM structure, let’s practice a few ways of

doing this.

 The first approach removes a child node from an already-wrapped DOM element.

You’ll create an instance of Ext.Element wrapping div1 and then use it to find its first

child node using a CSS selector:

var myDiv1 = Ext.get('div1');
var firstChild = myDiv1.down('div:first-child');
firstChild.remove();

In this example, you create a reference to div1 using Ext.get. You then create

another reference, firstChild, to the first child using the Element.down method.

You pass a pseudo class selector, which causes Ext JS to query the DOM tree within the

context of div1 for the first child, which is a div, and wrap it within an instance of

Ext.Element.

 The Element.down method queries the first-level DOM nodes for any given

Ext.Element. It so happens that the element that’s found is the one with the div id of

'child1'. You then call firstChild.remove, which removes that node from the DOM.

 Here’s how you could remove the last child from the list using selectors:

var myDiv1 = Ext.get('div1');
var lastChild = myDiv1.down('div:last-child');
lastChild.remove();

This example works similarly to the previous one. The biggest difference is that you

use the selector 'div:last-child', which locates the last childNode for div1 and

37Managing DOM elements with Ext.Element

wraps it in an instance of Ext.Element. After that, you call lastChild.remove, and

it’s gone.

NOTE CSS selectors are a powerful way of querying the DOM for items. Ext JS
supports the CSS3 selector specification. If you’re new to CSS selectors, we
advise visiting the following W3C page, which has a plethora of information
on selectors: http://mng.bz/0vmd.

What if you want to target an element by an id? You can use Ext.get to do your

dirty work. This time, you’ll create no reference and instead use chaining to take

care of the job:

 Ext.get('child4').remove();

Executing this code removes the child node with the id of 'child4' and its child

node. Always remember that removing a node with children will also remove its

child nodes.

NOTE If you’d like to read more about chaining, Dustin Diaz, an industry-
leading developer, has an excellent article on his site at www.dustindiaz.com/
javascript-chaining/.

The last task we’ll look at is using Ext.Element to perform an Ajax request to load

remote HTML fragments from the server and inject them into the DOM.

2.2.5 Using Ajax with Ext.Element

The Ext.Element class has the ability to perform an Ajax call to retrieve remote HTML

fragments and inject those fragments into its innerHTML. You’ll need to first write an

HTML snippet to load:

<div>
 Hello there! This is an HTML fragment.
 <script type="text/javascript">
 Ext.getBody().highlight();
 </script>
</div>

In this HTML fragment, you have a simple div with an embedded script tag, which per-

forms an Ext.getBody call. It uses chaining to execute the results of that call, to execute

its highlight method. Ext.getBody is a convenient method to get a reference to the

document.body wrapped by Ext.Element. Save this file as htmlFragment.html.

 Next, you’ll perform the load of this snippet:

Ext.getBody().load({
 url : 'htmlFragment.html',
 scripts : true
});

In this snippet, you call the load method of the result of the Ext.getBody call; pass a

configuration object specifying the url to fetch, which is the htmlFragment.html file;

and set scripts to true. What happens when you execute this code? See figure 2.5.

www.dustindiaz.com/javascript-chaining/
www.dustindiaz.com/javascript-chaining/
http://mng.bz/0vmd

38 CHAPTER 2 DOM manipulation

When you execute this code snippet, you’ll see that the document body performs an

Ajax request to retrieve your htmlFragment.html file. While the file is being retrieved,

it shows a loading indicator. Once the request is complete, the HTML fragment is

injected into the DOM. You then see the entire body element highlighted in yellow,

which is an indication that your JavaScript was executed. Now you see that using the

Ext.Element.load utility method is a great convenience compared to manually cod-

ing an Ext.Ajax.request call.

 And there you have it. Adding elements to and removing elements from the DOM

is a cinch when using Ext.Element. Ext JS has another way to make adding elements

even simpler, especially if you have repeatable DOM structures to be placed in the

DOM. We explore the Template and XTemplate utility classes next.

2.3 Using templates and XTemplates

The Ext.Template class is a powerful core utility that allows you to create an entire

DOM hierarchy with slots that can be filled in later with data. Once you define a tem-

plate you can use it to replicate one or more of the predefined DOM structures, with

your data filling in the slots. Mastering templates will help you master UI widgets that

use templates, such as the grid panel, data view, and ComboBox.

2.3.1 Using templates

You’ll start out by creating an extremely simple template, and then you’ll move on to

create one that’s much more complex:

var myTpl = Ext.create('Ext.Template' , "<div>Hello {0}.</div>");
myTpl.append(document.body, ['Marjan']);
myTpl.append(document.body, ['Michael']);
myTpl.append(document.body, ['Sebastian']);

In this example, you create an instance of Ext.Template and pass it a string representa-

tion of a div with a slot, which is marked in curly braces, and you store a reference

in the variable myTpl. You then call myTpl.append and pass it a target element,

document.body, and data to fill in the slots, which in this case happens to be a single-

element array that contains a first name.

 Do this three consecutive times, which results in three divs being appended to the

DOM, with each different first name filling in a slot. Figure 2.6 shows the result from

your append calls.

Figure 2.5 Loading an

HTML fragment into the

document body

39Using templates and XTemplates

As you can see, three divs were appended to the document body, each with a different

name. The benefits of using templates should now be clear. You set the template once

and apply it to the DOM with different values.

 In the previous example, the slots were integers in curly braces, and you passed in

single-item arrays. Templates can also map object key/values from plain objects. The

following listing shows how to create a template that uses such syntax.

var myTpl = Ext.create('Ext.Template', [
 '<div style="background-color: {color}; margin: 10px;">',
 ' Name : {name}
',
 ' Age : {age}
',
 ' DOB : {dob}
',
 '</div>'
]);

myTpl.compile();

myTpl.append(document.body,{
 color : "#E9E9FF",
 name : 'John Smith',
 age : 20,
 dob : '10/20/89'
});

myTpl.append(document.body,{
 color : "#FFE9E9",
 name : 'Naomi White',
 age : 25,
 dob : '03/17/84'
});

When creating this complex template B the first thing you’ll probably notice is that

you pass in quite a few arguments. You do this because, when creating a template,

Listing 2.1 Creating a complex template

Figure 2.6 Using your first template

to append nodes to the DOM, shown in

the exploded view in Firebug

Creates
complex
templateb

Compiles template
for faster speed

c

Appends template
to document bodyd

40 CHAPTER 2 DOM manipulation

it’s much easier to view the pseudo HTML in a tab-delimited format rather than a

long string. The Ext JS developers were keen on this idea, so they programmed the

Template constructor to read all of the arguments being passed, no matter how many

there might be.

 In the Template pseudo HTML, slots are included for four data points. The first is

color, which will be used to style the background of the element. The three other

data points are name, age, and dob, which will be directly visible when the template

is appended.

 The next step is to compile c your template, which speeds up the template merg-

ing data with the HTML fragment by eliminating regular expression overhead. For

these two operations you don’t technically need to compile it because you wouldn’t

see the speed benefits; but for larger applications where many templates are stamped

out, compiling has a clear benefit. To be safe, we always compile templates after instan-

tiating them.

 Last, you perform two append calls d where you pass in the reference element and

a data object. Instead of passing an array as you did in your first exploration of tem-

plates, you pass in a data object, which has keys that match the template slots. Figure 2.7

shows the result of the complex template with a DOM view in Firebug.

 By using the template, you were able to get two differently styled HTML structures

in the DOM. What if you had an array of objects? For instance, what if an Ajax request

returned an array of data objects, and you needed to apply a template for each data

object? One way to handle this is to loop through the array, which is easily done with a

generic for loop or the more robust Ext.each utility method. I say nay to that

approach. I’d use XTemplates instead, which makes the code much cleaner.

Figure 2.7 The result of the

complex template with a DOM

view in Firebug

41Using templates and XTemplates

2.3.2 Looping with XTemplates

XTemplates technically can be used for single data objects, but they especially make

life much easier when you have to deal with looping through arrayed data to stamp

out HTML fragments onscreen. The XTemplate class extends Template and offers

much more functionality. You’ll start your exploration by creating an array of data

objects, and then you’ll create an XTemplate, which you’ll use to stamp out HTML

fragments, as shown in the next listing.

var tplData = [{
 color : "#FFE9E9",
 name : 'Naomi White',
 age : 25,
 dob : '03/17/84',
 cars : ['Jetta', 'Camry', 'S2000']
},{
 color : "#E9E9FF",
 name : 'John Smith',
 age : 20,
 dob : '10/20/89',
 cars : ['Civic', 'Accord', 'Camry']
}];

var myTpl = Ext.create('Ext.XTemplate', [
 '<tpl for=".">',
 '<div style="background-color: {color}; margin: 10px;">',
 ' Name : {name}
',
 ' Age : {age}
',
 ' DOB : {dob}
',
 '</div>',
 '</tpl>'
]);

myTpl.compile();
myTpl.append(document.body, tplData);

In listing 2.2 you first set up an array of data objects B, which are like the data objects

you used in your last template exploration, with the addition of a cars array, which

you’ll use in the next example.

 Next, you instantiate an instance of XTemplate c, which looks much like the last

Template configuration, except you encapsulate the div container with a custom tpl

element with the attribute for, which contains the value "." d. The tpl tag is like a

logic or behavior modifier for the template and has two operators, for and if, which

alter the way the XTemplate generates the HTML fragments. In this case, the value of

"." instructs the XTemplate to loop through the root of the array for which it’s passed

and construct the fragment based on the pseudo HTML encapsulated inside the tpl

element. When you look at the rendered HTML, you’ll see no tpl tags rendered to the

DOM. The results of your efforts are identical to the template example, as shown in

figure 2.8.

Listing 2.2 Using an XTemplate to loop through data

Adds datab

Instantiates
new XTemplate

c

Appends HTML
fragments

d

42 CHAPTER 2 DOM manipulation

Remember, the advantage of using XTemplates in this case is that you don’t have to

write code to loop through the array of objects. You let the framework do the dirty

work for you. The capabilities of XTemplates extend far beyond merely looping

through arrays, which increases its usability exponentially.

2.3.3 Advanced XTemplate usage

You can configure XTemplates to loop through arrays within arrays and even have

conditional logic. The example in the next listing will flex some XTemplate muscle

and demonstrate many of these advanced concepts. Some of the syntax you’re about

to see will be foreign to you. Don’t get discouraged. We’ll explain every bit. We’ll use

the previous tplData from listing 2.2 for this advanced XTemplate usage.

var myTpl = Ext.create('Ext.XTemplate', [
 '<tpl for=".">',
 '<div style="background-color: {color}; margin: 10px;">',
 ' Name : {name}
',
 ' Age : {age}
',
 ' DOB : {dob}
',
 ' Cars : ',
 '<tpl for="cars">',
 '{.}',
 '<tpl if="this.isCamry(values)">',
 ' (same car)',
 '</tpl>',
 '{[(xindex < xcount) ? ", " : ""]}',
 '</tpl>',
 '
',

Listing 2.3 Advanced XTemplate usage

Figure 2.8 The result of using

XTemplate with an exploded

DOM view from Firebug

Loops through
cars data

b

Displays
current data

c

Executes this.isCamry
methodd

Tests for end
of arraye

43Using templates and XTemplates

 '</div>',
 '</tpl>',
 {
 isCamry : function(car) {
 return car === 'Camry';
 }
 }
]);

 myTpl.compile();
 myTpl.append(document.body, tplData);

This use of XTemplate demonstrates quite a few advanced concepts, the first of which

is looping within a loop B. Remember, the for attribute instructs the XTemplate to

loop through a list of values. In this case, the for attribute has the value of 'cars',

which differs from the value that’s set for the first for attribute, ".". This attribute

instructs the XTemplate to loop through this block of pseudo HTML for each car.

Remember that cars is an array of strings.

 Inside this loop is a string with "{.}" c, which instructs the XTemplate to place

the value of the array at the current index of the loop. In simple terms, the name of a

car will be rendered at this position.

 Next, you see a tpl behavior modifier with an if attribute d, which executes

this.isCamry and passes values. The this.isCamry method is generated at the end

of the XTemplate f. We’ll talk more about this in a bit. The if attribute is more like

an if condition, where the XTemplate will generate HTML fragments if the condition

is met. In this case, this.isCamry must return true for the fragment that’s encapsu-

lated inside this tpl flag to be generated.

 The values property is an internal reference of the values for the array you’re

looping through. Because you’re looping through an array of strings, it references a

single string, which is the name of a car.

 In the next line you’re arbitrarily executing JavaScript code e. Anything encapsu-

lated in curly braces and brackets ({[... JS code ...]}) will be interpreted as generic

JavaScript; it has access to some local variables that are provided by the XTemplate and

can change with each iteration of the loop. In this case, you’re checking to see if the

current index (xindex) is less than the number of items in the array (xcount) and

returning either a comma with a space or an empty string. Performing this test inline

will ensure that commas are placed exactly between the names of cars.

 The last item of interest is the object that contains your isCamry method f.

Including an object (or reference to an object) with a set of members with the passing

arguments to the XTemplate constructor will result in those members being applied

directly to the instance of XTemplate itself. This is why you called this.isCamry

directly in the if condition of one of the tpl behavior modifier pseudo elements. All

of these member methods are called within the scope of the instance of XTemplate for

which they’re being passed. This concept is extremely powerful but can be dangerous,

because you can override an existing XTemplate member. So please try to make your

methods or properties unique. The isCamry method uses JavaScript shorthand to test

Adds
methodf

44 CHAPTER 2 DOM manipulation

whether the passed string, car, is equal to "Camry" and will return true if it is; otherwise,

it will return false. Figure 2.9 shows the results of the advanced XTemplate example.

 The results show that all of your behavior injections worked as planned. All of the

cars are listed, and there’s proper comma placement. You can tell that your arbitrary

JavaScript injection worked because the string “(same car)” is placed to the right of

the Camry name.

 As you can see, templates and XTemplates have numerous benefits compared to

generic DOM injections using Ext.Element to stamp out HTML fragments with data.

We encourage you to look over the template and XTemplate API pages for more

details and examples of how to use these utilities. Your next exposure to templates will

be when you learn how to create a custom ComboBox.

2.4 Summary

In this chapter we talked about how JavaScript application logic was launched in the

old days with the onLoad handler of the <body> element. Remember that browsers typ-

ically have their own way of publishing when the DOM is ready for manipulation,

which causes a code-management nightmare. In working with Ext.onReady, you

learned that it takes care of launching your application code at just the right time for

each browser so you can concentrate on the important stuff: application logic.

 You then took an in-depth look at the Ext.Element class, which wraps and provides

end-to-end management for DOM nodes. You explored a few of the management

utilities for DOM nodes by adding and removing elements. All UI widgets use the

Ext.Element, making it one of the most-used components of the core framework.

Each widget’s element can be accessed via the public getEl method or the private el

property, but only after it’s been rendered.

 Last, you learned about using the Template class to inject HTML fragments into

the DOM. You also jumped into advanced techniques with XTemplates and learned

how to embed behavioral modifying logic into the template definition itself, produc-

ing results depending on the data provided.

 Looking forward, you’ll focus on the UI side of the framework and delve right into

the core concepts and models that drive the framework.

Figure 2.9 The results of the

advanced XTemplate example

45

Components
and containers

I (Jay) recall my early days with the Ext framework, when I learned by toying with

the examples and reading the API documentation. I spent many hours on some of

the most important core UI concepts, such as adding user interaction, reusing wid-

gets, and understanding how one widget can contain or control another. For

instance, how would I make clicking an anchor tag display an Ext window? Sure,

there’s a generic JavaScript way to attach an event handler, but I wanted to use

Ext JS. Likewise, I needed to know how to get widgets to communicate with each

other. For example, how would I reload a grid panel when a row of another grid

panel was clicked? Also, how would I add child items dynamically to and remove

them dynamically from a panel? How could I find a particular field within a form

panel based on the type field?

This chapter covers

■ Getting to know the Component model

and life cycle

■ Exploring the Ext JS Container model

■ Managing parent-child relationships of widgets

■ Implementing the Container model utility

methods

www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 3 Components and containers

 In this chapter you’ll explore the deep caverns of the fundamental UI building

block, the Component class, and learn how it serves as the central model for all UI

widgets by implementing a template for standard behaviors known as the component

life cycle.

 We’ll also discuss the Container class, and you’ll get an in-depth look at how wid-

gets can manage child items. You’ll learn how to dynamically add items to and remove

them from widgets like the panel, which can be used as a building block for dynami-

cally updating UIs.

3.1 The Component model

The Ext JS Component model is a centralized model that provides many of the essen-

tial component-related tasks, including a set of rules, known as the component life

cycle, that dictate how the component instantiates, renders, and is destroyed. We’ll

cover the component life cycle in section 3.2.

 All UI widgets are subclasses of Ext.Component, which means that all of the widgets

conform to the rules dictated by the model. Figure 3.1 partially depicts what types of

widgets subclass the Component class.

 Knowing how each UI widget is going to behave introduces stability and predict-

ability into the framework. The Component model also supports direct instantiation

of classes, or deferred instantiation, known as XTypes. Knowing which to use when can

enhance the responsiveness of your application. This section discusses three introduc-

tory features of the Component model.

Component Buttons

Editor

Form fields

Menu items

Toolbar items

Containers

Data views

Draw and

charting Figure 3.1 The Ext JS

Component class plays a

major role in every UI widget

in the framework.

47The Component model

3.1.1 XTypes and ComponentManager

Ext 2.0 introduced a radical new concept known as an XType, which allows for lazy

instantiation of components. XTypes can speed up the class instantiation of complex

user interfaces and clean up your code quite a bit.

 In short, an XType is nothing more than a plain JavaScript object, which generally

contains an xtype property with a string value denoting which class the XType is for.

Here’s a quick example of an XType in action:

 var myPanel = {
 xtype : 'panel',
 height : 100,
 width : 100,
 html : 'Hello!'
 };

Here myPanel is an XType configuration object that would be used to configure an

Ext.Panel widget. This works because just about every widget is registered to the

Ext.ComponentManager class with a unique string key and a reference to that class,

which is then referred to as an XType. In each UI class in the framework, you’ll find an

alias declaration that is prefixed with 'widget.'—the Ext JS class system automati-

cally registers the widget’s XType with ComponentManager because of the prefix.

 Here’s what it would look like to register an XType for a custom class:

Ext.define('MyApp.CustomClass', {
 extend: 'Ext.panel.Panel',
 alias: 'widget.myCustomComponent'
});

Once registration is complete, you can specify your custom component as an XType:

 new Ext.Panel({
 ...
 items : {
 xtype : 'myCustomComponent',
 ...
 }
 });

When a visual component that can contain children is initialized, it looks to see if it

has this.items and will inspect this.items for XType configuration objects. If any are

found, it’ll attempt to create an instance of that component using ComponentManager

.create. If the xtype property isn’t defined in the configuration object, the visual com-

ponent will use its defaultType property when calling ComponentManager.create.

 This concept may sound a tad confusing at first. To better understand it, you’ll

create a window with an accordion layout that includes two children, one of which

won’t contain an xtype property. First, create your configuration objects for two of

the children:

 var panel1 = {
 xtype : 'panel',

48 CHAPTER 3 Components and containers

 title : 'Plain Panel',
 html : 'Panel with an xtype specified'
 };
 var panel2 = {
 title : 'Plain Panel 2',
 html : 'Panel with no xtype specified'
 };

Notice that panel1 has an explicit xtype value of 'panel', which in turn will be used

to create an instance of Ext.Panel. Objects panel1 and panel2 are similar, but they

have a distinct difference: object panel1 has an xtype specified, and panel2 doesn’t.

 Next, create your window, which will use these xtypes:

 Ext.create('Ext.window.Window',{
 width: 200,
 height : 150,
 title : 'Accordion window',
 border : false,
 layout : {
 type : 'accordion',
 animate : true
 },
 items : [
 panel1,
 panel2
]
 }).show();

In your new instantiation of an Ext JS window, you pass items, which are an array of

references to the two configuration objects you created earlier. The rendered window

should look like the one in figure 3.2. Clicking a collapsed panel will expand it and

collapse any other expanded panels, and clicking an expanded panel will collapse it.

One of the lesser-known advantages of using XTypes is developing somewhat cleaner

code. Because you can use plain object notation, you can specify all of your XType

child items inline, resulting in streamlined code. Here’s the previous example refor-

matted to include all of its children inline:

Ext.create('Ext.window.Window',{
 width : 200,
 height : 150,
 title : 'Accordion window',
 layout : 'accordion',

Figure 3.2 The results of the XType

example: an Ext JS window, which

has two child panels derived from

XType configuration objects

49The Component model

 border : false,
 layoutConfig : {
 animate : true
 },
 items : [
 {
 xtype : 'panel',
 title : 'Plain Panel',
 html : 'Panel with an xtype specified'
 },
 {
 title : 'Plain Panel 2',
 html : 'Panel with no xtype specified'
 }
]
 }).show();

As you can see, this code includes all of the child configuration items inline with the

Window configuration object. The performance enhancements from using XTypes

can’t be seen with such a simple example. The biggest XType-based performance

gains come in bigger applications, where there are a rather large number of compo-

nents to be instantiated.

 Components also contain another performance-enhancing feature: lazy render-

ing. Lazy rendering means that a component is rendered only when necessary.

3.1.2 Component rendering

The Ext.Component class supports both direct and lazy (on-demand) render models.

Direct rendering can happen when a subclass of Component is instantiated with either

the renderTo or applyTo attribute, where renderTo points to a reference from which

the component renders itself and applyTo references an element that has HTML

structured in such a way that it allows the component to create its own child elements

based on the referenced HTML. You’ll typically use these parameters when you want a

component to be rendered upon instantiation, as in this example:

 var myPanel = Ext.create('Ext.panel.Panel',{
 renderTo : document.body,
 height : 50,
 width : 150,
 title : 'Panel rendered immediately',
 frame : true
 });

The result of this code would be the immediate render of the Ext.panel.Panel,

which sometimes is favorable and other times isn’t. The times where it’s not favorable

can be when you want to defer rendering to another time in code execution or the

component is a child of another.

 If you want to defer the rendering of the component, omit the renderTo and

applyTo attributes and call the component’s render method when you (or your code)

deem it necessary:

50 CHAPTER 3 Components and containers

var myPanel = Ext.create('Ext.panel.Panel',{
 height : 50,
 width : 150,
 title : 'Lazy rendered Panel',
 frame : true
 });
 // ... some business logic...
 myPanel.render(document.body);

In this example you instantiate an instance of Ext.panel.Panel and create a reference

to it, myPanel. After some hypothetic application logic, you call myPanel.render and

pass a reference to document.body, which renders the panel to the document body.

 You could also pass an ID of an element to the render method:

myPanel.render('someDivId');

When passing an element ID to the render method, the component will use that ID

with Ext.get to manage that element, which gets stored in its local el property. If this

rings a bell, you may recall the Ext.Element discussion from the previous chapter,

where you learned that you can access a widget’s el property or use its accessor

method, getEl, to obtain the reference.

 There’s one major exception to this rule: you never specify applyTo or renderTo

when the component is a child of another. Components that contain other compo-

nents have a parent-child relationship, which is known as the Container model. If a

component is a child of another component, it’s specified in the items attribute of

the configuration object, and its parent will manage the call to its render method

when required. This is known as lazy or deferred rendering.

 We’ll investigate containers later in this chapter, where you’ll learn more about the

parent-child relationship that components can have. But first you need to understand

the component life cycle, which details how components are created, rendered, and

eventually destroyed. Learning how each phase works will better prepare you for

building robust and dynamic interfaces and can assist in troubleshooting issues.

3.2 The component life cycle

Ext JS components, like everything in the real

world, have a life cycle where they’re created,

used, and destroyed. This life cycle is broken

up into three major phases: initialization, ren-

der, and destruction, as shown in figure 3.3.

 To better utilize the framework, you must

understand in finer detail how the life cycle

works. This is especially important if you’ll be

building extensions, plug-ins, or composite

components. Quite a few steps take place at

each phase of the life cycle, which is controlled

by the base class, Ext.Component.

Initialization

Render Destruction

Figure 3.3 The Ext JS component life cycle

always starts with initialization and always

ends with destruction. The component

needn’t enter the render phase to be

destroyed.

51The component life cycle

3.2.1 Initialization

The initialization phase is when a component is born. All of the necessary configura-

tion settings, event registration, and prerender processes take place in this phase, as

illustrated in figure 3.4.

 Let’s explore each step of the initialization phase:

1 The configuration is applied. When instantiating an instance of a component, you

pass a configuration object, which contains all of the necessary parameters and

references to allow the component to do what it’s designed to do. This is done

within the first few lines of the Ext.Component widget base class.

2 Base component events are registered. Per the Component model, each subclass of

Ext.Component has, by default, a set of core events that is fired from the base

class. These are fired before and after some behaviors occur: enable/disable,

show, hide, render, destroy, state restore, and state save. The before events are

fired and tested for a successful return of a registered event handler and will

cancel the behavior before any real action has taken place. For instance, when

myPanel.show is called, it fires the beforeshow event, which will execute any

methods registered for that event. If the beforeshow event handler returns

false, myPanel doesn’t show.

3 The component ID is assigned or autogenerated. If you haven’t configured a static ID

for a component, it’ll automatically generate one by combining the component’s

Configuration applied

Base event registration

ID assigned or

auto generated

Pre-init component

plug-ins constructed

Base mixin constructors

are called

initComponent

Component registered

with ComponentManager

Component resize event

initialized as state event
Plug-ins are initialized

Component Loader class

bootstrapped

Render phase begins1 6

2 5

10 7

3 4

9

11

8

Figure 3.4 The initialization phase of the component life cycle executes important steps such

as event and component registration, as well as calling the initComponent method. It’s

important to remember that a component can be instantiated but may not be rendered.

52 CHAPTER 3 Components and containers

XType with an autogenerated numeric value, beginning with 1000. For example,

creating an instance of Ext.panel.Panel without configuring it with a static ID

will result in the component having a self-generated ID of something similar to

“panel-1001.”

4 Pre-initComponent plug-ins are constructed. In this step, any plug-ins that are

defined before the initComponent method is executed are constructed. This

allows plug-ins like the grid panel editors to perform operations extremely

early, such as initializing the editor fields.

5 initComponent is executed. The initComponent method is where a lot of work

occurs for subclasses of Component, like registration of subclass-specific events,

references to data stores, and creation of child components. initComponent is

used as a supplement to the constructor and is typically used as the main point

to extending Component or any subclass thereof. We’ll elaborate on extending

with initComponent later on.

6 ComponentManager is registered. Each component that’s instantiated is registered

with the ComponentManager class with a unique Ext JS–generated string ID. You

can choose to override the Ext JS–generated ID by passing an id parameter in

the configuration object passed to a constructor. The main caveat is that if a

registration request occurs with a nonunique registration ID, the newest regis-

tration will override the previous one. Be careful to use unique IDs if you plan

to use your own ID scheme.

7 Base mixin constructors are called. Components make use of two mixin classes to

provide low-level functionality. Ext.util.Observable is responsible for provid-

ing components with the ability to listen to and fire events, and Ext.state

.Stateful is responsible for handling state-specific events for components.

8 The resize state event is initiated. At this point Component registers its base resize

event as a state-specific event. This means that you can expect any subclass of

Component to be state-aware for sizing.

9 Plug-ins are initialized. If plug-ins are passed in the configuration object to the

constructor, their init method is called, with the parent Component passed as a

reference. It’s important to remember that the plug-ins are called upon in the

order in which they’re referenced.

10 The component’s loader is bootstrapped. If the component is configured with a

loader configuration property, it’s used to construct an instance of Component-

Loader. This class is responsible for fetching data for a component via Ajax and

employs an HTML, a data, or a component renderer to display the data. See the

Ext.ComponentLoader documentation for details.

11 The component is rendered. If the renderTo or applyTo parameter is passed into

the constructor, the render phase begins at this time; otherwise, the component

lies dormant, awaiting its render method to be called either by your code or by

a parent component.

53The component life cycle

This phase of a component’s life is usually the fastest because all of the work is done in

JavaScript. It’s particularly important to remember that the component doesn’t have

to be rendered to be destroyed.

3.2.2 Render

The render phase is the one where you get visual feedback that a component has been

successfully initialized. If the initialization phase fails for whatever reason, the compo-

nent may not render correctly or at all. For complex components, this is where a lot of

CPU cycles get eaten up, where the browser is required to paint the screen, and com-

putations take place to allow all of the items for the component to be properly laid out

and sized. Figure 3.5 illustrates the steps of the render phase.

 If renderTo or applyTo isn’t specified, a call to the render method must be made,

which triggers this phase. If the component isn’t a child of another Ext JS component,

your code must call the render method, passing a reference of the DOM element:

someComponent.render('someDivId');

If the component is a child of another component, its render method will be called by

the parent component. Let’s explore the different steps of the render phase:

beforerender fired

Container set onRender

Visibility mode set via

hideMode attribute

overCls initialized

if configured

render event fired

afterRender

Component el cached

if exists

Component registered

for floating

Component contents

initialized

afterrender event fired
afterRenderEvents

hooked into element

Component element

initialized for focus

Component is disabled

if configured

Component hidden

if configured

1 15 8

2 7

14 9

3 6

13 10

4 5

12 11

Figure 3.5 The render phase of a component’s life can utilize a lot of CPU because it requires

elements to be added to the DOM and calculations to be performed to properly size and

manage them.

54 CHAPTER 3 Components and containers

1 beforerender is fired. The component fires the beforerender event and checks

the return of any of the registered event handlers. If a registered event handler

returns false, the component halts the rendering behavior. Recall that step 2

of the initialization phase registers core events for subclasses of Component and

that “before” events can halt execution behaviors.

2 The component’s element is cached. If you configured a component with an el prop-

erty, it wraps an instance of Ext.Element around that element.

3 The component is registered with floating . If the component is configured to be

floatable, it’ll register itself with WindowManager to enable z-index and focus

management. This step is important for classes like Window and Menu, where

they’re designed to be positioned (float) above other UI widgets.

4 The container is set. A component needs a place to live, and that place is known as

its container. If you specify a renderTo reference to an element, the component

adds a single child div element to the referenced element, its container, and

renders the component inside that newly appended child. If an applyTo ele-

ment is specified, the element referenced in the applyTo parameter becomes the

component’s container, and the component appends to the referenced ele-

ment only those items that are required to render it. The DOM element refer-

enced in applyTo will then be fully managed by the component. You generally

pass neither when the component is a child of another component, in which

case the container is the parent component. It’s important to note that you

should pass only renderTo or applyTo, not both. We’ll explore renderTo and

applyTo later on when you learn more about widgets.

5 onRender is executed. This is a crucial step for subclasses of Component, where

all of the DOM elements are inserted to get the component rendered and

painted onscreen. Each subclass is expected to call its superclass’s onRender first

when extending Ext.Component or any subclass thereafter, which ensures that

the Ext.Component base class can insert the core DOM elements needed to ren-

der a component.

6 Visibility mode is configured. The component’s element is instructed to set its visi-

bility mode according to how the component’s hideMode property is set. Gen-

erally you don’t have to worry about what to configure hideMode to, but it’s

good to get some exposure to what’s available to you in case you create a cus-

tom component with special HTML requirements. By default it’s set to 'dis-

play' (CSS display : none;), but other valid options are 'visibility' (CSS

visibility: hidden;) and 'offsets'. A hideMode of 'offsets' will absolutely

position the element for the component and push it –1000 pixels in the X and

Y coordinate space.

7 overCls is initialized if configured. If you configure a component with an overCls

property, the component will instruct its element to add that CSS class on its

mouseover event and set the removeOverCls property on the mouseout event.

55The component life cycle

8 The render event is fired. At this point all necessary elements have been injected

into the DOM and styles applied. The render event is fired, triggering any regis-

tered event listeners.

9 The component’s contents are initialized. If a component is configured with

contentEl, html, and/or a combination of tpl (Template) and data properties,

it’ll render that content as children of its own element. AbstractComponent is

modeled so that you can use one, two, or all three if you wish. html will get ren-

dered first, contentEl second, tpl third, and data last.

10 afterRender is executed. afterRender is a crucial postrender method that’s

automatically called by the render method. This method is responsible for

configuring the size of the component, aligning and positioning the compo-

nent, and adding some styling to the HTML content. It’s also responsible for

initializing an instance of Resizable (if configured), setting the component’s

element to scroll (if configured via autoScroll), and making the component

draggable if it’s configured as such. Finally, if the component is configured

for Accessible Rich Internet Applications (ARIA) compliancy, the widget is ini-

tialized as such. It’s important to note that all subclasses of Component that

have their own afterRender method are expected to call their superclass’s

afterRender method.

11 The afterrender event is fired. This event is critical for classes to be aware that all

critical render operations have completed and the component is ready to have

its element modified. This event is typically the best to listen to so that your sub-

classes can perform DOM manipulations.

12 The afterRenderEvents are hooked. If the component is set with an after-

RenderEvents configuration object, it’ll use that configuration object to hook

element listeners to available widget-specific element references, such as el for

Component and body for Panel.

13 The component’s element is initialized for focus. Components that are configured to

be focusable and have focusable elements will be bound to the internal onFocus

handler. This necessary plumbing is responsible for components being able to

fire their own custom focus and blur events after managing their underlying

elements’ focus and blur events.

14 The component is hidden. If the component is configured with hidden set to true,

the element’s hide method is executed. This hides the component via the con-

figured hideMode attribute.

15 The component is disabled. If the component is configured with disabled set to

true, the component’s disable method is executed, effectively disabling the

widget. It’s important to note that the widget is disabled without firing the

disable event.

The render phase is generally where a component spends most of its life until it meets

its demise in the destruction phase.

56 CHAPTER 3 Components and containers

3.2.3 Destruction

As in real life, the death of a component is a crucial phase in its life. Destruction of a

component performs critical tasks, such as removing itself and any children from the

DOM tree, de-registration of the component from the ComponentManager class, and

de-registration of event listeners, as shown in figure 3.6.

 The component’s destroy method could be called by a parent container or by

your code. Here are the steps in this final phase of a component’s life:

1 beforedestroy is fired. This, like many before<action> events, is a cancelable

event, preventing the component’s destruction if its event handler returns false.

2 beforeDestroy is called. This method is first to be called within the component’s

destroy method and is the perfect opportunity to remove any noncomponent

items, such as toolbars or buttons. Any subclass of Component is expected to call

its superclass’s beforeDestroy method.

3 The component is de-registered from floating. If a component is floating, it’s de-registered

with FloatingManager.

4 The component is removed from the parent container. If a component is a child of a

parent container, it’s removed from its parent.

5 onDestroy is called. The onDestroy method is charged with quite a few tasks.

The first is the destruction of any configured drag-and-drop proxy, immediately

beforedestroy fired

beforeDestroy

Component de-registered
from floating

Component removed

from parent

Element removed and

listeners purged

onDestroy

Plug-ins destroyed

destroy event fired

State destroymixin

method called

Component listeners

purged
1 6

2 5

10 7

3 4

9

11

8
De-registration from

ComponentManager

Figure 3.6 The destruction portion of a component’s life is equally as important as its

initialization because event listeners and DOM elements must be de-registered and removed,

reducing overall memory usage.

57Containers

followed by the destruction of a Resizer if it’s configured. Next, if a focus

DelayedTask is registered, it’s removed from the component. If the component

is configured to monitor the browser’s resize event, the resize event handler is

removed. Finally, the ComponentLayout, the loadMask, and any floating child

items are destroyed if the component is configured with the same.

6 Registered plug-ins are destroyed. At this point in the destruction phase all regis-

tered plug-ins are looped through, each with its destroy method being called.

7 Element and Element listeners are purged. If a component has been rendered, any

handlers registered to its Element are removed and the Element is removed

from the DOM.

8 The destroy event is fired. Any registered event handlers are triggered by this

event, which signals that the component is no longer in the DOM.

9 The component is unregistered from ComponentManager. The reference for this com-

ponent in the ComponentManager class is removed.

10 The state mixin is destroyed. Here the state mixin is called upon to be destroyed,

de-registering any state-specific component events.

11 The component’s event handlers are purged. All event handlers are de-registered

from the component.

And there you have it, an in-depth look at the component life cycle, one of the fea-

tures that makes the Ext JS framework so powerful and successful.

 Don’t dismiss the destruction portion of a component’s life cycle if you plan on

developing your own custom components. Many developers have gotten into trouble

when they’ve ignored this crucial step and have code that has left artifacts behind,

such as bound data stores that continuously poll web servers or event listeners that are

expecting an element to be in the DOM. If these aren’t cleaned properly they can

cause exceptions and halt the execution of a crucial branch of logic.

 Next we’ll look at the Container class, which is a subclass of Component and gives

components the ability to manage other components in a parent-child relationship.

3.3 Containers

Container is a behind-the-curtains class that provides a foundation for components to

manage their child items, and it’s often overlooked by developers. This class provides

a suite of utilities, which includes add, insert, and remove methods, along with some

child query, bubble, and cascade utility methods. These methods are used by most of

the subclasses, including Panel, Viewport, and Window. It’s also common to use these

methods in your application.

3.3.1 Building a container with child items

In order for you to learn how these tools work, you need to build a container with

some child items for you to use, as shown in the next listing.

58 CHAPTER 3 Components and containers

 var panel1 = {
 html : 'I am Panel1',
 id : 'panel1',
 frame : true,
 height : 100
 };
 var panel2 = {
 html : 'I am Panel2',
 id : 'panel2',
 frame : true
 };

 var myWin = Ext.create('Ext.window.Window',{
 id : 'myWin',
 height : 400,
 width : 400,
 items : [
 panel1,
 panel2
]
 });
 myWin.show();

Take a gander at listing 3.1. The first thing you do is create two vanilla panels B, and

then you create myWin c, an instance of Ext.window.Window that contains the previ-

ously defined panels. The rendered UI should look like figure 3.7.

 You leave some room at the bottom of myWin, which will come in handy when you

add items. Each container stores references to its children via an items property,

which can be accessed via someContainer.items and is an instance of Ext.util

.MixedCollection.

MixedCollection is a utility class that allows the framework to store and index a

mixed collection of data, which includes strings, arrays, and objects, and provides a

nice collection of handy utility methods.

 Now that you’ve rendered your container, let’s add children to it.

Listing 3.1 Building your first container

Configures
panelsb

Creates
windowc

Figure 3.7 The rendered

container UI from listing 3.1

59Containers

3.3.2 Dealing with children

As in the real world, dealing with children can lead to frustration and many gray hairs,

so you must learn to use the tools that are available to you. Mastering these utility

methods will enable you to dynamically update your UI, which is in the spirit of Ajax

web pages.

 Adding components is a simple task, in which you’re provided two methods: add

and insert. The add method only appends a child to the container’s hierarchy, but

insert allows you to inject an item into the container at a particular index.

 Let’s add to the container that you created in listing 3.1. For this you’ll use the

handy Firebug JavaScript console:

 Ext.getCmp('myWin').add({
 title : 'Appended Panel',
 id : 'addedPanel',
 html : 'Hello there!'
 });

Running this code adds the item to the container; see figure 3.8.

 Appending children is handy, but sometimes you need to be able to insert items at

a specific index. Using the insert method easily accomplishes this task:

 Ext.getCmp('myWin').insert(1, {
 title : 'Inserted Panel',
 id : 'insertedPanel',
 html : 'It is cool here!'
 });

You insert a new panel at index 1, which is right under Panel1. The result should look

like figure 3.9.

 As you can see, adding and inserting child components is a cinch. Removing items

is just as easy; it requires two arguments, the first of which is a reference to the compo-

nent or the component ID from which you want the child to be removed. The second

parameter, though, specifies whether or not the destroy method should be called

for that component, which gives you incredible flexibility by allowing you to move

Figure 3.8 Adding a panel to the

window from listing 3.1

60 CHAPTER 3 Components and containers

components from one container to another if you so desire. Here’s how you’d remove

one of the child panels that you recently added using your handy Firebug console:

 var panel = Ext.getCmp('addedPanel');
 Ext.getCmp('myWin').remove(panel);

After you execute this code, you’ll notice that the panel immediately disappears. This

is because you didn’t specify the second parameter, which is true by default. You can

override this default parameter by setting autoDestroy to false on a parent con-

tainer. When removing a component, the component’s destroy method is called, ini-

tiating its destruction phase and deleting its DOM element.

 If you want to move a child to a different container, you specify false as remove’s

second parameter and then add or insert it into the parent, like this:

 var panel = Ext.getCmp('insertedPanel');
 Ext.getCmp('myWin').remove(panel, false);
 Ext.getCmp('otherParent').add(panel);

The preceding code snippet assumes that you already have another parent container

instantiated with the ID of 'otherParent'. You create a reference to your previously

inserted panel and perform a nondestructive removal from its parent. Next you add it

to its new parent to perform the DOM-level move operation of the child’s element into

the new parent’s content body element.

 The utilities offered by the Container class extend beyond the addition and

removal of child items. They provide you with the ability to descend deep into the

container’s hierarchy to search for child components, which becomes useful if you

want to gather a list of child items of a specific type or that meet special criteria and

perform an operation on them.

3.4 Querying for components

Ext JS 4.0 comes with a new ComponentQuery class that has a selector engine similar to

that of the browser’s selector engine. This means that you can use familiar query con-

structs when searching for components. Because ComponentQuery was modeled after

the browser’s selector engine, you can perform lookups using any source node as a root.

Figure 3.9 The rendered results of

the dynamically added and inserted

child panels

61Querying for components

 To illustrate this, we’ve created an example that contains deeply nested panels. To

view this tool, go to the following URL: http://extjsinaction.com/v4/examples/ch03/

using_ComponentQuery.html. In figure 3.10 we’re using Firefox with Firebug in multi-

line console mode.

 This online tool contains child components nested four levels deep, starting with a

viewport using the fit layout and rendering a single “master” panel. This master panel

has an itemId of master_panel and contains three child panels. The child panels

moving forward have their itemIds published in either their title or content body. The

deepest nested components have a grandchild property set to Boolean true. As you’ll

see, any of these known properties can be used to home in on any targetComponent

that you wish. Finally, each child component has a unique property named unique

that’s randomly generated and will change with each page refresh.

 You’ll begin by obtaining a reference to the topmost panel. For this and the rest of

the example you’ll use the Firebug console, so please keep it open and available as

you read along.

NOTE If you don’t have Firebug, we’ve included a toolbar that’ll perform a
query for you. All you need to do is supply the query parameters and click the
Submit button. Any components found will fade out and back in again to
indicate that they’ve been discovered.

Figure 3.10 The tool you’ll use in the ComponentQuery example

http://extjsinaction.com/v4/examples/ch03/using_ComponentQuery.html
http://extjsinaction.com/v4/examples/ch03/using_ComponentQuery.html
http://extjsinaction.com/v4/examples/ch03/using_ComponentQuery.html

62 CHAPTER 3 Components and containers

Enter the following code in Firebug’s JavaScript console, and execute it. You’ll find

that the entire app fades out and fades in:

var results = Ext.ComponentQuery.query('#master_panel'),
 panel = results[0];
panel.body.fadeOut().fadeIn();

In this snippet you first create a results reference pointing to the results of the query

call. The query you’ve configured will search for and return any registered compo-

nent with the id or itemId of master_panel.

 Next you set the panel reference to the first item of the returning result set. By

default, ComponentQuery’s query method will return an array no matter how many items

have been found. This means that to test whether the query was successful, you’ll need

to inspect the returning result set’s number of items to see if it’s greater than 0.

 If you plan on searching for a unique item, you can also collapse the first two lines

into one like this:

var panel = Ext.ComponentQuery.query('#master_panel')[0];

The query that you just performed was global; Ext JS searched against all registered

components on the page, and it was relatively high-level. But you can go much deeper

by just searching for any component with a particular attribute.

 For example, you can query for one of the deeply nested panels using this type of

global query mechanism:

var panel = Ext.ComponentQuery.query('#p2_c3')[0];

There are other patterns as well. For example, if you want to search for the presence

of an attribute, you can do that. To search for the presence of the grandchild attri-

bute, query for [grandchild]. Or if you want to search for a unique property, such as

the random unique property that you’ve set, you can query for [unique="784"]. Even

though the property is technically an integer, you instruct Ext JS to test for the value

by wrapping it in quotes.

 Containers have the ability to query down the chain via the down method. Doing so

allows you to use the ComponentQuery mechanism, forcing the scope of the search to

be within the container itself and child components. The flip side to the down method

is up. Child components can query up their parent hierarchy using ComponentQuery,

but the scope of the query begins with the child and goes directly up to the topmost

parent container.

 By now you have the core knowledge necessary to manage child items. Let’s shift

focus and flex some Ext JS UI muscle by exploring some of the commonly used sub-

classes of Container. You’ll see how you can use Ext JS to create a UI using all of the

browser’s available viewing space.

3.5 The viewport container

The Viewport class is the foundation on which all web applications that depend solely

on Ext JS are built. It manages 100% of the browser’s—you guessed it—viewport, or

63The viewport container

display area. Weighing in at a tad over 20 lines, this class is extremely lightweight and

efficient. Because it’s a direct subclass of the Container class, all of the child manage-

ment and layout ability is available to you. To use the viewport, try the following exam-

ple code:

Ext.create('Ext.container.Viewport', {
 layout : 'border',
 items : [
 {
 height : 75,
 region : 'north',
 title : 'Does Santa live here?'
 },
 {
 width : 150,
 region : 'west',
 title : 'The west region rules'
 },
 {
 region : 'center',
 title : 'No, this region rules!'
 }
]
});

The rendered viewport from the code uses the entire browser’s viewport and dis-

plays three panels organized by the border layout. If you resize the browser window

you’ll notice that the center panel is resized automatically, which demonstrates how

the viewport listens and responds to the browser’s window resize event (see fig-

ure 3.11). The Viewport class provides the foundation for all Ext JS–based applica-

tions that use the framework as a complete web-based UI solution for their RIAs.

 Many developers run into a brick wall when they attempt to create more than one

viewport in a fully managed Ext JS page to display more than one screen. To get

around this you can use the card layout with the viewport and flip through different

Figure 3.11 Your first

viewport, which takes up

100% of the browser’s

available viewing space

64 CHAPTER 3 Components and containers

application screens, which are resized to fit the viewport. We’ll dive into layouts in

chapter 5, where you’ll learn key terms like fit and flip in the context of layouts.

3.6 Summary

This chapter took an in-depth look at the Component model, which gives the Ext JS

framework a unified method of managing instances of components. The component

life cycle is one of the most important concepts for the UI portion of the framework,

which is why we covered it before we went too deep into the many widgets.

 Next you explored the world of containers and saw how they’re used to manage

child components. You also learned about the Viewport class and how it’s the founda-

tion for web applications that are based entirely on Ext JS.

 You now have the foundation that will help propel you forward as you start to exer-

cise the framework’s UI machinery. Next we’ll explore the panel, which is the most

commonly used UI widget to display content.

Part 2

Ext JS components

A t this point, you’re ready to examine the various widgets included with

the Ext JS framework. In this part of the book, you’ll also have an opportunity to

look at how data-driven views work.

 Chapter 4 covers core UI components that display user-interactive content

such as panels, windows, message boxes, tabs, toolbars, and buttons, as well as

container life cycles to manage child items. Chapter 5 explores layouts used for

visual organization such as Fit, Card, and Border. Chapter 6 investigates forms

and various input fields such as text fields, text areas, numbers, and combo

boxes, in addition to validation and related data stores and views.

 Chapter 7 explains data stores for persistence of array, JSON, and XML data;

advanced user interaction for data-driven views including data models, proxies,

readers, and writers; and associations, validations, grid panels, and editor plug-

ins. Chapter 8 discusses the grid panel for rapid data entry in a tabular form and

visualizing and manipulating large datasets with features like menus, interaction,

editing, paging, and scrolling. Chapter 9 addresses trees for displaying hierarchi-

cal data including remote data loading, editing node data, and custom context

menus. Chapter 10 deals with drawing and charting for visualizing data repre-

sentations along with their chart types, shapes, themes, and legends.

 Chapter 11 examines direct remote method invocation for server data

exchanges with data stores, grids, trees, forms, and templates. Chapter 12 dis-

cusses using the drag-and-drop workflow to move items around the screen with

mouse gestures, as well as associated override methods, the drag-and-drop life

cycle, and plug-ins for grid and tree panels.

 By the end of this part, you’ll have a solid foundation in how Ext JS widgets

work and how to use them effectively.

67

Core UI components

When developers start to experiment or build applications with Ext JS, they often

start by copying examples from the downloadable SDK. Although this approach is

good for learning how a particular layout was accomplished, it falls short in

explaining how the stuff works, which leads to those throbbing forehead arteries.

In this chapter you’ll learn about core topics that are the building blocks of devel-

oping a successful UI deployment.

 You’ll also dive into how the panel works and explore the areas where it can dis-

play content and UI widgets. You’ll then explore windows and the message box,

which float above all other content on the page. You’ll also learn about tab panels

in this chapter.

This chapter covers

■ Exploring the panel

■ Implementing panel content areas

■ Displaying an Ext.Window

■ Using Ext.MessageBox

■ Creating tab panels

68 CHAPTER 4 Core UI components

 When you finish this chapter you’ll have the ability to manage the full CRUD (cre-

ate, read, update, and delete) life cycle for containers and their child items, which

you’ll depend on as you develop your applications.

4.1 The panel

Panel, a subclass of Container, is considered a workhorse of the framework because

it’s what many developers use to present UI widgets. A fully loaded panel is divided

into six areas for content, as shown in figure 4.1. Recall that Panel is also a subclass of

Component, which means that it follows the component life cycle. Moving forward,

we’ll use the term container to describe any subclass of Container. This is because we

want to reinforce the notion that Panel is a subclass of Container.

 The panel’s title bar is a busy place that offers both visual and interactive content

for the end user. As in Microsoft Windows, you can place an icon at the top left of the

panel, offering your users a visual cue as to what type of panel they’re seeing. In addi-

tion to the icon you can display a title on the panel.

 On the rightmost area of the title bar is a section for tools, which is where minia-

ture icons can be displayed that will invoke a handler when clicked. Ext JS provides

many icons for tools, which include many common user-related functions like help,

print, and save. To view all of the available tools, visit the type property of the tool API.

 Of the six content areas, the panel body is arguably the most important. It’s

where the main content or child items are housed. As dictated by the Container

class, a layout must be specified upon instantiation if you don’t want to use the con-

tainer’s default layout. If a layout isn’t specified, an AutoLayout default layout man-

ager is used. One important attribute about layouts is that one layout can’t be

swapped for another dynamically.

 Let’s build a complex panel, with top and bottom toolbars, with two buttons each.

Title with

optional icon
Tools area

General buttons

area

Top and bottom

toolbars
Panel body

Figure 4.1 An example of a fully loaded panel, which has a title bar with an icon and tools, top and

bottom toolbars, and a button bar on the bottom

69The panel

4.1.1 Building a complex panel

Because the toolbar will have buttons, it’s a good idea to have a method to be called

when they’re clicked to give you visual feedback. This is known as a handler:

var myBtnHandler = function(btn) {
 Ext.MessageBox.alert('You Clicked', btn.text);
}

This method will be called when a button on any toolbar is clicked. The toolbar but-

tons will call handlers, passing themselves as a reference, called btn. Next, define your

toolbars, as shown in the next listing.

var myBtnHandler = function(btn) {
 Ext.MessageBox.alert('You Clicked', btn.text);
 },
 fileBtn = Ext.create('Ext.button.Button', {
 text : 'File',
 handler : myBtnHandler
 }),
 editBtn = Ext.create('Ext.button.Button', {
 text : 'Edit',
 handler : myBtnHandler
 }),
 tbFill = new Ext.toolbar.Fill();

var myTopToolbar = Ext.create('Ext.toolbar.Toolbar', {
 items : [
 fileBtn,
 tbFill,
 editBtn
]
});

var myBottomToolbar = [
 {
 text : 'Save',
 handler : myBtnHandler
 },
 '-',
 {
 text : 'Cancel',
 handler : myBtnHandler
 },
 '->',
 'Items open: 1'
];

Listing 4.1 provides two ways of defining a toolbar and its child components. First you

define myBtnHandler B. By default, each button’s handler is called with two argu-

ments: the Button object itself and the browser event wrapped in an Ext.Event

object. You use the passed Button reference (btn) and pass that text to Ext.Message-

Box.alert to provide the visual confirmation that a button was clicked.

Listing 4.1 Building toolbars for use in a panel

Adds click
handlerb

Adds File
buttonc

Instantiates
top toolbard

Configures bottom
toolbare

70 CHAPTER 4 Core UI components

 Next you instantiate the File c and Edit buttons and the “greedy” toolbar spacer,

which will push all toolbar items after it to the right. You assign myTopToolbar to a new

instance of Ext.Toolbar d, referencing the previously created buttons and spacer as

elements in the new toolbar’s items array.

 That was a lot of work for a relatively simple toolbar. We had you do it this way so

you’d “feel the pain” of doing things the old way and better appreciate how much

time (and end developer code) the Ext JS shortcuts and XTypes save.

 The myBottomToolbar e reference is a simple array of objects and strings, which

Ext JS translates into the appropriate objects when its parent container deems it neces-

sary to do so. You’d use these two methods to add or remove items dynamically to or

from either toolbar. Next you’ll create your panel body:

var myPanel = Ext.create('Ext.panel.Panel', {
 width : 200,
 height : 150,
 title : 'Ext Panels rock!',
 collapsible : true,
 renderTo : Ext.getBody(),
 tbar : myTopToolbar,
 bbar : myBottomToolbar,
 html : 'My first Toolbar Panel!'
});

You’ve created panels before, so just about everything here should look familiar

except for the tbar and bbar properties, which reference the newly created toolbars.

Also, there’s a collapsible attribute; when collapsible is set to true, the panel cre-

ates a toggle button at upper right on the title bar. Rendered, the panel should look

like the one in figure 4.2. Remember, clicking any of the toolbar buttons will result in

an Ext.MessageBox displaying the button’s text, giving you visual confirmation that

the click handler was called.

 The toolbars rendered in figure 4.2 are placed above and below the content body.

The process in which this occurs is called docking and is managed by the Dock compo-

nent layout class. We’ll dive deeper into docking items in section 4.1.2.

myTopToolbar

myBottomToolbar

Collapse toggle

tool

Figure 4.2 The rendered results of listing 4.1, where you create a complex collapsible

panel with top and bottom toolbars that each contain buttons

71The panel

4.1.2 Adding buttons and tools

Toolbars are great places to put content, buttons, or menus that are outside the panel

body. There are two areas you still need to explore: buttons and tools. To do so, you’ll

add to the myPanel example in the following listing, but you’ll do it using the Ext JS

shortcuts with XTypes inline with all of the other configuration options.

 var myPanel = Ext.create('Ext.panel.Panel', {
 // height, weight and renderTo go here
 buttonAlign : 'left',
 buttons : [
 {
 text : 'Press me!',
 handler : myBtnHandler
 }
],
 tools : [
 {
 type : 'gear',
 handler : function(evt, toolEl, panel) {
 var toolClassNames = toolEl.className.split(' ');
 var toolClass = toolClassNames[1];
 var toolId = toolClass.split('-')[2];

 Ext.MessageBox.alert('You Clicked', 'Tool ' + toolId);
 }
 },
 {
 type : 'help',
 handler : function() {
 Ext.MessageBox.alert('You Clicked', 'The help tool');
 }
 }
]
 });

In listing 4.2 you add to the previous set of config options and include two shortcut

arrays: one for buttons and the other for tools. Because you specified a buttons

array B, when the panel renders it’ll create a new instance of Ext.Toolbar with a spe-

cial CSS class, x-toolbar-footer-docked-bottom, and render it to the newly created

footer div. The Press Me! button will be rendered in the newly created footer toolbar,

and when clicked it’ll invoke your previously defined myBtnHandler method.

 If you look at the myBottomToolbar shortcut array in listing 4.1 and the buttons

shortcut array in listing 4.2 you’ll see some similarities. All of the panel toolbars (tbar,

bbar, and buttons) can be defined using the same shortcut syntax because they’ll all

get translated into instances of Ext.Toolbar and rendered to their appropriate posi-

tion in the panel.

 You also specify a tools array c configuration object, which is somewhat differ-

ent than the way you define the toolbars. Here, to set the icon for the tool you must

Listing 4.2 Adding buttons and tools to your existing panel

Adds
buttons

b

Configures
tools

c

72 CHAPTER 4 Core UI components

specify the id of the tool, such as 'gear' or 'help'. For every tool that’s specified in

the array, an icon will be created in the tools. The Panel class will assign a click event

handler to each tool, which will invoke the handler specified in that tool’s configura-

tion object. The rendered version of the newly modified myPanel should look like the

one in figure 4.3.

 You can see the button you configured for the panel, but there’s something wrong.

The bottom toolbar is rendered below the button bar and is in need of serious repair.

This gives us an excellent opportunity to dive right into how the Panel class uses the

Dock component layout to render items above, below, and even to the left and right

of the content body.

4.1.3 Docking items to a panel

The Dock layout is exclusively used by the Panel class and is responsible for rendering

one or more components on either side of the panel’s content body. When you con-

figured the tbar and bbar attributes for your panel in listing 4.2, the panel technically

pushed the configurations into what are known as dockedItems internally. The Dock

layout is responsible for arranging each of those widgets based on a property known as

weight. You’ll explore weight in just a moment, but first we want to show you how

flexible component docking is.

 Instead of configuring the tbar and bbar (or lbar and rbar) attributes for a

panel, you can just configure dockedItems as an array of toolbar configuration

options. Doing so will allow you to keep all of the docked items in a single configura-

tion collection.

 The next listing demonstrates how you can dock a single top-docked toolbar

to a panel using dockedItems instead of tbar. We’re going to keep things as sim-

ple as possible.

var buttons = [
 { text : 'Btn 1' },
 { text : 'Btn 2' },

Listing 4.3 Top-docking a single toolbar

Newly added

button

Newly added

tools

Figure 4.3 The rendered results from listing 4.2, which adds a button in the button bar

and tools to the title bar

Adds
buttonsb

73The panel

 { text : 'Btn 3' }
];

var topDockedToolbar = {
 xtype : 'toolbar',
 dock : 'top',
 items : buttons
};

var myPanel = Ext.create('Ext.panel.Panel', {
 width : 350,
 height : 250,
 title : 'Ext Panels rock!',
 renderTo : Ext.getBody(),
 html : 'Content body',
 buttons : {
 items : buttons
 },
 dockedItems : [
 topDockedToolbar
]
});

In listing 4.3 you first set up a reusable collection of button configuration objects B.

Doing so allows you to render buttons easily when you add more toolbars later.

 Next you create a top-docked Toolbar configuration object c. What makes this

dock to the top is the dock property that you’ve set. As you’ll see later, other possible

values are bottom, left, and right.

 Finally, render a panel, configuring it with a buttons configuration object d and

a dockedItems array e containing a single element, topDockedToolbar. Rendered

onscreen, your panel should look like figure 4.4.

 So far you haven’t seen anything new outside of configuring tbar and buttons

properties for a panel. So next you’ll add the left-, right-, and bottom-docked toolbars.

You’ll have to inject code above your panel:

Configures top-
docked toolbarc

Adds
buttons

d

Sets up
docked itemse

Figure 4.4 Your panel with a

top-docked toolbar

74 CHAPTER 4 Core UI components

var bottomDockedToolbar = {
 xtype : 'toolbar',
 dock : 'bottom',
 items : buttons
};

var leftDockedToolbar = {
 xtype : 'toolbar',
 vertical : true,
 dock : 'left',
 items : buttons
};

var rightDockedToolbar = {
 xtype : 'toolbar',
 vertical : true,
 dock : 'right',
 items : buttons
};

In looking at this code snippet, you should be able to see patterns emerge. The dock

property dictates where the toolbar will be docked. You set vertical to true so that

the toolbar knows to use the VBox layout (vertical organization of components)

instead of the default HBox layout (horizontal organization of components).

 Next you’ll add the toolbars to the dockedItems property of the panel:

 dockedItems : [
 topDockedToolbar,
 bottomDockedToolbar,
 leftDockedToolbar,
 rightDockedToolbar
]

Modifying the dockedItems in this way will result in your panel rendering as shown in

figure 4.5.

 You’ve docked items on all four sides of your panel’s content body, but the button

bar is in the wrong place. Also, you want the bottom-docked toolbar to be the same

width as the top-docked toolbar.

 To fix these issues you’ll need to adjust what’s known as the weight of the docked items.

Figure 4.5 Rendering docked

toolbars to all four quadrants of

the panel

75The panel

4.1.4 Weight matters!

The reason you had the problems you did with sizing is because the framework is ren-

dering and sizing the docked items based on the default weight of each docked item.

To understand how this all works, you need to think about how gravity works in the

real world.

 The more weight an object has, the closer it is to the source of gravity. With the Dock

layout, the components with the most weight will be rendered closer to the content

body and be sized smaller, giving the lighter docked items higher priority in sizing.

 For completion’s sake, in the following listing we’ll show you the entire code base

that includes the button bar and four docked toolbars, because you’ll be making

incremental changes along the way.

var buttons = [
 { text : 'Btn 1' },
 { text : 'Btn 2' },
 { text : 'Btn 3' }
];

var topDockedToolbar = {
 xtype : 'toolbar',
 dock : 'top',
 items : buttons
};

var bottomDockedToolbar = {
 xtype : 'toolbar',
 dock : 'bottom',
 items : buttons
};

var leftDockedToolbar = {
 xtype : 'toolbar',
 vertical : true,
 dock : 'left',
 items : buttons
};

var rightDockedToolbar = {
 xtype : 'toolbar',
 vertical : true,
 dock : 'right',
 items : buttons
};

var myPanel = Ext.create('Ext.panel.Panel', {
 width : 350,
 height : 250,
 title : 'Ext Panels rock!',
 renderTo : Ext.getBody(),
 html : 'Content body',
 buttons : buttons,

Listing 4.4 Your panel with four docked toolbars and a button bar

76 CHAPTER 4 Core UI components

 dockedItems : [
 topDockedToolbar,
 bottomDockedToolbar,
 leftDockedToolbar,
 rightDockedToolbar
]
});

The first problem that you’ll attack is the button bar being sized and positioned

improperly. To fix this you’ll have to change the way the buttons property is config-

ured for the panel:

buttons : {
 weight : -1,
 items : buttons
},

Here you’re wrapping the buttons array reference in an object that contains a weight

property of –1. When the panel initializes, it’ll recognize that the buttons property is

an object and use it to create a new instance of a toolbar for you, applying the custom

weight attribute. Because you gave it a value of –1, it’s considered extremely light and

therefore will be rendered below the bottom-docked toolbar. Figure 4.6 shows what it

looks like rendered.

 The next problem you’ll tackle is the left- and right-docked toolbar sizing issue.

Rather than making the bottom-docked toolbar lighter, you’ll make the left- and right-

docked toolbars heavier. To do so, add the following property to the leftDockedToolbar

and rightDockedToolbar configuration objects:

weight : 10,

Adding the newly configured weight property to the left- and right-docked toolbar

configuration objects ensures that your bottom-docked toolbar will render properly

sized, as illustrated in figure 4.7. As you can see, adding weight : 10 to the left- and

right-docked toolbar configuration objects allows the bottom-docked toolbar to take

100% of the width of the panel.

Figure 4.6 Rendering the docked

items properly

77Displaying window dialogs

We encourage you to play around with this code and add more than one docked item

in each section, adjusting the weights. As you do that, remember that you can dock

other Component subclasses to panels.

 Now that you have some experience with the Panel class, let’s look at one of its

close descendants, Window, which you can use to float content above everything else

on the screen and to replace the traditionally lame browser-based pop-up.

4.2 Displaying window dialogs

The window UI widget builds on the panel, providing you with the ability to float UI

components above all the other content on the page. With windows you can

provide a modal dialog box that masks the entire page, forcing the user to focus on

the dialog box, and prevents any mouse-based interaction with anything else on the

page. Figure 4.8 shows how you can use this class to focus the user’s attention and

request input.

 Working with the Window class is a lot like working with the Panel class, except you

have to consider issues such as whether you want to disable resizing or want the win-

dow to be constrained within the boundaries of the browser’s viewport.

4.2.1 Building a window

Let’s look into how you can build a window. For this, you’ll need a vanilla Ext JS page

with no widgets loaded, as shown in the next listing.

The magic 10?

You’re probably asking why you set the weight property of the left- and right-docked

toolbars to 10 and not some other number, like 50 or 100. The reason you use 10

is because each quadrant where items are docked has a default weight. Top is 1, left

is 3, right is 5, and bottom is 7. You use 10 because it’s a nice round number that’s

larger than 7 (bottom dock).

Figure 4.7 Fixing the bottom-docked

button bar

78 CHAPTER 4 Core UI components

 var win;
 var newWindow = function(btn) {
 if (!win) {
 win = Ext.create('Ext.window.Window', {
 animateTarget : btn.el,
 html : 'My first vanilla Window',
 closeAction : 'hide',
 id : 'myWin',
 height : 200,
 width : 300,
 constrain : true
 });
 }
 win.show();
 }
 new Ext.Button({
 renderTo : Ext.getBody(),
 text : 'Open my Window',
 style : 'margin: 100px',
 handler : newWindow
 });

In this listing you do things a little differently in order to see the animation for your

window’s close and hide method calls. The first thing you do is create a global vari-

able, win, for which you’ll reference the soon-to-be-created window. You create a

Listing 4.5 Building an animated window

Figure 4.8 An Ext JS modal window, which masks the browser’s viewport

Creates new
windowb

Constrains
Window instancec

Creates
buttond

79Displaying window dialogs

method, newWindow B, that will be the handler for your future button and is responsi-

ble for creating the new window.

 Let’s take a moment to examine some of the configuration options for your win-

dow. One of the ways you can instruct the window to animate upon show and hide

method calls is to specify an animateEl property, which is a reference to some ele-

ment in the DOM or the element ID. If you don’t specify the element in the configura-

tion options, you can specify it when you call the show or hide methods, which take

the same arguments. In this case you’re launching the button’s element. Another

important configuration option is closeAction, which defaults to close and destroys

the window when the close tool (x) is clicked. You don’t want that in this instance, so

you set it to hide, which instructs the close tool to call the hide method instead of

close. You also set the constrain parameter c to true, which instructs the window’s

drag-and-drop handlers to prevent the window from being moved from outside the

browser’s viewport.

 Last, you create a button d that, when clicked, will call your newWindow method,

resulting in the window animating from the button’s element. Clicking the close tool

will result in the window hiding. The rendered results look like figure 4.9.

 Because you don’t destroy the window when the close tool is clicked, you can show

and hide the window as many times as you wish, which is ideal for windows that you

plan to reuse. Whenever you deem that it’s necessary to destroy the window, you can

call its destroy or close method. Now that you have experience in creating a reusable

window, you can begin exploring other configuration options to further alter the

behavior of the window.

4.2.2 Further window configuration

There are times when you need to make a window behave to meet requirements of

your application. In this section you’ll learn about some of the commonly used config-

uration options.

 Sometimes you need to produce a window that’s modal and rigid. To do so you

need to set a few configuration options, as shown in the following listing.

Figure 4.9 The rendered

results from listing 4.3, where

you create a window that

animates from the button’s

element when clicked

80 CHAPTER 4 Core UI components

var win = Ext.create('Ext.window.Window', {
 height : 75,
 width : 200,
 modal : true,
 title : 'This is one rigid window',
 html : 'Try to move or resize me. I dare you.',
 plain : true,
 border : false,
 resizable : false,
 draggable : false,
 closable : false,
 buttonAlign : 'center',
 buttons : [
 {
 text : 'I give up!',
 handler : function() {
 win.close();
 }
 }
]
 })
 win.show();

In listing 4.6 you create an extremely strict modal window. You have to set quite a few

options. The first of these, modal B, instructs the window to mask the rest of the page

with a semitransparent div. Next you set resizable c to false, which prevents the

window from being resized via mouse actions. To prevent the window from being

moved around the page, you set draggable d to false. You want only a single center

button to close the window, so you set closable e to false, which hides the close

tool. Last, you set some cosmetic parameters, plain, border, and buttonAlign. Set-

ting plain to true will make the content body background transparent. When cou-

pled with setting the border to false, the window appears to be one unified cell.

Because you want to have the single button centered, you specify the buttonAlign

property to be 'center'. The rendered example should look like figure 4.10.

 Other times you want to relax the restrictions on the window. For instance, there

are situations where you need a window to be resizable but not less than specific

dimensions. For this, you allow resizing (resizable) and specify minWidth and min-

Height parameters. Unfortunately, there’s no easy way to set boundaries as to how

large a window can grow.

 Although there are many reasons for creating your own windows, sometimes you

need something quick and dirty—for instance, to display a message or prompt for

user data. The Window class has a stepchild known as MessageBox to fill this need.

4.3 MessageBox

MessageBox is a reusable, yet versatile, singleton class that gives you the ability to

replace some of the common browser-based message boxes such as alert and prompt

Listing 4.6 Creating a rigid modal window

Ensures page
is masked

b

Prevents
resizing

c

Disables window
movementd

Prevents
window closuree

81MessageBox

with a simple method call. The most important thing to know about the MessageBox

class is that it does not stop JavaScript execution like traditional alerts or prompts do,

which we consider an advantage. While the user is digesting or entering information,

your code can perform Ajax queries or even manipulate the UI. If specified, Message-

Box will execute a callback method when the window is dismissed.

4.3.1 Alerting your users

Before you start to use the MessageBox class, let’s create a callback method. You’ll

need this later on:

var myCallback = function(btn, text) {
 console.info('You pressed ' + btn);
 if (text) {
 console.info('You entered : ' + text)
 }
}

Your myCallback method will use Firebug’s console to echo the button that was

clicked and the text entered, if any. MessageBox will pass only two parameters to the

callback method: the button ID and any entered text. Now that you have your call-

back, let’s launch an alert message box:

 var msg = 'Your document was saved successfully';
 var title = 'Save status:'
 Ext.MessageBox.alert(title, msg);

Here you call the MessageBox.alert method, which will generate a window (see fig-

ure 4.11, left) and will dismiss when OK is clicked. If you want myCallback to get exe-

cuted upon dismissal, add it as the third parameter.

Figure 4.10 Your first strict modal window rendered in the Ext JS SDK feed viewer example

82 CHAPTER 4 Core UI components

Now that we’ve looked at alerts, let’s see how you can request user input with the Mes-

sageBox.prompt method:

 var msg = 'Please enter your email address.';
 var title = 'Input Required'
 Ext.MessageBox.prompt(title, msg, myCallback);

You call the MessageBox.prompt method, which you pass the reference of your call-

back method; it’ll look like figure 4.11 (right). Enter some text, and click Cancel. In

the Firebug console you’ll see the button ID pressed and the text entered.

 And there you have it, MessageBox alert and prompt windows at a glance. We

find these handy, because we don’t have to create our own singleton to provide

these UI widgets. Remember them when you need to implement a Window class to

meet a requirement.

 We have to confess a little secret. The alert and prompt methods are actually

shortcut methods for the much larger and highly configurable MessageBox.show

method. Next up is an example of how you can use the show method to display an

icon with a multiline text area input box.

4.3.2 Advanced MessageBox techniques

The MessageBox.show method provides an interface to display the MessageBox using

any combination of the 24 available options. Unlike the previously explored shortcut

methods, show accepts the typical configuration object as a parameter. Let’s display a

multiline text area input box along with an icon:

 Ext.Msg.show({
 title : 'Input required:',
 msg : 'Please tell us a little about yourself',
 width : 300,
 buttons : Ext.Msg.OKCANCEL,
 multiline : true,
 fn : myCallback,
 icon : Ext.MessageBox.INFO
 });

When the preceding example is rendered, it’ll display a modal dialog box like the one

in figure 4.12 (on the left). Next, let’s see how to create an alert box that contains an

icon and three buttons:

Figure 4.11 MessageBox’s alert (left) and prompt (right) modal dialog windows

83MessageBox

Ext.Msg.show({
 title : 'Hold on there cowboy!',
 msg : 'Are you sure you want to reboot the internet?',
 width : 300,
 buttons : Ext.Msg.YESNOCANCEL,
 fn : myCallback,
 icon : Ext.MessageBox.ERROR
});

The preceding code example will display your tributton modal alert dialog window,

like the one in figure 4.12 (on the right).

 Although everything in these two custom MessageBox examples should be self-

explanatory, we think it’s important to highlight two of the configuration options that

pass references to MessageBox public properties.

 The buttons parameter is used as a guide for the singleton to know which buttons

to display. Although you pass a reference to an existing property, Ext.Message-

Box.OKCANCEL, you can display no buttons by setting buttons to an empty object, such

as {}.

 If you want to just show buttons but not customize the text, the singleton already

has a set of predefined popular combinations: CANCEL, OK, OKCANCEL, YESNO, and

YESNOCANCEL.

 Otherwise, you can customize which buttons you want to display. But instead of set-

ting buttons as a property, you set buttonText. For example, to display Yes and Can-

cel buttons, set buttonText to { yes : 'Sure thing!', cancel : 'No way! '}, where

the key to the object is the button ID and the string is the display text for the button.

 The icon parameter works in the same way as the buttons parameter, except it’s a

reference to a string. The MessageBox class has three predefined values: INFO, QUESTION,

and WARNING. These are references to strings that are CSS classes. If you wish to display

your own icon, create your own CSS class and pass the name of your custom CSS class

as the icon parameter. Here’s an example of a custom CSS class:

 .icon-add {
 background-image: url(/path/to/add.png) !important;
 }

Figure 4.12 A multiline input box with an icon (left) and a tributton icon alert box (right)

84 CHAPTER 4 Core UI components

Now that you have your feet wet with some advanced MessageBox techniques, we can

explore how to use MessageBox to display an animated dialog box, which can offer the

user live and updated information regarding a particular process.

4.3.3 Showing an animated wait message box

When you need to stop a particular workflow, you must display some sort of modal

message box, which can be as simple and boring as a modal dialog box with a “Please

wait” message. We prefer to introduce some spice into the application and provide an

animated “wait” dialog box. With the MessageBox class you can create a seemingly

effortless and infinitely looping progress bar:

 Ext.MessageBox.wait("We're doing something...", 'Hold on...');

This code will produce a wait box like the one shown in figure 4.13 (on the left). If the

syntax seems a little strange, it’s because the first parameter is the message body text,

with the title as the second parameter. It’s exactly the opposite of the alert and prompt

calls. Let’s say you want to display text in the body of the animating progress bar itself.

You could pass a third parameter with a single text property, such as {text: 'loading

your items'}. Figure 4.13 (on the right) shows what it looks like if you add progress

bar text to your dummy wait dialog box.

 Although this may seem cool at first, it’s not interactive because the text is static

and you’re not controlling the progress bar status. You can customize the wait dialog

box by using the handy show method and passing in some parameters. Using this

method, you now have the leeway to update the progress bar’s advancement as you see

fit. To create an auto-updating wait box, you need to create a rather involved loop

(shown in the next listing), so please stay with us on this.

 Ext.MessageBox.show({
 title : 'Hold on there cowboy!',
 msg : "We're doing something...",
 progressText : 'Initializing...',
 width : 300,
 progress : true,
 closable : false
 });
 var updateFn = function(num){

Listing 4.7 Building a dynamically updating progress bar

Figure 4.13 A simple animated MessageBox wait dialog where the progress

bar is looping infinitely at a predetermined fixed interval (left) and a similar

message box with text in the progress bar (right)

Shows
ProgressBarb

85Components can live in tab panels too

 return function(){
 if(num == 6){
 Ext.MessageBox.updateProgress(100,
 'All Items saved!');
 Ext.Function.defer(Ext.MessageBox.hide,
 1500, Ext.MessageBox);
 }
 else{
 var i = num/6;
 var pct = Math.round(100 * i);
 Ext.MessageBox.updateProgress(i,
 pct + '% completed');
 }
 };
 };
 for (var i = 1; i < 7; i++){
 setTimeout(updateFn(i), i * 500);
 }

In listing 4.7 you create a message box, with the progress option B set to true,

which will show your progress bar. Next you define a rather involved updater func-

tion, aptly named updateFn, which is called at a predefined interval. In that function,

if the number passed equals your limit of 6, you update the progress bar to 100%

wide and show the completion text. You also defer the dismissal of the message box

by one and a half seconds. Otherwise, you’ll calculate a percentage completed and

update the progress bar width and text accordingly c. Last, you create a loop that

calls setTimeout d six consecutive times, which delays your calls of updateFn by the

iteration times one half second. The results of this rather lengthy example will look

like figure 4.14. With some effort, you can dynamically update your users on the sta-

tus of operations that are taking place before they can move on.

 In this section you learned how to create both flexible and extremely rigid win-

dows to get the user’s attention. You also explored a few ways of using one of Ext JS’s

super singletons, the Ext JS MessageBox class. Let’s now shift focus to the TabPanel

class, which provides a means to allow a UI to contain many screens but display them

only one at a time.

4.4 Components can live in tab panels too

The TabPanel class builds on Panel to create a robust tabbed interface, which gives

the user the ability to select any screen or UI control associated with a particular tab.

Updates
percentage, text

c

Adds looping
.5 second timeoutd

Figure 4.14 Your automatically updating wait message box (left), and the same box with the

final update before automatic dismissal (right)

86 CHAPTER 4 Core UI components

Tabs within the tab panel can be unclosable, closable, disabled, and even hidden, as

illustrated in figure 4.15.

 Unlike other tab interfaces, the Ext JS tab panel supports only a top or bottom

tab strip configuration. This is mainly because a lot of browsers still don’t support

CSS to a point where vertical text is possible. The tab panel uses the Card layout,

which renders complex UIs quickly because it makes use of a common technique

called lazy or deferred rendering for its child components. The deferred rendering

feature of the tab panel is controlled by the deferredRender parameter, which is set

to true by default.

Deferred render means that only cards that get activated are rendered. It’s fairly com-

mon for tab panels to have multiple children that have complex UI controls, such as

the one in figure 4.16, which can require a significant amount of CPU time to render.

Deferring the render of each child until it’s activated accelerates the tab panel’s initial

rendering and gives the user a more efficiently responsive widget.

 Now you’ll construct your first tab panel.

4.4.1 Building your first tab panel

TabPanel is a direct descendant of Panel and makes clever use of CardLayout. The tab

panel’s main job is to manage tabs in the tab strip. Management of child components

is performed by the Container class, and the layout management is performed by

CardLayout. The next listing shows how to build your first tab panel.

Scrollable tabs

Closable tab

Unclosable tab

Disabled tab

tabPosition: 'top'

tabPosition:

'bottom'

Figure 4.15 Exploring top- and bottom-positioned tabs

87Components can live in tab panels too

var simpleTab = {
 title : 'Simple tab',
 html : 'This is a simple tab.'
};

var closableTab = {
 title : 'I am closable',
 html : 'Please close when done reading.',
 closable : true
};

var disabledTab = {
 title : 'Disabled tab',
 itemId : 'disabledTab',
 html : 'Peekaboo!',
 disabled : true,
 closable : true
};

var tabPanel = Ext.create('Ext.tab.Panel', {
 activeTab : 0,
 itemId : 'myTPanel',
 items : [
 simpleTab,
 closableTab,
 disabledTab
]
});

Ext.create('Ext.window.Window', {
 height : 300,
 width : 400,

Listing 4.8 Exploring a tab panel

Figure 4.16 A tab panel

with children that have

complex layouts

Introduces
static tabb

Creates
closable tab

c

Adds
disabled tabd

Instantiates
tab panele

Renders
tab panelf

88 CHAPTER 4 Core UI components

 layout : 'fit',
 items : tabPanel
}).show();

Although you could’ve defined all of the items in this code in a single large object,

we thought it’d be best to break it up so that everything is clear. The first three vari-

ables define your tab panel’s children in generic object form, with the assumption

that the defaultType (XType) for the TabPanel class is Panel. The first child is a

simple and nonclosable tab B. One thing to note here is that all tabs are nonclos-

able by default. This is why your second tab c has closable set to true. Next, you

have a closable and disabled tab. Each of these child panel configuration objects

has its own itemId, which will allow you to home in on it to do some operations such

as enable, hide, and disable.

 You then go on to instantiate your tab panel d. You set the activeTab parameter

to 0. You do this because you want the first tab to be activated after the tab panel e is

rendered. You can specify any index number in the tab panel’s items mixed collec-

tion. Because the mixed collection is an array, the first item always starts with 0. Last,

your tab panel’s items array has your three tabs specified.

 Next, you create a container for your tab panel, an instance of Ext.Window f. You

specify a Fit layout for the window and set the tab panel reference as its single item.

The rendered code should display the tab panel shown in figure 4.17.

 Now that you’ve rendered your first tab panel, you can start to have fun with it.

You’ve probably closed the “I am closable” tab, which is okay. If you haven’t done so,

feel free to explore the rendered UI control and close out the only closable tab when

you’re comfortable doing so, which will leave only two tabs available: “My first tab” and

“Disabled tab.”

Figure 4.17 Your first tab panel

rendered inside a window

89Summary

4.4.2 Tab management methods you should know

Because the TabPanel class is a descendant of Container, all of the common child-

management methods are available to use. These include add, remove, and insert.

There are a few other methods, though, that you’ll need to know to take full advan-

tage of the TabPanel class.

 The first of these is setActiveTab, which activates a tab as if the user had selected

the item on the tab strip and accepts either the index of the tab or the component ID:

 var tPanel = Ext.ComponentQuery.query('#myTPanel')[0];
 tPanel.add({
 title : 'New tab',
 itemId : 'myNewTab',
 html : 'I am a new Tab'
 });
 tPanel.setActiveTab('myNewTab');

Executing this code will result in a new tab with the title of “New tab,” which gets acti-

vated automatically. Calling setActiveTab after an add operation is akin to calling

doLayout on a generic container. You also have the capability to enable and disable

tabs at runtime, but this requires a different approach than simply calling a method

on the tab panel.

 The tab panel doesn’t have enable and disable methods, so in order to enable or

disable a child you need to call those methods of the child items themselves. You can

use listing 4.8 to enable your disabled tab. With the tPanel reference you created a

bit ago, you can query for the disabled child item and enable it as such:

 tPanel.down('#disabledTab').enable();

Yes, that’s all there is to it. The tab strip item (tab UI control) now reflects that the

item is no longer disabled. This happens because the tab panel subscribes to the child

item’s—you guessed it—enable and disable events to manage the associated tab

strip items.

 In addition to enabling and disabling tabs, you can hide them. To hide a tab, you

have to access the tab property of the tab panel’s child items. To illustrate this, you’ll

hide the disabled tab and then show it:

 tPanel.down('#disabledTab').tab.hide();

To make it reappear, execute the following code:

 tPanel.down('#disabledTab').tab.show();

You’ve now seen how easy it is to create and manage a tab panel.

4.5 Summary

We covered a lot of material about the Swiss Army knife of UI display widgets, the panel,

which is enough to make just about any developer’s head spin. In exploring the Panel

90 CHAPTER 4 Core UI components

class, you saw how it provides a plethora of options to display user-interactive content,

including toolbars, buttons, title bar icons, and miniature tools.

 You used the Window class as a general container and mastered the art of adding

and removing children dynamically, providing you with the ability to dynamically and

drastically change an entire UI or a single widget or control.

 In exploring the Window class and its cousin, MessageBox, you learned how you

can replace the generic alert and prompt dialog boxes to get your user’s attention to

display information or request user input. You also had some fun fooling with the

animated wait MessageBox.

 Finally you examined the tab panels, learning how to dynamically manage tab

items, as well as a few of the usability pitfalls that the UI control brings.

 In the next chapter you’ll explore the many Ext JS layout schemes, and you’ll learn

the common uses and pitfalls of these controls.

91

Exploring layouts

When building an application, many developers struggle with how to organize their

UI and which tools to use to get the job done. In this chapter you’ll gain the neces-

sary experience to be able to make these decisions in an educated manner. We’ll

start by introducing component layouts that are new to Ext JS 4 and go on to

explore the numerous container layout models and identify best practices as well as

common issues you’ll encounter.

 The container layout management schemes are responsible for the visual orga-

nization of widgets onscreen. They include simple layout schemes such as Fit,

where a single child item of a container will be sized to fit the container’s body, and

complex layouts such as the Border layout, which splits a container’s content body

into five manageable slices or regions.

 We’ll have some lengthy explorations of container layouts accompanied by

some long examples that can serve as a great springboard for your own layouts. But

before we continue our journey with in-depth descriptions of each container layout

This chapter covers

■ Using layout systems

■ Exploring the Layout class inheritance model

■ Understanding the Card layout

92 CHAPTER 5 Exploring layouts

management scheme, let’s talk about how layout managers work and introduce the

new component layouts.

5.1 How layout managers work

As mentioned earlier, the layout management schemes are responsible for the visual

organization of widgets onscreen. To do this, they keep track of how the individual

child items are placed in relation to one another. The strategy used for placement

depends on which layout manager you use. The layout managers are divided into two

groups: component and container layouts.

5.1.1 Component layouts

Component layouts are new to Ext JS 4 and are used to lay out the internal items

of components. For everyday use, you should be familiar with the Dock component

layout. The Dock layout is responsible for managing docked items like toolbars and

gives you the option of adding several top and bottom toolbars, as well as adding left

and right toolbars (feel free to take a look back at section 4.2 now, if you need to

brush up on the details of how to dock items).

 If you’re implementing your own components and want to implement your own

component layout management scheme, then we encourage you to familiarize yourself

with the existing hierarchy of component layouts and choose a relevant class to extend.

 If you’ve been using Ext JS 3 or earlier versions, then you may remember the Form

layout as cumbersome and complex to use. In Ext JS 4 the Form layout is no longer

needed due to the introduction of the Field component layout and its descendants,

along with the associated functionality in the code base.

 Remember that all the standard components already have their corresponding

component layout, so for your everyday programming tasks you don’t need detailed

knowledge of each component layout. We’ll focus on container layouts in this chapter.

5.1.2 Container layouts

Container layouts let you manage the position and size of child components within a

container. When you add a component to or remove a component from a container,

the container communicates with the parent container and resizes sibling containers

or components depending on the layout management scheme.

 All of the container layout managers share common functionality available from

Ext.layout.container.Container. We’ll explore each layout manager in detail.

 We’ll start our journey through container layouts by taking a look at the Auto lay-

out, which is the default layout for containers. The Auto layout is the most basic layout

manager, and it shares common functionality with the Container layout.

5.2 The Auto layout

As you may recall, the Auto layout is the default layout for any instance of a container.

It places items on the screen, one on top of another. Although the Auto layout doesn’t

93The Auto layout

explicitly resize child items, a child’s width may conform to the container’s content

body if it isn’t constrained.

 An Auto layout is the easiest to implement, requiring only that you add and

remove child items. To see this you need to set up a dynamic example, using quite a

few components, as shown in the next listing. When you’re done, the layout will look

like figure 5.1.

 var childPnl1 = {
 frame : true,
 height : 50,
 html : 'My First Child Panel',
 title : 'First children are fun'
 };
 var childPnl2 = {
 width : 150,
 html : 'Second child',
 title : 'Second children have all the fun!'
 };
 var myWin = Ext.create("Ext.Window", {
 height : 300,
 width : 300,
 title : 'A window with a container layout',
 autoScroll : true,
 items : [
 childPnl1,
 childPnl2
],
 tbar : [
 {
 text : 'Add child',
 handler : function() {

Listing 5.1 Implementing the Auto layout

First two children

Dynamic

scroll bar

Dynamically

added children

Auto-width child

Fixed-width child

Figure 5.1 The results of your first implementation of the Auto layout

Configures
first childb

Configures
second panel

c

Creates
Window

d

Sets
scrollable

e

Adds child
panelsf

Configures
toolbarg

94 CHAPTER 5 Exploring layouts

 var numItems = myWin.items.getCount() + 1;
 myWin.add({
 title : 'Child number ' + numItems,
 height : 60,
 frame : true,
 collapsible : true,
 collapsed : true,
 html : 'Yay, another child!'
 });
 }
 }
]
 });
 myWin.show();

In listing 5.1, the first thing you do is instantiate object references using XTypes for

the two child items that’ll be managed by a window: childPnl1 B and childPnl2 c.

These two child items are static. Next, you begin your myWin d reference, which is an

instance of Ext.Window. You also set the autoScroll property e to true. This tells

the container to set the CSS attributes overflow-x and overflow-y to auto, which

instructs the browser to show the scroll bars only when it needs to.

 Notice that you set the child items f property to an array. The items property for

any container can be an instance of an array used to list multiple children or an object

reference for a single child. The window contains a toolbar g that has a single button

that, when clicked, adds a dynamic item to the window. Note that before Ext JS ver-

sion 4, you could benefit from calling doLayout on the parent container after remov-

ing or adding an item; this should no longer be necessary due to the bidirectional

communication in the component/container hierarchy. In earlier versions you

would’ve called myWin.doLayout after adding one or more child items. If you’re per-

forming bulk updates of your component, then you set suspendLayout to true on the

container to avoid calling doLayout. The rendered window should look like the one

in figure 5.1.

 Although the Auto layout provides little to manage the size of child items, it’s not

completely useless. It’s lightweight relative to its subclasses, which makes it ideal if you

want to display child items that have fixed dimensions. There are times, though, when

you’ll want to have the child items dynamically resize to fit the container’s content

body. This is where the Anchor layout can be useful.

5.3 The Anchor layout

The Anchor layout is similar to other container layouts in that it stacks child items one

on top of another, but it adds dynamic sizing into the mix using an anchor parameter

specified on each child. This anchor parameter is used to calculate the size of the

child item relative to the parent’s content body size and is specified as either a pair of

percentages or a pair of offsets, which are integers. The anchor parameter is a string,

using the following format:

anchor : "width, height" // or "width height"

95The Anchor layout

Figure 5.2 shows what you’ll be constructing.

 In the following listing you’ll take your first stab at implementing an Anchor layout

using percentages.

var myWin = Ext.create("Ext.Window", ({
 height : 300,
 width : 300,
 layout : 'anchor',
 border : false,
 anchorSize : '400',
 items : [
 {
 title : 'Panel1',
 anchor : '100%, 25%',
 frame : true
 },
 {
 title : 'Panel2',
 anchor : '0, 50%',
 frame : true
 },
 {
 title : 'Panel3',
 anchor : '50%, 25%',
 frame : true

Listing 5.2 The Anchor layout using percentages

100% width

25% height

50% width

25% height

100% width

50% height

Figure 5.2 The rendered results of your first implementation of the Anchor layout in

listing 5.2

Creates
windowb

Sets
layoutc

Sets
dimensions

d

Configures
dimensions

e

Sets
size

f

96 CHAPTER 5 Exploring layouts

 }
]
 }));
 myWin.show();

In listing 5.2 you instantiate myWin B, an instance of Ext.Window, specifying the layout

as 'anchor' c. The first of the child items, Panel1, has its anchor parameter d spec-

ified as 100% of the parent’s width and 25% of the parent’s height. Panel2 has its

anchor parameter e specified a little differently, where the width parameter is 0,

which is shorthand for 100%. You set Panel2’s height to 50%. Panel3’s anchor param-

eter f is set to 50% relative width and 25% relative height. The rendered item should

look like figure 5.2.

 Relative sizing with percentages is great, but you also have the option to specify off-

sets, which allows greater flexibility with the Anchor layout. Offsets are calculated as

the content body dimension plus the offset. In general, offsets are specified as nega-

tive numbers to keep the child item in view. Let’s put on our algebra hats for a second

and remember that adding a negative integer is exactly the same as subtracting an

absolute integer. Specifying a positive offset would make the child’s dimensions

greater than the content body’s, requiring a scroll bar.

 We’ll explore offsets by using the previous example, modifying only the child item

XTypes from listing 5.2:

 items : [
 {
 title : 'Panel1',
 anchor : '-50, -150',
 frame : true
 },
 {
 title : 'Panel2',
 anchor : '-10, -150',
 frame : true
 }
]

The rendered panel from the preceding layout modification should look like fig-

ure 5.3. We reduced the number of child items to two to more easily illustrate how off-

sets work and how they can cause you a lot of trouble.

 It’s important to dissect what’s going on, which will require you to do a little math.

By inspecting the DOM with Firebug, you learn that the window’s content body is 285

pixels high and 288 pixels wide. Using simple math, you can determine what the

dimensions of Panel1 and Panel2 should be:

Panel1 Width = 288px - 50px = 238px
Panel1 Height = 285px - 150px = 135px
Panel2 Width = 288px - 10px = 278px
Panel2 Height = 285px - 150px = 135px

You can easily see that both child panels fit perfectly within the window. If you add the

height of both panels, you see that they fit, with a total of only 270 pixels. But what

97The Anchor layout

happens if you resize the window vertically? Notice anything strange? Increasing the

window’s height by more than 15 pixels results in Panel2 being pushed offscreen and

scroll bars appearing in the windowBody.

 Recall that with this layout, the child dimensions are relative to the parent’s con-

tent body plus a constant, which is the offset. To combat this problem, you can mix

anchor offsets with fixed dimensions. To explore this concept, modify Panel2’s anchor

parameter and add a fixed height:

 {
 title : 'Panel2',
 height : 150,
 anchor : '-10',
 frame : true
 }

This modification makes Panel2’s height fixed at 150 pixels. The newly rendered win-

dow can now be resized to virtually any size, and Panel1 will grow to the window con-

tent body minus 150 pixels, which leaves just enough vertical room for Panel2 to stay

onscreen. One neat thing about this is that Panel2 still has the relative width.

 Anchors are used for a multitude of layout tasks. The Anchor layout is used by the

Ext.form.Panel class by default, but it can be used by any container or subclass that

can contain other child items, such as Panel or Window.

 There are times when you need complete control over the positioning of the wid-

get layout. The Absolute layout is perfect for this requirement.

-50 width

-150 height

-10 width

-150 height

2
8

5
p

x

1
3

5
p

x
1
3

5
p

x

288px

238px 50px

278px

10px

1
5

0
p

x

Figure 5.3 Using offsets with an Anchor layout with sizing calculations

98 CHAPTER 5 Exploring layouts

5.4 The Absolute layout

Next to the Auto layout, the Absolute layout

is by far one of the simplest to use. It fixes

the position of a child by setting the CSS

'position' attribute of the child’s element

to 'absolute' and sets the top and left

attributes to the x and y parameters that you

set on the child items. Many designers place

HTML elements as a position: absolute

with CSS, but Ext JS uses JavaScript’s DOM-

manipulation mechanisms to set attributes

to the elements themselves, without having

to muck with CSS. Figure 5.4 shows what

you’ll be constructing. The next listing

shows how to create a window with an Abso-

lute layout.

var myWin = Ext.create("Ext.Window", {
 height : 300,
 width : 300,
 layout : 'absolute',
 autoScroll : true,
 border : false,
 items : [
 {
 title : 'Panel1',
 x : 50,
 y : 50,
 height : 100,
 width : 100,
 html : 'x: 50, y:50',
 frame : true
 },
 {
 title : 'Panel2',
 x : 90,
 y : 120,
 height : 75,
 width : 100,
 html : 'x: 90, y: 120',
 frame : true
 }
]
 });
 myWin.show();

By now, most of this code should look familiar to you, but there are a few new parame-

ters. The first noticeable change is that the window’s layout B parameter is set to

Listing 5.3 AbsoluteLayout in action

Figure 5.4 The results of your Absolute

layout implementation from listing 5.3

Sets
layout

b

Sets child
coordinates

c

Sets child
coordinates

d

99The Fit layout

'absolute'. You attach two children to this window. Because you’re using the Abso-

lute layout, you need to specify the X and Y coordinates.

 The first child, Panel1, has its X c (CSS left attribute) coordinate set to 50 pixels

and Y (CSS top attribute) coordinate set to 50. The second child, Panel2, has its X d
and Y coordinates set to 90 pixels and 120 pixels, respectively. The rendered code

should look like figure 5.4.

 One obvious detail in this example is that Panel2

overlaps Panel1. Panel2 is on top because of its place-

ment in the DOM tree. Panel2’s element is below

Panel1’s element, and because Panel2’s CSS position

attribute is set to 'absolute' as well, it’s going to show

above Panel1. Always keep the risk of overlapping in

mind when you implement this layout. Also, because the

positions of the child items are fixed, the Absolute lay-

out isn’t an ideal solution for parents that resize.

 If you have one child item and want it to resize with

its parent, the Fit layout is the best solution.

5.5 The Fit layout

The Fit layout forces a container’s single child to “fit” to its body element and is

another remarkably simple layout. Figure 5.5 illustrates the end results of this exer-

cise, as shown in the next listing.

var myWin = Ext.create("Ext.Window", {
 height : 200,
 width : 200,
 layout : 'fit',
 border : false,
 items : [
 {
 title : 'Panel1',
 html : 'I fit in my parent!',
 frame : true
 }
]
 });
 myWin.show();

In listing 5.4 you set the window’s layout property to 'fit' B and instantiate a single

child, an instance of Ext.Panel c. The child’s XType is assumed by the window’s

defaultType property, which is automatically set to 'panel' by the window’s proto-

type. The rendered panels should look like figure 5.5.

 The Fit layout is a great solution for a seamless look when a container has one

child. Often, though, multiple widgets are housed in a container. All other layout-

management schemes are generally used to manage multiple children. One of the

Listing 5.4 The Fit layout

Figure 5.5 Using the Fit layout

(listing 5.4)

Configures
layout

b

Adds
childc

100 CHAPTER 5 Exploring layouts

best-looking layouts is the Accordion layout, which allows you to vertically stack items

that can be collapsed, showing the user one item at a time.

5.6 The Accordion layout

The Accordion layout, shown in the following listing, is a direct subclass of the VBox

layout. It’s useful when you want to display multiple panels vertically stacked, where

only a single item can be expanded or contracted. Figure 5.6 shows the end result.

var myWin = Ext.create("Ext.Window", {
 height : 200,
 width : 300,
 border : false,
 title : 'A Window with an Accordion layout',
 layout : 'accordion',
 layoutConfig : {
 animate : true
 },
 items : [
 {
 xtype : 'form',
 title : 'General info',
 bodyStyle : 'padding: 5px',
 defaultType : 'field',
 fieldDefaults : {
 labelWidth: 50
 },
 labelWidth : 50,
 items : [
 {
 fieldLabel : 'Name',
 anchor : '-10'
 },
 {
 xtype : 'field',
 fieldLabel : 'Age',

Listing 5.5 The Accordion layout

Collapse/expand

Tools

Figure 5.6 The Accordion layout is an excellent way to present the user

with multiple items as a single visible component.

Creates
delegate
instance

b

Configures
layoutc

Adds first
child itemd

101The Accordion layout

 size : 3
 },
 {
 xtype : 'combo',
 fieldLabel : 'Location',
 anchor : '-10',
 store : ['Here', 'There', 'Anywhere']
 }
]
 },
 {
 xtype : 'panel',
 title : 'Bio',
 layout : 'fit',
 items : {
 xtype : 'textarea',
 value : 'Tell us about yourself'
 }
 },
 {
 title : 'Instructions',
 html : 'Please enter information.',
 tools : [
 {id : 'gear'}, {id:'help'}
]
 }
]
 });
 myWin.show();

Listing 5.5 demonstrates the usefulness of the Accordion layout. The first thing you

do is instantiate a window, myWin, which has its layout property set to 'accordion' B.

A configuration option you haven’t seen thus far is layoutConfig c. Some layout

schemes have specific configuration options, which you can define as configuration

options for a component’s constructor.

 These layoutConfig parameters can change the way a layout behaves or functions.

In this case, you set layoutConfig for the Accordion layout, specifying animate: true,

which instructs the Accordion layout to animate the collapse and expansion of a

child item. Another behavior-changing configuration option is activeOnTop, which,

if set to true, will move the active item to the top of the stack. When you’re working

with a layout for the first time, we suggest consulting the API for all the options avail-

able to you.

 Next you start to define child items, which build on some of the knowledge

you’ve gained so far. The first child is FormPanel d, which uses the anchor parame-

ters you learned about earlier in this chapter. Next you specify a panel e that has its

layout property set to 'fit' and contains a child TextArea. You then define the last

child item f as a vanilla panel with some tools. The rendered code should look like

figure 5.6.

Creates
text areae

Adds panel
with toolsf

102 CHAPTER 5 Exploring layouts

It’s important to note that the Accordion layout can only function well with an

Ext.panel.Panel and two of its subclasses, Ext.grid.Panel and Ext.tree.Panel.

This is because Panel (and the two specified subclasses) has what’s required for the

Accordion layout to function properly. If you need anything else inside an Accordion

layout, such as a tab panel, wrap a panel around it and add that panel as a child of the

container that has the Accordion layout.

 Although the Accordion layout is a good solution for having more than one panel

onscreen, it has limitations. For instance, what if you needed to have 10 components

in a particular container? The sum of the heights of the title bars for each item would

take up a lot of valuable screen space. The Card layout is perfect for this requirement,

because it allows you to show and hide or flip through child components.

5.7 The Card layout

The Card layout ensures that its children conform to the size of the container. Unlike

the Fit layout, the Card layout can have multiple children under its control. This tool

gives you the flexibility to create components that mimic wizard interfaces.

 Except for the initial active item, the Card layout leaves all of the flipping to the

end developer with its publicly exposed setActiveItem method. To create a wizard-

like interface, you need to create a method to control the card flipping:

 var handleNav = function(btn) {
 var activeItem = myWin.layout.activeItem,
 index = myWin.items.indexOf(activeItem),
 numItems = myWin.items.getCount(),
 indicatorEl = Ext.getCmp('indicator').el;

 if (btn.text == 'Forward' && index < numItems - 1) {
 index++;
 myWin.layout.setActiveItem(index);
 index++;
 indicatorEl.update(index + ' of ' + numItems);
 }
 else if (btn.text == 'Back' && index > 0) {
 myWin.layout.setActiveItem(index - 1);
 indicatorEl.update(index + ' of ' + numItems);
 }
 }

Another way to configure layouts

Instead of using both the layout (String) as well as the layoutConfig (Object)
configurations, you can set the layout configuration to an Object that contains both

the layout type and any options for that layout. For example:

layout : {
 type : 'accordion',
 animate : true
}

103The Card layout

Here you control the card flipping by determining the active item’s index and setting

the active item based on whether the Forward or Back button is clicked. You then

update the indicator text on the bottom toolbar. Next let’s implement your Card lay-

out. The code example in the next listing is rather long and involved, so please stick

with us.

var myWin = Ext.create("Ext.Window", {
 height : 200,
 width : 300,
 border : false,
 title : 'A Window with a Card layout',
 layout : 'card',
 activeItem : 0,
 defaults : { border : false },
 items : [
 {
 xtype : 'form',
 title : 'General info',
 bodyStyle : 'padding: 5px',
 defaultType : 'field',
 labelWidth : 50,
 items : [
 {
 fieldLabel : 'Name',
 anchor : '-10',
 },
 {
 xtype : 'numberfield',
 fieldLabel : 'Age',
 size : 3
 },
 {
 xtype : 'combo',
 fieldLabel : 'Location',
 anchor : '-10',
 store : ['Here', 'There', 'Anywhere']
 }
]
 },
 {
 xtype : 'panel',
 title : 'Bio',
 layout : 'fit',
 items : {
 xtype : 'textarea',
 value : 'Tell us about yourself'
 }
 },
 {
 title : 'Congratulations',
 html : 'Thank you for filling out our form!'

Listing 5.6 The Card layout in action

Sets card
layout

b

Configures
active itemc

104 CHAPTER 5 Exploring layouts

 }
],
 dockedItems : [
 {
 xtype : 'toolbar',
 dock : 'bottom',
 items : [
 {
 text : 'Back',
 handler : handleNav
 },
 '-',
 {
 text : 'Forward',
 handler : handleNav
 },
 '->',
 {
 type : 'component',
 id : 'indicator',
 style : 'margin-right: 5px',
 html : '1 of 3'
 }
]
 }
]
 });
 myWin.show();

Listing 5.6 details the creation of a window that uses the Card layout. Although most

of this should be familiar to you, we should point out a few things. The first obvious

item is the layout property B, which is set to 'card'. Next is the activeItem prop-

erty c, which the container passes to the layout at render time. You set this to 0

(zero), which tells the layout to call the child component’s render method when the

container renders.

 Next you define the bottom toolbar, which contains the Forward and Back d but-

tons, which call your previously defined handleNav method and a generic compo-

nent e that you use to display the index of the current active item. The rendered

container should look like the one in figure 5.7.

 Clicking Forward or Back will invoke the handleNav method, which will take care

of the card flipping and update the indicator component. Remember that with the

Adds navigation
buttons

d

Adds indicator
componente

Figure 5.7 Your first Card

layout implementation with a

fully interactive navigation

toolbar (listing 5.6)

105The Column layout

Card layout, the logic of the active item switching is completely up to the end devel-

oper to create and manage.

 In addition to the previously discussed layouts, Ext JS offers a few more schemes.

The Column layout is one of the favorite schemes among UI developers for organizing

UI columns that can span the entire width of the parent container.

5.8 The Column layout

Organizing components into columns allows you to display multiple components in a

container side by side. Like the Anchor layout, the Column layout allows you to set the

absolute or relative width of the child components. There are some things to look out

for when using this layout. We’ll highlight these in a bit, but first let’s construct a Col-

umn layout window, as shown in the following listing.

var myWin = Ext.create("Ext.Window", {
 height : 200,
 width : 400,
 autoScroll : true,
 id : 'myWin',
 title : 'A Window with a Column layout',
 layout : 'column',
 defaults : {
 frame : true
 },
 items : [
 {
 title : 'Col 1',
 id : 'col1',
 columnWidth : .3
 },
 {
 title : 'Col 2',
 html : "20% relative width",
 columnWidth : .2
 },
 {
 title : 'Col 3',
 html : "100px fixed width",
 width : 100
 },
 {
 title : 'Col 4',
 frame : true,
 html : "50% relative width",
 columnWidth : .5
 }
]
 });
 myWin.show();

Listing 5.7 Exploring the Column layout

Sets
scrollable

b

Configures
layoutc

Sets relative
widthd

Fixes width
to 100 pixelse

Configures
relative widthf

106 CHAPTER 5 Exploring layouts

In a nutshell, the Column layout is easy to use. Declare child items and specify relative

or absolute widths or a combination of both, as you do here. In listing 5.7, you set the

autoScroll property B of the container to true, which ensures that scroll bars will

appear if the composite of the child component dimensions grows beyond those of the

container. Next you set the layout property to 'column' c. You then declare four child

components, the first of which has its relative width set to 30% via the columnWidth d
property. Set the second child’s relative width to 20%. You mix things up a bit by setting

a fixed width for the third child of 100 pixels e. Last, you set a relative width f of 50%

for the last child. The rendered example should look like figure 5.8.

 If you tally up the relative widths, you’ll see that they total up to 100%. How can

that be? Three components, taking 100% width, and a fixed-width component? To

understand how this is possible you need to dissect how the Column layout sets the

sizes of all of the child components. Put your math cap back on for a moment.

 The meat of the Column layout is its onLayout method, which calculates the

dimensions of the container’s body, which in this case is 388 pixels. It then goes

through all of its direct children to determine the amount of available space to give to

any of the children with relative widths.

 To do this, it first subtracts the width of each of the absolute-width child compo-

nents from the known width of the container’s body. In this example, you have one

child with an absolute width of 100 pixels. The Column layout calculates the differ-

ence between 388 and 100, which is 288 (pixels).

 Now that the Column layout knows exactly how much horizontal space it has left, it

can set the size of each of the child components based on the percentage. It goes

through each of the children and sizes each one based on the known available hori-

zontal width of the container’s body. It does this by multiplying the percentage (deci-

mal) by the available width. Once complete, the sum of the widths of relatively sized

components turns out to be about 288 pixels.

 Now that you understand the width calculations for this layout, let’s change our

focus to the height of the child items. Notice how the height of the child components

doesn’t equal the height of the container body; this is because the Column layout

doesn’t manage the height of the child components. This causes an issue with child

items that may grow beyond the height of their containers’ bodies. This is precisely

Figure 5.8 Your first Column

layout, which uses relative

column widths with a fixed-

width entity

107The HBox and VBox layouts

why you set autoScroll to true for the window. You can exercise this theory by add-

ing an extra-large child to the 'Col 1' component. Enter the following code inside

Firebug’s JavaScript input console. Make sure you have a virgin copy of listing 5.7 run-

ning in your browser:

 Ext.getCmp('col1').add({
 height : 250,
 title : 'New Panel',
 frame : true
 });

You should now see a panel embedded into the 'Col 1' panel with its height exceed-

ing that of the window’s body. Notice how scroll bars appear in the window. If you

didn’t set autoScroll to true, your UI would look cut off and might have its usability

reduced or halted. You can scroll vertically and horizontally. The reason you can scroll

vertically is that Col1’s overall height is greater than that of the window’s body. That’s

acceptable. The horizontal scrolling is the problem in this case. Recall that the Col-

umn layout calculated only 288 pixels to properly size the three columns with relative

widths. Because the vertical scroll bar is now visible, the physical amount of space in

which the columns can be displayed is reduced by the width of the vertical scroll bar.

In Ext JS 4, the parent’s doLayout method is automatically called when adding a com-

ponent to any of the direct children (in earlier versions you would have to call doLayout

on the parent to keep your UIs looking great).

 As you can see, the Column layout is great for organizing your child components

in columns. With this layout, you have two limitations. All child items are always left-

justified, and their heights are unmanaged by the parent container. Ext JS offers the

HBox layout to help overcome the limitations of the Column layout and extend it far

beyond its capabilities.

5.9 The HBox and VBox layouts

The HBox layout’s behavior is similar to that of the Column layout because it displays

items in columns, but it allows for much greater flexibility. For instance, you can

change the alignment of the child items both vertically and horizontally. Another

great feature of this layout scheme is the ability to allow the columns or rows to stretch

to their parent’s dimensions if required.

 Let’s dive into the HBox layout, shown in the next listing, where you’ll create a con-

tainer with three child panels to manipulate. But first, check out figure 5.9 to see what

you’re trying to accomplish.

Ext.create("Ext.Window", {
 layout : 'hbox',
 height : 300,
 width : 300,
 title : 'A Container with an HBox layout',

Listing 5.8 HBox layout: exploring the packing configuration

Sets layout
to 'hbox'b

108 CHAPTER 5 Exploring layouts

 layoutConfig : {
 pack : 'start'
 },
 defaults : {
 frame : true,
 width : 75
 },
 items : [
 {
 title : 'Panel 1',
 height : 100
 },
 {
 title : 'Panel 2',
 height : 75,
 width : 100
 },
 {
 title : 'Panel 3',
 height : 200
 }
]
 }).show();

In listing 5.8 you set layout to 'hbox' B and specify the layoutConfig c configuration

object. You create the three child panels with irregular shapes, allowing you to properly

exercise the different layout configuration parameters. Of these you can specify two, pack

and align, where pack means “vertical alignment” and align means “horizontal align-

ment.” Understanding the meanings for these two parameters is important because

they’re flipped for the HBox layout’s cousin, the VBox layout. The pack parameter accepts

three possible values: 'start', 'center', and 'end'. In this context, we like to think of

them as left, center, and right. Modifying that parameter in listing 5.8 will result in one of

the rendered windows in figure 5.9. The default value for the pack attribute is 'start'.

 The align parameter accepts four possible values: 'top', 'middle', 'stretch',

and 'stretchmax'. Remember that with the HBox layout, the align property specifies

vertical alignment.

pack : 'start' pack : 'center' pack : 'end'

Figure 5.9 The HBox layout options (listing 5.8)

Specifies layout
configurationc

109The HBox and VBox layouts

The default parameter for align is 'top'. To change how the child panels are verti-

cally aligned, you need to override the default by specifying it in the layoutConfig

object for the container. Figure 5.10 illustrates how you can change the way the chil-

dren are sized and arranged based on a few different combinations.

 Specifying a value of 'stretch' for the align attribute instructs the HBox layout to

resize the child items to the height of the container’s body, which overcomes one lim-

itation of the Column layout.

 The last configuration parameter that we must explore is flex, which is similar to

the columnWidth parameter for the Column layout and gets specified on the child

items. Unlike the columnWidth parameter, the flex parameter is interpreted as a

weight or a priority instead of a percentage of the columns. Let’s say, for instance,

you’d like each of the columns to have equal widths. Set each column’s flex to the

same value, and they’ll all have equal widths. If you wanted to have two of the columns

expand to a total of one half of the width of the parent’s container and the third to

expand to the other half, make sure that the flex value for each of the first two col-

umns is exactly half that of the third column. For instance:

 defaults : {
 frame : true,
 width : 75
 },
 items : [
 {
 title : 'Panel 1',
 flex : 1
 },
 {
 title : 'Panel 2',
 flex : 1
 },
 {
 title : 'Panel 3',

pack : 'start'

align: 'middle'

pack : 'center'

align: 'middle'

pack : 'end'

align: 'stretch'

Figure 5.10 The 'stretch' alignment will always override any height values specified

by the child items.

110 CHAPTER 5 Exploring layouts

 flex : 2
 }
]

Stacking items vertically is also possible with the VBox layout, which follows the same

syntax as the HBox layout. To use the VBox layout, modify listing 5.8 by changing

layout to 'vbox', and refresh the page. Next, you can apply the flex parameters

described earlier to make each of the panels relative in height to the parent container.

We like to think of the VBox layout as the Auto layout on steroids.

 Contrasting the VBox layout with the HBox layout, there’s one parameter change.

Recall that the align parameter for the HBox layout accepts a value of 'top'. For the

VBox layout, though, you specify 'left' instead of 'top'.

 Now that you’ve mastered HBox and VBox

layouts, we’ll switch gears to the Table layout,

where you can position child components,

such as a traditional HTML table.

5.10 The Table layout

The Table layout gives you complete control

over how you visually organize your compo-

nents. Many of you are used to building HTML

tables the traditional way, where you write the

HTML code. Building a table of Ext JS compo-

nents is different because you specify the con-

tent of the table cells in a single-dimension

array, which can get a little confusing.

 We’re sure that once you’ve finished these

exercises you’ll be an expert in this layout. In

the next listing you’ll create a basic 3x3 Table

layout like the one in figure 5.11.

var myWin = Ext.create("Ext.Window", {
 height : 300,
 width : 300,
 border : false,
 autoScroll : true,
 title : 'A Window with a Table layout',
 layout : {
 type : 'table',
 columns : 3
 },
 defaults : {
 height : 50,
 width : 50
 },

Listing 5.9 A vanilla Table layout

Figure 5.11 The results of your first Table

layout in listing 5.9

Specifies layout
as 'table'

b

Sets number
of columnsc

Configures
default sized

111The Table layout

 items : [
 {
 html : '1'
 },
 {
 html : '2'
 },
 {
 html : '3'
 },
 {
 html : '4'
 },
 {
 html : '5'
 },
 {
 html : '6'
 },
 {
 html : '7'
 },
 {
 html : '8'
 },
 {
 html : '9'
 }
]
 });
 myWin.show();

The code in listing 5.9 creates a window con-

tainer that has nine boxes stacked in a 3x3

formation like in figure 5.11. By now most of

this should seem familiar to you, but we

want to highlight a few items. The most obvi-

ous of these should be the layout type

parameter B, set to 'table'. Next, you set a

layout column property c, which sets the

number of columns. Always remember to set

this property when using this layout. Last, you

set defaults d for all the child items to 50

pixels wide by 50 pixels high.

 Often you need sections of the table to

span multiple rows or multiple columns. To

accomplish this you must specify either the

rowspan or the colspan parameter explicitly

on the child items. When you’re done your

layout will look like figure 5.12.

Figure 5.12 When using the Table layout

you could specify rowspan and colspan

for a particular component, which will

make it occupy more than one cell in

the table.

112 CHAPTER 5 Exploring layouts

 Let’s modify your table so the child items can span multiple rows or columns, as

shown in the following listing.

items : [
 {
 html : '1',
 colspan : 3,
 width : 150
 },
 {
 html : '2',
 rowspan : 2,
 height : 100
 },
 {
 html : '3'
 },
 {
 html : '4',
 rowspan : 2,
 height : 100
 },
 {
 html : '5'
 },
 {
 html : '6'
 },
 {
 html : '7'
 },
 {
 html : '8'
 },
 {
 html : '9',
 colspan : 3,
 width : 150
 }
]

In listing 5.10 you reuse the existing Container code from listing 5.9 and replace the

child items array. You set the colspan attribute for the first panel B to 3 and manu-

ally set its width to fit the total known width of the table, which is 150 pixels. Remem-

ber that you have three columns of default 50x50 child containers. Next, you set the

rowspan property of the second child item c to 2 and its height to the total of two

rows, which is 100 pixels. You do the same thing for panel 4 d. The last change

involves panel 9, which has the exact same attributes as panel 1 e. The rendered

table after the changes should look like figure 5.12.

Listing 5.10 Exploring rowspan and colspan

Sets colspan to 3,
width to 150 px

b

Sets rowspan to 2,
height to 100 px

c

Sets rowspan to 2,
height to 100 px

d

Sets colspan to 3,
width to 150 px

e

113The Border layout

 When using the Table layout, keep a few things in mind. First, determine the total

number of columns that’ll be used and specify it in the layout column config property.

Also, if you’re going to have components span rows and/or columns, be sure to set

their dimensions accordingly; otherwise the components laid out in the table won’t

seem to be aligned correctly. The Table layout is extremely versatile and can be used

to create any type of box-based layout that your imagination conjures up, with the

main limitation being that there’s no parent-child size management.

 Moving to our last stop on the Ext JS layout journey, we reach the ever-popular Bor-

der layout, which lets you divide any container into five collapsible regions that man-

age their children’s size.

5.11 The Border layout

The Border layout made its debut in 2006, back when Ext was little more than a mere

extension to the YUI library. It has since matured into an extremely flexible and

easy-to-use layout that provides full control over its subparts, or regions. The Border

layout has seen widespread use as an easy way to divide complex applications into

manageable regions. These regions are aptly named by polar coordinates: North,

South, East, West, and Center. Figure 5.13 illustrates a Border layout implementation

from the Ext JS SDK.

 Depending on the configuration options provided, the region can be resized or

collapsed by the user. Options are also available to limit the resize of the region or pre-

vent it from being resized altogether.

 To explore the Border layout we’ll use the Viewport class, shown in the next list-

ing, which will make it easier for you to see the final result of this exercise.

Figure 5.13 The Border layout is what attracts many new developers to the Ext JS

framework and is widely used in many applications to divide the screen into task-specific

functional areas.

114 CHAPTER 5 Exploring layouts

Ext.create('Ext.Viewport', {
 layout : 'border',
 defaults : {
 frame : true,
 split : true
 },
 items : [
 {
 title : 'North Panel',
 region : 'north',
 height : 100,
 minHeight : 100,
 maxHeight : 150,
 collapsible : true
 },
 {
 title : 'South Panel',
 region : 'south',
 height : 75,
 split : false,
 margins : {
 top : 5
 }
 },
 {
 title : 'East Panel',
 region : 'east',
 width : 100,
 minWidth : 75,
 maxWidth : 150,
 collapsible : true
 },
 {
 title : 'West Panel',
 region : 'west',
 collapsible : true,
 collapseMode : 'mini',
 width : 100
 },
 {
 title : 'Center Panel',
 region : 'center'
 }
]
 });

In listing 5.11 you accomplish a lot using Viewport in a few lines of code. You set

layout to 'border' B and set split to true in the default configuration object.

There’s a lot going on here at once, so feel free to reference figure 5.14, which depicts

what the rendered code will look like.

Listing 5.11 Flexing the Border layout

Splits regions,
allowing for resize

b

Adds north
region

c

Sets resizable
south region

d

Configures the
east region

e

Adds west
region

f

115The Border layout

Next, you begin to instantiate child items, which have Border layout region–specific

parameters. To review many of them you’ll make each region’s behavior different

from the other (see figure 5.14).

 For the first child c, you set the region property to 'north' to ensure that it’s at

the top of the Border layout. You play a little game with the box component–specific

parameter, height, and the region-specific parameters, minHeight and maxHeight. By

specifying a height of 100, you’re instructing the region to render the panel with an

initial height of 100 pixels. minHeight instructs the region to not allow the split bar to be

dragged beyond the coordinates that’d make the northern region the minimum height

of 100. The same is true for the maxHeight parameter, except it applies to expanding

the region’s height. You also specify the panel-specific parameter collapsible as true,

which instructs the region to allow it to be collapsed to a mere 30 pixels high.

 Defining the south region, the viewport’s second child d, you set some configura-

tion items to prevent it from being resized but keeping the layout’s 5-pixel split

between the regions. By setting split to false you instruct the region to not allow it

to be resized. Doing this also instructs the region to omit the 5-pixel split bar, which

would make the layout somewhat visually incomplete. To achieve a façade split bar,

you use a region-specific margins parameter, which specifies that you want the south

region to have a 5-pixel buffer between itself and anything above it. One word of cau-

tion about this: although the layout now looks complete, end users may try to resize it,

possibly causing frustration on their end.

 The third child e is defined as the east region. This region is configured much

the same as the north panel, but it has sizing constraints that are a bit more flexible.

Whereas the north region starts its life out at its minimum size, the east region starts

its life between its minWidth and maxWidth. Specifying size parameters like these

North region

East regionWest region

Center region

South region

Mini-collapse

tool

Figure 5.14 The Border layout’s versatility and ease of use make it one of the most widely used

in Ext JS–based RIAs.

116 CHAPTER 5 Exploring layouts

allows the UI to present a region in a default or suggested size while also allowing the

panel to be resized beyond its original dimensions.

 The west region f has a special region-specific parameter, collapseMode, set to

the string 'mini'. Setting the parameter in this way instructs Ext JS to collapse a panel

to a mere 5 pixels, providing more visual space for the center region. Figure 5.15 illus-

trates how small the region will be when collapsed. By allowing the split parameter

to remain true (remember the defaults object) and by not specifying minimum or

maximum size parameters, the west region can be resized as far as the browser will

physically allow.

 The last region is the center region, which is the only required region for the Bor-

der layout. Although the center region seems a bit bare, it’s special indeed. The cen-

ter region is generally the canvas in which developers place the bulk of their RIA UI

components, and its size is dependent on the dimensions of its sibling regions.

 For all of its strengths, the Border layout has one huge disadvantage, which is that

once a child in a region is defined or created it can’t be changed. The fix for this is

extremely simple. For each region where you wish to replace components, specify a con-

tainer as a region. Let’s try this by replacing the center region section for listing 5.11:

{
 xtype : 'container',
 region : 'center',
 layout : 'fit',
 id : 'centerRegion',
 items : {
 title : 'Center Region',
 id : 'centerPanel',
 html : 'I am disposable',
 frame : true
 }
 }

Mini-collapse

tool

Figure 5.15 The Border layout, where two of the regions, north and east, are

collapsed in regular mode and the west panel is collapsed in miniature mode

117Summary

Remember that the viewport can be created only once, so a refresh of the page where

the example code lies is required. The refreshed viewport should look nearly identical

to figure 5.15 except that the center region now has HTML showing that it’s dispos-

able. In the previous example you define the container XType with a layout of 'fit'

and an id that you can use with Firebug’s JavaScript console.

 Think back to our previous discussion and exercises related to adding and remov-

ing child components to and from a container—can you recall how to get a reference

to a component from its id and remove a child? If you can, excellent work! If you

can’t, we’ve already worked it out for you. But be sure to review the prior sections

because they’re extremely important to managing the Ext JS UI. Take a swipe at

replacing the center region’s child component, as shown in the next listing.

 var centerPanel = Ext.getCmp('centerPanel'),
 centerRegion = Ext.getCmp('centerRegion');

 centerRegion.remove(centerPanel, true);

 centerRegion.add({
 xtype : 'form',
 frame : true,
 bodyStyle : 'padding: 5px',
 defaultType : 'field',
 title : 'Please enter some information',
 defaults : {
 anchor : '-10'
 },
 items : [
 {
 fieldLabel : 'First Name'
 },
 {
 fieldLabel : 'Last Name'
 },
 {
 xtype : 'textarea',
 fieldLabel : 'Bio'
 }
]
 });

Listing 5.12 uses everything you’ve learned so far regarding components, containers,

and layouts, providing you with the flexibility to replace the center region’s child, a

panel, with a form panel, with relative ease. You can use this pattern in any of the

regions to replace items at will.

5.12 Summary

This chapter explored the many and versatile Ext JS layout schemes. You learned

about some of the strengths, weaknesses, and pitfalls associated with the various lay-

outs. Remember that although many layouts can do similar things, each has its place

Listing 5.12 Replacing a component in the center region

118 CHAPTER 5 Exploring layouts

in a UI. The correct layout to display components may not be immediately apparent

and will take some practice to find if you’re new to UI design.

 If you aren’t 100% comfortable with the material as you finish this chapter, we

suggest moving forward and returning to it after some time has passed and the mate-

rial has had some time to sink in. A good time to revisit this chapter is when you start

part 3, “Building an application.”

 Now that we’ve covered many of the core topics, put your seatbelt on, because

you’re going to be in for a wild ride. Next, you’ll learn more about Ext JS’s UI widgets,

starting with forms.

119

Forms in Ext JS

You just learned how to organize UI widgets with the various layout managers in the

Ext JS framework. From here we’ll spring into instantiating and managing Ext JS

form elements. What’s an application without user input?

 It should be no surprise that developing and designing forms is a common task

for web developers. Managing form validation is what JavaScript was mainly used

for just a few years ago. Ext JS goes beyond typical form validation, building on the

basic HTML input fields to both add features for the developer and enhance the user

experience. For instance, let’s say a user is required to enter HTML into a form.

Using an out-of-the-box text area input field, the user would have to write the

HTML content by hand. This isn’t required with the Ext JS HTML Editor, where you

get a full WYSIWYG input field, allowing the user to input and manipulate richly for-

matted HTML easily.

 In this chapter we’ll investigate the form panel, and you’ll learn about many of

the Ext JS form input classes. You’ll also see how to build on what you know about

This chapter covers

■ Exploring form panel input fields

■ Creating custom ComboBox templates

■ Creating a complex layout form panel

120 CHAPTER 6 Forms in Ext JS

layouts and the Container model to construct a complex form and use that implemen-

tation to submit and load the data via Ajax.

 Because there are so many things to cover with input fields, this chapter will follow

a cookbook style, where we walk you through the many Ext JS input fields such as the

generic text field, text area, and number fields. We’ll take a good look at the Combo-

Box, an input field that merges a simple text field with a custom drop-down list and

that’s arguably the most complex input field to implement in the framework. Once

you get a solid grasp on these input fields, we’ll tie things together by implementing

and discussing the FormPanel class, where you’ll learn the ins and outs of saving and

loading data.

6.1 Basic input fields

The Ext JS form field and descendants add features to the existing HTML input field

such as basic validations, a custom validation method, automatic resizing, and keyboard

filtering. To use some of the more powerful features such as keyboard filters (masks)

and automatic character stripping, you’ll need to know about regular expressions.

6.1.1 Input fields and validation

We’re going to explore quite a few features of fields at once. Please stay with us,

because some of the example code can be lengthy.

 Fields are built as children of a form panel to keep track of presentation issues. To

start you’ll create the items array, which will contain the XType definitions of the dif-

ferent text fields, as shown in the following listing.

Ext.QuickTips.init();
 var fpItems =[
 {
 fieldLabel : 'Alpha only',
 allowBlank : false,
 emptyText : 'This field is empty!',
 maskRe : /[a-z]/i ,
 msgTarget : 'side'
 },
 {
 fieldLabel : 'Simple 3 to 7 Chars',
 allowBlank : false,
 msgTarget : 'under',
 minLength : 3,

Learn more about regex with JavaScript

If you’re new to regular expressions, there’s a plethora of information on the internet.

One of our favorite sites to learn about this topic is www.regularexpressions.info/

javascript.html.

Listing 6.1 Text fields

Specifies
empty field

b

Specifies alpha-
only charactersc

Allows min/max
number of characters

d

www.regularexpressions.info/javascript.html
www.regularexpressions.info/javascript.html

121Basic input fields

 maxLength : 7
 },
 {
 fieldLabel : 'Special Chars Only',
 msgTarget : 'qtip',
 stripCharsRe : /[a-zA-Z0-9]/ig
 },
 {
 fieldLabel : 'Web Only with VType',
 vtype : 'url',
 msgTarget : 'side'
 }
];

In listing 6.1 you must work a lot of angles to demonstrate the capabilities of the sim-

ple text field. You create four text fields in the fpItems array. One of the redundant

attributes that each child has is fieldLabel, which is the text to place in the label ele-

ment for the field element.

 For the first child you ensure that the field can’t be blank by specifying allowBlank

as false, which ensures that you use one of Ext JS’s basic field validations. You also set

a string value for emptyText B, which displays helper text and can be used as a

default value. One important thing to be aware of is that it gets sent as the field’s value

during form submission. Next you set maskRe c, a regular expression mask, to filter

keystrokes that resolve to anything other than alpha characters. The second text field

is built so it can’t be left blank and must contain from three to seven characters to be

valid. You do this by setting the minLength d and maxLength parameters. The third

text field can be blank, but it has automatic alphanumeric character stripping. You

enable automatic stripping by specifying a valid regular expression for the strip-

CharsRe property e. For the last child item f you use the VType url to test whether

the entered value is a URL. In the next listing you’ll create a form panel to render your

input fields.

var fp = Ext.create('Ext.form.Panel', {
 renderTo : Ext.getBody(),
 width : 400,
 height : 240,
 title : 'Exercising textfields',
 frame : true,
 bodyStyle : 'padding: 6px',
 labelWidth : 126,
 defaultType : 'textfield',
 defaults : {
 msgTarget : 'side',
 anchor : '-20'
 },
 items : fpItems
 });

Listing 6.2 Building the form panel for your text fields

Allows only
special characters

e

Uses url
VTypef

Sets default XType
to textfield

b

Sets validation
message targetc

122 CHAPTER 6 Forms in Ext JS

Most of the code constructed in listing 6.2 should be familiar to you. But let’s review a

few key items relating to the Component model. You override the default component

XType by setting the defaultType property B to 'textfield', which, if you recall,

will ensure your objects are resolved into text fields. You also set up some defaults c,

which ensure your error message target is to the right side of the field and your

anchor property is set. Last, you set the form panel’s items config to the fpItems vari-

able that you created earlier, which contains the four text fields. The rendered form

panel should look like figure 6.1.

 Notice in figure 6.1 that there’s a little extra space to the right of the text fields.

This is because you must ensure that validation error messages are displayed to the

right of the fields. This is why you set msgTarget to 'side' for your default object

in your form panel definition. You can invoke validation one of two ways: focusing

and blurring (losing focus) a field or invoking a form-wide isValid method call,

fp.getForm().isValid(). Figure 6.2 shows what the fields look like after validation

has occurred.

 Each field can have its own msgTarget property, which can be any of five possible

attributes:

■ qtip—Displays an Ext JS quick tip on mouseover

■ title—Shows the error in the default browser title area

■ under—Positions the error message below the field

Figure 6.1 The rendered

results of your form panel,

which contains four text fields

Figure 6.2 Validation error messages

123Basic input fields

■ side—Renders an exclamation icon to the right side of the field

■ [element id]—Adds the text of the error message as the innerHTML of the tar-

get element

Note that the msgTarget property affects how the error message is displayed only

when the field is inside a FieldContainer (typically a form panel). If the text field is

rendered to some arbitrary element somewhere on the page (that is, using renderTo

or applyTo), msgTarget will be set only to title. We encourage you to spend some

time experimenting with the various msgTarget values; that way, when it comes down

to building your first real-world form, you’ll have a good understanding of the way

they work. Let’s see how to create password and file-upload fields using the text field.

6.1.2 Password and file-select fields

To create a password field, you select the password input type, and for a file input

field, you set xtype to 'filefield'.

 In Ext JS, to generate these, enter the following:

 var fpItems =[
 {
 fieldLabel : 'Password',
 allowBlank : false,
 inputType : 'password',
 },
 {
 fieldLabel : 'File',
 allowBlank : false,
 xtype : 'filefield'
 }
];

Figure 6.3 shows a rendered version of the password and file input fields in a

form panel.

 We’ve covered a lot about text fields, field validations, and the password and file-

upload fields. We’ll now move on to looking at other input fields.

6.1.3 Building a text area

The TextArea class extends TextField. The text area field is a multiline input field.

Constructing a text area is like constructing a text field, except you have to take the

Figure 6.3 Your password and file-upload fields with data filled in (left) and an example of the side

validation error icons (right)

124 CHAPTER 6 Forms in Ext JS

component’s height into consideration. Here’s an example text area with a fixed

height but a relative width:

 {
 xtype : 'textarea',
 fieldLabel : 'My TextArea',
 name : 'myTextArea',
 anchor : '100%',
 height : 100
 }

It’s as easy as that. Let’s take a quick look at how you can use the number field.

6.1.4 The convenient number field

Sometimes requirements dictate that you place an input field that allows only num-

bers to be entered. You could do this with the text field and apply your own valida-

tion, but why reinvent the wheel? The number field does pretty much all of the

validation for you for integers and floating numbers. Let’s create a number field

that accepts floating-point numbers with precision to thousandths and allows only

specific values:

{
 xtype : 'numberfield',
 fieldLabel : 'Numbers only',
 allowBlank : false,
 emptyText : 'This field is empty!',
 decimalPrecision : 3,
 minValue : 0.001,
 maxValue : 2
 }

To apply your requirements for this number field, you specify the decimalPrecision,

minValue, and maxValue properties. Doing so ensures that any floating number writ-

ten with greater precision than 3 is rounded up. Likewise, the minValue and maxValue

properties are applied to ensure that the valid range is 0.001 to 2. Any number out-

side of this range is considered invalid, and Ext JS will mark the field as such. The

number field looks exactly like the text field when rendered, with the addition of

triggers (buttons) that allow users to increment or decrement the value via mouse

click. There are a few more properties that can assist with the configuration of the

number field.

 Now that we’ve looked at the text, text area, and number fields, let’s look at their

distant cousin, the ComboBox.

6.2 Type-ahead with the ComboBox

The cleverly named ComboBox field is like the Swiss Army knife of text input fields.

It’s a combination of a general text input field and a general drop-down box to give

you a flexible and highly configurable combination input field. The ComboBox has

the ability to automatically complete text entries (known as type-ahead) in the text input

125Type-ahead with the ComboBox

area, and, coupled with a remote data store, it can work with the server side to filter

results. If the ComboBox is performing a remote request against a large dataset, you

can enable result paging by setting the pageSize property. Figure 6.4 illustrates the

anatomy of a remote-loading and -paging ComboBox.

 Before we look at how the ComboBox works, let’s explore how to construct one.

Because you’re familiar with how to lay out child items, this is an excellent opportu-

nity to use your new recently gained knowledge. So moving forward, when we discuss

items that don’t contain children, such as fields, we’ll leave it up to you to build a con-

tainer. You can use the form panel from listing 6.2.

6.2.1 Building a local ComboBox

Creating a text field is simple compared to building a ComboBox. This is because the

ComboBox has a direct dependency on a class called data Store, which is the main

tool to manage data in the framework. We’ll just scratch the surface of this supporting

class here and will go into much greater detail in chapter 7. In the following listing

you’ll build your first ComboBox using an XType configuration object.

var mySimpleStore = ({
 type : 'array',
 fields : ['name'],
 data : [
 ['Jack Slocum'],
 ['Abe Elias'],
 ['Aaron Conran'],
 ['Evan Trimboli']
]
 });

Listing 6.3 Building your first ComboBox

Trigger

Autocompleted

text (green)

List box

PagingToolbar

Figure 6.4 An example UI of a remote-loading and -paging ComboBox with type-ahead

Builds
ArrayStoreb

126 CHAPTER 6 Forms in Ext JS

 var combo = {
 xtype : 'combo',
 fieldLabel : 'Select a name',
 store : mySimpleStore,
 displayField : 'name',
 typeAhead : true,
 mode : 'local'
 };

In listing 6.3 you construct a simple store that reads array data, known as an array

store B (a preconfigured extension of the Ext.data.Store class), which makes it easy

for you to create a store that digests array data. You populate the consumable array

data and set it as the data property for the configuration object. Next, you specify the

fields property as an array of data points from which the data store will read and

organize records. Because you have only one data point per array in your array, you

specify only a single point and give it a name of 'name'. Again, we’ll go into much

greater detail on the data store in chapter 7, and you’ll learn the entire gamut from

records to connection proxies.

 You specify your combo as a simple POJSO (Plain

Old JavaScript Object), setting the xtype property as

'combo' to ensure that its parent container calls the

correct class. You specify the reference of your previ-

ously created simple store as the store property c.

Remember the fields property you set for the store?

Well, displayField d is directly tied to the fields of

the data store that the ComboBox is using. Because

you have a single field, you’ll specify your display-

Field with that single field, which is 'name'. Last, you

set mode e to 'local', which ensures that the data store doesn’t attempt to fetch data

remotely. It’s important to set this attribute correctly because the default value for

mode is 'remote', which ensures that all data is fetched via remote requests. Forget-

ting to set it to 'local' will cause some problems. Figure 6.5 shows what the Combo-

Box looks like rendered.

 To explore the filtering and type-ahead features, you can immediately start to type

inside the text input field. Now your record set contains only four records, but you can

begin to see how this works. Entering one or more letters into the text field allows type-

ahead to occur the list. To try this, type A, and you'll see that the 'Abe Elias' value is

auto-completed in the input field and that the record is preselected in the list. Likewise,

entering 'Jac' results in the 'Jack Slocum' value being auto-completed and its corre-

sponding record preselected. There you have it: a nice recipe for a local ComboBox.

 Using a local ComboBox is great if you have a minimal amount of static data. It

does have its advantages and disadvantages, though. Its main advantage is that the

data doesn’t have to be fetched remotely. This ends up being a major disadvantage

when there’s an extreme amount of data to parse through, which would make the

Specifies store
in ComboBox

c

Sets display
fieldd

Sets ComboBox
to local modee

Figure 6.5 Your ComboBox

from listing 6.3 rendered inside

a window

127Type-ahead with the ComboBox

UI slow down, sputter, or even grind to a halt, showing that dreaded “This script is

taking too long” error box. This is where the remote-loading ComboBox can be

called into service.

6.2.2 Implementing a remote ComboBox

Using a remote ComboBox is somewhat more complicated than a static implementa-

tion. This is because you have server-side code to manage, which will include some

type of server-side store like a database. To keep your focus on the ComboBox, you’ll

use the preconstructed PHP code at http://extjsinaction.com/dataQuery.php, which

contains randomly generated names and addresses. Let’s go ahead and implement

your remote ComboBox, as shown in the next listing.

var remoteJsonStore = Ext.create(Ext.data.JsonStore, {
 storeId : 'people',
 fields : [
 'fullName',
 'id'
],
 proxy : {
 type : 'jsonp',
 url : 'http://extjsinaction.com/dataQuery.php',
 reader : {
 type : 'json',
 root : 'records',
 totalProperty : 'totalCount'
 }
 }
});

var combo = {
 xtype : 'combo',
 queryMode : 'remote',
 fieldLabel : 'Search by name',
 width : 320,
 forceSelection : true,
 displayField : 'fullName',
 valueField : 'id',
 minChars : 1,
 triggerAction : 'all',
 store : remoteJsonStore
};

In listing 6.4 you change the data store type to JsonStore B, a preconfigured exten-

sion of the Ext.data.Store class, to allow you to easily create a store that can con-

sume JSON data. You then specify fields, which is now an array containing a single

object, 'fullName'. You also create a mapping for the ID for each record, which

you’ll use for submission. Finally, for the store you specify a proxy property where

you create a new instance of the JsonP proxy, a tool that’s used to request data from

Listing 6.4 Implementing a remote-loading ComboBox

Specifies root
propertyb

Configures
autocomplete
threshold

c

http://extjsinaction.com/dataQuery.php

128 CHAPTER 6 Forms in Ext JS

across domains. You instruct the JsonP proxy to load data from a specific URL via the

url property.

 In creating your ComboBox you set forceSelection to true, which is useful for

remote filtering (and type-ahead, for that matter), but it keeps users from entering

arbitrary data. Next, you set displayField to 'fullName', which shows the full-name

data point in the text field, and you set valueField to 'id', which ensures that the ID

is used to send data when the ComboBox’s data is being requested for submission.

The hiddenName property is often overlooked, but it’s important. Because you’re dis-

playing the name of the person but submitting the ID, you need an element in the

DOM to store that value.

 The minChars property c defines the mini-

mum number of characters that need to be

entered into the text field before the Combo-

Box executes a data store load and you override

the default value of 4. Last, you specify trigger-

Action as 'all', which instructs the ComboBox

to perform a data store load querying for all the

data. An example of your newly constructed

ComboBox is shown in figure 6.6.

 Test out the rendered results, and you’ll see

how remote filtering can be a joy for a user to

work with. Let’s look at how the data coming back from the server is formatted (fig-

ure 6.7).

 In examining this snippet of the resulting JSON, you can see the root that you spec-

ified in your remote ComboBox’s JSON store and the fullName field you mapped to.

The root contains an array of objects that the data store will translate. The data store

will then remove any of the properties you map as "fields". Because you mapped

Figure 6.6 The remote-loading

ComboBox from listing 6.4

Object

encapsulation

The root

Array containing

objects

Fields that are

mapped

Figure 6.7 An exploded view of a slice of the served-up JSON

129Type-ahead with the ComboBox

id and fullName, those fields will be ingested by the data store. All other properties

will be ignored.

 Following the format in figure 6.7 when implementing your server-side code will

help ensure that your JSON is properly formatted. If you’re unsure, you can use a free

online tool at http://jsonlint.com, where you can paste in your JSON and have it

parsed and verified.

 When viewing the result of the example code in listing 6.4, you might notice that

when you click the trigger, the UI’s spinner stops for a brief moment. This is because

all of the 2,000 records in the database are being sent to the browser and parsed,

and DOM manipulation is taking place to clear the list box and create a node. The

transfer and parsing of the data are relatively quick for this large dataset. DOM

manipulation is one of the main reasons for JavaScript slowing down, and it’s why

you’d see the spinner animation stop. The amount of resources required to inject

the 2,000 DOM elements is intense enough for the browser to halt all animation and

focus its attention on the task at hand, not to mention that bombarding the user

with that many records may present a usability issue. To mitigate these issues, you

should enable paging.

 To do so, your server-side code needs to be aware of the changes, which is the

hardest part of this conversion. Luckily the PHP code that you’re using already has

the necessary code in place to adapt to the changes you’re going to make. The first

change you need to make is to add the following property to your JSON store:

 totalProperty : 'totalCount'

Next you need to enable paging in your ComboBox. This can be done by adding a

pageSize property:

 pageSize : 20

That’s it! Ext JS is now ready to enable pagina-

tion in your ComboBox. Refresh the code in your

browser and either click the trigger or enter a

few characters into the text input field, and you’ll

see the results of your changes, as shown in fig-

ure 6.8.

 Thus far, we’ve explored the UI of the Com-

boBox and implemented both local and remote

versions of Array and JSON stores. Although

we’ve covered many aspects of the ComboBox,

you’ve just been using it as an enhanced version

of a drop-down box, and we haven’t discussed

how to customize the resulting data’s appear-

ance. To show why we’ll be changing some things, such as the inner template, we need

to take a quick glance at the innards of the ComboBox.

Figure 6.8 Adding pagination to your

remote ComboBox

http://jsonlint.com

130 CHAPTER 6 Forms in Ext JS

6.2.3 The ComboBox deconstructed

At the nucleus of the ComboBox lie two helper classes. We’ve touched on the data

store, which provides data fetching and loading, but we haven’t discussed the data

view, which is the component responsible for displaying the result data in the list box

as well as providing the events necessary to allow users to select the data. Data views

bind to data stores by subscribing to events such as 'beforeload', 'datachanged',

and 'clear'. They use the XTemplate, which provides the DOM manipulation to

stamp out the HTML based on the HTML template you provide. Now that you’ve taken

a quick look at the components of a ComboBox, you can continue creating your cus-

tom ComboBox.

6.2.4 Customizing your ComboBox

When you enabled pagination in your ComboBox, you saw only names. But what if

you wanted to see the full address along with the names that you’re searching? Your

data store needs to know the fields you want to display. Modify listing 6.4; you’ll

need to add mappings for street, city, state, and zip. We’ll wait here while you finish

doing that.

 Ready? Okay, before you can create a template, you must create some CSS that

you’ll need:

 .combo-name {
 font-weight: bold;
 font-size: 11px;
 background-color: #FFFF99;
 }
 .combo-full-address {
 font-size: 11px;
 color: #666666;
 }

This CSS code creates a class for each of the divs in your template. Now you need to

create a new template so your list box can display the data that you want.

 Enter the following code to create your ComboBox:

var combo = Ext.create('Ext.form.field.ComboBox', {
 fieldLabel : 'Search by name',
 forceSelection : true,
 displayField : 'fullName',
 loadingText : 'Querying....',
 pageSize : 20,
 width : 320,
 minChars : 1,
 valueField : 'id',
 triggerAction : 'all',
 store : remoteJsonStore,
 listConfig : {
 getInnerTpl : function() {
 return ' <div data-qtip="{fullName}">' +
 '<div class="combo-name">{fullName}</div>' +

131The time field

 '<div class="combo-full-address"> {street} </div>' +
 '<div class="combo-full-address">' +
 '{city} {state} {zip}</div>' +
 '</div>';
 }
 }
});

We won’t cover the XTemplate in too much depth here because we covered it in chap-

ter 2. It’s important to note that by overriding listConfig, you specify getInnerTpl,

which is a function that returns a string. This getInnerTpl function will be called by the

ListBox class, and the string will be used to create an instance of XTemplate for you.

 Your changes are now ready to be tested. If you did things correctly, your results

should look similar to figure 6.9.

 The way you customized your ComboBox is the tip of the iceberg! Because you

have complete control over how the list box is rendered, you can even include images

or QuickTips in the list box.

 In this section you learned how to create a local and a remote ComboBox. You also

learned about the ArrayStore and JsonStore data store classes. You had some fun

adding pagination to your remote implementation, dissected the ComboBox, and cus-

tomized the list box. Now let’s move on to the time field.

6.3 The time field

Time Field is another convenience class that allows you to easily add a time-selection

field to a form. To build a generic time field, you can create a configuration object

with xtype set to 'timefield', and you’ll get a list that has selectable items from 12:00

A.M. to 11:45 P.M. Here’s an example of how to do that:

 {
 xtype : 'timefield',
 fieldLabel : 'Please select time',
 anchor : '100%'
 }

Figure 6.9 Your customized ComboBox

132 CHAPTER 6 Forms in Ext JS

Figure 6.10 shows how this field would render

onscreen. The time field is configurable, and you can

set the range of time, increments, and even the format.

Modify your time field by adding the following proper-

ties, which will allow you to use military time, set an

increment of 30 minutes, and allow choices only from

9:00 A.M. to 6:00 P.M.:

...
 minValue : '09:00',
 maxValue : '18:00',
 increment : 30,
 format : 'H:i'

In this property list you set the minValue and maxValue properties, which set the

range of time that you want your time field to have. You also set the increment prop-

erty to 30 and format to 'H:i', or 24 hours and two-digit minutes. The format property

must be valid per the Date.parseDate method. You should consult the full API docu-

mentation if you intend to use a custom format.

 Now that you’ve seen how the ComboBox and time fields work, let’s take a look at

the HTML Editor.

6.4 The HTML Editor

The Ext JS HTML Editor is known as a WYSIWYG, or what you see is what you get, editor.

It’s a great way to allow users to enter rich HTML-formatted text without having to push

them to master HTML and CSS. It allows you to configure buttons on toolbars to prevent

certain interactions by users. Let’s move on to building your first HTML Editor.

6.4.1 Constructing your first HTML Editor

Constructing a generic HTML Editor is simple:

 var htmlEditor = {
 xtype : 'htmleditor',
 fieldLabel : 'Enter in any text',
 anchor : '100% 100%'
 }

Your HTML Editor rendered to a form will look like figure 6.11.

Figure 6.10 The generic time field

Toolbar

Text input area

Figure 6.11 Your first HTML Editor in an Ext JS window

133Selecting a date

We discussed how the HTML Editor’s toolbar could be configured to prevent some

items from being displayed. This is easily done by setting the enable<someTool> prop-

erties to false. For instance, if you want to disable the font size and selection menu

items, you set the following properties as false:

 enableFontSize : false,
 enableFont : false

And that’s all there is to it. After making the changes, refresh your page. You’ll no lon-

ger see the text drop-down menu and the icons to change font sizes. To see a full list

of the available options, be sure to visit the API. The HTML Editor is a great tool, but

like many things, it has some limitations.

6.4.2 Dealing with lack of validation

The single biggest limitation to the HTML Editor is that it has no basic validation and

no way to mark the field as invalid. When developing a form using the field, you’ll

have to create your own custom validation methods. A simple validate method looks

like this:

var htmlEditor = Ext.create('Ext.form.HtmlEditor', {
 fieldLabel : "Enter in any text",
 anchor : '100% 100%',
 allowBlank : false,
 validate : function () {
 var val = this.getValue();
 return (this.allowBlank || val.length > 1);
 }
});

Although this validate method will return false if the message box is empty or con-

tains a simple line-break element, it won’t mark the field as invalid. We’ll talk about

how to test the form for validity before form submissions a little later in this chapter.

For now, let’s switch gears and look at the date field.

6.5 Selecting a date

The date field is a fun little form widget that’s chock-full of UI goodness that allows a

user to either enter a date via an input field or select one using the DatePicker widget.

Let’s build a date field:

 var dateField = {
 xtype : 'datefield',
 fieldLabel : 'Please select a date',
 anchor : '100%'
 }

Yes, it’s that easy. Figure 6.12 shows how the date field renders.

 This widget can be configured to prevent certain dates from being selected by set-

ting a date property, which is an array of strings that match the format property. The

134 CHAPTER 6 Forms in Ext JS

format property defaults to m/d/Y, or 01/01/2001. Here are some recipes for dis-

abling dates using the default format:

 ["01/16/2000", "01/31/2009"] disables these two exact dates
 ["01/16"] disables this date every year
 ["01/../2009"] disables every day in January for 2009
 ["^01"] disables every month of January

Now that you’re comfortable with the date field, let’s move on to explore the check-

box and radio fields and learn how you can use the CheckboxGroup and RadioGroup

classes to create clusters of fields.

6.6 Checkboxes and radio buttons

This section focuses not only on instantiating checkboxes and radio buttons, but also

on stacking them side by side and on top of one another. This knowledge will aid you

in developing forms that allow for complex data selection.

 The Ext JS checkbox field wraps Ext JS element management around the original

HTML checkbox field, which also includes layout controls. As with the HTML checkbox,

you can specify the value for the checkbox, overriding the default Boolean value. Next

you’ll create some checkboxes where you use custom values, as shown in the next listing.

var checkboxes = [
 {
 xtype : 'checkbox',
 fieldLabel : 'Which do you own',
 boxLabel : 'Cat',
 inputValue : 'cat'
 },

Listing 6.5 Building checkboxes

DatePicker trigger button

DatePicker

widget

Month navigation

Jump to Today

Figure 6.12 The date field exposed by the DatePicker widget (left), and the DatePicker’s

month and year selection tool (right)

Sets box
label text

b
Configures
default value

c

135Checkboxes and radio buttons

 {
 xtype : 'checkbox',
 fieldLabel : ' ',
 labelSeparator : ' ',
 boxLabel : 'Dog',
 inputValue : 'dog'
 },
 {
 xtype : 'checkbox',
 fieldLabel : ' ',
 labelSeparator : ' ',
 boxLabel : 'Fish',
 inputValue : 'fish'
 },
 {
 xtype : 'checkbox',
 fieldLabel : ' ',
 labelSeparator : ' ',
 boxLabel : 'Bird',
 inputValue : 'bird'
 }
];

The code in listing 6.5 builds four checkboxes, where you override the default input-

Value for each node. The boxLabel property B creates a field label to the right of the

input field, and the inputValue property c overrides the default Boolean value. An

example rendering of this code is shown in figure 6.13.

Although this approach will work for many forms, for some large forms it’s a waste of

screen space. In the next listing you’ll use the checkbox group to automatically lay out

your checkboxes.

var checkboxes = {
 xtype : 'checkboxgroup',
 fieldLabel : 'Which do you own',
 anchor : '100%',
 items : [
 {
 boxLabel : 'Cat',
 inputValue : 'cat'
 },

Listing 6.6 Using a checkbox group

boxLabel

Figure 6.13 Your first four

checkboxes

136 CHAPTER 6 Forms in Ext JS

 {
 boxLabel : 'Dog',
 inputValue : 'dog'
 },
 {
 boxLabel : 'Fish',
 inputValue : 'fish'
 },
 {
 boxLabel : 'Bird',
 inputValue : 'bird'
 }
]
 };

Using the checkbox group in this way will lay out your checkboxes in a single horizon-

tal line, as shown in figure 6.14. Specifying the number of columns is as simple as set-

ting the columns attribute to the number of desired columns.

Your implementation of the checkbox group will depend on

your requirements. Implementing the Radio and Radio-

Group classes is nearly identical to using the Checkbox and

CheckboxGroup classes. The biggest difference is that you

can group radios by giving them the same name, which allows

only one item to be selected at a time. Let’s build a group of

radio buttons, as shown in figure 6.15.

 Because the RadioGroup class extends the Checkbox-

Group class, the implementation is identical, so we’ll save

you from going over the same material. Now that we’ve

explored the Checkbox and Radio classes and their respective Group classes, let’s begin

to tie these together by taking a more in-depth look at the form panel. You’ll learn to

perform form-wide checks and complex form layouts.

6.7 The form panel

With the Ext JS form panel, you can submit and load data using Ajax and provide live

feedback to users if a field is deemed invalid. Because the FormPanel subclass is a

descendant of the Container class, you can easily add and remove input fields to cre-

ate a truly dynamic form.

Figure 6.14 Two implementations of the checkbox group: single horizontal line (left) and

a two-column layout (right)

Figure 6.15 A single

column of radio buttons

137The form panel

An added benefit is the form panel’s ability to use other layouts or components,

such as the tab panel with the Card layout, to create robust forms that take consider-

ably less screen space than traditionally laid-out single-page forms. Because Form-

Panel is a subclass of Panel you get all of Panel’s features, including docked items

such as toolbars.

6.7.1 Reviewing what you’re building

Like the other Container subclasses, FormPanel can use any layout that’s available

from the framework to create exquisitely laid-out forms. To assist with the grouping

fields, the form panel has a cousin called the fieldset. Before you build your compo-

nents, take a sneak peek at what you’re going to achieve (figure 6.16).

 To construct your complex form you’ll have to construct two fieldsets: one for the

name information and another for the address information. In addition to the field-

sets, you’ll set up a tab panel that has a place for some text fields and two HTML Edi-

tors. To complete this task you’ll use all of what you’ve learned so far, which means

we’ll go over quite a bit of code.

6.7.2 Constructing the fieldsets

Now that you know what you’ll be constructing, let’s start by building the fieldset that’ll

contain the text fields for the name information, as shown in the following listing.

File uploads aren’t really Ajax

The XMLHttpRequest object in most browsers can’t submit file data. To give the

appearance of an Ajax-like submission, Ext JS uses an iFrame to submit forms that

contain file input elements.

Figure 6.16 A sneak peek at the complex form panel you’re going to build

138 CHAPTER 6 Forms in Ext JS

 var fieldset1 = {
 xtype : 'fieldset',
 title : 'Name',
 flex : 1,
 border : false,
 labelWidth : 60,
 defaultType : 'field',
 defaults : {
 anchor : '-10',
 allowBlank : false
 },
 items : [
 {
 fieldLabel : 'First',
 name : 'firstName'
 },
 {
 fieldLabel : 'Middle',
 name : 'middle'
 },
 {
 fieldLabel : 'Last',
 name : 'lastName'
 }
]
 };

In constructing your first fieldset XType B you may think the parameters look like

those of a panel or container. This is because the FieldSet class extends Container

and adds some functionality for the collapse methods to allow you to include fields in

a form. The reason you’re using a fieldset in this instance is that it’s giving you that

neat little title up top, and in this way you get exposure to this component.

 You’ll skip rendering this first fieldset because you’ll use it in a form panel a little

later on. Let’s go on to build the second fieldset, which will contain the address infor-

mation. The following listing is rather large, so please stick with us.

var fieldset2 = Ext.apply({}, {
 flex : 1,
 labelWidth : 30,
 title : 'Address Information',
 defaults : {
 layout : 'column',
 anchor : '100%'
 },
 items : [
 {
 fieldLabel : 'Address',
 name : 'address'
 },

Listing 6.7 Constructing your first fieldset

Listing 6.8 Building your second fieldset

Sets xtype to
'fieldset'b

Copies properties
from first fieldsetb

139The form panel

 {
 fieldLabel : 'Street',
 name : 'street'
 },
 {
 xtype : 'container',
 items : [
 {
 xtype : 'fieldcontainer',
 columnWidth : .5,
 items : [
 {
 xtype : 'textfield',
 fieldLabel : 'State',
 name : 'state',
 labelWidth : 100,
 width : 150
 }
]
 },
 {
 xtype : 'fieldcontainer',
 columnWidth : .5,
 items : [
 {
 xtype : 'textfield',
 fieldLabel : 'Zip',
 name : 'zip',
 labelWidth : 30,
 width : 162
 }
]
 }
]
 }
]
}, fieldset1);

In listing 6.8 you use Ext.apply B to copy many of the properties from fieldset1 and

apply them to fieldset2. This utility method is commonly used to copy or override prop-

erties from one object or another. We’ll talk more about this method when we look into

Ext JS’s utility tool belt. To end up with the desired layout and have the state and zip code

fields side by side, you must rely on a lot of nesting. The child c of your second fieldset is

a container that has its layout set to 'column'. The first child of that container is a field-

container d, which contains the state text field e. The second child f of your Column-

Layout container is another fieldcontainer, which contains the zip code text field g.

 You might be wondering why there are so many nested containers and why the

code to get this done is so darn long. The container nesting is necessary in order to

use different layouts within other layouts. This might not make sense to you immedi-

ately. We think the picture will be clearer to you when you render the form. For now,

let’s move on to building a place for these two fieldsets to live.

Adds column
layout containers

c

Adds field
containerd

Configures
state text fielde

Adds field
container

f

Sets zip code
text fieldg

140 CHAPTER 6 Forms in Ext JS

 To achieve the side-by-side look of the form, you’ll need to create a container for

it that’s set up to use the HBox layout. To have equal widths in the HBox layout, you

must set the stretch property of each fieldset to 1. Let’s build a home for the

two fieldsets:

 var fieldsetContainer = {
 xtype : 'container',
 layout : 'hbox',
 layoutConfig : {
 align : 'stretch'
 },
 items : [
 fieldset1,
 fieldset2
]
 };

In this code block you create a container that has a fixed height but no width set. This

is because this container’s width will be automatically set via the VBox layout, which

your future form panel will use.

6.7.3 Creating the tab panel

Next you’ll build a tab panel with three tabs, one for the phone number form ele-

ments and the other two for HTML Editors. This tab panel will use the bottom half of

the form panel’s available height. You’ll configure all of the tabs in one shot, so the

next listing is pretty lengthy.

var tabs = [
 {
 xtype : 'fieldcontainer',
 title : 'Phone Numbers',
 layout : 'form',
 bodyStyle : 'padding:6px 6px 0',
 defaults : {
 xtype : 'textfield',
 width : 230
 },
 items: [
 {
 fieldLabel : 'Home',
 name : 'home'
 },
 {
 fieldLabel : 'Business',
 name : 'business'
 },
 {
 fieldLabel : 'Mobile',
 name : 'mobile'
 },

Listing 6.9 Building a tab panel with form items

Adds container
for the text fieldsb

141The form panel

 {
 fieldLabel : 'Fax',
 name : 'fax'
 }
]
 },
 {
 title : 'Resume',
 xtype : 'htmleditor',
 name : 'resume'
 },
 {
 title : 'Bio',
 xtype : 'htmleditor',
 name : 'bio'
 }
];

Listing 6.9 constructs an array consisting of three tabs that’ll be children of your

future tab panel. The first tab B is a fieldcontainer that has four text fields. The

second c and third tabs are HTML Editors that will be used to enter a resume and a

short biography. Let’s move on to building the tab panel:

 var tabPanel = {
 xtype : 'tabpanel',
 activeTab : 0,
 deferredRender : false,
 layoutOnTabChange : true,
 border : false,
 flex : 1,
 plain : true,
 items : tabs
 }

Your task in the next listing will be to construct the form panel itself, which is relatively

trivial compared to all of its child items.

var myFormPanel = Ext.create('Ext.form.Panel', {
 renderTo : Ext.getBody(),
 width : 700,
 title : 'Our complex form',
 frame : true,
 id : 'myFormPanel',
 layout : 'vbox',
 layoutConfig : {
 align : 'stretch'
 },
 items : [
 fieldsetContainer,
 tabPanel
]
 });

Listing 6.10 Piecing it all together

Adds two HTML
Editors as tabsc

142 CHAPTER 6 Forms in Ext JS

You finally get to create your form panel. You set renderTo to ensure that the form

panel is automatically rendered. To have the fieldsetContainer and the tab panel

properly sized, you use the VBox layout with layoutConfig’s align property set to

'stretch'. Take a look at figure 6.17 to see how this beast of a form renders.

 In the figure we highlighted the various containers that compose the first half of

the form, which include the fieldsetContainer, two fieldsets, and their child compo-

nents. By using this many containers you’re ensuring complete control over how the

UI is laid out. It’s common practice to have these long code batches to create a UI with

this type of complexity. When exploring your newly built form panel, flip through the

three tabs and reveal the HTML Editors underneath.

 By now you’ve seen how combining multiple components and layouts can result in

something that’s both usable and space saving. Now let’s focus on learning to use

forms for data submission and loading; otherwise your forms will be useless.

6.8 Data submission and loading

Submitting data via the basic form submit method is one of the areas new developers

most commonly get tripped up on. This is because for so many years we were used to

submitting a form and expecting a page refresh. With Ext JS, the form submission

requires a bit of know-how. Likewise, loading a form with data can be a little confusing

for some, so we’ll explore a few ways you can do that as well.

6.8.1 Submitting the good old way

Submitting your form the good old way is extremely simple, but you need to configure

the form panel’s underlying form element with the standardSubmit property set to

true. To perform the submission, you call

 Ext.getCmp('myFormPanel').getForm().submit();

This code will call the generic DOM form submit method, which will submit the form

the old-fashioned way. If you’re going to use the form panel in this way, we suggest

Field layout

fieldset1

Field layout

fieldset2

Column layout

fieldsetContainer

Column layout

container

Field layout

containers

Figure 6.17 The results of your first complex layout form with the different containers used to

compose the complex layouts

143Data submission and loading

that you review submitting via Ajax, which will point out some of the features that you

can’t use when using the older form-submission technique.

6.8.2 Submitting via Ajax

To submit a form, you must access the form panel’s BasicForm component. To do so

you use the accessor method getForm or formPanel.getForm(). From there you have

access to the BasicForm’s submit method, which you’ll use to send data via Ajax. The

code is shown in the next listing.

var onSuccessOrFail = function(form, action) {
 var formPanel = Ext.getCmp('myFormPanel');
 formPanel.el.unmask();
 var result = action.result;
 if (result.success) {
 Ext.MessageBox.alert('Success',action.result.msg);
 }
 else {
 Ext.MessageBox.alert('Failure',action.result.msg);
 }
 };

 var submitHandler = function() {
 var formPanel = Ext.getCmp('myFormPanel');
 formPanel.el.mask('Please wait', 'x-mask-loading');
 formPanel.getForm().submit({
 url : 'success.true.txt',
 success : onSuccessOrFail,
 failure : onSuccessOrFail
 });
 };

In listing 6.11 you create a success and failure handler called onSuccessOrFail, which

will be called if the form submission attempt succeeds or fails. It will display an alert

message box B depending on the status of the returning JSON from the web server.

You then create the submission handler method, submitHandler, which performs the

form submission c. You could have specified the URL at the BasicForm or form panel

level, but you specify it here on the submit call because we wanted to point out that

the target URL could be changed at runtime. Also, if you’re providing any type of wait

message, as you do here, you should have success and failure handlers.

 At minimum, the returning JSON should contain a 'success' Boolean with the

value of true. Your success handler is expecting a msg property as well, which should

contain a string with a message to return to the user:

 {success: true, msg : 'Thank you for your submission.'}

Likewise, if your server-side code deems that the submission was unsuccessful for any

reason, the server should return a JSON object with the success property set to false.

Listing 6.11 Submitting your form

Displays
message
driven by JSON

b

Performs form
submissionc

144 CHAPTER 6 Forms in Ext JS

If you want to perform server-side validation, which can return errors, your return

JSON could include an errors object as well. Here’s an example of a failure message

with attached errors:

{
 success : false,
 msg : 'This is an example error message',
 errors : {
 firstName : 'Cannot contain "!" characters.',
 lastName : 'Must not be blank.'
 }
}

If the returning JSON contains an errors object, the fields that are identified by that

name will be marked invalid. Figure 6.18 shows the form with the JSON code served

to it.

 In this section you learned how to submit your form using the standard submit

methods as well as the Ajax method. You also saw how to use the errors object to pro-

vide server-side validation with UI-level error notification. Next we’ll look at loading

data into the form using the load and setValues methods.

6.8.3 Loading data into your form

The use cycle of just about every form includes saving and loading data. With Ext JS

you have a few ways to load data, but you must have data to load, so we’ll dive right

into creating some. Let’s create some mock data and save it in a file called data.json:

Figure 6.18 The results from our server-side errors object using the standard QuickTip

error msg

145Data submission and loading

{
 "success" : true,
 "data" : {
 "firstName" : "Jack",
 "lastName" : "Slocum",
 "middle" : "",
 "address" : "1 Ext JS Corporate Way",
 "city" : "Orlando",
 "state" : "Florida",
 "zip" : "32801",
 "home" : "123 345 8832",
 "business" : "832 932 3828",
 "mobile" : "123 332 2122",
 "fax" : "392 322 9321",
 "resume" : "Skills:
Java DeveloperExt JS
Senior Core developer",
 "bio" : " Jack is a stand-up kind of guy.
"
 }
}

Just like with form submission, the root JSON object must contain a success property

with the value of true, which will trigger the setValues call. Also, the values for the

form need to be in an object whose reference property is data. Likewise, it’s great

practice to keep your form element names in line with the data properties to load.

Doing so will ensure that the right fields get filled in with the correct data. For the

form to load the data via Ajax, you can call BasicForm’s load method, whose syntax is

just like submit:

 var formPanel = Ext.getCmp('myFormPanel');
 formPanel.el.mask('Please wait', 'x-mask-loading');
 formPanel.getForm().load({
 url : 'data.json',
 success : function() {
 formPanel.el.unmask();
 }
 });

Executing this code will result in your form panel performing an Ajax request to fetch

the data, and ultimately the form will be filled in with the values, as illustrated in fig-

ure 6.19.

 If you have the data on hand, let’s say from another component such as a data grid,

you can set the values via myFormPanel.getForm().setValues(dataObj). Using this,

dataObj would contain only the proper mapping to element names. Likewise, if you

have an instance of Ext.data.Record you can use the form’s loadRecord method to

set the form’s values.

TIP To retrieve the values from any given form, call getValues from the
FormPanel instance. For example, myFormPanel.getValues() would return an
object containing keys representing the names of the fields and their values.

146 CHAPTER 6 Forms in Ext JS

Loading data can be as simple as that. Remember that if the server side wants to deny

data loading, you can set the success value to false, which will trigger the failure

method as referenced in the load’s configuration object.

 Congratulations! You’ve configured your first truly complex form panel and

learned how to load and save its data.

6.9 Summary

In focusing on the FormPanel class, we covered quite a few topics, including many of

the commonly used fields. You even got a chance to take an in-depth look at the Com-

boBox field, where you got your first exposure to its helper classes, data Store and

DataView. Using that experience you saw how to customize the ComboBox’s resulting

list box. You also built a relatively complex layout form and used your new tool to sub-

mit and load data.

 Moving forward, we’re going to take an in-depth look at the data grid panel. You’ll

learn about its inner components and see how to customize the look and feel of a

grid. You’ll also see how to use the editor plug-ins for the grid panel that allow you to

edit data in line. Along the way you’ll learn more about the data store. Be sure to get

some candy; this is going to be a fun ride!

Figure 6.19 The results of loading your data via Ajax

147

The data store

To create a real-world application, you need a way to persist data. Data persistence

allows users of your application to access data between sessions, so the data should

be stored on a medium that enables it to be accessed after your application has

been stopped and started again.

 Data persistence can happen by updating or retrieving the data from the compo-

nents on screen using Ajax techniques if you’re implementing simple applications.

But if you’re creating an Ext JS application that involves advanced interaction logic

on the client side, you can use the functionality available in the Ext JS data store.

 This chapter begins by taking a bird’s-eye view of the data package. We’ll

introduce Ext.data.Store and its supporting classes, including Ext.data.Model.

You’ll learn how data flows and how it’s consumed by the data store. We’ll discuss

the various data readers and explore data consumption with array, JSON, and

XML data.

This chapter covers

■ Using the data store

■ Understanding data proxies

■ Exploring writers and validations

148 CHAPTER 7 The data store

 You’ll become familiar with each of the data proxies and see how to load data from

resident memory, Ajax, JSONP, and LocalStorage. At this end of the chapter we’ll

introduce advanced features of the data package in Ext JS 4 by demonstrating how to

handle data validation and associations.

 When you’re done with this chapter, you’ll have sufficient knowledge and confi-

dence to create any data-driven view with the framework, beginning with grid panels

in chapter 8.

7.1 Introducing the data store

The purpose of Ext.data.Store is to provide a foundation where you can store a

local subset of the data available from the server and keep track of changes to this data

before sending it back to the server (if your application allows editing of data).

 The data store feeds quite a few widgets throughout the framework wherever data

is needed. To put this in plain view, figure 7.1 enumerates the classes that depend on

the data Store class.

 As you can see, the data store supports quite a few widgets, including the data view,

Combo Box, charts, grid panel, and tree panel. The data store also serves as the foun-

dation for tree panels (we’ll cover the tree store in chapter 10).

 The data Store class plays an integral role in the framework and your applica-

tions, so it makes a lot of sense to cover this class in great detail. It’s for this reason that

we’re going to spend the next few pages looking at data Store and how things work

before you get your hands dirty with some code.

7.1.1 The supporting classes

You often load data using the data store, and rightfully so: data Store is sort of an

interface class. The store itself is responsible for the marshaling of data but mainly

manages other classes. These other classes support the data store in its effort to supply

data to views to render onscreen.

 To understand what supports the store, let’s take a step back and look at a simpli-

fied view of the data package. Figure 7.2 shows that data Store is connected to many

classes. Each class plays a role in how data is consumed by the framework. Table 7.1

contains a breakdown of what these classes do.

DataViewCharts

ComboBox

GridPanel TreePanel

Data Store

Figure 7.1 Data Store and

the classes to which it feeds

data. This illustration doesn’t

depict class hierarchy.

149Introducing the data store

There’s quite a bit of support for the data store in the framework. All of these parts

are designed to make your job easier and help make your applications manage robust

data in the browser easily.

 You now know a little about how the data store uses supporting classes. Knowing

how the data flows will be beneficial when you start working with the data store.

7.1.2 How data flows

Let’s see how data flows from a data source to the store. We’ll begin with a basic flow

illustration, shown in figure 7.3.

Table 7.1 Data Store and its supporting classes

Class Purpose

Store The interface class generally used for loading and saving data

Sorter Responsible for sorting data

Filter Manages the filtering of data

Grouper Used to group data

Proxy Manages how data typically is fed into the data store

Reader Used to transform inbound data to be fed into instances of Model

Writer Responsible for the marshaling of data to be sent to a data source for persistence

Model Represents individual data rows for a particular data store

Association Allows models to be associated to one another via preconfigured rules

Validation Used as a means to prevent a model from becoming corrupt with incorrect or incom-

plete data

Filter

Sorter Grouper

Reader Writer

Association Validation

Model

Proxy

Store

Figure 7.2 The data package at

a glance

150 CHAPTER 7 The data store

As you can see, the data always originates from a data source, and the loading and sav-

ing is managed by a data proxy. The data Proxy classes facilitate the retrieval of unfor-

matted data objects from a multitude of sources and contain their own event models

for communication with subscribed classes such as the data Reader class.

 For example, changing the value of a model in a store that’s bound to a consumer,

like the grid panel, will result in the UI being updated when the model is committed.

After the models are loaded into the data store, the bound consumer refreshes its view

and the load cycle completes.

 The specific data Store subclasses will have load, remove, and sync operations

available. The load and remove operations manipulate the local list of models in the

store, and the sync operation synchronizes the local content of the store with the data

endpoint via the chosen proxy.

 As you just learned, data proxies are crucial to the operation of data stores. Let’s

dive in and learn more about what data proxies are and what types of proxies are avail-

able to you to implement.

7.1.3 All about data proxies

In the framework is an abstract class aptly named Ext.data.proxy.Proxy, which

serves as a base class for several subclasses responsible for retrieving data from and

writing it to specific sources, as shown in figure 7.4.

Data

Store

Reader

Data source

Records

Proxy

ConsumerWriter

Figure 7.3 The data flow from a data source to a data store consumer

(data) Proxy

Server

Ajax Rest

Direct

JsonP

Client WebStorage

Memory

SessionStorage

LocalStorage

Figure 7.4 The data proxy and its seven specific implementations. Each is

responsible for retrieving data from a specific data source.

151Introducing the data store

Looking at all the different proxies can seem a bit overwhelming at first. If you’re

coming from Ext JS 3, it can look like the data package exploded! But you can relax

when you discover that the Server, Client, and WebStorage proxies are base classes,

leaving you with seven classes that you can use. We’ll explore each of the seven classes

in detail here.

 The most common proxy is the Ajax proxy, which uses the browser’s XHR object to

perform generic Ajax requests. The Ajax proxy is limited to the same domain because

of what’s known as the same-origin policy. This policy dictates that XHR requests via

XHR can’t be performed outside of the domain from which a specific page is being

loaded. This policy was meant to tighten security with XHRs but has been construed as

more of an annoyance than a security measure. The Ext JS developers were quick to

come up with a workaround for this “feature,” which is where the JsonP proxy comes

into the picture.

 The JsonP proxy cleverly uses the script tag to retrieve data from another domain,

and it works well, but it requires that the requesting domain return JavaScript instead

of generic data snippets. This is important to know because you can’t just use the

JsonP proxy against any third-party website to retrieve data. The JsonP proxy requires

the return data to be wrapped in a global method call, passing the data in as the only

parameter. You’ll learn more about the JsonP proxy in a bit because you’ll use it with

various APIs located on extjsinaction.com to retrieve data from our examples.

 The MemoryProxy class offers Ext JS the ability to load data from a memory object.

Although you can load data directly to an instance of data Store via its loadData

method, use of the MemoryProxy class can be helpful in certain situations. One exam-

ple is the task of reloading the data store. If you use Store.loadData, you need to pass

in the reference to the data, which is to be parsed by the reader and loaded into the

store. Using the Memory proxy makes things simple, because you only need to call

the Store.reload method and let Ext JS take care of the dirty work.

 The Direct proxy allows the data store to interact with the Ext.direct remoting

providers, allowing for data retrievals via remote procedure calls (RPCs).

NOTE If you’re interested in learning more about Ext Direct, feel free to take
a peek at chapter 11, but come back right away. We’re going to cover a lot of
foundational material here that you’ll need for chapter 11.

RestProxy is a subclass of AjaxProxy that specializes in talking to REST-style resources.

For instance, if you want to retrieve employee data with ID 403, the Rest proxy auto-

matically sends a GET request to /employee/403. This automatic URL creation can be

handy in an environment that already uses this system.

 When your application is offline or when you don’t wish to talk to the server, you

have the option of using the LocalStorage proxy or SessionStorage proxy to persist

your data. These client-side proxies persist data in key/value mechanisms available via

the HTML5 Web Storage API, so associated data structures will be automatically serial-

ized to JSON. If the HTML5 Web Storage API isn’t available on the browser, the proxy

152 CHAPTER 7 The data store

will throw an exception. Use the LocalStorage proxy if you want to persist data

between sessions, and use the SessionStorage proxy if you only want the data to be

stored while the browser session is active.

NOTE Keep in mind that you need to provide a unique ID for each Web-
Storage proxy.

All the proxies implement the same interface and in theory should be interchange-

able. There are some things to note, though. Due to limitations in JavaScript, all

parameters are passed using GET when issuing a write using a JsonP proxy. This makes

sense, but it might come as a surprise when you have to reimplement the back-end for

what started using an Ajax proxy if you choose to switch to a JsonP proxy. It should

also be obvious that it doesn’t make sense to keep a url setting when changing from

an Ajax proxy to a LocalStorage proxy.

7.1.4 Models and readers

The cornerstone of the data store is the Ext.data.Model. It holds the data in a list of

fields and describes associations to other models using Ext.data.Association, and it

allows for validation using Ext.data.validations. You can read data into the store

using Ext.data.Reader and write data back to the server using Ext.data.Writer.

 If you’re familiar with SQL databases, you may notice that Ext.data.Model some-

what resembles a table in a SQL database. Every time you instantiate a specific Ext JS

data model, you could say that you mimic the content of an entry in the SQL database

on the client side (remember that you aren’t required to hold the entire dataset on

the client).

 Although the typical scenario for using a data store involves a SQL database on the

server, the data store can also store data using LocalStorage or SessionStorage if it’s

available in the browser. Think of the Ext JS data store as an API, and your current

choice of transportation (JSON, XML, or LocalStorage) as an implementation.

 Let’s start by defining the data-consumption options you have before peeking

under the hood of the data store. After a proxy fetches the raw data, a reader then

reads or parses it. A reader takes raw, unformatted data objects and abstracts the data

points, known as data indexes, and arranges them into name data pairs, or generic

objects. Figure 7.5 illustrates how this mapping works.

 As you can see, the raw and unformatted data is organized and fed into instances

of Model that the reader then creates. These instances of Model are then spooled into

the data store and are ready to be consumed by a widget.

NOTE Ext.data.Record from Ext JS 3 is known as Ext.data.Model in Ext JS 4.
This name change more directly identifies the model part of the data store in
the Model, View, Controller (MVC) pattern as described in part 3 of this book.

A Model is a fully Ext JS–managed JavaScript object. Much as Ext JS manages Element,

the Model has getter and setter methods and a full event model for which the data

153Loading and saving data

store is bound. This management of data adds usability and some cool automation to

the framework.

 In section 7.4 you’ll see how to use the getters and setters to update model data via

the data store, but first we’ll build the foundation for data updates and describe

how the data writer fits into the picture and how to validate your data before interact-

ing with the store.

Reader is a class that’s responsible for helping to translate the inbound data from

your data source. It translates your inbound data and instantiates instances of your

Model definition, which are collected by the data store. Many types of readers are avail-

able, and you’re going to implement each of them in this chapter.

7.2 Loading and saving data

You have various options for consuming data. Each option has varying levels of com-

plexity, so you should think carefully about your requirements before you start using a

store. Your choice of data-transport mechanism will influence which subclasses of

Ext.data.Proxy, Ext.data.Reader, and Ext.data.Writer you need to use.

 When reading data, remember that the endpoint is the Ext.data.model that uses

Ext.data.Field as an abstraction for storage. So when you finish reading the data,

the steps taken to read data become irrelevant for the rest of your application code.

This means that at a later stage you can choose JSON as a transport medium instead of

XML, if your application started out using XML.

7.2.1 Reading array data

The simplest use of a store is to load inline data in a component. Imagine that you

have a typical usage scenario of choosing a title for a person. You can implement this

using a ComboBox approach, putting the list of titles in an inline data array like this:

{
 xtype : 'combo',
 name : 'title',

lName

Raw data Records

firstNameDOB

state

address

fName

zip

city phone

lastName

zip

phone

Reader Data store

Figure 7.5 A reader maps raw or unformatted data so that it can be inserted into

models, which then get spooled into a data store.

154 CHAPTER 7 The data store

 fieldLabel : 'Title',
 queryMode : 'local',
 valueField : 'title',
 store : ['Mr.', 'Ms.', 'Dr.']
}

Note that the store declaration takes up only a single line here; the other lines are

related to the ComboBox. If this is your first time around Ext JS, this example may

seem a bit confusing. Ext JS provides a lot of shortcuts and convenience classes, and

this is a prime example.

 The ComboBox example doesn’t have a model or fields definition. During the

construction phase of the store, Ext JS will create Ext.data.ArrayStore, which uses

Ext.data.reader.Array automatically for you and sets it up for use during runtime.

 Let’s explore the data array store and array reader a little more in depth to get bet-

ter acquainted with the process of consuming array data, as shown in the next listing.

var arrayData = [
 ['Jay Garcia', 'MD'],
 ['Aaron Baker', 'VA'],
 ['Susan Smith', 'DC'],
 ['Mary Stein', 'DE'],
 ['Bryan Shanley', 'NJ'],
 ['Nyri Selgado', 'CA']
];

Ext.define('User', {
 extend : 'Ext.data.Model',
 fields : [
 {
 name : 'name',
 mapping : 1
 },
 {
 name : 'state',
 mapping : 2
 }
]
});

store = Ext.create('Ext.data.Store', {
 model : 'User',
 proxy : {
 type : 'memory',
 reader : {
 model : 'User',
 type : 'array'
 }
 }
});

store.loadData(arrayData);
console.log(store.first().data)

Listing 7.1 Creating a data store that loads local array data

Creates local
array datab

Creates user
model

c

Declares fieldsd

Builds
store

e

Loads data
into store

f

155Loading and saving data

In listing 7.1 you implement the full gamut of data store configuration. You start by

creating an array of arrays, which is referenced by the variable arrayData B. Please

pay close attention to the format the array data is in, because this is the expected for-

mat for the ArrayReader class. The reason the data is an array of arrays is that each

child array contained within the parent array is treated as a singular record.

 You create a user model c, which will be used as the template to map your array

data points to create records. You pass an array of object literals, which are known as

fields d, to the configuration object, and detail each field name and its mapping.

Each of these object literals is a configuration object for the Ext.data.Field class,

which is the smallest unit of managed data within Ext.data.Model. In this case you

map the field name to the first data point in each array record and the field state to

the second data point.

 Next, you create an instance of data Store with a Memory proxy, which is what will

load your unformatted data from memory e.

 You then add an instance of ArrayReader f, which is responsible for sorting out

the data retrieved by the proxy and creating new instances of the new user model you

just created. When the store loads the data, the array reader reads each record and

creates a new instance of User, passing the parsed data to it, which is then loaded

into the store.

 This completes our end-to-end example of how to create a store that reads array

data. With this pattern you can change the type of data the store is able to load. To do

this you swap out the ArrayReader with either a JsonReader or an XmlReader. Like-

wise, if you wanted to change the data source, you could swap out MemoryProxy for

another such as Http Proxy, JsonP Proxy, or Direct Proxy.

 Recall that we mentioned something earlier about convenience classes to make

our lives a little easier. If you were to re-create the store using the ArrayStore conve-

nience class, this is what your code would look like using the previous arrayData:

 var store = Ext.create('Ext.data.ArrayStore', {
 data : arrayData,
 fields : ['personName', 'state']
 });

As you can see in this example, you use shortcut notation for the fields to create an

instance of Ext.data.ArrayStore. You achieve this by passing a reference of the data,

which is your arrayData, and a list of fields, which provides the mapping. Notice how

the fields property is a simple list of strings. This is a completely valid configuration

of field mappings, because Ext JS is smart enough to create the name and index map-

ping based on string values passed in this manner. You could also have a mixture of

objects and strings in a fields configuration array. For instance, the following config-

uration is completely valid:

 fields : [
 'fullName',
 {
 name : 'state',

156 CHAPTER 7 The data store

 mapping : 2
 }
]

It can be really cool to use this flexibility. Just know that having a mixture of field con-

figurations like this can make the code a bit hard to read.

 Using this convenience class saved you from having to create a proxy, record tem-

plate, and reader to configure the store. Use of the JSON or XML store is just as easy,

which you’ll learn more about soon. Moving forward, you’ll use the convenience

classes to save time.

7.2.2 Reading JSON data

A JSON store is a little more complex than an array store because it also lets you read

associated data structures and retrieve data from the server. Many people choose to

supply JSON data from their server-side stack because it’s more easily digested by

the browser.

 Let’s pretend that you have a listing of departments like this available in JSON from

the server:

{
 "data" : [
 {
 "id" : "1",
 "name" : "Accounting",
 "active" : null,
 "dateActive" : "12/01/2001",
 "dateInactive" : null,
 "description" : null,
 "director" : null,
 "numEmployees" : "45"
 }
],
 "meta" : {
 "success" : true,
 "msg" : ""
 }
}

When you’re talking to the server, something could go wrong while you’re retrieving

the data (for example, the database could be down). So you send a “meta” part of the

response to identify whether the response was successful and supply a custom error

message if something went wrong. This approach allows you to easily exchange

error messages without having to worry about specific setup details on the server

(error handling is automated for you if you set the successProperty on the proxy as

shown in listing 7.2).

 The following listing shows how you can read the JSON using the JsonStore conve-

nience class. You can find the data.json file detailed in this listing in examples/ch07.

157Loading and saving data

var departmentStore = Ext.create('Ext.data.Store', {
 fields : [
 'name',
 'active',
 'dateActive',
 'dateInactive',
 'description',
 'director',
 'numEmployees',
 {
 name : 'id',
 type : 'int'
 }
],
 proxy : {
 type : 'ajax',
 url : 'data.json',
 reader : {
 type : 'json',
 root : 'data',
 idProperty : 'id',
 successProperty : 'meta.success'
 }
 }
});

departmentStore.load({
 callback : function(records, operation, successful) {
 if (successful) {
 console.log('department name:',
 records[0].get('name'));
 }
 else {
 console.log('the server reported an error');
 }
 }

});

First you set up a JsonStore B with the field definition; then you choose an Ajax proxy c,

set the server url with which to communicate d, and configure the JsonReader (note

that this example refers to a local installation; refer to the examples supplied with this

book for an example listing running at http://extjsinaction.com/v4/examples/ch07).

You set the reader type to json and root e to data. When configuring reader you set

the idProperty and the successProperty to keep track of changes during updates on

the server, as you’ll see later. Ext JS needs the idProperty for internal bookkeeping

before sending updates back to the server. Finally, you print out the first record in the

list retrieved by the server f.

Listing 7.2 Reading JSON data

Instantiates
JsonStoreb

Chooses
Ajax proxy

c

Sets URLd

Configures
JsonReadere

Prints out
first recordf

http://extjsinaction.com/v4/examples/ch07

158 CHAPTER 7 The data store

7.2.3 Reading XML data

You also have the option to read XML data into your store. Let’s pretend the depart-

ment listing was available in XML:

<?xml version="1.0" encoding="UTF-8" ?>
<Response>
 <data>
 <node>
 <id>1</id>
 <name>Accounting</name>
 <active>true</active>
 <dateActive>12/01/2001</dateActive>
 <dateInactive></dateInactive>
 <description>Accounting services</description>
 <director></director>
 <numEmployees>45</numEmployees>
 </node>
 ...
 </data>
 <meta>
 <success>true</success>
 <msg></msg>
 </meta>
</Response>

The next listing shows how to read data from XML into the same fields you used in the

previous example. You can find the data.xml file in examples/ch07.

 var departmentStore = Ext.create('Ext.data.Store', {
 fields : [
 'name',
 'active',
 'dateActive',
 'dateInactive',
 'description',
 'director',
 'numEmployees',
 {
 name : 'id',
 mapping : 'id'
 }

],
 proxy : {
 type : 'ajax',
 url : 'data.xml',
 reader : {
 type : 'xml',
 record : 'node',
 idPath : 'id',
 successProperty : 'meta/success'
 }

Listing 7.3 Reading XML data

Uses
XmlStoreb

Declares
fieldsc

Selects
XmlReader

d

159A store with Writer

 }
});
departmentStore.load({
 callback : function(records, operation, successful) {
 console.log(operation)
 if (successful) {
 console.log("department:%o", records[0]);
 }
 else {
 console.log("the server reported an error");
 }
 }
});

To read XML, you choose an XmlStore B and declare fields c similar to the way

you did in the previous example. When reading XML, you need an XmlReader d and

you must declare where to find the record data in the XML using the record property.

As in the previous example it can be helpful to set idPath and successProperty.

 Now that you’ve learned how to read data into your store, it’s time to reverse the

flow and write data.

7.3 A store with Writer

Writer saves you time and effort by removing the need for you to code Ajax requests

and exception handling, giving you more time to do the important stuff, like building

the business logic for your application. Before you start coding your Writer imple-

mentation, you should review how Writer fits into the picture.

 To use Writer you’ll need to reconfigure your data store and the supporting proxy.

Instead of configuring a url property for the proxy, you’ll create a configuration

object known as api. The proxy api is a new concept for you, and we’ll discuss it in

more detail in a bit when we review the example code.

 You’ll need to create an instance of Writer and plug it into your data store, as well

as add some new configuration properties to the store’s configuration object itself, as

shown in the following listing.

var urlRoot = 'http://extjsinaction.com/crud.php?model=Employee&method=';
var employeeStore = Ext.create('Ext.data.Store', {
 model : 'Employee',
 proxy : {
 type : 'jsonp',
 api : {
 create : urlRoot + 'CREATE',
 read : urlRoot + 'READ',
 update : urlRoot + 'UPDATE',
 destroy : urlRoot + 'DESTROY'
 },
 reader : {
 type : 'json',
 root : 'data',

Listing 7.4 The Employee store

Refers to
Employee
modelb

Creates
new proxycConfigures

proxy apid

Sets up
JSON reader

e

160 CHAPTER 7 The data store

 idProperty : 'id',
 successProperty : 'meta.success'
 },
 writer : {
 type : 'json',
 encode : true,
 writeAllFields : true,
 root : 'data',
 allowSingle : true,
 batch : false,
 writeRecords : function(request, data) {
 request.jsonData = data;
 return request;
 }
 }
 }
});
employeeStore.load();

In listing 7.4 you create a data store that refers to the Employee model B and uses an

Ajax proxy c with a configuration object as the property api d, which denotes URLs

for each of the CRUD actions, with read as the request to load data. You’ll use some-

what intelligent remote server-side code, where a controller exists for each CRUD action.

Writer requires intelligent responses; thus, remote server-side code was developed. It’s a

good idea to use the same server-side technology for all of the CRUD actions (refer to

the example application in part 3 of this book for an example of how it’s done).

NOTE In the examples accompanying this book, you’ll find a version of this
example that refers to extjsinaction.com (employee_store.html). This exam-
ple will let you read but not update data. If you wish to explore the effect of
executing the CRUD actions, we recommend that you follow the instructions
in the accompanying readme.txt file for chapter 7. This file will walk you
through how to set up the database in MySQL and how to configure the
accompanying server-side code.

Next you create a subclass of Ext.data.Writer, known as Json Writer e, which

potentially has the ability to save a request to modify a single record or batch (list) of

records. By overriding updateRecords f, this example illustrates how to ensure that

Writer writes only one record at a time. In the Json Writer configuration object, you

set writeAllFields to true, which ensures that for each operation Writer returns all

of the properties; this strategy is great for development and debugging. Naturally, you

want to set this writeAllFields to false in production, which will reduce overhead

over the wire and at the server-side and database stack.

NOTE You can override Reader and Writer in the proxy as you can override
most other functionality in Ext JS. If the supplied classes don’t suit your needs,
chances are that someone in the Ext JS community already implemented a
custom class that might. Take a look at http://sencha.com/forum to see what
you can find before you start implementing your own custom solution.

Configures
writerf

http://sencha.com/forum

161A store with Writer

We suggest that when you develop with Writer you add a global exception event lis-

tener to your store. This listener is needed if you want something to occur upon any

exception that the store raises. When developing our applications, we send all of the

arguments to the Firebug console because it provides a wealth of information that’s

hard to find anywhere else during debugging. We strongly suggest you do the same.

Trust us; doing so will save you time in the long run.

 When implementing the server-side endpoint for the writer, you’ll notice that all

parameters are sent as GET parameters if you choose a JsonP proxy. Keep this in mind

if you want to switch between using an Ajax and a JsonP proxy.

7.3.1 Validating your model data

In addition to identifying the expected type and format of the fields in your model,

you can identify validations that can run before any attempt to update the store. In

Ext JS 4 you can now validate fields directly using the model. Previously you had to

perform validation using the form panel. Placing your validation code near your field

type descriptions more clearly identifies the rules in your domain model.

 As you might recall, Ext.data.Field can consist of

■ A name

■ A type (auto, string, int, float, Boolean, date)

■ A defaultValue

■ A convert function (used to convert from an incoming record)

When you use Ext.data.Store, all data passes Ext.data.Model, which makes it an

obvious place to perform data validations. Let’s explore this in the next listing by set-

ting up a model to represent employees in a department.

Ext.define("Employee", {
 extend : 'Ext.data.Model',
 fields : [
 'firstName',
 'lastName',
 'middle',
 'title',
 'street',
 'city',
 'state',
 'zip',
 'departmentName',
 'rate',
 'officePhone',
 'homePhone',
 'mobilePhone',
 'email',
 {
 name : 'id',
 type : 'int'

Listing 7.5 The Employee model with validations

162 CHAPTER 7 The data store

 },
 {
 name : 'departmentId',
 type : 'int'
 },
 {
 name : 'dateHired',
 type : 'date',
 format : 'Y-m-d'
 },
 {
 name : 'dateFired',
 type : 'date',
 format : 'Y-m-d'
 },
 {
 name : 'dob',
 type : 'date',
 format : 'Y-m-d'
 }
],
 validations : [
 {
 type : 'presence',
 field : 'firstName'
 },
 {
 type : 'presence',
 field : 'lastName'
 },
 {
 type : 'presence',
 field : 'departmentId'
 },
 {
 type : 'format',
 field : 'email',
 matcher : /@/
 }
]
});

A common usage scenario is to have an id and some foreign keys in type int B. You

also identify dateHired c, dateFired, and dob as dates.

 New to Ext JS 4 is the ability to perform validations directly on the model. In

this example you can see how to use a presence validation d and a format valida-

tion e.

 Let’s pretend that you want to add a very young new employee to department

number 15:

var sofie = Ext.create('Employee', {
 firstName : 'Sofie',
 lastName : 'Andresen',

Converts to
integerb

Specifies
dateHiredc

Adds presence
validation

d

Configures format
validation

e

163A store with Writer

 dob : Ext.util.Format.date('2007/12/15','Y-m-d'),
 email : 'Sofie A'
});

If you run the following code

var errors = sofie.validate();

you’ll get a list of two errors. The first error will indicate that Sofie isn’t associated

with a department yet, and the second pops up because she just learned how to type

her name and doesn’t know what an email is yet. So let’s wait to add Sofie to the

Employee store!

 If you succeed in validating your model data with some other data with no errors,

then you’re ready to add the new employee to interact with the data store.

7.3.2 Syncing your data

As you’ll recall from figure 7.1, the data store is intended to be used by consumer wid-

gets. So for real applications, you’d respond to events from widgets and act according

to the event in your code. For example, if you receive an onClick event on a save but-

ton, then it’d be fitting to update the appropriate model in the store using data pres-

ent in the widget.

 We’ll cover the details of interacting with a store from a consumer widget in later

chapters; for now, let’s explore how to update employee data using commands avail-

able in the store and the model.

NOTE While learning how to interact with the data store, you can enter
the JavaScript example snippets directly into your favorite browser’s devel-
oper tools.

First you can update models using set and get. The data package is intelligent, so it

knows when you have dirty data that needs to be updated when you sync:

var firstEmployee = employeeStore.first();
firstEmployee.set('firstName', 'Anita');
firstEmployee.set('lastName', 'Andresen');
employeeStore.sync();

Here you grab a reference to the first available Employee model in the Employee

store, change the first name to Anita and the last name to Andresen, and sync the data

store. This step activates the example custom writer supplied in listing 7.4.

 If you want to add a new employee named Jacob to department 15, you can create

the following Employee model:

 var jacob = Ext.create('Employee', {
 firstname : 'Jacob',
 lastName : 'Andresen',
 departmentId : 15,
 email : 'jacob.andresen@gmail.com'
 });

164 CHAPTER 7 The data store

Add it to the Employee store and then sync it:

employeeStore.add(jacob);
employeeStore.sync();

The sync operation on new records will fail if one of the validation operations on

the model fails. For example, let’s say that you forgot to assign a departmentId to the

Jacob record. The record would then not be on the list of records to be created by

calling sync.

NOTE You can explore which records are to be created by calling getNew-
Records on the store before you call sync. If you wish to explore the modified
records, you can call getModifiedRecords, and getRemovedRecords shows
you what records are to be removed when you sync.

If you want to remove the last record in the Employee store, you could do the following:

var lastEmployee = employeeStore.last();
employeeStore.remove(lastEmployee);
employeeStore.sync();

NOTE In Ext JS 4 you can also perform a load, save, and destroy using proxy
functionality directly from the model. Be sure to be consistent in your coding
style throughout your program. The code can be hard to read if you mix the
two programming styles.

If you’ve taken a look at the data URLs retrieved while loading data into the Employee

store, you may have noticed the page, start, and limit parameters in a URL that

looks like this:

http://extjsinaction.com/
crud.php?model=Employee&method=READ&_dc=1359395332718&page=1&start=0&lim
it=25&callback=Ext.data.JsonP.callback1

The page, start, and limit parameters are standard parameters supplied by the sys-

tem and can be used to perform paging operations (splitting up the data display into

smaller chunks rather than displaying the entire dataset at once). We’ll explore pag-

ing in detail in chapter 8 when we cover pagination.

 By now you should have a working knowledge of what the data store is and how it

works. So let’s wrap up this chapter with one of the more advanced features intro-

duced in Ext JS 4: the ability to nest data by using Ext.data.Association between

your models.

7.4 Associating data

By nesting data, you can meet additional requirements to spare bandwidth while run-

ning highly interactive applications. It also gives you the ability to express business

logic in a more concise way than was possible with Ext JS 3.

 Let’s imagine that the HR department has given you the task of optimizing your

application so that it allows rapid modifications of employee data in all of the

165Associating data

departments of your company. The head of the HR department is growing tired of

your application, which she calls “a traditional internet application.” “It’s just too

slow,” she says. “All it does is talk to the server when I browse my data. I just want the

application to instantly update the employee data when I browse through a list of

employees in all the departments. Can you please load all the data upon start-up? I

don’t care that the application takes a bit longer to start, and I only expect to be using

it on our gigabit intranet.”

 After resisting the urge to point out that you had the good idea to split up the

employee list by department so the application would render faster and that your

application is pretty fast already, you start looking for options. Luckily, it doesn’t take

you long to find a description of Ext.data.Model in the documentation and see that

it contains associations in Ext JS 4. It looks like you just have to make some minor

adjustments to your existing code to use an associated data load. This way, you can

load the description of all departments and all employees at once.

 You start by adding a hasMany association from the department model to the

Employee model, as shown in the next listing.

Ext.define('Department', {
 extend: 'Ext.data.Model',
 fields: [
 'id',
 'name',
 'active',
 'dateActive',
 'dateInactive',
 'description',
 'director',
 'numEmployees'
],
 sortInfo: {
 field : 'name',
 dir : 'ASC'
 },
 associations: [{
 type : 'hasMany',
 model : 'Employee',
 name : 'employees'
 }]
});

In the Department model, you identify that a department has many employees B.

You set the association key to employees. Similarly, you need to set up a belongsTo

association in the employeeModel from listing 7.5:

Ext.define("Employee", {
 extend: 'Ext.data.Model',
 fields: […],
 associations: [{

Listing 7.6 Department model with associations

Contains hasMany
relation

b

166 CHAPTER 7 The data store

 type : 'belongsTo',
 model : 'Department',
 associationKey: 'departmentId'
 }]
});

Doing so allows you to access the employee data associated with the current depart-

ment. The next listing uses the Department and Employee models from listings 7.5

and 7.6.

var urlRoot = 'http://extjsinaction.com/crud.php?model=Department&method=';

var departmentStore = Ext.create('Ext.data.Store', {
 model : 'Department',
 proxy : {
 type : 'jsonp',
 api : {
 create : urlRoot + 'CREATE',
 read : urlRoot + 'READ',
 update : urlRoot + 'UPDATE',
 destroy : urlRoot + 'DESTROY'

 },
 reader : {
 type : 'json',
 root : 'data',
 idProperty : 'id',
 successProperty : 'meta.success'
 }
 }
});

departmentStore.load({
 params : {
 detail : true,
 limit : 5
 },
 callback : function() {
 departmentStore.each(function(department) {
 department.employees().each(function(employee) {
 var departmentId = department.get('id'),
 departmentName = department.get('name'),
 employeeId = employee.get('id'),
 employeeName = employee.get('firstName');

 console.log(departmentId, departmentName,
 employeeId, employeeName);
 });
 });
 }
});

In this example you ask the example server-side code to supply the associated details

for the departments (in the same data model format as for the employees, just filtered

Listing 7.7 Reading associated employee data for departments

Asks for
details

b

Reads
associated data

c

167Summary

for departments). The parameter detail B is set to true to indicate that server-side

code should supply the associated employees for the department.

 You can then consume the associated employee data using the name property as a

function, in this example, department.employees() c. Recall that you supplied the

name property in the hasMany association for the Department model in listing 7.6. By

calling department.employees() you obtain a reference to the Employee store that

you can use to traverse the employees associated with the department. In this example

we’ve chosen to print out the department name and the first name of the employee;

this should show that you can reach the associated employee data.

 There you have it: nested data with Ext JS data stores.

7.5 Summary

In this chapter you learned about the data store, beginning with an overview of the

many classes that support it. You saw a breakdown of the various supporting classes

and learned that proxies are responsible for fetching data and that readers are

responsible for translating data and creating instances of Model to stuff into the data

store itself.

 After your introduction into the world of the data store, you dove into loading and

using Array, XML, and JSON data. You then learned how to persist data using data writ-

ers and the store’s sync method. Finally, you explored the data-association capabilities

with the data package, where you loaded department data with associated employees.

 In the next chapter you’re going to take a deep dive into your first complex data-

driven view: the grid panel.

168

The grid panel

Since the early days of Ext JS the grid panel has been the centerpiece of the frame-

work. In many respects this holds true today, and the grid panel is arguably one of

the widgets with the most advanced functionality available in Ext JS, allowing for

rapid data entry in a tabular form. When you use the grid panel, you gain the abil-

ity to visualize and manipulate large datasets in an intuitive way, so this class should

fit into most enterprise and office applications. Note that the grid has seen a major

overhaul of performance in Ext JS 4.1, and it’s now so fast that the list view from

previous releases of Ext JS is no longer needed.

 This chapter focuses on the grid panel and builds on what you learned about

data stores in the previous chapter. You’ll start by constructing a grid panel that

feeds from a store that reads local in-memory array data. After exploring the basics,

you’ll move on to advanced features like paging and scrolling. Finally, you’ll learn

This chapter covers

■ Learning about the grid panel

■ Using existing column implementations

■ Enabling grid panel pagination

■ Creating an editable grid panel

■ Implementing CRUD cycles using data stores

http://extjs.com/deploy/dev/examples/grid/array-grid.html
http://extjs.com/deploy/dev/examples/grid/array-grid.html
http://extjs.com/deploy/dev/examples/grid/array-grid.html

169Introducing the grid panel

how to edit and interact with data using the data store from the grid panel and the

CRUD actions covered in the last chapter.

 At each step of the process you’ll learn more about the grid panel and its support-

ing classes. But before we start, we’ll introduce you to the grid panel.

8.1 Introducing the grid panel

At first glance, the grid panel may look like a glorified HTML table, which has been

used for ages to display data. If you take a moment to look at one of the Ext JS grid

examples, you’ll realize that this is no ordinary HTML table. You can see one example

implementation of the grid panel that uses an array store at http://mng.bz/HAcK (see

figure 8.1).

 In the array grid example, you can see that the features provided by this widget

extend beyond those of a typical HTML table. These include column-management fea-

tures such as sorting, resizing, reordering, showing, and hiding. Mouse events are also

tracked out of the box to allow you to highlight a row by hovering over it and even

select it by clicking it.

 The example also demonstrates how the grid panel’s view (known as the grid view)

can be customized with what are known as custom renderers, which are applied to the

Change and % Change columns. These custom renderers color the text based on neg-

ative and positive values.

 This example merely skims the surface when it comes to how the grid panel can be

configured or extended. To fully understand the grid panel and why it’s so extensible,

you need to know more about its supporting classes.

8.1.1 Looking under the hood

The key supporting classes driving the grid panel are grid.View, SelectionModel, and

Store. Let’s take a quick glance at an implementation of a grid panel and see how

each class plays a role in making the grid panel work (figure 8.2).

Figure 8.1 The array grid example found in the examples folder of the downloadable SDK

http://mng.bz/HAcK

170 CHAPTER 8 The grid panel

In figure 8.2, you see a grid panel with its supporting classes highlighted. Starting

from the beginning, the data source, you see the Store class. Data stores work by using

a reader, which is used to “map” data points from a data source and populate the data

store. They can be used to read array, XML, or JSON data via the array, XML, and JSON

readers. When the reader parses data, it’s organized into records, which are organized

and stored inside the data store.

 The grid.View class is the UI component of the grid view. It’s responsible for read-

ing the data and controlling the painting of data onscreen.

 Columns are classes that map the data fields from each individual record for

placement on screen. They do this by means of a dataIndex property, which is set

for each column and is responsible for displaying the data it obtains from the field

it’s mapped to.

 Finally, SelectionModel is a supporting class that works with a view to allow users to

select one or more items onscreen. Out of the box, Ext JS supports Row, Cell, Check-

box, and Tree selection models. SelectionModel is what keeps track of what you’ve

selected onscreen.

 Now that we’ve covered the fundamentals, you’ll build a simple grid panel.

8.2 Building a simple grid panel

When implementing grid panels, you typically start by configuring the data store. This

is because configuring the columns is directly related to configuring fields in the data

store. Let’s continue to use the Employee store you constructed in the previous chap-

ter and hook it up to a grid panel by declaring the columns needed to render the grid

panel, as shown in the next listing.

grid.View (red)

Store

grid.header.Container

SelectionModel

r

r

Column

Figure 8.2 The grid panel’s supporting classes: grid.View, SelectionModel,

and Store

171Building a simple grid panel

var arrayData = [
 ['Jay Garcia', 'MD'],
 ['Aaron Baker', 'VA'],
 ['Susan Smith', 'DC'],
 ['Mary Stein', 'DE'],
 ['Bryan Shanley', 'NJ'],
 ['Nyri Selgado', 'CA']
];

var store = Ext.create('Ext.data.ArrayStore', {
 data : arrayData,
 fields : ['fullName', 'state']
});

var grid = Ext.create('Ext.grid.Panel', {
 title : 'Our first grid',
 renderTo : Ext.getBody(),
 autoHeight : true,
 width : 250,
 store : store,
 selType : 'rowmodel',
 singleSelect : true,
 columns : [
 {
 header : 'Full Name',
 sortable : true,
 dataIndex : 'fullName'
 },
 {
 header : 'State',
 dataIndex : 'state'
 }
]
});

The first thing you do is reference the associated store with name and state values B.

The values from the store are mapped to the column values d. For each column you

set the corresponding dataIndex in the store. You declare the Full Name column to be

sortable. Finally, you specify 'rowModel' as the selection type c. Figure 8.3 shows how

the grid will look onscreen.

 You can see that the data isn’t in the order specified. This is because before we

took the snapshot, we clicked the Full Name column, which invoked the click handler

for that column. The click handler checks to see if this column is sortable (which it is)

and invokes a data store sort method call, passing in the data field (dataIndex), which

is fullName. The sort method call then sorts all of the records in the store based on

the field that was just passed. It first sorts in ascending order, then toggles to descend-

ing. A click on the State column wouldn’t result in any sorting, because you didn’t

specify sortable: true as you did for the Full Name column.

Listing 8.1 Creating an ArrayStore and binding it to a grid panel

Refers to storeB

Sets selection
model

C

Maps dataIndexes
to columnsd

172 CHAPTER 8 The grid panel

The grid panel has other features that you can use. You can drag and drop the columns

to reorder them, resize them by dragging the resize handle, or click the Columns menu

icon, which appears whenever the mouse hovers over a particular column.

 To use the selection model, select a row by clicking it. Once you’ve done that, you

can use the keyboard to navigate rows by pressing the up- and down-arrow keys. You

can modify the selection model by removing the singleSelect: true property and

enabling multiSelect: true. Reloading the page will allow you to select many items by

using typical operating system multiselect gestures such as Shift-click or Ctrl-click.

 Creating your first grid was a cinch, wasn’t it? Obviously, there’s much more to grid

panels than displaying data and sorting it. Features like pagination and setting up

event handlers for gestures like right-clicks are used frequently. These advanced uses

are exactly where we’re heading next.

8.3 Advanced grid panel construction

In the previous section you built a grid panel that used static in-memory data. You

instantiated every instance of the supporting classes, which helped you get some expo-

sure to them. Like many of the components in the framework, the grid panel and its

supporting classes have alternate configuration patterns. In building your advanced

grid panel, you’ll explore some of these alternate patterns in a couple of the support-

ing classes.

8.3.1 What you’re building

The grid panel you’ll construct will use some advanced concepts, the first of which is

using a data store to query against a large dataset of randomly generated data, giv-

ing you the opportunity to use a paging toolbar. You’ll then learn how to use the

Single selection

Sort indicator

Resize handle

Column menu

Figure 8.3 Your first grid rendered onscreen demonstrating the configured row

SelectionModel and the sortable Full Name column

173Advanced grid panel construction

TemplateColumn class to set up custom renders for two columns. One of these will

apply color to the ID column, and the other will be more advanced, concatenating the

address data into one column.

 After you build this grid panel, you’re going to circle around and set up a rowdbl-

click handler. You’ll be introduced to context menus as you learn to use the grid

panel’s rowcontextmenu event. Put on your propeller hat if you have one; we’ll cover a

lot of material here!

8.3.2 The required data store and model

First you have to configure the supporting data store. You’ll use Employee model data

store definitions similar to what you did in chapter 7. We’ll include them in this sec-

tion to refresh your memory. You can find the contents of the following listing in

examples/ch08/datastores.js.

Ext.define('Employee', {
 extend : 'Ext.data.Model',
 idProperty : 'id',
 fields : [
 {name : 'id', type : 'int'},
 {name : 'departmentId', type : 'int' },
 {name : 'dateHired', type : 'date', format : 'Y-m-d'},
 {name : 'dateFired', type : 'date', format : 'Y-m-d'},
 {name : 'dob', type : 'date', format : 'Y-m-d'},
 'firstName',
 'lastName',
 'title',
 'street',
 'city',
 'state',
 'zip'
]
});

var urlRoot = 'http://extjsinaction.com/crud.php'
 + '?model=Employee&method=';

var employeeStore = Ext.create('Ext.data.Store', {
 model : 'Employee',
 pageSize : 50,
 proxy : {
 type : 'jsonp',
 api : {
 create : urlRoot + 'CREATE',
 read : urlRoot + 'READ',
 update : urlRoot + 'UPDATE',
 destroy : urlRoot + 'DESTROY'
 },
 reader : {
 type : 'json',
 metaProperty : 'meta',

Listing 8.2 Configuring the model and store

Forces data
types

b

Prepares for grid
panel paginationc

174 CHAPTER 8 The grid panel

 root : 'data',
 idProperty : 'id',
 totalProperty : 'meta.total',
 successProperty : 'meta.success'
 },
 writer : {
 type : 'json',
 encode : true,
 writeAllFields : true,
 root : 'data',
 allowSingle : true,
 batch : false,
 writeRecords : function(request, data) {
 request.jsonData = data;
 return request;
 }
 }
 }
});

The contents of listing 8.2 should seem familiar to you. The difference is that you

force the data types for the models B and inject a pageSize property c to the store

configuration. The pageSize property allows for easy integration with the paging tool-

bar, as you’ll see later in this chapter.

 Before we move on, notice that you’re using the reference employeeStore to point

to an instance of a data store. You’ll use that reference when you configure the grid.

8.3.3 Setting up columns

The columns you used for your first grid panel were pretty boring. All they did was

map the column to the record data field. In this example, you’ll use two template col-

umns, shown in the next listing, one of which will allow you to use the address data

fields to build composite and stylized cells. The template column is just one of the

options available (you can also use action, Boolean, and number columns).

 var columns = [
 {
 xtype : 'templatecolumn',
 header : 'ID',
 dataIndex : 'id',
 sortable : true,
 width : 50,
 resizable : false,
 hidden : true,
 tpl : '{id}'
 },
 {
 header : 'Last Name',
 dataIndex : 'lastName',
 sortable : true,
 hideable : false,

Listing 8.3 Setting up the columns

Uses template
column

b

Hides ID
column

c

Renders
IDs blued

175Advanced grid panel construction

 width : 100
 },
 {
 header : 'First Name',
 dataIndex : 'firstName',
 sortable : true,
 hideable : false,
 width : 100
 },
 {
 header : 'Address',
 dataIndex : 'street',
 sortable : false,
 flex : 1,
 tpl : '{street}
{city} {state}, {zip}'
 }
];

Configuring these columns is much like configuring the columns for your previous

grid. There are some notable differences, though. First, you use a template column B
to render the ID column blue d. Note that the ID column is hidden by default c. You

also set the hideable property for both the Last Name and First Name columns to

false, which will prevent them from being hidden via the Columns menu. You’ll get a

chance to see this in action after you render the grid panel.

 The Address column is a bit special: you’ve disabled sorting. You do so because

you’re rendering the column with content based on a composite of other fields in the

record, such as city, state, and zip; this is done using the template for address e. You

do enable sorting on each column.

 Now that you’ve constructed the array of column configuration objects, let’s move

on to piecing together your paging grid panel.

8.3.4 Configuring your advanced grid panel

You now have just about all the pieces required to configure your paging grid panel.

To do so you’ll need to configure the paging toolbar, which will be used as the bottom

toolbar in the grid panel, as shown in the next listing.

var pagingToolbar = {
 xtype : 'pagingtoolbar',
 store : employeeStore,
 dock : 'bottom',
 displayInfo : true
};

var grid = Ext.create('Ext.grid.Panel', {
 xtype : 'grid',
 columns : columns,
 store : employeeStore,
 loadMask : true,
 selType : 'rowmodel',

Listing 8.4 Configuring your advanced grid panel

Sets up
template
for address

e

Configures
paging toolbarb

Creates
grid panelc

176 CHAPTER 8 The grid panel

 singleSelect : true,
 stripeRows : true,
 dockedItems : [
 pagingToolbar
]
};

In listing 8.4 you use the XType as a shortcut to configure both the paging toolbar and

the grid panel. For the paging toolbar configuration B you bind the Employee data

store configured earlier and set the pageSize property to 50. Doing so enables the

paging toolbar to bind to the data store, allowing it to control requests. The pageSize

property will be sent to the remote server as the limit property, and it’ll ensure that

the data store receives bundles of 50 (or fewer) records per request. The paging

toolbar will use the limit property along with the server’s returning totalCount

property to calculate how many “pages” there are for the dataset. The last configura-

tion property, displayInfo, instructs the paging toolbar to display a small block of

text, which displays the current page position and how many records are available to

be flipped through (remember totalCount). We’ll point this out when you render

the grid panel.

 You then configure a grid panel instance c. In this instance you bind the configu-

ration variables columns, employeeStore, and pagingToolbar. The loadMask property is

set to true, which will instruct the grid panel to create an instance of Ext.LoadMask

and bind it to the bwrap (body wrap) element, the tag that ultimately wraps or con-

tains all of the elements below the title bar of a panel. These elements include the

top toolbar, content body, bottom toolbar, and fbar (the bottom button footer bar).

The LoadMask class binds to various events that the store publishes to show and hide

itself based on the situation the store is in. For instance, when the store initiates a

request, it’ll mask the bwrap element; and when the request completes, it will unmask

that element.

 You set the dockedItems property to your pagingToolbar XType configuration

object, which will render an instance of the paging toolbar widget with that configura-

tion data as the bottom toolbar in the grid panel.

 Your grid panel is now configured and ready to be placed in a container and ren-

dered. You could render this grid panel to the document body element, but let’s place

it as a child of an instance of Ext.Window; this way, you can easily resize the grid panel

and see how features like the automatic sizing of the Address column work.

8.3.5 Configuring a container for your grid panel

Let’s create the container for your advanced grid panel. Once you render the con-

tainer, you’ll initiate the first query for the remote data store you created a while ago:

 Ext.create('Ext.Window', {
 height : 350,
 width : 550,
 border : false,

177Advanced grid panel construction

 layout : 'fit',
 items : grid
 }).show();

 employeeStore.load();

Here you perform two tasks. The first is creating Ext.Window, which uses the Fit layout

and has the grid panel as its only item. You use method chaining to call the show

method directly from the result of the constructor call. Then you execute load on

employeeStore. Your rendered grid panel should look like the one in figure 8.4. As

you can see from the fruits of your labor, your grid panel’s Address column displays a

composite of the address fields in one neat column that’s dynamically sized and can’t

be sorted, whereas all the other columns start life with a fixed size and can be sorted.

 A quick look at the communication from the first request via Firebug will show you

the parameters sent to the server. Figure 8.5 illustrates those parameters.

 We covered the callback, limit, and start parameters a short while ago when we

discussed the paging toolbar, but you haven’t seen the _dc parameter yet. The dc

Composite column

displayInfo

Figure 8.4 The results of your advanced paging grid panel implementation

Cache buster

Callback method

Number of records

per page

Starting row index

Figure 8.5 Parameters sent to the remote server to request paged data

178 CHAPTER 8 The grid panel

parameter is what’s known as a cache buster parameter that’s unique for every request

and contains the timestamp for which the request was made in the Unix epoch format

(the number of seconds since the beginning of computer time, or 12 a.m. on January 1,

1970). Because the value for each request is unique, the request bypasses proxies and

prevents them from intercepting the request and returning cached data.

 You haven’t seen your ID column in action because you configured it as a hidden

column. To enable it, you can use the Columns menu and check the ID column, as

shown in figure 8.6.

 After checking the ID column in the Columns menu, you’ll see it appear in the

grid view. In this menu you can also specify the direction in which a column is to be

sorted. One thing you may notice right away by looking at the Columns menu is that

the menu options for the First Name and Last Name columns are missing. This is

because you set the hideable flag to false, which prevents their respective menu

options from being rendered. The Columns menu is also a great way to sort a column

directly in the order you desire.

 You now have your grid panel constructed. You can configure some event handlers

for the grid panel that’ll allow you to interact with it more. Before that, let’s explore

buffered paginated scrolling, an alternative to using the paging toolbar.

8.3.6 Buffered paginated scrolling

Do you want to avoid presenting the paging toolbar without having to wait for the

browser to retrieve the entire dataset? You’re in luck! Ext JS 4.1 introduced the paging

grid scroller for grids. The new paging grid scroller allows Ext JS to paginate the data-

set behind the scenes and retrieve the data to be displayed ahead of time. We realize

this sounds a bit complicated, so let’s explore it in action.

 The main idea behind buffered paginated scrolling is still to split up the dataset

into pages. In this system you prefetch data before the user scrolls to the bottom or

the top. For example, if the user is scrolling near the bottom of the grid, you retrieve a

certain amount of data before the user scrolls to the end of the grid. This way, you can

Figure 8.6 Enabling the ID column via the Columns menu

179Advanced grid panel construction

avoid making the user wait while the application communicates with the server and

renders results. To kick things off, you’ll need to configure a buffering data store, as

shown in the following listing.

var url = 'http://extjsinaction.com/crud.php?model=Employee&method=READ';
var bufferedEmployeeStore = Ext.create("Ext.data.Store", {
 model : 'Employee',
 pageSize : 50,
 buffered : true,
 remoteSort : true,
 sorters : {
 property : 'lastName',
 direction : 'ASC'
 },
 proxy : {
 type : 'jsonp',
 url : url,
 reader : {
 type : 'json',
 root : 'data',
 idProperty : 'id',
 successProperty : 'meta.success',
 totalProperty : 'meta.total'
 }
 }
});

First you need to identify the page size B. You should adjust this size to get the best per-

formance from your back-end services and the least amount of latency for the UI. Keep

in mind that network speed and the number of bytes being transferred matter as well.

 Also remember to set buffered to true for your store c. Doing so will enable buff-

ering and allow buffered paginated scrolling to work. You should sort on a property so

that it’s easy to follow the scroll progress on the screen. In this example we enabled

sorting on lastName. A good rule of thumb is to sort on the property that you enable

as the first column when you render the grid onscreen.

 Finally, remember to read the total number of results for the query from the

server d. Without this setting, the data store won’t be able to calculate how to config-

ure the grid panel’s scroller.

 For buffered paginated scrolling, you need to configure a vertical scroller for the

grid. To accomplish this, use your previously defined columns and Window instance to

render the grid panel. As you’ll see, the biggest difference is that you’re adding a

verticalScroller configuration object to the grid panel:

var grid = Ext.create('Ext.grid.Panel', {
 xtype : 'grid',
 columns : columns,
 store : bufferedEmployeeStore,
 loadMask : true,

Listing 8.5 Buffered employee data store

Identifies
pageSizeb

Sets buffered
to truec

Reads total
number of results

d

180 CHAPTER 8 The grid panel

 verticalScroller : {
 trailingBufferZone : 10,
 leadingBufferZone : 10
 }
});

trailingBufferZone lets you configure how many rows should be stored in memory

“on top” (after it has left the visible screen, after the user has scrolled down). leading-

BufferZone lets you configure how many rows should be retrieved ahead of time.

 Take a look at the results of your code changes in the browser. Are you as impressed

as we are? Remember to use this feature only when it makes sense. If you plan to enable

editing in your grids, be aware that multi-item editing is easier to implement using pag-

ing with a toolbar. Static paging makes it easier to keep track of the user interaction with

the grid. Plan carefully before enabling this awesome feature.

 Let’s explore how to apply event handlers allowing the user to interact with the grid.

8.3.7 Applying event handlers for interaction

To create row-based user interaction, you need to bind event handlers to events that

are published by the grid panel. Here you’ll learn how to use the rowdblclick event to

display a dialog box when a double-click is detected on a row. Likewise, you’ll listen

for a contextmenu (right-click) event to create and show a single-item context menu

using the mouse coordinates.

 You’ll begin by creating a method to format a message for the Ext JS alert message

box and then move on to create the specific event handlers, as shown in the next list-

ing. You can insert this code anywhere before your grid panel configuration.

 var doMsgBoxAlert = function() {
 var record = grid.selModel.getSelection()[0];
 var firstName = record.get('firstName');
 var lastName = record.get('lastName');
 var msg = String.format('The record you chose:
 {0}, {1}',
 lastName , firstName);
 Ext.MessageBox.alert('', msg);
 };
 var doRowDblClick = function() {
 doMsgBoxAlert();
 };
 var doRowCtxMenu = function(view, record, item, index, e) {
 e.stopEvent();
 if (!view.rowCtxMenu) {
 view.rowCtxMenu = Ext.create('Ext.menu.Menu', {
 items : {
 text : 'View Record',
 handler : function() {
 doMsgBoxAlert();
 }
 }
 });

Listing 8.6 Creating event handlers for your data grid

Shows alert
message boxb

Adds rowdblclick
handler

c
Adds
itemcontextmenu
handler

d

Hides browser’s
context menue

Creates static
instance of
menuf

181Advanced grid panel construction

 }
 view.rowCtxMenu.showAt(evtObj.getXY());
 };

In listing 8.6 you create three methods. The first of these, doMsgBoxAlert B, is a utility

method that’s a pointer to the grid panel generating the event. It uses Selection-

Model’s getSelection method to obtain a reference to the selected record and the

record.get method to extract the first and last name fields. It uses those fields to dis-

play an alert message box that contains a message with those two properties.

Next you create the first handler, doRowDblClick c. All this method does is execute

the doMsgBoxAlert method that we discussed earlier.

 The last method, doRowCtxMenu d, is much more complicated and accepts five

parameters. The first is the reference to grid view, the second is the record being

manipulated in the data store, the third is the items element, the fourth is the items

index, and the fifth is an instance of Ext.EventObject. Knowing this is important

because on some browsers, such as Firefox for Mac OS X, you need to prevent the

browser’s own context menu from displaying. This is why you call e.stopEvent e as

the first task. Calling stopEvent stops the native browser context menu from showing.

 Next, this handler uses the record parameter to force the selection of the row for

which the event was generated by calling SelectionModel’s select method, passing in

the record parameter.

 You then test to see whether the grid has a rowCtxMenu property, which on the first

execution of this method will be false, so the interpreter will dive into this branch of

code. You do this because you want to create the menu once if it doesn’t exist. With-

out this fork in the logic, you’d be creating menus every time the context menu is

called, which would be wasteful.

 You then assign the rowCtxMenu property F to grid as the result of a new instance

of Ext.menu.Menu. The first property of the menu item is the text that’ll be displayed

when the menu item is shown. The other is a handler method that’s defined inline

and causes doMsgBoxAlert to be called with the referenced record.

 The last bit of code calls on the newly created rowCtxMenu’s showAt method, which

requires the X and Y coordinates to display the menu. You do this by directly passing

the results of evtObj.getXY() to the showAt method. evtObj.getXY will return the exact

coordinates where the event was generated.

 Your event handlers are now armed and ready to be called on. Before you can use

them in the grid, you need to configure them as listeners, as shown here:

Context menus typically select items

Most desktop applications select an item when the user right-clicks it. Because Ext JS

doesn’t provide this functionality out of the box in the grid panel, you can force the

selection of the item that the user is right-clicking. Doing so will give your application

more of a desktop feel.

182 CHAPTER 8 The grid panel

 listeners : {
 itemcontextmenu : doRowCtxMenu,
 itemdblclick : doMsgBoxAlert
 }

To configure the event handlers to the grid, you add a listeners configuration object,

with the event to handle mapping. Because your event handlers can handle only one

selected record, you have to enforce single selection. To do so you add a selType of

rowmodel with the singleSelect option set to true.

 Refresh the page and generate some double-click and right-click gestures on the

grid. What happens? See figure 8.7.

 Now double-clicking any record will cause the Ext JS alert message box to appear.

Likewise, right-clicking a row will cause your custom context menu to appear. If you

click the View Record menu item, the alert box will appear.

 Adding user interaction to a grid can be as simple as that. One key to effective

development of UI interactions is not to instantiate and render widgets only once and

when needed, as you did with the context menu. Although this technique works to

prevent duplicate items, it falls short when it comes to cleanup. Remember the

destruction portion of the component life cycle? You can attach a method to destroy

the context menu when the grid panel is destroyed by adding a destroy handler

method to the list of listeners:

 listeners : {
 itemdblclick : doRowDblClick,
 itemcontextmenu : doRowCtxMenu,
 destroy : function(grid) {
 if (grid.rowCtxMenu) {
 grid.rowCtxMenu.destroy();
 }
 }
 }

Figure 8.7 The results of adding the context menu handler to your advanced grid

183Editing data in the grid panel

In this code snippet you add the destroy event handler inline instead of creating a

separate referenced method for it. The destroy event always passes the component

that’s publishing the event, which is labeled grid. In that method you test for the exis-

tence of the rowCtxMenu variable. If this item exists, you call its destroy method.

 Context menu cleanup is one of those areas that developers often miss and that

can lead to lots of leftover DOM node garbage, which chews up memory and can con-

tribute to application performance degradation over time. If you’re attaching context

menus to any component, always be sure to register a destroy event handler for that

component that destroys any existing context menus.

 So there you have it! Now you know how to operate a grid panel. Next we’ll explore

how to build a working editable grid panel, which will allow you to modify data inline

much as you can in popular desktop spreadsheet applications like Microsoft Excel.

You’ll do so by using the grid panel edit plug-ins new to Ext JS 4.

8.4 Editing data in the grid panel

In earlier versions of Ext JS, you had to implement a separate editor grid panel to

be able to edit content available in your grid. With Ext JS 4, you can now reuse

your existing grid panel and enable editing using plug-ins. The editing plug-ins

inject editing capabilities into the grid panel so that you can reuse the data store

attached to your grid for persisting data. You can now choose the RowEditing or

CellEditing plug-in, depending on whether you want to enable editing on a row or

a cell level.

 Using the grid panel editing plug-ins should streamline your development consid-

erably, but you still need to wire event handlers to perform the CRUD actions using your

data store. We’ll explore this by expanding the complex grid panel you’ve constructed,

but with some changes to allow you to edit data using the RowEditing plug-in.

 Excited yet? Let’s take a sneak peek at what the grid panel looks like with the

RowEditing plug-in enabled before we continue (figure 8.8).

 You’ll start by enabling the editing plug-in so you can get an introduction into how

edits are possible. Then we’ll discuss the ins and outs of setting up UI widgets for inter-

action to support insert and delete CRUD operations, as well as how to get modified

records from the store or even reject changes using the data store we described in

the previous chapter. Building an editable grid panel without saving the data is use-

less, so we’ll take advantage of this opportunity to show you how to code for CRUD

operations. This will be the most complex code you’ve seen so far, and you’ll create

it in phases.

 The first phase is to enable the RowEditing plug-in and get the editors to work.

You’ll then circle back and add slices of each CRUD action, one at a time.

8.4.1 Enabling the editing plug-in

Because you’re expanding the complex grid panel created earlier, you’ll see some of

the same code and patterns. We’re doing it this way so the flow of the code is as

184 CHAPTER 8 The grid panel

smooth as possible. In most cases there’ll be changes, so please take the time to read

through every bit. We’ll point out all of the pertinent modifications.

 This section will build on what you learned about data stores in chapter 7. You’ll

begin in the next listing by creating the instances of the supporting classes for this

editable grid, such as the data store, the RowEditing plug-in, and column editor

configurations.

Ext.define('State', {
 extend : 'Ext.data.Model',
 fields : ['id', 'state']
});

var url = 'http://extjsinaction.com/crud.php??model=State&method=READ';
var stateStore = Ext.create("Ext.data.Store", {
 model : 'State',
 proxy : {
 type : 'jsonp',
 url : url,
 reader : {
 type : 'json',
 root : 'data',
 idProperty : 'id',
 successProperty : 'meta.success'
 }
 }
});

Listing 8.7 Creating the supporting class instance for grid panel editing

Figure 8.8 A quick peek at what you’ll be constructing in this section

Creates
data storeb

185Editing data in the grid panel

var rowEditing = Ext.create('Ext.grid.plugin.RowEditing', {
 clicksToEdit : 2,
 autoCancel : false
});

var textField = {
 xtype : 'textfield'
};

var stateEditor = {
 xtype : 'combo',
 triggerAction : 'all',
 displayField : 'state',
 valueField : 'state',
 store : stateStore
};

You kick things off by creating a data store B to support the ComboBox editor E
used to modify the State field of each record. Next you create an instance of the

RowEditing C grid plug-in class. You set clicksToEdit to 2, so that a double-click

event will bring up the editor, a common workflow in most user interfaces. autoCancel

is set to false to persist changes if the user decides to edit another row. We like to set

this as false because the user can always cancel changes via the RowEditing plug-in’s

built-in Cancel button.

 Next you set up a reusable text field configuration object that’ll be used in just

about every column in the editable grid panel D. Finally you declare a ComboBox

configuration object E. This one will be used in the State column of the grid panel.

 Now you can declare your columns and assign the editors, as shown in the next listing.

 var columns = [
 {
 header : 'Last Name',
 dataIndex : 'lastName',
 sortable : true,
 editor : textField
 },
 {
 header : 'First Name',
 dataIndex : 'firstName',
 sortable : true,
 editor : textField
 },
 {
 header : 'Street Address',
 dataIndex : 'street',
 flex : 1,
 sortable : true,
 editor : textField
 },
 {
 header : 'City',
 dataIndex : 'city',

Listing 8.8 Creating the columns with editors

Sets up new
RowEditing
instancec

Adds text editor
config object

d

Sets up ComboBox
config objecte

Uses text
field editorb

186 CHAPTER 8 The grid panel

 sortable : true,
 editor : textField
 },
 {
 header : 'State',
 dataIndex : 'state',
 sortable : true,
 width : 50,
 editor : stateEditor
 },
 {
 header : 'Zip Code',
 dataIndex : 'zip',
 sortable : true,
 editor : textField
 }
];

As you review the columns configuration array, you’ll see familiar properties such as

header, dataIndex, and sortable. You’ll also see a new kid on the block, editor B,

which allows you to specify an editor for each of the columns. You’ll also notice the

stateEditor C used for the State column.

 You now have your store, editors, and columns configured. You can move on to

creating your paging toolbar in the following listing. For this task, you’ll reuse the

employeeStore instance you created earlier.

 var pagingToolbar = {
 xtype : 'pagingtoolbar',
 store : employeeStore,
 displayInfo : true
 };

 var grid = Ext.create('Ext.grid.Panel', {
 columns : columns,
 store : employeeStore,
 loadMask : true,
 bbar : pagingToolbar,
 plugins : [rowEditing],
 stripeRows : true,
 selType : 'rowmodel',
 viewConfig : {
 forceFit : true
 },
 listeners : {
 itemcontextmenu : doRowCtxMenu,
 destroy : function(thisGrid) {
 if (thisGrid.rowCtxMenu) {
 thisGrid.rowCtxMenu.destroy();
 }
 }
 }
 });

Listing 8.9 Creating the paging toolbar, grid panel, and window

Specifies
stateEditor

c

Enables RowEditing
plug-in

b

187Editing data in the grid panel

 Ext.create('Ext.Window', {
 height : 350,
 width : 600,
 border : false,
 layout : 'fit',
 items : grid
 }).show();

 employeeStore.load();

In listing 8.9 you create the rest of your grid panel, starting with the paging toolbar,

which uses your Employee store. Next you create your grid panel B, using columns,

employeeStore, and pagingToolbar.

 You then create the container for your grid panel, which is an instance of Ext.Window,

and set its layout to 'fit'. You use chaining to show the window immediately after

it’s instantiated.

 Last, you call employeeStore.load C and pass a configuration object that specifies

the parameters to send to the server. This ensures you start at record 0 and limits the

number of returning records to 50.

 All of the pieces of the puzzle are in place for this phase. You can now render your

grid panel and begin to edit data. Figure 8.9 shows the grid panel with the RowEditing

plug-in engaged.

 You can see that your editable grid panel and paging toolbar have rendered with

data just waiting to be modified. Initially this seems like a normal grid panel. But under

the covers lies a whole new level of functionality just waiting to be unleashed. We’ll

take a moment to discuss how you can use it.

Figure 8.9 The editable grid panel

188 CHAPTER 8 The grid panel

8.4.2 Navigating your editable grid panel

You can use mouse or keyboard gestures to navigate through the cells and enter or

leave editing mode. To initiate editing mode via the mouse, double-click a cell and the

editor will appear, as shown earlier in figure 8.8. You can then modify the data and

click or double-click another cell, or anywhere else on the page, to cause the blur of

the editor to occur. Repeat this process to update as many cells as you wish.

 You can modify how many clicks it takes to edit a cell by adding a clicksToEdit

property to the RowEditing plug-in and specifying an integer value. Some applications

allow editing via a single click of a cell; if that’s what you want, you can set clicks-

ToEdit to 1 and be done.

 As command-line junkies, we feel that keyboard navigation offers you much more

power than the mouse. If you’re a power user of Excel or a similar spreadsheet appli-

cation, you know what we’re talking about. To initiate keyboard navigation, you can

use the mouse to focus on the first cell you want to edit. This immediately places focus

exactly where you need it. You can use the Tab key, or Shift-Tab key combination, to

move left or right. You can also use the arrow keys to focus on any cell.

 To enter edit mode using the keyboard, press Enter, which displays the editor for

that cell. While in edit mode you can modify adjacent cells by pressing Tab to move

one cell to the right or Shift-Tab to move one cell to the left.

 To exit edit mode, you can press Enter again or press Esc. If the data you entered or

modified validates properly, the record will be modified and the field will be marked

as dirty (changed). You can see quite a few fields being modified in figure 8.10.

 When you exit an editor, depending on whether the field has a validator and on

the results of the validation, the data will be discarded. To test this, edit a Zip Code

Figure 8.10 The grid panel with an editor and dirty field markers

189Getting the CRUD in

cell and enter more or fewer than five integers. Then exit edit mode by pressing

Enter or Esc.

 You can now edit data, but the edits are useless unless you save your changes. This

is where you enter the next building phase: adding the CRUD layers.

8.5 Getting the CRUD in

With the grid panel, CRUD server requests can be fired either automatically or manu-

ally. Automatic requests take place whenever a record is modified or when modifica-

tions occur and a preset timer expires in the client-side logic, firing off a request to

the server. To set up automatic CRUD, you can create your own logic to send the

requests, or you can do things the easy way and use the Employee store you created in

the previous chapter, which is exactly what you’ll do later in this chapter.

8.5.1 Adding save and reject logic

You’ll begin by creating the save and change rejection methods, which you’ll tie into

buttons that will live in your paging toolbar, as shown in the following listing. The

buttons Save Changes and Reject Changes can be implemented directly using the

paging toolbar.

 var pagingToolbar = {
 xtype : 'pagingtoolbar',
 store : employeeStore,
 pageSize : 50,
 displayInfo : true,
 items : [
 '-',
 {
 text : 'Save Changes',
 handler : function () {
 employeeStore.sync();
 }
 },
 {
 text : 'Reject Changes',
 handler : function () {
 employeeStore.rejectChanges();
 }
 },
 '-'
]
 };

In listing 8.10 you reconfigure the pagingtoolbar XType configuration object to

include items B. The string entities that you see with the hyphens (-) are shorthand

for the Ext.Toolbar.Separator, which will place a tiny vertical bar between toolbar

child items. You’re doing this because you want to show some separation between the

buttons and the generic paging toolbar navigational items. You implement Save

Listing 8.10 Reconfiguring the paging toolbar to include Save and Reject buttons

Adds
spacer

b

Saves
datac

Rejects
changesd

190 CHAPTER 8 The grid panel

Changes using the sync operation on the employeeStore C and use the rejectChanges

operation on the employeeStore to implement Reject Changes d.

 Also in the list are generic objects, which are translated to instances of Ext.Toolbar

.Button. Figure 8.11 shows the Save Changes and Reject Changes buttons, which have

their respective handlers set. As you can see in the figure, the buttons are placed

neatly inside the paging toolbar’s center, which is normally empty space, and they’re

separated by neat button separators. You can now begin to edit data and use your

modified paging toolbar functionality and newly created CRUD methods.

8.5.2 Saving or rejecting your changes

To use your Save and Reject buttons, you need to first modify data. Using what you

know about the grid panel, change some data and click Save Changes. You should see

the grid panel’s element mask appear briefly and then disappear once the save com-

pletes and the cells that are marked as dirty are marked clean or committed. Figure 8.12

shows the masking in action.

 Now that you’ve seen what it takes to perform remote saves to modified records,

you’ll add create and delete functionality to your grid panel, which will complete your

CRUD actions.

8.5.3 Adding create and delete

When configuring the UI for your save and reject functionality, you added buttons to

the paging toolbar. Although you could add create and delete functionality the same

way, it’s best to use a context menu because doing so makes it much smoother to

New buttons

Added separator

Figure 8.11 Your grid panel with Save Changes and Reject Changes buttons added

191Getting the CRUD in

delete and add. Think about it for a second; if you’ve ever used a spreadsheet applica-

tion, you know that right-clicking a cell brings up a context menu that, among other

things, has Insert and Delete menu items. We’re going to introduce the same para-

digm here.

 As you did with the previously added functionality, you’ll develop the supporting

methods in the next listing before you construct and configure the UI components.

We’re going to ratchet up the complexity.

 var onDelete = function() {
 var selected = grid.selModel.getSelection();
 Ext.MessageBox.confirm(
 'Confirm delete',
 'Are you sure?',
 function(btn) {
 if (btn == 'yes') {
 grid.store.remove(selected);
 grid.store.sync();
 }
 }
);
 };

Here you start by declaring the onDelete function to delete records B. After finding

the record to delete by asking the selection model, you then ask your user for confir-

mation to delete the record with a call to Ext.MessageBox.confirm. If you get a con-

firmation, you move on to delete the selected record with a call to the remove method

on the store C with the selected record.

 Before you move on to deploy delete, you should add the insert handler. This

one is relatively small:

var onInsertRecord = function() {
 var selected = grid.selModel.getSelection();

Listing 8.11 Constructing your delete and insert record methods

Figure 8.12 The load mask shows when save requests are being sent to the server.

Adds delete
operation methodb

Deletes selected
item from storec

192 CHAPTER 8 The grid panel

 rowEditing.cancelEdit();
 var newEmployee = Ext.create("Employee");
 employeeStore.insert(selected[0].index, newEmployee);
 rowEditing.startEdit(selected[0].index,0);
 };

The purpose of this method is to locate the row index that was right-clicked and insert

a phantom record at the index. Here’s how it works.

 First you create a new record via a call to Ext.create("Employee"). A call is then

made to the employeeStore’s insert method, which requires two parameters. The first

is the index at which you wish to insert the record, and the second is a reference to an

actual record. This effectively inserts a record above the row that’s right-clicked, emu-

lating one of the spreadsheet features we discussed earlier.

 Last, you want to initiate editing of that record immediately. You accomplish this

by a call to the RowEditing plug-in’s startEdit method, passing it the row for which

you inserted the new record, and 0, which means the first column.

 This concludes the supporting methods for the create and delete functions. You

can now move on to create the context menu handler and reconfigure the grid to lis-

ten to the itemcontextmenu event, as shown in the next listing.

 var doRowCtxMenu = function(view, record, item, index, e) {
 e.stopEvent();

 if (!grid.rowCtxMenu) {
 grid.rowCtxMenu = Ext.create('Ext.menu.Menu', {
 items : [
 {
 text : 'Insert Record',
 handler : onInsertRecord
 },
 {
 text : 'Delete Record',
 handler : onDelete
 }
]
 });
 }
 grid.selModel.select(record);
 grid.rowCtxMenu.showAt(e.getXY());
 };

Listing 8.12 contains doRowCtxMenu B, a method for handling the itemcontextmenu

event from the grid panel, which is responsible for creating and showing the context

menu for the insert and delete operations. Here’s how it works.

doRowCtxMenu accepts five arguments, which are passed by the itemcontextmenu

handler:

■ view, a reference to the view from the grid panel that fired the event
■ record

Listing 8.12 Setting up your context menu handler for the grid panel

Adds
listenerb

Tests if
rowCtxMenu
existsc

Selects right-
clicked cell

d

193Getting the CRUD in

■ item and index, which identify the record being edited

■ e, an instance of Ext.EventObject

The first function that this method performs is to prevent the right-click event from

bubbling upward by calling e.stopEvent, preventing the browser from displaying its

own context menu. If you didn’t prevent the event from bubbling, you’d see the

browser context menu on top of yours, which would be silly and unusable.

doRowCtxMenu then tests C to see if the grid panel has a rowCtxMenu property and

creates an instance of Ext.menu.Menu and stores the reference as the rowCtxMenu prop-

erty on the grid panel. This effectively allows for the creation of a single menu, which

is more efficient than creating a new instance of Ext.menu.Menu every time the event is

fired. It’ll last until the grid panel is destroyed, as you’ll see later.

 You pass a configuration object to the Ext.menu.Menu constructor, which has a sin-

gle property, items, which is an array of configuration objects that are translated to an

instance of Ext.menu.MenuItem. The MenuItem configuration objects both reference

the respective handlers to match the item text.

 The last two functions that this method performs are selecting the cell that was

right-clicked and showing the context menu at the correct X and Y coordinates

onscreen. It does this by calling the select D method of the grid panel’s row

SelectionModel and passing it the selected record. Last, you display the context menu

using the coordinates where the right-click event occurred.

 Before you execute your code, you’ll have to reconfigure the grid to register the

context menu handler. Add the following to your grid configuration object:

 listeners : {
 itemcontextmenu : doRowCtxMenu
 }

You now have everything you need to start using your new UI features. Let’s see this

thing in action.

8.5.4 Using create and delete

At this point you have your insert and delete handlers developed and ready to be

used. You just finished creating the context menu handler and reconfigured your grid

to call it when the rowcontextmenu event is fired. You’ll start your exploration by creat-

ing and inserting a new record, as shown in figure 8.13.

 As illustrated in figure 8.13, you can display the context menu by right-clicking any

cell, which calls the doRowCtxMenu handler. This causes the selection to occur and dis-

plays the custom Ext JS menu at the mouse pointer’s coordinates. Clicking the Insert

Record menu item forces the call to the registered handler, onInsertRecord, which

inserts a new record at the index of the selected row and begins editing on the first

column. Cool!

 In order to save changes, you need to modify the newly inserted record and then

click the Save Changes button that you created earlier. Figure 8.14 shows this screen.

194 CHAPTER 8 The grid panel

Whoa, that’s a lot of material just for the creation of records. What about deleting?

Surely that’s simpler, right?

 Absolutely! Before we discuss the process of deleting records, we’ll examine how

the UI works.

 When you right-click a record, an Ext.MessageBox displays to confirm the delete

operation, as shown in figure 8.15. You click Yes, and an Ajax request is made to the

controller to delete the record.

 This works because your onDelete handler called MessageBox.confirm and will call

your onDelete method. The onDelete function looks like this:

 var onDelete = function() {
 var selected = grid.selModel.getSelection();
 Ext.MessageBox.confirm(
 'Confirm delete',
 'Are you sure?',
 function(btn) {

Figure 8.13 Adding a new record with your newly configured Insert Record menu item

Figure 8.14 The UI transitions when saving your newly inserted record.

195Summary

 if (btn == 'yes') {
 grid.store.remove(selected);
 grid.store.sync();
 }
 }
);
 };

Here you use the Employee Store on the grid to remove the selected record and

then sync.

 You’ve now implemented all of the CRUD operations for your first editable grid

panel. In doing so, you learned more about stores and records and how to detect

changes and save them. Along the way, you got a chance to see a real-life case of an

Ext JS confirmation message box in action.

8.6 Summary

In this chapter, you learned quite a bit about the grid panel and how to use the data

store from a grid panel. While building your first grid panel, you got to see how the

data store is used to read data and how to paginate data and perform buffered pagi-

nated scrolling. You also added grid interactions to the grid panel, where mouse double-

click and right-click gestures were captured and the UI responded. In doing so, you

got a quick glance at menus and learned the importance of cleaning up menu items

after their parent component is destroyed.

 Finally, you got your first exposure to the Grid class and learned how it uses the

RowEditing plug-in to allow for editing of data on the fly. This gave you an opportu-

nity to learn about the row SelectionModel and some of its methods, such as get-

Selection. You also learned how you could use keyboard and mouse gestures to

navigate the grid panel and edit data relatively rapidly.

 Now that we’ve covered the basics of how to display and interact with data, the next

chapter dives into how to visualize data using charts.

Figure 8.15 The UI workflow for deleting a record

196

Taking root with trees

In this chapter you’ll learn about the Ext JS tree panel, which is used to display hier-

archical data, much like a typical filesystem. You’ll learn how to set up both static

and dynamic implementations of this widget. After getting comfortable with this

component, you’ll set up CRUD operations by using a data store and a dynamically

updating context menu.

9.1 Tree panel theory

To understand trees you first need to understand hierarchy. Hierarchy is an arrange-

ment of relationships where items belong above, under, or at the same level as one

another. In simple implementations it’s a one-to-one relationship, but it can also be

a complex many-to-many ordered set. Hierarchies exist in societies, corporations,

This chapter covers

■ Dissecting the tree panel widget

■ Rendering in-memory data

■ Using a remote-loading data tree panel

■ Creating a custom context menu

■ Editing node data

197Tree panel theory

the military, social networks, education and learning, psychology, and, of course,

computer science.

9.1.1 Tree panel keywords

You also need to understand the special vocabulary tied to hierarchy and trees. Cer-

tain concepts are represented by various names, which is why it’s a good idea to define

the terminology before getting any deeper into the subject. Table 9.1 explains Sen-

cha’s terminology.

In the UI world, the word tree is meant to describe a widget or control that displays

hierarchical data, which generally begins at some central point, known as a root. And

like the botanical tree, trees in UIs have branches, which means that they contain

other branches or leaves. Unlike botanical trees, computer trees have only one root.

 In the computer world, this paradigm is ubiquitous and lives under our noses with-

out much thought. Ever browse your computer’s hard disk? The directory structure is

a tree structure. It has a root (any drive letter in Windows), branches (directories),

and leaves (files). Trees are used in application UIs as well and are known by a few

other monikers.

 In other UI libraries, other names for this type of widget include the tree view, tree

UI, or simply tree, whereas in Ext JS it’s known as the tree panel. The reason it’s called

the tree panel is that it’s a direct descendant of the Panel class. And much like the

grid panel, it isn’t used to contain any children except those for which it was designed.

Table 9.1 Tree terminology

Name Meaning

Tree panel A container with the superpowers of Ext.panel.Panel that renders hierarchical data

in a treelike format.

Tree view A component that’s responsible for rendering and manipulating a tree’s DOM.

Tree Represents a hierarchy of items (nodes).

Node A single item in a hierarchy. In Ext JS 4, a node is configured via

Ext.data.NodeInterface.

Parent A node to which an observed node belongs. Root is the topmost parent.

Child A direct descendant of another node. All nodes are root’s children.

Root A single node that contains (parents) all other nodes (children) in the first or any subse-

quent level. Only one node can be a root.

Leaf A node without any children.

Branch A collection of nodes sharing a direct parent.

Depth The distance of a node’s branch from the root level. Root’s direct children are one level

deep, their children are two levels deep, and so on.

198 CHAPTER 9 Taking root with trees

The reason the TreePanel class extends from Panel is simple: convenience. This

allows you to use all of the panel’s UI goodness, which includes the top and bottom

toolbars and the footer button bar.

 The tree panel shares prototypal inheritance with the grid panel. Not only does

this much-desired upgrade introduced in Ext JS 4 mean tree panels are now easier to

extend, it also means that tree panels are now able to use the data package to its full

potential: stores, readers, proxies, and writers. A specially designed TreeStore class

manages hierarchical relationships for you, making CRUD operations easier than ever.

9.1.2 Looking under the roots

To get a tree panel to work, you first need to have some data. Loading data through a

TreeStore instance will internally parse relationships and apply all tree-related meth-

ods to the Model instance, such as expand/collapse, findChild, and getPath, along

with extra fields that maintain the tree state, like checked, allowDrop, and parentId.

The magic happens automatically, employing the Ext.data.NodeInterface class.

 This is where tree panels take over, laying out a panel as a tree container and dis-

tributing the rest of the work to the view. Ext.tree.View is responsible for the hard

work of outputting the UI for each node.

 Here comes the tricky part. As mentioned in chapter 1, tree panels and grid panels

share the same core logic. It sounds unbelievable at first, but in reality it makes a lot of

sense. They both exist on top of the Ext.panel.Table and Ext.view.Table classes.

That’s right—a tree is encapsulated in a table, both in logic and as rendered.

 This manifests as a whole tree being represented by a table, with each node

belonging to a column in a respective row. A node is, by default, a representation of

a text and an icon, but it can be extended for a more advanced usage. Nodes that

belong to a Model instance can be assigned any additional data. This extra informa-

tion can be used to add new columns to the left or right of the core tree, imple-

menting an often-needed TreeGrid functionality. The whole process is laid out in

figure 9.1.

 Up to a certain level, a rendered tree panel will share GridPanel’s CSS properties

such as x-grid-table, x-grid-row, x-grid-cell, and many more. But additional tree

features are specified in dedicated styles, all dictated in the Ext.tree.View class that

extends Ext.view.Table. So if you want to add a custom look and feel to the tree

nodes, this is where you’ll want to start.

 You now have a high-level understanding of what a tree panel is and how it works.

You can start constructing your first tree panel, which will load data from memory.

9.2 Planting your first tree panel

Coding a tree panel, a relative of the grid panel, is simple. You’ll start out by construct-

ing the tree panel, which loads its data from memory. This will give you more insight

into what you learned some time ago. The following listing shows how to construct a

static tree panel.

199Planting your first tree panel

var store = Ext.create('Ext.data.TreeStore', {
 root : {
 text : 'Root Node',
 expanded : true,
 children : [
 {
 text : 'Child 1',
 leaf : true
 },
 {
 text : 'Child 2',
 leaf : true
 },
 {
 text : 'Child 3',
 children : [
 {
 text : 'Grand Child 1',
 children : [
 {
 text : 'Grand... you get the point',
 leaf : true
 }
]
 }
]
 }
]
 }
});

Listing 9.1 Building a static tree panel

Writer

Store

Data

Proxy Reader

Tree Panel

Tree View Figure 9.1 The tree panel

data flow and render cycle

Sets up
root node

b
Expands
true node on
initialization

c

Specifies
child nodesd

Specifies
node as leafe

200 CHAPTER 9 Taking root with trees

Ext.create('Ext.window.Window',{
 title : 'Our first tree',
 layout : 'fit',
 autoShow : true,
 height : 180,
 width : 220,
 items : {
 xtype : 'treepanel',
 border : false,
 store : store,
 rootVisible : true
 }
});

Most of the code in listing 9.1 is the data to support the tree panel. In walking through

the root B you see that the Root Node object has a text attribute. This is important

because the text property is what Ext.view.Tree uses to display the node’s label.

When writing the server-side code to support this widget, be sure to keep this prop-

erty in mind. If you don’t set it, the nodes may appear in the tree panel, but they

won’t have labels.

 You also see an expanded property c, which is set to true. This setting ensures

that when rendered, the node is expanded immediately, displaying its contents. You

set it here so that you can see the root’s children immediately upon the rendering of

the tree panel. This parameter is optional; leave it out to have the node render ini-

tially collapsed.

 A children property is set on the Root Node object d, which is an array of objects.

Note that Ext.data.NodeInterface takes care of children and parses them as soon

as child data is available. When a node has a children array, the objects in that array

will be converted to records (Model) and populated in the parent node’s childNodes

array. A similar paradigm can be found in the container hierarchy, where a container

has children in its item’s MixedCollection.

 If you walk through the Root Node object’s children, you see that the first and sec-

ond children don’t have a children property but do have a leaf property e, which is

set to true. Setting a node’s leaf property to true ensures that the node will never

contain other child nodes, thus making it a leaf and not a branch. In this case, 'Child 1'

and 'Child 2' are leaf nodes, whereas 'Child 3' is a branch, because it doesn’t have a

leaf property set to true.

 The 'Child 3' node contains one child node. This node has a single child, which

also has a single child. The last child node is a leaf node because its leaf property is

set to true.

 After configuring the supporting data, you move on to configure the tree panel

using an XType f configuration object. This is where you see the simplistic nature of

the configuration of this widget. All of these properties should make sense to you

except root, which is what you use to configure the root node. In this case, the top-

most object of the root node JSON will be treated as the tree panel’s root.

Configures
tree panel

f

201Growing dynamic tree panels

You can change your node icons by adding either an icon or iconCls property to the

node’s configuration object, where icon specifies a direct location for an image and

iconCls is the name of a CSS class for an icon style. The iconCls property for the

node works like the panel’s iconCls configuration object and is the preferred method

for changing the icon.

 The last thing you do in this listing is create an instance of Ext.window.Window to

display your tree panel. Figure 9.2 shows what your rendered tree panel looks like.

 After rendering your tree panel, you can see the nodes displayed as you laid them

out in the JSON. You can expand 'Child 3' and its child node to display the rest of the

hierarchy. It’s easy to use the Selection model by clicking a node. If you want to hide

the root node, set rootVisible in the TreePanel configuration object to false. You

can see the results in figure 9.2 (right).

 And there you have it, a static tree panel in action. Simple stuff, huh? Now that we

have this out of the way, let’s move on to creating a remote tree panel.

9.3 Growing dynamic tree panels

Because your first tree panel was static, there was no need to directly create a full-

blown store instance with a proxy and a reader. All that changes with a remote-loading

tree panel. You’re going to develop a tree panel that’ll use the same data that you

used for your grid panels in chapter 7, where you displayed data identifying people.

It just so happens that those people are employees of My Company and belong to

different departments.

9.3.1 Creating a remote-loading panel

The next listing shows how to configure the tree panel to use the server-side compo-

nent to list employees by department.

var store = Ext.create('Ext.data.TreeStore', {
 autoSync: true,
 proxy : {

Listing 9.2 Building a dynamic tree panel

Figure 9.2 Your first (expanded) tree panel with the root node visible (left)

and the root node hidden (right)

Syncs data
automatically

b

202 CHAPTER 9 Taking root with trees

 type : 'jsonp',
 url : 'http://extjsinaction.com/treeData.php'
 },
 root : {
 text : 'My Company',
 id : 'mycompany',
 expanded : true
 }
});

Ext.create('Ext.window.Window',{
 title : 'Our first remote tree',
 layout : 'fit',
 autoShow : true,
 height : 360,
 width : 280,
 items : {
 xtype : 'treepanel',
 store : store
 }
});

As you can see in listing 9.2, you let the store know that it’s responsible for syncing B
changed data as soon as a change happens. Then you configure an Ext.data.proxy c,

in this case a JsonP proxy with a configuration object passed that contains a url

property set to treeData.php, which is hosted at http://extjsinaction.com. When

configuring your tree panel, replace this PHP file with your controller of choice as

well as the proxy type to Ajax if the controller is in the same domain. Before you

start coding your controller, though, let’s finish walking through the request-and-

response cycle, which follows shortly after we look at the rendered version of this

tree panel implementation.

 The next step when configuring your tree panel is to configure the root d inline.

It’s extremely important to note the addition of an id property e to this node. As

you’ll see, this property will be used to request the child data from the server. Also

notice that you set expanded to true. Doing so ensures that the root node expands

and loads its children as soon as it’s rendered.

 Interestingly, a root node configuration isn’t a necessity in an Ext.data.Tree-

Store. If you choose not to include it, make sure the root is included in the initial data

load. This feature can be useful in certain setups.

 Finally, you configure a bigger instance of Ext.Window to contain your tree panel.

Configuring the window a bit bigger for this demonstration will both increase the tree

panel’s viewing space and eliminate potential invocation of the Ext.util.Format

.ellipsis method because of long names.

 After rendering the tree panel, you see the root node (My Company) load immedi-

ately, as shown in figure 9.3 (left), displaying all of the departments in My Company.

To view the employees in a particular department, click the expand icon (+) or

double-click the label, and you’ll see the remote-loading indicator appear in place

of the folder icon, as shown in the center of figure 9.3. Once the employee nodes are

Remotes
data URLc

Configures root
node inlined

Sets ID of
root nodee

http://extjsinaction.com

203Growing dynamic tree panels

loaded successfully, they’ll appear below the department node, as shown in figure 9.3

on the right.

 We went through this pretty fast. Let’s recap a bit and look at the requests being

fired. We’ll discuss what the server-side controller is doing to support this implementa-

tion of the tree panel.

9.3.2 Fertilizing the tree panel

To analyze the client/server interaction model with the tree panel, let’s start with the

load request fired off by the automatic expansion of the root node, as shown in fig-

ure 9.4. Remember that you set the root’s expanded property to true and that this

expands a node when it’s rendered, thus either rendering the children if they’re in

memory or firing a load request.

 As you can see, the first request to the getCompany.php controller was made with

a single parameter, node, which has a value of myCompany. Can you remember where

you set that value and which property you set it to? If you said “the id property of

the root node,” you’re correct! When an asynchronously loading node is being

expanded for the first time, the store will use its id property to pass the child data to

the controller.

 The controller will accept this parameter and query the database for all nodes asso-

ciated with that id and return a list of objects, as illustrated in figure 9.5. In this figure

you see an array of objects that defines a list of departments. Each object has both

text and id properties. The text applies to the label of the node. Notice that the

departments lack the leaf and children properties. Are these leaf or branch nodes?

Figure 9.3 Your remote tree panel displaying its ability to load data remotely

Figure 9.4 The POST parameter

of the initial node request

204 CHAPTER 9 Taking root with trees

They’re branch nodes. Because neither property is defined, they’re treated as branch

nodes. This means that when they’re initially expanded, TreeStore will invoke an

Ajax.request, passing the department’s ID as the node parameter. The controller will

accept the node parameter and return a list of employees for that department.

 Using what you just learned, you can safely predict that when you expand the

Accounting department node a request to the getCompany.php controller will be

made with a single parameter, node, passed with a value of 'Accounting'. Let’s take a

quick look at the results from the controller request, shown in figure 9.6.

 As you look at the JSON results, you see that a list of objects is returned, each with

id, text, and leaf properties. Remember, because the leaf property is set, the nodes

appear as nonexpanding leaf nodes.

 Congratulations! You’ve successfully constructed static and dynamic tree panels to dis-

play hierarchical data. You also now have a basic understanding of the client/server inter-

action model between the tree panel and the web service feeding the tree panel data.

Figure 9.5 The results

of the initial request to

the getCompany.php

controller

Figure 9.6 The results from the Accounting department node request

205Implementing CRUD on a tree panel

Configuring a tree panel for loading is just a small part of the job if you’re tasked to

build a UI that offers CRUD functionality for this type of widget. Next we’ll look at how

to construct a tree panel for these types of interactions.

9.4 Implementing CRUD on a tree panel

To configure CRUD UI functionality, you’ll need to add much more code to the mix. After

all, the tree panel doesn’t support these features natively. Here’s what you’re going to do.

 To enable CRUD actions, you’ll modify your tree panel by adding an itemcontext-

menu listener to it, which will call a method to select the node that was right-clicked

and create an instance of Ext.menu.Menu to be displayed at the mouse cursor’s X and

Y coordinates. This process will be similar to how you coded the editor grid panel’s

context menu handler in the previous chapter.

 You’ll create three menu items: add, edit, and delete. Because you can only add

employees to a department, you’ll dynamically change text for the menu items and

enable and disable the various menu items based on the type of node that was clicked:

root, branch, or leaf.

 Each of the handlers will perform an appropriate store’s CRUD API method to

mock controllers for each CRUD action. Because the store is performing much of the

CRUD work automatically, the whole data-creation and -destruction process will look

much like the examples previously covered in this book.

 Get ready—this will be the most complicated tree code yet. You’ll start by creating

the context menu handler and the context menu factory method.

9.4.1 Displaying context menus

To add a context menu to the tree panel, you must register a listener for the item-

contextmenu event. This is super simple. Add a listeners configuration option to the

Window creation under items in listing 9.2 as follows:

 listeners : {
 itemcontextmenu : onCtxMenu
 }

Adding this code will ensure that the onCtxMenu handler will be called when the item-

contextmenu (or right-click) event is fired.

 Cool! Your tree panel is now set up to call the onCtxMenu handler. Before you code

it, you should construct a factory method to generate an instance of Ext.menu.Menu.

This will help simplify onCtxMenu quite a bit. You’ll see what we mean once you’ve fin-

ished with the factory method. The next listing walks you through constructing a con-

text menu factory method.

 var onConfirmDelete = Ext.emptyFn;
 var onDelete = Ext.emptyFn;
 var onEdit = Ext.emptyFn;
 var onAdd = Ext.emptyFn;

Listing 9.3 Configuring a context menu factory method

206 CHAPTER 9 Taking root with trees

 var buildCtxMenu = function() {
 return Ext.create('Ext.menu.Menu',{
 items: [
 {
 itemId : 'add',
 handler : onAdd
 },
 {
 itemId : 'edit',
 handler : onEdit
 },
 {
 itemId : 'delete',
 handler : onDelete
 }
]
 });
 }

In listing 9.3 you first set up several placeholder methods that point to Ext.emptyFn,

which is the same thing as instantiating a new instance of a function but easier on the

eyes. You’re adding them now so that when you circle back and fill in these methods

you’ll know exactly where to place them.

 Next, you generate the buildCtxMenu factory method, which returns an instance

of Ext.menu.Menu and will be used by the onCtxMenu handler that you’ll generate

next. In case you’ve never seen or heard of a factory method, from a high level it’s a

method that constructs (hence the name factory) something and returns what it con-

structed. That’s all there is to it.

 Notice that none of the menu items has a text property but each has itemId speci-

fied. This is because the onCtxMenu will dynamically set the text for each menu item to

provide feedback to the user that something may or may not be allowed. It’ll use the

itemId property to locate a specific item in the menu item’s MixedCollection instance.

 The itemId configuration property is similar to the id property of the component,

except that it’s local to a child component’s container. This means that unlike the

component’s id property, itemId isn’t registered with ComponentMgr. Thus, only the par-

ent component has the ability to look into its item’s MixedCollection to find a child

component with a specific itemId. Moreover, components can be just as easily located

by executing an Ext.ComponentQuery where both ids and itemIds are prefixed with a

#, such as #myComponent.

 Each MenuItem currently has a hardcoded handler to Ext.emptyFn as a place-

holder so you can see your menu display in the UI without having to code the real

handler. You’ll go on to create each handler after you develop and review the onCtx-

Menu handler, which is shown in the next listing.

 var onCtxMenu = function(view, record, element, index, evtObj) {
 view.select(record);
 evtObj.stopEvent();

Listing 9.4 Configuring a context menu factory method

207Implementing CRUD on a tree panel

 if (! this.ctxMenu) {
 this.ctxMenu = buildCtxMenu();
 }

 this.ctxMenu.treeNode = record;
 this.ctxMenu.treeView = view;

 var ctxMenu = this.ctxMenu;
 var addItem = ctxMenu.getComponent('add');
 var editItem = ctxMenu.getComponent('edit');
 var deleteItem = ctxMenu.getComponent('delete');

 if (record.getId() =='mycompany') {
 addItem.setText('Add Department');
 editItem.setText('Nope, not changing the name');
 deleteItem.setText('Can\'t delete a company, silly');

 addItem.enable();
 deleteItem.disable();
 editItem.disable();
 }
 else if (!record.isLeaf()) {
 addItem.setText('Add Employee');
 deleteItem.setText('Delete Department');
 editItem.setText('Edit Department');

 addItem.enable();
 editItem.enable();
 deleteItem.enable();
 }
 else {
 addItem.setText('Can\'t Add Employee');
 editItem.setText('Edit Employee');
 deleteItem.setText('Delete Employee');

 addItem.disable();
 editItem.enable();
 deleteItem.enable();
 }

 ctxMenu.showAt(evtObj.getXY()) ;
 }

In listing 9.4 you construct your onCtxMenu handler, which helps to enable your con-

text menu to be dynamic. The first task that this handler accomplishes is to select the

node in the UI by firing the view’s select method. The select method is shared with

all other components inheriting from Ext.view.AbstractView, such as Ext.grid

.GridPanel and Ext.picker.Time. You select the node because you’re going to need

to query the tree panel for the selected node further on, after Ajax calls are made

through a TreeStore proxy.

 Every time the tree panel’s itemcontextmenu event fires, it passes six arguments:

■ The view in which the event was captured

■ A Model instance representing a Ext.data.NodeInterface record

■ The Ext.Element reference to the node that was right-clicked

Adds factory
methodb

Configures each
type of node

c

208 CHAPTER 9 Taking root with trees

■ The node’s numerical index

■ The instance of Ext.EventObject that was generated

■ The options object passed to Ext.util.Observable.addListener

Going back to the source code, you’ll notice that you aren’t using that last reference

because you don’t really need it. That’s a wealth of references to work with, isn’t it? If

bells are ringing in your ears, it’s probably because this is similar to the grid panel’s

itemcontextmenu event.

 Next, you stop the browser’s default context menu from showing up by calling

evtObj.stopEvent. You’ll see this pattern repeat any time you need to display your

own context menu in place of the browser’s.

 The handler then constructs the context menu by calling the buildCtxMenu fac-

tory method you created a bit ago B. It stores the reference locally as this.ctxMenu

so it doesn’t have to reconstruct a menu for each subsequent handler call.

 At this point you want to reference the view and the node selected so that you can

use them later on. You do so to avoid future component querying and to avoid calling

the dangerous Ext.getCmp method.

 You then create a local reference to the context menu, ctxMenu, and each of the

menu items. You’re doing this for readability further on when you need to manage

the menu items.

 After you create the local references you move on to an if control block c, where

you detect the type of node and modify the menu items accordingly. This is the bulk

of the code for this handler. Here’s how the logic breaks down.

 If the node that was right-clicked is the root (record.getId() == 'myCompany'),

you configure the menu items to allow the addition of departments but disallow the

deletion and editing of the company text. You also disable those menu items so they

can’t be clicked. After all, you don’t want anyone to destroy the entire company’s data

with a single mouse click, do you?

 Moving on, you detect whether the node is not a leaf (department). You then mod-

ify the text to allow the addition of employees and deletion of the entire department.

Remember, the company needs to be able to downsize by removing an entire depart-

ment if need be. You also enable all menu items.

 The code will encounter the else block if the node that was right-clicked is a leaf

item. In this case, the text for the add item is modified and disabled to reflect the

inability to add an employee to an employee, which would be nonsensical. Then you

modify and enable the edit and delete menu item texts.

 Last, you show the context menu at the coordinates of the mouse by calling Event-

Object’s getXY method. Figure 9.7 shows what the menu looks like customized for

each node.

 As illustrated in figure 9.7, the context menu display changes for each type of node

that’s right-clicked, which demonstrates how you can use the same menu to perform

similar tasks with some modifications. If you wanted to not show or hide the menu

items instead of enabling and disabling them, you’d swap the menu button enable

209Implementing CRUD on a tree panel

calls for show and disable for hide. You can now begin to wire up handlers for your

context menus. You’ll start with the easiest, edit.

9.4.2 Wiring up the edit logic

You probably noticed that clicking a menu item resulted in nothing more than the

menu disappearing. This is because you have your context menu set but no real han-

dlers for it to call. Now you’ll create the edit handler, which is by far the easiest handler

to code.

 In case you’re familiar with Ext JS 3 or, even more so, if you’re migrating an edit-

able tree to Ext JS 4, at this step you might notice a certain peculiarity in the higher-

version framework. It’s lacking editing features!

 You can always use an external field bound to a form and/or a window, but let’s

think again. Ext.tree.Panel uses many of the Ext.grid.Panel features, and grids

have that cool Ext.grid.plugin.CellEditing plug-in we discussed in chapter 8. Let’s

try applying it to your tree. You need to override a method inherited from the

Ext.grid.plugin.Editing class, and you’re good to go. Let’s look at your plug-in

code in the next listing. You’ll call the plug-in TreeCellEditing.

 Ext.define('TreeCellEditing', {
 alias: 'plugin.treecellediting',
 extend: 'Ext.grid.plugin.CellEditing',

 init: function(tree) {
 var treecolumn = tree.headerCt.down('treecolumn');
 treecolumn.editor = treecolumn.editor
 || {xtype: 'textfield'};

 this.callParent(arguments);
 },

Listing 9.5 Extending the CellEditing plug-in

Figure 9.7 Displaying your dynamic context menu for the company (left), department (center), and

employee (right) nodes

Extends
Ext.grid.plugin.CellEditing

b

Assigns
editorc

210 CHAPTER 9 Taking root with trees

 getEditingContext: function(record, columnHeader) {
 var me = this,
 grid = me.grid,
 store = grid.store,
 rowIdx,
 colIdx,
 view = grid.getView(),
 root = grid.getRootNode(),
 value;

 if (Ext.isNumber(record)) {
 rowIdx = record;
 //record = store.getAt(rowIdx);
 record = root.getChildAt(rowIdx);
 } else {
 //rowIdx = store.indexOf(record);
 rowIdx = root.indexOf(record);
 }
 if (Ext.isNumber(columnHeader)) {
 colIdx = columnHeader;
 columnHeader = grid.headerCt.getHeaderAtIndex(colIdx);
 } else {
 colIdx = columnHeader.getIndex();
 }

 value = record.get(columnHeader.dataIndex);
 return {
 grid: grid,
 record: record,
 field: columnHeader.dataIndex,
 value: value,
 row: view.getNode(rowIdx),
 column: columnHeader,
 rowIdx: rowIdx,
 colIdx: colIdx
 };
 }
});

This extension code is more straightforward than it looks. You’re doing things that

will be further explained in chapter 13, so please bear with us. You accomplished two

goals here. In your extended class that you now call TreeCellEditing B, you used

AbstractPlugin’s init method to check if the tree already had an editor and assign

one if the test was unsuccessful c. The only way the editor would’ve been there is if

you wanted to define the tree panel’s columns property yourself and set up a tree col-

umn with a custom editor right there. Because tree panels automatically create a tree

column, you just needed to add an editor to it. Voilà, first goal accomplished.

 The second goal is a bit harder to see. As we mentioned earlier, the piece of code

that you needed to change lies one level down the prototype chain, in Ext.grid.plugin

.Editing. The entire getEditingContext method is copied from the source with two

simple overrides. This method needs to return the exact node you selected, so you

could find it either through its index d or through its record reference e, whichever

Finds selected node
at specified index

d

Finds selected node
via record referencee

211Implementing CRUD on a tree panel

was passed as the first argument in a function call. Right above the two overrides, you

can see the original code used for grids. You now have your plug-in ready.

 It’s time to put your new plug-in to work. Ext JS 4 makes it easy for you to add this

new feature to your tree panel in the following listing.

var treeEditor = Ext.create('TreeCellEditing', {clicksToEdit: 2});

Ext.create('Ext.window.Window',{
 title : 'Our first remote tree',
 layout : 'fit',
 autoShow : true,
 height : 360,
 width : 280,
 items : {
 xtype : 'treepanel',
 store : store,
 rootVisible : true,
 listeners: {
 itemcontextmenu: onCtxMenu
 },
 plugins: [
 treeEditor
]
 }
});

In listing 9.6 you start with the TreeCellEditing plug-in instantiation. You use the

treeEditor variable so that you can reference this instance in your tree panel. You

could’ve just used a ptype configuration for lazy instantiation, but you can benefit

from referencing the plug-in directly later in your editing logic. To complete the list-

ing you configure the itemcontextmenu listener c, as mentioned earlier.

 You’re ready to build your editing logic now. One thing we want to mention at this

point is the clicksToEdit config option in listing 9.6 B. Just as with editable grid

panels, you could leave the whole context menu editing hassle out of the picture and

use the already-registered dblclick event to enter editing mode. But it’s a good

opportunity to show how a tree panel’s internals interact. That’s why you’ll initiate the

editor from your new context menu in the next listing.

var onEdit = function(button, node) {
 var menu = button.up(),
 node = node || menu.treeNode,
 view = menu.treeView,
 tree = view.ownerCt,
 selMdl = view.getSelectionModel(),
 colHdr = tree.headerCt.getHeaderAtIndex(0);

 if (selMdl.getCurrentPosition) {
 pos = selMdl.getCurrentPosition();

Listing 9.6 Finalizing tree configuration

Listing 9.7 Configuring the context menu editing trigger

Instantiates
TreeCellEditing b

Assigns context
menu listenerc

Finds menub

Accesses
refsc

Gets column
index

d

212 CHAPTER 9 Taking root with trees

 colHdr = tree.headerCt.getHeaderAtIndex(pos.column);
 }
 treeEditor.startEdit(node, colHdr);
};

You’ve see larger chunks of code in this chapter, but the piece in listing 9.7 may look

like the most complicated of all. There are several variables that you need to register

first: menu, which you get from retrieving the clicked button’s parent B; node c and

view, which you capture from the menu’s properties you defined earlier (in listing 9.4);

the tree panel itself (tree); the selection model (selMdl); and the column header

(colHdr). The selection model will give you the column index of your tree (remem-

ber, tree panels are tables, and tree views are rendered in columns, similar to a grid’s

behavior), whereas the column header is needed to identify the editor field assigned

to the tree. Going back to node c, make sure you noticed that node can be an argu-

ment as well. You’ll use that later when you start adding nodes.

 In case your tree was configured to use the cell collection model (cellmodel), you

can get the position of your tree column automatically d to make sure you’re editing the

right field in the grid. Finally, you execute the startEdit method e that lives in

the treeEditor plug-in instance. See how you got to reuse the treeEditor reference?

 Right now you have a fully functional tree panel with the ability to show the editor

for each node. What do you think happens when a user presses the Enter key? You got

it: the record is updated, and the store will sync the changes through the proxy over to

the server. The store handles that much work on its own.

 Refresh your page, right-click a node, and click the Edit button. In figure 9.8

we’ve changed the Accounting department’s name to Legal by right-clicking it, which

selects the node. We then clicked the Edit menu button, which rendered the text

field as an editor at the node’s physical location. Next we changed the name from

Accounting to Legal and pressed Enter. This caused the Node value to change and

the store’s datachanged event to fire, triggering the sync method. Because the server

accepted the value, the new value persisted in the UI. Remember that if the server had

Shows
editor

e

Figure 9.8 The results of editing a node in the tree panel using the tree editor

213Implementing CRUD on a tree panel

returned { success : false } or if the request had failed, the text value of Node

would’ve been reverted.

 This wraps up the easiest of the CRUD functionality for your tree panel. Editing

names in this widget is a common task in web applications. Naturally, how you imple-

ment it depends on business requirements. Using the newly created TreeCellEditing

plug-in results in a cleaner application flow by saving you from having to use an input

dialog box, such as a message prompt.

 Next you’re going to tackle the deletion of nodes. Even though it’ll require an

additional confirmation step, deletion will be easier than what you’ve done so far in

this chapter.

9.4.3 Tackling delete

To set up the delete functionality of your tree panel, you’ll create a handler for the

Delete menu button. Naturally, requirements usually dictate that a confirmation dia-

log box be presented to the user, so you’ll have to code for user confirmation. To

make things a bit easier, you’ll use the out-of-the-box Ext.Msg.confirm method to

show the dialog box. This means that you’ll have to construct a callback method for

the confirmation dialog box. The dialog box callback will trigger the store’s sync

method and ultimately delete the node.

 Now that you have an idea of what you need to do, you can get on with coding the

handler methods, as shown in the following listing.

var onConfirmDelete = function(answer, value, cfg, button) {
 if (answer != 'yes') return;

 var menu = button.up(),
 node = menu.treeNode;
 node.remove(true);

};
var onDelete = function(button) {
 var callback = Ext.bind(onConfirmDelete, undefined, [button],
 ➥ true);

 Ext.Msg.confirm(
 'Approve deletion',
 'Are you sure you want to delete this node?',
 callback
);
};

In listing 9.8 you create the two methods that take care of the delete operations of

your CRUD functionality. The first method, onConfirmDelete, is the handler for the

confirmation dialog box that you’ll create a little later. If the Yes button is clicked B
in the confirmation dialog box, it’ll look up the NodeInterface reference and delete

it. You set the deletion argument to true d, meaning it’ll also destroy the node c.

This action will again trigger the store’s datachanged event, forcing the store to sync.

Listing 9.8 Adding deletion functionality to your tree panel

Returns if
Yes clicked

b

Removes,
destroys node

c

Creates
callback
functiond

214 CHAPTER 9 Taking root with trees

 In this fictitious mini-application, the server would take the value of the node ID

and perform a delete operation in the database or filesystem and return something

like {success:true}, which confirms the deletion.

 The second method you create, onDelete, is the handler for the Delete button.

When this method is called, it presents a confirmation dialog box by using the out-of-

the-box Ext.Msg.confirm method and passing in three arguments: the title, message

body, and callback.

 The callback was created with the utility function Ext.bind (short for Ext.Function

.bind). This useful function creates a new method that’ll essentially create a closure

that calls your targeted function onConfirmDelete in a default scope, also appending

the button argument to the passed arguments. Therefore, Ext.bind will receive four

arguments: the function to be called, the scope, the array of arguments, and the Bool-

ean value that tells whether to append those arguments (true) or override the argu-

ments passed by the function caller (false). The default arguments are dictated by

Ext.Msg.confirm, and they’re the answer string (“yes” or “no”), input value (unde-

fined, used only with Ext.Msg.prompt), and confirm’s config object. You want to use

the answer argument, so keep them all.

 Your application now presents the user with a message and two options to proceed.

Either button will trigger the callback, but remember that to perform the deletion of

the node, the Yes button has to be clicked.

 Refresh your UI, and delete a node. Figure 9.9 illustrates what happened when we

refreshed our UI and deleted the Accounting department node.

 After we right-clicked the Accounting department node, our customized context

menu appeared. We then clicked the Delete button, which triggered the onDelete

handler. This immediately displayed the confirmation dialog box. We clicked Yes,

which caused the onConfirmDelete method to fully execute, looking up the node ref-

erence stored in the context menu and deleting (and destroying) the node itself.

 In a real-world application, deleting a branch node would generally require the

server to recursively gather a list of all of the child nodes and remove them from

Figure 9.9 Deleting a node with a confirmation box

215Implementing CRUD on a tree panel

the database before removing the branch node itself. One clever way to do this would

be to set up a trigger in the database to call a stored procedure to delete all associated

child nodes when a delete operation is performed on a container node.

 Deleting nodes from your tree panel takes a bit of effort because of the typically

required confirmation dialog box. Adding a node, though, is equally difficult, because

the UI code needs to know what type of node is being added. Is it a branch or a leaf

node? Next you’ll see how to code for this type of action and have the UI react

accordingly.

9.4.4 Creating nodes for your tree panel

To create a node interface, you’re going to have to recycle some of the work already

done, while still using some of the cool JavaScript features, like closures. Because the

tree editor needs to bind and display on top of a node, you’ll need to inject a node

interface into the tree panel and trigger an edit operation on the new node. As soon

as you create the node, the store will sync the new data to the server. Because you’ll get

a chance to edit the name of the node immediately on creation, the store will once

again sync the data once you update the text. This works similarly to the way rows are

added to the editor grid you created in the previous chapter. The next listing contains

the code for the create-node functionality.

var onAdd = function(button) {
 var menu = button.up(),
 node = menu.treeNode,
 view = menu.treeView,
 delay = view.expandDuration + 50,
 newNode,
 doCreate;

 doCreate = function() {
 newNode = node.appendChild({text: 'New employee', leaf: true});
 onEdit(button, newNode);
 };

 if (!node.isExpanded()) {
 node.expand(false,
 Ext.callback(doCreate, this, [], delay));
 }
 else {
 doCreate();
 }
};

You’re doing an interesting bit of work in listing 9.9 to get the create functionality to

proceed smoothly. Here’s how it all works.

 Just as with the onEdit method, you need to retrieve a couple of references stored

for you in the menu: NodeInterface and View. The latter one you use to find out how

long the expand animation will last B. Yes, user interface animations have little in

Listing 9.9 Adding create functionality to your tree panel

Determines
animation length

b

Creates closurec

Delays collapse
of noded

216 CHAPTER 9 Taking root with trees

common with data processing, but this time you need to count them in. Should the

parent node be collapsed, you need to expand it first, wait for the animation to finish,

and only then continue with the editing process.

 The duration itself is hidden in the view configuration, to which you add an extra

50 milliseconds to let the UI settle nicely. Unfortunately, the framework doesn’t take

care of waiting for the node to be expanded, so you need to add an adequate delay to

the callback.

 During the process of planning the onAdd handler, you anticipated two possible

scenarios in regard to the target parent node being expanded or collapsed. The first

case is straightforward, and you could continue by creating the node followed by the

editing process, but what if the node is collapsed? In such a case you’ll have to expand

it and pass the very same process of creation and editing to the expand method’s call-

back argument d. Because repeating such a block of code wouldn’t make much sense,

you’ve created a nice little closure, doCreate c. Closures are quite useful here; you

get to access all the previously assigned variables in the parent function, yet they make

it possible to reuse the underlying code.

 The doCreate closure encapsulates two commands. First, you append the child to

the selected node and set its name to “New employee” and leaf to true. Remember,

you’re creating an employee, so use leaf: true. As soon as you create the employee,

you’ll want to edit it and assign an adequate name. Here you’re reusing the onEdit

method, passing the same menu button instance to it along with the newly created

node so that TreeCellEditing knows where to show the edit field.

 Wow, that was a fun one! Let’s refresh the UI and see the code in action, as shown

in figure 9.10. Here you can see how you use TreeCellEditing to add nodes to the tree

panel in a way that mimics operating system behavior.

 When we right-clicked the Accounting department node, the dynamic context

menu appeared as expected. We clicked the Add menu button, which triggered the

onAdd handler. This caused the Accounting node to expand. After the child nodes

were loaded, a new node was inserted, firing TreeStore’s sync method, and an edit

Figure 9.10 Adding a new node to your tree panel using TreeCellEditing

217Summary

operation was immediately triggered on that node using TreeCellEditing. We typed in

a new employee name and pressed Enter. This caused the complete event to be fired

by the tree store, thus invoking the sync handler, which performed yet another XHR

(XMLHttpRequest). You can also implement this code to add department nodes to the

tree, and add employees to those.

 Great work! You now know how to construct tree panels, feed them data from

the server, and apply CRUD workflows to them. You can now add these widgets to

your applications.

9.5 Summary

In this chapter we covered quite a bit of code when discussing tree panels and how to set

up really cool CRUD interactions for nodes. We began by talking about Ext.tree.Panel

and discussed supporting classes such as Ext.tree.View, Ext.data.TreeStore, and

Ext.data.NodeInterface. You learned how TreePanel shares GridPanel’s infrastruc-

ture, making it more powerful than ever. You constructed a static tree panel, where the

nodes were read from memory, and you saw how the JSON should be formatted.

 You then moved on to build a dynamic tree panel that loaded data from a remote

data source, and you spent a lot of time enabling full CRUD operations. To enable

CRUD, you learned how to dynamically modify, enable, and disable the reusable con-

text menu. You saw what it took to set up adding and editing using your very own Tree-

CellEditing plug-in, which gives the tree panel the ability to edit node names inline.

 So far you’ve only scratched the surface of some of the framework’s widgets

responsible for data administration. In the next chapter you’ll dive deep into visual

data representation using drawings and charts, and you’ll learn more about how they

work and how to better put them to work in your applications.

218

Drawing and charting

Visual data representation is considered to be one of the most effective user experi-

ence mechanisms. Charts in particular are valuable eye candy for any decision

maker, which is why chart-rich dashboards are often the front-facing features of

software presentations.

 Web applications are also prone to the same trends. But plug-in-less charting

support has only just begun to see the day of light, with Sencha acting as a trendset-

ter in the movement.

 Compared to its predecessor, Ext JS 4 has a vast number of upgraded compo-

nents. The charting package has not only been upgraded but also completely

rewritten. No longer does it require Flash or any other external dependencies to

render awesome charts. Powered by the Ext.draw package, Ext JS 4 features new

This chapter covers

■ Drawing in the browser with Ext.draw

■ Understanding shapes and surface

■ Creating sample drawings

■ Using Ext charts and charting themes

■ Configuring legends

219Drawing concepts

chart types, such as Scatter, Gauge, and Radar. In this chapter you’ll learn how to

implement the available chart types.

 Because the goal of Ext JS charts is to no longer rely on Flash to display awesome

graphics, the Sencha team has come up with an API dedicated to drawing that enables

lines and shapes to be drawn directly within a browser. For you to understand how

charts work, we’ll first take a deep dive into the new Ext.draw package and learn how

charts are drawn. Be sure to read the chapter text that goes with the examples; this is a

complex topic.

10.1 Drawing shapes

Visualization has been a hot topic in the browser world for a long time. Technolo-

gies have emerged with support for exciting new features, thus deprecating previ-

ous standards. A critical mission for an enterprise-level framework is to provide

support for browsers as old as Microsoft Internet Explorer (IE) 6. This means sup-

porting stable but unexciting JavaScript, or should we say JScript, standards and

visualization technologies.

 The Ext JS drawing package supports Scalable Vector Graphics (SVG) and Vector

Markup Language (VML). Both are well supported in popular browsers and are capa-

ble of delivering vector graphics to a user’s screen. Although VML is supported in even

older browsers than those supported by the framework, it lacks the flexibility of SVG.

That’s why SVG is the default drawing engine in Ext.draw. Note that most IE browsers

will require VML instead.

 If you take a good look at Ext.draw’s internals, you’ll notice that it almost acts as a

middleware to the drawing engine. The goal is to provide uniform configuration

options and then forward commands to each of the drawing engines in order for

them to render identical outputs. On a side note, Ext.draw relays configurations so

precisely that, on occasion, it breaks the consistency of other Ext JS components. Spe-

cifically, you’ll have to quote certain config properties when drawing:

■ fill-opacity

■ font-size

■ stroke-opacity

■ stroke-width

Notice that all of these properties include a hyphen, and hyphens are only allowed in

JavaScript object properties if properly quoted.

 Before you put these properties into action, let’s go over the basics of in-browser

vector drawing. The following section discusses the most important concepts.

10.2 Drawing concepts

A prerequisite for drawing is a surface. It’s intentionally not named a canvas to avoid

confusion with the HTML canvas tag. A surface is an interface, usually inside an

Ext.draw.Component instance. It provides an abstraction layer between JavaScript and

the VML or SVG engine.

220 CHAPTER 10 Drawing and charting

The surface, as an instance, exists as a property of an Ext.draw.Component instance.

As such, the surface can be used to draw sprites. Sprites are regular or irregular paths

that make up a shape. You’re about to see how a surface interacts with sprites.

10.3 Surfacing sprites

Because drawing can’t take place without a surface, and the surface is used through

an Ext.draw.Component, let’s examine how the latter handles the artistic strokes.

Ext.draw.Component directly inherits from Ext.Component. Thus, it shares the

ability to manage all of the component life-cycle plumbing. Its single most distinctive

feature, the surface, can fit as many shapes as you like. With that in mind, the children

of Ext.draw.Component are meant to be shapes.

 There are only a few configuration options for customizing an Ext.draw compo-

nent. Each can make a terrific impact on the outcome of your drawing:

■ autoSize—Positions the sprite to the top left of the surface. Although it doesn’t

obey the X and Y coordinates of a sprite, they need to be set.

■ viewBox—Sets as true to scale and positions items to fill the component. Over-

rides sizing and positioning settings (X, Y, radius, and so on).

■ gradients—A set of gradients you can use with sprites based on gradientId.

■ enginePriority—Specifies the first drawing engine you want to use, if it’s sup-

ported by the client’s browser.

Some options directly influence the behavior of the underlying sprites. The shapes

supported by Ext.draw sprites resemble the shapes natively supported by the draw-

ing engines:

■ circle

■ ellipse

■ rect (rectangle)

■ text

■ path

■ image

Of course, path is the Jack of all trades here. All other shapes that you may want to

draw can be made using paths. We’ll cover path syntax basics later in this chapter.

 Sprites can be further customized with these useful properties:

■ width— Specifies the rectangle width

■ height—Specifies the rectangle height

Canvas in Ext JS charts

Ext JS 4.1 charts use SVG and VML as the only drawing engines. Sencha Touch

charts provide a similar interface, but they use the HTML5 canvas tag, which yields

better performance on mobile devices.

221Surfacing sprites

■ size—Specifies the length of a square’s side

■ radius—Specifies the radius of a circle

■ x—Specifies the top-left position on the X-axis

■ y—Specifies the top-left position on the Y-axis

■ cx—Indicates a circle’s or an ellipse’s center position on the X-axis

■ cy—Indicates a circle’s or an ellipse’s center position on the Y-axis

■ stroke—Specifies the stroke color

■ stroke-width—Specifies the width of a stroke

■ fill—Specifies the color of a sprite’s body

■ opacity—Specifies the transparency level of a sprite

■ text—Contains the text string to render

■ font—Provides a CSS-style font description for text

■ path—Provides an SVG-syntax interface for drawing paths

Configuration options are selective, based on the exact shape used for the sprite. For

example, size is only used with squares, whereas radius is used with circles and no

other shape. The exact mappings are well described in the framework’s documentation.

10.3.1 Drawing a sprite

It’s about time you created your first work of art. The following listing shows you

how to create a simple circle and maximize its view size while maintaining the

aspect ratio.

Ext.onReady(function() {
 var dc = Ext.create('Ext.draw.Component', {
 items : [{
 type : 'circle',
 fill : '#79BB3F',
 radius : 100,
 x : 200,
 y : 200
 }]
 });

 Ext.create('Ext.window.Window', {
 width : 600,
 height : 400,
 autoShow : true,
 title : 'Simple Circle',
 maximizable : true,
 layout : 'fit',
 items : dc,
 resizable : {
 dynamic: true
 }

Listing 10.1 Drawing a circle

Draws
circleb

Creates parent
containerc

222 CHAPTER 10 Drawing and charting

 });
});

Listing 10.1 creates the most basic drawing. Essentially, you’ve just created a default

surface inside an Ext.draw component and placed a circle-shaped sprite onto it B.

The circle’s radius is 100px, and the X- and Y-axis coordinates are set to 200px each. The

image is rendered inside Ext.window.Window c. If you render this example in a

browser, you’ll see an image resembling figure 10.1.

 Nice going! You’ve just created your first drawing with Ext JS. In the next section

you’ll learn how to mix the settings of a surface with the settings of a sprite. The

example will refer to the code in listing 10.1 and further extend it to prove essen-

tial concepts.

10.3.2 Managing positioning and sizing

You’ve successfully created your first drawing, a gorgeous green circle. Your trained

eye will immediately tell you that this circle’s radius goes well beyond the configured

100 pixels. The reason is hidden from your configuration. It lies in the default view-

Box configuration option, set to true. It means that the circle will be maximized to the

surface’s size, ignoring the radius setting.

 There’s more to the interaction of configuration options. Notice the x and y set-

tings again. The viewBox setting doesn’t care about them, as long as they’re set. This

sounds peculiar, so we’ll use it in a few examples.

 First, set x and y each to 1:

x: 1,
y: 1

The circle is rendered in the same fashion, even though x and y have been changed.

This proves that viewBox: true overrides coordinates.

Figure 10.1 Your first

circle, rendered

223Surfacing sprites

Now try it without x and y settings:

{
 type : 'circle',
 fill : '#79BB3F',
 radius : 100
}

Talk about peculiar. It takes just one of the coordinates to be undefined, and the

viewBox property is no longer taken into account (see figure 10.2). But the question

remains, how do you explicitly set the circle’s radius and position?

 There are two ways. The first approach is setting viewBox to false, as shown in the

next listing.

 var dc = Ext.create('Ext.draw.Component', {
 viewBox : false,
 items : [{
 type : 'circle',
 fill : '#79BB3F',
 radius : 100,
 x : 200,
 y : 200
 }]
 });

Now that viewBox is disabled B, let’s see what you get in your example image (fig-

ure 10.3).

 You’ve disabled the automatic size and position calculations in favor of fixed set-

tings. Circles logically shouldn’t care about x and y properties, because a circle doesn’t

have a top-left corner (or any other corner for that matter). Ext JS will instead trans-

late the coordinates to match the center of the circle.

 The second method would be to set center X (cx) and center Y (cy) properties

instead of x and y, as shown in the following listing.

Listing 10.2 Disabling viewBox

Figure 10.2 With X- and

Y-axis coordinates unset, the

circle’s center is set to 0,0 and

the radius setting is no

longer ignored.

Sets viewBox
to falseb

224 CHAPTER 10 Drawing and charting

items : [{
 type : 'circle',
 fill : '#79BB3F',
 radius : 100,
 cx : 200,
 cy : 200
}]

You’ve achieved the same effect with less coding. Explicitly setting the center X and Y

coordinates B will render the same effect as disabling viewBox.

 So far you’ve only played with a single Ext.draw component’s behavior-controlling

configuration, viewBox. In the examples to come, we’ll show you how autoSize inter-

acts with your sprite.

10.3.3 Automatically sizing sprites

The autoSize property (see listing 10.4) obeys sizing of the child sprite or sprites but

makes sure the entire rendered drawing takes the minimum possible size in terms of

its width and height. Naturally, it rules out the viewBox setting, but it keeps its x and y

setting requirements. That means that you have to set x and y to positive integers, but

it doesn’t matter how big those integers are.

 var dc = Ext.create('Ext.draw.Component', {
 autoSize: true,
 items : [{
 type : 'circle',
 fill : '#79BB3F',
 radius : 100,
 x : 1,
 y : 1000
 }]
 });

Listing 10.3 Forceful circle positioning with cx and cy

Listing 10.4 Enabling autoSize

Figure 10.3 The circle is

now positioned and sized

exactly as you wanted it.

Sets center X and
Y coordinatesb

Sets autoSize
to true

b

Sets minimum
positive integer

c

Assigns exceptionally
large integerd

225Sprite interactions

With autoSize set to true B, the surface will automatically position sprites inside it to

make sure they take the least amount of space possible, relative to the top left (0,0).

To show how a sprite manages the circle when so configured, you’re setting x to the

minimal positive integer c and y to an exceptionally large integer d. You’d certainly

notice if the circle was positioned at (1,1000). As you can see in figure 10.4, X and Y

coordinates are totally ignored, but they needed to be set. Otherwise the effect

would’ve been the same as in figure 10.2.

 So far you’ve only created a simple circle, yet you’ve seen numerous implications

of mixing various sprite and Ext.draw.Component (surface) settings. Next to come are

somewhat more exciting demonstrations of how to dynamically add sprites, anima-

tion, and event binding to the mix.

10.4 Sprite interactions

It’s likely that you’ll want to use Ext.draw for something more complex than to lay out a cir-

cle. Let’s add a pinch of fun to the existing recipe in order to create an interactive example.

 In the next example (listing 10.5), you’ll reuse the circle from the previous exam-

ple and place it at a fixed position, disabling viewBox. You’ll dynamically add another

circle with a fade-in animation for a prettier entrance. Finally, you’ll assign event lis-

teners to the newly added circle in order to make it move on mouseover and then go

back to its initial position on mouseout.

 var dc = Ext.create('Ext.draw.Component', {
 viewBox : false,
 items : [{
 type : 'circle',
 fill : '#79BB3F',
 radius : 100,
 x : 200,
 y : 200

Listing 10.5 Dynamically appending a shape

Figure 10.4 The circle is drawn

respecting the radius setting

but placed in the top-left corner

of the surface.

Instantiates
Ext.draw.Componentb

226 CHAPTER 10 Drawing and charting

 }]
});

Ext.create('Ext.window.Window', {
 width : 600,
 height : 400,
 autoShow : true,
 title : 'Dynamically adding a new sprite to '
 +'surface with a 2-sec delay',
 maximizable : true,
 layout : 'fit',
 items : [dc],
 resizable : {
 dynamic: true
 },

 listeners: {
 show: function() {
 var sprite = dc.surface.add({
 type : 'circle',
 fill : '#846393',
 stroke : '#a54222',
 'stroke-width' : 5,
 opacity : .8,
 radius : 100,
 x : 300,
 y : 200
 });

 sprite.show();
 }
 }
});

First you create an Ext.window.Window with a single child, Ext.draw.Component B, thus

creating a surface for your drawing (hidden in dc.surface). The Ext.draw.Component

is configured to disable both viewBox and autoSize, because you want to take control

of sizing and placement of your sprites. The first sprite is configured right within the

items property, and it’s the first circle, just as in the previous examples.

 Immediately following the Ext.window.Window instantiation, you’re adding a new

sprite c. You’ll be waiting for the window to render and show, because only when

Ext.draw.Component is rendered will the surface be created. You guessed it; you can’t

add sprites without a created surface.

 Alternatively, you could’ve created a surface manually. Ext.draw.Component has a

createSurface() method that does the job of creating a surface. Now that you know

this trick, you can create drawings before they’re presented to the end user.

 Back to our example. Your newly added circle is of the same size as the original,

but it’s placed 100px to the left, it’s colored differently, and its opacity is set to 0. The

stroke can be configured separately from the fill, specifying its color d and width e.

The opacity setting affects both fill (body) and stroke (border) colors f. Should you

need to set the opacity of just one of these, or set each property differently, you can

Accesses surface
to add new sprite

c

Configures
stroke

d

Adds
stroke-width

e

Controls
stroke and fillf

Shows sprite
on surfaceg

227Sprite interactions

always reach out for the power of CSS and use an RGBA color setting for the fill and/or

stroke (such as rgba(012, 123, 230, 0.4)).

 It’s time to look at your sprite (figure 10.5). The sprite’s show() method g offers

an optional but convenient redraw argument. It tells the surface to render the sprite

all over again. You won’t enjoy any of the benefits of redrawing right now, so you can

safely leave it off.

 Because the sprite’s opacity was initially configured to be 0, you’ll need to make the

circle visible by increasing the number. To make this process cooler, you’ll animate

the transition with the following code block, which you place after sprite.show();:

sprite.animate({
 duration: 1000,
 easing: 'easeOut',
 to: {
 opacity: .9
 }
});

Opacity ranges from 0 to 1. A setting of 0.9 will make the sprite almost fully visible.

The animation will last 1 second (1000 ms) and will slow down (ease out) as it gets

closer to the last milliseconds.

 You now have a nice entrance. Let’s add a couple of events to make your drawing

responsive to mouse pointer movement. Add the following code block after the

sprite.animate() code block you just added:

sprite.on('mouseover', Ext.bind(
 sprite.animate,
 sprite,
 [{
 duration: 500,
 easing: 'easeOut',
 to: {
 opacity: .6,
 translate: {

Figure 10.5 The second circle

dynamically added

228 CHAPTER 10 Drawing and charting

 x: -100
 }
 }
 }]
));

sprite.on('mouseout', Ext.bind(
 sprite.animate,
 sprite,
 [{
 duration: 300,
 easing: 'easeIn',
 to: {
 opacity: .9,
 translate: {
 x: 0
 }
 }
 }]
));

The second circle will react when the mouse pointer is moved over it by moving to a posi-

tion further left, as seen in figure 10.6. Moving the mouse out of the circle will animate the

sprite to reset its position. Both events’ callbacks animate movement of the desired sprite.

You’ve just learned how to dynamically add sprites to a surface as well as how to ani-

mate and register events on them. You’ve probably noticed patterns shared with pre-

defined chart types. In the next section you’ll see how charts are drawn and create a

custom shape using a path sprite.

10.5 Mastering the path

SVG and VML are engines with syntax of their own. So far in this chapter you’ve suc-

cessfully used both engines without directly talking to either in its own language. It’s

time to touch on the basics of creating custom paths. It’ll be a fun adventure outside

the JavaScript world.

Figure 10.6 With mouseover,

the second circle moves on top

of the first one.

229Mastering the path

Drawing a path is essentially drawing a line from point A to point Z, with N points in

between. Their coordinates relative to the X- and Y-axis specify points. The area sur-

rounded by the path can be defined by separate styling as well. Furthermore, two

points can connect in a straight line or a curved line in numerous ways. Such behavior

is directed through the following commands:

■ M = Move to

■ L = Line to

■ H = Horizontal line to

■ V = Vertical line to

■ C = Curve to

■ S = Smooth curve to

■ Q = Quadratic Bézier curve to

■ T = Smooth quadratic Bézier curve to

■ A = Elliptical arc

■ Z = Close path

All of these commands can also be expressed with lowercase letters. Capital letters

indicate absolutely positioned points, whereas lowercase letters indicate relatively

positioned points.

TIP For a more comprehensive explanation of vector drawing please refer to
HTML5 in Action (Manning, 2013).

An example will explain the usage best. Take a sheet of paper and a pen. Now draw a

five-pointed star (figure 10.7).

 How many strokes did it take? Let’s count with the help of the figure. There’s the

starting position, four points, and back to the starting point: that’s five strokes.

Figure 10.7 A hand-drawn star

with a step-by-step point workflow

230 CHAPTER 10 Drawing and charting

Translate the image to a Cartesian coordinate system. Each point is a pair of coordi-

nates expressed in pixel distance from the origin (middle of the plane). Let’s start

from 0,–100 and work from there:

M 0 -100 L 58 81 -95 -31 95 -31 -59 81 Z

It may look like magic on first sight, but in fact it’s only geometry. In plain English,

this says

1 (M) Move to 0,–100.

2 (L) Line from 0,–100 to 58,81.

3 (Repeat L) Line from 58,81 to –95,–31.

4 (Repeat L) Line from –95,–31 to 95,–31.

5 (Repeat L) Line from 95,–31 to –59 81.

6 (Z) Finish the path and draw a line back to the starting position.

Now that we’ve covered theory, it’s time to plug the path code into an Ext JS 4 applica-

tion, as shown in the next listing.

var dc = Ext.create('Ext.draw.Component', {
 items : [{
 type : 'path',
 fill : '#ca433F',
 path : 'M 0 -100 L 58 81 -95 -31 95 -31 -59 81 Z'
 }]
});

Ext.create('Ext.window.Window', {
 width : 600,
 height : 400,
 autoShow : true,
 title : 'Star (path)',
 maximizable : true,
 layout : 'fit',
 items : dc,
 resizable : {
 dynamic : true
 }
});

As you can see, the pattern is consistent with other sprite types. Inside the draw com-

ponent you added a path, but it’ll take an extra step to actually draw the path. Paths

aren’t preconfigured like circles or squares, meaning you’ll need to feed it with point

instructions. You assign instructions to the path property. Figure 10.8 shows what the

output looks like.

 The shape of the star looks just like the one you drew by hand. In addition, we

painted its body, which made it look more compact. At this point in the book you’re

familiar with creating and configuring components, so the only new thing you had to

Listing 10.6 Drawing a star

231A deep dive into charts

apply in this example is the path data. It comes in the form of a string, exactly as it’s

passed on to the drawing engine.

 You now understand how drawing works in Ext JS 4. With the information in this

chapter so far you can understand how the Ext.chart package draws charts on a Carte-

sian coordinate system plane, and you can even create your own chart types.

 You’ll create various types of charts in the rest of this chapter. It’s going to be an inter-

esting journey, drawing animated, event-powered shapes, lines, and areas with Ext JS 4.

10.6 A deep dive into charts

Before drawing your first chart, let’s dissect the main components of a chart. A chart

provides a graphical representation of data stored in a store. Furthermore, a chart

component directly inherits from Ext.draw.Component, meaning you can spice up

your charts with custom drawings.

 As shown in figure 10.9, the three main components of a chart are

■ Axes (Ext.chart.axis.*)—Defines data dimensions

■ Series (Ext.chart.series.*)—Represents a data item visually: a line (dot), bar,

pie (slice), and so on

■ Legend (Ext.chart.Legend)—Provides an optional list of variables appearing in

the chart, each representing the sprite that’s assigned for the data points

In Cartesian plane–based charts (line, bar, scatter, column, or area), axes are referred

to as X-axis and Y-axis, representing horizontal and vertical axes, respectively. Each

axis is accompanied by numerical or categorical indications, easily extracted from

Ext.data.Store records. Records feed series with data to provide the means for

graphical comparison.

 Series represent what a viewer is interested in. They’re the actual drawings that

represent specific values. In the world of Ext JS charts, eight types of series are avail-

able (figure 10.10):

Figure 10.8 Star-shaped path

drawn with Ext.draw

232 CHAPTER 10 Drawing and charting

■ Line

■ Bar

■ Column

■ Area

■ Scatter

■ Pie

■ Gauge

■ Radar

Legend

Category

(metrics) axis

Numeric

(value) axis

Series

Figure 10.9 Your first chart

Series

Gauge RadarPie

Area Line Scatter

Cartesian

Column

Bar

Figure 10.10 Series inheritance model illustrated. The Cartesian series is displayed

here because it's a superclass to the Area, Bar, Line, and Scatter classes, but we don't

configure instances of the Cartesian class itself.

233Implementing Cartesian charts

Let’s examine the list of available series and the series inheritance model. If it looks com-

plicated to you, don’t worry. You can easily put each type in one of two groups: those that

require axes (pie, gauge, and radar) and those that don’t (all Cartesian types).

 Most of us at one point face a decision of which chart type (series) is the most

appropriate option for a display result. Here are some general rules of thumb for

which series to use:

■ Line—Shows trends of value changes in short or long spans; useful with smaller

deltas

■ Bar—Compares values one to another, stacked vertically

■ Column—Same as Bar, but stacked horizontally

■ Area—Similar to Line; especially useful when tracking changes in two or more

groups that make up a whole

■ Scatter—Used to determine the relationship between two different variables;

useful for visualizing densities

■ Pie—Unlike the Cartesian types, shows proportion of a slice relative to a whole

or total (%)

■ Gauge—Shows values relative to given minimum and maximum counterparts

■ Radar—Compares options across several parameters in parallel

Because a chart is yet another surface, you can easily append custom shapes or even

images. But be sure to properly lay them out on the plane, because viewBox is false

in the charts. You’ve already learned that viewBox implements automatic shape-

positioning calculations.

 Now that we’ve covered the basics, you’ll learn how to construct a chart just like

the one in figure 10.9, step by step.

10.7 Implementing Cartesian charts

Earlier in this chapter you accessed the surface with an instance of Ext.draw.Component.

When drawing a chart, you’ll make use of the Ext.chart.Chart class that directly inher-

its from Ext.draw.Component, with one important difference: the items property will

rarely be used. You’ll see why in a moment.

10.7.1 Configuring the axes

Again, let’s look at the case from a more elementary perspective: hand drawing. When

sketching diagrams, what do you draw first? That’s right: the axes. But even before you

start drawing the axes, you think about what kind of data to expect: minimum to

maximum range, what to compare on each axis, and how to space out the metrics.

Without further ado, let’s lay out the axes in the following listing.

 Ext.onReady(function () {
 var generateData = function (n, floor){

Listing 10.7 Laying out the axes

Adds random
data generator

b

234 CHAPTER 10 Drawing and charting

 var data = [],
 i;

 floor = (!floor && floor !== 0)? 20 : floor;

 for (i = 0; i < (n || 12); i++) {
 data.push({
 name: Ext.Date.monthNames[i % 12],
 data1: Math.floor(Math.max((Math.random() * 100), floor)),
 data2: Math.floor(Math.max((Math.random() * 100), floor)),
 data3: Math.floor(Math.max((Math.random() * 100), floor)),
 data4: Math.floor(Math.max((Math.random() * 100), floor)),
 data5: Math.floor(Math.max((Math.random() * 100), floor)),
 data6: Math.floor(Math.max((Math.random() * 100), floor)),
 data7: Math.floor(Math.max((Math.random() * 100), floor)),
 data8: Math.floor(Math.max((Math.random() * 100), floor)),
 data9: Math.floor(Math.max((Math.random() * 100), floor))
 });
 }
 return data;
 };

 var store = Ext.create('Ext.data.JsonStore', {
 fields: ['name', 'data1', 'data2', 'data3', 'data4', 'data5'],
 data: generateData()
 }),

 chart = Ext.create('Ext.chart.Chart', {
 store: store,
 background: {
 fill: '#fff'
 },
 axes: [
 {
 type: 'Numeric',
 position: 'left',
 title: 'Values Axis'
 },
 {
 type: 'Category',
 position: 'bottom',
 fields: 'name',
 title: 'Metrics Axis'
 }
]
 });

 Ext.create('Ext.window.Window', {
 width : 600,
 height : 470,
 autoShow : true,
 title : 'Our Very First Ext JS Chart',
 maximizable : true,
 layout : 'fit',
 items : [chart],
 resizable : {

Adds data
store

c

Defines
axes

d
Sets axis
type

e

Specifies axis
locationf

Configures
category axisg

235Implementing Cartesian charts

 dynamic: true
 }

 });
});

Listing 10.7 is lengthy, because it contains bits that you’ll reuse in other examples. The

reusable parts are the random data generator B and the data store c. Instead of

items, you need to specify the axes d. Axes are a special kind of item in which chil-

dren are always instances of Ext.chart.axis.Axis. Preconfigured axis types e are

numeric (numbers), category (text), time (date object), and gauge.

 Each axis needs to be placed somewhere on a Cartesian plane. In most charts,

Ext JS charts being no exception, you observe a single quarter of a full Cartesian

plane. That’s why you have to specify which side of the quarter you want an axis to bor-

der f. Possible values are left, right, top, and bottom.

 Finally, each axis should be assigned some data. To do that you must refer-

ence a field from the store, as in g. Note that in the left axis you didn’t assign a

field. Ext JS will automatically assign a range from 0 to max, equally spaced out in

equal step increments. The maximum number is calculated from the maximum

used in the series. If no series are specified—and this should never be the case in

an application—max equals 1. You’ll fix this in the next step, when you configure

the series.

 As you can see in figure 10.11, the axes are laid out as intended. The numeric axis,

Values, is drawn exactly as expected, given the lack of a specified series. The Metrics

axis, on the other hand, misses a few labels. February, September, and November—the

names with the highest number of characters in them—have fallen out of the picture.

Ext JS does this automatically to make room for as many labels as possible.

Figure 10.11 Axes

drawn on a surface

236 CHAPTER 10 Drawing and charting

To show all the labels, you must rotate them to display vertically. Specify the label con-

figuration as follows:

{
 type: 'Category',
 position: 'bottom',
 fields: 'name',
 title: 'Metrics Axis',
 label: {
 rotate: {
 degrees: 270
 }
 }
}

Voilà, exactly as demonstrated in figure 10.9! In addition to rotation, labels can be cus-

tomized to show in a specific color or font. You can even custom-format the values

using a renderer. Remember how you used renderers for columns in panels?

10.7.2 Adding series

Axes are worthless unless you add series to the chart. From the randomly generated

data set, you’ll pick the data1 field and show how it changes as months go by (the name

field). Next you’ll append an array of series to the axes configuration where the Chart

is created in listing 10.7.

 series: [
 {
 type: 'line',
 axis: 'left',
 xField: 'name',
 yField: 'data1'
 }
]

First you need to determine the type of chart B. The series of choice is line, and

you’ll bind it to the left axis c. Now you only need to configure the names of store

fields corresponding to the X- d and Y-axis e progression. In most cases, the latter

two will equal the X- and Y-axis settings. Figure 10.12 shows the result.

 Looks nice, doesn’t it? Also note the month labels rotated vertically to give more

space. Your chart still needs some work, though. This way it’s hard to compare May

and October. It’d be easier with some grid lines, which is a feature that belongs to

axes. You’ll add them to the Y-axis (values). You’ll also decorate the Y-axis with tick

marks for minor and major steps. In total, you want 10 major tick steps, with 5 small

steps between each of the major pairs.

 Look at figure 10.12 more closely and notice where the Y-axis starts: number 20.

This is automatic because it’s the smallest value in all data records. You can also force

this number, which is exactly what you’re about to do.

Listing 10.8 Configuring series

Configures
line series

b

Sets left
position

c

Sets field for
horizontal valuesdSets field for

vertical valuese

237Implementing Cartesian charts

10.7.3 Improving visual aids

And that’s not all, folks. Let’s say you feel especially adventurous, so you make sure

that the Y-axis shows numbers rounded to the first decimal point. All right, let’s see

what you just cooked in the next listing.

{
 type : 'Numeric',
 position : 'left',
 fields : ['data1'],
 title : 'Values Axis',
 grid : true,
 minimum : 0,
 minorTickSteps: 5,
 majorTickSteps: 10,
 label : {
 renderer: Ext.util.Format.numberRenderer('0,0.0')
 }
}

This was fairly straightforward, but you’re not quite done with visual aids. Let’s add

some interaction to the chart. As the first step, instead of the dots, you’ll configure the

series to display a cross for each value, as shown in the following listing.

markerConfig: {
 type : 'cross',
 size : 4,
 radius : 4,

Listing 10.9 Improved visual aids in the Y-axis

Listing 10.10 Defining marker configuration

Figure 10.12 Series are

drawn as configured.

238 CHAPTER 10 Drawing and charting

 'stroke-width': 0
}

Inside the series configuration object, in listing 10.8 after yField : 'data1', you cre-

ate a new member, markerConfig. It accepts a configuration almost exactly the same

way as Ext.draw.Sprite. The sole difference is the type property that is predefined

in the Ext.chart.Shape singleton. The available types are

■ Circle

■ Line

■ Square

■ Triangle

■ Diamond

■ Cross

■ Plus

■ Arrow

Each cross will be somewhat larger than the dots you used previously, which makes it

easier for a user to mouse over it. Let’s also make it highlighted by adding the follow-

ing block to the numeric line series configuration (listing 10.8):

highlight: {
 size: 7,
 radius: 7
}

You could also set the highlight object to true to show the default highlight resolution,

but in the spirit of recent customization you instead specify the amount of highlight.

 Mouseover highlighting will make even more sense if you add a nice tooltip to dis-

play the selected value:

tips: {
 trackMouse: true,
 width : 150,
 height : 28,
 renderer : function(record, item) {
 this.setTitle(record.get('name') + ': '
 + record.get('data1') + ' customers');
 }
}

Now run the chart in a browser, and you’ll get something similar to figure 10.13.

 It’s looking good. The tick marks and grid lines are here, and the Values axis

labels start from 0 and show in the precision of the first decimal spot. Crosses have

replaced circles, and in the screen shown in figure 10.13 the line is highlighted,

emphasizing the selected cross, too. Finally, pointing the cursor over a cross will show

its recorded value.

 Let’s put all the pieces together in the next listing and revise the entire code used

to display the chart in the figure.

239Implementing Cartesian charts

Ext.create('Ext.chart.Chart', {
 store: store,
 background: {
 fill: '#fff'
 },
 items : [{
 type : 'path',
 fill : '#fff2cc',
 path : 'M 200 100 L 258 281 105 169 295 169 141 281 Z'
 }],
 axes: [
 {
 type : 'Numeric',
 position : 'left',
 fields : ['data1'],
 title : 'Values Axis',
 grid : true,
 minimum : 0,
 minorTickSteps: 5,
 majorTickSteps: 10,
 label : {
 renderer: Ext.util.Format.numberRenderer('0,0.0')
 },
 },
 {
 type: 'Category',
 position: 'bottom',
 fields: 'name',
 title: 'Metrics Axis',
 label: {
 rotate: {

Listing 10.11 The full line chart configuration

Figure 10.13 Visual

improvements for the Y-axis

and the series

240 CHAPTER 10 Drawing and charting

 degrees: 270
 }
 }
 }
],
 series: [
 {
 type: 'line',
 highlight: {
 size: 7,
 radius: 7
 },
 axis: 'left',
 xField: 'name',
 yField: 'data1',
 title: '% Returning Customers',
 markerConfig: {
 type: 'cross',
 size: 4,
 radius: 4,
 'stroke-width': 0
 },
 tips: {
 trackMouse: true,
 width : 150,
 height : 28,
 renderer : function(record, item) {
 this.setTitle(record.get('name') + ': ' +
 record.get('data1') + ' customers');
 }
 }
 }
]
});

In the next section you’ll enhance the chart with custom shapes derived from the les-

sons you’ve learned with Ext.draw.

10.7.4 Adding custom shapes

The chart you’ve created is a surface full of sprites. In various ways, you’ve accessed the

sprite configuration, not through the usual items configuration property, but through

axis, series, and even markerConfig. That doesn’t mean that the items property is

inaccessible; quite the opposite. In the following listing, you’ll use it to add a custom

shape to the chart.

items : [{
 type : 'path',
 fill : '#fff2cc',
 path : 'M 200 100 L 258 281 105 169 295 169 141 281 Z'
}]

Listing 10.12 Adding a custom sprite

241Implementing Cartesian charts

The items property can be used in the same manner as you would’ve done with an

Ext.draw.Component. After all, charts inherit from it. Here you use the same star-

shaped sprite created in listing 10.6. Compare the two listings, and you’ll notice differ-

ent point values in the path properties. Why do you think that is? Pause here if you

want to figure it out yourself.

 When Ext.chart.Chart extends Ext.draw.Component, the default for the viewBox

configuration option is false. This implies no positioning automation on the X- and

Y-axis plane. Instead, every coordinate is absolute, and you have to treat your sprite

accordingly. Figure 10.14 shows what the star looks like in the chart.

 Let’s go even further with custom shapes and replace the crosses with stars (list-

ing 10.13). This time a simple configuration won’t suffice. You’ll have to register a

new shape in the Ext.chart.Shape singleton, which will be good practice for using

the new Ext JS class system.

Ext.chart.Shape.self.override({
 star: function (surface, opts) {
 return surface.add(Ext.applyIf({
 type : 'path',
 path : 'M 0 -10 L 6 8 -9 -3 10 -3 -6 8 Z',
 'stroke-width' : 0,
 }, opts));
 }
});

To access a singleton’s override property—which is a goodie coming from the new

Ext JS class system—you have to access its self property first. In listing 10.13, you’re

adding a new method, star, that will represent a new marker configuration type.

Listing 10.13 Custom marker installation

Figure 10.14 Custom

shape rendered on a chart

242 CHAPTER 10 Drawing and charting

The path needs to be adjusted again. This time each star should be placed in the mid-

dle of each point, hence the pixel point adjustments. Finally, you don’t stop the stroke

when each star is drawn. You can access all of the sprite defaults through the opts

argument in the star method. Let’s plug the star into the marker configuration:

markerConfig: {
 type: 'star'
}

No further configuration is necessary. That’s all there is to it. Now run the new code,

and you should see something like figure 10.15.

 Many times you want to compare two or more different data sets relative to a com-

mon value, such as months. Our next discussion focuses on that.

10.7.5 Multiple series on the same chart

The series property in an Ext.chart.Chart configuration is an array of Ext.chart

.series.Series instances. In other words, a chart can take on a reasonable number

of series. This makes sense particularly in Cartesian-type charts that share the same X

and Y plane.

 Reusing the same code you’ve been working on, add a new series configuration in

the following listing to present the number of new customers compared to the num-

ber of returning customers.

,{
 type: 'line',
 highlight: {

Listing 10.14 Adding series

Figure 10.15 Star points

243Implementing Cartesian charts

 size: 7,
 radius: 7
 },
 axis: 'left',
 xField: 'name',
 yField: 'data2',
 markerConfig: {
 type: 'diamond'
 }
}

As simple as that, you’ve added a new configuration object that accounts for a new

series. You’re already familiar with the configuration. The only major change is a dif-

ferent yField data resource B. To make points easier to track, this series will draw

diamonds c in place of values (see figure 10.16).

Looks good but chaotic. In the first place, which line represents which data? Calling

legends to the rescue!

legend: {
 position: 'top'
}

Turning on the legend, and placing it at the top, required allocating a bit of vertical

space for a much-needed legend. The legend will display an example of a marker with

its color and the title of the series. If a title isn’t supplied, the corresponding field name

will be shown, as specified in the Ext.data.Model configuration. Make both changes:

{
...
 title: '% Returning Customers',
...

Configures different
data resource

b

Adds new
marker typec

Figure 10.16 Multiple

line-type series

244 CHAPTER 10 Drawing and charting

},
{
...
 title: '% New Customers',
...
}

Each title goes to the respective series configuration. This change might not be satisfy-

ing in terms of graphical clarity, which is why you’re about to turn the second series,

the % New Customers, into an area chart:

type: 'area'

Is that all that’s needed for such a conversion? You bet! See the proof in figure 10.17.

 Much more readable, isn’t it? The legend properly shows each series’ title, and you

made the difference between the two data sets clear by using a new series type. Area

charts have a different kind of highlighting mechanism, displaying a thin, slightly

darker column to show the position on the horizontal plane.

 So right now you have two series, a blue line and a green area. We never men-

tioned anything about colors, though, so how can that be? You’re about to discover

that little secret.

10.8 Custom themes

Charts, as a visual representation of data, rely on graphical shapes and color. Axes and

series fulfill the need for shapes, but how do you control the color? The answer lies

within the Ext.chart.theme package.

 The package has two main classes: Ext.chart.theme.Base and Ext.chart.theme.

Theme.Base is private, and it holds the default theming configuration. The Theme class

is used to define new themes.

Figure 10.17 Legend in

a mixed chart

245Custom themes

To better explain the configuration, we’ll go over the default settings. The following

listing shows the default configuration object. This listing is really long, so please stick

with us. As you’ve already seen, configuring charts takes quite a bit of work, and them-

ing adds to the effort.

{
 background: false,
 axis: {
 stroke: '#444',
 'stroke-width': 1
 },
 axisLabelTop: {
 fill: '#444',
 font: '12px Arial, Helvetica, sans-serif',
 spacing: 2,
 padding: 5,
 renderer: function(v) { return v; }
 },
 axisLabelRight: {
 fill: '#444',
 font: '12px Arial, Helvetica, sans-serif',
 spacing: 2,
 padding: 5,
 renderer: function(v) { return v; }
 },
 axisLabelBottom: {
 fill: '#444',
 font: '12px Arial, Helvetica, sans-serif',
 spacing: 2,
 padding: 5,
 renderer: function(v) { return v; }
 },
 axisLabelLeft: {
 fill: '#444',
 font: '12px Arial, Helvetica, sans-serif',
 spacing: 2,
 padding: 5,
 renderer: function(v) { return v; }
 },
 axisTitleTop: {
 font: 'bold 18px Arial',
 fill: '#444'
 },
 axisTitleRight: {
 font: 'bold 18px Arial',
 fill: '#444',
 rotate: {
 x:0, y:0,
 degrees: 270
 }
 },
 axisTitleBottom: {

Listing 10.15 Theme configuration

246 CHAPTER 10 Drawing and charting

 font: 'bold 18px Arial',
 fill: '#444'
 },
 axisTitleLeft: {
 font: 'bold 18px Arial',
 fill: '#444',
 rotate: {
 x:0, y:0,
 degrees: 270
 }
 },
 series: {
 'stroke-width': 0
 },
 seriesLabel: {
 font: '12px Arial',
 fill: '#333'
 },
 marker: {
 stroke: '#555',
 radius: 3,
 size: 3
 },
 colors: ["#94ae0a", "#115fa6","#a61120", "#ff8809", "#ffd13e",

"#a61187", "#24ad9a", "#7c7474", "#a66111"],
 seriesThemes: [{
 fill: "#115fa6"
 }, {
 fill: "#94ae0a"
 }, {
 fill: "#a61120"
 },
 ...
],
 markerThemes: [{
 fill: "#115fa6",
 type: 'circle'
 }, {
 fill: "#94ae0a",
 type: 'cross'
 },
 ...
]
}

You already know that charts are a bunch of sprites on a surface, so laying out a new

theme will require a bit of skill with Ext.draw. Let’s review the configuration properties:

■ background—A fill that always stays in the back and has the lowest z-index

■ axis—The line that represent an axis

■ axisLabelTop, axisLabelRight, axisLabelBottom, axisLabelLeft—Labels on

each axis location

■ axisTitleTop, axisTitleRight, axisTitleBottom, axisTitleLeft—Axis titles

247Custom themes

■ series—Default series configuration

■ seriesLabel—Label for each value in the series

■ marker—Default marker

■ colors—Color hex where the array index of the series equals the array index of

the color

■ seriesThemes—Draw configuration for series; same array rule as with colors

■ markerThemes—Marker style; same array rule as with colors

Sure enough, understanding the Ext.draw.Sprite configuration will make your life

easier when setting up a new theme. Let’s implement a custom theme for your chart

and show this in action in the next listing.

Ext.define('Ext.chart.theme.Spring', {
 extend: 'Ext.chart.theme.Base',
 constructor: function(config) {
 var axisColor = '#610519';

 config = Ext.apply({
 axis: {
 fill: axisColor,
 stroke: axisColor
 },
 axisLabelLeft: {
 fill: axisColor
 },
 axisLabelBottom: {
 fill: axisColor
 },
 axisTitleLeft: {
 fill: axisColor
 },
 axisTitleBottom: {
 fill: axisColor
 },
 colors: ['#6695CC', '#65ed73'],

 seriesThemes: [{
 fill: "#CC7200",
 stroke: '#3FCC00'
 }, {
 fill: "#610519"
 }],
 markerThemes: [{
 stroke: '#f00'
 }]
 }, config);

 this.callParent([config]);
 }
});

Listing 10.16 Configuring the Spring theme

Defines Spring
theme classb

Extends Base
theme classc

248 CHAPTER 10 Drawing and charting

Call this theme Spring B. It’s mandatory that the new class extend Ext.chart.theme

.Base c. After that, things become straightforward. Most of the magic (see figure 10.18)

was accomplished using fill and stroke colors.

 Ever since we began talking about charts, we’ve been discussing the Cartesian types.

They share a similar configuration and all have axes in common. Next you’ll conduct

an experiment with charts without axes.

10.9 Pie charts

When a ratio between a value and a gross total is observed, we often turn to pie charts.

They don’t benefit from axes, but they interact with other values in the data set. In this

example, you’ll reuse the same data store but limit the amount of data. Too many data

values in the same series will give you an untidy chart.

 Your pie chart will have a legend and labels written inside of each slice. Slices will

react on mouseover to move the selected slice outside the perimeter, as shown in the

following listing.

var store = Ext.create('Ext.data.JsonStore', {
 fields: ['name', 'data1'],
 data: generateData(4,30)
});

Ext.create('Ext.chart.Chart', {
 animate : true,
 store : store,
 shadow : true,
 insetPadding : 10,

Listing 10.17 Setting up the data store and rendering the chart

Figure 10.18 The new

theme in action

Generates
small datasetb

Sets chart
padding

c

249Pie charts

 legend : {
 position : 'bottom'
 },
 background : {
 fill : '#fff'
 },
 series : [
 {
 type : 'pie',
 field : 'data1',
 donut : 40,
 showInLegend : true,
 tips : {
 trackMouse : true,
 width : 150,
 height : 28,
 renderer : function (record, item) {
 this.setTitle(record.get('name')
 + ': ' + record.get('data1'));
 }
 },
 highlight : {
 segment : {
 margin : 20
 }
 },
 label : {
 field : 'name',
 display : 'rotate',
 contrast : true,
 font : '18px Arial'
 }
 }
]
});

Using the data generator you created earlier in the chapter, you create a smaller ran-

dom set of data B. Then you create a chart and make sure the pie leaves enough

room c for mouseover effects. You didn’t set up any axes, which is okay, given the

series type is pie d. X- and Y-axes don’t exist, so there’s no xField or yField, just

field to assign the model field name to it e. The “hole” is referred to as donut,

assigning a value for the radius in pixels f. Finally, you instruct this series to show in

the legend g.

 It looks like a lot of effort, but once you’ve learned to create a basic chart, you can

use that knowledge as a basis to create any other type. Pie charts differ from the Carte-

sian types mostly in the relationship with axes. Configuration-wise, that makes them

simpler. Let’s see what you just made (figure 10.19).

 There, it wasn’t that hard, and it looks beautiful. You can clearly see that January

yielded little value in the first trimester, and if you work a bit more with the labels, you

can even see how much. We’ll leave that to you as homework.

Configures pie
chart type

d

Connects
with model

e

Adds “hole”
inside pie

f

Shows categories
in legendg

250 CHAPTER 10 Drawing and charting

10.10 Summary

In this chapter we covered the basics of drawing. Drawing is a new concept introduced

in Ext JS 4, a feature often used with Flash to ensure consistency in browsers. Ext.draw

proves that cross-browser-friendly drawings can be created easily, following a simple API.

 Drawing is a good foundation for learning to create stunning charts. Not only do

charts depend on the Ext.draw package, but advanced chart creation heavily depends

on familiarity with drawing concepts. You saw that quite clearly when you created your

first theme.

 Building a chart slowly and progressively throughout most of the chapter demon-

strated the main concepts behind configuring an Ext.chart chart. You started from a

small and simple example and built up to a custom-themed, animated, and interactive

chart. These principles can be shared with any series type.

 Furthermore, you learned about a number of tricks hidden in the Ext.draw and

Ext.chart source code. If you get stuck with something, don’t be afraid to jump into

the source code. This is something that holds true for all issues you might encounter

in Ext JS.

 The next chapter addresses one of our favorite topics, Ext Direct. You’ll dive into a

technique called direct remoting with Ext JS.

Figure 10.19 Pie chart

251

Remote method invocation
with Ext Direct

In previous chapters, you exchanged data from servers with widgets like grids, trees,

forms, and even XTemplates. You used Ext.data.Stores and Ext.Ajax.requests

for communicating with a server. If you’ve spent some time working with Ext JS 4,

you know that setting up Ajax requests for creating, reading, updating, and destroy-

ing data allows for great precision in configuring processes, but it can also be cum-

bersome. Writing blocks for each operation with separate success and failure

callbacks will take up quite a few lines of code on both server and client sides, not

to mention the amount of code required to dedicate URL paths or variables to dis-

tinguish between operations.

 A common way to reduce the amount of code on the server side is to employ a

RESTful interface. On the client side, stores and Ext.data packages are there to

automate most of the CRUD process and make your life much simpler. But the

clever developers from Redwood City have gone a step further.

This chapter covers

■ Setting up Ext Direct servers and clients

■ Invoking methods directly

■ Using Ext Direct with Ext.data.Store

252 CHAPTER 11 Remote method invocation with Ext Direct

 Remote procedure call (RPC), also known as remote method invocation, is a well-

known technique of sharing program code among platforms. Ext Direct is a platform

that brings remote server-side methods to the client side. This flexible and highly

extensible technology is compatible with virtually any server-side platform that powers

your web application.

 As a layer that exists on its own, Ext Direct is beautifully integrated into the rest of

the framework. Although its service is frequently provided for data stores (Ext.data

.proxy.Direct), remotely invocable methods are also accessible for direct execution.

 In this chapter, you’ll see how to set up the server-side environment and make use

of the platform’s benefits within your Ext JS web applications. You’ll also explore Ext

Direct, which will allow you to reduce coding efforts for the data-management portion

of your applications.

11.1 Making the two ends meet

The Ext Direct package in Ext JS 4 exists on the client side, but it’s dependent on

server-side support. The client end is mainly responsible for constructing requests and

processing responses. It does so through various interfaces, such as Ext.data.Store

or direct method invocation. The part that makes Ext Direct special over more tradi-

tional communication mechanisms sits on the server end. Let’s see a broader view of

how the communication flow works (see figure 11.1).

 It all starts from a method call on the client side of your web application B. Ext

Direct wraps it into a JSON object c and sends it to the router d. The router is a spe-

cial mechanism in the workflow. It knows how to talk to Ext Direct, and it also knows

where the exposed methods are on the server side and how to communicate with

them. It listens for requests coming from the client side, finds the needed method,

and forwards the arguments to it e. The method f will do its work and return g val-

ues back to the router h. The router constructs another JSON object i, which is sim-

ilar to the one previously received. The new object contains data returned by the

remote method f. Finally, Ext Direct receives the response j asynchronously and

returns the values to the original caller through a callback system. Remember, the

whole process is asynchronous.

 This is a simplified explanation of how the process works. There’s much more to

each of the nine steps, and we’ll discuss each one in this chapter. These principles

show how RPC in Ext Direct is special, stressing the router’s role. Ext JS 4 is well

equipped with support for other communication types, one of them being the famous

RESTful interface. Let’s see how developers weigh the two and choose which to use for

their projects.

11.2 Ext Direct vs. REST

Before you go deeper into Ext Direct, let’s take a step back and observe RPC from the

REST point of view. Many developers have used a form of RESTful interface before. If

you have, you may notice both similarities and differences.

253Ext Direct vs. REST

In Ext JS 4, support for both REST and Ext Direct has been taken to the next level. If

your project operates with data stores for all data-management purposes, then you

won’t see a significant difference between using REST and Ext Direct. That’s because

the framework has made them equal, or almost equal.

J
S

O
N

 f
o

rm
a

tt
e

d
 r

e
q

u
e

s
t

J
S

O
N

 fo
rm

a
tte

d
 re

s
p

o
n

s
e

Router

Method

Update triggers

store sync

Formatted request

travels to router

Router calls

method

Method executes

Method returns

data to router

Formatted response

goes back to client

Router reads

request
Router formats

response

Response is applied

to model
1

2

3

4

5

6

7

8

9

Figure 11.1 Communication flow in Ext Direct

254 CHAPTER 11 Remote method invocation with Ext Direct

 Differences exist mostly due to the architectural design of each concept. Table 11.1

compares Ext Direct and REST, emphasizing key features you should consider before

choosing the technology for your new project.

The most significant difference between Ext Direct and REST lies in their definitions.

REST exists as an interface or, in other words, as URLs you can use to commit CRUD

operations. Ext Direct is a two-way platform that needs to exist on both the server and

client side for communication to take place successfully. They’re both able to expose

methods, but Ext Direct makes the server-side methods visible on the client side. More

important, it makes them executable.

 Ext Direct calls remote methods through Ajax calls. The only exception is for file

uploads, which are sent through an iFrame using regular form posting. A limitation of

such an approach is that it’s not cross-domain capable. Because REST is an interface

that belongs to the server side, it can be used with any method of communication

available in the framework and browsers.

 Batching requests is an interesting feature. Although it needs to be supported in

the router, its implementation is centralized, so server-side developers don’t need to

worry about it. REST developers, though, may need to work this out on their own, and

it depends on their application layout. In some scenarios, every URL path has its own

batching support. In such a case, Ext Direct is a huge win.

 In an Ext.data package using proxies and writers, your setup won’t differ sig-

nificantly. You can even benefit from batching requests in REST. But you’ll need to

implement them with your server-side code. Ext Direct wins there, because batch-

ing support is implemented for any call, whereas RESTful interfaces will either

need to implement batching support for every call or create a router-like before/

after behavior.

Table 11.1 Differences between Ext Direct and REST in Ext JS 4

Feature Ext Direct REST

Server-side configuration Router setup and configuration Router-like behavior, various

implementations

Client-side configuration Needs separate configuration for

RPC provider instantiation

No configuration needed

Cross-domain support Not supported (Ajax-based) Supported

File uploads Supported through iFrame Per application design

Batching requests (server side) Managed by the router Needs to be implemented

Writer API CRUD methods CRUD paths

Direct method invocation

(client side)

Fully automatized Not by default; methods need to

be created manually

255Server-side setup

 Another important difference between Ext Direct and REST is ease of use in other

scenarios. With Ext Direct, it’s easy to call a remote method by calling it in JavaScript,

whereas working with REST will require custom-created, Ajax-enabled wrappers to per-

form a similar task. Having too many of those in application code can become a devel-

oper’s nightmare, complicating both the development and maintenance of an app.

 So far you’ve explored the theory behind Ext Direct and how it compares to the

popular RESTful interface. Their differences are also their strengths. Let’s discuss

each one in more detail, starting with the server-side setup.

11.3 Server-side setup

Exposing server-side methods is fairly simple and isn’t typically complicated to set up.

If you’re comfortable developing in your server platform, it’s a great idea to go ahead

and try to develop your own support for Ext Direct. Not only will you be able to tailor

it for the needs of your app, but you’ll also understand the core principles much bet-

ter. In addition, you’ll get a chance to enjoy all the benefits of extending Ext Direct

and expanding its power.

 Otherwise, feel free to explore and choose from more than 30 available server-side

stacks for nine languages at http://mng.bz/8WkO. It’s worth noting that each one of

the stacks is different. Trying a few will help you choose the best fit for the existing

application and will also help you understand certain concepts. It might even spur you

to create your own stack.

11.3.1 How it works

The server-side stack is responsible for three roles. It needs to

■ Understand which methods should be exposed

■ Use that information to generate the API descriptor to be given to Ext Direct

■ Listen for requests, route them, and return them to the client side

In order for the web application to invoke remote methods, a server will need a router

script that understands both sides. A router will know how to reach the methods

you’ve decided to expose and will also manage the translation between the two sides.

11.3.2 Remote method configuration

The first step in RPC-enabling your web applications is to let your router know which

methods are available and how to execute them. Router developers have been creative

in choosing their preferred methodology. These are a few methods:

■ Using configuration file(s) (no automation; least creative)

■ Expecting entire classes to be exposed, using class statics to define how to com-

municate with the class

■ Parsing comments placed straight above methods and looking for API-style

keywords

■ Using fully automatic introspection in available methods

http://mng.bz/8WkO

256 CHAPTER 11 Remote method invocation with Ext Direct

Depending on the language, some features may not be available. Specific languages

dictate ways of associating the methods to configuration and thus dictate the router

itself. The minimum information a router needs is the method’s name and the num-

ber of arguments accepted. Any additional information could include security mea-

sures, before/after execution actions, type conversion, and filter-based triggers.

11.3.3 Routing

The router accepts requests from the client, to be forwarded to the appropriate

method along with the supplied arguments. The client can send a request either via

JSON-formatted raw HTTP post payload or as a form post. The latter is required when

uploading files and also needs to dispatch multiple requests.

 Each transaction coming from the client side can be bundled with a mixture

of properties:

■ action—The class where the requested method resides

■ method—The name of the method to execute

■ data—The arguments to be passed on to the method

■ type—Currently set to 'rpc'

■ tid—The transaction ID with which to associate the request; essential in

batched requests

Form posts reuse the field names but prepend the ext keyword to them:

■ extAction

■ extMethod

■ extTID

■ extUpload (optional field; used for file uploads)

Any further fields are considered to be arguments for extMethod.

 In most cases, a function that’s being executed remotely by the router will return

data. Depending on the language used and how the router is designed, it’ll either cap-

ture the output of the method called or receive data returned from it. The data is pro-

cessed to JSON format if necessary, and the router appends additional metadata:

■ type—Set to 'rpc'

■ tid—The transaction ID, used to identify the data returned

■ action—The class in which the method resides

■ method—The name of the method executed

■ result—The root for the result data object

If the request was initially batched, it’ll combine results and return an array of

responses. If the request was a form post and uploaded a file, the response would be a

properly formatted HTML file with only a text area in the document body, containing

the same formatted JSON object. Because form posts don’t support batching, only a

single response is returned.

257Working with remote methods

 Exceptions should be caught by the router and forwarded as a properly structured

response. It’s often a good idea to additionally enable the router with a configurable

debugging mode that would decide whether to transmit the exceptions. Sending

server-side exceptions to the client side in a production environment is considered a

security issue.

 In most cases, you’ll likely use one of the available server-side stacks and not worry

too much about how they work internally with data. But some languages (like

Node.js) don’t have stacks that are as advanced as those existing in other languages. In

such cases, you may end up developing your own or extending similar packages (like

socket.io or dnode).

NOTE Calling remote methods in Node.js feels natural due to the same lan-
guage being in use and the architecture of Node itself. But the lack of a good
server stack shouldn’t discourage you. We’re sure you could create your own
basic router in a matter of hours. Node.js in Action (Manning, 2013) is a wonder-
ful resource for such an endeavor. We highly recommend reading it because
Node.js also provides a valuable method for reusing your JavaScript code.

In other cases, you may need to override or extend existing stacks to play nicely with

your MVC or session management. What you just learned would be essential for the task.

 You now have a working stack ready. Think of it as a football coach. You can’t do

without one, but you also need players to play the game, or methods to perform

your business logic. In the next section, you’ll add the players (or rather, methods)

to the system.

11.4 Working with remote methods

Now that you know how to make the server-side code available, it’s time to make use of

it. You’ll create a sample application that’ll do two things:

■ Retrieve a server-side timestamp through a direct method call

■ Enable complete CRUD through an Ext.grid.Panel with the help of Ext.data

.writer.Writer

Later in the examples, you’ll make use of one of the server-side stacks available at the

Sencha forums. Our flavor of choice is the excellent J. Bruni’s (a Sencha community

member) Extremely Easy Ext Direct Integration with PHP.

11.4.1 Setting up the router

Even before setting up the router, make sure that your server-side methods are avail-

able. For the sake of simplicity, in this example you’ll create two PHP classes. You’ll

save both classes in a single file, rpc.php, as shown in the next listing.

<?php
class Util {

Listing 11.1 A simple remote method

258 CHAPTER 11 Remote method invocation with Ext Direct

 public function date($format) {
 return date($format);
 }
}

In listing 11.1 you create a new PHP class called Util. Only one method belongs to

it: date. This method is public, meaning that it’s accessible to the outside, and it

expects a single argument, $format. The only purpose of this method is to return a

string representing the current date and time, according to the pattern specified in

the only argument.

 This method will justify the need for your server-side timestamp generation

through a direct method call. In the following listing, you’ll create another class that

supports CRUD methods for the grid.

class Actors {
 public function create($config) {
 return Array(
 "success"=> true,
 "data"=>Array("name"=>"New Actor", "id" => rand(1,22000))
);
 }

 public function read($config) {
 return Array("success"=> true, "data"=>Array(
 Array(
 "id" => rand(1,22000),
 "name" => "John Travolta"
),
 Array(
 "id" => rand(1,22000),
 "name" => "Benny Hill"
),
 Array(
 "id" => rand(1,22000),
 "name" => "Bruce Willis"
),
 Array(
 "id" => rand(1,22000),
 "name" => "Rowan Atkinson"
)
));
 }

 public function update($config) {
 return Array("success"=>true, "data"=>$config);
 }

 public function destroy($config) {
 return Array("success"=>true);
 }
}

Listing 11.2 A remote CRUD class

259Working with remote methods

In listing 11.2, you create a new class with four public methods inside it: create, read,

update, destroy. None of the methods will do any real work, other than to return a

minimum of required information to your client side. In reality, these four methods

perform validation where needed, talk to a database, and then return the database’s

response on completion of the transaction.

 If you’ve downloaded the PHP router, it’s time to plug it in. You’ll include the server-

side stack API in your newly created router and configure it, as shown in the next listing.

<?
require 'ExtDirect.php';

ExtDirect::$namespace = 'RPC';
ExtDirect::$descriptor = 'RPC.REMOTING_API';
ExtDirect::$enableBuffer = 200;

This router’s configuration is extremely straightforward. You’re moving back to the

beginning of your rpc.php file and appending the reference to the ExtDirect.php file.

You’re right; ExtDirect.php is this stack’s router file. By including the router in

rpc.php, you’re making sure that the router’s API is available for use.

 The router has quite a few configuration options. But at this point you only need

to set up the namespace to be used on the client side and the Ext Direct descriptor.

The latter will be used to inform Ext Direct of the methods you’ve made available.

 Because you’ll want to make your application a bit smarter and reuse resources by

batching requests, you’ll also enable a buffer and set it to 200ms.

 You’ve now successfully set up your RPC server-side router. This particular installa-

tion will understand that all public methods are made available, gather the number of

arguments required, and reconfigure the API description every time the web applica-

tion requests it.

 The journey continues on the client side. Ext Direct needs to know how to behave,

where the router is, and which methods it can call remotely. It’ll make use of the con-

figuration you just explored, and you’re about to see how.

11.4.2 Enabling Ext Direct

Ext.direct.Manager is in charge of Ext Direct on the client side. Its job is to create,

cache, and manage the instances for each provider you want to use. Two different pro-

viders exist: PollingProvider and RemotingProvider.

Ext.direct.PollingProvider has one responsibility: to execute a single remote

method in configurable intervals. It’ll also process the information according to pre-

defined rules, specified in a callback function. An example scenario would be check-

ing in with the server to let it know that a user is still online, while also refreshing the

availability of messages that need to be delivered for the user.

Listing 11.3 Router configuration

260 CHAPTER 11 Remote method invocation with Ext Direct

Ext.direct.RemotingProvider, on the other hand, invokes remote methods as

needed. It’s particularly useful for connecting with Ext.data.Store, including both

the reader and writer. Its usage pattern is similar to that of the PollingProvider, which

is what we’ll concentrate on in further examples.

 Let’s examine the core differences between the two providers in figure 11.2. Most

notably, the PollingProvider repeats a request in given intervals. It’ll repeat this way

until forcibly stopped. RemotingProvider creates a remote method’s synonym on the

client side. Only when the client-side method is executed will Ext Direct send a

request to a server and process the response through a callback. The same client-side

method can be executed manually (programmatically), or by an Ext.data.Store

load() or sync() call.

 Now that you’ve specified the remoting provider, you’ll retrieve your API descrip-

tion and process it through Ext.direct.Manager. To do so you’ll add an extra <script>

tag, right after the one that references the framework:

<script type="text/javascript" src="rpc.php?javascript"></script>

Now would be a good time to look at the example code in rpc.php found in examples/

ch11/direct_app/rpc.php.

 The router will automatically return a configuration and create an instance of Pro-

vider by appending a special line to the end of the received JavaScript file:

Ext.Direct.addProvider(RPC.REMOTING_API);

In this step, Ext Direct will automatically initialize the namespace and create meth-

ods. Then all remotely available methods will be accessed through a previously config-

ured namespace. Util.date becomes RPC.Util.date, and Actors.read becomes

RPC.Actors.read.

 Take a look at listing 11.4, which shows a sample API description.

PollingProvider

JavaScript method

Remote method

Callback

RemotingProvider

Repeating a single request

in a given interval
RPC JavaScript method is

available for arbitrary execution

Server-endClient-end

Executed on request

Router executes
Executed on response

Figure 11.2 PollingProvider vs. RemotingProvider

261Working with remote methods

RPC.REMOTING_API = {
 "url" :"\/extdirect\/rpc.php",
 "type" :"remoting",
 "namespace" :"RPC",
 "descriptor" :"RPC.REMOTING_API",
 "enableBuffer" :1000,
 "actions":{
 "Actors":[
 {"name":"create", "len":1},
 {"name":"read", "len":1},
 {"name":"update", "len":1},
 {"name":"destroy", "len":1}
],
 "Util":[
 {"name":"date", "len":1}
]
 }
};

The server end responds with a variable that’s going to be known to Ext Direct later in

execution. The variable will reference an object consisting of a minimum of three

parameters:

■ The URL to the router B
■ The type of service (remoting/polling) c

■ Actions, representing classes, methods, and the number of arguments accepted

for each method f
Anything more accounts for special configuration options. Because you shouldn’t

pollute a global namespace, you’re configuring it to RPC d. You can choose your

application namespace or something particular for Ext Direct—that’s based on the

developer’s preference. You’ve also chosen to enable the batching buffer and set it

to 1000ms (1s) e. That means Ext Direct will delay the first request by one second

and wait for any consecutive calls in order to batch them together as a single request.

Such a feature needs to be supported by the router because requests will be sent com-

bined in an array of uniquely identified calls.

 The next listing contains a sample API description configuration object for Sencha

Architect users.

Additional JavaScript calls before instantiating a provider

If your project makes use of Ext.Loader, you’ll need to require Ext.direct.Manager
before Ext.Direct.addProvider is called by adding Ext.syncRequire('Ext
.direct.Manager'). Additionally, if your application hasn’t previously been defined,

you’ll need to do that as well by issuing Ext.ns('RPC');, where RPC is your

namespace as defined in the API description.

Listing 11.4 Sample API description

Adds path to
router URL

b

Sets type
of servicecSets

namespace
root for API d Configures

batching buffere

Adds classes
and methodsf

262 CHAPTER 11 Remote method invocation with Ext Direct

{
 "url" :"\/extdirect\/rpc.php",
 "type" :"remoting",
 "namespace" :"RPC",
 "descriptor" :"RPC.REMOTING_API",
 "enableBuffer" :1000,
 "actions":{
 "Actors":[
 {"name":"create", "len":1},
 {"name":"read", "len":1},
 {"name":"update", "len":1},
 {"name":"destroy", "len":1}
],
 "Util":[
 {"name":"date", "len":1}
]
 }
}

If you’re a Sencha Architect user, you’ll appreciate Architect’s ability to import API

descriptions for further use with stores and widgets. The major difference is that the

description needs to be in JSON format and contain the API descriptor name B. Other

than the format change, the information is exactly the same as in the previous listing.

 You’ve reached a major milestone—all the prep work is now completed. You’ve

created a router, described the API, and included it in the web application. Ext Direct

has created a provider instance, and you’re ready to start using remote methods. Later

in this chapter, you’ll see two main RPC uses in an Ext JS application: direct method

invocation through JavaScript and CRUD operations through Ext.data.Store.

11.5 Directly invoking remote methods

As mentioned earlier in this chapter, Ext Direct will process calls by issuing Ext.Ajax

requests. This means that the process is asynchronous; callbacks are needed in order

to do anything with response data. Every client-side remote method will have the same

number of arguments as its remote counterpart, plus callback and scope. You’ll try

RPC.Util.date in the next listing.

var callbackFn = function(res) {
 this.log(res);
 this.timeEnd('DirectTiming');
}

console.time('DirectTiming');
RPC.Util.date('d/m/Y', callbackFn, console);

In your callbackFn, you’re outputting the end result only to the console. To demon-

strate round-trip speed, you’ll define a new console timer, only to be terminated when

Listing 11.5 Sample API description for Sencha Architect

Listing 11.6 Directly invoking a remote method

Specifies API
descriptor nameb

263Directly invoking remote methods

callback is called. Now that the callback is prepared and the console is ready to bench-

mark, it’s time to execute RPC.Util.date. Date pattern 'd/m/Y' is sent to the router

and forwarded to the target method, which returns the formatted date back to the

router. Data is encapsulated in a JSON object and sent back to the browser. Ext Direct

receives the data, identifies it against the tid property, and then calls the callback

function, passing returned data as the first argument:

25/01/2013
DirectTiming: 151ms

RPC.Util.date nicely output two lines in the browser’s console: the date, exactly in

the form you wanted, and the time needed for the entire operation to complete. The

test was executed from a remote location, using a mobile network.

 So far, so good. Now let’s spice it up with consecutive requests in the following list-

ing. You’ll call the same method three times but with different arguments. It’ll be par-

ticularly interesting to observe the Web Inspector’s Network tab.

RPC.Util.date('d/m/Y', console.log, console);
RPC.Util.date('H:i', console.log, console);
RPC.Util.date('U', console.log, console);

All the requests are sent at about the same time. You’ll notice that the callback is a sim-

ple console.log, meaning it’ll output the returned result in the console. As intended,

all results returned at the same time, after 1000ms along with the remote processing

time and the round-trip time.

 But how does Ext Direct differentiate requests on client and server sides? Let’s

look at the next listing.

[
 {
 "action":"Util",
 "method":"date",
 "data":["d/m/Y"],
 "type":"rpc",
 "tid":2
 },
 {
 "action":"Util",
 "method":"date",
 "data":["H:i"],
 "type":"rpc",
 "tid":3
 },
 {
 "action":"Util",
 "method":"date",
 "data":["U"],

Listing 11.7 Batching requests

Listing 11.8 Batched request payload

264 CHAPTER 11 Remote method invocation with Ext Direct

 "type":"rpc",
 "tid":4
 }
]

The only major difference between a single request and a batched one is that the lat-

ter is sent in the form of an array of request objects. Each request object is identified

with a tid that’s used to differentiate calls on the server end. The router will also need

to return the same ID for an array of responses, but we’ll get back to that in a minute.

 Arguments to be used with remote methods are sent as an array. In the future, Sen-

cha may allow key/value pairs, but right now make sure that arguments are called in

the right order.

 Every request should be politely returned with a response. Let’s see what that looks

like in the next listing.

[
 {
 "type":"rpc",
 "tid":2,
 "action":"Util",
 "method":"date",
 "result":"27\/01\/2013"
 },
 {
 "type":"rpc",
 "tid":3,
 "action":"Util",
 "method":"date",
 "result":"03:08"
 },
 {
 "type":"rpc",
 "tid":4,
 "action":"Util",
 "method":"date",
 "result":"1327633709"
 }
]

The request and response may look like twins, but there’s a single key difference

between them. Although arguments belonged to data key in the request, the returned

value now matches the result key. Note that the response is also an array of objects,

all containing the tid property to match the appropriate request.

 You’ve learned how to execute RPC methods directly and how to debug and even

benchmark them. You’ll often use Ext Direct through Ext.data.Store and use the

data in a widget. Let’s see how Ext Direct makes it easier and faster to write such code.

You’ll also use Ext Direct to perform the full CRUD process in an Ext.grid.Panel.

Fire away!

Listing 11.9 Batched response

265CRUD-enabled Ext.data.DirectStore

11.6 CRUD-enabled Ext.data.DirectStore

Next you’ll create an instance of Ext.grid.Panel (figure 11.3) that’s editable and

uses the writer configuration in Ext.data.Store to take advantage of automatic data

syncing on the remote end. It looks like a lot to do, but jobs like this are a piece of

cake for Ext JS 4 and Ext Direct.

 This example can share the same index.html file and the same API descriptor that

you used in the first example. This means you already know how to initialize Ext Direct

and let it know which remote methods are available. Also, take another look at list-

ing 11.2, where you created the methods for the second example in PHP.

 You’ll get the hardest part done first: your Ext.data.Model workhorse, as shown in

the following listing. Ext.data.Model is in charge of virtually everything data-wise:

pulling records from the server, creating new records, updating and deleting, calling

Ext Direct methods, and handling callbacks.

Ext.define('Actor', {
 extend : 'Ext.data.Model',

 fields : [
 'name',
 'data'
],
 proxy: {
 type : 'direct',
 api : {
 create : RPC.Actors.create,
 read : RPC.Actors.read,
 update : RPC.Actors.update,
 destroy : RPC.Actors.destroy
 },
 writer : {
 type: 'json',
 writeAllFields: true
 },
 reader : {
 root : 'data',
 idProperty : 'id',
 type : 'json',
 successProperty : 'success'

Listing 11.10 Setting up Ext.data.Model

Figure 11.3 An editable grid

that automatically syncs data

with the remote end

Adds Direct
proxy

b

Sets CRUD
API methodsc

266 CHAPTER 11 Remote method invocation with Ext Direct

 }
 }
});

You’ve already dealt with stores, proxies, readers, and writers, so you should be com-

fortable with most parts of this example. The two distinct configuration options are

the proxy type B and the CRUD API c. In the API configuration property, you’ve told

the proxy which methods to use for each CRUD action. That’s all the Ext Direct you’ll

need to set up. Now you must create some handlers for adding and deleting data, as

shown in the next listing.

var editing = Ext.create('Ext.grid.plugin.CellEditing'),
 grid,
 onAdd,
 onDelete;

 onAdd = function() {
 var record = Ext.create('Actor');
 editing.cancelEdit();
 grid.getStore().insert(0, record);
 editing.startEditByPosition({
 row: 0,
 column: 0
 });
}

onDelete = function(){
 var view = grid.getView(),
 selection = view.getSelectionModel().getSelection()[0];
 if (selection) {
 grid.getStore().remove(selection);
 }
}

The first step is instantiating the CellEditing plug-in B, which you chose to be your

editing option for the grid. You’ll use this reference with the grid shortly. Next, you set

up the onAdd c and onDelete d handlers for toolbar buttons. Each one will work with

the store directly; they won’t be working with Ext Direct in any way. Ext.data.Store will

do the job for you.

NOTE You aren’t polluting the global namespace because you’ve included
the whole code in Ext.onReady.

Finally, you’ll create the grid in the next listing. This will be fun!

grid = Ext.create('Ext.grid.Panel', {
 height : 350,
 width : 600,
 title : 'Actors Grid',

Listing 11.11 Supporting handlers and instances

Listing 11.12 Grid setup

Instantiates
CellEditing plug-inb

Adds new
recordsc

Deletes
records

d

267CRUD-enabled Ext.data.DirectStore

 renderTo : Ext.getBody(),
 selType : 'cellmodel',
 store : {
 model : 'Actor',
 autoLoad: true,
 autoSync: true
 },
 columns : [{
 dataIndex : 'name',
 flex : 1,
 text : 'Name',
 field : {
 type : 'textfield'
 }
 }, {
 dataIndex : 'id',
 align : 'right',
 width : 120,
 text : 'Id'
 }],
 plugins : [
 editing
],
 dockedItems : [
 {
 xtype : 'toolbar',
 dock : 'top',
 items: [
 {
 text : 'Add',
 handler : onAdd
 },
 {
 text : 'Delete',
 handler : onDelete
 }
]
 }
]
 });

The key configuration option goes into store setup B. You set autoSync to true,

which means that Ext.data.Store will monitor for data changes and push them to

the server. With that set, your grid is finished and renders as shown in figure 11.4.

Syncs data
with server

b

Assigns onAdd
handler

c

Assigns onDelete
handlerd

Figure 11.4 Your data grid

with Ext Direct in action

268 CHAPTER 11 Remote method invocation with Ext Direct

With every response, you should return an object with the success: true property to

let the store know that everything is okay. Otherwise, you’ll describe a failure. This is

true for reads, updates, and destroys, whereas adding data will have an additional bit

of information returned: the ID of the new record. Once the user clicks the Add but-

ton c, the store will create a new record and confirm it with the server. The user will

continue editing the new record, and Ext.data.Store will update the record’s ID as

soon as it’s received. Should changes happen in the meantime, the store will mark the

unsaved fields with a red triangle and wait for the next sync to send changes.

 In fewer than 100 lines of codes, you’ve created a grid that reads data from a

server, yet allows creating, editing, and deleting of records d. It’ll also buffer requests

for those who type quickly and are able to modify several columns in short periods of

time. That’s a great bandwidth saver and, in some cases, a performance booster.

11.7 Summary

Ext Direct is a powerful mechanism for invoking remote methods. Its main purpose is

to streamline the communication between a server and a client while reducing the

amount of code needed for the job. True, there are a few APIs, like dnode, that do

something similar, but none is so nicely integrated with Ext JS’s data stores, providing

complete CRUD workflow to new and existing applications. The easy scoping control

is another ingenious advantage of the package.

 Now that you’ve seen how data can be transferred between the server and the cli-

ent end, let’s continue transferring data interactively between user interface elements.

In the next chapter, you’ll drag-and-drop empower your applications.

269

Drag-and-drop

One of the greatest advantages of using a graphical user interface is the ability to

easily move items around the screen with simple mouse gestures. This interaction is

known as drag-and-drop. You use drag-and-drop without giving it a second thought

just about every time you use a modern computer. If you step back and think about

it, you’ll realize how this feature makes your life a lot easier.

 Want to delete a file? Click and drag the file icon and drop it on the trash or

Recycle Bin icon. Easy, right? What if you didn’t have drag-and-drop? How would

you move a file from its location to the Recycle Bin? Let’s ponder the possibilities.

You’d first click the file to provide it focus. You could then use a keyboard key com-

bination to “cut” the file. You’d then have to find and focus the Recycle Bin window

and use the keyboard key combination to “paste” it in. Another option would be to

This chapter covers

■ Understanding the drag-and-drop workflow

■ Dissecting the Ext JS drag-and-drop classes

■ Implementing drag-and-drop override methods

■ Understanding the drag-and-drop life cycle

■ Using the drag-and-drop plug-ins

270 CHAPTER 12 Drag-and-drop

click to select the file to focus it and press Delete on your keyboard, but if you’re right-

handed, doing so would require you to take your hand off your mouse. In contrast,

drag-and-drop is much simpler, isn’t it? Now put yourself in the world of RIA users.

What if you could use drag-and-drop to simplify their experiences?

 Fortunately, Ext JS provides a means for you to do that. In this chapter, you’ll see

that with a bit of elbow grease and determination you can achieve the goal of adding

drag-and-drop to your applications. You’ll start off by learning to apply drag-and-drop

to basic DOM elements, which will give you the foundation for applying these behav-

iors to widgets such as the grid and tree panels.

12.1 The drag-and-drop workflow

Before drag-and-drop can take place, the computer must decide what can and can’t

be dragged, and what can or can’t be dropped on. For instance, icons on your desktop

can generally be dragged around, but other items, such as the clock on your taskbar

(Windows) or menu bar (Mac OS X) can’t. This level of control is necessary to allow

the enforcement of certain workflows, as we’ll discuss in a bit.

 To use drag-and-drop effectively, you need to understand the entire workflow. This

section divides the workflow into the drag-and-drop life cycle, which can be broken up

into three major categories: start of drag, the drag operation, and drop.

12.1.1 The drag-and-drop life cycle

Using the desktop paradigm, any icon on the desktop can be dragged around, but

only a select few can be dropped on (generally disk or folder icons, the trash or Recy-

cle Bin, or icons for executables [applications]). In Ext JS, the same registrations must

occur for drag-and-drop to be possible. Any element that can participate in drag-

and-drop must be initialized as such. For elements in the DOM to participate in

drag-and-drop, they must, at the least, be registered as drag items and as drop targets.

Once the items are registered, drag-and-drop can take place.

 Drag operations are initiated by clicking and holding a mouse button over a UI ele-

ment, followed by mouse movement while the mouse button is being held. The com-

puter decides, based on the registration described previously, whether the item that’s

being clicked is draggable. If it isn’t, then nothing happens. The user can click and

attempt a drag operation, but with no results. But if an element is allowed to be

dragged, the UI generally creates a lightweight duplicate of that object, known as a

drag proxy, that’s anchored to the movements of the mouse cursor. This gives the user

the feeling that they’re physically moving or dragging that item onscreen.

 During each tick (or X-Y coordinate change) of the mouse cursor during the drag

operation, the computer determines whether you can drop the item at that given posi-

tion. If a drop is possible, then some sort of visual invitation for a drop operation is

displayed. In figure 12.1, you see a form of drop invitation where a file icon proxy

is dragged over a folder icon on the desktop.

271The drag-and-drop workflow

The drag-and-drop life cycle ends when a drop operation occurs, which happens

when the mouse button is released after a drag operation has occurred. At this time,

the computer must decide what to do with the drop operation. Did the drop event

occur on a valid drop target? If so, is the drop target part of the same drag-and-drop

group as the drag element? Does it copy or move the item that was dragged? This deci-

sion is generally left to the application logic to decide, and it’s where you’ll do most of

your coding.

 Although it’s relatively easy to describe how drag-and-drop should behave, it’s infi-

nitely more difficult to implement, although not impossible. One of the keys to being

able to effectively implement drag-and-drop is a basic understanding of the class hier-

archy and the jobs that each class performs. This holds true from implementing drag-

and-drop at the basic DOM level, as you’ll see in a bit, all the way to implementing it

on Ext JS UI widgets.

 Throttle up. We’re going to climb up to 30,000 feet and take a bird’s-eye view of

the drag-and-drop class hierarchy.

12.1.2 A top-down view of the drag-and-drop classes

At first glance, the list of drag-and-drop classes can be a bit overwhelming. When I

(Jay) first glanced at the list of classes in the API, I was taken aback by the options.

With 11 classes, it can be considered a framework within a framework that provides

functionality from the basic, such as the ability to make any DOM element dragga-

ble, to more complex features, such as the ability to drag and drop multiple nodes

using what is called a proxy. The cool thing is that once you take a high-level look at

the classes it isn’t that difficult to organize the supporting classes and understand

their roles.

Drag proxy

Drop invitation

Figure 12.1 Desktop drag-and-drop interaction as seen in Mac OS X, where a drag

proxy (left) is created upon an item drag event and a drop invitation is being

displayed (right)

272 CHAPTER 12 Drag-and-drop

This is where we’ll start our exploration. Figure 12.2 shows what the class hierarchy

looks like. In this figure, you see the 11 drag-and-drop classes. All of the drag-and-drop

functionality for the entire framework starts with the DragDrop class, which provides

the base methods for everything drag-and-drop and is meant to be overridden. It pro-

vides only the basic tools for you to implement this behavior. It’s up to you to write the

code for the entire spectrum of the implementation.

 This is the fundamental key to understanding how drag-and-drop works, because

this design pattern is repeated throughout the drag-and-drop class hierarchy. This

concept is extremely powerful, because by having the basic tools to add this behavior

to your application you can easily ensure that drag-and-drop works for your applica-

tion’s needs.

 As you look down the chain of inheritance you can see a split, which starts with DD

(left) and DDTarget (right). DD is the base class for all drag operations, and DDTarget

is the base class for all drop operations. Both provide the base functionality for their

respective behaviors. This split in functionality allows you to focus on specific behav-

iors. You’ll see this in action when we look at implementing drag-and-drop with DOM

nodes a little later on.

 As you move down the chain, you can see that Ext JS adds features progressively for

the intended behavior. Table 12.1 enumerates the classes and provides a brief descrip-

tion of their designated tasks.

DragDrop

DD DDTarget

DDProxy

DragSource

DragZone

GridDragZone TreeDragZone

DropTarget

DropZone

TreeDropZone

Drag classes Drop classes

Figure 12.2 The drag-and-drop class hierarchy can be broken up into two major

sections: drag (left), and drop (right).

273The drag-and-drop workflow

There you have it: each of the drag-and-drop classes and what they’re designed to do.

A drag item (DD class or subclass) can be a drop target, but a drop target (DDTarget

or subclass) can’t be a drag item. It’s important to know this, because if you ever

decide to have an element be a drag item and a drop target, you must use one of the

drag classes.

 If you’re implementing drag-and-drop with generic DOM nodes and you need to

allow for one drag node at a time, use DD or DDProxy. If you need to drag more than

Table 12.1 Drag-and-drop classes

Drag classes Drop classes

Name Purpose Name Purpose

DD A basic drag implementation

where an element can be

dragged around and dropped

anywhere. This is where most

DOM-level drag implementa-

tions take place.

DDTarget The basic class to allow any ele-

ment to participate in a drag-and-

drop group, but it can’t be

dragged around, meaning it can

only have items dropped on it.

DDProxy A basic drag implementation

where a lightweight copy of the

drag element, known as a drag

proxy, is dragged around instead

of the source element. It’s com-

mon practice to use this class

for drag operations where a drag

proxy is desired.

DropTarget A base class that provides the

empty plumbing for an element

to take action when a draggable

element is dropped onto this

one. It’s left up to the developer

to finish the implementation by

overriding the notify methods.

DragSource Provides a base implementation

for drag-and-drop using status

proxies, and is the base class

for DragZone. This can be

used directly, but it’s more com-

mon to use the DragZone
class (see the next item).

DropZone A class that provides the means

for multiple nodes to be dropped

onto this element; it works best

with the DragZone class.

There’s a grid panel–specific

implementation in Ext.grid
.header.DropZone. A tree

panel–specific implementation is

known as the Ext.tree
.ViewDropZone.

DragZone This class allows for the drag of

multiple DOM elements at a

time and is commonly used with

the view widgets. To provide

drag-and-drop with the grid

and tree panels, each has its

own implementation of this

class, known as Ext.grid
.header.DragZone and

Ext.tree.ViewDragZone,

respectively.

274 CHAPTER 12 Drag-and-drop

one element, you’ll want to use either the DragSource or DragZone class. This is why

the tree panel and grid panel have their own respective extensions or implementa-

tions of the DragZone class.

 Likewise, if you’re going to drop a single node, DDTarget will be your drop class of

choice. For multiple-node drops, DropTarget or DropZone is required because those

classes have the necessary plumbing to interact with DragSource and DragZone and

their descendant classes.

 Knowing what the classes are is one piece of the puzzle. The next piece that you

need to know is what methods should be overridden. This is the biggest key to success-

ful deployment.

12.1.3 It’s all in the overrides!

As we discussed earlier, the various drag-and-drop classes were designed to provide a

base framework for drag or drop behaviors and are only part of what’s needed to

make drag-and-drop useful. Each of the drag-and-drop classes contains a set of

abstract methods that are meant to be overridden by you, the end developer (see

table 12.2).

Although all of these methods are listed in the framework API for each drag/drop

class, it’s a good idea to briefly discuss a few of the more commonly used abstract

methods that are to be overridden for the Ext.dd.DD class. This way, you get a sense of

what to look for in the API.

 Remember that Ext.dd.DD is the base class for all drag-specific elements, and as

you move down the hierarchy more features get added. The features added by the

subclasses progressively override these methods for you.

Table 12.2 Commonly used abstract methods for drag-and-drop

Method Description

onDrag Called for each onMouseMove event while the element is being dragged. If you

plan to do something before an item is dragged, you may elect to override the

b4Drag or startDrag method.

onDragEnter Called when a drag element first intersects another drag/drop element within the

same drag/drop group. This is where you can code for drop invitation.

onDragOver Called while a drag element is being dragged over.

onDragOut Called when a drag element leaves the physical space of an associated drag or

drop element.

onInvalidDrop Called when a drag element is dropped on anything other than an associated

drag or drop element. It’s a great place to inject notification to users that they

dropped a drag element in the wrong place.

onDragDrop Called when a drag element is dropped on another drag/drop element within the

same drag/drop group.

275Drag-and-drop: a basic example

 For instance, there are a few b4 (before) methods that Ext.dd.DD provides that

allow you to code a behavior to occur before something happens, such as before the

mousedown event fires (b4MouseDown) and before the drag of an element occurs

(b4StartDrag). Ext.dd.DDProxy, the first subclass of Ext.dd.DD, overrides these

methods to create a draggable proxy just before the drag code begins to execute.

 To figure out which methods you need to override to achieve a specific imple-

mentation, you’ll need to consult the API for that specific drag or drop class.

Because Ext JS has a more aggressive release cycle, some methods may be added,

renamed, or removed, so looking at the API regularly will help you stay fresh with

the current changes.

 The last bit of drag-and-drop theory we need to discuss is the use of drag-and-drop

groups and what they mean for implementing this behavior in your application.

12.1.4 Drag-and-drop always works in groups

Drag-and-drop elements are associated with groups, which is the basic constraint that

governs whether a drag element can be dropped on another element. A group is a

label that helps the drag-and-drop framework decide whether a registered drag ele-

ment should interact with another registered drag or drop element.

 Drag or drop elements must be associated with at least one group but can be asso-

ciated with more than one. They’re generally associated with a group upon instantia-

tion and can be associated with more via the addToGroup method. Likewise, they can

be unassociated via the removeFromGroup method.

 This is the last piece of the puzzle needed to understand the basics of drag-and-

drop with Ext JS. It’s time to start using and reinforcing what you’ve learned. You’ll

start out by implementing drag-and-drop with DOM elements.

12.2 Drag-and-drop: a basic example

You’ll begin your exploration with a setup that mimics a swimming pool setting, com-

plete with locker rooms, a swimming pool, and a hot tub. There are constraints that

you must follow. For instance, men and women nodes can only be in their respective

locker rooms. All can go in the swimming pool, but only a few like to go into the hot

tub. Now that you understand what you must create, you can begin coding.

 As you’ll see, it’s extremely simple to configure an element to be dragged around

the screen. But before you can do that, you must create a workspace to manipulate.

You’ll do this by creating some CSS styles that govern how a specific set of DOM ele-

ments look, and then you’ll apply drag logic to them. We’ll keep things as simple as

possible to focus on the subject matter.

12.2.1 Creating a small workspace

First you create the markup to represent the locker rooms and people inside them, as

shown in the next listing. This listing is rather lengthy because of the HTML required

to achieve the desired style and layout.

276 CHAPTER 12 Drag-and-drop

<style type="text/css">
 body {
 padding: 10px;
 }
 .lockerRoom {
 width: 150px;
 border: 1px solid;
 padding: 10px;
 background-color: #ECECEC;
 }
 .lockerRoom div {
 border: 1px solid #FF0000;
 background-color: #FFFFFF;
 padding: 2px;
 margin: 5px;
 cursor: move;
 }
 </style>
 <table>
 <tr>
 <td align='center'>
 Male Locker Room
 </td>
 <td align='center'>
 Female Locker Room
 </td>
 </tr>
 <tr>
 <td>
 <div id="maleLockerRoom" class="lockerRoom">
 <div>Jack</div>
 <div>Aaron</div>
 <div>Abe</div>
 </div>

 </td>
 <td>
 <div id="femaleLockerRoom" class="lockerRoom">
 <div>Sara</div>
 <div>Jill</div>
 <div>Betsy</div>
 </div>
 </td>
 </tr>
 </table>

In listing 12.1, you create the CSS styles and markup to set the stage for your explora-

tion of basic DOM drag-and-drop. You begin by defining the CSS that’ll control the

styles for the lockerRoom B element containers and their child (people) nodes c.

Then you set up the markup d to use the CSS.

Listing 12.1 Creating your drag-and-drop workspace

Configures
drag element
container styles

b

Makes child nodes
look differentc

Sets HTML for
our drag items

d

277Drag-and-drop: a basic example

 Figure 12.3 shows what your locker HTML

looks like when rendered onscreen. Notice that

when you hover the mouse cursor over a child

node of a locker room element, the arrow will

change into a cross. This is due to the CSS styl-

ing that you configured earlier, and it provides

a nice means of inviting a drag operation.

 Next you’ll configure the JavaScript to allow

these elements to be dragged around.

12.2.2 Configuring items to be draggable

In listing 12.2, you configure the locker room child items to be dragged around the

screen. To accomplish this you gather a list of child elements in the maleLockerRoom

element by chaining a select call (DOM query) to the results of the Ext.get call.

You then utilize Ext.each to loop through the list of child nodes and create a new

instance of Ext.dd.DD, passing the element reference, which enables that element to

be dragged around the screen. You do the same thing for the elements in the female-

LockerRoom.

 var maleElements = Ext.get('maleLockerRoom').select('div');
 Ext.each(maleElements.elements, function(el) {
 new Ext.dd.DD(el);
 });
 var femaleElements = Ext.get('femaleLockerRoom').select('div');
 Ext.each(femaleElements.elements, function(el) {
 new Ext.dd.DD(el);
 });

After refreshing the page, you can easily drag-

and-drop the elements around the screen. As

you can see in figure 12.4, you can drag any

of the child divs around the screen without

constraints.

 Let’s examine how Ext.dd.DD works and

what it does to your DOM elements. To do this,

you’ll need to refresh the page again and open

Firebug’s live HTML inspection tool. We’ll focus

on Jack.

12.2.3 Analyzing the Ext.dd.DD DOM changes

Figure 12.5 shows the HTML of the drag elements immediately after a page refresh,

along with the DOM inspection view in Firebug.

Listing 12.2 Enabling drag for your elements

Figure 12.3 The locker room HTML

rendered onscreen

Figure 12.4 Drag is now enabled on the

locker room elements without constraints.

278 CHAPTER 12 Drag-and-drop

When looking at the Jack element (highlighted in figure 12.5), the first thing you

might notice is that it’s assigned a unique ID of "ext-gen3". Recall that in your

markup you didn’t assign an ID to this element. If the element already had its own

unique ID, Ext.dd.DD would use it. But instead, in order to track this element by ID,

it’s assigned one by Ext.dd.DD’s superclass, Ext.dd.DragDrop.

WARNING If the id of the element is changed after it has been registered for
drag, the drag configuration for that element will cease to function. If you
plan to change the id for a particular element, it’s best to call the destroy
method on the instance of Ext.dd.DD for that element and create a new
instance of Ext.dd.DD, passing the new element id as the first parameter.

Another thing that you’ll notice in the HTML inspection is that no other attributes are

assigned to that element. Now you’ll drag the element a little and observe the

changes, as shown in figure 12.6.

Figure 12.5 Inspecting the DOM for the Jack element (highlighted) before a drag operation

takes place

Figure 12.6 Observing the changes that the drag operation makes on the Jack element

279Drag-and-drop: a basic example

You can see that you dragged the Jack element a little. Ext.dd.DD, in turn, added a

style attribute to the element, which changes the position, top, and left CSS prop-

erties. This is important to know because using Ext.dd.DD will result in a change of

positioning for the element onscreen, and this is one of the key differences between

using Ext.dd.DD and Ext.dd.DDProxy, which we’ll explore later.

 The last observation that we’ll discuss is the ability for the dragged elements to be

seemingly dropped anywhere. At first, this may seem cool, and it is! But it’s hardly use-

ful. To make this useful, you’ll have to apply constraints.

 To do this, you’ll need to create some containers to drop them onto. This is where

you’ll generate the pool and hot tub for these people to enjoy.

12.2.4 Adding the pool and hot tub drop targets

As before, you’ll add some CSS to stylize the HTML. Insert the following CSS inside the

style tags of your document. They’ll set the background color of the pool and hot

tub to blue and red, respectively:

 .pool {
 background-color: #CCCCFF;
 }
 .hotTub {
 background-color: #FFCCCC;
 }

Now you’ll need to add the HTML to the document body. Append the following HTML

markup below the locker room HTML table:

 <table>
 <tr>
 <td align='center'>
 Pool
 </td>
 <td align='center'>
 Hot Tub
 </td>
 </tr>
 <tr>
 <td>
 <div id="pool" class="lockerRoom pool"/>
 </td>
 <td>
 <div id="hotTub" class="lockerRoom hotTub"/>
 </td>
 </tr>
 </table>

This code will give you the elements you’ll need to set up drop targets. Figure 12.7

shows how the HTML now renders.

 You’ve added all the HTML that you need for now. Next you must set up the 'pool'

and 'hotTub' elements as DropTargets, which will enable them to participate in the

280 CHAPTER 12 Drag-and-drop

drop portion of the drag-and-drop. You’ll add this code just after the JavaScript in list-

ing 12.2:

var poolDDTarget = new Ext.dd.DDTarget('pool', 'males');
var hotTubDDTarget = new Ext.dd.DDTarget('hotTub', 'females');

Here you set up one instance of Ext.dd.DDTarget each for the 'pool' and 'hotTub'

elements. The first parameter for the DDTarget constructor is the ID of the element

(or DOM reference). The second parameter is the group the DDTarget is to partici-

pate in.

 Now refresh your page and drag-and-drop a male node onto the pool node or a

female node onto the hot tub node. What happens when you drop the item onto the

target? That’s right: nothing happens. Why is that? Well, you set up drag items and

the drop targets, which set the stage for complete drag-and-drop, but remember that

it’s up to you to follow through with the rest of the implementation. You must develop

the code for the drop invitation and for valid and invalid drops. As you’ll see, this is

precisely where most of the drag-and-drop implementation code will take place, and

it’s what you’ll do next.

12.3 Finishing your drag-and-drop implementation

As you just saw, setting up an element to be dragged around is simple, as is setting up

a drop target. But unless you connect the dots, you’re left with a source and destina-

tion but no way to get there.

 To add the drop invitation and valid and invalid behaviors, you need to refactor

how you configure the elements to be dragged around. You’ll begin by adding one

last CSS class, which you’ll use to turn the drop target green for the drop invitation:

 .dropZoneOver {
 background-color: #99FF99;
 }

As you can see, this CSS is simple. Whatever element has this class will have a green

background. Next you’ll work on refactoring the way you set up the male and female

elements to be dragged around by setting up an overrides object that gets applied to

each instance of Ext.dd.DD.

Figure 12.7 The pool and hot

tub HTML rendered onscreen

281Finishing your drag-and-drop implementation

12.3.1 Adding the drop invitation

To add the drop invitation, you’ll have to completely replace how you initialized the

drop targets. The following listing shows what you’ll use, and it’ll set the stage for

the valid and invalid drop behaviors.

 var overrides = {
 onDragEnter : function(evtObj, targetElId) {
 var targetEl = Ext.get(targetElId);
 targetEl.addCls('dropZoneOver');
 },
 onDragOut : function(evtObj, targetElId) {
 var targetEl = Ext.get(targetElId);
 targetEl.toggleCls('dropZoneOver');
 },
 b4StartDrag : Ext.emptyFn,
 onInvalidDrop : Ext.emptyFn,
 onDragDrop : Ext.emptyFn,
 endDrag : Ext.emptyFn
 };
 var maleElements = Ext.get('maleLockerRoom').select('div');
 Ext.each(maleElements.elements, function(el) {
 var dd = new Ext.dd.DD(el, 'males', {
 isTarget : false
 });
 Ext.apply(dd, overrides);
 });
 var femaleElements = Ext.get('femaleLockerRoom').select('div');
 Ext.each(femaleElements.elements, function(el) {
 var dd = new Ext.dd.DD(el, 'females', {
 isTarget : false
 });
 Ext.apply(dd, overrides);
 });

In listing 12.3, you create an object, overrides, which will be applied to the instances

of Ext.DD that’ll be created. You’ll override a total of five methods to achieve the

desired results, but for now you’ll override only onDragEnter B and onDragOut c.

 Remember that onDragEnter will be called only when a drag element first inter-

sects a drag or drop element with the same associated group. Your implementation of

this method will add the 'dropZoneOver' CSS class, which changes the background

color of the drop element to green and provides the drop invitation that you want.

 Likewise, the onDragOut method gets called when the drag element first leaves a

drag-and-drop object with the same associated group. You use this method to remove

the invitation from the background of the drop element d.

 You then stub four methods, b4StartDrag, onInvalidDrop, onDragDrop, and end-

Drag, which you’ll fill in later on. We won’t cover these right now because we want you

to be able to focus on the behaviors and constraints that you add in layers. But in case

you’re curious, you’ll use b4StartDrag to get the original X and Y coordinates of the

Listing 12.3 Refactoring your implementation of Ext.dd.DD

Creates
overrides
objectb

Adds drop
invitationc

Removes drop
invitationd

Sets male
elements to
be drag items

e

Adds
drop
logic f

Overrides methods
to DD instance

g

282 CHAPTER 12 Drag-and-drop

drag element. These coordinates will be used in the onInvalidDrop method, which

will set a local property to indicate that this method was fired. The onDragDrop

method will be used to move the drag node from its original container to the dropped

container. Finally, the endDrag method will reset the position of the drag element if

the invalidDrop property is set to true.

 To use this overrides object, you have to refactor how you’re initializing the drag

objects e for both male and female elements. You do this because you need to pre-

vent the drag element from being a drop target: this is why you add a third argument

to the DD constructor, which is meant to be a somewhat limited configuration object.

You’ll see what we mean by limited in a bit. In that configuration parameter you set

isTarget f to false, which sets the controlling behavior for this drag item to not be

a drop target.

 Finally, you apply the overrides object to the newly created instance of Ext.DD g.

Earlier we said that the configuration object is used only to set a limited number of

properties. We said this because the drag-and-drop code that exists in Ext JS today was

written back in the early Ext JS 1.0 days, before most constructors applied configura-

tion properties to themselves. This is why you have to use Ext.apply to inject the over-

ride methods, instead of setting them on the configuration object as you would for

most constructors in the framework.

 You’ve added the code for the invitation. Let’s see what happens when you try to

drag a male node over the pool or hot tub (figure 12.8).

 As your knowledge of drag-and-drop and code dictates, dragging a male node over

a drop target (think onDragEnter) with the same associated group will result in a drop

invitation, which is the background of the drop target turning green, as shown in the

figure. When you drag the element out of the same drop target (think onDragOut),

the background will return to its original state, removing the drop invitation.

 Conversely, dragging a male element over any other drop target, such as the hot

tub, will result in no invitation. Why does this happen? There’s no drop invitation on

the 'hotTub' element because the hot tub isn’t associated with the males drop group.

 Another thing you’ll notice is that dragging a female element over the hot tub

results in a drop invitation on the 'hotTub' element but not the pool, as shown in fig-

ure 12.9. That’s because the hot tub is associated only with females.

Figure 12.8 Conditional drop invitation for the male nodes

283Finishing your drag-and-drop implementation

Although this demonstrates the drop invitation well, you still have the issue of the

pool and the hot tub needing to be able to receive both male and female nodes. To do

this you must register them with an additional group. You need to call the addToGroup

method, passing in an alternate group. Here’s what the 'pool' and 'hotTub' element

DDTarget registration looks like with the addition of addToGroup calls:

 var poolDDTarget = new Ext.dd.DDTarget('pool', 'males');
 poolDDTarget.addToGroup('females');
 var hotTubDDTarget = new Ext.dd.DDTarget('hotTub', 'females');
 hotTubDDTarget.addToGroup('males');

After injecting this into your example, refresh the page. You can see that the 'pool'

and 'hotTub' drop elements now invite the drop, but what happens when you drop a

drag element onto a valid drop target? Absolutely nothing. That’s because you didn’t

code for the valid drop operation.

 You’ll do this next.

12.3.2 Adding a valid drop

To add the valid drop behavior to your drag-and-drop implementation, you must replace

the onDragDrop method in your overrides object, as shown in the following listing.

onDragDrop : function(evtObj, targetElId) {
 var dragEl = Ext.get(this.getEl());
 var dropEl = Ext.get(targetElId);
 if (dragEl.dom.parentNode.id != targetElId) {
 dropEl.appendChild(dragEl);
 this.onDragOut(evtObj, targetElId);
 dragEl.dom.style.position ='';
 }
 else {
 this.onInvalidDrop();
 }
 }

In your onDragDrop method, you set up the code for a successful or valid drop operation.

To do this, you first need to create local references for the drag and the drop elements.

Listing 12.4 Adding a valid drop to your overrides

Figure 12.9 Conditional drop invitation for the female nodes

284 CHAPTER 12 Drag-and-drop

 Next, you hit a conditional if statement, where you test to see if the id of the drag

element’s parent node is the same as the drop target id. This ensures you don’t per-

form a drop operation on a drop target where the drag element is already a child. If

the drop target element isn’t the same as the drag element’s parent, you allow the

drop operation to occur; otherwise, you call the onInvalidDrop method, which you’ll

code shortly.

 The code to physically move the drag element from one parent container to another

is simple. Call the drop element’s appendChild method, passing in the drop element.

Remember that even though Ext.dd.DD allows you to move the drag element onscreen,

it only changes the X and Y coordinates. If you don’t move the drag element to another

parent node, it will still be a child of its original container element.

 Next you call the onDragOut override, which will clear the drop invitation. Notice

that you’re passing the eventObj and targetElId arguments to the onDragOut

method. This is so the onDragOut method can do its job as designed.

 Finally, you clear the element’s style.position attribute. Recall that DD sets the

position to relative, which isn’t needed after the node has been moved from one

parent container to another.

 This ends the override of the onDragDrop

method. Figure 12.10 shows what this does to

your page. As illustrated in this figure, you can

successfully drop male and female elements

onto both the 'pool' and 'hotTub' drop ele-

ments, which successfully demonstrates your

OnDragDrop method in action.

 Although it’s nice that males and females

can now be dropped into the pool or hot tub,

you can’t let them stay in there forever or

they’ll prune. You need to be able to pull them

out and put them back in the locker room.

What happens if you try to drag them over

their respective locker room? No invitation. Why? Correct: it’s because you haven’t

registered the locker room elements as DDTargets. Do that now:

 var mlrDDTarget = new Ext.dd.DDTarget('maleLockerRoom', 'males');
 var flrDDTarget = new Ext.dd.DDTarget('femaleLockerRoom', 'females');

Adding this code to the bottom of your drag/drop implementation allows the male

drag elements to be invited and dropped on every drop target except for the female

locker room. Likewise, female drag elements can be dropped on any drop target

except the male locker room. This follows the paradigm where most public places

don’t have coed locker rooms.

 You now have the drop operations completely developed. The last piece to this

implementation is the invalid drop behavior set, which is what you’ll work on next.

Figure 12.10 Male and female nodes can

now be dropped onto the pool and hot tub

drop targets.

285Finishing your drag-and-drop implementation

12.3.3 Implementing an invalid drop

You’ve probably noticed that when you drop a node anywhere onscreen other than a

valid drop point, the element stays stuck where it was dropped. This is because you

need to set up the invalid drop behavior that’ll place the element back in its original

position. You’ll do this with style using the Ext.fx class. The following listing replaces

the b4StartDrag and onInvalidDrop methods in the overrides object.

 b4StartDrag : function() {
 var dragEl = Ext.get(this.getEl());
 this.originalXY = dragEl.getXY();
 },
 onInvalidDrop : function() {
 this.invalidDrop = true;
 },
 endDrag : function() {
 if (this.invalidDrop === true) {
 var dragEl = Ext.get(this.getEl());
 var animCfgObj = {
 easing : 'elasticOut',
 duration : 1,
 callback : function() {
 dragEl.dom.style.position = '';
 }
 };
 dragEl.moveTo(this.originalXY[0], this.originalXY[1], animCfgObj)
 delete this.invalidDrop;
 }
 }

In listing 12.5, you first override the b4StartDrag B method, which is called the

moment a drag element is dragged. At this point you can store the drag element’s

original X and Y coordinates, which will be used for the repair operation. To repair an

invalid drop means to reset the position of the drag element or proxy (as you’ll see in

a bit) to its position before the drag operation took place.

 Next you override onInvalidDrop c, which is called when the drag item is

dropped on anything other than a valid drop point that’s associated with the same

group. In that method, all you do is set the local invalidDrop property to true, which

will be used in the next method, endDrag.

 Last, you override the endDrag d method, which will perform the repair opera-

tion if the local invalidDrop property is set to true. It also uses the local originalXY

property set by the b4StartDrag method. This method creates a configuration object

for the animation.

 In the configuration object you set easing to 'elasticOut', which will give the

element a nice springy or elastic end to the animation, and set duration to one second.

This ensures that the animation is smooth and not jerky. You also create a callback

Listing 12.5 Cleaning up after an invalid drop

Overrides
b4StartDrag methodb

Sets this.invalidDrop
to truec

Animates drag
element returnd

Resets drag
element’s position

e

Animates reset
of drag element f

286 CHAPTER 12 Drag-and-drop

method to reset the drag element’s style.position attribute e, which ensures that

the drag element fits exactly where it needs to go.

NOTE If you want to forgo the animation and just reset the position of the
drag element, all onInvalidDrop has to do is set the style.position to an
empty string, like so: dragEl.dom.style.position = '';.

Next you call the drag element’s moveTo method, passing in the X and Y coordinates

as the first and second parameters and the animation configuration object as the

third. This invokes the animation on your drag element.

 Last, you delete the local invalidDrop reference, because it’s no longer needed.

You’ll need to refresh the page to see these three override methods at work.

 When you drag an element and drop it anywhere other than an associated drop

element, you see that it slides back to its original position and has a springy effect

when it gets to its target X and Y coordinates f.

 You’ve now seen what it takes to implement drag-and-drop with the Ext.dd.DD and

Ext.DD.DDTarget classes. Next you’ll see how to implement the similar DDProxy class.

12.4 Using DDProxy

The use of drag proxies in a drag-and-drop implementation is common and is worth

going over, because the implementation is similar to DD but not quite the same. This is

because the DDProxy class allows you to drag around a lightweight version of the drag

element, which is known as the drag proxy. Using DDProxy can result in huge perfor-

mance savings if the drag element is complex. Part of the performance savings comes

from the fact that every instance of DDProxy uses the same proxy div element in the

DOM. Remembering that the drag proxy is the element being moved around

onscreen will help you understand your implementation code.

 In this example, you’ll use the same HTML and CSS that you used before, and we’ll

provide the pattern that you’ll need to use if you plan on using drag proxies in your

drag-and-drop implementations.

 The first thing you’ll do is add one more CSS rule to your page, which will style the

drag proxy with a yellow background:

 .ddProxy {
 background-color: #FFFF00;
 }

You’ll follow the same flow as you did when implementing the DD class. In doing so,

you’ll see that implementing the DDProxy class takes a bit more code than the DD class.

12.4.1 Implementing DDProxy and the drop invitation

The DDProxy class is responsible for creating and managing the X and Y coordinates

of the reusable proxy element, but it’s up to you to style it and fill it with content.

You’ll do so by means of overriding the startDrag method, instead of the b4Drag

method as you did with the DD implementation.

287Using DDProxy

 In the next listing, you’ll create the overrides object along with the instance of

DDProxy. The following CSS is required to get this listing to work properly:

.lockerRoom div, .lockerRoomChildren {
 border : 1px solid #FF0000;
 background-color : #FFFFFF;
 padding : 2px;
 margin : 5px;
 cursor : move;
}

This listing is rather long, but you’re accomplishing quite a bit.

 var overrides = {
 startDrag : function() {
 var dragProxy = Ext.get(this.getDragEl());
 var dragEl = Ext.get(this.getEl());
 dragProxy.addClass('lockerRoomChildren');
 dragProxy.addClass('ddProxy');
 dragProxy.setOpacity(.70);
 dragProxy.update(dragEl.dom.innerHTML);
 dragProxy.setSize(dragEl.getSize())
 this.originalXY = dragEl.getXY();
 },
 onDragEnter : function(evtObj, targetElId) {
 var targetEl = Ext.get(targetElId);
 targetEl.addClass('dropzoneOver');
 },
 onDragOut : function(evtObj, targetElId) {
 var targetEl = Ext.get(targetElId);
 targetEl.removeClass('dropzoneOver');
 },
 onInvalidDrop : function() {
 this.invalidDrop = true;
 },
 onDragDrop : Ext.emptyFn
 };
 var maleElements = Ext.get('maleLockerRoom').select('div');
 Ext.each(maleElements.elements, function(el) {
 var dd = new Ext.dd.DDProxy(el, 'males', {
 isTarget : false
 });
 Ext.apply(dd, overrides);
 });
 var femaleElements = Ext.get('femaleLockerRoom').select('div');
 Ext.each(femaleElements.elements, function(el) {
 var dd = new Ext.dd.DDProxy(el, 'females', {
 isTarget : false
 });
 Ext.apply(dd, overrides);
 });

Listing 12.6 Implementing the drop invitation

Overrides
startDrag methodb

Stylizes
DragProxyc

Adds drop
invitationd

Adds onDragDrop
stub

e

288 CHAPTER 12 Drag-and-drop

In listing 12.6, you accomplish the tasks of stylizing the proxy, adding the drop invita-

tion, and instantiating the instances of Ext.dd.DDProxy for each of the elements.

Here’s how this works.

 The startDrag method B takes care of stylizing the drag element by first adding

the lockerRoomChildren and ddProxy CSS classes c to the DragProxy element. Next,

it sets the proxy’s opacity to 70% and duplicates the HTML contents of the drag ele-

ment. It then sets the size of DragProxy to the size of the drag element. Then the

originalXY property is set, which will be used for an invalid drop repair operation

down the road.

 Next, you add the drop invitation by means of overriding the onDragEnter and

onDragOut methods d. This is exactly the same as the prior implementation. The

onInvalidDrop override is also the same as before. The last override is a stub for the

onDragDrop method e, which you’ll fill out in just a bit.

 Before you can use the drop invitation, you have to set up the drop targets for the

pool, hot tub, and locker room elements:

 var poolDDTarget = new Ext.dd.DDTarget('pool', 'males');
 poolDDTarget.addToGroup('females');
 var hotTubDDTarget = new Ext.dd.DDTarget('hotTub', 'females');
 hotTubDDTarget.addToGroup('males');
 var mlrDDTarget = new Ext.dd.DDTarget('maleLockerRoom', 'males');
 var flrDDTarget = new Ext.dd.DDTarget('femaleLockerRoom', 'females');

Now that you have those set up, try out the

DDProxy implementation you’ve cooked up so

far. Refresh your page, and drag around a drag

element. Figure 12.11 illustrates what the drag

proxy looks like in action.

 As you can see, performing a drag gesture

on a draggable element produces DragProxy,

which is dragged around while the drag ele-

ment itself remains stationary. You can also see

that the drop invitation works. What happens

when you drop the drag element on a valid or

invalid drop target?

 In both cases, the drag element is moved to DragProxy’s last known coordinates,

which mimics the behavior of the DD class without the valid and invalid drop behav-

ior constraints.

 You’ll add those next. The following listing wraps up the DDProxy implementation.

onDragDrop : function(evtObj, targetElId) {
 var dragEl = Ext.get(this.getEl());
 var dropEl = Ext.get(targetElId);
 if (dragEl.dom.parentNode.id != targetElId) {

Listing 12.7 Adding the valid and invalid drop behaviors

Figure 12.11 DDProxy in action with one

of your male drag elements

Overrides
onDragDrop methodb

289Using DDProxy

 dropEl.appendChild(dragEl);
 this.onDragOut(evtObj, targetElId);
 dragEl.dom.style.position ='';
 }
 else {
 this.onInvalidDrop();
 }
 },
 b4EndDrag : Ext.emptyFn,
 endDrag : function() {
 var dragProxy = Ext.get(this.getDragEl());
 if (this.invalidDrop === true) {
 var dragEl = Ext.get(this.getEl());
 var animCfgObj = {
 easing : 'easeOut',
 duration : .25,
 callback : function() {
 dragProxy.hide();
 dragEl.highlight();
 }
 };
 dragProxy.moveTo(this.originalXY[0],
 this.originalXY[1], animCfgObj);
 }
 else {
 dragProxy.hide();
 }
 delete this.invalidDrop;
 }

In listing 12.7, you finish up the rest of the DDProxy implementation by adding the

onDragDrop, b4EndDrag, and endDrag overrides.

 The onDragDrop B method is exactly the same as the DD implementation, where if

the drop element isn’t the same as the drag element’s parent, you allow the drop to

occur, moving the node to the drop element. Otherwise you call the onInvalidDrop

method, which sets the invalidDrop property to true.

 The b4EndDrag method c is an intentional override using the Ext.emptyFn

(empty function) reference. You do this because the DDProxy’s b4EndDrag method will

hide DragProxy before the endDrag method is called, which conflicts with the anima-

tion that you want to perform. And because it’d be wasteful to allow DragProxy to be

hidden and then show it, you prevent it from hiding by overriding b4EndDrag with a

function that does nothing.

 As in the DD implementation earlier, the endDrag method d is tasked with doing

the repair if the invalidDrop property is set to true e. But instead of animating the

drag element itself, it animates DragProxy. The animation uses easeOut easing to

allow for a smoother finish animation. The callback will hide DragProxy and then call

the highlight effect method of the drag element, animating the background from yel-

low to white.

 Finally, if endDrag was called with the invalidDrop property not set, it hides f the

proxy element from view, completing your DDProxy implementation.

Prevents proxy
from hiding
before drag ends

c

Overrides
endDrag method

d

Executes repair
animatione

Hides drag proxy
if valid dropf

290 CHAPTER 12 Drag-and-drop

As you’ve seen, implementing the full gamut of drag-and-drop with generic DOM ele-

ments requires some work and an understanding of the basics of the drag-and-drop

class hierarchy. The reward is a cool way to drag and drop elements across the screen,

adding that extra bit of functionality for your users.

 Let’s continue to explore drag-and-drop functionality in the Ext JS components.

You can build on the basic ideas we’ve covered so far. You’ll start with drag-and-drop

with views.

12.5 Drag-and-drop with views

Say you’ve been tasked to develop something that’ll allow managers to track employ-

ees who are in the office or on vacation using simple drag-and-drop gestures. For this

you’ll construct two views, both of which are similar to the ones you constructed ear-

lier. To use them you’ll make some slight modifications, which will include enabling

multiple-node selection. This should be an excellent first example of how to use drag-

and-drop inside components. Figure 12.12 shows the two views encapsulated in an

instance of Ext.Window.

 Now that you know what you going to build, let’s begin.

12.5.1 Constructing the views

You’ll start by creating the CSS required to style the elements within the view. The

drag-and-drop CSS will be included, so let’s get it out of the way in the next listing.

<style type="text/css">
 .emplWrap {

Listing 12.8 Setting up the CSS for the views

Figure 12.12 The two views

Styles entire employee
template div

b

291Drag-and-drop with views

 border: 1px #999999 solid;
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 margin : 3px;
 padding : 3px;
 background-color: #ffffcc;
 }

 .emplOver {
 border: 1px #9999ff solid;
 background-color: #ccccff;
 cursor: pointer;
 }

 .emplSelected {
 border: 1px #66ff66 solid;
 background-color: #ccffcc;
 cursor: pointer;
 }

 .emplName {
 font-weight: bold;
 margin-left: 5px;
 font-size: 14px;
 text-decoration: underline;
 color: #333333;
 }

 .emplAddress {
 margin-left: 20px;
 }
</style>

In the CSS in listing 12.8, you style how each employee div will look in the views. An

unselected employee element will have a yellow background B, similar to that of a

manila folder. When the mouse hovers over the name of an employee, it’ll use the

emplOver c CSS class to style it blue. When selected, the employee will be colored

green using the emplSelected d CSS class.

 You now have the CSS in place for your future views to use. In the following listing,

you’ll configure the two stores that will be consumed by the different views.

Ext.define('Employee', {
 extend : 'Ext.data.Model',
 idProperty : 'id',
 fields : [
 {name : 'departmentName', type : 'string' },
 'departmentName',
 'email',
 { name : 'firstName', mapping : 'firstname' },
 { name : 'lastName', mapping : 'lastname' }
]
});

Listing 12.9 Configuring the stores for the data views

Styles on
mouseover

c

Sets selected
employee styled

Creates
Employee modelb

292 CHAPTER 12 Drag-and-drop

var inOfficeStore = Ext.create('Ext.data.Store', {
 model : 'Employee',
 autoLoad : true,
 proxy : {
 type : 'jsonp',
 url : 'http://extjsinaction.com/getEmployees.php',
 reader : {
 type : 'json',
 root : 'records',
 idProperty : 'id'
 }
 }
});

var onVacationStore = Ext.create('Ext.data.Store', {
 model: 'Employee'
});

In listing 12.9, you create the employee model B and two configuration objects for

the stores. The first store c uses an Ajax proxy to fetch the list of employees, whereas the

second JsonStore d sits quietly waiting for records to be inserted upon a drop gesture.

 Now that you have the data stores configured, you can create the views, as shown in

the following listing.

 var dvTpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="emplWrap" id="employee_{id}">',
 '<div class="emplName">{lastName}, {firstName}</div>',
 '<div>',
 'Department:',
 ' {departmentName}',
 '</div>',
 '<div>',
 'Email:',
 '{email}',
 '</div>',
 '</div>',
 '</tpl>'
);

 var inOfficeDv = Ext.create('Ext.view.View', {
 tpl : dvTpl,
 store : inOfficeStore,
 loadingText : 'loading..',
 multiSelect : true,
 overItemCls : 'emplOver',
 selectedItemCls : 'emplSelected',
 itemSelector : 'div.emplWrap',
 emptyText : 'No employees in the office.',
 style : 'overflow:auto; background-color: #FFFFFF;'
 });

Listing 12.10 Constructing the two views

Configures
remote store

c

Creates
local store

d

Provides XTemplate
for viewsb

Creates in-the-
office view

c

293Drag-and-drop with views

 var onVacationDv = Ext.create('Ext.view.View', {
 tpl : dvTpl,
 store : onVacationStore,
 loadingText : 'loading..',
 multiSelect : true,
 overItemCls : 'emplOver',
 selectedItemCls : 'emplSelected',
 itemSelector : 'div.emplWrap',
 emptyText : 'No employees on vacation',
 style : 'overflow:auto; background-color: #FFFFFF;'
 });

In listing 12.10, you configure and construct the two views, starting with a common

XTemplate instance B. inOfficeDv c will consume the data from inOfficeStore to

load the list of employees currently in the office, whereas onVacationDv d will use

the unpopulated onVacationStore.

 You could render the views onscreen, but they’d look better inside a window and

standing side by side with an HBoxLayout, as in the next listing.

new Ext.Window({
 layout : 'hbox',
 height : 400,
 width : 550,
 border : false,
 layoutConfig : { align : 'stretch'},
 items : [
 {
 title : 'Employees in the office',
 frame : true,
 layout : 'fit',
 items : inOfficeDv,
 flex : 1
 },
 {
 title : 'Employees on vacation',
 frame : true,
 layout : 'fit',
 id : "test",
 items : onVacationDv,
 flex : 1
 }
]
 }).show();

In listing 12.11, you create an instance of Ext.Window B that uses the HBoxLayout to

place two panels side by side with equal widths and their heights stretched to fit the

window’s body. The panel on the left will contain the in-the-office data view c, and

the panel on the right will contain the data view for those on vacation, as shown in fig-

ure 12.13.

Listing 12.11 Placing the views inside a window

Creates on-
vacation viewd

Instantiates
window for viewsb

Places data views
inside panelsc

294 CHAPTER 12 Drag-and-drop

You can see that the views have rendered properly, with employees in the office

appearing on the left and no one currently on vacation. With that, you’ve set the stage

for applying drag-and-drop.

12.5.2 Adding drag gestures

The application of drag-and-drop with views requires more effort than applying drag-

and-drop to the grid and tree panels. This is because unlike those widgets, the View

class doesn’t have its own DragZone implementation subclass for you to build on,

which means you’ll have to craft your own implementation of DragZone. Also, you’ll

have to develop an implementation of DropZone to manage the drop gestures.

 The DragZone class uses a special proxy known as StatusProxy, which will use icons

to indicate whether a successful drop is possible. Figure 12.14 shows what they typically

look like.

 The default StatusProxy is extremely light-

weight and efficient but somewhat boring. Although

it provides useful information, it’s far from fun to

use. You’ll take advantage of the ability to custom-

ize the StatusProxy look to spice up the drag

gestures and make them much more enjoyable

and informational. Another feature that DragZone

adds is automated repair of an invalid drop scenario, which reduces the amount of

code that you need to generate to get this stuff working.

Figure 12.13 The rendered views inside an Ext.Window

Figure 12.14 The StatusProxy,

indicating that a drop is possible

(left) or not (right)

295Drag-and-drop with views

 You’ll begin by creating the overrides that’ll be applied to the instance of DragZone

that you’ll create afterward. Because the data views must be rendered in order to have

drag-and-drop applied, you’ll need to insert the code in the following listing below

that of listing 12.11.

var dragZoneOverrides = {
 containerScroll : true,
 scroll : false,
 getDragData : function(evtObj){
 var dataView = this.dataView;
 var sourceEl = evtObj.getTarget(dataView.itemSelector, 10);
 if (sourceEl) {
 var selectedNodes = dataView.getSelectedNodes();
 var dragDropEl = document.createElement('div');

 if (selectedNodes.length < 1) {
 selectedNodes.push(sourceEl);
 }

 Ext.each(selectedNodes, function(node) {
 dragDropEl.appendChild(node.cloneNode(true));
 });

 return {
 ddel : dragDropEl,
 repairXY : Ext.fly(sourceEl).getXY(),
 dragRecords : dataView.getSelectionModel()
 .getSelection(),
 sourceDataView : dataView
 };
 }
 },
 getRepairXY: function() {
 return this.dragData.repairXY;
 }
 };

In listing 12.12, you create the override properties and methods that will be applied to

the future instances of DragZone. Even though the amount of code is relatively small,

there’s a lot going on that you need to be aware of. Here’s how this all works.

 Initially you set two configuration properties that help manage scrolling when a drag

operation is under way. The first is containerScroll B, which is set to true. Setting

this property to true instructs the DragZone to call Ext.dd.ScrollManager.register,

which will help manage the scrolling of a DataView when scrolling operations are in

effect. You’ll examine this in detail when you look at the DataView after the applica-

tion of DragZone.

 The next property, scroll c, is set to false. Setting this to false prevents the

document.body element from scrolling when the drag proxy is moved out of the

Listing 12.12 Creating the DragZone overrides

Scrolls destination
container

b
Prevents document.body
from scrolling

c

Overrides getDragData methodd

Caches drag
gesture
element e

Creates, returns
drag data object

f

Loops through
selectedNodes
listg

296 CHAPTER 12 Drag-and-drop

browser’s viewport. Keeping the browser canvas fixed during drag-and-drop opera-

tions will increase its effectiveness.

 Next you override getDragData d, which is an extremely important method for

the multinode drag-and-drop application. The purpose of getDragData is to construct

what’s known as the drag data object that you’ll see returned toward the end of this

method. It’s important to note that the drag data object that will be generated and

returned by the getDragData method will be cached on the instance of dropZone

and can be accessed via the this.dragData reference. You’ll see this in action in the

getRepairXY method later on.

 In this method, you first set a reference to the element that the drag gesture was

initiated with e sourceEl. You’ll use it later to update the StatusProxy if the number

of selected nodes the DataView thinks it has is wrong. You also create a container ele-

ment, dragDropEl, that will be used to contain copies of the selected nodes during

drag, and it will be placed in the StatusProxy.

NOTE The presence of sourceEl is tested in order for the rest of the method
to continue. getDragData is called during the mouse-down event of the ele-
ment that’s registered with the DragZone. This means that getDragData will
be called even if the View element itself is clicked instead of a record element,
which would cause the method to fail.

Next you interrogate the number of items the View thinks are selected during the

drag operation. If the number of selectedNodes f is less than 1, you append the ele-

ment with which the drag gesture was started. You do this because sometimes a drag

gesture is initiated before the View can register an element as visually selected. This is

a quick fix to this odd behavior.

 You then use Ext.each g to loop through the selectedNodes list, appending it to

the dragDropEl. This will help customize the StatusProxy and give the appearance

that the user is dragging over a copy of the selected node(s).

 In the last chunk of this override, you return an object that will be used to update

the StatusProxy and any drop operations. The only required property that’s to be

passed in this object is ddel, which will be placed inside the StatusProxy.

 For this implementation you add a few other useful properties to the custom drag

data object. First is repairXY, which is an array of the X and Y coordinates of the ele-

ment on which the drag gesture was initiated. This will be used later to help the

invalid drop repair operation.

 Also included is dragRecords, which contains a list of instances of Ext.data.Record

for each of the nodes selected and being dragged. Last, you set sourceDataView as the

reference of the DataView for which this DragZone is being used. Both dragRecords

and sourceDataView properties will help the application of DropZone to remove the

dropped records from the source DataView.

 The last method in the list of overrides is getRepairXY, which returns the locally

cached data object’s repairXY property and helps the repair operation know where to

animate the StatusProxy on an invalid drop.

297Drag-and-drop with views

 You’ve now set your overrides, so it’s time to instantiate instances of DragZone and

apply them to the views, as shown in the following code.

var inOfficeDragZoneCfg = Ext.apply({}, {
 ddGroup : 'employeeDD',
 dataView : inOfficeDv
 }, dragZoneOverrides);

 new Ext.dd.DragZone(inOfficeDv.getEl(), inOfficeDragZoneCfg);

 var vacationDragZoneCfg = Ext.apply({}, {
 ddGroup : 'employeeDD',
 dataView : onVacationDv
 }, dragZoneOverrides);

 new Ext.dd.DragZone(onVacationDv.getEl(), vacationDragZoneCfg);

In listing 12.13, you use Ext.apply to create a custom copy of the dragZoneOverrides

object for the custom DragZone targeted in the office View B. The custom copy of the

overrides will include a ddGroup property. Both DragZone implementations will share

this. What makes each copy special is the dataView property, which references the

DataView that’s attached to the DragZone and which is used by the getDragData

method you created earlier. The same pattern is used to set up the DragZone for the

vacation DataView.

 One thing you may notice is that, unlike the implementation of DDTarget, you don’t

apply the overrides to the instance of DragZone. This is because DragZone’s superclass,

DragSource, takes care of that for you automatically, as Ext.Component does.

 Refreshing your project page will allow you to exercise drag operations. You can

also see your customized StatusProxy in action. Mine is shown in figure 12.15.

 You can see that selecting and dragging one or more Records in the office View

reveals the StatusProxy with the copies of the selected nodes, which makes the drag

operation nicer and much more fun to use.

 You can also see the getRepairXY method in action by dropping the drag proxy

anywhere on the page. The animation will make the drag proxy slide toward the X-Y

coordinates of the element on which the drag operation was initiated.

 You’ve probably already noticed that when you drag the nodes above the vacation

View, the StatusProxy shows an icon indicating that the drop won’t be successful.

This is because you haven’t employed a DropZone, which is what you’ll do next.

12.5.3 Applying drop

Just like for your previous drag-and-drop applications, you must register a drop target

of sorts for the drag classes to interact with. As we discussed before, you’ll use the Drop-

Zone class. Following the pattern for this, you’ll create an overrides object in the next

listing, which will handle the drop gestures and which is much easier to implement

relative to drag gestures.

Listing 12.13 Applying DragZone to the views

Custom copy of
dragZoneOverridesb

298 CHAPTER 12 Drag-and-drop

var dropZoneOverrides = {
 onContainerOver : function() {
 return this.dropAllowed;
 },
 onContainerDrop : function(dropZone, evtObj, dragData) {
 var dragRecords = dragData.dragRecords;
 var store = this.dataView.store;
 var dupFound = false;
 Ext.each(dragRecords, function(record) {
 var found = store.findBy(function(r) {
 return r.data.id === record.data.id;
 });
 if (found > -1) {
 dupFound = true;
 }
 });
 if (dupFound !== true) {
 Ext.each(dragRecords, function(record) {
 dragData.sourceDataView.store.remove(record);
 });
 this.dataView.store.add(dragRecords);
 this.dataView.store.sort('lastname', 'ASC');
 }
 return true;
 }
 };

In listing 12.14, you create an override object with two methods, to enable drop ges-

tures to successfully occur in the two views. The first method is onContainerOver B,

Listing 12.14 Creating the DropZone overrides

Figure 12.15 DragZone with a custom DragProxy

Updates
StatusProxyb

Searches for
duplicate recordsc

Removes
all records
from source

d

Adds records
to destination

e

Sorts records
by last namef

Indicates
successful dropg

299Drag-and-drop with views

which is used to determine whether the drop should be allowed. In this application no

processing is needed, but you need to at least return the this.droppedAllowed refer-

ence, which is a reference to the CSS class x-dd-drop-ok that provides the green check

icon. If you wanted to use a custom icon, this is where you’d return a custom CSS class.

 The next method, onContainerDrop, is where you’ll process the dropped nodes,

and it will be called by the instance of DragZone when the mouseup event fires.

Remember that DragZone won’t interact with DropZone if both aren’t participating in

the same drag/drop group.

 In this method you use the dragData object that you created in your DragZone

getDragData override. A local reference to the selected records (dragRecords) and

the destination view’s store (store) are created for later utilization.

 Next, onContainerDrop searches for duplicate Records c. This is useful if you’re

attempting a copy instead of a move. If no duplicates are found, Ext.each is used to

loop through the drag Records to remove them from the sourceDataView’s store d.

The records are then added e to the destination view’s store and sorted f by last

name in ascending order.

 After all of the Record management has taken place, the onContainerDrop returns

the Boolean value true. By returning true, you convince the DragZone that the drop

was successful g, and it doesn’t initiate a repair animation. Any other value would

indicate that the drop was unsuccessful, and a repair would occur.

 Now that the overrides are in place, it’s time to apply them to the views, as shown

in the following listing.

 var inOfficeDropZoneCfg = Ext.apply({}, {
 ddGroup : 'employeeDD',
 dataView : inOfficeDv
 }, dropZoneOverrides);

 new Ext.dd.DropZone(inOfficeDv.ownerCt.el, inOfficeDropZoneCfg);

 var onVacationDropZoneCfg = Ext.apply({}, {
 ddGroup : 'employeeDD',
 dataView : onVacationDv
 }, dropZoneOverrides);
 new Ext.dd.DropZone(onVacationDv.ownerCt.el, onVacationDropZoneCfg);

In listing 12.15, you create custom copies of the dropZoneOverrides object for the

implementation of DropZone for each of the views and follow the same pattern that

you used in listing 12.13, where you created instances of DragZone.

 You can now see your end-to-end drag/drop application in action. Refresh your

page, and attempt a drag operation from the office data view to the vacation data view,

as shown in figure 12.16.

 Dragging nodes from the employee view to the vacation view produces a Status-

Proxy that contains a green checkmark to indicate a drop invitation. Dropping the

Listing 12.15 Creating the DropZone overrides

300 CHAPTER 12 Drag-and-drop

nodes invokes the onContainerDrop method, moving the Records from left to right, as

shown in figure 12.17.

 There you have it, drag-and-drop from one view to another with a good-looking

StatusProxy. Because each data view has its own attached instance of DragZone and

Figure 12.16 The StatusProxy now shows that a drop gesture can occur on the

drop zone.

Figure 12.17 You’ve successfully dragged and dropped two Records from the left

view to the right.

301Drag-and-drop with grid panels

DropZone, you can drag-and-drop items from one to the other and the Records will

automatically be sorted by last name.

 You’ve learned how to apply drag-and-drop to two views, and learned that you’re

responsible for employing the full end-to-end code for both gestures. Next we’ll dive

into the world of drag-and-drop with grid panels, where you’ll learn that the imple-

mentation pattern is different from that of the view. Here you’ll use the drag-and-drop

plug-ins available in Ext JS 4.

12.6 Drag-and-drop with grid panels

Say you’ve been asked to create a program that’ll allow managers to track whether

departments need computer upgrades. They want to be able to flag the departments that

require an upgrade and change the order in which the departments will be upgraded.

 To get the job done, you’ll use two grid panels side by side, as you did with the

views. You’ll put drag-and-drop into practice from grid panel to grid panel and allow

for the reordering of departments in the list.

 In this exercise, you’ll learn that the application of drag-and-drop between two

grid panels is much simpler than for the view. You’ll use Ext.grid.plugin.DragDrop

to set up a specialized Ext.dd.DragZone that works well with grid panels.

 You’ll start by constructing two grid panels that will live in a window. The window

will manage the grid panel dimensions by means of HBoxLayout.

12.6.1 Constructing the grid panels

By now you should be comfortable with creating grid panels and configuring their sup-

ported classes. In the following listing you’ll create the first grid panel for this example.

Ext.define('PCStats', {
 extend: 'Ext.data.Model',
 fields: [
 { name: 'department', type: 'string'},
 { name: 'workstationCount', type: 'int'}
]
});

var remoteJsonStore = {
 xtype : 'json',
 model : 'PCStats',
 autoLoad : true,
 proxy : {
 type : 'jsonp',
 url : 'http://extjsinaction.com/getPCStats.php',
 reader : {
 type : 'json',
 root : 'records'
 }
 }
};

Listing 12.16 Creating the first grid panel

Creates remote
JSON store

b

302 CHAPTER 12 Drag-and-drop

var depsComputersOK = Ext.create('Ext.grid.Panel', {
 title : 'Departments with good computers',
 store : remoteJsonStore,
 multiSelect : true,
 viewConfig : {
 plugins : {
 ptype : 'gridviewdragdrop'
 }
 },
 columns : [
 {
 header : 'Department Name',
 dataIndex : 'department',
 flex : 1
 },
 {
 header : '# PCs',
 dataIndex : 'workstationCount',
 width : 40
 }
]
});

In listing 12.16, you create a remote store B using a JsonP proxy. Next, you instantiate

a grid panel c, which will use your store to display the departments.

 In the next listing, you’ll create the second grid panel, which will be used to list the

departments in need of an upgrade.

 var needUpgradeStore = {
 xtype : 'json',
 model : 'PCStats'
 };

 var needUpgradeGrid = Ext.create('Ext.grid.GridPanel', {
 title : 'Departments that need upgrades',
 store : needUpgradeStore,
 multiSelect : true,
 viewConfig : {
 plugins: {
 ptype: 'gridviewdragdrop'
 }
 },
 columns : [
 {
 header : 'Department Name',
 dataIndex : 'department',
 flex : 1
 },
 {
 header : '# PCs',
 dataIndex : 'workstationCount',
 width : 40
 }

Listing 12.17 Creating the second grid panel

Instantiates
first grid panelc

Configures
local storeb

Configures
second
grid panelc

Configures
gridviewdragdrop
plug-ind

303Drag-and-drop with grid panels

]
 });

In listing 12.17, you configure a local store B with the PCStats model. Next, you cre-

ate the second grid panel c for the departments that need to be upgraded. Finally,

you configure the gridviewdragdrop plugin d.

 These grid panels need a home. The following listing shows how to create an

Ext.Window to display them in.

new Ext.Window({
 width : 500,
 height : 300,
 border : false,
 defaults : {
 frame : true,
 flex : 1
 },
 layout : {
 type : 'hbox',
 align : 'stretch'
 },
 items : [
 depsComputersOK,
 needUpgradeGrid
]
}).show();

In listing 12.18, you create an Ext.Window, which uses HBoxLayout to manage the two

grid panels. It’s time to take your panels out for a test drive. The results are shown in

figure 12.18.

Listing 12.18 Giving the grid panels a home

Figure 12.18 The two department grid panels side by side

304 CHAPTER 12 Drag-and-drop

If you select an entry in the left grid and drag and drop it to the right grid, the result

will look something like figure 12.19.

 When attempting a drag gesture with the grid panel on the left, you can see the

StatusProxy appear with the number of rows selected. This is how the Grid DragZone

class uses the getDragData method, where it displays the number of selected rows for

the ddel property of the drag data object. Sound familiar? You took a shortcut here by

using the gridviewdragdrop plug-in, but if you dig deep into the code you find the

same drag-and-drop framework you’ve used previously. That was easy, right? It turns

out that there’s also a drag-and-drop plug-in for the tree panel. You can use it in a sim-

ilar manner, but let’s dive into the details for drag-and-drop with tree panels without

using the plug-ins.

12.7 Drag-and-drop with tree panels

Your company has purchased another company, and management needs a way to

track how to absorb employees from the purchased company’s various departments.

They requested that you develop something that will allow them to track the reassign-

ment of employees using tree panels and drag-and-drop.

 The most important requirement is the ability to allow associates to be relocated to a

specified set of similar departments. For instance, any associate from Accounting,

Finances, or Payroll can be reassigned to any of those departments. Likewise, associates

from Customer Relations, Media Relations, Customer Service, or Public Relations can

be reassigned to any of those. Instead of building a valid drop matrix in JavaScript, the

node list returned from the server will report a list of valid departments for each node.

It will be up to you to somehow use that data to satisfy the requirements.

 To give you a sense of how you’re going to power these constraints, here’s what an

employee record looks like for the tree panel:

Figure 12.19 Drag gestures enabled in the grid panel

305Drag-and-drop with tree panels

{
 "text": "Kemp, Sawyer",
 "leaf": true,
 "validDropPoints": [
 "Accounting",
 "Finances",
 "Payroll"
]
}

As you dive into the implementation of the drop operations, you’ll use the valid-

DropPoint array to drive the decision-making process for the UI. For this record, this

employee can only move to the Accounting, Finances, or Payroll departments.

OK, let’s move on to constructing the tree panels. Afterward you’ll add in the

appropriate drag-and-drop functionality.

12.7.1 Constructing the tree panels

As with the previous view and grid panel exercises, you’ll configure two tree panels,

both of which will be managed by an instance of Ext.Window using the HBoxLayout.

 Because you’ve built a few tree panels already, we’re going to move through this

pretty fast. The following listing sets the stage.

 var leftTree = Ext.create('Ext.tree.Panel', {
 autoScroll : true,
 title : 'Their Company',
 animate : false,
 store : Ext.create('Ext.data.TreeStore', {
 proxy : {
 type : 'jsonp',
 url : 'http://extjsinaction.com/theirCompany.php',
 reader : {
 root : 'records'
 }
 },
 root : {
 text : 'Their Company',
 id : 'theirCompany',
 expanded : true
 }
 })
});

var rightTree = Ext.create('Ext.tree.Panel', {
 title : 'Our Company',
 autoScroll : true,
 animate : false,
 store : Ext.create('Ext.data.TreeStore', {
 proxy : {
 type : 'jsonp',
 url : 'http://extjsinaction.com/ourCompany.php',
 reader : {

Listing 12.19 Setting the stage for tree panel drag-and-drop

Their company’s
tree panelb

Your company’s
tree panel

c

306 CHAPTER 12 Drag-and-drop

 root : 'records'
 }
 },
 root : {
 text : 'Our Company',
 expanded : true
 }
 })
});

// Drag and drop code will go here

Ext.create('Ext.Window', {
 height : 350,
 width : 450,
 border : false,
 layout : {
 layout : 'hbox',
 align : 'stretch'
 },
 defaults : {
 flex : 1
 },
 items : [
 leftTree,
 rightTree
]
}).show();

In listing 12.19, you create two tree panels and an Ext.Window, which will contain

them and manage their sizes using the HBoxLayout. The left tree panel B will load a

list of departments for the other company. Each department will have to be expanded

to reveal the child items.

 The right tree panel c will load up a list of departments for the company, which,

lucky for you, aligns with the company being sold. For simplicity, we won’t display the

employees currently in the company’s departments.

 Finally, the Ext.Window is created d to manage the two tree panels side by side.

Figure 12.20 shows the tree panels rendered onscreen.

 You have the two tree panels rendered within the Ext.Window. It’s time to get the

party started with drag-and-drop.

12.7.2 Enabling drag-and-drop

When exploring how to employ drag-and-drop with data views, you were required

to implement both the DragZone and DropZone classes. When applying this feature

to grid panels, you learned that you were required to implement only DropZone,

because the grid view automatically creates GridDragZone if the grid panel has the

enableDragDrop property set.

 With a tree panel, you could enable drag-and-drop easily by enabling the View-

DragDrop plug-in. You do this by adding the following configuration property on a

tree panel:

Window to contain
the tree panels

d

307Drag-and-drop with tree panels

viewConfig : {
 plugins : { ptype : 'treeviewdragdrop' }
}

By enabling drag-and-drop in this way, you allow drag-and-drop to operate easily on

the tree panel. Everything can be dragged and dropped, which can be useful for, let’s

say, a filesystem management tool; but for what you need, the basic drag-and-drop

implementation won’t cut it. Adding constraints to the out-of-the-box drag-and-drop

plug-in becomes a rather difficult task.

 In order to apply constraints, you’re going to need to implement your own

instances of the ViewDragZone and ViewDropZone classes. You’ll tackle this intense

procedure next. Are you ready?

12.7.3 Employing flexible constraints

You’re going to tackle this task in two phases: enabling drag on the left tree panel, and

adding drop enablement to the right tree panel. Enabling drag operations on the left

tree panel is the easiest of the two operations, which is demonstrated in the next list-

ing. The following code is to be placed immediately before the Window instance you

created in listing 12.19.

 leftTree.getView().on('render', function(view) {
 Ext.create('Ext.tree.ViewDragZone', {
 view : view,
 dragText : 'schedule vacation',

Listing 12.20 Applying better drop constraints

Figure 12.20 The two tree panels

Adds a
render
listenerb

Creates the
ViewDragZonec

308 CHAPTER 12 Drag-and-drop

 ddGroup : 'myTreeDDGroup',
 onBeforeDrag : function(dragData) {
 return view.getNode(dragData.item).attributes.leaf;
 }
 });
 });

To enable drag, you register a render listener on the left tree view class B. This listener

is responsible for creating an instance of the ViewDragZone class c. This ViewDragZone

class requires some basic configuration parameters that are pretty self-explanatory,

but I want to talk about the onBeforeDrag function d for a moment.

 In this pattern, you’re implementing your own onBeforeDrag function that essen-

tially returns true if the item being dragged has a leaf property set to true. This effec-

tively only allows drag operations to occur on leaf nodes (employees) and not the

branch (department) nodes.

 With the drag operation armed and locked, you can move to getting the drop

operation for the right tree panel wired in. You’ll place the code for the next listing

right under the code for listing 12.20.

rightTree.getView().on('render', function(view) {
 Ext.create('Ext.tree.ViewDropZone', {
 view : view,
 ddGroup : 'myTreeDDGroup',
 isValidDropPoint : function(node, pos, dz, e, data) {

 var dropNode = view.getRecord(data.item),
 targetNode = view.getRecord(node),
 dragNode = data.records[0],
 validDropPoints,
 targetNodeText;

 if (! dropNode || !targetNode) {
 return false;
 }

 if (targetNode.raw.leaf) {
 return false;
 }

 if (pos != 'append') {
 return false;
 }

 validDropPoints = dragNode.raw.validDropPoints;
 targetNodeText = targetNode.get("text");

 return Ext.Array.contains(validDropPoints, targetNodeText);
 }
 });
});

Listing 12.21 Applying better drop constraints

Enables drag on
leaf items only d

Adds a
render

listener b
Creates the
ViewDropZonec

Overrides
isValidDropPointd

Adds a
validation test e

309Drag-and-drop with tree panels

Listing 12.21 contains all that you need to ensure that drop operations occur only on

branch nodes that are associated. In order to create the ViewDropZone at the right

time, you have to register a render event listener on the right tree View class B.

 The event listener has a sole purpose, which is to create the instance of the View-

DropZone class c. In order to add the proper drop constraints, you had to override

the isValidDropPoint method d.

 In this method, you gather some data up front in the form of lexically scoped ref-

erences. Then you have a few if conditions, which return false if met, applying the

bulk of the constraints. If no constraint is met, you return the result of a test where

you verify that the targetNodeText is within the validDropPoints array e. These

constraints include attempting to drop on

■ Anything that is not a tree view node

■ Any node that is a leaf node

■ Any node where the position (pos) property is not append.

Assuming the drop operation passes all of those tests, you then return the result of an

Ext.Array.contains method call, where you’re looking to see if the targetNode

(node being dropped on) has a title that is a match in the drop node’s (node that is

being dragged) validDropPoints array. If there’s a match, the drop is allowed, as

shown in figure 12.21.

Figure 12.21 Testing your drop target constraint logic

310 CHAPTER 12 Drag-and-drop

You can test your constraint logic by attempting to drag a department branch node.

You’ll see that it’s impossible. This tells you that the onBeforeDrag override method is

working as designed.

 To determine where the associate can be dragged, hover over it, and you’ll see a

ToolTip appear with the values that are in the validDropPoints array. In hovering

over Erin, you’ll find that she can be dropped on Accounting but not Advertising.

When you drag Erin over Accounting on the right-hand tree panel, the StatusProxy

displays a valid drop icon. But if you hover her over Advertising, you see an invalid

drop icon in the StatusProxy. As extra credit, you can try to hover Erin over Finances

and Payroll, and you’ll see a valid drop icon there too.

 The last test you can perform is to drop an associate or two onto a valid depart-

ment. You can test the ability to drop leaf nodes above or below other leaf nodes

within a valid department as well.

 There you have it: drag-and-drop with two tree panels, with a complex but some-

what flexible drop constraint system. I’m sure your managers will be pleased that you

delivered what they were asking for.

12.8 Summary

This chapter explored various ways of implementing drag-and-drop with the three

most commonly used widgets within the framework. You started with implementing

drag-and-drop on DOM elements. This chapter covered the basics of the drag-and-drop

framework and moved on to views as a more complex example. Then you explored

using a plug-in as a shortcut for setting up drag-and-drop between grid panels. Finally,

you learned about drag-and-drop with tree panels. In this implementation, you discov-

ered that enabling this behavior with tree panels is the easiest task, and the applica-

tion of somewhat complex constraints on the drop gestures is the most difficult task.

 In the next chapter, you’ll learn about plug-ins and extensions and how they

work. You’ll start to use object-oriented techniques with JavaScript—and you’ll have

a lot of fun.

Part 3

Building an application

In this part of the book, you’ll get to know how Ext JS works and learn some

best practices for building MVC applications.

 Chapter 13 dives into class system foundations used for enhanced reusability

by focusing on prototypal inheritance, class definition, subclassing components,

framework extensions, shared plug-ins, and dynamic class loaders including a

composite grid panel with context menus that can be applied to any data view.

Chapter 14 shows how to build complex applications based on the MVC archi-

tecture with controllers; coding conventions for Ext JS, JavaScript, and CSS;

and recommended development processes with Sencha Cmd tools using all the

knowledge gathered throughout this book.

 This part enables you to use more advanced features of the framework such

as custom extensions, plug-ins, and class loaders, as well as to learn solid princi-

ples for building and managing web applications.

313

Class system foundations

Every Ext JS developer faces challenges where reusability is an issue. Often a com-

ponent must appear more than once within the application’s lifetime. Without

mastering certain techniques, you could end up with what’s known as “function

soup,” or unmaintainable code. This is why we’ll focus on the concept of reusability

with the use of framework extensions and plug-ins.

 In this chapter, you’ll learn the basics of extending (subclassing) with Ext JS.

You’ll begin by learning how to create subclasses with JavaScript, and you’ll see

what it takes to get the job done with the native language tools. This knowledge will

give you the foundation to refactor your newly created subclass in order to use the

Ext JS class system.

 Once you’re familiar with creating basic subclasses, we’ll focus our attention on

extending Ext JS components. You’ll learn the basics of framework extensions, and

you’ll solve a real-world problem by extending the grid panel widget.

This chapter covers

■ Understanding prototypal inheritance

■ Developing your first extension

■ Working with plug-ins

■ Exploring the Ext JS class loader

314 CHAPTER 13 Class system foundations

 Next, you’ll see that though extensions solve problems, they can create inheri-

tance issues when similar functionality is desired across multiple widgets. Once you

understand the basic limitations of extensions, you’ll convert your extension into a

plug-in, where its functionality can easily be shared across the grid panel and any of

its descendants.

 Once you’ve built a solid foundation in the Ext JS class system, we’ll look at the

dynamic class loader that Ext JS provides. We’ll discuss three popular patterns for

using the dynamic class loader and the caveats that accompany each one. Note that it

will be a good idea to download the example code for this chapter and follow along

while reading the text.

13.1 Classic JavaScript inheritance

JavaScript provides all the necessary tools for prototypal inheritance, but it falls short

in giving you the ability to easily set up multiple-class inheritance. Ext JS makes multiple-

class inheritance much easier with the class system. To begin learning about inheri-

tance you’ll create a base class.

 To help you along, imagine you’re working for an automobile dealership that sells

two types of car. The first is the base car, which serves as a foundation to construct the

premium model. Instead of using 3D models to describe the two car models, you’ll use

JavaScript classes.

NOTE If you’re new to object-oriented JavaScript or are feeling a bit rusty, the
Mozilla foundation has an excellent article to bring you up to speed or polish
your skills. You can find it at http://mng.bz/R9BB.

13.1.1 Creating a base class

Start by constructing a class to describe the base car, as shown in the next listing.

 var BaseCar = function(config) {
 this.octaneRequired = 86;
 this.shiftTo = function(gear) {
 this.gear = gear;
 };
 this.shiftTo('park');
 };
 BaseCar.prototype = {
 engine : 'I4',
 turbo : false,
 wheels : 'basic',
 getEngine : function() {
 return this.engine;
 },
 drive : function() {
 console.log("Vrrrrooooooom - I'm driving!");
 }
 };

Listing 13.1 Constructing the base class

Creates
constructorb

Assigns
prototype objectc

http://mng.bz/R9BB

315Classic JavaScript inheritance

In listing 13.1 you create the BaseCar class constructor B, which when instantiated

sets the instance’s local this.octaneRequired property, adds a this.shiftTo

method, and calls it, setting the local this.gear property to 'park'. Next you config-

ure the BaseCar class’s prototype object c, which contains three properties that

describe the BaseCar class and two methods.

 Use the following code to create an instance of BaseCar and inspect its contents

with Firebug:

 var mySlowCar = new BaseCar();
 mySlowCar.drive();
 console.log(mySlowCar.getEngine());
 console.log('mySlowCar contents:');
 console.dir(mySlowCar)

Figure 13.1 shows what the output of this code looks like in the Firebug multiline edi-

tor and console.

 You can now focus on subclassing the BaseCar class. First you’ll do it the traditional

way. This will give you a better understanding of what’s going on under the hood

when you use Ext.define later on.

13.1.2 Creating a subclass

You can create a subclass using native JavaScript in several steps. Rather than simply

describing them, we’ll walk through the steps together. The next listing shows you

how to create PremiumCar, a subclass of the BaseCar class.

 var PremiumCar = function() {
 PremiumCar.superclass.constructor.call(this);
 this.octaneRequired = 93;
 };
 PremiumCar.prototype = new BaseCar();
 PremiumCar.superclass = BaseCar.prototype;
 PremiumCar.prototype.turbo = true;
 PremiumCar.prototype.wheels = 'premium';

Listing 13.2 Creating a subclass the old-school way

Figure 13.1 Instantiating an

instance of BaseCar and

exercising two of its methods

Configures subclass
constructorbCalls

superclass
constructor c

Sets subclass
prototypedSets subclass’s

superclass referencee

316 CHAPTER 13 Class system foundations

 PremiumCar.prototype.drive = function() {
 this.shiftTo('drive');
 PremiumCar.superclass.drive.call(this);
 };
 PremiumCar.prototype.getEngine = function() {
 return 'Turbo ' + this.engine;
 };

To create a subclass you begin by creating a new constructor, which is assigned to the

reference PremiumCar B. Within this constructor is a call to the constructor method

of PremiumCar.superclass; within the scope of the instance of PremiumCar c you’re

creating (this).

 You do this because, unlike other object-oriented languages, JavaScript subclasses

don’t natively call their superclass constructor. Calling the superclass constructor gives

it a chance to execute and perform any constructor-specific functions that the subclass

might need. In this case, the shiftTo method is being added and called in the Base-

Car constructor. Not calling the superclass constructor would mean that your subclass

wouldn’t get the benefits provided by the base class constructor.

 Next you set the prototype property of PremiumCar to the result of a new instance

of BaseCar d. Performing this step allows PremiumCar.prototype to inherit all of

the properties and methods from BaseCar. This is known as inheritance through proto-

typing and is the most common and robust method of creating class hierarchies in

JavaScript.

 In the next line you set the PremiumCar’s superclass reference to the prototype

value of the BaseCar class e. You then can use this superclass reference to do things

like create so-called extension methods, such as PremiumCar.prototype.drive. This

method is known as an extension method because it calls the like-named method

from the superclass prototype, but from the scope of the instance of the subclass it’s

attached to.

TIP All JavaScript functions (JavaScript 1.3 and later) have two methods that
force the scope execution: call and apply. To learn more about call and
apply, visit www.webreference.com/js/column26/apply.html.

With the subclass you can test things by instantiating an instance of PremiumCar with

the following code entered into the Firebug editor:

 var myFastCar = new PremiumCar();
 myFastCar.drive();
 console.log('myFastCar contents:');
 console.dir(myFastCar);

Figure 13.2 shows what the output would look like in Firebug. This output shows

that your subclass performed as desired. From the console.dir output, you can see

that the subclass constructor set the octaneRequired property to 93 and the drive

extension method even set the gear method as "drive."

www.webreference.com/js/column26/apply.html

317Inheritance with Ext JS

This exercise shows that you’re responsible for all of the crucial steps in order to

achieve prototypal inheritance with native JavaScript. First you had to create the con-

structor of the subclass. Then you had to set the prototype of the subclass to a new

instance of the base class. Next, for convenience, you set the subclass’s superclass

reference. Last, you added members to the prototype one by one.

 You can see that quite a few steps need to be followed in order to create multiple

classes with the native language constructs. Luckily there’s an easier way to achieve

this result. Next, you’ll see how the Ext JS class system makes creating classes and mul-

tiple inheritance much easier.

13.2 Inheritance with Ext JS

The Ext JS class system takes JavaScript’s prototypal inheritance to another level, add-

ing features like dependency injection, automatic setter and getter method creation,

statics, and mixin support (multiple inheritance). All of these features require the use

of Ext JS class-specific methods, such as Ext.define, Ext.create, and Ext.require, as

you’ll learn later. As you read this section you’ll learn why the Ext JS class system is a

great solution for developing your applications.

13.2.1 Creating a base class

You’ve seen what it takes to implement JavaScript prototypal inheritance. You had to

do quite a bit of work to just get a single level of inheritance set up. With complex

software like these applications, you’d have to do quite a bit of typing to get inheri-

tance going. This means that you’d have redundant code in your projects, resulting

in bloat.

 Ext JS is in the perfect position to take on the heavy lifting for you. To see what we

mean, take a step back to the first two classes you created. Listing 13.3 shows how the

BaseCar and PremiumCar classes look when you start using Ext JS to define the Base-

Car class. You’ll then extend the BaseCar class to create PremiumCar. Instead of just

using simple class names, you’ll define your class names using properly namespaced

packages, much like you find in classic languages such as Java.

Figure 13.2 Your

PremiumCar subclass

in action

318 CHAPTER 13 Class system foundations

Ext.define('MyApp.car.BaseCar', {
 engine : 'I4',
 turbo : false,
 wheels : 'basic',

 constructor : function(config) {
 this.octaneRequired = 86;

 this.shiftTo = function(gear) {
 this.gear = gear;
 };

 this.shiftTo('park');
 },
 getEngine : function() {
 return this.engine;
 },
 drive : function() {
 console.log("Vrrrrooooooom - I'm driving!");
 }
});

Listing 13.3 demonstrates the most basic use of Ext.define, where you define the

BaseCar class B. The first thing that might strike you as strange is the way you define

the class names: by string. This is because Ext JS gives you an opportunity to define a

class and namespace together. Ext JS will create the MyApp.car namespace for you if it

wasn’t previously defined, and it’ll place the BaseCar class in that namespace. This

pattern paves the way for our look at the class loader system later in this chapter,

where you’ll learn how important it is to organize your classes in your project’s filesys-

tem according to the namespace for which they’re defined.

 In the class definition you set the primitives for the class’s prototype c, and then

you create the constructor d. This class will behave exactly like the one that you

defined in listing 13.1, but you’re using Ext JS to define it.

 To instantiate this class, you’ll have to use Ext.create instead of the JavaScript new

keyword. By now you’re used to using Ext.create for Ext JS classes, but we want you

to use it within the context of your own class. Here’s how you do it:

var mySlowCar = Ext.create('MyApp.car.BaseCar');
mySlowCar.drive();
console.log(mySlowCar.getEngine());

Figure 13.3 shows the results.

Listing 13.3 Defining the base class with Ext JS

Defines
BaseCar classb

Specifies class
primitivesc

Defines
constructord

Figure 13.3 The results of your

first Ext JS class

319Inheritance with Ext JS

As figure 13.3 demonstrates, you get the results you expect from your implementation

of the MyApp.car.BaseCar class you just created. This sets the stage perfectly for you to

extend this class using Ext.define.

13.2.2 Creating a subclass

The next listing shows how you extend BaseCar. You create the MyApp.car.PremiumCar

class, which is an extension (subclass) of the MyApp.car.BaseCar superclass, using the

Ext.define method. Here’s how it works.

Ext.define('MyApp.car.PremiumCar', {
 extend : 'MyApp.car.BaseCar',

 turbo : true,
 wheels : 'premium',
 stereo : '5.1',

 constructor : function() {
 this.callParent(arguments);
 this.octaneRequired = 93;
 },
 getEngine : function() {
 return 'Turbo ' + this.engine;
 },

 drive : function() {
 this.callParent();
 this.shiftTo('drive');
 console.log('The turbo makes a big difference!');
 }
});

First you call on Ext.define to define the class for the MyApp.car.PremiumCar B exten-

sion class. You instruct Ext JS to extend your previously defined MyApp.car.BaseCar

class by naming it via string set to the extend keyword c. Next you set the proto-

type overrides, making this class’s turbo, wheels, and stereo properties different

from the base.

 When thinking about extending classes, you must consider whether prototypal

methods in the subclass will share the same name as prototypal methods in the base

class. If they’ll share the same symbolic reference name, decide whether they’ll be

extension methods or overrides.

 An extension method is a method in a subclass that shares the same reference

name as another method in a base class. What makes this an extension method is the

fact that it includes the execution of the base class method within itself. The reason

you’d want to extend a method would be to reduce code duplication; you reuse the

code in the base class method.

 The constructor d for this class is an extension method. It’s an exact duplicate of

the previously created PremiumCar constructor e, with the addition of a call to the

Listing 13.4 Extending BaseCar with Ext.define

Defines
PremiumCar classbExtends

BaseCar
class c Overrides BaseCar

prototypal primitivesd

Defines PremiumCar
constructore

Extends drive
method of superclass

f

320 CHAPTER 13 Class system foundations

parent class constructor f via this.callParent(arguments);. This statement allows

the subclass to chain the constructor method calls, effectively allowing the MyApp.car

.BaseCar superclass constructor to execute within the scope of new instances of your

MyApp.car.PremiumCar subclass.

 An override method is a method in a subclass that shares the same reference name as

another method in a base class but doesn’t chain method calls up to the superclass via

this.callParent(). You override a method if you wish to completely discard the code

that’s in the like-named method in the base class. Therefore, you just don’t call

this.callParent() within your override method.

 Now that you have your PremiumCar configured using Ext.define, you can see it

in action using Firebug. You can do so using the same code you used when you tested

your manually created subclass:

var myFastCar = Ext.create('MyApp.car.PremiumCar');
myFastCar.drive();
console.log(myFastCar.getEngine());

Figure 13.4 shows what it looks like in the Firebug console.

 You’ve just successfully extended a class using Ext.define. You created a class from

scratch (MyApp.car.BaseCar) and extended it (MyApp.car.PremiumCar). You can extend

the MyApp.car.PremiumCar class and create a MyApp.car.SportsCar class that adds fea-

tures like drift()-ing and dragRace()-ing.

 Now that you’ve learned about prototypal inheritance with JavaScript and Ext

.define, you can start extending Ext JS.

13.3 Extending Ext JS components

Extensions to the framework are developed to introduce additional functionality to

existing classes in the name of reusability. The concept of reusability drives the frame-

work, and when used properly it can enhance the development of your applications.

 Some developers create preconfigured classes, which are constructed mainly as a

means to reduce the amount of application-level code by stuffing configuration

parameters into the class definition itself. Having such extensions alleviates the

application-level code from having to manage much of the configuration, requiring

only the simple instantiation of such classes. This design pattern is okay but should be

used only if you’re expecting to stamp out more than one instance of the preconfig-

ured class. It’s considered wasteful to define a class just as a home for a collection of

configuration parameters.

Figure 13.4 The results of

the instantiation of the

PremiumCar class

321Extending Ext JS components

 Other extensions add features such as utility methods or embed behavioral logic

inside the class itself. An example of this would be a form panel that automatically pops

up a message box whenever a save operation failure occurs. I (Jay) often create exten-

sions for applications for this very reason, where the widget contains limited built-in

behavioral logic. I say limited, because with Ext JS 4.0 you now have an MVC architec-

ture for which you can abstract business logic to controllers. This is something we’ll

explore in the next chapter.

 My favorite kind of extension is what I like to call a composite widget, which com-

bines one or more widgets into one class. An example of this would be a window that

has an embedded grid panel, or a form panel that embeds a tab panel to spread its fields

over multiple tabs.

 This is the type of extension that we’ll focus on now. You’ll merge a grid panel with

a menu.

13.3.1 Thinking about what you’re building

When building an extension, you may want to take a step back and analyze the prob-

lem from all facets. Sometimes a problem can be extremely complex, such as the cre-

ation of a dynamic wizard-like widget that has numerous workflow rules that must be

controlled by the UI. Often, extensions can be used to solve the problem of reusabil-

ity. This will be our focus for the rest of this chapter.

 Think back to chapter 8, when we explored the creation of a grid panel. You

attached a menu and configured it to display when the grid’s contextmenu event fired.

Recall that you had to manually configure the menu to destruct upon the grid panel’s

destruction. If you extrapolate this task over the span of an application where several

grid panels coupled with menus are to be rendered onscreen, you can easily visualize

the amount of code duplication required to make this work. Before you start coding,

let’s take a moment to analyze the problem and come up with the best possible solution.

 To mitigate this code-duplication risk, you’ll create an extension to the grid panel

that’ll automatically handle the instantiation and destruction of the menu. What

other features can you add to this extension to make it more robust?

 The first thing that comes to mind is the differences in the selection getter and set-

ter methods for RowSelectionModel and CellSelectionModel. RowSelectionModel

has selectRow and getSelected, whereas CellSelectionModel has selectCell and

getSelectedCell. It would be great if your extension could handle this variation in

the grid panel’s selection models. Such a feature would reduce the amount of code

in the application layer.

 When considering the design of your class, you must take into account multiple

possibilities for implementations. For example, you should be able pass a configura-

tion object that’ll get transformed into a Menu instance:

Ext.create('MyApp.grid Panel', {
 // ... (other configuration options)
 menu : {
 items : [

322 CHAPTER 13 Class system foundations

 { text : 'menu item 1' },
 { text : 'menu item 2' }
]
 }
 });

Or you could pass an array of menu.Item configuration objects

 Ext.create('MyApp.grid Panel',
 // ... (other configuration options)
 menu :[
 { text : 'menu item 1' },
 { text : 'menu item 2' }
]
 });

or an instance of Ext.menu.Menu as the menu configuration:

var myMenu = Ext.create('Ext.menu.Menu', {
items : [
 { text : 'menu item 1' },
 { text : 'menu item 2' }
]
 });

 Ext.create('MyApp.grid Panel', {
 // ... (other configuration options)
 menu : myMenu
 });

Having this type of flexibility for the implementation of the subclass plays into the

framework’s culture and will allow the subclass to be used in more ways than one. It’s

important to keep this in mind as you design your classes for your own application.

With a clear picture of the issues you’re going to solve you can begin the construction

of your first Ext JS extension.

13.3.2 Extending GridPanel

To extend the GridPanel class you’ll use Ext.define. The following listing contains

the template for the extension that you’ll create. The best place to put this code is in a

separate file included in your HTML. Because you’re not using a loader, you can name

it ContextMenuGridPanel.js.

Ext.define('MyApp.grid.ContextMenuGridPanel', {
 extend : 'Ext.grid.GridPanel',
 alias : 'widget.contextmenugrid',

 constructor : function() {
 this.callParent(arguments);
 if (this.menu) {
 if (! (this.menu instanceof Ext.menu.Menu)) {
 this.menu = this.buildMenu(this.menu);
 }

Listing 13.5 The grid panel extension

Defines
constructor

b

Constructs
menuc

323Extending Ext JS components

 this.on({
 scope : this,
 itemcontextmenu : this.onItemContextMenu
 });
 }
 },
 buildMenu : function(menuCfg) {
 if (Ext.isArray(menuCfg)) {
 menuCfg = {
 items : menuCfg
 };
 }

 return Ext.create('Ext.menu.Menu', menuCfg);
 },
 onItemContextMenu : function(grid, model, row, index, evt) {
 evt.stopEvent();
 this.menu.showAt(evt.getXY());
 },

 onDestroy : function() {

 if (this.menu && this.menu.destroy) {
 this.menu.destroy();
 }

 this.callParent(arguments);
 }
});

Listing 13.5 contains the code for the extension and provides three methods that will

be applied to the subclass’s prototype. First is the constructor method B, which will

be the vector to extend the grid panel. In this method you first call the superclass’s

constructor and then move on to test for the presence of this.menu c. If it’s present

and not an instance of Ext.menu.Menu already, you construct a menu using the build-

Menu factory method e, passing in the this.menu reference.

 In the buildMenu factory method you determine whether menuCfg points to an

existing instance of Ext.menu.Menu. If it doesn’t, you test to see if it’s a plain array using

Ext.isArray. If it’s an array, you have to wrap an object around the array in order for

the constructor for Menu’s superclass, Container, to properly do its job.

 The last bit of the extension’s constructor handles registering the itemcontext-

menu event listener d, which is onItemContextMenu f. This listener is responsible for

invoking stopEvent() on the Ext.EventObject reference (evt). This will prevent the

browser’s own context menu from appearing. It then instructs the menu to display at

the event’s own X and Y coordinates.

 Last, the onDestroy method g extends the GridPanel class’s own onDestroy

method. This is where you’ll code the automatic destruction of the menu if it exists

and has a destroy method attached to it.

 You now have your custom extension all set up. Let’s move forward with its

implementation.

Hooks
itemcontextmenu
eventd

Adds Menu
factory methode

Handles
itemcontextmenu

event f

Destroys menu
if it existsg

324 CHAPTER 13 Class system foundations

13.3.3 Your extension in action

When discussing the constructor for the grid panel extension, we mentioned three

patterns for implementation: the menu reference for the configuration object can be

set to an array of menu.Item configuration objects, an instance of Menu, or a configura-

tion object designed for an instance of Menu. For this implementation you’ll choose

the first pattern, an array of menu.Item configuration objects. This way, you can see an

automatic instantiation of Menu as coded in your extension’s constructor.

 The following listing contains the implementation code and is quite lengthy

because of the configuration that has to be put in place to get the grid panel to work.

By now you’re familiar with data stores and grid panels, so it should be a relatively

light read.

Ext.define('MyModel', {
 extend : 'Ext.data.Model',
 fields : [
 'firstname',
 'lastname'
]
});

var remoteJsonStore = Ext.create('Ext.data.Store', {
 autoLoad : true,
 model : 'MyModel',
 proxy : {
 type : 'jsonp',
 url : 'http://extjsinaction.com/dataQuery.php',
 reader : {
 type : 'json',
 root : 'records'
 }
 }
});

var onMenuItemClick = function(menuItem) {
 var gridPanel = Ext.ComponentQuery.query('contextmenugrid')[0],
 selModel = gridPanel.getSelectionModel(),
 selectedRec = selModel.getSelection()[0],
 msg = Ext.String.format(
 '{0} : {1}, {2}',
 menuItem.text,
 selectedRec.get('lastname'),
 selectedRec.get('firstname')
);

 Ext.MessageBox.alert('Feedback', msg);
};

var grid = {
 xtype : 'contextmenugrid',
 store : remoteJsonStore,
 columns : [

Listing 13.6 Creating the remote JSON store for the extension implementation

Defines
modelb

Configures remote
JSON store

c

Sets up click
handler

d

Configures
custom grid

e

325Extending Ext JS components

 {
 header : 'Last Name',
 dataIndex : 'lastname',
 flex : 1
 },
 {
 header : 'First Name',
 dataIndex : 'firstname',
 flex : 1
 }
],
 menu : [
 {
 text : 'Add Record',
 handler : onMenuItemClick
 }
]
};

new Ext.Window({
 height : 300,
 width : 300,
 border : false,
 layout : 'fit',
 items : grid
}).show();

Listing 13.6 does quite a bit of work to configure an instance of your custom Grid-

Panel class. You begin by configuring the model B and the remote JSON store c.

Next, you set the menu click handler, onMenuItemClick d, to show an alert message

box displaying the data for the row that was right-clicked.

 Next you configure a simple JavaScript object e that’ll be used by Ext JS to config-

ure an instance of your custom ContextMenuGridPanel class. You accomplish this by

setting the xtype property to 'contextmenugrid'. Notice how you’re configuring an

array with a simple object as the menu property f. This will be used by your Context-

MenuGridPanel class to create an instance of Menu and display it via the registered

itemcontextmenu event handler.

 Finally, you render the component inside a Window instance g. Figure 13.5 shows

how it looks onscreen.

 You can see that your custom grid panel works exactly as expected. You could

import this code into your project and it’d work like a charm. But there are some

cases where you might want to choose a plug-in instead of directly extending the grid

panel to add this functionality. For example, what if you have an application that

you’re already developing or that’s already in production? How do you inject this

extension into your inheritance chain without inducing risk?

 Or say you want to include this functionality in all types of data-bound views: grid,

tree, and generic views. To accommodate this requirement, you’d have to create an

extension to each of these classes, which would inject a lot of duplicate code.

 The only real solution to this problem is a plug-in.

Defines menu
configuration

f

Implements custom
grid in a window

g

326 CHAPTER 13 Class system foundations

13.4 Plug-ins to the rescue

Plug-ins, which were introduced in Ext JS version 2.0, solve this problem by allowing

you to distribute functionality across widgets without having to create extensions.

What also makes plug-ins powerful is the fact that you can have any number of them

attached to a component.

Before we dive into creating plug-ins, let’s have a quick chat about how plug-ins work.

13.4.1 The anatomy of a plug-in

The basic anatomy of a plug-in is simple. It starts out by defining your class and

extending the AbstractPlugin class:

Ext.define('MyPlugin', {
 extend : 'Ext.AbstractPlugin',
 alias : 'plugins.myplugin'
 // do stuff
});

This snippet demonstrates the basics of creating a plug-in using Ext.define. When

creating plug-ins, you’ll find it best to extend the Ext.AbstractPlugin class, because it

provides the necessary functionality to manage the destruction of plug-ins after their

parent self-destructs.

Component life cycle refresh

In case you don’t remember when plug-ins are created and initialized, now would be

an excellent time to brush up on the initialization phase of the component life cycle,

which we covered in chapter 3.

Figure 13.5 Using your custom grid panel extension for the first time

327Plug-ins to the rescue

 In the template you set up an alias as 'plugins.myplugin'. You prefix your plug-in

alias with plugins to allow the Ext JS class-management system to route the registration

of this class with PluginManager, which will be responsible for creating instances of your

classes via lazy objects—much like XTypes, except they’re known as PTypes in this case.

 Here’s an example of how you’d use a lazy object to configure this plug-in in a

generic component instance:

Ext.create('Ext.Component', {
 plugins : [
 {
 ptype : 'myplugin'
 }
]
});

In this code you create an instance of Ext.Component and set its plugins property to

an array with a single object. The single object has a ptype property set as 'myplugin'.

When the component nears the end of its initialization phase, it’ll create an instance

of your custom plug-in via this PType shortcut.

 Extending AbstractPlugin is considered to be best practice by the Sencha core

development team, so you’ll use it when you create your custom plug-in.

13.4.2 Developing a plug-in

We just discussed the anatomy of a plug-in class. We showed you the basics of how to reg-

ister a plug-in and configure it via a simple PType configuration object. You’ll use this

knowledge to create your custom ViewContextMenu plug-in class in the next listing.

Ext.define('MyApp.plugin.ViewContextMenu', {
 extend : 'Ext.AbstractPlugin',
 alias : 'plugin.viewcontextmenu',

 init : function() {
 if (this.menu) {
 if (! (this.menu instanceof Ext.menu.Menu)) {
 this.menu = this.buildMenu(this.menu);
 }

 this.cmp.on({
 scope : this,
 itemcontextmenu : this.onItemContextMenu
 });
 }
 },
 buildMenu : function(menuCfg) {
 if (Ext.isArray(menuCfg)) {
 menuCfg = {
 items : menuCfg
 };
 }

Listing 13.7 Your custom view plug-in

Defines ViewContextMenu
plug-inb

Sets
PType
alias c Defines init

methodd

Registers
itemcontextmenu
listenere

328 CHAPTER 13 Class system foundations

 return Ext.create('Ext.menu.Menu', menuCfg);
 },
 onItemContextMenu : function(view, model, row, index, evt) {
 evt.stopEvent();
 this.menu.showAt(evt.getXY());
 },
 destroy : function() {
 if (this.menu && this.menu.destroy) {
 this.menu.destroy();
 }
 }
});

Looking at listing 13.7, you can see that most of the code is the same as in your exten-

sion. The difference is that you’re defining a class B, which extends AbstractPlugin.

Following best practice, you set the plug-in alias accordingly c.

 Next you create an init method d, which is responsible for detecting the plug-in

and registering the view’s itemcontextmenu event handler e. The destroy method f
is responsible for destroying the instance of the menu that was instantiated.

 To use this plug-in, you can reuse almost all of the code that you wrote in listing 13.6.

The biggest change is the way you configure the grid panel. The next listing shows the

implementation difference.

// Model, Store, and Menu click handler from Listing 13.6 go here

var grid = {
 xtype : 'grid',
 store : remoteJsonStore,
 columns : [
 {
 header : 'Last Name',
 dataIndex : 'lastname',
 flex : 1
 },
 {
 header : 'First Name',
 dataIndex : 'firstname',
 flex : 1
 }
],
 plugins : [
 {
 ptype : 'viewcontextmenu',
 menu : [
 {
 text : 'Add Record',
 handler : onMenuItemClick
 }
]
 }
]

Listing 13.8 Configuring and showing the grid panel

Destroys
instantiated menuf

Adds grid
panelb

Configures
plug-inc

329Plug-ins to the rescue

};
// Window code to display the grid Panel here

In listing 13.8 you configure a generic grid panel xtype object B that uses the custom

ViewContextMenu plug-in you configured earlier, and you display it via an Ext.Window.

In this implementation you configured only one plug-in via the plugins reference.

If you had more than one, you’d configure an array of plug-ins c, such as plugins

: [plugin1, plugin2, etc].

 Rendering this onscreen, you can see that you have the same functionality as your

grid panel extension, as shown in figure 13.6.

 If you want to read the source code for other, more complex plug-ins, you can look

at the Ext JS SDK examples/ux folder, which has a few examples. Two plug-ins we’ll

mention here were initially contributed by this author (Jay) in the early 3.0 days and

are now maintained by the Sencha development team.

 The first, shown in figure 13.7, is known as TabScrollerMenu (TabScrollerMenu.js).

This plug-in adds a menu to scrolling tab panels and allows users to select and focus a

Figure 13.6 Using your custom grid panel extension for the first time

Figure 13.7 The TabScrollerMenu plug-in

330 CHAPTER 13 Class system foundations

tab panel much more easily than if they had to scroll. To see this plug-in in action, navi-

gate to the <your extjs dir>/examples/tabs/tab-scroller-menu.html URL in your browser.

 The second, shown in figure 13.8, is known as the ProgressBar paging toolbar

(ProgressBarPager.js), which adds an animated progress bar to the paging toolbar wid-

get, making the paging toolbar much nicer to look at. To view this plug-in in action,

point your browser to <your extjs dir>/examples/build/KitchenSink/ext-theme-

neptune/#progress-bar-pager.

 This concludes our exploration of plug-ins. You now know how to create plug-ins

that’ll enhance functionality in your projects. If you have an idea for a plug-in and aren’t

sure whether it’s been done before, visit the Ext JS forums at http://sencha.com/forum.

An entire section is dedicated to user extensions and plug-ins. Fellow community mem-

bers have posted their work there, some of which is completely free to use.

 Sencha has a nice collection of user extensions that you can download at its own

marketplace. You can visit it at http://market.sencha.com.

 Next let’s discuss using the Ext JS class loader system. You’ll need this information

as you start developing your applications. Trust us! It’s going to save you a lot of time.

13.5 Dynamically loading classes with the Ext JS loader

New to Ext JS 4 is a dynamic class loader system designed to make use of the depen-

dency model. There are a few options to consider when developing your applications.

Each option has its pros and cons, so we’ll discuss each one in turn.

13.5.1 Loading everything dynamically

Ext JS gives you the option to load most JavaScript files dynamically. Loading the

framework files dynamically gives you the capability to render an initial page quickly,

which is ideal for internet-based applications.

Figure 13.8 A plug-in that adds an animated progress bar to the paging toolbar

http://sencha.com/forum
http://market.sencha.com

331Dynamically loading classes with the Ext JS loader

To do this you need to include the ext-all.css and ext-debug.js files. The head of your

document should look like this:

<link rel="stylesheet" type="text/css"
 href="js/ext4/resources/css/ext-all.css" />
<script type="text/javascript" src="js/ext4/ext-debug.js"></script>

Loading ext-debug.js will load the debug version of the Ext JS foundation, which

includes the base class system, utilities like observable and element, and the loader

framework. This means that the rest of the framework itself isn’t in memory; therefore,

it needs to be loaded. To test things out, you’ll need to render something onscreen.

 Here’s the code to render an Ext.Window onscreen:

Ext.onReady(function() {
 Ext.create('Ext.window.Window', {
 height : 100,
 width : 100,
 html : 'I loaded dynamically.'
 }).show();
});

When viewing the page, you’ll see that the Ext JS window

renders onscreen; but in order to understand what’s going

on, you’ll have to look under the hood. To do so, pop up a

debug tool like Firebug (see figure 13.9).

 When reading just the filenames of the classes loaded,

you’ll begin to notice that Ext JS is loading classes in a

somewhat backward fashion. This has to do with the

dependency system. To help you better understand this,

figure 13.10 shows the Ext JS Window inheritance model.

 The code instantiated an instance of Ext.window

.Window, yet you see classes like Panel being loaded. You

see the seemingly reversed loading pattern shown in fig-

ure 13.10 because Window requires Panel, and Panel requires

Figure 13.9 The console view of Firebug, displaying a warning message from Ext JS as well as a log

trace of the dynamically loaded classes

AbstractComponent

Component

panel.AbstractPanel

Panel

window.Window

Figure 13.10 The Ext JS

Window inheritance model

332 CHAPTER 13 Class system foundations

AbstractPanel. Ext JS loaded Window, read its dependencies, and then loaded Panel.

It then read Panel’s dependencies and loaded AbstractPanel, and so on.

 Earlier, Ext JS warned you that it was synchronously loading the Window class. The

reason it warns you is because it’s loading the classes via synchronous XHR, meaning

that the requests are blocking. When Ext JS executed your code to create the window,

it churned through all the requirements, and no other JavaScript executed during

that time.

 This method of loading JavaScript classes is somewhat slower when you’re trying

to load a large chunk of the framework. We suggest using this approach if you want to

use the minimal form of the framework for a quick render of something like a login

screen. If the login is successful, you can invoke the loading of the required Ext JS

class files.

 The one thing we should caution you about regarding this pattern is that the

JavaScript that’s synchronously loaded by Ext JS can’t be debugged due to the fact that

scripts loaded via XHR are evaluated at runtime. There’s a solution to this problem,

but it requires just a tad more work on your end.

13.5.2 Thou shalt require only what’s needed

Earlier you created an instance of Window within the confines of Ext.onReady.

Though this is completely acceptable, you invoked the synchronous loading of the

framework classes. The solution to this problem is to instruct Ext JS that you’re requir-

ing the use of the Window class but outside of Ext.onReady.

 Here’s the code to do just that:

Ext.require('Ext.window.Window');
Ext.onReady(function() {
 Ext.create('Ext.window.Window', {
 height : 100,
 width : 100,
 html : 'I loaded dynamically.'
 }).show();
});

Adding the require statement outside the Ext.onReady call instructs Ext JS to imme-

diately load all dependencies for the Window class, and it does so in a manner that’s

easy to debug and that’ll stop Ext JS from barking at you. This means that you should

invoke a require statement for every class you’ll ever use. Figure 13.11 shows a screen-

shot of the (live) HTML view in Firebug.

 In figure 13.11 you can see a lot of script tags being added to the head of the docu-

ment. These script tags were injected by Ext JS because you added the require state-

ment before Ext.onReady, allowing Ext JS to load these classes via traditional script

tags, which doesn’t require the script to be eval’d. The greatest benefit of this tech-

nique is that it gives you the ability to debug the Ext JS JavaScript.

 This method of using Ext JS gives you the best option for debugging issues because

the classes are loaded individually, allowing you to isolate issues to a specific class. But

333Dynamically loading classes with the Ext JS loader

it’s slow. In our local development environment, we see over one second of load time

for the page. The reason it’s slow is because of the sheer number of requests needed for

the class files to be loaded one by one. This obviously isn’t the best pattern for rapid

application development cycles.

 You’ll have to modify your approach a bit to remedy this situation.

13.5.3 Taking the hybrid approach

So far you’ve seen two approaches to using the loader to

load Ext JS class files. Both approaches had their pros

and cons. If you’re on an intranet, where speed doesn’t

matter, then using a hybrid approach can give you the

best of both worlds. You can load all of Ext JS in one

request and then dynamically load your class files.

 To explore this hybrid approach, we’ve included an

extremely minimalistic application in the chapter 13

examples folder. The folder structure is shown in fig-

ure 13.12. When looking at the folder structure, notice

that the files are organized on the disk according to

their namespaces, which begin with MyApp.

 This application contains an interdependency model that requires both Ext JS and

classes within the namespace. Figure 13.13 illustrates the dependency model from a

high level.

 This interdependency model demonstrates that you can configure requirements for

the application, which Ext JS will honor. Also, you won’t have to write a single script tag

for your application code. This is the single greatest benefit to using this approach.

 To get this hybrid approach working, you must work through two steps. The first is

to include ext-all-debug.js instead of ext-debug.js:

<script type="text/javascript" src="js/ext4/ext-all-debug.js"></script>

Figure 13.11 The Firebug live HTML view, demonstrating the dynamic loading of the Ext JS classes

Figure 13.12 The folder

structure for our example

application

334 CHAPTER 13 Class system foundations

Including ext-all-debug.js will allow the entire Ext JS framework to load at one time,

shaving more than half the time of the page load for you. The drawback to this

approach is that, by default, the Ext JS loader system is disabled in this version of

the framework.

 You’re going to have to enable the loader system and give it instructions for where

your application code lives. To do so, include this code:

Ext.Loader.setConfig({
 enabled : true,
 paths : {
 MyApp : 'js/MyApp'
 }
});

Ext.require('MyApp.view.UserEditorWindow');

Ext.onReady(function() {
 Ext.create('MyApp.view.UserEditorWindow').show();
});

In this code you call the setConfig method of the Ext.Loader singleton, passing in

an object that enables the loader and sets up the path for your application. Next you

instruct Ext JS to require the MyApp.view.UserEditorWindow class, and then the

magic happens!

 First you’ll notice that the mini-application renders onscreen (figure 13.14). Though

seeing the application pop up onscreen is cool, the magic is under the hood and can

only be seen via the Firebug live HTML tab. What you’ll see there is fascinating. Fig-

ure 13.15 shows you that all of Ext JS was loaded but your application classes were

loaded dynamically. The best part about this is that you didn’t have to fuss with script

tags in your HTML page.

UserGridPanelUserFormPanel

UserEditorWindow

UserStore

UserModel

Ext.grid.GridPanel

Ext.data.Store

Ext.data.Model

Ext.form.Panel

Ext.window.Window

Figure 13.13 The top-level namespaced classes are the ones that you’ll develop.

335Summary

By now you’re probably wondering where you go from here. Which loading pattern

should you choose? Those are the right questions to be asking.

 The truth is that the dynamic loader isn’t recommended for production. For our

development cycles, we use the third pattern (section 13.5.3). It offers the best perfor-

mance for loading all of Ext JS in your local development environment as well as the

ability to dynamically load all of your application code on demand.

 For production, you’ll want to use the SDK tools to concatenate and minify your

application code in preparation for deployment. We’ll discuss those tools in chap-

ter 14.

13.6 Summary

In this chapter you learned how to implement the prototypal inheritance model using

the basic JavaScript tools. You saw how this inheritance model is constructed step by

step. Using that foundational knowledge, you refactored your subclass using the

Ext.define class definition method.

 Next, you took all of that foundational knowledge and applied it to the extension

of an Ext JS grid panel, and you created a composite grid panel and a menu compo-

nent. You implemented your custom grid panel extension and saw how cool extend-

ing components can be.

 You then learned how extensions can be limited when reusability needs to span

multiple widgets. To mitigate this problem, you converted the code in your grid panel

extension into a plug-in that can be applied to any data view and its subclasses.

Figure 13.14 The mini-application you dynamically loaded

Figure 13.15 The Firebug live HTML tab shows you that your classes are loaded via Ext JS,

without you having to write script tags.

336 CHAPTER 13 Class system foundations

 Finally, you learned how to implement the Ext JS loader. You saw firsthand how

to use the loader with three common patterns, and you learned the pros and cons

of each.

 In the final chapter, you’ll learn how to put together all of the knowledge you’ve

gathered so far in this book, and you’ll explore the trade secrets of building com-

plex applications.

337

Building an application

So far in this book we’ve explained how to define, use, and manage Ext JS compo-

nents, widgets, and data. We’ve walked you through creating just about every wid-

get in the framework and discussed each of their intricacies. In the previous

chapter we explained how to create custom Ext JS extensions and looked at how

the class loader system works.

 In this chapter you’ll put to work all the knowledge you’ve gained in this book

to create an application. You’ll build on chapter 13’s lessons and construct an appli-

cation following the MVC development pattern by implementing the Ext JS App

(Application) package. You’ll explore how controllers work and learn how they’re

responsible for responding to events from your application classes. You’ll also

learn to create both testing and production builds using Sencha Cmd, the Sencha

command-line toolset.

This chapter covers

■ Thinking like a web UI developer

■ Understanding the Ext JS architecture

■ Writing an MVC-based application

■ Building with Sencha Cmd 3

338 CHAPTER 14 Building an application

 Before jumping into source code, let’s review the principles of building and man-

aging web applications. Whether your future apps are small or large, you should

always follow the same principles described in this chapter.

14.1 Thinking as a web UI developer

Web applications have existed for almost as long as the web itself. The concept was

largely popularized with the emergence of Google’s Gmail in 2004. In the years that

followed, three major principles of building web apps remained:

■ Web is mobile

■ Design for a single page

■ Optimize server-side services (APIs)

The fastest web application is about:blank. Everything you build on top of it adds load

and execution time. A “mobile first” way of thinking forces you to pack information

lightly in anticipation of users with small screens, weak computers, and the ability to

download only through a limited-bandwidth internet connection. We’re not implying

that you should use Ext JS for developing mobile applications. Instead, we’re suggest-

ing picturing a person on an old computer using your application. That will likely be

your target user on a target platform.

 Single-page apps are also known to be data-driven. To contrast the concept of mul-

tipage websites, a server won’t prepare HTML views but will just serve data. A browser

is responsible for formatting data as a meaningful representation, based on business

logic converted into source code by you, the developer. All of this happens without

page (re)loading. Modern browsers support this idea like never before, and you’ll see

how Ext JS can use this pattern.

 As just mentioned, data is king in single-page web applications. That should be a

good enough reason to pay more attention to how it’s served. The best API is built for

a purpose. Don’t create universal connectors that send loads of data, just in case the

app might need it. Send meaningful, targeted chunks that are content-specific, band-

width-sensitive, and optimized for mobile.

 Following the concepts described here, you’re about to see how Ext JS can help

you create an optimized, data-driven, single-page application. Let’s kick things off

with a discussion of architecture options.

14.2 Application (infra)structure

Consider an Ext JS application the motherboard of an app. Following the analogy, it’s the

place where all the components are plugged in. The motherboard uses dedicated con-

trollers to establish communication channels among views, data, and user interactions.

 The way an application is initially set up will influence its performance, scalability,

and ultimately its maintainability. Using conventions and keeping the right discipline

even for small projects will always yield great results and will also help when the proj-

ect grows into something more serious. Rest assured, trading quality for the urge to

339Application (infra)structure

save time by using quick-and-dirty implementations is a fantastic recipe for failure.

You’ll never have the resources to go back and refactor the app, because your little

proof-of-concept app will most likely become serious production-level software.

 One of the most basic principles when developing an application is to properly

define classes. Make sure you do that right.

 You’re almost ready to start building your first fully featured Ext JS 4 application.

Along the way, we’ll go over many useful coding conventions, starting with namespac-

ing. What can be a better start than giving your great product a name?

14.2.1 Development within a namespace

As you’ll see later in this chapter, one of the first steps of setting up an application is

choosing its name. Naming your application in your code isn’t necessarily a marketing

trick. It’s the cornerstone of all further development.

 You might already be familiar with the term global pollution. It refers to stuffing the

global namespace with far too many references (variables). A common pitfall of using

global variables in application programming is naming conflicts. What happens if you

define two references with the same variable at different sections of the codebase? You

have yet another debugging nightmare. That’s why developers are encouraged to

define a single global variable, called a namespace, to create their own little ecosystem.

This is one of the base principles of object-oriented programming (OOP).

 A browser environment already comes heavily polluted with numerous global vari-

ables. Table 14.1 is a breakdown of globally declared variables in several modern

browsers in the about:blank page.

In a forest of declared variables, the last thing you want to do is rewrite one and alter

the whole application’s behavior. Furthermore, it’s not unlikely that your application

needs to access additional APIs, such as maps, analytics, other third-party libraries, or

even other Ext JS applications.

 When defining your namespace, you’ll want to make sure it has these characteristics:

■ Concise—Developers love to type less, and it helps with codebase size.

■ Unique—Assign a meaningful name, not just App.

Table 14.1 Global pollution in about:blank

Browser Number of declared variables

Google Chrome 23 559

Apple Safari 6 517

Mozilla Firefox 15 184

Opera 11.64 74

Internet Explorer 7 38

340 CHAPTER 14 Building an application

In the Ext JS world, just as with many other structure-oriented programming frame-

works, there are exact patterns you need to follow when forming class names. In this

book we’ll refer to the pattern as the Namespace/Package/Class (NPC) pattern.

 The namespace is where application code begins. It’s the root reference under

which all the application’s packages and classes are nested and subnested. Ideally,

your whole application will add just two references to the browser’s global namespace:

■ Ext JS—the framework classes

■ Your namespace (for example, App)—the application’s classes

Your application’s MVC code, as well as singletons, extensions, or any other code,

should exist under the wing of your namespace (figure 14.1). Because you’ll use the

namespace frequently, it’s generally a good idea to keep the name to under four

characters. Just be sure not to lose the meaning. For example, names as generic as

App could lead to confusion and code conflicts if you ever merge several project

files together.

Namespace

Views

Models Controllers

Singletons

Stores Extensions

Figure 14.1 The namespace is the root of an Ext JS application.

341Application (infra)structure

As shown in figure 14.2, your newly defined class will form a name that consists of the

following:

1 Application namespace (CamelCase)

2 Package name (lowercase, singular)

3 Class name (CamelCase)

Naturally, there will be only a single application namespace. In contrast, any given app

is likely to have numerous classes, their number often reaching into the thousands.

Packages are an effective solution for breaking apart code.

 Packages are also great because you can nest them, as shown in figure 14.3. The

first level of packaging will generally be one of the following seven options:

■ Model

■ View

■ Controller

■ Store

■ Ux

■ Util

■ Component

All further nested packages should reflect the business logic of the application. You

want to break down the app into logical sections, some of which will reflect applica-

tion modules and submodules or abstraction layers.

 The NPC pattern’s naming conventions go beyond just naming. The pattern also

defines the file and folder structure of a given class. This is where Ext.Loader, one of

the most valuable features of Ext JS 4, kicks in.

14.2.2 Dynamic dependency loading

In the pre–Ext JS 4 world, you were stuck with hard-coding script tags for each

JavaScript file needed for a project to run. We intentionally said file and not class,

Survey View Viewport. .

Namespace Package Class Name Figure 14.2 The Namespace/

Package/Class pattern

Survey View Report. .

Namespace Package Package

Response.

Class Name

Figure 14.3 Nested packages

342 CHAPTER 14 Building an application

because this particular situation discouraged many developers from writing each class

into its own file. In such a case, larger applications would have enormous HTML files

with hundreds of coded script tags.

 Ext JS 4 ships with Ext.Loader, a useful feature that allows for the automatic inclu-

sion of dependencies. Its functionality is twofold:

■ On-demand loading when a class is needed
■ Boot-time inclusion of specifically outlined dependencies

On demand (or on the fly) is more of a fire extinguisher than a cool feature on which

applications should rely. It detects your failure to let the application know of the

prerequisites and then loads the missing class files synchronously. Such incidents are

also reported in the browser’s console, allowing you to go back to code and properly

set dependencies.

 The new class system offers several methods to directly or indirectly define depen-

dencies. A common thread is that they all belong to the Ext.define configuration.

Let’s take a look:

■ requires—Dependencies required for a class to be defined (blocking)
■ uses—Dependencies required for a class to be instantiated (non-blocking)
■ controllers—Controllers used by an application
■ models—Models used by a controller
■ views—Views used by a controller
■ stores—Stores used by a controller
■ extend—The class being extended in Ext.define
■ override—The class being overridden in Ext.define

In order for Ext.Loader to load dependencies, you need to properly store class files.

By default, the loader will expand full class names, separated by dots. That means

each package will become a subfolder, and each class name will be counted as a file

with a trailing .js extension. As an exception, the topmost package, more precisely

your namespace (Survey), will be translated into a predefined folder name: app. Fig-

ure 14.4 illustrates the process.

 Keeping this principle in mind, you’ll find it easy to create the basic file and

folder structure. Figure 14.5 shows the structure used in the application you’ll create

in this chapter.

app view Viewport.js

Survey View Viewport. .

Figure 14.4 Conversion of class

names into folders and files

343Application (infra)structure

Opening an Ext.Loader-enabled application will require access to a web server. This is

because it makes use of XHR (Ajax), and browsers don’t allow XHR requests to a local

file system. But there’s a simple trick you can use to make your browser send Ajax

requests even without a web server. All you need to do is to start your Google Chrome

browser with security turned off and open index.html as a regular local file.

Here’s how you disable Chrome security with various common operating systems.

 Windows (command prompt):

chrome.exe –disable-web-security

A warning about disabling web security

Disabling web security renders your browser defenseless against malicious scripts.

We strongly suggest that you disable web security only with a browser installation

dedicated to application testing and debugging. Be aware of the risks involved when

browsing external websites.

Figure 14.5 File and folder

structure per naming conventions

344 CHAPTER 14 Building an application

Mac OS X (terminal):

open -a Google\ Chrome --args --disable-web-security

Linux (terminal):

chrome –disable-web-security

We’ll discuss dependencies in greater depth when you start building your MVC appli-

cation later in this chapter. Until then, let’s explore what the application is going to

look like.

14.3 Kicking off the Survey app

Every app starts with an idea, followed by a series of wireframes. Through the rest of

the chapter you’ll follow an idea, build an application based on a wireframe, and

finally test the end result.

 The idea behind the final project is a survey delivery platform, creatively called

Survey. Its sole purpose is to present authenticated users with dynamically generated

forms, capture input, and sync with the data source. Concepts you want to embrace

here include

■ CRUD operations through models and stores

■ Data delivery through associations

■ Dynamic generation of components from data

■ Packaging with Sencha Cmd

14.3.1 From idea to code

Survey is a data-driven MVC application. Let’s take a moment to investigate the workflow:

1 Users will need to authenticate to receive the applicable surveys and survey data.

2 A user can access more than one survey.

3 Survey questions are grouped into logical sections.

4 Questions are presented one group at a time.

5 Users can jump to surveys and groups as desired.

6 Input data is saved as soon as a new entry is made.

7 Forms are dynamically created based on data received from the server.

Following these guidelines, you’ll create a fully functional application. Moreover,

you’ll have plenty of areas in which to experiment and that you can improve with new

features. The final product will look like figure 14.6.

 Building user interfaces is like cooking; you spend at least half the time in prep-

aration, gathering all the ingredients and kitchenware to be close at hand when

the time to use them comes. We hope your hands are itching with excitement to

build this!

 To get started, follow the 11-step Sencha Application Workflow (11-SAW) step

by step (see figure 14.7). You typically begin by creating some folders and files, but

345Kicking off the Survey app

what if we told you that you don’t need to do the first three steps manually and

can have someone else generate all that for you? You got it: Sencha Cmd can do

that for you.

14.3.2 Moving to the fast track with Sencha Cmd

Sencha Cmd is a set of command-line utilities that make it easier for a developer to

generate an app; add models, views, or controllers; and, most important, create cus-

tomized builds of the app. Sencha Cmd doesn’t ship with the framework, so you’ll

have to download it from Sencha’s website.

 To fully utilize Cmd, you’ll need to do the following:

1 Download and install a Java Runtime Environment (JRE), version 6 or greater.

2 Download and install the Compass CSS authoring framework (and additional

dependencies, such as Ruby, as required).

3 Download and install Sencha Cmd.

4 Download and extract the latest Ext JS SDK package (4.1.2 or later).

Sencha Cmd version

Please note that the Survey application was built using Sencha Cmd v4.0.0.203.

Changes in behavior and configuration are possible in any other build.

Figure 14.6 The Survey application as it will look when finished

346 CHAPTER 14 Building an application

The first step you need to take is to generate the app. Open a command-line terminal,

and make sure you navigate to the directory that contains the Ext JS SDK package.

Now run

sencha generate app Survey /path/to/Survey

This is all you need to do from the SDK folder right now. Feel free to navigate to

/path/to/Survey (change /path/to/ to a path that suits you best, but make sure it’s

outside of your Ext JS SDK directory), and let’s look (figure 14.8).

 As you can see in figure 14.8, Sencha Cmd has done quite a bit of work for us:

File/folder skeleton

Bootstrap

Define models

Set up stores

Create the main

viewport

Create views

Test / QA

Build

Deploy

Continuous process

Set index.html

Set up controllers

T
h

e
 1

1
-s

te
p

 S
e

n
c
h

a
A

p
p

lic
a

ti
o

n
 W

o
rk

fl
o

w
 (

1
1

-S
A

W
)

P
ro

c
e

s
s

Figure 14.7 The 11-SAW process diagram

347Kicking off the Survey app

■ Copied the Ext JS SDK files, including only necessary content (no examples or

documentation).

■ Created a fully functional index.html file.

■ Created app.js, a foundation for the application bootstrap.

■ Created the MVC skeleton.

■ Set up the SASS (Syntactically Awesome Style Sheets) theming project.

■ Created a resources folder for storing media files such as images.

■ Created empty readme.md files to keep your folders from disappearing in some

source control management systems like GIT. Feel free to remove them, but

make sure you have at least one file in the respective folder first.

■ Set up its private hidden metadata folder and several auto-generated configura-

tion files. Each of them will show a commented message allowing or disallowing

manual edits.

Saving you all this work isn’t the only benefit of generating the app. Major keys to suc-

cess in application development are discipline and the ability to stick with conventions.

Figure 14.8 Sencha Cmd-generated skeleton

348 CHAPTER 14 Building an application

These two points are exactly what you’re going to achieve with this application. You’ll

be disciplined enough to cut corners only where doing so benefits you in the long

run. Elsewhere, you’ll follow Sencha-suggested application design conventions.

 Now that you have some content generated, let’s see what you can work with. In

the pages to come, you’ll go over the application initialization files and decide which

data formats you want to use for your models.

14.3.3 Bootstrapping Survey

If you’ve been following the process on your computer and have generated the app on

your own, you’ve probably already taken a sneak peek at index.html (listing 14.1) and

the auto-generated JavaScript files. We encourage everyone to follow the procedure

all the way through. Having said that, it’s time to explore exactly what the generated

app is made of, as shown in the following listing.

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="UTF-8">
 <title>Survey</title>
 <!-- <x-compile> -->
 <!-- <x-bootstrap> -->
 <link rel="stylesheet" href="bootstrap.css">
 <script src="ext/ext-dev.js"></script>
 <script src="bootstrap.js"></script>
 <!-- </x-bootstrap> -->
 <script src="app.js"></script>
 <!-- </x-compile> -->
</head>
<body></body>
</html>

The index page is created to be minimal yet sufficient for your new Ext application.

The first thing you’ll notice is the HTML5 doctype B, which not only saves quite a few

bytes, but also helps Ext JS get the most out of modern browsers.

 Sencha Cmd also created a few comments that look like opening and closing tags

in XML, and that’s exactly what they are. Concealed in comments, <x-compile> c
signals the area that includes special logic that should be modified in the Cmd compi-

lation phase. Within it, <x-bootstrap> d defines CSS and JavaScript files used to

bootstrap Ext JS.

 The bootstrap.css file e redirects to the theme being used. This file should not be

edited and is automatically generated to point to the theme CSS. Ext JS is called

through the ext-dev.js file f, loading a bare minimum of the SDK, and everything

else follows dynamically. The dependency list for dynamic loading is located in boot-

strap.js g, another file that is automatically generated; thus you’re advised not to

manually edit it. At this point, the browser knows how to support your application with

styles and SDK, so it's safe to call for app.js.

Listing 14.1 Generated index.html source

HTML5
doctypeb

Sencha Cmd app
bootstrap flag

c

Provides
default
CSS sheet

d
Specifies
minimal SDK
package

e

Ext JS
dependency
mappingsf

Application
initializationg

349Kicking off the Survey app

 The entire block defined with <x-compile> is valid for your development environ-

ment only. Later in this chapter, we’ll discuss application-building steps that will

change this block in the interest of performance.

For our purposes, you won’t rely on index.html beyond what’s generated by the Sen-

cha Cmd app-generation process. But what index.html does for web pages, app.js does

for Ext JS applications. It’s the starting point from which all other code will be exe-

cuted. Let’s move on to see how the app is bootstrapped in the next listing.

Ext.application({
 name: 'Survey',
 extend: 'Survey.Application',
 autoCreateViewport: true
});

Ext.application B is a special method call that does nothing but load the Survey

.Application d class together with its dependencies and initialize it. It also gets

familiar with the application namespace c to help recognize which classes can be

dynamically loaded when requested.

 This is a great place to review figure 14.4, where we discussed how dependencies

are converted to paths for dynamic loading. Because we said that the app’s namespace

is Survey, Ext.Loader knows that Survey.Application is located in the ./app/Appli-

cation.js file.

 When all the JavaScript is loaded and the document is ready, Ext creates the view-

port automatically e. Before we jump to the viewport discussion, let’s see how to con-

figure the application in the Survey.Application class.

Ext.define('Survey.Application', {
 name: 'Survey',

 extend: 'Ext.app.Application',

What’s minification?

The internet, as a medium for data distribution, can be provided to end users at a

quality beyond your expectations. Reducing the amount of data sent can deliver the

information faster and require less bandwidth, potentially incurring lower internet

charges for your customers. The process of removing unnecessary parts of JavaScript

code without altering its functionality is called minification. These parts often include

white space, comments, and new-line characters, but minification can go as far as

reference renaming and beyond. Although minified code is harder to read, minifica-

tion shouldn’t be confused with obfuscation, a form of cryptography.

Listing 14.2 Generated app.js source

Listing 14.3 Application definition

Application
initialization

b
Application and
namespace name

c

Inherits from
Survey.ApplicationdShows viewport

immediatelye

Application
name(space)b

350 CHAPTER 14 Building an application

 views: [
 // TODO: add views here
],

 controllers: [
 // TODO: add controllers here
],

 stores: [
 // TODO: add stores here
]
});

The Survey.Application class is a natural extension of the Ext.app.Application

class that informs the application about models, views, stores, and controllers. The

application uses Ext.Loader to load the required files, execute them, and register

each according to its functionality, respectively.

Ext.app.Application extends Ext.app.Controller, which makes it the primary

controller as well. Thus they share almost all configuration options, apart from the

name property. In a few pages you’ll learn more about controllers.

 You’ll notice two gotchas in listing 14.3:

■ The name property B is repeated in the Survey.Application and Ext.applica-

tion calls (listing 14.2). This is more for code organization purposes than func-

tionality. It’s safe to omit it in the Survey.Application definition, but it’s

imperative that the name be stated in the Ext.application call.

■ Models aren’t listed in the generated class definition c. Nevertheless, the

application needs to know about them, and you’ll add them later.

You’ll populate this class with models, controllers, and stores. Only the views, models,

and stores that belong to the application globally, or are shared between application

sections (modules), should be listed here. In this case, you’ll bind views and stores to

the respective controller configuration in an effort to produce a more structured and

modular application.

VIEWPORT

One special type of view stands out from the crowd: the application viewport. A view-

port is the pivotal point for all views in the application. It is, for a single-page applica-

tion, what <body> is for HTML elements. It often carries central navigational elements

as well as a notification console, and it acts as a cradle for all major views in the appli-

cation. Only one viewport can exist on a page.

 As shown in listing 14.2, the viewport can be automatically created when the docu-

ment becomes ready for DOM manipulations. Ext JS will automatically search for the

view.Viewport class. In this case, that’s Survey.view.Viewport. So let’s provide it.

 Before you start building a codebase, spend a few moments thinking about what

you want to achieve. Going back to your application requirements, you’ll recall that

only registered users can access Survey. This means you should offer a registration

form. Because the authenticated users will likely sign out at a certain point in time,

MVC
dependencies

c

351Kicking off the Survey app

choose the card layout type for the viewport so that transition from the authentica-

tion form and back is faster. The following listing shows how to create your viewpoint

(this is only a stub).

Ext.define('Survey.view.Viewport', {
 extend : 'Ext.container.Viewport',
 alias : 'widget.vp',

 layout : {
 type : 'card'
 }
});

Usually Viewport is an extension of Ext.container.Viewport. This is a special class

that automatically occupies 100% of the width and height available to the document

body. Such a viewport doesn’t allow scrolling; individual components will have to spe-

cifically enable it. Finally, you give it the XType vp for easier access in the future, and

set its layout type to 'card'.

NOTE Sencha Cmd already created a sample of this file for you. You can
modify it per listing 14.3 instead of re-creating it from scratch if you want.
Another auto-generated view is in Main.js, which you can safely delete
because you won't be using it.

With four steps of the 11-SAW process completed, let’s review what you’ve achieved

and prepare for the next step: data modeling.

14.3.4 Data-driven application model

If you run the current application in a browser, you’ll get nothing but an empty page.

This is a good sign: you’ll start working on views after you set up data models. After all,

it’s going to be a data-driven application.

 At this point, the 11-SAW process instructs you to define models. Think about this.

What kind of models do you anticipate needing? Obviously you’ll need a list of sur-

veys, so you should define what a survey looks like. Furthermore, surveys are made of

questions, which means you should have a model that defines a question, too. And

questions belong to groups, so you should define a group as well. As this quick brain-

storming reveals, your models will be

■ Survey

■ Group

■ Question

Before rolling up your sleeves, spend some more time thinking. Only when you reach

the essence of an idea can you invent with simplicity. The models you’ll create are all

connected to one another. A survey has groups, and each group has one or more

questions. Because they’re all so nicely connected, why not use model associations?

Listing 14.4 Viewport stub

352 CHAPTER 14 Building an application

Associations are going to be helpful if you want to download all your data at once and

have the topmost model push items to respective models.

 It sounds a little ambiguous. In the next listing, you’ll create a sample data object,

which will help you figure it out.

[
 {
 id : 1,
 name : 'Sample Survey',
 groups : [
 {
 id : 11,
 name : 'Sample Group',
 survey_id : 1,
 questions : [
 {
 id : 111,
 survey_id : 1,
 group_id : 11,
 question : 'Sample Question',
 config : {
 xtype : 'textarea'
 }
 }
]
 }
]
 }
]

In only 20 lines of code, you realize a great deal about the data. Surveys are as plain as

it gets; just a name and identification are all you need. Surveys carry a special prop-

erty, groups B, that represents an array of question groups. This is also known as a has

many association.

 Groups are just as simple. Each group has another special property, survey_id c.

Its purpose is to associate a group with a survey, also known as the foreign key. Just like

surveys, groups also have a has many association with questions.

 A question is a bit more complex. It has all the properties needed to configure a

field. Notice the config property d that could accept virtually any configuration

property for Ext.field.Field or any of its subclasses.

 Next you’ll set each of the models and its respective stores.

14.3.5 Adding models to the application

The Survey model will consist of just two fields:

■ id
■ name

Listing 14.5 Expected data object

Adds
association key

b

Sets
foreign keyc

Configures
question fieldd

353Kicking off the Survey app

In addition to setting up the fields, you’ll define associations and the data proxy. The

final code is shown in the next listing.

Ext.define('Survey.model.Survey', {
 extend : 'Ext.data.Model',

 requires : [
 'Ext.data.association.HasMany'
],

 uses : [
 'Survey.model.Group'
],

 associations : [
 {
 type : 'hasMany',
 model : 'Survey.model.Group',
 primaryKey : 'id',
 foreignKey : 'survey_id',
 autoLoad : true,
 associationKey : 'groups',
 name : 'groups'
 }
],

 proxy : {
 type : 'ajax',
 url : 'data.json',
 reader : {
 type : 'json'
 }
 },

 fields : [
 {
 name : 'id'
 },
 {
 name : 'name'
 }
]
});

You know that surveys are associated with groups. Thus, you’re making sure the class

knows that it depends on the model.Group class B. A survey can have many groups,

which means it has a hasMany association type c. In the association configuration,

you use the associationKey property d to enable automatic group population.

Groups will exist in property groups. Finally, you access the groups through the groups

method e and listen with the name configuration. You’ll return to this model class

once you plug it into the views.

Listing 14.6 Survey model

Adds associated
model

b

Populates
groups

c

Lists groups
data

d

Configures
groups methode

Adds proxy
configurationf

Sets list of
fieldsg

354 CHAPTER 14 Building an application

 Setting up associations was perhaps the most intensive part of defining the Sur-

vey model. Next you set up a proxy f so that a Model instance knows where the

store pulls data from and how to complete the rest of CRUD operations. You won’t

need to duplicate the proxy setup when configuring the store; it will be automati-

cally shared. Finally, fields configuration g takes place with a simple mention of

expected field names.

Survey.model.Survey is now able to understand where surveys come from and

how to identify the fields, and it’s aware that groups should be processed through

another model, Survey.model.Group.

 The Group model (listing 14.7) is a lot like Survey, with two major changes:

■ There’s no communication with a server.

■ It receives data from the Survey model and forwards questions to the Question

model; thus it has a belongsTo and a hasMany association.

Ext.define('Survey.model.Group', {
 extend : 'Ext.data.Model',

 requires : [
 'Ext.data.association.HasMany',
 'Ext.data.association.BelongsTo'
],

 uses : [
 'Survey.model.Survey',
 'Survey.model.Question'
],

 fields : [
 {
 name : 'id'
 },
 {
 name : 'survey_id'
 },
 {
 name : 'name'
 },
 {
 name : 'index'
 }
],

 associations : [
 {
 type : 'belongsTo',
 model : 'Survey.model.Survey',
 primaryKey : 'id',
 foreignKey : 'survey_id'
 },

Listing 14.7 Group model

Confirms
association with
Survey model

b

355Kicking off the Survey app

 {
 type : 'hasMany',
 model : 'Survey.model.Question',
 primaryKey : 'id',
 foreignKey : 'group_id',
 autoLoad : true,
 associationKey : 'questions',
 name : 'questions'
 }
],

 proxy : {
 type : 'memory'
 }
});

Because Survey is associated with Group, the latter needs to return the favor and set a

belongsTo association back to Survey B. Group acts as the go-between; it receives

data from Survey, and then forwards some to Question—hence the hasMany associa-

tion with Group c.

 Groups are read-only. They also receive data from another model, which is why it’s

sufficient to set the memory type of proxy d. Setting a proxy is mandatory.

 The final model is straightforward, as shown in the following listing. You need to

set up the fields and a single belongsTo association, connecting questions to groups.

Ext.define('Survey.model.Question', {
 extend : 'Ext.data.Model',

 requires : [
 'Ext.data.association.BelongsTo'
],

 uses : [
 'Survey.model.Group'
],

 fields : [
 {
 name : 'id'
 },
 {
 name : 'group_id'
 },
 {
 name : 'question'
 },
 {
 name : 'answer'
 },
 {
 name : 'config'
 }
],

Listing 14.8 Question model

Adds hasMany
associationc

Configures
memory proxyd

356 CHAPTER 14 Building an application

 belongsTo : [
 {
 model : 'Survey.model.Group',
 foreignKey : 'group_id'
 }
],

 proxy : {
 type : 'memory'
 }
});

The Question model is the one responsible for dynamic form generation. That’s why

it essentially consists of properties that determine generated field configuration. The

question property holds the question label, and you use it as the fieldLabel property

of an Ext.field.Field subclass. Similarly, the answer property holds a newly recorded

value, or even retrieves a previously saved entry from a server. Any other configuration

parameter, including xtype, can be specified in the config field.

 Models do most of the heavy lifting when it comes to data. They represent a collec-

tion of data and their fields, are able to normalize and validate data bound to them,

and know how to relate to other models through associations. But models represent

only a single record definition. You still need to set up the warehouse for all the Model

instances: stores.

14.3.6 Adding data stores

All three stores will mirror the same definition, thanks to the detailed setup of the

respective models. Let’s take a look at a store in the next listing.

Ext.define('Survey.store.Surveys', {
 extend : 'Ext.data.Store',

 requires : [
 'Survey.model.Survey'
],

 storeId : 'Surveys',
 autoLoad : true,
 model : 'Survey.model.Survey'
});

By now you’re familiar with how data stores work. In this example you’re referencing

the model name and a storeId that’ll make it easier to refer to a store with a view. You

only have to point a view to the storeId, and the view component can instantiate the

store if necessary. Otherwise it’ll reuse the existing instance.

 Defining data structure is a hard job, requiring the architect to plan ahead and

make important decisions early in the process. Choosing the right data models will

Listing 14.9 Surveys store

357Kicking off the Survey app

affect the client-side performance, the bandwidth consumed, and, ultimately, the

user experience.

 Often, server-side limitations will influence client-side data models. For example,

server administrators might have limited resources to format their existing API to send

the data needed for the Ext JS application to work. In such cases, make sure the com-

promise will make the least negative impact on the client side. In our example, the

server admin should strive to strip unnecessary parts of data objects, format to JSON

instead of XML, use compression, lessen recursion, and perform any other tricks

that’d benefit the client side. Client computers are likely to be weaker than servers,

and you don’t want users to experience any holdups.

 We’re halfway through the 11-SAW process, and you’re making great progress. You’ll

continue building views and controllers so that you can track progress in a browser.

14.3.7 Creating the authentication form

The landing page of the Survey application is the authorization form. The goal is to

have users enter their credentials and allow them through to survey selection. The

viewport is a card layout container, so you can place the authentication form (see fig-

ure 14.9) as the first child of the view. Once the user is successfully signed in, the view-

port will switch to the second card, the survey list.

 You’ll place the authorization form right in the middle of the page. Let’s go over

the view details:

■ It’s centered on the screen.

■ Fields are enclosed in a fieldset component.

■ Fields are anchored at 100%.

■ Login button spans the entire available width.

The following listing is a good review of how forms and layouts work.

Naming conventions notice

Models define the configuration of a single record, whereas stores define the con-

figuration of a set of Model instances. For that reason models are always named

in the singular and stores in the plural: for example, Survey.model.Survey and

Survey.store.Surveys.

Figure 14.9 Authentication form design

358 CHAPTER 14 Building an application

Ext.define('Survey.view.AuthorizationForm', {
 extend : 'Ext.form.Panel',
 alias : 'widget.authform',

 requires: [
 'Ext.form.field.Text',
 'Ext.form.FieldSet',
 'Ext.Button'
],

 layout : {
 align : 'center',
 pack : 'center',
 type : 'hbox'
 },

 items : [
 {
 xtype : 'fieldset',
 width : 300,
 title : 'Log in',
 items : [
 {
 xtype : 'textfield',
 anchor : '100%',
 fieldLabel : 'Email'
 },
 {
 xtype : 'textfield',
 anchor : '100%',
 inputType : 'password',
 fieldLabel : 'Password'
 },
 {
 xtype : 'button',
 anchor : '100%',
 itemId : 'loginBtn',
 text : 'Log in'
 }
]
 }
]

});

The VBox layout B ensures items are both vertically centered and packed to the hor-

izontal center. fieldset c contains the fields used to input the email and password

for authentication. Just like the Confirm button, they’re anchored to 100% of the

available width.

Listing 14.10 Authorization view

Extra credit

How will the layout be affected if you change VBox to HBox?

Centers
fieldset

b

Adds
fieldset

c

359Kicking off the Survey app

The next listing adds an empty component to the main viewport that’ll represent the

protected area.

items : [
 {
 xtype : 'authform'
 },
 {
 xtype : 'component',
 html : 'Protected area'
 }
]

Add the listing 14.11 code to Survey.view.Viewport. The first card, the authorization

form, will show by default when the viewport becomes visible. The second one, the pro-

tected area component, will only become active upon successful authentication.

 Note that the protected view is in another card without further security mecha-

nisms applied. A malicious user could easily replace active cards. Security procedures

vary from application to application, so we won’t cover them here, but it’s a good fact

to be aware of.

 You’ll soon be able to see the changes in a browser. The next step is to create your

first controller, which will listen for clicks on the Submit button, process the authenti-

cation, and finally show the protected area.

14.3.8 Plugging in the first controller

A controller’s main purpose is to establish a communication channel between views,

data, and user interaction. Controllers are an important element of the event-based

development process. They capture component-fired events and work with them to

ensure a fluid user experience. Controllers are aware of views, models, stores, and the

application as the four main interaction sources and targets. Also, Application is a

subclass of Controller. The most noticeable difference between the two is that a con-

troller can’t instantiate other controllers. That falls under Application’s legislation.

The following listing is a great representation of a common controller’s use.

Ext.define('Survey.controller.Authentication', {
 extend : 'Ext.app.Controller',

 views : [
 'AuthorizationForm'
],

 init : function (application) {
 this.control({
 "button#loginBtn" : {
 click : this.onLoginClick
 }

Listing 14.11 Adding the form to the viewport

Listing 14.12 Authentication controller

Configures
views

b

Creates click
handler

c

360 CHAPTER 14 Building an application

 });
 },

 onLoginClick : function (button) {
 // process authentication...
 button.up('vp').getLayout().setActiveItem(1);
 }
});

Although controllers are able to specify views, models, and stores as their dependen-

cies, in this case you only need to specify a single view B: the authorization form. Con-

trollers should only specify dependencies they really control, which is exactly why you

won’t specify any further views.

 Developers often wonder which models, views, and stores to include in a control-

ler. The rule of thumb says that you should think of those as meaningful, self-sufficient

packages. Specify all classes the controller can’t do its task without, and nothing more.

 Just as Ext.Component has initComponent, a controller has its counterpart in the

init method. It’s most frequently used to execute the controller’s control method.

Similar to addListener in a component, control is responsible for finding all compo-

nents that match a component query and assigning a listener to them c. Because

controllers instantiate before views, control will intelligently work with all future-

instantiated components.

 Event handlers are usually defined within a controller. According to the conven-

tion, all events fired by components should have the firing instance sent as the first

argument to the listening callback. Thus, a callback situated in a controller will have

an easy way to access the component’s instance reference.

 This particular component is stripped of a real-life authentication process for simplic-

ity’s sake. With current functionality, users are able to input their email and password and

click the Submission button, and the controller will send them to the next card in the

main viewport. You should now create other views and controllers in this application.

14.3.9 Survey views

You’re now familiar with the MVC process in Ext JS. Next you’ll create view and con-

troller definitions for the remaining classes. Views will be fairly simple, whereas control-

lers will take on some extra business logic work.

 To be able to display the rest of the Survey app, three view types will be needed:

■ Survey list—The listing of available surveys

■ Group list—The listing of available groups for the selected survey

■ Questions form—The host for dynamically created survey form fields

The next listing contains the code for the survey views.

Ext.define('Survey.view.SurveyList', {
 extend : 'Ext.grid.Panel',
 alias : 'widget.surveylist',

Listing 14.13 Survey views

Adds List of
surveysb

361Kicking off the Survey app

 title : 'Surveys',
 columnLines : false,
 store : 'Surveys',
 cls : 'surveylist',

 columns : [
 {
 xtype : 'gridcolumn',
 flex : 1,
 dataIndex : 'name',
 text : 'Surveys'
 }
]
});

Ext.define('Survey.view.GroupList', {
 extend : 'Ext.grid.Panel',
 alias : 'widget.grouplist',

 title : 'Sections',
 columnLines : true,
 store : 'Groups',
 cls : 'groupList',

 columns : [
 {
 flex : 1,
 dataIndex : 'name',
 text : 'Section'
 },
 {
 xtype : 'numbercolumn',
 width : 50,
 text : '#',
 renderer : function (value, meta, record) {
 return record.questions().getCount();
 }
 }
]
});

Ext.define('Survey.view.QuestionsForm', {
 extend : 'Ext.form.Panel',
 alias : 'widget.questions',

 requires : [
 'Ext.form.field.Checkbox',
 'Ext.form.field.ComboBox',
 'Ext.form.field.Date',
 'Ext.form.field.Display',
 'Ext.form.field.Hidden',
 'Ext.form.field.HtmlEditor',
 'Ext.form.field.Number',
 'Ext.form.field.Picker',
 'Ext.form.field.Radio',
 'Ext.form.field.Spinner',
 'Ext.form.field.Text',
 'Ext.form.field.TextArea',

Hides grid
panel headerc

Defines
GroupList viewd

Calculates
number of
questions

e

Defines
QuestionsForm classf

Requires all
field typesg

362 CHAPTER 14 Building an application

 'Ext.form.field.Time',
 'Ext.form.RadioGroup',
 'Ext.form.CheckboxGroup'
],

 layout : {
 type : 'vbox',
 align : 'center'
 }
});

To display the list of available surveys, you use a grid panel B with a single column.

Because only names are shown, there is no need for header rows, so you disable

them c. Quite frankly, all that could be done to remove headers was to hide them

through CSS. They’ll still be rendered, and headers-specific calculations won’t cease

to exist.

 Next is the Groups list component d. It’s another simple grid panel, similar to the

Survey list. This one has an extra column, fed with the number of questions allocated

for a group. The way you get to the number is interesting; you use associations to

access a group’s questions. Calling for associations generates a Store instance loaded

with the respective records. You use the getCount() method e, a member of the

Ext.data.Store class.

Even simpler, the QuestionsForm class f serves as the parent container for all ques-

tions g that’ll eventually be dynamically rendered into it. The plan is to add a button

under each question group that makes it easier to navigate to the next group, or ulti-

mately to end a survey. To make it more aesthetically pleasing, the button will display

horizontally centered onscreen. Setting the layout type to vbox and aligning it to the

center h is an easy way to achieve the desired effect. Questions will flex to occupy all

of the available width. That part will be done dynamically with controllers, which we’ll

cover next.

UPDATING THE VIEWPORT

Now you need a home for all the newly defined views. In the Survey.view.Viewport

class, its layout type is set to card. The first card resolves the authorization screen,

which is also the initial screen of the Survey application, according to listing 14.11. As

in listing 14.12, the Authentication controller will switch to the second card nested

under the viewport, which is exactly where you’ll place the survey-related views.

 Figure 14.6 shows that the group list is stacked right above the survey list. Both

lists occupy the left (or west) area of the screen. The larger section is reserved for

When will a hasMany association store be created?

When accessing a Model instance’s (a.k.a. record’s) hasMany associated data, such

as in the renderer in listing 14.13, Ext JS will create an Ext.data.AbstractStore
instance, which is a simplified version of Ext.data.Store. The instance will stay

cached with the record for future use, yet it’ll also be destroyed with it.

Centers all
child items

h

363Kicking off the Survey app

questions. It makes sense to plug all that into the Viewport class, as shown in the

next listing.

Ext.define('Survey.view.Viewport', {
 extend : 'Ext.container.Viewport',
 alias : 'widget.vp',

 requires : [
 'Survey.view.AuthorizationForm',
 'Survey.view.SurveyList'
],

 layout : {
 type : 'card'
 },

 items : [
 {
 xtype : 'authform'
 },
 {
 xtype : 'container',
 itemId : 'mainContainer',
 layout : {
 align : 'stretch',
 type : 'hbox'
 },
 items : [
 {
 xtype : 'container',
 minWidth : 200,
 flex : 1,
 layout : {
 align : 'stretch',
 type : 'vbox'
 },
 items : [
 {
 xtype : 'grouplist',
 flex : 2,
 hidden : true
 },
 {
 xtype : 'surveylist',
 flex : 1
 }
]
 },
 {
 xtype : 'questions',
 bodyPadding : 10,
 flex : 3
 }

Listing 14.14 Updated Viewport class

Adds Surveys
view

b

Sets left column
container

c

Adds
GroupList view

d

Adds
Survey list

e

Adds
Questions view

f

364 CHAPTER 14 Building an application

]
 }
]
});

All of the views are nested under an HBox layout container B. The container splits

the screen into four equal vertical sections. Three sections are used by questions f,

and one section is used by the left navigation bar c. The latter is yet another box lay-

out container, but this time it’s vertically oriented. Two parts are occupied by the

group list d, and one part is used by the survey list e.

 As you can see, grouplist is initialized as hidden to give focus to surveylist. That

makes sense, because the user needs to select a survey before going further. Selecting

a survey will automatically engage the group list’s visible property, recalculating

heights to match the desired layout pattern. This automation is controlled through

controllers, which leads us to their setup.

14.3.10 Survey controllers

From what you just saw, views are basic and simple. That’s the way they should be: no

data and little if any interaction. Controllers are there to direct all the dynamics to

the views.

 You used controllers when you defined the Authentication controller class (in

listing 14.4). That leads us to the very last couple of items to define: Surveys and

Questions controllers. Each will manage its respective area of the application. Let’s

explore both of the controller classes.

SURVEYS CONTROLLER

The amount of interaction needed for surveys is minimal, but it rounds up all fre-

quently used controller features. As we outlined earlier in this chapter, controllers

manage dependencies to a great extent. This one in particular will need to refer-

ence all views, models, and stores related to Surveys and Groups. The Surveys con-

troller has an additional task: to wait for users to select a survey in the Survey list

view, and show the appropriate groups for further selection. Let’s make it happen in

the next listing.

Ext.define('Survey.controller.Surveys', {
 extend : 'Ext.app.Controller',

 models : [
 'Survey',
 'Group'
],
 stores : [
 'Surveys',
 'Groups'
],
 views : [
 'GroupList',

Listing 14.15 Surveys controller

Sets
dependencies

b

365Kicking off the Survey app

 'SurveyList',
 'QuestionsForm'
],

 refs : [
 {
 ref : 'groupList',
 selector : 'grouplist'
 }
],

 init : function () {
 this.control({
 surveylist : {
 select : this.loadGroups
 }
 });
 },

 loadGroups : function (grid, record) {
 var groups = this.getGroupList(),
 groupRec,
 questions;

 groups.show();

 groups.reconfigure(record.groups());

 groupRec = groups.getStore().getAt(0);
 if (groupRec) {
 groups.getSelectionModel().select([groupRec]);
 }

 questions = groups.up('#mainContainer').down('questions');
 questions.setTitle(record.get('name'));
 }
});

The first step is to define dependencies B. You’ll immediately notice all the models,

stores, and views specified. That makes sense, because this controller interacts with

both surveys and groups. Also notice that although we talked about the Questions-

Form view, you have a dedicated Questions controller planned. This is because

QuestionsForm is being accessed further down the controller to set its title dynamically.

 In section 14.2.2, we discussed several ways of setting dependencies, mentioning

controllers, models, views, and stores. These four types are different because you

don’t have to specify the full class name. For instance, it’s easy to assume that the

Group model will have a class name of Survey.model.Group. Thus, you only specify

the last bit of the name (for example, Group or package.Group if the class name is

Survey.model.package.Group).

 Before we go any further let’s discuss references. References are used to quickly

access the first instantiated component using a defined component query selector.

You create a reference to quickly access the GroupList when needed. Refs will auto-

matically create a getter, a convenient method used to call up the referenced instance.

Listens for
selection of
SurveyList items

c

Accesses GroupList
reference

d

Selects first
available group

e

366 CHAPTER 14 Building an application

This ref will create the getGroupList() method c, which is a member of the Surveys

Controller instance.

 The grid selection listener efficiently calls the loadGroups callback, which in

turn makes a few changes to the user interface. First, it uses the configured ref get-

ter d to make the GroupList visible. Making the list visible causes the left column

to recalculate the layout, as the 2:1 height ratio between GroupList and SurveyList

is finally enforced.

 Next comes reconfiguration of GroupList, or in other words, replacing the store

with the newly created one. The new store was automatically generated when record

.groups() was called, and the hasMany association was engaged. The new store, or the

association if you will, is then accessed to determine its first record, which is also going

to be automatically selected e. This part is interesting. By selecting a list item, you’ll

also trigger the select event, which you’ll later use to load the question. But you’re

leaving that part for another controller, dedicated to questions. Notice the thin line

that separates the two controllers?

 Let’s move on to the Questions controller.

QUESTIONS CONTROLLER

The most comprehensive controller takes charge of rendering questions and saving

their values as users are typing or making selections. It looks like it’s easier said than

done, but the framework does a lot of work here. Take a look at the next listing.

Ext.define('Survey.controller.Questions', {
 extend : 'Ext.app.Controller',

 views : [
 'QuestionsForm'
],

 refs : [
 {
 ref : 'form',
 selector : 'questions'
 },
 {
 ref : 'groups',
 selector : 'grouplist'
 }
],

 init : function (application) {
 this.control({
 grouplist : {
 select : this.showGroupQuestions
 },

 '#groupNext' : {
 click : this.showNextGroup
 },

Listing 14.16 Questions controller

Adds Controller
dependenciesb

Establishes
awareness of
groups switch

c

367Kicking off the Survey app

 '#surveyFinish' : {
 click : this.finishSurvey
 },

 'questions field' : {
 change : this.saveItem
 }
 });
 },

 showGroupQuestions : function (grid, record, index) {
 var questions = record.questions(),
 form = this.getForm(),
 store = grid.store,
 isLastGroup = (store.getCount() - index) === 1,
 fields = [];

 questions.each(function (question) {
 var field = Ext.apply({
 fieldLabel : question.get('question'),
 value : question.get('answer'),
 question : question,
 anchor : '100%',
 xtype : 'textfield'
 }, question.get('config'));

 fields.push(field);
 });

 form.removeAll();
 form.add({
 xtype : 'fieldset',
 title : record.get('name'),
 items : fields,
 width : '100%'
 });

 form.add({
 xtype : 'button',
 text : isLastGroup ? 'Save' : 'Next',
 itemId : isLastGroup ? 'surveyFinish' : 'groupNext',
 width : 200
 });
 },

 showNextGroup : function () {
 var grid = this.getGroups(),
 store = grid.getStore(),
 selModel = grid.getSelectionModel(),
 selected = selModel.getLastSelected(),
 curIndex = store.indexOf(selected),
 next = store.getAt(curIndex + 1);

 if (next) {
 selModel.select([next]);
 }
 },

Listens for
changes in
question fields

d

Processes
group selectione

Prepares form
fields based on
questions dataf

Adds fieldset to
contain question fields

g

Adds convenience
group switch button

h

Sets automation for
switching groupsi

368 CHAPTER 14 Building an application

 finishSurvey : function () {
 var groups = this.getGroups();
 this.getForm().removeAll();
 groups.getSelectionModel().deselectAll();
 groups.hide();
 groups.up().down('surveylist').getSelectionModel().deselectAll();

 },

 saveItem : function (field) {
 var question = field.question;

 if (!question) {
 field = field.up('[question]');
 question = field.question;
 }

 if (question) {
 question.set('answer', field.getValue());
 }
 }

});

As listing 14.16 shows, the Questions controller does a great deal of work. It starts

with view dependencies B, and you’ve already defined that view in the Surveys con-

troller. Repeating dependencies isn’t a bad practice. Rest assured, the loader isn’t

going to include it twice. Redefining dependencies allows you to create reusable

code and, at the same time, make sure another developer knows what the particular

class deals with.

 The this.control section lists four listeners. It completes the interaction with the

Surveys controller by listening for the GroupList item selection event c. The Surveys

controller forces selection of the first group for the previously selected survey. It’s

that very moment when the Questions controller takes over and processes group

selection e. It’ll first iterate through all the questions available in the chosen group

and create an array of Ext.form.Fields. Then comes the removal of all existing com-

ponents nested in QuestionsForm, if any, to make room for Ext.form.FieldSet,

which is just a container for the questions g. The fieldset’s title conveniently equals

the selected group name. At this point, QuestionForm’s title shows the survey name,

and the fieldset’s counterpart shows the group name. This will be useful for letting

your users know exactly what they’re filling out. Of course, the fieldset’s items prop-

erty references the array of question fields gathered in step f.

 A helpful button is added right under the fieldset in h. If there are more groups

to visit in the active survey, the button will switch to the next one i. Otherwise, it’ll

finish the survey by restoring state to the default views with only the list of surveys pop-

ulated j.

 Questions are data-driven, meaning they come from a server. In many cases they’ll

be associated with a form builder application. You want data to be saved constantly,

without users having to click a dedicated save button. This means you need to listen

for a generic event that persists in all fields: the change event d. Its handler simply

Finishes survey,
resets Surveys viewj

Saves
question value

1)

369Kicking off the Survey app

accesses the getValue method of the selected field and stores the value in the model

instance of the question 1). But there’s a “gotcha” here. Complex fields, such as

radiogroup and checkboxgroup, act differently for this event. Their nested children

fire the change event, but the group container reads and sets the value. In such a case

you need to go a step up from the event-firing field to access the getValue method.

 Voilà, the application is ready for testing. Ready? Let’s fire it up. Figure 14.10

shows the client’s view of a survey. They selected a survey, which automatically

selected the first available group, consequently loading the applicable questions in

the middle section of the page. Their changes are automatically saved and previous

answers loaded. Moving to another group is seamless, either by clicking the Next but-

ton or by selecting another group from the list.

 Congratulations, you’ve completed the target application. As it is, it’s a great test-

ing ground for further Ext JS application development. If you’re interested in more,

here are some ideas on how to enhance the Survey app:

■ Set up a whole CRUD workflow with the server.

■ Add reports using Ext JS charts.

■ Create a survey management interface with a form builder.

■ Apply custom styling.

Because we decided to call this a stable version of the app, let’s package it for produc-

tion. To do so, you’ll put Sencha Cmd’s build process to work.

Figure 14.10 Final survey walkthrough

370 CHAPTER 14 Building an application

14.4 Packaging

Packaging is a process of preparing a web application for optimum delivery. Sencha

Cmd makes packaging quick and easy, and among other great features, it helps to

■ Decrease total size for faster transport through a network

■ Increase execution speed

■ Lower memory footprint

It accomplishes these goals by

■ Removing unnecessary parts, such as classes, components, and even method calls

■ Concatenating JavaScript and CSS code

■ Minifying JavaScript and CSS code

The initial steps of creating the application through Sencha Cmd are going to prove

fruitful now that it’s time for packaging.

 In most cases, an application will be ready for immediate build. But you must

include an additional file, data.json, so additional configuration is necessary. Natu-

rally, should you migrate to a RESTful (or similar client-server-based) environment,

you can skip this step.

 To include the required file in the build process, you’ll have to make a minor mod-

ification to the app.json file. This JSON object already has a bit of pregenerated con-

tent, to which you’ll append an array property named resources. The resources

property tells Sencha Cmd to replicate files or folders in the built version of the appli-

cations, respecting relative locations. This is what the file will look like when you add

data.json to it:

{
 "name": "Survey",

 "requires": [
],

 "resources": [
 "data.json"
],

 "id": "c17ccff8-b8c9-4fb1-80f5-8f818603a5e5"
}

You’re all set to build the app. Two build types apply to Ext JS applications through

Sencha Cmd:

■ Testing—Concatenated JS and CSS files with minimal optimizations

■ Production—Fully optimized and minified JavaScript and CSS

Because the building process is identical, we’ll skip straight to the production build.

Open the terminal, and navigate to the root of the Survey application folder. Now exe-

cute the following command:

sencha app build production

371Summary

Sit back and relax while your computer gets

hot as it checks your JavaScript code for errors,

compiles SASS theme, concatenates and mini-

fies code, and does a lot more to optimize

your application for best performance and

experience.

 As figure 14.11 confirms, Sencha Cmd cre-

ated a new directory structure under the build

folder, containing the production version of

the Survey application. Let’s see how the built

version differs from the original, development

source code.

 In terms of speed, the overall benchmark

shows the following:

■ Unbuilt (development) version execution time: 1764.207 ms

■ Fully built (production) version execution time: 472.525 ms

Impressively, the speed more than tripled in the production build. Actually, it’s

3.7x faster, a multiplier that would have become even larger had you downloaded

the app from a remote location over a poor internet connection. What about the

total size?

 Using the Network tab in Chrome Inspector (or any other web inspector you

favor), you can see how the two versions differ:

■ Unbuilt (development) version transfer: 3.8 MB in 274 requests

■ Fully built (production) version transfer: 1.2 MB in 4 requests

The production build is indisputably the preferred way of serving your app to the end

user. It’s faster to execute, and it’s also much faster to download and uses far less

expensive requests.

 In a regular application development cycle, this would be the last test after quality-

assurance testing. That makes it a great time to say congratulations! Enjoy testing both

locally and remotely to experience the full benefit of the Sencha Cmd build process

with the app that you built on your own—from scratch.

14.5 Summary

In this intensive chapter, you explored the major steps of building an application.

Whether it’s small or huge, the development process is always the same. The 11-SAW

process will be a helpful resource when you’re planning development steps. Keep in

mind that coding conventions are important for the product life cycle. Use the Ext

JS conventions described in this chapter, but also use those for developing in Java-

Script and CSS.

Figure 14.11 Built application files

372 CHAPTER 14 Building an application

 We covered a great amount of content in this book. You read about the frame-

work’s internals, widgets, class system, MVC pattern, Sencha Cmd build process, and

more. The framework continues to live, and Sencha will keep on enriching it with new

and exciting features. Perhaps the most important skill we hope you learned is the

ability to dive into the Ext JS source code, which constantly gives solutions to a myriad

of questions.

373

index

Numerics

11-SAW (11-step Sencha Applica-
tion Workflow) 344

A

A (Elliptical arc) command 229
Absolute layout 98–99
AbstractComponent class 55
AbstractPlugin class 326–327
AbstractStore class 362
AbstractView class 207
accessor method 50
Accordion layout 100–102
activeItem property 104
activeOnTop option 101
activeTab parameter 88
adapter layer, deprecated

features 17
add method 59
addListener method 208
addProvider method 261
addToGroup method 275, 283
afterRender method 55
Ajax (Asynchronous JavaScript

and XML) 37–38
alert method 81
alerts, creating using Message-

Box class 81–82
align parameter 108, 110
allButtons array 76
Anchor layout 94–97
anchor property 94, 96–97, 101,

122
animateEl property 79

animation, in MessageBox
class 84–85

api object 159
appendChild method 284
applications, building 337–372

application (infra)structure
development within

namespace 339–341
dynamic dependency

loading 341–344
packaging 370–372
Surveys app

adding data stores 356–357
adding models to

application 352–356
controllers 364–369
creating authentication

form 357–359
data-driven application

model 351–352
from idea to code 344–346
generated app, looking

at 348–351
plugging in first

controller 359–360
Sencha Cmd, using 345–

348
views 360–364

thinking as web UI
developer 338

apply method 282, 297, 303
applyTo attribute 49, 53
Array class 154
ArrayReader class 155
arrays, reading data 153–156
ArrayStore class 131, 154–155

associating data, for data
store 164–167

Association class 149, 152, 164
associationKey property 353
Asynchronous JavaScript and

XML. See Ajax
authentication form, in Surveys

app 357–359
Auto layout 92–94
autocomplete text 15
autogenerated values 52
autoLoad property 303
autoScroll property 94, 106–107
autoSize option 220, 225
axes, for Cartesian charts 233–236
axis property 246

B

b4Drag method 274, 286
b4EndDrag method 289
b4MouseDown method 275
b4StartDrag method 275, 281,

285
background property 246
Base class 244, 248
BasicForm class 10
bbar property 70, 72
beforeDestroy method 56
beforeload event 130
beforerender event 54
beforeshow event 51
belongsTo association 165, 355
body wrap element 176
<body> element 29, 44
Border layout 113–118

INDEX374

boxLabel property 135
btn handler 69
buffered paginated

scrolling 178–180
Build folder, Ext JS SDK 23
buildCtxMenu method 206, 208
building applications

application (infra)structure
development within

namespace 339–341
dynamic dependency

loading 341–344
packaging 370–372
Surveys app

adding data stores 356–357
adding models to

application 352–356
controllers 364–369
creating authentication

form 357–359
data-driven application

model 351–352
from idea to code 344–346
generated app, looking

at 348–351
plugging in first

controller 359–360
Sencha Cmd, using 345–348
views 360–364

thinking as web UI
developer 338

buildMenu method 323
Builds folder, Ext JS SDK 23
Button class 190
Button reference 69
button-Align property 80
buttons property 76, 83
buttons, adding to panel 71–72
bwrap (body wrap) element 176

C

C (Curve to) command 229
cache buster parameter 178
callParent method 320
Canvas class 21
CardLayout class 86, 102–105
Cartesian charts

axes 233–236
custom shapes in 240–242
series for

adding 236
adding multiple 242–244

visual customizations 237–240
Cascading Style Sheets. See CSS

cellcontextmenu event 193
CellEditing plug-in 20, 183, 209,

266
CellSelectionModel 11, 321
Chart class 233–234, 239, 241–

242, 248
charts

Cartesian charts
adding multiple series 242–

244
adding series 236
axes 233–236
custom shapes in 240–242
visual customizations 237–

240
new features in 4.0 21
overview 231–233
pie charts 248–250
themes for 244–248

Checkbox class 15
checkbox field 134–136
CheckboxGroup class 134, 136
checkboxgroup field 369
child nodes

creating 33–35
removing 35–37

childNodes array 200
children property 200
children, in containers 59–60
class system

dynamically loading classes
with Ext JS loader
hybrid approach 333–336
load everything

dynamically 330–332
loading dependencies for

Window class 332–333
extending Ext JS components

grid panel 322–323
implementation of

extension 324–325
planning beforehand 321–

322
inheritance, classic JavaScript

creating base class 314–315
creating subclass 315–317

inheritance, Ext JS
creating base class 317–319
creating subclass 319–320

new features in 4.0 17–18
plug-ins

developing 327–330
parts of 326–327

classes, for data store 148–149
clear event 130

clicksToEdit option 188, 211
close method 78–79
Close path (Z) command 229
closeAction option 79
collapseMode parameter 116
collapsible attribute 70
colors property 247
colspan attribute 111–112
column config property 113
Column layout 105–107
columns attribute 136
columns, in grid panel 174–175
columnWidth parameter 109
ComboBox field 14

customizing 130–131
local 125–127
overview 124–125
remote 127–129

Component class 46, 50, 219–

221, 230–231, 297
component layouts 92
Component model 4

life cycle
destruction phase 56–57
initialization phase 51–53
render phase 53–55

overview 46–47
querying in 60–62
rendering models 49–50
XTypes and 47–49

ComponentManager class 47,

52, 56–57
ComponentQuery class 60, 206
components

MessageBox class
animation in 84–85
creating alerts 81–82
options for 82–84

Panel class
adding buttons and

tools 71–72
docking items 72–74
overview 68–69
toolbars in 69–70
weight of components

in 75–77
TabPanel class

creating 86–88
methods for 89–90
overview 85–86

Window class
configuring 79–80
creating modal dialogs 77–

79
overview 77

INDEX 375

config property 352
confirm method 194, 213–214
conjoon 5
Container class 10, 68
container layouts 68, 92
Container model 4
containers

children in 59–60
creating 57–58
for grid panel 176–178
overview 9–10
querying components in 60–62
viewport container 62–64

containerScroll property 295
context menus, in tree

panel 205–209
contextmenu event 321
ContextMenuGridPanel

class 322, 325
control method 360
controllers, in Surveys app

Questions controller 366–369
Surveys controller 364–366

conventions, naming 357
core components

MessageBox class
animation in 84–85
creating alerts 81–82
options for 82–84

overview 8
Panel class

adding buttons and
tools 71–72

docking items 72–74
overview 68–69
toolbars in 69–70
weight of components

in 75–77
TabPanel class

creating 86–88
methods for 89–90
overview 85–86

Window class
configuring 79–80
creating modal dialogs 77–

79
overview 77

createChild method 34–35
createSurface method 226
CRUD operations

Ext.data.DirectStore
class 265–268

in grid panel
creating 190–195
deleting 190–195

rejecting changes 189–190
saving changes 189–190

in tree panel
creating nodes 215–217
deleting 213–215
displaying context

menus 205–209
editing 209–213
overview 205

CSS (Cascading Style Sheets)
file 7, 348

Curve to (C) command 229
custom style sheets 22
cx property 221
cy property 221

D

data package, new features in
4.0 18

data services 8–9
data store

associating data 164–167
classes for 148–149
data proxies 150–152
flow of data 149–150
in grid panel 173–174
models 152–153
overview 147–148
readers 152–153
reading data

array data 153–156
JSON data 156–157
XML data 158–159

storing data
overview 159–161
syncing data 163–164
validating model data 161–

163
data Store class 20, 148
data stores, in Surveys app 356–

357
data views, drag-and-drop with

creating views 290–294
drag gestures 294–297
drop target 297–301
overview 290

data-bound views 11–12
datachanged event 130, 212–

213
data-driven application

model 351–352
dataIndex property 170, 186
DataView class 11
DatePicker widget 133–134

dblclick event 211
DD class 272, 274, 277–282, 284,

286
ddel property 304
ddGroup property 297
DDProxy class 279

implementing drop
invitation 286–290

overview 286
DDTarget class 272–273, 280,

283–284, 297
decimalPrecision property 124
defaultType property 47, 88, 99,

122
defer attribute 29
deferredRender parameter 86
define method 319, 335
destroy method 56, 59, 79, 183,

278
destruction phase, component

life cycle 56–57
Direct class 252, 254, 265
DirectProxy class 155
DirectStore class 265–268
disable method 55, 89
displayField 128
div element 32, 286
Dock class 70
Dock layout 19
dockedItems property 74, 176
docking

items in panels 72–74
new features in 4.0 19
overview 70

docReadyEvent event 30
docs folder, Ext JS SDK 23
Document Object Model. See

DOM
documentation 5–6
doLayout method 89, 94, 107
DOM (Document Object

Model)
checking when ready 29–31
Ext.Element class

creating child nodes 33–35
example using 31–33
overview 31
removing child nodes 35–

37
using Ajax with 37–38

Ext.Template class 38–40
Ext.Xtemplate class

advanced usage 42–44
looping through data 41–42

DOMContentLoaded event 29

INDEX376

doMsgBoxAlert method 180–181
doRowCtxMenu method 180–

181, 186, 192–193
doRowDblClick method 181
downloading Ext JS 22–24
drag proxy 270
drag-and-drop

association with groups 275
class hierarchy 271–274
DDProxy class

implementing drop
invitation 286–290

overview 286
example using

configuring draggable
items 277

creating workspace 275–

277
DD class 277–279
drop invitation 281–283
drop targets 279–280
invalid drop method 285
valid drop method 283–284

life cycle of process 270–271
overriding methods for 274–

275
overview 9
with DataView

creating views 290–294
drag gestures 294–297
drop target 297–301
overview 290

with GridPanel 301–304
with TreePanel

creating tree panels 305–

306
drop constraints 310
enabling 306–307
overview 304–305

DragDrop class 272, 278
DragDrop plug-in 20
dragDropEl element 296
DragProxy class 288, 298
dragRecords property 296
DragSource class 273–274, 297
DragZone class 273

and DropZone 274
employing drag-and-drop with

data views 306
StatusProxy used by 294

drawing
concepts 219–220
new features in 4.0 21
overview 219
paths 228–231

sprites
drawing 221–222
interactions between 225–

228
overview 220–221
positioning 222–224
sizing 222–224
sizing automatically 224–

225
drive method 316
drop constraints 309–310
drop invitation

DDProxy class 286–290
overview 281–283

drop targets
drag-and-drop with data

views 297–301
overview 279–280

DropTarget class 273–274
DropZone class 296

employing drag-and-drop with
data views 306

multiple-node drops 274
purpose of 274

dropZoneOver CSS class 281
duration property 33
dynamic dependency

loading 341–344

E

each method 40, 277, 296, 299
easing property 33
Editing class 209–210
el property 31, 44, 50, 54
Element class 29, 44

creating child nodes 33–35
example using 31–33
overview 31
removing child nodes 35–37
using Ajax with 37–38

[element id] attribute 123
Element.dom property 35
Element.down method 36
elements, association with groups

for drag-and-drop 275
ellipsis method 202
Elliptical arc (A) command 229
emplSelected CSS class 291
enable method 89
enableDragDrop property 306
endDrag method 281, 285, 289
enginePriority option 220
event handlers, for grid

panel 180–183

eventObj argument 284
EventObject class 181, 208
examples folder, Ext JS SDK 24
Ext Draw 21
Ext JS

components
grid panel 322–323
implementation of

extension 324–325
planning beforehand 321–

322
documentation 5–6
downloading 22–24
general discussion 4–5
“Hello world” example 24–27
loader, dynamically loading

classes
hybrid approach 333–336
loading dependencies for

Window class 332–333
loading everything

dynamically 330–332
new features in 4.0

adapter layer
deprecated 17

charts 21
data package 18
docking system 19
drawing 21
grid panel

improvements 19–20
layouts 19
MVC architecture 22
new class system 17–18
packaging tool 22
Sass 22
tree panel

improvements 20–21
required knowledge 7
UI widgets 7

ext keyword 256
Ext.chart package 231
Ext.data package 254
Ext.Direct, remote method invo-

cation with
client-server interaction 252
CRUD-enabled

Ext.data.DirectStore 265–

268
directly invoking remote

methods 262–264
Ext.Direct vs. REST 252–255
server-side setup 255–257
working with remote

methods 257–262

INDEX 377

Ext.emptyFn 205–206
Ext.onReady 25, 29–30, 266,

332
Ext.util namespace 17
ext*.js folder, Ext JS SDK 24
ext-all.css file 24
ext-all-debug.js file 24
ExtDirect.php file 259
extending Ext JS components

grid panel 322–323
implementation of

extension 324–325
planning beforehand 321–

322
Extensible Markup Language.

See XML

F

features, new
adapter layer deprecated 17
charts 21
data package 18
docking system 19
drawing 21
grid panel improvements 19–

20
layouts 19
MVC architecture 22
new class system 17–18
packaging tool 22
Sass 22
tree panel improvements 20–

21
female element 282
Field class 153, 155, 161, 356
FieldContainer class 11, 139
fieldLabel attribute 121, 356
fields property 126
FieldSet class 138, 368
fieldsetContainer 142
fieldsets 137–140
file select field 123
fill property 221
Filter class 149
findChild method 198
Firebug live HTML tab 334–

335
Fit layout 99–100
flex parameter 109
flow of data

for data store 149–150
for tree panel 198

font property 221
for attribute 43

forceSelection 127–128
foreign key 352
form element 10
$format argument 258
Format class 9
format property 132–133
FormPanel class 11, 25
forms

checkbox field 15, 134–136
ComboBox field

customizing 130–131
local 125–127
overview 124–125
remote 127–129

DatePicker widget 133–134
file select field 123
form panel

creating fieldsets 137–140
creating tab panel 140–

142
overview 136–137

HTML Editor
creating 132–133
lack of validation 133
overview 15

loading data into 144–146
number field 124
overview 14
password field 123
radio buttons 15, 134–136
submitting

using Ajax 143–144
using submit method 142–

143
text area field 14, 123–124
text field 14
time field 131–132
Trigger Field class 15–16
validating fields 120–123

fpItems array 121–122
fx class 285

G

gear property 315
get method 181
getBody method 37
getCmp method 208
getCompany.php

controller 203–204
getCount method 362
getDragData method 296–297,

304
getEditingContext method 210
getEl method 31, 44

getElementById method 31–32,

35
getForm method 122, 143
getGroupList method 366
getInnerTpl method 131
getModifiedRecords

method 164
getNewRecords method 164
getPath method 198
getRemovedRecords

method 164
getRepairXY method 296–297
getSelection method 181
getValue method 369
getValues method 145
getXY method 181, 208
gradients option 220
grid panel

buffered paginated
scrolling 178–180

columns in 174–175
configuring data store 173–

174
container for 176–178
creating 170–172
CRUD operations

creating 190–195
deleting 190–195
rejecting changes 189–190
saving changes 189–190

editing data in 183
editing plug-in for 183–189
event handlers for 180–183
extending 322–323
options for 175–176
overview 169–170
widget 19–20

GridDragZone class 273, 306
GridPanel class 11, 207, 301–

304
Group class 353
Grouper class 149
groups method 366
groups, drag-and-drop associa-

tion with 275

H

H (Horizontal line to)
command 229

handleNav method 104
hasMany association 165, 353–

355, 362, 366
HBoxLayout 107–110, 301
header property 186

INDEX378

height property 220
“Hello world” example 24–27
hello_world.js file 24
hiddenName property 128
hide method 78
hideable property 175, 178
hierarchies

drag-and-drop classes 271–

274
tree panel and 196–197

highlight object 238
Horizontal line to (H)

command 229
Hot Tub element 279
HTML (Hypertext Markup

Language) 7
HTML Editor

creating 132–133
lack of validation 133
overview 15

HttpProxy class 155

I

iconCls property 201
idProperty 157
if statement 284
infinite grid 20
inheritance

classic JavaScript
creating base class 314–

315
creating subclass 315–317

Ext JS
creating base class 317–

319
creating subclass 319–320

init method 210
initComponent method 51–52
initialization phase 51–53
inputValue property 135
insert method 59, 192
insertFirst method 34
invalid drop method 285
invalidDrop property 282, 285,

289
isCamry method 42–43
isTarget property 282
isValid method 122
itemcontextmenu event 192,

205, 207–208, 211, 323, 325,

328
items array 120
items property 50, 94, 226, 233,

240–241

J

JRE (Java Runtime
Environment) 345

JS class 313–314, 317–318, 327,

330, 332–333
JSBuilder 22
jsbuilder folder, Ext JS SDK 24
JSON (JavaScript Serialized

Object Notation) 8, 156–

157
JsonP proxy 127, 151–152, 155,

161
JsonReader class 155
JsonStore class 131, 302
JsonWriter class 160

L

L (Line to) command 229
layout property 99, 101, 104,

106
layout-Config (Object)

configurations 101–102
layouts

Absolute layout 98–99
Accordion layout 100–102
Anchor layout 94–97
Auto layout 92–94
Border layout 113–118
Card layout 102–105
Column layout 105–107
component layouts 92
container layouts 92
Fit layout 99–100
HBox layout 107–110
new features in 4.0 19
overview 10
Table layout 110–113
VBox layout 107–110

lbar attribute 72
leadingBufferZone 180
leaf property 200, 203–204
left property 279
leftDockedToolbar 76
Legend class 231
life cycle of components

destruction phase 56–57
drag-and-drop process 270–

271
initialization phase 51–53
render phase 53–55

Line to (L) command 229
list view widget 12
ListBox class 131

LiveGrid control 4
load method 37–38, 145
loadData method 151
loader property 52
loadMask method 176
loadRecord method 145
locale folder, Ext JS SDK 24
LocalStorage proxy 18, 151
lockerRoomChildren class 288
loops, using Ext.Xtemplate class

with 41–42

M

M (Move to) command 229
Manager class 261
margins parameter 115
marker property 247
markerConfig property 238
markerThemes property 247
maxHeight parameter 115
maxLength parameter 121
maxValue property 124, 132
MemoryProxy class 151, 155
Menu class 181, 205–206
MessageBox class 30, 69, 191

animation in 84–85
creating alerts 81–82
options for 82–84

methods, overriding 274–275
minChars property 128
minHeight parameter 80, 115
minification tool 22, 349
minLength parameter 121
minValue property 124, 132
minWidth parameter 80
MixedCollection class 58, 200,

206
mixins 17, 57
modal dialogs, creating using

Window class 77–79
Model class 147, 149, 152, 155,

161, 165, 243, 265
models, for data store 152–153
mousedown event 275
mouseout event 225
mouseover event 225
Move to (M) command 229
Msg alert dialog 25
msg property 143
msgTarget property 122–123
MVC architecture, new features

in 4.0 22
MyApp.car namespace 318
myBottomToolbar 70

INDEX 379

myBtnHandler method 69, 71
myCallback method 81
myDiv class 32
myTopToolbar 70
myTpl variable 38

N

namespaces 339–341
naming conventions 357
newWindow method 79
Node.js 257
NodeInterface class 197–198,

200, 207, 217
nonclosable tab 88
NPC (Namespace/Package/

Class) pattern 340
number field 124

O

object-oriented programming.
See OOP

Observable class 52
octaneRequired property 315–

316
OKCANCEL property 83
onBeforeDrag method 310
onClick event 163
onConfirmDelete method 213–

214
onContainerDrop method 299–

300
onContainerOver method 298
onCtxMenu method 205–207
onDelete method 191, 194, 214
onDestroy method 56, 323
onDocumentReady event 29
onDrag method 274
onDragDrop method 274, 281,

283–284, 288–289
onDragEnter method 274, 281–

282, 288
onDragOut method 274, 281–

282, 284, 288
onDragOver method 274
onEdit method 215–216
onFocus handler method 55
onInsertRecord method 193
onInvalidDrop method 274,

281, 284–285, 289
onItemContextMenu

method 323
onLayout method 106
onLoad method 29, 44

onMouseMove event 274
onSuccessOrFail method 143
OOP (object-oriented

programming) 339
opacity property 221
operations

in grid panel
creating 190–195
deleting 190–195
rejecting changes 189–190
saving changes 189–190

in tree panel
creating nodes 215–217
deleting 213–215
displaying context

menus 205–209
editing 209–213
overview 205

options
for grid panel 175–176
for MessageBox class 82–84

opts argument 242
originalXY property 285, 288
overCls property 54
overriding methods, for drag-

and-drop 274–275
overview folder, Ext JS SDK 23

P

packaging 22, 370–372
pageSize property 125, 129, 174,

176
Panel class 264–265, 322–323

adding buttons and tools 71–

72
docking items 72–74
overview 68–69
toolbars in 69–70
weight of components in 75–

77
panels

buffered paginated
scrolling 178–180

columns in 174–175
configuring data store 173–

174
container for 176–178
creating 170–172, 198–201
CRUD operations

creating 190–195
creating nodes 215–217
deleting 190–195, 213–215
displaying context

menus 205–209

editing 209–213
overview 205
rejecting changes 189–190
saving changes 189–190

editing data in 183
editing plug-in for 183–189
event handlers for 180–183
flow of data for 198
form panel

creating fieldsets 137–140
creating tab panel 140–

142
overview 136–137

hierarchy and 196–197
options for 175–176
overview 169–170
remote-loading

creating 201–203
load request 203–205

terminology for 197–198
parseDate method 132
password field 123
path property 221
paths 228–231
PHP class 257–258
pie charts 248–250
pkgs folder, Ext JS SDK 24
Plain Old JavaScript Object. See

POJSO
plug-ins 52

developing 327–330
parts of 326–327

POJSO (Plain Old JavaScript
Object) 126

PollingProvider class 259
position property 98, 279, 284,

286
positioning sprites 222–224
postrender method 55
progress option 85
ProgressBarPager.js 330
prompt method 82
proxies 150–152, 271
Proxy class 149–150

Q

Q (Quadratic Bézier curve to)
command 229

qtip attribute 122
query method 62
querying components 60–62
Questions controller 366–369
QuestionsForm 361–362, 365–

366, 368

INDEX380

R

radio buttons
creating 134–136
overview 15

RadioGroup class 15, 134, 136
radiogroup field 369
radius property 221
rbar attribute 72
Reader class 149
readers, for data store 152–153
reading data

array data 153–156
JSON data 156–157
XML data 158–159

readyState property 29
Record class 152, 296
register method 295
rejectChanges method 190
reload method 151
remote method invocation, with

Ext.Direct
client-server interaction 252
CRUD-enabled

Ext.data.DirectStore 265–

268
directly invoking remote

methods 262–264
Ext.Direct vs. REST 252–255
server-side setup

how it works 255
remote method

configuration 255–256
routing 257

working with remote methods
enabling Ext.Direct 259–

262
setting up router 257–259

remote procedure calls. See RPCs
remote-loading tree panel

creating 201–203
load request 203–205

RemotingProvider class 259–

260
remove method 35–36
removeFromGroup method 275
render method 49–50, 52–53,

55, 104
rendering

component life cycle
phase 53–55

in Component model 49–50
renderTo attribute 49, 53
repairXY property 296
require statement 332

resize state event 52
resources folder, Ext JS SDK 24
REST, vs. Ext.Direct 252–255
RESTful interface 251–252,

254–255
rgba setting 227
rightDockedToolbar 76
rowcontextmenu event 173
rowCtxMenu property 181, 183,

193
rowdblclick event 173, 180
RowEditing plug-in 183–188,

192, 195
RowSelectionModel 11, 321
rowspan property 111–112
RPCs (remote procedure

calls) 151

S

S (Smooth curve to)
command 229

Sass (Syntactically Awesome
Stylesheets) 22

SAW (Sencha Application
Workflow) 344

Scalable Vector Graphics. See
SVG

scope 30
scroll property 295
ScrollManager class 295
SDK file 347–348
select method 277
selectedNodes list 296
SelectionModel class 169–170,

172, 181, 193, 195
self property 241
Sencha Application Workflow.

See SAW
Sencha command 337, 344–347,

349, 369–372
Sencha Touch 7
separator, toolbar 189
series property 247
series, for Cartesian charts

adding 236
adding multiple 242–244

seriesLabel property 247
seriesThemes property 247
SessionStorage proxy 151
setActiveItem method 102
setActiveTab method 89
setConfig method 334
setHeight method 32
setSize method 32

setTimeout method 85
setWidth method 32
Shape class 238, 241
shapes, in Cartesian charts 240–

242
shiftTo method 315–316
show method 82
showAt method 181
side attribute 123
singleSelect option 182
size property 221
sizing, sprites

automatically 224–225
overview 222–224

Smooth curve to (S)
command 229

Smooth quadratic Bézier curve
to (T) command 229

sortable property 186
Sorter class 149
sourceDataView property 296
sourceEl element 296
Specifies class 318
split parameter 116
Sprite class 238, 247
sprites

drawing 221–222
interactions between 225–228
overview 220–221
positioning 222–224
sizing 222–224
sizing automatically 224–225

standardSubmit property 142
star method 242
startDrag method 274, 286, 288
startEdit method 192, 212
Stateful class 52
StatusProxy class 294, 297, 299,

304, 310
stopEvent method 193, 206,

208, 323
Store class 126–127, 149, 169–

170, 251, 260, 262, 362
storing data

overview 159–161
syncing data 163–164
validating model data 161–

163
stripCharsRe property 121
stroke property 221
stroke-width property 221
style attribute 279
style sheets, custom 22
style tag 279
submit method 142–143

INDEX 381

submitHandler method 143
successProperty 144, 156
Survey class 354
Surveys app

adding data stores 356–357
adding models to

application 352–356
controllers

Questions controller 366–

369
Surveys controller 364–366

creating authentication
form 357–359

data-driven application
model 351–352

from idea to code 344–346
generated app, looking

at 348–351
plugging in first

controller 359–360
Sencha Cmd, using 345–348
views 360–364

suspendLayout method 94
SVG (Scalable Vector

Graphics) 21, 219
syncing data, for data store 163–

164
Syntactically Awesome

Stylesheets. See Sass
system foundations

class system foundations 313–

336
dynamically loading classes

with Ext JS loader
hybrid approach 333–336
load everything

dynamically 330–332
loading dependencies for

Window class 332–333
extending Ext JS components

grid panel 322–323
implementation of

extension 324–325
planning beforehand 321–

322
inheritance, classic JavaScript

creating base class 314–315
creating subclass 315–317

inheritance, Ext JS
creating base class 317–

319
creating subclass 319–320

plug-ins
developing 327–330
parts of 326–327

T

T (Smooth quadratic Bézier
curve to) command 229

tab panels 140–142
Table class 198
Table layout 110–113
TabPanel class 11

creating 86–88
methods for 89–90
overview 85–86

TabScrollerMenu.js 329
tbar property 70, 72
Template class 38–40, 44
terminology, for tree panel 197–

198
text area field

creating 123–124
overview 14

text field 6, 14
text property 221
TextArea class 14, 101
Theme class 244
themes, for charts 244–248
Time class 207
time field, creating 131–132
title attribute 122
ToastWindow class 4
Toolbar class 6, 11, 189
toolbars, in panels 69–70
tools, adding to panel 71–72
top property 99, 279
topDockedToolbar 73
totalCount property 176
tpl tag 41
trailingBufferZone 180
Tree 200
tree panel

creating 198–201, 305–306
CRUD operations

creating nodes 215–217
deleting 213–215
displaying context

menus 205–209
editing 209–213
overview 205

drop constraints 309–310
enabling 306–307
flow of data for 198
hierarchy and 196–197
overview 304–305
remote-loading

creating 201–203
load request 203–205

terminology for 197–198

widget 6
improvements to 20–21
overview 13–14

TreeCellEditing plug-in 209,

216
TreeDragZone class 273
TreeDropZone class 273
treeEditor variable 211
TreeStore class 13, 21, 199, 201–

202, 217
tributton modal alert dialog

window 83
Trigger Field class 15–16
type-ahead 15, 124

U

UI components 8
under attribute 122
unique property 62
Unix epoch format 178
updateFn function 85
url property 159
UserEditorWindow class 334
Util class 258

V

V (Vertical line to)
command 229

valid drop 283–284
validate method 133
validateValue method 133
validating

data store 161–163
fields

HTML Editor 133
overview 120–123

Validation class 149, 152
validDropPoints array 310
values property 43
VBox layout 107–110
Vector Markup Language. See

VML
Vertical line to (V)

command 229
verticalScroller object 179
View class 169–170, 198,

217
viewBox option 220, 222
ViewContextMenu plug-in 327,

329
Viewport class 62–64, 350–351,

359, 362–363
visibility mode 54

INDEX382

visible property 364
VML (Vector Markup

Language) 21, 219

W

web remoting 8
WebStorage proxy 152
weight of components 75–77
weight property 72, 76–77
welcome folder, Ext JS SDK 23
widgets

containers section 9–10
core section 8
data services section 8–9
data-bound views section 11–

12
drag-and-drop section 9
form elements

checkbox 15
HTML Editor 15
overview 14
radio buttons 15
text area 14
text field 14
Trigger Field class 15–16

layouts section 10
rapid development using 7
tree panel widget 13–14
UI components section 8
utilities section 9
web remoting section 8

width property 220
Window class 10, 24, 58, 90,

200–201
configuring 79–80
creating modal dialogs 77–79
data views encapsulated in

instance of 290, 294
instance of utilizing

HBoxLayout 293, 305
loading dependencies

for 332–333
overview 77
placing data views inside 293

writeAllFields method 160
Writer class 149, 160, 257

X

x property 221
x-dd-drop-ok CSS class 299

x-grid-cell property 198
x-grid-row property 198
x-grid-table property 198
XML (Extensible Markup

Language) 158–159
XMLHttpRequest

object 137
XmlReader class 155, 159
XmlStore class 159
XTemplate class 11

advanced usage 42–44
looping through data 41–

42
x-toolbar-footer-docked-bottom

class 71
xtype property 126
XTypes 47–49

Y

y property 221
YouTubePlayer 4

Z

Z (Close path) command 229

Garcia ● Grisogono ● Andresen

E
xt JS is a mature JavaScript web application framework
that provides modern UI widgets and an advanced MVC
architecture. It helps you manage tedious boilerplate and

minimize hand-coded HTML and browser incompatibilities.

Ext JS in Action, Second Edition starts with a quick overview of
the framework and then explores the core components by
diving into complete examples, engaging illustrations, and
clear explanations. You’ll feel like you have an expert guide at
your elbow as you learn the best practices for building and
scaling full-featured web applications.

What’s Inside
● Building professional web apps with Ext JS
● Stamping out DOM fragments with templates
● Customizing and building Ext widgets
● Masterful UI design

A working knowledge of JavaScript is assumed. No prior expe-
rience with Ext JS is required.

Jay Garcia is a well-known member of the Ext JS community
and a contributor to the framework. He wrote Sencha Touch

in Action. Grgur Grisogono founded SourceDevCon in London,
UK and Split, Croatia. Jacob Andresen is a consultant specializ-
ing in large scale internet applications.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/ExtJSinActionSecondEdition

$49.99 / Can $52.99 [INCLUDING eBOOK]

EXTJS IN ACTION, Second Edition

JAVASCRIPT

M A N N I N G

“A must-have book to learn
Ext JS properly.”

—Loiane Groner, Citibank

“A guided tour for an
action-packed journey

 from novice to expert.”—Jeet Marwah, gen-E

“Master every detail of
Ext JS 4.0 and how to build

desktop-like UIs for the web.”
—Efran Cobisi

Microsoft MVP, MCSD

“The missing link between
experimenting with Ext JS and

being productive with it.”—Raul Cota
Virtual Materials Group

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	What you’ll need
	Roadmap
	Code conventions
	Getting the latest examples
	Author Online
	About the authors

	about the cover illustration
	Part 1—Introduction to Ext JS 4.0
	1 A framework apart
	1.1 Looking at Ext JS
	1.1.1 Rich API documentation
	1.1.2 Rapid development with prebuilt widgets

	1.2 What you need to know
	1.3 A tour of the Ext JS widgets
	1.3.1 Containers and layouts at a glance
	1.3.2 Other containers in action
	1.3.3 Data-bound views
	1.3.4 Make like a tree panel and leaf
	1.3.5 Form input fields
	1.3.6 Other widgets

	1.4 What’s new in Ext JS 4.0
	1.4.1 Poof goes the adapter layer!
	1.4.2 New class system
	1.4.3 Data package
	1.4.4 Layouts: an explosion of code
	1.4.5 New docking system
	1.4.6 Grid panel improvements
	1.4.7 Tree panel now closer to grids
	1.4.8 Draw and charts
	1.4.9 New CSS styling architecture
	1.4.10 New MVC architecture
	1.4.11 Bundled packaging tool

	1.5 Downloading and configuring
	1.6 Take it for a test drive
	1.7 Summary

	2 DOM manipulation
	2.1 Let Ext JS kick off your code
	2.2 Managing DOM elements with Ext.Element
	2.2.1 The heart of the framework
	2.2.2 Using Ext.Element for the first time
	2.2.3 Creating child nodes
	2.2.4 Removing child nodes
	2.2.5 Using Ajax with Ext.Element

	2.3 Using templates and XTemplates
	2.3.1 Using templates
	2.3.2 Looping with XTemplates
	2.3.3 Advanced XTemplate usage

	2.4 Summary

	3 Components and containers
	3.1 The Component model
	3.1.1 XTypes and ComponentManager
	3.1.2 Component rendering

	3.2 The component life cycle
	3.2.1 Initialization
	3.2.2 Render
	3.2.3 Destruction

	3.3 Containers
	3.3.1 Building a container with child items
	3.3.2 Dealing with children

	3.4 Querying for components
	3.5 The viewport container
	3.6 Summary

	Part 2—Ext JS components
	4 Core UI components
	4.1 The panel
	4.1.1 Building a complex panel
	4.1.2 Adding buttons and tools
	4.1.3 Docking items to a panel
	4.1.4 Weight matters!

	4.2 Displaying window dialogs
	4.2.1 Building a window
	4.2.2 Further window configuration

	4.3 MessageBox
	4.3.1 Alerting your users
	4.3.2 Advanced MessageBox techniques
	4.3.3 Showing an animated wait message box

	4.4 Components can live in tab panels too
	4.4.1 Building your first tab panel
	4.4.2 Tab management methods you should know

	4.5 Summary

	5 Exploring layouts
	5.1 How layout managers work
	5.1.1 Component layouts
	5.1.2 Container layouts

	5.2 The Auto layout
	5.3 The Anchor layout
	5.4 The Absolute layout
	5.5 The Fit layout
	5.6 The Accordion layout
	5.7 The Card layout
	5.8 The Column layout
	5.9 The HBox and VBox layouts
	5.10 The Table layout
	5.11 The Border layout
	5.12 Summary

	6 Forms in Ext JS
	6.1 Basic input fields
	6.1.1 Input fields and validation
	6.1.2 Password and file-select fields
	6.1.3 Building a text area
	6.1.4 The convenient number field

	6.2 Type-ahead with the ComboBox
	6.2.1 Building a local ComboBox
	6.2.2 Implementing a remote ComboBox
	6.2.3 The ComboBox deconstructed
	6.2.4 Customizing your ComboBox

	6.3 The time field
	6.4 The HTML Editor
	6.4.1 Constructing your first HTML Editor
	6.4.2 Dealing with lack of validation

	6.5 Selecting a date
	6.6 Checkboxes and radio buttons
	6.7 The form panel
	6.7.1 Reviewing what you’re building
	6.7.2 Constructing the fieldsets
	6.7.3 Creating the tab panel

	6.8 Data submission and loading
	6.8.1 Submitting the good old way
	6.8.2 Submitting via Ajax
	6.8.3 Loading data into your form

	6.9 Summary

	7 The data store
	7.1 Introducing the data store
	7.1.1 The supporting classes
	7.1.2 How data flows
	7.1.3 All about data proxies
	7.1.4 Models and readers

	7.2 Loading and saving data
	7.2.1 Reading array data
	7.2.2 Reading JSON data
	7.2.3 Reading XML data

	7.3 A store with Writer
	7.3.1 Validating your model data
	7.3.2 Syncing your data

	7.4 Associating data
	7.5 Summary

	8 The grid panel
	8.1 Introducing the grid panel
	8.1.1 Looking under the hood

	8.2 Building a simple grid panel
	8.3 Advanced grid panel construction
	8.3.1 What you’re building
	8.3.2 The required data store and model
	8.3.3 Setting up columns
	8.3.4 Configuring your advanced grid panel
	8.3.5 Configuring a container for your grid panel
	8.3.6 Buffered paginated scrolling
	8.3.7 Applying event handlers for interaction

	8.4 Editing data in the grid panel
	8.4.1 Enabling the editing plug-in
	8.4.2 Navigating your editable grid panel

	8.5 Getting the CRUD in
	8.5.1 Adding save and reject logic
	8.5.2 Saving or rejecting your changes
	8.5.3 Adding create and delete
	8.5.4 Using create and delete

	8.6 Summary

	9 Taking root with trees
	9.1 Tree panel theory
	9.1.1 Tree panel keywords
	9.1.2 Looking under the roots

	9.2 Planting your first tree panel
	9.3 Growing dynamic tree panels
	9.3.1 Creating a remote-loading panel
	9.3.2 Fertilizing the tree panel

	9.4 Implementing CRUD on a tree panel
	9.4.1 Displaying context menus
	9.4.2 Wiring up the edit logic
	9.4.3 Tackling delete
	9.4.4 Creating nodes for your tree panel

	9.5 Summary

	10 Drawing and charting
	10.1 Drawing shapes
	10.2 Drawing concepts
	10.3 Surfacing sprites
	10.3.1 Drawing a sprite
	10.3.2 Managing positioning and sizing
	10.3.3 Automatically sizing sprites

	10.4 Sprite interactions
	10.5 Mastering the path
	10.6 A deep dive into charts
	10.7 Implementing Cartesian charts
	10.7.1 Configuring the axes
	10.7.2 Adding series
	10.7.3 Improving visual aids
	10.7.4 Adding custom shapes
	10.7.5 Multiple series on the same chart

	10.8 Custom themes
	10.9 Pie charts
	10.10 Summary

	11 Remote method invocation with Ext Direct
	11.1 Making the two ends meet
	11.2 Ext Direct vs. REST
	11.3 Server-side setup
	11.3.1 How it works
	11.3.2 Remote method configuration
	11.3.3 Routing

	11.4 Working with remote methods
	11.4.1 Setting up the router
	11.4.2 Enabling Ext Direct

	11.5 Directly invoking remote methods
	11.6 CRUD-enabled Ext.data.DirectStore
	11.7 Summary

	12 Drag-and-drop
	12.1 The drag-and-drop workflow
	12.1.1 The drag-and-drop life cycle
	12.1.2 A top-down view of the drag-and-drop classes
	12.1.3 It’s all in the overrides!
	12.1.4 Drag-and-drop always works in groups

	12.2 Drag-and-drop: a basic example
	12.2.1 Creating a small workspace
	12.2.2 Configuring items to be draggable
	12.2.3 Analyzing the Ext.dd.DD DOM changes
	12.2.4 Adding the pool and hot tub drop targets

	12.3 Finishing your drag-and-drop implementation
	12.3.1 Adding the drop invitation
	12.3.2 Adding a valid drop
	12.3.3 Implementing an invalid drop

	12.4 Using DDProxy
	12.4.1 Implementing DDProxy and the drop invitation

	12.5 Drag-and-drop with views
	12.5.1 Constructing the views
	12.5.2 Adding drag gestures
	12.5.3 Applying drop

	12.6 Drag-and-drop with grid panels
	12.6.1 Constructing the grid panels

	12.7 Drag-and-drop with tree panels
	12.7.1 Constructing the tree panels
	12.7.2 Enabling drag-and-drop
	12.7.3 Employing flexible constraints

	12.8 Summary

	Part 3—Building an application
	13 Class system foundations
	13.1 Classic JavaScript inheritance
	13.1.1 Creating a base class
	13.1.2 Creating a subclass

	13.2 Inheritance with Ext JS
	13.2.1 Creating a base class
	13.2.2 Creating a subclass

	13.3 Extending Ext JS components
	13.3.1 Thinking about what you’re building
	13.3.2 Extending GridPanel
	13.3.3 Your extension in action

	13.4 Plug-ins to the rescue
	13.4.1 The anatomy of a plug-in
	13.4.2 Developing a plug-in

	13.5 Dynamically loading classes with the Ext JS loader
	13.5.1 Loading everything dynamically
	13.5.2 Thou shalt require only what’s needed
	13.5.3 Taking the hybrid approach

	13.6 Summary

	14 Building an application
	14.1 Thinking as a web UI developer
	14.2 Application (infra)structure
	14.2.1 Development within a namespace
	14.2.2 Dynamic dependency loading

	14.3 Kicking off the Survey app
	14.3.1 From idea to code
	14.3.2 Moving to the fast track with Sencha Cmd
	14.3.3 Bootstrapping Survey
	14.3.4 Data-driven application model
	14.3.5 Adding models to the application
	14.3.6 Adding data stores
	14.3.7 Creating the authentication form
	14.3.8 Plugging in the first controller
	14.3.9 Survey views
	14.3.10 Survey controllers

	14.4 Packaging
	14.5 Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

