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Foreword

Metadata and semantics for information search, integration and analysis
has been practiced for three decades. Conceptual modeling and knowledge
representation that enable rich description of information, and when needed
associated reasoning, have been with us for a while too. But as the Web
brought much larger variety (heterogeneity) and size with it, coming together
of the semantics, the Web technologies and all the data that goes with it, was
inevitable. Nearly a decade after Tim Berners-Lee coined the term Seman-
tic Web, it has transformed into a growing, important, and well recognized
interdisciplinary area of Computer Science. W3C’s effort has led to widely
adopted language standards, which has contributed to the development of Se-
mantic Technologies for the Web of data, and a host of new and established
companies are innovating tools, applications, products and services based on
these standards and technologies at a rapid pace. With three key conferences
focused on this topic, including the flagship International Semantic Web Con-
ference, as well as at least 20 other conferences offering Semantic Web as a
significant subarea of interest, the Semantic Web is a topic that is here to
stay.

I started teaching a graduate course on Semantic Web in 2001 and have
continued to offer it annually since. All these times, I used a series of papers
and presentations as my course material. An important reason was that the
field was rapidly growing and evolving, and what I taught just last year seemed
outdated the next time around. There have been a number of books with
Semantic Web in the title but most of them have been a collection of articles
or papers with limited attention to what one might call the discipline core. A
couple of other books offered as textbooks have largely focused on languages
and syntax, rather than foundations. As Semantic Web is rapidly entering
curricula at universities and other educational institutions worldwide, there
is an increasing need for excellent textbooks which can be used as a basis for
courses and self-study. I am pleased to introduce this book – Foundations
of Semantic Web Technologies – to address this need. It might just fit my
own need to cover the fundamental and core part of my course which I might
complement with more applied and interdisciplinary aspects such as those
requiring use of NLP, learning, statistics and database technologies.

This book is unique in several respects. It contains an in-depth treatment of
all the major foundational languages for the Semantic Web and in particular
provides a full treatment of the underlying formal semantics, which is central
to the Semantic Web effort. It is also the very first textbook which addresses
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the forthcoming W3C recommended standards OWL 2 and RIF. Furthermore,
the covered topics and underlying concepts are easily accessible for the reader
due to a clear separation of syntax and semantics, i.e. of the basic required
knowledge and advanced material despite the fact that some of the topics
covered do represent a moderate to high level of difficulty. The authors of
Foundations of Semantic Web Technologies are well-regarded researchers and
teachers on the topic of the book and members of the prominent Semantic
Web research group at AIFB, University of Karlsruhe, in Germany. Their
didactic skills combined with their deep understanding of the material make
it accessible for students at foundational or advanced levels, for researchers
in adjacent areas, and for interested practitioners in application domains. I
am confident this book will be well received and play an important role in
training a larger number of students who will seek to become proficient in
this growing discipline.

Amit Sheth
Kno.e.sis Center (knoesis.org), Wright State University
Dayton, OH USA



Introduction

The goal of this book is to introduce the foundations of Semantic Web
technologies to a level of detail and depth which is not found in any other
textbook currently available. It is a book written for university courses as
well as for self-teaching, and suitable for researchers and practitioners alike.
It is based on five years of experience of the authors in teaching this subject.

In these five years a lot of things have happened. Semantic Web went from
a hyped research subject to one almost pronounced dead to one being invested
in by major IT companies. It turns out that it is not only alive and kicking –
it is actually growing rapidly, supported by substantial funding from research
organizations and industry. IT and venture capital companies are investing.
Numerous large-scale applications have been established, and more are being
developed.

At the same time, Semantic Web technologies are still rapidly evolving. No
textbook is able to keep up with the speed of the most recent developments,
and indeed those which try are bound to be already outdated when they ap-
pear. We take a different approach for this book. We focus on the established
foundations which have already become relatively stable over time, and we
make an effort to convey these very thoroughly. Our presentation thus in-
cludes not only basic introductions and intuitions, but also technical details
and formal foundations. Especially the advanced aspects are in our opin-
ion not sufficiently treated in any of the currently available English-language
textbooks.1 We are confident that the reader will benefit from the increased
depth of this book, even when relying on our intuitive explanations without
studying the advanced material in detail.

So in this book, we convey foundations. But what are these foundations?
The basic idea of the Semantic Web is to describe the meaning (i.e. the seman-
tics) of Web content in a way that can be interpreted by computers. Programs
can then exploit (more) human knowledge to execute tasks, enabling powerful
applications not only on the Web. The first step for this is to cast knowledge
into a machine-processable form. The resulting descriptions are often called
ontologies, and the machine-readable formalisms that they are based on are
called ontology languages. So a major goal of this book is to convey ontology
languages in detail and depth – and with an obvious focus on languages stan-

1It is certainly peculiar that many Semantic Web textbooks try to treat semantic technolo-
gies without explaining their semantics in detail – thereby neglecting the actual core of the
subject area.



dardized by the World Wide Web Consortium for this purpose. On this basis,
we can consider methods for evaluating, querying, and further enriching onto-
logical information. This already includes some advanced topics that are not
quite as stable yet. Finally, we also consider some topics that are clearly be-
yond foundations, namely tools, applications, and engineering aspects. Our
overview of these quickly evolving areas cannot be definite, but it provides
many pointers that are useful for employing Semantic Web technologies in
practice.

Quick Guide to Reading the Book

For better accessibility, we have carefully separated basic material from
advanced content in our presentation of Semantic Web technologies. Chapters
and sections with basic content provide a thorough first introduction to a
given technology, including intuitive explanations and an amount of technical
detail that suffices for many practical applications. Advanced parts provide
a detailed view on more sophisticated aspects that are necessary to gain an
in-depth understanding of the subject. Readers who are new to Semantic
Web technologies can easily skip advanced material on a first reading. The
following diagram provides an overview of the parts of this book, and sketches
the rough dependencies between them:

Basic material is found in Chapters 1, 2, 4, and in Section 7.1. More
advanced content is then provided in Chapters 3, 5, 6, and in Section 7.2.



Chapters 8 and 9 focus on applied topics that are mostly independent from
the descriptions of concrete technologies. An overview of the content of each
chapter and more detailed suggestions for reading are given below.

Each chapter closes with references to further in-depth reading and to orig-
inal publications. The technical chapters each also provide a set of exercises
on the material, meant for coursework or to aid the self-studying reader to
rehearse the contents. Solutions to all exercises are provided in Appendix D.
Some further appendices provide essential background information for some
of the technologies that this book builds on. Again, a detailed overview is
given below.

A comprehensive index at the end of the book can be used to look up
definitions quickly. It includes all relevant notions and all syntactic identifiers
and keywords that are used throughout the book.

Chapter Overview

We give a brief overview of the contents and significance of each chapter.

Chapter 1 introduces the essential motivations and ideas behind Semantic
Web technologies. It illustrates how various developments in science and
technology have influenced the semantic technologies of today. It also
briefly explains a number of important notions – including “ontology”
and “Semantic Web” – that appear in all later chapters.

Chapter 2 introduces the syntax and underlying intuition of the Resource
Description Framework RDF and of its extension RDF Schema. Both
are fundamental technologies for representing (meta)data on the Seman-
tic Web.

Chapter 3 details the formal underpinnings of RDF and RDF Schema by
explaining in depth their formal semantics. This also includes an in-
troduction to the idea and motivation of formal semantics in general.
This advanced material can be skipped on a first reading, since the
intuitive explanations provided in Chapter 2 are sufficient for a basic
understanding of RDF(S).

Chapter 4 introduces the syntax and underlying intuition of the Web Ontol-
ogy Language OWL, including the forthcoming revision called OWL 2.
OWL provides advanced concepts for representing knowledge for the
Semantic Web.

Chapter 5 covers the formal underpinnings of OWL by explaining in depth
its relation to first-order predicate logic and to description logics. It also
contains a detailed treatment of algorithms for automated reasoning
with OWL. This chapter contains some of the most advanced material
in the book and may be skipped at the first reading.



Chapter 6 treats rules and rule languages, especially those that can be used
in combination with the Semantic Web technologies discussed in previ-
ous chapters. This advanced material is not covered by any standard
yet – the forthcoming Rule Interchange Format RIF is expected to fill
this gap. This book is, to the best of our knowledge, the first to provide
a textbook introduction to RIF.

Chapter 7 deals with query languages for the Semantic Web. In particular,
it contains an in-depth treatment of the SPARQL Protocol and RDF
Query Language. It also contains an introduction of conjunctive queries
for OWL, which can possibly be skipped at first reading.

Chapter 8 deals with aspects of ontology engineering – an important area
that is still evolving rapidly today. This chapter gives an overview of on-
tology engineering approaches, and presents modeling guidelines, meth-
ods of quality assurance, and selected tools to support ontology devel-
opment.

Chapter 9 gives an overview of a number of prominent applications of Se-
mantic Web technologies that can be found today. We refrain from
writing yet another compilation of possible application areas and sce-
narios, and focus instead on a variety of application examples which
have been realized to date.

In the appendix we provide brief accounts on background knowledge which
is needed or helpful for understanding the contents of the book. We suggest
that these parts are only consulted when needed, e.g. for a brief introduction
to XML or to first-order logic. Appendix A covers XML and XML Schema,
Appendix B lists basic notions from set theory, Appendix C recalls the ba-
sics of first-order predicate logic, and Appendix D provides solutions to all
exercises from the book chapters.

The Book for Self-Study

The diagram on page xii provides a basic overview of the dependencies
between chapters in this book. This is a rough guideline: single sections
may still require knowledge about other earlier parts – e.g. Section 6.4.5 also
requires Chapter 3 – but such dependencies will be clear from the text, and
corresponding sections can be skipped in this case.

Readers with prior knowledge can skip basic chapters: if specific notions
or terms are unclear, the index at the end of the book provides an easy way
to find more information. We have made an effort to keep the chapters of
the book as independent as possible. While Chapter 4, for example, formally
uses RDF as introduced in Chapter 2, it can essentially be read without going
through the RDF chapter in detail.

Below are some typical reader perspectives with suggestions for reading:



For a comprehensive introduction to the field, one can of course read
from end to end. To take it a bit easier, the advanced Chapters 3, 5, and
6 can be skipped on a first reading to return to them later to acquire a
deeper understanding.

To learn about RDF, readers should study Chapters 2 and (optionally) 3,
as well as Section 7.1. Rules can be an interesting addition: Sections
6.1 and 6.2, and the RDF-related parts of Section 6.4 provide a good
introduction.

To learn about OWL, readers should study Chapters 4 and 5, as well as
Section 7.2. Moreover, many OWL-related engineering hints are given
in Chapter 8. Rules can be an interesting addition: most of Chapter 6
is relevant to OWL.

Readers with prior knowledge of semantic technologies should freely
choose chapters and sections to deepen their understanding. Advanced
material is especially found in Chapters 3, 5, and 6, including some
recent developments that have not been presented in a coherent textbook
treatment elsewhere.

A quick reference on semantic technologies is provided through the in-
dex, which contains almost every syntactic element and keyword that
occurs in any of the discussed technologies. This is particularly useful
for practitioners who need quick access to core definitions.

The Book for Teaching

There are various ways to use this book as a basis for teaching Seman-
tic Web technologies. Our selection and organization of content was in fact
strongly influenced by our own experiences in teaching this subject. In general,
the dependencies and guidelines for self-study are also valid when planning
university courses. Below are some typical choices:

The Comprehensive Overview of Semantic Technologies For an all-
inclusive course on semantic technologies, it makes sense to treat all basic and
applied chapters in their order, together with selected aspects of the advanced
Chapters 3, 5, and 6 as deemed suitable. It is often a good idea to include a
session on XML (Appendix A), and, if formal semantics are included, a brief
recap of first-order logic (Appendix C). Further related topics can easily be
included at the discretion of the teacher, e.g. to provide more details on XML,
or to include a digression to rule languages and logic programming.

We have gathered excellent experiences when applying this scheme to a
one-semester course for graduates and advanced undergraduates (15 sessions
of 90 min each, accompanied by biweekly tutorials). The syllabus in this
case was: introduction (Chapter 1); basics of XML (Appendix A); RDF and



RDF Schema (two sessions, Chapter 2); recap of formal semantics and first-
order logic (Appendix C); RDF(S) semantics (Chapter 3); OWL (two sessions,
Chapter 4); OWL semantics (Chapter 5); SPARQL and its semantics (two
sessions, Section 7.1); querying OWL (Section 7.2); OWL and Rules (two ses-
sions, Chapter 6); application overview (Chapter 9). This is a dense syllabus
that could easily be stretched over more sessions, especially when including
further material.

An Applied Course on the Semantic Web To give an overview of basic
semantic technologies and their use, one can focus on Chapters 2 (RDF), 4
(OWL), 7 (SPARQL), 8 (engineering), and 9 (applications). If possible, this
can be combined with hands-on exercises using, e.g., some freely available
ontology editor like Protégé (see Section 8.5.1). This approach is also well-
suited for a one-week tutorial. Another viable option is to teach this material
as part of a lecture that already covers XML or Web technologies in greater
detail.

Knowledge Representation and Reasoning on the Web If the target
audience is already familiar with foundational aspects of knowledge repre-
sentation and reasoning, it makes sense to present semantic technologies as
a modern application of these topics. In this case, one may want to skip
some of the technical and syntactic details in Chapters 2 and 4, and focus
instead on the semantic and proof-theoretic content of Chapters 3 (RDFS se-
mantics, optional), 5 (description logics), 6 (rules), and 7 (SPARQL could be
omitted). This syllabus can be extended with advanced material from logic
programming, deductive databases, or modal logic, depending on preference.

Seminar Work with this Book Students can use this book in self-study
to prepare seminar presentations. Since individual chapters are relatively
independent it is easy to perform preparations in parallel without relying
too much on prior material or on the quality of the presentations of fellow
students. The dependency graph and the above suggestion for dividing the
content into individual sessions are a good guideline for selecting topics.

The above covers some typical approaches for teaching based on this book.
In addition, selected single topics can be covered in courses on related mate-
rial, e.g. when discussing Web technologies, mark-up or modeling languages,
or knowledge representation. We also have used some of the material in
courses that focus on further applications and research topics related to the
Semantic Web. Besides detailed treatment of ontological modeling and quality
assurance (Chapter 8) and reasoning algorithms for OWL (Chapter 5), these
courses also included material on semantic search, (semantic) Web Services,
usage and user interface aspects for semantic technologies, and advanced top-
ics related to OWL reasoning and its combination with rules. Pointers to
suitable literature can be found at the end of each chapter. For further topics



in this interesting field of research, please see [SS09] and the proceedings of the
annual International Semantic Web Conference, of the Semantic Web track
of the annual World Wide Web Conference, and other central dissemination
events for Semantic Web research.

In all of the above cases, the material in Chapter 1 is a good basis for
introducing and motivating the field of semantic technologies, where emphasis
can be placed on the aspects most relevant to the audience at hand.

Additional Online Resources

This book is accompanied by the website

http://www.semantic-web-book.org/

where we provide updates, errata, slides for teaching, and links to further
resources. Feedback, questions, or suggestions for improvement are always
welcome – they can be sent via email to authors@semantic-web-book.org.

Karlsruhe, Germany

Pascal Hitzler
Markus Krötzsch
Sebastian Rudolph
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Chapter 1

The Quest for Semantics

In this chapter, we explain the basic motivations and ideas underlying Se-
mantic Web technologies as presented in this book, along with some of the
history of these ideas. This gentle introduction prepares the stage for the
more technical parts that are covered in subsequent chapters.

From its very beginnings, the development of Semantic Web technologies
has been closely related to the World Wide Web. This is is not surprising,
given that the inventor of the WWW – Sir Tim Berners-Lee – has originally
coined the term “Semantic Web” and has inspired much research in this area.
Important goals of the approaches that are described in this book are indeed
very similar to the goals of the Web in general: to make knowledge widely
accessible and to increase the utility of this knowledge by enabling advanced
applications for searching, browsing, and evaluation. And, similar to the tra-
ditional Web, the foundation of Semantic Web technologies are data formats
that can be used to encode knowledge for processing (relevant aspects of it)
in computer systems, although the focus is on different forms of knowledge.

However, viewing the WWW as the only origin and inspiration for the
technologies that are described in this book would not do justice to their true
history. More importantly, it would also hide some of the main motivations
that have led to the technologies in their present form. To avoid such a narrow
perspective in this chapter, two further strands of closely related endeavors
are explained here. One is the general approach of building abstract models
that capture the complexities of the world in terms of simpler ideas. Modeling
in this sense pervades human history – a comprehensive historic account is
beyond the scope of this book – but underlying methods and motivations are
highly relevant for the semantic technologies that are available for us today.

A second, more recent approach is the idea of computing with knowledge.
The vision of representing knowledge in a way that allows machines to auto-
matically come to reasonable conclusions, maybe even to “think,” has been a
driving force for decades of research and development, long before the WWW
was imagined. Again, a brief look at this line of development helps us to un-
derstand some of the motivations and ideas behind the technologies presented
in this book. Thus we arrive at the following three main topics that provide
conceptual underpinnings for the Semantic Web:

• Building models: the quest for describing the world in abstract terms
to allow for an easier understanding of a complex reality.

1
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2 Foundations of Semantic Web Technologies

• Computing with knowledge: the endeavor of constructing reasoning ma-
chines that can draw meaningful conclusions from encoded knowledge.

• Exchanging information: the transmission of complex information re-
sources among computers that allows us to distribute, interlink, and
reconcile knowledge on a global scale.

Within this introductory chapter, we briefly outline the ideas underlying
each of these topic areas within Sections 1.1, 1.2, and 1.3. Thereafter, in Sec-
tion 1.4, we explain how these ideas come together in what is often described
as Semantic Web technologies today. As in every chapter, we conclude with a
brief guide to useful references for further reading that is given in Section 1.5.

1.1 Building Models

Generally speaking, a model is a simplified description of certain aspects
of reality, used for understanding, structuring, or predicting parts of the real
world. In a most general sense, forming models of the world is part of our
very ability to reason and to communicate. In this section, we are interested
in scientific modeling, and especially in those developments that influence
today’s semantic technologies. Numerical models, such as those described
by physical formulae, are less relevant for our considerations and will not be
discussed in detail.

Beginnings of scientific modeling can be traced back to ancient philoso-
phy. The Greek philosopher Plato (429–347 BC) proposed answers to some
of the most fundamental questions that arise during modeling: What is real-
ity? Which things can be said to “exist”? What is the true nature of things?
This marks the first major contribution to a philosophical field now known as
ontology – the study of existence and being as such, and of the fundamental
classes and relationships of existing things. Interestingly, the term “ontology”
has become very important in today’s semantic technologies, but with a rather
different meaning: in computer science, an ontology is a description of knowl-
edge about a domain of interest, the core of which is a machine-processable
specification with a formally defined meaning.1

Ontology in the philosophical sense was further advanced by Plato’s stu-
dent Aristotle (384–322 BC). In contrast to his teacher, Aristotle held the
view that models are not given as universal ideas that are merely reflected
by reality, but rather that they should be derived from careful observations
of reality – a view that had great influence on the development of science

1Ontology is not the first field of study to experience such terminological (ab)use, as is
apparent when speaking of “Alaska’s impressive geography” or “the biology of Dragonflies.”
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FIGURE 1.1: The Tree of Porphyry, an early tree structure in knowledge
modeling; diagram based on a translation in [Sow00]

in centuries to come. Applying this approach, Aristotle developed ten cat-
egories to classify all things that may exist, and he described subcategories
to further specify each of them. For example, Aristotle’s category of animals
is composed of rational ones (humans) and irrational ones (beasts). Typical
for traditional classifications, subcategories in Aristotle’s model are exhaus-
tive, i.e. each thing in a category belongs to one of its subcategories, and
mutually exclusive, i.e. each thing in a category can belong only to one of its
subcategories.

These early approaches toward scientific classification also introduce the use
of structure in modeling. The philosopher Porphyry (circa 234–305) developed
the Tree of Porphyry, a small tree-shaped model that captures the hierarchical
relationships of some of Aristotle’s categories in a graphical form (see Fig. 1.1).
Tree structures, concept hierarchies, and inheritance of properties are notions
that are essential for numerous modeling tasks, and that are still found in
many applications today.

Numerous influential scientific models have been developed in later cen-
turies, often building upon the basic idea of classification that is found in
the works of Aristotle. Carolus Linnaeus (1707–1778) laid the basis for mod-
ern biological classification by introducing Linnaean taxonomy as a means to
classify all life forms. The term taxonomy – composed of the Greek words
taxis (order) and nomos (law, science) – has since become the name of the
science of classification, but it is also used to refer to individual hierarchi-
cal classification schemes. Other important classifications include the WHO’s
International Classification of Diseases (ICD), the Köppen classification of cli-
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mates, and the spectral classification of stars in astronomy,2 all of which have
their origins in the 19th century.

As in ancient philosophy, a major goal of modern classification still is to
order natural objects to establish a better understanding of their true nature.
Carefully chosen categories are often the basis for obtaining further new in-
sights. For studying a new species of animals, for example, it is necessary to
first classify that species to distinguish it from others. Another important pur-
pose of classification is communication, as is illustrated by the aforementioned
ICD which was introduced to exchange mortality and morbidity statistics in-
ternationally.

But classification is not only relevant when dealing with natural objects and
phenomena. The same methods are similarly useful for organizing human-
made objects, for example, for ordering books in a library. One of the first
modern classifications for books was presented by Melvil Dewey (1851–1931)
with the Dewey Decimal Classification (DDC), but earlier approaches for or-
ganizing libraries can be traced back to ancient Asian and European libraries.
An interesting aspect of these approaches is that their purpose is not so much
to understand the structure of existing literature but rather to simplify the
search for actual books. This predates today’s use of semantic technologies for
information search and retrieval, and it shows that the construction of models
may also be an engineering task that is driven by practical applications rather
than by purely scientific considerations.

The abundance of taxonomic classifications suggests that hierarchical struc-
tures are a basic and, possibly, the most relevant structure in modeling. In
many cases, however, mere hierarchies are not sufficient for describing a do-
main of interest, and some scientific models are even based on non-hierarchical
structures altogether. The celebrated periodic table of chemical elements is a
classical example of a model of the latter kind.3 In other cases, hierarchical
and non-hierarchical information are combined. A modern thesaurus, for in-
stance, is an ontology that describes relationships between words of a human
language. Words are ordered hierarchically based on how general their mean-
ings are4 whereas relationships such as synonymy (having the same meaning)
and antonymy (having opposite meanings) are not hierarchical.

As opposed to classical taxonomies, many modern modeling approaches al-
low objects to belong to more than a single most specific category. Dewey’s
classification of books still follows the traditional approach: for example, a
book might belong to category 636.8 if its main subject is cats, and this clas-
sification determines its position in a shelf about “Animal husbandry” (636).

2As opposed to the other examples, the spectral classification is not hierarchical.
3In 1870, this tabular structure had been proposed because it was found to be most suitable
for capturing known properties of chemical elements. It was revealed only later that this
arrangement could be explained by the underlying atomic structures.
4This is called hyponymy, e.g., “happiness” is a hyponym of “emotion.”
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Assigning a unique position to a book is useful in a library, but not so much in
a computerized catalog. Consequently, modern library classification systems
often allow multiple topics to be assigned to a book. A related approach is to
classify objects based on multiple independent aspects, so-called facets, such
that they may be described by a combination of criteria rather than by a
unique category. Browsing and searching books in today’s book databases,
for example, is often based on facets such as title, author, and publisher.

In summary, the history of scientific modeling exposes a steep increase
not only in the number of models that have been created, but also in the
structural complexity and diversity of these models. This development has
been supported by the development of modeling languages that can be used
to specify (the structure of) models without ambiguity. A typical example
from computer science is the Unified Modeling Language UML that is used in
software engineering. Many further languages have been devised in the field
of artificial intelligence that plays a prominent role in the next section.

1.2 Calculating with Knowledge

In the preceding section, we outlined the efforts taken to store and structure
knowledge for the sake of ultimately being accessed and processed by human
beings. Note that following this line of thought, the active use of knowledge
in the sense of drawing conclusions from known facts was a task to be carried
out by human beings.

However, Aristotle had pointed out that the process of logical deduction,
mostly semiconsciously performed by humans, can itself be formalized and ex-
ternalized by casting it into a set of rules to be used in a way very reminiscent
of arithmetics, e.g. as follows, where the third line indicates the conclusion
from the previous two lines.

All A are B.
All B are C.
All A are C.

Those rules (which he named syllogisms) were domain-independent in the
sense that they provided template-like ways for inferring knowledge in which
the placeholders could be substituted by domain concepts, e.g.:

All men are mortal.
All Greeks are men.

All Greeks are mortal.

Aristotle thus hinted at the fact that logical thinking in a way has its own
existence, independent from opinions and attitudes of individual persons. The
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idea of externalizing and standardizing human reasoning showed up sporadi-
cally in the subsequent centuries. In his work “Ars generalis ultima,” Ramon
Llull (1232–1315) designed a system of logic and even semi-mechanical devices
in order to create new knowledge out of a set of a priori facts. These mech-
anisms were meant to support interreligious discourse by deriving Christian
doctrines from initial statements the monotheistic religions agreed upon. In
the same line of thought, Gottfried Leibniz (1646–1716) formulated the desire
to resolve conflicts in scientific or philosophical discourse by just calculating5

the correct answer:

“If controversies were to arise, there would be no more need of
disputation between two philosophers than between two accoun-
tants. For it would suffice to take their pencils in their hands,
to sit down to their slates, and to say to each other. . . : Let us
calculate.” (Gottfried Leibniz, Dissertio de Arte Combinatoria,
1666.)

However, only from the 19th century on, the endeavor of capturing logical
thinking in a calculus was continuously pursued. It started with George Boole
(1815–1864) and his seminal book “An Investigation of the Laws of Thought”
where he introduced propositional (or what it is alternatively called: Boolean)
logic.

Gottlob Frege (1848–1925) was the first to invent the principle of quan-
tification (his “Begriffsschrift” appeared in 1879). He laid the foundations of
first- and second-order predicate logic, although mainly unnoticed by his con-
temporaries. His idiosyncratic style of notation might have been one reason
for this. So it was Charles Sanders Peirce (1839–1914) who made this de-
velopment popular, introducing a better notation for quantification which in
essence is still being used today (he just wrote Σ and Π as quantifier symbols
instead of ∃ and ∀).

The advent of expressive logical formalisms was accompanied by a com-
mon attitude called logicism. More and more experts were convinced that
– opposed to logic being just a sub-discipline of mathematics – all rational
thought and hence all mathematics could be based on logic. More precisely,
it was held that every mathematical truth could be deduced from a few ax-
ioms, i.e. postulates the truth of which is immediately clear. The “Principia
Mathematica,” published in 1910–1913 by Alfred N. Whitehead (1861–1947)
and Bertrand Russell (1872–1970), constitutes the peak of this movement. In
three volumes, the authors develop set theory and arithmetics in a strictly
formal deductive way. Clearly, these achievements encouraged David Hilbert
(1862–1943) to set up his program to base mathematics on a few axioms and

5As one of the inventors of differential and integral calculus he was well aware that much
more than everyday arithmetics can be captured in an algorithmic, mathematically rigorous
way.
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deduction principles, such that the truth of any mathematical statement can
be decided by an algorithm. Note that accomplishing this mission would have
fulfilled Leibniz’ dream.

The enthusiasm was turned down in the early 1930s, when Kurt Gödel
(1906–1978) showed that such an algorithm cannot exist. Instead, every sys-
tem of axioms and deduction rules that is capable of describing arithmetics
is incomplete, i.e. there must exist statements which can be neither proven
nor refuted. A rather similar argument was used by Alan Turing (1912–1954)
for showing that there is no generic way to tell whether a computer program
will terminate or not. Gödel and Turing provided valuable insights about the
limits of formal logic. They established central notions like decidability and
computability which allowed us to categorize logical problems and gave a more
clarified view on what can be done with automated means.

Despite these discouraging findings, a new “common sense logicism” arose
rather soon. In summer 1956, John McCarthy organized a 2-month brain-
storming get-together of leading researchers which was held at Dartmouth
College. Inspired by the accessibility of digital computers, they explored the
possibility of employing those devices to simulate or generate intelligent be-
havior. In the course of this event, the term artificial intelligence (AI) was
coined. The task of deducing knowledge from known facts was felt to be one
of the central issues to achieve that goal. Among the different approaches to
artificial intelligence, a prevalent one was that of implementing logical deduc-
tion via symbol manipulation, based on the principle of the Physical Symbol
System Hypothesis:

“A physical symbol system has the necessary and sufficient
means for general intelligent action.” (Newell, Allen; Simon, H.
A. (1976), “Computer Science as Empirical Inquiry: Symbols and
Search,” Communications of the ACM, 19)

Once again, experts were confident that the problem of capturing human
thinking was about to be solved. In the mid-1960s it was commonly con-
jectured by AI protagonists that the goal of building a machine exhibiting
human intelligence would be accomplished within a single decade.

It turned out that scientists had underestimated the aspired goal in at least
two ways: First, the amount of knowledge that would have to be specified for
even modest AI applications turned out to be overwhelming. This rendered
the process of transforming human knowledge into a machine-processable form
a costly and tedious task. This problem is commonly referred to as the knowl-
edge acquisition bottleneck . Second, the applied inference techniques worked
well for small examples with limited knowledge involved but turned unaccept-
ably slow for medium- or large-scale tasks. Moreover, findings in complexity
theory revealed that in many cases this slowdown is unavoidable in princi-
ple. This showed that the encountered difficulties were caused by the intrinsic
hardness of the given tasks that could not be overcome by faster hardware
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or clever engineering. In a way, this was the first time the issue of scalability
emerged, which has been one of the central requirements in Semantic Web
technologies from the beginning.

As a consequence of this, research focused on goals that were more modest.
For restricted domains of expertise, symbolic approaches implementing mod-
erately expressive but computationally performant formalisms still worked out
very well. So-called expert systems, mostly rule-based, were built for highly
structured areas like medicine and biology. In these domains they were ca-
pable of competing with (or even outperforming) human experts.6 As the
first broadly adopted AI technology, expert systems had established a solid
position on the market by the mid-1980s.

Encouraged by the availability of both appropriate funding as well as faster
computers with larger memories, there have been serious attempts to tackle
the knowledge acquisition bottleneck and to work toward general-purpose
knowledge-based systems: the artificial intelligence project Cyc,7 founded in
1984 by Douglas Lenat, aims at building an everyday common sense ontology
including an inference engine. The current Cyc ontology comprises several
millions of logical statements.

1.3 Exchanging Information

While computation was certainly the main motivation for constructing early
computers, the aspect of communication between these machines soon became
an important problem as well. Already in the late 1950s, computers were
available at various sites throughout the U.S., and joint projects required
data to be transmitted between them. Telecommunication as such had been
established for some time, telephones being a commodity, and this existing
infrastructure was used to build the first long-distance connections between
computers. However, many decades of development were required to arrive
at the ubiquitous global communication networks that we use today, with the
World Wide Web as the most prominent medium that was built on top of this
infrastructure.

Work on computer networking progressed significantly in the 1960s. The
American computer scientist J.C.R. Licklider (1915–1990) was the first to en-
vision computer networks in a modern sense in a series of memos in 1962. An
invention that has been crucial for realizing this idea was packet switching –

6MYCIN, an early expert system for diagnosing bacterial infections and suggesting medical
treatment, was shown to provide an acceptable therapy in more cases than human experts
did.
7http://www.cyc.com/
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the notion of splitting transmissions into small “packets” that are transmitted
individually – which is attributed to the independent works of Paul Baran,
Donald Davies, and Leonard Kleinrock. Packet switching separated the con-
cerns of physical transmission (which line to use) from the concerns of digital
communication (which data to exchange).

Various communication protocols that were developed during and after the
1960s allowed more computer networks to be established. In 1969, the first
packet-switching network went online: ARPANET was a network of four com-
puters that was run by the Advanced Research Projects Agency of the U.S.
Department of Defense. Other local networks soon followed, and the prob-
lem of inter-network communication became relevant. In 1974, the Internet
Protocol Suite (TCP/IP) was published as a way to overcome the diversity
of computer networking protocols. With more and more networks connect-
ing, the global communication infrastructure that is now called the Internet
emerged. Significant world-wide growth and commercialization of the Internet
started in the 1980s.

Applications such as email and Usenet (online discussion boards) were the
most popular uses of the Internet in its first decades. Only in 1989, the En-
glishman Tim Berners-Lee, working for CERN in Switzerland at that time,
made a proposal to overcome communication problems of physicists collabo-
rating around the world: what he conceived is a common medium that enables
the exchange of interlinked hypertext documents between diverse computer
systems. He dubbed his invention the World Wide Web. By the end of 1990,
he provided first versions of the Hypertext Transfer Protocol HTTP, the Hy-
pertext Markup Language HTML, the first Web browser and HTML editor,
and the first Web server software. The ideas upon which these components are
based are not entirely new, but the new combination of technologies enables
a hitherto unknown global exchange of information.

In 1991, the first Web server outside of Europe is established, and Tim
Berners-Lee announced the Web in a public newsgroup post:

“The WorldWideWeb (WWW) project aims to allow links to
be made to any information anywhere. . . . The WWW project
was started to allow high energy physicists to share data, news,
and documentation. We are very interested in spreading the web
to other areas, and having gateway servers for other data. Collab-
orators welcome!” (Tim Berners-Lee, alt.hypertext, 1991)

During the 1990s, the World Wide Web emerged as the most popular
medium of the Internet. It gained commercial relevance starting from the
middle of the decade, without being stopped by the “dot-com bust” at the
end of the millennium. Yet, like the WWW itself, innovative Web applica-
tions such as wikis and blogs continue to be introduced for personal and public
community use long before they are adopted by industry.
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Today, the Web – just like the Internet – is used not only for consuming
information passively, but also for creating and publishing new content, dis-
tinguishing it from traditional media. This was reinforced by popular websites
that simplify user contributions: Wikipedia, Flickr, YouTube, and numerous
social networking sites are typical examples. Increasing amounts of knowledge
are created by individuals, leading to a phenomenon that Lawrence Lessig –
law professor and creator of the Creative Commons licenses8 – has described
as read-write culture, as opposed to “read-only culture”:

“Passive recipients of culture produced elsewhere. Couch pota-
toes. Consumers. This is the world of media from the twentieth
century. The twenty-first century could be different. This is the
crucial point: It could be both read and write.” (Lawrence Lessig,
Free Culture, 2004)

This has significant technological consequences, too. The Web remains
a distributed information space that provides a plethora of heterogeneous
knowledge sources in many formats. Information exchange on the Web is
only possible by agreeing on standard data formats, and by exploiting the
hyperlinks that turn distributed resources into a Web-like structure. The
latter is used not only by human readers for browsing, but also by search
engines for gathering and ranking Web pages. The key feature of HTML
is that links are denoted using dedicated mark-up that enables machines to
“understand” them without human assistance.

But classical search engines, in spite of their success, have turned out to
be insufficient for managing the ever increasing amounts of Web content. In-
stead of relying on text-based search only, Web applications have introduced
further paradigms for organizing and searching information. A popular ex-
ample is tagging , which typically is used to provide statistical search and
browsing functionalities based on simple keywords (“tags”) that users assign
to resources. This approach has been particularly successful for structuring
content that is not primarily text-based – pictures, videos, but also prod-
ucts in online shops. Both the approach of social tagging in general and the
resulting tag structures have been called folksonomy , which is a merger of
“folk” and “taxonomy” even though folksonomies are not classifications in the
traditional sense. User ratings are another example of user-contributed infor-
mation that is used to improve search. Many other search features are based
on structured knowledge that is associated with the subject of interest: shop
items have a price, company products have technical specifications, blog en-
tries have a date. This development is further supported by the availability of
specialized software for managing content that is not just arbitrary hypertext.
Weblogging tools and Web shop applications are typical examples.

8http://creativecommons.org/
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Summing up, there has been an obvious trend toward adding more “struc-
ture” to Web resources. Many of the above examples are, however, not based
on any common standard and it is thus difficult to exploit this data other
than by using a website’s particular search interface. Comparatively few sites
provide structured data for download, even though this is already common
for some application areas. For example, virtually all news sites today export
data in RSS or ATOM feeds to which readers can subscribe. These standard
formats encode data about news items in a way that allows them to be dis-
played and searched in a wide range of news reader applications. Another
recent approach to improve data exchange on the Web is Web Services. In
this case, data is transmitted to a Web server which computes and returns a
result based on this input. A very basic example is the Google Maps service:
coordinates of landmarks are sent to the server; an HTML-embedded map
that displays those locations is returned. The formats for input and output
in this case largely depend on the given Web Service, but approaches exist
for providing Web Service interface descriptions in standardized formats that
can be transferred over the Web.

These recent developments – the growth of active user contributions and the
increased exploitation of structured data – coincide with a general improve-
ment in usability and interactivity of Web user interfaces. The term “Web 2.0”
has often been associated with these developments, although this terminology
wrongly suggests that there was a clear-cut change in the underlying Web
technology or in its use. Tim O’Reilly, who coined the term, expressed the
view that “Web 2.0” rather describes a change in the attitude towards using
and exploiting the Web. However, in the light of the continuous change of the
Web and its usage, the approach of versioning the WWW is hardly adequate
to describe the complexity of current and future developments.

1.4 Semanic Web Technologies

The Semantic Web has been conceived as an extension of the World Wide
Web that allows computers to intelligently search, combine, and process Web
content based on the meaning that this content has to humans. In the ab-
sence of human-level artificial intelligence, this can only be accomplished if
the intended meaning (i.e. the semantics) of Web resources is explicitly spec-
ified in a format that is processable by computers. For this it is not enough
to store data in a machine-processable syntax – every HTML page on the
Web is machine-processable in a sense – but it is also required that this data
is endowed with a formal semantics that clearly specifies which conclusions

www.allitebooks.com

http://www.allitebooks.org
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should be drawn from the collected information.9 Clearly, this would be an
impossible endeavor when aiming at all human knowledge found on the Web,
given that it is often hard enough for humans to even agree on the contents
of a certain document, not to mention formalizing it in a way that is mean-
ingful to computers. In reality, of course, the purpose of the Semantic Web is
rather to enable machines to access more information that hitherto required
human time and attention to be used. While this is a reasonable goal from
a practical viewpoint, it also means that “Semantic Web” does not refer to
a concrete extension of the World Wide Web, but rather to an ideal toward
which the Web evolves over time. At the same time, any progress in this field
can similarly be useful in applications that are not closely related to the Web.
This book thus focuses on the underlying Semantic Web technologies, chiefly
semantic technologies, that are available today.

Realizing the above mentioned goals makes it necessary to address a number
of difficult challenges that are not addressed by classical Web technologies.
This is where the topics discussed in Sections 1.1 and 1.2 come to the fore.
Expressing human knowledge in a formally specified language is a classical
modeling task. The rich experiences gathered within this domain throughout
history are an important guide in identifying relevant modeling structures
up to the present day. The most recently developed Semantic Web language
OWL 2 (see Section 4.3), for instance, has been influenced by feature requests
from modeling use cases in life sciences. Moreover, semantic technologies can
draw from modeling methodologies, software applications, and corresponding
user-interface paradigms that have been developed for supporting humans in
the task of constructing models.

How knowledge is to be modeled also depends, of course, on the intended
usage of the constructed model. On the Semantic Web, one would like com-
puter programs to draw conclusions from given information, so that aspects
of formal knowledge representation and reasoning come into play. In the first
place, the insights gathered in this field help us to understand the funda-
mental difficulties and limits that one has to be aware of when constructing
“reasoning machines” as discussed in Section 1.2. On the practical side, se-
mantic technologies can build on algorithms and tools that were developed
for solving relevant inferencing problems.

The above discussion views the development of the Semantic Web as an
approach of incorporating knowledge modeling and automatic deduction into
the Web. Conversely, it is also true that semantic technologies introduce as-
pects and features of Web applications into the domain of formal modeling
and knowledge representation. Most basically, the Web introduces a notion

9Note that, indeed, the term “semantics” occurs with two distinct interpretations in the
previous two sentences. In the first sense, it refers to the meaning that texts in a human
language have: this is the usage common in linguistics. In the second sense, it refers to
the formal interpretation of a computer language: this is the usage common in computer
science. Both notions of the term are found in discussions of the Semantic Web.
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of distributed, heterogeneous, yet inter-linked information that is novel to the
other disciplines. Whereas Web data is indeed independently published and
maintained in many sources, it is still universally accessible based on global
addressing schemes and standardized protocols. More specifically, the Web
emphasizes the importance of clearly specified, standardized languages that
can be used to exchange data across software boundaries. Although there are
some examples of earlier standardization activities around knowledge repre-
sentation formalisms,10 the Semantic Web clearly has increased the practical
importance of standardization in this area. Most of the relevant standardiza-
tion efforts, including all technology standards covered in this book, have been
conducted under the lead of the World Wide Web Consortium (W3C). These
activities have also facilitated tool interoperability and information exchange
in application areas beyond the Web.

The remainder of this section gives a short overview of what has actually
been done in the pursuit of the goals of the Semantic Web, eventually leading
up to the technologies discussed in this book. The idea of adding “semantics”
to the World Wide Web has been around since its very beginning, although
the concrete approaches toward achieving this goal have changed over time.
Semantics (in the sense common in computer science) had long been stud-
ied for mark-up languages, including hypertext languages like the ones that
inspired HTML. In the latter case, the semantics of language constructs typ-
ically determines how programs should present parts of a document to users
– a usage that is still most common when discussing HTML today. However,
also the notion of encoding higher-level knowledge into hypertext had been
around early on, for instance, in the form of “typed links” that, besides defin-
ing a hyperlink to another document, also provide some clue regarding the
intended meaning of that link. Tim Berners-Lee himself already pursued the
idea of a more semantic Web during the 1990s.

These ideas, however, gained major public attention only when Berners-
Lee and others published a seminal article entitled “The Semantic Web” in
Scientific American in 2001. Envisioned within this paper is a ubiquitous
Web within which complex knowledge is exchanged and processed by intelli-
gent agents to assist humans in their daily routines – the described scenario
would require not just a Semantic Web but also significant advances in AI and
natural language processing, as well as ubiquitous computing and intelligent
environments. Accordingly, the work has created high expectations that fu-
eled research and development, but it has also repelled some communities on
account of being so far from reality. Yet, there has been a significant increase
of Semantic Web activities since the beginning of the new millennium, though
usually with goals which are somewhat more modest and therefore achievable
within a reasonable time-span.

10The most prominent example is the logic programming language Prolog that is covered
by the ISO/IEC 13211 standard, cf. [DEDC96].
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In subsequent years, the W3C published a number of standards for Seman-
tic Web formats that facilitate the exchange of semantically rich information.
These include the basic Resource Description Framework RDF (Chapters 2
and 3) and the more expressive Web Ontology Language OWL (Chapters 4 and
5) in 2004,11 and the SPARQL Protocol and RDF Query Language (Chap-
ter 7) in 2008. An update and extension of the Web Ontology Language,
known as OWL 2 , is to be completed in 2009 (Section 4.3), and the specifi-
cation of rule-based Semantic Web languages is the ongoing quest of the Rule
Interchange Format (RIF) standardization activity (Chapter 6).

At the same time, many developments have increased the availability of
machine-processable data on the Web. Some applications, such as the RDF
Site Summary (RSS 1.0), are based on the new standards, while others have
provided ad hoc solutions for the increasingly relevant problem of exchanging
semantic information. Indeed, the Semantic Web initiative was sometimes
criticized among Web developers for being overly ambitious and not really
suited to serve some of the immediate needs of current applications. Solu-
tions have been proposed to directly address particular problems in specific
application domains, e.g., for the purpose of encoding personal contact data.
A notable effort in this direction is so-called microformats which use attribute
values in HTML documents for embedding small chunks of semantic data into
Web pages. The major advantage of microformats over other general-purpose
technologies is simplicity12 which comes at the price of more limited applica-
tion areas and extensibility. The term “ lowercase semantic web” is sometimes
used to contrast these simpler approaches with the grand Semantic Web en-
deavor as envisioned in 2001.

Even today, some people still perceive “uppercase” and “lowercase” ap-
proaches toward the Semantic Web to be in competition rather than to be
complementary approaches toward the same goal. What actually happened,
though, is that there have been a number of advances in reconciling both
developments. The W3C has developed the RDFa standard for embedding
RDF-based semantic data into HTML pages, thus addressing similar use cases
as current microformats. Moreover, the W3C’s GRDDL specification provides
a framework for extracting RDF data from HTML and XML formats, so that
XML-based information can be combined with other Semantic Web data more
easily. Likewise, the amount of semantic data that is available on the Web has
grown considerably in recent years, and data sources have become increasingly
inter-linked. This is possible since the identifiers used in Semantic Web lan-
guages follow the same construction principles as URLs on the classical Web:
the name of any object can thus also be interpreted as a Web address. This
leads to the notion of linked data, referring to semantic data all identifiers

11Strictly speaking, an early version of RDF was published in 1999, but the 2004 standard
is a major revision.
12This regards usage and writing; extracting microformat data from HTML is not simple.
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of which are pointers to Web addresses where further information about the
according objects can be found.

In the light of these recent developments, the term “web of data” was in-
troduced to describe the Semantic Web as an effort that focuses primarily
on data exchange. This reflects the fact that basic semantic data formats
have more easily found their way into applications on the Web than more ex-
pressive knowledge representation paradigms. The latter, however, have been
adopted in areas outside the Web, where it is often easier to manage complex
knowledge structures. An overview of some noteworthy example applications
is provided in Chapter 9. The increased practical use of semantic technolo-
gies is witness to the fact that important base technologies are well-developed
– their strengths and weaknesses understood much better than in the early
years of the Semantic Web activity – and that they are useful for solving the
problems encountered in practice. And indeed, recently we have seen major
IT and venture capital companies investing in the segment, while the trend in
research projects and funding drifts rather heavily from foundations to appli-
cations. New technologies continue to be developed, and it can be expected
that they will lead to the solutions that will enable innovative applications
with high impact in the next few years.

The purpose of this book is to provide an introduction to this promising
field which covers the main body of reasonably stable and well-established core
technologies, and also related extensions that are currently being developed
and which can be expected to be available soon.

1.5 Further Reading

It is impossible to provide a comprehensive list of references for the broad
topics that have been discussed in this chapter, so we mostly confine ourselves
to suitable overview publications that provide pointers to further literature.

Some of the early history of formal modeling, especially related to philo-
sophical developments, is described in [Sow00]. An account of the more recent
history of knowledge representation and reasoning can be found in [Sow84]. A
useful reference for a more general overview of the area of artificial intelligence
is [RN03]. The Cyc project has been described in [LG90]. Some seminal his-
toric publications should be mentioned: Whitehead’s and Russel’s Principia
Mathematica [WR13], Gödel’s original incompleteness theorems [Göd31], and
Turing’s account of the Halting problem [Tur37].

The history and development of the World Wide Web are described by
Tim Berners-Lee in [BL00]. Lawrence Lessig’s discussion of related cultural
phenomena is [Les05]. There is currently little printed material regarding
the term “Web 2.0” and there is certainly no single authoritative view on the
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topic, although Tim O’Reilly registered the term as a trademark and published
various characterizations at http://oreilly.com/.

The seminal 2001 article about the Semantic Web is [BLHL01], and an
update is [SBLH06]. The central website on the W3C Semantic Web activity is
http://www.w3.org/2001/sw/ and includes many pointers to further online
resources. A research-oriented account of recent semantic technologies is given
in [SS09]. For reading up on the most recent results concerning Semantic Web
research and practice, we recommend the following sources.

• the Elsevier Journal of Web Semantics: Science, Services and Agents on
the World Wide Web,13

• the IGI Global International Journal on Semantic Web and Information
Systems,14

• the proceedings of the annual International Semantic Web Conferences
(ISWC),15

• the proceedings of the annual International World Wide Web Confer-
ences,16

• the proceedings of the annual Semantic Technology Conferences.17

Specific references to the mentioned Semantic Web standards are given in the
respective chapters. This excludes two standards that have been mentioned
but are not treated within this book: GRDDL (“Gleaning Resource Descrip-
tions from Dialects of Languages”) which is specified in [Con07], and RDFa
(embedding RDF into XHTML) which is specified in [ABMP08]. Documen-
tation about microformats can be found at http://microformats.org/.

13http://www.websemanticsjournal.org/
14http://www.ijswis.org/
15http://iswc.semanticweb.org/
16http://www.iw3c2.org/.
17http://www.semantic-conference.com/
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Chapter 2

Simple Ontologies in RDF and RDF
Schema

The Resource Description Framework RDF is a formal language for describing
structured information. The goal of RDF is to enable applications to exchange
data on the Web while still preserving their original meaning. As opposed
to HTML and XML, the main intention now is not to display documents
correctly, but rather to allow for further processing and re-combination of the
information contained in them. RDF consequently is often viewed as the basic
representation format for developing the Semantic Web.

The development of RDF began in the 1990s, and various predecessor lan-
guages have influenced the creation process of RDF. A first official specifica-
tion was published in 1999 by the W3C, though the emphasis at this time still
was clearly on the representation of metadata about Web resources. The term
metadata generally refers to data providing information about given data sets
or documents. In 1999, the latter were mainly expected to be Web pages, for
which RDF could help to state information on authorship or copyright. Later
the vision of the Semantic Web was extended to the representation of seman-
tic information in general, reaching beyond simple RDF data as well as Web
documents as primary subjects of such descriptions. This was the motivation
for publishing a reworked and extended RDF specification in 2004.

As of today, numerous practical tools are available for dealing with RDF.
Virtually every programming language offers libraries for reading and writing
RDF documents. Various RDF stores – also called triple stores for reasons
that shall become clear soon – are available for keeping and processing large
amounts of RDF data, and even commercial database vendors are already
providing suitable extensions for their products. RDF is also used to exchange
(meta) data in specific application areas. The most prominent example of this
kind of usage is likely to be RSS 1.0 for syndicating news on the Web.1 But
also metadata belonging to files of desktop applications are sometimes encoded
using RDF, such as in the case of Adobe’s RDF format XMP for embedding
information in PDF files, or as annotations in the XML-based vector graphics
format SVG. We will say more about such applications in Chapter 9.

1RSS 1.0 and 2.0 are different formats, which pursue the same goal but which, confusingly,
are not based on each other. RSS 1.0 stands for RDF Site Summary, whereas RSS 2.0 is
usually interpreted as Really Simple Syndication. See also Section 9.1.2.
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FIGURE 2.1: A simple RDF graph describing the relationship between
this book and the publisher, CRC Press

This chapter introduces the basics of RDF. Initially, the representation of
simple data is our main concern. In the subsequent sections, we have a closer
look at the various syntactic formats available for exchanging RDF, and we
address some further questions regarding the usage of RDF. Thereafter we
consider some specific expressive features that go beyond the description of
simple data. RDF is extended to the language RDF Schema (RDFS) for this
purpose, allowing us to express also general information about a data set. The
official formal semantics as used for properly interpreting RDF and RDFS in
computer programs is explained in detail in Chapter 3.

2.1 Introduction to RDF

We begin by giving a very basic introduction to the RDF format that also
highlights major differences to XML. As we shall see, RDF is based on a very
simple graph-oriented data schema.

2.1.1 Graphs Instead of Trees

An RDF document describes a directed graph, i.e. a set of nodes that are
linked by directed edges (“arrows”). Both nodes and edges are labeled with
identifiers to distinguish them. Figure 2.1 shows a simple example of a graph
of two nodes and one edge. In contrast, as recalled in Appendix A, information
in XML is encoded in tree structures. Trees are perfectly suited for organiz-
ing information in electronic documents, where we are often confronted with
strictly hierarchical structures. In addition, information in trees can often be
fetched directly and be processed rather efficiently. Why then is RDF relying
on graphs?

An important reason is that RDF was not conceived for the task of structur-
ing documents, but rather for describing general relationships between objects
of interest (in RDF one usually speaks of “resources”). The graph in Fig. 2.1,
e.g., might be used to express that the book “Foundations of Semantic Web
Technologies” was published by “CRC Press” if we interpret the given labels
to refer to those objects. The relationship between book and publishing house
in this case is information which does not in any obvious sense belong hierar-
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chically below either of the resources. RDF therefore considers such relations
as basic building blocks of information. Many such relationships together
naturally form graphs, not hierarchical tree structures.

Another reason for choosing graphs is the fact that RDF was intended to
serve as a description language for data on the WWW and other electronic
networks. Information in these environments is typically stored and managed
in decentralized ways, and indeed it is very easy to combine RDF data from
multiple sources. For example, the RDF graphs from the website of this book
could simply be joined with graphs from http://semanticweb.org – this
would merely lead to a bigger graph that may or may not provide interesting
new information. Note that we generally allow for graphs to consist of multiple
unconnected components, i.e. of sub-graphs without any edges between them.
Now it is easy to see why such a straightforward approach would not be
feasible for combining multiple XML documents. An immediate problem is
that the simple union of two tree structures is not a tree anymore, so that
additional choices must be made to even obtain a well-formed XML document
when combining multiple inputs. Moreover, related information items in trees
might be separated by the strict structure: even if two XML files refer to the
same resources, related information is likely to be found in very different
locations in each tree. Graphs in RDF are therefore better suited for the
composition of distributed information sources.

Note that these observations refer to the semantic way in which RDF struc-
tures information, not to the question of how to encode RDF data syntacti-
cally. We will see below that XML is still very useful for the latter purpose.

2.1.2 Names in RDF: URIs

We have claimed above that RDF graphs enable the simple composition
of distributed data. This statement so far refers only to the graph structure
in general, but not necessarily to the intended information in the composed
graphs. An essential problem is that resources, just like in XML, may not have
uniform identifiers within different RDF documents. Even when two docu-
ments contain information on related topics, the identifiers they use might
be completely unrelated. On the one hand, it may happen that the same
resource is labeled with different identifiers, for instance, since there is no
globally agreed identifier for the book “Foundations of Semantic Web Tech-
nologies.” On the other hand, it may occur that the same identifiers are used
for different resources, e.g., “CRC” could refer to the publishing house as well
as to the official currency of Puerto Rico. Such ambiguity would obviously be
a major problem when trying to process and compose information automati-
cally.

To solve the latter problem, RDF uses so-called Uniform Resource Identi-
fiers (URIs) as names to clearly distinguish resources from each other. URIs
are a generalization of URLs (Uniform Resource Locators), i.e. of Web ad-
dresses as they are used for accessing online documents. Every URL is also a
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valid URI, and URLs can indeed be used as identifiers in RDF documents that
talk about Web resources. In numerous other applications, however, the goal
is not to exchange information about Web pages but about many different
kinds of objects. In general this might be any object that has a clear iden-
tity in the context of the given application: books, places, people, publishing
houses, events, relationships among such things, all kinds of abstract con-
cepts, and many more. Such resources can obviously not be retrieved online
and hence their URIs are used exclusively for unique identification. URIs that
are not URLs are sometimes also called Uniform Resource Names (URNs).

Even if URIs can refer to resources that are not located on the Web, they
are still based on a similar construction scheme as common Web addresses.
Figure 2.2 gives an overview of the construction of URIs, and explains their
relevant parts. The main characteristic of any URI is its initial scheme part.
While schemes like http are typically associated with a protocol for transmit-
ting information, we also find such schemes in many URIs that do not refer to
an actual Web location. The details of the protocol are obviously not relevant
when using a URI only as a name. The book “Foundations of Semantic Web
Technologies” could, e.g., use the URI http://semantic-web-book.org/uri
and it would not matter whether or not a document can be retrieved at the
corresponding location, and whether this document is relevant in the given
context. As we shall see later on, RDF makes use of various mechanisms of
XML to abbreviate URIs when convenient.

As shown in Fig. 2.1, nodes and edges in RDF graphs both are labeled with
URIs to distinguish them from other resources. This rule has two possible
exceptions: RDF allows for the encoding of data values which are not URIs,
and it features so-called blank nodes which do not carry any name. We will
take a closer look at both cases next. Later we will also return to the question
of finding good URIs in practice, in a way that ensures maximal utility and
reliability in semantic applications. For now we are satisfied with the insight
that URIs, if they are well-chosen, provide us with a robust mechanism for
distinguishing different entities, thus avoiding confusion when combining RDF
data from distributed sources.

2.1.3 Data Values in RDF: Literals

URIs allow us to name abstract resources, even those that cannot be rep-
resented or processed directly by a computer. URIs in this case are merely
references to the intended objects (people, books, publishers, . . . ). While
URIs can always be treated as names, the actual “intended” interpretation of
particular URIs is not given in any formal way, and specific tools may have
their own way of interpreting certain URIs. A certain Web Service, e.g., may
recognize URIs that refer to books and treat them in a special way by dis-
playing purchasing options or current prices. This degree of freedom is useful
and in fact unavoidable when dealing with arbitrary resources. The situation
is different when dealing with concrete data values such as numbers, times,
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The general construction scheme of URIs is summarized below, where parts
in brackets are optional:

scheme :[//authority ]path [?query ][#fragment ]

The meaning of the various URI parts is as follows:

scheme The name of a URI scheme that classifies the type of URI. Schemes
may also provide additional information on how to handle URIs in
applications. Examples: http, ftp, mailto, file, irc

authority URIs of some URI schemes refer to “authorities” for structur-
ing the available identifiers further. On the Web, this is typically a
domain name, possibly with additional user and port details. The au-
thority part of a URI is optional and can be recognized by the pre-
ceding //. Examples: semantic-web-book.org, john@example.com,
example.org:8080

path The path is the main part of many URIs, though it is possible
to use empty paths, e.g., in email addresses. Paths can be orga-
nized hierarchically using / as separator. Examples: /etc/passwd,
this/path/with/-:_˜/is/../okay (paths without initial / are only
allowed if no authority is given)

query The query is an optional part of the URI that provides additional
non-hierarchical information. It can be recognized by its preceding ?.
In URLs, queries are typically used for providing parameters, e.g., to a
Web Service. Example: q=Semantic+Web+book

fragment The optional fragment part provides a second level of identifying
resources, and its presence is recognized by the preceding #. In URLs,
fragments are often used to address a sub-part of a retrieved resource,
such as a section in an HTML file. URIs with different fragments are
still different names for the purpose of RDF, even if they may lead to
the same document being retrieved in a browser. Example: section1

Not all characters are allowed in all positions of a URI, and illegal symbols
are sometimes encoded by specific means. For the purpose of this book it
suffices to know that basic Latin letters and numbers are allowed in almost
any position. Moreover, the use of non-Latin characters that abound in many
languages is widely allowed in all current Semantic Web formats as well. URIs
that are extended in this way are known as International Resource Identifiers
(IRIs), and they can be used in any place where URIs are considered in this
book.

FIGURE 2.2: The basic construction scheme for URIs
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FIGURE 2.3: An RDF graph with literals for describing data values

or truth values: in these cases, we would expect every application to have a
minimal understanding of the concrete meaning of such values. The number
42, e.g., has the same numeric interpretation in any context.

Data values in RDF are represented by so-called literals. These are reserved
names for RDF resources of a certain datatype. The value of every literal is
generally described by a sequence of characters, such as the string consist-
ing of the symbols “4” and “2” in the above example. The interpretation of
such sequences is then determined based on a given datatype. Knowing the
datatype is crucial for understanding the intended meaning: the character se-
quences “42” and “042”, e.g., refer to the same natural number but to different
text strings.

For the time being, we will consider only literals for which no datatype has
been given. Such untyped literals are always interpreted as text strings. The
slightly more complex form of literals that contains an additional datatype
identifier will be explained later on.

As can be seen in Fig. 2.3, rectangular boxes are used to distinguish literals
from URIs when drawing RDF graphs. Another special trait of literals is that
they may never be the origin of edges in an RDF graph. In practice, this
means that we cannot make direct statements about literals.2 This constraint
needs to be taken into account when modeling data in RDF. Moreover, it
is not allowed to use literals as labels for edges in RDF graphs – a minor
restriction since it is hard to see what could be intended with such a labeling.
Note that it is still allowed to use the same URI for labeling both nodes and
edges in a graph, so at least in RDF there is no principle separation between
resources used for either purpose.

2The reason for this restriction is in fact historic, and an official resolution of the RDF-
Core working group notes that it could be waived in future Semantic Web languages; see
http://www.w3.org/2000/03/rdf-tracking/#rdfms-literalsubjects.
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2.2 Syntax for RDF

Up to this point, we have described RDF graphs by means of drawing
diagrams. This way of representing RDF is easy to read and still precise,
yet it is clearly not suitable for processing RDF in computer systems. Even
for humans, understanding visual graphs works without much effort only if
the graphs are very small – practically relevant data sets with thousands or
millions of nodes do obviously not lend themselves to being stored and com-
municated in pictures. This section thus introduces ways of representing RDF
by means of character strings that can easily be kept in electronic documents.
This requires us to split the original graph into smaller parts that can be
stored one by one. Such a transformation of complex data structures into
linear strings is called serialization.

2.2.1 From Graphs to Triples

Computer science has various common ways of representing graphs as
character strings, e.g., by using an adjacency matrix. RDF graphs, how-
ever, are typically very sparse graphs within which the vast majority of
possible relationships do not hold. In such a case it makes sense to rep-
resent the graph as the set of edges that are actually given, and to store
each edge on its own. In the example of Fig. 2.1 this is exactly one edge,
uniquely determined by its start http://semantic-web-book.org/uri, label
http://example.org/publishedBy, and endpoint http://crcpress.com/uri.
Those three distinguished parts are called subject , predicate, and object , re-
spectively.

It is easy to see that every RDF graph can, in essence, be completely de-
scribed by its edges. There are of course many ways for drawing such graphs,
but the details of the visual layout clearly have no effect on the informa-
tion the graph conveys. Now every such edge corresponds to an RDF triple
“subject-predicate-object.” As we have seen above, each part of a triple can
be a URI, though the object might also be a literal. Another special case is
blank nodes that we will consider later.

2.2.2 Simple Triple Syntax: N3, N-Triples and Turtle

Our earlier observations suggest that one denotes RDF graphs simply as
a collection of all their triples, given in arbitrary order. This basic idea has
indeed been taken up in various concrete proposals for serializing RDF. A
realization that dates back to 1998 is Tim Berners-Lee’s Notation 3 (N3),
which also includes some more complex expressions such as paths and rules.
The RDF recommendation of 2004 therefore proposed a less complicated part
of N3 under the name N-Triples as a possible syntax for RDF. N-triples in
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turn was further extended to incorporate various convenient abbreviations,
leading to the RDF syntax Turtle which is hitherto not described in an official
standardization document. Both N-Triple and Turtle are essentially parts of
N3, restricted to covering only valid RDF graphs. Here we consider the more
modern Turtle syntax.

The graph of Fig. 2.3 is written in Turtle as follows:

<http://semantic-web-book.org/uri>
<http://example.org/publishedBy> <http://crcpress.com/uri> .

<http://semantic-web-book.org/uri>
<http://example.org/title>

"Foundations of Semantic Web Technologies" .
<http://crcpress.com/uri>

<http://example.org/name> "CRC Press" .

URIs are thus written in angular brackets, literals are written in quotation
marks, and every statement is terminated by a full stop. Besides those specific
characteristics, however, the syntax is a direct translation of the RDF graph
into triples. Spaces and line breaks are only relevant if used within URIs or
literals, and are ignored otherwise. Our lengthy names force us to spread
single triples over multiple lines. Due to the hierarchical structure of URIs,
the identifiers in RDF documents typically use similar prefixes. Turtle offers
a mechanism for abbreviating such URIs using so-called namespaces. The
previous example can be written as follows:

@prefix book: <http://semantic-web-book.org/> .
@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

book:uri ex:publishedBy crc:uri .
book:uri ex:title "Foundations of Semantic Web Technologies" .
crc:uri ex:name "CRC Press" .

URIs are now abbreviated using prefixes of the form “prefix:” and are no
longer enclosed in angular brackets. Without the latter modification it would
be possible to confuse the abbreviated forms with full URIs, e.g., since it is
allowable to use a prefix “http:” in namespace declarations. The prefix text
that is used for abbreviating a particular URI part can be chosen freely, but it
is recommended to select abbreviations that are easy to read and that refer the
human reader to what they abbreviate. Identifiers of the form “prefix:name”
are also known as QNames (for qualified names).

It frequently happens that RDF descriptions contain many triples with the
same subject, or even with the same subject and predicate. For those common
cases, Turtle provides further shortcuts as shown in the following example:
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@prefix book: <http://semantic-web-book.org/> .
@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

book:uri ex:publishedBy crc:uri ;
ex:title "Foundations of Semantic Web Technologies" .

crc:uri ex:name "CRC Press", "CRC" .

The semicolon after the first line terminates the triple, and at the same
time fixes the subject book:uri for the next triple. This allows us to write
many triples for one subject without repeating the name of the subject. The
comma in the last line similarly finishes the triple, but this time both subject
and predicate are re-used for the next triple. Hence the final line in fact
specifies two triples providing two different names. The overall RDF graph
therefore consists of four edges and four nodes. It is possible to combine
semicolon and comma, as shown in the next example with four triples:

@prefix book: <http://semantic-web-book.org/> .
@prefix ex: <http://example.org/> .

book:uri ex:author book:Hitzler, book:Krötzsch, book:Rudolph ;
ex:title "Foundations of Semantic Web Technologies" .

The above abbreviations are not contained in the official (normative) W3C
syntax N-Triples which allows neither namespaces, nor comma or semicolon.
Yet, Turtle’s syntactic shortcuts are frequently encountered in practice, and
they have influenced the triple syntax of W3C’s more recent SPARQL speci-
fication, introduced in Chapter 7.

2.2.3 The XML Serialization of RDF

The Turtle representation of RDF can easily be processed by machines but
is still accessible for humans with relatively little effort. Yet, triple represen-
tations like Turtle are by far not the most commonly used RDF syntax in
practice. One reason for this might be that many programming languages do
not offer standard libraries for processing Turtle syntax, thus requiring devel-
opers to write their own tools for reading and writing to files. In contrast,
essentially every programming language offers libraries for processing XML
files, so that application developers can build on existing solutions for storage
and pre-processing. As of today, the main syntax for RDF therefore is the
XML-based serialization RDF/XML that is introduced in this section. This
syntax also offers a number of additional features and abbreviations that can
be convenient to represent advanced features which we will encounter later
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on, but at the same time it imposes some additional technical restrictions.
Readers who are not familiar with the basics of XML may wish to consult
Appendix A for a quick introduction.

The differences of the data models of XML (trees) and RDF (graphs) are no
obstacle, since XML only provides the syntactic structure used for organizing
an RDF document. Since XML requires hierarchic structures, the encoding of
triples now must as well be hierarchical. The space efficient Turtle descriptions
of the previous section have illustrated that it is often useful to assign multiple
predicate-object pairs to a single subject. Accordingly, triples in RDF/XML
are grouped by their subjects. The following example encodes the RDF graph
from Fig. 2.1:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ex ="http://example.org/">

<rdf:Description rdf:about="http://semantic-web-book.org/uri">
<ex:publishedBy>

<rdf:Description rdf:about="http://crcpress.com/uri">
</rdf:Description>

</ex:publishedBy>
</rdf:Description>

</rdf:RDF>

After an optional specification of XML version and encoding, the document
starts with a first node of type rdf:RDF. This element is generally used as the
root of any RDF/XML document. At this place, we also declare the global
(XML-)namespaces for ex: and rdf:. Just as in Turtle, namespaces allow us
to abbreviate URIs with QNames, this time building upon the existing XML
namespace mechanism. While abbreviations for namespaces are still mostly
arbitrary, it is a convention to use the prefix rdf: for the RDF namespace
as given in the above example. In the following, elements that have a special
meaning in the RDF serialization are recognized by that prefix.

Nested within the element rdf:RDF, we find the encoding of the sole triple of
the above example. Subject and object are described by elements of the type
rdf:Description, where the XML attribute rdf:about defines the identifier
of the resource. The predicate of the encoded triple is represented directly as
the element ex:publishedBy.

Multiple triples can be encoded by representing each of them by a sep-
arate element of type rdf:Description, which may lead to multiple such
elements referring to the same subject. Likewise, the order of the triples
is of course not important. However, it is also possible to nest elements of
type rdf:Description, possibly leading to a more concise serialization. The
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following example encodes the graph from Fig. 2.3:3

<rdf:Description rdf:about="http://semantic-web-book.org/uri">
<ex:title>Foundations of Semantic Web Technologies</ex:title>
<ex:publishedBy>

<rdf:Description rdf:about="http://crcpress.com/uri">
<ex:name>CRC Press</ex:name>

</rdf:Description>
</ex:publishedBy>

</rdf:Description>

Here we can see how literals are represented simply as the contents of a
predicate-element. The name “CRC Press” is given directly by nesting XML
elements instead of creating a second top-level subject element for describing
http://crcpress.com/uri. Some further abbreviations are allowed:

<rdf:Description rdf:about="http://semantic-web-book/uri"
ex:title= "Foundations of Semantic Web Technologies">

<ex:publishedBy rdf:resource="http://crcpress.com/uri" />
</rdf:Description>
<rdf:Description rdf:about="http://crcpress.com/uri"

ex:Name="CRC Press" />

This syntax requires some explanation. First of all, all predicates with
literal objects have been encoded as XML attributes. This abbreviation is
admissible only for literals – objects referred to by URIs cannot be encoded
in this way, since they would then be misinterpreted as literal strings.

Moreover, the element ex:publishedBy makes use of the special attribute
rdf:resource. This directly specifies the object of the triple, such that no
further nested element of type rdf:Description is necessary. This is the
reason why ex:publishedBy has no content so that it can be written as an
empty-element tag, as opposed to giving separate start and end tags. This
shortcut notation is only allowed for URIs, i.e., every value of rdf:resource
is considered as a URI.

Since we thus avoid a nested description of http://crcpress.com/uri,
another description appears at the outer level. The predicate ex:Name is
again encoded as an XML attribute and the otherwise empty description can
be closed immediately.

3In many cases, we show only the interesting parts of an RDF/XML document in examples.
The declaration of rdf:RDF can always be assumed to be the same as in the initial example
on page 28.



30 Foundations of Semantic Web Technologies

We see that RDF/XML provides a multitude of different options for repre-
senting RDF. Some of those options stem from the underlying XML syntax.
As an example, it is not relevant whether or not an element without contents
is encoded by an empty-element tag instead of giving both start and end tags.
A larger amount of freedom, however, is provided by RDF since the same
triples can be encoded in many different ways. Our previous two examples
certainly do not describe the same XML tree, yet they encode the same RDF
graph.

W3C Validator The W3C Validator is a Web Service that can be em-
ployed to check the validity of RDF/XML documents with respect to the of-
ficial specification. A simple online form is provided to upload XML-encoded
RDF which is then validated. Valid documents are processed to extract indi-
vidual triples and a visualization of the corresponding graph, whereas invalid
documents lead to error messages that simplify the diagnosis of problems.
This Web Service can also be used to investigate RDF/XML examples given
within this book, though it should not be forgotten that many examples are
only partial and must be augmented with a suitable rdf:RDF declaration to
become valid.
The W3C Validator is found at http://www.w3.org/RDF/Validator/

2.2.4 RDF in XML: URIs and Other Problems

Namespaces in RDF/XML have been introduced above as a way of ab-
breviating URIs in the RDF/XML serialization. The truth, however, is that
namespaces in RDF/XML are an indispensable part of the encoding rather
than an optional convenience. The reason is that RDF/XML requires us
to use resource identifiers as names of XML elements and attributes. But all
URIs necessarily contain a colon – a symbol that is not allowed in XML names!
Using namespaces, we can “hide” a URI’s own colon within the declared prefix.

On the other hand, namespaces can only be used for abbreviating XML
tags and attributes, but are not allowed within attribute values and plain text
contents between XML tags. This is the reason why we used the complete
URI http://semantic-web-book/uri in all previous examples, instead of
employing a QName book:uri as in our earlier Turtle examples. An attribute
assignment of the form rdf:about="book:uri" is not correct, and book in
this case would be interpreted as the scheme part of a URI but not as an XML
namespace prefix.

Thus we are in the unfortunate situation of having to write the same URI
differently in different positions of an RDF/XML document. The next section
introduces a method that still allows us to at least abbreviate URIs in cases
where namespaces cannot be used. XML has a number of further syntactic
restrictions that may complicate the encoding of arbitrary RDF graphs. It
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is, e.g., not allowed to use a hyphen directly after a colon in XML tags, even
though hyphens might occur within URIs. It may thus become necessary
to declare auxiliary namespaces merely for the purpose of exporting single
elements in a valid way.

Another practical problem is that the percent sign % occurs frequently
within URLs since it is used to escape forbidden characters. The string %20,
e.g., encodes the space character. Just like colon, the percent sign is not al-
lowed in XML tags, and it can happen that existing URLs cannot be used as
URIs in RDF. Fortunately, many problems of this kind are already addressed
by existing RDF programming libraries, so that application developers do not
need to focus on such serialization issues. Yet they should be aware that there
are valid URIs that cannot be encoded at all in XML.

2.2.5 Shorter URIs: XML Entities and Relative URIs

In the above examples, we have always used absolute URIs as values of
the attributes rdf:about and rdf:resource, as the use of namespaces would
not be admissible in this context. This section discusses two methods for
abbreviating such values as well. While these abbreviations are of course
optional additions to the basic syntax, they are very widely used and thus
indispensable for understanding most of today’s RDF documents.

A simple method to abbreviate values in XML is the use of so-called XML
entities. An entity in XML is a kind of shortcut that can be declared at the
beginning of a document, and referred to later in the document instead of
giving its complete value. The following is a concrete example of an XML
document using this feature:

<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE rdf:RDF[
<!ENTITY book ’http://semantic-web-book.org/’>

]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex ="http://example.org/">

<rdf:Description rdf:about="&book;uri">
<ex:title>Foundations of Semantic Web Technologies</ex:title>

</rdf:Description>

</rdf:RDF>

An obvious novelty in this example is the initial entity declaration enclosed
in <!DOCTYPE rdf:RDF[ and ]>. This part of the XML document constitutes
its document type declaration which might provide a so-called Document Type
Definition (DTD). A DTD can be used to declare entities as above, but also

www.allitebooks.com

http://www.allitebooks.org
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to define a number of further restrictions on the contents of the XML docu-
ment. All document type declarations used in this book, however, are plain
entity definitions, so that we can content ourselves with knowing that entities
in RDF/XML are defined as above. In our example, the entity defined is
called book and its value is http://semantic-web-book.org/. Further enti-
ties could easily be defined by providing additional lines of the form <!ENTITY
name 'value'>.

We may now refer to our newly defined entity by writing &book; as in the
value of rdf:about above, and the XML document is interpreted just as if
we had written the declared value of the entity at this position. Such entity
references are allowed in XML attribute values and within plain text data
contained in an element, such as the texts used for serializing data literals in
Section 2.2.3. Entities cannot be used within names of XML elements and
attributes – there we have to stick to the use of namespaces. In our current
example, defining a new entity does not actually shorten the document, but
usually entities for common URI prefixes lead to much more concise serializa-
tions and may also increase readability. XML also provides a small number
of pre-defined entities that are useful for encoding certain symbols that would
otherwise be confused with parts of the XML syntax. These entities are &lt;
(<), &gt; (>), &amp; (&), &apos; ('), and &quot; (").

There is another common case in which URIs might be abbreviated: in
many RDF documents, URIs primarily stem from a common base namespace.
A website that exports data in RDF, e.g., is likely to use many URIs that
begin with the site’s domain name. XML has the concept of a base URI that
can be set for elements in a document using the attribute xml:base. Other
attributes in the XML document then may, instead of full URIs, use so-called
relative references. Such entries refer to a full URIs which are obtained by
preceding the entries with the given base URI, as illustrated by the following
example:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex ="http://example.org/"
xml:base ="http://semantic-web-book.org/" >

<rdf:Description rdf:about="uri">
<ex:publishedBy rdf:resource="http://crcpress.com/uri" />

</rdf:Description>

</rdf:RDF>

The relative reference rdf:about="uri" is thus interpreted as the URI
http://semantic-web-book/uri. Values of rdf:resource or rdf:datatype
(explained later) can be abbreviated in the same fashion. Relative references
are distinguished from full URIs by lacking a scheme part; see Fig. 2.2. It is
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possible to use relative references even without declaring the intended base
URI beforehand: in this case, the base URI of the document – based on the
URL it was retrieved from – is used. This mechanism is less robust since
locations of documents may change; hence it is suggested to provide explicit
base URIs whenever needed.

A second common use of xml:base for abbreviating URIs relates to the
attribute rdf:ID. This attribute can be used just like rdf:about, but it always
expects a single fragment identifier as its value, whereas complete URIs are
not allowed. The full URI is then constructed by using the given value as a
fragment for the base URI (which thus should not contain any fragment), i.e.
we can obtain the URI by extending the base URI with the symbol # followed
by the value of rdf:ID.

Thus we find that rdf:ID="name" has essentially the same meaning as
rdf:about="#name". The most relevant difference of both ways of writing
URIs is that every value of rdf:ID must be used only once for a given base
URI. An RDF/XML document may thus contain one element with a given
ID, but it may still contain further elements that refer to the same URI by
means of rdf:about and rdf:resource.

The Turtle syntax for RDF provides a similar support for relative references,
which are resolved by using the base URI (URL) of the document. Setting
the base URI explicitly is not encompassed by the current specification, even
though the syntax @base was proposed for this purpose. Overall, relative
references in Turtle are of only minor importance since namespace declarations
can be used without the restrictions of the XML syntax.

Figure 2.4 provides an overview of the various forms of abbreviation mecha-
nisms that we have introduced for RDF/XML. Note that a principal difference
between XML entities and (base) namespaces is that the former can be de-
clared only once for the whole document, whereas the latter may be declared
in arbitrary XML start tags or empty-element tags. The namespaces then
apply to the element within which they were declared, and to all subelements
thereof. Moreover, entities can be used not only for abbreviating URIs but
provide shortcuts for arbitrary text content, even within literal values.

2.2.6 Where Do URIs Come From? What Do They Mean?

Does the use of URIs, which is strictly required throughout RDF, allow for
a semantically unambiguous interpretation of all RDF-encoded information?
The answer is clearly no. It is still possible to use different URIs for the same
resource, just as it is still possible to use the same URI for different things.
A possible solution for this problem is the use of well-defined vocabularies.
As in XML, the term vocabulary in RDF is most commonly used to refer to
collections of identifiers with a clearly defined meaning. A typical example is
provided by RDF itself: the URI

http://www.w3.org/1999/02/22-rdf-syntax-ns#Description,
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Namespace declaration Usage: namespace:name in XML element names
Declaration: xml:namespace="<uri>" in XML
start tags or empty-element tags; declarations af-
fect XML subtree; multiple declarations possible

Entity declaration Usage: &entity; in XML attribute values or char-
acter content (RDF literal values) of elements
Declaration: <!ENTITY entity 'text'> in initial
DOCTYPE declaration; declaration affects whole
document; only one declaration possible

Predefined entities Usage: &lt;, &gt;, &amp;, &apos;, or &quot; in
XML attribute values or character content (RDF
literal values) of elements
Declaration: predefined in XML, no declaration

Base namespace Usage: non-URI name as value for rdf:about,
rdf:resource, rdf:ID, or rdf:datatype
Declaration: xml:base="<uri>" in XML start
tags or empty-element tags; declarations affect
XML subtree; multiple declarations possible

FIGURE 2.4: Summary of abbreviation mechanisms in RDF/XML
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e.g., has a generally accepted well-defined meaning which applications may
take into account.

But vocabularies are not just used to define the RDF/XML syntax as such;
they are also commonly used to describe information. An example of a par-
ticularly popular vocabulary is FOAF (Friend Of A Friend), which defines
URIs to describe people and their relationships (see Section 9.1.2 for details).
Even though FOAF is not specified by an official standardization authority,
its URIs are sufficiently well known to avoid confusion. Both FOAF and RDF
itself illustrate that the intended use and meaning of vocabularies are typically
not encoded in a machine-readable way.

One of the major misconceptions regarding the Semantic Web is the belief
that semantic technologies enable computers to truly understand complex con-
cepts such as “person.” The unambiguous assignment of URIs indeed allows
us to refer to such concepts, and to use them in a multitude of semantic rela-
tionships – actually comprehending the contents of the encoded statements,
however, is still the task of the human user. This should be obvious based on
our daily experiences of the capabilities and limitations of today’s computers,
but new technologies often are accompanied by a certain amount of inflated
expectations. It is still possible to describe a certain amount of complex rela-
tionships that may refer to a certain vocabulary in a way that is readable by
machines: this is the main aim of the ontology languages RDF Schema and
OWL that we consider later on.

In many cases, a vocabulary for a certain topic area is not readily available,
and it is clearly never possible to assign URIs to all conceivable resources.
Therefore it is required to introduce new URIs on demand, and various pro-
posals and guidelines have been developed for coining new URIs on the Se-
mantic Web. It also makes sense to take the relationship between URLs and
URIs into account in this context.

In some situations, very concrete guidelines are available for creating suit-
able URIs. There is, e.g., an official policy for turning phone numbers into
URIs using the scheme tel. Similar proposals exist for deriving URIs for
books and journals from the ISSN or ISBN numbers.

In numerous other cases, however, it is required to coin completely new
URIs. A first objective in this case must be to ensure that the chosen URI
is not used elsewhere, possibly with a different intended meaning. This is
often surprisingly easy to do by taking advantage of the existing hierarchic
mechanisms for managing URLs. By choosing URIs that – when viewed as
URLs – refer to locations on the Web over which one has complete control, one
can usually avoid clashes with existing URIs. Moreover, it is then possible
to make a document available at the corresponding location, providing an
authoritative explanation of the intended meaning. The information about
the proper usage of a URI thus becomes accessible worldwide.

An important related aspect is the distinction between Web pages and other
(abstract) resources. The URL http://en.wikipedia.org/wiki/Othello,
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e.g., at first appears to be a suitable URI for Shakespeare’s drama, since it
contains an unambiguous description of this resource. If an RDF document
assigns an author to this URI, however, it is not clear whether this refers to
the existing HTML page or to the drama. One thus could be led to believe
that Shakespeare has edited pages on Wikipedia, or that Othello was written
collaboratively by authors such as “User:The_Drama_Llama”! It is thus
obvious why URLs of existing documents are not well-suited as URIs for
abstract concepts.

On the other hand, we would still like to construct URIs that point to
existing Web documents. For users of RDF, it would certainly be useful if
URIs could be used to learn more about their intended usage – like an inherent
user documentation closely tied to any RDF document. But how can this be
accomplished without using existing URLs? One option is the use of fragment
identifiers. By writing, e.g., http://en.wikipedia.org/wiki/Othello#uri
one does not use the URL of an existing Web document (since the fragment
“uri” is not defined on the page retrieved at the base URL). Yet, when resolving
this URI in a browser, one obtains the same explanatory document as before.
This solution is also suggested by the possibility of using relative references
together with the attribute rdf:ID explained earlier.

An alternative option is the use of redirects: even if no document is found
at a given URL, a Web server may redirect users to an alternative page. This
is a core functionality of the HTTP protocol. Since the user-side application
notices any such HTTP redirect, the retrieved page can still be distinguished
from the resource that the original URI referred to. The automatic redirect
also has the advantage that a single URI may redirect either to a human-
readable HTML description, or to a machine-readable RDF document – the
server may select which of those is appropriate based on information that the
client provides when requesting the data. This method is known as content
negotiation. An example is the URI http://semanticweb.org/id/Markus:
when viewed in a browser, it provides details on the encoded resource; when
accessed by an RDF-processing tool such as Tabulator,4 it returns RDF-based
metadata.

The above technical tricks allow us to create unambiguous URIs that link
to their own documentation, and this explains to some extent why many URIs
still refer to common URL schemes such as http.

4An RDF browsing tool; see http://www.w3.org/2005/ajar/tab.



Simple Ontologies in RDF and RDF Schema 37

FIGURE 2.5: An RDF graph with typed literals

2.3 Advanced Features

We already have learned about all the basic features of RDF. There are,
however, a number of additional and derived expressive means, which are
highly important in applications. This section introduces a number of these
advanced features in detail. In each case, we consider presentations using
RDF graphs, Turtle syntax, and RDF/XML.

2.3.1 Datatypes in RDF

We have already seen in Section 2.1.3 that RDF allows us to describe data
values by means of literals. So far, however, all literals we considered have been
nothing more than mere character strings. Practical applications of course
require many further datatypes, e.g., to denote numbers or points in time.
Datatypes usually have a major effect on the interpretation of a given value.
A typical example is the task of sorting data values: The natural order of the
values “10”, “02”, “2” is completely different depending on whether we interpret
them as numbers or as strings. The latter are usually sorted alphabetically,
yielding “02” < “10” < “2”, while the former would be sorted numerically to
obtain “2” = “02” < “10”.

RDF therefore allows literals to carry an explicit datatype. Staying true to
our established principles, each datatype is uniquely identified by a URI, and
might be chosen rather arbitrarily. In practice, however, it is certainly most
useful to refer to datatype URIs that are widely known and supported by
many software tools. For this reason, RDF suggests the use of XML Schema.
Figure 2.5 illustrates how additional datatype information might be added to
an RDF graph. The subject of this example is the RDF Primer document,
identified by its actual URL, for which a title text and publication date are
provided. These data values are specified by a literal string in quotation
marks, followed by ˆˆ and the URI of some datatype. As datatypes, we have
used “string” for simple character sequences, and “date” for calendar days.

It can be seen from the graphical representation that typed literals in RDF
are considered as single elements. Any such literal therefore essentially be-
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haves just like a single untyped literal. From this we can readily derive the
Turtle syntax for the RDF document in Fig. 2.5:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://www.w3.org/TR/rdf-primer>

<http://example.org/title> "RDF Primer"^^xsd:string ;
<http://example.org/publicationDate> "2004-02-10"^^xsd:date .

As the example shows, datatype URIs in Turtle can be abbreviated us-
ing namespaces. If they were written as complete URIs, they would need
to be enclosed in angular brackets just as any other URI. The representa-
tion in RDF/XML is slightly different, using an additional XML attribute
rdf:datatype:

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-primer">
<ex:title rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

RDF Primer
</ex:title>
<ex:publicationDate

rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
2004-02-10

</ex:publicationDate>
</rdf:Description>

The general restrictions on the use of namespaces in XML also apply to the
previous example. Since datatype URIs are specified as XML attribute values,
they cannot be abbreviated by namespaces. We may, however, introduce XML
entities for arriving at a more concise serialization.

To obtain a better understanding of RDF’s datatype mechanism, it makes
sense to have a closer look at the meaning of datatypes. Intuitively, we would
expect any datatype to describe a certain value space, such as, e.g., the natural
numbers. This fixes the set of possible values that literals of a datatype denote.
A second important component is the set of all admissible literal strings. This
so-called lexical space of a datatype enables implementations to recognize
whether or not a given literal syntactically belongs to the specified datatype.
The third and final component of each datatype then is a well-defined mapping
from the lexical space to the value space, assigning a concrete value to every
admissible literal string.

As an example, we consider the datatype decimal that is defined in XML
Schema. The value space of this datatype is the set of all rational numbers that
can be written as finite decimal numbers. We thus exclude irrational numbers
like π, and rational numbers like 1/3 that would require infinitely many digits
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in decimal notation. Accordingly, the lexical space consists of all character
strings that contain only numerals 0 to 9, at most one occurrence of ., and an
optional initial symbol + or -. The mapping between lexical space and value
space is the well-known interpretation of decimal numbers as rationals. The
literal strings 3.14, +03.14, and 3.14000, e.g., are multiple possible ways
to refer to the rational number 3.14. It is common in many datatypes that
a single value can be denoted in multiple different ways. Applications that
support a datatype thus recognize syntactically different RDF literals as being
semantically equal.

Most of the common XML datatypes allow for a meaningful interpretation
in RDF, yet the RDF specification leaves it to individual implementations
to decide which datatypes are supported. In particular, a software tool can
conform to the RDF specification without recognizing any additional XML
datatypes.

The sole exception to this general principle is RDF’s only built-in datatype
rdf:XMLLiteral. This datatype allows the embedding of well-formed XML
snippets as literal values in RDF. As such, the datatype specifically addresses
a possible use case of RDF/XML where it might be convenient to use well-
formed XML directly in the place of literal values.

The datatype rdf:XMLLiteral is most commonly used together with an
additional function for pre-processing and normalizing XML data. This is
achieved by means of the attribute rdf:parseType, which we shall also en-
counter in various other contexts later on:

<rdf:Description rdf:about="http://semantic-web-book/uri">
<ex:title rdf:parseType="Literal">

Foundations of
<br />
<b>Semantic Web Technologies</b>

</ex:title>
</rdf:Description>

In this example, we have embedded text that uses HTML mark-up into an
RDF document. Due to the setting rdf:parseType="Literal", the given
XML fragment is normalized internally, and transformed into a literal of type
rdf:XMLLiteral. Even though XML snippets that are used in this way need
not be complete XML documents, it is required that their opening and closing
tags are balanced. If this cannot be guaranteed in an application, it is also
common to embed XML fragments into RDF/XML as string literals, using
pre-defined entities like &amp; and &lt; to replace XML syntax that would
otherwise be confused with the remainder of the RDF document.

At this point we should also make sure that we have not allowed ourselves to
be confused by some rather similar terms which have been introduced: RDF
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literals generally are syntactic identifiers for data values in RDF, whereas the
value Literal of the attribute rdf:parseType merely leads to the creation
of one particular kind of literals belonging to the datatype rdf:XMLLiteral.

2.3.2 Language Settings and Datatypes

Now that we are more familiar with the comprehensive datatype system
of RDF and XML Schema, it is in order to take another look at data values
in RDF. The first obvious question is which datatype literals without any
type assignment actually have. In fact, such untyped literals simply have no
type at all, even though they behave very similarly to typed literals of type
xsd:string for most practical purposes.

An important difference between typed and untyped literals is revealed
when introducing language information into RDF. XML in general supports
the specification of language information that tells applications whether part
of an XML document’s content is written in a particular (natural) language.
This is achieved by means of the attribute xml:lang. A typical example is the
language setting in (X)HTML documents as found on the Web, which often
contain attribute assignments such as xml:lang="en" or xml:lang="de-ch"
in their initial html tag. Not surprisingly, such language information in XML
is managed in a hierarchical way, i.e. all child elements of an element with
a language setting inherit this setting, unless they supply another value for
xml:lang.

Language information can also be provided in RDF/XML, but this is se-
mantically relevant only for untyped literals. For instance, one could write
the following:

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-primer">
<ex:title xml:lang="fr">Initiation à RDF</ex:title>
<ex:title xml:lang="en">RDF Primer</ex:title>

</rdf:Description>

In serializations of RDF other than RDF/XML, language information is
supplied by means of the symbols @. In Turtle this might look as follows:

<http://www.w3.org/TR/rdf-primer> <http://example.org/title>
"Initiation à RDF"@fr, "RDF Primer"@en .

This syntax again shows that language settings are really part of the data
value in RDF. The above example thus describes a graph of two triples with
the same subject and predicate. Likewise, in the graphical representation
of RDF, the labels of literal nodes are simply extended to include language
settings just as in Turtle.
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Similar yet distinct
Both language settings and datatypes in RDF are considered to be part of
literals, and their absence or presence thus leads to different literals. This
might sometimes lead to confusion in the users of RDF, and it may also
impose some challenges when merging datasets. Consider, e.g., the following
RDF description in Turtle:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://crcpress.com/uri> <http://example.org/Name> "CRC Press" ,

"CRC Press"@en ,
"CRC Press"^^xsd:string .

This example does indeed encode three different triples. Literals with lan-
guage settings always constitute a pair of a literal value and a language code,
and thus can never be the same as any literal without language setting. The
untyped literal "CRC Press", according to the RDF specification, represents
“itself”, i.e. there is no distinction between lexical space and value space.
Whether or not the untyped value "CRC Press" is part of the value space of
xsd:string of course is not addressed in the RDF specification, since XML
Schema datatypes are not part of this standard.
In practice, however, many applications expect the two literals without lan-
guage settings to be equal, which probably agrees with the intuition of many
users.

As mentioned above, language settings are only allowed for untyped liter-
als. The justification for this design of the current RDF standard was that the
semantics of typed data values is not dependent on any language. The num-
ber 23, e.g., should have the same (mathematical) meaning in any language.
This view was also extended to strings: values of type xsd:string therefore
are indeed assumed to encode a sequence of characters, not a text of a con-
crete language. Another possibly unexpected consequence of this decision is
that values of type rdf:XMLLiteral do not inherit language settings from
their parent elements, even though this would be assumed if the RDF/XML
document was considered as XML. RDF thus introduces an exception to the
otherwise strictly hierarchical scope of xml:lang in XML.

2.3.3 Many-Valued Relationships

So far, we have represented only very simple binary relationships between
resources, thus essentially describing a directed graph. But does such a sim-
ple graph structure also allow for the representation of more complex data
structures? In this section, we will see how relationships between more than
two resources can indeed be encoded in RDF.

Let us first consider an example. The following excerpt from an RDF

www.allitebooks.com

http://www.allitebooks.org
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FIGURE 2.6: Representing many-valued relationships in RDF

description formalizes ingredients of a cooking recipe:

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient "1lb green mango",

"1tsp. Cayenne pepper" .

This encoding, however, is not really satisfying, since ingredients and their
amounts are modeled as plain strings of text. Thus it is, e.g., not possible
to query for all recipes that contain green mango, unless the whole text in-
cluding the specified amount is queried. It would therefore be more useful to
describe ingredients and their amounts in separate resources. Let us attempt
the following modeling:

@prefix ex: <http://example.org/> .
ex:Chutney ex:ingredient ex:greenMango; ex:amount "1lb" ;

ex:ingredient ex:CayennePepper; ex:amount "1tsp." .

It is not hard to see that this encoding is even less suitable than our initial
approach. While ingredients and amounts are described separately, there is no
relationship at all between the individual triples. We could therefore as well
be dealing with 1 tsp. of green mango and 1 lb of Cayenne pepper – a rather
dangerous ambiguity! An alternative approach could be to model amounts
via triples that use ingredients as their subjects. This would obviously clarify
the association of amounts and ingredients, e.g., when writing ex:greenMango
ex:amount "1lb". Yet this attempt would again yield undesired results (can
you see why?5).

We are thus dealing with a true three-valued relationship between a recipe,
an ingredient, and an amount – one also speaks of ternary (and generally
n-ary) relations. RDF obviously cannot represent relationships with three
or more values directly, but they can be described by introducing so-called
auxiliary nodes into the graph. Consider the graph in Fig. 2.6. The node

5Hint: Try to encode multiple recipes that require the same ingredient but in different
amounts.
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ex:Ingredient1 in this example plays the role of an explicit connection be-
tween recipe, ingredient, and amount. Further nodes could be introduced for
all additional ingredients to link the respective components to each other.

As can be readily seen, this method can generally be used to connect an
arbitrary number of objects to a subject. This, however, requires the intro-
duction of several additional URIs. On the one hand, the auxiliary node itself
needs an identifier; on the other hand, additional triples with new predicate
names are created. Consequently, our example now contains two predicates
ex:hasIngredient and ex:ingredient. Our choice of names in this case
reflects the fact that the object of ex:ingredient plays a particularly promi-
nent role among the many values in our example relationship. RDF offers
a reserved predicate rdf:value that may be used to highlight a particular
object of a many-valued relation as a “main” value. Instead of the graph of
Fig. 2.6, we may thus choose to write:

@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ex:Chutney ex:hasIngredient ex:ingredient1 .
ex:ingredient1 rdf:value ex:greenMango;

ex:amount "1lb" .

The predicate rdf:value does not have a particular formal semantics. It is
merely a hint to applications that a particular value of a many-valued relation-
ship could be considered as its primary value. Most of today’s applications,
however, do not heed this additional information. Since, moreover, rdf:value
does not play well with the ontology language OWL DL that we introduce
in Chapter 4, it is often the best choice to use application-specific predicate
names instead.

2.3.4 Blank Nodes

As shown in the previous section, modeling many-valued relationships may
require the introduction of auxiliary nodes. Such nodes typically do not refer
to resources that were meant to be described explicitly in the first place,
and rather introduce helper resources with a merely structural function. It
is therefore rarely useful to refer to such resources globally by means of a
specific URI. In such cases, RDF allows us to introduce nodes without any
URI, called blank nodes or simply bnodes.

An example for an RDF graph with a blank node is given in Fig. 2.7. This
graph essentially describes the same structure as the graph in Fig. 2.6. The
second RDF document, however, merely states that there is some resource
taking the place of the blank node, but without providing a URI for referring
to this resource. As the name “blank node” suggests, this feature is only
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FIGURE 2.7: Representing auxiliary resources by blank nodes

available for subject and objects of RDF triples. Predicates (i.e. edges) must
alway be specified by URIs.

Blank nodes cannot be addressed globally by means of URIs, and they do
not carry any additional information within RDF graphs. Yet, the syntactic
serialization of RDF necessitates referring to particular blank nodes at least
in the context of the given document. The reason is that a single blank node
may appear as a subject or object in arbitrarily many triples. Therefore,
there must be a way for multiple triples to refer to the same blank node. To
this end, blank nodes in a document may be denoted by means of (node)
IDs. In RDF/XML this is done by using the attribute rdf:nodeID instead of
rdf:about, rdf:ID or rdf:resource. The RDF/XML serialization for the
graph in Fig. 2.7 could thus be as follows:

<rdf:Description rdf:about="http://example.org/Chutney">
<ex:hasIngredient rdf:nodeID="id1" />

</rdf:Description>
<rdf:Description rdf:nodeID="id1">

<ex:ingredient rdf:resource="http://example.org/greenMango" />
<ex:amount>1lb</ex:amount>

</rdf:Description>

The label id1 in this example is only relevant for the given document.
Within other documents, in contrast, the same id might well refer to different
resources. In particular, the semantics of an RDF document is not changed if
all occurrences of a given node id are replaced by another id, as long as the
latter was not used yet within this document. This reflects the fact that node
IDs are only a syntactic tool to serialize blank nodes. If the given usage of a
blank node does not actually require the use of this node in multiple positions,
it is also allowed to omit the attribute rdf:nodeID entirely. This can be
particularly useful when nesting descriptions in RDF/XML. The following
example shows yet another possibility of introducing blank nodes without
providing an id:
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<rdf:Description rdf:about="http://example.org/Chutney">
<ex:hasIngredient rdf:parseType="Resource">

<ex:ingredient rdf:resource="http://example.org/greenMango" />
<ex:amount>1lb</ex:amount>

</ex:hasIngredient>
</rdf:Description>

The value Resource of the attribute rdf:parseType in this case leads to
the automatic creation of a new blank node which does not have a node id
within the given document. We already encountered rdf:parseType earlier
with the value Literal, where a literal node of type XMLLiteral was newly
created. In general, rdf:parseType modifies the way in which parts of the
XML document are interpreted, usually leading to the generation of additional
triples that have not been specified directly. All uses of rdf:parseType –
including those discussed further below – can be avoided by serializing the
encoded triples directly. Yet, such “syntactic sugar” is often rather useful for
enhancing a document’s readability.

In Turtle and similar triple-based serializations, blank nodes are encoded
by using an underscore instead of a namespace prefix:

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient _:id1 .
_:id1 ex:ingredient ex:greenMango; ex:amount "1lb" .

The given node id again is relevant only for the current document. Turtle
allows us to abbreviate nested blank nodes in a way that is structurally similar
to RDF/XML:

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient

[ ex:ingredient ex:greenMango; ex:amount "1lb" ] .

The predicates and objects within square brackets refer to an implicit blank
node without an id. The previous Turtle document thus corresponds to the
same RDF graph structure as in the earlier examples. As a special case, it is
also possible to write [] for a blank node that does not have an explicit id.
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2.4 Simple Ontologies in RDF Schema

In the previous sections, we explained how propositions about single re-
sources can be made in RDF. Essentially, three basic kinds of descriptive
elements were used for this: we specified individuals (e.g., the authors of this
textbook, a publisher or a cooking recipe), that in one way or the other were
put into relation to each other. More casually, we learned that it is possi-
ble to assign types to literals and resources, thereby stating that they belong
to a class of entities sharing certain characteristics (like natural numbers or
ordered lists).

When describing new domains of interest, one would usually introduce new
terms not only for individuals (like “Sebastian Rudolph” or “Karlsruhe Insti-
tute of Technology”) and their relations (such as “employed by”) but also for
types or classes (e.g., “person”, “university”, “institution”). As pointed out in
Section 2.2.6, a repertoire of such terms referring to individuals, relations and
classes is usually called a vocabulary.

When introducing and employing such a vocabulary, the user will naturally
have a concrete idea about the used terms’ meanings. For example, it is
intuitively clear that every university has to be an institution or that only
persons can be employed by an institution.

From the “perspective” of a computer system, however, all the terms in-
troduced by the user are merely character strings without any prior fixed
meaning. Thus, the aforementioned semantic interrelations have to be explic-
itly communicated to the system in some format in order to enable it to draw
conclusions that rely on this kind of human background knowledge.

By virtue of RDF Schema (short RDFS), a further part of the W3C RDF
recommendation which we will deal with in the following sections, this kind of
background information – so-called terminological knowledge or alternatively
schema knowledge – about the terms used in the vocabulary can be specified.

In the first place, RDFS is nothing but another particular RDF vocabulary.
Consequently, every RDFS document is a well-formed RDF document. This
ensures that it can be read and processed by all tools that support just RDF,
whereby, however, a part of the meaning specifically defined for RDFS (the
RDFS semantics) is lost.

RDFS – whose name space http://www.w3.org/2000/01/rdf-schema# is
usually abbreviated by rdfs: – does not introduce a topic-specific vocabulary
for particular application domains like, e.g., FOAF does. Rather, the inten-
tion of RDFS is to provide generic language constructs by means of which
a user-defined vocabulary can be semantically characterized. Moreover, this
characterization is done inside the document, allowing an RDFS document
to – roughly speaking – carry its own semantics. This allows for defining a
new vocabulary and (at least partially) specifying its “meaning” in the doc-
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ument without necessitating a modification of the processing software’s pro-
gram logic. Indeed, any software with RDFS support automatically treats
any RDFS-defined vocabulary in a semantically correct way.

The capability of specifying this kind of schema knowledge renders RDFS a
knowledge representation language or ontology language as it provides means
for describing a considerable part of the semantic interdependencies which
hold in a domain of interest.

Let us dwell for a moment on the term ontology language. In Section 1.1 we
have already discussed the notion ontology and its philosophical origin. On
page 2 we said that in computer science, an ontology is a description of knowl-
edge about a domain of interest, the core of which is a machine-processable
specification with a formally defined meaning. It is in exactly this sense that
RDFS is an ontology language: An RDFS document is a machine-processable
specification which describes knowledge about some domain of interest. Fur-
thermore, RDFS documents have a formally defined meaning, given by the
formal semantics of RDFS. This formal semantics will be explained in Chap-
ter 3, although the most important aspects of it will become intuitively clear
in the following, when we introduce RDFS.

Let us remark that RDFS, despite its usefulness as an ontology language,
also has its limitations, and we will explicate this in Section 3.4. Hence, RDFS
is sometimes categorized as a representation language for so-called lightweight
ontologies. Therefore, more sophisticated applications require more expressive
representation languages such as OWL which will be discussed in Chapters 4
and 5, yet usually the higher expressivity comes at the expense of speed: the
runtime of algorithms for automated inference tends to increase drastically
when more expressive formalisms are used.

Hence the question which formalism to use should always be considered
depending on the requirements of the addressed task; in many cases an RDFS
representation might be sufficient for the intended purposes.6

2.4.1 Classes and Instances

Certainly, one basic functionality that any reasonable knowledge specifica-
tion formalism should provide is the possibility to “type” resources, i.e. to
mark them as elements of a certain aggregation. In RDF, this can be done
via the predicate rdf:type. Generally, the predefined URI rdf:type is used
to mark resources as instances of a class (i.e. belonging to that class). In
order to clearly separate semantics and syntax, we always use the term “class”
to denote a set of resources (being entities of the real world), whereas URIs
which represent or refer to a class are called class names.

6This fact has been put into the common phrase “A little semantics goes a long way” coined
by James Hendler.
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As an example, it would be straightforward to describe this book as a
textbook (which means: a member of the class of all textbooks):

book:uri rdf:type ex:Textbook .

This example also illustrates that it is possible (and, depending on the ap-
plication domain, very reasonable) to introduce new, user-defined class names.

Obviously, there is no syntactic way of distinguishing URIs representing
individuals (like book:uri) and class names (such as ex:Textbook). Hence,
a single URI does not provide direct information whether it refers to a single
object or a class. In fact, such a clear distinction is not always possible,
even for some real world terms. Even with human background knowledge, it
might be hard to decide whether the URI http://www.un.org/#URI denotes
an individual single organization or the class of all its member states.

Nevertheless, it might be desirable to enforce some clarification by making
a definite modeling decision in the context of an RDFS document. Therefore,
RDFS provides the possibility to indicate class names by explicitly “typing”
them as classes. In other words: it can be specified that, e.g., the class
ex:Textbook belongs to the class of all classes. This “meta-class” is predefined
in the RDFS vocabulary and denoted by the URI rdfs:Class. As we already
know, class membership is expressed via rdf:type, hence the following triple
characterizes the URI ex:Textbook as class name:

ex:Textbook rdf:type rdfs:Class .

On the other hand, the fact that ex:Textbook denotes a class is also an
implicit but straightforward consequence of using it as object of a typing
statement, hence, the preceding triple also follows from the triple

book:uri rdf:type ex:Textbook .

As an additional remark of little practical relevance, note that the class of
all classes is obviously itself a class and hence contained in itself as an element.
Therefore the proposition encoded by the following triple is always valid:

rdfs:Class rdf:type rdfs:Class .

Besides rdfs:Class, there are a few further class names predefined in the
RDF and RDFS vocabularies and carrying a fixed meaning:



Simple Ontologies in RDF and RDF Schema 49

• rdfs:Resource denotes the class of all resources (i.e. for all elements
of the considered domain of interest).

• rdf:Property refers to the class of all properties, and therefore to all
resources that stand for relations.

• rdf:XMLLiteral has already been introduced as the only predefined
datatype in RDF(S). At the same time, this name denotes the class of
all values of this datatype.

• rdfs:Literal represents the class of all literal values, which implies
that it comprises all datatypes as subclasses.

• The class denoted by rdfs:Datatype contains all datatypes as elements,
for example, the class of XML literals. Note that this is another example
of a class of classes (and hence a subclass of the rdfs:Class class).

• The class names rdf:Bag, rdf:Alt, rdf:Seq and rdfs:Container are
used to declare lists and will be treated in more detail in Section 2.5.1.

• rdfs:ContainerMembershipProperty, denoting the class of contained-
ness properties, will be dealt with in Section 2.5.1 as well.

• The class name rdf:List is used to indicate the class of all collections.
In particular, the empty collection denoted by rdf:nil is an element of
this class.

• rdf:Statement refers to the class of reified triples and will be dealt with
in Section 2.5.2.

All those class names also exhibit a common notational convention: URIs
representing classes are usually capitalized, whereas names for instances and
properties are written in lower case. Note also that the choice for class names
is not limited to nouns; it might be reasonable to introduce classes for qualities
(expressed by adjectives) as well, e.g., ex:Organic for all organic compounds
or ex:Red for all red things.

Finally, it is important to be aware that class membership is not exclusive:
naturally, a resource can belong to several different classes, as illustrated by
the following two triples:

book:uri rdf:type ex:Textbook .
book:uri rdf:type ex:WorthReading .
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2.4.2 Subclasses and Class Hierarchies

Suppose an RDFS document contains one single triple referring to this
textbook:

book:uri rdf:type ex:Textbook .

If we now searched for instances of the class of books denoted by ex:Book,
the URI book:uri denoting “Foundations of Semantic Web Technologies”
would not be among the results. Of course, human background knowledge
entails that every textbook is a book and consequently every instance of the
ex:Textbook class is also an instance of the ex:Book class. Yet, an automatic
system not equipped with this kind of linguistic background knowledge is not
able to come up with this conclusion. So what to do?

There would be the option to simply add the following triple to the docu-
ment, explicitly stating an additional class membership:

book:uri rdf:type ex:Book .

In this case, however, the same problem would occur again and again for
any further resource typed as textbook which might be added to the RDFS
document. Consequently, for any triple occurring in the document and having
the form

u rdf:type ex:Textbook .

the according triple

u rdf:type ex:Book .

would have to be explicitly added. Moreover, those steps would have to be
repeated for any new information entered into the document. Besides the
workload caused by this, it would also lead to an undesirable and unnecessary
verbosity of the specification.

Clearly, a much more reasonable and less laborious way would be to just
specify (one may think of it as a kind of “macro”) that every textbook is
also a book. This obviously means that the class of all textbooks is com-
prised by the class of all books, which is alternatively expressed by calling
textbook a subclass of book or equivalently, calling book a superclass of text-
book. Indeed, the RDFS vocabulary provides a predefined way to explicitly
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declare this subclass relationship between two classes, namely, via the predi-
cate rdfs:subClassOf. The fact that any textbook is also a book can hence
be succinctly stated by the following triple:

ex:Textbook rdfs:subClassOf ex:Book .

This enables any software that supports the RDFS semantics (see Chap-
ter 3) to identify the individual denoted by book:uri as a book even without
it being explicitly typed as such.

It is common and expedient to use subclass statements not only for sporad-
ically declaring such interdependencies, but to model whole class hierarchies
by exhaustively specifying the generalization-specification order of all classes
in the domain of interest. For instance, the classification started in the exam-
ple above could be extended by stating that book is a subclass of print media
and the latter a superclass of journal:

ex:Book rdfs:subClassOf ex:PrintMedia .
ex:Journal rdfs:subClassOf ex:PrintMedia .

In accordance with the intuition, the RDFS semantics also implements tran-
sitivity of the subclass relationships, i.e. roughly speaking: subclasses of sub-
classes are subclasses. Therefore, from the triples written down in this section,
the following triple – though not explicitly stated – can be deduced:

ex:Textbook rdfs:subClassOf ex:PrintMedia .

Moreover, the subclass relationship is defined to be reflexive, meaning that
every class is its own subclass (clearly, the class of all books comprises the
class of all books). Thus, once it is known that ex:Book refers to a class, the
following triple can be concluded:

ex:Book rdfs:subClassOf ex:Book .

This fact also enables us to model the proposition that two classes contain
the same individuals (in other words: they are extensionally equivalent) by
establishing a mutual subclass relationship:

ex:MorningStar rdfs:subClassOf ex:EveningStar .
ex:EveningStar rdfs:subClassOf ex:MorningStar .
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The most popular and elaborated class hierarchies can certainly be found
in the area of biology, where – following the classical systematics – living
beings are grouped into kingdoms, phyla, classes (as a biological term), orders,
families, genus and species. From the RDFS document from Fig. 2.8, we can
deduce that the individual Sebastian Rudolph is not only a human but also a
mammal. Likewise, by the deducible membership in the class of primates, he
logically makes a monkey of himself.

Documents containing only class hierarchies are usually referred to as tax-
onomies and subclass-superclass dependencies are often called taxonomic re-
lations. Certainly, one reason why this kind of knowledge modeling is so
intuitive is its closeness to human conceptual thinking. In most cases, a class
hierarchy with sub- and superclasses can be conceived as a conceptual hierar-
chy with subordinate and superordinate concepts or, using common linguistic
terminology: hyponyms and hypernyms.

2.4.3 Properties

A special role is played by those URIs used in triples in the place of
the predicate. Examples from previous sections include ex:hasIngredient,
ex:publishedBy and rdf:type. Although those terms are represented by
URIs and hence denote resources, it remains a bit unclear how to concretely
interpret them. A (or the) “publishedBy” can hardly be physically encoun-
tered in everyday life; therefore it seems inappropriate to consider it as class
or individual. In the end, these “predicate URIs” describe relations between
“proper” resources or individuals (referenced by subject and object in an RDF
triple). As the technical term for such relations, we will use property .

In mathematics, a relation is commonly represented as the set of the pairs
interlinked by that relation. According to that, the meaning of the URI
ex:isMarriedTo would be just the set of all married couples. In this respect,
properties resemble classes more than single individuals.

For expressing that a URI refers to a property (or relation), the RDF vo-
cabulary provides the class name rdf:Property which by definition denotes
the class of all properties. The fact that ex:publishedBy refers to a property
can now again be stated by assigning the corresponding type:

ex:publishedBy rdf:type rdf:Property .

Note that rdf:Property itself denotes a class and not a property. It just
contains properties as instances. Finally, in addition to explicitly being typed
as such, a URI can also be identified as property name by its occurrence as
predicate of a triple. Therefore, the RDFS semantics ensures that the above
triple is also a consequence of any triple like
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<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE rdf:RDF[
<!ENTITY ex ’http://example.org/’>

]>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:ex="http://www.semanticweb-grundlagen.de/Beispiele#">

<rdfs:Class rdf:about="&ex;Animalia">
<rdfs:label xml:lang="en">animals</rdfs:label>

</rdfs:Class>

<rdfs:Class rdf:about="&ex;Chordata">
<rdfs:label xml:lang="en">chordates</rdfs:label>
<rdfs:subClassOf rdfs:resource="&ex;Animalia" />

</rdfs:Class>

<rdfs:Class rdf:about="&ex;Mammalia">
<rdfs:label xml:lang="en">mammals</rdfs:label>
<rdfs:subClassOf rdfs:resource="&ex;Chordata" />

</rdfs:Class>

<rdfs:Class rdf:about="&ex;Primates">
<rdfs:label xml:lang="en">primates</rdfs:label>
<rdfs:subClassOf rdfs:resource="&ex;Mammalia" />

</rdfs:Class>

<rdfs:Class rdf:about="&ex;Hominidae">
<rdfs:label xml:lang="en">great apes</rdfs:label>
<rdfs:subClassOf rdfs:resource="&ex;Primates" />

</rdfs:Class>

<rdfs:Class rdf:about="&ex;Homo">
<rdfs:label xml:lang="en">humans</rdfs:label>
<rdfs:subClassOf rdfs:resource="&ex;Hominidae" />

</rdfs:Class>

<rdfs:Class rdf:about="&ex;HomoSapiens">
<rdfs:label xml:lang="en">modern humans</rdfs:label>
<rdfs:subClassOf rdfs:resource="&ex;Homo" />

</rdfs:Class>

<ex:HomoSapiens rdf:about="&ex;SebastianRudolph" />
</rdf:RDF>

FIGURE 2.8: Example for class hierarchies in RDFS
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book:uri ex:publishedBy crc:uri .

2.4.4 Subproperties and Property Hierarchies

In the previous section, we argued that properties can be conceived as sets
of individual pairs and hence exhibit some similarity to classes. Thus, one
might wonder whether modeling constructs in analogy to subclass relation-
ships would also make sense for properties. This is indeed the case: RDFS
allows for the specification of subproperties. For example, the property de-
noted by the URI ex:isHappilyMarriedTo is certainly a subproperty of the
one ex:isMarriedTo refers to, as the happily married couples form a (most
probably even proper) subset of all married couples. This connection can be
declared as follows:

ex:isHappilyMarriedTo rdf:subPropertyOf ex:isMarriedTo.

Again, situations where this kind of information is of advantage are easy
to imagine. For example by virtue of the above mentioned triple, the RDFS
semantics allows us to deduce from the triple

ex:markus ex:isHappilyMarriedTo ex:anja .

that also the following triple must be valid:

ex:markus ex:isMarriedTo ex:anja .

Consequently, one single subproperty statement suffices to enable an RDFS-
compliant information system to automatically recognize all pairs recorded as
“happily married” additionally as “married”. Note that this way, also proper-
ties can be arranged in complex hierarchies, although this is not as commonly
done as for classes.

2.4.5 Property Restrictions

Frequently, the information that two entities are interconnected by a certain
property allows us to draw further conclusions about the entities themselves.
In particular, one might infer class memberships. For instance, the statement
that one entity is married to another implies that both involved entities are
persons.



Simple Ontologies in RDF and RDF Schema 55

Now it is not hard to see that the predicate’s implicit additional information
on subject and object can be expressed via class memberships: Whenever a
triple of the form

a ex:isMarriedTo b .

occurs, one wants to assert, for example, that both following triples are valid
as well:

a rdf:type ex:Person .
b rdf:type ex:Person .

As in the previously discussed cases, explicitly adding all those class mem-
bership statements to the RDF document would be rather cumbersome and
would require us to repeat the process whenever new information is added
to the document. Again, it seems desirable to have a “macro” or “template”-
like mechanism which is entered just once and ensures the class memberships
imposed by the predicates.

Fortunately the RDFS vocabulary provides means to do exactly this: one
may provide information about a property’s domain via rdfs:domain and
its range via rdfs:range. The first kind of expression allows us to classify
subjects, the second one to type objects that co-occur with a certain predicate
in an RDF triple. The above mentioned class memberships imposed by the
predicate ex:isMarriedTo can now be encoded by the following triples:

ex:isMarriedTo rdfs:domain ex:Person .
ex:isMarriedTo rdfs:range ex:Person .

In the same vein, literal values in the place of the object can be characterized
by stipulating datatypes (e.g., in order to specify that a person’s age should
be a nonnegative number):

ex:hasAge rdfs:range xsd:nonNegativeInteger .

Obviously, domain and range restrictions constitute the “semantic link”
between classes and properties because they provide the only way of describing
the desired terminological interdependencies between those distinct kinds of
ontology elements.

We would also like to address a frequent potential misconception. Suppose
an RDFS document contains the triples:
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ex:authorOf rdfs:range ex:Textbook .
ex:authorOf rdfs:range ex:Storybook .

According to the RDFS semantics, this expresses that every resource in the
range of an authorship relation is both a textbook and a storybook; it does
not mean that somebody may be author of a textbook or a storybook. The
same holds for rdfs:range statements. So, every declared property restriction
globally affects all occurrences of this property; hence one should be careful
when restricting properties and make sure that always a sufficiently general
class (i.e. one containing all possible resources that might occur in the subject
resp. object position) is used.

Some further consideration is needed to prevent a confusion arising rather
frequently. Consider the following RDF knowledge base:

ex:isMarriedTo rdfs:domain ex:Person .
ex:isMarriedTo rdfs:range ex:Person .
ex:instituteAIFB rdf:type ex:Institution .

Now assume the following triple was to be added to it:

ex:pascal ex:isMarriedTo ex:instituteAIFB .

Omitting deeper contemplations on a possible metaphorical truth of this
statement, this example reveals a potential modeling flaw. A certain similarity
to the “type mismatch” problem in programming shows up here. One might
now expect that this kind of statement is automatically rejected by a system
containing the above range statement (as a database system might reject
changes if certain conditions are violated). However, RDF range and domain
statements do not carry this kind of constraint semantics. The only indicator
that something might be wrong is that by adding that triple to the knowledge
base, counterintuitively, ex:instituteAIFB is additionally typed as a person,
i.e. the triple

ex:instituteAIFB rdf:type ex:Person .

is a consequence of the above triples.

2.4.6 Additional Information in RDFS

In many cases it is desirable to endow an RDFS document with additional
information which has no semantical impact but increases the understand-
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ability for human users. One might argue that – at least when using XML
syntax – XML-style comments could just be used for this purpose. How-
ever, this would mean relinquishing the basic RDF(S) rationale to represent
all knowledge as a graph, including all additional, comment-like information.
Therefore, RDFS provides the possibility to embed additional information into
the graph, thereby making it “semantically accessible.” To this end, RDFS
provides a predefined set of property names by means of which additional in-
formation can be encoded without relinquishing the basic idea to represent all
knowledge as a graph. Thereby, all supplementary descriptions can be read
and represented by any RDF-compliant software. We tacitly used rdfs:label
in Section 2.4.2. Generally, this property-URI serves the purpose of accompa-
nying a resource (which might be an individual but also a class or a property)
with a name which is more handy than its URI. This sort of information can
be used by tools visualizing the RDF document as a graph, where verbose
URIs might impede readability. The object in a triple containing rdfs:label
as predicate has to be a literal, a syntactic restriction which can be expressed
within RDFS by the following triple:

rdfs:label rdfs:range rdfs:Literal .

rdfs:comment is used for assigning comprehensive human-readable com-
ments to resources. Especially if new class or property terms are introduced,
it is reasonable to write down their intended meaning in natural language.
This facilitates the correct and consistent usage of the new terms by other
users who might have a look at the documentation if in doubt. rdfs:comment
also requires a literal as object.

By means of the expressions rdfs:seeAlso and rdfs:isDefinedBy, it is
possible to link to resources that provide further information about the subject
resource. This might be URLs of websites or URIs referring to print media.
In particular, rdfs:isDefinedBy is used to state that the subject resource is
(in some not further specified way) defined by the object resource. According
to the RDFS semantics rdfs:isDefinedBy is stipulated to be a subproperty
of rdfs:seeAlso.

As an example of the constructs introduced in this section consider the
extended passage, given in Fig. 2.9, of the RDFS document from Fig. 2.8.

2.5 Encoding of Special Datastructures

You now know all the central ideas and notions of RDF(S) and the modeling
features used most frequently. From here you might proceed directly to Chap-
ter 3 to see how the semantics of RDF(S) – that we tried to intuitively convey
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:
xmlns:wikipedia="http://en.wikipedia.org/wiki/"
:

<rdfs:Class rdf:about="&ex;Primates">
<rdfs:label xml:lang="en">primates</rdfs:label>
<rdfs:comment>

Order of mammals. Primates are characterized by an
advanced brain. They mostly populate the tropical
earth regions. The term ’Primates’ was coined by
Carl von Linné.

</rdfs:comment>
<rdfs:seeAlso rdf:resource="&wikipedia;Primates" />
<rdfs:subClassOf rdfs:resource="&ex;Mammalia" />

</rdfs:Class>

FIGURE 2.9: Additional information in RDFS documents

in this chapter – is defined formally and how automated RDF(S) inferencing
can be realized. Or you might go on reading if interested in what additional
possibilities RDF(S) has in stock for modeling more complex datastructures:
lists and nested propositions.

2.5.1 Lists in RDF

Many-valued relationships, as introduced in Section 2.3.3, are used for ob-
taining a more structured representation of a single object, separating its
single components (ingredient and amount) in distinct triples. The structure
of the triples referring to the auxiliary node thus was specific to the exam-
ple at hand. In many other cases, in contrast, one simply wants to relate a
subject to a set of objects that play similar roles, e.g., when describing the re-
lationship of a book to the set of its authors. To address such use cases, RDF
offers a number of specific constructs that can be used to describe structures
that resemble lists. This can be achieved in two fundamentally different ways:
with containers (open lists) or with collections (closed lists).

It is important to note that all of the following additional expressive features
are only abbreviations for RDF graphs that could as well be encoded by
specifying individual triples. As in the case of rdf:value above, lists in RDF
do not have a specific formal semantics that distinguishes such structures from
other RDF graphs.

2.5.1.1 RDF Container

RDF containers allow us to encode RDF graphs that resemble the one in
Fig. 2.7 in a unified way. We have already seen that the introduction of
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FIGURE 2.10: A list of type rdf:Seq in RDF

blank nodes can be abbreviated in various serializations of RDF. Containers
introduce two additional changes:

• The triples of a list are denoted by standard identifiers instead of using
specific URIs such as ex:amount in Fig. 2.7.

• It is possible to assign a class to a list, hinting at the desired (informal)
interpretation.

An example of a corresponding list is the following specification of this
book’s authors:

<rdf:Description rdf:about="http://semantic-web-book/uri">
<ex:authors>
<rdf:Seq>
<rdf:li rdf:resource="http://semantic-web-book.org/uri/Hitzler" />
<rdf:li rdf:resource="http://semantic-web-book.org/uri/Krötzsch" />
<rdf:li rdf:resource="http://semantic-web-book.org/uri/Rudolph" />

</rdf:Seq>
</ex:authors>

</rdf:Description>

We would normally expect an element of type rdf:Description instead of
rdf:Seq in this XML serialization. As explained in Section 2.3.4, this syntax
would then also conveniently introduce a blank node. Something quite similar
happens in the above case, as can be seen when considering the resulting RDF
graph in Fig. 2.10. This graph, however, displays some additional features that
require further explanation.

First, we notice that Fig. 2.10 contains one more node than we may have
expected. While book, authors, and the required blank auxiliary node are
present, we see that, additionally, the blank node is typed as an instance of
the class rdf:Seq. This typing mechanism is used to specify the intended
usage of a given list. RDF provides the following types of lists:
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• rdf:Seq: The container is intended to represent an ordered list, i.e. the
order of objects is relevant.

• rdf:Bag: The container is intended to represent an unordered set, i.e.
the order of objects is not relevant, even though it is inherently available
in the RDF encoding.

• rdf:Alt: The container is intended to represent a set of alternatives.
Even though the RDF document specifies multiple objects, only one of
them is usually required in a particular application.

Those class names can be used instead of rdf:Seq in the above example,
but they do not otherwise affect the encoded RDF graph structure. Only
when displaying or interpreting a list in a given application, this additional
informal information may be taken into account.

A second aspect that can be noted in Fig. 2.10 is that the predicates of the
individual list triples are not labeled like the corresponding elements in XML.
Indeed, the RDF/XML serialization uses elements of type rdf:li for all el-
ements. The graphical representation, in contrast, uses numbered predicates
rdf:_1 to rdf:_3. The XML syntax in this case is merely a syntactic simpli-
fication for encoding an RDF graph that uses predicates of the form rdf:_n.
This encoding also applies if the list is of type rdf:Bag or rdf:Alt, even
though the exact order may not be practically important in these cases. This
method can be used to encode arbitrarily long lists – the RDF specification
defines predicates of the form rdf:_n for any natural number n.

As explained above, the RDF/XML syntax for containers is merely a syn-
tactic abbreviation that can also be avoided by serializing the corresponding
RDF graph directly. Since blank nodes can be abbreviated in a simple way,
Turtle does not provide a specific syntax for RDF containers. One simply
specifies the according triples individually when denoting containers in Tur-
tle.

2.5.1.2 Containers in RDFS

By introducing new predefined names, RDFS further extends the options
for modeling lists described in the previous section. The URI rdfs:Container
denotes the superclass of the three RDF container classes rdf:Bag, rdf:Seq
and rdf:Alt, allowing us to mark a resource as list without specifying the
precise type.

The URI rdfs:ContainerMembershipProperty is used in order to char-
acterize properties, i.e. it refers to a class the instances of which are not
individuals in the strict sense (as a person or a website), but themselves prop-
erties. The only class having properties as members that we have dealt with
so far is the class of all properties denoted by rdf:Property. Consequently
the following triple holds:
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rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property .

Now, what is the characteristic commonality of the properties contained in
the class denoted by rdfs:ContainerMembershipProperty? All these prop-
erties encode the containedness of one resource in the other. Examples of such
properties are those expressing containedness in a list: rdf:_1, rdf:_2, etc.
Although this new class might seem somewhat abstract and of disputable use,
there are possible application scenarios. For instance, a user might want to
define a new type of list or container (as for cooking recipes) together with
a specific containedness property (say, ex:hasIngredient). By typing this
property with rdfs:ContainerMembershipProperty, the user makes this in-
tended meaning explicit:

ex:hasIngredient rdf:type rdfs:ContainerMembershipProperty .

When using just RDF, finding out whether the resource ex:shakespeare is
contained in the list book:uri/Authors would require asking for the validity
of infinitely many triples:

book:uri/Authors rdf:_1 ex:shakespeare .
book:uri/Authors rdf:_2 ex:shakespeare .
book:uri/Authors rdf:_3 ex:shakespeare .
...

RDFS provides the property name rdfs:member that denotes a property
which is a superproperty of all the distinct containedness properties. As a
practical consequence, the above mentioned problem can now be solved by
querying for the validity of just one triple:

book:uri/Authors rdfs:member ex:shakespeare .

Yet, there is even more to it: according to the RDFS semantics, every
instance of the rdfs:ContainerMembershipProperty class is a subproperty
of the rdfs:member property. Now, let’s come back to the aforementioned
case of the self-defined container type. Even if the user now states

ex:cookie ex:hasIngredient ex:peanut .
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using his proprietary property, the characterization of ex:hasIngredient as
a containedness property enables us to deduce the validity of the following
triple:

ex:cookie rdfs:member ex:peanut .

2.5.1.3 RDF Collections

The representation of lists as RDF containers is based on auxiliary predi-
cates rdf:_1, rdf:_2, rdf:_3, etc. The resulting sequences of objects thus
can always be extended by adding further triples, but it is not possible to ex-
press that a given list is complete and closed. RDF thus introduces so-called
collections as a means for representing closed lists.

Like containers, collections are not introducing expressivity beyond what
can already be stated by RDF triples, but they can allow for more concise
RDF serializations. Let us first consider the following RDF/XML fragment:

<rdf:Description rdf:about="http://semantic-web-book/uri">
<ex:authors rdf:parseType="Collection">

<rdf:Description
rdf:about="http://semantic-web-book.org/uri/Hitzler" />

<rdf:Description
rdf:about="http://semantic-web-book.org/uri/Krötzsch" />

<rdf:Description
rdf:about="http://semantic-web-book.org/uri/Rudolph" />

</ex:authors>
</rdf:Description>

This syntactic description of a collection strongly resembles the explicit
representation of a single triple, but it contains three objects instead of the
usually unique rdf:Description. Furthermore, we encounter once more the
attribute rdf:parseType, this time with the value Collection.

The corresponding RDF graph is the linked list that is shown in Fig. 2.11.
We immediately see that the graph structure differs significantly from the
containers introduced in the previous section. The underlying principle of this
representation is that any non-empty list can be split into two components:
a list head (the first element of the list) and a list rest. The rest of the list
can again be decomposed in this way, or it is the empty list without further
elements.

We can thus uniquely describe the closed list by specifying its head and
rest. As can be seen in Fig. 2.11, the RDF predicates used for this purpose are
rdf:first and rdf:rest. Since any list can be completely described in this
way, the URIs of the individual list nodes are not significant. Consequently,
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FIGURE 2.11: A collection in RDF

all non-empty (partial) lists in Fig. 2.11 are represented by blank nodes. The
only exception is the empty list, which cannot be decomposed further. It is
represented in RDF by the URI rdf:nil.

The empty list concludes the linked list, and indicates that no further ele-
ments follow. We may thus indeed speak of a closed list: By adding additional
triples, one could merely produce RDF graphs that are not proper encodings
of a collection, but one cannot add additional elements to the list.

Although collections could again be encoded in individual triples, Turtle
also provides a more convenient notation for such lists using parentheses. A
corresponding Turtle serialization of the above example could be as follows:

@prefix book: <http://semantic-web-book.org/> .
book:uri <http://example.org/authors>

( book:uri/Hitzler book:uri/Krötzsch book:uri/Rudolph ) .

2.5.2 Propositions About Propositions: Reification

Much more frequently than we are aware of, we make propositions referring
to other propositions. As an example, consider the sentence: “The detective
supposes that the butler killed the gardener.” One naive attempt to model
this situation might yield:

ex:detective ex:supposes "The butler killed the gardener." .

One of the problems arising from this way of modeling would be that the
proposition in question – expressed by a literal – cannot be arbitrarily refer-
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enced in other triples (due to the fact that literals are only allowed to occur as
triple objects). Hence it seems more sensible to use a URI for the proposition
leading to something like:

ex:detective ex:supposes ex:theButlerKilledTheGardener .

Yet, this approach leaves us with the problem that the subordinate clause
of our sentence is compressed into one URI and hence lacks structural trans-
parency. Of course it is easy to model just the second part of the sentence as
a separate triple:

ex:butler ex:killed ex:gardener .

Actually, a kind of “nested” representation, where the object of a triple is
a triple on its own, would arguably best fit our needs. However, this would
require a substantial extension of the RDF syntax.

One alternative option, called reification, draws its basic idea from the
representation of many-valued relations as discussed in Section 2.3.3: an aux-
iliary node is introduced for the triple about which a proposition is to be
made. This node is used as a “handle” to refer to the whole statement. Ac-
cess to the inner structure of the represented triple is enabled by connecting
the auxiliary node via the property-URIs rdf:subject, rdf:predicate and
rdf:object with the respective triple constituents. The corresponding triple
is then called reified (“thing-made”, from lat. res thing and facere to make).
Using this method, our above sentence could be described by the following
four triples:

ex:detective ex:supposes ex:theory .
ex:theory rdf:subject ex:butler .
ex:theory rdf:predicate ex:hasKilled .
ex:theory rdf:object ex:gardener .

It is important to be aware that writing down a reified triple does not mean
asserting its actual validity. In particular the previous specification does not
allow us to conclude the triple:

ex:butler ex:hasKilled ex:gardener .

Note that this makes sense, as the detective’s theory might turn out to be
false.
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FIGURE 2.12: Example of multiple reification in graph representation

In addition to the reification properties already provided by the RDF vo-
cabulary, RDFS contains the class name rdf:Statement that can be used to
mark the “central” node of a reified triple:

ex:theory rdf:type rdf:Statement .

If the reified proposition is to be referenced only locally, it can be rep-
resented by a blank node. Note also that this way of modeling also allows
for multiply nested propositions. An example of both modeling aspects is
depicted in Fig. 2.12. With the knowledge acquired in this section you are
certainly capable of decoding its content.7

2.6 An Example

In order to illustrate the essential modeling capabilities of RDFS, we give a
small ontology as an example. For the sake of simplicity, we omit literals and
datatypes. Suppose that an RDF document contains the following triples:

7Hint: It’s also some sort of detective story; see Genesis 4:1-16 or Qur’an at 5:26-32 or
Moses 5:16-4.
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ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .
ex:sebastian rdf:type ex:AllergicToNuts .
ex:sebastian ex:eats ex:vegetableThaiCurry .

ex:AllergicToNuts rdfs:subClassOf ex:Pitiable .
ex:thaiDishBasedOn rdfs:domain ex:Thai .
ex:thaiDishBasedOn rdfs:range ex:Nutty .
ex:thaiDishBasedOn rdfs:subPropertyOf ex:hasIngredient .
ex:hasIngredient rdf:type rdfs:ContainerMembershipProperty.

This RDFS specification models the existence of “vegetable thai curry”,
a Thai dish based on coconut milk.8 Moreover we learn about a resource
“Sebastian” belonging to the class of individuals allergic to nuts. The third
triple states that Sebastian eats the vegetable Thai curry. These statements
constitute the so-called assertional knowledge making propositions about the
concrete entities of our domain of interest.

As terminological knowledge, our tiny ontology expresses that the class of
nut-allergic individuals is a subclass of the class of pitiable things, that any
Thai dish (based on something) belongs to the class of Thai things, and (re-
flecting the personal experience of the afflicted author) that any Thai dish
is based only on ingredients belonging to the class of nutty things. Finally,
we learn that whenever a (Thai) dish is based on something it also contains
that “something” and that “having something as ingredient” constitutes a con-
tainedness property. Figure 2.13 shows the same ontology depicted as a graph
and once more illustrates the distinction between terminological (or schema)
knowledge and assertional (also: factual) knowledge. From knowledge speci-
fied in this way, it is now possible to derive implicit knowledge. In the next
chapter, we provide the theoretical foundations for this and give an example
showing how to automatically draw conclusions from the ontology introduced
here.

8The usage of the property ex:thaiDishBasedOn is rather questionable from the perspective
of a good modeling practice, as arguably too much information is squeezed into one property
which thereby becomes overly specific. However, we used it for the sake of a small yet
informative example. Moreover, we employed it to circumvent a modeling weakness of RDF:
if the example were paraphrased using a ex:ThaiDish class and a ex:basedOn property, we
would no longer be able to express the proposition “Everything a Thai dish is based on is
nutty”.
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FIGURE 2.13: Graph representation of a simple RDFS ontology

2.7 Summary

In this chapter, we have introduced the description language RDF and its
extension RDFS. Both rely on a data model of graph structures consisting of
basic elements called triples, which are also used for encoding more complex
data structures like lists. URIs admit the unique identification of nodes and
edges in those triples. While RDF essentially serves the purpose of making
propositions about the relationships of singular objects (individuals), RDFS
provides means for specifying terminological knowledge in the form of class
and property hierarchies and their semantic interdependencies.

2.7.1 Overview of RDF(S) Language Constructs

RDF(S) classes

rdfs:Class rdf:Property
rdfs:Resource rdfs:Literal
rdfs:Datatype rdf:XMLLiteral
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RDF(S) properties

rdfs:range rdfs:domain
rdf:type rdfs:subClassOf
rdfs:subPropertyOf rdfs:label
rdfs:comment

RDF lists

rdfs:Container rdf:Bag
rdf:Seq rdf:Alt
rdf:li rdf:_1
rdf:_2 ...
rdfs:ContainerMembershipProperty rdfs:member

rdf:List rdf:first
rdf:rest rdf:nil

reification

rdf:Statement rdf:subject
rdf:predicate rdf:object

RDF attributes

rdf:about rdf:ID
rdf:resource rdf:nodeID
rdf:datatype

XML attributes

xml:base xmlns
xml:lang

RDF(S) further constructs

rdf:RDF rdfs:seeAlso
rdfs:isDefinedBy rdf:value
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2.8 Exercises

Exercise 2.1 Consider the following RDF document:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:iswww="http://sw.edu/#"

>

<rdf:Description rdf:about="http://sw.edu/#germany">
<rdf:type rdf:resource="http://sw.edu/#country" />

</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#capital_of">
<rdf:type
rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/

>
<rdfs:domain rdf:resource="http://sw.edu/#city" />
<rdfs:range rdf:resource="http://sw.edu/#country" />

</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#country">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class" />
<rdfs:label xml:lang="de">Land</rdfs:label>

</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#berlin">
<rdfs:label xml:lang="en">Berlin</rdfs:label>
<rdf:type rdf:resource="http://sw.edu/#city" />
<iswww:capital_of rdf:resource="http://sw.edu/#germany" />

</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#city">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class" />
<rdfs:label xml:lang="de">Stadt</rdfs:label>

</rdf:Description>

</rdf:RDF>

• Describe in natural language the content of this document.

• Draw the graph representation of the above document.

Exercise 2.2 Write down the modeled list of authors of this book from
page 63 in Turtle syntax.
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Exercise 2.3 Translate the culinary-allergic example ontology presented in
Section 2.6 into RDF/XML syntax.

Exercise 2.4 Represent the following sentences graphically by means of rei-
fied triples:

• Romeo thought that Juliet was dead.

• John believes that Mary wants to marry him.

• The dwarf noticed that somebody had been eating from his plate.

Exercise 2.5 Decide whether the following propositions can be satisfactorily
modeled in RDFS and, if so, give the corresponding RDF(S) specification.

• Every pizza is a meal.

• Pizzas always have at least two toppings.

• Every pizza from the class PizzaMargarita has a Tomato topping.

• Everything having a topping is a pizza.

• No pizza from the class PizzaMargarita has a topping from the class
Meat.

• “Having a topping” is a containedness relation.

2.9 Further Reading

The documents of the RDF(S) specification of 2004 are

• “RDF Primer” [MM04], which gives a first overview and introduction to
the Resource Description Framework,

• “RDF Concepts and Abstract Syntax” [KC04], where the basic concepts
and data model of RDF are introduced,

• “RDF Vocabulary Description Language 1.0: RDF Schema” [BG04],
introducing the RDFS vocabulary and its intended meaning,

• “RDF/XML Syntax Specification” [Bec04], defining the XML serializa-
tion of RDF,

• “RDF Semantics” [Hay04], which details the formal semantics of RDF
and RDFS,
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• “RDF Test Cases” [GB04], which specifies the design and usage of the
RDF test suite that can be used to check the conformance of RDF tools.

These documents have replaced the initial RDF specification “RDF Model
and Syntax” [LS99] which was published as a W3C recommendation in 1999,
and the first RDF Schema candidate recommendation [BG00] of 2000. The
early version of RDF that is described in those older documents is not com-
patible with the updated specifications of 2004.

The Turtle syntax for RDF is defined online at [BBL08]. A very restricted
subset of Turtle is N-Triples, which is introduced as part of the RDF test
case document [GB04]. A much more extensive formalism is Notation3 (also
known as N3) [BLa], which does not only encompass all of Turtle, but also
further expressive features that go beyond what can be expressed in RDF.
However, the available online resources currently provide only an “early draft
of a semi-formal semantics of the N3 logical properties” [BLb] instead of a
complete specification.





Chapter 3

RDF Formal Semantics

After having dealt with the RDF(S) language in the previous sections, we
now attend to its semantics. Our explanations closely follow the official W3C
RDF semantics specification document [Hay04].

Before that, we will briefly explain why the definition of a formal semantics
became necessary (note that in the early days of RDF, there was no explicit,
mathematically defined semantics) and the advantages it brings about.

3.1 Why Semantics?

The term semantics (from Greek σηµαντικoς “significant”) is used in many
different contexts (like logic, linguistics, or programming languages to name
just three). Probably the most appropriate corresponding English term is
“meaning.”

In this chapter, we mainly focus on the logical dimension of the notion of
semantics, frequently referred to by the less ambiguous term formal semantics.

Introducing a formal semantics for RDF(S) became necessary because the
previous informal RDF(S) specification – though successful in conveying some
intuition – left plenty of room for interpretation about what conclusions can
be drawn from a given specification. Indeed, first implementations of RDF(S)
storage and reasoning tools (so-called triple stores) provided differing results
to posed queries, a situation severely obstructing interoperability of tools and
interchangeability of specifications, aims the RDF(S) standard actually was
designed for.

While providing sets of examples for valid and invalid conclusions might
clarify some singular cases, this can never ensure that each of the infinitely
many entailments in question will be agreed upon. The most convenient way
to resolve this problem is to avoid the vagueness of an informal specification
by providing a well-defined formal semantics.

For our further considerations, it is necessary to define the notion of se-
mantics in a mathematically precise way. As mentioned before, the central
purpose of mathematical logic is to formalize correct reasoning. Hence, we
first need a notion for statements as the basic elements of our reasoning pro-
cess. Those elementary constituents are usually referred to as propositions.

73
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What exactly the propositions are depends on the specific logic under consid-
eration. In our case, for instance, the propositions are RDF triples. In the
appendix you can find another example of logic propositions in the context
of first-order predicate logic. Given a specific logic, let us denote the set of
all propositions by P. Furthermore, we need a notation to state that, e.g.,
propositions p3 and p4 are logical consequences of the propositions p1, and p2.
Most commonly, this is expressed by {p1, p2} |= {p3, p4}, where |= is called
entailment relation and relates sets of propositions with sets of propositions
(hence: |= ⊆ 2P×2P). A logic L is therefore composed of a set of propositions
together with an entailment relation and can be described by L = (P, |=) on
an abstract level.

There are numerous ways to define the entailment relation of a specific logic.
In the following, we will attend to a rather frequently employed method that
is also used in the case of RDF(S).

3.2 Model-Theoretic Semantics for RDF(S)

We start by giving a high-level perspective of the notion of model-theoretic
semantics. Thereby, one central notion is that of an interpretation. Interpre-
tations might be conceived as potential “realities” or “worlds.” In particular,
interpretations need in no way comply with the actual reality. In formal logic,
one usually chooses certain mathematical structures as interpretations in or-
der to work in a formally correct way. Which structures to choose in particular
depends on the considered logic.

After stipulating what the interpretations of a logic are, one proceeds by
defining how to decide whether a specific interpretation I satisfies a specific
proposition p ∈ P (in which case we call I model of p and write I |= p, using
the same symbol as for the entailment relation). Moreover, for a set P ⊆ P of
propositions, one says that I is a model of P (written I |= P ), if it is a model
for every p ∈ P .

Based on this “model relation” the actual entailment relation is defined in
the following (also intuitively plausible) way: a proposition set P ′ ⊆ P is
entailed by a set of propositions P ⊆ P (written: P |= P ′) if and only if
every interpretation I satisfying all sentences p from P (formally: I |= P ) is
also a model of every sentence p′ from P ′ (i.e., I |= P ′). Figure 3.1 depicts
this correspondence graphically. To further illustrate the basic concept of this
definition, consider the following (only halfway formal) analogy: “light green”
entails “green,” because all light green things are also just green. Using the
terminology just introduced and thinking of interpretations as single real world
objects, this can be expressed as follows: {light_green} |=green, because every
thing (every interpretation) I that satisfies light_green (i.e., I |=light_green)
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FIGURE 3.2: Correspondence of interpretations

is automatically also a model of the proposition green (i.e., I |=green).
We define the model-theoretic semantics for RDF(S) in several steps: we

start by the comparably easy definition of simple interpretations of graphs.
After that, we provide additional criteria which qualify these interpretations as
RDF-interpretations. Finally we give further constraints to be fulfilled by an
RDF-interpretation in order to be acknowledged as an RDFS-interpretation.
As a natural consequence of this approach, every RDFS-interpretation is a
valid RDF-interpretation and every RDF-interpretation constitutes a simple
interpretation. This correspondency is depicted in Fig. 3.2.

3.2.1 Simple Interpretations

So, let us first have a look at the so-called simple interpretations. We shall
use the Turtle syntax introduced in Section 2.2 in order to represent RDF
graphs, presuming the two conventionally used prefix definitions

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
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Our starting point for the definition of interpretations is the notion of vo-
cabulary, introduced in Section 2.2.6 and further elaborated in Section 2.4.
Formally, a vocabulary is just an arbitrary set containing URIs and literals.

Of course, the aim of the introduced semantics is to correctly reflect the
intuition behind RDF graphs; hence the interpretations to be defined in the
sequel should – although more abstract – in a certain sense be similar to the
“possible worlds” resp. “realities” described by the graphs.

As pointed out in Chapter 2, triples are employed to describe how resources
are interrelated via properties. Consequently, an interpretation contains two
sets IR and IP , the elements of which can be understood as abstract resources
resp. properties, as well as a function IEXT that tells which resources are in-
terconnected by which properties. So, “resource” and “property” are notions
which are purely semantic and to be used on the interpretation side only,
whence – in the strict sense – it would be wrong to say that URIs (or liter-
als) are resources. More precisely, one should state that (syntactic) URIs or
literals stand for or represent (semantic) resources. And exactly this kind of
representation is encoded by further functions that assign a semantic counter-
part to every URI and literal. In the case of simple interpretations, all URIs
are treated equally as there is no “semantic special treatment” for the RDF
and the RDFS vocabulary.

So we define: a simple interpretation I of a given vocabulary V consists of

• IR, a non-empty set of resources, alternatively called domain or universe
of discourse of I,

• IP , the set of properties of I (which may overlap with IR),

• IEXT, a function assigning to each property a set of pairs from IR,
i.e. IEXT : IP → 2IR×IR, where IEXT(p) is called the extension of the
property p,

• IS, a function, mapping URIs from V into the union of the sets IR and
IP , i.e. IS : V → IR ∪ IP ,

• IL, a function from the typed literals from V into the set IR of resources
and

• LV , a particular subset of IR, called the set of literal values, containing
(at least) all untyped literals from V .

Based on the sets IR, IP , and LV as well as the functions IEXT, IS, and IL,
we now define an interpretation function ·I that in the first place maps all
literals and URIs contained in the vocabulary V to resources and properties:

• every untyped literal "a " is mapped to a , formally: ("a ")I = a ,

• every untyped literal carrying language information "a "@t is mapped
to the pair 〈a , t 〉, i.e. ("a "@t )I = 〈a , t 〉,
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• every typed literal l is mapped to IL(l ), formally: l I = IL(l ), and

• every URI u is mapped to IS(u), i.e. uI = IS(u).

Note that, as mentioned in Section 2.1.3, untyped literals without language
information are essentially mapped to themselves, while untyped literals with
language information are assigned to pairs consisting of the pure literal and
the language identifier. Figure 3.3 graphically illustrates this part of the
definition of a simple interpretation.

FIGURE 3.3: Schematic representation of a simple interpretation

Now, starting from the definition of the interpretation function with respect
to single basic RDF elements, we further extend this function in a way that
it assigns a truth value (true or false) to every grounded triple (i.e. every
triple not containing blank nodes): the truth value s p o.I of a grounded
triple s p o. will be true exactly if all of its constituents s, p, and o are
contained in the vocabulary V and additionally 〈sI , oI〉 ∈ IEXT(pI) holds.
Verbally, the latter condition demands that the pair constructed from the
resources assigned to s and o is within the extension of the property denoted
by p. Figure 3.4 graphically displays this condition. If one of these mentioned
conditions is violated, the truth value will be false.

Finally, the interpretation function ·I also assigns a truth value to every
grounded graph G: GI is true if and only if every triple contained in the
graph G is true, i.e. GI = true exactly if T I = true for all T ∈ G.

Mark that the notion of interpretation which we have introduced so far
only covers grounded graphs, i.e. those not containing blank nodes. In order
to enable an interpretation to deal with blank nodes, we have to further
generalize our technical notion of interpretation. For this, the essential idea
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FIGURE 3.4: Criterion for the validity of a triple with respect to an
interpretation

is to let a graph that contains blank nodes be valid, if everyone of these blank
nodes can be replaced by a resource, such that the resulting bnode-free graph
is valid. Hence, let A be a function assigning a resource from IR to every blank
node occurring in G. Moreover, we define for such a mapping A and a given
interpretation I a sort of combined interpretation I+A that behaves exactly
like I on the URIs and literals but additionally uses A to assign resources to
all blank nodes: (b)I+A = A(b). Accordingly I+A can be extended to triples
and further to graphs.

Eventually, we have to abstract from the concrete blank node assignments
by stipulating that a (non-combined) interpretation I be a model of a graph
G if there exists a function A′, such that GI+A′

= true. By this trick, we have
extended our original notion of an interpretation to non-grounded graphs. An
example of such a simple interpretation is given in Fig. 3.5.

In full compliance with the idea of model-theoretic semantics, we now say
that a graph G1 (simply) entails a graph G2, if every simple interpretation
that is a model of G1 is also a model of G2.

3.2.2 RDF-Interpretations

As mentioned earlier, simple interpretations essentially treat all URIs oc-
curring in the vocabulary in the same way, irrespective of their namespace and
their intended special meaning. For example, a simple interpretation does not
semantically distinguish between the URIs ex:publishedBy and rdf:type.
In order to restore the fixed vocabulary to its intended meaning, the set of ad-
missible interpretations has to be further restricted by additional constraints.

The RDF vocabulary VRDF consists of the URIs
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Let us consider as an example the graph from Fig. 2.7. The corresponding
vocabulary V consists of all names of nodes and edges of the graph.
A simple interpretation I for this vocabulary would now be given by:

IR = {χ, υ, τ, ν, ε, ι, 1lb}
IP = {τ, ν, ι}
LV = {1lb}
IEXT = τ 7→ {〈χ, ε〉}

ν 7→ {〈ε, υ〉}
ι 7→ {〈ε, 1lb〉}

IS = ex:chutney 7→ χ
ex:greenMango 7→ υ
ex:hasIngredient 7→ τ
ex:ingredient 7→ ν
ex:amount 7→ ι

IL is the “empty function,” since
there are no typed literals.

Letting A : _:id1 7→ ε, we note that the interpretation I+A valuates all
three triples of our considered graph with true:

〈ex:chutneyI+A, _:id1I+A〉=〈χ, ε〉 ∈ IEXT(τ)=IEXT(ex:hasIngredientI+A)
〈_:id1I+A, ex:greenMangoI+A〉=〈ε, υ〉 ∈ IEXT(ν)=IEXT(ex:ingredientI+A)
〈_:id1I+A, "1lb"I+A〉=〈ε, 1lb〉∈ IEXT(ι)=IEXT(ex:amountI+A)

Therefore, the described graph as a whole is also valued with true. Hence,
the simple interpretation I is a model of the graph.

FIGURE 3.5: Example of an interpretation
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rdf:type rdf:Property rdf:XMLLiteral rdf:nil rdf:List rdf:Statement
rdf:subject rdf:predicate rdf:object rdf:first rdf:rest rdf:Seq
rdf:Bag rdf:Alt rdf:value

plus an infinite number of URIs rdf_i for every positive integer i.

Recall the intuitive semantics for this vocabulary: rdf:type is used to
assign a type to a URI; in other words, it declares that the resource associated
to this URI belongs to a certain class. The name rdf:Property denotes such
a class and characterizes all those URIs that may serve as a triple’s predicate,
i.e. those URIs whose assigned resources have an extension (i.e. which are
in IP in terms of simple interpretations). Consequently, only interpretations
satisfying those conditions will be admitted.

As we learned in Section 2.3.1, there is exactly one predefined datatype
in RDF, namely, rdf:XMLLiteral. As opposed to other (externally defined)
datatypes, the special characteristics of this one are explicitly taken care of in
the RDF semantics definition. In order to do this, it is necessary to distinguish
between well-typed and ill-typed XML literals. An XML literal is categorized
as well-typed if it satisfies the syntactic conditions for being contained in the
lexical space of rdf:XMLLiteral; otherwise it is ill-typed.

This distinction is relevant for the subsequent definition, because well-typed
literals are mapped to literal values (i.e. elements of LV ), whereas ill-typed
ones are mapped to resources that are not literal values.

An RDF-interpretation of a vocabulary V is a simple interpretation of the
vocabulary V ∪ VRDF that additionally satisfies the following conditions:

• x ∈ IP exactly if 〈x, rdf:PropertyI〉 ∈ IEXT(rdf:typeI).

x is a property exactly if it is connected to the resource denoted
by rdf:Property via the rdf:type-property (this automatically
causes IP ⊆ IR for any RDF-interpretation).

• if "s "ˆˆrdf:XMLLiteral is contained in V and s is a well-typed XML-
Literal, then

- IL("s "ˆˆrdf:XMLLiteral) is the XML value1 of s ;

- IL("s "ˆˆrdf:XMLLiteral) ∈ LV ;

- 〈IL("s "ˆˆrdf:XMLLiteral), rdf:XMLLiteralI〉
∈ IEXT(rdf:typeI)

1The value space of the datatype assigned to rdf:XMLLiteral contains, for every well-
typed XML string (from the lexical space), exactly one so-called XML value. The RDF
specification does not give further information about the nature of XML values; it only
requires that an XML value is not an XML string, nor a data value, nor a Unicode string.
For our purposes and the intuitive usage, however, it does no harm to suppose that XML
values are just XML strings.
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• if "s "ˆˆrdf:XMLLiteral is contained in V and s is an ill-typed XML
literal, then

- IL("s "ˆˆrdf:XMLLiteral) 6∈ LV and

- 〈IL("s "ˆˆrdf:XMLLiteral), rdf:XMLLiteralI〉
6∈ IEXT(rdf:typeI).

In addition to those semantic restrictions, RDF-interpretations have to sat-
isfy the condition that all of the subsequent triples (called axiomatic triples)
must be valued as true:

rdf : type rdf : type rdf : Property.
rdf : subject rdf : type rdf : Property.
rdf : predicate rdf : type rdf : Property.
rdf : object rdf : type rdf : Property.
rdf : first rdf : type rdf : Property.
rdf : rest rdf : type rdf : Property.
rdf : value rdf : type rdf : Property.
rdf : _i rdf : type rdf : Property.
rdf : nil rdf : type rdf : List.

Again, the i in rdf:_i is to be replaced by all positive integers; therefore
we actually have infinitely many axiomatic triples.

Except for the last one, all those triples serve the purpose of marking re-
sources that are assigned to particular RDF URIs as properties. This is done
in the usual way by typing them with rdf:type rdf:Property which due to
the above definition of RDF-interpretations has exactly the desired effect.

Together, the listed restrictions ensure that an RDF-interpretation complies
with the intended meaning.

In exact analogy to the definition of the simple entailment, we now say
that a graph G1 RDF-entails a graph G2 if every RDF-interpretation that is
a model of G1 is also a model of G2.

3.2.3 RDFS Interpretations

As pointed out in Section 2.4, RDFS enriches the RDF vocabulary by fur-
ther constructs which have to be interpreted in a special way. For example,
new class names are introduced that allow us to mark a URI as referring to
a resource, to an untyped literal, or to a class via rdf:type. New URIs for
properties allow for characterizing domain and range of a property by typing
them with classes. Moreover class names as well as property names can be put
into hierarchical relations. This set of modeling options enables us to express
schematic or terminological knowledge in the form of triples.

The RDFS vocabulary VRDFS to be specifically interpreted consists of the
following names:
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rdfs:domain rdfs:range rdfs:Resource rdfs:Literal rdfs:Datatype
rdfs:Class rdfs:subClassOf rdfs:subPropertyOf rdfs:member
rdfs:Container rdfs:ContainerMembershipProperty rdfs:comment
rdfs:seeAlso rdfs:isDefinedBy rdfs:label

For the sake of a simpler presentation, we introduce a new function ICEXT

which, given a fixed RDF-interpretation, maps resources to sets of resources
(formally: ICEXT : IR → 2IR). We define ICEXT(y) to contain exactly those
elements x for which 〈x, y〉 is contained in IEXT(rdf:typeI). The set ICEXT(y)
is then also called the (class) extension of y.

Moreover we let IC denote the class extension of the URI rdfs:Class,
formally: IC = ICEXT(rdfs:ClassI). Note that both ICEXT as well as IC are
uniquely determined by ·I and IEXT.

We now employ the newly introduced function in order to specify the se-
mantic requirements on an RDFS-interpretation:

An RDFS-interpretation of a vocabulary V is an RDF-interpretation of the
vocabulary V ∪ VRDFS that in addition satisfies the following criteria:

• IR = ICEXT(rdfs:ResourceI)

Every resource has the type rdfs:Resource.

• LV = ICEXT(rdfs:LiteralI)

Every untyped or well-typed literal has the type rdfs:Literal.

• If 〈x, y〉 ∈ IEXT(rdfs:domainI) and 〈u, v〉 ∈ IEXT(x),
then u ∈ ICEXT(y).

If x and y are interconnected by the property rdfs:domain and
the property x connects the resources u and v, then u has the type
y.

• If 〈x, y〉 ∈ IEXT(rdfs:rangeI) and 〈u, v〉 ∈ IEXT(x),
then v ∈ ICEXT(y).

If x and y are interconnected by the property rdfs:range and the
property x connects the resources u and v, then v has the type y.

• IEXT(rdfs:subPropertyOfI) is reflexive and transitive on IP .
The rdfs:subPropertyOf property connects every property with
itself.
Moreover: if rdfs:subPropertyOf links property x with property
y and also y with the property z, then rdfs:subPropertyOf also
links x directly with z.

• If 〈x, y〉 ∈ IEXT(rdfs:subPropertyOfI),
then x, y ∈ IP and IEXT(x) ⊆ IEXT(y).

Whenever x and y are interlinked by rdfs:subPropertyOf, then
both x and y are properties and every pair of resources contained
in x’s extension is also contained in the extension of y.



RDF Formal Semantics 83

• If x ∈ IC ,
then 〈x, rdfs:ResourceI〉 ∈ IEXT(rdfs:subClassOfI).

Every class x is a subclass of the class of all resources, i.e. the
pair constructed from x and rdfs:Resource is in the extension of
rdfs:subClassOf.

• If 〈x, y〉 ∈ IEXT(rdfs:subClassOfI),
then x, y ∈ IC and ICEXT(x) ⊆ ICEXT(y).

If x and y are in the rdfs:subClassOf relation, then both x and y
are classes and the (class) extension of x is a subset of the (class)
extension of y.

• IEXT(rdfs:subClassOfI) is reflexive and transitive on IC .
The rdfs:subClassOf property connects each class with itself.
Moreover if the rdfs:subClassOf property connects a class x with
a class y and y with some class z, it also connects x with z directly.

• If x ∈ ICEXT(rdfs:ContainerMembershipPropertyI),
then 〈x, rdfs:memberI〉 ∈ IEXT(rdfs:subPropertyOfI).

Any property typed with rdfs:ContainerMembershipProperty is
in the rdfs:subPropertyOf relation to the rdfs:member property.

• If x ∈ ICEXT(rdfs:DatatypeI),
then 〈x, rdfs:LiteralI〉 ∈ IEXT(rdfs:subClassOfI)

Any x typed as rdfs:Datatype must be a subclass of the class of
all literal values (denoted by rdfs:Literal).

In analogy to the definition of RDF-interpretations, we name a list of ax-
iomatic triples which (in addition to the aforementioned constraints) have
to be satisfied by an RDF-interpretation in order to render it an RDFS-
interpretation:

rdf:type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property .
rdfs:range rdfs:domain rdf:Property .
rdfs:subPropertyOf rdfs:domain rdf:Property .
rdfs:subClassOf rdfs:domain rdfs:Class .
rdf:subject rdfs:domain rdf:Statement .
rdf:predicate rdfs:domain rdf:Statement .
rdf:object rdfs:domain rdf:Statement .
rdfs:member rdfs:domain rdfs:Resource .
rdf:first rdfs:domain rdf:List .
rdf:rest rdfs:domain rdf:List .
rdfs:seeAlso rdfs:domain rdfs:Resource .
rdfs:isDefinedBy rdfs:domain rdfs:Resource .
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rdfs:comment rdfs:domain rdfs:Resource .
rdfs:label rdfs:domain rdfs:Resource .
rdf:value rdfs:domain rdfs:Resource .

rdf:type rdfs:range rdfs:Class .
rdfs:domain rdfs:range rdfs:Class .
rdfs:range rdfs:range rdfs:Class .
rdfs:subPropertyOf rdfs:range rdf:Property .
rdfs:subClassOf rdfs:range rdfs:Class .
rdf:subject rdfs:range rdfs:Resource .
rdf:predicate rdfs:range rdfs:Resource .
rdf:object rdfs:range rdfs:Resource .
rdfs:member rdfs:range rdfs:Resource .
rdf:first rdfs:range rdfs:Resource .
rdf:rest rdfs:range rdf:List .
rdfs:seeAlso rdfs:range rdfs:Resource .
rdfs:isDefinedBy rdfs:range rdfs:Resource .
rdfs:comment rdfs:range rdfs:Literal .
rdfs:label rdfs:range rdfs:Literal .
rdf:value rdfs:range rdfs:Resource .

rdfs:ContainerMembershipProperty
rdfs:subClassOf rdf:Property .

rdf:Alt rdfs:subClassOf rdfs:Container .
rdf:Bag rdfs:subClassOf rdfs:Container .
rdf:Seq rdfs:subClassOf rdfs:Container .

rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .

rdf:XMLLiteral rdf:type rdfs:Datatype .
rdf:XMLLiteral rdfs:subClassOf rdfs:Literal .
rdfs:Datatype rdfs:subClassOf rdfs:Class .

rdf:_i rdf:type
rdfs:ContainerMembershipProperty .

rdf:_i rdfs:domain rdfs:Resource .
rdf:_i rdfs:range rdfs:Resource .

Again, i can be replaced by any positive integer. Obviously this set of triples
can be divided into several groups. The first group contains triples with pred-
icate rdfs:domain. The declarative purpose of such a triple p rdfs:domain
c is to associate the URI p with a class name c. Basically, this enforces a
class membership (realized via rdf:type) for every URI s occurring as a sub-
ject together with the predicate p in a triple s p o . For example, the fifth
triple in this list just states that whenever a triple c rdfs:subclassOf d is
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encountered, an immediate consequence is that c denotes a class, expressed
by the triple c rdf:type rdfs:Class.

Similarly, the triples gathered in the second group and having the predicate
rdfs:range cause class memberships of triple objects.

As to containers, the axiomatic triples specify the class of all containedness
properties as subclass of the class of all properties. Additionally, the class
denoted by rdfs:Container is declared as the superclass of all kinds of open
lists.

Moreover, the rdfs:isDefinedBy property is classified as a special case of
the rdfs:seeAlso property. The class of XML values is marked as a datatype
and subclass of all literal values, and the class of all datatypes is identified as
a class of classes.

Finally the predefined containedness properties for lists are characterized
as such.

Based on the introduced notion of an RDFS-interpretation and in analogy
to the previous two cases, we now define that a graph G1 RDFS entails a
graph G2 if every RDFS-interpretation that is a model of G1 is also a model
of G2.

3.2.4 Interpretation of Datatypes

We already know that there is just one predefined datatype in RDFS,
namely, rdf:XMLLiteral, the semantic characteristics of which are fully cov-
ered by the definition of RDFS-interpretation in the previous section. Never-
theless, other externally defined datatypes can be used in RDF(S).

In Section 2.3.1 we learned that a datatype d is composed of a value space
Vald, a lexical space Lexd and a function Lex2Vald, assigning a value to ev-
ery element of the lexical space, formally: d = 〈Vald, Lexd,Lex2Vald〉 with
Lex2Vald : Lexd → Vald.

In the same section we also mentioned that when employing external data-
types, one can have URIs referring to those datatypes within the vocabulary.
This allows for making statements about datatypes within an RDF(S) spec-
ification. For example, it might be reasonable to specify that the natural
numbers are a subset of the integers.

In order to capture the entirety of all datatypes used in an RDF(S) de-
scription, we introduce the notion of a datatype map D, a function assigning
the datatypes to their URIs: D : u 7→ d. Of course, the predefined datatype
has to be treated accordingly; hence we require every datatype map to satisfy
D(rdf:XMLLiteral) = dXMLLiteral.

Given a datatype map D, we now define a D-interpretation of the vocabu-
lary V as an RDFS-interpretation I of V ∪ {a | there is a d with D(a ) = d}
(that means the vocabulary V extended by the domain of D) that for every
a and d with D(a ) = d additionally satisfies the following properties:

• a I = D(a ).
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For URIs denoting datatypes, the interpretation function ·I coin-
cides with the datatype map D.

• ICEXT(d) = Vald ⊆ LV .

The class extension of a datatype d is the value space of d and is a
subset of the literal values.

• For every typed literal "s "ˆˆd ∈ V with d I = d the following hold:

- if s ∈ Lexd, then IL("s "ˆˆd ) = Lex2Vald(s ),

- if s 6∈ Lexd, then IL("s "ˆˆd ) 6∈ LV .

Every well-typed literal (i.e. one contained in the lexical space of its
associated datatype) is mapped into the literal values in accordance
with this datatype’s lexical-to-value mapping, whereas every ill-
typed literal is mapped to a resource outside the literal values.

• a I ∈ ICEXT(rdfs:DatatypeI).

Every datatype (i.e. every resource assigned to a datatype URI) is
a member of the rdfs:Datatype class.

3.2.5 Worked Example

Let us have a closer look at the definitions of models for RDF and RDFS
documents by working through them for the example ontology from Sec-
tion 2.6. This is going to be a bit tedious, but it helps to understand the
definitions. Usually, you would not do this manually, but rather use systems
based on algorithms like that from Section 3.3.

Let us start by defining a simple interpretation, as given in Fig. 3.6. These
assignments define a simple interpretation which is a model of the example
ontology. You can check this easily yourself.

Next, we define an RDF-interpretation starting from the simple interpreta-
tion just given. To do this, we need to augment the simple interpretation by
adding mappings for all elements of VRDF and by redefining IEXT(y).

It does not really matter how we set IS(x) for those x ∈ VRDF which the
IS from the simple interpretation does not map, so pick anything that is not
yet in IR ∪ IP and extend IS accordingly. Note that we could also reuse the
elements from IR ∪ IP because the unique name assumption is not imposed,
but we want to construct a model which is intuitively feasible, and so we avoid
reuse. Let’s do the settings as given in Fig. 3.7.

Now redefine IEXT(y) from the simple interpretation to the following:
IEXT(y) = {〈s, a〉, 〈h, i〉, 〈d, π〉, 〈e, π〉, 〈h, π〉, 〈b, π〉, 〈m,π〉, 〈o, π〉, 〈r, π〉, 〈y, π〉,

〈ρ1, ρ2〉, 〈ρ4, π〉, 〈ρ5, π〉, 〈ρ6, π〉, 〈ρ7, π〉, 〈ρ8, π〉, 〈ρ12, π〉, 〈δk, π〉 | k ∈ N}.
This way, we satisfy the first condition on page 80. The other conditions are
not important for us since we have no such elements in V .
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IR = {a, c, i, n, p, s, t, v, y, d, h}
IP = {d, e, h, b,m, o, r, y}
LV = ∅
IS = ex:AllergicToNuts 7→ a

ex:coconutMilk 7→ c
ex:Nutty 7→ n
ex:Pitiable 7→ p
ex:sebastian 7→ s
ex:Thai 7→ t
ex:vegetableThaiCurry 7→ v
ex:thaiDishBasedOn 7→ d
ex:eats 7→ e
ex:hasIngredient 7→ h
rdfs:subPropertyOf 7→ b
rdfs:ContainerMembershipProperty 7→ i
rdfs:domain 7→ m
rdfs:subClassOf 7→ o
rdfs:range 7→ r
rdf:type 7→ y

IEXT = d 7→ {〈v, c〉}
e 7→ {〈s, v〉}
h 7→ ∅
b 7→ {〈d, h〉}
m 7→ {〈d, t〉}
o 7→ {〈a, p〉}
r 7→ {〈d, n〉}
y 7→ {〈s, a〉, 〈h, i〉}

IL = ∅

FIGURE 3.6: Example of a simple interpretation
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IS : rdf:Property 7→ π
rdf:XMLLiteral 7→ ρ0

rdf:nil 7→ ρ1

rdf:List 7→ ρ2

rdf:Statement 7→ ρ3

rdf:subject 7→ ρ4

rdf:predicate 7→ ρ5

rdf:object 7→ ρ6

rdf:first 7→ ρ7

rdf:rest 7→ ρ8

rdf:Seq 7→ ρ9

rdf:Bag 7→ ρ10

rdf:Alt 7→ ρ11

rdf:value 7→ ρ12

rdf:_n 7→ δn for all n ∈ N

FIGURE 3.7: Example of an RDF-interpretation

Note that we now also need to adjust IR and IP to take the new elements
into account. We set them as follows.

IR = {a, c, i, n, p, s, t, v, d, e, h, b,m, o, r, y, π, ρk, δj | k ∈ {0, . . . , 12}, j ∈ N}
IP = {d, e, h, b,m, o, r, y, ρ4, . . . , ρ8, ρ12, δk | k ∈ N}

Finally, set IEXT(ρ4) = IEXT(ρ5) = IEXT(ρ6) = IEXT(ρ7) = IEXT(ρ8) =
IEXT(ρ12) = IEXT(δk) for all k ∈ N. This completes the definition of an RDF-
interpretation which is actually also a model of the given ontology. Check it
yourself from the definitions in Section 3.2.2.

We will now finally attempt to extend this to an RDFS-interpretation which
is a model of the ontology. Actually, we will see that this is too tedious a task
to be done manually, but let’s at least have a start to see how it would work
in principle. We first extend IS, for example, as given in Fig. 3.8.

We now redefine IR to contain all those things IS maps to, and IP to contain
all elements of IR which are properties. LV and IL are obviously empty for
this example.

IR = {a, c, i, n, p, s, t, v, d, e, h, b,m, o, r, y, π, ρ0, . . . ρ12, σ0, . . . , σ9, δn | n ∈ N}
IP = {d, e, h, b,m, o, r, y, ρ4, . . . , ρ8, ρ12, σ4, σ6, σ7, σ8, σ9, δk | k ∈ N}
LV = ∅
IL = ∅

We finally have to define IEXT(x) for all x ∈ IP . This can in principle be
done by starting from the RDF-interpretation above and going through the
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IS = ex:AllergicToNuts 7→ a
ex:coconutMilk 7→ c
ex:Nutty 7→ n
ex:Pitiable 7→ p
ex:sebastian 7→ s
ex:Thai 7→ t
ex:vegetableThaiCurry 7→ v
ex:thaiDishBasedOn 7→ d
ex:eats 7→ e
ex:hasIngredient 7→ h
rdfs:subPropertyOf 7→ b
rdfs:ContainerMembershipProperty 7→ i
rdfs:domain 7→ m
rdfs:subClassOf 7→ o
rdfs:range 7→ r
rdf:type 7→ y
rdf:Property 7→ π
rdf:XMLLiteral 7→ ρ0

rdf:nil 7→ ρ1

rdf:List 7→ ρ2

rdf:Statement 7→ ρ3

rdf:subject 7→ ρ4

rdf:predicate 7→ ρ5

rdf:object 7→ ρ6

rdf:first 7→ ρ7

rdf:rest 7→ ρ8

rdf:Seq 7→ ρ9

rdf:Bag 7→ ρ10

rdf:Alt 7→ ρ11

rdf:value 7→ ρ12

rdf:_n 7→ δn for all n ∈ N
rdfs:Resource 7→ σ0

rdfs:Literal 7→ σ1

rdfs:Datatype 7→ σ2

rdfs:Class 7→ σ3

rdfs:member 7→ σ4

rdfs:Container 7→ σ5

rdfs:comment 7→ σ6

rdfs:seeAlso 7→ σ7

rdfs:isDefinedBy 7→ σ8

rdfs:label 7→ σ9

FIGURE 3.8: Example of IS
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list of requirements on an RDFS-interpretation from pages 82 through 83.
While going through the list, we add to IEXT to fulfill all of the requirements.
Note, however, that some additions may necessitate going back to one of the
earlier requirements and making more additions. Also, don’t forget to watch
the conditions on RDF-interpretations from page 80 which also need to be
satisfied.

You should try this yourself, just to get a feeling for it. In fact, if you do
this manually you will soon notice that it’s a rather extensive and tedious
task. In fact, we refrain from giving the complete IEXT, which would be a bit
pointless – it’s better to do this automatically, e.g., by means discussed in
Section 3.3.

3.3 Syntactic Reasoning with Deduction Rules

In the preceding sections, we introduced a model theoretic semantics for
RDF(S) that defines the entailment relation, i.e. we specified in a mathemati-
cally precise way when an RDF(S) graph entails another RDF(S) graph. Yet,
while a model-theoretic approach is very well suited to theoretically specify a
logic’s desired behavior with respect to what conclusions can be drawn, it pro-
vides no direct algorithmic means for actually doing the reasoning. In order
to directly use the model theoretic semantics definition for deciding whether
a given graph is entailed by a set of graphs, in principle all interpretations
would have to be considered. However, as there are always infinitely many
such interpretations, this is simply impossible – an essential problem occurring
in the context of any sufficiently expressive logic.

Consequently, one strives for methods to decide the validity of conclusions
syntactically. These methods would operate only on the given propositions
of a logic without directly recurring to interpretations. Of course, any such
method would have to be justified by mathematically proving that the results
it yields (i.e. its so-called operational semantics) are exactly those expected
from the model-theoretic semantics.

One option for describing such a syntactic method consists of providing
so-called deduction rules (also known as inference rules or derivation rules)
which in general have the form:

p1 · · · pn

p

Such a deduction rule states that, given the validity of the propositions
p1, . . . , pn, we can deduce that p must also be valid. The whole set of deduction
rules given for a logic (usually there are several) is called deduction calculus,
and the fact that all propositions of a set P ′ can be derived from a proposition
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set P by some sequence of applications of the deduction rules is often expressed
by writing P ` P ′.

When comparing such a set of inference rules to the semantics of a logic
(mediated by its entailment relation |=), there are two central notions: sound-
ness and completeness. A deduction calculus is sound with respect to a given
semantics if every proposition set P ′ that can be derived from a set of propo-
sitions P by means of the deduction rules is a semantic consequence; formally
P ` P ′ implies P |= P ′. On the other hand, a deduction calculus is called
complete if every proposition set P ′ that is semantically entailed by a propo-
sition set P can also be deduced by means of the provided deduction rules,
i.e. if P |= P ′ implies P ` P ′.

Note, however, that the existence of a (sound and complete) deduction
calculus does not directly lead to a decision procedure, i.e. an algorithm that,
given two proposition sets P and P ′, terminates after some time and correctly
answers the question whether P |= P ′. Clearly, there are infinitely many
possibilities to apply the deduction rules (in the simplest case, the same rule
might be applied over and over again), so simply trying out all of them does
not work. In order to turn a deduction calculus into a decision procedure, one
has to come up with a strategy telling what rules to apply when and when
to stop. This is not always possible: there are even logics with a sound and
complete deduction calculus that are undecidable, i.e. they lack a decision
procedure. Therefore, one should be aware that a deduction calculus provides
a way to syntactically characterize a logic’s semantics and in the best case
provides some hints on how to algorithmize inferencing but it is usually not
a ready-to-implement blueprint of a reasoner.

We now consider the case for RDF(S). The different kinds of interpretations
introduced previously (simple, RDF-, and RDFS-interpretations) lead to dif-
ferent entailment relations (according to the model-theoretic way of defining
entailment relations introduced in Section 3.2). Consequently, we will in the
following provide three different sets of deduction rules for triples. Applying
a deduction rule in our special case just means adding the triple below the
line to the graph under consideration.

By means of those derivation rules, the three distinct entailment relations
(simple, RDF, and RDFS-entailment) can be characterized syntactically, al-
though we need some special care in the RDFS case.

As the deduction rules that we will consider in the sequel usually do not
only refer to single URIs or literals but, for instance, to all URIs or all literals,
the following notations will come in handy:

• a and b can refer to arbitrary URIs (i.e. anything admissible for the
predicate position in a triple),

• _:n will be used for the ID of a blank node,

• u and v refer to arbitrary URIs or blank node IDs (i.e. any possible
subject of a triple),
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• x and y can be used for arbitrary URIs, blank node IDs or literals
(i.e. anything admissible for the object position in a triple), and

• l may be any literal.

Other symbols will be explained where they occur.

3.3.1 Deduction Rules for Simple Entailment

As suggested by its name, simple entailment can be characterized com-
paratively easily. Since all occurring URIs are treated equally, the question
whether one graph entails another can be decided based on simple structural
considerations which are captured by the following two deduction rules

u a x .
u a _:n .

se1

u a x .
_:n a x .

se2

However, one has to be careful when “weakening” a subject or object by
applying either of these rules: The rules can safely be applied if the blank
node identified by _:n is not contained at all in the graph the rule is applied
to. If _:n is already contained, then the the rules are applicable only if _:n has
been introduced by weakening the same URI, literal, or blank node identifier
(via rule se1 or se2) as the current application of the rule does. In other words,
se1 and se2 must not be used to turn distinct URIs, literals or bnodes into
the same bnode. An example is given in Fig. 3.9.

It can be formally proven that those two deduction rules indeed capture the
semantics of the simple entailment. More specifically, the following theorem
holds:

THEOREM 3.1
A graph G1 simply entails a graph G2, if G1 can be extended to a graph G′

1

by virtue of the rules se1 and se2 such that G2 is contained in G′
1.

Recalling that graphs are just sets of triples, the fact that G2 is contained
in G′

1 just means G2 ⊆ G′
1 (i.e. every triple from G2 is contained in G′

1).
In Fig. 3.11, we give an example that illustrates how this theorem can be

used to show simple entailment.

3.3.2 Deduction Rules for RDF-Entailment

As opposed to simple entailment, RDF-entailment presumes a special mean-
ing of particular URIs since it is defined via RDF-interpretations. In order to
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In order to illustrate why this constraint to the applicability of the above
deduction rules is essential, consider the following deduction:

ex:heidrun ex:motherOf ex:sebastian .
_:id1 ex:motherOf ex:sebastian .

se2

Essentially, the proposition “Heidrun is the mother of Sebastian” is weak-
ened to the proposition “Sebastian has a mother.” Furthermore, it would be
possible to make the following deduction

ex:wolfgang ex:marriedTo ex:heidrun .
ex:wolfgang ex:marriedTo _:id1 .

se1

as id1 is introduced by “weakening” the same URI ex:heidrun as in the
previous deduction. Together the two generated triples can be read as “Se-
bastian’s mother is married to Wolfgang.”
However, imagine there was another triple

_:id1 ex:motherOf ex:markus .

(i.e. “Markus has a mother”) present in the graph to be reasoned about. Then,
by violating the additional applicability constraint above, the first deduction
would lead to the erroneous conclusion that Markus and Sebastian have the
same mother.

FIGURE 3.9: Example of simple entailment

FIGURE 3.10: Graph that is simply entailed by the graph from Fig. 2.3
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Suppose we want to find out whether the graph in Fig. 2.3 (let’s call it G1)
entails the graph G2 depicted in Fig. 3.10. To this end, we first represent G1

as a set of triples:

book:uri ex:publishedBy crc:uri .
book:uri ex:title "Foundations of Semantic Web Technologies" .
crc:uri ex:name "CRC Press" .

We now have to find out whether and – if yes – how the given deduction
rules se1 and se2 can be applied to this set such that the resulting graph G′

1

contains the graph G2 (again understood as a set of triples).
Indeed, applying rule se1 to the first of G1’s three triples allows us to add
the triple

book:uri ex:publishedBy _:blank1 .

with a blank node to our graph. Moreover, by applying se2 to the third of
the original triples, we can also add the triple

_:blank1 ex:name "CRC Press" .

to the graph, since the empty node referenced by _:blank1 has been in-
troduced by rule se1 exactly for crc:uri (and no other URI). Finally, the
application of rule se1 to the triple that has just been generated yields the
triple

_:blank1 ex:name _:blank2 .

By now, we have created a graph G′
1 containing all triples from the original

graph G1 and three additional ones. Its not hard to see that exactly these
three new triples together form the graph G2 from Fig. 3.10. Hence, because
of G2 ⊆ G′

1, we have shown that G1 simply entails G2.

FIGURE 3.11: Example deduction illustrating Theorem 3.1
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account for this, the deduction rules have to be amended. In the sequel, we
will introduce the deduction rules for RDF-entailment.

First, we provide a number of rules having no preconditions and there-
fore being always applicable. Essentially, those rules ensure that the RDF
axiomatic triples (whose validity is explicitly demanded in the definition of
RDF-interpretations) can always be derived. Hence, they have the form

u a x
rdfax

for all RDF axiomatic triples “u a x .” introduced in Section 3.2.2.2

Moreover, we need a specialized version of rule se1:

u a l .
u a _:n .

lg

The same applicability restrictions as for rule se1 apply: lg must not be
used to introduce a blank node that is already present in the graph and has
not itself been created out of l . The deduction rule

u a y .
a rdf:type rdf:Property .

rdf1

ensures that for every URI occurring anywhere in predicate position, one can
deduce that it is of type rdf:Property. The last rule

u a l .
_:n rdf:type rdf:XMLLiteral

rdf2

allows us to deduce the existence of a literal if a concrete witness (namely, l )
is present in the graph. Note that we have again the applicability condition
that _:n must not be previously present in the considered graph unless it has
been introduced for that very literal by a preceding application of the lg rule.

By means of these deduction rules and based on the characterization of sim-
ple entailment introduced in the preceding chapter, we can now also capture
the RDF-entailment in a syntactic way.

THEOREM 3.2
A graph G1 RDF entails a graph G2 if and only if there is a graph G′

1 that
can be derived from G1 by virtue of the rules lg, rdf1, rdf2, as well as rdfax
such that G′

1 simply entails G2.

2Note that, technically, rdfax is a rule scheme comprising infinitely many rules, as there are
infinitely many axiomatic triples due to the infinitely many URIs rdf:_1, rdf:_2 and so
forth. This fact needs special care when addressing decidability and implementation issues.
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Observe that the syntactic deduction process is divided into two steps:
initially the rules mentioned in the theorem (but not se1 and se2) are used to
derive the graph G′

1 and thereafter the rules se1 and se2 (but only those) are
employed to show simple entailment.

3.3.3 Deduction Rules for RDFS-Entailment

Beyond the RDF constructs, the RDFS vocabulary contains further URIs
that come with a special interpretation. This necessitates the introduction of
a variety of further deduction rules:

RDFS axiomatic triples

Also for RDFS-entailment, each of the (again infinitely many) axiomatic
triples must be derivable without preconditions. Hence we have the rule

u a x
rdfsax

for all RDFS axiomatic triples “u a x .” listed in Section 3.2.3. Note that
this rule covers (in combination with rules rdfs2 and rdfs3) all the domain
and range restrictions specified by those triples.

Treatment of literals

u a l .
_:n rdf:type rdfs:Literal .

rdfs1

where l is an untyped literal (with or without language tag) and _:n again
identifies a blank node with the usual novelty restriction. Essentially this rule
allows us to deduce an existence statement with respect to literals from their
occurrence.

Effects of property restrictions

a rdfs:domain x . u a y .
u rdf:type x .

rdfs2

As pointed out in the previous chapter, rdfs:domain is used to stipulate that
if an individual is the start of a given property then we can deduce that it must
be a member of a certain class. If we now encounter a triple containing the
corresponding property URI as predicate, we can conclude that this triple’s
subject must be in this class. This type of deduction is realized by rule rdfs2.

a rdfs:range x . u a v .
v rdf:type x .

rdfs3
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In an analogue manner, rdfs:range is used to infer class memberships for
a property’s target resources, allowing us to draw corresponding conclusions
about a triple’s object (rule rdfs3).

Everything is a resource

The following deduction rules ensure that every URI occurring in a triple
can also be formally identified to refer to a resource. They ensure that the
type “resource” can be explicitly assigned to any subject and any object that
is not a literal.

u a x .
u rdf:type rdfs:Resource .

rdfs4a

u a v .
v rdf:type rdfs:Resource .

rdfs4b

Note that we do not need an extra deduction rule for enabling the same typing
for triple predicates, since this can be derived from the other deduction rules:

u a x
a rdf:type rdf:Property
a rdf:type rdfs:Resource

rdf1
rdfs4a

Subproperties

The next two deduction rules make sure that the special characteristics of
the rdfs:subPropertyOf property, by definition demanded for every RDFS-
interpretation, are accessible for syntactic deduction: transitivity (rdfs5) and
reflexivity (rdfs6).

u rdfs:subPropertyOf v . v rdfs:subPropertyOf x .
u rdfs:subPropertyOf x .

rdfs5

u rdf:type rdf:Property .
u rdfs:subPropertyOf u .

rdfs6

The third deduction rule dedicated to rdfs:subPropertyOf operationalizes
its actual “encoding purpose,” namely that all pairs of resources that are
interlinked by a property are also connected by any superproperty of this
property.

a rdfs:subPropertyOf b . u a y .
u b y .

rdfs7
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By this rule, subproperty specifications (which can be conceived as a kind
of macro) can be applied to concrete triples (by executing the macro).

An example of an application of this rule would be

ex:motherOf rdfs:subPropertyOf ex:ancestorOf .
ex:heidrun ex:motherOf ex:sebastian .

ex:heidrun ex:ancestorOf ex:sebastian . rdfs7

Subclasses

The following deduction rules capture the semantic characteristics of the
subClassOf property.

u rdf:type rdfs:Class .
u rdfs:subClassOf rdfs:Resource .

rdfs8

By means of this rule, every URI typed as a class can be concluded to
denote a subclass of the class of all resources.

u rdfs:subClassOf x . v rdf:type u .
v rdf:type x .

rdfs9

This rule allows us to “inherit” a resource’s membership in a class to the
superclasses of this class.

u rdf:type rdfs:Class .
u rdfs:subClassOf u .

rdfs10

Hereby we can deduce that every class is its own subclass, in other words:
this rule realizes the reflexivity of the rdfs:subClassOf property.

u rdfs:subClassOf v . v rdfs:subClassOf x .
u rdfs:subClassOf x .

rdfs11

Accordingly, the rule rdfs11 implements the rdfs:subClassOf property’s
transitivity.

Container

The following rule identifies the rdfs:member property as superproperty of
all properties contained in the rdfs:ContainerMembershipProperty class.

u rdf:type rdfs:ContainerMembershipProperty .
u rdfs:subPropertyOf rdfs:member .

rdfs12
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Datatypes

Eventually, by the last rule, any resource that has been identified as data-
type (which is equated with its value space) can be inferred to be a subclass
of all literal values.

u rdf:type rdfs:Datatype .
u rdfs:subClassOf rdfs:Literal .

rdfs13

Reliteralizing blank nodes

The following rule can be seen as a kind of inverse of the rule gl:

u a _:n .
u a l .

gl

where _:n identifies a blank node introduced by an earlier “weakening” of the
literal l via the rule lg.

In fact, the necessity of this rule is not at all obvious. It has been added
to the calculus at a rather late stage in the approval phase of the respective
W3C document in order to ensure deductions that are required by the RDFS
semantics. To demonstrate why it is indeed needed, consider the following
example:

ex:Even ex:lastDigits "02468" .
ex:lastDigits rdfs:range rdfs:Class .

It takes a little effort to verify that the triple

_:id1 rdfs:subClassOf "02468" .

is RDFS-entailed. However, gl is necessary to come up with a corresponding
deduction:

ex:Even ex:lastDigits ¨02468¨ .
ex:Even ex:lastDigits _:id1 .

ex:lastDigits rdfs:range rdfs:Class .
_:id1 rdf:type rdf:Class

_:id1 rdfs:SubClassOf _:id1
_:id1 rdfs:SubClassOf ¨02468¨

lg

rdfs3
rdfs8
gl

Now, prior to framing how RDFS-entailment can be captured by deduction
rules, we have to address a somewhat peculiar special case. If a given graph G
is inconsistent (which means that there is no interpretation that is a model of
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G), it entails any arbitrary graph (which can be easily understood by consid-
ering the model-theoretic semantics definition). As opposed to other logics,
such as predicate logic (see Appendix C) or OWL (which will be dealt with
in the next chapter), in RDFS the opportunities to cause inconsistencies are
rather restricted.

As an example of such an inconsistency in RDFS, consider the following two
triples:

ex:hasSmiley rdfs:range rdf:Literal .
ex:viciousRemark ex:hasSmiley ">:->"^^XMLLiteral .

Therein, on the one hand, all targets of the ex:hasSmiley property are
required to be literal values (i.e. elements of LV ). On the other hand, an
ill-typed XML literal (due to the imbalanced occurrences of “>”), which by
definition must not be interpreted as a literal value, is in the object position
of a triple containing ex:hasSmiley as predicate. Hence there can be no
RDFS-interpretation valuing both triples as true.

However, such an enforced type mismatch can be diagnosed relatively easy:
it occurs as soon as a triple of the form

x rdf:type rdfs:Literal .

can be derived, where x has been assigned to an ill-typed XML literal by rule
lg. Such a case is called an XML clash.

Informed about this special case, we can now give a sufficient syntactic
criterion for RDFS-entailment in the following theorem.

THEOREM 3.3

A graph G1 RDFS entails a graph G2 if there is a graph G′
1 which can be

derived from G1 via the rules lg, gl, rdfax, rdf1, rdf2 as well as rdfs1 to
rdfs13 and rdfsax such that

• G′
1 simply entails G2 or

• G′
1 contains an XML clash.

Note that the preceding theorem just guarantees soundness of the given
deduction calculus. When the calculus was provided in the RDF semantics
specification, it was also considered complete, but a bit later that turned out
not to be the case.
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As an example of the calculus’ incompleteness, consider the following set of
triples:

ex:isHappilyMarriedTo rdfs:subPropertyOf _:bnode .
_:bnode rdfs:domain ex:Person .
ex:markus ex:isHappilyMarriedTo ex:anja .

It is not hard to show that the triple

ex:markus rdf:type ex:Person .

is a semantic consequence of the above. However, it cannot be derived by
means of the given deduction calculus.

One option to deal with this problem is to extend the definition of RDF: it
has been shown that allowing blank nodes in the predicate position of triples
overcomes this problem.

It remains to consider the issue mentioned in Section 3.3: even the existence
of a sound and complete set of deduction rules does not ensure that semantic
entailment of two proposition sets (or in our case, graphs) can be decided
by an automatic procedure.3 In our case, it can be shown that the set of
(relevant) inferable triples cannot become arbitrary large and therefore a kind
of saturation is certainly reached. However, showing this is not trivial: in
principle, arbitrarily many blank node triples can be created by the rules se1
and se2 in the simple entailment case. As to RDF and RDFS entailment,
there are infinitely many rules involved (due to the infinitely many axiomatic
triples). So one has to carefully consider how to restrict the application of
rules without losing relevant consequences. Moreover, even if a terminating
algorithm has been found, it might still not be efficient at all. Summing up,
the design of efficient RDF(S) reasoning tools for possibly large data sets is an
extremely challenging task requiring both theoretical expertise and profound
software engineering skills. This is also substantiated by the fact that simple,
RDF, and RDFS entailment are NP-complete problems.4

3Put into terms of theoretical computer science: there are problems which are recursively
enumerable but not decidable. Entailment in first order predicate logic is a prominent
example of this.
4The reason for this complexity is the blank nodes. Checking whether an RDF graph
simply entails an RDF graph containing blank nodes allows us to solve the graph homo-
morphism problem which is known to be NP-complete. By disallowing blank nodes, all
three entailment problems become polynomial.
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3.3.4 Additional Rules for Datatypes

The deduction rules introduced so far only addressed the compatibility with
RDFS-interpretations which only take care of the correct semantic character-
ization of rdf:XMLLiteral. External datatypes may be introduced by name
(by typing them as class members of the rdfs:datatype class); however,
it is impossible to completely characterize their semantic behavior only by
RDFS-internal means.

Of course, additional deduction rules capturing the functionality of specific
datatypes would have to depend on the intended semantics of the latter. Still,
it is possible to state how frequently occurring interdependencies related to
datatypes should be expressed by deduction rules.

For instance, if a literal s is known to be well-formed with respect to a
datatype d being represented by the URI d (i.e., D(d ) = d and s is contained
in d’s lexical space Lexd), the following deduction rule yields valid triples

d rdf:type rdfs:Datatype . u a "s "ˆˆd .
_:n rdf:type d .

rdfD1

Here, _:n denotes a blank node which has not been assigned to any other
entity than the literal "s "ˆˆd . In the end, this deduction rule just allows us
to infer the existence of a resource of some type, if a well-typed individual of
this type is explicitly mentioned.

As another frequently occurring case, the value spaces of certain datatypes
might overlap, e.g., there are numbers being both natural and floating point
numbers (obviously, the typed literals "2"ˆˆxsd:nonNegativeInteger and
"2.00"ˆˆxsd:decimal should be recognized to represent the same values).
Now suppose that the lexical expression s of a datatype denoted by the URI
d is expected to represent the same value as the lexical expression t of a
datatype denoted by e . Then the following rule can be applied

d rdf:type rdfs:Datatype .
e rdf:type rdfs:Datatype .

u a "s "ˆˆd .
u a "t "ˆˆe . rdfD2

It essentially allows us to substitute any occurrence of one typed literal in
object position (the only place where it is allowed to show up syntactically)
by the other one. Mark that this rule covers the case s = t (as for instance,
for "2"ˆˆxsd:nonNegativeInteger and "2"ˆˆxsd:Integer).

Another frequent piece of information about datatypes is that one includes
the other (e.g., any natural number is an integer). If the value space of the
datatype d is known to be contained in the value space of another datatype
e , the deduction rule

d rdfs:subClassOf e .
rdfDAx
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can be used to add the respective subclass relation to the set of axiomatic
triples.

If the mentioned preconditions are satisfied, the above deduction rules lead
to valid conclusions. However, there is no guarantee that all semantic conse-
quences can be created by virtue of those deduction rules.

For instance, in any D-interpretation that supports all XML datatypes ad-
missible for RDF and that satisfies the triples

u rdf:type xsd:nonNegativeInteger .
u rdf:type xsd:nonPositiveInteger .

also the triple

u rdf:type xsd:byte .

must hold. Yet, it cannot be derived from the given rules.

Likewise it would be possible to use the characteristics of particular datatypes
to cause inconsistencies by assigning two datatypes with disjoint value spaces
to one resource, e.g.:

u rdf:type xsd:integer .
u rdf:type xsd:string .

All those and many more consequences that arise from the special seman-
tics of D-interpretations with particular datatypes would have to be realized
by software systems which claim to support those datatypes in a logically
complete way. Note, however, that for RDF(S) compliance as prescribed by
the W3C specification, only the support of rdf:XMLLiteral is required.

3.3.5 Example of an RDFS Deduction

Now, as we have treated the deduction rules for RDFS-entailment, we will
illustrate their usage by a small example. We start with the example ontology
introduced in Section 2.6 and would like to logically detect whether an emer-
gency will occur, i.e. whether a person allergic to nuts consumes something
having nutty ingredients. Translated into graph notation this would mean
checking whether the graph G1 depicted in Fig. 2.13 entails the graph G2

from Fig. 3.12.

To start with, let’s list the triples of G1:



104 Foundations of Semantic Web Technologies

FIGURE 3.12: Graph G2, possibly RDFS-entailed by G1

ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .
ex:sebastian rdf:type ex:AllergicToNuts .
ex:sebastian ex:eats ex:vegetableThaiCurry .

ex:AllergicToNuts rdfs:subClassOf ex:Pitiable .
ex:thaiDishBasedOn rdfs:domain ex:Thai .
ex:thaiDishBasedOn rdfs:range ex:Nutty .
ex:thaiDishBasedOn rdfs:subPropertyOf ex:hasIngredient .
ex:hasIngredient rdf:type rdfs:ContainerMembershipProperty.

Next, we apply several deduction rules to G1. We exploit the classification
of objects via range restrictions, the fact that rdfs:member comprises all
containedness relations, the transitivity of the subproperty relation and the
generalization of a triple by subproperties. This is shown in Fig. 3.13.

This way, we have obtained the graph G′
1 by enriching the graph G1. In

order to prove the RDF-entailment in question, it remains to show that G′
1

simply entails G2. It is easy to see that this can be achieved by manifold
application of se1 and se2, in analogy to the example given in Fig. 3.11.

3.4 The Semantic Limits of RDF(S)

The semantics presented in the previous sections is not the only “reasonable”
semantics for RDF(S). Further logical consequences that do not arise from the
standard semantics (which is sometimes also called intensional semantics)
might be desirable in some cases. This can be realized by an alternative
extensional semantics for RDFS which imposes stronger constraints on RDFS-
interpretations. The reason for choosing the weaker semantics as the standard
is the following: for the intensional semantics, there are deduction rules that
can be implemented rather easily, which facilitates the development of tools
supporting RDFS. Hence, it is reasonable to define the standard as a kind of
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rule rdfs3:

ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .
ex:thaiDishBasedOn rdfs:range ex:Nutty .

ex:coconutMilk rdf:type ex:Nutty .

rule rdfs12:

ex:hasIngredient rdf:type rdfs:ContainerMembershipProperty .
ex:hasIngredient rdfs:subPropertyOf rdfs:member .

rule rdfs5:

ex:thaiDishBasedOn rdfs:subPropertyOf ex:hasIngredient .
ex:hasIngredient rdfs:subPropertyOf rdfs:member .

ex:thaiDishBasedOn rdfs:subPropertyOf rdfs:member .

rule rdfs7:

ex:thaiDishBasedOn rdfs:subPropertyOf rdfs:member .
ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .

ex:vegetableThaiCurry rdfs:member ex:coconutMilk .

FIGURE 3.13: Example of an RDFS deduction
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minimal requirement for RDF(S)-compatible systems.

As an example of a seemingly reasonable inference not supported by the
standard RDF(S) semantics consider the triples

ex:speaksWith rdfs:domain ex:Homo .
ex:Homo rdfs:subClassOf ex:Primates .

which should allow us to deduce the following triple:

ex:speaksWith rdfs:domain ex:Primates .

Irrespective of the question whether the intensional or the extensional se-
mantics is employed, the modeling capabilities of RDFS are fundamentally
restricted. As one of the most significant shortcomings, it is impossible to
express negated statements: the fact that some statement is not true can-
not be described in RDFS.5 Of course, it is possible to incorporate negation
into class or property names and simply introduce URIs like ex:NonSmoker
or ex:notMarriedTo. However, there is no way to enforce that those vocab-
ulary elements are interpreted in accordance with their intended semantics.
For instance, the two triples

ex:sebastian rdf:type ex:NonSmoker .
ex:sebastian rdf:type ex:Smoker .

do not cause an inconsistency (as one might expect) as there is no way to spec-
ify in RDFS that the two classes denoted by ex:NonSmoker and ex:Smoker
must not contain common elements. In the next chapter we will introduce an
ontology language which provides those capabilities, and many more, the cost
being that automated inferencing becomes much harder in the worst case.

3.5 Summary

By introducing a model-theoretic semantics of RDF(S), a binding standard
for tools processing RDF(S) data is created. We distinguish simple, RDF- and
RDFS-entailment, which are defined via respective interpretations. Moreover,

5Note also that the absence of a triple in a graph does not imply that the corresponding
statement does not hold as the RDF(S) semantics is based on the open world assumption.
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we discussed how any of those entailments can be characterized in terms of
a deduction calculus, whereby in the case of RDFS, some amendments would
be required. In addition, we investigated how external datatypes may be
introduced into the semantics. Finally, we pointed out that the ontology
language RDFS is insufficient for certain modeling purposes.

3.6 Exercises

Exercise 3.1 Describe a very simple RDFS-interpretation that is a model of
the example ontology from Section 2.6.

Exercise 3.2 Consider the ontology from Exercise 3.1 and find

• a simply entailed triple,

• an RDF-entailed triple, which is not simply entailed,

• an RDFS-entailed triple, which is not RDF-entailed.

Exercise 3.3 As you know, the unique name assumption does not hold in
RDF(S), i.e. in a model, several URIs might be assigned to the same resource.
Contemplate whether (and if so, how) it is possible to specify in RDFS that
two given URIs refer to the same resource.

Exercise 3.4 The empty graph does not contain any triples (i.e. it corre-
sponds to the empty set). Give derivations showing that the empty graph
RDFS-entails the following triples:

rdfs:Resource rdf:type rdfs:Class .
rdfs:Class rdf:type rdfs:Class .
rdfs:Literal rdf:type rdfs:Class .
rdf:XMLLiteral rdf:type rdfs:Class .
rdfs:Datatype rdf:type rdfs:Class .
rdf:Seq rdf:type rdfs:Class .
rdf:Bag rdf:type rdfs:Class .
rdf:Alt rdf:type rdfs:Class .
rdfs:Container rdf:type rdfs:Class .
rdf:List rdf:type rdfs:Class .
rdfs:ContainerMembershipProperty rdf:type rdfs:Class .
rdf:Property rdf:type rdfs:Class .
rdf:Statement rdf:type rdfs:Class .
rdfs:domain rdf:type rdf:Property .
rdfs:range rdf:type rdf:Property .



108 Foundations of Semantic Web Technologies

rdfs:subPropertyOf rdf:type rdf:Property .
rdfs:subClassOf rdf:type rdf:Property .
rdfs:member rdf:type rdf:Property .
rdfs:seeAlso rdf:type rdf:Property .
rdfs:isDefinedBy rdf:type rdf:Property .
rdfs:comment rdf:type rdf:Property .
rdfs:label rdf:type rdf:Property .

3.7 Further Reading

There is comparatively little literature about the RDF(S) semantics. The
W3C document “Semantics” [Hay04] constitutes the normative standard ref-
erence.

An article of Herman J. ter Horst [tH05] provides further information on
the incompleteness of the RDFS deduction rules and complexity of RDFS
reasoning.

“A Semantic Web Primer” [AvH08] provides one way to define the exten-
sional semantics of RDFS via a translation into first-order predicate logic.
Another approach for expressing the simple, RDF, and RDFS semantics in
terms of first-order logic is described in Section 6.4.6.
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Chapter 4

Ontologies in OWL

In this chapter, we introduce the ontology language OWL. We focus on an
introduction to the syntax and on conveying an intuitive understanding of the
semantics. We will also discuss the forthcoming OWL 2 standard. A formal
treatment of the semantics will be done later in Chapter 5, and a discussion
of OWL software tools can be found in Section 8.5.

We have seen at the end of Chapter 3 that RDF(S) is suitable for modeling
simple ontologies and allows the derivation of implicit knowledge. But we
have also seen that RDF(S) provides only very limited expressive means and
that it is not possible to represent more complex knowledge. For example, it
is not possible to model the meaning of the sentences from Fig. 4.1 in RDF(S)
in a sufficiently precise way.

For modeling such complex knowledge, expressive representation languages
based on formal logic are commonly used. This also allows us to do logical
reasoning on the knowledge, and thereby enables the access to knowledge
which is only implicitly modeled. OWL is such a language.

The acronym OWL stands for Web Ontology Language.1 Since 2004 OWL
is a W3C recommended standard for the modeling of ontologies, and since
then has seen a steeply rising increase in popularity in many application do-
mains. Central for the design of OWL was to find a reasonable balance be-
tween expressivity of the language on the one hand, and efficient reasoning,
i.e. scalability, on the other hand. This was in order to deal with the general
observation that complex language constructs for representing implicit knowl-
edge usually yield high computational complexities or even undecidability of

1There exist a number of speculations about the origin of the distorted acronym. In partic-
ular, it is often said that the acronym was a reference to a character appearing in the book
Winnie the Pooh by Alan Alexander Milne: the character is an owl which always misspells
its name as wol instead of owl.
Historically correct, however, is that the acronym was originally proposed by Tim Finin in
an email to www-webont-wg@w3.org, dated 27th of December 2001, which can be found un-
der http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html: “I prefer
the three letter WOL . . . . How about OWL as a variation. . . . it has several advantages:
(1) it has just one obvious pronunciation which is easy on the ear; (2) it opens up great
opportunities for logos; (3) owls are associated with wisdom; (4) it has an interesting back
story.”
The mentioned background story concerns an MIT project called One World Language by
William A. Martin from the 1970s, which was an early attempt at developing a universal
language for knowledge representation.

111
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Every project has at least one participant.
Projects are always internal or external projects.
Gisela Schillinger and Anne Eberhardt are the secretaries of Rudi Studer.
The superior of my superior is also my superior.

FIGURE 4.1: Sentences which cannot be modeled in RDF(S) in a suffi-
ciently precise way

reasoning, and therefore unfavorable scalability properties. In order to give
the user a choice between different degrees of expressivity, three sublanguages
of OWL – called species of OWL – have been designed: OWL Full, OWL DL,
and OWL Lite. OWL Full contains both OWL DL and OWL Lite, and OWL
DL contains OWL Lite. The main differences between the sublanguages are
summarized in Fig. 4.2. We will discuss this in more detail in Section 4.2.

We introduce OWL in this chapter by means of a syntax based on RDF.
While most of the contents of this chapter should be accessible without any
in-depth knowledge about RDF, the reader may occasionally want to refer to
Chapter 2, and in particular to Sections 2.1 to 2.3.

4.1 OWL Syntax and Intuitive Semantics

OWL documents are used for modeling OWL ontologies. Two different syn-
taxes have been standardized in order to express these. One of them is based
on RDF and is usually used for data exchange. It is also called OWL RDF
syntax since OWL documents in RDF syntax are also valid RDF documents.
The other syntax is called the OWL abstract syntax and is somewhat more
readable for humans. However, it is only available for OWL DL, and it will
undergo some major changes in the transition to OWL 2. In this chapter,
we introduce the RDF syntax since it is more widely used. In Chapter 5 we
will present yet another syntax for OWL DL which is very popular among
researchers due to its conciseness and because it is stripped of some techni-
calities. Indeed in later chapters, we will mostly use this latter syntax. The
RDF syntax which we now introduce, though, is suitable for data exchange
on the Web, which is why it is so important.

An OWL ontology is basically expressed in terms of classes and properties,
which we already know from RDF(S). In OWL, however, much more complex
relationships between these classes and properties can be described. The
sentences in Fig. 4.1 are examples of such complex relationships. We will see
how they can be modeled by means of a number of constructors taken from



Ontologies in OWL 113

OWL Full

• contains OWL DL and OWL Lite,

• is the only OWL sublanguage containing all of RDFS,

• very expressive,

• semantically difficult to understand and to work with,

• undecidable,

• supported by hardly any software tools.

OWL DL

• contains OWL Lite and is contained in OWL Full,

• decidable,

• fully supported by most software tools,

• worst-case computational complexity: NExpTime.

OWL Lite

• contained in OWL DL and OWL Full,

• decidable,

• less expressive,

• worst-case computational complexity: ExpTime.

FIGURE 4.2: The three sublanguages of OWL and their most important
general properties. Further details can be found in Section 4.2



114 Foundations of Semantic Web Technologies

formal logic. We will introduce them on an intuitive level in this chapter,
and will give an in-depth formal treatment of the underlying logical aspects
in Chapter 5.

4.1.1 The Header of an OWL Ontology

The header of an OWL document contains information about namespaces,
versioning, and so-called annotations. This information has no direct impact
on the knowledge expressed by the ontology.

Since every OWL document is an RDF document, it contains a root element.
Namespaces are specified in the opening tag of the root, as in the following
example.

<rdf:RDF
xmlns ="http://www.example.org/"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd ="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl ="http://www.w3.org/2002/07/owl#">

The second line in this example defines the namespace used for objects
without prefix. Note the namespace which should be used for owl.

An OWL document may furthermore contain some general information
about the ontology. This is done within an owl:Ontology element. We give
an example.

<owl:Ontology rdf:about="">
<rdfs:comment

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
SWRC ontology, version of June 2007

</rdfs:comment>
<owl:versionInfo>v0.7.1</owl:versionInfo>
<owl:imports rdf:resource="http://www.example.org/foo" />
<owl:priorVersion

rdf:resource="http://ontoware.org/projects/swrc" />
</owl:Ontology>

Note the first line of this example: it states that the current base URI –
usually given by xml:base – identifies an instance of the class owl:Ontology.

Some header elements are inherited from RDFS, for example the following:
rdfs:comment
rdfs:label
rdfs:seeAlso
rdfs:isDefinedBy
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For versioning, the following elements can be used:
owl:versionInfo
owl:priorVersion
owl:backwardCompatibleWith
owl:incompatibleWith
owl:DeprecatedClass
owl:DeprecatedProperty

owl:versionInfo usually has a string as object. With the statements
owl:DeprecatedClass and owl:DeprecatedProperty, parts of the ontology
can be described which are still supported, but should not be used any longer.
The other versioning elements contain pointers to other ontologies, with the
obvious meaning.

It is also possible to import other OWL ontologies using the owl:imports
element as given in the example above. The content of the imported ontology
is then understood as being part of the importing ontology.

4.1.2 Classes, Roles, and Individuals

The basic building blocks of OWL are classes and properties, which we
already know from RDF(S), and individuals, which are declared as RDF in-
stances of classes. OWL properties are also called roles, and we will use both
notions interchangeably.

Classes are defined in OWL using owl:Class. The following example states
the RDF triple Professor rdf:type owl:Class.2

<rdf:Description rdf:about="Professor">
<rdf:type rdf:resource="&owl;Class" />

</rdf:Description>

Equivalently, the following short form can be used:

<owl:Class rdf:about="Professor" />

Via rdf:about="Professor", the class gets assigned the name Professor,
which can be used for references to the class. Instead of rdf:about it is also
possible to use rdf:ID, if the conditions given on page 33 are observed.3

2We assume that <!ENTITY owl ’http://www.w3.org/2002/07/owl#’> has been declared –
see Section 2.2.5.
3For better readability, we assume that http://www.example.org/ is the namespace used
in all our examples, as declared on page 114.
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There are two predefined classes, called owl:Thing and owl:Nothing. The
class owl:Thing is the most general class, and has every individual as an
instance. The class owl:Nothing has no instances by definition.
owl:Class is a subclass of rdfs:Class. There are some differences, how-

ever, which we will discuss in Section 4.2 on the different sublanguages of
OWL.

As in RDF, individuals can be declared to be instances of classes. This is
called class assignment.

<rdf:Description rdf:about="rudiStuder">
<rdf:type rdf:resource="Professor" />

</rdf:Description>

Equivalently, the following short form can be used.

<Professor rdf:about="rudiStuder" />

There are two different kinds of roles in OWL: abstract roles and concrete
roles. Abstract roles connect individuals with individuals. Concrete roles con-
nect individuals with data values, i.e. with elements of datatypes. Both kinds
of roles are subproperties of rdf:Property. However, there are again some
differences which we will discuss in Section 4.2 on the different sublanguages
of OWL.

Roles are declared similarly as classes.

<owl:ObjectProperty rdf:about="hasAffiliation" />
<owl:DatatypeProperty rdf:about="firstName" />

The first of these roles is abstract and shall express which organization(s)
a given person is affiliated with. The second role is concrete and assigns first
names to persons. Domain and range of roles can be declared via rdfs:domain
and rdfs:range as in RDFS.4

4We assume that <!ENTITY xsd ’http://www.w3.org/2001/XMLSchema#’> has been de-
clared – see Section 2.2.5.
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xsd:string xsd:boolean xsd:decimal
xsd:float xsd:double xsd:dateTime
xsd:time xsd:date xsd:gYearMonth
xsd:gYear xsd:gMonthDay xsd:gDay
xsd:gMonth xsd:hexBinary xsd:base64Binary
xsd:anyURI xsd:token xsd:normalizedString
xsd:language xsd:NMTOKEN xsd:positiveInteger
xsd:NCName xsd:Name xsd:nonPositiveInteger
xsd:long xsd:int xsd:negativeInteger
xsd:short xsd:byte xsd:nonNegativeInteger
xsd:unsignedLong xsd:unsignedInt xsd:unsignedShort
xsd:unsignedByte xsd:integer

FIGURE 4.3: XML datatypes for OWL

<owl:ObjectProperty rdf:about="hasAffiliation">
<rdfs:domain rdf:resource="Person" />
<rdfs:range rdf:resource="Organization" />

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:about="firstName">

<rdfs:domain rdf:resource="Person" />
<rdfs:range rdf:resource="&xsd;string" />

</owl:DatatypeProperty>

Besides xsd:string it is also possible to use xsd:integer in OWL. Indeed
all XML datatypes from Fig. 4.3 can in principle be used in OWL, but the
standard does not require their support. Concrete tools typically support only
a selected set of datatypes. rdfs:Literal can also be used as datatype.

Just as in RDF, it is also possible to explicitly declare two individuals con-
nected by a role, as in the following example. This is called a role assignment.
The example also shows that roles may not be functional,5 as it is possible to
give two affiliations for rudiStuder.

<Person rdf:about="rudiStuder">
<hasAffiliation rdf:resource="aifb" />
<hasAffiliation rdf:resource="ontoprise" />
<firstName rdf:datatype="&xsd;string">Rudi</firstName>

</Person>

5Functionality of roles will be treated on page 135.
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The class inclusions

<owl:Class rdf:about="Professor">
<rdfs:subClassOf rdf:resource="FacultyMember" />

</owl:Class>
<owl:Class rdf:about="FacultyMember">

<rdfs:subClassOf rdf:resource="Person" />
</owl:Class>

allow us to infer that Professor is a subclass of Person.

FIGURE 4.4: Logical inference by transitivity of rdfs:subClassOf

In this book, we adhere to a common notational convention that names of
classes start with uppercase letters, while names for roles and individuals start
with lowercase letters. This is not required by the W3C recommendation, but
it is good practice and enhances readability.

4.1.3 Simple Class Relations

OWL classes can be put in relation to each other via rdfs:subClassOf. A
simple example of this is the following.

<owl:Class rdf:about="Professor">
<rdfs:subClassOf rdf:resource="FacultyMember" />

</owl:Class>

The construct rdfs:subClassOf is considered to be transitive as in RDFS.
This allows us to draw simple inferences, as in Fig. 4.4. Also, every class is a
subclass of owl:Thing, and owl:Nothing is a subclass of every other class.

Two classes can be declared to be disjoint using owl:disjointWith. This
means that they do not share any individual, i.e. their intersection is empty.
This allows corresponding inferences, as exemplified in Fig. 4.5.

Two classes can be declared to be equivalent using owl:equivalentClass.
Equivalently, this can be achieved by stating that two classes are subclasses
of each other. Further examples for corresponding inferences are given in
Figs. 4.6 and 4.7.

4.1.4 Relations Between Individuals

We have already seen how to declare class memberships of individuals and
role relationships between them. OWL also allows us to declare that two
individuals are in fact the same.
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The class inclusions

<owl:Class rdf:about="Professor">
<rdfs:subClassOf rdf:resource="FacultyMember" />

</owl:Class>
<owl:Class rdf:about="Book">

<rdfs:subClassOf rdf:resource="Publication" />
</owl:Class>

together with the statement that FacultyMember and Publication are dis-
joint,

<owl:Class rdf:about="FacultyMember">
<owl:disjointWith rdf:resource="Publication" />

</owl:Class>

allow us to infer that Professor and Book are also disjoint.

FIGURE 4.5: Example of an inference with owl:disjointWith

The class inclusion

<owl:Class rdf:about="Man">
<rdfs:subClassOf rdf:resource="Person" />

</owl:Class>

together with the class equivalence

<owl:Class rdf:about="Person">
<owl:equivalentClass rdf:resource="Human" />

</owl:Class>

allows us to infer that Man is a subclass of Human.

FIGURE 4.6: Example of an inference with owl:equivalentClass
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From

<Book rdf:about="http://semantic-web-book.org/uri">
<author rdf:resource="markusKroetzsch" />
<author rdf:resource="sebastianRudolph" />

</Book>
<owl:Class rdf:about="Book">
<rdfs:subClassOf rdf:resource="Publication" />

</owl:Class>

we can infer that http://semantic-web-book.org/uri is a Publication.

FIGURE 4.7: Example of an inference with individuals

From

<Professor rdf:about="rudiStuder" />
<rdf:Description rdf:about="rudiStuder">

<owl:sameAs rdf:resource="professorStuder" />
</rdf:Description>

we can infer that professorStuder is in the class Professor.

FIGURE 4.8: Example inference with owl:sameAs

<rdf:Description rdf:about="rudiStuder">
<owl:sameAs rdf:resource="professorStuder" />

</rdf:Description>

An example of an inference with owl:sameAs is given in Fig. 4.8.
Let us remark that the possible identification of differently named indi-

viduals via owl:sameAs distinguishes OWL from many other knowledge rep-
resentation languages, which usually impose the so-called Unique Name As-
sumption (UNA), i.e. in these languages it is assumed that differently named
individuals are indeed different. In OWL,6 however, differently named in-
dividuals can denote the same thing. owl:sameAs allows us to declare this
explicitly, but it is also possible that such an identification is implicit, i.e. can
be inferred from the knowledge base without being explicitly stated.

6RDF(S) does also not impose the Unique Name Assumption.
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With owl:differentFrom, it is possible to declare that individuals are
different. In order to declare that several individuals are mutually different,
OWL provides a shortcut, as follows. Recall from Section 2.5.1.3 that we can
use rdf:parseType="Collection" for representing closed lists.

<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">

<Person rdf:about="rudiStuder" />
<Person rdf:about="dennyVrandecic" />
<Person rdf:about="peterHaase" />

</owl:distinctMembers>
</owl:AllDifferent>

4.1.5 Closed Classes

A declaration like

<SecretariesOfStuder rdf:about="giselaSchillinger" />
<SecretariesOfStuder rdf:about="anneEberhardt" />

states that giselaSchillinger and anneEberhardt are secretaries of Studer.
However, it does not say anything about the question whether he has more
secretaries, or only those two. In order to state that a class contains only the
explicitly stated individuals, OWL provides closed classes as in Fig. 4.9.

It is also possible that a closed class contains data values, i.e. elements of a
datatype, which are collected into a list using rdf:List (cf. Section 2.5.1.3).
Figure 4.10 gives an example using email addresses as strings.

The use of these constructors is restricted in OWL Lite, and we will come
back to that in Section 4.2.

4.1.6 Boolean Class Constructors

The language elements described so far allow us to model simple ontologies.
But their expressivity hardly surpasses that of RDFS. In order to express more
complex knowledge, OWL provides logical class constructors. In particular,
OWL provides language elements for logical and, or, and not, i.e. conjunc-
tion, disjunction, and negation. They are expressed via owl:intersectionOf,
owl:unionOf, and owl:complementOf, respectively. These constructors allow
us to combine atomic classes – i.e. class names – to complex classes. Let us
remark that the use of these constructors is restricted in OWL Lite, and we
will come back to that in Section 4.2.
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The declaration

<owl:Class rdf:about="SecretariesOfStuder">
<owl:oneOf rdf:parseType="Collection">

<Person rdf:about="giselaSchillinger" />
<Person rdf:about="anneEberhardt" />

</owl:oneOf>
</owl:Class>

states that giselaSchillinger and anneEberhardt are the only individuals
in the class SecretariesOfStuder. If we also add

<Person rdf:about="anupriyaAnkolekar" />
<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection">
<Person rdf:about="anneEberhardt" />
<Person rdf:about="giselaSchillinger" />
<Person rdf:about="anupriyaAnkolekar" />

</owl:distinctMembers>
</owl:AllDifferent>

then it can also be inferred, e.g., that anupriyaAnkolekar is not in the class
SecretariesOfStuder. Without the latter statement, such an inference is
not possible, since the knowledge that the individuals are different is needed
to exclude identification of anupriyaAnkolekar with giselaSchillinger or
anneEberhardt.

FIGURE 4.9: Example inference with closed classes
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<owl:Class rdf:about="emailsAuthor">
<owl:DataRange>

<owl:oneOf>
<rdf:List>

<rdf:first rdf:datatype="&xsd;string"
>pascal@pascal-hitzler.de</rdf:first>

<rdf:rest>
<rdf:List>

<rdf:first rdf:datatype="&xsd;string"
>markus@korrekt.org</rdf:first>

<rdf:rest>
<rdf:List>

<rdf:first rdf:datatype="&xsd;string"
>mail@sebastian-rudolph.de</rdf:first>

<rdf:rest rdf:resource="&rdf;nil" />
</rdf:List>

</rdf:rest>
</rdf:List>

</rdf:rest>
</rdf:List>

</owl:oneOf>
</owl:DataRange>

</owl:Class>

FIGURE 4.10: Classes via oneOf and datatypes
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The conjunction owl:intersectionOf of two classes consists of exactly
those objects which belong to both classes. The following example states
that SecretariesOfStuder consists of exactly those objects which are both
Secretaries and MembersOfStudersGroup.

<owl:Class rdf:about="SecretariesOfStuder">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Secretaries" />
<owl:Class rdf:about="MembersOfStudersGroup" />

</owl:intersectionOf>
</owl:Class>

An example of an inference which can be drawn from this is that all in-
stances of the class SecretariesOfStuder are also in the class Secretaries.
The example just given is a short form of the following statement.

<owl:Class rdf:about="SecretariesOfStuder">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Secretaries" />
<owl:Class rdf:about="MembersOfStudersGroup" />

</owl:intersectionOf>
</owl:Class>

Certainly, it is also possible to use Boolean class constructors together with
rdfs:subClassOf. The following example with owl:unionOf describes that
professors are actively teaching or retired. Note that it also allows the possi-
bility that a retired professor is still actively teaching. Also, it allows for the
possibility that there are teachers who are not professors.

<owl:Class rdf:about="Professor">
<rdfs:subClassOf>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="ActivelyTeaching" />
<owl:Class rdf:about="Retired" />

</owl:unionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

The use of owl:unionOf together with rdfs:subClassOf in the example
just given thus states only that every Professor is in at least one of the
classes ActivelyTeaching and Retired.
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The complement of a class can be declared via owl:complementOf, which
corresponds to logical negation: The complement of a class consists of exactly
those objects which are not members of the class itself. The following example
states that no faculty member can be a publication. It is thus equivalent to
the statement made using owl:disjointWith in Fig. 4.5, that the classes
FacultyMember and Publication are disjoint.

<owl:Class rdf:about="FacultyMember">
<rdfs:subClassOf>

<owl:Class>
<owl:complementOf rdf:resource="Publication" />

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

Correct use of owl:complementOf can be tricky. Consider, for instance,
the following example.

<owl:Class rdf:about="Male">
<owl:complementOf rdf:resource="Female" />

</owl:Class>
<Penguin rdf:about="tweety" />

From these statements it cannot be concluded that tweety is an instance
of Female. However, it can also not be concluded that tweety is not Female,
and hence it cannot be concluded that tweety is Male.

Now add the following statements to the ones just given, which state the
obvious facts that Furniture is not Female, and that myDesk is a Furniture.

<owl:Class rdf:about="Furniture">
<rdfs:subClassOf>

<owl:Class>
<owl:complementOf rdf:resource="Female" />

</owl:Class>
</rdfs:subClassOf>

</owl:Class>
<Furniture rdf:about="myDesk" />

From the combined statements, however, we can now conclude that myDesk
is Male – because it is known not to be Female. If you contemplate this, then
you will come to the conclusion that it is usually incorrect to model Male as
the complement of Female, simply because there are things which are neither
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From the declarations

<owl:Class rdf:about="Professor">
<rdfs:subClassOf>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="Person" />
<owl:Class rdf:about="FacultyMember" />

</owl:intersectionOf>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Person" />
<owl:complementOf rdf:resource="PhDStudent">

</owl:intersectionOf>
</owl:Class>

</owl:intersectionOf>
</rdfs:subClassOf>

</owl:Class>

we can infer that every Professor is a Person.

FIGURE 4.11: Example inference using nested Boolean class constructors

Male nor Female – such as myDesk. It would be more appropriate to simply
declare Male and Female to be disjoint, or alternatively, to declare Male to
be equivalent to the intersection of Human and the complement of Female.

Boolean class constructors can be nested arbitrarily deeply; see Fig. 4.11
for an example.

4.1.7 Role Restrictions

By role restrictions we understand another type of logic-based constructors
for complex classes. As the name suggests, role restrictions are constructors
involving roles.

The first role restriction is derived from the universal quantifier in predicate
logic and defines a class as the set of all objects for which the given role only
attains values from the given class. This is best explained by an example, like
the following which states that examiners must always be professors. More
precisely, it states that all examiners of an exam must be professors.7

7This actually includes those exams which have no examiner.
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<owl:Class rdf:about="Exam">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasExaminer" />
<owl:allValuesFrom rdf:resource="Professor" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

In order to declare that any exam must have at least one examiner, OWL
provides role restrictions via owl:someValuesFrom, which is closely related to
the existential quantifier in predicate logic.

<owl:Class rdf:about="Exam">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasExaminer" />
<owl:someValuesFrom rdf:resource="Person" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Using owl:allValuesFrom, we can say something about all of the exam-
iners. Using owl:someValuesFrom, we can say something about at least one
of the examiners. In a similar way we can also make statements about the
number of examiners. The following example declares an upper bound on the
number; more precisely it states that an exam must have a maximum of two
examiners.

<owl:Class rdf:about="Exam">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasExaminer" />
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

2
</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

It is also possible to declare a lower bound, e.g., that an exam must cover
at least three subject areas.
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<owl:Class rdf:about="Exam">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasTopic" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

3
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Some combinations of restrictions are needed frequently, so that OWL pro-
vides shortcuts. If we want to declare that an exam covers exactly three
subject areas, then this can be done via owl:cardinality.

<owl:Class rdf:about="Exam">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasTopic" />
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
3
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Obviously, this can also be expressed by combining owl:minCardinality
with owl:maxCardinality as in Fig. 4.12.

The restriction owl:hasValue is a special case of owl:someValuesFrom,
for which a particular individual can be given as value for the role. The
following example declares that ExamStuder consists of those things which
have rudiStuder as examiner.

<owl:Class rdf:about="ExamStuder">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="hasExaminer" />
<owl:hasValue rdf:resource="rudiStuder" />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>
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<owl:Class rdf:about="Exam">
<rdfs:subClassOf>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="hasTopic" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

3
</owl:minCardinality>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="hasTopic" />
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

3
</owl:maxCardinality>

</owl:Restriction>
</owl:intersectionOf>

</rdfs:subClassOf>
</owl:Class>

FIGURE 4.12: owl:cardinality expressed using owl:minCardinality
and owl:maxCardinality

In this case an exam belongs to the class ExamStuder even if it has another
examiner besides rudiStuder.

The example just given can also be expressed using owl:someValuesFrom
and owl:oneOf.

<owl:Class rdf:about="ExamStuder">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="hasExaminer" />
<owl:someValuesFrom>

<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="rudiStuder" />

</owl:oneOf>
</owl:someValuesFrom>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

We give an extended example with role restriction in order to display the
expressivity of these language constructs. We consider three colleagues and
the role likesToWorkWith. Figure 4.13 shows the example ontology. If we
now additionally define



130 Foundations of Semantic Web Technologies

<Person rdf:about="anton">
<likesToWorkWith rdf:resource="doris" />
<likesToWorkWith rdf:resource="dagmar" />

</Person>
<Person rdf:about="doris">

<likesToWorkWith rdf:resource="dagmar" />
<likesToWorkWith rdf:resource="bernd" />

</Person>
<Person rdf:about="gustav">

<likesToWorkWith rdf:resource="bernd" />
<likesToWorkWith rdf:resource="doris" />
<likesToWorkWith rdf:resource="desiree" />

</Person>
<Person rdf:about="charles" />
<owl:Class rdf:about="FemaleColleagues">

<owl:oneOf rdf:parseType="Collection">
<Person rdf:about="dagmar" />
<Person rdf:about="doris" />
<Person rdf:about="desiree" />

</owl:oneOf>
</owl:Class>
<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection">
<Person rdf:about="anton" />
<Person rdf:about="bernd" />
<Person rdf:about="charles" />
<Person rdf:about="dagmar" />
<Person rdf:about="desiree" />
<Person rdf:about="doris" />

</owl:distinctMembers>
</owl:AllDifferent>

FIGURE 4.13: Example ontology for role restrictions
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<owl:Class rdf:about="Class1">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="likesToWorkWith" />
<owl:someValuesFrom rdf:resource="FemaleColleagues" />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

then we can infer that anton, doris and gustav are in Class1.
Note that we cannot infer that charles is in Class1. At the same time,

we also cannot infer that he is not in Class1. In fact we cannot infer any
statement about charles belonging to Class1 or not. The reason for this
lies in the so-called Open World Assumption (OWA): It is implicitly assumed
that a knowledge base may always be incomplete. In our example this means
that charles could be in the relation likesToWorkWith to an instance of the
class FemaleColleagues, but this relation is simply not (or not yet) known.

Let us dwell for a moment on this observation, because the OWA can eas-
ily lead to mistakes in the modeling of knowledge. In other paradigms, like
databases, usually the Closed World Assumption (CWA) is assumed, which
means that the knowledge base is considered to be complete concerning all
relevant knowledge. Using the CWA, one could infer that charles is in-
deed not in Class1, because there is no known female colleague charles
likesToWorkWith. The choice of OWA for OWL, however, is reasonable since
the World Wide Web is always expanding rapidly, i.e. new knowledge is added
all the time.

The OWA obviously also impacts on other situations. If, for example, an
ontology contains the statements

<Professor rdf:about="rudiStuder" />
<Philosopher rdf:about="mikeStange" />

then we cannot infer anything about the membership (or non-membership) of
mikeStange in the class Professor, because further knowledge, which may
not yet be known to us, could state or allow us to infer such membership (or
non-membership).

Now consider the following Class2.
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<owl:Class rdf:about="Class2">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="likesToWorkWith" />
<owl:allValuesFrom rdf:resource="FemaleColleagues" />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

We can infer that doris and gustav do not belong to Class2. Because of
the OWA we cannot say anything about the membership of anton or charles
in Class2.

If we define

<owl:Class rdf:about="Class3">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="likesToWorkWith" />
<owl:hasValue rdf:resource="doris" />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

then anton and gustav belong to Class3 because both like to work with
doris (among others).

If we define

<owl:Class rdf:about="Class4">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="likesToWorkWith" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

3
</owl:minCardinality>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

then gustav belongs to Class4 because he is the only one we know has at
least three colleagues he likesToWorkWith.

If we define
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<owl:Class rdf:about="Class5">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="likesToWorkWith" />
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

0
</owl:maxCardinality>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

then due to the OWA we cannot infer that charles is in Class5.
Class5 could equivalently be defined as follows – note that there are dif-

ferent ways to say the same thing.

<owl:Class rdf:about="Class5">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="likesToWorkWith" />
<owl:allValuesFrom rdf:resource="&owl;Nothing" />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

The use of the constructs owl:minCardinality, owl:maxCardinality and
owl:cardinality is restricted in OWL Lite; see Section 4.2 for details.

4.1.8 Role Relationships

Roles can be related in various ways. In particular, rdfs:subPropertyOf
can also be used in OWL. The following example states: examiners of an event
are also present at the event.

<owl:ObjectProperty rdf:about="hasExaminer">
<rdfs:subPropertyOf rdf:resource="hasParticipant" />

</owl:ObjectProperty>

Similarly it is possible to state that two roles are in fact identical. This is
done by using owl:equivalentProperty instead of rdfs:subPropertyOf.

Two roles can also be inverse to each other, i.e. can state the same relation-
ship but with arguments exchanged. This is declared using owl:inverseOf.
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<Exam rdf:about="semanticWebExam">
<hasExaminer rdf:resource="rudiStuder" />

</Exam>
<owl:ObjectProperty rdf:about="hasExaminer">

<rdfs:subPropertyOf rdf:resource="hasParticipant" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasParticipant">

<owl:equivalentProperty rdf:resource="hasAttendee" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasAttendee">

<owl:inverseOf rdf:resource="participatesIn" />
</owl:ObjectProperty>

FIGURE 4.14: Example using role relationships

<owl:ObjectProperty rdf:about="hasExaminer">
<owl:inverseOf rdf:resource="examinerOf" />

</owl:ObjectProperty>

Figure 4.14 shows another example of the use of role relations. In this case
semanticWebExam and rudiStuder are in the relation hasParticipant and
also in the equivalent relation hasAttendee. Consequently, rudiStuder and
semanticWebExam can be inferred to be in the relation participatesIn.

The use of role relationships is restricted in OWL DL and OWL Lite; see
Section 4.2 for details.

4.1.9 Role Characteristics

OWL allows us to declare that roles have certain characteristics. This
includes the specification of domain and range as well as characteristics like
transitivity and symmetry.

We have already talked briefly about using rdfs:range and rdfs:domain.
Let us now have a closer look at their semantics. Consider the statement

<owl:ObjectProperty rdf:about="isMemberOf">
<rdfs:range rdf:resource="Organization" />

</owl:ObjectProperty>

which is equivalent to the following.
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<owl:Class rdf:about="&owl;Thing">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="isMemberOf" />
<owl:allValuesFrom rdf:resource="Organization" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Now what happens if we also declare that five isMemberOf PrimeNumbers?

<number rdf:about="five">
<isMemberOf rdf:resource="PrimeNumbers" />

</number>

From this, OWL allows us to infer that PrimeNumbers is an Organization!
This is obviously an undesired result, which comes from the use of isMemberOf
within two very different contexts: the first statement declares isMemberOf
as a role which is used for making statements about memberships in organi-
zations, while the second statement talks about a different domain, namely,
numbers. The example is comparable to the one given at the end of Sec-
tion 2.4.5.

Please note that the example just given does not yield a formal contradic-
tion. In order to arrive at an inconsistency, one could additionally declare
that PrimeNumbers are not in the class Organization.

Similar considerations also hold for rdfs:domain.
Let us now return to the characteristics which roles in OWL can be de-

clared to have. They are transitivity, symmetry, functionality, and inverse
functionality. We explain their meaning using the examples in Fig. 4.15.

Symmetry states: if A and B are in a symmetric role relationship, then B
and A (in reverse order) are also in the same role relationship. In the example
peterHaase is in a hasColleague relationship with steffenLamparter, i.e.
peterHaase has steffenLamparter as colleague, and by symmetry we obtain
that steffenLamparter has peterHaase as colleague.

Transitivity means: if A and B are in some transitive role relationship, and
B and C are in the same role relationship, then A and C are also related
via the same role. In the example, since we know that steffenLamparter
hasColleague peterHaase and peterHaase hasColleague philippCimiano,
we obtain by transitivity of the role hasColleague that steffenLamparter
also hasColleague philippCimiano.

Functionality of a role means: if A and B are related via a functional role,
and A and C are related by the same role, then B and C are identical in the
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<owl:ObjectProperty rdf:about="hasColleague">
<rdf:type rdf:resource="&owl;TransitiveProperty" />
<rdf:type rdf:resource="&owl;SymmetricProperty" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasProjectLeader">

<rdf:type rdf:resource="&owl;FunctionalProperty" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="isProjectLeaderFor">

<rdf:type rdf:resource="&owl;InverseFunctionalProperty" />
</owl:ObjectProperty>
<Person rdf:about="peterHaase">

<hasColleague rdf:resource="philippCimiano" />
<hasColleague rdf:resource="steffenLamparter" />
<isProjectLeaderFor rdf:resource="neOn" />

</Person>
<Project rdf:about="x-Media">

<hasProjectLeader rdf:resource="philippCimiano" />
<hasProjectLeader rdf:resource="cimianoPhilipp" />

</Project>

FIGURE 4.15: Role characteristics

sense of owl:sameAs. In the example we can conclude that philippCimiano
and cimianoPhilipp are identical since hasProjectLeader is functional.

Inverse functionality of a role R is equivalent to the inverse of R being
functional. In the example, we could have omitted the declaration of inverse
functionality of isProjectLeaderFor and instead state the following.

<owl:ObjectProperty rdf:about="isProjectLeaderFor">
<owl:inverseOf rdf:resource="hasProjectLeader" />

</owl:ObjectProperty>

Since it is declared that the role hasProjectLeader is functional, the in-
verse role isProjectLeaderFor would automatically be inverse functional.

Note that it does usually not make sense to declare transitive roles to be
functional. It is, however, not explicitly forbidden in OWL.

The use of role characteristics is restricted in OWL DL and OWL Lite; see
Section 4.2 for details.

4.1.10 Types of Inferences

To date, there is no standardized query language for OWL. While we discuss
proposals for expressive query languages for OWL in Chapter 7, we briefly
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discuss here what types of simple queries are commonly considered to be
important when working with OWL. These are also supported by the usual
software tools, as listed in Section 8.5. It is customary to distinguish between
two types of simple queries, those involving individuals, and those using only
schema knowledge.

Queries not involving individuals are concerned with classes and their rela-
tionships. We can distinguish between querying about the equivalence of two
classes in the sense of owl:equivalentClass and querying about a subclass
relationship in the sense of rdfs:subClassOf. We have given examples for
this in Figs. 4.4, 4.6 and 4.11. Computing all subclass relationships between
named classes is called classifying the ontology. Figure 4.5 gives an example
asking about the disjointness of classes in the sense of owl:disjointWith.

We will see in Chapter 5 that querying for global consistency, i.e. for sat-
isfiability of a knowledge base, is of central importance. Global consistency
means the absence of contradictions.

Checking for class consistency is usually done in order to debug an ontology.
A class is called inconsistent8 if it is equivalent to owl:Nothing, which usually
happens due to a modeling error. The following is a simple example of a class
inconsistency caused by erroneous modeling.

<owl:Class rdf:about="Book">
<rdfs:subClassOf rdf:resource="Publication" />
<owl:disjointWith rdf:resource="Publication" />

</owl:Class>

Note that the knowledge base is not inconsistent: if there are no books,
(and only in this case), the knowledge is consistent. That is because if we
had a book, then it would also be a Publication by the rdfs:subclassOf
statement. But this is impossible because Publication and Book are disjoint
by the other statement. So, since there can be no book, Book is equivalent to
owl:Nothing.

Queries involving individuals are of particular importance for practical ap-
plications. Such queries usually ask for all known instances of a given class,
also known as instance retrieval. We have given examples for this in Figs.
4.7 and 4.8, and also in Section 4.1.7. Instance retrieval is closely related to
instance checking which, given a class and an individual, decides whether the
individual belongs to the class.

8In this case it is sometimes said that the class or ontology is incoherent.
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4.2 OWL Species

We have remarked that there are three official sublanguages of OWL, and
we have mentioned some of their conceptual differences in Fig. 4.2. We will
now discuss the syntactic differences and their significance.

4.2.1 OWL Full

In OWL Full, all OWL language constructs can be used and mixed freely
with all RDF(S) language constructs, as long as the resulting document is
valid RDF(S).

Due to the unrestricted use of OWL and RDF(S) constructs in OWL Full,
several problems arise, which suggest the design of more restrictive sublan-
guages. These problems are caused by the fact that OWL has been designed
for the modeling of expressive knowledge and the resulting ability to access
implicit knowledge by logical inference. For OWL Full, however, drawing in-
ferences is in general undecidable, and indeed there is no software tool which
supports the entire unwieldy semantics of OWL Full.

One of the reasons for the undecidability of OWL Full is that type sep-
aration is not enforced, i.e. in OWL Full individuals, classes, and roles can
be mixed freely, and it is, e.g., possible to use an identifier as an individual
in one statement, and as a role in the next statement. Consequently, the
classes owl:Thing and rdfs:Resource are equivalent in OWL Full, as are
owl:Class and rdfs:Class. Further, owl:DatatypeProperty is a subclass
of owl:ObjectProperty, which in turn is equivalent to rdf:Property.

Complete type separation, however, is not desired in all cases, and OWL
Full accommodates this. To give an example, it is sometimes necessary to
make statements about a class, in which this class appears syntactically as an
individual. In the following, we use roles to assign linguistic information to
the class Book, thereby providing the basis for a multilingual system.

<owl:Class rdf:about="Book">
<germanName rdf:datatype="&xsd;string">Buch</germanName>
<frenchName rdf:datatype="&xsd;string">livre</frenchName>

</owl:Class>

The use of classes (or roles) as individuals is called metamodeling, and it
allows us to talk about classes of classes.

Hardly any of the current inference engines support OWL Full, and in par-
ticular these do not provide its complete semantics. It would be unreasonable
to expect this to change any time soon. This has only little impact on prac-
tical applications since for metamodeling and other constructs not supported
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in OWL DL it is easy to provide workarounds outside the knowledge base: In
the example just given, metamodeling is only used for providing background
information, e.g., for multi-language user dialogues. In this case, the multi-
lingual data could still be stored in and extracted from the OWL knowledge
base, while inferencing over this knowledge is not needed.

Despite the lack of automated reasoning support, OWL Full is used for con-
ceptual modeling in cases where automated reasoning support is not required.

4.2.2 OWL DL

The use of some language elements from OWL Full is restricted in OWL
DL. This concerns mainly type separation and the use of RDF(S) language
constructs, but also other restrictions. OWL DL was designed to be decid-
able, i.e. for any inference problem from Section 4.1.10 there exists an always
terminating algorithm for deciding it. We discuss this in more detail in Chap-
ter 5.

The following conditions must be satisfied such that an OWL Full document
is a valid OWL DL document.

• Restricted use of RDF(S) language constructs: Only those RDF(S) lan-
guage constructs may be used which are specifically allowed for OWL
DL. These are essentially all those RDF(S) language constructs which
we have used in our examples throughout this chapter. The use of
rdfs:Class and rdf:Property is forbidden.

• Type separation and declaration: Type separation must be respected
in OWL DL, i.e. it must be clearly distinguished between individuals,
classes, abstract roles, concrete roles, datatypes, and the ontology char-
acteristics specified in the header. In addition, classes and roles must
be declared explicitly.

• Restricted use of concrete roles: The role characteristics owl:inverseOf,
owl:TransitiveProperty, owl:InverseFunctionalProperty, as well
as owl:SymmetricProperty must not be used for concrete roles.

• Restricted use of abstract roles: Cardinality restrictions expressed via
owl:cardinality, owl:minCardinality, or via owl:maxCardinality
must not be used with transitive roles, inverses of transitive roles, or
superroles of transitive roles.9

9This somewhat strange restriction – which in exact form is a bit more complicated than
this – is necessary to ensure decidability of OWL DL; see Section 5.1.4.3.
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4.2.3 OWL Lite

OWL Lite was intended to be an easy to implement sublanguage containing
the most important language constructs. However, it turned out that OWL
Lite is essentially as difficult to deal with as OWL DL, and so it does not
come as a surprise that it plays only a minor role in practice.

The following conditions must be satisfied such that an OWL Full document
is a valid OWL Lite document.

• All restrictions imposed for OWL DL must be respected.

• Restricted use of class constructors: owl:unionOf, owl:complementOf,
owl:hasValue, owl:oneOf, owl:disjointWith, owl:DataRange must
not be used.

• Restricted use of cardinality restrictions: They can only be used with
the numbers 0 and 1.

• Mandatory use of class names: In some situations, class names must be
used:
in the subject of owl:equivalentClass and rdfs:subClassOf,
in the object of rdfs:domain.

• Mandatory class names or role restrictions: In some situations, class
names or role restrictions must be used:
in the object of owl:equivalentClass, rdfs:subClassOf, rdf:type,
owl:allValuesFrom, owl:someValuesFrom, rdfs:range.
Additionally, owl:intersectionOf must be used only for class names
and role restrictions.

4.3 The Forthcoming OWL 2 Standard

The Web Ontology Language is currently undergoing a revision by means
of a working group of the World Wide Web Consortium.10 The forthcoming
revision, originally called OWL 1.1 and now christened OWL 2, is essentially
a small extension of the original version, which we will call OWL 1 in the
following. At the time of this writing (June 2009), the working group has
produced so-called Candidate Recommendations of the standard, which are
very likely to be close to the final outcome. However, some things may still
change, and so the following introduction to OWL 2 can only reflect the
current state of the standardization process.

10http://www.w3.org/2007/OWL/
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Let us first note that OWL 2 introduces a new syntax, called the functional
style syntax, which will replace the OWL 1 abstract syntax. However, OWL 2
also comes with an RDF syntax, and we use this for the introduction. There
will probably also be an XML syntax for OWL 2, which we do not discuss
here.

4.3.1 OWL 2 DL

We introduce OWL 2 DL, which is backward compatible with OWL 1 DL,
but extends it with some additional features. We thus describe only the new
language features.

4.3.1.1 Type Separation, Punning and Declarations

OWL 1 DL imposes type separation, as discussed in Section 4.2.2, i.e. class
names, role names, and individual names must be distinct. OWL 2 relaxes
this requirement such that a class name, for example, may also occur as a role
name. However, they are treated as distinct.11 This is called punning.

Consider the following example.

<owl:Class rdf:about="Professor" />
<Professor rdf:about="rudiStuder" />
<owl:Class rdf:about="Institute" />
<owl:ObjectProperty rdf:about="Professor" />
<Institute rdf:about="aifb">

<Professor rdf:resource="rudiStuder" />
</Institute>

In this example, Professor occurs both as class name and as abstract
role name. This is not allowed in OWL 1 DL, but possible in OWL 1 Full.
Intuitively, however, it seems reasonable to treat the role Professor12 as
distinct from the class Professor.

In OWL 2 DL, it is possible to use Professor both as role and as class
name, and these are assumed to be distinct. Thus, the example code above is
valid OWL 2 DL. However, it is not allowed that a name stands for both an
abstract and a concrete role. Likewise, it is not allowed that a name stands
for both a class and a datatype.

In OWL 2, classes, datatypes and roles must be declared as such. Individ-
uals can also be declared, as follows, though this is optional.

11Note that if a class name is also used as a role name, they are identified by the same
URI, i.e. they are the same resource in the sense of RDF. Nevertheless, in OWL 2 DL we
consider them semantically distinct, i.e. we have two different views on the same resource.
12In this case, we cannot maintain our notational convention from page 118 to write roles
lowercase and classes uppercase.
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<rdf:Description rdf:about="rudiStuder">
<rdf:type rdf:resource="&owl;NamedIndividual" />

</rdf:Description>

Alternatively, declaration of an individual can be done via the following
shortcut.

<owl:NamedIndividual rdf:about="rudiStuder" />

4.3.1.2 Disjoint Classes

In OWL 1, owl:disjointWith can be used to declare two classes to be
disjoint. If several classes should be declared to be mutually disjoint, how-
ever, a lot of owl:disjointWith statements are needed. Hence OWL 2 in-
troduces owl:AllDisjointClasses as a shortcut which allows us to declare
several classes to be mutually disjoint. Say, for example, that the classes
UndergraduateStudent, GraduateStudent and OtherStudent should be de-
clared as mutually disjoint. Then this can be done as follows.

<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">

<owl:Class rdf:about="UndergraduateStudent" />
<owl:Class rdf:about="GraduateStudent" />
<owl:Class rdf:about="OtherStudent" />

</owl:members>
</owl:AllDisjointClasses>

In OWL 1 the union of classes can be described using owl:unionOf. OWL 2
allows us to use owl:disjointUnionOf to declare a class the disjoint union of
some other classes. Consider, for example, the situation that each Student is
exactly in one of UndergraduateStudent, GraduateStudent, OtherStudent.
Then this can be written in OWL 2 DL as follows.

<owl:Class rdf:about="Student">
<owl:disjointUnionOf rdf:parseType="Collection">

<owl:Class rdf:about="UndergraduateStudent" />
<owl:Class rdf:about="GraduateStudent" />
<owl:Class rdf:about="OtherStudent" />

</owl:disjointUnionOf>
</owl:Class>
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Obviously, the same effect can be obtained using owl:unionOf together
with an owl:AllDisjointClasses statement.

4.3.1.3 Role Characteristics and Relationships

In OWL 1, it is possible to declare roles to be transitive, symmetric, func-
tional or inverse functional. OWL 2 furthermore allows declarations of roles
to be

• asymmetric, via owl:AsymmetricProperty, meaning that if A is related
to B via such a role, then B is never related to A via this a role,

• reflexive, via owl:ReflexiveProperty, meaning that every individual
A is related to itself via such a role, and

• irreflexive, via owl:IrreflexiveProperty, meaning that no individual
is related to itself via such a role.

Recall that in OWL 1, as discussed in Section 4.2.2, transitivity, symmetry
and inverse functionality must not be used for concrete roles. Likewise, asym-
metry, reflexivity and irreflexivity must not be used for concrete roles. This
leaves only functionality for both concrete and abstract roles.

It should be noted that reflexivity is a very strong statement since it refers to
every possible individual, not just to individuals of a particular class. In many
applications, it is more appropriate to use a more “local” notion of reflexivity,
as provided by the Self construct that is introduced in Section 4.3.1.7 below.

Related to inverse functionality is owl:hasKey, which allows us to say that
certain roles are keys for named instances of classes. More precisely, given
a class AClass, a set of roles r1,. . . ,rn is said to be a key for AClass, if no
two named instances of AClass coincide on all values of all the (concrete or
abstract) roles r1,. . . ,rn. The syntax is the following.

<owl:Class rdf:about="AClass">
<owl:hasKey rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="key1" />
<owl:ObjectProperty rdf:about="key2" />
<owl:DatatypeProperty rdf:about="key3" />

</owl:hasKey>
</owl:Class>

Note the differences between using a key and using inverse functionality:
Keys apply only to explicitly named instances of a class, while inverse func-
tionality is also applicable to instances whose existence may only be implied,
e.g., by means of owl:someValuesFrom. Another difference is that keys can
involve several roles. Also note that concrete roles can be used for keys, while
inverse functionality is forbidden for them.
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Roles can also be declared to be disjoint, which means that two individuals
A and B cannot be in relationship with respect to both roles. The following
states, for example, that it is impossible that somebody teaches and attends
a course at the same time.

<owl:ObjectProperty rdf:about="attendsCourse">
<owl:propertyDisjointWith rdf:resource="teachesCourse" />

</owl:ObjectProperty>

As for classes, there is a shortcut notation to declare a number of roles to
be mutually disjoint. The syntax is as follows.

<owl:AllDisjointProperties>
<owl:members rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="attendsCourse" />
<owl:ObjectProperty rdf:about="teachesCourse" />
<owl:ObjectProperty rdf:about="skipsCourse" />

</owl:members>
</owl:AllDisjointProperties>

Both owl:propertyDisjointWith and owl:AllDisjointProperties can
also be used with concrete roles. Stating disjointness of an abstract and a
concrete role is not useful (and not allowed) since abstract and concrete roles
are always disjoint.13

OWL 2 furthermore sports four predefined roles:

• owl:topObjectProperty, called the top abstract role. It connects all
possible pairs of individuals. Every abstract role is related to this role
via rdfs:subPropertyOf.

• owl:topDataProperty, called the top concrete role. It connects all
possible individuals with all datatype literals. Every concrete role is
related to this role via rdfs:subPropertyOf.

• owl:bottomObjectProperty, called the bottom abstract role. It does
not connect any pair of individuals. This role is related to any other
abstract role via rdfs:subPropertyOf.

• owl:bottomDataProperty, called the bottom concrete role. It does not
connect any individual with a literal. This role is related to any other
concrete role via rdfs:subPropertyOf.

13Some further restrictions apply, which we discuss in Section 5.1.4.
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4.3.1.4 Inverse Roles

OWL 1 allows the declaration of a role as the inverse of another role. In
OWL 2, we can also refer to the inverse of a role without naming it. The
following example states that if the event A has the person B as examiner (i.e.
A is an exam), then B participates in A. Note that not every B participating
in some event A implies that B is an examiner in A.

<owl:ObjectProperty rdf:about="hasExaminer">
<rdfs:subPropertyOf>

<owl:ObjectProperty>
<owl:inverseOf rdf:resource="participatesIn" />

</owl:ObjectProperty>
</rdfs:subPropertyOf>

</owl:ObjectProperty>

This construction is not allowed for concrete roles.

4.3.1.5 Role Chains

OWL 2 allows us to express role chains, in the sense of concatenation of
roles.14 The classic example would be to express that whenever a person’s
parent has a brother, then that brother is the person’s uncle. The syntax for
this is as follows.

<owl:ObjectProperty rdf:about="hasUncle">
<owl:propertyChainAxiom rdf:parseType="Collection">

<owl:ObjectProperty rdf:resource="hasParent" />
<owl:ObjectProperty rdf:about="hasBrother" />

</owl:propertyChainAxiom>
</owl:ObjectProperty>

It is certainly possible to include more roles in the chain. However, concrete
roles must not be used.

From a logical perspective, role chains are the most substantial improve-
ment of OWL 2 compared to OWL 1. They can be understood as a broad
generalization of transitivity, since, e.g.,

14Some restrictions apply, which we discuss in Section 5.1.4.
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<owl:ObjectProperty rdf:about="hasAncestor">
<owl:propertyChainAxiom rdf:parseType="Collection">

<owl:ObjectProperty rdf:resource="hasAncestor" />
<owl:ObjectProperty rdf:about="hasAncestor" />

</owl:propertyChainAxiom>
</owl:ObjectProperty>

is equivalent to stating that the role hasAncestor is transitive.

4.3.1.6 Qualified Cardinality Restrictions

OWL 1 allows cardinality restrictions which are called unqualified, since
they do not allow us to declare the target class of the role onto which the
cardinality restriction is imposed. Have a look at the example on page 127,
which states that Exam is a subclass of those things which have at most two
objects attached via the hasExaminer role. With qualified cardinality restric-
tions we can say also something about the class these objects belong to. The
following example states that each Exam has at most two elements from the
class Professor related to it via the hasExaminer role. Note that this would
allow further things to be related to an Exam via the hasExaminer role – as
long as they are not in the class Professor.

<owl:Class rdf:about="Exam">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasExaminer" />
<owl:maxQualifiedCardinality

rdf:datatype="&xsd;nonNegativeInteger">
2

</owl:maxQualifiedCardinality>
<owl:onClass rdf:resource="Professor" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Similar constructions can be made with owl:minQualifiedCardinality
and owl:qualifiedCardinality. They can also be used for concrete roles,
using owl:onDataRange instead of owl:onClass.
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4.3.1.7 The Self Construct

With the Self construct it can be stated that some individuals are related
to themselves under a given role.15 The typical example is that of persons
committing suicide: they can be characterized by stating that these are all
those people who killed themselves, as in the following example.

<owl:Class rdf:about="PersonCommittingSuicide">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="hasKilled" />
<owl:hasSelf rdf:datatype="&xsd;boolean">true</owl:hasSelf>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

4.3.1.8 Negated Role Assignments

OWL 1 allows us to express that two individuals are related by some role.
OWL 2 furthermore allows us to express that two individuals are not related
by some role. The following example states that anupriyaAnkolekar and
sebastianRudolph are not colleagues.

<owl:NegativePropertyAssertion>
<owl:sourceIndividual rdf:about="anupriyaAnkolekar" />
<owl:assertionProperty rdf:about="hasColleague" />
<owl:targetIndividual rdf:about="sebastianRudolph" />

</owl:NegativePropertyAssertion>

The same is possible with concrete roles, where owl:targetIndividual is
replaced by owl:targetValue.

4.3.1.9 Datatypes

Most XML Schema datatypes from Fig. 4.3 are supported in OWL 2 DL.
Exceptions are some types relating to date and time: not supported are
xsd:time, xsd:date, xsd:gYear, xsd:gMonth, xsd:gDay, xsd:gMonthDay,
and xsd:gYearMonth. Furthermore, OWL 2 introduces the following new
datatypes.16

15Some restrictions apply, which we discuss in Section 5.1.4.
16The datatypes owl:rational and rdf:XMLLiteral are currently at risk, i.e. they may be
dropped in the final version.
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• owl:real: the set of all real numbers

• owl:rational: the set of all rational numbers

• rdf:PlainLiteral: a string enriched with a language tag following
BCP 47.17

• rdf:XMLLiteral: borrowed from RDF

• xsd:dateTimeStamp: based on xsd:dateTime but requires the specifi-
cation of time zones.

It is not possible to explicitly write down literals for the datatype owl:real.
However, such values can come about implicitly when dealing with integers
and rationals, which is why they were included.

In addition to these basic datatypes, OWL 2 supports the use of constraining
facets, which are actually borrowed from XML Schema, to further restrict
datatype values. The example in Fig. 4.16 describes the class Teenager as
the intersection of the class Person with all things which have an age between
12 and 19, where 19 is included in the range, but 12 is not. Other constraining
facets for numeric datatypes are xsd:maxInclusive and xsd:minExclusive.
Constraining facets for string datatypes are xsd:minLength, xsd:maxLength,
xsd:length, and xsd:pattern. The latter refers to a selection based on
matching a regular expression. Further information on constraining facets
can be found in literature on XML Schema.

OWL 2 furthermore allows us to refer to the complement of a datatype,
using owl:datatypeComplementOf. The following example specifies that the
deficit on a bank account cannot be a positive integer.

<owl:DatatypeProperty rdf:about="deficit">
<rdfs:domain rdf:resource="BankAccount" />
<rdfs:range>

<rdfs:Datatype>
<owl:datatypeComplementOf rdf:resource="&xsd;positiveInteger" />

</rdfs:Datatype>
</rdfs:range>

</owl:DatatypeProperty>

The range then includes all negative integers and zero, but it also con-
tains all strings and other values from other datatypes which are not positive
integers.

Similarly, datatypes can be intersected using owl:intersectionOf with a
list of datatypes in the object place. Likewise, owl:unionOf can be used for
datatypes. These expressions can be nested.

17http://www.rfc-editor.org/rfc/bcp/bcp47.txt
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<owl:Class rdf:about="Teenager">
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<rdf:Description rdf:about="Person" />
<owl:Restriction>

<owl:onProperty rdf:resource="hasAge" />
<owl:someValuesFrom>

<rdfs:Datatype>
<owl:onDataType rdf:resource="&xsd;integer" />
<owl:withRestrictions rdf:parseType="Collection">

<xsd:minExclusive rdf:datatype="&xsd;integer">
12

</xsd:minExclusive>
<xsd:maxInclusive rdf:datatype="&xsd;integer">

19
</xsd:maxInclusive>

</owl:withRestrictions>
</rdfs:Datatype>

</owl:someValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

FIGURE 4.16: Datatype constraining facets: restricting the allowed range
of an integer value

4.3.2 OWL 2 Profiles

OWL 2 profiles are sublanguages of OWL 2. In this sense, OWL 2 DL,
OWL 1 DL and OWL 1 Lite could be understood as profiles of OWL 2.
The forthcoming standard will furthermore comprise three designated profiles
which have been chosen for their favorable computational properties. We
briefly present them in the following, but it should be noted that we omit
details of the definitions, since our goal is to provide a rough intuition about
them, rather than a comprehensive treatment.

4.3.2.1 OWL 2 EL

OWL 2 EL allows polynomial time algorithms for all standard inference
types, such as satisfiability checking, classification, and instance checking. It
was designed as a language that is particularly suitable for defining ontologies
that include very large class and role hierarchies while using only a limited
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amount of OWL features. A typical example application is the large medical
ontology SNOMED CT (see Section 9.5) that defines more than one hundred
thousand classes and roles.

The following language elements can be used in OWL 2 EL.

• owl:Class, owl:Thing, and owl:Nothing

• rdfs:subClassOf, owl:equivalentClass, owl:disjointWith,
owl:AllDisjointClasses, and owl:intersectionOf

• owl:someValuesFrom, owl:hasValue, owl:hasSelf, and owl:oneOf
(with exactly one individual or value)

• owl:ObjectProperty, owl:DatatypeProperty, rdfs:domain,
rdfs:range (subject to some restrictions when using role chains),
owl:topObjectProperty, owl:topDataProperty,
owl:bottomObjectProperty, and owl:bottomDataProperty

• rdfs:subPropertyOf, owl:equivalentProperty,
owl:propertyChainAxiom, owl:TransitiveProperty,
owl:ReflexiveProperty, owl:hasKey, and for concrete roles also
owl:FunctionalProperty

• all language elements needed for stating class and role relationship as-
signments for individuals using owl:sameAs, owl:differentFrom and
owl:AllDifferent, owl:NegativePropertyAssertion, and for stating
the basic assignment of an individual to a class, of two individuals to be
related by an abstract role, and an individual and a datatype literal to
be related by a concrete role

• class, role, and individual declarations

• many of the predefined OWL 2 datatypes

Note that in particular the use of owl:allValuesFrom, owl:unionOf, and
owl:complementOf is disallowed. Cardinality restrictions also must not be
used. Most role characteristics, including disjointness and inverses of roles,
are also not allowed. For preserving its good computational properties, the
datatypes supported by OWL 2 EL have been chosen to ensure that their
intersection is either empty or infinite. This specifically excludes a number of
numerical datatypes such as xsd:int, xsd:byte, and xsd:double. The usage
of constraining facets is disallowed for the same reason.

4.3.2.2 OWL 2 QL

OWL 2 QL allows conjunctive query answering (see Section 7.2) to be
implemented using conventional relational database systems. It also features
polynomial time algorithms for all standard inference types. OWL 2 QL has
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been designed for data-driven applications, and offers a convenient option
for vendors of RDF stores to include some amount of OWL support without
sacrificing the advantages of a database-like implementation.

• All predefined classes and roles can be used.

• OWL 2 QL imposes different restrictions on the subject and the object
part of rdfs:subClassOf statements.

– On the subject side, it is only allowed to use class names and
owl:someValuesFrom, though in the latter case the target class
must be owl:Thing.

– On the object side, it is allowed to use class names. It is also
allowed to use owl:someValuesFrom with target class as on the
object side, owl:complementOf with target class as on the subject
side, and owl:intersectionOf with the intersecting classes as on
the object side.

• owl:equivalentClass, owl:disjointWith, owl:AllDisjointClasses
can only be used with class expressions as allowed on the subject side
of rdfs:subClassOf.

• rdfs:subPropertyOf and owl:equivalentProperty are allowed, as
well as rdfs:domain (restricted to object side class expressions for con-
crete roles), rdfs:range, owl:inverseOf, and expressions involving
owl:propertyDisjointWith and owl:AllDisjointProperties. Ab-
stract roles can be declared to be symmetric, asymmetric, and reflexive.

• Assignments of individuals to be members of a class, and of individuals
to be related to individuals or datatype literals via roles are allowed.

• owl:differentFrom and owl:AllDifferent can be used.

• Many of the predefined OWL 2 datatypes can be used.

Note that in addition to the subject and object side restrictions on the use of
rdfs:subClassOf, it is not allowed to use owl:allValuesFrom, owl:oneOf,
owl:hasValue, owl:unionOf, owl:hasSelf, owl:hasKey, and cardinality re-
strictions including functional and inverse functional roles. Transitivity and
owl:propertyChainAxiom, owl:sameAs, and negative property assignments
must not be used. The available datatypes and the use of facets are restricted
in a similar way as for OWL 2 EL.

4.3.2.3 OWL 2 RL

OWL 2 RL allows standard inference types to be implemented with poly-
nomial time algorithms using rule-based reasoning engines in a relatively
straightforward way. It has been designed to allow the easy adoption of OWL
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by vendors of rule-based inference tools, and it provides some amount of in-
teroperability with knowledge representation languages based on rules (see
Chapter 6).

OWL 2 RL is defined as a restriction of OWL 2 DL which mainly impacts
on the use of rdfs:subClassOf. We present the main restrictions in the
following.

• owl:Thing and owl:Nothing can be used. Top and bottom roles are
disallowed.

• As for OWL 2 QL, the subject and the object sides of rdfs:subClassOf
bear different restrictions.

– On the subject side, we can use class names, owl:Nothing (but not
owl:Thing), owl:oneOf and owl:hasValue. It is allowed to use
owl:intersectionOf, owl:unionOf, owl:someValuesFrom; how-
ever, the involved class expressions must again be subject side class
expressions; if owl:someValuesFrom is used with a concrete role,
only datatype literals can be used.

– On the object side, we can use class names and owl:Nothing
(but not owl:Thing). It is allowed to use owl:hasValue and also
owl:allValuesFrom for concrete roles, but it is restricted to ob-
ject side class expressions for abstract roles. The only cardinality
restriction allowed is owl:maxCardinality, and it is furthermore
restricted to the cardinalities 0 and 1. For abstract roles, qualified
cardinality restrictions can only be used with subject side class
expressions as the target class.

• owl:equivalentClass can only be used with class expressions which
are both subject and object side class expressions. owl:disjointWith
and owl:AllDisjointClasses are restricted to subject side class ex-
pressions. owl:disjointUnionOf is disallowed.

• owl:hasKey can only be used with subject side class expressions.

• rdfs:domain and rdfs:range can only be used with object side class ex-
pressions. There are almost no further restrictions on using language el-
ements for roles. rdfs:subPropertyOf and owl:equivalentProperty,
inverse roles, and owl:propertyChainAxiom are supported. Roles can
be declared transitive, symmetric, asymmetric, irreflexive, functional,
and inverse functional.

• Many of the predefined OWL 2 datatypes can be used.

• Assignments of class membership of individuals can only be used with
object side class expressions. owl:NegativePropertyAssertion is dis-
allowed. There are no further restrictions on assignments and on the
use of owl:sameAs, owl:differentFrom and owl:AllDifferent.
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Note that top roles and reflexive roles are specifically excluded. This re-
striction is not motivated by computational properties (inferencing would still
be polynomial if they were included), but by implementation-specific consid-
erations: various rule-based systems are based on pre-computing and stor-
ing all logical consequences that can be expressed as assertional facts – a
method known as materialization – and this approach works less well if some
language constructs entail a very large number of such consequences. The
available datatypes and the use of facets are restricted in a similar way as for
OWL 2 EL.

4.3.3 OWL 2 Full

OWL 2 Full, syntactically, is the union of OWL 2 DL and RDFS. Seman-
tically, i.e. in terms of inferences derivable from such ontologies, OWL 2 Full
is compatible with OWL 2 DL in the sense that the OWL 2 Full semantics
allows us to draw all inferences which can be drawn using the OWL 2 DL
semantics (which is presented in the next chapter).

It can be expected that OWL 2 Full will play a similar role as OWL 1 Full
for applications, i.e. it will probably be mainly used for conceptual modeling
in cases where automated reasoning is not required.

4.4 Summary

In this chapter we have introduced the Web Ontology Language OWL using
the normative RDFS syntax following the W3C recommendation from 2004.
We put the focus on modeling with OWL DL, since this sublanguage is cur-
rently the most important one. We have also presented the other sublanguages
OWL Full and OWL Lite and discussed their differences.

Besides introducing the syntax of the language constructs, we have also
exemplified in all cases how logical inferences can be drawn from OWL on-
tologies. We will give this a thorough and formal treatment in Chapter 5.

We briefly mentioned important types of queries for OWL, and we will
follow up on this in Chapter 7. We also presented the forthcoming revision of
OWL, called OWL 2.

An introductory text like this cannot and may not present all the details
of a rich language such as OWL, and so we have omitted several aspects the
understanding of which is not central for an introduction to the language.
The most important of our omissions are the following.

• Besides owl:ObjectProperty and owl:DatatypeProperty, there also
exists owl:AnnotationProperty, instances of which can be used to an-
notate the whole ontology, single statements, or single entities. They do
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not affect the logical meaning of OWL ontologies, i.e. they do not in-
fringe on the semantics which is presented in the next chapter. A typical
example would be rdfs:comment, and also the other header elements
which can be used. In particular OWL 2 provides rich support for an-
notation properties, which can be freely defined, for example to give ad-
ditional human-readable information, such as comments or provenance
information, to statements and entities.

• There are some global syntactic constraints concerning the use of transi-
tive roles and subrole relationships. We actually explain them in detail
in the next chapter, when we discuss the semantics of OWL. In a nut-
shell, cyclic dependencies of subrole relationships are problematic if they
involve OWL 2 role chains. Transitive roles must not occur in cardinality
restrictions or the OWL 2 Self construct.

Advice on engineering ontologies can be found in Chapter 8, which also
contains a discussion of available OWL Tools.

4.4.1 Overview of OWL 1 Language Constructs

Language constructs with restricted use in OWL Lite are marked by a ?.
Note that this does not cover all the restrictions listed in Section 4.2.3.

4.4.1.1 Header

rdfs:comment rdfs:label
rdfs:seeAlso rdfs:isDefinedBy
owl:versionInfo owl:priorVersion
owl:backwardCompatibleWith owl:incompatibleWith
owl:DeprecatedClass owl:DeprecatedProperty
owl:imports

4.4.1.2 Relations Between Individuals

owl:sameAs owl:differentFrom
owl:AllDifferent together with owl:distinctMembers

4.4.1.3 Class Constructors and Relationships

owl:Class owl:Thing owl:Nothing
rdfs:subClassOf owl:disjointWith? owl:equivalentClass
owl:intersectionOf owl:unionOf? owl:complementOf?

Role restrictions using owl:Restriction and owl:onProperty:
owl:allValuesFrom owl:someValuesFrom owl:hasValue
owl:cardinality? owl:minCardinality? owl:maxCardinality?
owl:oneOf?, for datatypes together with owl:DataRange?
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4.4.1.4 Role Constructors, Relationships and Characteristics

owl:ObjectProperty owl:DatatypeProperty
rdfs:subPropertyOf owl:equivalentProperty
rdfs:domain rdfs:range
owl:TransitiveProperty owl:SymmetricProperty
owl:FunctionalProperty owl:InverseFunctionalProperty
owl:inverseOf

4.4.1.5 Allowed Datatypes

The standard only requires the support of xsd:string and xsd:integer.
xsd:string xsd:boolean xsd:decimal
xsd:float xsd:double xsd:dateTime
xsd:time xsd:date xsd:gYearMonth
xsd:gYear xsd:gMonthDay xsd:gDay
xsd:gMonth xsd:hexBinary xsd:base64Binary
xsd:anyURI xsd:token xsd:normalizedString
xsd:language xsd:NMTOKEN xsd:positiveInteger
xsd:NCName xsd:Name xsd:nonPositiveInteger
xsd:long xsd:int xsd:negativeInteger
xsd:short xsd:byte xsd:nonNegativeInteger
xsd:unsignedLong xsd:unsignedInt xsd:unsignedShort
xsd:unsignedByte xsd:integer

4.4.2 Overview of Additional OWL 2 Language Constructs

4.4.2.1 Declaring Individuals

owl:NamedIndividual

4.4.2.2 Class Relationships

owl:disjointUnionOf owl:AllDisjointClasses owl:members

4.4.2.3 Role Characteristics and Relationships

owl:AsymmetricProperty owl:ReflexiveProperty
owl:IrreflexiveProperty
owl:topObjectProperty owl:topDataProperty
owl:bottomObjectProperty owl:bottomDataProperty
owl:propertyDisjointWith owl:AllDisjointProperties
owl:propertyChainAxiom owl:hasKey owl:inverseOf
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4.4.2.4 Role Restrictions

owl:maxQualifiedCardinality owl:minQualifiedCardinality
owl:qualifiedCardinality owl:onClass
owl:onDataRange owl:hasSelf

4.4.2.5 Role Assignments

owl:NegativePropertyAssertion owl:sourceIndividual
owl:assertionProperty owl:targetIndividual
owl:targetValue

4.4.2.6 Datatype Restrictions

owl:onDataType owl:withRestrictions
owl:datatypeComplementOf

4.4.2.7 Additional Datatypes

owl:real owl:rational rdf:PlainLiteral
rdf:XMLLiteral xsd:dateTimeStamp

4.5 Exercises

Exercise 4.1 Use OWL DL to model the following sentences:

• The class Vegetable is a subclass of PizzaTopping.

• The class PizzaTopping does not share any elements with the class
Pizza.

• The individual aubergine is an element of the class Vegetable.

• The abstract role hasTopping is only used for relationships between
elements of the classes Pizza and PizzaTopping.

• The class VegPizza consists of those elements which are in the class
NoMeatPizza and in the class NoFishPizza.

• The role hasTopping is a subrole of hasIngredient.

Exercise 4.2 Decide which of the following statements would be reasonable
in the context of the ontology from Exercise 4.1.
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• The role hasIngredient is transitive.

• The role hasTopping is functional.

• The role hasTopping is inverse functional.

Exercise 4.3 Use OWL DL to model the following sentences.

• Every pizza has at least two toppings.

• Every pizza has tomato as topping.

• Every pizza in the class PizzaMargarita has exactly tomato and cheese
as toppings.

Exercise 4.4 Consider the example in Fig. 4.7. Show that the given inference
can be drawn using the formal semantics of RDFS.

Exercise 4.5 Install Protégé and KAON2 on your computer. Use Protégé to
input the example from Fig. 4.11. Then use KAON2 to show that the given
inference is correct.

4.6 Further Reading

We will give a thorough treatment of OWL semantics in Chapter 5, and
also further literature references on semantics. So for the time being we will
simply give pointers to the original documents with the W3C specification.

• [OWL] is the central website for OWL.

• [MvH04] gives an overview of OWL.

• [SD04] contains a complete description of all OWL language constructs.

• [SMW04] shows how to use OWL for knowledge representation.

• [HHPS04] describes the semantics of OWL, which we will cover in Chap-
ter 5. It also presents the abstract syntax for OWL, which we do not
treat in this book.

The current state of discussion on the forthcoming OWL 2 standard can be
found on the Web pages of the W3C OWL working group.18 The current key
documents are the following.

18http://www.w3.org/2007/OWL
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• [MPSP09] is the central document which introduces OWL 2 in functional
style syntax.

• [PSM09] describes how the functional style syntax translates from and
to the RDF syntax.

• [MCGH+09] specifies the different profiles of OWL 2.

• [SHK09] describes conformance conditions for OWL 2 and introduces the
format of OWL 2 test cases which are provided along with the OWL 2
documents.

• [HKP+09] is a general introduction to OWL 2.

Exercises 4.1 to 4.3 were inspired by [RDH+04].



Chapter 5

OWL Formal Semantics

In Chapter 4 we introduced OWL syntactically, and have discussed intuitively
how to derive logical inferences from OWL ontologies. This derivation of
implicit knowledge is at the heart of logic-based semantics, and we give this
a thorough and formal treatment in this chapter. We start with description
logics in Section 5.1, which provide a logical view on OWL. In Section 5.2, we
then present two equivalent ways of defining the formal semantics of OWL.
In Section 5.3 we present the most successful algorithmic approach, the so-
called tableaux method, for automated reasoning with OWL ontologies. In
this chapter, the reader will benefit from some background in predicate logic,
which can be found in Appendix C.

5.1 Description Logics

OWL DL can be identified with a decidable fragment of first-order pred-
icate logic and thus OWL draws on the long history of philosophical and
mathematical logic, which is a well-established and well-understood theory.
As such, it is also in the tradition of logic-based artificial intelligence research,
where the development of suitable knowledge representation formalisms plays
an important part.

Historically, OWL DL can be traced back to so-called semantic networks,
which can be used for the modeling of simple relationships between individu-
als and classes via roles, roughly comparable to RDFS. In the beginning, the
meaning of such semantic networks was vague, which necessitated a formaliza-
tion of their semantics. Eventually, this led to the development of description
logics which we will deal with prominently in this chapter. OWL DL is es-
sentially a description logic, which in turn can be understood as a fragment
of first-order predicate logic.

Description logics have been designed in order to achieve favorable trade-
offs between expressivity and scalability. Also, they are usually decidable and
there exist efficient algorithms for reasoning with them.

To make this introduction more accessible, we will sometimes refrain from
a complete treatment of OWL DL, and instead restrict our attention to sub-
languages which suffice for conveying the key insights.

159
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5.1.1 The Description Logic ALC

By description logics we understand a family of logics for knowledge rep-
resentation, derived from semantic networks and related to so-called frame
logics. Description logics are usually fragments of first-order predicate logic,
and their development is usually driven by considerations concerning compu-
tational complexity: Given a complexity class, find a description logic which
is as expressive as possible concerning its language constructs, but remains
within the given complexity class. We will return to computational complexity
later.

Researchers have developed a simple and useful notation for description
logics which makes working with them much easier. We will use it in the
following. We start by introducing the basic description logic ALC.

5.1.1.1 Building Blocks of ALC

Just as in OWL, the basic building blocks of ALC are classes, roles, and
individuals, which can be put into relationships with each other. The expres-
sion

Professor(rudiStuder)

describes that the individual rudiStuder belongs to the class Professor. The
expression

hasAffiliation(rudiStuder, aifb)

describes that rudiStuder is affiliated with aifb. The role hasAffiliation
is an abstract role – we will discuss concrete roles later.

Subclass relations are expressed using the symbol v. The expression

Professor v FacultyMember

says that Professor is a subclass of the class FacultyMember. Equivalence
between classes is expressed using the symbol ≡, e.g., as

Professor ≡ Prof.
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In order to express complex class relationships, ALC provides logical class
constructors which we already know from OWL. The symbols for conjunction,
disjunction, and negation are u, t, and ¬, respectively. The constructors can
be nested arbitrarily, as in the following example.

Professor v (Person u FacultyMember) t (Person u ¬PhDStudent)

These logical constructors correspond to class constructors we already know
from the OWL RDF syntax, namely, owl:intersectionOf, owl:unionOf,
and owl:complementOf, respectively. The example just given corresponds to
that from Fig. 4.11.

Complex classes can also be defined by using quantifiers, which correspond
to role restrictions in OWL. If R is a role and C a class expression, then ∀R.C
and ∃R.C are also class expressions.

The statement
Exam v ∀hasExaminer.Professor

states that all examiners of an exam must be professors, and corresponds to
the example from page 127 using owl:allValuesFrom. The statement

Exam v ∃hasExaminer.Professor

says that every exam must have at least one examiner who is a professor,
and corresponds to the example using owl:someValuesFrom from page 127.

Quantifiers and logical constructors can be nested arbitrarily.

5.1.1.2 Modeling Part of OWL in ALC

We have already seen that many OWL DL language constructs can be
expressed directly in ALC. Some others can be expressed indirectly, as we
will now demonstrate.

The empty class owl:Nothing, denoted in ALC using the symbol ⊥, can
be expressed by

⊥ ≡ C u ¬C,

where C is some arbitrary class. Analogously, the class >, which corresponds
to owl:Thing, can be expressed by

> ≡ C t ¬C,

or equivalently by
> ≡ ¬⊥.
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Disjointness of two classes C and D can be expressed using

C uD v ⊥,

or equivalently by
C v ¬D,

corresponding to owl:disjointWith.
Domain and range of roles can also be expressed: The expression

> v ∀R.C

states that C is the rdfs:range of R, and the expression

∃R.> v C

states that C is the rdfs:domain of R.

5.1.1.3 Formal Syntax of ALC

Formally, the following syntax rules define ALC. We first define how com-
plex classes are constructed. Let A be an atomic class, i.e. a class name, and
let R be an (abstract) role. Then class expressions C,D are constructed using
the following rule.

C,D ::= A | > | ⊥ | ¬C | C uD | C tD | ∀R.C | ∃R.C

Another common name for class expressions in description logics is “con-
cept” or “concept expression” but we will adhere to the terminology that is
used in OWL. Statements in ALC – and in other description logics – are di-
vided into two groups, namely into TBox statements and ABox statements.
The TBox is considered to contain terminological (or schema) knowledge,
while the ABox contains assertional knowledge about instances (i.e. individu-
als). Remember that we distinguished between these two types of knowledge
already in the case of RDFS (cf. the example in Section 2.6). Separating TBox
and ABox becomes a bit academic when considering certain more expressive
description logics, but it is still useful, and the distinction is well-defined for
ALC. Statements of either kind are often called axioms in description logics.1

Formally, a TBox consists of statements of the form C ≡ D or C v D,
where C and D are class expressions. Statements C v D are called (general)
class inclusion axioms. An ABox consists of statements of the form C(a) and
R(a, b), where C is a class expression, R is a role, and a, b are individuals. An
ALC knowledge base consists of an ABox and a TBox.

1The term “formula” would be more accurate than “axiom” in cases where a statement is
not required to be true, but “axiom” is widely used in the literature.
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5.1.2 OWL DL as Description Logic

We have already seen that the following OWL DL language constructs can
be represented in ALC:

• classes, roles, and individuals

• class membership and role instances

• owl:Thing and owl:Nothing

• class inclusion, class equivalence, and class disjointness

• conjunction, disjunction, and negation of classes

• role restrictions using owl:allValuesFrom and owl:someValuesFrom

• rdfs:domain and rdfs:range

The other OWL DL language constructs cannot be expressed in ALC. In-
stead, we need to extend ALC to the description logic SHOIN (D), which en-
compasses ALC and also provides further expressive means. We will present
them in the following.

5.1.2.1 Class Constructors and Relationships

Closed class expressions using owl:oneOf can be expressed in SHOIN (D)
as follows: The class containing exactly the individuals a1, . . . , an is written as
{a1, . . . , an}. When talking about description logics, closed classes are called
nominals.2

We have already seen on page 129 that owl:hasValue can be expressed
by making use of owl:someValuesFrom and owl:oneOf, i.e. owl:hasValue is
expressible in SHOIN (D).
SHOIN (D) further provides cardinality restrictions via the following no-

tation: The statement

Exam v ≤2hasExaminer

says that each exam has at most two examiners. More generally, we can
express owl:maxCardinality via ≤nR, where n is a non-negative integer,
and R is an (abstract) role. Likewise, owl:minCardinality is written using
≥nR. As already exemplified in Fig. 4.12, owl:cardinality can be expressed
using the intersection of owl:minCardinality and owl:maxCardinality.

2To be precise, a nominal is a class which contains exactly one individual. Closed classes
correspond to unions of nominals then.



164 Foundations of Semantic Web Technologies

5.1.2.2 Relationships Between Individuals

Equality of individuals a and b is expressed indirectly as {a} ≡ {b} using
nominals and class equivalence. Inequality of individuals a and b is expressed
likewise by saying that the classes {a} and {b} are disjoint, i.e. by stating
{a} u {b} v ⊥.

5.1.2.3 Role Constructors, Role Relationships, and Role Charac-
teristics

The statement that R is a subrole of S is written as R v S, and is called
a role inclusion axiom. Equivalence between these roles is written as R ≡ S.
The inverse role to R is denoted by R−, i.e. S ≡ R− states that S is the
inverse of R. In SHOIN (D), inverse role descriptions may be used in all the
places where roles may occur, basically as in OWL 2.

Transitivity of a role R is stated as Trans(R). Symmetry of R can be
declared indirectly using R ≡ R−. Functionality of R is stated as > v ≤1R
while inverse functionality of R is stated as > v ≤1R−.

5.1.2.4 Datatypes

SHOIN (D) allows the use of data values, i.e. of elements of datatypes,
in the second argument of concrete roles. It is also possible to form closed
classes using such data values. This straightforward use of datatypes does not
have any significant impact on the logical underpinnings, so we will not go
into more detail here.

There exist more powerful uses of datatypes, known as concrete domains,
in the theory of description logics. But concrete domains are not part of the
OWL standard, so we only refer the interested reader to the literature given
in Section 5.6.

5.1.2.5 SHOIN (D) and OWL DL

Let us summarize the expressive means available in SHOIN (D), as they
cover OWL DL. We have

• all language constructs from ALC,

• equality and inequality between individuals,

• closed classes (i.e. disjunctions of nominals),

• cardinality restrictions,

• role inclusion axioms and role equivalences (i.e. role hierarchies),

• inverse roles,

• transitivity, symmetry, functionality, and inverse functionality of roles,



OWL Formal Semantics 165

• datatypes.

5.1.3 Naming Description Logics – and How They Relate to
the OWL Sublanguages

We have already introduced and used some of the strange names description
logics have, such as ALC or SHOIN (D). The terminology behind these
names is in fact systematic: the letters describe which language constructs
are allowed in a particular description logic. ALC is short for Attributive
Language with Complement, and has its name for historical reasons. ALC is
considered to be the most fundamental description logic,3 and is usually the
starting point for theoretical investigations. We have formally defined ALC
in Section 5.1.1.3.

Expressive means beyond ALC are now indicated by certain letters. The
following explains SHOIN (D).

• S stands for ALC plus role transitivity.

• H stands for role hierarchies, i.e. for role inclusion axioms.

• O stands for nominals, i.e. for closed classes with one element.

• I stands for inverse roles.

• N stands for cardinality restrictions.

• D stands for datatypes.

We also give the letters for some other language constructs which are of
particular importance, and will explain them below.

• F stands for role functionality.

• Q stands for qualified cardinality restrictions.

• R stands for generalized role inclusion axioms.

• E stands for the use of existential role restrictions.

3ALC is often said to be Boolean closed, which means that conjunction, disjunction, nega-
tion and both quantifiers can be used without any restrictions. Description logics without
this feature are called sub-Boolean.
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5.1.3.1 Role Functionality

We have already said that OWL DL corresponds to SHOIN (D). But
functionality of roles can be declared in OWL DL, so why didn’t we say
that it corresponds to SHOINF(D)? The reason is that redundant letters
are usually left out. We have seen on page 164 that functionality can be
expressed by means of cardinality restrictions, so functionality is implicit in
SHOIN (D), i.e. the letter F is omitted. Likewise, there is no letter for inverse
functionality simply because it can be expressed using cardinality restrictions
and inverse roles. Likewise, symmetry of roles can be expressed using inverse
roles and role hierarchies.

So why do we need the letter F at all? Because having description logics
with functionality but without, e.g., cardinality restrictions can be meaningful.
Indeed, OWL Lite corresponds to the description logic SHIF(D).

5.1.3.2 Qualified Cardinality Restrictions

Qualified cardinality restrictions are a generalization of the cardinality re-
strictions which we already know from SHOIN . They allow us to make
declarations like ≤nR.C and ≥nR.C which are similar to ≤nR and ≥nR
(sometimes called unqualified cardinality restrictions) but furthermore allow
us to specify to which class the second arguments in the role R belong – we
have already encountered them in our discussion of OWL 2 in Section 4.3.1.6.
This usage of qualified cardinality restrictions is thus analogous to the role
restrictions ∀R.C or ∃R.C.

Qualified cardinality restrictions encompass unqualified ones: ≥nR, for ex-
ample, can be expressed using ≥nR.>. It is also a fact that extending from
unqualified to qualified cardinality restrictions hardly makes a difference in
terms of theory, algorithms, or system runtimes. Description logic literature
is thus usually concerned with SHIQ or SHOIQ rather than SHIN or
SHOIN .

5.1.3.3 Generalized Role Inclusions

We have already encountered generalized role inclusions in our discussion
of OWL 2 in Section 4.3.1.5. The notation used for description logics is
R1 ◦ · · · ◦Rn v R, meaning that the concatenation of R1, . . . , Rn is a subrole
of R. A typical example of this would be

hasParent ◦ hasBrother v hasUncle.

OWL 2 DL is essentially the description logic SROIQ(D). Note that gener-
alized role inclusions encompass role hierarchies, so that SROIQ(D) contains
SHOIN (D), i.e. OWL 2 DL contains OWL DL.
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OWL Full is not a description logic
OWL DL SHOIN (D)
OWL Lite SHIF(D)
OWL 2 Full is not a description logic
OWL 2 DL SROIQ(D)
OWL 2 EL EL++

OWL 2 QL DL-Lite
OWL 2 RL DLP

FIGURE 5.1: Correspondence between OWL variants and description log-
ics

5.1.3.4 Existential Role Restrictions

Since existential role restrictions are contained in ALC, this symbol is only
useful when discussing sub-Boolean description logics which are properly con-
tained in ALC. This is the case for the description logics corresponding to
some of the tractable profiles of OWL 2, as discussed in Section 4.3.2: The de-
scription logic EL allows conjunction and existential role restrictions.4 EL++

additionally allows generalized role inclusions and nominals. It corresponds
to the OWL 2 EL profile from Section 4.3.2.1. The tractable fragment DL-
Lite imposes more complicated restrictions on the use of language constructs,
and we will not treat it in more detail here. It corresponds to the OWL 2 QL
profile from Section 4.3.2.2. The OWL 2 RL profile from Section 4.3.2.3 corre-
sponds to a naive intersection between SROIQ and datalog (see Section 6.2)
and is very closely related to so-called Description Logic Programs (DLP).
DLP is also a tractable fragment of SROIQ, but we refrain from covering it
in more detail here: we will have much more to say about OWL and Rules in
Chapter 6.

5.1.3.5 OWL Sublanguages and Description Logics

The mentioned letters for describing description logics have to be taken
carefully, since minor modifications are imposed in some cases. It is therefore
necessary to revert to the formal definitions when details matter. We have
given a formal definition of ALC in Section 5.1.1.3 above, and will give the
formal definition of SROIQ and SHIQ in Section 5.1.4 below.

We summarize the relationships between different versions and sublan-
guages of OWL and description logics in Fig. 5.1.

4The letter L does not really carry a specific meaning.
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5.1.4 Formal Syntax of SROIQ

We will now formally define the complete syntax of the SROIQ descrip-
tion logic. By doing this, we will encounter some details which we have not
mentioned so far in our rather intuitive treatment. The definition we will give
is one of several possible logically equivalent definitions. It is the one most
convenient for the rest of our treatment in this chapter. Its formal semantics
will be presented in Section 5.2.

For SROIQ, it is customary and convenient to distinguish between RBox,
for roles, TBox, for terminological knowledge, and ABox, for assertional
knowledge.

5.1.4.1 SROIQ RBoxes

A SROIQ RBox is based on a set R of atomic roles, which contains all
role names, all inverses of role names (i.e. R− for any role name R), and
the universal role U . The universal role is something like the > element for
roles: It is a superrole of all roles and all inverse roles, and can intuitively be
understood as relating all possible pairs of individuals. It is the top abstract
role which we have already encountered in Section 4.3.1.3.

A generalized role inclusion axiom is a statement of the form S1 ◦ · · · ◦Sn v
R, and a set of such axioms is called a generalized role hierarchy. Such a role
hierarchy is called regular if there exists a strict partial order5 ≺ on R, such
that the following hold:

• S ≺ R if and only if S− ≺ R

• every role inclusion axiom is of one of the forms

R ◦R v R, R− v R, S1 ◦ · · · ◦ Sn v R,

R ◦ S1 ◦ · · · ◦ Sn v R, S1 ◦ · · · ◦ Sn ◦R v R

such that R is a non-inverse role name, and Si ≺ R for i = 1, . . . , n.

Regularity is a way to restrict the occurrence of cycles in generalized role
hierarchies. It needs to be imposed in order to guarantee decidability of
SROIQ.

5A partial order ≤ on a set X satisfies the following conditions for all x, y, z ∈ X: x ≤ x;
if x ≤ y and y ≤ x, then x = y; and if x ≤ y and y ≤ z, then x ≤ z. If ≤ is a partial order,
then we can define a strict partial order < by setting x < y if and only if x ≤ y and x 6= y.
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We give an example of a role hierarchy which is not regular:

hasParent ◦ hasHusband v hasFather

hasFather v hasParent

This role hierarchy is not regular because regularity would enforce both
hasParent ≺ hasFather and hasFather ≺ hasParent, which is impossi-
ble because ≺ must be strict.

Note that regular role hierarchies must not contain role equivalences: If we
had R v S and S v R, then regularity would enforce R ≺ S and S ≺ R, which
is impossible because ≺ must be strict. Formally, however, this restriction
is not severe, since it basically means that we do not allow roles to have
synonyms, i.e. if a knowledge base would contain two roles S and R which are
equivalent, then we could simply replace all occurrences of S by R without
losing any substantial information.

We now turn to the notion of simple role, which is also needed in order to
guarantee decidability. Given a role hierarchy, the set of simple roles of this
hierarchy is defined inductively, as follows.

• If a role does not occur on the right-hand side of a role inclusion axiom
– and neither does the inverse of this role –, then it is simple.

• The inverse of a simple role is simple.

• If a role R occurs only on the right-hand side of role inclusion axioms
of the form S v R with S being simple, then R is also simple.

Simplicity of a role essentially means that it does not occur on the right-
hand side of a role inclusion axiom containing a role concatenation ◦.

To give an example, the set of simple roles of the role hierarchy {R v R1;R1◦
R2 v R3;R3 v R4} is {R,R−, R1, R

−
1 , R2, R

−
2 }.

Note that regular role hierarchies allow us to express transitivity (R◦R v R)
and symmetry (R− v R). In SROIQ, we additionally allow the explicit
declaration of reflexivity of a role by Ref(R), of antisymmetry of a role by
Asy(S), and of disjointness of two roles S1 and S2 by Dis(S1, S2). However,
we have to impose the condition that S, S1 and S2 are simple in order to
ascertain decidability. These declarations are called role characteristics.6

6In the description logic literature, role characteristics are often called role assertions.
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Let us explain the intuition behind the three new SROIQ role character-
istics which we have already encountered in Section 4.3.1.3. Reflexivity of a
role means that everything is related to itself by this role; a typical example
would be isIdenticalTo. Antisymmetry of a role R means that whenever a is
related to b via R, then b is not related to a via R. Most roles are antisymmet-
ric; an example would be the role hasParent. Disjointness of two roles means
that they do not share any pair of instances. The two roles hasParent and
hasChild, for example, would be disjoint, while hasParent and hasFather
would not be disjoint.

A SROIQ RBox is the union of a set of role characteristics and a role
hierarchy. A SROIQ RBox is regular if its role hierarchy is regular.

5.1.4.2 SROIQ Knowledge Bases

Given a SROIQ RBox R, we now define the set of class expressions C
inductively as follows.

• Every class name is a class expression.

• > and ⊥ are class expressions.

• If C,D are class expressions, R,S ∈ R with S being simple, a is an
individual, and n is a non-negative integer, then the following are class
expressions:

¬C C uD C tD {a} ∀R.C ∃R.C

∃S.Self ≤nS.C ≥nS.C

From our discussion of SHOIN (D), these language constructs are already
familiar. An exception is the ∃S.Self expression, which we have already en-
countered for OWL 2 in Section 4.3.1.7. Intuitively, an individual a is an
instance of ∃S.Self if a is related to itself via the S role. A typical example
would be the class inclusion

PersonCommittingSuicide v ∃kills.Self.

Concerning nominals, i.e. the use of the construct {a}, note that closed
classes with more than one individual can be constructed using disjunction,
i.e. {a1, . . . , an} can be written as {a1} t · · · t {an}.

A SROIQ TBox is a set of class inclusion axioms of the form C v D,
where C and D are class expressions.

A SROIQ ABox is a set of individual assignments – of one of the forms
C(a), R(a, b), or ¬R(a, b), where C ∈ C, R ∈ R and a, b are individuals.
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Note that SROIQ allows negated role assignments ¬R(a, b), which we also
know from OWL 2 and Section 4.3.1.8. This allows us to state explicitly, e.g.,
that John is not the father of Mary, namely by ¬hasFather(Mary, John).

A SROIQ knowledge base is the union of a regular RBox R, an ABox, and
a TBox for R.

5.1.4.3 SHIQ

The description logic SHIQ is of particular importance for research around
OWL. From the perspective of computational complexity, which we discuss
more closely in Section 5.3.5, SHIQ is not more complicated than ALC. At
the same time, only nominals are missing from SHIQ in order to encompass
OWL DL.7 SHOIN , however, which is essentially OWL DL, is much more
complex than SHIQ, and SROIQ is even worse.

For research into reasoning issues around OWL, methods and algorithms are
often first developed for ALC, and then lifted to SHIQ, before attempting
SHOIQ or even SROIQ. We do the same in Section 5.3, and require a
formal definition of SHIQ.

We define SHIQ by restricting SROIQ. SHIQ RBoxes are SROIQ
RBoxes restricted to axioms of the form R ◦ R v R (written as Trans(R)),
R− v R (written as Sym(R)), and S v R. Regularity does not need to be
imposed for SHIQ. Simplicity of roles is defined as for SROIQ, but note
that we can give a simpler definition of simplicity for SHIQ: A role is simple
unless it is transitive, its inverse is transitive, it has a transitive subrole, or
its inverse has a transitive subrole. Note that we do not allow any of the
additional role characteristics from SROIQ.
SHIQ TBoxes are SROIQ TBoxes where Self and nominals of the form

{a}, for a an individual, do not occur.
SHIQ ABoxes contain statements of the form C(a), R(a, b), or a 6= b,

where C ∈ C, R ∈ R, and a, b are individuals, i.e. SHIQ Aboxes are SROIQ
ABoxes where ¬ does not occur and where inequality of individuals may be
explicitly stated. Note that there is no need to explicitly allow inequality of
individuals in SROIQ ABoxes, since a statement like a 6= b can be expressed
in a SROIQ TBox using nominals as {a} u {b} v ⊥.

A SHIQ knowledge base is the union of a SHIQ RBox, a SHIQ TBox,
and a SHIQ Abox.

For completeness, let us remark that the only difference between SHIQ
and SHOIQ is that nominals are allowed in class expressions.

7Datatypes are also missing, but they do not pose any particular difficulties to the theory.
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5.2 Model-Theoretic Semantics of OWL

We now define formally the semantics of SROIQ, i.e. for OWL 2 DL. Since
SROIQ encompasses SHOIN , this also means that we essentially define the
formal semantics of OWL DL.

We present the semantics in two versions, which are equivalent. In Sec-
tion 5.2.1 we give the extensional semantics, sometimes also called the direct
model-theoretic semantics. In Section 5.2.2, we define the semantics by a
translation into first-order predicate logic.

5.2.1 Extensional Semantics of SROIQ

The direct model-theoretic semantics which we now define is similar to
the model-theoretic semantics of RDF(S) given in Chapter 3. We will make
remarks about similarities and differences at the appropriate places.

5.2.1.1 Interpreting Individuals, Classes, and Roles

As for RDF(S), we first need to fix notation for the vocabulary used. We
assume

• a set I of symbols for individuals,

• a set C of symbols for class names, and

• a set R of symbols for roles.

There is a significant difference from the situation for RDF(S) (and OWL
Full): The sets I, C, and R must be mutually disjoint. This means that
we enforce type separation as discussed for OWL DL on page 139. OWL 2
punning as in Section 4.3.1.1 is not needed, although this would not change
the theory. We avoid the issue of punning here simply for convenience.

We next define the notion of SROIQ interpretation. As for RDF(S), we
start with a set of entities, which can be thought of as resources, individuals,
or single objects. We denote this set, called the domain of the interpretation,
by ∆. We now declare how individuals, class names, and roles are interpreted,
namely, by means of the functions

• II, which maps individuals to elements of the domain: II : I→ ∆,

• IC, which maps class names to subsets of the domain: IC : C→ 2∆ (the
class extension), and

• IR, which maps roles to binary relations on the domain, i.e. to sets of
pairs of domain elements: IR : R→ 2∆×∆ (the property extension).
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There are many choices possible, which we do not further restrict: The set
∆ may be arbitrary, and how exactly the functions II, IC, and IR assign their
values also bears a lot of freedom.

We note that we do not map class names and role names to single elements
as done in RDF(S). The function IC, however, could be understood as the
concatenation of the functions IS and ICEXT from an RDF(S) interpretation.
Likewise, IR could be understood as the concatenation of the functions IS and
IEXT. Figure 5.2 graphically depicts a DL interpretation.

FIGURE 5.2: Schematic representation of a DL interpretation

We next define an interpretation function ·I , which lifts the interpretation
of individuals, class names, and role names just given to complex class and
role expressions.

• We set >I = ∆ and ⊥I = ∅.

• ¬C describes those things which are not in C, i.e. (¬C)I = ∆ \ CI .

• C u D describes those things which are both in C and in D, i.e. (C u
D)I = CI ∩DI .

• C t D describes those things which are in C or in D, i.e. (C t D)I =
CI ∪DI .

• ∃R.C describes those things which are connected via R with something
in C, i.e. (∃R.C)I = {x | there is some y with (x, y) ∈ RI and y ∈ CI}.

• ∀R.C describes those things x for which every y which connects from x
via a role R is in the class C, i.e. (∀R.C)I = {x | for all y with (x, y) ∈
RI we have y ∈ CI}.
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• ≤nR.C describes those things which are connected via R to at most n
things in C, i.e.8 (≤nR.C)I = {x | #{(x, y) ∈ RI | y ∈ CI} ≤ n}.

• ≥nR.C describes those things which are connected via R to at least n
things in C, i.e. (≥nR.C)I = {x | #{(x, y) ∈ RI | y ∈ CI} ≥ n}.

• {a} describes the class containing only a, i.e. {a}I = {aI}.

• ∃S.Self describes those things which are connected to themselves via S,
i.e. (∃S.Self)I = {x | (x, x) ∈ SI}.

• For R ∈ R, we set (R−)I = {(b, a) | (a, b) ∈ RI}.

• For the universal role U , we set UI = ∆×∆.

Given a SROIQ knowledge base, an interpretation consists of a domain ∆
and an interpretation function which satisfies the constraints just given. Note
that due to the many degrees of freedom in choosing ∆ and the functions II,
IC, and IR, it is not necessary that interpretations are intuitively meaningful.

If we consider, for example, the knowledge base consisting of the axioms

Professor v FacultyMember

Professor(rudiStuder)
hasAffiliation(rudiStuder, aifb)

then we could set

∆ = {a, b, Ian}
II(rudiStuder) = Ian

II(aifb) = b

IC(Professor) = {a}
IC(FacultyMember) = {a, b}

IR(hasAffiliation) = {(a, b), (b, Ian)}

Intuitively, these settings are nonsense, but they nevertheless determine a
valid interpretation.

Let us dwell for a bit on the point that the interpretation just given is in-
tuitively nonsense. There are actually two aspects to this. The first is the
choice of names for the elements in ∆, e.g., that rudiStuder is interpreted
as Ian, which seems to be quite far-fetched. Note, however, that this aspect

8Recall from Appendix B that #A denotes the cardinality of the set A.
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relates only to the names of elements in a set, while in logic we would usu-
ally abstract from concrete names, i.e. we would usually be able to rename
things without compromising logical meanings. The second aspect is more
severe, as it is structural: It is about the question whether the interpretation
faithfully captures the relations between entities as stated in the knowledge
base. This is not the case in this example: II(rudiStuder) is not contained in
IC(Professor), although the knowledge base states that it should. Similarly,
IR(hasAffiliation) does not contain the pair (II(rudiStuder), II(aifb)),
although it should according to the knowledge base.

Interpretations which do make sense for a knowledge base in the structural
manner just described are called models of the knowledge base, and we intro-
duce them formally next. Note, however, that we ignore the first aspect, as
commonly done in logic.

5.2.1.2 Interpreting Axioms

Models capture the structure of a knowledge base in the sense that they
give a truthful representation of the axioms in terms of sets. Formally, models
of a knowledge base are interpretations which satisfy additional constraints
which are determined by the axioms of the knowledge base. The constraints
are as follows: An interpretation I of a SROIQ knowledge base K is a model
of K, written I |= K, if the following hold.

• If C(a) ∈ K, then aI ∈ CI .

• If R(a, b) ∈ K, then (aI , bI) ∈ RI .

• If ¬R(a, b) ∈ K, then (aI , bI) 6∈ RI .

• If C v D ∈ K, then CI ⊆ DI .

• If S v R ∈ K, then SI ⊆ RI .

• If S1◦· · ·◦Sn v R ∈ K, then {(a1, an+1) ∈ ∆×∆ | there are a2, . . . , an ∈
∆ such that (ai, ai+1) ∈ SIi for all i = 1, . . . , n} ⊆ RI .

• If Ref(R) ∈ K, then {(x, x) | x ∈ ∆} ⊆ RI .

• If Asy(R) ∈ K, then (x, y) 6∈ RI whenever (y, x) ∈ RI .

• If Dis(R,S) ∈ K, then RI ∩ SI = ∅.
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Model 1 Model 2 Model 3
∆ {a, r, s} {1, 2} {♠}
II(rudiStuder) r 1 ♠
II(aifb) a 2 ♠
IC(Professor) {r} {1} {♠}
IC(FacultyMember) {a, r, s} {1, 2} {♠}
IR(hasAffiliation) {(r, a)} {(1, 1), (1, 2)} {(♠,♠)}

FIGURE 5.3: Models for the example knowledge base from page 174

We can now see that the example interpretation from page 174 is not a
model: For it to be a model, we would need to have (rudiStuderI , aifbI) ∈
hasAffiliationI , i.e. we would need to have

(Ian, b) ∈ {(a, b), (b, Ian)},

which is not the case.
The following determines an interpretation which is also a model of the

example knowledge base from page 174.

∆ = {a, r, s}
II(rudiStuder) = r

II(aifb) = a

IC(Professor) = {r}
IC(FacultyMember) = {r, s}

IR(hasAffiliation) = {(r, a)}

Let us remark on a difference to RDF(S): for the SROIQ (i.e. OWL)
semantics, we need to consider many different kinds of axioms. For RDF(S),
however, we had to consider only one kind of axiom, namely triples.

5.2.1.3 Logical Consequences

Models capture the structure of a knowledge base in set-theoretic terms.
However, a knowledge base can still have many models. Each of these models
describes a meaningful interpretation of the knowledge base. Figure 5.3 lists
several example models for the knowledge base from page 174.

So how do we make the step from models to a notion of logical consequence,
i.e. how do we define what implicit knowledge a knowledge base entails? Fig-
ure 5.3 shows that it does not suffice to consider one or a few models.
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K |= C v D iff (C v D)I f.a. I |= K iff CI ⊆ DI f.a. I |= K
K |= C(a) iff (C(a))I f.a. I |= K iff aI ∈ CI f.a. I |= K
K |= R(a, b) iff (R(a, b))I f.a. I |= K iff (aI , bI) ∈ RI f.a. I |= K
K |= ¬R(a, b) iff (¬R(a, b))I f.a. I |= K iff (aI , bI) 6∈ RI f.a. I |= K

FIGURE 5.4: Logical consequences of a knowledge base. The first line
states that C v D is a logical consequence of K if and only if (C v D)I holds
for all models I of K, which is the case if and only if CI ⊆ DI holds for all
models I of K.

For example, we have aifbI ∈ FacultyMemberI in all three models in
Fig. 5.3, but we would not expect the conclusion from the knowledge base
that aifb is a faculty member.

The right perspective on different models is the following: Each model of a
knowledge base provides a possible view or realization of the knowledge base.
The model captures all necessary structural aspects of the knowledge base,
but it may add additional relationships which are not generally intended. In
order to get rid of these additional relationships, we consider all models of a
knowledge base when defining the notion of logical consequence. The rationale
behind this idea is the following: If the models capture all possible views, or
possible realizations, of a knowledge base, then those things common to all
models must be universally valid logical consequences from the knowledge
base. This leads us to the following formal definition.

Let K be a SROIQ knowledge base and α be a general inclusion axiom
or an individual assignment. Then α is a logical consequence of K, written
K |= α, if αI , as defined in Fig. 5.4, holds in every model I of K. Figure 5.5
contains an example related to logical consequence.

Let us introduce some further notions which are useful when dealing with
model-theoretic semantics. A knowledge base is called satisfiable or consistent
if it has at least one model. It is unsatisfiable, or contradictory, or inconsistent,
if it is not satisfiable. A class expression C is called satisfiable if there is a
model I of the knowledge base such that CI 6= ∅, and it is called unsatisfiable
otherwise. Examples of these notions are given in Fig. 5.6.

Unsatisfiability of a knowledge base or of a named class usually points
to modeling errors. But unsatisfiability also has other uses, which we will
encounter in Section 5.3.
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Returning to our running example knowledge base, let us show formally that
FacultyMember(aifb) is not a logical consequence. This can be done by
giving a model M of the knowledge base where aifbM 6∈ FacultyMemberM .
The following determines such a model.

∆ = {a, r}
II(rudiStuder) = r

II(aifb) = a

IC(Professor) = {r}
IC(FacultyMember) = {r}

IR(hasAffiliation) = {(r, a)}

FIGURE 5.5: Example of logical consequence

We give examples of these notions. The knowledge base consisting of the
axioms

Unicorn(beautyTheUnicorn)
Unicorn v Fictitious

Unicorn v Animal

Fictitious u Animal v ⊥

is inconsistent because beautyTheUnicorn would be a Fictitious Animal,
which is forbidden by the last axiom. If we leave out the first individual
assignment, then the resulting knowledge base is consistent, but Unicorn is
unsatisfiable (i.e. is necessarily empty), as the existence of a Unicorn would
lead to a contradiction.

FIGURE 5.6: Examples of notions of consistency and satisfiability
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5.2.2 SROIQ Semantics via Predicate Logic

We now briefly present an alternative perspective on the semantics of OWL,
namely by translating SROIQ knowledge bases into first-order predicate
logic. This perspective serves two purposes:

• it shows that the formal semantics of OWL is based on the long-standing
tradition of mathematical logic, and

• it helps to convey the semantics of OWL to those readers who already
have some background in formal logic.

More precisely, the translation is into first-order predicate logic with equal-
ity, which is a mild generalization of first-order predicate logic with an equality
predicate = and with the unary > and ⊥ predicates, with the obvious mean-
ing and formal semantics. Every SROIQ knowledge base thus translates to
a theory in first-order predicate logic with equality.

We give the translation of a SROIQ knowledge base K by means of a
function π which is defined by π(K) =

⋃
α∈K π(α). How π(α) is defined

depends on the type of the axiom α, and is specified in the following.

5.2.2.1 Translating Class Inclusion Axioms

If α is a class inclusion axiom of the form C v D, then π(α) is defined
inductively as in Fig. 5.7, where A is a class name.

5.2.2.2 Translating Individual Assignments

If α is an individual assignment, then π(α) is defined as

π(C(a)) = C(a),
π(R(a, b)) = R(a, b),

π(¬R(a, b)) = ¬R(a, b),

i.e. the translation does nothing, due to the notational similarity of individual
assignments in SROIQ to standard predicate logic notation.

5.2.2.3 Translating RBoxes

If α is an RBox statement, then π(α) is defined inductively as stated in
Fig. 5.8, where S is a role name.

5.2.2.4 Properties of the Translation and an Example

The function π translates SROIQ knowledge bases to first-order predicate
logic theories in such a way that K and π(K) are very intimately related.
Indeed, K and π(K) have essentially identical models, where the models of
π(K) are defined as usual for first-order predicate logic. This means that we
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π(C v D) = (∀x)(πx(C)→ πx(D))
πx(A) = A(x)

πx(¬C) = ¬πx(C)
πx(C uD) = πx(C) ∧ πx(D)
πx(C tD) = πx(C) ∨ πx(D)
πx(∀R.C) = (∀x1)(R(x, x1)→ πx1(C))
πx(∃R.C) = (∃x1)(R(x, x1) ∧ πx1(C))

πx(≥nS.C) = (∃x1) . . . (∃xn)

∧
i 6=j

(xi 6= xj) ∧
∧
i

(S(x, xi) ∧ πxi(C))


πx(≤nS.C) = ¬(∃x1) . . . (∃xn+1)

∧
i 6=j

(xi 6= xj) ∧
∧
i

(S(x, xi) ∧ πxi(C))


πx({a}) = (x = a)

πx(∃S.Self) = S(x, x)

FIGURE 5.7: Translating SROIQ general inclusion axioms into first-
order predicate logic with equality. Note that πx(≥0S.C) = >(x). We use
auxiliary functions πx, πx1 , etc., where x, x1, etc. are variables. Also note
that variables x1 . . . , xn+1 introduced on the right-hand sides should always be
variables which are new, i.e. which have not yet been used in the knowledge
base. Obviously, renamings are possible – and indeed advisable for better
readability. The axiom D v ∃R.∃S.C, for example, could be translated to
(∀x)((D(x))→ (∃y)(R(x, y) ∧ (∃z)(S(y, z) ∧ C(z)))).
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π(R1 v R2) = (∀x)(∀y)(πx,y(R1)→ πx,y(R2))
πx,y(S) = S(x, y)

πx,y(R−) = πy,x(R)
πx,y(R1 ◦ · · · ◦Rn) = (∃x1) . . . (∃xn−1)(

πx,x1(R1) ∧
n−2∧
i=1

πxi,xi+1(Ri+1) ∧ πxn−1,y(Rn)

)
π(Ref(R)) = (∀x)πx,x(R)
π(Asy(R)) = (∀x)(∀y)(πx,y(R)→ ¬πy,x(R)

π(Dis(R1, R2)) = ¬(∃x)(∃y)(πx,y(R1) ∧ πx,y(R2))

FIGURE 5.8: Translating SROIQ RBoxes into first-order predicate logic

can understand SROIQ essentially as a fragment of first-order predicate logic,
which means that it is in the tradition of mathematical logic, and results which
have been achieved in this mathematical field can be carried over directly.

We have left out the treatment of datatypes in the translation, since it is un-
usual to consider predicate logic with datatypes. However, adding datatypes
to predicate logic does not pose any particular problems unless complex op-
erators on the datatype are allowed – which is not the case for OWL.

We close our discussion of the translation to predicate logic with an example,
given in Fig. 5.9. It also shows that the established description logic notation
is much easier to read than the corresponding first-order logic formulae.

5.3 Automated Reasoning with OWL

The formal model-theoretic semantics which we presented in Section 5.2
provides us with the logical underpinnings of OWL. At the heart of the formal
semantics is that it provides means for accessing implicit knowledge, by the
notion of logical consequence.

The definition of logical consequence given on page 177, however, does not
lend itself easily to casting into an algorithm. Taken literally, it would ne-
cessitate examining every model of a knowledge base. Since there might be
many models, and in general even infinitely many, a naive algorithmization of
the definition of logical consequence is not feasible.

With OWL being a fragment of first-order predicate logic,it appears natural
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Let K be the knowledge base containing the following axioms.

Professor v FacultyMember

Professor v (Person u FacultyMember)
t (Person u ¬PhDStudent)

Exam v ∀hasExaminer.Professor
Exam v ≤2hasExaminer

hasParent ◦ hasBrother v hasUncle

Professor(rudiStuder)
hasAffiliation(rudiStuder, aifb)

Then π(K) contains the following logical formulae.

(∀x)(Professor(x)→ FacultyMember(x)),
(∀x)(Professor(x)→ ((Person(x) ∧ FacultyMember(x)) ∨ (Person(x)

∧ ¬PhDStudent)(x))),
(∀x)(Exam(x)→ (∀y)(hasExaminer(x, y)→ Professor(y))),

(∀x)(Exam(x)→ ¬(∃x1)(∃x2)(∃x3)((x1 6= x2) ∧ (x2 6= x3) ∧ (x1 6= x3)
∧ hasExaminer(x, x1) ∧ hasExaminer(x, x2) ∧ hasExaminer(x, x3))),

(∀x)(∀y)(((∃x1)(hasParent(x, x1) ∧ hasBrother(x1, y)))
→ hasUncle(x, y)),

Professor(rudiStuder),
hasAffiliation(rudiStuder, aifb)

FIGURE 5.9: Example of translation from description logic syntax to first-
order predicate logic syntax
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to employ deduction algorithms from predicate logic and to simply adjust
them to the description logic setting. This has indeed been done for all the
major inference systems from predicate logic.

By far the most successful approach for description logics to date is based
on tableaux algorithms, suitably adjusted to OWL. We present this in the
following. Since these algorithms are somewhat sophisticated, we do this first
for ALC, and then extend the algorithm to SHIQ. We refrain from presenting
the even more involved algorithm for SROIQ, as SHIQ allows us to convey
the central ideas.

But before coming to the algorithms, we need some preparation.

5.3.1 Inference Problems

In Section 4.1.10 we introduced the typical types of inferences which are
of interest in the context of OWL. Let us recall them here from a logical
perspective.

• Subsumption. To find out whether a class C is a subclass of D (i.e.
whether C is subsumed by D), we have to find out whether C v D is a
logical consequence of the given knowledge base.

• Class equivalence. To find out whether a class C is equivalent to a class
D, we have to find out if C ≡ D is a logical consequence of the given
knowledge base.

• Class disjointness. To find out whether two classes C and D are disjoint,
we have to find out whether C uD v ⊥ is a logical consequence of the
given knowledge base.

• Global consistency. To find out whether the given knowledge base is
globally consistent, we have to show that it has a model.

• Class consistency. To find out whether a given class D is consistent,
we have to show that C v ⊥ is not a logical consequence of the given
knowledge base.

• Instance checking. To find out if an individual a belongs to a class C,
we have to check whether C(a) is a logical consequence of the knowledge
base.

• Instance retrieval. To find all individuals belonging to a class C, we
have to check for all individuals whether they belong to C.

It would be very inconvenient if we had to devise a separate algorithm
for each inference type. Fortunately, description logics allow us to reduce
these inference problems to each other. For the tableaux algorithms, we need
to reduce them to the checking of knowledge base satisfiability, i.e. to the
question whether a knowledge base has at least one model. This is done as
follows, where K denotes a knowledge base.
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• Subsumption. K |= C v D if and only if K ∪ {(C u ¬D)(a)} is unsatis-
fiable, where a is a new individual not occurring in K.

• Class equivalence. K |= C ≡ D if and only if we have K |= C v D and
K |= D v C.

• Class disjointness. K |= C uD v ⊥ if and only if K ∪ {(C uD)(a)} is
unsatisfiable, where a is a new individual not occurring in K.

• Global consistency. K is globally consistent if it has a model.

• Class consistency. K |= C v ⊥ if and only if K∪{C(a)} is unsatisfiable,
where a is a new individual not occurring in K.

• Instance checking. K |= C(a) if and only if K ∪{¬C(a)} is unsatisfiable

• Instance retrieval. To find all individuals belonging to a class C, we
have to check for all individuals a whether K |= C(a).

Note that, strictly speaking, statements such as ¬C(a) or (C u ¬D)(a) are
not allowed according to our definition of ABox in Section 5.1.1.3. However,
complex class expressions like C(a) in the ABox, where C is an arbitrary class
expression, can easily be transformed to comply with our formal definition,
namely, by introducing a new class name, say A, and rewriting C(a) to the
two statements A(a) and A ≡ C. This technique is known as ABox reduction,
and can also be applied to SROIQ. The knowledge bases before and after
the reduction are essentially equivalent. Without loss of generality, we will
therefore allow complex classes in the ABox in this chapter.

We have now reduced all inference types to satisfiability checking. In prin-
ciple, we could now use the transformation into predicate logic from Section
5.2.2 and do automated reasoning on OWL using predicate logic reasoning
systems. This approach, however, is not very efficient, so special-purpose al-
gorithms tailored to description logics are preferable. But there is also a more
fundamental problem with the translational approach: SROIQ, and also the
description logics it encompasses, are decidable, while first-order predicate
logic is not. This means that, in general, termination of description logic
reasoning cannot be guaranteed by using reasoning algorithms for first-order
predicate logic.

Nevertheless, the tableaux algorithms which we present in the following are
derived from the corresponding first-order predicate logic proof procedures.
And we will return to the termination issue later.

5.3.2 Negation Normal Form

Before presenting the actual algorithms, we do a preprocessing on the knowl-
edge base known as negation normal form transformation, i.e. we transform
the knowledge base into a specific syntactic form known as negation normal
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NNF(K) = A ∪R ∪
⋃

CvD∈K

NNF(C v D) where A and R

are the ABox and the RBox of K

NNF(K)(C v D) = NNF(¬C tD)
NNF(C) = C if C is a class name

NNF(¬C) = ¬C if C is a class name
NNF(¬¬C) = NNF(C)

NNF(C tD) = NNF(C) tNNF(D)
NNF(C uD) = NNF(C) uNNF(D)

NNF(¬(C tD)) = NNF(¬C) uNNF(¬D)
NNF(¬(C uD)) = NNF(¬C) tNNF(¬D)

NNF(∀R.C) = ∀R.NNF(C)
NNF(∃R.C) = ∃R.NNF(C)

NNF(¬∀R.C) = ∃R.NNF(¬C)
NNF(¬∃R.C) = ∀R.NNF(¬C)
NNF(≤nR.C) = ≤nR.NNF(C)
NNF(≥nR.C) = ≥nR.NNF(C)

NNF(¬≤nR.C) = ≥(n + 1)R.NNF(C)
NNF(¬≥(n + 1)R.C) = ≤nR.NNF(C)

NNF(¬≥0R.C) = ⊥

FIGURE 5.10: Transformation of a SHIQ knowledge base K into nega-
tion normal form

form. It is not absolutely necessary to do this, and the algorithms could also
be presented without this preprocessing step, but they are already compli-
cated enough as they are, and restricting our attention to knowledge bases in
negation normal form eases the presentation considerably.

In a nutshell, the negation normal form NNF(K) of a knowledge base K
is obtained by first rewriting all v symbols in an equivalent way, and then
moving all negation symbols down into subformulae until they only occur
directly in front of class names. How this is done formally is presented in
Fig. 5.10 for SHIQ. Note that only the TBox is transformed.

In the negation normal form transformation, subclass relationships like
C v D become class expressions ¬C tD which, intuitively, may look strange
at first sight. Cast into first-order predicate logic, however, they become
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(∀x)(C(x) → D(x)) and (∀x)(¬C(x) ∨ D(x)) – and these two formulae are
logically equivalent.

By slight abuse of terminology, we will henceforth refer to NNF(C v D) as
a TBox statement whenever C v D is contained in the TBox of the knowledge
base currently under investigation.

The knowledge bases K and NNF(K) are logically equivalent, i.e. they have
identical models. We assume for the rest of this chapter that all knowledge
bases are given in negation normal form.

5.3.3 Tableaux Algorithm for ALC

The tableaux algorithm determines if a knowledge base is satisfiable. It
does this by attempting to construct a generic representation of a model. If
this construction fails, the knowledge base is unsatisfiable.

Obviously, it requires formal proofs to verify that such an algorithm in-
deed does what it claims. In this book, however, we do not have the space
or the means to present this verification, which is based on comprehensive
mathematical proofs. We refer the interested reader to the literature listed
in Section 5.6. Nevertheless, by keeping in mind that tableaux algorithms es-
sentially attempt to construct models, it should become intuitively clear why
they indeed implement automated reasoning.

We now start with the description logic ALC. The presentation of the corre-
sponding tableaux algorithm is done in three stages to make this introduction
easier to follow. We first informally discuss some examples. Then we formally
define the naive tableaux algorithm for ALC. It only is a small step then to
provide the full tableaux algorithm.

5.3.3.1 Initial Examples

Consider a very simple case, where we have only class names, conjunction,
disjunction, negation, and only one individual. We are given such a knowledge
base and we are to determine whether it is satisfiable. Let us have a look at
an example.

Assume the knowledge base K consists of the following two statements.

C(a) (¬C uD)(a)

Then obviously C(a) is a logical consequence of K. From the statement
(¬C uD)(a) we also obtain ¬C(a) as logical consequence – this is due to the
semantics of conjunction. But this means that we have been able to derive
C(a) and ¬C(a), which is a contradiction. So K cannot have a model and is
therefore unsatisfiable.

What we have just constructed is essentially a part of a tableau. Informally
speaking, a tableau is a structured way of deriving and representing logical
consequences of a knowledge base. If in this process a contradiction is found,
then the initial knowledge base is unsatisfiable.
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Let us consider a slightly more difficult case. Assume the negation normal
form of a knowledge base K consists of the following three statements.

C(a) ¬C tD ¬D(a)

We are now going to derive knowledge about class membership for a, as done
in the previous example. The set of all classes for which we have derived
class membership of a will be called L(a). We use the notation L(a)← C to
indicate that L(a) is updated by adding C. For example, if L(a) = {D} and we
update via L(a) ← C, then L(a) becomes {C,D}. Similarly, L(a) ← {C,D}
denotes the subsequent application of L(a) ← C and L(a) ← D, i.e. both C
and D get added to L(a).

From the example knowledge base just given, we immediately obtain L(a) =
{C,¬D}. The TBox statement ¬C tD corresponds to C v D and must hold
for all individuals, i.e. in particular for a, so we obtain L(a)← ¬C tD. Now
consider the expression (¬C tD) ∈ L(a), which states that we have ¬C(a) or
D(a). So we distinguish two cases. (1) In the first case we assume ¬C(a) and
obtain L(a) ← ¬C = {C,¬D,¬C tD,¬C}, which is a contradiction. (2) In
the second case we assume D(a) and obtain L(a)← D = {C,¬D,¬CtD,D},
which is also a contradiction. In either case, we arrive at a contradiction which
indicates that K is unsatisfiable.

Note the branching we had to do in the example in order to deal with dis-
junction. This and similar situations lead to nondeterminism of the tableaux
algorithm, and we will return to this observation later.

In the previous section we have provided examples of how to deal with
class membership information for individuals in a tableau, i.e. how to derive
contradictions from this information. Our examples were restricted to single
individuals, and we did not use any roles.

So how do we represent role information? We represent it graphically as
arrows between individuals. Consider an ABox consisting of the assignments
R(a, b), S(a, a), R(a, c), S(b, c). This would be represented as the following
figure.

a
S
MM

R //

R ��>
>>

>>
>>

> b

S

��
c

Likewise, we use arrows to represent roles between unknown individuals,
the existence of which is ascertained by the knowledge base: Consider the
single statement ∃R.∃S.C(a). Then there is an arrow labeled with R leading
from a to an unknown individual x, from which in turn there is an arrow
labeled with S to a second unknown individual y. The corresponding picture
would be the following.

a
R // x S // y

Let us give an example tableau involving roles. Consider the knowledge base
K = {C(a), C v ∃R.D, D v E}, so that NNF(K) = {C(a),¬C t∃R.D,¬Dt



188 Foundations of Semantic Web Technologies

E}. We would like to know if (∃R.E)(a) is a logical consequence of K.
We first reduce the instance checking problem to a satisfiability problem as

described in Section 5.3.1: ¬∃R.E in negation normal form becomes ∀R.¬E,
and we obtain the knowledge base {C(a),¬C t∃R.D,¬D tE,∀R.¬E(a)}, of
which we have to show that it is unsatisfiable. We start with the node a with
label L(a) = {C,∀R.¬E}, which is information we take from the ABox. The
first TBox statement results in L(a)← ¬C t ∃R.D. We can now resolve the
disjunction as we have done above, i.e. we have to consider two cases. Adding
¬C to L(a), however, results in a contradiction since C ∈ L(a), so we do
not have to consider this case, i.e. we end up with L(a) ← ∃R.D. So, since
∃R.D ∈ L(a), we create a new individual x and a connection labeled R from
a to x, and we set L(x) = {D}. The situation is as follows.

a

R

��

L(a) = {C,∀R.¬E,¬C t ∃R.D, ∃R.D}

x L(x) = {D}
The TBox information ¬D t E can now be added to L(x), i.e. L(x) ←

¬D t E, and expanded using the already known case distinction because of
the disjunction. As before, however, selecting the left hand side ¬D results
in a contradiction because D ∈ L(x), so we have to put L(x) ← E. The
situation is now as follows.

a

R

��

L(a) = {C,∀R.¬E,¬C t ∃R.D, ∃R.D}

x L(x) = {D,¬D t E,E}
Now note that ∀R.¬E ∈ L(a), which means that everything to which a

connects using the R role must be contained in ¬E. Since a connects to x
via an arrow labeled R, we set L(x) ← ¬E, which results in a contradiction
because we already have E ∈ L(x). Thus, the knowledge base is unsatisfiable,
and the instance checking problem is solved, i.e. (∃R.E)(a) is indeed a logical
consequence of K. The final tableau is depicted below.

a

R

��

L(a) = {C,∀R.¬E,¬C t ∃R.D, ∃R.D}

x L(x) = {D,¬D t E,E,¬E}
It is now time to leave the intuitive introduction and to formalize the tableau

procedure.

5.3.3.2 The Naive Tableaux Algorithm for ALC

A tableau for an ALC knowledge base consists of

• a set of nodes, labeled with individual names or variable names,
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b
S��

L(b) = ∅

a

R

OO

R

��

L(a) = {A,∃R.B}

c L(c) = {A tB}

FIGURE 5.11: Example of an initial tableau given the knowledge base
K = {A(a), (∃R.B)(a), R(a, b), R(a, c), S(b, b), (A tB)(c),¬A t (∀S.B)}

• directed edges between some pairs of nodes,

• for each node labeled x, a set L(x) of class expressions, and

• for each pair of nodes x and y, a set L(x, y) of role names.

When we depict a tableau, we omit edges which are labeled with the empty
set. Also, we make the agreement that > is contained in L(x), for any x, but
we often do not write it down, and in fact the algorithm does not explicitly
derive this.

Given an ALC knowledge base K in negation normal form, the initial
tableau for K is defined by the following procedure.

1. For each individual a occurring in K, create a node labeled a and set
L(a) = ∅.

2. For all pairs a, b of individuals, set L(a, b) = ∅.

3. For each ABox statement C(a) in K, set L(a)← C.

4. For each ABox statement R(a, b) in K, set L(a, b)← R.

An example of an initial tableau can be found in Fig. 5.11.
After initialization, the tableaux algorithm proceeds by nondeterministi-

cally applying the rules from Fig. 5.12. This means that at each step one of
the rules is selected and executed. The algorithm terminates if

• either there is a node x such that L(x) contains a contradiction, i.e. if
there is C ∈ L(x) and at the same time ¬C ∈ L(x),9

9This includes the case when both ⊥ and > are contained in L(x), which is also a contra-
diction as > ≡ ¬⊥.
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u-rule: If C uD ∈ L(x) and {C,D} 6⊆ L(x), then set L(x)← {C,D}.

t-rule: If C t D ∈ L(x) and {C,D} ∩ L(x) = ∅, then set L(x) ← C or
L(x)← D.

∃-rule: If ∃R.C ∈ L(x) and there is no y with R ∈ L(x, y) and C ∈ L(y),
then

1. add a new node with label y (where y is a new node label),

2. set L(x, y) = {R}, and

3. set L(y) = {C}.

∀-rule: If ∀R.C ∈ L(x) and there is a node y with R ∈ L(x, y) and C 6∈ L(y),
then set L(y)← C.

TBox-rule: If C is a TBox statement and C 6∈ L(x), then set L(x)← C.

FIGURE 5.12: Expansion rules for the naive ALC tableaux algorithm

• or none of the rules from Fig. 5.12 is applicable.

The knowledge base K is satisfiable if the algorithm terminates without
producing a contradiction, i.e. if there is a selection of subsequent rule appli-
cations such that no contradiction is produced and the algorithm terminates.
Otherwise, K is unsatisfiable. Note that due to the nondeterminism of the
algorithm we do not know which choice of subsequent rule applications leads
to termination without producing a contradiction. Implementations of this
algorithm thus have to guess the choices, and possibly have to backtrack to
choice points if a choice already made has led to a contradiction.

Let us explain this point in more detail since it is critical to understanding
the algorithm. There are two sources of nondeterminism, namely (1) which
expansion rule to apply next and (2) the choice which has to be made when
applying the t-rule, namely whether to set L(x) ← C or L(x) ← D (using
the notation from Fig. 5.12). There is a fundamental difference between these
two: The choice made in (1) is essentially a choice about the sequence in which
the rules are applied, i.e. whatever results from such a choice could also be
obtained by doing the same expansion later. Intuitively speaking, we cannot
get “on the wrong track” by a bad choice, although some choices will cause
the algorithm to take more steps before termination. Hence, if such a choice
causes a contradiction, then this contradiction cannot be avoided by making
a different choice, simply because the original choice can still be made later –
and entries are never removed from node labels during execution. This kind
of nondeterminism is usually called don’t care nondeterminism. In contrast
to this, (2) is a don’t know nondeterminism, since a bad choice can indeed
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get us “on the wrong track.” This is because, if we choose to set L(x) ← C,
then it is no longer possible to also add L(x)← D by applying the same rule
– the condition {C,D} ∩ L(x) = ∅ prevents this. So if we have chosen to add
L(x) ← C and this leads to a contradiction, then we have to go back to this
choice and try the other alternative as well, because this other alternative
may not lead to a contradiction.

To sum this up, note the following. If the sequence of choices (of both
types) leads to termination without producing a contradiction, then the orig-
inal knowledge base is satisfiable. However, if the algorithm produces a con-
tradiction, then we do not yet know if there is a sequence of choices which
avoids the contradiction. Hence, we have to check on all choices made due to
(2) and see if we also get contradictions if we alter these choices – in other
words, we have to backtrack to these choice points. But it is not necessary
to reconsider the choices made due to (1). We recommend the reader to go
back to the initial examples in Section 5.3.3.1 and observe how we have done
this: It occurs in all the cases where we have dismissed one of the choices from
applying the t-rule because it would lead to a contradiction.

We will see in the next section that the naive tableaux algorithm does
not necessarily terminate. This will be fixed then. But we first present, in
Fig. 5.13, another worked example.

5.3.3.3 The Tableaux Algorithm with Blocking for ALC

We have already remarked that the naive tableaux algorithm for ALC
does not always terminate. To see this, consider K = {∃R.>,>(a1)}. First
note that K is satisfiable: consider the interpretation I with infinite domain
{a1, a2, . . . } such that aI1 = a1 and (ai, ai+1) ∈ RI for all i = 1, 2, . . . . Then
I is obviously a model.

Now we construct a tableau for K, as depicted below. Initialization leaves
us with one node a1 and L(a1) = {>}. Applying the TBox-rule yields L(a1)←
∃R.>. Then we apply the ∃-rule and create a node x with L(a1, x) = {R} and
L(x) = {>}. Again we apply the TBox-rule which yields L(x)← ∃R.>, and
then the ∃-rule allows us to create yet another new node y with L(x, y) = {R}
and L(y) = {>}. Obviously, this process repeats and does not terminate.

a1
R // x R // y R // . . .

L(a1) = {>,∃R.>} L(x) = {>,∃R.>} L(y) = {>,∃R.>}
But we remarked earlier that ALC (and actually also SROIQ) is decidable,

i.e. algorithms exist which allow reasoning with ALC and which are always
guaranteed to terminate! To ensure termination in all cases, we have to modify
the naive tableaux algorithm. The technique used for this purpose is called
blocking, and rests on the observation that in the above example, the process is
essentially repeating itself: The newly created node x has the same properties
as the node a1, so instead of expanding x to a new node y it should be possible
to “reuse” a1 in some sense.
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Consider the following knowledge base K.

Human v ∃hasParent.Human
Orphan v Human u ∀hasParent.¬Alive
Orphan(harrypotter)

hasParent(harrypotter, jamespotter)

We want to know if α = ¬Alive(jamespotter) is a logical consequence of
K.
We first add ¬¬Alive(jamespotter) to K and call the result K ′. In order
to show that α is a logical consequence of K, we have to show that K ′ is
unsatisfiable. We now transform K ′ into negation normal form. We also
use some straightforward shortcuts to ease the notation. So NNF(K ′) is the
following.

¬H t ∃P.H

¬O t (H u ∀P.¬A)
O(h)
P (h, j)
A(j)

The initial tableau for NNF(K ′) is depicted below.
h

P

��

L(h) = {O}

j L(j) = {A}
We now apply the TBox-rule and set L(h)← ¬O t (H u ∀P.¬A). Applying
the t-rule to the same TBox axiom leaves us with a choice how to resolve the
disjunction. However, choosing the left hand side ¬O immediately results in
a contradiction since O ∈ L(h), so, backtracking, we choose to set L(h) ←
H u ∀P.¬A. Applying the u-rule results in L(h) ← {H,∀P.¬A}. Finally,
we apply the ∀-rule to ∀P.¬A ∈ L(h), which results in L(j) ← ¬A. Since
A ∈ L(j), we have thus arrived at an unavoidable contradiction, i.e. K ′ is
unsatisfiable, and therefore ¬A(j) is a logical consequence of K. The final
tableau is depicted below.

h

P

��

L(h) = {O,¬O t (H u ∀P.¬A),H u ∀P.¬A,H,∀P.¬A}

j L(j) = {A,¬A}

FIGURE 5.13: Worked example of ALC tableau
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The formal definition is as follows: A node with label x is directly blocked
by a node with label y if

• x is a variable (i.e. not an individual),

• y is an ancestor of x, and

• L(x) ⊆ L(y).

The notion of ancestor is defined inductively as follows: Every z with L(z, x) 6=
∅ is called a predecessor of x. Every predecessor of x, which is not an indi-
vidual, is an ancestor of x, and every predecessor of an ancestor of x, which
is not an individual, is also an ancestor of x.

A node with label x is blocked if it is directly blocked or one of its ancestors
is blocked.

The naive tableaux algorithm for ALC is now modified as follows, resulting
in the (full) tableaux algorithm for ALC: The rules in Fig. 5.12 may only
be applied if x is not blocked. Otherwise, the algorithm is exactly the naive
algorithm.

Returning to the example above, we note that L(x) ⊆ L(a1), so x is blocked
by a1. This means that the algorithm terminates with the following tableau,
and therefore shows that the knowledge base is satisfiable.

a1
R // x

L(a1) = {>,∃R.>} L(x) = {>}
Recall the model for this knowledge base which we gave on page 191. Intu-

itively, the blocked node x is a representative for the infinite set {a2, a3, . . . }.
Alternatively, we could view the tableau as standing for the model J with
domain {a1, a} such that aJ1 = a1, xJ = a and RJ = {(a1, a), (a, a)}, i.e. the
model would be cyclic.

5.3.3.4 Worked Examples

We give a number of worked examples which show some aspects of the
algorithm in more detail.

5.3.3.4.1 Blocking Consider K = {H v ∃P.H, B(t)} as knowledge base,
which stands for

Human v ∃hasParent.Human
Bird(tweety)

We try to show that tweety is not in the class ¬Human, i.e. that ¬H(t) is
not a logical consequence of K. To do this, we add ¬¬H(t) to K, resulting
in K ′, and attempt to show that K ′ is unsatisfiable. Obviously, this attempt
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will not be successful, which shows that tweety could be in the class Human
according to the knowledge base.

We obtain NNF(K ′) = {¬H t ∃P.H, B(t),H(t)}. The tableau is initial-
ized with one node t and L(t) = {B,H}. Applying the TBox rule yields
L(t) ← ¬H t ∃P.H. Expanding this TBox axiom using the t-rule results
in L(t) ← ∃P.H since the addition of ¬H to L(t) would immediately yield
a contradiction. We now apply the ∃-rule and create a node with label x,
L(t, x) = {P}, and L(x) = {H}. At this stage, the node x is blocked by t,
and no further expansion of the tableau is possible.

t

P

��

L(t) = {H,B,¬H t ∃P.H, ∃P.H}

x L(x) = {H}

5.3.3.4.2 Open World Consider the knowledge base

K = {h(j, p), h(j, a),m(p),m(a)},

which consists only of an ABox. The knowledge base stands for the following.

hasChild(john, peter)
hasChild(john, alex)

Male(peter)
Male(alex)

We want to show that ∀hasChild.male(john) is not a logical consequence
of the knowledge base. We do this by adding the negation of the statement,
¬∀h.m(j), resulting in the knowledge base K ′. We then need to show that
K ′ is satisfiable.

Let us first try to understand why K ′ is satisfiable. Due to the Open
World Assumption as discussed on page 131, the knowledge base contains no
information whether or not john has only peter and alex as children. It
is entirely possible that john has additional children who are not listed in
the knowledge base. Therefore, it is not possible to infer that all of john’s
children are Male. We will see how the tableaux algorithm mimics this.

Transformation into negation normal form yields

NNF(K ′) = {h(j, p), h(j, a),m(p),m(a),∃h.¬m(j)}.

The initial tableau for NNF(K ′) can be depicted as follows.
p L(p) = {m}

L(j) = {∃h.¬m} j

h

AA�������� h // a L(a) = {m}
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Now, application of the ∃-rule yields a new node x with L(j, x) = {h} and
L(x) = {¬m}, as depicted below.

p L(p) = {m}

L(j) = {∃h.¬m} j

h

AA�������� h //

h

��;
;;

;;
;;

; a L(a) = {m}

x L(x) = {¬m}
At this stage, the algorithm terminates since none of the rules is applicable.

This means that K ′ is satisfiable.
The new node x represents a potential child of john who is not male. Note

how the constructed tableau indeed corresponds to a model of the knowledge
base K ′.

5.3.3.4.3 A Sophisticated Example We close our discussion of the
ALC tableaux algorithm with a more sophisticated example. We start with
the knowledge base K containing the statements

C(a), C(c), R(a, b), R(a, c), S(a, a), S(c, b),
C v ∀S.A, A v ∃R.∃S.A, A v ∃R.C,

and want to show that ∃R.∃R.∃S.A(a) is a logical consequence of K.
We first add ¬∃R.∃R.∃S.A(a), which results in K ′. The knowledge base

NNF(K ′) then consists of

C(a), C(c), R(a, b), R(a, c), S(a, a), S(c, b),
¬C t ∀S.A, ¬A t ∃R.∃S.A, ¬A t ∃R.C, ∀R.∀R.∀S.¬A(a),

and the initial tableau for NNF(K ′) is the following.

a

R

��

R

��;
;;

;;
;;

;

S

��
L(a) = {C,∀R.∀R.∀S.¬A}

c

S
����

��
��

��
L(c) = {C}

b L(b) = ∅
At this stage, there are many choices of which rules to apply and at which

node. We urge the reader to attempt solving the tableau by herself before
reading on. Indeed, the tableau can grow considerably larger if the expansion
rules are chosen more or less randomly.
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We choose to first use the TBox-rule and set L(c)← ¬Ct∀S.A. Expanding
this TBox axiom using the t-rule gives us a choice, but we refrain from adding
¬C to L(c) as this would contradict C ∈ L(c). So we set L(c)← ∀S.A.

As the next step, we choose ∀S.A ∈ L(c) and apply the ∀-rule, resulting
in L(b) ← A. Then we choose ∀R.∀R.∀S.¬A ∈ L(a) and again apply the
∀-rule, resulting in L(b) ← ∀R.∀R.∀S.¬A. Applying the TBox-rule we set
L(b)← ¬A t ∃R.∃S.A. The following picture shows the current situation.

a

R

��

R

��;
;;

;;
;;

;

S

��
L(a) = {C,∀R.∀R.∀S.¬A}

c

S
����

��
��

��
L(c) = {C,¬C t ∀S.A,∀S.A}

b L(b) = {A,∀R.∀S.¬A,¬A t ∃R.∃S.A}
The node b is now going to be the key to finding a contradiction. Using the

t-rule on ¬A t ∃R.∃S.A ∈ L(b) yields L(b)← ∃R.∃S.A since the addition of
¬A would already result in a contradiction. We apply the ∃-rule to ∃R.∃S.A ∈
L(b), creating a new node x with L(b, x) = {R} and L(x) = {∃S.A}. The
∀-rule for ∀R.∀S.¬A yields L(x)← ∀S.¬A.

Finally, we use the ∃-rule on ∃S.A ∈ L(x), resulting in a new node y with
L(x, y) = {S} and L(y) = {A}. Application of the ∀-rule to ∀S.¬A ∈ L(x)
yields L(y)← ¬A. We end up with L(y) = {A,¬A}, i.e. with a contradiction.

The final tableau is depicted in Fig. 5.14.

5.3.4 Tableaux Algorithm for SHIQ

The algorithm which we have presented in Section 5.3.3 displays the central
concepts of tableaux algorithms for description logics. In order to convey an
idea about the modifications to the ALC algorithm which need to be made
to generalize it to more expressive description logics, we now provide the
tableaux algorithm for SHIQ.

We give a self-contained presentation of the SHIQ tableaux algorithm, and
at the same time discuss the differences to the ALC algorithm.

A tableau for a SHIQ knowledge base consists of

• a set of nodes, labeled with individual names or variable names,

• directed edges between some pairs of nodes,

• for each node labeled x, a set L(x) of class expressions,

• for each pair of nodes x and y, a set L(x, y) containing role names or
inverses of role names, and
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a

R

��

R

��;
;;

;;
;;

;

S

��
L(a) = {C,∀R.∀R.∀S.¬A}

c

S
����

��
��

��
L(c) = {C,¬C t ∀S.A,∀S.A}

b

R

��

L(b) = {A,∀R.∀S.¬A,¬A t ∃R.∃S.A,∃R.∃S.A}

x

S

��

L(x) = {∃S.A,∀S.¬A}

y L(y) = {A,¬A}

FIGURE 5.14: Final tableau for the example from Section 5.3.3.4.3

• two relations between nodes, denoted by ≈ and 6≈.

The relations≈ and 6≈ are implicitly assumed to be symmetrical, i.e. whenever
x ≈ y, then y ≈ x also holds, and likewise for 6≈. When we depict a tableau,
we omit edges which are labeled with the empty set. We indicate the relations
≈ and 6≈ by drawing undirected edges, labeled with ≈ or 6≈.

There are only two differences to ALC tableaux. The first is that edges may
be labeled with inverse role names, which accommodates the use of inverse
roles in SHIQ. The second is the presence of the relations ≈ and 6≈, which
are used to keep track of equality or inequality of nodes.10 This accommo-
dates the fact that SHIQ, when translated to predicate logic as in Section
5.2.2, actually translates to predicate logic with equality. From the discussion
in Section 5.2.2 it can easily be seen that ALC translates into equality-free
predicate logic, so ≈ and 6≈ are not needed for the ALC algorithm.

Given a SHIQ knowledge base K in negation normal form, the initial
tableau for K is defined by the following procedure, which differs from the
ALC procedure only in the final two steps.

1. For each individual a occurring in K, create a node labeled a and set
L(a) = ∅. These nodes are called root nodes.

10In fact, the relation ≈ used for equality is not really needed. It can easily be removed
from the algorithm description, where it occurs only once. We keep it, though, because it
makes understanding the algorithm a bit easier.
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2. For all pairs a, b of individuals, set L(a, b) = ∅.

3. For each ABox statement C(a) in K, set L(a)← C.

4. For each ABox statement R(a, b) in K, set L(a, b)← R.

5. For each ABox statement a 6= b in K, set a 6≈ b.

6. Set ≈ to be the empty relation, i.e. initially, no two nodes are considered
to be equal.

Again, we make the agreement that > is contained in L(x), for any x, but
we will often not write it down, and in fact the algorithm will not explicitly
derive this.

We exemplify the visualization of initial tableaux by considering the knowl-
edge base

K = {R−(a, b), S(a, b), S(a, c), c 6= b, C(a), C(b), D(b), D(c)}.

a

S

��

R−,S

��;
;;

;;
;;

; L(a) = {C}

bC

6≈
C��

��
��

��
L(b) = {C,D}

c L(c) = {D}

For convenience, we use the following notation: If R ∈ R (i.e. if R is a
role name), then set Inv(R) = R− and Inv(R−) = Inv(R). Furthermore, call
R ∈ R transitive if R◦R v R or Inv(R)◦ Inv(R) v R. This, and the following
somewhat involved definitions, are needed to accommodate inverse roles.

Consider a tableau for a knowledge base K. Let HK be the set of all
statements of the form R v S and Inv(R) v Inv(S), where R,S ∈ R and
R v S ∈ K. We now call R a subrole of S if R = S, if R v S ∈ HK , or if there
are S1, . . . , Sn ∈ R with {R v S1, S1 v S2, . . . , Sn−1 v Sn, Sn v S} ⊆ HK .
In other words, R is a subrole of S if and only if R and S are related via the
reflexive-transitive closure of v in HK .

If R ∈ L(x, y) for two nodes x and y, and if R is a subrole of S, then y is
called an S-successor of x, and x is called an S-predecessor of y. If y is an
S-successor or an Inv(S)-predecessor of x, then y is called an S-neighbor of x.
Furthermore, inductively, every predecessor of x, which is not an individual,
is called an ancestor of x, and every predecessor of an ancestor of x, which is
not an individual, is also called an ancestor of x. Examples of these notions
are given in Fig. 5.15.
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Consider a knowledge base H = {R v S−, S v S−1 , S1 v S2} which consists
only of a role hierarchy. Then HK = H ∪ {R− v S, S− v S1, S

−
1 v S−2 }.

Furthermore, R is a subrole of S−, S1, and S2. S is a subrole of S−1 and S−2 ;
S1 is a subrole of S2; R− is a subrole of S, S−1 and S−2 , etc.
Now consider the knowledge base

K = {R−(a, b), R(b, c), S(c, d), S−(d, e), S1(e, f), R v S},

which, apart from R v S, can be depicted by the following diagram.

a
R−
// b

R // c S // d
S− // e

S1 // f

Then a is an R−-predecessor of b, and hence also an S−-predecessor of b.
At the same time, c is an R-successor of b, and hence also an S-successor
of b. We thus have that the S-neighbors of b are a and c. Also, we have
that c is an S-predecessor of d and e is an S−-successor of d. Hence d has
S−-neighbors c and e. Note that f has no ancestors because ancestors must
not be individuals.

FIGURE 5.15: Example of notions of successor, predecessor, neighbor and
ancestor

5.3.4.1 Blocking for SHIQ

The blocking mechanism we used for ALC in Section 5.3.3.3 is not sufficient
for SHIQ, and we will give an example of this in Section 5.3.4.3.5 below. For
SHIQ, we need to employ pairwise blocking : While in ALC, a node x is
blocked by a node y if y essentially repeats x, in SHIQ a node x is blocked
if it has a predecessor x′ and there exists a node y with predecessor y′, such
that the pair (y′, y) essentially repeats the pair (x′, x). We formalize this as
follows.

A node x is blocked if it is not a root node and any one of the following
hold.

• There exist ancestors x′, y, and y′ of x such that

– y is not a root node,

– x is a successor of x′ and y is a successor of y′,

– L(x) = L(y) and L(x′) = L(y′), and

– L(x′, x) = L(y′, y).

• An ancestor of x is blocked.

• There is no node y with L(y, x) 6= ∅.
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If only the first case applies, then x is called directly blocked by y. In all other
cases, x is called indirectly blocked. Note that we require L(x) = L(y) if x is
(directly) blocked by y, which is stronger than the required L(x) ⊆ L(y) in
the case of ALC.

As an example of blocking, consider the following part of a tableau.

a
R // x R // y R // z R // w

L(a) = {D} L(x) = {C} L(y) = {C} L(z) = {C} L(w) = {D}
Then z is directly blocked by y, since the pair (y, z) essentially repeats the
pair (x, y). The node w is indirectly blocked because its ancestor z is blocked.

5.3.4.2 The Algorithm

The SHIQ tableaux algorithm is a nondeterministic algorithm which es-
sentially extends the ALC algorithm. It decides whether a given knowledge
base K is satisfiable.

Given a SHIQ knowledge base K, the tableaux algorithm first constructs
the initial tableau as given above. Then the initial tableau is expanded by
nondeterministically applying the rules from Figs. 5.16 and 5.17. The algo-
rithm terminates if

• there is a node x such that L(x) contains a contradiction, i.e. if there is
C ∈ L(x) and at the same time ¬C ∈ L(x),

• or there is a node x with ≤nS.C ∈ L(x), and x has n + 1 S-neighbors
y1, . . . , yn+1 with C ∈ L(yi) and yi 6≈ yj for all i, j ∈ {1, . . . , n+1} with
i 6= j,

• or none of the rules from Figs. 5.16 and 5.17 is applicable.

In the first two cases, we say that the tableau contains a contradiction. In
the third case, we say that the tableau is complete. The knowledge base
K is satisfiable if and only if there is a selection of subsequent expansion
rule applications which leads to a complete and contradiction-free tableau.
Otherwise, K is unsatisfiable.

5.3.4.3 Worked Examples

We continue with some worked examples which help to explain the different
expansion rules.

5.3.4.3.1 Cardinalities We first give an example of the application of
the ≤-rule. Consider the knowledge base

K = {h(j, p), h(j, a),m(p),m(a),≤2h.>(j)},
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u-rule: If x is not indirectly blocked, C u D ∈ L(x), and {C,D} 6⊆ L(x),
then set L(x)← {C,D}.

t-rule: If x is not indirectly blocked, C tD ∈ L(x) and {C,D} u L(x) = ∅,
then set L(x)← C or L(x)← D.

∃-rule: If x is not blocked, ∃R.C ∈ L(x), and there is no y with R ∈ L(x, y)
and C ∈ L(y), then

1. add a new node with label y (where y is a new node label),

2. set L(x, y) = {R} and L(y) = {C}.

∀-rule: If x is not indirectly blocked, ∀R.C ∈ L(x), and there is a node y
with R ∈ L(x, y) and C 6∈ L(y), then set L(y)← C.

TBox-rule: If x is not indirectly blocked, C is a TBox statement, and C 6∈
L(x), then set L(x)← C.

FIGURE 5.16: Expansion rules (part 1) for the SHIQ tableaux algorithm

which extends the example from Section 5.3.3.4.2 by adding the statement
≤2hasChild.>(john). We will show that ∀h.m(j) is still not a logical conse-
quence of K.

As before, we add ∃h.¬m(j) to the knowledge base, resulting in K ′. The
initial tableau now looks as follows.

p L(p) = {m}

L(j) = {∃h.¬m,≤2h.>} j

h

AA�������� h // a L(a) = {m}

Now, application of the ∃-rule yields
p L(p) = {m}

L(j) = {∃h.¬m,≤2h.>} j

h

AA�������� h //

h

��;
;;

;;
;;

; a L(a) = {m}

x L(x) = {¬m}

and subsequent application of the ≤-root-rule allows us to identify p and a,
resulting in the following.
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trans-rule: If x is not indirectly blocked, ∀S.C ∈ L(x), S has a transitive
subrole R, and x has an R-neighbor y with ∀R.C 6∈ L(y), then set
L(y)← ∀R.C.

choose-rule: If x is not indirectly blocked, ≤nS.C ∈ L(x) or ≥nS.C ∈ L(x),
and there is an S-neighbor y of x with {C,NNF(¬C)}∩L(y) = ∅, then
set L(y)← C or L(y)← NNF(¬C).

≥-rule: If x is not blocked, ≥nS.C ∈ L(x), and there are no n S-neighbors
y1, . . . , yn of x with C ∈ L(yi) and yi 6≈ yj for i, j ∈ {1, . . . , n} and
i 6= j, then

1. create n new nodes with labels y1, . . . , yn (where the labels are
new),

2. set L(x, yi) = {S}, L(yi) = {C}, and yi 6≈ yj for all i, j ∈
{1, . . . , n} with i 6= j.

≤-rule: If x is not indirectly blocked, ≤nS.C ∈ L(x), there are more than
n S-neighbors yi of x with C ∈ L(yi), and x has two S-neighbors y, z
such that y is neither a root node nor an ancestor of z, y 6≈ z does not
hold, and C ∈ L(y) ∩ L(z), then

1. set L(z)← L(y),

2. if z is an ancestor of x, then L(z, x)← {Inv(R) | R ∈ L(x, y)},
3. if z is not an ancestor of x, then L(x, z)← L(x, y),

4. set L(x, y) = ∅, and

5. set u 6≈ z for all u with u 6≈ y.

≤-root-rule: If ≤nS.C ∈ L(x), there are more than n S-neighbors yi of x
with C ∈ L(yi), and x has two S-neighbors y, z which are both root
nodes, y 6≈ z does not hold, and C ∈ L(y) ∩ L(z), then

1. set L(z)← L(y),

2. for all directed edges from y to some w, set L(z, w)← L(y, w),

3. for all directed edges from some w to y, set L(w, z)← L(w, y),

4. set L(y) = L(w, y) = L(y, w) = ∅ for all w,

5. set u 6≈ z for all u with u 6≈ y, and

6. set y ≈ z.

FIGURE 5.17: Expansion rules (part 2) for the SHIQ tableaux algorithm
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p_

≈

_

L(p) = {m}

L(j) = {∃h.¬m,≤2h.>} j

h

AA��������

h

��;
;;

;;
;;

; a L(a) = ∅

x L(x) = {¬m}
None of the expansion rules is now applicable, so the tableau is complete

and K ′ is satisfiable.

5.3.4.3.2 Choose We do a variant of the example just given in order
to show how the choose-rule is applied. Consider the knowledge base K =
{≥3h.>(j),≤2h.m}. We want to find out if K is satisfiable. The initial
tableau for K consists of a single node j with L(j) = {≥3h.>,≤2h.m}. Ap-
plication of the ≥-rule yields three new nodes x, y and z with L(x) = L(y) =
L(z) = {>}, x 6≈ y, x 6≈ z, and y 6≈ z. The choose-rule then allows us to
assign classes to these new nodes, e.g., by setting L(x)← m, L(y)← m, and
L(z)← ¬m. The resulting tableau, depicted below, is complete.
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6≈C��
��

��
��

_

6≈
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L(x) = {m}

L(j) = {≥3h.>,≤2h.m} j
h //

h

22

h

,,

y
{

6≈

{
;;

;;
;;

;;
L(y) = {m}

z L(z) = {¬m}

5.3.4.3.3 Inverse Roles The next example displays the handling of in-
verse roles. Consider the knowledge base K = {∃C.h(j),¬ht∀P.h,C v P−},
which stands for

∃hasChild.Human(john)
Human v ∀hasParent.Human

hasChild v hasParent−

We show that Human(john) is a logical consequence from K, i.e. we start
by adding ¬h(j) to K, which is already in negation normal form.

In the initial tableau, we apply the ∃-rule to ∃C.h ∈ L(j), which yields the
following.

L(j) = {∃C.h,¬h} j
C // x L(x) = {h}

We now use the TBox rule and set L(x) ← ¬h t ∀P.h. The t-rule on this
yields L(x)← ∀P.h, since the addition of ¬h would yield a contradiction.

L(j) = {∃C.h,¬h} j
C // x L(x) = {h,¬h t ∀P.h,∀P.h}
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We now apply the ∀-rule to ∀P.h ∈ L(x): j is a C-predecessor of x, and
hence a P−-predecessor of x due to C v P−. So j is a P−-neighbor of x, and
the ∀-rule yields L(j) ← h. Since we already have ¬h ∈ L(j), the algorithm
terminates with the tableau containing a contradiction.

L(j) = {∃C.h,¬h, h} j
C // x L(x) = {h,¬h t ∀P.h,∀P.h}

5.3.4.3.4 Transitivity and Blocking The next example displays block-
ing and the effect of the trans-rule. Consider the knowledge base K = {h v
∃F.>, F v A,∀A.h(j), h(j),≥F.>(j), A ◦ A v A}, which stands for the fol-
lowing.

Human v ∃hasFather.>
hasFather v hasAncestor

∀hasAncestor.Human(john)
Human(john)

≥2hasFather.>(john)
hasAncestor ◦ hasAncestor v hasAncestor

Since the knowledge base states that john has at least two fathers, we
attempt to show unsatisfiability of K, which will not be possible.11 We first
get NNF(K) = {¬h t ∃F.>, F v A,∀A.h(j), h(j),≥F.>(j), A ◦ A v A}.
From the initial tableau, we apply the ≥-rule to ≥2F.>, which results in the
following tableau.

j

F

��

F

��1
11

11
11

L(j) = {h,≥2F.>,∀A.h}

L(y) = {>} y x L(x) = {>}
We now perform the following steps.

1. Apply the TBox-rule and set L(j) = {¬h t ∃F.>}.

2. Apply the t-rule to the axiom just added, which yields L(j) ← ∃F.>
because adding ¬h would result in a contradiction.

3. Apply the ∀-rule to ∀A.h ∈ L(j), which yields L(x)← h.

4. Apply the trans-rule to ∀A.h ∈ L(j), setting L(x)← ∀A.h.

5. Apply the TBox-rule and set L(x)← ¬h t ∃F.>.

6. Apply the t-rule to the axiom just added, which yields L(x) ← ∃F.>
because adding ¬h would result in a contradiction.

11There is no information in the knowledge base which forbids anybody having two fathers.



OWL Formal Semantics 205

j

F

��

F

��1
11

11
11

L(j) = {h,≥2F.>,∀A.h,¬h t ∃F.>,∃F.>}

L(y) = {>} y x L(x) = {>, h,∀A.h,¬h t ∃F.>,∃F.>}
We can now perform the following steps.

7. Apply the ∃-rule to ∃F.> ∈ L(x), creating a new node x1 with L(x1) =
>.

8. Apply the ∀-rule to ∀A.h ∈ L(x), resulting in L(x1)← h.

9. Apply the TBox rule and set L(x1)← ¬h t ∃F.>.

10. Apply the t-rule to the axiom just added, which yields L(x1) ← ∃F.>
because adding ¬h would result in a contradiction.

j

F

��

F

��3
33

33
33

L(j) = {h,≥2F.>,∀A.h,¬h t ∃F.>,∃F.>}

L(y) = {>} y x

F

��

L(x) = {>, h,∀A.h,¬h t ∃F.>,∃F.>}

x1 L(x1) = {>, h,∀A.h,¬h t ∃F.>,∃F.>}
Note that L(x1) = L(x), so we can apply steps 7 to 10 to x1 in place of

x, creating a node x2 in step 7. Likewise, we can do for y exactly what we
have done for x, starting at step 1, creating two new nodes y1 and y2 in the
process. The resulting tableau is as follows.

j

F

��

F

��5
55

55
55

L(j) = {h,≥2F.>,∀A.h,¬h t ∃F.>,∃F.>}

L(y) = L(x) y

F

��

x

F

��

L(x) = {>, h,∀A.h,¬h t ∃F.>,∃F.>}

L(y1) = L(x) y1

F

��

x1

F

��

L(x1) = L(x)

L(y2) = L(x) y2 x2 L(x2) = L(x)
At this stage, x2 is directly blocked by x1 since the pair (x1, x2) repeats

the pair (x, x1). Likewise, y2 is directly blocked by y1 since the pair (y1, y2)
repeats the pair (y, y1). There is no expansion rule applicable, so the tableau
is complete, showing that K is satisfiable.

5.3.4.3.5 Why We Need Pairwise Blocking The next example shows
that the more complicated pairwise blocking is indeed needed for SHIQ.
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Consider the knowledge base K consisting of the statements R ◦ R v R,
F v R, and ¬C u (≤1F ) u ∃F−.D u ∀R−.(∃F−.D)(a), where D is short for
the class expression C u (≤1F ) u ∃F.¬C.

K is unsatisfiable, which is not easy to see by simply inspecting the knowl-
edge base. So let us construct the tableau, which will help us to under-
stand the knowledge base. From the initial tableau, we repeatedly apply
the u-rule to break down the class expression in L(a). Then we apply the
∃-rule to ∃F−.D, creating a node y with L(y) = {D}. D ∈ L(y) can
be broken down by applying the u-rule repeatedly. Applying the ∀-rule to
∀R−.(∃F−.D) ∈ L(a) yields L(y) ← ∃F−.D due to F v R, and the trans-
rule applied to ∀R−.(∃F−.D) ∈ L(a) yields L(y) ← ∀R−.(∃F−.D). The
following picture shows the current state; note that we have omitted some
elements of L(a) and L(y).

a

F−

��

L(a) ⊇ {¬C,≤1F,∃F−.D, ∀R−.(∃F−.D)}

y L(y) ⊇ {D,∃F−.D, ∀R−.(∃F−.D), C,≤1F,∃F.¬C}
Similar arguments applied to y instead of a leave us with a new node z and

the following situation.
a

F−

��

L(a) ⊇ {¬C,≤1F,∃F−.D, ∀R−.(∃F−.D)}

y

F−

��

L(y) ⊇ {D,∃F−.D, ∀R−.(∃F−.D), C,≤1F,∃F.¬C}

z L(z) = L(y)

Since the SHIQ tableau requires pairwise blocking, the node z is not
blocked in this situation. If it were blocked, then the tableau would be com-
plete, and K would be satisfiable. Since z is not blocked, however, we can ex-
pand ∃F.¬C ∈ L(z) via the ∃-rule, creating a new node x with L(x) = {¬C}.
Application of the ≤-rule to ≤1F ∈ L(z) forces us to identify y and x, and
yields the following.

a

F−

��

L(a) ⊇ {¬C,≤1F,∃F−.D, ∀R−.(∃F−.D)}

x � ≈ � y

F−

��

L(y) ⊇ {D,∃F−.D, ∀R−.(∃F−.D), C,≤1F,∃F.¬C,¬C}

z L(z) ⊇ {D,∃F−.D, ∀R−.(∃F−.D), C,≤1F,∃F.¬C}

Since {C,¬C} ⊆ L(y), the tableau contains a contradiction and the algo-
rithm terminates.
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description logic combined complexity data complexity
ALC ExpTime-complete NP-complete
SHIQ ExpTime-complete NP-complete
SHOIN (D) NExpTime-complete NP-hard
SROIQ N2ExpTime-complete NP-hard
EL++ P-complete P-complete
DLP P-complete P-complete
DL-Lite In P In LOGSPACE

FIGURE 5.18: Worst-case complexity classes of some description logics

5.3.5 Computational Complexities

Considerations of computational complexities of reasoning with various de-
scription logics have been a driving force in their development.12 The rationale
behind this is that understanding the computational complexity of a knowl-
edge representation language aids avoiding language constructs which are too
expensive to deal with in practice. This is an arguable position, and objec-
tions against the emphasis on computational complexity by description logic
developers has been criticized from application perspectives. Nevertheless, it
appears that the approach has been successful in the sense that it has indeed
helped to produce paradigms with a favorable trade-off between expressivity
and scalability. Complexities of description logics, more precisely of the un-
derlying decision problems, are usually measured in terms of the size of the
knowledge base. This is sometimes called the combined complexity of a de-
scription logic. If complexity is measured in terms of the size of the ABox only,
then it is called the data complexity of the description logic. These notions
are in analogy to database theory.

Figure 5.18 lists the complexity classes for the most important description
logics mentioned in this chapter. It should be noted that despite the emphasis
on complexity issues in developing description logics, their complexities are
very high, usually exponential or beyond. This means that reasoning even
with relatively small knowledge bases could prove to be highly intractable in
the worst case. However, this is not a fault of the design of description logics:
Dealing with complex logical knowledge is inherently difficult.

At the same time, it turns out that average-case complexity, at least for real
existing knowledge bases, is not so bad, and state of the art reasoning systems,
as discussed in Section 8.5, can deal with knowledge bases of considerable size.
Such performance relies mainly on optimization techniques and intelligent

12Introducing complexity theory is beyond the scope of this book. See [Pap94] for a com-
prehensive overview.
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heuristics which can be added to tableau reasoners in order to improve their
performance on real data.

5.4 Summary

In this chapter we have presented the logical underpinnings of OWL. We
have introduced description logics and explained their formal semantics. In
particular, we have given two alternative but equivalent ways of describing the
formal semantics of SROIQ, and therefore of OWL DL and of OWL 2 DL,
namely the direct extensional model-theoretic semantics, and the predicate
logic semantics which is obtained by a translation to first-order predicate
logic with equality.

We then moved on to discuss the major paradigm for automated reasoning
in OWL, namely tableaux algorithms. We have formally specified the algo-
rithms for ALC and SHIQ. We have also given many examples explaining
the algorithms, and briefly discussed issues of computational complexity for
description logics.

5.5 Exercises

Exercise 5.1 Translate the ontology which you created as a solution for Ex-
ercise 4.1 into DL syntax.

Exercise 5.2 Translate the ontology which you created as a solution for Ex-
ercise 4.1 into predicate logic syntax.

Exercise 5.3 Express the following sentences in SROIQ, using the individ-
ual names bonnie and clyde, the class names Honest and Crime, and the
role names reports, commits, suspects, and knows.

1. Everybody who is honest and commits a crime reports himself.

2. Bonnie does not report Clyde.

3. Clyde has committed at least 10 crimes.

4. Bonnie and Clyde have committed at least one crime together.

5. Everybody who knows a suspect is also a suspect.
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Exercise 5.4 Translate the knowledge base

Human v ∃hasMother.Human
∃hasMother.(∃hasMother.Human) v Grandchild

Human(anupriyaAnkolekar)

into RDFS syntax.

Exercise 5.5 Validate the logical inferences drawn in Fig. 4.11 by arguing
with extensional semantics.

Exercise 5.6 Consider the two RDFS triples
r rdfs:domain B . and A rdfs:subClassOf B .

Understood as part of an OWL knowledge base, they can be expressed as
B v ∀r.> and A v B.

Give a triple which is RDFS-entailed by the two given triples, but which
cannot be derived from the OWL DL semantics.

Furthermore, give an OWL DL statement which is a logical consequence of
the two OWL statements but cannot be derived using the RDFS semantics.

Exercise 5.7 Show using the ALC tableaux algorithm that the knowledge
base

Student v ∃attends.Lecture
Lecture v ∃attendedBy.(Student u Eager)
Student(aStudent)
¬Eager(aStudent)

is satisfiable.

Exercise 5.8 Show using the ALC tableaux algorithm that (∃r.E)(a) is a
logical consequence of the knowledge base K = {C(a), C v ∃r.D,D v E t
F, F v E}.

Exercise 5.9 Show using the ALC tableaux algorithm that the knowledge
base K = {¬H t ∃p.H,B(t),¬H(t)} is satisfiable.

Exercise 5.10 Validate the logical inferences drawn in Fig. 4.11 using the
ALC tableaux algorithm.

Exercise 5.11 Show using the ALC tableaux algorithm that the following
knowledge base is unsatisfiable.

Bird v Flies

Penguin v Bird

Penguin u Flies v ⊥
Penguin(tweety)
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Exercise 5.12 Show using the SHIQ tableaux algorithm that the statement
∀hasChild.Male(john) is a logical consequence of the following knowledge
base.

hasChild(john, peter)
hasChild(john, alex)

Male(peter)
Male(alex)

≤2hasChild.Male(john)
peter 6= alex

Exercise 5.13 Show using the SHIQ tableaux algorithm that the statement
≥2hasChild.>(john) is a logical consequence of the following knowledge base.

≥2hasSon.>(john)
hasSon v hasChild

5.6 Further Reading

[HHPS04] is the normative document for the semantics of OWL 1, while
[MPSCG09] is the current version describing the semantics of the forthcoming
OWL 2 DL.

The Description Logic Handbook [BCM+07] is a comprehensive reference
for description logics.

[HPSvH03] gives an overview of OWL 1 in relation to RDF and SHIQ.
The SHIQ tableaux algorithms have been introduced in [HST00, HS99].

Our presentation differs slightly for didactic purposes, but there is no sub-
stantial difference.

A tableaux algorithm for SHOIQ can be found in [HS07]. Nominals ba-
sically add another element of nondeterminism which is very difficult to deal
with efficiently in automated reasoning systems.
SROIQ as an extension of OWL DL was proposed in [HKS06]. The ex-

tensions are uncritical in terms of realization in tableaux algorithms; in this
sense, SROIQ is only a minor extension of SHOIQ.
EL++ was introduced in [BBL05] and has recently sparked a considerable

interest in studying polynomial description logics.
DL-Lite is covered in [CGL+07].
For DLP, see [GHVD03].
Complexities for many description logics, including appropriate literature

references, can be retrieved from http://www.cs.man.ac.uk/∼ezolin/dl/.
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Chapter 6

Ontologies and Rules

This chapter introduces “rules” as an alternative way of modeling knowledge
which complements the means of specifying knowledge we have already learned
about. In the broadest sense, a rule could be any statement which says that
a certain conclusion must be valid whenever a certain premise is satisfied,
i.e. any statement that could be read as a sentence of the form “if . . . then
. . . ”1 We will soon confine ourselves to concrete types of rules that will
be defined more accurately. Yet it is worth noting that the term “rule” as
such refers rather to a knowledge modeling paradigm than to a particular
formalism or language. And it is this paradigm that makes rules attractive
in many applications, since users sometimes find it more natural to formulate
knowledge in terms of rules than in terms of other kinds of ontological axioms.

But the difference between rules and ontologies is not merely pedagogical.
In the cases we consider, rules typically can help to express knowledge that
cannot be formulated in RDFS or OWL. At the same time, there are also
various features of OWL that rule languages do not provide, so a natural
question to ask is how the strengths of OWL and of rules can be combined.
It turns out that this is indeed possible, but that the added power often also
comes at the price of higher complexity and more difficult implementation.
The rule languages discussed in this chapter have therefore been chosen to be
the ones for which a combination with RDF and OWL is not just possible
in principle, but for which this combination is also practically supported by
software tools and, in some cases, by upcoming standards.

We begin this chapter with a general discussion of the concept “rule” to
clarify our use of this rather vague term. Thereafter, Section 6.2 introduces
datalog as a basic rule language. The semantics given there is based on first-
order logic, which further allows us to combine datalog with OWL DL in
Section 6.3. We explain the semantics of this combination and discuss two
possible restrictions that can each be used to ensure decidability of reasoning
with OWL and rules. The latter is desirable as a basic prerequisite for arriving
at sound and complete implementations. Section 6.4 presents the Rule Inter-
change Format (RIF) as an upcoming standard for encoding and exchanging

1Instead of the terms “premise” and “conclusion” it is sometimes also common to speak of
“precondition” and “postcondition” or “precedent” and “antecedent” of a rule. We use these
terms interchangeably.
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rules in practical applications. RIF also supports the combined use of rules,
OWL, and RDF. While the case of OWL is closely related to our discussion
in Section 6.3, the specification of a combined semantics for RDF and rules
requires us to encode RDF entailments in first-order logic. This last aspect,
which is interesting in its own right, is found in Section 6.4.6 and can be read
separately. We close the chapter with a short summary, exercises, and notes
on further reading.

6.1 What Is a Rule?

It has been mentioned that rules of any type should consist at least of a
premise and a conclusion, with the intuitive meaning that in any situation
where the premise applies the conclusion must also hold. Such a general
description obviously comprises some, if not all, OWL axioms. Consider, e.g.,
the “rule” that, if a person is the author of a book then she is a (member of
the class) book author. This can surely be expressed in OWL DL: using the
more concise description logic syntax introduced in Chapter 5 we could write

Person u ∃authorOf.Book v Bookauthor.

It has also been explained in Section 5.2.2 that OWL DL can be considered
as a sublanguage of first-order predicate logic. Using this knowledge, we can
equivalently write the above statement as a predicate logic formula:

∀x.
(
Person(x) ∧ ∃y.

(
authorOf(x, y) ∧ Book(y)

)
→ Bookauthor(x)

)
.

Using standard semantic equivalences of predicate logic, we can make the
existential quantifier disappear (exercise: how exactly?):

∀x∀y.
(
Person(x) ∧ authorOf(x, y) ∧ Book(y)→ Bookauthor(x)

)
.

This formula is a logical implication with universally quantified variables,
hence it comes close to our vague idea of a “rule.” The universal quanti-
fiers express the fact that the implication is applicable to all individuals that
satisfy the premise. So could we indeed consider “predicate logic rules” to
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mean simply predicate logic formulae that are implications? It turns out that
this alone would not say much, simply because every predicate logic formula
can be rewritten to fit that syntactic form (exercise: how?). Yet, using the
term “rule” as a synonym for “first-order implication” has become common
practice in connection with the Semantic Web, as witnessed by formalisms
such as the Semantic Web Rule Language, Description Logic Rules, DL-safe
Rules, and the Rule Interchange Format (RIF-Core), all of which essentially
comprise certain kinds of first-order implications. These approaches further
restrict us to particular kinds of implications that no longer encompass all
possible formulae of predicate logic, and which are thus interesting in their
own right. Indeed, it turns out that many such rule languages have expres-
sive and computational properties that distinguish them from first-order logic,
thus making them adequate for different application scenarios.

Before going into the details of the Semantic Web rule languages mentioned
above, it should be noted that there are a number of rather different interpre-
tations of the term “rule” outside of first-order logic. Among the most popular
rule formalisms in Computer Science is certainly logic programming, which
is closely associated with the Prolog programming language and its various
derivatives and extensions. At first glance, Prolog rules appear to be very sim-
ilar to first-order logic implications that merely use a slightly different syntax,
putting the precondition to the right of the rule. The example above would
read as follows in Prolog:

Bookauthor(X) :- Person(X), authorOf(X, Y ), Book(Y ).

Basic Prolog indeed has the same expressivity as first-order logic, and can
equivalently be interpreted under a predicate logic semantics. But there are
many extensions of Prolog that introduce features beyond first-order logic,
such as operational plug-ins (e.g., for arithmetic functions) and so-called non-
monotonic inferences which derive new results from the fact that something
else can not be derived. Logic programming in this form, as the name sug-
gests, has been conceived as a way of specifying and controlling powerful
computations, and not as an ontology language for direct interchange on the
Web. Two ontologies from different sources can usually be merged simply
by taking the union of their axioms (meaningful or not), whereas two inde-
pendent Prolog programs can hardly be combined without carefully checking
manually that the result is still a program that can be successfully executed
by the employed logic programming engine. The use of logic programming in
combination with ontologies can still be quite useful, but the research that
has been conducted in this field is beyond the scope of this book.

Yet another kind of rules that is very relevant in practice is known as pro-
duction rules, such as Event Condition Action Rules or business rules. Rule
languages of this type apply a more operational interpretation of rules, i.e.
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they view rules as program statements that can be executed actively. For on-
tology languages like OWL, the semantics of an ontology is not affected by the
order in which ontological axioms are considered. In contrast, for rules with
an operational semantics it can be crucial to know which rule is executed first,
and part of the semantics of production rules is concerned with the question
of precedence between rules. Many different kinds of production rule engines
are used in practice and many rule engines implement their own customized
semantic interpretations of rules that do not follow a shared published se-
mantics. As such, production rules again are hard to interchange between
different systems, and the ongoing work on the W3C Rule Interchange For-
mat is among the first efforts to allow for the kind of interoperability that a
common semantic standard can offer. Yet it is currently unclear how produc-
tion rule engines should best be combined with ontology-based systems, and
we shall not pursue this endeavor in the remainder of this book.

Besides the interpretation of “rule” in these diverse approaches, the term
can also have an even more general meaning in the context of (onto)logical
knowledge representation. In particular, a “deduction rule” or “rule of infer-
ence” is sometimes understood as an instruction of how to derive additional
conclusions from a knowledge base. In this sense, the rule is not part of the
encoded knowledge, but rather a component of algorithms that are used to
process this knowledge. A case in point is the deduction rules for RDF(S)
that were discussed in Section 3.3. As we will see in Section 6.4.6, the essence
of these rules can actually be captured by first-order logic implications, so
that the distinction between deduction rules and rule-like logical formulae is
blurred here. More generally, the deduction rules of virtually any calculus
could be expressed as logical rules of some suitable logic. But this logic is
typically required to be very expressive, making it difficult or impossible to
implement general-purpose reasoners that can process the logical theory that
was derived from a set of deduction rules. Since we are interested in seman-
tic technologies that represent knowledge in a machine-processable way, the
topic of this chapter is rules in the earlier sense, i.e. axioms for representing
ontological knowledge in the form of a rule.

Moreover, all rule languages that we consider here can be viewed as frag-
ments of first-order logic. This allows for a close semantic integration with
both OWL and RDF, which in turn has helped to advance standardization,
implementation, and practical usage of these types of rules. Additionally,
simple first-order rule languages can also be extended with non-monotonic
features inspired by logic programming. Discussing the various types of ex-
tensions that have been considered in this line of research is beyond this book,
but the material covered herein is still useful as a basis for further reading (see
Section 6.7). The W3C Rule Interchange Format, introduced in Section 6.4,
is expected to support non-monotonic features at some future stage, possibly
leading to a greater impact of such rules in the field of semantic technologies.
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6.2 Datalog as a First-Order Rule Language

We now turn to concrete types of rules that, in essence, are implications
of first-order logic. The advantage of this interpretation of rules is that the
semantics of first-order predicate logic can be naturally combined with the
semantics of OWL DL, since the latter can also be defined as a sublanguage
of first-order logic. The rule language that we consider here is known as
datalog, and was originally developed in the field of deductive databases.

6.2.1 Introduction to Datalog

In a nutshell, a datalog rule is a logical implication that may only con-
tain conjunctions, constant symbols, and universally quantified variables, but
no disjunctions, negations, existential quantifiers, or function symbols. We
always consider datalog as a sublanguage of first-order logic to which the
classical semantics applies. Both syntax and semantics will be explained in
more precise terms below in a fully self-contained way. Some background
knowledge in first-order logic can still be handy for understanding datalog
(see Appendix C).

Before going into further details, it is worth mentioning that datalog was
originally developed for querying databases. Rules and queries indeed have
much in common: our example rule from Section 6.1, e.g., is in fact a datalog
rule which can also be interpreted as a means of querying a given database
for all book authors:

∀x∀y.
(
Person(x) ∧ authorOf(x, y) ∧ Book(y)→ Bookauthor(x)

)
.

In this case, one would assume information about Person, authorOf, and
Book to be stored in a database, while Bookauthor is derived from this data as
a “query result.” It is thus always possible to regard single rules as descriptions
of relevant “views” on the data. Much work on datalog is related to the use
of rules in this sense, and we will return to the topic of querying later in
Chapter 7.

When considering datalog as a rule language, however, we also want to
allow rules to be applied recursively. This means that the result of a rule can
again be used by other rules to derive further conclusions, continuing until
no further conclusions can be obtained from any rule. This use of recursion
has been an important topic in the area of deductive databases as well, and
semantic technologies can build on the results that were obtained in this field.
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Further references on deductive databases are given at the end of this chapter.2

Let us now consider the syntax of datalog rules and the intuitive semantics
of such rules. Besides logical operators, a datalog rule can feature three kinds
of symbols:

• Constant symbols are used as names to refer to certain elements of the
domain of interest.

• Variables are used as place holders for (arbitrary) domain elements to
which rules might apply.

• Predicate symbols, or simply predicates, are used to denote relations
between domain elements.

Constant symbols play essentially the role of individual names in OWL or
description logics, as explained in Chapters 4 and 5. Predicate symbols may
take an arbitrary number of arguments: predicates with one argument are
similar to OWL classes, just like Person in our earlier example; predicates
with two arguments resemble OWL property names, as in the case of authorOf
above. But datalog also allows for predicates that have three or more, or even
zero arguments. It is usually assumed that the number of arguments for each
predicate symbol is fixed, and this number is then called the arity of this
predicate symbol.

Summing up, the syntax of datalog depends on three sets of symbols: a set
C of constant symbols, a set V of variable symbols, and a set P of predicate
symbols each of which has a fixed natural number as its arity. Together, the
sets (C, V, P ) are called a signature of datalog, and every set of datalog rules
is based on some such signature. The sets C and P are usually assumed to be
finite, containing only the symbols required for an application. In contrast,
one often assumes that there is an arbitrary supply of variables, i.e. that the
set V is (countably) infinite. It is common to denote variables by letters x, y,
and z, possibly with subscripts.

Now given such a signature we can build datalog rules as follows:

• A datalog term is a constant symbol or a variable.

• A datalog atom is a formula of the form p(t1, . . . , tn) given that p ∈ P
is a predicate of arity n, and t1, . . . , tn are terms.

2A notable difference to our treatment is that many database-related applications define
datalog based on a logic programming semantics or with certain “closure axioms.” This is
useful for achieving a closed-world semantics that is desirable for a database: if a fact is
not in the database, it should be concluded that it is false. Such non-monotonic behavior,
however, is only obtained when extending datalog with further features, especially with
non-monotonic negation. We do not consider any form of non-monotonicity in this chapter.
For plain datalog, our definitions lead to exactly the same deductions as the closed-world
approach. See [AHV94, Chapter 12] for a discussion and comparison of both approaches.
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(1) Vegetarian(x) ∧ FishProduct(y)→ dislikes(x, y)
(2) orderedDish(x, y) ∧ dislikes(x, y)→ Unhappy(x)
(3) orderedDish(x, y)→ Dish(y)
(4) dislikes(x, z) ∧ Dish(y) ∧ contains(y, z)→ dislikes(x, y)
(5) → Vegetarian(markus)
(6) Happy(x) ∧ Unhappy(x)→

FIGURE 6.1: Example datalog program

• A datalog rule is a formula of the form

∀x1 . . .∀xm.
(
B1 ∧ . . . ∧Bk → H

)
,

where B1, . . . , Bk and H are datalog atoms, and x1, . . . , xm are exactly
the variables that occur within these atoms.

Since all variables in datalog are always universally quantified at the level of
rules, it is common to omit the ∀ quantifiers from datalog rules. We adopt
this simplification for the rest of this chapter. The premise of a datalog rule
is called the rule body while the conclusion is called the rule head . A set
of datalog rules is sometimes called a datalog program which hints at the
relationship to logic programming.

Figure 6.1 gives an example of a datalog program based on a datalog sig-
nature with set of constant symbols C = {markus} and set of predicate
symbols P = {Dish, Vegetarian, FishProduct, Happy, Unhappy, dislikes,
orderedDish}. Adopting the convention introduced for OWL, we use capital
letters for predicates of arity 1 (“class names”); the other predicates are all of
arity 2. It is not hard to read the intended meaning from such a set of datalog
rules:

(1) “Every vegetarian dislikes all fish products.”3

(2) “Anyone who ordered a dish that he or she dislikes is unhappy.” This rule
shows that not all variables occurring in a rule body need to appear in
the rule head.

(3) “Everything that can be ordered as a dish actually is a dish.”

(4) “If someone dislikes something that is contained in a certain dish, then
this person will also dislike the whole dish.”

3Some “pesco-vegetarians” might disagree. We follow the historic definition of the Vegetar-
ian Society here.
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(5) “Markus is a vegetarian.” Empty rule bodies impose no conditions, i.e.
they are always true. This is the reason why a rule that consists only
of a rule head is also called a fact . The implication arrow is sometimes
omitted in this case.

(6) “Nobody can be happy and unhappy at the same time.” Empty rule heads
cannot be concluded, i.e. they are always false. Hence a rule without a
head describes a condition that must never occur, and such rules therefore
are sometimes called integrity constraints.

Note that some of the rules might be more widely applicable than desired.
For example, rule (2) does not require that it was a person who ordered the
dish. In practice, one might add further preconditions to ensure that such
implicit assumptions do really hold. For the purposes of this book, however,
we prefer a more simple formalization over a more correct one.

This example also illustrates that rules can often be read and understood
rather easily, which is one reason why they might sometimes be preferred over
other types of ontological axioms. Yet we must be wary when dealing with
rules: while the intention of a single rule can seem obvious, there are still
many possibly unexpected conclusions that can be drawn from a set of rules.
In particular, we must be aware that rules in first-order logic “work in both
directions”: if a rule body is true then the rule head must of course also be
true, but conversely, if a rule head is false, then the rule body must also be
false. In logic, this inverse reading of a rule is known as the contrapositive
of the implication; it is well-known that both forms – p → q and ¬q → ¬p –
are logically equivalent. Assume, e.g., that the following facts are added to
the program of Fig. 6.1 (we assume that the new constant symbols have been
added to the signature):

Happy(markus)
orderedDish(markus,crêpeSuzette)
FishProduct(worcestershireSauce)

With these additional assertions, we might (rightly) conclude that Crêpe
Suzette does not contain Worcestershire Sauce: Since Markus is happy, he
cannot be unhappy (6), and hence he did not order any dish he dislikes (2).
Thus, since he ordered Crêpe Suzette, Markus does not dislike this dish. On
the other hand, as a vegetarian (5) Markus dislikes Worcestershire Sauce on
account of it being a fish product (1). Thus, since Crêpe Suzette is a dish (3),
and since Markus does not dislike it, rule (4) ensures us that the crêpe does
not contain any Worcestershire Sauce.

Conclusions like the one we have just drawn are often not obvious, and as
soon as we deal with larger datalog programs, we certainly would like to leave
it to the computer to draw such conclusions for us. To make this possible, we
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first need to specify the problem more precisely: which conclusions exactly
do we expect the computer to draw? This is the right time to introduce the
formal semantics of datalog.

6.2.2 Semantics of Datalog

As mentioned in the previous section, we consider datalog as a sublanguage
of first-order logic, and its formal semantics is already determined by this
fact. In this section, we give an alternative self-contained presentation of
the datalog semantics, which can be slightly simplified due to the fact that
function symbols and various first-order logical operators do not need to be
addressed. This section can safely be skipped by readers who are familiar
with first-order logic or who are content with the intuitive understanding
established so far.

As in Chapters 3 and 5, the semantics of datalog is model-theoretic, i.e. it is
based on defining which “models” a datalog program has. A correct conclusion
from a datalog program then is any formula that is satisfied by all models of
this program. As usual, a model is a special kind of interpretation, one that
makes a given datalog program true. Hence we first explain what a datalog
interpretation is and what it means for it to satisfy some datalog rule.

A datalog interpretation I consists of an interpretation domain ∆I and an
interpretation function ·I . The domain is an arbitrary set that defines the
(abstract) world within which all symbols are interpreted, while the interpre-
tation function establishes the mapping from symbols into this domain:

• If a is a constant, then aI ∈ ∆I , i.e. a is interpreted as an element of
the domain.

• If p is a predicate symbol of arity n, then pI ⊆ (∆I)n, i.e. p is interpreted
as an n-ary relation over the domain (the predicate extension).

In contrast to RDFS and OWL, datalog also contains variables and we must
account for the fact that these can take arbitrary values from the domain, even
for a fixed interpretation. Therefore they obtain their values from a variable
assignment. A variable assignment Z for a datalog interpretation I is simply
a function from the set V of variables to the interpretation domain ∆I . For
an arbitrary term t we write tI,Z to mean tI if t is a constant, and Z(t) if t
is a variable. With these additional tools, we can define a truth value – true
or false – of a formula by extending ·I :

• For a datalog atom p(t1, . . . , tn), we set p(t1, . . . , tn)I,Z = true if we find
that (tI,Z

1 , . . . , tI,Z
n ) ∈ pI . We set p(t1, . . . , tn)I,Z = false otherwise.

• For a conjunction B1 ∧ . . . ∧ Bn of datalog atoms B1, . . . , Bn, we set
(B1 ∧ . . . ∧ Bn)I,Z = true if BI,Z

i = true for all i = 1, . . . , n. We set
(B1 ∧ . . . ∧Bn)I,Z = false otherwise.
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VegetarianI = HappyI = {markus}
FishProductI = {worcestershireSauce}

dislikesI = {(markus, worcestershireSauce)}
orderedDishI = {(markus, crêpeSuzette)}

DishI = {crêpeSuzette}
UnhappyI = containsI = ∅

FIGURE 6.2: Example datalog interpretation of predicate symbols

• For a datalog rule B → H, we set (B → H)I = true if, for all possible
variable assignments Z for I, we find that either BI,Z = false or HI,Z =
true. We set (B → H)I = false otherwise. Note that B can be an
arbitrary conjunction of datalog atoms in this case.

• For a datalog fact → H, we set (→ H)I = true if, for all possible
variable assignments Z for I, we find that HI,Z = true. Otherwise, we
set (→ H)I = false.

• For a datalog integrity constraint B →, we set (B →)I = true if, for
all possible variable assignments Z for I, we find that BI,Z = false.
Otherwise, we set (B →)I = false. Note that B can be an arbitrary
conjunction of datalog atoms in this case.

Note that the truth of a rule does not depend on a particular variable assign-
ment, since the (implicit) universal quantifiers bind all variables in all rules.
If an interpretation I maps a datalog rule to true, then we say that I satisfies
this rule. If I satisfies all rules of a datalog program, then we say that I
satisfies the program, or that I is a model of that program. A datalog rule
is a conclusion of a datalog program if the rule is satisfied by all models of
the program. Observe that the last sentence includes all types of rules, so in
particular it defines in which cases a certain fact is entailed by a datalog pro-
gram. The entailment of facts is by far the most common reasoning problem
for datalog, and many implementations are specifically tailored toward the
derivation of facts.

The above finishes the formal definition of the datalog semantics. To il-
lustrate the definitions, we describe a particularly interesting model for the
example in Section 6.2.1 (Fig. 6.1 and the related facts on page 219). As a
domain of interpretation, we pick the set of constant symbols of the given
signature, i.e. ∆I = {markus, crêpeSuzette, worcestershireSauce}. Next,
we need to define the mapping ·I . On constant symbols, this is very easy to
do: we just map every constant symbol to itself, e.g., markusI = markus. The
interpretations of the predicate symbols are given in Fig. 6.2. It is straight-
forward to check that this interpretation is indeed a model for the datalog
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program we consider. For plain datalog programs that are consistent, it is
always possible to construct models in this particularly simple fashion by just
taking the constant symbols as interpretation domains, and such models are
known as Herbrand models.4 Moreover, it is always possible to find a model
that satisfies as few datalog atoms as possible, such that no other model sat-
isfies fewer datalog facts. The existence of such least Herbrand models is of
great significance and can be exploited for practical implementations – but
for our purposes it is enough to note that this feature provides us with a
conveniently small example model. Unfortunately, this nice property is lost
as soon as we introduce OWL or RDF into the picture.

6.3 Combining Rules with OWL DL

Datalog gives us a basic mechanism for specifying knowledge using rules.
Our introduction to datalog so far has intentionally left out technical issues
such as a concrete machine-readable syntax for storing and exchanging dat-
alog rules but these details could clearly be added to obtain a full-fledged
modeling language that could be used on the Semantic Web. Indeed, the
Rule Interchange Format introduced in Section 6.4 achieves this to a certain
extent.

The paradigm of rule-based modeling is quite different from the ontological
modeling that was introduced with OWL, and it is not obvious how to combine
both approaches. Would such a combination of OWL and rules be meaningful
at all? Would this combination actually increase the expressive power of
either formalism? How difficult would it be to build tools that can process a
combination of OWL and rules? We address these questions in this section.

6.3.1 Combined Semantics: Datalog and Description Logics

The first of our initial questions is not hard to answer: a combination of
datalog and OWL DL is indeed meaningful. Both languages can be seen as
sublanguages of standard first-order logic, so the combination of a datalog
program with an OWL DL ontology can always be viewed as a collection of
first-order logic formulae with the usual first-order semantics. So, at least
conceptually, there are no major problems.5

4After the French mathematician Jacques Herbrand, pronounced /εrbrã/ with H silent.
5The situation for OWL Full is not as clear. A possible combined semantics is proposed in
the OWL compatibility document of the Rule Interchange Format; see Section 6.4 for some
discussion.
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(7) ∃orderedDish.ThaiCurry(markus)
(8) ThaiCurry v ∃contains.FishProduct

FIGURE 6.3: Description logic axioms extending the datalog program
from Fig. 6.1

It is worthwhile to elaborate the details of this combined semantics. The
semantics of datalog has just been detailed in Section 6.2.2, where we defined
what an interpretation of datalog is, and what it means to say that an in-
terpretation satisfies a given datalog rule. Interpretations in datalog provide
an interpretation domain and an interpretation function that accomplish two
tasks: it assigns a domain element to every constant symbol, and it assigns an
n-ary relation to every predicate symbol. If we compare this to interpretations
of OWL (i.e. of description logics, see Section 5.2), we find obvious similarities.
Description logic interpretations again specify a domain of interpretation and
an interpretation function, which can now be considered to consist of three
different mappings: the mapping II that assigns a domain element to every
individual name, the mapping IC that assigns a set of individuals to every
class name, and the mapping IR that assigns a binary relation to every role.

It is now easy to see that, as expected, interpretations of datalog and de-
scription logics are closely related. In fact, the main differences are simply
the names we have used for parts of the syntax. What is called constant
symbol in datalog is called individual name in description logics. Likewise,
unary and binary predicates of datalog are the same as class names and role
names in description logics. Note in particular that the “unary relation” that
a datalog interpretation assigns to unary predicates is just a set of domain
elements. Therefore, we can view any datalog interpretation also as a descrip-
tion logic interpretation that simply provides some additional interpretations
for predicate symbols that do not occur in description logics. When using
the combination of a datalog program with a description logic ontology, we
therefore use datalog interpretations over a datalog signature that includes
not only all symbols of the datalog program, but which also incorporates in-
dividual names, class names, and role names from the description logic part
as constant symbols, unary predicates, and binary predicates, respectively.

As an example of such a combined knowledge base, consider again the dat-
alog rules from Fig. 6.1 together with the additional description logic axioms
given in Fig. 6.3. By (7), Markus has ordered some Thai curry dish, and,
according to this example, all Thai curries contain some fish product. Com-
bining these statements with the rules of Fig. 6.1, we would intuitively expect
the conclusion that Markus is now unhappy. Using the above semantics, we
can support our intuition with a more formal argument.
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Using the semantics of ∃ from Section 5.2.1, we find that every interpreta-
tion I that satisfies (7) must have some element e in its domain ∆I such that
(markusI , e) ∈ orderedDishI and e ∈ ThaiCurryI . But if I also satisfies rule
(3), then we must have e ∈ DishI as well. This last conclusion can be obtained
as follows: Clearly there is a variable assignment Z with Z(x) = markusI and
Z(y) = e. Since Z and I satisfy the body of rule (3), they must also satisfy
its head. So we obtain Z(y) ∈ DishI as claimed. Normally, it is not required
to explain conclusions from rules in that much detail, and one usually just
says that e ∈ DishI follows by applying rule (3).

We can continue our derivation as follows. If (8) is satisfied, then e ∈
(∃contains.FishProduct)I . Again this means that there must be some ele-
ment f ∈ ∆I such that (e, f) ∈ containsI and f ∈ FishProductI . Applying
rules (5) and (1), we also know that (markusI , f) ∈ dislikesI . Hence we can
apply rule (4) with a variable assignment Z with Z(x) = markusI , Z(y) = e,
and Z(z) = f to conclude that (markusI , e) ∈ dislikesI . Thus, we have es-
tablished that Markus dislikes the (unnamed) dish e which he ordered. There-
fore rule (2) can be applied to conclude that markusI ∈ UnhappyI .

The above conclusions were drawn by assuming merely that I satisfies the
rules and axioms (1)–(9), and they are thus valid for an arbitrary model of
our combined knowledge base. In other words, every model of the above rules
and axioms must also satisfy Unhappy(markus), which is therefore a logical
conclusion of the knowledge base.

6.3.2 Computing Conclusions

The previous section showed how we can use the formal semantics of datalog
and description logics to derive conclusions. The argument we gave there,
however, was still somewhat informal and required some amount of thought
on our part. It would clearly be desirable to automate this process, i.e. to
develop software tools that automatically draw conclusions from description
logic knowledge bases in combination with datalog. This section addresses
the question of how complicated it is to solve this task.

We have learned in Section 5.3.5 that OWL DL, i.e. the description logic
SHOIN (D), is in a complexity class called NExpTime, the class of all de-
cision problems that a computer can solve in exponential time given that it
makes the right (non-deterministic) guesses. This is already quite complex
but optimizations still allow implementations to work well in many practical
cases. For datalog, it turns out that the complexity of typical reasoning tasks
(e.g., solving the question whether a particular conclusion can be drawn from
a set of datalog rules) is ExpTime, i.e. that the answer can be computed in
time exponential with respect to the size of the input datalog program. This
is slightly better than the case of OWL DL and corresponds to OWL Lite, i.e.
the description logic SHIF(D). This might come as a surprise given that,
intuitively, drawing conclusions from datalog appears not to be very hard.
Roughly speaking, the complexity stems from the large number of different
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ways in which rules can be applied, especially if they have a great number of
variables in their body.

Do these results imply that the combined complexity of OWL DL and
datalog is also not harder than NExpTime, the larger of the two individual
complexities? The answer is a resounding no. Complexities can in general
not be combined in such a naive way, and, in fact, typical reasoning tasks
for the combination of datalog and SHOIN (D) turn out to be undecidable.
Moreover, this is the case even for much simpler description logics such as
ALC. This result might be somewhat disappointing since it assures us that it
is impossible to ever devise a software tool that can compute all conclusions
from all possible knowledge bases that consist of a description logic part and
a datalog part. But this formulation also hints at two ways of escaping this
problem. As a first option, one might be content with a tool that draws at least
some conclusions which are certain, i.e. an inferencing program that is sound
but incomplete. Alternatively, one could try to find reasoning methods that
are sound and complete, but that cannot be applied to all possible knowledge
bases. In the next sections, we explore these options for two cases that restrict
the expressivity of datalog rules to recover decidability: Description Logic
Rules and DL-safe Rules.

6.3.3 Description Logic Rules

We have already noted in the introductory Section 6.1 that some descrip-
tion logic axioms can also be presented as (datalog) rules, and, equivalently,
certain datalog rules can be cast into description logic axioms with the same
meaning. It is clear that there must still be rules and axioms that cannot be
rewritten in this way, or at least that it is not possible to do this rewriting
automatically. Otherwise, one could use a rewriting algorithm followed by a
standard reasoning algorithm for datalog or description logics, respectively,
to obtain a decision procedure for the combined reasoning tasks. Such a pro-
cedure cannot exist according to the undecidability result mentioned in the
previous section.

In this section, we address the question which datalog rules can be directly
represented as description logic axioms, thus deserving the name Descrip-
tion Logic Rules. We shall see that the highly expressive description logic
SROIQ (the basis for OWL 2 DL) can express significantly more rules than
the description logic SHOIN (the basis for OWL DL). A comprehensive al-
gorithm for transforming rules into description logic axioms is then provided
in Fig. 6.5.

Let us first consider some examples to improve our intuition. The following
rule appeared within the introductory section:
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Person(x) ∧ authorOf(x, y) ∧ Book(y)→ Bookauthor(x).

We noted that it can eqiuvalently be expressed by the description logic
axiom Person u ∃authorOf.Book v Bookauthor. The important difference
between both representations is that the latter does not use any variables. So
where did the variables go? We have learned in previous sections that class
descriptions resemble unary predicates of first-order logic. It is not necessary
to state the argument of these unary predicates since it is always the same
variable on both sides of a class inclusion axiom. In the above case, e.g., we
could mix datalog and description logic syntax to write:

(Person u ∃authorOf.Book)(x)→ Bookauthor(x).

This explains the whereabouts of variable x. The variable y in turn appears
only in two positions in the rule body. Since it is not referred to in any other
part of the rule, it suffices to state that there exists some object with the
required relationship to x, so the rule atoms authorOf(x, y) ∧ Book(y) are
transformed into ∃authorOf.Book(x). Rewriting atoms as description logic
class expressions in this fashion is sometimes called rolling-up, since a “branch”
of the rule body is rolled-up into a statement about its first variable. This
terminology will become more intuitive in light of a graphical representation
that we explain below.

We can try to generalize from this example. We have seen that x in the
above case is simply an implicit (and necessary) part of the class inclusion
axiom. So for any rule that we wish to rewrite as such an axiom, we need
to identify some variable x which plays this special role, and find a way to
eliminate all other variables from the rule using a rolling-up method as above.
This is not always possible, as rule (2) from Fig. 6.1 illustrates:

orderedDish(x, y) ∧ dislikes(x, y)→ Unhappy(x).

The conclusion of this rule suggests that the variable y should be eliminated
to obtain a class inclusion axiom. But the premise of the rule cannot be
rewritten as above. A class expression like ∃orderedDish.> u ∃dislikes.>
describes elements with relationships orderedDish and dislikes, but not
necessarily to the same element y. Using inverse roles, one could also write
∃orderedDish.∃dislikes−.> to describe some x who ordered something that
is disliked by someone – but not necessarily by x. It turns out that there is
no way to directly express this relationship in any of the major description
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FIGURE 6.4: Examples of simple rule dependency graphs

logics considered in this book.6 We conclude that rolling-up is only possible
if a variable is “reachable” by only a single binary predicate.

We now give a more precise characterization of the rules that can be rewrit-
ten as description logic axioms. In order to understand in which cases we can
use the rolling-up method, the key is to consider the dependency graph of
the rule premise. This graph is obtained from the premise by simply taking
variables as nodes, and binary predicates as edges between variables. Note
that (atoms with) constant symbols do not play a role in this definition; it
will be discussed further below why this is desirable. Figure 6.4 shows the
dependency graphs of the above example rules, with labels indicating the
relationship to binary predicates.

With this visualization in mind, we can speak about “paths” within a rule
premise. Intuitively, a path between two nodes is simply a set of edges leading
from one node to the other, where we do not care about the direction of the
edges. More formally, we can describe a path in some rule premise B as
follows:

• if R(x, y) is an atom in B, then {R(x, y)} is a path between x and y,

• if p is a path between x and y, then p is also a path between y and x,

• if p is a path between x and y, q is a path between y and z, and no atom
occurs both in p and in q, then p ∪ q is a path between x and z,

where x, y, and z are all variables. The set {authorOf(x, y)}, e.g., is a path
between x and y, and this is the only path in the first example rule given
in this section. In the second example rule, we find the obvious paths of
length one, but also the path {orderedDish(x, y), dislikes(x, y)} which can
be viewed as a path from x to x, or as a path from y to y. Looking at Fig. 6.4,
we recognize that paths are really just sets of edges that we can use to get
from one node to another. Observe that as a result of defining paths as sets,
we are not allowed to use any edge more than once in a single path.

Now a datalog rule can be transformed into a semantically equivalent set
of axioms of the description logic SROIQ if the following conditions hold:

• The rule contains only unary and binary predicates.

6The required description logic feature in this case is the conjunction of roles; see [RKH08].
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• For any two variables x and y, there is at most a single path between x
and y in the premise of the rule.

We call such datalog rules Description Logic Rules, or DL Rules for short.
Before providing the complete transformation algorithm for Description Logic
Rules in Fig. 6.5, we highlight some important cases that the definition allows.

The second item in the above definition is tantamount to the statement
that the rule premise’s dependency graph contains no (undirected) cycles of
length greater than 1. A cycle of length 1 is an atom of the form R(x, x) – a
special case that we can address in SROIQ. Indeed, whenever we encounter
an atom of the form R(x, x), we can introduce a new class name CR which we
define with an axiom CR ≡ ∃R.Self. One can then simply replace any atom
R(x, x) by CR(x), and this does not change the conclusions that can be drawn
from the knowledge base, as long as we are only interested in conclusions that
do not refer to the new class name CR.

The attentive reader will already have noticed that our above definition
admits further types of rules that we did not consider yet. An example is
rule (4) of Fig. 6.1: it contains only unary and binary predicates, and its
dependency graph has no loops. Yet its conclusion is a binary atom, and
hence can certainly not be expressed as a class inclusion axiom. SROIQ
offers two basic forms of role inclusion axioms that we may try to use:

R v S and R1 ◦ . . . ◦Rn v S,

where the first can be considered as a special case of the second role com-
position. But both of these axioms can include only role names, while rule
(4) also contains a unary (class) atom Dish(y). As in the above case of role
atoms R(x, x), this problem can be addressed by adding an auxiliary axiom to
the knowledge base. This time, a new role name RDish is introduced together
with the class inclusion axiom Dish ≡ ∃RDish.Self. Intuitively speaking, this
defines the class of dishes to be equivalent to the class of those things which
have the relationship RDish to themselves. With this additional axiom, one
can rewrite rule (4) as follows:

dislikes(x, z) ∧RDish(y, y) ∧ contains(y, z)→ dislikes(x, y).

This step is the core of the transformation to SROIQ. Using inverse roles,
we can now write the rule premise as a chain:

dislikes(x, z) ∧ contains−(z, y) ∧RDish(y, y)→ dislikes(x, y).
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This rule can now easily be expressed as a SROIQ role composition axiom.
Together with the auxiliary axiom we have used above, rule (4) is thus repre-
sented by the following description logic knowledge base:

Dish ≡ ∃RDish.Self
dislikes ◦ contains− ◦RDish v dislikes

Note that the second axiom no longer contains the requirement that RDish
refers to the same variable in first and second position. The resulting knowl-
edge base therefore is not strictly semantically equivalent to the original rule.
Yet, a formula that does not contain the auxiliary name RDish is entailed by
the new knowledge base exactly if it is entailed by the original rule (4). There-
fore the transformed knowledge base can be used instead of the original rule
for all common reasoning tasks.

While these examples provide us with a significant set of tools for translating
rules into axioms, there is still a case that we have not addressed yet. Consider
rule (1) of Fig. 6.1. Its dependency graph has no edges and certainly no loops,
so it should be possible to transform it. Yet, even if we use the above method
for replacing the unary predicates Vegetarian(x) and FishProduct(y) with
new auxiliary roles, we only obtain the following rule:

RVegetarian(x, x) ∧RFishProduct(y, y)→ dislikes(x, y).

But this cannot be rewritten as a role composition axiom, since there is a
“gap” between x and y. Another special feature of SROIQ comes to our aid:
the universal role U can be added to the rule without changing the semantics:

RVegetarian(x, x) ∧ U(x, y) ∧RFishProduct(y, y)→ dislikes(x, y).

Since the relation denoted by U is defined to comprise all pairs of individuals,
adding the atom U(x, y) does not impose any restrictions on the applicability
of the rule. Yet it helps us to bring the rule into the right syntactic shape for
being expressed in SROIQ. Together with the required auxiliary axioms, we
thus obtain:

Vegetarian ≡ ∃RVegetarian.Self
FishProduct ≡ ∃RFishProduct.Self
RVegetarian ◦ U ◦RFishProduct v dislikes
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Essentially, this discussion provides us with enough tools for treating all DL
Rules in Fig. 6.1. Yet there is one more issue that deserves some attention,
even if it does not occur in our example: the definition of DL Rules does not
impose any restrictions on the occurrence of constant symbols, since the latter
are not taken into account when defining dependency graphs. The reason
why this is feasible is that we can replace individual occurrences of constant
symbols by arbitrary new variables. If, for example, a rule body has the form
R(x, a)∧S(a, y), it can equivalently be rewritten as R(x, z)∧{a}(z)∧S(a, y).
Here, the new variable z is required to refer to the (unique) member of the
nominal class denoted by {a}, i.e. z must refer to the individual denoted by
a. Note that only one occurrence of the constant a has been replaced in this
transformation. When replacing the remaining occurrence, we can introduce
yet another new variable instead of using z again: R(x, z)∧{a}(z)∧S(v, y)∧
{a}(v). Clearly, this transformation cannot create any new cycles in the rule’s
dependency graph, so that it is indeed safe to ignore constants when defining
DL Rules.

This completes our set of methods for rewriting rules. We sum up our
insights in a single transformation algorithm that can be applied to any De-
scription Logic Rule, given in Fig. 6.5. The algorithm is organized in multiple
steps, each of which is meant to solve a particular problem that may occur in
the shape of the input rule. All but the last step apply to rules with unary
and binary head atoms alike, while the last step needs to distinguish between
class inclusion axioms and role inclusion axioms. The underlying ideas of
steps 2 through 6 have already been explained in the examples above – we
only note that the step-wise transformation introduces some description logic
syntax into the rule, and that notions like “unary atom” should be assumed
to include these additional expressions.

Step 1 has been added to normalize the shape of the rule so as to reduce
the cases we need to distinguish in the algorithm. This initial step uses >
and ⊥ class expressions to normalize rules with empty bodies or heads, i.e.
facts and integrity constraints. Moreover, it eliminates constant symbols as
discussed above.

Some further characteristics of the transformation algorithm are worth not-
ing. First of all, the algorithm is non-deterministic since there are often mul-
tiple ways to complete a step. Step 3, e.g., allows us to pick any pair of
unconnected variables to connect them. If the dependency graph consists
of two unconnected parts with more than one variable in each, then we can
choose any of the occurring variables to be connected. Here and in all other
non-deterministic cases, our choice does not influence the correctness of the
result, but it might simplify some of the later steps.

Moreover, it must be acknowledged that the transformation algorithm is
by far not optimal, and often produces more complicated results than nec-
essary. This is so, since the purpose of the algorithm is to cover all pos-
sible cases, and not to yield minimal results whenever possible. As an ex-
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Input: A Description Logic Rule B → H
Output: A SROIQ knowledge base K

Initialize K : = ∅
Repeat each of the following steps until no further changes occur:
Step 1: Normalize rule

• If H is empty, then set H : = ⊥(x), where x is an arbitrary variable.

• For each variable x in H: If x does not occur in B, then set B : = B ∧>(x).

• If possible, select a single occurrence of a constant symbol a as a parameter
of some predicate of B → H, and pick a variable x not occurring in B → H.
Then replace the selected occurrence of a with x, and set B : = B ∧ {a}(x).

Step 2: Replace reflexive binary predicates
• If possible, select a predicate R(x, x) and replace R(x, x) with CR(x) where

CR is a new unary predicate symbol. Set K : = K ∪ {CR ≡ ∃R.Self}.
Step 3: Connect rule premise

• If possible, select two (arbitrary) variables x and y such that there is no path
between x and y in B. Then set B : = B ∧ U(x, y).

Step 4: Orient binary predicates
• Now H must be of the form D(z) or S(z, z′) for some variables z and z′.

For every binary predicate R(x, y) in B:
If the (unique) path from z to y is shorter (has fewer elements) than the path
from z to x, then replace R(x, y) in B by R−(y, x).

Step 5: Roll up side branches
• If B contains an atom R(x, y) or R−(x, y) such that y does not occur in any

other binary atom in B or H then

– If B contains unary atoms C1(y), . . . , Cn(y) that refer to y, then de-
fine a new description logic concept E : = C1 u . . . u Cn, and delete
C1(y), . . . , Cn(y) from B. Otherwise define E : = >.

– Replace R(x, y) (or R−(x, y), respectively) by ∃R.E(x) (or ∃R−.E(x)),
where E is the concept just defined.

Step 6a: If H is of the form D(x): Create final class inclusion axiom
• In this case, B must be of the form C1(x)∧ . . .∧Cn(x). Set K : = K ∪{C1 u

. . . u Cn v D}.
Step 6b: If H is of the form S(x, y): Create final role inclusion axiom

• For each unary atom C(z) in B: Replace C(z) by RC(z, z) where RC is a
new role name, and set K : = K ∪ {C ≡ ∃RC .Self}.

• Now B contains only one unique path between x and y which is of the form
{R1(x, x2), R2(x2, x3), . . . , Rn(xn, y)} (where each of the Ri might be a role
name or an inverse role name). Set K : = K ∪ {R1 ◦ . . . ◦Rn v S}.

FIGURE 6.5: Transforming Description Logic Rules into SROIQ axioms
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treme example, consider the simple fact → R(a, b) which could directly be
expressed as a SROIQ ABox statement. Instead, the algorithm normalizes
the rule to {a}(x)∧{b}(y)→ R(x, y), and then connects both terms to obtain
{a}(x) ∧ U(x, y) ∧ {b}(y) → R(x, y). Finally, in Step 6b, unary atoms are
replaced by auxiliary binary predicates R{a} and R{b}, so that we obtain the
following final set of description logic axioms:

{a} ≡ ∃R{a}.Self
{b} ≡ ∃R{b}.Self
R{a} ◦ U ◦R{b} v R

While this is clearly not the preferred way of expressing this statement, it
still captures the intended semantics. On the other hand, the algorithm also
covers cases like → R(x, a), C(x) ∧ D(y) →, or R(x, y) ∧ S(a, z) → T (y, z)
where a proper transformation might be less obvious. When dealing with
such transformations – for instance in the exercises later in this chapter – it
is therefore left to the reader to either apply exactly the above algorithm to
obtain a correct but possibly lengthy solution, or to use shortcuts for obtaining
a simplified yet, hopefully, correct result.

When using DL Rules in practice, we should not forget to take into account
that the description logic SROIQ imposes some further restrictions on its
knowledge bases. Two such restrictions have been introduced in Section 5.1.4:
regularity of RBoxes and simplicity of roles. To ensure decidability, the cor-
responding conditions must be checked for the knowledge base as a whole,
and not just for single axioms. Hence, when adding DL Rules to SROIQ
knowledge bases, we must take care not to violate any such condition. The
following DL Rule, e.g., could be useful in practice:

Woman(x) ∧ hasChild(x, y)→ motherOf(x, y).

But if, in addition, an axiom motherOf v hasChild is contained in the knowl-
edge base, then the RBox obtained after translating the DL Rule to SROIQ
contains a cyclic dependency between motherOf and hasChild, and hence is
no longer regular. Therefore, either of the two statements can be used, but
they cannot be combined in one knowledge base if we want to employ com-
mon inference algorithms for reasoning. It is conceivable that the restrictions
of current algorithms could be relaxed to accommodate some more of the
specific axioms that are obtained from Description Logic Rules. Another pos-
sible solution is to resort to other kinds of rules, as introduced in the following
section.
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(1) Vegetarian(x) ∧ FishProduct(y)→ dislikes(x, y)
(2) orderedDish(x, y) ∧ dislikes(x, y)→ Unhappy(x)
(3) orderedDish(x, y)→ Dish(y)
(4) dislikes(x, z) ∧ Dish(y) ∧ contains(y, z)→ dislikes(x, y)
(5) → Vegetarian(markus)
(6) Happy(x) ∧ Unhappy(x)→
(7) ∃orderedDish.ThaiCurry(markus)
(8) ThaiCurry v ∃contains.FishProduct

FIGURE 6.6: DL-safety of rules depends on the given description logic
axioms

6.3.4 DL-safe Rules

The previous section considered DL Rules as a kind of datalog rules that
could also be represented in description logics. The main application of DL
Rules therefore is to simplify ontology editing, especially considering that some
of the required encodings can be quite complex. This section, in contrast,
introduces a different type of rules that add real expressivity which is not
available in SROIQ yet. These datalog rules are called DL-safe, and they are
based on the idea of limiting the interaction between datalog and description
logics to a “safe” amount that does not endanger decidability.7

The restrictions that DL-safe rules impose on datalog to preserve decidabil-
ity can be viewed from two perspectives. On the one hand, one can give syn-
tactic “safety” conditions that ensure the desired behavior. This corresponds
to the original definition of DL-safe rules. On the other hand, one can modify
the semantics of datalog rules so as to ensure that every rule is implicitly
restricted to allow only “safe” interactions with description logic knowledge
bases. This approach has become very common in practice, since it is indeed
always possible to evaluate arbitrary datalog rules in a DL-safe way, without
requiring the user to adhere to specific syntactic restrictions. We begin with
the original definition and explain the second perspective afterwards.

To define DL-safety, we need to consider a concrete description logic knowl-
edge base K. We call a datalog atom a DL-atom if its predicate symbol is
used as a role name or class name in K, and we call all other datalog atoms
non-DL-atoms. Then a datalog rule B → H is DL-safe for K if all vari-
ables occurring in B → H also occur in a non-DL-atom in the body B. Note
that, as before, we use B to abbreviate an arbitrary conjunction of datalog
atoms. A set of datalog rules is DL-safe for K if all of its rules are DL-safe for

7The name “DL-safe” actually originates from a related notion of “safety” that has been
considered for datalog in the field of deductive databases.
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K. Consider, e.g., the datalog rules and description logic axioms in Fig. 6.6
that we already know from earlier examples. The predicates orderedDish,
contains, ThaiCurry, and FishProduct are used in the description logic
part. Therefore, rule (1) is not DL-safe since y is used only in the DL-atom
FishProduct(y). Rule (3) is not allowed for similar reasons, but all other
rules are indeed DL-safe.

DL-safety therefore is rather easy to recognize: we only need to check
whether there are enough non-DL-atoms in each rule premise. Some care
must still be taken since DL-safety is not an intrinsic feature that a datalog
rule may have. Rather, it depends on the accompanying description logic
knowledge base and the predicates used therein. To see this, we can take a
different perspective on the rules of Fig. 6.6. As we have seen in Section 6.3.3,
rule (1) and rules (3) to (6) could similarly be considered as Description Logic
Rules, while rule (2) does not meet the requirements. Using DL Rules and
DL-safe rules together is no problem since the former are merely a syntactic
shortcut for description logic axioms. We just have to treat all predicates
that occur in DL Rules as if they were used in the description logic part of
the knowledge base. Rule (1) and rule (3), which we found not to be DL-safe
above, could thus also be considered as DL Rules. But when doing so, the
predicates Dish and dislikes also belong to the description logic part of the
knowledge base, and thus rules (2) and (4) are no longer DL-safe.

Summing up, we can treat the rules of Fig. 6.6 in at least two ways: either
we use rules (2), (4), (5), and (6) as DL-safe rules, or we use rule (1) and rules
(3) to (6) as DL Rules. Neither approach is quite satisfying, since we have to
neglect one or the other rule in each of the cases. But the definition of DL-
safety shows us a way to get closer to our original rule set. Namely, whenever
a rule is not DL-safe for a particular knowledge base, it can be modified to
become DL-safe. All we have to do is to add further non-DL-atoms to the
rule premise for all variables that did not appear in such an atom yet. Which
further non-DL-atoms should this be? In fact, we can simply introduce a
new unary non-DL-predicate O and use atoms of the form O(x) to ensure the
DL-safety conditions for a variable x. When viewing rules (1) and rules (3)
to (6) as DL Rules, e.g., we can modify rule (2) to become DL-safe as follows:

(2’) orderedDish(x, y) ∧ dislikes(x, y) ∧O(x) ∧O(y)→ Unhappy(x)

This new rule is indeed DL-safe since both x and y occur in non-DL-atoms,
and hence it can be used together with the other (DL) rules. But, unfortu-
nately, this rule does not allow for any additional conclusions! The reason is
that there is no information about O, and therefore we can always find an
interpretation where O is interpreted as the empty set, so that rule (2’) is
never applicable. Adding O(x) and O(y) imposes additional conditions for
applying the rule. Therefore we would like to ensure that O must encompass
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orderedDish(x, y) ∧ dislikes(x, y) ∧O(x) ∧O(y)→ Unhappy(x)
→ O(markus)
→ O(anja)
→ O(thaiRedCurry)

Vegetarian(x) ∧ FishProduct(y)→ dislikes(x, y)
orderedDish(x, y)→ Dish(y)

dislikes(x, z) ∧ Dish(y) ∧ contains(y, z)→ dislikes(x, y)
ThaiCurry v ∃contains.FishProduct

Vegetarian(markus)
Vegetarian(anja)

∃orderedDish.ThaiCurry(markus)
orderedDish(anja, thaiRedCurry)

ThaiCurry(thaiRedCurry)

FIGURE 6.7: Combination of DL-safe rules, DL Rules, and description
logic axioms

as many elements as possible. A first idea might be to add the rule → O(x),
i.e. the fact that O encompasses all elements. But this rule would not be
DL-safe, as x does not occur in a non-DL-atom in the premise. A little re-
flection shows that the problem cannot be solved by adding some clever rule
premise, since this premise would merely face the same problem again. What
we can do, however, is to assert that concrete elements belong to O, e.g., by
writing → O(markus). By giving many facts of this kind, we can extend the
applicability of rule (2’) to further cases.

To illustrate this idea, a modified set of example rules and axioms is given
in Fig. 6.7. To clarify the intended semantics of each element, the rules have
been reordered, and vertical lines clearly separate the knowledge base into DL-
safe rule, DL Rules, terminological description logic axioms, and description
logic facts. The knowledge base now also features another vegetarian who
ordered a Thai curry dish, and this particular Thai curry is represented by
the individual name (constant symbol) thaiRedCurry. Further datalog facts
for the predicate O have been added to the DL-safe part. Note that we cannot
assert more than the given facts about O in a DL-safe way.

What exactly does the knowledge base of Fig. 6.7 entail? The lower three
groups of axioms can still be used as in earlier examples (cf. Section 6.3.1). So
we can, e.g., still conclude that Markus ordered a dish that he dislikes. This
statement corresponds to the description logic assertion

(∃orderedDish.∃dislikes−.{markus})(markus)
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which we could check with a description logic reasoner. The reader may
not find this expression very intuitive, and it is worth taking some time to
understand how it encodes the statement we just made. An explicit way to
read this expression is as follows: Markus belongs to the class of people who
ordered a dish that is disliked by someone in the class {markus}, of which
Markus is the only member.

In spite of this conclusion, we cannot infer that Markus is unhappy. The
topmost DL-safe rule is applicable only if the variables x and y represent
members of the class denoted by O. But we can always find an interpretation
where this is not the case for the element that represents the unnamed Thai
curry dish that Markus ordered. The rule is really just applicable to elements
represented by constant symbols.

On the other hand, we know that Anja ordered a particular Thai curry dish
called “Thai Red Curry” and again we may conclude that she dislikes this dish.
The situation is similar to the case of Markus, with the only difference being
that the domain element that corresponds to Anja’s dish is represented by the
constant symbol thaiRedCurry. This clearly must be true in any model of the
knowledge base that we consider. Thus the initial DL-safe rule is applicable
and we conclude that, alas, Anja is unhappy.

After this example, we also get an intuition why the DL-safety restriction
is enough to ensure decidability of reasoning. Namely, DL-safety effectively
restricts the applicability of rules to those domain elements that are identified
by constant symbols, i.e. to the elements for which we can instantiate the
predicate O (or any other non-DL-predicate we may use). Since we only ever
have a finite number of constant symbols, rules are applicable in only a finite
number of cases. The DL-safe part of Fig. 6.7, e.g., could also be replaced by
rules without variables that enumerate all the basic cases that are covered:

orderedDish(anja, thaiRedCurry) ∧ dislikes(anja, thaiRedCurry)
→ Unhappy(anja)

orderedDish(markus, thaiRedCurry) ∧ dislikes(markus, thaiRedCurry)
→ Unhappy(markus)

orderedDish(markus, anja) ∧ dislikes(markus, anja)
→ Unhappy(markus)

. . .

While this still yields exponentially many rules, these rules now are easier
to deal with for a description logic reasoner. In fact, rules without variables
can always be considered as Description Logic Rules, and could thus even
be transformed into description logic axioms. This approach, however, is not
feasible in practice, since it creates an exponential amount of new axioms
that the reasoner must take into account. Reasoners with direct support for
DL-safe rules, in contrast, may process such rules rather efficiently, and in an
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optimized fashion. Examples of systems that currently support DL-safe rules
are KAON2 and Pellet (see Section 8.5).

It has been mentioned that there is a second perspective that one may take
on DL-safe rules. The above discussions have shown that, intuitively, DL-safe
rules are applicable only to elements that are denoted by constant symbols.
Instead of imposing a syntactic requirement to ensure this, we may directly
build this restriction into the semantics of datalog. One way to do that is
to change the definition of variable assignments, requiring that variables can
only be assigned to domain elements of the form aI for some constant symbol
a. Such domain elements are sometimes called named elements. Another
possible approach is to assume that the premise of every rule (DL-safe or not)
is silently extended with conditions O(x) where O is defined by facts → O(a)
for each constant symbol a. Both approaches are essentially equivalent in that
they allow us to write arbitrary datalog rules and use them like DL-safe rules.
This is, in fact, what some description logic reasoners that support DL-safe
rules will automatically do when presented with a rule that is not DL-safe.

The above perspective is convenient since it allows users to specify arbi-
trary rules without considering the details of their semantics. However, this
approach introduces some confusion, since the term “DL-safe rule” might now
be used for two different things. On the one hand, it might refer to a dat-
alog rule that respects the syntactic restrictions explained above. On the
other hand, it might denote a rule that is syntactically similar to datalog, but
which is evaluated under a modified semantics that restricts its conclusions.
The second approach can also be viewed as an incomplete way of reasoning
with datalog: all conclusions that the rules entail under the “DL-safe seman-
tics” are also correct conclusions under the standard datalog semantics, but
some conclusions might not be found. An example of such a lost conclusion
would be Unhappy(markus) which we could derive in datalog in Section 6.3.1
but not with the DL-safe rules above.

While the relationship between the two approaches is straightforward, it
is important to clarify the intended meaning when exchanging rules between
systems. This is even more the case when Description Logic Rules are also
considered, since datalog rules that are not DL-safe may still be suitable as
DL Rules. First and foremost, however, the task of exchanging rules requires
a unified machine-readable syntax with a standardized semantics. This is the
purpose of the Rule Interchange Format that is the topic of the next section.

6.4 Rule Interchange Format RIF

The considerations of the previous sections have provided us with impor-
tant insights regarding the combination of OWL DL and datalog rules. We
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have seen how this combination can be endowed with a meaningful semantics,
and how either approach contributes modeling power to augment the other
one. Moreover, various restrictions were considered to identify cases where
the complete implementation of such a merger of OWL and rules is actually
possible. Yet, we lack an important ingredient for applying this knowledge
in practice: so far, we have not specified any machine-readable format for
encoding rules and their combination with OWL. This section considers the
Rule Interchange Format (RIF) as a possible means to fill this gap.

RIF – currently under development by a W3C working group – is expected
to become a standard format for exchanging rules of many different kinds of
rule languages, both for the Semantic Web and for various other application
areas. Due to the multitude of existing rule languages, the specification of
such an overarching exchange framework is a difficult task. At the time of the
writing of this book, the RIF working group has not completed the intended
specification documents yet. The discussions in this section therefore refer to
the most recent working draft documents of 30 July 2008 and 18 December
2008, respectively.

While many parts of RIF may thus still be changed or extended in the
future, we concentrate here on core aspects that are likely to remain stable
throughout this process. First and foremost, this is the simple core rule lan-
guage RIF-Core. We will see that it is closely related to datalog as discussed
in the previous sections. Moreover, we consider the proposed way of com-
bining RIF-Core with RDF and OWL. For the latter case, this shows many
parallels to the combination of OWL and datalog discussed before, while the
combination of rules and RDF is new.

We omit various aspects of RIF that are not central to our treatment, but
we will provide details regarding syntax and semantics of the features we
discuss.

6.4.1 RIF-Core

RIF is conceived as a general framework for exchanging rules of many dif-
ferent kinds. One way to approach this ambitious goal is to start with a “least
common denominator” of a (possibly large) set of targeted rule languages.
Such a shared core language helps to emphasize the commonalities of dif-
ferent formalisms and can be a basis for guiding the extension toward more
expressive languages. RIF therefore specifies a language called RIF-Core that
is supported by a large class of rule-based systems. RIF-Core is defined as a
restriction of the more expressive Basic Logic Dialect (BLD), but it can sim-
ilarly be considered as a sublanguage of the Production Rule Dialect (PRD)
that RIF defines. In this sense, RIF-Core is indeed the basic core of the rule
languages considered by RIF.

Semantically, RIF-Core is closely related to datalog as presented in Sec-
tion 6.2, i.e. to (first-order) logic programming without function symbols or
any form of negation. From a semantic viewpoint, the main difference between
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RIF-Core and RIF-BLD is that the latter also supports the use of function
symbols. Since we have hitherto restricted our attention to plain datalog, we
focus on RIF-Core in this chapter. Readers who are familiar with logic pro-
gramming will find it straightforward – both syntactically and semantically –
to add function symbols as done in RIF-BLD.

RIF-Core provides a presentation syntax for rules that is useful in under-
standing their basic features and structure. For actually exchanging rules
between machines, an XML-based syntax is proposed as a more robust syn-
tactic format. The latter is described in Section 6.4.4. To illustrate the basics
of the BLD presentation syntax, we reconsider rule (1) in Fig. 6.1:

Vegetarian(x) ∧ FishProduct(y)→ dislikes(x, y)

A RIF-Core document with this rule could look as follows:

Document(
Prefix(ex http://example.com/)
Group(

Forall ?x ?y (
ex:dislikes(?x ?y) :- And( ex:Vegetarian(?x) ex:FishProduct(?y) )

)
)

)

Comparing this to the earlier datalog syntax, we immediately observe var-
ious differences. First of all, we should familiarize ourselves with the basic
syntactic structure of RIF-Core presentation syntax: most structures are de-
scribed using functional-style operators, such as Document or Forall, and
these operators are often followed by parameters in parentheses. Lists of pa-
rameters are separated by spaces, without a comma or any other separating
character in between. It is easy to see that the encoded rule is essentially
contained in lines 4 to 6, while the rest of the document consists of standard
headers and basic declarations. We will omit this outermost part in all future
examples.

Looking at the rule in more detail now, we see that all predicates are spec-
ified by QNames, i.e. a namespace prefix ex is used to abbreviate full URIs.
This is not a surprise for a Semantic Web language, and by now we are familiar
with the conventions of coining and abbreviating such URIs. The namespace
declaration in this case is given by Prefix. We also notice that variables are
written with an initial question mark ?. Moreover, we observe that the rule
has switched its sides: the conclusion, formerly found on the right, is now
written on the left, while the rule premise is given subsequently on the right.
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We also see that this right-to-left implication arrow← is encoded by :-. This
style of writing rules is common in logic programming.

Finally, logical operators such as ∧ and ∀ are now also replaced by operator
names that are written like function symbols with the parameters in parenthe-
ses. For example, the sub-formula And(...) specifies a conjunction. Every
variable is explicitly mentioned in an initial Forall ?x ?y. Recall that for
datalog, too, all variables are considered to be universally quantified, i.e. rules
are always considered to apply to all possible variable assignments. This is
also true for RIF-Core, but the universal quantification is now always written
in front of all rules.

While we may need a moment for getting used to these modified syntactic
conventions, it should be noted that RIF-Core is still very similar to datalog:
variables, predicates, and logical operators are still used in exactly the same
way; they are just written in a slightly more explicit syntax. With this knowl-
edge, we are able to cast many of the previously considered datalog rules into
RIF-Core presentation syntax. If multiple rules are to be stored in one doc-
ument, they are usually separated by line breaks, though spaces would also
suffice.

Naturally it is also possible to use constant symbols for representing indi-
viduals:

Forall ?y (
ex:dislikes(ex:markus ?y) :- ex:FishProduct(?y)

)

This rule states that the individual represented by ex:markus dislikes all
fish products. RIF-Core does not require us to declare whether a URI is used
as a logical predicate or as an individual name. However, every URI must
only be used in one of these two contexts. In addition, a particular predicate
must be given the same number of parameters in all places it is used: the
arity of each predicate is fixed. If these conditions are satisfied, the RIF-Core
document is said to be well-formed . Both of the following rules are thus not
allowed in a well-formed document:

Forall ?y (
ex:dislikes(ex:dislikes ?y) :- ex:FishProduct(?y)

)

Forall ?x ?y (
ex:FishProduct(?x) :- ex:FishProduct(?x ?y)

)
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The premise of a rule in RIF-Core can be completely omitted if the result
follows without precondition, i.e. if a fact is specified:

ex:Happy(ex:markus)

Here we also do not need to specify a Forall quantifier since no variable
occurs. The implication operator :- must also be omitted in this case.

Finally, RIF-Core also supports data literals of a number of datatypes.
These are encoded in a similar fashion as in the RDF Turtle syntax which is
already familiar to us:

ex:hasName(ex:markus "Markus"^^xsd:string)

Here we assume that the namespace prefix xsd has been declared to match
the usual URI prefix of XML Schema datatypes. For the purposes of this
book, it suffices to know that such data literals in RIF are treated rather
similarly to RDF data literals, and that standard XML Schema datatypes are
compatible with RIF. A main difference is that RIF waives the distinction
between URIs and data literals: URIs are considered to be literals of a special
“datatype” rif:iri,8 and literals of other datatypes are also considered to
represent individuals (though they may never represent logical predicates).
Since RIF generalizes the notion of datatypes in RDF, the term symbol space
is used to refer to entities such as rif:iri. For us, these design choices are
not essential for understanding RIF. Yet, we should now be able to interpret
syntactic variants of RIF as illustrated in the following example:

"http://example.org/Happy"^^rif:iri(
"http://example.org/markus"^^rif:iri

)

Unifying the treatment of URIs and data literals may not improve readabil-
ity on the level of presentation syntax, but it simplifies various parts of the
specification.

6.4.2 Object-Oriented Data Structures: Frames in RIF

Even though RIF-Core is conceived as a rather small base language for RIF,
it offers various syntactic features which go beyond datalog. One such feature

8The prefix rif commonly abbreviates the URI prefix http://www.w3.org/2007/rif#.
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is so-called frames that provide a convenient syntax for specifying property
values of objects. The following example gives a simple fact, reminiscent of
the fact shown in Fig. 2.1 on page 20, encoded in a frame (assuming suitable
namespace declarations for book and crc):

book:uri[ex:publishedBy -> crc:uri]

Here, book:uri refers to an object for which attribute-value pairs are speci-
fied. When using RIF frames, we thus speak of objects, attributes, and values,
where RDF would use the terms subject, predicate, and object. These slight
differences in naming should not be a cause for confusion; the next section
will confirm that the semantics of both approaches are indeed closely related.
Syntactically, frames use the symbols [ and ] for enclosing a frame’s content,
and the operator -> for defining value assignments. Further attributes and
values can be given by simply adding assignments to the list:

book:uri[
ex:publishedBy -> crc:uri
ex:title -> "Foundations of Semantic Web Technologies"^^xsd:string

]

While the above examples are expressible in RDF, frames can also be used
in RIF rules that can be used to derive new facts. For instance, one could
define the inverse of a property as follows:

Forall ?person ?book (
?person[ex:authorOf -> ?book] :- ?book[ex:hasAuthor -> ?person]

)

Frames can freely be combined with the predicate-based formulae that we
considered before, also within a single rule. All URIs used in a frame are
considered to occur as individual names in the RIF-Core document, and can
thus also not be used as predicates.

Summing up, the frame syntax provides a simple means for specifying data
structures in an “object oriented” fashion. On the other hand, we have also
seen that frames are closely related to RDF triples, which can be encoded
along the schema

subject[predicate -> object].

This intuition of considering frames as triples will be substantiated when
considering their formal semantics in the following section.
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6.4.3 RIF-Core Semantics

In order to fully understand the meaning of a set of RIF rules, we still need
to specify its logical semantics. It has already been remarked that RIF-Core
is closely related to datalog in this matter. Since the semantics of the latter
has already been detailed in Section 6.2.2, it is sufficient to translate RIF
rules into datalog in order to specify their semantics. Strictly speaking, this
is not always possible, since our earlier presentation did not discuss the use
of data literals within datalog. But for the logical expressivity of RIF-Core it
is indeed enough to consider data literals as a special form of constants. In
other words, their given datatype does not affect the conclusions that can be
drawn in the part of RIF that we consider.

The case of frames is not quite so simple. Clearly, there is no direct coun-
terpart in datalog for this special feature. But we have remarked above that
frames essentially can be viewed as (RDF) triples. This statement bears the
insight that frames can always be decomposed into one or more statements
that have exactly three components. For example, we could rewrite the frame
expression

a[b -> c b -> d e -> f]

into a conjunction of three frame formulae

a[b -> c] a[b -> d] a[e -> f].

Encoding such triples in datalog can be done by means of an auxiliary ternary
predicate symbol that we shall simply call triple. We could now represent
the above example as the formula

triple(a, b, c) ∧ triple(a, b, d) ∧ triple(a, e, f).

This simple syntactic transformation also agrees with our earlier statement
that all URIs in frames are assumed to occur as individual names: logically
speaking, they do exactly that.

After these preliminary considerations, we are now ready to give the com-
plete transformation from RIF-Core to datalog in Fig. 6.8. The transforma-
tion function is called δ, and can be applied recursively to convert (fragments
of) RIF-Core rules to datalog. For simplicity, it is assumed that RIF identi-
fiers for objects (URIs) and variables are directly used as predicates, constant
symbols, and variable names in datalog without any further transformation.

6.4.4 XML Syntax for RIF-Core

The presentation syntax that we used for introducing RIF-Core so far is
convenient for explaining the structural and semantic features of RIF. For ex-
changing rules in information systems, however, the presentation syntax might
not be the best choice. The syntactic form that RIF suggests for encoding
rules therefore is based on XML (see Appendix A).
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RIF-Core: input datalog: δ(input)

Forall ?x1. . . ?xn (content) ∀x1. . . .∀xn.δ(content)
head :- body δ(body)→ δ(head)

And(content1 . . . contentn) δ(content1) ∧ . . . ∧ δ(contentn)

predicate(t1 . . . tn) predicate(t1, . . . , tn)

o[a1 -> v1 . . . an -> vn] triple(o, a1, v1) ∧ . . . ∧ triple(o, an, vn)

FIGURE 6.8: Transformation of RIF-Core rules to datalog

The XML syntax can easily be given by providing another translation func-
tion that maps presentation syntax to XML syntax. This function, denoted
by χ, is defined in Fig. 6.9. Note that the translation does not provide any
special handling of abbreviated URIs of the form prefix:name. Instead, it is
assumed that those abbreviations have first been expanded to literals of the
form "value"ˆˆ<datatype>, where even datatype is a complete URI and not
an abbreviation such as xsd:string. The RIF XML syntax thus is not aware
of namespaces.

The definition in Fig. 6.9 covers only single rules in presentation syntax.
To obtain complete RIF XML documents, it is also needed to translate the
Document and Group parts that enclose collections of RIF rules in presenta-
tion syntax. Given an input document of the form Document(Group(rule1

. . . rulen)), the transformation yields the following XML document:

<Document>
<payload>
<Group>
<sentence>χ(rule1)</sentence>
. . .
<sentence>χ(rulen)</sentence>

</Group>
</payload>

</Document>

For now, payload is the only kind of XML element that we consider as
content of a RIF Document. We will encounter another kind of possible child
element in Section 6.4.5 below. The direct child element of payload is Group,
which in turn contains sentence elements that contain the encodings of the
actual rules.
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RIF presentation syntax: input RIF XML syntax: χ(input)

Forall ?x1. . . ?xn (content) <Forall>
<declare>χ(?x1)</declare>
. . .
<declare>χ(?xn)</declare>
<formula>χ(content)</formula>

</Forall>

head :- body <Implies>
<if>χ(body)</if>
<then>χ(head)</then>

</Implies>

And(content1 . . . contentn) <And>
<formula>χ(content1)</formula>
. . .
<formula>χ(contentn)</formula>

</And>

predicate(t1 . . . tn) <Atom>
<op>χ(predicate)</op>
<args ordered="yes">

χ(t1)
. . .
χ(tn)

</args>
</Atom>

o[a1 -> v1 . . . an -> vn] <Frame>
<object>χ(o)</object>
<slot ordered="yes">

χ(a1)
χ(v1)

</slot>
. . .
<slot ordered="yes">

χ(an)
χ(vn)

</slot>
</Frame>

"literal"ˆˆdatatype <Const type="datatype">literal</Const>
?variablename <Var>variablename</Var>

FIGURE 6.9: Transformation of RIF presentation syntax to XML syntax
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This completes the translation of RIF-Core into XML syntax. We imme-
diately see that this syntactic form is much more verbose than the functional
presentation syntax. But even for an XML serialization, RIF XML syntax
appears to be rather verbose. The reason for this is that the syntax follows
a strict translation pattern using two kinds of XML tags: tags starting with
upper case letters represent so-called type tags, and tags written lower case
represent role tags. The two kinds of tags always alternate, so that each func-
tion symbol of the BLD presentation syntax introduces two levels of XML.
This way of designing an XML syntax is called alternating or fully striped. It
necessarily leads to XML that is rather lengthy, but it also is a very regular
encoding that allows for simple implementations. Also note that, in contrast
to RDF, RIF never uses identifiers of semantic objects as names of XML tags.
This avoids some of the unpleasant encoding problems that RDF/XML has
to cope with (cf. Section 2.2.4).

6.4.5 Combining RIF with OWL DL

Since we have identified RIF-Core to be a semantic extension of datalog,
we can readily apply the results of Section 6.3 to combine RIF rule bases
with OWL DL. RIF, however, also provides specific support for doing this.
In particular, RIF provides a mechanism for indicating that a certain OWL
ontology is to be imported into a rule base, and it provides an official specifica-
tion of the semantics of this import. As we will see, RIF’s syntactic approach
of integrating OWL is slightly different from our datalog OWL integration:
instead of considering OWL class and property names as unary and binary
predicates, respectively, RIF uses frame formulae to represent OWL axioms.

Importing OWL DL ontologies into RIF documents is achieved by extending
the Document declaration with Import statements as follows:

Document(
Import(

<location>
<http://www.w3.org/2007/rif-import-profile#OWL-DL>

)
. . .

)

In this declaration, location is a URL that specifies where the imported OWL
ontology can be found. The second URI in the import clause states that the
imported knowledge base is to be interpreted as an OWL DL ontology. This
suffices to indicate that the given ontology is to be taken into account when
computing consequences of the RIF-Core rule base. Extending the trans-
formation function χ from Fig. 6.9, the above RIF fragment in presentation
syntax is converted to the following XML expression:

<Document>
<directive>
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<Import>
<location>χ("location"ˆˆ<rif:iri>)</location>
<profile>χ("http://...#OWL-DL"ˆˆ<rif:iri>)</profile>

</Import>
</directive>
. . .

</Document>

Note that, strictly speaking, the QNames rif:iri must be replaced by full
URIs before the transformation χ is applied.

RIF and OWL use different ways of encoding axioms, and even slightly dif-
ferent ways of referring to predicates and individual names. Hence, RIF must
also specify how exactly the OWL and RIF parts of a combined knowledge
base interact. Recall that, in Section 6.3, we have achieved such an interac-
tion by assuming that OWL class and property names can be used as unary
and binary predicates in datalog. Our semantic integration thus was built
upon the observation that OWL and datalog, in essence, are both fragments
of first-order logic that have a natural common semantic interpretation.

The approach taken in RIF is slightly different, even though it is still based
on the same idea. The main difference is that a description logic property
statement of the form

predicate(subject,object)

is now considered to correspond to a frame formula

subject[predicate -> object].

This approach emphasizes the relationship of OWL DL and RDF, and indeed
it was chosen in order to obtain a more uniform way of integrating both
RDF and OWL with RIF. This also dictates our treatment of class inclusions,
which are represented in RDF as triples with predicate rdf:type. Thus, class
membership assertions such as

Class(member)

are now represented by statements of the form

member[rdf:type -> Class].

In practice, these differences from our earlier integration method do not im-
pose major difficulties, since we may simply replace datalog atoms of the
former shape by the corresponding frame formulae. As an example, Fig. 6.10
shows RIF-Core rules that correspond to the first three rules in Fig. 6.1, re-
formatted to interpret all former datalog predicates as OWL elements based
on the frame notation.

From a logical perspective, this integration of OWL and RIF may appear
slightly odd. Property and class names that play the role of logical predicates
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Forall ?x ?y (
?x[ex:dislikes -> ?y] :-

And ( ?x[rdf:type ex:Vegetarian] ?y[rdf:type ex:FishProduct] )
)

Forall ?x ?y (
?x[rdf:type ex:Unhappy] :-

And ( ?x[ex:orderedDish ?y] ?x[ex:dislikes ?y] )
)

Forall ?x ?y ( ?y[rdf:type ex:Dish] :- ?x[ex:orderedDish ?y] )

FIGURE 6.10: Example RIF-Core rules, formatted for OWL-RIF integra-
tion

in OWL do now correspond to constant symbols in RIF-Core. Does this not
violate the type separation in first-order logic that strictly separates constants
from predicates? In a way it does, but the problem is easily fixed with the
punning method that was first introduced in Section 4.3.1. This means that,
given an OWL class or property name n, we simply consider the predicate n
and the constant n to be two distinct entities. In first-order logic, it is always
clear from the context whether n is used in one or the other sense. So, strictly
speaking, the RIF-Core part always refers to n as constants, while the OWL
part uses n in the sense of a first-order predicate.

This alone would leave us with a rather weak form of integration, where
rules and ontologies hardly interact. The expected interchange between both
worlds can be expressed by first-order logic axioms of the following forms:

• ∀x.∀y.triple(x, p, y)↔ p(x, y) (for all OWL property names p)

• ∀x.∀y.triple(x, rdf:type, c)↔ c(x) (for all OWL class names c)

Recall that triple is the auxiliary predicate symbol that we use to encode
frame formulae as in Section 6.4.3. The above axioms make a semantic con-
nection between constant names in RIF frame formulae and class or property
names in OWL axioms. The two kinds of axioms provide us with a simple
way to explain the semantics of combinations of RIF and OWL by means of a
translation to first-order logic. While this approach provides us with a com-
mon semantic framework for many Semantic Web languages, optimized tools
typically have this semantics built into their reasoning algorithms instead of
considering the above first-order axioms explicitly.

Like our earlier discussions in this chapter, the above does not consider
the use of data literals in OWL or RIF. Many datatypes cannot be faithfully
modeled in first-order logic, and their interpretation thus would require a
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corresponding extension of this semantic framework. The result would be
a first-order logic in which datatype literals are available, and behave in a
similar way as in RDF and OWL. The translation then can mostly be achieved
by treating literals as a new special kind of logical constants, with minor
adjustments to ensure compatibility between the slightly different datatype
systems of RIF and OWL. The technical details are omitted here, since they
contribute little to the overall understanding of RIF and OWL.

6.4.6 Combining RIF with RDF(S)

The previous section also provides us with the basics for being able to
combine RIF rules with RDF data bases: the frame syntax, which appeared
slightly unwieldy when dealing with OWL DL, is a very natural choice for
representing RDF triples in RIF-Core. Yet, specifying the semantics of com-
binations of RIF and RDF poses some difficulties. The primary reason is that
the (various) RDF semantics given in Chapter 3 are not based on first-order
logic, which so far has been our primary framework for semantic integration.

We thus need to find a way of combining the model theory of RDF, with all
the semantic entailments it provides, with the first-order semantics of RIF-
Core. One way of doing this is to define a combined semantics that introduces
a new notion of model, such that each model is constituted by a first-order
logic interpretation and an RDF interpretation that suitably interact. A sim-
ilar approach is taken in the RIF documents. The downside of this solution
is that it requires us to give extended definitions to establish a new model
theory.

An alternative option is to try and define the semantics of RDF in terms of
first-order logic. This approach can also be viewed as an attempt to simulate
the RDF semantics in first-order logic. In other words, we wish to establish
an (auxiliary) first-order logic theory that produces the same conclusions that
we would obtain under the RDF semantics. We prefer this approach since it
is close in spirit to the other semantic approaches discussed in this chapter.
In addition, this perspective allows us to view RDF(S) as a formalism of first-
order logic similar to OWL DL and RIF-Core. Thus, of all Semantic Web
languages considered in this book, OWL Full remains the only one that does
not fit into this common semantic framework.9

Recall that there are multiple semantics that can be used with RDF(S). The
semantics that were discussed in Chapter 3 are simple semantics, RDF seman-
tics, and RDFS semantics. When using the RDF semantics, more conclusions
can be drawn from an RDF document than when using the simple semantics.

9This might seem surprising, given that OWL Full is sometimes, incorrectly, described
as the “union” of RDF(S) and OWL DL. But the consequences of OWL Full cannot be
described by the mere union of the consequences obtained individually from OWL DL and
RDF(S). Indeed, it is an open question whether the OWL Full semantics can be simulated
by a consistent first-order logic theory.
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The RDFS semantics allows for yet more conclusions that reflect the intended
meaning of RDFS vocabulary. Not surprisingly, this increasing strength of
the semantics for RDF(S) is also mirrored in the first-order logic axioms that
we shall employ to simulate them. Finally, additional entailments in RDF(S)
are obtained when considering the meaning of datatypes. As before, we do
not detail this aspect here.

6.4.6.1 Simple Semantics

Intuitively speaking, the simple semantics views RDF data merely as the
specification of a graph structure, without special meanings for any parts of
the RDF vocabulary. The only RDF statements that can be concluded from
an RDF graph thus essentially are its own triples, possibly “weakened” by
inserting blank nodes for URIs or literals.

This can readily be simulated in first-order logic. Indeed, the frame-based
translation used for triples in Section 6.4.5 is almost enough to achieve this.
Thus, an RDF triple

subject predicate object .

is again considered to correspond to a frame formula

subject[predicate -> object]

which eventually is represented as a first-order formula

triple(subject, predicate, object).

Though we omit the detailed treatment of literals here, we still need to specify
how blank nodes are to be treated in this case. As explained earlier, blank
nodes behave like existentially quantified variables, and in first-order logic we
can therefore simply represent them in this way.

For instance, given the triple (in Turtle notation)

ex:markus ex:orderedDish _:1 .

the corresponding first-order translation would be

∃x.triple(ex:markus, ex:orderedDish, x).

RDF triples can now be translated into first-order logic, and the triple-
formulae that are entailed by the resulting first-order theory are exactly the
triples that would be entailed under simple semantics.

Moreover, the translation allows us to combine RDF data with RIF-Core
rules based on this common semantics. To import an RDF graph under simple
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semantics, a RIF document needs to include an import declaration of the form

Import(
<location>
<http://www.w3.org/2007/rif-import-profile#Simple>

)

similar to the import declaration used for OWL DL. Imports need to indi-
cate the intended import semantics since it cannot be determined from the
imported document. An OWL DL document in RDF/XML encoding, e.g.,
could also be imported as an RDF data set under simple semantics, leading
to rather different conclusions.

6.4.6.2 RDF Semantics

The RDF semantics extends the simple semantics by ensuring proper in-
terpretations for basic RDF vocabulary. First and foremost, this is achieved
through a number of axiomatic triples, i.e. triples that must be satisfied in
any RDF interpretation. It is easy to account for such a triple in first-order
logic, using the same translation as for simple semantics. For example, the
triple

rdf:subject rdf:type rdf:Property .

yields the first-order formula

triple(rdf:subject, rdf:type, rdf:Property).

The required axiomatic triples are listed in Section 3.2.2. A closer look at this
list reveals a problem: it is infinite. Indeed, RDF requires axiomatic triples
of the form rdf:_n rdf:type rdf:Property . for all natural numbers n ≥
1 (recall that the predicates rdf:_n are used for encoding RDF containers
of arbitrary size). However, we would like to prevent our semantics from
depending on infinitely large first-order logic theories. The way to achieve this
is to restrict to axiomatic triples that are really needed for logical derivations.

Given some RDF document, we require the following axiomatic triples:

• all axiomatic triples that do not contain a URI of the form rdf:_n for
some n ≥ 1,

• all axiomatic triples of the form rdf:_n rdf:type rdf:Property . for
which rdf:_n occurs in the document.

The first item covers all triples that are not problematic. The second one
covers all axiomatic triples related to predicates rdf:_n that are really used.
When embedding RDF into RIF, the required triples in the above definition
must be extended to consider all URIs of the form rdf:_n that occur within
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the given RIF document, within any imported (RDF) document, or within
any document for which entailment is to be checked.

The first-order logic axiomatization of RDF semantics now simply needs to
translate all required axiomatic triples, which is always a finite set. Moreover,
we require one additional axiom:

∀x.∀y.∀z.
(
triple(x, y, z)→ triple(y, rdf:type, rdf:Property)

)
.

This corresponds to the derivation rule rdf1 in Section 3.3.2. This axiom
completes our first-order translation of RDF semantics, so that we can now
translate RDF documents triple-by-triple as in the case of simple semantics.
This also allows us again to interpret RDF data that is imported into RIF un-
der this semantics. The URI used in the import declaration for this semantics
is http://www.w3.org/2007/rif-import-profile#RDF.

6.4.6.3 RDFS Semantics

The RDFS semantics further extends the RDF semantics by ensuring a
proper interpretation of RDFS vocabulary. The first-order translation used in
the previous section can thus still be used, but additional axioms are needed
to account for the new entailments. RDFS again comes with a number of
axiomatic triples that are discussed in Section 3.2.3. As before, this set of
triples is infinite due to the infinite amount of container predicates rdf:_n.
We can restrict to a finite set of required axiomatic triples just like in the
previous section.

In addition, RDFS semantics includes a number of additional axioms that
are closely related to the derivation rules given in Section 3.3.3. The required
axioms are shown in Fig. 6.11, labeled to indicate the deduction rule(s) that
correspond to each axiom. The purpose of each axiom is explained with the
rules in Section 3.3.3.

Together with the required axiomatic triples and all axioms introduced for
RDF semantics, the axioms of Fig. 6.11 suffice to obtain all RDFS entailments
(without literals involved). In particular, the problem of incompleteness that
was discussed on page 100 for the deduction rules in Section 3.3.3 does not
occur in first-order logic, since we are not confined by the syntactic restrictions
of RDF for finding entailments.

When importing RDF data under the RDFS semantics into RIF, the URI
http://www.w3.org/2007/rif-import-profile#RDFS is used in the import
declaration.

6.4.7 Further Features of RIF-Core and RIF-BLD

Even the rather small rule language RIF-Core includes various further fea-
tures that have not been discussed in this chapter. The most important such
features are listed below:
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rdfs2 :
∀x.∀y.∀u.∀v.triple(x, rdfs:domain, y) ∧ triple(u, x, v)

→ triple(u, rdf:type, y)

rdfs3 :
∀x.∀y.∀u.∀v.triple(x, rdfs:range, y) ∧ triple(u, x, v)

→ triple(v, rdf:type, y)

rdfs4a, rdfs4b:
∀x.triple(x, rdf:type, rdfs:Resource)

rdfs5 :
∀x.∀y.∀z.triple(x, rdfs:subPropertyOf, y)

∧ triple(y, rdfs:subPropertyOf, z)
→ triple(x, rdfs:subPropertyOf, z)

rdfs6 :
∀x.triple(x, rdf:type, rdf:Property)

→ triple(x, rdfs:subPropertyOf, x)

rdfs7 :
∀x.∀y.∀u.∀v.triple(x, rdfs:subPropertyOf, y) ∧ triple(u, x, v)

→ triple(u, y, v)

rdfs8 :
∀x.triple(x, rdf:type, rdf:Class)

→ triple(x, rdfs:subClassOf, rdfs:Resource)

rdfs9 :
∀x.∀y.∀z.triple(x, rdfs:subClassOf, y) ∧ triple(z, rdf:type, x)

→ triple(z, rdf:type, y)

rdfs10 :
∀x.triple(x, rdf:type, rdf:Class)

→ triple(x, rdfs:subClassOf, x)

rdfs11 :
∀x.∀y.∀z.triple(x, rdfs:subClassOf, y)

∧ triple(y, rdfs:subClassOf, z)
→ triple(x, rdfs:subClassOf, z)

rdfs12 :
∀x.triple(x, rdf:type, rdfs:ContainerMembershipProperty)

→ triple(x, rdfs:subPropertyOf, rdfs:member)

rdfs13 :
∀x.triple(x, rdf:type, rdfs:Datatype)

→ triple(x, rdfs:subClassOf, rdfs:Literal)

FIGURE 6.11: Additional first-order axioms for simulating RDFS seman-
tics; initial labels refer to the corresponding deduction rule in Section 3.3.3
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• Further logical operators: Even RIF-Core supports some further logical
operators that were not introduced here. An example is the existential
quantifier Exists. The use of those operators is restricted to ensure
that they can be expressed by the basic operators we have introduced.

• Equality: RIF supports the symbol = as a predefined predicate for ex-
pressing equality. In RIF-Core, the use of equality is not allowed in rule
conclusions, however.

• Subclass and instance operators for frame formulae: RIF offers binary
operators # and ## that can be used to express relations between con-
stants similar to rdf:type and rdfs:subclassOf. At the time of the
writing of this book, these features are considered to be “at risk” for
RIF-Core; they will most certainly be available in RIF-BLD, however.

• Externally defined symbols: RIF enables the use of symbols that are
defined “externally”, i.e. which have a semantics that is not (completely)
determined by the RIF rule base at hand. Typical examples of this are
the “built-ins” of some logic programming languages, e.g., predicates
that express arithmetic operations on their arguments.

• Local symbols: RIF allows the use of symbols that are “local” to the
current document, i.e. which do not have the universal meaning that
URIs have. Such local symbols can be compared to blank nodes in
RDF, but they are semantically treated as simple constants, not as
existentially quantified variables.

• RIF Imports: Import declarations have been introduced for the purpose
of using OWL ontologies and RDF data, respectively, in combination
with RIF. In addition, RIF also allows the import of other RIF docu-
ments.

• OWL Full compatibility: RIF-Core can be combined with OWL Full.
Since there is no (known) mapping of OWL Full to first-order logic,
the semantics for this combination needs to be specified by providing a
new model theory for this combination. As in the case of OWL Full,
it is not known whether this combined model theory is free of logical
contradictions.

Moreover, RIF-BLD adds further features:

• Equality: RIF-BLD allows for the use of equality in rule conclusions.

• Predicates with named arguments: The atomic RIF formulae in this
chapter have always used a list of arguments with a fixed length (arity).
In this case, the order of arguments determines their meaning. RIF
supports an alternative syntax where predicate arguments are referred
to by names: Each predicate receives a set of name-value pairs that
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denote a parameter “slot” and its value. The order is not relevant in
this case, since the slot name determines the meaning of the filler.

• Function symbols: As mentioned before, RIF-BLD supports function
symbols that can be used to form complex terms instead of plain con-
stant and variable symbols. As in the case of predicates, parameters
can be given to a function symbol either as an ordered list, or as a set
of name-value pairs.

Of those additions, the introduction of function symbols is the main se-
mantic extension. Due to this addition, reasoning becomes undecidable for
RIF-BLD, while it is decidable for RIF-Core. Note that the latter result may
also be lost if OWL DL ontologies are imported into a RIF document. The
discussion in Section 6.3 shows ways of avoiding this by means of Description
Logic Rules and DL-safe rules. Both concepts can readily be adopted for RIF.

6.5 Summary

In this chapter, we have discussed rules as an alternative way of specifying
knowledge. After a brief introduction to the rather diverse notions of “rule”
that are considered in knowledge representation, we have specifically focused
on first-order logic rules which are relevant as a basic formalism in a num-
ber of approaches. We then focused on the basic first-order rule language
datalog and its possible combination with description logics, leading us to a
highly expressive (and undecidable) knowledge representation language. Two
decidable fragments of this language were presented. Description Logic Rules
are based on the idea of exploiting “hidden” expressivity of the description
logic SROIQ – the basic logic used in OWL 2 DL – for encoding rules. The
second decidable fragment, DL-safe rules, approaches the problem by restrict-
ing the applicability of datalog rules to the comparatively small set of named
individuals.

These discussions have clarified the semantics of a combination of data-
log rules and description logic axioms. To actually use such combinations
in practical applications, a machine-processable syntax with a clearly defined
meaning is required. For this purpose, we have introduced the Rule Inter-
change Format (RIF), and in particular its most simple fragment RIF-Core
that is closely related to datalog. We have seen that RIF offers specific import
mechanisms to combine rules with ontologies in OWL (2) DL format. Since
the latter semantically correspond to description logic knowledge bases, this
enabled us to encode (fragments of) the presented datalog/description logic
combination within RIF. Besides such highly expressive mergers of ontologies
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and rules, it can also be useful to apply RIF rules to RDF database. To this
end, we have introduced a first-order formulation of the RDF(S) semantics
that is compatible with the semantics of datalog. The meaning of importing
RDF(S) into RIF-Core could thus be defined using the same framework of
first-order logic that has enabled us to combine RIF with OWL DL.

6.6 Exercises

Exercise 6.1 Decide for each of the following predicate logic formulae if it
can be syntactically translated into a datalog rule. Note that father and
mother are function symbols.

1. Intelligent(x)→ Proud(father(x)) ∨ Proud(mother(x))

2. Intelligent(x) ∨ (knows(x, y) ∧ Intelligent(y))→ Clever(x)

3. Sailor(x) ∧ Spinach(y) ∧ loves(x, y) ∧ loves(x, olive_oyl)
→ Little(x) ∧ Strong(x)

4. (Intelligent(x) ∨ Old(x)) ∧ ∃y.(marriedWith(x, y))
→ (Wise(x) ∧ Bald(x)) ∨ ¬Male(x)

Exercise 6.2 Express the following in SROIQ.

1. D(y) ∧ C(x) ∧ r(x, y)→ E(x)

2. r(x, x)→ s(x, y)

3. C(x) ∧D(y) ∧ E(z) ∧ r(z, x)→ s(x, y)

Exercise 6.3 Translate the rules from Exercise 6.1 into SROIQ whenever
possible.

Exercise 6.4 Translate the knowledge bases from Exercises 5.4, 5.7, and 5.11
into DL rules. Use as few class constructors as possible. Identify which of the
resulting rules are datalog rules.

Exercise 6.5 Translate the datalog rules you identified in Exercise 6.4 into
RIF presentation syntax.

Exercise 6.6 Translate the first rule from Exercise 6.5 into RIF XML syntax.
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Exercise 6.7 We have seen that the datalog rule

orderedDish(x, y) ∧ dislikes(x, y)→ Unhappy(x)

from Fig. 6.1 is not a Description Logic Rule. Consider the following set of
description logic axioms, where RUnhappy is a new role name:

Unhappy ≡ ∃RUnhappy.Self

orderedDish ◦ dislikes− v RUnhappy

1. Explain why this set of axioms can be used to simulate the above rule
under the usual description logic semantics.

2. Why is it not possible to use this translation in SROIQ? (Hint: Review
the syntactic restrictions explained in Section 5.1.4.)

6.7 Further Reading

A comprehensive textbook reference for datalog is [AHV94]. The combi-
nation of OWL DL and datalog was originally proposed in [HPS04]. This
subsequently led to the W3C Member Submission on the Semantic Web Rule
Language [HPSB+04], which is also known as SWRL (pronounced as swirl).
Conceptually, this language is essentially the same as the combination of data-
log and OWL that we discussed in Section 6.3, and indeed it is common to use
the term “SWRL” in the literature to refer to first-order combinations of data-
log and description logics in general. However, the original proposal of SWRL
also includes a number of built-in functions for handling datatype values, and
it uses an XML-based syntax that is rather different from the RIF syntax that
we have introduced. The undecidability of SWRL is shown in [HPSBT05], but
can in fact be obtained in many ways: a variety of well-known undecidable
extensions of OWL DL can easily be encoded using SWRL. An early example
is found in [SS89] where undecidability of KL-ONE [BS85] – a predecessor of
today’s description logics – was shown.

A first approach for reconciling OWL and rules in a decidable fashion was
dubbed Description Logic Programming (DLP) and is discussed in [GHVD03].
In contrast to the approaches considered in this chapter, DLP is a common
subset of both OWL DL and datalog, and thus it is strictly weaker than either
formalism. Description Logic Rules were first introduced in [KRH08a], and
a related extension toward computationally tractable ontology languages is
studied in [KRH08b]. DL-safe rules were presented in [MSS05], where they
were introduced as part of the KAON2 system.

The essential documents of the RIF specification are
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• “RIF Core” [BHK+08], where the core language discussed above is de-
fined,

• “RIF Basic Logic Dialect” [BK08a], which defines syntax and semantics
of RIF-BLD upon which the definition of RIF-Core is based,

• “RIF RDF and OWL Compatibility” [dB08], where the semantics for
importing OWL and RDF into RIF-BLD are described,

• “RIF Datatypes and Built-Ins 1.0” [PBK08], which defines RIF’s ba-
sic datatype system and the symbols spaces that are used for constant
symbols,

• “RIF Framework for Logic Dialects” [BK08b], which specifies a frame-
work for guiding the definition of future logic-based RIF dialects,

• “RIF Production Rule Dialect” [dSMPH08], which defines the basic pro-
duction rule language of RIF.

Besides the close integration of rules and ontologies presented in this chap-
ter, there are further approaches of combining some forms of rule languages
with OWL or with description logics in general. Many of those approaches
consider rules in the sense of logic programming (see [Llo88] for a textbook
introduction), focusing specifically on the non-monotonic inferencing features
of the latter. Some noteworthy approaches are discussed in [MR07, MHRS06,
Ros06, ELST04, DLNS98, MKH08]. This field of research also closely relates
to the study of non-monotonic operators in description logics (independently
of particular rule languages); further literature on this topic can be found in
the references given in the above works.

Finally, various rather different approaches to rule-based modeling have
been mentioned in Section 6.1. The most well-known logic programming
language, Prolog, has been officially standardized by the International Or-
ganization for Standardization (ISO) in the standard ISO/IEC 13211. This
document is not freely accessible online; a guide to the standard is given in
the reference manual [DEDC96]. More application-oriented introductions to
Prolog are given in [Clo03] and [CM03], while Prolog’s theoretical founda-
tions are elaborated in [Llo88]. Various other logic programming semantics
have been proposed as alternatives or extensions to pure Prolog. An overview
is given in [DEGV01], where many different logic programming formalisms
are compared with respect to their expressivity and computational complex-
ity. In particular, this article also discusses the computational complexity of
datalog. Another logic programming based approach to knowledge represen-
tation is F-Logic [KLW95], which can be viewed as a predecessor of various
rule dialects that are now developed in RIF. In particular, the frame notation
is closely related to the syntactic features of F-Logic.
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Logic programming has many commonalities with first-order logic, such as
the use of a declarative semantics based on model theory. The area of pro-
duction rules, in contrast, takes a rather different approach where semantics
emerges from the (often partial and informal) specification of evaluation algo-
rithms. This operational view closely connects semantics to implementation,
and different production rule engines typically implement different rule lan-
guages. A popular system and rule language is CLIPS [GR04], an extended
version of which is supported by Jess [Hil03]. Various kinds of production
rules are used in a variety of other systems such as JBoss Rules10 (formerly
Drools), Soar,11 Jeops,12 or even the business rule engine in Microsoft BizTalk
Server.13 While the rule languages supported by those systems may be very
different, many of them are based on an evaluation strategy known as the
Rete Algorithm, which was introduced in [For82].

10http://www.jboss.org/drools/
11http://sitemaker.umich.edu/soar
12http://www.di.ufpe.br/˜jeops/
13http://www.microsoft.com/biztalk/



Chapter 7

Query Languages

In previous chapters, we learned about a number of possibilities for specifying
information in a machine-readable way. RDF allows us to structure and relate
pieces of information, and RDFS and OWL introduced further expressive
means for describing more complex logical relations. The latter was further
extended by means of logical rules that could be combined with OWL. For
each of those description languages, we also introduced a notion of logical
entailment: RDF(S) documents may entail other documents (Chapter 3),
and OWL knowledge bases – possibly augmented with rules – can imply new
axioms (Chapters 4, 5, 6).

But how exactly are we going to access in practice information which is thus
specified? In principle, logical conclusions can be used for this purpose as well.
As an example, one can query whether a knowledge base logically entails that
the book “Foundations of Semantic Web Technologies” was published by CRC
Press. To this end, one could cast the question into a triple like the following:

<http://semantic-web-book.org/uri>
<http://example.org/publishedBy> <http://crc-press.com/uri> .

An RDF processing tool now could check whether the RDF graph consti-
tuted by this single triple is actually entailed by a given RDF document. This
approach can be used to formulate a number of queries, using RDF or OWL
as the basic query language the semantics of which is clearly specified by the
established semantics of these languages.

In practice, however, much more is often required. On the one hand, only a
rather restricted set of questions can be asked, especially in simple formalisms
such as RDF. We will see in this chapter that there are a number of interesting
questions that cannot be expressed in either RDF or OWL. On the other
hand, retrieving information from a knowledge base is not just a question
of query expressivity, but must also address practical requirements such as
post-processing and formatting of results. Typically a large knowledge base
is not queried for all instances of a given class, but only for a limited number.
Moreover, it is sometimes desirable to filter results using criteria that are not
represented in the logical semantics of the underlying language. For instance,
one might look for all English language literals specified in an RDF document
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– but language information in RDF is an internal feature of single literals,
and has no separate representation that could be queried in RDF.

In this chapter, we have a closer look at some important query languages for
RDF and OWL. For RDF, this query language is SPARQL, while for OWL DL
we have to be content with so-called conjunctive queries as a basic formalism
that is not part of a standardized query language yet. We will see that the
latter is also closely related to the kind of rules introduced in Chapter 6.

7.1 SPARQL: Query Language for RDF

SPARQL (pronounced as sparkle) denotes the SPARQL Protocol and RDF
Query Language,1 a rather young standard for querying RDF-based informa-
tion and for representing the results. The core of SPARQL are simple queries
in the form of simple graph patterns, similar to the initial query example
in this chapter. On top of that, SPARQL provides a number of advanced
functions for constructing advanced query patterns, for stating additional fil-
tering conditions, and for formatting the final output. In this chapter, we
only consider the SPARQL query language as the core of the formalism – the
SPARQL protocol for communicating queries, and the SPARQL result format
for representing query results in XML are not detailed. Readers familiar with
SQL will notice many similarities in SPARQL’s syntax and usage. It should
not be overlooked that both languages are still fundamentally different since
they operate on very different data structures.

7.1.1 Simple SPARQL Queries

SPARQL is conceived as a query language for (RDF) graphs, and accord-
ingly simple RDF graphs are used as fundamental query patterns. Such query
graphs, in essence, are represented using the Turtle syntax. SPARQL addi-
tionally introduces query variables to specify parts of a query pattern that
should be retrieved as a result. Furthermore, each query specifies how results
should be formatted. Let us now consider the following example:

PREFIX ex: <http://example.org/>
SELECT ?title ?author
WHERE { ?book ex:publishedBy <http://crc-press.com/uri> .

?book ex:title ?title .
?book ex:author ?author }

1A “recursive acronym.”
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This query consists of three major parts, denoted by the upper-case key
words PREFIX, SELECT, and WHERE. The key word PREFIX declares a namespace
prefix, similar to @prefix in Turtle notation. In SPARQL, however, no full
stop is required to finish the declaration.

The key word SELECT determines the general result format – we will en-
counter further possible formats later on. The statements after SELECT refer
to the remainder of the query: the listed names are identifiers of variables
for which return values are to be retrieved. Consequently, the above query
returns all values for the variables ?title and ?author.

The actual query is initiated by the key word WHERE. It is followed by a
simple graph pattern, enclosed in curly braces. In our case, it consists of
three triples in Turtle notation. A particular difference from Turtle is the fact
that the triples may contain not only URIs and QNames, but also variable
identifiers such as ?book. Intuitively speaking, these identifiers represent
possible concrete values that are to be obtained in the process of answering
the query. As our example shows, variables can be used in multiple places to
express that the same value must be used in those positions. Another minor
difference from Turtle is that not all triples need to be finished with a full stop
– this symbol is rather used as a separator between triples. Yet a final full
stop could well be added to the query pattern without changing the query’s
meaning.

Summing up, we can thus say that the above query retrieves all things that
have been published by CRC Press, and for which both title and author are
known. For building the final result, (pairs of) title and author are selected in
each case. A concrete RDF document is required to see the practical effects
of this query, so let us consider the following:

@prefix ex: <http://example.org/> .
@prefix book: <http://semantic-web-book.org/uri/> .
ex:SemanticWeb ex:publishedBy <http://crc-press.com/uri> ;

ex:title "Foundations of Semantic Web Technologies" ;
ex:author book:Hitzler, book:Krötzsch, book:Rudolph .

For this document, the example query would retrieve the following result
where we abbreviate the title for reasons of space:

title author
"Foundations of . . . " http://semantic-web-book.org/uri/Hitzler
"Foundations of . . . " http://semantic-web-book.org/uri/Krötzsch
"Foundations of . . . " http://semantic-web-book.org/uri/Rudolph

As we can see, the use of SELECT creates a query output that is a table. To
preserve the tabular structure it is required to include certain result values (the
title in our case) multiple times. Moreover, we find that the result contains
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values only for those variables that have been mentioned explicitly in the
SELECT line. The variable ?book, in contrast, is part of the query but has not
been selected for the result. We will discuss the available result formats in
SPARQL in greater detail later on, including some alternatives to SELECT.

7.1.2 Simple Graph Patterns: Triples and Variables

A simple graph pattern has been used in the above example to describe
the sought information. In general, simple graph patterns may represent ar-
bitrary RDF graphs that should be searched in the given data set. SPARQL’s
assumptions on the semantics of the underlying knowledge base are rather
weak, and only simple RDF entailment is taken into account. In particular,
neither RDFS nor OWL is directly supported. Simple graph patterns without
a specific semantics thus play a major role in SPARQL.

We are already quite familiar with the basic syntax of simple graph patterns,
since it is largely similar to the Turtle syntax for RDF. This also includes Tur-
tle’s abbreviations with semicolon and comma, as well as the specific ways of
encoding blank nodes and RDF collections. Thus we can already formulate a
number of interesting queries without learning any new syntax. Yet, SPARQL
also extends Turtle in various ways which will be detailed in this section.

First of all, variables are clearly an important ingredient of most queries.
Those specific identifiers are distinguished by the initial symbol ? or $, fol-
lowed by a sequence of numbers, letters, and various admissible special sym-
bols such as the underscore. The special symbol ? or $ at the beginning of
variable identifiers is not part of the actual variable name, such that, e.g.,
the identifiers ?author and $author refer to the same variable. The choice
of variable names is of course arbitrary and has no impact on the meaning of
the query – yet it is advisable to pick a suggestive name like ?title instead
of the (formally equivalent) name ?_02ft.

Variables may appear as the subject and object in a triple, but also as
a predicate. The next query, e.g., retrieves all known relations between the
given URIs. Here we use a base namespace for abbreviating the query, similar
to the way we have used xml:base in RDF/XML. Identifiers that lack a
protocol part, such as <uri> below, are interpreted by appending them to the
base URI:

BASE <http://semantic-web-book.org/>
SELECT ?relation
WHERE { <uri> ?relation <http://crc-press.com/uri> }

Based on our earlier example document, this query would result in a table
with the URI http://example.org/publishedBy as its only entry. As in
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Turtle, we may use line breaks and spaces rather freely in order to improve
query readability.

Besides the use of variables, another peculiarity of SPARQL is the fact
that literals are allowed to appear as the subjects of triples. This possibility
was included to account for possible future extensions of RDF. For current
documents, simple RDF entailment can never lead to such a triple being
deduced, and hence queries with literal subjects would simply fail.

7.1.3 Blank Nodes in SPARQL

Blank nodes in SPARQL again deserve special consideration. On the one
hand, it must be clarified what exactly a blank node means within a graph
pattern. On the other hand, we may ask whether a blank node may appear
in a query result, and how it should be understood in this case.

As in Turtle, blank nodes are of course allowed to occur as the subjects or
objects of triples. When processing a query, they are treated like variables, i.e.,
they can be replaced by arbitrary elements of the given RDF graph. However,
those replacements do not belong to the result of the query, and blank nodes
cannot be chosen with SELECT. Using bnode IDs as in RDF, it is possible to
ensure that multiple bnodes (of the same ID) refer to the same element. In
contrast, a bnode ID that was once used in a simple graph pattern may not
be used again in another graph pattern of the same query – this restriction
will only become relevant later on when dealing with queries that comprise
more than one simple graph pattern.

Besides the use of bnodes in queries, it may also happen that SPARQL
returns blank nodes as part of a result. In other words, query variables might
be instantiated by blank nodes. This situation is simply a consequence of
the graph-oriented semantics of SPARQL. As we shall see below, SPARQL
retrieves results essentially by looking for sub-graphs in the given RDF docu-
ment. These graphs of course may contain blank nodes, which can be repre-
sented in the result only by means of blank nodes.

But how exactly are bnodes in SPARQL results to be interpreted? Most
importantly, they only assert the existence of a corresponding element in the
input graph, but they do not provide any information about the identity of this
element. This does not preclude bnodes in results from having IDs – we will
explain below why those may indeed be required to preserve some information
in the result – but those IDs are not determined by the IDs occurring in the
input graph. In other words, it is purely coincidental if a returned blank node
uses an ID that is also occurring within the given RDF document or query.

If, however, multiple blank nodes in a query result are using the same ID,
then it is certain that they do indeed refer to the same element. This might
occur, e.g., if an auxiliary node that was introduced for an RDF container is
connected to multiple elements. The individual table rows of a query result
are thus not independent with respect to the bnode IDs they are using. These
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considerations also have some interesting ramifications for comparing results.
Consider, e.g., the following three result tables:

subj value
_:a "for"
_:b "example"

subj value
_:y "for"
_:g "example"

subj value
_:z "for"
_:z "example"

The first two result tables are completely equivalent, since renaming blank
nodes is not significant. The last result, in contrast, is different from both
other results, since it specifies that the same blank node occurs in both rows.

7.1.4 Complex Graph Patterns: Groups, Options, and Al-
ternatives

SPARQL allows us to build complex graph patterns from multiple simple
ones. Such a compound pattern is generally referred to as a group graph
pattern. Group patterns can be used to restrict the scope of query conditions
to certain parts of the pattern. Moreover, it is possible to define sub-patterns
as being optional, or to provide multiple alternative patterns.

The main prerequisite for those applications is the possibility of separating
multiple simple patterns from each other. Curly braces are used for this
purpose in SPARQL. Indeed, we have already used this syntax in all of our
earlier query examples, where single simple graph patterns have been enclosed
in curly braces. We have thus produced a very basic group pattern containing
a single simple pattern. It is also possible to represent such simple queries as
a group of multiple simple patterns, though this will not affect the meaning
of the query. The following query, e.g., corresponds to the previous example
that featured only the outermost braces:

PREFIX ex: <http://example.org/>
SELECT ?title ?author
WHERE { { ?book ex:publishedBy <http://crc-press.com/uri> .

?book ex:title ?title }
{ }
?book ex:author ?author

}

This example contains a group pattern with three elements: first another
group pattern containing a simple pattern of two triples, second an empty
group pattern, and third a simple graph pattern with a single triple. Empty
group patterns are allowed but of little use – their only effect is in separating
multiple simple patterns.

Dividing patterns in separate groups becomes interesting when additional
expressive features are added. A first option for doing this is the specification
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of optional patterns. Such patterns are indicated by the key word OPTIONAL.
Optional patterns are not required to occur in all retrieved results, but if
they are found, may produce bindings of variables and thus extend the query
result. The next pattern, e.g., matches all books of CRC Press for which a
title is provided. The authors of each book are retrieved if given, but not all
results need to have specified authors.

{ ?book ex:publishedBy <http://crc-press.com/uri> .
?book ex:title ?title .
OPTIONAL { ?book ex:author ?author }

}

As this example suggests, OPTIONAL refers to the subsequent group pattern.
In general, every occurrence of OPTIONAL must be followed by a group pattern,
which is exactly that pattern that the key word refers to. A new aspect of
optional patterns is the fact that variables in query results might possibly be
unbound. In our example this applies to the variable ?author to which a value
is assigned only in cases where the optional pattern is found. If a variable is
not bound for a particular result, the corresponding cell in the result table is
simply left empty. Note that this is clearly not the same as if a blank node
occurs in the result: a blank node indicates the existence of an element that
was not specified further, while an unbound variable expresses the lack of any
matching element. Even if the input data provides only a blank node to refer
to some author in the above example, the variable ?author would still be
bound to a value. The query therefore does not just retrieve authors that are
identified by some URI. Below, we will consider filters that can be used to
impose further constraints on result values to realize even such queries.

A query may easily contain multiple optional patterns that are checked in-
dependently. The following example shows such a pattern together with a
possible result table that shows some of the situations that might be encoun-
tered in a real data set.

{ ?book ex:publishedBy <http://crc-press.com/uri> .
OPTIONAL { ?book ex:title ?title }
OPTIONAL { ?book ex:author ?author }

}

book title author
http://example.org/book1 "Title1" http://example.org/author1
http://example.org/book2 "Title2"
http://example.org/book3 "Title3" _:a
http://example.org/book4 _:a
http://example.org/book5
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Group graph patterns are not only used for representing optional patterns,
but also for specifying multiple alternative patterns. This is accomplished
by means of the key word UNION that can be used to join patterns. This
expression is closely related to logical disjunction: every result must match at
least one of the provided alternative patterns, but it might well match more
than one (i.e. UNION is not an exclusive or). The following example shows a
pattern with two alternatives:

{ ?book ex:publishedBy <http://crc-press.com/uri> .
{ ?book ex:author ?author . } UNION
{ ?book ex:writer ?author . }

}

Here we have used two alternatives to account for multiple URIs that might
possibly be used to refer to the author of a book. An important aspect of
alternative patterns is that the individual parts are processed independently
of each other. This means that the fact that both alternative patterns refer to
the same variable ?author does not impose any additional restrictions. The
results of the query are obtained by taking the union of the results of two
separate queries of the form

{ ?book ex:publishedBy <http://crc-press.com/uri> .
{ ?book ex:author ?author . }

}

and

{ ?book ex:publishedBy <http://crc-press.com/uri> .
{ ?book ex:writer ?author . }

}

As in the case of OPTIONAL, the key word UNION can be used more than
once to combine the results of multiple alternative patterns. When combining
OPTIONAL and UNION, it is important to know exactly how individual patterns
are grouped. This is illustrated by the following example:

{ ?book ex:publishedBy <http://crc-press.com/uri> .
{ ?book ex:author ?author . } UNION
{ ?book ex:writer ?author . } OPTIONAL
{ ?author ex:lastName ?name . }

}
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This query could allow for two possible interpretations. One possibility is
that OPTIONAL refers to the entire preceding pattern, such that an optional
name is sought for all results that match the first part of the query. Alter-
natively, it might be that UNION refers to the entire following pattern, such
that the OPTIONAL pattern is merely a part of the second alternative pattern;
then the optional name would only be sought for authors that were found to
be the object of ex:writer. SPARQL specifies the first of these two options
as the correct interpretation, so the above example could also be formulated
as follows:

{ ?book ex:publishedBy <http://crc-press.com/uri> .
{ { ?book ex:author ?author . } UNION

{ ?book ex:writer ?author . }
} OPTIONAL { ?author ex:lastName ?name . }

}

A few simple rules can be used to determine the correct interpretation in
arbitrary cases. First we may observe that both UNION and OPTIONAL refer to
two patterns: a preceding and a succeeding one. For OPTIONAL this may at
first be a little surprising, but the previous example should have illustrated
why it is relevant to know the preceding pattern in this case as well. Both key
words thus are binary operators. The following rules unambiguously describe
how to correctly interpret their combination:

1. OPTIONAL always refers to exactly one group graph pattern immediately
to its right.

2. OPTIONAL and UNION are left-associative, and none of the operators has
precedence over the other.

Being left-associative means that each operator refers to all of the expres-
sions that are found to its left within the same group pattern. The fact that
there is no further precedence merely states that the order of the operators
is indeed all that has to be considered. A well-known example where this is
not the case iw multiplication and addition, where the former has precedence
over the latter. Thus, we can put braces in query patterns by starting from
the rightmost operator and grouping all patterns found to its left (within the
same group, of course). The next example illustrates this:

{ {s1 p1 o1} OPTIONAL {s2 p2 o2} UNION {s3 p3 o3}
OPTIONAL {s4 p4 o4} OPTIONAL {s5 p5 o5}

}
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Grouping these patterns explicitly thus results in the following:

{ { { { {s1 p1 o1} OPTIONAL {s2 p2 o2}
} UNION {s3 p3 o3}

} OPTIONAL {s4 p4 o4}
} OPTIONAL {s5 p5 o5}

}

By left-associativity, each operator indeed refers to all preceding patterns.
It is not hard to see that an alternative, right-associative way of grouping
patterns would be far less natural, since it would lead to nested optional
patterns.

7.1.5 Queries with Data Values

A number of different datatypes can be used in RDF, and especially many
datatypes of XML Schema are available. Naturally, querying for typed and
untyped RDF literals is particularly important in SPARQL as well. It is, how-
ever, necessary to distinguish between the various possible forms of literals and
datatypes, such that a number of specific situations can occur. The follow-
ing RDF document recalls the various kinds of literals that were discussed in
Section 2.3.1:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example.org/> .
ex:s1 ex:p "test" .
ex:s2 ex:p "test"^^xsd:string .
ex:s3 ex:p "test"@en .
ex:s4 ex:p "42"^^xsd:integer .
ex:s5 ex:p "test"^^<http://example.org/datatype1>" .

The example shows an untyped literal, a literal of type xsd:string, an
untyped literal with language setting en, a literal of type xsd:integer, and
finally a literal with a custom datatype – as mentioned earlier, RDF does not
require datatypes to stem from XML Schema only, and arbitrary URIs may
be used to denote further types.

We will look at various example queries based on this input document. Let
us first consider the following query pattern:

{ ?subject <http://example.org/p> "test" . }
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What results could be expected from a query based on this pattern? The
input data for ex:s1, ex:s2, and ex:s3 all seem to match the pattern to
some extent, at least from a user perspective. As explained in Section 2.3.2,
however, RDF strictly distinguishes typed and untyped literals, and literals
with and without language setting. Hence, the property values for the three
resources are different with respect to the simple RDF semantics, and the
above query would indeed return ex:s1 as its only result. This behavior
can of course be confusing, since the various literals do still appear rather
similar. In addition, language settings in RDF/XML can be inherited, such
that certain untyped literals might receive some language setting that was
specified on a higher level, even if they have not been assigned such a setting
explicitly. Language settings are not merely additional pieces of information,
but rather lead to a completely different semantic interpretation that must
also be taken into account when querying. To obtain ex:s2 or ex:s3 in query
results, one would thus need to formulate different queries, using the exact
representation of the literal values used in the input.

Yet there are cases when deviations from a given syntactic form in the RDF
document may still lead to query results. This is shown by the next query:

{ ?subject <http://example.org/p> "042"^^xsd:integer . }

This query will usually return ex:s4, even though the number in the query
includes a leading zero that is not given in the input document. Every
SPARQL implementation that supports the datatype xsd:integer will rec-
ognize that both of these lexical descriptions refer to the same data value.
This is of course only possible for known datatypes. Moreover, applications
may take overlappings between value spaces into account, e.g., since certain
decimal numbers (xsd:decimal) may describe values that can also be rep-
resented as integer numbers (xsd:integer). For unknown datatypes as in
ex:s5, in contrast, the input string and datatype URI is compared with the
one in the query, and a match will be found only if both agree exactly.

SPARQL also provides syntactic abbreviations for some particularly com-
mon datatypes. Plain numerical inputs are interpreted based on their syn-
tactic form to refer to literals of type xsd:integer, xsd:decimal (if decimal
digits are given), or as xsd:double (floating point number, used with expo-
nential notations). The following pattern thus could also be used to retrieve
ex:s4:

{ ?subject <http://example.org/p> 42 . }

Besides numerical values, SPARQL allows only for the abbreviations true
and false for the corresponding values of type xsd:boolean (truth values).
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7.1.6 Filters

Our present knowledge about SPARQL allows us to query for basic patterns
in RDF documents, including optional and alternative conditions and data
literals. Yet, even this is still not enough for many practical applications. As
an example, one often needs to query not just for a single exact data value,
but for all values within a certain range. Likewise, we have no means yet to
search for literals within which a certain word is contained. Another problem
is the language settings that have been discussed in the previous section: how
can we query for a value without being sure of its specified language? Those
examples and many further queries are enabled in SPARQL by so-called filters.

Filters are additional conditions in a query that further restrict the set of
matching results. As opposed to graph patterns, filters are not strictly based
on the RDF data model, but may contain any requirement that can be checked
computationally. Accordingly, filters occur in a variety of different forms that
we will consider in greater detail below. Let us first have a look at a simple
example:

PREFIX ex: <http://example.org/>
SELECT ?book WHERE

{ ?book ex:publishedBy <http://crc-press.com/uri> .
?book ex:price ?price
FILTER (?price < 100)

}

This query retrieves all books that were published by CRC Press, and for
which the property ex:price has been assigned a value that is smaller than
100 (note that we use the abbreviated syntax for numerical literals that was
introduced in Section 7.1.5). As the example shows, filter conditions are
initiated by the key word FILTER. This is followed by the filter expression,
typically with parameters, that evaluates to a concrete value (often “true” or
“false”) or that returns an error. The query results will comprise only those
matches for which the given filter expressions effectively2 evaluate to true.
In our example, a filter function is given by the comparison operator < and
the enclosing parentheses, and the parameters to this function are a constant
value and a SPARQL variable.

Filter conditions always refer to the whole group graph pattern within which
they appear. It is thus not relevant whether a filter is given at the beginning,
at the end, or somewhere in the middle of a graph pattern. However, it
usually does matter which group graph pattern a filter belongs to. As a basic

2SPARQL also defines which strings or numbers are considered to be “effectively true,” to
cover cases where filter functions are not Boolean.
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principle, filters can be used in all group graph patterns, including those that
belong to some optional or alternative condition.

SPARQL supports a multitude of filter functions. These functions can
usually not be expressed in RDF, such that the RDF specification is not
a suitable source for definitions of filters. However, suitable functions have
already been defined in the context of the XML query languages XQuery
and XPath, and SPARQL makes use of this specification as a basis for many
filters. It can also be sensible to nest some of the available filter functions,
e.g., to form a complex Boolean expression, or to compose numerical values
with arithmetic operations before applying further filters. In the following
sections, we introduce the most important filtering conditions.

7.1.6.1 Comparison Operators

Our first example above employed the comparison operator <. Similarly,
SPARQL also supports the operators = (“equal”), > (“greater than”), <= (“less
than or equal”), >= (“greater than or equal”), and != (“not equal”). Each of
those operators is defined for all datatypes that SPARQL specifically supports,
so that, e.g., specifications of time (xsd:dateTime,) too, can be compared in
a meaningful way. The supported datatypes are xsd:boolean, xsd:string,
xsd:dateTime,3 as well as various numerical datatypes and untyped RDF
literals without language settings. In each of those cases, the “natural” order
is used for comparing literals, e.g., literals of type xsd:string are ordered
alphabetically while xsd:decimal comes with the usual numerical order.

All other elements in RDF and all literals that have different (incompatible)
datatypes are not comparable with the above operators. The only exceptions
are = and !=, which can be used for all RDF elements. Those operators, how-
ever, create an error if two lexically different values with unknown datatype
are given, since it is impossible in this case to determine whether both lit-
erals describe the same value or not. Thus, the equality operator behaves
differently from the use of literal values in graph patterns, where literals of
unknown types are compared syntactically; i.e. patterns with literals of un-
known datatypes match exactly if they are syntactically equal.

7.1.6.2 Special Operators

SPARQL also defines a number of operators for accessing RDF-specific in-
formation. First of all, these are various unary operators for accessing specific
parts of RDF literals. Figure 7.1 provides an overview. Using these functions,
one can query, e.g., for all books for which the property “author,” if specified,
has a value of type xsd:string:

3Only if time zone information was given; the comparison always returns “false” otherwise.
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BOUND(A) true if A is a bound variable
isURI(A) true if A is a URI
isBLANK(A) true if A is a blank node
isLITERAL(A) true if A is an RDF literal
STR(A) maps RDF literals or URIs to the corresponding lex-

ical representation of type xsd:string
LANG(A) returns the language code of an RDF literal as

xsd:string, or an empty string if no such setting
is specified

DATATYPE(A) returns the URI of an RDF literal’s datatype or the
value “xsd:string” for untyped literals without lan-
guage setting; not applicable to literals with lan-
guage settings

FIGURE 7.1: Unary operators for accessing specific parts of RDF literals

PREFIX ex: <http://example.org/>
SELECT ?book WHERE

{ ?book ex:publishedBy <http://crc-press.com/uri> .
OPTIONAL { ?book ex:author ?author . }
FILTER ( DATATYPE(?author) =

<http://www.w3.org/2001/XMLSchema#string> )
}

The following binary operators are also worth mentioning:

sameTERM(A,B) true if A and B are the same RDF terms
langMATCHES(A,B) true if the literal A is a language tag that matches

the pattern B
REGEX(A,B) true if the regular expression B can be matched to

the string A

These functions deserve some further explanation. For example, one might
ask what the difference might be between sameTERM and the equality symbol
introduced above. The answer is that sameTERM performs a direct term com-
parison on RDF level, for which the specific semantics of certain datatypes
is not taken into account. This also allows for the comparison of different
literals of unknown datatypes.

The operator langMATCHES, too, has its justification, even though some
language checks could be achieved by comparing the output of the above
operator LANG with a given language constant. However, language settings
may have hierarchical forms, such as in the case of en-GB. The condition
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(LANG("Test"@en-GB) = "en" is not satisfied, but the alternative condition
langMATCHES(LANG("Test"@en-GB), "en") is. The pattern in langMATCHES
thus is interpreted in a more general way. Moreover, the special pattern "*"
can be used to filter for literals that have arbitrary language settings.

The function REGEX serves to match general patterns within strings. Regular
expressions are used for this purpose, and the special syntax of those is part
of the function and operator definitions for XPath 1.0 and XQuery 2.0. We
will not go into the details of this feature, but it should be noted that regular
expressions enable a rather powerful search for string patterns.4 The following
query realizes a search for all things whose titles begin with “Foundations of”
(the special character ˆ denotes the start of the string):

PREFIX ex: <http://example.org/>
SELECT ?book WHERE

{ ?book ex:Title ?title .
FILTER ( REGEX(?title, "^Foundations of") )

}

7.1.6.3 Boolean Operators

It can be useful to combine multiple filter conditions or to invert a con-
dition to its opposite. For this purpose, SPARQL offers the operators &&
(logical conjunction, and), || (logical disjunction, or), and ! (logical nega-
tion, not). It is easy to see that conjunction and disjunction can be expressed
with the SPARQL features we encountered above, without using additional
filter operators. Conjunction can be expressed by simply using multiple filters
within one graph pattern, while for disjunction a graph pattern could be split
into multiple alternative patterns that use equal conditions but only one of
the disjunctive filter parts each. Negations, in contrast, provide additional
expressivity.

7.1.6.4 Arithmetic Operations

In addition, SPARQL offers various fundamental arithmetic operations that
can be used to combine numerical values. These are + (addition), - (subtrac-
tion), * (multiplication), and / (division).

4In general, searching strings by regular expressions is not easily implemented in an efficient
way, since common indexing methods for databases are not available for optimization – there
are good reasons why major Web search engines do not offer regular expressions in their
search.
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7.1.6.5 Errors

Most filter functions can only be meaningfully applied to certain kinds of
input data. The function +, e.g., can be used to compute the sum of two
numbers, but it does not have a natural definition for the case where URIs
are given as inputs. Unfortunately, it is not possible to prevent such situations
by careful query construction: even if a particular RDF property is intended to
have only numerical literals as values, it is always possible that a given RDF
database includes triples where this is not the case. RDF is not powerful
enough to enforce the use of intended datatypes. Moreover, variables that are
used in an optional graph pattern may happen to be unbound, which is again
not a suitable input for most filter functions.

It is therefore necessary to deal with the case that a filter function is invoked
on inputs that it is not able to process in a meaningful way. For this reason,
every filter function may also produce an error. If the expression used in
FILTER returns an error, the effect is the same as if the filter expression had
returned false. Yet the return value “error” is not the same as the return value
“false” in all cases. For example, if an error occurs in the input to the logical
negation function !, then the function will also produce an error. In general,
most filter functions preserve any errors that occur in their inputs, so that
errors within nested filter expressions are propagated. A notable exception is
logical disjunction (||), which never returns an error if either input is true,
no matter what the other input consists of. Details about the error handling
of all filter functions are found in the SPARQL specifications; see Section 7.5
for pointers.

7.1.7 Result Formats

All of the above queries have used the key word SELECT to create a re-
sult table with the assignments of the selected variables. In this section, we
encounter the further possible result formats CONSTRUCT, DESCRIBE, and ASK.

We have already seen a sufficient number of example queries using SELECT.
The tabular representation of results that SELECT produces is well-suited for
processing results one by one. In practical applications, such results are ac-
cessed either via some programming interface or returned in the form of XML-
based result serializations. The key word SELECT is always followed by a list
of variable names, or by the symbol *. The latter simply selects all variables
that appear in the query for the result.

The tabular representation is particularly useful for processing results se-
quentially. If, in contrast, the structure and mutual relations of objects in
the result are more important, an RDF document might actually be a more
appropriate representation. Another problem is the undesirable duplication
of (parts of) table rows that is often required to encode results into the strict
tabular format. The next example shows this effect:
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@prefix ex: <http://example.org/> .
ex:Alice ex:email "alice@example.org" .
ex:Alice ex:email "a_miller@example.org" .
ex:Alice ex:phone "123456789" .
ex:Alice ex:phone "987654321" .

The following SPARQL query retrieves the email addresses and telephone
numbers of all persons within an RDF document:

PREFIX ex: <http://example.org/>
SELECT *
WHERE { ?person ex:email ?email .

?person ex:phone ?phone . }

Using this on the above RDF, we obtain the following table:

person email phone
http://example.org/Alice "alice@example.org" "123456789"
http://example.org/Alice "alice@example.org" "987654321"
http://example.org/Alice "a_miller@example.org" "123456789"
http://example.org/Alice "a_miller@example.org" "987654321"

Clearly, there is considerable redundancy in this result set. This is the
case since the value for ?email and the value for ?phone are determined
independently, such that all possible combinations of the matching values are
valid solutions. In practice, such situations may easily occur with many more
independent variables and it is not always possible to prevent this in simple
ways. Obviously, the above result table is hardly suitable for presenting Alice’s
contact data to a user.

SPARQL thus can return results that are formatted as an RDF document
presenting results in a possibly more adequate structure. The construction of
such result graphs is requested by the key word CONSTRUCT. Where SELECT
expects a list of variables, CONSTRUCT requires a template for the RDF doc-
ument that is to be created. This might look as follows in the case of the
previous example:

PREFIX ex: <http://example.org/>
CONSTRUCT { ?person ex:mailbox ?email .

?person ex:telephone ?phone . }
WHERE { ?person ex:email ?email .

?person ex:phone ?phone . }
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The rather unspectacular result of this query would consist of an RDF
document that is essentially the same as the input document, though the given
template has changed the names of the predicates. However, CONSTRUCT can
of course achieve a variety of more complex formattings. The exact result of
a CONSTRUCT query can easily be derived from a similar query that uses the
format SELECT *, simply by instantiating the CONSTRUCT template with the
variable binding from each result row, and returning all of the resulting triples
in a single RDF document. If URIs or literals appear more than once within
those triples, they do of course refer to the same resource, so that result rows
may be interrelated in the constructed RDF graph. A collection of variable
assignments thus leads to a single, integrated result. On the other hand, the
sequential processing of results is hardly possible with such a representation.

Blank nodes in templates play a special role when constructing RDF results.
They do not represent single blank nodes in the final result, but are replaced
by new blank nodes for each of the result’s variable assignments – i.e. for each
table row in SELECT format. This can be illustrated by the next query:

PREFIX ex: <http://example.org/>
CONSTRUCT { _id1 ex:email ?email .

_id1 ex:phone ?phone .
_id1 ex:person ?person . }

WHERE { ?person ex:email ?email .
?person ex:phone ?phone . }

The resulting graph resembles the table that we have created with SELECT
above. Each table row is represented by a blank node that has relations to the
single entries of that row. The result therefore would contain the following
triples:

_a ex:email "alice@example.org" ;
ex:phone "123456789" ; ex:person ex:Alice .

_b ex:email "alice@example.org" ;
ex:phone "987654321" ; ex:person ex:Alice .

_c ex:email "a_miller@example.org" ;
ex:phone "123456789" ; ex:person ex:Alice .

_d ex:email "a_miller@example.org" ;
ex:phone "987654321" ; ex:person ex:Alice .

Another interesting feature of CONSTRUCT is the possibility of inserting con-
stant values into the result graph. It is even possible to create queries of the
following form:
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PREFIX ex: <http://example.org/>
CONSTRUCT { ex:Query ex:hasResults "Yes" . }
WHERE { ?person ex:email ?email .

?person ex:phone ?phone . }

This query returns a predefined RDF graph with a single triple whenever
the query has any solutions, and an empty document otherwise. To simply
find out whether a query has any results, however, SPARQL offers a simpler
solution. Namely, queries with the key word ASK only return “true” or “false,”
depending on whether or not some result matches the query conditions. The
key word WHERE is omitted in this case:

PREFIX ex: <http://example.org/>
ASK { ?person ex:email ?email .

?person ex:phone ?phone . }

Besides SELECT, CONSTRUCT, and ASK, SPARQL offers a fourth output for-
mat DESCRIBE. This is motivated by the observation that it is often not obvious
in a distributed Web environment which data is relevant in a given context.
Deciding which information is “relevant” for describing a particular object is
of course strongly application dependent, and SPARQL thus does not provide
a normative specification of the required output. A SPARQL query pattern
can be used, however, to select a collection of resources to be described –
which further properties of the selected objects are delivered then is left to
the concrete implementation. An example query might look as follows:

PREFIX ex: <http://example.org/>
DESCRIBE <http://www.example.org/Alice> ?person
WHERE { ?person ex:email _a . }

This query requests a description for all URIs that match the query pattern
for ?person, as well as for the fixed URI http://www.example.org/Alice.
In a similar fashion, descriptions can be obtained for a list of variables, or
simply for a list of fixed URIs (in which case the WHERE part can be omitted
completely). If the above query were presented to an application for manag-
ing data about people, then one might expect the result to contain relevant
contact information and possibly references to other people. A user could
visualize these data by means of some generic RDF browsing tool, possibly
selecting further resources for which more information could again be retrieved
using DESCRIBE. Thus it is possible to search and browse an RDF database
without knowing the details of its structure or the URIs of the referenced
properties.
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7.1.8 Modifiers

Various forms of query patterns and filters can be used to narrow down
the overall result set of a query. Nonetheless, queries in typical applications
may return large amounts of results that cannot be processed completely.
This is specifically problematic in decentralized Web environments, where
one often has no way of knowing how large a result set a query to a remote
Web Service might return. SPARQL therefore includes so-called (solution
sequence) modifiers for controlling details regarding the form and size of result
lists.

When limiting the amount of returned results, it is useful to specify the
order of results as well. When only part of the results is to be processed,
one can thus ensure beginning with the “topmost” results according to some
meaningful order.

SELECT ?book, ?price
WHERE { ?book <http://example.org/price> ?price . }
ORDER BY ?price

This query is expected to sort books in ascending order based on their
price, i.e. with cheapest items on top. The order of sorting can be speci-
fied explicitly by replacing ?price with DESC(?price) (descending order), or
with ASC(?price) (ascending order, default). ORDER BY of course affects only
results obtained with SELECT, since CONSTRUCT, ASK, and DESCRIBE do not
return results in a format that is sensitive to the order of results.

In the above example, one would assume all possible values for ?price
to be numerical, such that the order corresponds to the natural ordering of
these values. For numerical values and a number of other kinds of literal,
a suitable ordering has already been given for the operator <, as introduced
in Section 7.1.6. URIs are sorted in SPARQL by considering their syntactic
form as strings that are treated like values of type xsd:string using <. But
which behavior is to be expected when values of different types are bound
to a particular variable? For instance, one of the bindings for ?price in the
above example could actually be a URI, even though this case would probably
constitute an error within the data set. To still be able to return a well-
defined result in such cases, SPARQL specifies an order among different types
of RDF elements. Whenever two elements of different kinds are compared,
the following order is applied (smallest elements first):

1. no value (the variable by which results are ordered is not bound)

2. blank nodes

3. URIs
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4. RDF literals

In general, SPARQL does not specify how literals of different datatypes
are to be compared. Only for the case where a literal of type xsd:string is
compared to an untyped literal that has the same lexical value, the untyped
literal is defined to be smaller. The order among two unbound variables, two
blank nodes, or two literals of unknown datatype is also not defined, and
can be different in individual implementations, which might possibly support
additional datatypes for which SPARQL does not prescribe any order. More-
over, it is possible to sort results by more than one variable. In this case, the
order of statements determines its relevance: only if the first selected variable
contains the same value for two different result bindings, the second variable
is used for sorting, and so on. The order can then be defined separately for
each variable, as, e.g., in ORDER BY DESC(?price) ?title which realizes a
descending order by price and an (ascending) alphabetic order by title for
items with the same price.

A crucial feature for essentially any query language is the possibility of
selecting a slice of a result sequence. In SPARQL, this is achieved with the
parameters LIMIT and OFFSET. Those key words allow us to select a result
segment containing at most as many results as specified by LIMIT, and starting
with the result at the position given in OFFSET.

SELECT * WHERE { ?s ?p ?o . } ORDER BY ?s LIMIT 5 OFFSET 25

This query, e.g., shows the five triples starting with triple number 25, ac-
cording to the order of subject elements (presumably URIs). The slicing
parameters thus allow for a piecewise retrieval of results, as is common for
the output of many search engines. Which result is the 25th in a concrete
case of course depends on the chosen result order. If no such order is specified
in the query, the result of using LIMIT and OFFSET is thus not predictable in
general. The order might even change from query to query (based on imple-
mentation details), such that no reliable retrieval is possible at all. Queries
that select a certain segment of the result set therefore should always define
a concrete order using ORDER BY. For this reason, ORDER BY is still useful for
CONSTRUCT, ASK, and DESCRIBE.

A final option for making large result sets more manageable is to remove
unnecessary repetition from the result list. In particular, it is often useful if no
two result rows are exactly identical. The latter is achieved with the key word
DISTINCT, which is only allowed to occur immediately after SELECT. Indeed,
this feature would clearly be of little use for all other result formats (though,
arguably, it could still have some effect; see Exercise 7.6). Results in which all
variables are bound to the same RDF terms are combined into a single row. It
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should be noted that this does not necessarily eliminate all redundancy from
the result. For example, it could happen that two rows differ only in the ID
of an occurring blank node. As discussed in Section 7.1.3, the ID of a blank
node in a result can in fact be relevant, but only in cases where the same ID
is used in other triples. It would be too complicated (and computationally
costly) to try to eliminate all forms of redundancy, so DISTINCT treats only
the most obvious cases.

If all parameters discussed in this section are to be combined, then it is es-
sential to define the order of their application. SPARQL defines the following
sequence of processing steps:

1. Sort results based on ORDER BY.

2. Remove non-selected variables from the result set (projection).

3. Remove duplicate results, if requested.

4. Remove the number of initial results as specified by OFFSET.

5. Remove all results after the number specified by LIMIT.

Based on this processing sequence, one can, e.g., tell that results might also
be sorted by variables that are not selected for the result, whereas DISTINCT
is based on the selected set of variables only. OFFSET and LIMIT in turn refer
to the possibly reduced result set that remains after DISTINCT was taken into
account.

7.1.9 Semantics and Algebra of SPARQL

Up to now, we have always described the meaning of SPARQL queries
rather informally. While this is useful for a general understanding, it is hardly
satisfactory for defining the correct behavior of a SPARQL implementation
in an objective way. Naturally, any standard must provide clear criteria for
determining whether or not a given tool conforms to that standard. For
this reason, the SPARQL specification, too, encompasses a formal semantics,
which strives to clarify the admissible result for any conceivable SPARQL
query and queried data set. In this section, we have a closer look at this
semantics. Though our treatment includes a concrete algorithmic evaluation
for SPARQL, it is by no means necessary that SPARQL tools implement the
algorithms described below – as long as they produce the same results, they
may choose any implementation technique and optimization.

The core of the SPARQL semantics is the so-called SPARQL algebra, a
system of clearly defined computational operations which can be used to cal-
culate the result of a query. In this sense, SPARQL resembles SQL – the
most relevant query language for relational databases – which is based on the
relational algebra. Some of the computational operations that are used by
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SPARQL are indeed very similar to those employed for defining SQL. On the
other hand, the formal semantics of SPARQL thus is less closely related to the
model theoretic semantics of RDF and OWL.5 Besides the SPARQL algebra
as such, it is of course also necessary to define how to transform SPARQL
queries into expressions of this algebra in the first place. This section is con-
cerned only with the direct computation of query results. These can then be
formatted in various ways using the formats introduced in Section 7.1.7; yet
all formats base their output upon the same underlying collection of query
results that is determined by the SPARQL algebra.

7.1.9.1 Translating Queries to SPARQL Algebra

The SPARQL algebra is constituted by a number of computational opera-
tions representing the various expressive features of a SPARQL query. One
distinguishes operators that describe graph patterns from those that express
solution sequence modifiers. The graph pattern operators that we consider
are BGP (basic graph pattern), Join (conjunctions), LeftJoin (optional con-
ditions), Filter, and Union. In principle, each of these operators returns the
result of the sub-query it describes, which is essentially a representation of the
corresponding result table. By computing the result of a nested expression
formed from these operators, the overall result of a corresponding query can
be determined.

To arrive at such a computable expression, the graph pattern of a SPARQL
query is successively replaced by an expression using these operators. Let us
consider the following example pattern:

{ ?book ex:price ?price . FILTER (?price < 15)
OPTIONAL { ?book ex:title ?title . }
{ ?book ex:author ex:Shakespeare . } UNION
{ ?book ex:author ex:Marlowe . }

}

As a first step, all abbreviations of triples and URIs within the query graph
are expanded. Thereafter, all simple graph patterns (lists of triples) are ex-
pressed using the operator BGP, using the list of triples as its only argument.

5This apparent gap can be bridged by alternative formulations of the SPARQL semantics;
pointers to related literature are given in Section 7.5.
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{ BGP( ?book <http://example.org/price> ?price.)
FILTER (?price < 15)
OPTIONAL {BGP( ?book <http://example.org/title> ?title.) }
{BGP( ?book <http://example.org/author>

<http://example.org/Shakespeare>.) } UNION
{BGP( ?book <http://example.org/author>

<http://example.org/Marlowe>.) }
}

Next, all occurrences of UNION are expressed using the binary operator
Union. In case of a longer chain of alternatives, the patterns are processed two
at a time in accordance with the association rules for UNION (recall that UNION
is left-associative). In any case, UNION refers only to the directly adjacent
expressions. Disjunctions in SPARQL therefore are binding stronger than
conjunctions (encoded as mere juxtaposition of patterns).

{ BGP( ?book <http://example.org/price> ?price.)
FILTER (?price < 15)
OPTIONAL {BGP( ?book <http://example.org/title> ?title.) }
Union( {BGP( ?book <http://example.org/author>

<http://example.org/Shakespeare>.) },
{BGP( ?book <http://example.org/author>

<http://example.org/Marlowe>.) })
}

Group graph patterns are now resolved from inside to outside, i.e. starting
with the innermost pattern. The operators used for this purpose have the
following intuitive meaning:

Join(P1, P2) The results P1 and P2 are combined conjunc-
tively.

Filter(F , P ) The filter expression F is applied to the result P .
LeftJoin(P1, P2, F ) The results of P1 are conjunctively combined with

the results of P2 and the filter condition F is ap-
plied; the results of P1 that are eliminated by this
operation are directly added to the output.

In each step, we consider one of the innermost graph patterns P , i.e., all
possibly existing sub-patterns have already been processed. At first, all fil-
ter conditions are removed from P . For later reference, these removed filter
expressions are combined into a single expression using && (conjunction); we
call the resulting aggregated filter condition AF . Later, AF is re-introduced



Query Languages 285

as a parameter to the operator Filter. Note that the following transformation
rules take the possible occurrence of Filter into account, since the algorithm
is working from inside to outside, such that this operator may have been
introduced in earlier steps of the transformation.

After removing all filter conditions, P consists simply of a list of various
SPARQL expressions containing parts in SPARQL algebra that have already
been processed, and this list will be processed successively. In the process
we construct a new algebra expression R that will be the result of the al-
gorithm. Initially, this expression is empty ; this state is represented by the
empty SPARQL expression Z that simply encodes no condition or variable
binding. Now the following steps are executed for each sub-expression SE
that occurs in P :

• If SE is of the form OPTIONAL Filter(F ,A) then set R := LeftJoin(R,
A, F ).

• Otherwise, if SE is of the form OPTIONAL A then set R := LeftJoin(R,
A, true).

• Otherwise set R := Join(R, SE).

In this way, a nested algebraic expression R is constructed. If the filter
expression AF computed initially is not empty, then it is now added to R:
set R:=Filter(AF , R). Finally, the processed pattern P is replaced by the
computed expression R. In this way, all sub-patterns of the query graph can
be transformed.

In our running example, there are multiple innermost patterns that contain
only a single expression with the operator BGP and that have no filter condi-
tions. These parts are replaced by single Join expressions, within which the
empty expression Z appears.

{ BGP( ?book <http://example.org/price> ?price.)
FILTER (?price < 15)
OPTIONAL

Join(Z, BGP( ?book <http://example.org/title> ?title.))
Union( Join(Z, BGP( ?book <http://example.org/author>

<http://example.org/Shakespeare>.)),
Join(Z, BGP( ?book <http://example.org/author>

<http://example.org/Marlowe>.) ))
}

Now it only remains to replace the outer pattern, containing a filter condi-
tion, an optional expression, and two further expressions (BGP and Union).
This finishes the transformation and we arrive at the following overall expres-
sion:
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Filter((?price < 15),
Join(
LeftJoin(
Join(Z, BGP( ?book <http://example.org/price> ?price.)),
Join(Z, BGP( ?book <http://example.org/title> ?title.)),
true

), Union( Join(Z, BGP( ?book <http://example.org/author>
<http://example.org/Shakespeare>.)),

Join(Z, BGP( ?book <http://example.org/author>
<http://example.org/Marlowe>.) ))

)
)

One can simplify Join expressions that contain the empty expression Z as
one of their parameters by replacing them with their other parameters. This
is allowed since Z is the neutral element of the Join operation – similar to
the way in which 0 is the neutral element of addition. With a little exercise,
it is not too difficult to transform arbitrary SPARQL queries directly into
SPARQL query expressions, without necessarily documenting each interme-
diate step. To answer the query, we now simply need to calculate the result
of this expression, not entirely unlike the way in which we would calculate the
numerical result of an arithmetic expression.

7.1.9.2 Calculations in SPARQL Algebra

It has been mentioned above that every operator of the SPARQL algebra
essentially returns a query result which might be further processed by other
operators in case of nestings. To explain how to calculate the result of alge-
bra expressions, we therefore must first define what exactly we mean when
speaking of a “query result” in this context. We can well imagine results in
the form of tables, consisting of individual table rows. Each table row in turn
represents a variable binding, where some of the variables might be unbound
(and thus are not assigned any value). Therefore, each table row can formally
be encoded as a partial function that maps variables to RDF terms. An RDF
term might be a blank node, a URI, or an RDF literal. To avoid confusion
with other short names and identifiers, we will usually denote such partial
functions by the Greek letter µ. Such a “result row” µ is often called a so-
lution for a given query, and the set of variables that is mapped by µ to an
RDF term is referred to as the domain of µ. The function µ is partial since
it does not need to assign a value to every variable.

Every result table contains an arbitrary number of such variable assign-
ments (or “solutions”) in a certain order. We can thus consider a result to be
simply a sequence of solutions, and this is what we will always have in mind
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when speaking of a “result” within this section.6 To imagine and display such
results, it is still most convenient to use the same tables as before. Every
operator of the SPARQL algebra thus is a function that returns a result of
this form. The input parameters of each of these functions usually are again
results or filter conditions, with the exception of BGP. The previously intro-
duced expression Z represents the empty result, which contains exactly one
solution that does not assign a value to any variable, i.e. a function that is as
“partial” as possible. It will become apparent from the following definitions
why this is more appropriate than using the empty sequence as a way of in-
terpreting Z. Now we can proceed by giving a proper definition to each of the
SPARQL algebra operations. This definition of course must refer to a given
input RDF document, to which the query was directed. For further reference,
we will call the corresponding RDF graph G.

A partial function µ is a solution for an expression of the form “BGP( list
of triples)” exactly if the following two conditions are satisfied:

1. The domain of µ consists exactly of the variables that occur in the given
list of triples.

2. It is possible to replace the blank nodes in the given triples by RDF
terms in such a way that the RDF graph that is obtained by applying
µ to those triples occurs in the input graph G.

In other words: a solution µ for a simple graph pattern must assign RDF
terms to variables in such a way that the given pattern can be found in
the queried document. In this process, blank nodes are interpreted as place
holders which might represent other RDF terms; hence the initial replacement
in the second condition. The sequence (in arbitrary order) consisting of all
such solutions is the result returned by BGP. In the special case that no triples
have been specified at all, the above definition allows only for a single solution,
which does not assign a value to any variable. The result of BGP in this case
thus corresponds to the interpretation of the empty pattern Z.

Strictly speaking, the above definition contains two replacement steps: one
for blank nodes, and one for variables. The order of these replacements is
important to ensure that blank nodes introduced by µ are not further replaced
by other RDF terms. Otherwise one would obtain arbitrarily many solutions
by simply assigning all variables to blank nodes.

Now we can also define results for all other operators. In some cases, this
will require us to form a union of two solutions. A pair of solutions µ1 and
µ2 is said to be compatible if every variable that is mapped by both µ1 and
µ2 is also mapped to the same RDF term by both solutions. If µ1 and µ2 are

6The SPARQL specification actually encodes results by so-called multi-sets, i.e. “unordered
sequences,” as long as their order is not defined. We simplify our presentation by using
sequences right from the start, even if the initial order of solutions is not further specified.
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@prefix ex: <http://example.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:Hamlet ex:author ex:Shakespeare ;

ex:price "10.50"^^xsd:decimal .
ex:Macbeth ex:author ex:Shakespeare .
ex:Tamburlaine ex:author ex:Marlowe ;

ex:price "17"^^xsd:integer .
ex:DoctorFaustus ex:author ex:Marlowe ;

ex:price "12"^^xsd:integer ;
ex:title "The Tragical History of Doctor Faustus" .

ex:RomeoJuliet ex:author ex:Brooke ;
ex:price "9"^^xsd:integer .

FIGURE 7.2: Example RDF document for illustrating query evaluation in
SPARQL

compatible, their union µ1 ∪ µ2 can be defined as follows:

(µ1 ∪ µ2)(x) =

 µ1(x) if x occurs in the domain of µ1

µ2(x) if x occurs in the domain of µ2

undefined in all other cases

Whenever x is in the domain of both µ1 and µ2 in this definition, compatibility
ensures that both functions yield the same result. Intuitively speaking, we
thus combine two compatible rows of a result table into one longer row. In
the following definitions, we use the parameters Ψ, Ψ1, and Ψ2 to denote
results that have already been computed, and we use F for filter expressions.

• Filter(F,Ψ) = {µ | µ ∈ Ψ and the expression µ(F ) evaluates to true}

• Join(Ψ1,Ψ2) = {µ1∪µ2 |µ1 ∈ Ψ1, µ2 ∈ Ψ2, and µ1 compatible with µ2}

• Union(Ψ1,Ψ2) = {µ | µ ∈ Ψ1 or µ ∈ Ψ2}

• LeftJoin(Ψ1,Ψ2, F ) =
{µ1 ∪ µ2 | µ1 ∈ Ψ1, µ2 ∈ Ψ2, and µ1 is compatible to µ2, and
the expression (µ1 ∪ µ2)(F ) evaluates to true} ∪
{µ1 | µ1 ∈ Ψ1 and for all µ2 ∈ Ψ2 we find that:
either µ1 is not compatible with µ2 or (µ1 ∪ µ2)(F ) is not true}

Note that in the above items, solutions µ are applied to filter expressions F
even though we have defined them as partial functions on variables. We use
this notation as a shortcut for the filter expressions that is obtained from F
by applying µ to all variables in F .

We thus have defined all SPARQL operators for graph patterns discussed
herein, and we can now evaluate SPARQL algebra expressions accordingly.
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Now it can also be seen that the result defined for Z is indeed neutral with
respect to the Join operation. If, instead of Z, a result without any solutions
would be used with Join, then the result of Join would also be empty.

To illustrate the evaluation of SPARQL expressions, we consider an ex-
tended example for the query introduced above. As the underlying data set
to answer this query, we take the RDF document given in Fig. 7.2.

We can remove Join operations with Z from our example query to arrive
at the following expression in SPARQL algebra, where we enumerate lines for
future reference.

(01) Filter((?price < 15),
(02) Join(
(03) LeftJoin(
(04) BGP( ?book <http://example.org/price> ?price.),
(05) BGP( ?book <http://example.org/title> ?title.),
(06) true
(07) ), Union( BGP( ?book <http://example.org/author>
(08) <http://example.org/Shakespeare>.),
(09) BGP( ?book <http://example.org/author>
(10) <http://example.org/Marlowe>.) )))

This expression can now easily be evaluated inside to outside. The results
are displayed in Fig. 7.3, using tables where each row represents a solution.
Each table describes the result of a sub-expression that is identified by a line
number and operator name, and thus the last table “Filter (01)” provides
the final result. For reasons of space, we use QNames to abbreviate URIs;
internally, SPARQL of course deals with full URIs without such syntactic
shortcuts. The evaluation also demonstrates how different kinds of numeric
XML datatypes can be combined in a query.

7.1.9.3 Operators for Modifiers

For completely describing the capabilities of SPARQL in algebraic terms, we
still lack the formal semantics for modifiers such as ORDER BY or LIMIT. The
translation to SPARQL algebra in these cases is conceivably simple: modifiers
cannot occur in any complex nesting, and merely need to be applied to the final
query result in proper order. We thus further extend the SPARQL expression
R obtained from a query by the following operators:

• R :=OrderBy(R, list of sorting conditions), if the query uses the modi-
fier ORDER BY with the corresponding sorting conditions.

• R :=Project(R, list of variables), if the query uses the output format
SELECT with the given list of selected variables.
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BGP (04)
book price

ex:Hamlet "10.50"ˆˆxsd:decimal
ex:Tamburlaine "17"ˆˆxsd:integer

ex:DoctorFaustus "12"ˆˆxsd:integer
ex:RomeoJuliet "9"ˆˆxsd:integer

BGP (09)
book

ex:Tamburlaine
ex:DoctorFaustus

BGP (05)
book title

ex:DoctorFaustus "The Tragical History
of Doctor Faustus"

BGP (07)
book

ex:Macbeth
ex:Hamlet

LeftJoin (03)
book price title

ex:Hamlet "10.50"ˆˆxsd:decimal
ex:Tamburlaine "17"ˆˆxsd:integer

ex:DoctorFaustus "12"ˆˆxsd:integer "The Tragical History
of Doctor Faustus"

ex:RomeoJuliet "9"ˆˆxsd:integer

Union (07)
book

ex:Hamlet
ex:Macbeth

ex:Tamburlaine
ex:DoctorFaustus

Join (02)
book price title

ex:Hamlet "10.50"ˆˆxsd:decimal
ex:Tamburlaine "17"ˆˆxsd:integer

ex:DoctorFaustus "12"ˆˆxsd:integer "The Tragical History
of Doctor Faustus"

Filter (01)
book price title

ex:Hamlet "10.50"ˆˆxsd:decimal
ex:DoctorFaustus "12"ˆˆxsd:integer "The Tragical History

of Doctor Faustus"

FIGURE 7.3: Intermediate results in computing the result of a SPARQL
query
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• R :=Distinct(R), if the query contains DISTINCT.

• R :=Slice(R, o, l), if the query contains the directives “OFFSET o” and
“LIMIT l.” If o is not given, o is assumed to be 0. If l is not given, it is
replaced by the number of solutions of R less o.

These translations are relatively simple, and the function of each operator is
mostly obvious: OrderBy orders the solution sequence according to the given
sorting conditions, Distinct eliminates multiple occurrences of any solution in
the result, and Slice combines OFFSET and LIMIT to cut down the solution
sequence to the corresponding segment. The operator Project restricts the
domains of all solutions in a result to the variables chosen in SELECT, i.e. each
solution is replaced by one that does not define any value for non-selected
variables. The above transformation steps also formalize the order of modifier
applications that we have already discussed.

7.1.10 Further Expressive Features of SPARQL

The central expressive features of SPARQL have been discussed in detail
in the previous sections. Here, we add a brief overview of some aspects of
SPARQL that have been omitted in our treatment.

• Named graphs: SPARQL allows an input data set to be separated into
multiple parts. These parts can be referred to by URIs, and are thus
known as named graphs. SPARQL offers a number of options for work-
ing with named graphs, and to use the URIs of such graphs within
queries.

• Result format REDUCED: SPARQL defines an additional output format
REDUCED that can be used to produce partly reduced results. It can be
viewed as an optional version of DISTINCT which leaves it to the imple-
mentation whether or not duplicates should be eliminated. This modifier
thus is mostly useful for admitting application-specific optimizations in
cases where one does not have a strong preference regarding the occur-
rence of duplicates.

• Results in XML: SPARQL defines a specific XML format for serializing
results. Essentially, this can be viewed as an XML version of the tables
that we have used to display results informally.

• Protocol: SPARQL also includes a transmission protocol for queries and
results, which can be used for the (Web-based) communication with
query services.



292 Foundations of Semantic Web Technologies

7.2 Conjunctive Queries for OWL DL

In this section, we turn to the task of querying knowledge bases that use
advanced ontology languages like OWL DL. So far, SPARQL has been con-
ceived only as a query language for RDF graphs with simple RDF semantics,
and neither RDFS nor OWL are supported directly. For instance, while the
matching of graph patterns is an important basis of SPARQL, complex on-
tology languages do not describe mere graphs but a multitude of possible
interpretations (models). To a certain extent, graphs can still be found in
OWL interpretations as well: properties in OWL DL are modeled by binary
relations between elements of the interpretation domain, and such relations
can surely be visualized as connections within a graph. An axiom R(a, b)
(using description logic syntax here), e.g., would express that the elements
referred to by a and b are connected by an “arrow” labeled with R. Thus any
OWL DL interpretation also can be viewed as a graph consisting of elements
of the domain of interpretation that are connected by relations. OWL classes
to which a certain element belongs can be considered as additional labels of
each element node. In essence, this way of viewing OWL interpretations is
closely related to the way in which the tableau algorithm represents them; cf.
Section 5.3.

So can we simply extend SPARQL to OWL DL by considering interpreta-
tions as logically described graphs that can be the basis for queries? Unfor-
tunately, there are two basic problems with this approach:

1. Each OWL DL ontology does not describe a single but many possible
interpretations. While this could also be said of RDF, the situation in
OWL is different in that there is generally no “most specific” interpre-
tation that would suggest itself as the basis for a graph to which the
query could refer.

2. Interpretations in OWL DL may comprise infinitely many elements, and
hence the query graph could become infinitely large. It can even happen
that an ontology admits only models with infinite domain.

Both aspects yield certain problems, and it is still not fully clear how an
extension toward “SPARQL for OWL” should look. At the same time, there
is already a well-established query formalism for OWL DL which is suitable
as the foundation of such an approach. These so-called conjunctive queries
will now be introduced. It is also useful to compare these queries not only
to SPARQL, but also to the rule languages for OWL discussed in Chapter 6.
As in that chapter, we again find it most convenient to employ (description)
logical syntax in this presentation – indeed, there is no official XML or RDF
syntax for conjunctive queries yet.
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7.2.1 The Limits of OWL

As opposed to RDF, OWL DL offers extensive expressive features as part
of the ontology language. Using class expressions it is possible to describe
complex structures which can be composed using conjunctions, disjunctions,
or negations. Most OWL DL reasoners are able to determine the set of all
instances that are deduced to belong to such a class description. This yields a
significant expressivity that can also be used for querying a knowledge base.
Would a query language for OWL DL thus simply need to allow for a better
specification of result formats and other technical properties – or is there
indeed relevant information that cannot be determined using OWL DL?

In fact, the latter is the case, and there are essentially two reasons for
this. First of all, a single OWL DL class can obviously query for values of
only a single variable, corresponding to result tables with a single row. The
second, more subtle, restriction is that relationships described in an OWL class
in principle are always tree structures, where the queried variable describes
objects at the root of the tree. This means that a query can describe the
relations of various other objects to the query variable, while these objects may
hardly have any direct relationships between each other. This might also be
compared to the restrictions that were imposed on DL Rules in Section 6.3.3,
which essentially also can be said to allow only for tree-shaped dependencies.
In combination with the first restriction, this excludes a number of interesting
queries.

In order to understand these restrictions better, it is helpful to consider
some concrete examples. Thus assume we are given a knowledge base with
properties childOf and livesTogetherWith, both of which are used to ex-
press relationships between people. The following questions cannot be an-
swered by simple OWL classes:

1. Find all pairs of people with a common parent.

2. Find all people who live together with their parents.

3. Find all pairs of people where the first person is a (direct or indirect)
ancestor of the second.

The first two queries could be answered relatively easily even in SPARQL,
and we will also see a corresponding solution for OWL DL below. The third
example essentially asks for the transitive extension of the relation childOf,
which is possible neither in SPARQL nor in the kind of OWL DL queries
discussed here. There are, however, extended query languages for description
logics that address such use cases by allowing regular expressions for describing
patterns of properties; see Section 7.5. Moreover, the query could be addressed
in OWL DL by extending the knowledge base with a new transitive super-
property of childOf that could then be queried. However, not all applications
in which queries are used also allow modifications of the underlying knowledge
base.
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In spite of the lack of support for these examples, there are various rather
similar queries that could be formulated in OWL DL. This is generally the
case if variable or unspecified elements are replaced by concrete individuals.
For instance, it would be possible to use multiple queries for finding out which
people have a concrete person Bob as their parent, and which of those people
live together with Bob. This is achieved by simply querying for individual
property instances, or by using class expressions with nominal classes.

7.2.2 Introduction to Conjunctive Queries

As opposed to SPARQL, conjunctive queries are not an officially specified
query language. Therefore, there is no normative syntax and many of the
technical details that were elaborated for SPARQL are not spelled out. The
semantics of conjunctive queries, too, can be presented in various ways, but
there is still a general agreement regarding their correct formal interpretation.
The definitions provided here are thus not the only ones to be found in the
literature, yet they are essentially compatible with all common definitions.

Just as in SPARQL, variables play an important role in conjunctive queries.
As on prior occasions, we denote logical variables with lowercase letters x, y,
z, . . . and we generally adhere to the syntactic conventions of first-order logic
that were used in Chapters 5 and 6. The following is a simple example of
a conjunctive query for all books that have been published by CRC Press
together with their respective authors:

Book(x) ∧ publishedBy(x, CRCPress) ∧ author(x, y)

As the name suggests, a conjunctive query is primarily a conjunction of
multiple query conditions. Individual conditions are simple description logic
formulae without any logical operators, or the negations of such conditions.
These basic types of formulae are known as atoms of the query, and they may
occur in one of the following forms:

• C(e) or ¬C(e), where C is a class name and e is a variable or the name
of an individual.

• R(e, f), where R is a property name, and e and f are either variables
or individual names.

Note that negated property atoms are not allowed in this definition. In
contrast to negated class atoms, they would indeed have a significant effect on
the expressive power of the language, rendering it undecidable if not restricted.
In consequence, we can not directly use conjunctive queries to search for books
that have not been published by CRC Press since the following is not allowed:
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Book(x) ∧ ¬publishedBy(x, CRCPress) ∧ author(x, y)

However, it is not a problem in principle to allow conjunctive queries to
contain arbitrary class expressions instead of simple class names only. The
reason is that we can always introduce a new name C for a complex class
expression D by adding an axiom C ≡ D to the knowledge base. With this
extension, the above query could indeed be expressed as

Book(x) ∧ ¬(∃publishedBy{CRCPress})(x) ∧ author(x, y)

By submitting such a query, one is asking for a concrete value assignment
for each query variable, i.e. for a solution which substitutes all variables with
names of individuals – we do not consider datatype literals in this section. This
constitutes an important restriction, since in OWL there are many possibilities
to assert the existence of some object without providing a concrete identifier
(individual name) for that object. The following description logic knowledge
base illustrates what this means in a concrete case:

Book(a) (a is a book)
Book v ∃author.> (every book has an author)

Now this knowledge base does not entail any solution for the query Book(x)∧
author(x, y), as there is no known individual that could serve as a value for
y. While we know that a corresponding author must exist for the book a, we
do not know any name for that person which could be returned as a solution.
Variables in conjunctive queries therefore do not have the same meaning as
variables in first-order logic formulae, where all possible elements of the do-
main of interpretation are taken into account. To emphasize this special
meaning, variables in conjunctive queries are also referred to as distinguished
variables.

As in SPARQL, we can again represent variable assignments by functions.
A variable assignment for a conjunctive query is a function µ that maps every
variable in the query to the name of an individual. Such a variable assignment
is a solution for a conjunctive query C with respect to a given OWL DL
knowledge base B, if the formula obtained by applying µ to the query C
is a (first-order) logical consequence of B. In symbols we could also write:
B |= µ(C).

This definition of solutions also takes into account the fact that any given
knowledge base might allow for a multitude of possible interpretations. After
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all, the query formula µ(C) is only entailed by B if it is true in all possible
interpretations of B, i.e. if it is entailed by each admissible interpretation.
Furthermore, the semantics of conjunctive queries also copes with the pos-
sibility of infinite models: since there is only a finite number of individual
names in any knowledge base, query results will always be finite, too.

7.2.3 Non-Distinguished Variables

Distinguished variables are useful when querying for concrete instances,
but there are also cases when a query should merely ask for the existence of a
suitable element without determining its exact identity. This can be expressed
in conjunctive queries by binding the respective variable with an existential
quantifier, as in the following example:

∃x. (author(x, y) ∧ Book(x))

This query asks for all authors who have written any book. The name
of the book, in contrast, is not queried for. For example, a knowledge base
might contain the axiom Bookauthor ≡ ∃author−.Book which defines the
class of book authors by means of an inverse role. Each individual in this
class would thus lead to a solution of the previous query, even if the identity
of the corresponding book is not specified further within the knowledge base.

For this reason, the variable x in the above example is also referred to as
a non-distinguished variable. Thus, in general, a conjunctive query might
contain two kinds of variables, only one of which is part of solutions for this
query.

7.2.4 Conjunctive Queries and Rules

In Chapter 6, we introduced various rule languages that can be combined
with OWL DL in a semantically direct way. In particular, we focused on two
paradigms – DL-safe rules and DL Rules – both of which can be viewed as
fragments of the generic first-order rule language datalog. It turns out that
these approaches are closely related to conjunctive queries, and we can obtain
new insights by highlighting these relationships within this section. Readers
who did not study the necessary parts of Chapter 6 may safely skip this
section.

Rule languages and query languages in general are very closely related. This
is so, since a query (of whatever kind) always extracts information from a data
set or a knowledge base, which can then be used as a basis for extending the
given data with new conclusions – the query thus describes the antecedent of
a rule. This is a very general observation that is applicable well beyond the
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formalisms considered in this book. In our concrete scenario, this boils down
to the observation that conjunctive queries are highly similar to the bodies of
datalog rules.

As an example, the query from Section 7.2.3 could equivalently be expressed
in a datalog rule that might look as follows:

author(x, y) ∧ Book(x)→ Answer(y)

By augmenting the knowledge base with this rule, and querying for the
entailed instances of Answer, we would obtain the same results as when asking
the above query directly. Note that the query contains an existential quantifier
for y which we have now omitted. This is semantically correct since the
antecedent of a rule is implicitly negated – p→ q is equivalent to ¬p∨q – and
the negated existential can be turned into a universal quantifier that we may
omit when writing rules. In a similar way, arbitrary queries can be cast into
rules, where the variables that occur in the rule head mirror the distinguished
variables in the query. Note that this may require us to use predicates with
more than two variables in cases where more distinguished variables occur,
but this is no problem in datalog.

A closer look shows that the characteristics of distinguished variables appear
quite naturally in this encoding of queries into datalog rules. Indeed, the
actual rule only contains common first-order logic variables that are neither
distinguished nor non-distinguished as such. But when querying for concrete
instances of the answer predicate, we are only interested in individual names as
variable fillers. Thus the variable y in the above rule in fact only ever needs to
take values that are represented by concrete individual names. In Chapter 6,
we encountered a very similar restriction in DL-safe rules, and we learned
that this constraint can be imposed on any datalog rule by simply adding an
auxiliary predicate O to the knowledge base. Using the same encoding, we
can thus also write the above rule as follows:

author(x, y) ∧ Book(x) ∧O(y)→ Answer(y)

This does not make this rule DL-safe yet – it still contains the “unsafe”
variable x – but it shows how distinguished and non-distinguished variables
relate to DL-safety in rules.

Recognizing these intimate relationships between rules and queries can help
to improve our understanding of both topics. First of all, the above transla-
tion gives us the spelled-out formal semantics for conjunctive queries without
further effort: the semantics of datalog has been discussed in detail in Sec-
tion 6.2.2, and the semantics of conjunctive queries turns out to be a mere
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special case of it. Secondly, the correspondences between both areas yield
insights on the difficulty of both approaches. For example, it is now clear that
any implementation of a datalog extension for (some fragment of) OWL DL
would also support arbitrary conjunctive queries on this fragment. Conversely,
we found that certain sublanguages of datalog are much easier to handle than
full datalog, and it is promising to try out the same restrictions on conjunctive
queries.

In general, reasoning with the combination of OWL DL and datalog is not
even decidable. This does not need to be the case for conjunctive queries:
even if all conjunctive queries can be answered by some program, there are
still many datalog programs that cannot be expressed by any conjunctive
query, so the program would not be an (impossible) tool for reasoning with
datalog and OWL. What makes datalog harder is, intuitively speaking, the
possibility of encoding recursive rules that can be applied indefinitely to obtain
more and more results without ever terminating. It is known that conjunctive
querying is decidable for the description logics SHIQ and SHOQ, for which
the combination with datalog is no longer decidable. On the other hand, it
is an open question whether conjunctive querying for OWL DL (SHOIQ) is
decidable at all.

Since conjunctive querying is very difficult even in the decidable cases, it
makes sense to seek restrictions that simplify the task. The two sub-languages
of datalog that we considered in Chapter 6 highlight different ways of doing so.
DL Rules have been defined by restricting to datalog rules that have a certain
restricted shape, ensuring that the dependencies expressed in rule bodies are
not cyclic. It turned out that rules of this form can always be rewritten to
a set of axioms in the (decidable) description logic SROIQ. Analogously,
any conjunctive query that, when viewed as a rule, meets the restrictions of
DL Rules can also be re-cast into plain description logic axioms, so that no
special conjunctive query support is required to obtain its solutions. Referring
to their cycle-free structure, those conjunctive queries are also known as tree-
shaped queries, and it is known that they are often much easier to answer than
arbitrary conjunctive queries. Note that all example queries in this section
are tree-shaped.

The second restriction of datalog that we have discussed was DL-safe rules,
which obtain their favorable computational features by constraining rule ap-
plications to named individuals – elements of the interpretation domain that
are identified by an individual name. It has been mentioned above how this
relates to conjunctive queries: all distinguished variables in a query can be
encoded to be DL-safe without losing any results. Hence, whenever a query
contains only distinguished variables, the corresponding datalog rule is essen-
tially DL-safe. Again, this restriction often yields substantial computational
advantages in practice, and we can immediately see that any tool which han-
dles DL-safe rules can also handle queries with only distinguished variables.
On the other hand, this observation also hints at the fact that the treatment
of non-distinguished variables really adds an additional level of difficulty when
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it comes to implementation.

7.2.5 Conjunctive Queries and SPARQL

At first glance, conjunctive queries seem to be rather different from SPARQL
queries. While SPARQL uses graph patterns, conjunctive queries consist of
logical conjunctions. At second glance, however, those two formulations are
not really so different: a query atom of the form R(e, f) can be considered
as a triple “e R f ” and a conjunction of such atoms again describes a graph
structure. Alternative and optional patterns, in contrast, are not available
in conjunctive queries, and only the former has an immediate counterpart in
first-order logic in the form of logical disjunction.

Another basic incompatibility lies in SPARQL’s capability of querying for
property names. While SPARQL allows us to use variables in place of property
names, conjunctive queries are subject to the syntactic restrictions of first-
order logic, where variables are a special kind of term and thus may never
occur in a predicate position. SPARQL does not provide this distinction and
in this sense follows RDF and OWL Full. On the other hand, this restriction
of conjunctive queries in comparison to SPARQL can also be viewed as a
natural consequence of the prior restriction of OWL Full to OWL DL, which
has been our starting point for introducing conjunctive queries.

Another compatibility problem is the different usage of variables in both
formalisms. SPARQL represents place holders in queries by variables or blank
nodes, while conjunctive queries allow for distinguished and non-distinguished
variables. Furthermore, not all variables in SPARQL need to be part of a query
result: it is possible to select only certain variables by means of SELECT. These
different characteristics of variables can be summarized by two features:

• Anonymous values: Can the variable take values for which no concrete
identifier (URI or literal) is known?

• Output: Will the variable appear in the result of the query?

We thus arrive at the following classification:

Anonymous values Output
Distinguished variable — Yes

Non-distinguished variable Yes —
Blank node Yes —

SPARQL variable Yes Yes
Non-selected SPARQL variable Yes —

Accordingly, non-distinguished variables, blank nodes in SPARQL, and
non-selected SPARQL variables behave very similarly. The major difference
is between SPARQL variables and distinguished variables. While SPARQL



300 Foundations of Semantic Web Technologies

variables may return anonymous individuals by using blank nodes, distin-
guished variables are restricted to elements with concrete names. Semanti-
cally, OWL DL does not distinguish “blank nodes” from any other element
for which no identifier is given. Thus, if the semantic approach of SPARQL
would be extended to OWL DL, it would be necessary to return all entailed el-
ements as a result – and these could easily be infinitely many (truly different)
individuals!

This may be the strongest technical reason why there is no official extension
of SPARQL to OWL DL yet. One possible solution to this problem would be
to treat blank nodes in a knowledge base like individual names. Queries then
would return only those blank nodes, and no additional blank nodes used
to represent newly entailed elements. This does not strictly correspond to
the semantics of blank nodes in OWL, but it largely preserves compatibility
with SPARQL and RDF. On the other hand, blank nodes in query patterns
might still be treated as non-distinguished variables, such that blank nodes
in queries would have a different semantics than blank nodes in a knowledge
base. The alternative to this solution would be to simply assume all variables
to be distinguished, and thus never to return blank nodes as part of a result.
In this case, SPARQL for OWL would no longer return all results that are
now returned by SPARQL on RDF, which may or may not be a significant
problem in practical applications.

Beyond said incompatibilities, the extension of SPARQL to OWL based on
conjunctive queries would not be too difficult. Problematic features, such as
UNION or OPTIONAL, can be disallowed, which would also make the extension
with FILTER a mere post-processing step that would not interfere with reason-
ing.7 Likewise, support for datatype literals can be achieved along the lines
of the existing datatype semantics of OWL DL, and solution sequence modi-
fiers such as LIMIT would not impose major problems either. Indeed, various
OWL DL systems today support a restricted amount of queries in SPARQL
syntax, e.g., by treating variables as being distinguished.

7.3 Summary

In the first part of this chapter, we have discussed the SPARQL query
language for RDF in great detail. We have encountered different query con-
ditions in the form of graph patterns and filters, as well as result formats and
modifiers. The exact formal semantics of those expressive features has been
described by using the SPARQL algebra.

7Support for some such advanced features may also be possible. There are, e.g., various
research results on unions of conjunctive queries.
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In the second part, we have taken a closer look at conjunctive queries for
OWL DL, and we have compared this formalism to SPARQL and to OWL-
compatible rule languages that were introduced in Chapter 6.

7.4 Exercises

Exercise 7.1 Consider the following RDF document with information about
celestial bodies.

@prefix ex: <http://example.org/> .
ex:Sun ex:radius "1.392e6"^^xsd:double ;

ex:satellite ex:Mercury, ex:Venus, ex:Earth, ex:Mars .
ex:Mercury ex:radius "2439.7"^^xsd:double .
ex:Venus ex:radius "6051.9"^^xsd:double .
ex:Earth ex:radius "6372.8"^^xsd:double ;

ex:satellite ex:Moon .
ex:Mars ex:radius "3402.5"^^xsd:double ;

ex:satellite ex:Phobos, ex:Deimos .
ex:Moon ex:name "Mond@de", "Moon@en" ;

ex:radius "1737.1"^^xsd:double .
ex:Phobos ex:name "Phobos" .
ex:Deimos ex:name "Deimos" .

Specify SPARQL queries which yield the following results in the form of a
table.

• Objects which orbit around the sun or around a satellite of the sun.

• Objects with a volume greater than 2 · 1010 (km3) together with the
object – if it exists – of which they are a satellite. Assume for this that
all celestial bodies are spherical.

• Objects with a satellite for which an English name is given, and which
furthermore are satellites of an object with diameter greater than 3000
(km).

• Objects with two or more satellites. Assume for this that different URIs
denote different objects.

Exercise 7.2 Translate the queries from Exercise 7.1 into expressions in
SPARQL algebra. You can simplify Join expressions with the empty graph Z
as parameter.
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Exercise 7.3 Compute the solutions to the expressions from Exercise 7.2
with respect to the knowledge base from Exercise 7.1 step by step as in Fig-
ure 7.3 on page 290.

Exercise 7.4 It is possible to use SPARQL for searching for elements for
which certain information is not given. This is done by combining filters with
optional graph patterns.

Formulate a query which asks for all celestial bodies which do not have
a satellite. Assume for this that the knowledge base from Exercise 7.1 has
been completed with triples which assign to every celestial body the rdf:type
CelestialBody.

Exercise 7.5 The game Sudoku is about completing incomplete tables with
numbers while respecting certain rules. We consider the following simple 4×4
Sudoku:

3
4

2
3

You have to fill in numbers with values 1 to 4 in the empty slots in the table
so that no number occurs twice in any row or any column, and so that no
number is duplicated within any of the marked 2× 2 squares.

We now want to use SPARQL for solving this Sudoku, i.e. we want to obtain
all possible solutions by means of answers to a SPARQL query. In order to
do this, set up a suitable RDF document and SPARQL query.

Exercise 7.6 This exercise focuses on the use of modifiers in SPARQL. Con-
sider the following RDF document:

@prefix ex: <http://example.org/> .
ex:a ex:value "1"^^xsd:integer ;

ex:value "3"^^xsd:integer .
ex:b ex:value "2"^^xsd:integer .

Which result would each of the following SPARQL queries return for this
RDF input?

1. SELECT ?s ?v WHERE { ?s <http://example.org/value> ?v }
ORDER BY ?v

2. SELECT ?s WHERE { ?s <http://example.org/value> ?v }
ORDER BY ?v

3. SELECT ?s WHERE { ?s <http://example.org/value> ?v }
ORDER BY DESC(?v) LIMIT 2
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4. SELECT DISTINCT ?s WHERE { ?s <http://example.org/value> ?v }
ORDER BY ?v

Which result would you expect the last query to return when LIMIT 1 is
added?

Exercise 7.7 State the following as conjunctive queries. Use the class names
Male, Female, Catholic, and Priest and the role names killed, childOf,
and marriedWith.

1. all married couples which have a child together

2. all married female Catholic priests

3. all persons whose parents are married

4. all women who killed their husband

5. all married couples both of whom committed suicide

7.5 Further Reading

The essential documents of the SPARQL specification are

• “SPARQL Query Language for RDF” [PS08], where query syntax and
semantics are defined,

• “SPARQL Query Results XML Format” [BB08], which specifies the en-
coding of result for (SELECT) queries in XML, and

• “SPARQL Protocol for RDF” [CFT08], where the communication with
SPARQL query services is described.

The filter operators that were borrowed from XQuery and XPath have been
defined in [MMW07]. An in-depth discussion of the semantics and complexity
of SPARQL is given in [APG06], and connections between SPARQL and the
relational algebra known from relational databases are fleshed out in [Cyg05].
As in the case of relational algebra, it is also possible to formulate the SPARQL
semantics in a model theoretic fashion based on a translation of SPARQL
to datalog (discussed in Chapter 6). This approach, which is discussed in
[Sch07], locates SPARQL in the general framework of first-order logic that has
already been identified as the semantic basis of most formalisms considered
in this book. This also provides an alternative viewpoint for studying the
compatibility of SPARQL and conjunctive queries.
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The general idea of conjunctive queries was already considered in 1977 for
relational databases [CM77], and generally plays an important role in this
area. For description logics (and thus for OWL) these queries have been
studied since the end of the 1990s [CGL98]. Many current systems support
conjunctive queries only partially, mostly due to the very high computational
complexity of query answering. KAON2,8 e.g., allows only queries all variables
of which are distinguished, and which satisfy certain additional restrictions on
role (property) atoms [Mot06]. Pellet,9 in contrast, offers the most extensive
support for conjunctive querying among today’s OWL reasoners, though this
might require substantial amounts of computational resources, also when com-
pared to more restricted systems like KAON2. Relevant tools are discussed
in greater depth in Section 8.5.

Decidability and complexity of conjunctive queries in general is still subject
to ongoing research, especially for very expressive description logics. Transi-
tive roles and their generalization to role chains (available in OWL 2) con-
stitute a particular difficulty [GHLS07], and the processing of conjunctive
queries can be quite challenging even for rather restricted description logics
[Lut07, KRH07, CEO07]. The paper [CEO07] also discusses an extended form
of conjunctive queries that allow for property patterns based on regular ex-
pression. As mentioned earlier, it is still unknown at the time of the writing
of this book whether or not conjunctive queries are decidable for OWL DL.

8http://kaon2.semanticweb.org/
9http://pellet.owldl.com/
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Chapter 8

Ontology Engineering

In the previous chapters, we have investigated various formalisms for speci-
fying and querying semantic data – or phrased even more boldly: knowledge
– be it on the Web, in some company’s intranet, or elsewhere. We have seen
that those formalisms come with standardized, precisely defined syntax and
formal semantics.

So, knowledgeable about those knowledge representation formalisms and
their grounding in formal logic, we could argue that we are well-equipped and
readily prepared to go about bringing semantics to everybody in need of it.

However, being able to come up with semantic descriptions of toy examples
in some sandbox domain (such as a nut-allergic person consuming an inap-
propriate dish) does not guarantee that real-world modeling tasks (such as
coming up with a comprehensive description of patients, allergies, allergens,
and medical treatments) can be effortlessly tackled in the same way. As an
analogy, imagine the situation of a programmer able to create a “Hello World!”
program faced with the task of producing a desktop publishing system or the
like. It is clear that the sheer size and complexity of real-world modeling tasks
will easily exceed what can be done by an RDF(S) or OWL expert by just
sitting down and creating an ontology document.

This directly brings us to the discipline of ontology engineering which –
in analogy to software engineering – is concerned with the challenges of de-
signing complex systems (in our case: ontologies) by providing methodologies
and auxiliary tools for their development, evaluation, and maintenance. In
the following sections, we briefly sketch the central topics in ontology engi-
neering. However, note that, as opposed to the formalisms introduced in the
previous chapters, this area is still very much in flux and subject to active
research. Therefore, our review is necessarily preliminary and less detailed,
as it aims at providing just an overview. Furthermore, our choice of which
aspects of ontology engineering to present here is of course very influenced by
our subjective view of the emerging field.

Software engineering has been around for many more years than ontology
engineering and the process of creating software bears some similarities to
designing an ontology (despite the foundational difference between the oper-
ational vs. declarative paradigm). Hence, it is worthwhile to investigate the
central ideas of this neighboring field and see whether they can be transferred.

One of the basic principles in software engineering is the idea of a life cycle,

307
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meaning a process model of subsequent, partly intertwined steps for software
development and maintenance. Clearly, the design of large-size and complex
knowledge bases requires a similarly structured approach. In the following
three sections, 8.1, 8.2, and 8.3, we focus on the subtasks of requirement anal-
ysis, ontology creation, and ontology quality assurance which will be further
subdivided.

Thereafter, in Section 8.4, we address the somewhat orthogonal issue of on-
tology modularization which is particularly important for ontology reuse and
collaborative ontology creation as well as for optimizing automated inference.

We finish the chapter by naming some of the most popular and mature
software tools in the context of ontology engineering.

8.1 Requirement Analysis

As in software engineering, it is immediately clear that a thorough require-
ment analysis is crucial for the development of an ontology that is appropriate
for a given purpose.

In the very first place, it should be decided whether a semantic representa-
tion is at all needed or whether an alternative approach (like using a classical
database) would be a better choice. In some cases, this question may already
be subject to heavy controversy, be it because a “non-semantic” solution al-
ready exists or the possibly expensive modeling effort is not accompanied by
an obvious added value. There are essentially two major points in favor of an
ontology-based system: First, the knowledge represented in a semantic format
can be more easily exchanged as well as integrated with knowledge from other
sources. Second, by employing deduction algorithms, the implicit knowledge
following from a semantic specification becomes accessible.

Another related question which might be discussed is whether a representa-
tion based on formal logic is reasonable for the intended purpose. We do not
want to discuss one of the early questions of artificial intelligence: whether
every kind of knowledge can be represented in a symbolic, logical way. Still,
experiments in cognitive science have shown that few people think strictly
logically.1 Therefore, if an application is focused on interhuman knowledge
exchange (possibly using computers only as a communication device) it might
even be better off using non-logical means of knowledge representation.

Another aspect to be considered at this stage is the available tool support
for the different knowledge representation options. This in turn depends on

1See, e.g., the experiments carried out by P. Wason [Was68]. In a similar way in economics,
the idea of the homo oeconomicus, a person optimizing its action toward the greatest
financial benefit in an entirely rational way, has lately been shown to be a questionable
model of human economical behavior.
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the purpose of the system to be designed. When reviewing the available tech-
nologies the following criteria should be considered: Will the choice require
the commitment to one specific tool? What specific licenses are associated
with the available software? How mature is it? What kind (if any) of support
does the tool vendor offer? Is the tool sufficiently interoperable with other
tools one might use or want to use?

If the decision to use a semantic, formal-logic-based formalism is made, the
subsequent question is: which one? This again depends on the requirements
of the specific scenario. If large amounts of data have to be handled and a less
expressive formalism is sufficient, RDF(S) might be the right choice. If the
size of the represented information is moderate and more expressive means of
knowledge representation (as well as elaborate support for inferring implicit
knowledge) are desired, OWL DL would be a better recommendation. In the
case of OWL 2, some profiles might also be adequate for scenarios situated in
the middle of this spectrum. Again, tool support might be another decision
criterion, likewise the availability of skills in handling those formalisms and
prior experiences.

Once the modeling formalism has been agreed upon, the requirements of
the ontology have to be specified more precisely by answering the following
questions:

• What domain has to be modeled? What aspects of this domain have to
be captured?

• What is the needed granularity, i.e. the level of detail, of the specifica-
tion?

• What are the tasks to be accomplished with the help of the ontology:
browsing a body of knowledge, search for information, querying or check-
ing inferences? What kind of inferences are expected or desired?

Depending on the answers to those questions, the domain-specific primitives
(typically individuals, classes, and roles) and the degree of axiomatization have
to be chosen.

8.2 Ontology Creation – Where Is Your Knowledge?

As ontologies are meant to specify knowledge about some domain, the pro-
cess of creating an ontology can be seen as transferring knowledge into a
computer-accessible form. Clearly, there are several possible sources of the
knowledge to be formalized. These might be categorized with respect to the
extent to which they are already accessible to computer systems, and, more
precisely, to what extent the structure of the current representation of the
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provided knowledge can be exploited to facilitate the formalization process
(i.e. the process of making the inherent semantics formally explicit). Based
on that criterion, we distinguish human, unstructured, semi-structured, and
structured sources of knowledge which will be treated in the following sections.

But first, one more remark: we might have given the impression that for-
malizing a piece of knowledge is more or less straightforward, provided the
underlying formalism is expressive enough. However, there may be several
ways to model a situation correctly (or better: appropriately for a certain
use); in some cases, it might be not at all clear how to do it. Usually, this
problem becomes especially apparent if comparably abstract terms or situa-
tions are to be modeled. For example, try to come up with a formal definition
of “game” or “democracy.” Now, one might argue that a formal definition
of such terms is rather a philosophical than an engineering task. But even
terms that are much more down-to-earth may require serious thought when
they are to be modeled. Consider the term “school” for instance. It may
represent a building, an institution, a body of people. Still all those meanings
are not completely independent but somewhat related, which – linguistically
speaking – qualifies the word “school” as a polyseme. Obviously the decision
which of those aspects one should model also depends on the purpose of the
ontology. In our case, an ontology characterizing buildings and their functions
would model the concept “school” very differently from an ontology describing
a country’s educational system.

In general, akin to software engineering, there is no unique correct way to
build a system satisfying the requirements; sometimes there are some design
decisions to be made. However, certain ways of dealing with certain mod-
eling tasks have proven useful and viable which makes them a reasonable
recommendation in future similar cases. Therefore, in analogy to software
engineering, certain best practices and modeling patterns have been and are
being established. In this spirit, we provide some methodological guidelines
on ontology creation in Section 8.3.2.

8.2.1 It’s in Your Heads: Human Sources

A rather immediate source of knowledge about a domain of interest is a
person knowledgeable about that domain, a so-called domain expert. Ideally,
the domain expert is acquainted with the used ontology language and capable
of formalizing his knowledge. However, not in all cases the domain expert is
able to formulate his knowledge in such a way that it can directly be written
down in some knowledge representation formalism. There may be several
reasons for that.

One the one hand, though being a luminary in his field of expertise, the
domain expert might be anything but an expert in logic. In particular, he
might be unable to express his knowledge (which might nevertheless be very
clear and formal) by means of one of the representation languages discussed
in this book. In that case, some kind of mediation is needed. A person knowl-
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edgeable in the representation formalism, often called the knowledge engineer,
will conduct interviews with one or more domain experts in order to get hold
of their knowledge. She will interpret the answers (naturally making extensive
use of his background knowledge) and cast them into logical specifications.
Of course this communication process might lead to information loss or –
even worse – introduce errors, just as misunderstandings frequently arise in
human communication. To reduce the danger of misunderstanding on the
communication level, it is essential to introduce redundancy, feedback, and
double checks in the interview process. For instance the knowledge engineer
should rephrase the knowledge she just formalized in her own words and ask
the domain experts for their confirmation. Therefore besides being an expert
in the used knowledge representation formalisms, a knowledge engineer must
have excellent communication skills.

On the other hand, the expert’s knowledge might not (or not consciously)
be based on clear definitions or rules. For example, an experienced physician
might be able to identify carcinogenic cells under the microscope without be-
ing capable of giving a clear definition distinguishing pathological from normal
cells.2 In such cases, one might employ indirect methods: based on a com-
prehensive set of examples that has been classified by an expert, automated
techniques can be applied to generate logical expressions that characterize the
commonalities of the positive as opposed to the negative examples. Techniques
from machine learning, most notably decision tree learning or inductive logic
programming, can be used to this end (essentially, the generated classifier
must be expressible in the used formalism). Also interactive techniques that
actively ask the expert to classify interesting examples or to confirm or deny
hypothetical axioms exist, for example, techniques from the field of formal
concept analysis.

In general, carefully designed tools for knowledge authoring might alleviate
the task of specifying knowledge. With appropriate interaction paradigms, it
is possible to “hide” a lot of the formal machinery from the person in charge
of entering the knowledge. One option is to allow for natural language input.
The next section will elaborate on the potential and limits of this approach.

8.2.2 It’s in Your Books: Unstructured sources

Clearly, asking somebody who knows the field is the best choice when look-
ing for a certain piece of knowledge. However, another option that comes
to mind immediately when asked for a source of knowledge is just books or
– more generally – all kinds of textual resources including also magazines,

2It is well known that humans, just like other animals, can learn from a set of examples,
without ever being given or producing explicit rules. The famous 1964 quotation “I know it
when I see it” from Potter Stewart, Associate Justice of the United States Supreme Court,
is an anecdotal example of this phenomenon. He was asked to give an explicit definition of
hardcore pornography.
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Web pages, and the like. While (spoken) language was a “solution” to con-
veying knowledge directly from one person to another, writing was a solution
to externally storing information for the purpose of later retrieval. So when
looking for large amounts of directly accessible knowledge, it seems to be a
straightforward idea to collect written texts – at least those that are available
digitally.

Still, texts in natural language are easily accessible to human information
processing only. Extracting formal specifications from arbitrary written texts
is still considered a hard problem, although intense research has been car-
ried out in the fields of artificial intelligence and in particular computational
linguistics.

Approaches to knowledge acquisition from textual resources can be catego-
rized based on the degree to which they attempt to analyze the grammatical
structure of the sentences under consideration – in linguistics, this analysis is
usually referred to as parsing.

Methods that do not apply any parsing can still be useful in certain scenar-
ios, depending on the level of detail (also called granularity) that is required
from the resulting knowledge base. If the information to be extracted is just
what a certain text roughly is about, a statistical analysis of the words occur-
ring in a document will most likely give sufficient hints. Techniques, in which
the pure occurrence and frequency of certain words are measured without
taking the word order into account are called bag-of-word approaches.

It is quite obvious that bag-of-word techniques cannot extract all the knowl-
edge in a text: the two sentences “Pascal supervises Markus” and “Markus su-
pervises Pascal” cannot be distinguished by an algorithm just counting words
while they certainly carry different meanings.3

In the following, we make an attempt to sketch the necessary bits and pieces
to come up with a system that employs extensive parsing to extract as much
knowledge from a written text as possible. En route we will see the difficulties
that arise when trying to construct such a system. We choose the following
sentence to illustrate our explanations:

Markus does not like animal food. But he ordered a Thai dish that contains fish.

Parsing and Pronoun resolution In this step, each sentence of the text
under consideration is grammatically analyzed. Usually, this step is composed
of several subtasks such as part-of-speech tagging, named entity recognition,
chunking, word-sense disambiguation. We will not go into further details here.
The result of this procedure is a structural representation of the grammatical

3A somewhat more subtle example would be: “Clearly, not all of Sebastian’s jokes are witty”
vs. “Clearly, all of Sebastian’s jokes are not witty.”
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FIGURE 8.1: Parse trees for the two example sentences

interdependencies. A dependency structure generated for our example might
look like the one depicted in Fig. 8.1.

Designing reliable and robust parsing algorithms is not trivial and heavily
depends on the considered language; moreover, there are sentences that have
several admissible parse trees. Usually humans resolve such parsing problems
by context information or background knowledge. Still, at least for English,
off-the-shelf parsers are available which work well in most cases.

Next, note that the considered text contains words that actually substitute
other words, so-called pronouns. For each of those pronouns (he, that) the
referent has to be determined. In our case he refers to Markus and that to
dish.

Clearly both parsing and pronoun resolution cannot always be correct: of-
ten, sentences are ambiguous and therefore, no unique correct syntactic anal-
ysis is possible.4 This constitutes just one of the many severe obstacles to the
acquisition of knowledge from text.

Formalization The next step that we have to tackle is to transform the
linguistic structure into a logical description. This step is certainly the most
intricate one. Clearly a thorough description of all technical details would
be beyond the scope of this book so we will just very informally sketch the
general strategy and possible problems.

Well, taking a step back, why should the grammatical structure of a sentence
in natural language be of any use when trying to grasp its semantics? The
basic idea behind this is the assumption of the compositionality of natural
language semantics: the meaning of a (part of a) sentence can be derived
from the meaning of its components. So, in the end, the meaning of the

4Remember just the frequently cited example: “The man saw the girl with a telescope.”
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sentence relies on the meaning of the words contained in it. However, the
grammatical structure of a sentence is assumed to provide the information on
how to combine the partial meanings to a composite meaning. Mark that this
principle is strictly applied in artificial formalisms: clearly the meaning (i.e.
the interpretation) of a description logic class expression can be derived from
the meaning of its atomic constituents, the class names, by combining them
as indicated by the constructors.

Thus, it is plausible to interpret grammatical interdependencies of sen-
tence parts as logical interdependencies. Therefore the parse trees of a text
are usually converted into logical statements by recursively applying a set of
transformation rules. What those look like exactly depends on the target for-
malism and on some more encoding decisions. In the case of OWL, named
entities (like Markus) are usually translated into individuals, adjectives (like
Thai) and intransitive verbs (like sleep) into classes, and transitive verbs (like
like) into roles.5 Nouns (like dish) are normally translated into classes unless
they express some relation (like brother).

The description logic counterpart of the noun phrase “dish that contains
fish” would be constructed from the class names Dish and Fish and the role
name contains, yielding the class expression Dish u ∃contains.Fish.

Finally, the above text might be translated into the following DL axioms:

¬∃likes.(Animal u Food)
(
markus

)
∃ordered(Dish u ∃contains.Fish)

(
markus

)
Some problems or peculiarities become apparent from this small example.

Some words from the original sentence have disappeared. While this is okay
for pronouns that have been linked to their referents and for articles like
a or the that do not carry a separate meaning, the disappearance of the
word but indicates that our transformation has not been entirely lossless.
Although certainly carrying a meaning, this word is hard to convert into a
logic formalism like RDF(S) or OWL, unlike other words or phrases like and,
or, or not that have a straightforward logical counterpart.6 Generally, we can
note that it is next to impossible to formalize natural language in a way that
preserves all its subtleties.

The attentive reader might have already spotted another sloppiness that
we were committing. By our translation, different tense forms of the same
verb would be assigned to completely unrelated classes (like sleeps and slept)
or roles (like orders and ordered). One remedy to this problem would be to

5In linguistics, a verb is referred to as transitive if it requires an object, whereas intransitive
verbs don’t.
6Essentially, “but” is used to object to an intuitive consequence of previously expressed
information.
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use only normalized words, e.g., nouns in nominative singular form and verbs
in infinitive form. But then, the temporal information carried by the original
sentence is lost. In fact it is non-trivial to accommodate temporal informa-
tion in the standard ontology languages and there is no well-established best
practice how to do this.

Integration with Lexical Background Knowledge Another step that
has to be taken when converting language into a formal representation is to
account for semantic relationships between the involved words. The usage of
language in human communication relies on the presence of a shared body
of knowledge, usually referred to as common sense or background knowledge.
This knowledge contains facts such as “fishes are animals” and “a dish consists
of food” that can be expected to be clear to all humans (whence those facts
are excluded from the communication for efficiency reasons). However, such
interdependencies between the lexical atoms – the words – are not accessible
to an automated system. Hence, in order to extract the meaning of a given
text to a larger extent, the relevant lexical background knowledge has to
be explicitly provided. There are well-known free resources of this kind of
knowledge, also called thesauri. WordNet7 is certainly the most popular one
for the English language.

As we have seen, the imprecisions and ambiguities that natural languages
exhibit make the creation of reliable tools that convert arbitrary written texts
into ontological descriptions a very challenging task which will arguably never
be fully accomplished. Nevertheless, a natural language “format” for entering
new knowledge into a system would be a very user friendly and thus desirable
feature, in line with the discussion at the end of Section 8.2.1. A way to over-
come at least some of the above problems while keeping the benefits of having
a rather intuitive “knowledge interface” is to use natural language but restrict
it by allowing only certain (unambiguous) grammatical constructions. This
way, one can make sure that the text entered into the system is interpreted
correctly. A natural language constrained in this way is usually referred to as
a controlled language.

8.2.3 It’s on the Web: Semistructured Sources

Sometimes, the source to be “ontologized” comes with some structure that
already reflects part of the semantic interdependencies. Link structures of any
kind are one example: hyperlinks between Web pages or, say, wiki articles ref-
erencing each other provide crisp relatedness structures between information
elements. Though being rather unspecific on the concrete type of related-

7http://wordnet.princeton.edu/; see also [Fel98]
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ness,8 those structures can be directly transformed into an RDF or OWL
representation, allowing at least a shallow capturing of the semantics of the
used resource. Also, more sophisticated statistical graph analysis techniques
might be performed to extract information on a metalevel like the relevance
of specific information items.9

Another ubiquitous example of a semistructured source of information is
file systems. While a large fraction of the knowledge stored on a computer
is not directly automatically accessible (e.g., what objects a certain digital
photo shows), certain facts can be effortlessly retrieved such as a file’s type
and size, the date when a photo was taken, or the name of the creator of a
piece of music. Likewise, the folder structure and the respective location of
the stored files are explicitly available. Naturally, all this data can be cast
into RDF or OWL and consequently used for querying and reasoning.

On top of the more or less directly accessible information in semistructured
sources, additional information might be drawn from their unstructured parts
(like the written information on the Web pages or in wiki articles) by using
techniques described in the previous chapter.

8.2.4 It’s in the Databases: Structured Sources

Some sources of knowledge contain only directly accessible information. At
this end of the unstructured vs. structured spectrum we have databases but
also existing ontologies that we might want to reuse in another setting.

Clearly, the content of relational databases can be translated into RDF or
OWL (possibly, n-ary relationships have to be reified as described in Sec-
tion 2.3.3). The necessary additional information that is required for such a
translation is how exactly to transform a row of a table into a set of RDF or
OWL statements. Such “import” of databases into an ontology is mostly used
for ontology population, meaning that assertional knowledge (i.e. knowledge
about single individuals) is added to an ontology.

On top of their actual content, databases might also contain schema infor-
mation that, e.g., specifies cardinality constraints on certain relations (such
as “every person has at least one nationality”). Partially, this schema infor-
mation can also be translated into terminological axioms. There are even
applications using description logic reasoners for checking the consistency of
database schemata.

Besides databases, another structured source of knowledge is other ontolo-
gies. Before starting to construct a new ontology from scratch, it might make
sense to look for other ontologies that can be (maybe partially) reused. Pos-
sibly, there is already an ontology available which thoroughly covers some

8Note, however, that there are wiki-based content management systems that allow users to
specify the type of a link explicitly. We elaborate on them in Section 9.2.
9Google’s PageRank algorithm is one prominent example of this.
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aspects of the domain or maybe an upper-level ontology (an ontology cover-
ing the most general concepts of a domain or even of everything) can be used
and extended by more specific information.

While extending one given ontology by more information (or pruning it) is
arguably more or less straightforward, problems usually arise as soon as two or
more formerly independent ontologies are involved and have to be reconciled.
They might rely on different ways of modeling, on different naming schemes,
or even on different modeling languages.

No matter whether several source ontologies are to be integrated into one
(ontology merging) or to be more loosely coupled (ontology alignment), the
usual way of overcoming the mentioned differences is to come up with ontology
mappings that clarify how the (individual, class, or role) names of one ontology
correspond to those of the other. Those mapping correspondences might be
equivalences (e.g., ukonto:Lorry and usonto:Truck), subclass relationships
(e.g., bioonto:Loxodonta_africana and circusonto:Elephant), or others.

Mappings can be either manually specified, automatically determined, e.g.,
from the names and labels used in the ontologies, or extracted from other
sources like texts – with a corresponding error rate. Of course, combinations
of those approaches are also possible.

Clearly, the task of using existing ontologies as knowledge source does also
touch on aspects of modularity that we will briefly discuss in Section 8.4.

8.3 Quality Assurance of Ontologies

After having discussed various ways of creating ontologies, we now address
the question how the quality of a created ontology can be assessed. Moreover,
we will see how an existing ontology can be improved in order to rank better
in terms of the presented evaluation criteria.

8.3.1 Ontology Evaluation: What Makes an Ontology Good

So, how to tell if an ontology is good or not? The most straightforward
criterion is just: does it fulfill the intended purpose? Is it possible to infer
the knowledge that one wants to capture with the ontology? Do its logical
consequences interpreted by the user coincide with the reality as conceived by
the user? And finally: does the information provided by the ontology together
with a reasoning framework help the user in accomplishing his task?

It becomes clear that many of those questions can be answered only in
the context of the concrete application scenario that an ontology is being
developed for. Notwithstanding, we can identify several basic criteria that an
ontology has to satisfy irrespective of the specific intended usage.
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Logical Criteria The first group of criteria comprises ontology character-
istics that can be checked on a purely logical level, based on the notion of
logical consequence as discussed in Section 5.2.1.3.

We remember that an ontology is called inconsistent or unsatisfiable, if it
has no model, i.e. if there is no possible world in which all the statements
of the ontology hold. Yet, as the purpose of an ontology is to characterize a
world (namely, the domain it is supposed to describe), ontology inconsistency
does in almost every case indicate a modeling error. Moreover, an inconsis-
tent ontology entails any statement as a logical consequence, whence it cannot
be reasonably used for tasks involving automated deduction. Therefore, log-
ical consistency is one of the essential necessary criteria for an ontology to
be useful. In the previous chapters, algorithms for automatically checking
an ontology’s consistency were introduced. By means of these, continuous
consistency checks during the design phase of an ontology can be performed
and the ontology engineer can be alerted as soon as his way of modeling the
domain leads to an inconsistency.

In addition to this “severe” form of global inconsistency, there exists the
weaker version of inconsistent (or unsatisfiable) classes. A class is called
unsatisfiable if it is interpreted as the empty set in any model. Let’s have a
look at the following example:

Horse v ¬Flies
FlyingHorse ≡ Horse u Flies

The first statement claims that every horse does not fly while the second
defines a new class exactly as those horses that fly. This forces the class of
flying horses to be empty in every model. Note that this ontology is still
globally consistent. However, it turns inconsistent if we add an instance of
the inconsistent class, like FlyingHorse(pegasus). Normally, an ontology
engineer defines a new class only if it (at least possibly) has instances – defining
a class of male sisters would be just pointless. Thus, a class that is necessarily
empty due to logical constraints often indicates some modeling flaw. An
ontology that does not contain unsatisfiable classes is called coherent . As
indicated by the example above, a consistent ontology can be incoherent, but
a coherent ontology cannot be inconsistent. Today’s standard ontology editors
(see Section 8.5.1) provide tools for diagnosing incoherency and inconsistency.

Inconsistency and incoherency often arise when too restrictive statements
are made about the domain of interest, thereby constraining the possible
models too much. By weakening or abolishing the statements, an ontology can
be made consistent or coherent again, thereby fulfilling the criteria mentioned
above.

However, weakening an ontology does certainly not always improve its qual-
ity. On the contrary: clearly, we want an ontology to contain as much infor-
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mation about the domain as possible. Logical completeness is a criterion that
captures this desire by formal means.

To illustrate this notion, consider the following ontology snippet. Its termi-
nological part tells us that no bird is a mammal, that birds lay eggs, and that
every egg-laying species does not give live birth. The assertional part states
that ostriches are a bird species while lions are a mammal species that give
live birth.

Bird v ¬Mammal Bird(ostrich)
Bird v Oviparous Mammal u Viviparous(lion)

Oviparous v ¬Viviparous

From this specification, we are able to derive that ostriches are oviparous
animals and that lions are not birds. However, the knowledge base does not
inform us whether the axiom

Mammal v Viviparous

is true in the described domain, as we can neither infer it from the above
axioms nor can we be sure that it does not hold, since due to the open world
assumption, there might be additional information not recorded in the knowl-
edge base. This means that our ontology is incomplete with respect to subclass
statements on atomic classes. In this case, we could resolve this incomplete-
ness by adding the fact

Mammal u Oviparous(platypus)

giving account of an oviparous mammal species and thereby refuting the above
axiom.

Note that, besides subclass statements, the logical completeness with re-
spect to other types of axioms – such as class disjointness, property restric-
tions, or even more complex statements – might be worthwhile aspiring to.

Structural and Formal Criteria In addition to the aforementioned logi-
cal criteria, there are further situations that can be more or less automatically
diagnosed and that are indicative of possible modeling problems. For some
of them, no sophisticated reasoning is necessary. For example, explicit tax-
onomic cycles can be read directly from an ontology. Consider the following
specification.
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Architecture v Faculty Faculty v University
University v Building Building v Architecture

Through the circular chain of subclass statements, this taxonomy collapses
semantically, i.e. logically, all the involved classes Architecture, Faculty,
University, and Building are equivalent. However, it is rather unlikely that
an ontology deliberately contains many semantically equivalent classes, so this
might be hinting at a flaw in the ontology.

Further evaluation criteria based on the subclass hierarchy of an ontology
examine the nature of the used classes. As an example of the general qualities
a class may have, we consider rigidity. A class is considered rigid if every
member of it cannot cease to be a member without losing existence. As an
example, a person cannot just stop being a person, whereas a student can stop
being a student while retaining his existence and most of his other attributes.
In the latter case, one can even state that every (not just some) instance of
the class of students has the potential of not being a student. In that case, a
class will be called anti-rigid.

This way, every class can be marked as being rigid, anti-rigid, or none of
both, where the decision might not always be that clear and people might
disagree on certain cases; the choice might even depend on the specific mod-
eling task. However, it isn’t too hard to see that, for instance, a rigid class
cannot be a subclass of an anti-rigid one. Rather, every subclass of an anti-
rigid class must itself be anti-rigid. Hence, this criterion can be used to check
whether a class hierarchy is correctly modeled. Identity, unity, and depen-
dence are examples of more qualities a class might have and which give rise to
further constraints and evaluation criteria for class hierarchies. An elaborate
methodology based on those called OntoClean.10

Accuracy Criteria Obviously, a central requirement (and hence evaluation
criterion) is whether the ontology accurately captures those aspects of the
modeled domain that it has been designed for. In particular, the logical
statements that it contains or allows us to infer should faithfully correspond
to the state of affairs in the real world.

The aforementioned evaluation criteria can provide useful hints with respect
to this question in that they are necessary preconditions for accuracy. Yet,
even if everything seems to be all right from that perspective, conceptual
modeling errors (as opposed to logical ones) might have been overlooked.

Clearly, real-world-conformance of an ontology cannot be checked entirely
automatically as this would require that the outer world state of affairs has

10http://www.ontoclean.org/
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to be accessed by the agent performing this check.11 Therefore, the question
whether an ontology adequately represents certain aspects of reality relies on
the judgment of humans and is therefore subjective. However, as humans
usually agree on a number of domain-related statements, it is at least possible
to check whether the ontology in question entails those statements – provided
the humans also agree on how the common statement is to be translated into
a formal representation.

On the more practical side, it is at least possible to identify common model-
ing flaws, i.e. frequent cases in which the way a domain is modeled most likely
does not coincide with the modeler’s intention. Some of such “bad practices”
are listed in the following section.

8.3.2 How to (Not) Model Correctly

This section aims at being a checklist for people modeling an ontology
in RDF(S) or OWL. It does not claim to be exhaustive nor objective. It
just enumerates some suggestions that the authors consider relevant when
modeling an ontology. As there is no unique way of modeling a situation
and it is often a matter of taste which option is the best one, most of our
suggestions will refer to “don’ts” instead of “dos,” indicating misconceptions
and imprecisions that should be avoided.

8.3.2.1 Don’t forget disjointness

Consider the following simple knowledge base:

Man v Human Human v Man t Woman Woman v Human
Man(pascal) Woman(anne)

At first glance, it might seem that all the dependencies between the classes
Human, Woman, and Man are completely specified. But when asking a reasoner
whether ¬Woman(pascal) is entailed by the above axioms, it turns out that
this is not the case. The point is that no logical reasons prevent pascal from
being both Man and Woman. To logically fix this shortcoming one has to state
that Man and Woman are disjoint, i.e. there is no individual contained in both
classes.

In practice, disjointness statements are often forgotten or neglected. The
arguable reason for this could be that intuitively classes are considered disjoint
unless there is other evidence. By omitting disjointness statements, many
potentially useful consequences can get lost. The following is a good strategy
to counter the problem in case of a class hierarchy that is already formalized:

11Philosophically, this issue is closely related to the widely discussed so-called symbol
grounding problem.
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Explicitly consider all siblings, i.e. classes having a common su-
perclass, whether it is possible that an individual is an instance of
both classes. If not, declare them as disjoint.

8.3.2.2 Don’t forget role characteristics

Just like class disjointness, characteristics that can be assigned to roles (or
properties, respectively) can enable a lot of useful deductions.

Consider for every role occurring in an ontology whether it rep-
resents a transitive, symmetric, functional, and/or inverse func-
tional relation.

Note that in OWL 2, even more information about roles can (and should)
be expressed: reflexivity and irreflexivity, antisymmetry and role disjointness,
as well as interdependencies involving role chains. As a caveat, note that
declaring a role transitive might turn an OWL DL ontology into an OWL Full
ontology, for which less tool support is available. In that case, expressivity
has to be weighed against what is computationally manageable.

8.3.2.3 Don’t choose too specific domains or ranges

The problem of too narrow domain or range restrictions has been already
addressed twice in previous chapters: in Section 2.4.5 as well as in Sec-
tion 4.1.9. We will not elaborate on them in detail.

It is worthwhile to check all occurrences of a property (or role, re-
spectively) in an ontology and make sure that the declared domains
and ranges apply to every single one of those usages.

8.3.2.4 Be careful with quantifiers

The usage of quantifiers on roles or – speaking in terms of OWL – the
owl:someValuesFrom and owl:allValuesFrom restrictions may cause some
conceptual confusion to “modeling beginners.” As a rule of thumb, when
translating a natural language statement into a logical axiom, existential
quantification occurs far more frequently; e.g., a proposition like “birds have
wings” should be translated as Bird v ∃has.Wing. The erroneous translation
Bird v ∀has.Wing would convey the information that birds have only wings
(if they have anything at all) and nothing else. Natural language indicators
for the usage of universal quantification are words like “only,” “exclusively,” or
“nothing but.”

There is one particular misconception concerning the universal role restric-
tion. As an example, consider the statement

Happy ≡ ∀hasChild.Happy
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that could be translated to “somebody is happy exactly if all his/her children
are happy.” However, the intuitive reading suggests that in order to be happy,
a person must have at least one happy child. Yet, this is not the case: any
individual that is not the starting point of any role R is a class member of
any class ∀R.C irrespective of the class C.12 Hence, by our above statement,
every childless person would be qualified as happy. In order to formalize the
aforementioned intended reading, the statement would have to read as follows:

Happy ≡ ∀hasChild.Happy u ∃hasChild.Happy

Make sure that the intended meaning is correctly cast into role
quantifications. Use existential quantification as default. Be aware
that universal quantification alone does not enforce the existence
of a respective role.

8.3.2.5 Don’t mistake parts for subclasses

Have a look at the following small TBox of a knowledge base:

Finger v Hand Hand v Arm Arm v Body
Toe v Foot Foot v Leg Leg v Body

Arm u Leg v ⊥

Seems all right, doesn’t it? We can even employ a reasoner to deduce
Hand v Body or that Finger and Toe are disjoint.

However, some problems occur as soon as we have a closer look at indi-
viduals. Suppose that the ABox of the knowledge base ABox contains the
fact Finger(sebastiansRightThumb). But this obviously allows us to deduce
Arm(sebastiansRightThumb), hence Sebastian’s right thumb is not only a
finger but an arm as well. What’s wrong here? Well, we have mistaken the
part-of relation for the subclass relation or in linguistic terms meronymy for
hyponymy.

Admittedly, it is tempting to do so, as those two relations share both the
intuition of “belonging to something” as well as some formal properties such as
being transitive.13 However, as we have just seen, this can lead to considerable

12In particular, note that the class description ∀R.⊥ characterizes exactly those individuals
without an outgoing R role.
13The general question whether a part-whole relationship should be transitive is a more
difficult discussion we do not want to take up here. If it is understood in a physical sense,
then it should be transitive, but there are other usages where transitivity would not be
appropriate. See, e.g., [WCH87] for a detailed discussion.
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confusion and unintuitive logical consequences. Therefore, a better practice
to model meronymy is by using a dedicated role, say partOf, which may be
declared transitive. The corrected above example would then read like this:

Finger v ∃partOf.Hand Hand v ∃partOf.Arm Arm v ∃partOf.Body
Toe v ∃partOf.Foot Foot v ∃partOf.Leg Leg v ∃partOf.Body

Arm u Leg v ⊥

Actually there is a rather reliable way to diagnose whether one class should
be declared as a subclass of another one.

A class A should be modeled as a subclass of B only if the statement
“every A is a B” makes sense and is correct.

8.3.2.6 Watch the direction of roles

The following RDFS snippet illustrates another typical modeling error:

ex:author rdfs:range ex:Publication .
ex:author rdfs:domain ex:Person .
ex:macbeth ex:author ex:shakespeare .

A closer look reveals that something is wrong with the “direction” of the
authorship property. In fact, RDFS consequences of the above triples would
be that Macbeth is a person (which might be somewhat acceptable) and that
Shakespeare is a publication (which is certainly wrong). In fact those modeling
errors are surprisingly frequent and not always as obvious as in our case, in
particular in cases where one ontology is edited by several people. Essentially,
there are two ways to avoid these problems.

When introducing a new property or role name, add a comment
that clarifies what its source and target are. Moreover, use names
which allow only one unique intuitive reading.

In the case of nouns (like “author”), such unambiguous names might be con-
structions with “of” or with “has” (authorOf or hasAuthor). For verbs (like
“to write”) an inflected form (wrote or writes) or a passive version with “by”
(writtenBy) would prevent unintended readings.

8.3.2.7 Don’t confuse class subsumption and class equivalence

When modeling correspondences between classes, some uncertainty might
arise whether to use subsumption or equivalence (i.e. rdfs:subClassOf or
owl:equivalentClass).
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Usually, class subsumption is used to provide some information about mem-
bers of a certain class, e.g., to express that all fish live in water. In this sense,
living in water is a necessary condition for being a fish (as not living in the
water excludes a being from that class). However (as witnessed by plankton,
dolphins, etc.), not every being that lives in water is a fish or, in other words,
living in water is no sufficient criterion for the class-membership as it does
not fully characterize fishes.

Only if a class description is both necessary and sufficient, an
equivalence statement should be used.

This is normally the case if a new class is introduced and defined in terms of
known classes, as for instance an orphan is defined as a person all of whose
parents are dead:

Orphan ≡ Person u ∀hasParent.Dead

8.3.2.8 Don’t translate too verbally

Although there are many useful heuristics for translating natural language
into ontological specifications, one has to be careful when using them. As
a basic example, the word “and” is not always meant to be an intersection
of classes. Clearly, the “and” in the sentence “university staff members and
students will get a login” will be translated into a union (UniStaffMember t
Student v ∃gets.Login) and not into an intersection (UniStaffMember u
Student v ∃gets.Login). The latter would express the weaker statement
that an individual gets a login if it is both a university staff member and a
student.

If in doubt about the correct formalization, two strategies that
might help are paraphrasing and testing.

On the one hand, one might paraphrase the proposition in order to get a
clearer view. In our case, the reformulated sentence might be “somebody will
get a login, if he is a university staff member or a student.” On the other hand,
having reasoning tools at hand, one might do some kind of testing. Knowing
that the above statement, e.g., allows us to deduce ∃gets.Login(paul) if we
assert Student(paul), we might simply try either of the above options and
employ a reasoner to check whether the desired consequence is entailed.

8.3.3 Ontology Refinement: How to Make Ontologies Better

After having identified basic characteristics for the quality of ontologies,
we now investigate ways of improving an existing ontology in the light of
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some criteria introduced in the previous section. Thereby, we will put special
emphasis on automated techniques.

We start by considering the situation where an ontology is inconsistent or
incoherent. As explained earlier, this indicates that something is wrong with
the ontology, in other words: some part of the specification does not corre-
spond with the actual state of affairs. There are several ways to deal with
this. One way is to “manually” examine the ontology and look for incorrect
statements. The ontology might be too large to check every single statement
or the modeling error could result from an intricate interplay of several ax-
ioms and therefore be hard to detect. However, reasoning methods can be
used to identify the set of axioms responsible for the inconsistency or inco-
herency. In general, so-called explanation tools are capable of coming up with
justifications for derived consequences of a knowledge base. This enables the
knowledge engineer to focus on the relevant parts of the ontology when look-
ing for errors. Another way of handling a flawed inconsistent or incoherent
ontology is to employ automated methods that try to reestablish consistency
resp. coherency by committing as few changes as possible to the ontology.
Most of the employed techniques originate from the area of belief revision
having a long tradition in AI research.

In the case of an ontology not containing enough information to allow for the
retrieval of the wanted information, one can again distinguish between human-
driven and machine-driven approaches. A human user might experience that a
consequence he would expect cannot be inferred from the current specification
and try to “debug” the knowledge base with respect to this shortcoming.
Thereby certain non-standard reasoning methods called abductive reasoning
might be helpful.14

On the more automated side, there are algorithms that step by step enu-
merate those statements (of a certain form) which can neither be deduced
from the given ontology nor refuted on its grounds. The knowledge engineer
can then decide for each of those statements whether to add it or its negated
counterpart to the ontology. This way the ontology can be successively com-
pleted.

8.4 Modular Ontologies: Divide and Conquer

Another engineering aspect that is gaining more and more attention is the
modularization of ontologies. Essentially, the field of ontology modularization

14Together with deduction and induction, abduction constitutes the three modes of human
reasoning due to C.S. Peirce [Ket92]. Essentially, abduction answers the question what
premise would entail a desired conclusion, given a body of knowledge.
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investigates how large ontologies can be composed of smaller parts, called
modules.

This is a desirable strategy for several reasons. Just as in software engineer-
ing, the increasing size and complexity of the artifacts necessitates strategies
for collaborative and sustainable ontology design. Now, if ontologies are de-
signed as loosely coupled, essentially self-contained systems, this facilitates
diverse typical engineering activities. First, many maintenance tasks can be
done locally by changing just the specific module in question. Next, the
single components resp. modules can be reused in other contexts more eas-
ily. Further, from a more technical perspective, under certain circumstances
reasoning tasks can be done more efficiently, as only a small part of the mod-
ules might be relevant for specific deductions or the reasoning itself can be
distributed to several machines separately handling the modules. The latter
point is also relevant if privacy and security issues come into play: an ontology
owner might not be willing to disclose the entire ontology but only to offer
some reasoning services. Then for the integrated querying of this and other
ontologies, distributed reasoning approaches are necessary.

As there are already large ontologies that do not or not sufficiently abide by
this modularity rationale, there is also ongoing research on automatically or
semi-automatically subdividing monolithic ontologies into modules in order
to exploit the above mentioned advantages modular ontologies bring about.

OWL and OWL 2 provide basic support for the distribution resp. module
aspects through owl:imports allowing for the inclusion of other ontologies
that might be situated elsewhere on the Web (see Section 4.1.1).

8.5 Software Tools

There is a considerable number of tools available for different aspects of
ontology engineering. Many of them are research prototypes, however, and
do not keep up to the standards of commercial solutions. Rather than giving
a complete listing, we provide in this section pointers to the most popular
and mature tools with recent releases,15 including commercial systems, and
mention only a few additional ones because we deem them important for some
reason. Our selection is necessarily subjective.

Comprehensive lists of Semantic Web tools – including research prototypes
– can be found under http://semanticweb.org/wiki/Tools/ and under
http://esw.w3.org/topic/SemanticWebTools/.

15We are always referring to the most recent version at the time of this writing, i.e. March
2009.
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8.5.1 Ontology Editors

8.5.1.1 Protégé

Protégé is currently the most well-known ontology editor, is freely available,
open source, and based on Java. Protégé is extensible and supported by a
large community of users and of developers providing a considerable number
of plug-in extensions. It also provides a plug-and-play environment to aid
rapid prototyping and application development.

Protégé was developed by the Stanford Center for Biomedical Informatics
Research in collaboration with The University of Manchester. It is available
from http://protege.stanford.edu/. Besides RDF support, it comprises
an OWL editor, called Protégé-OWL, which is actually an extension of the
core system.

Protégé comes with two built-in reasoners, FaCT++ and Pellet (see below),
and provides reasoning support during the editing process, e.g., by allowing
one to compute all subclass relationships, called classification of the ontology.
It also provides SWRL support and is tightly integrated with Jena (see below).

8.5.1.2 TopBraid Composer

The commercial TopBraid Composer, by the company TopQuadrant, is
available from http://www.topquadrant.com/topbraid/composer/. It has
built-in support for Pellet, Jena, and OWLIM (see below) and supports RDFS
and OWL. SWRL is supported via Jena, and SPARQL can be used. The Top-
Braid Composer sports a considerable number of built-in features for ontology
engineering tasks.

8.5.1.3 NeOn Toolkit

The NeOn Toolkit is an extensible ontology engineering environment avail-
able from http://www.neon-toolkit.org and developed as open source soft-
ware by a consortium of European research facilities and companies. It is built
on the code-base of OntoStudio (see below). The NeOn Toolkit sports vari-
ous extensions and modules, some of which are commercial. It supports RDF
and OWL DL and has native reasoning support through the KAON2 reasoner
(see below). At the same time, the NeOn Toolkit also supports rule languages
around RIF.

8.5.1.4 OntoStudio

OntoStudio, by ontoprise GmbH, is a commercial modeling environment for
the creation and maintenance of ontologies. It supports RDF and rules in F-
Logic, and can be used for collaborative ontology development. For further in-
formation see http://www.ontoprise.de/en/home/products/ontostudio/.
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8.5.1.5 SWOOP

SWOOP is an open source tool for creating, editing, and debugging OWL
ontologies available from http://code.google.com/p/swoop/ under the MIT
free software license. It was originally developed by the mindswap group at the
University of Maryland. It takes the standard Web browser as user interface
paradigm, and provides native support of Pellet (see below).

8.5.2 RDF Stores

8.5.2.1 Virtuoso

Virtuoso is a cross-platform integrated database engine with (among many
other protocols) RDF and SPARQL support developed by OpenLink Software.
It can be employed as the RDF store/query processor for the frameworks of
Jena and Sesame (see below). It is available as Pay Licensed Closed Source
or as a GPL Open Source version under the name OpenLink Virtuoso. See
http://virtuoso.openlinksw.com/ for more information and downloads.

8.5.2.2 Redland

Redland is a collection of free software libraries that enable RDF support.
It was developed by Dave Beckett while he was at the University of Bristol,
UK. It provides APIs for RDF data manipulation and querying via SPARQL,
allows for in-memory and persistent graph storage, and comes with command
line utility programs. It is available under GPL, LGPL, and Apache License.
For downloads and more information see http://librdf.org/.

8.5.2.3 Sesame

Sesame is an RDF framework with inferencing and SPARQL querying sup-
port originally developed by Aduna. It comes with a native store but can also
be used with other storage systems. It includes various developer tools and
is available from http://www.openrdf.org/ under a BSD-style Open Source
license.

8.5.2.4 AllegroGraph

AllegroGraph RDFStore, by Franz Inc., is a Pay Licensed Closed Source
RDF database. It supports RDFS reasoning and querying via SPARQL. For
further details, see http://agraph.franz.com/allegrograph/.

8.5.2.5 OWLIM

OWLIM supports RDFS by means of Sesame and a rather small fragment of
OWL DL – as well as a combination of these – but does so rather efficiently. It
is freely available from http://ontotext.com/owlim/ under the GNU LGPL
and commercially supported by ontotext.
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8.5.3 OWL DL Reasoning Engines

The strongest and most mature reasoners available for OWL DL are based
on tableaux algorithms presented in Section 5.3, and foremost to mention are
Pellet, FaCT++, and RacerPro as the most well-known systems.

8.5.3.1 Pellet

Pellet is an open source OWL reasoner written in Java and available from
http://pellet.owldl.com/. It supports OWL DL (more precisely SHOIQ),
and is commercially supported by Clark & Parsia LLC. It also supports the
SROIQ description logic which underlies OWL 2 DL, and conjunctive query-
ing using SPARQL syntax. It furthermore sports a number of features to
support ontology engineering, including the lightweight ontology browser Owl-
Sight, some analysis and repair functionalities, and support of DL-safe rules.

8.5.3.2 RacerPro

RacerPro is a commercial OWL reasoner by Racer Systems, and available
from http://www.racer-systems.com/. It supports OWL DL, although rea-
soning with nominals is only done in an approximate manner. Various pro-
priety extensions, e.g., for datatype reasoning, are available.

8.5.3.3 FaCT++

FaCT++ is an open source reasoner under the GNU public license, written
in C++ and developed at The University of Manchester. It is available from
http://owl.man.ac.uk/factplusplus/ and supports OWL DL as well as
OWL 2 DL.

8.5.3.4 KAON2

KAON2 is a commercial system, by ontoprise GmbH under the name On-
toBroker OWL, with binaries freely available and free for use for universities
for noncommercial academic usage. In contrast to the aforementioned rea-
soners, KAON2 is not based on tableaux algorithms, but on the resolution
calculus. KAON2 supports SHIQ and DL-safe rules. Conjunctive queries
can be expressed using SPARQL syntax. KAON2 binaries are available from
http://kaon2.semanticweb.org/.

8.5.3.5 SHER

SHER is a reasoner for SHIN based on Pellet which uses some enhance-
ments of database indexing to obtain higher reasoning speed. It was developed
by IBM and is available from http://www.alphaworks.ibm.com/tech/sher/.
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8.5.4 Reasoning Engines for OWL 2 Profiles

8.5.4.1 CEL

CEL was the first dedicated reasoner for EL++, though without support for
nominals and ABoxes. EL++ will be part of the forthcoming OWL 2 standard
as OWL 2 EL. It is restricted to classifying such ontologies, i.e. to computing
all subclass relationships. It is free for evaluation and research purposes and
can be obtained from http://lat.inf.tu-dresden.de/systems/cel/. It
was developed by the Technical University of Dresden.

8.5.4.2 Owlgres

Owlgres is a reasoner for the DL-Lite fragment of the forthcoming OWL 2
standard, i.e. OWL 2 QL. It is available under the GNU AGPL 3 open source
license from http://pellet.owldl.com/owlgres, while commercial support
is provided by Clark & Parsia LLC. Owlgres allows one to formulate conjunc-
tive queries in SPARQL syntax.

8.5.5 QuOnto

QuOnto, developed by “Sapienza” University of Rome is an OWL 2 QL rea-
soner. It is available from http://www.dis.uniroma1.it/quonto/ as a demo
version for testing purposes. It supports conjunctive queries and SPARQL.

8.5.5.1 Oracle 11g

Oracle 11g supports RDF(S) and the OWL 2 RL profile of OWL 2 for ontol-
ogy management. It comes with an adaptor for Jena. For more information,
see http://www.oracle.com.

8.5.6 Datalog and Rules Engines

We obviously restrict ourselves to rules engines which can handle rules as
introduced in Chapter 6.

8.5.6.1 XSB

XSB is a well-known open source Prolog system developed by the Com-
puter Science Department of Stony Brook University and others. It is avail-
able from http://xsb.sourceforge.net/. Among the systems building on
it is FLORA-2 – available from http://flora.sourceforge.net/ – which
is an object-oriented knowledge base language and application development
environment. Its underlying language is F-Logic.



332 Foundations of Semantic Web Technologies

8.5.6.2 SWI-Prolog

SWI-Prolog is another very popular open source Prolog system, developed
by Jan Wielemaker at the University of Amsterdam. It is available from
http://www.swi-prolog.org/.

8.5.6.3 Ontobroker

Ontobroker is a commercial logic programming system developed by onto-
prise GmbH, with a long history of ontology-based application development.
It supports reasoning with RIF, with F-Logic, but also with RDF and OWL,
and querying with SPARQL and conjunctive queries. Information is available
from http://www.ontoprise.de/en/home/products/ontobroker/.

8.5.6.4 DLV

DLV is a datalog system which is free for academic and non-commercial
use developed by the University of Calabria. It sports some extensions which
allow one to integrate OWL reasoning in a hybrid way, i.e. rules and OWL
can be used together, but they interact in a less obvious way. It is available
from http://www.dbai.tuwien.ac.at/proj/dlv/.

8.5.6.5 IRIS

IRIS is a system for reasoning with a restricted form of datalog programs
developed by STI Innsbruck under the LGPL license and used for Semantic
Web purposes. It is available from http://www.iris-reasoner.org/.

8.5.7 Further Systems

8.5.7.1 OWL API

The OWL API is a Java interface and implementation for OWL 2. It is
open source and available from http://owlapi.sourceforge.net/ under the
LGPL license. The OWL API includes an API for OWL 2 and an efficient in-
memory reference implementation, parsers and writers for different syntaxes,
support for integration with OWL reasoners, and support for black-box de-
bugging. It is primarily maintained at The University of Manchester.

8.5.7.2 Jena

Jena is a mature Java framework for building Semantic Web applications de-
veloped by Hewlett-Packard, available from http://jena.sourceforge.net
and open source. It provides a programmatic environment for RDF(S) and
OWL, and sports a rule-based OWL inference engine which is incomplete with
respect to the OWL semantics. Jena also supports SPARQL.
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8.6 Summary

As ontologies are widely adopted also for large-scale applications, strategies
for their creation, evaluation, and maintenance are needed. The related field
of software engineering can provide some useful insights into how to create suc-
cessful ontology engineering processes. For the creation of ontologies, sources
of knowledge can be: human experts, unstructured sources such as texts, semi-
structured sources like wikis or hypertext documents and structured sources
as databases or already existing ontologies. For quality assurance, ontologies
can be evaluated based on several criteria, among them logical, structural,
and formal criteria as well as accuracy. For improving an ontology’s quality,
semiautomatic methods are available. Modularization of ontologies provides
benefits in terms of management and reuse. Several tools for assisting in
diverse ontology management tasks are available.

8.7 Further Reading

As stated earlier, Ontology Engineering is a broad and diverse field still
in its infancy. Therefore, the following set of literature recommendations is
necessarily both subjective and tentative.

Edited volumes containing comprehensive overviews on topics related to
ontology engineering are [SS09] and [GPCFL04]. As a shorter first read,
[PM04] outlines the parallels of ontology and software engineering.

The question how to make experts’ implicit knowledge explicit is a cen-
tral issue in the scientific field of knowledge management. [NT95] is one of
the standard references addressing this question in the context of compa-
nies. Automated techniques for knowledge acquisition from sets of training
examples provided by experts clearly fall into the realm of machine learning.
[Mit97] gives an excellent introduction on machine learning in general. For the
particular field of inductive logic programming, [LD94] provides an in-depth
treatment.

As stated before, techniques for extracting knowledge from natural language
documents can be roughly divided into statistical vs. structural approaches.
Statistically oriented methods are focused on by the discipline of information
retrieval; [MRS07] gives a profound introduction. In particular, latent se-
mantic analysis, a prominent word-bag method, is described in [LD97]. The
term ontology learning refers to the extraction of ontological knowledge from
textual sources; see [MS01]. Diverse approaches to ontology learning are pre-
sented in [BC08], wherein [VHH08] is an example for a structural rather than
statistical approach to that problem. An overview of ontology learning tools
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can be found in [GPMM04]. On a more abstract level, problems of transfer-
ring natural language texts via structural analysis into logical specifications
have been intensely dealt with by discourse representation theory [KR93].

References and ongoing work on constrained natural language (“controlled
English”) related to ontologies for the Semantic Web can be found under
http://wiki.webont.org/page/OwlCnl.

Network or link analysis [The04] deals with the extraction of information
from graph structures and can be used for coming up with “shallow” semantic
information about interlinked Web pages or wiki articles.

Ontology matching and its subfields ontology alignment, ontology mapping,
and ontology merging have become an increasingly hot topic in ontology man-
agement as evidenced by numerous workshops and publications. [ES07] gives
a good overview of this vibrant field.

Techniques for explaining automated inferences to the user are well-estab-
lished and implemented in most related tools. A nicely written explanation
on explanations can be found in [HPS08]. Foundations of the technique of
belief revision and also some hints on its employment for ontology repair are
described in [Gär92].

OntoClean [GW04] is an elaborate, philosophically inspired methodology
for ontology evaluation based on formal criteria that rely on class qualities
such as rigidity.

When modeling his very first ontology, the reader may find the seminal
guideline [NM] helpful. For avoiding common modeling errors, [RDH+04]
gives valuable hints.

Formal Concept Analysis [GW97] can be used as a basis for methods to
complete insufficiently axiomatized ontologies as described in [Rud06] and
[Ser07].

The topic of modular ontologies is another example of an emerging field
and is currently gaining much interest from the research community. For
a substantial contribution to that field, see [CHKS08]; for a thorough and
comprehensive overview of the state of the art, we refer the interested reader
to [SPS09].

Many Semantic Web tools, including research prototypes, are listed with
references and pointers under http://semanticweb.org/wiki/Tools/ and
http://esw.w3.org/topic/SemanticWebTools/.
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Applications

There is no shortage of potential future use case scenarios for Semantic Web
technologies, ranging from information integration over ambient intelligence
to expert systems. Such scenarios are reported in the proceedings of vari-
ous research and industrial conferences, edited research books, and project
reports, and we give corresponding pointers in Section 9.10. These reports
are a clear indication of the current state of the art, namely, that Semantic
Web technologies are currently in a transition phase from research into ap-
plications. This is also witnessed by the industrial development of ontology
editors and reasoners, as presented in Section 8.5.

Rather than providing yet another compilation of potential use cases, in this
chapter we focus instead on a selected few real life applications, i.e. applica-
tions which are really being used. They show the uptake of Semantic Web
technologies in practice, and witness the currently ongoing transition from re-
search into applications. Our selection is necessarily subjective; however, we
are confident that we have captured some of the most relevant applications
to date.

But before we actually come to the applications, let us dwell for a moment
on the question what – and what not – applications of Semantic Web tech-
nologies actually are. It turns out that it is not easy to give such a definition.

Naively speaking, something is an application of Semantic Web technolo-
gies if it actually uses Semantic Web technologies. But this leaves us with
the question what Semantic Web technologies are. And in attempting to de-
fine this term, we have to realize that Semantic Web technologies, generally
speaking, are rather a vaguely defined class of technologies than a concrete
technology – vaguely defined as having something to do with metadata, data
exchange and integration, knowledge representation, the Web, ontologies, and
following the general visions explained in Chapter 1, but not defined in any
crisp way. Perhaps Semantic Web technologies are still too young for such a
crisp definition. But let’s try anyway.

A workable and straightforward definition of applications of Semantic Web
technologies is that they are applications which use any of the standardized
ontology languages, i.e. RDF or OWL. This might probably be a safe definition
considering the fact that we have these languages available. However, it leaves
out applications using RIF (which at the time of this writing is in the last
stages of becoming a W3C recommendation, but isn’t one yet). Likewise,

335
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what about applications using other ontology languages which were around
before OWL was there,1 or ontology languages which are not standardized
but appear to be viable alternatives?2 The definition would miss these. And
at the same time it would include uses of RDF which are, probably, not at all
in the spirit of the Semantic Web.

So let us attempt a much more general definition and say that applications
of Semantic Web technologies are defined by using metadata in a metadata-
specific way. This sounds about right, but if you think about it for a while
then you may start to wonder about the precise definition of metadata and
of metadata-specific. In some sense, metadata is simply data describing other
data – but again this definition is not entirely crisp.

None of the suggestions above is a satisfactory definition, and indeed, we
think it is futile to dwell on this point longer at this stage. Future develop-
ments will clarify matters.3

As for this chapter, we mainly take the naive stance and discuss applica-
tions which use any of the ontology languages which we have introduced in
this book. We even go a step further and almost exclusively include appli-
cations where we were able to verify the use of such languages by means of
documentation or publications. We are aware that there are some prominent
applications which are commonly said to use them as well, but it is not docu-
mented. We are also aware that there are prominent applications which have
the look and feel of Semantic Web technologies but are not labeled or mar-
keted or conceived as such, for whatever reason. Such applications are also
not included.

9.1 Web Data Exchange and Syndication

There is already a considerable number of sources for knowledge expressed
in RDF or OWL on the Web.4 A recent effort, initiated by Tim Berners-Lee
and commonly referred to as the linked data initiative,5 is currently gath-
ering and channeling interested parties in order to strengthen links between
available semantic data on the Web. Some of this data comes from Semantic

1Like GRAIL; see page 346.
2Like F-Logic, for example.
3The interested reader may want to reread Chapter 1 at this stage.
4We’re already easily talking about billions of RDF triples on the Web – although we have
to say that it doesn’t really make much sense to talk about exact numbers, for many reasons,
including the fact that many triples are automatically generated when requested or crawled.
5See http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
and http://www.w3.org/DesignIssues/LinkedData.html.
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Portals (which are discussed in Section 9.3) and other sources which we will
encounter throughout this chapter.6

9.1.1 Endowing Web Data with Metadata

Many prominent websites and Web portals are now endowed with metadata
or (partially) cast into RDF, and have become part of the linked data “cloud,”
which is the term used for describing the collection of data sets which have
been interlinked by this initiative. This includes TV program information,
music databases, census data, research literature datasets, prominent Web
2.0 portals like Flickr7 and MySpace,8 etc.9 A rather prominent example is
the DBPedia knowledge base10 which is created from extracting structured
information from Wikipedia.11

Freebase,12 by Metaweb Technologies, Inc., is an open RDF-based database
anybody can add to, and which also integrates data available on the Web,
including data from Wikipedia. Freebase is also part of the linked data cloud.

9.1.2 Vocabularies

A vocabulary is a collection of identifiers with predefined meanings which
are informally specified. In the Semantic Web context vocabularies may be
accompanied by some (simple) ontological relationships. They are usually
used for the transmission of data between software applications, but they also
contribute significantly to the linked data effort.

Creative Commons,13 for example, which is a non-profit organization dedi-
cated to providing free licenses and legal tools, has defined a vocabulary which
allows us to describe copyright licenses in RDF.14 The Yahoo! Creative Com-
mons Search,15 for example, allows us to use these descriptions in order to
search for Web content based on reuse licenses.

In the following, we briefly present two vocabularies which we deem to be
of particular importance for the Semantic Web – although there are certainly
many others.

6See the first link in Footnote 5 for further major sources of semantic data related to the
linked data initiative.
7http://www.flickr.com/
8http://www.myspace.com/
9Please see the first link in footnote 5 for more information on these efforts.
10http://dbpedia.org/
11http://www.wikipedia.org/
12http://www.freebase.com/
13http://creativecommons.org/
14http://creativecommons.org/ns
15http://search.yahoo.com/cc/
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RSS RDF Site Summary 1.016 (RSS) is probably the most commonly used
Semantic Web vocabulary. It is used in Weblogs (Blogs), and is expressed in
RDF. Weblog software, like WordPress,17 is designed to simplify the creation
and maintenance of such weblogs. The specified vocabulary defines authors,
dates, titles, etc. Using an RSS feed reader, any user can access RSS feeds
which usually contain news items and brief reports, and which are provided
by many sites on the World Wide Web. The content is downloaded as RDF,
and displayed to the user. Figure 9.1 shows an example of an RSS feed.

The benefit of using RSS feeds is the aggregation of information into the
feed reader, which is controlled by the user. This contrasts, for example, with
the use of email, where the sender determines which information is received
by the recipient. RSS feeds can further be aggregated on the Web, resulting
in websites which provide all the aggregated items from these feeds through
one single feed. The structured format of RSS feeds furthermore allows for
an elaborate further processing of the information.

In February 2009, the U.S. government issued a memorandum with the
subject Initial Implementing Guidance for the American Recovery and Rein-
vestment Act of 2009 which includes a statement that some reporting must
be done using a feed – with RSS mentioned as one of the possible protocols.18

Note that the alternative format Really Simple Syndication (RSS 2.0), al-
though related, is realized in XML, and not in RDF.

FOAF Friend of a Friend19 (FOAF) is a vocabulary for data about persons
and for social networking. FOAF files contain information about a person’s
name, age, gender, acquaintances, etc., and allow the browsing and analysis
of social networks. To date, there are roughly one million FOAF files on
the World Wide Web, most of them generated automatically on Web portals.
There are also tools for generating FOAF files, like FOAF Creator20 and
FOAF-a-matic.21

FOAF uses RDF and OWL for describing the vocabulary, e.g., by means
of owl:sameAs to identify resources belonging to the same person. Figure 9.2
shows an example of a FOAF file.

FOAF files can be browsed using applications like the FOAF Explorer.22
FOAF is often used in conjunction with SIOC (Semantically Interlinked On-

16http://web.resource.org/rss/1.0/
17http://wordpress.org/
18http://www.recovery.gov/files/

Initial%20Recovery%20Act%20Implementing%20Guidance.pdf
19http://www.foaf-project.org/
20http://neverfriday.com/foaf/create.html
21http://www.ldodds.com/foaf/foaf-a-matic.html
22http://xml.mfd-consult.dk/foaf/explorer/
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<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http://example.org/rss/examples.rss">
<title>Example News Feed</title>
<link>http://example.org</link>
<description>
Example News

</description>
<items>
<rdf:Seq>
<rdf:li resource="http://example.org/rss/example1.html" />
<rdf:li resource="http://example.org/rss/example2.html" />

</rdf:Seq>
</items>

</channel>
<item rdf:about="http://example.org/rss/example1.html">
<title>First Example</title>
<link>http://example.org/rss/example1.html</link>
<description>
This is the text of the first example in this RSS feed.

</description>
</item>
<item rdf:about="http://example.org/rss/example2.html">
<title>Second Example</title>
<link>http://example.org/rss/example2.html</link>
<description>
This is the text of the second example in this RSS feed.

</description>
</item>

</rdf:RDF>

FIGURE 9.1: Example RSS file
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<rdf:RDF>
<foaf:PersonalProfileDocument rdf:about="">
<foaf:maker rdf:resource="http://simia.net/foaf.rdf#denny" />

</foaf:PersonalProfileDocument>
<foaf:Person rdf:about="http://simia.net/foaf.rdf#denny">
<foaf:name>Zdenko Vrandecic</foaf:name>
<foaf:name>Denny Vrandecic</foaf:name>
<foaf:openid rdf:resource="http://denny.vrandecic.de" />
<owl:sameAs rdf:resource=

"http://dblp.l3s.de/d2r/resource/authors/Denny_Vrandecic" />
<foaf:givenname>Zdenko</foaf:givenname>
<foaf:family_name>Vrandecic</foaf:family_name>
<foaf:nick>denny</foaf:nick>
<foaf:homepage rdf:resource="http://denny.vrandecic.de" />
<foaf:knows>
<foaf:Person rdf:about=

"http://anupriya.ankolekar.name/foaf.rdf#anupriya">
<foaf:name>Anupriya Ankolekar</foaf:name>

</foaf:Person>
</foaf:knows>

<foaf:knows>
<foaf:knows>
<foaf:Person rdf:about="http://ontoworld.org/wiki/

Special:URIResolver/Rudi_Studer">
<foaf:name>Rudi Studer</foaf:name>
<rdfs:seeAlso rdf:resource="http://www.aifb.uni-karlsruhe.de/

Personen/viewPersonFOAF/foaf_57.rdf" />
</foaf:Person>

</foaf:knows>
</rdf:RDF>

FIGURE 9.2: Example FOAF file
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line Communities),23 which is an ontology for integrating online community
information. FOAF is also supported by Google’s Social Graph API.24

9.2 Semantic Wikis

The wiki paradigm of collective knowledge management has been around
for many years, almost as long as the Web itself. However, only the enormous
success of Wikipedia truly started the interests in this quick and simple new
way of sharing information. Today, wikis have become common in many
applications, including Web-based information portals, but also non-public
corporate intranet sites and write-restricted collaboration platforms. What
sets wikis apart from traditional HTML content management systems is that
they make authoring of Web content very easy even for non-experts, and
that they invite user contributions. This observation soon led to the idea of
pursuing a similar approach for semantic Web content, resulting in what is
now known as semantic wikis.

Generally speaking, wikis are systems for managing hypertext and related
data such as images or file uploads. The main characteristic of a wiki is that
it allows users to add and modify content quickly and easily. This vague
description is usually approached by allowing users to author content in a
simple mark-up language that hides some of the complexities of HTML. This
syntax, usually called wiki text, differs among implementations, and even is
sometimes hidden beneath a graphical user interface. Typical wikis contain
pages, or articles, that constitute the basic units of wiki text that users can
edit. Editors of the wiki may then create, modify, delete, or rename articles
in order to improve the content of the wiki.25

A basic concept of semantic wikis is to extend the features of a given wiki
text to allow semantic information to be specified together with other content
of wiki pages. A typical assumption of semantic wikis is that semantic content
is related to the page on which it is specified, such that semantic information
augments the hypertext that the wiki contains. As a result, semantic infor-
mation in semantic wikis also follows a page-based structure, and pages are
often assumed to represent ontological elements. In fact, there is another pos-
sible notion of “semantic wiki” as a system that applies wiki-like interaction
paradigms to arbitrary ontological data, not necessarily connected to other
wiki content. Such systems are more closely related to collaboratively used

23See http://sioc-project.org/ and http://www.w3.org/Submission/sioc-spec/.
24http://code.google.com/apis/socialgraph/
25Note that, in spite of the well-known case of Wikipedia, wiki editors are not necessarily
the same as wiki users. Especially corporate wikis often regulate access rights and user
privileges.



342 Foundations of Semantic Web Technologies

ontology editors, and should thus be compared with the systems mentioned
in Section 8.5.1, some of which do also offer collaboration options. This said,
it is still possible that semantic wikis support the authoring of ontological
axioms, yet the underlying paradigm differs from generic ontology editors.

9.2.1 Semantic MediaWiki

As a concrete example implementation, we consider Semantic MediaWiki
(SMW), which has been a forerunner for semantic wiki technology and which
is in wide use today. SMW is an extension to the wiki engine MediaWiki26
that is also used to run Wikipedia. Both systems are available as free software.

The basic structure of semantic data in SMW is inspired by RDF and OWL.
Individuals are represented by wiki articles, and basic assertions are created
by assigning property-value pairs to these pages. This corresponds to the
triple structure that we encountered in RDF. Such assertions are typically
entered in a special syntax that is derived from the wiki text of MediaWiki.
For example, the text

This textbook was published by [[publisher::CRC Press]] in
[[publication date::2009]].

might be the content of the page “Foundations of Semantic Web Technolo-
gies.” When viewed in a browser, the page then would display the sentence
“This textbook was published by CRC Press in 2009” where “CRC Press”
might be a link to another page of that name. In addition, SMW would ex-
tract two assertions (triples) that assign to the article about the textbook a
property value CRC Press for the property publisher, and a property value
2009 for the property publication date. The example shows how semantic
annotation and hypertext authoring can be combined into a single interface.
Also note that we did not specify the datatype of any of the values here, so
the above wiki text does not specify if 2009 refers to a date, to the name of
another wiki page, or to something else.

Editors of the wiki are free to define properties that are to be used in assert-
ing semantic data: a special subset of pages in the wiki-namespace Property
represents existing properties. As opposed to RDF, properties in SMW have
a specific datatype, and all values that are assigned for a property are consid-
ered to be of that datatype. This explains why we did not have to specify any
typing information in the example above. Assigning datatypes to properties
is done in the style of generic property assertions. For example, the input

26http://www.mediawiki.org/



Applications 343

This property is used to refer to the [[has type::date]] of
publications.

on the page entitled “Property:Publication date” defines a datatype date for
this property. The available datatypes in SMW are different from XML
Schema, since they are more tailored toward wiki use. For example, there
is a type page that is used for properties that refer to other wiki pages.
Properties for which no datatype was specified will be assumed to have this
type by default. The datatype also defines to which property types of OWL,
such as owl:ObjectProperty or owl:DatatypeProperty, an SMW property
corresponds.

Besides basic property assertions, SMW allows us to specify semantic in-
formation in a number of further ways. For example, pages can be tagged
with categories, a mechanism already available in MediaWiki, to denote a
class membership assertion. Moreover, hierarchies of properties and classes
can be encoded, as well as various other forms of ontological axioms. We do
not provide the details of these mechanisms here.

The practical success of SMW relies on the fact that it provides immediate
benefits of entering semantic data. Of course, semantic data can be more easily
exchanged, and SMW indeed offers a number of export facilities to support
this. This alone, however, is hardly enough to motivate users to contribute
semantic data. The main application of semantics in SMW is semantic search,
i.e. the retrieval of data based on entered queries. The query language of
SMW is syntactically based on the wiki text used for creating annotations,
and we will not provide further details here. We note, however, that queries in
SMW can be answered in polynomial time, and thus are less expressive than
conjunctive queries or SPARQL (see Chapter 7). An important innovation
introduced in SMW is inline queries. These queries are entered during wiki
editing as part of the wiki text, and the resulting HTML page displays the
query results in their place. This enables readers to profit from SMW even
without being aware of semantic queries. Due to extensive formatting options,
inline queries can be fully integrated with hand-written page contents.

In spite of its success, SMW is neither the only nor the first semantic wiki.
See Section 9.10 for pointers to further tools in this area.

9.2.2 Applications

Just like wikis, semantic wikis can be applied in essentially any application
domain. As of today, more than 300 public sites are known to use SMW,27
excluding an unknown number of non-public sites in corporate environments.

27http://semantic-mediawiki.org/wiki/Sites_using_Semantic_MediaWiki/
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Various commercial wiki hosts, including the world’s largest wiki provider,
Wikia,28 offer SMW to their customers. Mirroring the general structure on
the Web, most public semantic wiki sites deal with recreational topics, but
also scientific and technological applications are common. In general, SMW
is particularly useful in applications that feature significant amounts of semi-
structured data – textual information that involves a large number of concrete
relations and data values.

9.3 Semantic Portals

Semantic portals are websites where the human-readable content is accom-
panied by machine-readable information using ontology languages. This can
range from the provision of FOAF files to providing complex page content by
means of OWL ontologies.

Through the use of ontologies, a semantic portal provides its content in a
format which can easily be reused by Semantic Web applications which utilize
data from the open Web. It can also easily be integrated into the linked data
cloud. Another advantage is that internal content management can also be
done using ontologies, which simplifies integration with other data and also
allows us to realize better search and browsing facilities for the user of the
portal.

A number of websites of research groups and projects sport such infor-
mation.29 Semantic MediaWiki, discussed in Section 9.2, also features RDF
exports. Twine30 by Radar Networks is a social networking portal which
heavily uses RDF and OWL.

Yahoo! SearchMonkey31 is an example of an application which leverages
semantic data provided by semantic portals. SearchMonkey internally uses a
format based on RDF and allows us to create small applications for enhancing
Yahoo! search results with additional data and structure, like giving direct
links to related pictures. It allows us to incorporate RDF data gathered by
the Yahoo! Search Crawler into the displayed results.

On some Web portals, internal data management is done using RDF, al-
though RDF exports are not provided. Examples include Yahoo! Food,32

28http://wikia.com/
29See, e.g., the KMI portal http://semanticweb.kmi.open.ac.uk at the Open University,
or the AIFB website http://www.aifb.uni-karlsruhe.de/about.html at the University of
Karlsruhe.
30http://www.twine.com/
31http://developer.yahoo.com/searchmonkey/
32http://food.yahoo.com/
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which is a site for recipes, cooking, restaurants, etc., and Vodafone life!,33
which provides downloads for mobile phones.

9.4 Semantic Metadata in Data Formats

Some data formats for documents allow us to include metadata about the
document. This allows us to convey information like authorship, creation
date, and the like, in a machine-readable form, and to do so even if the visual
appearance of the document, e.g., a picture, would not state this information.
To aid portability and reuse of this metadata, some data formats use RDF
for expressing it.

Probably the most prominent example is Adobe XMP,34 which allows us to
include RDF-based metadata, for example, in PDF files.35 It is supported by
Adobe applications like Photoshop 7.0, Acrobat 5.0, and Illustrator 10.

The World Wide Web Consortium (W3C) has established a recommended
standard for graphics, called Scalable Vector Graphics (SVG).36 It is based on
XML and editable in text editors. It allows us to directly embed metadata in
RDF and is supported, for example, by Inkscape37 and popular Web browsers
like Mozilla Firefox or Microsoft Internet Explorer.

9.5 Semantic Web in Life Sciences

Life Sciences is a candidate for applications of Semantic Web technologies
with high impact. Indeed there are substantial research activities in adopting
Semantic Web technologies for Life Sciences, as witnessed, e.g., by the W3C
Semantic Web Health Care and Life Sciences Interest Group.38 This comes
as no surprise considering the discussion in Chapter 1, where we pointed out
that Life Sciences have prompted historical modeling efforts like the Linnaean
taxonomy.

33http://www.vodafone.de/vodafonelive.html
34http://www.adobe.com/products/xmp/
35http://www.adobe.com/products/xmp/pdfs/whitepaper.pdf
36http://www.w3.org/Graphics/SVG/
37http://www.inkscape.org/ – we actually used this for producing some of the figures in
this book.
38See http://www.w3.org/2001/sw/hcls/ and also the proceedings of a corresponding work-
shop at the 17th International World Wide Web Conference 2008, which can be found under
http://esw.w3.org/topic/HCLS/WWW2008.
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The rationale behind these activities is to leverage Semantic Web technolo-
gies in order to make the best use of the rapidly accumulating knowledge in
Life Sciences, e.g., by establishing ways to integrate data repositories and to
make them available in a structured form.

In the course of these actions, a number of highly visible ontologies have
been developed, and we mention some of them below. They are often also
used as unofficial benchmarks for OWL reasoners.

The Gene Ontology39 is maintained by the Gene Ontology Consortium,
which includes several of the world’s most important genome repositories. The
Gene Ontology serves the need to have consistent descriptions of gene products
over different databases, and thus allows, for example, uniform queries across
participating databases. The Gene Ontology has become a standard tool in
the bioinformatics arsenal. It is available in different formats, including RDF
and OWL.

SNOMED CT, the Systematized Nomenclature of Medicine – Clinical
Terms, developed by the International Health Terminology Standards De-
velopment Organisation,40 is an ontology for clinical terminology designed
to support the exchange and aggregation of health data. It is now further
maintained and developed by SNOMED Terminology Solutions,41 which is a
division of the College of American Pathologists. Among its applications are
electronic medical records, clinical decision support, medical research studies,
image indexing, and consumer health information services.

SNOMED CT can be expressed in EL++, i.e. in OWL 2 EL, and its classi-
fication by the reasoner CEL (see Section 8.5.4.1) was the landmark result in
pushing the development of tractable languages and reasoners around OWL.

GALEN is an ontology developed by the non-profit organization Open-
GALEN.42 It is designed for building clinical applications, to support clini-
cians in everyday work. It thus represents medical information which such
applications require. It is multilingual and commercial products based on it
are available on the market. Its origin dates back to the early 1990s, and it
is coded in an ontology language developed for this purpose, called GRAIL.
GALEN is also available in OWL.

39http://www.geneontology.org/
40http://www.ihtsdo.org/
41http://www.cap.org/apps/cap.portal?_nfpb=true&_pageLabel=snomed_page
42http://www.opengalen.org/
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9.6 Ontologies for Standardizations

Ontology languages are made for expressing complex relationships. As such,
they can be used in application areas for expressing technical standards. Due
to the fixed semantics coming with the ontology languages, ambiguities in the
expressed standards are reduced.

A particularly prominent example of such an application is the IEC 61970
standard, known as Common Information Model (CIM), maintained and de-
veloped by the International Electrotechnical Commission,43 which is the
world’s leading organization for international standards related to electrical,
electronic, and related technologies. The standard is used for describing power
networks and addresses interdisciplinary challenges over a variety of fields re-
lated to the realization of electrotechnical solutions. It provides, for example,
for the modeling of power net topologies including transformers, wires, cir-
cuit breakers, and transformer stations, but also some artifacts from business
administration like contracts and clients.

CIM has recently been ported into RDF and OWL, specifically due to the
required expressivity for formulating the standard.

At the time of this writing, there is also a proposal to use an OWL ontology
as a part of the forthcoming IEEE 802.21 standard.44

9.7 RIF Applications

We discuss RIF applications separately, simply because RIF is closely re-
lated to logic programming, which in turn has been around for more than 40
years and thus has already been applied within a multitude of contexts. It
would be out of the scope of this book to go into details on this. However, we
would like to point out that some of the more recent applications are clearly
applications of semantic technologies.

A particular example of this is an expert system realized by ontoprise GmbH
for the KUKA Roboter GmbH, a prominent vendor of industrial robots.45
It is essentially an ontology-based error diagnosis system which aids service
engineers with robot maintenance.

For a selection of possible further use cases of RIF we refer the reader to
the current version of the RIF Use Cases and Requirements document46 by

43http://www.iec.ch/
44http://tools.ietf.org/html/draft-ohba-802dot21-basic-schema-05/
45http://www.ontoprise.de/en/home/references/kuka-roboter-gmbh/
46http://www.w3.org/2005/rules/wiki/UCR/
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the W3C RIF working group.

9.8 Toward Future Applications

The applications presented in this chapter substantiate the claim that Se-
mantic Web technologies are currently in a transition from research to real-life
applications. Most of the applications to date make only very shallow use of
ontology languages; in particular, the reasoning capabilities over ontological
knowledge are not yet being exploited to their full potential. So there is a
lot of scope for future developments, and we want to mention a number of
promising use case scenarios and emerging applications. Further pointers will
be given below in Section 9.10.

A much-cited article from 2001, co-authored by Tim Berners-Lee, describes
a long-term vision for the development of semantic technologies. Projecting
a world where online services (such as information portals), offline services
with online interfaces (like online shops), and electronic household items (like
PDAs and TV sets) can freely interact due to commonly shared ontology-
based representation languages, the scenario exemplifies how Semantic Web
technologies have the potential to enhance our everyday lives through support
of shopping, timetable scheduling, and the like. While such a vision is still
rather futuristic, it projects some of the grand goals behind the Semantic Web
efforts related to ubiquitous computing and ambient intelligence.

Central in the development of such powerful applications is the flexible use
of Web Services, enhanced with semantic descriptions. The central idea is
to use semantic descriptions of Web Service functionalities to facilitate the
finding of relevant services, their composition for solving complex tasks, and
their automatic invocation for providing the desired functionalities. On a
more mundane level, Semantic Web Services are projected to be important
for the next generation of software engineering based on Service Oriented
Architectures, again because of the flexibility and automation in finding and
composing Web Services. Considerable efforts are under way in academic and
industrial research for realizing such goals.

Another application area with high potential is Semantic Search, which
refers to the use of metadata and background knowledge in the form of on-
tologies to enhance search for information on the World Wide Web and in
corporate intranets. This will lead away from a search paradigm based on
keyword matching to a more conceptual scenario, where it is possible to search
for content even if specific keywords in the desired documents are unknown.
Semantic Search can make use of reasoning functionalities and provide hits
which are more relevant.

Information integration is one of the major challenges of our information
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age. The amount of knowledge on the Web and in databases and applica-
tions is breathtaking, and even within companies the access to and finding of
relevant information and data remain difficult. Ontologies provide means to
describe information items conceptually, which aids integration and search.
The development of corresponding frameworks and tools for information in-
tegration is currently being pursued in academia and in the industry.

One of the many example use case scenarios for information integration is
being explored by the Food and Agriculture Organisation (FAO) of the United
Nations in the context of the project NeOn,47 funded by the European Union.
Semantic technologies will be used for the integration of fishery data which
is collected from all over the world. The concrete goal of the study is the
development of an overfishing alert system based on semantic technologies.

Ontologies are also increasingly used as general knowledge representation
formalisms for intelligent systems. The rationale behind this is that they pro-
vide a favorable trade-off between expressivity of the representation language
and scalability of reasoning support. An example application is the use of
ontologies in computer vision, e.g., for the automatic recognition of topology
and driving lanes in traffic intersections [HTL07]. Standard technology from
image recognition is supplemented by background knowledge, represented in
OWL, on possible intersection topologies. OWL reasoning support then al-
lows us to severely cut down on the possible interpretations of the sensor data,
thus allowing us to correctly identify driving lanes.

9.9 Summary

We have provided a number of real-life examples of applications of Se-
mantic Web technologies to illustrate the current transfer from research into
practice. We have also discussed some potential future use cases. Application
areas range over many topics in Computer Science to uses in other fields, and
considerable impact of these technologies can be forecast.

9.10 Further Reading

The examples in this chapter are only a fraction of the available and possible
applications of semantic technologies. We have not mentioned the use of RDF

47http://www.neon-project.org/
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for Web page child safety labels48 and many others.
For further reading about applications and use case scenarios, we refer to

the considerable number of edited books on ontologies and the Semantic Web,
including [DSW06, SS09, HS09] and others. Recommended also is the arti-
cle [FHH+07]. Good resources are also the proceedings of the workshop series
OWL – Experiences and Directions,49 and of major Semantic Web conferences
such as the International Semantic Web Conference,50 the Semantic Technol-
ogy Conference,51, the International Conference on Semantic Systems,52 and
the European Semantic Technologies Conference.53

Semantic MediaWiki was discussed in some detail in [KVV+07], though
the most relevant source for applications is clearly the online documentation
[SMW09]. In addition, a number of projects build upon Semantic MediaWiki,
for instance, by offering advanced input interfaces. Examples include the
Halo Extension54 and Semantic Forms.55 Information on other semantic wiki
implementations can be found e.g. in [Sch06, Kie06, NS06, ADR06, Kuh06].

References for the role of RDF and OWL in the IEC 61970 standard are
[UG07, UD07].

The landmark article from 2001 by Tim Berners-Lee et al. was mentioned
in Chapter 1. The reference is [BLHL01].

For further information on Semantic Web Services, see, e.g., [SGA07] or the
Web pages of the Semantic Web Services Initiative.56

48http://www.fosi.org/icra/
49http://www.webont.org/owled/
50http://iswc.semanticweb.org/
51http://www.semantic-conference.com/
52http://triple-i.tugraz.at/i_semantics/
53http://www.estc2008.com/
54http://halowiki.ontoprise.de/
55http://www.mediawiki.org/wiki/Extension:Semantic_Forms/
56http://www.swsi.org/
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Appendix A

Extensible Markup Language XML

The Extensible Markup Language XML is a fundamental data format for the
World Wide Web which is widely in use. It is recommended by the World
Wide Web Consortium (W3C) for data exchange and electronic publishing.
In this appendix we briefly review those parts of the XML specification which
we need in this book, and a little bit more in order to convey an intuition
about XML. It is not a complete introduction: For an in-depth study, see the
documents provided by the W3C,1 or any of the numerous books on XML
and XML Schema which you can find in your bookshop or your library.

A.1 XML in a Nutshell

XML is a markup language. The most well-known example of a markup
language is probably the Hypertext Markup Language HTML,2 which is also
a recommendation by the W3C and is used for describing elements of Web
pages, and Web browsers use them for the visual display of Web pages. For
example, the HTML code <h2>About XML</h2> states that About XML should
be typeset as a level 2 heading. The HTML code

<a href="http://semantic-web-grundlagen.de">German SW book</a>

indicates that a hyperlink should be set.
In HTML, the meaning of the so-called tags like <h2> and </a> is prede-

fined. In contrast to this, tags in XML can be chosen freely. Their meaning
is not predefined, and their sole purpose is to structure the document. The
following is an example which expresses that Foundations of Semantic Web
Technologies is a title.

1http://www.w3.org/XML/Core/
2http://www.w3.org/HTML/
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<title>
Foundations of Semantic Web Technologies

</title>

Tags can be nested, for example, as follows.

<book>
<title>

Foundations of Semantic Web Technologies
</title>
<author>

Pascal Hitzler
</author>
<author>

Markus Kroetzsch
<homepage>

http://korrekt.org
</homepage>

</author>
<author>

Sebastian Rudolph
</author>
<publisher>

CRC Press
</publisher>

</book>

Note that each opening tag (i.e. a tag not starting with </) must be accom-
panied by a matching closing tag (i.e. one starting with </). Furthermore,
the tags must be nested correctly. Essentially, this yields a tree structure on
the nested tags. For the example above, this could be depicted as in Fig. A.1.

XML also allows us to attach so-called attributes to tags. They are written
inside the < and > brackets, for example, as follows.

<author name="Markus Kroetzsch">
<homepage>

http://korrekt.org
</homepage>

</author>

A tag can also bear several attributes.
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FIGURE A.1: The tree structure of XML

<author name="Markus Kroetzsch" homepage="http://korrekt.org">
</author>

We see that information can be contained in attributes to tags or in sub-
trees of the tags. The XML standard does not tell us where to put specific
information. But we will come back to this point later when talking about
XML Schema in Section A.3.

A.2 Syntax of XML

An XML document is a text document. It always starts with a declaration
which contains as attribute the version number of the W3C standard used,
and may also contain as attribute information about the character encoding
used.

<?xml version="1.1" encoding="utf-16">
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An XML element is an object which starts with an opening tag and ends
with a matching closing tag. Every XML element may contain free text
and other XML elements between its matching tags. Elements can also be
empty, i.e. such as <email></email>, and such elements can be abbreviated
as <email />.

In every XML document there must be exactly one outermost XML element.
It is referred to as the root of the document.

Opening tags (and also tags indicating empty XML elements) may contain
attributes. They are written as attribute-name="attribute-value". Every
opening tag may contain several attributes, but each attribute name must
appear only once. Not all characters can be used for attribute names and
values.

We explain these notions by means of another example. The following is
an example of a complete XML document.

<?xml version="1.1" encoding="utf-16">
<book>

<title>
Foundations of Semantic Web Technologies

</title>
<author name="Pascal Hitzler" />
<author name="Markus Kroetzsch">

<homepage>
http://korrekt.org

</homepage>
</author>
<author name="Sebastian Rudolph" />
<publisher>

CRC Press
</publisher>

</book>

In this example, the root element starts with <book> and ends with </book>.
<author name="Pascal Hitzler" /> is an empty XML element, where the
tag has an attribute with attribute name name and attribute value Pascal
Hitzler.

XML documents which are syntactically correct are said to be well-formed.

A.3 XML Schema

We have seen that XML allows a lot of freedom in encoding information.
For example, the information contained in the element
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<author>Sebastian Rudolph</author>

could also be written as

<author name="Sebastian Rudolph" />

or even as

<author>
<fullname>Sebastian Rudolph</fullname>

</author>

or as

<author>
<firstname>Sebastian</firstname>
<secondname>Rudolph</secondname>

</author>

or

<author givenname="Sebastian" surname="Rudolph" />.

When exchanging XML documents between applications, these degrees of
freedom get in the way: The application does not know whether firstname
and givenname express the same thing, or how to combine givenname and
surname to fullname.

In order to aid information exchange, then, it is necessary to come up with
agreements about the structure of the information, including the names of tags
and attributes, but also information whether certain subelements are required
or not. XML Schema3 is a language developed by the W3C which allows us
to describe such structures. XML schemas are themselves written in XML.
And an XML document is said to be valid if it adheres to a corresponding
XML schema.

Before we go into specifics, let us remark that there are other languages for
defining XML document schemas. The most popular is probably DTD, which

3http://www.w3.org/XML/Schema
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stands for Document Type Definition. DTDs are less expressive than XML
Schema, and in fact DTDs can be translated to XML Schema. Specifics are
contained in the W3C document on XML.4

A.3.1 Elements, Attributes, and Datatypes

An XML Schema document is a well-formed XML document which contains
XML schema definitions. An XML schema definition is an XML element with
an opening tag like

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

The attribute xmlns:xsd="http://www.w3.org/2001/XMLSchema" is a so-
called namespace declaration, and we say more about them in Section 2.2.
For now, let us simply note that it makes xsd point to the XML Schema
document on the W3C website, and that tag names starting with xsd obtain
their meaning from the specification given there.

An XML schema further contains so-called element types and attribute
types. They define schematically what the elements and attributes of an XML
document under this XML schema contain. Element and attribute types can
themselves refer to predefined datatypes or user-defined datatypes.

Let us start with predefined datatypes. They include xsd:integer, xsd:ID,
xsd:string, xsd:time, and xsd:date. Some further datatypes are listed in
Fig. 4.3 on page 117. Most of these datatypes are self-explanatory, and the
XML Schema datatypes specification5 explains them in detail. xsd:ID is a
specific kind of xsd:string which is used as an identifier of XML elements.

Element types are XML elements with opening tags which are of the form
<xsd:element name="..." ...>. The name attribute identifies the name of
an XML element which may occur in an XML document adhering to the
schema. Further attributes can specify, for example, cardinalities, i.e. how
often an element with this name must at least (or may at most) occur in the
XML document. They can also specify the schema type of the XML element.

The following is an example of an element type.

<xsd:element name="author" type="xsd:string"
minOccurs="1" maxOccurs="unbounded" />

This element type specifies that an XML document must contain at least
one element with name author, the contents of which are of type xsd:string.

4http://www.w3.org/TR/REC-xml/#dt-doctype
5http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html
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Furthermore, it may contain multiple such elements, and there is no bound on
the number of occurrences. The attribute minOccurs can have any positive
integer (including zero) as value. The attribute maxOccurs can have any
positive integer (excluding zero) as value, and can also have the predefined
value unbounded.

Attribute types are defined very similarly, with opening tags starting with
<xsd:attribute name="...". They are used to declare which attributes an
XML element may or must have.

The following are two examples of attribute types.

<xsd:attribute name="email" type="xsd:string" use="required">
<xsd:attribute name="homepage" type="xsd:anyURI" use="optional">

This would specify that an email attribute is required, while the occurrence
of the homepage attribute is optional. xsd:anyURI allows as value any URI,
such as a homepage location. We say more about URIs in Section 2.1.2.

Let us put these things together now. The following XML schema document
expresses that there must be at least one author element, the contents are
of type xsd:string, and which has an email attribute, and optionally a
homepage attribute.

<?xml version="1.1" encoding="utf-16">
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="author" type="xsd:string"
minOccurs="1" maxOccurs="unbounded">

<xsd:attribute name="email" type="xsd:string" use="required">
<xsd:attribute name="homepage" type="xsd:anyURI" use="optional">

</xsd:element>
</xsd:schema>

The following would be an XML document which adheres to this schema.

<?xml version="1.1" encoding="utf-16">
<authors

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://example.org/authors.xsd">

<author email="email1@example.org" homepage="http://korrekt.org">
Markus Kroetzsch

</author>
<author email="email2@example.org">

Sebastian Rudolph
</author>

</authors>



360 Foundations of Semantic Web Technologies

Note how the XML document uses xsi:schemaLocation to refer to the
schema, assuming that the XML schema document is located at the indicated
address.

A.3.2 User-Defined Types

There are two kinds of user-defined types, and we introduce them here by
examples.

The first kind of user-defined type is indicated by the xsd:simpleType
identifier. These datatypes are obtained by restrictions on other types, e.g.,
by tightening the numerical constraints which are allowed in minOccurs or
maxOccurs, or by restricting the range of xsd:integer. It is not allowed to
make use of embedded element or attribute types in simple type definitions.

The following example defines a type humanAge derived from integer, which
has 0 as minimum and 200 as maximum value. A corresponding attribute
definition could be <xsd:attribute name="age" type="humanAge" />.

<xsd:simpleType name="humanAge">
<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="0" />
<xsd:maxInclusive value="200" />

</xsd:restriction>
</xsd:simpleType>

Modifiers such as xsd:minInclusive and xsd:maxInclusive are called
datatype facets.

The second kind of user-defined datatype is indicated by the identifier
xsd:complexType. They may contain embedded element or attribute defi-
nitions. We first give an example.

<xsd:complexType name="bookType">
<xsd:sequence>

<xsd:element name="author" type="&xsd;string"
minOccurs="1" maxOccurs="unbounded" />

<xsd:element name="title" type="&xsd;string"
minOccurs="1" maxOccurs="1" />

<xsd:element name="publisher" type="&xsd;string"
minOccurs="1" maxOccurs="1" />

<xsd:element name="year" type="&xsd;gYear"
minOccurs="1" maxOccurs="1" />

</xsd:sequence>
<xsd:attribute name="ISBNnumber" type="xsd:nonNegativeInteger"

use="optional" />
</xsd:complexType>
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The example declares that a book must have at least one author, and exactly
one title, publisher, and publication year. Optionally, an ISBN number can
be given as an attribute value.

The identifier xsd:sequence indicates a number of elements which have to
appear in the given order. The identifiers xsd:all and xsd:choice can also
be used. The first indicates that all the elements must occur but their order is
not important. The second states that exactly one of the subsequent elements
must be chosen.

Complex datatypes can also be constructed by extending existing ones. The
following is an example, which uses the definition of the complex type book
just given.

<xsd:complexType name="researchBookType">
<xsd:extension base="bookType">

<xsd:sequence>
<xsd:element name="field" type="&xsd,string" />

</xsd:sequence>
<xsd:attribute name="price" type="&xsd,nonNegativeInteger"

use="optional" />
</xsd:complexType>





Appendix B

Set Theory

This appendix briefly introduces basic notations and notions of set theory
used in this book.

B.1 Basic Notions

The notion of a set as a mathematical term was introduced by Georg Cantor
in 1877 who defined a set as “a collection of certain well-distinguished objects
of cognition or thinking, which will be called elements, to a whole.”

Conventionally sets are represented by capital letters whereas lowercase
letters are used to denote their elements. In order to express that an entity e
is an element of a set S, we write e ∈ S (the contrary would be displayed as
e 6∈ S).

Note that a set cannot contain an element twice or many times, rather, the
element is either contained or not.

There are essentially two ways of specifying a set: by enumerating its ele-
ments or by characterizing their properties. In both cases, curly brackets are
used for the representation.

For example, the set of natural numbers from 1 to 10 can be written as

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

or equivalently as
{n | n ∈ N, 1 ≤ n ≤ 10},

where, for the second case, we assume that the set N of natural numbers is
known.

A set A is a subset of a set B (write A ⊆ B), if every element of A is also
an element of B. If additionally, there is even an element of B which is not
contained in A, we call A a proper subset of B (write A ⊂ B).
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Two sets A and B are equal (write A = B), if they contain the same
elements. Obviously, this holds exactly if both A ⊆ B and B ⊆ A are the
case.

A and B are called disjoint if there is no element which is contained in both
sets.

The empty set (denoted by ∅ or {}) does not contain any elements. Fur-
thermore, it is easy to see that the empty set is a subset of any arbitrary
set.

The cardinality of a set M (written as #M or card(M)) describes—roughly
speaking—the number of its elements. More precisely, this only holds for finite
sets. Contrarily, no such size can be assigned to, say, the set of all natural
numbers. Notwithstanding, the cardinality of the latter can be characterized
precisely (and turns out to be equal to the cardinality of the set of all rational
numbers, yet smaller than the cardinality of the reals); however, this would
go beyond the scope of this brief overview.

B.2 Set Operations

There are several operations which can be applied to given sets, yielding
sets as a result:

• The union of two sets A and B (write A ∪ B) contains exactly those
elements that are contained in A or in B (or in both of them).

• The intersection of A and B (write A∩B) comprises all elements which
are contained in both A and B. Consequently, two sets are disjoint if
and only if their intersection is empty (explaining the common notation
A ∩B = ∅ for disjointness).

• The difference of A and B (written as A \ B or A − B) contains those
elements contained in A, but not contained in B.

These three set operations return sets, whose elements are, so to speak, “of
the same type” as the elements from the original sets. This is not the case for
the operations presented in the following.

• The Cartesian product or product set of two sets A and B (write A×B)
contains all pairs, the first component of which is an element of A and
the second component of which is an element of B; therefore we can
write

A×B = {(a, b) | a ∈ A, b ∈ B}.
The symbol used for the Cartesian product bears some correct intuition
as the cardinality of the resulting set can be calculated by multiplying
the initial sets’ cardinalities (given their finiteness).
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• The power set of a set A (write 2A or P(A)) contains all subsets of A
as elements, hence:

2A = {B | B ⊆ A}.

Thus, we have, for example,

2{a,b} = {∅, {a}, {b}, {a, b}}.

Also in this case the notation as a power of 2 is straightforward, due to
the correspondence #(2A) = 2#A for arbitrary finite sets A.

B.3 Relations and Functions

A (binary) relation between two sets A and B is a subset of their Cartesian
product: R ⊆ A × B. For a ∈ A and b ∈ B often the notation aRb is used
instead of the longer (a, b) ∈ R.

If A and B are equal, R will be called a Relation on A.
Relations on a set A may have several interesting properties. R ⊆ A × A

will be called:

• reflexive, if aRa holds for all a ∈ A,

• symmetric, if aRb implies bRa for all a, b ∈ A,

• transitive, if for all a, b, c ∈ A from aRb and bRc follows aRc.

A relation between A and B is called left-total , if for every a ∈ A, (at least)
one b ∈ B with aRb can be found. It is called right-unique (also: functional),
if for every a ∈ A at most one b ∈ B with aRb exists. In case of both a left-
total and right-unique relation, exactly one b ∈ B is assigned to every a ∈ A,
enabling (due to the uniqueness) us to write R(a) for b. Such a relation f
(which then is mostly denoted with a lowercase letter) is called function or
mapping from the domain A to the range B. In this case it is common to
write f : A → B instead of f ⊆ A × B and, moreover, f : a 7→ b is an
alternative notation for f(a) = b.

Finally, applying the information given in this section, you should be able to
check whether the following proposition is true or false:
For arbitrary sets A and B the relation ⊂ ∩((2A × 2A) ∪ (2B∪∅ × 2B)) is
transitive.
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Logic

In this appendix, we very briefly recall some logical foundations which are
needed for our discussions of formal semantics. We will completely introduce
syntax and semantics of first-order predicate logic, but will refrain from doing
formal proofs or extended examples.

For acquiring a more comprehensive background on logic, we suggest [Sch08]
or [EFT96].

C.1 Syntax

An signature (V,C, F, P ) of a first-order language consists of

• a set V of variables, which is countably infinite,

• a set C of constant symbols,

• a set F of function symbols, each of which comes with an arity, which
is a positive integer, and

• a set P of predicate or relation symbols, each of which also comes with
a nonnegative integer as its arity .

Terms are inductively defined as follows.

• Each variable is a term.

• If f is a function symbol with arity k and t1, . . . , tk are terms, then
f(t1, . . . , tk) is a term.

• Nothing else is a term.

(First-order predicate logical) formulae are inductively defined as follows.

• If p is a predicate symbol of arity k and t1, . . . , tk are terms, then
p(t1, . . . , tk) is a formula. These formulae are called atomic.

• If F is a formula, then ¬F is also a formula, called the negation of F .
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• If F and G are formulae, then F ∧G and F ∨G are also formulae, called
the conjunction and the disjunction, respectively, of F and G.

• If F is a formula and x is a variable, then (∃x)F and (∀x)F are also
formulae. The symbol ∃ is called existential quantifier, and the symbol
∀ is called universal quantifier. In either case, the occurrences of x in F
are said to be bound by the quantifier.

• Nothing else is a formula.

We use the following abbreviations:

• F → G abbreviates ¬F ∨G.

• F ↔ G abbreviates (F → G) ∧ (G→ F ).

The symbols ¬,∧,∨,→,↔ are called (logical) connectives. When writing
down formulae, we consider ¬ to be of higher precedence than the other
connectives, i.e. it binds more strongly. Variable occurrences which are not
bound are called free.

The set of all first-order predicate logical formulae over (V,C, F, P ) is called
the first-order language over (V,C, F, P ).

A propositional formula is a predicate logical formula which does not contain
any quantifiers, and where all predicates have arity zero.

A sentence is a first-order predicate logical formula in which all variable
occurrences are bound.

A theory (or knowledge base) is a set of sentences.

An example of a first-order formula is

(∀x)(exam(x)→ (∀y)(hasExaminer(x, y)→ professor(y))).

The intuition behind it is that all examiners of an exam must be professors.

C.2 Semantics

An interpretation (or structure) I = (D, ·I) for a first-order language over
(V,C, F, P ) consists of a set D 6= ∅, called the domain of I, and a partial
interpretation function ·I , commonly written as an exponent, which

• maps every constant symbol for which it is defined to an element of D,

• maps every function symbol f with arity k for which it is defined to a
function f I : Dk → D, and
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• maps every predicate symbol p with arity k for which it is defined to a
relation pI ⊆ Dk, i.e. a set of k-tuples, which is sometimes called the
extension of p.1

The interpretation mapping may be partial because it is only important how it
maps those constant symbols, function symbols, and predicate symbols which
actually occur in the considered theory. In the following, we will always as-
sume that the partial interpretation mappings have all these relevant symbols
in their domain.

Interpretations may be quite unintuitive: Consider again the example

(∀x)(exam(x)→ (∀y)(hasExaminer(x, y)→ professor(y)))

from above. Then the following is an interpretation.

• The domain D are the non-negative integers.

• Every constant symbol gets assigned 0 ∈ D.

• Every function symbol gets assigned the function which is constantly
0 ∈ D.

• examI = D

• hasExaminerI = {(n, m) | n ≤ m}

• professorI = {n + n | n ∈ D}

Under this interpretation, the formula states that for every non-negative
integer n we have that every m ≥ n is an even number. This statement is
obviously wrong, but the given interpretation is still a valid interpretation.
Correct interpretations are called models, which are defined further below.

A variable assignment for an interpretation I is a function from the set V
of variables to the interpretation domain D of I.

Every interpretation I = (D, ·I) together with a corresponding variable
assignment Z can now be lifted recursively to the set of all terms and the set
of all formulae of the underlying language: If t is a term, then we define

• tI,Z = xZ if t = x for some variable x,

• tI,Z = aI if t = a for some constant symbol a, and

1Considering k = 0, note that D0 is the set containing the (only) 0-tuple (); hence for p
with arity 0 there are only two choices for pI , namely, ∅ and {()}.
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• tI,Z = f I(tI,Z
1 , . . . , tI,Z

k ) if t is of the form t = f(t1, . . . , tk) for a function
symbol f with arity k.

This way, every term t gets assigned some element tI,Z ∈ D.
If F is a formula, then we can define very similarly the truth value F I ∈

{false, true} of F under I as follows. If Z is a variable assignment, x is a
variable, and d ∈ D, then Z[x 7→ d] denotes the variable assignment which
assigns x to d and otherwise coincides with Z on V .

• If F is an atomic formula of the form F = p(t1, . . . , tk), then F I,Z =
true if and only if (tI,Z

1 , . . . , tI,Z
k ) ∈ pI . Otherwise F I,Z = false.

• If F is of the form F = ¬G, then F I,Z = true if and only if GI,Z =
false. Otherwise F I,Z = false.

• If F is of the form F = G ∧H, then F I,Z = true if and only if GI,Z =
true and HI,Z = true. Otherwise F I,Z = false.

• If F is of the form F = G ∨ H, then F I,Z = false if and only if
GI,Z = false and HI,Z = false. Otherwise F I,Z = true.

• If F is of the form F = (∀x)G, then F I,Z = true if and only if
GI,Z[x7→d] = true for all d ∈ D. Otherwise F I,Z = false.

• If F is of the form F = (∃x)G, then F I,Z = true if and only if
GI,Z[x7→d] = true for at least one d ∈ D. Otherwise F I,Z = false.

If F is a formula, then an interpretation I is called a model of F if F I,Z =
true for all variable assignments Z. We write I, Z |= F in this case. Note
that if F is a sentence then the truth value of F I,Z does not depend on Z and
we can write F I in this case.

Two formulae F and G are called equivalent if they have exactly the same
models. We write F ≡ G in this case. A formula F is called a tautology
if every interpretation is a model for F . It is called satisfiable or consistent
if it has at least one model. It is called contradictory (or unsatisfiable or
inconsistent) if it has no model. It is called falsifiable if it is not a tautology.

THEOREM C.1
The equivalences in Fig. C.1 hold for arbitrary formulae F and G. The

following equivalences hold if x is not free in G.

(∀x)F ∧G ≡ (∀x)(F ∧G)
(∀x)F ∨G ≡ (∀x)(F ∨G)
(∃x)F ∧G ≡ (∃x)(F ∧G)
(∃x)F ∨G ≡ (∃x)(F ∨G)
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¬¬F ≡ F

¬(F ∨G) ≡ ¬F ∧ ¬G

¬(F ∧G) ≡ ¬F ∨ ¬G

(F ∧G) ∨H ≡ (F ∨H) ∧ (G ∨H)
(F ∨G) ∧H ≡ (F ∧H) ∨ (G ∧H)

¬(∀x)F ≡ (∃x)¬F

¬(∃x)F ≡ (∀x)¬F

(∀x)(∀y)F ≡ (∀y)(∀x)F
(∃x)(∃y)F ≡ (∃y)(∃x)F

(∀x)F ∧ (∀x)G ≡ (∀x)(F ∧G)
(∃x)F ∨ (∃x)G ≡ (∃x)(F ∨G)

FIGURE C.1: Logical equivalences from Theorem C.1.

An interpretation I is called a model for a theory T if F I = true for all
F ∈ T . We write I |= T in this case. A theory is satisfiable if it has a model.
It is contradictory (or unsatisfiable or inconsistent) if it has no model.

If T is a theory and F a formula, then we call F a logical consequence of T
if every model of T is also a model of F . We write T |= F in this case.

To give an example, p(a) is a logical consequence of the theory

{q(a), (∀x)(p(x)→ q(x))}.

The following deduction theorem is one of the most important properties of
predicate logic.

THEOREM C.2
If T = {F1, . . . , Fn} is a theory and F a formula, then T |= F if and only if

(F1 ∧ · · · ∧ Fn)→ F is a tautology.

Theorem C.2 is important because it allows us to express the notion of
logical consequence in terms of tautology of a formula. Automated reasoning
can thus be reduced to tautology checking. Likewise, reduction to checking
unsatisfiability of a formula can be used. The following is a reformulation of
Theorem C.2.
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THEOREM C.3

If T = {F1, . . . , Fn} is a theory and F a formula, then T |= F if and only if
(F1 ∧ · · · ∧ Fn) ∧ ¬F is unsatisfiable.

First-order predicate logic is monotonic in the following formal sense.

THEOREM C.4

Let T and S be two theories over the same first-order language and let T ⊆ S.
Then {F | T |= F} ⊆ {F | S |= F}.

There exist alternative logics, i.e. logics stemming from logic programming,
or logics stemming from attempts to model “common sense” in artificial intel-
ligence, which are non-monotonic in the sense that statements like that from
Theorem C.4 do not hold for them.

Closely related to monotonicity is the notion of Open World Assumption
(OWA). However, the OWA is an informal notion and can thus not be as
precisely defined as monotonicity. In order to explain the OWA, it is best to
start with the Closed World Assumption (CWA), which states that everything
which is not explicitly true is considered to be false. Typically, conventional
databases are interpreted under the CWA: If something is not stated in the
database, then it is assumed to be not the case. The OWA, however, generally
leaves such things undefined, i.e. something which is not explicitly stated to
be the case – or not the case – is considered to be unknown. The OWA
seems to be more suitable for the open and always incomplete Semantic Web,
and RDF(S) and OWL adhere to the OWA. However, logics with a semantics
under the CWA have their uses.

The relation between OWA and monotonicity is not a formal one, simply
because the OWA is not a formal notion. But generally speaking, mono-
tonic logics adhere to the open world assumption. Historically speaking, non-
monotonic logics usually adhere to the CWA – or to be more precise, logics
under the CWA are usually non-monotonic. Recently, in particular driven
by Semantic Web research, logics related to OWL and description logics have
been established which combine open and closed world features, and are often
said to have local closed world features.

We will not go into any further details on these matters – we have chosen to
include this brief discussion only because the distinction between OWA and
CWA is something which is often encountered in the Semantic Web literature.
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C.3 Proof Theory and Decidability

A proof theory for first-order predicate logic is a deduction calculus2 which,
given a theory T and a sentence F , can be applied to determine whether F is a
logical consequence of T . If the calculus (correctly or incorrectly) determines
that this is the case, i.e. if one can apply the calculus to derive this result
within finitely many steps, then we use the notation T ` F for this.

A deduction calculus is sound if T ` F implies T |= F . It is complete if
T |= F implies T ` F .

First-order logic is said to be semi-decidable, which formally means the
following.

THEOREM C.5
There exists a sound and complete proof theory for first-order predicate logic.

Note that semi-decidability implies that whenever T |= F , then it is possible
to apply the deduction calculus so that T ` F is derived after finitely many
steps. This means that it is possible to implement the calculus in a concrete
algorithm that terminates and returns the correct result on all inputs T and
F for which T |= F holds. However, if T 6|= F , then it is possible that the
deduction calculus does not allow us to derive this within a finite number of
steps – an algorithm that implements the calculus would not terminate. A
sound and complete algorithm that is guaranteed to terminate on all inputs
is called a decision procedure.

The above notions are easily applied to other logical formalisms, and in
particular to fragments of first-order logic like the ones considered within this
book. A logic is decidable if there is a decision procedure for this logic. The
following basic results are well-known.

THEOREM C.6
Propositional logic is decidable.

THEOREM C.7
First-order predicate logic is not decidable.

2A calculus is usually given as a set of deduction rules that can be the basis of a concrete
algorithm. But in contrast to an algorithm, a calculus does usually not specify which rule
is to be applied next, or how exactly the rule applications should be implemented.
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Solutions to the Exercises

D.1 Solutions for Chapter 2

Solution to Exercise 2.1
There are many ways to describe the contents of this document in natural
language. Below is one possibility.

germany is a country.
capital_of is a property which relates cities to countries.
country is a class which is called Land in German.
berlin is a city which is the capital of germany. It is called Berlin in
German.
city is a class which is called Stadt in German.

The graph representation of the document looks as follows.

Solution to Exercise 2.2

@prefix swb: <http://www.semantic-web-book.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ex: <http://example.org/> .

375



376 Foundations of Semantic Web Technologies

swb:uri ex:authors _:id1 .
_:id1 rdf:type rdf:Seq .
_:id1 rdf:_1 swb:uri/Hitzler .
_:id1 rdf:_2 swb:uri/Krötzsch .
_:id1 rdf:_3 swb:uri/Rudolph .

Solution to Exercise 2.3

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:ex="http://www.example.org/"

>

<rdf:Description
rdf:about="http://www.example.org/vegetableThaiCurry">

<ex:thaiDishBasedOn
rdf:resource="http://www.example.org/coconutMilk" />

</rdf:Description>

<rdf:Description rdf:about="http://www.example.org/sebastian">
<rdf:type rdf:resource="http://www.example.org/AllergicToNuts" />
<ex:eats rdf:resource="http://www.example.org/vegetableThaiCurry" />

</rdf:Description>

<rdf:Description rdf:about="http://www.example.org/AllergicToNuts">
<rdfs:subClassOf rdf:about="http://www.example.org/Pitiable" />

</rdf:Description>

<rdf:Description rdf:about="http://www.example.org/thaiDishBasedOn">
<rdfs:domain rdf:resource="http://www.example.org/Thai" />
<rdfs:range rdf:resource="http://www.example.org/Nutty" />
<rdfs:subPropertyOf

rdf:resource="http://www.example.org/hasIngredient" />
</rdf:Description>

<rdf:Description rdf:about="http://www.example.org/hasIngredient">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#

ContainerMembershipProperty" />
</rdf:Description>

</rdf:RDF>

Solution to Exercise 2.4
The first example is a straightforward reification. Note that in most cases,
statements including forms of “to be” are best translated into a rdf:type
statement.
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The second example requires some more thought, as both John and Mary
occur in several nested propositions. To see this, it is best to dismantle the
sentence in the following way:

• John believes X.

• X: Mary wants Y.

• Y: Marry marries John.

After that, subject, predicate and object of each part can be determined and
one comes easily up with an RDF graph like the following:

The third example is rather easy with respect to reification; however, it is
useful to discuss how to model certain language constructs: the “his” in the
sentence indicates that the referred plate belongs to the initially mentioned
dwarf which could be modeled by a property like ex:owns. The “somebody” is
an existential statement which, however, restricts the possible instantiations
to persons (otherwise one would use “something”) which can be modeled by
an rdf:type triple. So a possible triplification of the sentence would look like
this:
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Solution to Exercise 2.5
The following sentences cannot be modeled satisfactorily in RDFS:

• Pizzas always have at least two toppings.

• Everything having a topping is a pizza.

• No pizza from the class PizzaMargarita has a topping from the class
Meat.

The other sentences can be modeled as follows.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ex: <http://example.org/> .

ex:Pizza rdf:type ex:Meal .
ex:PizzaMargarita ex:hasTopping ex:Tomato .
ex:hasTopping rdf:type rdfs:ContainerMembershipProperty .

D.2 Solutions for Chapter 3

Solution to Exercise 3.1
To make the solution really simple, set IR = IP = {a} and IEXT(a) = {〈a, a〉}.
Furthermore, IS maps everything to a and LV = IL = ∅.

Solution to Exercise 3.2
To solve this exercise, it is easiest to use the deduction rules from Section 3.3.

An example of a simple entailment is
ex:vegetableThaiCurry ex:thaiDishBasedOn _:id1 .

An example of an RDF-entailed triple which is not simply entailed is
ex:thaiDishBasedOn rdf:type rdf:Property .
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An example of an RDFS-entailed triple which is not RDF-entailed is
ex:vegetableThaiCurry rdf:type ex:Thai .

Solution to Exercise 3.3
It is really not possible to specify this in RDFS.

Solution to Exercise 3.4
Using rdfsax, all the axiomatic triples listed for the RDF and RDFS semantics
are derivable. We can now use the deduction rules for RDFS entailment to
obtain further triples.

From rdfs:domain rdfs:range rdfs:Class .
and rdf:type rdfs:domain rdfs:Resource .
we can deduce using rdfs3 that

rdfs:Resource rdf:type rdfs:Class .

From rdfs:range rdfs:range rdfs:Class .
and rdfs:range rdfs:range rdfs:Class .
we can deduce using rdfs3 that

rdfs:Class rdf:type rdfs:Class .

From rdfs:range rdfs:range rdfs:Class .
and rdfs:comment rdfs:range rdfs:Literal .
we can deduce using rdfs3 that

rdfs:Literal rdf:type rdfs:Class .

From rdfs:subClassOf rdfs:domain rdfs:Class .
and rdf:XMLLiteral rdfs:subClassOf rdfs:Literal .
we can deduce using rdfs2 that

rdfs:XMLLiteral rdf:type rdfs:Class .

From rdf:type rdfs:range rdfs:Class .
and rdf:XMLLiteral rdf:type rdfs:Datatype .
we can deduce using rdfs3 that

rdfs:Datatype rdf:type rdfs:Class .

From rdfs:subClassOf rdfs:domain rdfs:Class .
and rdf:Seq rdfs:subClassOf rdfs:Container .
we can deduce using rdfs2 that

rdfs:Seq rdf:type rdfs:Class .

From rdfs:subClassOf rdfs:domain rdfs:Class .
and rdf:Bag rdfs:subClassOf rdfs:Container .
we can deduce using rdfs2 that

rdfs:Seq rdf:type rdfs:Class .
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From rdfs:subClassOf rdfs:domain rdfs:Class .
and rdf:Alt rdfs:subClassOf rdfs:Container .
we can deduce using rdfs2 that

rdfs:Seq rdf:type rdfs:Class .

From rdfs:subClassOf rdfs:range rdfs:Class .
and rdf:Alt rdfs:subClassOf rdfs:Container .
we can deduce using rdfs3 that

rdfs:Container rdf:type rdfs:Class .

From rdfs:domain rdfs:range rdfs:Class .
and rdf:first rdfs:domain rdfs:List .
we can deduce using rdfs3 that

rdfs:List rdf:type rdfs:Class .

From rdfs:subClassOf rdfs:domain rdfs:Class .
and rdf:ContainerMembershipProperty

rdfs:subClassOf rdfs:Property .
we can deduce using rdfs2 that

rdf:ContainerMembershipProperty rdf:type rdfs:Class .

From rdfs:range rdfs:range rdfs:Class .
and rdfs:subPropertyOf rdfs:range rdf:Property .
we can deduce using rdfs3 that

rdf:Property rdf:type rdfs:Class .

From rdfs:domain rdfs:range rdfs:Class .
and rdf:subject rdfs:domain rdf:Statement .
we can deduce using rdfs3 that

rdf:Statement rdf:type rdfs:Class .

From rdfs:range rdfs:domain rdf:Property .
we can deduce using rdf1 that

rdfs:domain rdf:type rdf:Property .

From rdfs:subPropertyOf rdfs:range rdf:Property .
we can deduce using rdf1 that

rdfs:range rdf:type rdf:Property .

From rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .
we can deduce using rdf1 that

rdfs:subPropertyOf rdf:type rdf:Property .

From rdf:Alt rdfs:subClassOf rdfs:Container .
we can deduce using rdf1 that

rdfs:subClassOf rdf:type rdf:Property .
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From rdf:Alt rdfs:subClassOf rdfs:Container .
we can deduce using rdf1 that

rdfs:subClassOf rdf:type rdf:Property .

From rdfs:range rdfs:domain rdf:Property .
and rdfs:member rdfs:range rdfs:Resource .
we can deduce using rdfs2 that

rdfs:member rdf:type rdfs:Property .

From rdfs:range rdfs:domain rdf:Property .
and rdfs:seeAlso rdfs:range rdfs:Resource .
we can deduce using rdfs2 that

rdfs:seeAlso rdf:type rdfs:Property .

From rdfs:range rdfs:domain rdf:Property .
and rdfs:isDefinedBy rdfs:range rdfs:Resource .
we can deduce using rdfs2 that

rdfs:isDefinedBy rdf:type rdfs:Property .

From rdfs:range rdfs:domain rdf:Property .
and rdfs:comment rdfs:range rdfs:Literal .
we can deduce using rdfs2 that

rdfs:comment rdf:type rdfs:Property .

From rdfs:range rdfs:domain rdf:Property .
and rdfs:label rdfs:range rdfs:Literal .
we can deduce using rdfs2 that

rdfs:label rdf:type rdfs:Property .

D.3 Solutions for Chapter 4

Solution to Exercise 4.1

<owl:Class rdf:about="Vegetable">
<rdfs:subClassOf rdf:resource="PizzaTopping" />

</owl:Class>
<owl:Class rdf:about="PizzaTopping">

<rdfs:disjointWith rdf:resource="Pizza" />
<Vegetable rdf:about="aubergine" />
<owl:ObjectProperty rdf:about="hasTopping">

<rdfs:domain rdf:resource="Pizza" />
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<rdfs:range rdf:resource="PizzaTopping" />
</owl:ObjectProperty>
<owl:Class rdf:about="VegPizza">

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="NoMeatPizza" />
<owl:Class rdf:about="NoFishPizza" />

</owl:intersectionOf>
</owl:Class>
<owl:ObjectProperty rdf:about="hasIngredient">

<rdfs:subPropertyOf rdf:resource="hasTopping" />
</owl:ObjectProperty>
</owl:Class>

Solution to Exercise 4.2
hasIngredient should be transitive. To give an example: If milk is an in-
gredient of cheese, and cheese is an ingredient of a pizza (as a topping), then
milk is an ingredient of the pizza.
hasTopping should not be functional: A pizza may have several toppings.
hasTopping should probably be inverse functional: A particular aubergine

cannot be a topping on more than one pizza (unless the aubergine is chopped
up – in which case the aubergine pieces would be the toppings, and not the
aubergine itself.

Solution to Exercise 4.3

<owl:Class rdf:about="Pizza">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasTopping" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

2
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="Pizza">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="hasTopping" />
<owl:hasValue rdf:resource="tomato" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="PizzaMargarita">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="hasTopping" />
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<owl:allValuesFrom>
<owl:oneOf rdf:parseType="Collection">

<Topping rdf:about="tomato" />
<Topping rdf:about="cheese" />

</owl:oneOf>
</owl:allValuesFrom>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="PizzaMargarita">

<rdfs:subClassOf>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="hasTopping" />
<owl:hasValue rdf:resource="tomato" />

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="hasTopping" />
<owl:hasValue rdf:resource="cheese" />

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

Note that we have to use two statements for modeling the information about
PizzaMargarita.

Solution to Exercise 4.4
We obtain the following two triples from Fig. 4.7:

foundationsOfSemanticWebTechnologies rdf:type Book
Book rdfs:subClassOf Publication

There is more information, namely, about authors, but we won’t need those
triples. In the section on syntactic rules for RDFS inference, rule (rdfs9) on
page 98 states that from the two triples above we can infer

foundationsOfSemanticWebTechnologies rdf:type Publication

as required.

Solution to Exercise 4.5
This is a hands-on exercise. Try it yourself.
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D.4 Solutions for Chapter 5

Solution to Exercise 5.1

Vegetable v PizzaTopping

PizzaTopping u Pizza v ⊥
Vegetable(aubergine)

∃hasTopping.> v Pizza

> v ∀hasTopping.PizzaTopping
VegPizza ≡ NoMeatPizza u NoFishPizza

hasIngredient v hasTopping

Solution to Exercise 5.2

(∀x)(Vegetable(x)→ PizzaTopping(x))
¬(∃x)(PizzaTopping(x) ∧ Pizza(x))

Vegetable(aubergine)
(∀x)(((∃y)hasTopping(x, y))→ Pizza(x))

(∀x)(∀y)(hasTopping(x, y)→ PizzaTopping(y))
(∀x)(VegPizza(x)↔ NoMeatPizza(x) ∧ NoFishPizza(x))

(∀x)(∀y)(hasIngredient(x, y)→ hasTopping(x, y))

Solution to Exercise 5.3

1. Honest u ∃commits.Crime v ∃reports.Self

2. ¬reports(bonnie, clyde)

3. (≥10commits.Crime)(clyde)

4. (∃commits.(Crime u ∃commits−.{clyde}))(bonnie)

5. suspects ◦ knows− v suspects
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<owl:Class rdf:about="Human">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasMother" />
<owl:someValuesFrom rdf:resource="Human" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="hasMotherMother">

<owl:equivalentClass>
<owl:Restriction>

<owl:onProperty rdf:resource="hasMother" />
<owl:someValuesFrom>

<owl:Restriction>
<owl:onProperty rdf:resource="hasMother" />
<owl:someValuesFrom rdf:resource="Human" />

</owl:Restriction>
</owl:someValuesFrom>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>
<owl:Class rdf:about="hasMotherMother">

<rdfs:subClassOf rdf:resource="GrandChild" />
</owl:Class>
<Human rdf:about="anupriyaAnkolekar" />

FIGURE D.1: Solution to Exercise 5.4
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Solution to Exercise 5.4
See Fig. D.1. Note that we introduced the additional class hasMotherMother
to avoid having to deal with complex class descriptions in the subject of RDF
triples.

Solution to Exercise 5.5
In DL syntax, the statement from Fig. 4.11 is

Professor v (Person u FacultyMember) t (Person u ¬PhDStudent).

We have to show that every Professor is a Person, i.e. for every model and
for every x in the corresponding extension of Professor, we must have that
x is in the extension of Person. So consider an arbitrarily chosen model, and
x in the respective extension of Professor. Then x must also either be in
the extension of Person u FacultyMember or x must be in the extension of
Person u ¬PhDStudent. In the first case, we have that x must in particular
be in the extension of Person. Likewise, in the second case, x must also
be in the extension of Person. So in either case we have that x is in the
extension of Person. Since this argument holds for every model, we have that
in every model x is in the extension of Person, provided it is in the extension
of Professor, which was to be shown.

Solution to Exercise 5.6
The triple rdf:type rdfs:range rdfs:Class . is an axiomatic triple of
RDFS and can thus be derived using the RDFS semantics. However, OWL
DL does not allow us to use rdfs:Class; hence this statement cannot be
derived using the OWL DL semantics.

The triple r rdfs:domain A . cannot be derived from the RDFS seman-
tics. There is no easy way to check this, but you can exhaustively apply all
deduction rules and then this triple will not be included. In DL syntax the
triple becomes A v ∀r.>, which is a logical consequence of the two given
statements. To see this, let I be an arbitrarily chosen model for the two
given statements. Then, using the definition of model and the two given
statements, we obtain AI ⊆ BI ⊆ (∀r.>)I which shows that AI ⊆ (∀r.>)I .
Hence, A v ∀r.> holds in I, and since I was an arbitrarily chosen model,
A v ∀r.> holds in all models for the two given statements, and thus is a
logical consequence from these two statements.

Solution to Exercise 5.7
To simplify the presentation, we do some renamings, as follows.

S v ∃a.L

L v ∃b.(S u E)
S(s)
¬E(s)
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We can construct a complete tableau as follows, where z is blocked by x.
s

a

��

L(S) = {S,¬E,¬S t ∃a.L,∃a.L,¬L t ∃b.(S u E),¬L}

x

b

��

L(x) = {L,¬L t ∃b.(S u L),∃b.(S u L),¬S t ∃a.L,¬S}

y

a

��

L(y) = {S u E,S, E,¬S t ∃a.L,∃a.L,¬L t ∃b.(S u E),¬L}

z L(z) = {L}

Solution to Exercise 5.8
We can construct the following tableau, where we have omitted some inter-
mediate steps for simplicity.

a

r

��

L(a) = {∀r.¬E,C,∃r.D}

x L(x) = {D,E t F,¬E,F,E}

Solution to Exercise 5.9
We can obtain a complete tableau with single node t and label

L(t) = {B,¬H,¬H t ∃p.H}.

Solution to Exercise 5.10
We add the statement (Professor u ¬Person)(x). We then construct a
tableau with single node x and the label L(x) containing Professoru¬Person,
Professor, ¬Person, and ¬Professort(PersonuFacultyMembert(Personu
¬PhDStudent)). When further resolving the disjunction t, we are left with a
contradiction no matter which side of the disjunction we choose: Professor
is an immediate contradiction. PersonuFacultyMember yields Person, which
is a contradiction to ¬Person which is already in the label. From Person u
¬PhDStudent we also obtain Person, which again is a contradiction because
¬Person is already in the label. So in any case we arrive at a contradiction
as required.

Solution to Exercise 5.11
The tableau contains a single node tweety, with the following label, where we
omit some intermediate calculations due to other choices of resolving disjunc-
tion: L(tweety) = {Penguin,¬Penguint¬Flies,¬Penguint¬Bird,¬Birdt
¬Flies,¬Flies, Bird, Flies}.
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Solution to Exercise 5.12
We use the following abbreviations:

h(j, p)
h(j, a)

M(p)
M(a)

≤2h.M(j)
p 6= a

We can now start constructing the tableau. We first obtain the following.
p_

6≈

_

L(p) = {M}

L(j) = {∃h.¬M,≤2h.M} j

h

AA�������� h //

h

��;
;;

;;
;;

; a L(a) = {M}

x L(x) = {¬M}
We can now apply the ≤-rule, which yields the following, and thus a contra-
diction.

p_

6≈

_

L(p) = {M}

L(j) = {∃h.¬M,≤2h.M} j

h

AA�������� h // a L(a) = {M,¬M}

x L(x) = {¬M}
Identifying x with p would yield a contradiction in the same way.

Solution to Exercise 5.13
We use the following abbreviations:

≥2s.>(j)
s v c

We can now construct the following tableau.
x_

6≈

_

L(x) = ∅

L(j) = {≤1c.>,≥2s.>} j

s

AA�������� s // y L(y) = ∅
By definition, x and y are c-neighbors of j. Hence, the algorithm terminates

with a contradiction due to the termination condition given on page 200.
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D.5 Solutions for Chapter 6

Solution to Exercise 6.1
This exercise shows that even rules that are not syntactically datalog can
sometimes be expressed by using multiple datalog rules. Simple syntactic
transformations of this kind are generally known as Lloyd-Topor transforma-
tions.

1. This cannot be translated into datalog due to the presence of function
symbols.

2. This can be translated into the following two datalog rules.

Intelligent(x)→ Clever(x)
knows(x, y) ∧ Intelligent(y)→ Clever(x)

3. This can be translated into the following datalog rules.

Sailor(x) ∧ Spinach(y) ∧ loves(x, y) ∧ loves(x, olive_oyl)
→ Little(x)

Sailor(x) ∧ Spinach(y) ∧ loves(x, y) ∧ loves(x, olive_oyl)
→ Strong(x)

4. This can be translated into the following four datalog rules.

Male(x) ∧ Intelligent(x) ∧ marriedWith(x, y)→ Wise(x)
Male(x) ∧ Old(x) ∧ marriedWith(x, y)→ Wise(x)

Male(x) ∧ Intelligent(x) ∧ marriedWith(x, y)→ Bald(x)
Male(x) ∧ Old(x) ∧ marriedWith(x, y)→ Bald(x)

These examples used two basic kinds of Lloyd-Topor transformations to show
that, in general, it is always possible to allow for additional conjunctions in
rule heads (item 2) and disjunctions in rule bodies (item 3). The correctness
of these translation is a basic law of Boolean logic: p→ q1∧q2 is equivalent to
(p→ q1)∧ (p→ q2), and likewise for ∨. Item 4 further uses the equivalence of
p→ q ∨ ¬r and p ∧ r → q, and of (∃x.P (x))→ Q(x) and ∀x.(P (x)→ Q(x)).

If certain translations are applied in a naive way to a nested expression like
the one in item 4, then an exponential number of rules can be created. This
can be avoided by adding additional rules to define the cases when a certain
subexpression of the body is true, as in the following example:
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Intelligent(x) ∨ Old(x)→ IntelligentOrOld(x)
(IntelligentOrOld(x)) ∧ ∃y.(marriedWith(x, y))→ (Wise(x) ∧ Bald(x))

∨ ¬Male(x)

This will not reduce the number of datalog rules in this example (since 2×2
happens to be the same as 2 + 2), but it is generally sufficient to ensure that
Lloyd-Topor transformations lead to only a linear increase in the size of a rule
set. In other words, they are harmless for the performance of reasoning.

Solution to Exercise 6.2

1. C u ∃r.D v E

2. ∃r.Self v ∀s.>

3. ∃t.Self ≡ C ∧ ∃r−.E
∃d.Self ≡ D
t ◦ U ◦ d v s

Solution to Exercise 6.3
All the rules can be translated into SROIQ, as follows.

Intelligent v Clever

∃.knows.Intelligent v Clever

Sailor u ∃loves.Spinach u ∃loves.{olive_oyl} v Little

Sailor u ∃loves.Spinach u ∃loves.{olive_oyl} v Strong

Male u Intelligent u ∃marriedWith.> v Wise

Male u Old u ∃marriedWith.> v Wise

Male u Intelligent u ∃marriedWith.> v Bald

Male u Old u ∃marriedWith.> v Bald

Solution to Exercise 6.4
Exercise 5.4: The second and third expressions become datalog. The result is
as follows.

Human(x)→ ∃hasMother.Human(x)
hasMother(x, y) ∧ hasMother(y, z) ∧ Human(z)→ Grandchild(x)

→ Human(anupriyaAnkolekar)
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Exercise 5.7: Only the third expression becomes datalog. The result is as
follows.

Student(x)→ ∃attends.Lecture(x)
Lecture(x)→ ∃attendedBy.(Student u Eager)(x)

→ Student(aStudent)
→ ¬Eager(aStudent)

Exercise 5.11: This is completely expressible in datalog, as follows.

Bird(x)→ Flies(x)
Penguin(x)→ Bird(x)

Penguin(x) ∧ Flies(x)→
→ Penguin(tweety)

Solution to Exercise 6.5

Document(
Prefix(ex http://example.com/)
Group(

Forall ?x ?y ?z(
ex:Grandchild(?x) :- And( ex:hasMother(?x,?y)

ex:hasMother(?y,?z)
ex:Human(?z) )

)
Human(anupriyaAnkolekar)
Student(aStudent)
Forall ?x ( Flies(?x) :- Bird(?x) )
Forall ?x ( Bird (?x) :- Penguin(?x) )
Forall ?x ( :- And( Penguin(x) Flies(x)) )
Penguin(tweety)

)
)

Solution to Exercise 6.6
The result of the translation can be found in Fig. D.2.

Solution to Exercise 6.7

1. The role inclusion axiom ensures that the extension of RUnhappy includes
all pairs of individuals x and x′ for which there is an individual y such
that x is related to y with orderedDish, and x′ is related to y with
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<Document><payload><Group><sentence>
<Forall><declare><Var>x</Var></declare>

<declare><Var>y</Var></declare>
<declare><Var>z</Var></declare>

<formula>
<And>

<formula>
<Atom><op><Const

type="http://www.w3.org/2001/XMLSchema#string"
>http://example.org/hasMother</Const>

</op>
<args ordered="yes"><Var>x</Var>

<Var>y</Var>
</args>

</Atom>
</formula>
<formula>

<Atom><op><Const
type="http://www.w3.org/2001/XMLSchema#string"
>http://example.org/hasMother</Const>

</op>
<args ordered="yes"><Var>y</Var>

<Var>z</Var>
</args>

</Atom>
</formula>
<formula>

<Atom>
<op><Const

type="http://www.w3.org/2001/XMLSchema#string"
>http://example.org/Human</Const>

</op>
<args ordered="yes"><Var>z</Var>
</args>

</Atom>
</formula>

</And>
</formula>

</Forall>
</sentence></Group></payload></Document>

FIGURE D.2: Solution to Exercise 6.6
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dislikes. Note that x and x′ need not be the same. However, RUnhappy
is only used in the first axiom in combination with a local reflexivity con-
structor. This states that, whenever x is related to itself via RUnhappy, we
find that x is part of the extension of Unhappy. Since the new role does
not occur anywhere else, these are indeed the only additional instances
of Unhappy that can generally be concluded from the knowledge base.

In other words, whenever there are individuals x and y in a model
I such that (x, y) ∈ orderedDishI and (x, y) ∈ dislikesI , then we
also have x ∈ UnhappyI . This is exactly the content of the datalog
rule that we are simulating, and it is not hard to see that all additional
entailments of the given axioms affect the extension of RUnhappy only.

2. As discussed in Section 5.1.4, concept expressions of the form ∃S.Self
are only allowed if S is a simple role. In our example, however, the role
RUnhappy is not simple, since it occurs on the right hand side of a complex
role inclusion axiom. Thus, the given set of axioms is not an admissible
SROIQ ontology.

D.6 Solutions for Chapter 7

Solution to Exercise 7.1

PREFIX ex: <http://example.org/>
SELECT ?object
WHERE

{{ ex:Sun ex:satellite ?object . } UNION
{ ex:Sun ex:satellite ?satellite .

?satellite ex:satellite ?object .}}

PREFIX ex: <http://example.org/>
SELECT ?object ?center
WHERE

{{ ?object ex:radius ?radius }
OPTIONAL { ?center ex:satellite ?object . }
FILTER (4 / 3 * 3.1416 * ?radius * ?radius * ?radius > 20000000000)

}

PREFIX ex: <http://example.org/>
SELECT ?object
WHERE

{ ?object ex:satellite ?satellite .
?satellite ex:name ?name .
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?center ex:satellite ?object .
?center ex:radius ?radius .

FILTER ( langMATCHES( LANG(?name), "en") )
FILTER ( 2 * ?radius > 3000 )

}

PREFIX ex: <http://example.org/>
SELECT DISTINCT ?object
WHERE

{ ?object ex:satellite ?satellite1 .
?object ex:satellite ?satellite2 .
FILTER ( !sameTERM(?satellite1,?satellite2) )

}

Solution to Exercise 7.2

Union(BGP(<http://example.org/Sun>
<http://example.org/satellite> ?object.),

Join(BGP(<http://example.org/Sun>
<http://example.org/satellite> ?satellite.),

BGP(?satellite <http://example.org/satellite> ?object.)
)

)

Filter((4/3 * 3.1416 * ?radius * ?radius * ?radius > 20000000000),
LeftJoin(BGP(?object <http://example.org/radius> ?radius.),

BGP(?center <http://example.org/satellite> ?object.),
true

)
)

Filter(((langMATCHES( LANG(?name), "en")) && (2 * ?radius > 3000)),
Join(Join(Join(BGP(?object

<http://example.org/satellite> ?satellite.),
BGP(?satellite

<http://example.org/name> ?name.)
),

BGP(?center <http://example.org/satellite> ?object.)
),

BGP(?center <http://example.org/radius ?radius>)
)

)

Filter((!sameTERM(?satellite1,?satellite2)),
Join(BGP(?object <http://example.org/satellite> ?satellite1.),

BGP(?object <http://example.org/satellite> ?satellite2.),
)

)
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Solution to Exercise 7.3
First query:

BGP(<http://example.org/Sun>
<http://example.org/satellite> ?satellite.)

satellite
ex:Mercury
ex:Venus
ex:Earth
ex:Mars

BGP(?satellite <http://example.org/satellite> ?object.)

satellite object
ex:Sun ex:Mercury
ex:Sun ex:Venus
ex:Sun ex:Earth
ex:Sun ex:Mars

ex:Earth ex:Moon
ex:Mars ex:Phobos
ex:Mars ex:Deimos

Join(BGP(<http://example.org/Sun>
<http://example.org/satellite> ?satellite.),

BGP(?satellite <http://example.org/satellite> ?object.)
)

satellite object
ex:Earth ex:Moon
ex:Mars ex:Phobos
ex:Mars ex:Deimos

BGP(<http://example.org/Sun>
<http://example.org/satellite> ?object.)

object
ex:Mercury
ex:Venus
ex:Earth
ex:Mars

Union(BGP(<http://example.org/Sun>
<http://example.org/satellite> ?object.),

Join(BGP(<http://example.org/Sun>
<http://example.org/satellite> ?satellite.),

BGP(?satellite <http://example.org/satellite> ?object.)
)

)
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object
ex:Mercury
ex:Venus
ex:Earth
ex:Mars

satellite object
ex:Earth ex:Moon
ex:Mars ex:Phobos
ex:Mars ex:Deimos

Second query:

BGP(?object <http://example.org/radius> ?radius.)

object radius
ex:Sun "1.392e6"^^xsd:double

ex:Mercury "2439.7"^^xsd:double
ex:Venus "6051.9"^^xsd:double
ex:Earth "6372.8"^^xsd:double
ex:Mars "3402.5"^^xsd:double
ex:Moon "1737.1"^^xsd:double

BGP(?center <http://example.org/satellite> ?object.)

center object
ex:Sun ex:Mercury
ex:Sun ex:Venus
ex:Sun ex:Earth
ex:Sun ex:Mars

ex:Earth ex:Moon
ex:Mars ex:Phobos
ex:Mars ex:Deimos

LeftJoin(BGP(?object <http://example.org/radius> ?radius.),
BGP(?center <http://example.org/satellite> ?object.),
true

)

object radius center
ex:Sun "1.392e6"^^xsd:double

ex:Mercury "2439.7"^^xsd:double ex:Sun
ex:Venus "6051.9"^^xsd:double ex:Sun
ex:Earth "6372.8"^^xsd:double ex:Sun
ex:Mars "3402.5"^^xsd:double ex:Sun
ex:Moon "1737.1"^^xsd:double ex:Earth

Filter((4/3 * 3.1416 * ?radius * ?radius * ?radius > 20000000000),
LeftJoin(BGP(?object <http://example.org/radius> ?radius.),

BGP(?center <http://example.org/satellite> ?object.),
true

)
)
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object radius center
ex:Sun "1.392e6"^^xsd:double

ex:Mercury "2439.7"^^xsd:double ex:Sun
ex:Venus "6051.9"^^xsd:double ex:Sun
ex:Earth "6372.8"^^xsd:double ex:Sun
ex:Mars "3402.5"^^xsd:double ex:Sun
ex:Moon "1737.1"^^xsd:double ex:Earth

Third query – we omit the tables for the BGP expressions:

Join(BGP(?object <http://example.org/satellite> ?satellite.),
BGP(?satellite <http://example.org/name> ?name.)

)

object satellite name
ex:Earth ex:Moon "Moon@en"
ex:Mars ex:Phobos "Phobos"
ex:Mars ex:Deimos "Deimos"

Join(Join(BGP(?object <http://example.org/satellite> ?satellite.),
BGP(?satellite <http://example.org/name> ?name.)

),
BGP(?center <http://example.org/satellite> ?object.)

)

center object satellite name
ex:Sun ex:Earth ex:Moon "Moon@en"
ex:Sun ex:Mars ex:Phobos "Phobos"
ex:Sun ex:Mars ex:Deimos "Deimos"

Join(Join(Join(BGP(?object <http://example.org/satellite> ?satellite.),
BGP(?satellite <http://example.org/name> ?name.)

),
BGP(?center <http://example.org/satellite> ?object.)

),
BGP(?center <http://example.org/radius ?radius>)

)

center radius object satellite name
ex:Sun "1.392e6"^^xsd:double ex:Earth ex:Moon "Moon@en"
ex:Sun "1.392e6"^^xsd:double ex:Mars ex:Phobos "Phobos"
ex:Sun "1.392e6"^^xsd:double ex:Mars ex:Deimos "Deimos"

Filter(((langMATCHES( LANG(?name), "en")) && (2 * ?radius > 3000)),
Join(Join(Join(BGP(?object

<http://example.org/satellite> ?satellite.),
BGP(?satellite

<http://example.org/name> ?name.)
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object satellite1 satellite2
ex:Sun ex:Mercury ex:Mercury
ex:Sun ex:Mercury ex:Venus
ex:Sun ex:Mercury ex:Earth
ex:Sun ex:Mercury ex:Mars
ex:Sun ex:Venus ex:Mercury
ex:Sun ex:Venus ex:Venus
ex:Sun ex:Venus ex:Earth
ex:Sun ex:Venus ex:Mars
ex:Sun ex:Earth ex:Mercury
ex:Sun ex:Earth ex:Venus
ex:Sun ex:Earth ex:Earth
ex:Sun ex:Earth ex:Mars
ex:Sun ex:Mars ex:Mercury
ex:Sun ex:Mars ex:Venus
ex:Sun ex:Mars ex:Earth
ex:Sun ex:Mars ex:Mars

ex:Earth ex:Moon ex:Moon
ex:Mars ex:Phobos ex:Phobos
ex:Mars ex:Phobos ex:Deimos
ex:Mars ex:Deimos ex:Phobos
ex:Mars ex:Deimos ex:Deimos

FIGURE D.3: Exercise 7.3 fourth query: Table for Join(BGP(
?object <http://example.org/satellite> ?satellite1.),
BGP(?object <http://example.org/satellite> ?satellite2.))

),
BGP(?center <http://example.org/satellite> ?object.)

),
BGP(?center <http://example.org/radius ?radius>)

)
)

center radius object satellite name
ex:Sun "1.392e6"^^xsd:double ex:Earth ex:Moon "Moon@en"

Fourth query – we omit the tables for the BGP expressions:

Join(BGP(?object <http://example.org/satellite> ?satellite1.),
BGP(?object <http://example.org/satellite> ?satellite2.)

)

See Fig. D.3.
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object satellite1 satellite2
ex:Sun ex:Mercury ex:Venus
ex:Sun ex:Mercury ex:Earth
ex:Sun ex:Mercury ex:Mars
ex:Sun ex:Venus ex:Mercury
ex:Sun ex:Venus ex:Earth
ex:Sun ex:Venus ex:Mars
ex:Sun ex:Earth ex:Mercury
ex:Sun ex:Earth ex:Venus
ex:Sun ex:Earth ex:Mars
ex:Sun ex:Mars ex:Mercury
ex:Sun ex:Mars ex:Venus
ex:Sun ex:Mars ex:Earth
ex:Mars ex:Phobos ex:Deimos
ex:Mars ex:Deimos ex:Phobos

FIGURE D.4: Exercise 7.3 fourth query: Table for
Filter((!sameTERM(?satellite1,?satellite2)), Join(BGP(?object
<http://example.org/satellite> ?satellite1.), BGP(?object
<http://example.org/satellite> ?satellite2.) ) )

Filter((!sameTERM(?satellite1,?satellite2)),
Join(BGP(?object <http://example.org/satellite> ?satellite1.),

BGP(?object <http://example.org/satellite> ?satellite2.)
)

)

See Fig. D.4.

Solution to Exercise 7.4

PREFIX ex: <http://example.org/>
SELECT ?object
WHERE

{ { ?object rdf:type ex:CelestialBody }
OPTIONAL { ?object ex:satellite ?satellite }
FILTER ( !BOUND(?satellite) )

}

Solution to Exercise 7.5
We need an RDF document because SPARQL variables can only obtain values
which occur in the queried RDF document. So let’s simply use the following.

<http://example.org/square> <http://example.org/allowed>
"1"^^xsd:int, "2"^^xsd:int, "3"^^xsd:int, "4"^^xsd:int .
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We now assign to each of the squares a variable name, say from ?F11 to
?F44. Finally, we need to formulate all conditions which constrain possible
solutions:

• Every variable gets assigned one of the allowed numbers.

• Variables standing for table slots which are already filled in must get
the corresponding value assigned.

• No two variables within the same row get assigned the same value.

• No two variables within the same column get assigned the same value.

• No two variables within the same marked 2× 2 square get assigned the
same value.

A possible solution now looks as follows.

PREFIX ex: <http://example.org/>
SELECT ?F11 ?F12 ?F13 ?F14

?F21 ?F22 ?F23 ?F24
?F31 ?F32 ?F33 ?F34
?F41 ?F42 ?F43 ?F44

WHERE
{ ex:square ex:allowed ?F11, ?F12, ?F13, ?F14,

?F21, ?F22, ?F23, ?F24,
?F31, ?F32, ?F33, ?F34,
?F41, ?F42, ?F43, ?F44.

FILTER ( ?F14 = "3"^^xsd:int )
FILTER ( ?F24 = "4"^^xsd:int )
FILTER ( ?F31 = "2"^^xsd:int )
FILTER ( ?F41 = "3"^^xsd:int )

FILTER ( ?F11 != ?F12 ) FILTER ( ?F11 != ?F13 )
FILTER ( ?F11 != ?F14 ) FILTER ( ?F12 != ?F13 )
FILTER ( ?F12 != ?F14 ) FILTER ( ?F13 != ?F14 )

FILTER ( ?F21 != ?F22 ) FILTER ( ?F21 != ?F23 )
FILTER ( ?F21 != ?F24 ) FILTER ( ?F22 != ?F23 )
FILTER ( ?F22 != ?F24 ) FILTER ( ?F23 != ?F24 )

FILTER ( ?F31 != ?F32 ) FILTER ( ?F31 != ?F33 )
FILTER ( ?F31 != ?F34 ) FILTER ( ?F32 != ?F33 )
FILTER ( ?F32 != ?F34 ) FILTER ( ?F33 != ?F34 )

FILTER ( ?F41 != ?F42 ) FILTER ( ?F41 != ?F43 )
FILTER ( ?F41 != ?F44 ) FILTER ( ?F42 != ?F43 )
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FILTER ( ?F42 != ?F44 ) FILTER ( ?F43 != ?F44 )

FILTER ( ?F11 != ?F21 ) FILTER ( ?F11 != ?F31 )
FILTER ( ?F11 != ?F41 ) FILTER ( ?F21 != ?F31 )
FILTER ( ?F21 != ?F41 ) FILTER ( ?F31 != ?F41 )

FILTER ( ?F12 != ?F22 ) FILTER ( ?F12 != ?F32 )
FILTER ( ?F12 != ?F42 ) FILTER ( ?F22 != ?F32 )
FILTER ( ?F22 != ?F42 ) FILTER ( ?F32 != ?F42 )

FILTER ( ?F13 != ?F23 ) FILTER ( ?F13 != ?F33 )
FILTER ( ?F13 != ?F43 ) FILTER ( ?F23 != ?F33 )
FILTER ( ?F23 != ?F43 ) FILTER ( ?F33 != ?F43 )

FILTER ( ?F14 != ?F24 ) FILTER ( ?F14 != ?F34 )
FILTER ( ?F14 != ?F44 ) FILTER ( ?F24 != ?F34 )
FILTER ( ?F24 != ?F44 ) FILTER ( ?F34 != ?F44 )

FILTER ( ?F11 != ?F22 ) FILTER ( ?F12 != ?F21 )
FILTER ( ?F13 != ?F24 ) FILTER ( ?F14 != ?F23 )
FILTER ( ?F31 != ?F42 ) FILTER ( ?F32 != ?F41 )
FILTER ( ?F33 != ?F44 ) FILTER ( ?F34 != ?F43 )

}

It is obviously possible to solve larger Sudokus along the same lines. This
actually shows that SPARQL is at least as hard as Sudoku, which is known
to be NP -complete.

Solution to Exercise 7.6
The result tables of the given queries are as follows:

1.

s v
http://example.org/a "1"^^xsd:integer
http://example.org/b "2"^^xsd:integer
http://example.org/a "3"^^xsd:integer

2.

s
http://example.org/a
http://example.org/b
http://example.org/a

3.
s

http://example.org/a
http://example.org/b
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The result of the fourth query is not fully determined by the SPARQL
specification, which states that “[t]he order of Distinct(Ψ) must preserve any
ordering given by OrderBy” but which also requires that each result row ap-
pears at most once in the result returned by Distinct . Hence, one occurrence
of ex:a is to be deleted, but it is left to implementations to decide which one
this is. Hence, the result might be the same as in the third query, or it might
be in reversed order.

This also affects the final question of the exercise: the solution appearing
with LIMIT 1 is the first of the computed sequence, and thus depends on
the decision taken when applying Distinct . Note that this also exposes one
of the rare cases where Distinct could even influence the result of queries in
CONSTRUCT format. Clearly, it is not recommended to formulate queries with
such an unpredictable behavior, and CONSTRUCT does not admit the keyword
DISTINCT to be used.

Solution to Exercise 7.7

1. ∃z(marriedWith(x, y) ∧ childOf(z, x) ∧ childOf(z, y))

2. ∃y(marriedWith(x, y) ∧ Female(x) ∧ Catholic(x) ∧ Priest(x))

3. For the third query there are two possible interpretations. The first
identifies those persons whose parents are married with each other.

∃x, y(marriedWith(x, y) ∧ childOf(z, x) ∧ childOf(z, y))

The second interpretation identifies those persons whose parents are
married with somebody (but not necessarily with the other parent).

∃x, y, v, w(marriedWith(x, v) ∧ marriedWith(y, w) ∧ childOf(z, x)
∧ childOf(z, y))

4. ∃y(Female(x) ∧ marriedWith(x, y) ∧ killed(x, y))

5. marriedWith(x, y) ∧ killed(x, x) ∧ killed(y, y)
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complex, 121, see also class ex-
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372, see also Open World
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local, 372
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Common Information Model, 347
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complement, see owl:complementOf,
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complexity class, see computa-
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complexity, see computational com-
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composition of Web Services, 348
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computational complexity, 160, 207

for conjunctive queries, 304
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for description logics, 207, 210
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conjunction, 368

in description logics, 161
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Description Logic Rules, 226–233

Dewey Decimal Classification, 4
Dewey, Melvil, 4
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in description logics, 161
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of a function, see function
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of an interpretation, 76, 172, 221,
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Finin, Tim, 111
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of properties, see role hierarchy

Hilbert, David, 6
HTML, 9, 353
HTTP, 9
hypernym, 52
Hypertext Markup Language,

see HTML
Hypertext Transfer Protocol,

see HTTP
hyponym, 52

IEC 61970, 347, 350
IEEE 802.21, 347
ill-typed XML literal, 80
image recognition, 349
Import (RIF), 247
incoherency, see class consistency
incompleteness, 7
inconsistency, 371, see consistency

in RDFS, 100
individual, 46, 115–118, 160
individual assignment, 170
inequality, see equality
inference problems, 136, 183
information integration, 335, 348
initial tableau, 189, 197
Inkscape, 345
inline query, 343
instance, 47
instance checking, 137, 183, 188
instance retrieval, 137, 183
integrity constraint, 220
International Classification of

Diseases, 3
International Resource Identifier, see

IRI
Internet, 9
interpretation, 74, see also seman-

tics, formal, model-theoretic
in datalog, 221
in description logic, 174
in first-order logic, 370

RDF, 78
RDFS, 81
simple, 75

interpretation function, 368
intersection, 364
inverse functionality, 136, 143, 164
inverse role, 145, 164
IRI, 23
IRIS, 332
irreflexivity, 143
isBLANK, 274
isLITERAL, 274
isURI, 274

Java, 328, 330, 332
Jena, 329, 331, 332

KAON2, 238, 258, 304, 330
key, see owl:hasKey
knowledge acquisition bottleneck, 7
knowledge base, see also ontology

description logic, 162, 170, 171
first-order, see theory

knowledge representation language,
see ontology language

LANG, 274
langMATCHES, 274
language setting, 40, 270
language tag, 148
left-total relation, 365
Leibniz, Gottfried, 6
Lenat, Douglas, 8
Lessig, Lawrence, 10
lexical space, 38
life science, 345
LIMIT, 281
linked data, 14, 336
Linnaeus, Carolus, 3
literal, 22, 37, 86, 270

class of all literals, 49
untyped, 24, 40

Lloyd-Topor transformation, 389
Llull, Ramon, 6
logic programming, 215
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mantics, formal
in description logic, 176
in first-order logic, 371

logicism, 6

many-valued relationship, 41
mapping, see function
markup language, 353
materialization, 153
metadata, 19, 336, 337, 345
metamodeling, 138
microformats, 14
Microsoft Internet Explorer, 345
model, see interpretation
modeling patterns, 310
modifier (SPARQL), 280–282, 289
modularization, 326
monotonicity, see non-monotonicity
Mozilla Firefox, 345
MYCIN, 8
MySpace, 337

N-Triples, 25
N3, 25
named element, 238
namespace, 26, 28, 30, 114, 358

owl, 114
rdf, 28, 114
rdfs, 46, 114
rif, 242
xsd, 38, 114, 358
xsi, 360

negation, 367
in description logics, 161
in OWL, see owl:complementOf,

owl:datatypeComplementOf
in SPARQL, 275

negation normal form, 184
neighbor (tableaux), 198
NeOn, 349
NeOn Toolkit, 328
node, 20, 188, 196

root, 197

nominal, 163, 170
non-monotonicity, 215, 218, 372
nondeterminism, 190

O’Reilly, Tim, 11
object

in RDF, 25
in RIF frames, 243

OFFSET, 281
One World Language, 111
OntoBroker, 332
OntoBroker OWL, 330
ontology, 2, 47, 111
ontology (philosophy), 2
ontology editors, 328
ontology engineering, 307–334
ontology header, 114, 154
ontology language, 47, see also RDFS,

OWL
ontology modularization, 326
ontology patterns, 310
OntoStudio, 328
Open World Assumption, 131, 194,

372, see also Closed World
Assumption

OPTIONAL, 267
Oracle, 331
ORDER BY, 280
OWA, see Open World Assumption
OWL, 14, 111–210

DL, 113, 139, 164
Full, 113, 138
Lite, 113, 140, 166
tools, 328, 330

OWL 1, 140
OWL 1.1, see OWL 2
OWL 2, 14, 140–153, 155

DL, 141–148, 166
Full, 153
profiles, 149–153

EL, 149, 167, 346
QL, 150, 167
RL, 151, 167

OWL API, 332
OWL syntax
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owl:AllDifferent, 121, 122
owl:AllDisjointClasses, 142
owl:AllDisjointProperties, 144
owl:allValuesFrom, 127, 132, 135,

161
owl:AnnotationProperty, 153
owl:assertionProperty, 147
owl:AsymmetricProperty, 143
owl:backwardCompatibleWith, 115
owl:bottomDataProperty, 144
owl:bottomObjectProperty, 144
owl:cardinality, 128, 129, 163
owl:Class, 115, 116, 138
owl:complementOf, 121, 125, 126,

161
owl:DataRange, 123
owl:datatypeComplementOf, 148
owl:DatatypeProperty, 116, 138
owl:DeprecatedClass, 115
owl:DeprecatedProperty, 115
owl:differentFrom, 121
owl:disjointUnionOf, 142, 143
owl:disjointWith, 118, 119, 125,

142, 162
owl:distinctMembers, 121, 122
owl:equivalentClass, 118, 119, 129
owl:equivalentProperty, 133, 134
owl:FunctionalProperty, 136
owl:hasKey, 143
owl:hasSelf, 147
owl:hasValue, 128, 132, 163
owl:imports, 114, 115
owl:incompatibleWith, 115
owl:intersectionOf, 121, 124, 126,

161
owl:InverseFunctional-

Property, 136
owl:inverseOf, 133, 134, 136, 145
owl:IrreflexiveProperty, 143
owl:maxCardinality, 127, 133, 163
owl:maxQualifiedCardinality, 146
owl:member, 142, 144
owl:minCardinality, 128, 132, 163
owl:minQualifiedCardinality, 146
owl:NamedIndividual, 155

owl:NegativeProperty-
Assertion, 147

owl:Nothing, 116, 161
owl:ObjectProperty, 116, 133, 134,

138
owl:onClass, 146
owl:onDataRange, 146
owl:onDataType, 149
owl:oneOf, 122, 129, 130, 163
owl:onProperty, 127–129, 135
owl:Ontology, 114
owl:priorVersion, 114, 115
owl:propertyChainAxiom, 145
owl:propertyDisjointWith, 144
owl:qualifiedCardinality, 146
owl:rational, 148
owl:real, 148
owl:ReflexiveProperty, 143
owl:Restriction, 127–129, 135, 149
owl:sameAs, 120, 136, 338
owl:someValuesFrom, 127–129, 131,

143, 161, 163
owl:sourceIndividual, 147
owl:SymmetricProperty, 136
owl:targetIndividual, 147
owl:targetValue, 147
owl:Thing, 116, 129, 135, 138,

161
owl:topDataProperty, 144
owl:topObjectProperty, 144
owl:TransitiveProperty, 136
owl:unionOf, 121, 124, 126, 142,

161
owl:versionInfo, 114, 115
owl:withRestrictions, 149

OWL working group, 157
Owlgres, 331
OWLIM, 329
OwlSight, 330

packet switching, 8
partial order, 168
pattern

in SPARQL, see graph pattern
in XML, see xsd:pattern
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modelling, 310
PDF, 19, 345
Pellet, 238, 304, 330
Physical Symbol System Hypothesis,

7
Plato, 2
polysemy, 310
Porphyry, 3
Portable Document Format, see PDF
power set, 365
PRD, 239
predecessor (tableaux), 193, 198
predicate

in logic, 218, 367
in RDF, 25

predicate logic, see first-order logic
predicate symbol, see predicate
PREFIX, 263
prefix, see namespace
Prefix (RIF), 240
product set, 364
production rule, 215, 260, see also

PRD
Production Rule Dialect, see PRD
profile, see OWL 2 profiles
Prolog, 215, 259, 331, 332
proof theory, 373
property, 52, 76, 80, 115, see also role

class of all properties, 49
datatype property, see role, con-

crete
in Semantic MediaWiki, 342
object property, see role, abstract

property extension, see extension
property name, 52, see also role, atomic
property restriction, 55, 126, 154, 156,

161
proposition, 73
propositional logic, 6, 373
Protégé-OWL, 328
Protégé, 328
punning, 141, 172, 249, see also type

separation

QName, 26

quantifier, 6, 161, 368
existential, 127, 167, 255, 368,

see also blank node
universal, 126, 241, 368

query, 153, 261
conjunctive, 292–300
in Semantic MediaWiki, 343
SPARQL, see SPARQL
tree-shaped, 298

query language, 261
query variable, 264, 295
QuOnto, 331

RacerPro, 330
range

of a function, see function
of a property, see rdfs:range

rational number, 148
RBox, 168, 170, 171
RDF, 14, 19–45, 73–81

language constructs, 67
serialization, 25
stores, 151, 329
term, 286

RDF Schema, see RDFS
RDF Site Summary, see RSS 1.0
RDF syntax

rdf:_n, 60
rdf:about, 28
rdf:Alt, 60
rdf:Bag, 60
rdf:datatype, 38
rdf:Description, 28
rdf:first, 62
rdf:ID, 33
rdf:li, 60
rdf:List, 49
rdf:nil, 63
rdf:nodeID, 44
rdf:object, 64
rdf:parseType

Collection, 62
Literal, 39
Resource, 45

rdf:PlainLiteral, 148
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rdf:predicate, 64
rdf:Property, 52, 80, 138
rdf:RDF, 28, 114
rdf:resource, 29
rdf:rest, 62
rdf:Seq, 59
rdf:Statement, 65
rdf:subject, 64
rdf:type, 80
rdf:value, 43
rdf:XMLLiteral, 39, 49, 80

RDF vocabulary, 78
RDF-entailment, 81, 92
RDF-interpretation, 80
RDF/XML, 27
RDFa, 14, 16
RDFS, 46–66, 81–85

tools, see RDF stores
RDFS syntax

rdfs:Class, 48, 82, 138
rdfs:comment, 57, 114, 154
rdfs:Container, 60
rdfs:ContainerMembership-

Property, 60, 83
rdfs:Datatype, 49, 149
rdfs:domain, 55, 82, 134, 162
rdfs:isDefinedBy, 57, 114
rdfs:label, 57, 114
rdfs:Literal, 49, 82, 83
rdfs:member, 61, 83
rdfs:range, 55, 82, 134, 162
rdfs:Resource, 49, 82, 138
rdfs:seeAlso, 57, 114
rdfs:subClassOf, 51
rdfs:subPropertyOf, 82

RDFS vocabulary, 81
RDFS-entailment, 85, 96
RDFS-interpretation, 82
real number, 148
Really Simple Syndication,

see RSS 2.0
reasoners, see OWL tools
Redland, 329
REDUCED, 291
reflexivity, 143, 169

local, see Self
of relations, 365

REGEX, 274
regular expression, 148, 274, 304
regularity, 168, 170, 171
reification, 64, 68
relation, 52, 367

binary, 365
set theory, 365
taxonomic, 52

relationship, many-valued, 41
relative reference, 32
resolution calculus, 330
resource, 76

class of all resources, 49
RIF, 14, 238–256, 347
RIF syntax

And, 241
Document, 240
Forall, 241
Group, 240
Import, 247
Prefix, 240

RIF-Core, 239
right-unique relation, 365
role, 115–118, 160, see also property

abstract, 116, 160
atomic, 168
bottom abstract, 144
bottom concrete, 144
concrete, 116, 164
simple, 169
top abstract, 144, 168
top concrete, 144
universal, 168

role assignment, 117, 156
negated, 147, 171

role chain, 145, 166, see also gener-
alized role inclusion

role characteristics, 134, 143, 169
role constructor, 164
role hierarchy, generalized, 168
role restriction, see property restric-

tion
rolling-up, 227, 232
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root (XML), 356
RSS, 11, 338

RSS 1.0, 14, 19, 338
RSS 2.0, 19, 338

rule
datalog, 219
deduction, see deduction rules

rule body, 219
rule engine, 331
rule head, 219
Rule Interchange Format, see RIF
Russell, Bertrand, 6

sameTERM, 274
satisfiability, see consistency
satisfiability checking, 184
scalability, 8, 111, 207, see also com-

putational complexity
Scalable Vector Graphics, 19, 345
schema knowledge, see terminologi-

cal knowledge
SELECT, 263
Self, 147, 170
Semantic MediaWiki, 344
semantic network, 159
semantic portal, 344
Semantic Search, 348
semantic technologies, 12
Semantic Web, 11, 35
semantic web (lowercase), 14
Semantic Web Rule Language,

see SWRL
Semantically Interlinked Online Com-

munities, 338
semantics, 11, 73

in natural language, 311–315
semantics, formal, 73

algebraic, 282
SPARQL, 282–291

extensional
OWL, 172–177
RDF(S), 104

first-order mapping
OWL, 179–181
RDF(S), 250–253

RIF, 244
model-theoretic, 74

datalog, 221–223
first-order logic, 368–372
OWL, 172–181
RDF(S), 74–90

operational, 90, 215
semantics, intuitive

datalog, 217–221
OWL, 112–137
RDF(S), 20–67
RIF, 239–243
SPARQL, 262–282

semi-decidability, 373
sentence, 368
serialization, 25, see also syntax
Service Oriented Architecture, 348
Sesame, 329
set, 363

empty, 364
SHER, 330
SHIF(D), 166
SHIN , 166
SHIQ, 166, 171
SHOIN , 166, 172
SHOIN (D), 163, 164
SHOIQ, 166, 210
signature

datalog, 218
first-order, 367

simple entailment, 78
deduction rules, 92

simplicity, 171
SIOC, 338
SMW, see Semantic MediaWiki
SNOMED CT, 150, 346
Social Graph API, 341
social networking, 338
software, see tools
sound deduction calculus, 91, 373
SPARQL, 262–291
SPARQL syntax

ASC, 280
BASE, 264
BOUND, 274
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CONSTRUCT, 277
DATATYPE, 274
DESC, 280
DESCRIBE, 279
DISTINCT, 281
FILTER, 272
isBLANK, 274
isLITERAL, 274
isURI, 274
LANG, 274
langMATCHES, 274
LIMIT, 281
OFFSET, 281
OPTIONAL, 267
ORDER BY, 280
PREFIX, 263
REDUCED, 291
REGEX, 274
sameTERM, 274
SELECT, 263
STR, 274
UNION, 268
WHERE, 263

species of OWL, 112, 138
SQL, 282
SROIQ, 168, 170–172, 210
STR, 274
structure, see interpretation
sub-Boolean, see Boolean closed
subclass, see class hierarchy
subject, 25
sublanguage of OWL,

see OWL, OWL 2
subordinate concept, see hyponym
subproperty, 54, 198
subset, 363

proper, 363
successor (tableaux), 198
Sudoku, 302
superclass, see class hierarchy
superordinate concept, see hypernym
SVG, see Scalable Vector Graphics
SWI-Prolog, 332
SWOOP, 329
SWRL, 258, 328

syllogism, 5
symbol grounding problem, 321
symbol space, 242
symmetry, 135, 164

of relations, 365
syndication, 336
syntax

of conjunctive queries, 294
of datalog, 218
of description logic
ALC, 162
SROIQ, 168

of first-order logic, 367
of OWL

abstract, 112, 141, 157
functional style, 141
OWL/XML, 141
RDF/XML, 112, 141

of RDF, 25
RDF/XML, 27
Turtle, 25

of RIF
presentation, 240
XML, 244

of SPARQL, 262
of XML, 355

Systematized Nomenclature of Medicine,
see SNOMED CT

tableaux algorithm, 183, 330
for ALC, 186–196
for SHIQ, 196–206
naive, 188

tag, see XML tag
tagging, 10
tautology, 370, 371
taxonomy, 3, 52
TBox, 162, 168, 170, 171
term, 367

datalog, 218
termination, 139, 373
terminological knowledge, 46, 66, 162,

see also TBox
theory, logical, 368, 371
thesaurus, 4, 315
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tools, 327–332
TopBraid Composer, 328
transitivity, 135, 146, 164, 198, 204

of relations, 365
tree (XML), 354
triple, 25

grounded, 77
triple store, see RDF stores
true, 370, see also Boolean
truth value, 370
Turing, Alan, 7
Turtle, 26, 262
Twine, 344
type separation, 138, 139, 141, 172,

see also punning

ubiquitous computing, 348
UNA, see Unique Name Assumption
undecidability, see decidability

of OWL Full, 113
Uniform Resource Identifier, see URI
Uniform Resource Locator, see URL
Uniform Resource Name, see URN
UNION, 268
union of sets, 364
Unique Name Assumption, 120
universal, see quantifier
universal role, 168
unsatisfiability, see inconsistency
URI, 21, 23, 30, 33

relative reference, 32
URL, 21
URN, 22

validity, 357
RDF, 30

value space, 38, 85
variable, 218, 367

bound occurence, 368
distinguished, 295
free occurrence, 368
in RIF, 240
in SPARQL, 263, 264
non-distinguished, 296

variable assignment, 369

versioning, 114
Virtuoso, 329
vocabulary, 33, 46, 337, 338

for RDF, 78
for RDFS, 81
formal definition, 76

Vodafone life, 345

W3C, 13, 140, 345, 353
Web 2.0, 11
web of data, 15
Web Ontology Language, see OWL
Web Service, 11, 348
Weblog, see Blog
well-formed

RIF-Core document, 241
XML document, 356, 358

well-typed XML literal, 80
WHERE, 263
Whitehead, Alfred N., 6
wiki, 341
Wikipedia, 10, 337, 341
Winnie the Pooh, 111
World Wide Web, 9
World Wide Web Consortium, see W3C
worst-case complexity, see computa-

tional complexity
WWW, see World Wide Web

XML, 353–361
attribute, 358
document, 355
element, 356, 358
tag, 353, 356

XML clash, 100
XML Schema, 147, 148, 356–361
XML Schema syntax

maxOccurs, 358, 360, 361
minOccurs, 358, 360, 361
optional, 359, 361
required, 359
unbounded, 359, 361
xsd:all, 361
xsd:anyURI, 117, 359
xsd:attribute, 359, 361
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xsd:base64Binary, 117
xsd:boolean, 117, 271
xsd:byte, 117
xsd:choice, 361
xsd:complexType, 360, 361
xsd:date, 117, 358
xsd:dateTime, 117, 148, 273
xsd:dateTimeStamp, 148
xsd:decimal, 117, 271
xsd:double, 117, 271
xsd:element, 358, 359, 361
xsd:extension, 361
xsd:float, 117
xsd:gDay, 117
xsd:gMonth, 117
xsd:gMonthDay, 117
xsd:gYear, 117, 361
xsd:gYearMonth, 117
xsd:hexBinary, 117
xsd:ID, 358
xsd:int, 117, 270
xsd:integer, 117, 149, 358, 360
xsd:language, 117
xsd:length, 148
xsd:long, 117
xsd:maxInclusive, 148, 360
xsd:maxLength, 148
xsd:minExclusive, 148
xsd:minInclusive, 360
xsd:minLength, 148
xsd:Name, 117
xsd:NCName, 117
xsd:negativeInteger, 117
xsd:NMTOKEN, 117
xsd:nonNegativeInteger, 117, 127,

128, 132, 133, 361
xsd:nonPositiveInteger, 117
xsd:normalizedString, 117
xsd:pattern, 148
xsd:positiveInteger, 117, 148
xsd:restriction, 360
xsd:schema, 358, 359
xsd:schemaLocation, 360
xsd:sequence, 361
xsd:short, 117

xsd:simpleType, 360
xsd:string, 117, 123, 358, 359,

361
xsd:time, 117, 358
xsd:token, 117
xsd:unsignedByte, 117
xsd:unsignedInt, 117
xsd:unsignedLong, 117
xsd:unsignedShort, 117

XML syntax
xml:base, 32
xml:lang, 40
?xml, 355

xmlns, see namespace
XMP, 19
XPath, 273, 303
XQuery, 273, 303
XSB, 331
xsd:date, 38
xsd:string, 38

Yahoo! Creative Commons Search,
337

Yahoo! Food, 344
Yahoo! SearchMonkey, 344
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