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Foreword

Metadata and semantics for information search, integration and analysis
has been practiced for three decades. Conceptual modeling and knowledge
representation that enable rich description of information, and when needed
associated reasoning, have been with us for a while too. But as the Web
brought much larger variety (heterogeneity) and size with it, coming together
of the semantics, the Web technologies and all the data that goes with it, was
inevitable. Nearly a decade after Tim Berners-Lee coined the term Seman-
tic Web, it has transformed into a growing, important, and well recognized
interdisciplinary area of Computer Science. W3C’s effort has led to widely
adopted language standards, which has contributed to the development of Se-
mantic Technologies for the Web of data, and a host of new and established
companies are innovating tools, applications, products and services based on
these standards and technologies at a rapid pace. With three key conferences
focused on this topic, including the flagship International Semantic Web Con-
ference, as well as at least 20 other conferences offering Semantic Web as a
significant subarea of interest, the Semantic Web is a topic that is here to
stay.

I started teaching a graduate course on Semantic Web in 2001 and have
continued to offer it annually since. All these times, I used a series of papers
and presentations as my course material. An important reason was that the
field was rapidly growing and evolving, and what I taught just last year seemed
outdated the next time around. There have been a number of books with
Semantic Web in the title but most of them have been a collection of articles
or papers with limited attention to what one might call the discipline core. A
couple of other books offered as textbooks have largely focused on languages
and syntax, rather than foundations. As Semantic Web is rapidly entering
curricula at universities and other educational institutions worldwide, there
is an increasing need for excellent textbooks which can be used as a basis for
courses and self-study. I am pleased to introduce this book — Foundations
of Semantic Web Technologies — to address this need. It might just fit my
own need to cover the fundamental and core part of my course which I might
complement with more applied and interdisciplinary aspects such as those
requiring use of NLP, learning, statistics and database technologies.

This book is unique in several respects. It contains an in-depth treatment of
all the major foundational languages for the Semantic Web and in particular
provides a full treatment of the underlying formal semantics, which is central
to the Semantic Web effort. It is also the very first textbook which addresses
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the forthcoming W3C recommended standards OWL 2 and RIF. Furthermore,
the covered topics and underlying concepts are easily accessible for the reader
due to a clear separation of syntax and semantics, i.e. of the basic required
knowledge and advanced material despite the fact that some of the topics
covered do represent a moderate to high level of difficulty. The authors of
Foundations of Semantic Web Technologies are well-regarded researchers and
teachers on the topic of the book and members of the prominent Semantic
Web research group at AIFB, University of Karlsruhe, in Germany. Their
didactic skills combined with their deep understanding of the material make
it accessible for students at foundational or advanced levels, for researchers
in adjacent areas, and for interested practitioners in application domains. I
am confident this book will be well received and play an important role in
training a larger number of students who will seek to become proficient in
this growing discipline.

Amit Sheth
Kno.e.sis Center (knoesis.org), Wright State University
Dayton, OH USA



Introduction

The goal of this book is to introduce the foundations of Semantic Web
technologies to a level of detail and depth which is not found in any other
textbook currently available. It is a book written for university courses as
well as for self-teaching, and suitable for researchers and practitioners alike.
It is based on five years of experience of the authors in teaching this subject.

In these five years a lot of things have happened. Semantic Web went from
a hyped research subject to one almost pronounced dead to one being invested
in by major IT companies. It turns out that it is not only alive and kicking —
it is actually growing rapidly, supported by substantial funding from research
organizations and industry. IT and venture capital companies are investing.
Numerous large-scale applications have been established, and more are being
developed.

At the same time, Semantic Web technologies are still rapidly evolving. No
textbook is able to keep up with the speed of the most recent developments,
and indeed those which try are bound to be already outdated when they ap-
pear. We take a different approach for this book. We focus on the established
foundations which have already become relatively stable over time, and we
make an effort to convey these very thoroughly. Our presentation thus in-
cludes not only basic introductions and intuitions, but also technical details
and formal foundations. Especially the advanced aspects are in our opin-
ion not sufficiently treated in any of the currently available English-language
textbooks.! We are confident that the reader will benefit from the increased
depth of this book, even when relying on our intuitive explanations without
studying the advanced material in detail.

So in this book, we convey foundations. But what are these foundations?
The basic idea of the Semantic Web is to describe the meaning (i.e. the seman-
tics) of Web content in a way that can be interpreted by computers. Programs
can then exploit (more) human knowledge to execute tasks, enabling powerful
applications not only on the Web. The first step for this is to cast knowledge
into a machine-processable form. The resulting descriptions are often called
ontologies, and the machine-readable formalisms that they are based on are
called ontology languages. So a major goal of this book is to convey ontology
languages in detail and depth — and with an obvious focus on languages stan-

11t is certainly peculiar that many Semantic Web textbooks try to treat semantic technolo-
gies without explaining their semantics in detail — thereby neglecting the actual core of the
subject area.



dardized by the World Wide Web Consortium for this purpose. On this basis,
we can consider methods for evaluating, querying, and further enriching onto-
logical information. This already includes some advanced topics that are not
quite as stable yet. Finally, we also consider some topics that are clearly be-
yond foundations, namely tools, applications, and engineering aspects. Our
overview of these quickly evolving areas cannot be definite, but it provides
many pointers that are useful for employing Semantic Web technologies in
practice.

Quick Guide to Reading the Book

For better accessibility, we have carefully separated basic material from
advanced content in our presentation of Semantic Web technologies. Chapters
and sections with basic content provide a thorough first introduction to a
given technology, including intuitive explanations and an amount of technical
detail that suffices for many practical applications. Advanced parts provide
a detailed view on more sophisticated aspects that are necessary to gain an
in-depth understanding of the subject. Readers who are new to Semantic
Web technologies can easily skip advanced material on a first reading. The
following diagram provides an overview of the parts of this book, and sketches
the rough dependencies between them:

1 The Quest for Semantics

3 RDF Formal Semantics

7 1 SPARQL: Query
. Language for RDF

5 OWL Formal Semantics

Simple Ontologies in
RDF and RDF Schema

2

© Ontologies and Rules

7 2 Conjunctive Queries
' for OWL DL

4 ontologies in OWL

8 Ontology Engineering
9 Applications

Basic material is found in Chapters 1, 2, 4, and in Section 7.1. More
advanced content is then provided in Chapters 3, 5, 6, and in Section 7.2.




Chapters 8 and 9 focus on applied topics that are mostly independent from
the descriptions of concrete technologies. An overview of the content of each
chapter and more detailed suggestions for reading are given below.

Each chapter closes with references to further in-depth reading and to orig-
inal publications. The technical chapters each also provide a set of exercises
on the material, meant for coursework or to aid the self-studying reader to
rehearse the contents. Solutions to all exercises are provided in Appendix D.
Some further appendices provide essential background information for some
of the technologies that this book builds on. Again, a detailed overview is
given below.

A comprehensive index at the end of the book can be used to look up
definitions quickly. It includes all relevant notions and all syntactic identifiers
and keywords that are used throughout the book.

Chapter Overview

We give a brief overview of the contents and significance of each chapter.

Chapter 1 introduces the essential motivations and ideas behind Semantic
Web technologies. It illustrates how various developments in science and
technology have influenced the semantic technologies of today. It also
briefly explains a number of important notions — including “ontology”
and “Semantic Web” — that appear in all later chapters.

Chapter 2 introduces the syntax and underlying intuition of the Resource
Description Framework RDF and of its extension RDF Schema. Both
are fundamental technologies for representing (meta)data on the Seman-
tic Web.

Chapter 3 details the formal underpinnings of RDF and RDF Schema by
explaining in depth their formal semantics. This also includes an in-
troduction to the idea and motivation of formal semantics in general.
This advanced material can be skipped on a first reading, since the

intuitive explanations provided in Chapter 2 are sufficient for a basic
understanding of RDF(S).

Chapter 4 introduces the syntax and underlying intuition of the Web Ontol-
ogy Language OWL, including the forthcoming revision called OWL 2.
OWL provides advanced concepts for representing knowledge for the
Semantic Web.

Chapter 5 covers the formal underpinnings of OWL by explaining in depth
its relation to first-order predicate logic and to description logics. It also
contains a detailed treatment of algorithms for automated reasoning
with OWL. This chapter contains some of the most advanced material
in the book and may be skipped at the first reading.



Chapter 6 treats rules and rule languages, especially those that can be used
in combination with the Semantic Web technologies discussed in previ-
ous chapters. This advanced material is not covered by any standard
yet — the forthcoming Rule Interchange Format RIF is expected to fill
this gap. This book is, to the best of our knowledge, the first to provide
a textbook introduction to RIF.

Chapter 7 deals with query languages for the Semantic Web. In particular,
it contains an in-depth treatment of the SPARQL Protocol and RDF
Query Language. It also contains an introduction of conjunctive queries
for OWL, which can possibly be skipped at first reading.

Chapter 8 deals with aspects of ontology engineering — an important area
that is still evolving rapidly today. This chapter gives an overview of on-
tology engineering approaches, and presents modeling guidelines, meth-
ods of quality assurance, and selected tools to support ontology devel-
opment.

Chapter 9 gives an overview of a number of prominent applications of Se-
mantic Web technologies that can be found today. We refrain from
writing yet another compilation of possible application areas and sce-
narios, and focus instead on a variety of application examples which
have been realized to date.

In the appendix we provide brief accounts on background knowledge which
is needed or helpful for understanding the contents of the book. We suggest
that these parts are only consulted when needed, e.g. for a brief introduction
to XML or to first-order logic. Appendix A covers XML and XML Schema,
Appendix B lists basic notions from set theory, Appendix C recalls the ba-
sics of first-order predicate logic, and Appendix D provides solutions to all
exercises from the book chapters.

The Book for Self-Study

The diagram on page xii provides a basic overview of the dependencies
between chapters in this book. This is a rough guideline: single sections
may still require knowledge about other earlier parts — e.g. Section 6.4.5 also
requires Chapter 3 — but such dependencies will be clear from the text, and
corresponding sections can be skipped in this case.

Readers with prior knowledge can skip basic chapters: if specific notions
or terms are unclear, the index at the end of the book provides an easy way
to find more information. We have made an effort to keep the chapters of
the book as independent as possible. While Chapter 4, for example, formally
uses RDF as introduced in Chapter 2, it can essentially be read without going
through the RDF chapter in detail.

Below are some typical reader perspectives with suggestions for reading;:



For a comprehensive introduction to the field, one can of course read
from end to end. To take it a bit easier, the advanced Chapters 3, 5, and
6 can be skipped on a first reading to return to them later to acquire a
deeper understanding.

To learn about RDF, readers should study Chapters 2 and (optionally) 3,
as well as Section 7.1. Rules can be an interesting addition: Sections
6.1 and 6.2, and the RDF-related parts of Section 6.4 provide a good
introduction.

To learn about OWL, readers should study Chapters 4 and 5, as well as
Section 7.2. Moreover, many OWL-related engineering hints are given
in Chapter 8. Rules can be an interesting addition: most of Chapter 6
is relevant to OWL.

Readers with prior knowledge of semantic technologies should freely
choose chapters and sections to deepen their understanding. Advanced
material is especially found in Chapters 3, 5, and 6, including some
recent developments that have not been presented in a coherent textbook
treatment elsewhere.

A quick reference on semantic technologies is provided through the in-
dex, which contains almost every syntactic element and keyword that
occurs in any of the discussed technologies. This is particularly useful
for practitioners who need quick access to core definitions.

The Book for Teaching

There are various ways to use this book as a basis for teaching Seman-
tic Web technologies. Our selection and organization of content was in fact
strongly influenced by our own experiences in teaching this subject. In general,
the dependencies and guidelines for self-study are also valid when planning
university courses. Below are some typical choices:

The Comprehensive Overview of Semantic Technologies For an all-
inclusive course on semantic technologies, it makes sense to treat all basic and
applied chapters in their order, together with selected aspects of the advanced
Chapters 3, 5, and 6 as deemed suitable. It is often a good idea to include a
session on XML (Appendix A), and, if formal semantics are included, a brief
recap of first-order logic (Appendix C). Further related topics can easily be
included at the discretion of the teacher, e.g. to provide more details on XML,
or to include a digression to rule languages and logic programming.

We have gathered excellent experiences when applying this scheme to a
one-semester course for graduates and advanced undergraduates (15 sessions
of 90 min each, accompanied by biweekly tutorials). The syllabus in this
case was: introduction (Chapter 1); basics of XML (Appendix A); RDF and



RDF Schema (two sessions, Chapter 2); recap of formal semantics and first-
order logic (Appendix C); RDF(S) semantics (Chapter 3); OWL (two sessions,
Chapter 4); OWL semantics (Chapter 5); SPARQL and its semantics (two
sessions, Section 7.1); querying OWL (Section 7.2); OWL and Rules (two ses-
sions, Chapter 6); application overview (Chapter 9). This is a dense syllabus
that could easily be stretched over more sessions, especially when including
further material.

An Applied Course on the Semantic Web To give an overview of basic
semantic technologies and their use, one can focus on Chapters 2 (RDF), 4
(OWL), 7 (SPARQL), 8 (engineering), and 9 (applications). If possible, this
can be combined with hands-on exercises using, e.g., some freely available
ontology editor like Protégé (see Section 8.5.1). This approach is also well-
suited for a one-week tutorial. Another viable option is to teach this material
as part of a lecture that already covers XML or Web technologies in greater
detail.

Knowledge Representation and Reasoning on the Web If the target
audience is already familiar with foundational aspects of knowledge repre-
sentation and reasoning, it makes sense to present semantic technologies as
a modern application of these topics. In this case, one may want to skip
some of the technical and syntactic details in Chapters 2 and 4, and focus
instead on the semantic and proof-theoretic content of Chapters 3 (RDFS se-
mantics, optional), 5 (description logics), 6 (rules), and 7 (SPARQL could be
omitted). This syllabus can be extended with advanced material from logic
programming, deductive databases, or modal logic, depending on preference.

Seminar Work with this Book Students can use this book in self-study
to prepare seminar presentations. Since individual chapters are relatively
independent it is easy to perform preparations in parallel without relying
too much on prior material or on the quality of the presentations of fellow
students. The dependency graph and the above suggestion for dividing the
content into individual sessions are a good guideline for selecting topics.

The above covers some typical approaches for teaching based on this book.
In addition, selected single topics can be covered in courses on related mate-
rial, e.g. when discussing Web technologies, mark-up or modeling languages,
or knowledge representation. We also have used some of the material in
courses that focus on further applications and research topics related to the
Semantic Web. Besides detailed treatment of ontological modeling and quality
assurance (Chapter 8) and reasoning algorithms for OWL (Chapter 5), these
courses also included material on semantic search, (semantic) Web Services,
usage and user interface aspects for semantic technologies, and advanced top-
ics related to OWL reasoning and its combination with rules. Pointers to
suitable literature can be found at the end of each chapter. For further topics



in this interesting field of research, please see [SS09] and the proceedings of the
annual International Semantic Web Conference, of the Semantic Web track
of the annual World Wide Web Conference, and other central dissemination
events for Semantic Web research.

In all of the above cases, the material in Chapter 1 is a good basis for
introducing and motivating the field of semantic technologies, where emphasis
can be placed on the aspects most relevant to the audience at hand.

Additional Online Resources

This book is accompanied by the website
http://www.semantic-web-book.org/

where we provide updates, errata, slides for teaching, and links to further
resources. Feedback, questions, or suggestions for improvement are always
welcome — they can be sent via email to authors@semantic-web-book.org.

Karlsruhe, Germany

Pascal Hitzler
Markus Krotzsch
Sebastian Rudolph
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Chapter 1

The Quest for Semantics

In this chapter, we explain the basic motivations and ideas underlying Se-
mantic Web technologies as presented in this book, along with some of the
history of these ideas. This gentle introduction prepares the stage for the
more technical parts that are covered in subsequent chapters.

From its very beginnings, the development of Semantic Web technologies
has been closely related to the World Wide Web. This is is not surprising,
given that the inventor of the WWW — Sir Tim Berners-Lee — has originally
coined the term “Semantic Web” and has inspired much research in this area.
Important goals of the approaches that are described in this book are indeed
very similar to the goals of the Web in general: to make knowledge widely
accessible and to increase the utility of this knowledge by enabling advanced
applications for searching, browsing, and evaluation. And, similar to the tra-
ditional Web, the foundation of Semantic Web technologies are data formats
that can be used to encode knowledge for processing (relevant aspects of it)
in computer systems, although the focus is on different forms of knowledge.

However, viewing the WWW as the only origin and inspiration for the
technologies that are described in this book would not do justice to their true
history. More importantly, it would also hide some of the main motivations
that have led to the technologies in their present form. To avoid such a narrow
perspective in this chapter, two further strands of closely related endeavors
are explained here. One is the general approach of building abstract models
that capture the complexities of the world in terms of simpler ideas. Modeling
in this sense pervades human history — a comprehensive historic account is
beyond the scope of this book — but underlying methods and motivations are
highly relevant for the semantic technologies that are available for us today.

A second, more recent approach is the idea of computing with knowledge.
The vision of representing knowledge in a way that allows machines to auto-
matically come to reasonable conclusions, maybe even to “think,” has been a
driving force for decades of research and development, long before the WWW
was imagined. Again, a brief look at this line of development helps us to un-
derstand some of the motivations and ideas behind the technologies presented
in this book. Thus we arrive at the following three main topics that provide
conceptual underpinnings for the Semantic Web:

e Building models: the quest for describing the world in abstract terms
to allow for an easier understanding of a complex reality.

vww . allitebooks.con
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e Computing with knowledge: the endeavor of constructing reasoning ma-
chines that can draw meaningful conclusions from encoded knowledge.

e Exchanging information: the transmission of complex information re-
sources among computers that allows us to distribute, interlink, and
reconcile knowledge on a global scale.

Within this introductory chapter, we briefly outline the ideas underlying
each of these topic areas within Sections 1.1, 1.2, and 1.3. Thereafter, in Sec-
tion 1.4, we explain how these ideas come together in what is often described
as Semantic Web technologies today. As in every chapter, we conclude with a
brief guide to useful references for further reading that is given in Section 1.5.

1.1 Building Models

Generally speaking, a model is a simplified description of certain aspects
of reality, used for understanding, structuring, or predicting parts of the real
world. In a most general sense, forming models of the world is part of our
very ability to reason and to communicate. In this section, we are interested
in scientific modeling, and especially in those developments that influence
today’s semantic technologies. Numerical models, such as those described
by physical formulae, are less relevant for our considerations and will not be
discussed in detail.

Beginnings of scientific modeling can be traced back to ancient philoso-
phy. The Greek philosopher Plato (429-347 BC) proposed answers to some
of the most fundamental questions that arise during modeling: What is real-
ity? Which things can be said to “exist”? What is the true nature of things?
This marks the first major contribution to a philosophical field now known as
ontology — the study of existence and being as such, and of the fundamental
classes and relationships of existing things. Interestingly, the term “ontology”
has become very important in today’s semantic technologies, but with a rather
different meaning: in computer science, an ontology is a description of knowl-
edge about a domain of interest, the core of which is a machine-processable
specification with a formally defined meaning.!

Ontology in the philosophical sense was further advanced by Plato’s stu-
dent Aristotle (384-322 BC). In contrast to his teacher, Aristotle held the
view that models are not given as universal ideas that are merely reflected
by reality, but rather that they should be derived from careful observations
of reality — a view that had great influence on the development of science

LOntology is not the first field of study to experience such terminological (ab)use, as is
apparent when speaking of “Alaska’s impressive geography” or “the biology of Dragonflies.”
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FIGURE 1.1: The Tree of Porphyry, an early tree structure in knowledge
modeling; diagram based on a translation in [Sow00]

in centuries to come. Applying this approach, Aristotle developed ten cat-
egories to classify all things that may exist, and he described subcategories
to further specify each of them. For example, Aristotle’s category of animals
is composed of rational ones (humans) and irrational ones (beasts). Typical
for traditional classifications, subcategories in Aristotle’s model are exhaus-
tive, i.e. each thing in a category belongs to one of its subcategories, and
mutually exclusive, i.e. each thing in a category can belong only to one of its
subcategories.

These early approaches toward scientific classification also introduce the use
of structure in modeling. The philosopher Porphyry (circa 234-305) developed
the Tree of Porphyry, a small tree-shaped model that captures the hierarchical
relationships of some of Aristotle’s categories in a graphical form (see Fig. 1.1).
Tree structures, concept hierarchies, and inheritance of properties are notions
that are essential for numerous modeling tasks, and that are still found in
many applications today.

Numerous influential scientific models have been developed in later cen-
turies, often building upon the basic idea of classification that is found in
the works of Aristotle. Carolus Linnaeus (1707-1778) laid the basis for mod-
ern biological classification by introducing Linnaean taxonomy as a means to
classify all life forms. The term tazonomy — composed of the Greek words
taxis (order) and nomos (law, science) — has since become the name of the
science of classification, but it is also used to refer to individual hierarchi-
cal classification schemes. Other important classifications include the WHO’s
International Classification of Diseases (ICD), the Koéppen classification of cli-
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mates, and the spectral classification of stars in astronomy,? all of which have
their origins in the 19th century.

As in ancient philosophy, a major goal of modern classification still is to
order natural objects to establish a better understanding of their true nature.
Carefully chosen categories are often the basis for obtaining further new in-
sights. For studying a new species of animals, for example, it is necessary to
first classify that species to distinguish it from others. Another important pur-
pose of classification is communication, as is illustrated by the aforementioned
ICD which was introduced to exchange mortality and morbidity statistics in-
ternationally.

But classification is not only relevant when dealing with natural objects and
phenomena. The same methods are similarly useful for organizing human-
made objects, for example, for ordering books in a library. One of the first
modern classifications for books was presented by Melvil Dewey (1851-1931)
with the Dewey Decimal Classification (DDC), but earlier approaches for or-
ganizing libraries can be traced back to ancient Asian and European libraries.
An interesting aspect of these approaches is that their purpose is not so much
to understand the structure of existing literature but rather to simplify the
search for actual books. This predates today’s use of semantic technologies for
information search and retrieval, and it shows that the construction of models
may also be an engineering task that is driven by practical applications rather
than by purely scientific considerations.

The abundance of taxonomic classifications suggests that hierarchical struc-
tures are a basic and, possibly, the most relevant structure in modeling. In
many cases, however, mere hierarchies are not sufficient for describing a do-
main of interest, and some scientific models are even based on non-hierarchical
structures altogether. The celebrated periodic table of chemical elements is a
classical example of a model of the latter kind.® In other cases, hierarchical
and non-hierarchical information are combined. A modern thesaurus, for in-
stance, is an ontology that describes relationships between words of a human
language. Words are ordered hierarchically based on how general their mean-
ings are* whereas relationships such as synonymy (having the same meaning)
and antonymy (having opposite meanings) are not hierarchical.

As opposed to classical taxonomies, many modern modeling approaches al-
low objects to belong to more than a single most specific category. Dewey’s
classification of books still follows the traditional approach: for example, a
book might belong to category 636.8 if its main subject is cats, and this clas-
sification determines its position in a shelf about “Animal husbandry” (636).

2As opposed to the other examples, the spectral classification is not hierarchical.

3In 1870, this tabular structure had been proposed because it was found to be most suitable
for capturing known properties of chemical elements. It was revealed only later that this
arrangement could be explained by the underlying atomic structures.

4This is called hyponymy, e.g., “happiness” is a hyponym of “emotion.”
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Assigning a unique position to a book is useful in a library, but not so much in
a computerized catalog. Consequently, modern library classification systems
often allow multiple topics to be assigned to a book. A related approach is to
classify objects based on multiple independent aspects, so-called facets, such
that they may be described by a combination of criteria rather than by a
unique category. Browsing and searching books in today’s book databases,
for example, is often based on facets such as title, author, and publisher.

In summary, the history of scientific modeling exposes a steep increase
not only in the number of models that have been created, but also in the
structural complexity and diversity of these models. This development has
been supported by the development of modeling languages that can be used
to specify (the structure of) models without ambiguity. A typical example
from computer science is the Unified Modeling Language UML that is used in
software engineering. Many further languages have been devised in the field
of artificial intelligence that plays a prominent role in the next section.

1.2 Calculating with Knowledge

In the preceding section, we outlined the efforts taken to store and structure
knowledge for the sake of ultimately being accessed and processed by human
beings. Note that following this line of thought, the active use of knowledge
in the sense of drawing conclusions from known facts was a task to be carried
out by human beings.

However, Aristotle had pointed out that the process of logical deduction,
mostly semiconsciously performed by humans, can itself be formalized and ex-
ternalized by casting it into a set of rules to be used in a way very reminiscent
of arithmetics, e.g. as follows, where the third line indicates the conclusion
from the previous two lines.

All A are B.
All B are C.
All A are C.

Those rules (which he named syllogisms) were domain-independent in the
sense that they provided template-like ways for inferring knowledge in which
the placeholders could be substituted by domain concepts, e.g.:

All men are mortal.
All Greeks are men.
All Greeks are mortal.

Aristotle thus hinted at the fact that logical thinking in a way has its own
existence, independent from opinions and attitudes of individual persons. The
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idea of externalizing and standardizing human reasoning showed up sporadi-
cally in the subsequent centuries. In his work “Ars generalis ultima,” Ramon
Llull (1232-1315) designed a system of logic and even semi-mechanical devices
in order to create new knowledge out of a set of a priori facts. These mech-
anisms were meant to support interreligious discourse by deriving Christian
doctrines from initial statements the monotheistic religions agreed upon. In
the same line of thought, Gottfried Leibniz (1646-1716) formulated the desire
to resolve conflicts in scientific or philosophical discourse by just calculating®
the correct answer:

“If controversies were to arise, there would be no more need of
disputation between two philosophers than between two accoun-
tants. For it would suffice to take their pencils in their hands,

to sit down to their slates, and to say to each other...: Let us
calculate.” (Gottfried Leibniz, Dissertio de Arte Combinatoria,
1666.)

However, only from the 19th century on, the endeavor of capturing logical
thinking in a calculus was continuously pursued. It started with George Boole
(1815-1864) and his seminal book “An Investigation of the Laws of Thought”
where he introduced propositional (or what it is alternatively called: Boolean)
logic.

Gottlob Frege (1848-1925) was the first to invent the principle of quan-
tification (his “Begriffsschrift” appeared in 1879). He laid the foundations of
first- and second-order predicate logic, although mainly unnoticed by his con-
temporaries. His idiosyncratic style of notation might have been one reason
for this. So it was Charles Sanders Peirce (1839-1914) who made this de-
velopment popular, introducing a better notation for quantification which in
essence is still being used today (he just wrote ¥ and II as quantifier symbols
instead of 3 and V).

The advent of expressive logical formalisms was accompanied by a com-
mon attitude called logicism. More and more experts were convinced that
— opposed to logic being just a sub-discipline of mathematics — all rational
thought and hence all mathematics could be based on logic. More precisely,
it was held that every mathematical truth could be deduced from a few az-
ioms, i.e. postulates the truth of which is immediately clear. The “Principia
Mathematica,” published in 1910-1913 by Alfred N. Whitehead (1861-1947)
and Bertrand Russell (1872-1970), constitutes the peak of this movement. In
three volumes, the authors develop set theory and arithmetics in a strictly
formal deductive way. Clearly, these achievements encouraged David Hilbert
(1862-1943) to set up his program to base mathematics on a few axioms and

5As one of the inventors of differential and integral calculus he was well aware that much
more than everyday arithmetics can be captured in an algorithmic, mathematically rigorous
way.
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deduction principles, such that the truth of any mathematical statement can
be decided by an algorithm. Note that accomplishing this mission would have
fulfilled Leibniz’ dream.

The enthusiasm was turned down in the early 1930s, when Kurt Godel
(1906-1978) showed that such an algorithm cannot exist. Instead, every sys-
tem of axioms and deduction rules that is capable of describing arithmetics
is incomplete, i.e. there must exist statements which can be neither proven
nor refuted. A rather similar argument was used by Alan Turing (1912-1954)
for showing that there is no generic way to tell whether a computer program
will terminate or not. G6del and Turing provided valuable insights about the
limits of formal logic. They established central notions like decidability and
computability which allowed us to categorize logical problems and gave a more
clarified view on what can be done with automated means.

Despite these discouraging findings, a new “common sense logicism” arose
rather soon. In summer 1956, John McCarthy organized a 2-month brain-
storming get-together of leading researchers which was held at Dartmouth
College. Inspired by the accessibility of digital computers, they explored the
possibility of employing those devices to simulate or generate intelligent be-
havior. In the course of this event, the term artificial intelligence (AI) was
coined. The task of deducing knowledge from known facts was felt to be one
of the central issues to achieve that goal. Among the different approaches to
artificial intelligence, a prevalent one was that of implementing logical deduc-
tion via symbol manipulation, based on the principle of the Physical Symbol
System Hypothesis:

“A physical symbol system has the necessary and sufficient
means for general intelligent action.” (Newell, Allen; Simon, H.
A. (1976), “Computer Science as Empirical Inquiry: Symbols and
Search,” Communications of the ACM, 19)

Once again, experts were confident that the problem of capturing human
thinking was about to be solved. In the mid-1960s it was commonly con-
jectured by AI protagonists that the goal of building a machine exhibiting
human intelligence would be accomplished within a single decade.

It turned out that scientists had underestimated the aspired goal in at least
two ways: First, the amount of knowledge that would have to be specified for
even modest Al applications turned out to be overwhelming. This rendered
the process of transforming human knowledge into a machine-processable form
a costly and tedious task. This problem is commonly referred to as the knowl-
edge acquisition bottleneck. Second, the applied inference techniques worked
well for small examples with limited knowledge involved but turned unaccept-
ably slow for medium- or large-scale tasks. Moreover, findings in complexity
theory revealed that in many cases this slowdown is unavoidable in princi-
ple. This showed that the encountered difficulties were caused by the intrinsic
hardness of the given tasks that could not be overcome by faster hardware
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or clever engineering. In a way, this was the first time the issue of scalability
emerged, which has been one of the central requirements in Semantic Web
technologies from the beginning.

As a consequence of this, research focused on goals that were more modest.
For restricted domains of expertise, symbolic approaches implementing mod-
erately expressive but computationally performant formalisms still worked out
very well. So-called expert systems, mostly rule-based, were built for highly
structured areas like medicine and biology. In these domains they were ca-
pable of competing with (or even outperforming) human experts.® As the
first broadly adopted Al technology, expert systems had established a solid
position on the market by the mid-1980s.

Encouraged by the availability of both appropriate funding as well as faster
computers with larger memories, there have been serious attempts to tackle
the knowledge acquisition bottleneck and to work toward general-purpose
knowledge-based systems: the artificial intelligence project Cyc,” founded in
1984 by Douglas Lenat, aims at building an everyday common sense ontology
including an inference engine. The current Cyc ontology comprises several
millions of logical statements.

1.3 Exchanging Information

While computation was certainly the main motivation for constructing early
computers, the aspect of communication between these machines soon became
an important problem as well. Already in the late 1950s, computers were
available at various sites throughout the U.S., and joint projects required
data to be transmitted between them. Telecommunication as such had been
established for some time, telephones being a commodity, and this existing
infrastructure was used to build the first long-distance connections between
computers. However, many decades of development were required to arrive
at the ubiquitous global communication networks that we use today, with the
World Wide Web as the most prominent medium that was built on top of this
infrastructure.

Work on computer networking progressed significantly in the 1960s. The
American computer scientist J.C.R. Licklider (1915-1990) was the first to en-
vision computer networks in a modern sense in a series of memos in 1962. An
invention that has been crucial for realizing this idea was packet switching —

S6MYCIN, an early expert system for diagnosing bacterial infections and suggesting medical
treatment, was shown to provide an acceptable therapy in more cases than human experts
did.

"http://www.cyc.com/
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the notion of splitting transmissions into small “packets” that are transmitted
individually — which is attributed to the independent works of Paul Baran,
Donald Davies, and Leonard Kleinrock. Packet switching separated the con-
cerns of physical transmission (which line to use) from the concerns of digital
communication (which data to exchange).

Various communication protocols that were developed during and after the
1960s allowed more computer networks to be established. In 1969, the first
packet-switching network went online: ARPANET was a network of four com-
puters that was run by the Advanced Research Projects Agency of the U.S.
Department of Defense. Other local networks soon followed, and the prob-
lem of inter-network communication became relevant. In 1974, the Internet
Protocol Suite (TCP/IP) was published as a way to overcome the diversity
of computer networking protocols. With more and more networks connect-
ing, the global communication infrastructure that is now called the Internet
emerged. Significant world-wide growth and commercialization of the Internet
started in the 1980s.

Applications such as email and Usenet (online discussion boards) were the
most popular uses of the Internet in its first decades. Only in 1989, the En-
glishman Tim Berners-Lee, working for CERN in Switzerland at that time,
made a proposal to overcome communication problems of physicists collabo-
rating around the world: what he conceived is a common medium that enables
the exchange of interlinked hypertext documents between diverse computer
systems. He dubbed his invention the World Wide Web. By the end of 1990,
he provided first versions of the Hypertext Transfer Protocol HT'TP, the Hy-
pertext Markup Language HTML, the first Web browser and HTML editor,
and the first Web server software. The ideas upon which these components are
based are not entirely new, but the new combination of technologies enables
a hitherto unknown global exchange of information.

In 1991, the first Web server outside of Europe is established, and Tim
Berners-Lee announced the Web in a public newsgroup post:

“The WorldWideWeb (WWW) project aims to allow links to
be made to any information anywhere. ... The WWW project
was started to allow high energy physicists to share data, news,
and documentation. We are very interested in spreading the web
to other areas, and having gateway servers for other data. Collab-
orators welcome!” (Tim Berners-Lee, alt.hypertext, 1991)

During the 1990s, the World Wide Web emerged as the most popular
medium of the Internet. It gained commercial relevance starting from the
middle of the decade, without being stopped by the “dot-com bust” at the
end of the millennium. Yet, like the WWW itself, innovative Web applica-
tions such as wikis and blogs continue to be introduced for personal and public
community use long before they are adopted by industry.
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Today, the Web — just like the Internet — is used not only for consuming
information passively, but also for creating and publishing new content, dis-
tinguishing it from traditional media. This was reinforced by popular websites
that simplify user contributions: Wikipedia, Flickr, YouTube, and numerous
social networking sites are typical examples. Increasing amounts of knowledge
are created by individuals, leading to a phenomenon that Lawrence Lessig —
law professor and creator of the Creative Commons licenses® — has described
as read-write culture, as opposed to “read-only culture”™

“Passive recipients of culture produced elsewhere. Couch pota-
toes. Consumers. This is the world of media from the twentieth
century. The twenty-first century could be different. This is the
crucial point: It could be both read and write.” (Lawrence Lessig,
Free Culture, 2004)

This has significant technological consequences, too. The Web remains
a distributed information space that provides a plethora of heterogeneous
knowledge sources in many formats. Information exchange on the Web is
only possible by agreeing on standard data formats, and by exploiting the
hyperlinks that turn distributed resources into a Web-like structure. The
latter is used not only by human readers for browsing, but also by search
engines for gathering and ranking Web pages. The key feature of HTML
is that links are denoted using dedicated mark-up that enables machines to
“understand” them without human assistance.

But classical search engines, in spite of their success, have turned out to
be insufficient for managing the ever increasing amounts of Web content. In-
stead of relying on text-based search only, Web applications have introduced
further paradigms for organizing and searching information. A popular ex-
ample is tagging, which typically is used to provide statistical search and
browsing functionalities based on simple keywords (“tags”) that users assign
to resources. This approach has been particularly successful for structuring
content that is not primarily text-based — pictures, videos, but also prod-
ucts in online shops. Both the approach of social tagging in general and the
resulting tag structures have been called folksonomy, which is a merger of
“folk” and “taxonomy” even though folksonomies are not classifications in the
traditional sense. User ratings are another example of user-contributed infor-
mation that is used to improve search. Many other search features are based
on structured knowledge that is associated with the subject of interest: shop
items have a price, company products have technical specifications, blog en-
tries have a date. This development is further supported by the availability of
specialized software for managing content that is not just arbitrary hypertext.
Weblogging tools and Web shop applications are typical examples.

8http://creativecommons.org/
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Summing up, there has been an obvious trend toward adding more “struc-
ture” to Web resources. Many of the above examples are, however, not based
on any common standard and it is thus difficult to exploit this data other
than by using a website’s particular search interface. Comparatively few sites
provide structured data for download, even though this is already common
for some application areas. For example, virtually all news sites today export
data in RSS or ATOM feeds to which readers can subscribe. These standard
formats encode data about news items in a way that allows them to be dis-
played and searched in a wide range of news reader applications. Another
recent approach to improve data exchange on the Web is Web Services. In
this case, data is transmitted to a Web server which computes and returns a
result based on this input. A very basic example is the Google Maps service:
coordinates of landmarks are sent to the server; an HTML-embedded map
that displays those locations is returned. The formats for input and output
in this case largely depend on the given Web Service, but approaches exist
for providing Web Service interface descriptions in standardized formats that
can be transferred over the Web.

These recent developments — the growth of active user contributions and the
increased exploitation of structured data — coincide with a general improve-
ment in usability and interactivity of Web user interfaces. The term “Web 2.0”
has often been associated with these developments, although this terminology
wrongly suggests that there was a clear-cut change in the underlying Web
technology or in its use. Tim O’Reilly, who coined the term, expressed the
view that “Web 2.0” rather describes a change in the attitude towards using
and exploiting the Web. However, in the light of the continuous change of the
Web and its usage, the approach of versioning the WWW is hardly adequate
to describe the complexity of current and future developments.

1.4 Semanic Web Technologies

The Semantic Web has been conceived as an extension of the World Wide
Web that allows computers to intelligently search, combine, and process Web
content based on the meaning that this content has to humans. In the ab-
sence of human-level artificial intelligence, this can only be accomplished if
the intended meaning (i.e. the semantics) of Web resources is explicitly spec-
ified in a format that is processable by computers. For this it is not enough
to store data in a machine-processable syntax — every HI'ML page on the
Web is machine-processable in a sense — but it is also required that this data
is endowed with a formal semantics that clearly specifies which conclusions

vww . allitebooks.con
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should be drawn from the collected information.? Clearly, this would be an
impossible endeavor when aiming at all human knowledge found on the Web,
given that it is often hard enough for humans to even agree on the contents
of a certain document, not to mention formalizing it in a way that is mean-
ingful to computers. In reality, of course, the purpose of the Semantic Web is
rather to enable machines to access more information that hitherto required
human time and attention to be used. While this is a reasonable goal from
a practical viewpoint, it also means that “Semantic Web” does not refer to
a concrete extension of the World Wide Web, but rather to an ideal toward
which the Web evolves over time. At the same time, any progress in this field
can similarly be useful in applications that are not closely related to the Web.
This book thus focuses on the underlying Semantic Web technologies, chiefly
semantic technologies, that are available today.

Realizing the above mentioned goals makes it necessary to address a number
of difficult challenges that are not addressed by classical Web technologies.
This is where the topics discussed in Sections 1.1 and 1.2 come to the fore.
Expressing human knowledge in a formally specified language is a classical
modeling task. The rich experiences gathered within this domain throughout
history are an important guide in identifying relevant modeling structures
up to the present day. The most recently developed Semantic Web language
OWL 2 (see Section 4.3), for instance, has been influenced by feature requests
from modeling use cases in life sciences. Moreover, semantic technologies can
draw from modeling methodologies, software applications, and corresponding
user-interface paradigms that have been developed for supporting humans in
the task of constructing models.

How knowledge is to be modeled also depends, of course, on the intended
usage of the constructed model. On the Semantic Web, one would like com-
puter programs to draw conclusions from given information, so that aspects
of formal knowledge representation and reasoning come into play. In the first
place, the insights gathered in this field help us to understand the funda-
mental difficulties and limits that one has to be aware of when constructing
“reasoning machines” as discussed in Section 1.2. On the practical side, se-
mantic technologies can build on algorithms and tools that were developed
for solving relevant inferencing problems.

The above discussion views the development of the Semantic Web as an
approach of incorporating knowledge modeling and automatic deduction into
the Web. Conversely, it is also true that semantic technologies introduce as-
pects and features of Web applications into the domain of formal modeling
and knowledge representation. Most basically, the Web introduces a notion

9Note that, indeed, the term “semantics” occurs with two distinct interpretations in the
previous two sentences. In the first sense, it refers to the meaning that texts in a human
language have: this is the usage common in linguistics. In the second sense, it refers to
the formal interpretation of a computer language: this is the usage common in computer
science. Both notions of the term are found in discussions of the Semantic Web.
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of distributed, heterogeneous, yet inter-linked information that is novel to the
other disciplines. Whereas Web data is indeed independently published and
maintained in many sources, it is still universally accessible based on global
addressing schemes and standardized protocols. More specifically, the Web
emphasizes the importance of clearly specified, standardized languages that
can be used to exchange data across software boundaries. Although there are
some examples of earlier standardization activities around knowledge repre-
sentation formalisms,'® the Semantic Web clearly has increased the practical
importance of standardization in this area. Most of the relevant standardiza-
tion efforts, including all technology standards covered in this book, have been
conducted under the lead of the World Wide Web Consortium (W3C). These
activities have also facilitated tool interoperability and information exchange
in application areas beyond the Web.

The remainder of this section gives a short overview of what has actually
been done in the pursuit of the goals of the Semantic Web, eventually leading
up to the technologies discussed in this book. The idea of adding “semantics”
to the World Wide Web has been around since its very beginning, although
the concrete approaches toward achieving this goal have changed over time.
Semantics (in the sense common in computer science) had long been stud-
ied for mark-up languages, including hypertext languages like the ones that
inspired HTML. In the latter case, the semantics of language constructs typ-
ically determines how programs should present parts of a document to users
— a usage that is still most common when discussing HTML today. However,
also the notion of encoding higher-level knowledge into hypertext had been
around early on, for instance, in the form of “typed links” that, besides defin-
ing a hyperlink to another document, also provide some clue regarding the
intended meaning of that link. Tim Berners-Lee himself already pursued the
idea of a more semantic Web during the 1990s.

These ideas, however, gained major public attention only when Berners-
Lee and others published a seminal article entitled “The Semantic Web” in
Scientific American in 2001. Envisioned within this paper is a ubiquitous
Web within which complex knowledge is exchanged and processed by intelli-
gent agents to assist humans in their daily routines — the described scenario
would require not just a Semantic Web but also significant advances in Al and
natural language processing, as well as ubiquitous computing and intelligent
environments. Accordingly, the work has created high expectations that fu-
eled research and development, but it has also repelled some communities on
account of being so far from reality. Yet, there has been a significant increase
of Semantic Web activities since the beginning of the new millennium, though
usually with goals which are somewhat more modest and therefore achievable
within a reasonable time-span.

10The most prominent example is the logic programming language Prolog that is covered
by the ISO/IEC 13211 standard, cf. [DEDC96].
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In subsequent years, the W3C published a number of standards for Seman-
tic Web formats that facilitate the exchange of semantically rich information.
These include the basic Resource Description Framework RDF (Chapters 2
and 3) and the more expressive Web Ontology Language OWL (Chapters 4 and
5) in 2004,* and the SPARQL Protocol and RDF Query Language (Chap-
ter 7) in 2008. An update and extension of the Web Ontology Language,
known as OWL 2, is to be completed in 2009 (Section 4.3), and the specifi-
cation of rule-based Semantic Web languages is the ongoing quest of the Rule
Interchange Format (RIF) standardization activity (Chapter 6).

At the same time, many developments have increased the availability of
machine-processable data on the Web. Some applications, such as the RDF
Site Summary (RSS 1.0), are based on the new standards, while others have
provided ad hoc solutions for the increasingly relevant problem of exchanging
semantic information. Indeed, the Semantic Web initiative was sometimes
criticized among Web developers for being overly ambitious and not really
suited to serve some of the immediate needs of current applications. Solu-
tions have been proposed to directly address particular problems in specific
application domains, e.g., for the purpose of encoding personal contact data.
A notable effort in this direction is so-called microformats which use attribute
values in HTML documents for embedding small chunks of semantic data into
Web pages. The major advantage of microformats over other general-purpose
technologies is simplicity'? which comes at the price of more limited applica-
tion areas and extensibility. The term “lowercase semantic web” is sometimes
used to contrast these simpler approaches with the grand Semantic Web en-
deavor as envisioned in 2001.

Even today, some people still perceive “uppercase” and “lowercase” ap-
proaches toward the Semantic Web to be in competition rather than to be
complementary approaches toward the same goal. What actually happened,
though, is that there have been a number of advances in reconciling both
developments. The W3C has developed the RDFa standard for embedding
RDF-based semantic data into HTML pages, thus addressing similar use cases
as current microformats. Moreover, the W3C’s GRDDL specification provides
a framework for extracting RDF data from HTML and XML formats, so that
XML-based information can be combined with other Semantic Web data more
easily. Likewise, the amount of semantic data that is available on the Web has
grown considerably in recent years, and data sources have become increasingly
inter-linked. This is possible since the identifiers used in Semantic Web lan-
guages follow the same construction principles as URLs on the classical Web:
the name of any object can thus also be interpreted as a Web address. This
leads to the notion of linked data, referring to semantic data all identifiers

11 Strictly speaking, an early version of RDF was published in 1999, but the 2004 standard
is a major revision.

12This regards usage and writing; extracting microformat data from HTML is not simple.
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of which are pointers to Web addresses where further information about the
according objects can be found.

In the light of these recent developments, the term “web of data” was in-
troduced to describe the Semantic Web as an effort that focuses primarily
on data exchange. This reflects the fact that basic semantic data formats
have more easily found their way into applications on the Web than more ex-
pressive knowledge representation paradigms. The latter, however, have been
adopted in areas outside the Web, where it is often easier to manage complex
knowledge structures. An overview of some noteworthy example applications
is provided in Chapter 9. The increased practical use of semantic technolo-
gies is witness to the fact that important base technologies are well-developed
— their strengths and weaknesses understood much better than in the early
years of the Semantic Web activity — and that they are useful for solving the
problems encountered in practice. And indeed, recently we have seen major
IT and venture capital companies investing in the segment, while the trend in
research projects and funding drifts rather heavily from foundations to appli-
cations. New technologies continue to be developed, and it can be expected
that they will lead to the solutions that will enable innovative applications
with high impact in the next few years.

The purpose of this book is to provide an introduction to this promising
field which covers the main body of reasonably stable and well-established core
technologies, and also related extensions that are currently being developed
and which can be expected to be available soon.

1.5 Further Reading

It is impossible to provide a comprehensive list of references for the broad
topics that have been discussed in this chapter, so we mostly confine ourselves
to suitable overview publications that provide pointers to further literature.

Some of the early history of formal modeling, especially related to philo-
sophical developments, is described in [Sow00]. An account of the more recent
history of knowledge representation and reasoning can be found in [Sow84]. A
useful reference for a more general overview of the area of artificial intelligence
is [RN03]. The Cyc project has been described in [LG90]. Some seminal his-
toric publications should be mentioned: Whitehead’s and Russel’s Principia
Mathematica [WR13], Gddel’s original incompleteness theorems [G6d31], and
Turing’s account of the Halting problem [Tur37].

The history and development of the World Wide Web are described by
Tim Berners-Lee in [BL00]. Lawrence Lessig’s discussion of related cultural
phenomena is [Les05|. There is currently little printed material regarding
the term “Web 2.0” and there is certainly no single authoritative view on the
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topic, although Tim O’Reilly registered the term as a trademark and published
various characterizations at http://oreilly.com/.

The seminal 2001 article about the Semantic Web is [BLHLO1], and an
update is [SBLHO06]. The central website on the W3C Semantic Web activity is
http://www.w3.org/2001/sw/ and includes many pointers to further online
resources. A research-oriented account of recent semantic technologies is given
in [SS09]. For reading up on the most recent results concerning Semantic Web
research and practice, we recommend the following sources.

e the Elsevier Journal of Web Semantics: Science, Services and Agents on
the World Wide Web,'?

e the IGI Global International Journal on Semantic Web and Information
Systems,'*

e the proceedings of the annual International Semantic Web Conferences
(ISWC),1?

e the proceedings of the annual International World Wide Web Confer-

ences,'6

e the proceedings of the annual Semantic Technology Conferences.!”

Specific references to the mentioned Semantic Web standards are given in the
respective chapters. This excludes two standards that have been mentioned
but are not treated within this book: GRDDL (“Gleaning Resource Descrip-
tions from Dialects of Languages”) which is specified in [Con07], and RDFa
(embedding RDF into XHTML) which is specified in [ABMP08]. Documen-
tation about microformats can be found at http://microformats.org/.

3http://www.websemanticsjournal.org/
Mhttp:/ /www.ijswis.org/
5http://iswc.semanticweb.org/
http://www.iw3c2.org/.
IThttp://www.semantic-conference.com/
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Resource Description
Language RDF
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Chapter 2

Simple Ontologies in RDF and RDF
Schema

The Resource Description Framework RDF is a formal language for describing
structured information. The goal of RDF is to enable applications to exchange
data on the Web while still preserving their original meaning. As opposed
to HTML and XML, the main intention now is not to display documents
correctly, but rather to allow for further processing and re-combination of the
information contained in them. RDF consequently is often viewed as the basic
representation format for developing the Semantic Web.

The development of RDF began in the 1990s, and various predecessor lan-
guages have influenced the creation process of RDF. A first official specifica-
tion was published in 1999 by the W3C, though the emphasis at this time still
was clearly on the representation of metadata about Web resources. The term
metadata generally refers to data providing information about given data sets
or documents. In 1999, the latter were mainly expected to be Web pages, for
which RDF could help to state information on authorship or copyright. Later
the vision of the Semantic Web was extended to the representation of seman-
tic information in general, reaching beyond simple RDF data as well as Web
documents as primary subjects of such descriptions. This was the motivation
for publishing a reworked and extended RDF specification in 2004.

As of today, numerous practical tools are available for dealing with RDF.
Virtually every programming language offers libraries for reading and writing
RDF documents. Various RDF stores — also called triple stores for reasons
that shall become clear soon — are available for keeping and processing large
amounts of RDF data, and even commercial database vendors are already
providing suitable extensions for their products. RDF is also used to exchange
(meta) data in specific application areas. The most prominent example of this
kind of usage is likely to be RSS 1.0 for syndicating news on the Web.! But
also metadata belonging to files of desktop applications are sometimes encoded
using RDF, such as in the case of Adobe’s RDF format XMP for embedding
information in PDF files, or as annotations in the XML-based vector graphics
format SVG. We will say more about such applications in Chapter 9.

1RSS 1.0 and 2.0 are different formats, which pursue the same goal but which, confusingly,
are not based on each other. RSS 1.0 stands for RDF Site Summary, whereas RSS 2.0 is
usually interpreted as Really Simple Syndication. See also Section 9.1.2.
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http://example.org/publishedBy
http://semantic-web-book.org/uri » http://crcpress.com/uri

FIGURE 2.1: A simple RDF graph describing the relationship between
this book and the publisher, CRC Press

This chapter introduces the basics of RDF. Initially, the representation of
simple data is our main concern. In the subsequent sections, we have a closer
look at the various syntactic formats available for exchanging RDF, and we
address some further questions regarding the usage of RDF. Thereafter we
consider some specific expressive features that go beyond the description of
simple data. RDF is extended to the language RDF Schema (RDFS) for this
purpose, allowing us to express also general information about a data set. The
official formal semantics as used for properly interpreting RDF and RDFS in
computer programs is explained in detail in Chapter 3.

2.1 Introduction to RDF

We begin by giving a very basic introduction to the RDF format that also
highlights major differences to XML. As we shall see, RDF is based on a very
simple graph-oriented data schema.

2.1.1 Graphs Instead of Trees

An RDF document describes a directed graph, i.e. a set of nodes that are
linked by directed edges (“arrows”). Both nodes and edges are labeled with
identifiers to distinguish them. Figure 2.1 shows a simple example of a graph
of two nodes and one edge. In contrast, as recalled in Appendix A, information
in XML is encoded in tree structures. Trees are perfectly suited for organiz-
ing information in electronic documents, where we are often confronted with
strictly hierarchical structures. In addition, information in trees can often be
fetched directly and be processed rather efficiently. Why then is RDF relying
on graphs?

An important reason is that RDF was not conceived for the task of structur-
ing documents, but rather for describing general relationships between objects
of interest (in RDF one usually speaks of “resources”). The graph in Fig. 2.1,
e.g., might be used to express that the book “Foundations of Semantic Web
Technologies” was published by “CRC Press” if we interpret the given labels
to refer to those objects. The relationship between book and publishing house
in this case is information which does not in any obvious sense belong hierar-
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chically below either of the resources. RDF therefore considers such relations
as basic building blocks of information. Many such relationships together
naturally form graphs, not hierarchical tree structures.

Another reason for choosing graphs is the fact that RDF was intended to
serve as a description language for data on the WWW and other electronic
networks. Information in these environments is typically stored and managed
in decentralized ways, and indeed it is very easy to combine RDF data from
multiple sources. For example, the RDF graphs from the website of this book
could simply be joined with graphs from http://semanticweb.org — this
would merely lead to a bigger graph that may or may not provide interesting
new information. Note that we generally allow for graphs to consist of multiple
unconnected components, i.e. of sub-graphs without any edges between them.
Now it is easy to see why such a straightforward approach would not be
feasible for combining multiple XML documents. An immediate problem is
that the simple union of two tree structures is not a tree anymore, so that
additional choices must be made to even obtain a well-formed XML document
when combining multiple inputs. Moreover, related information items in trees
might be separated by the strict structure: even if two XML files refer to the
same resources, related information is likely to be found in very different
locations in each tree. Graphs in RDF are therefore better suited for the
composition of distributed information sources.

Note that these observations refer to the semantic way in which RDF struc-
tures information, not to the question of how to encode RDF data syntacti-
cally. We will see below that XML is still very useful for the latter purpose.

2.1.2 Names in RDF: URIs

We have claimed above that RDF graphs enable the simple composition
of distributed data. This statement so far refers only to the graph structure
in general, but not necessarily to the intended information in the composed
graphs. An essential problem is that resources, just like in XML, may not have
uniform identifiers within different RDF documents. Even when two docu-
ments contain information on related topics, the identifiers they use might
be completely unrelated. On the one hand, it may happen that the same
resource is labeled with different identifiers, for instance, since there is no
globally agreed identifier for the book “Foundations of Semantic Web Tech-
nologies.” On the other hand, it may occur that the same identifiers are used
for different resources, e.g., “CRC” could refer to the publishing house as well
as to the official currency of Puerto Rico. Such ambiguity would obviously be
a major problem when trying to process and compose information automati-
cally.

To solve the latter problem, RDF uses so-called Uniform Resource Identi-
fiers (URIs) as names to clearly distinguish resources from each other. URIs
are a generalization of URLs (Uniform Resource Locators), i.e. of Web ad-
dresses as they are used for accessing online documents. Every URL is also a

vww . allitebooks.con
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valid URI, and URLs can indeed be used as identifiers in RDF documents that
talk about Web resources. In numerous other applications, however, the goal
is not to exchange information about Web pages but about many different
kinds of objects. In general this might be any object that has a clear iden-
tity in the context of the given application: books, places, people, publishing
houses, events, relationships among such things, all kinds of abstract con-
cepts, and many more. Such resources can obviously not be retrieved online
and hence their URIs are used exclusively for unique identification. URIs that
are not URLs are sometimes also called Uniform Resource Names (URNs).

Even if URIs can refer to resources that are not located on the Web, they
are still based on a similar construction scheme as common Web addresses.
Figure 2.2 gives an overview of the construction of URIs, and explains their
relevant parts. The main characteristic of any URI is its initial scheme part.
While schemes like http are typically associated with a protocol for transmit-
ting information, we also find such schemes in many URIs that do not refer to
an actual Web location. The details of the protocol are obviously not relevant
when using a URI only as a name. The book “Foundations of Semantic Web
Technologies” could, e.g., use the URI http://semantic-web-book.org/uri
and it would not matter whether or not a document can be retrieved at the
corresponding location, and whether this document is relevant in the given
context. As we shall see later on, RDF makes use of various mechanisms of
XML to abbreviate URIs when convenient.

As shown in Fig. 2.1, nodes and edges in RDF graphs both are labeled with
URIs to distinguish them from other resources. This rule has two possible
exceptions: RDF allows for the encoding of data values which are not URIs,
and it features so-called blank nodes which do not carry any name. We will
take a closer look at both cases next. Later we will also return to the question
of finding good URIs in practice, in a way that ensures maximal utility and
reliability in semantic applications. For now we are satisfied with the insight
that URIs, if they are well-chosen, provide us with a robust mechanism for
distinguishing different entities, thus avoiding confusion when combining RDF
data from distributed sources.

2.1.3 Data Values in RDF: Literals

URIs allow us to name abstract resources, even those that cannot be rep-
resented or processed directly by a computer. URIs in this case are merely
references to the intended objects (people, books, publishers, ...). While
URIs can always be treated as names, the actual “intended” interpretation of
particular URIs is not given in any formal way, and specific tools may have
their own way of interpreting certain URIs. A certain Web Service, e.g., may
recognize URIs that refer to books and treat them in a special way by dis-
playing purchasing options or current prices. This degree of freedom is useful
and in fact unavoidable when dealing with arbitrary resources. The situation
is different when dealing with concrete data values such as numbers, times,
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The general construction scheme of URIs is summarized below, where parts
in brackets are optional:

scheme : [//authoritylpath [?query] [#fragment]
The meaning of the various URI parts is as follows:

scheme The name of a URI scheme that classifies the type of URI. Schemes
may also provide additional information on how to handle URIs in
applications. Examples: http, ftp, mailto, file, irc

authority URIs of some URI schemes refer to “authorities” for structur-
ing the available identifiers further. On the Web, this is typically a
domain name, possibly with additional user and port details. The au-
thority part of a URI is optional and can be recognized by the pre-
ceding //. Examples: semantic-web-book.org, john@example.com,
example.org:8080

path The path is the main part of many URIs, though it is possible
to use empty paths, e.g., in email addresses. Paths can be orga-
nized hierarchically using / as separator. Examples: /etc/passwd,
this/path/with/-:_~/is/../okay (paths without initial / are only
allowed if no authority is given)

query The query is an optional part of the URI that provides additional
non-hierarchical information. It can be recognized by its preceding 7.
In URLs, queries are typically used for providing parameters, e.g., to a
Web Service. Example: g=Semantic+Web+book

fragment The optional fragment part provides a second level of identifying
resources, and its presence is recognized by the preceding #. In URLs,
fragments are often used to address a sub-part of a retrieved resource,
such as a section in an HTML file. URIs with different fragments are
still different names for the purpose of RDF, even if they may lead to
the same document being retrieved in a browser. Example: sectionl

Not all characters are allowed in all positions of a URI, and illegal symbols
are sometimes encoded by specific means. For the purpose of this book it
suffices to know that basic Latin letters and numbers are allowed in almost
any position. Moreover, the use of non-Latin characters that abound in many
languages is widely allowed in all current Semantic Web formats as well. URIs
that are extended in this way are known as International Resource Identifiers
(IRIs), and they can be used in any place where URIs are considered in this
book.

FIGURE 2.2: The basic construction scheme for URIs
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http://example.org/publishedBy
http://semantic-w > http://crcpress.com/uri

http://example.org/title http://example.org/name
v v

Foundations of Semantic Web Technologies CRC Press

FIGURE 2.3: An RDF graph with literals for describing data values

or truth values: in these cases, we would expect every application to have a
minimal understanding of the concrete meaning of such values. The number
42, e.g., has the same numeric interpretation in any context.

Data values in RDF are represented by so-called literals. These are reserved
names for RDF resources of a certain datatype. The value of every literal is
generally described by a sequence of characters, such as the string consist-
ing of the symbols “4” and “2” in the above example. The interpretation of
such sequences is then determined based on a given datatype. Knowing the
datatype is crucial for understanding the intended meaning: the character se-
quences “42” and “042”, e.g., refer to the same natural number but to different
text strings.

For the time being, we will consider only literals for which no datatype has
been given. Such untyped literals are always interpreted as text strings. The
slightly more complex form of literals that contains an additional datatype
identifier will be explained later on.

As can be seen in Fig. 2.3, rectangular boxes are used to distinguish literals
from URIs when drawing RDF graphs. Another special trait of literals is that
they may never be the origin of edges in an RDF graph. In practice, this
means that we cannot make direct statements about literals.? This constraint
needs to be taken into account when modeling data in RDF. Moreover, it
is not allowed to use literals as labels for edges in RDF graphs — a minor
restriction since it is hard to see what could be intended with such a labeling.
Note that it is still allowed to use the same URI for labeling both nodes and
edges in a graph, so at least in RDF there is no principle separation between
resources used for either purpose.

2The reason for this restriction is in fact historic, and an official resolution of the RDF-
Core working group notes that it could be waived in future Semantic Web languages; see
http://www.w3.0rg/2000/03/rdf-tracking/#rdfms-literalsubjects.
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2.2 Syntax for RDF

Up to this point, we have described RDF graphs by means of drawing
diagrams. This way of representing RDF is easy to read and still precise,
yet it is clearly not suitable for processing RDF in computer systems. Even
for humans, understanding visual graphs works without much effort only if
the graphs are very small — practically relevant data sets with thousands or
millions of nodes do obviously not lend themselves to being stored and com-
municated in pictures. This section thus introduces ways of representing RDF
by means of character strings that can easily be kept in electronic documents.
This requires us to split the original graph into smaller parts that can be
stored one by one. Such a transformation of complex data structures into
linear strings is called serialization.

2.2.1 From Graphs to Triples

Computer science has various common ways of representing graphs as
character strings, e.g., by using an adjacency matrix. RDF graphs, how-
ever, are typically very sparse graphs within which the vast majority of
possible relationships do not hold. In such a case it makes sense to rep-
resent the graph as the set of edges that are actually given, and to store
each edge on its own. In the example of Fig. 2.1 this is exactly one edge,
uniquely determined by its start http://semantic-web-book.org/uri, label
http://example.org/publishedBy, and endpoint http://crcpress.com/uri.
Those three distinguished parts are called subject, predicate, and object, re-
spectively.

It is easy to see that every RDF graph can, in essence, be completely de-
scribed by its edges. There are of course many ways for drawing such graphs,
but the details of the visual layout clearly have no effect on the informa-
tion the graph conveys. Now every such edge corresponds to an RDF' triple
“subject-predicate-object.” As we have seen above, each part of a triple can
be a URI, though the object might also be a literal. Another special case is
blank nodes that we will consider later.

2.2.2 Simple Triple Syntax: N3, N-Triples and Turtle

Our earlier observations suggest that one denotes RDF graphs simply as
a collection of all their triples, given in arbitrary order. This basic idea has
indeed been taken up in various concrete proposals for serializing RDF. A
realization that dates back to 1998 is Tim Berners-Lee’s Notation 3 (N3),
which also includes some more complex expressions such as paths and rules.
The RDF recommendation of 2004 therefore proposed a less complicated part
of N3 under the name N-Triples as a possible syntax for RDF. N-triples in



26 Foundations of Semantic Web Technologies

turn was further extended to incorporate various convenient abbreviations,
leading to the RDF syntax Turtle which is hitherto not described in an official
standardization document. Both N-Triple and Turtle are essentially parts of
N3, restricted to covering only valid RDF graphs. Here we consider the more
modern Turtle syntax.

The graph of Fig. 2.3 is written in Turtle as follows:

<http://semantic-web-book.org/uri>
<http://example.org/publishedBy> <http://crcpress.com/uri> .
<http://semantic-web-book.org/uri>
<http://example.org/title>
"Foundations of Semantic Web Technologies" .
<http://crcpress.com/uri>
<http://example.org/name> "CRC Press" .

URIs are thus written in angular brackets, literals are written in quotation
marks, and every statement is terminated by a full stop. Besides those specific
characteristics, however, the syntax is a direct translation of the RDF graph
into triples. Spaces and line breaks are only relevant if used within URIs or
literals, and are ignored otherwise. Our lengthy names force us to spread
single triples over multiple lines. Due to the hierarchical structure of URIs,
the identifiers in RDF documents typically use similar prefixes. Turtle offers
a mechanism for abbreviating such URIs using so-called namespaces. The
previous example can be written as follows:

@prefix book: <http://semantic-web-book.org/> .
Qprefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

book:uri ex:publishedBy crc:uri .
book:uri ex:title "Foundations of Semantic Web Technologies" .
crc:uri  ex:name "CRC Press"

URIs are now abbreviated using prefixes of the form “prefix:” and are no
longer enclosed in angular brackets. Without the latter modification it would
be possible to confuse the abbreviated forms with full URIs, e.g., since it is
allowable to use a prefix “http:” in namespace declarations. The prefix text
that is used for abbreviating a particular URI part can be chosen freely, but it
is recommended to select abbreviations that are easy to read and that refer the
human reader to what they abbreviate. Identifiers of the form “prefix:name”
are also known as QNames (for qualified names).

It frequently happens that RDF descriptions contain many triples with the
same subject, or even with the same subject and predicate. For those common
cases, Turtle provides further shortcuts as shown in the following example:
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O@prefix book: <http://semantic-web-book.org/> .
Q@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

book:uri ex:publishedBy crc:uri ;
ex:title "Foundations of Semantic Web Technologies" .
crc:uri ex:name "CRC Press", "CRC" .

The semicolon after the first line terminates the triple, and at the same
time fixes the subject book:uri for the next triple. This allows us to write
many triples for one subject without repeating the name of the subject. The
comma in the last line similarly finishes the triple, but this time both subject
and predicate are re-used for the next triple. Hence the final line in fact
specifies two triples providing two different names. The overall RDF graph
therefore consists of four edges and four nodes. It is possible to combine
semicolon and comma, as shown in the next example with four triples:

Q@prefix book: <http://semantic-web-book.org/> .
@prefix ex: <http://example.org/> .

book:uri ex:author book:Hitzler, book:Krotzsch, book:Rudolph ;
ex:title "Foundations of Semantic Web Technologies" .

The above abbreviations are not contained in the official (normative) W3C
syntax N-Triples which allows neither namespaces, nor comma or semicolon.
Yet, Turtle’s syntactic shortcuts are frequently encountered in practice, and
they have influenced the triple syntax of W3C’s more recent SPARQL speci-
fication, introduced in Chapter 7.

2.2.3 The XML Serialization of RDF

The Turtle representation of RDF can easily be processed by machines but
is still accessible for humans with relatively little effort. Yet, triple represen-
tations like Turtle are by far not the most commonly used RDF syntax in
practice. One reason for this might be that many programming languages do
not offer standard libraries for processing Turtle syntax, thus requiring devel-
opers to write their own tools for reading and writing to files. In contrast,
essentially every programming language offers libraries for processing XML
files, so that application developers can build on existing solutions for storage
and pre-processing. As of today, the main syntax for RDF therefore is the
XML-based serialization RDF /XML that is introduced in this section. This
syntax also offers a number of additional features and abbreviations that can
be convenient to represent advanced features which we will encounter later
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on, but at the same time it imposes some additional technical restrictions.
Readers who are not familiar with the basics of XML may wish to consult
Appendix A for a quick introduction.

The differences of the data models of XML (trees) and RDF (graphs) are no
obstacle, since XML only provides the syntactic structure used for organizing
an RDF document. Since XML requires hierarchic structures, the encoding of
triples now must as well be hierarchical. The space efficient Turtle descriptions
of the previous section have illustrated that it is often useful to assign multiple
predicate-object pairs to a single subject. Accordingly, triples in RDF /XML
are grouped by their subjects. The following example encodes the RDF graph
from Fig. 2.1:

<?xml version="1.0" encoding="utf-8"7>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex ="http://example.org/">

<rdf:Description rdf:about="http://semantic-web-book.org/uri">
<ex:publishedBy>
<rdf:Description rdf:about="http://crcpress.com/uri">
</rdf:Description>
</ex:publishedBy>
</rdf:Description>

</rdf :RDF>

After an optional specification of XML version and encoding, the document
starts with a first node of type rdf :RDF. This element is generally used as the
root of any RDF/XML document. At this place, we also declare the global
(XML-)namespaces for ex: and rdf:. Just as in Turtle, namespaces allow us
to abbreviate URIs with QNames, this time building upon the existing XML
namespace mechanism. While abbreviations for namespaces are still mostly
arbitrary, it is a convention to use the prefix rdf: for the RDF namespace
as given in the above example. In the following, elements that have a special
meaning in the RDF serialization are recognized by that prefix.

Nested within the element rdf :RDF, we find the encoding of the sole triple of
the above example. Subject and object are described by elements of the type
rdf :Description, where the XML attribute rdf :about defines the identifier
of the resource. The predicate of the encoded triple is represented directly as
the element ex:publishedBy.

Multiple triples can be encoded by representing each of them by a sep-
arate element of type rdf:Description, which may lead to multiple such
elements referring to the same subject. Likewise, the order of the triples
is of course not important. However, it is also possible to nest elements of
type rdf :Description, possibly leading to a more concise serialization. The
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following example encodes the graph from Fig. 2.3:3

<rdf:Description rdf:about="http://semantic-web-book.org/uri">
<ex:title>Foundations of Semantic Web Technologies</ex:title>
<ex:publishedBy>
<rdf :Description rdf:about="http://crcpress.com/uri">
<ex:name>CRC Press</ex:name>
</rdf :Description>
</ex:publishedBy>
</rdf :Description>

Here we can see how literals are represented simply as the contents of a
predicate-element. The name “CRC Press” is given directly by nesting XML
elements instead of creating a second top-level subject element for describing
http://crcpress.com/uri. Some further abbreviations are allowed:

<rdf:Description rdf:about="http://semantic-web-book/uri"
ex:title= "Foundations of Semantic Web Technologies">
<ex:publishedBy rdf:resource="http://crcpress.com/uri" />
</rdf :Description>
<rdf :Description rdf:about="http://crcpress.com/uri"
ex:Name="CRC Press" />

This syntax requires some explanation. First of all, all predicates with
literal objects have been encoded as XML attributes. This abbreviation is
admissible only for literals — objects referred to by URIs cannot be encoded
in this way, since they would then be misinterpreted as literal strings.

Moreover, the element ex:publishedBy makes use of the special attribute
rdf :resource. This directly specifies the object of the triple, such that no
further nested element of type rdf:Description is necessary. This is the
reason why ex:publishedBy has no content so that it can be written as an
empty-element tag, as opposed to giving separate start and end tags. This
shortcut notation is only allowed for URISs, i.e., every value of rdf:resource
is considered as a URI.

Since we thus avoid a nested description of http://crcpress.com/uri,
another description appears at the outer level. The predicate ex:Name is
again encoded as an XML attribute and the otherwise empty description can
be closed immediately.

3In many cases, we show only the interesting parts of an RDF /XML document in examples.
The declaration of rdf :RDF can always be assumed to be the same as in the initial example
on page 28.
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We see that RDF /XML provides a multitude of different options for repre-
senting RDF. Some of those options stem from the underlying XML syntax.
As an example, it is not relevant whether or not an element without contents
is encoded by an empty-element tag instead of giving both start and end tags.
A larger amount of freedom, however, is provided by RDF since the same
triples can be encoded in many different ways. Our previous two examples
certainly do not describe the same XML tree, yet they encode the same RDF
graph.

W3C Validator The W3C Validator is a Web Service that can be em-
ployed to check the validity of RDF /XML documents with respect to the of-
ficial specification. A simple online form is provided to upload XML-encoded
RDF which is then validated. Valid documents are processed to extract indi-
vidual triples and a visualization of the corresponding graph, whereas invalid
documents lead to error messages that simplify the diagnosis of problems.
This Web Service can also be used to investigate RDF /XML examples given
within this book, though it should not be forgotten that many examples are
only partial and must be augmented with a suitable rdf :RDF declaration to
become valid.

The W3C Validator is found at http://www.w3.org/RDF/Validator/

2.2.4 RDF in XML: URIs and Other Problems

Namespaces in RDF/XML have been introduced above as a way of ab-
breviating URIs in the RDF /XML serialization. The truth, however, is that
namespaces in RDF /XML are an indispensable part of the encoding rather
than an optional convenience. The reason is that RDF/XML requires us
to use resource identifiers as names of XML elements and attributes. But all
URISs necessarily contain a colon — a symbol that is not allowed in XML names!
Using namespaces, we can “hide” a URI’s own colon within the declared prefix.

On the other hand, namespaces can only be used for abbreviating XML
tags and attributes, but are not allowed within attribute values and plain text
contents between XML tags. This is the reason why we used the complete
URI http://semantic-web-book/uri in all previous examples, instead of
employing a QName book:uri as in our earlier Turtle examples. An attribute
assignment of the form rdf:about="book:uri" is not correct, and book in
this case would be interpreted as the scheme part of a URI but not as an XML
namespace prefix.

Thus we are in the unfortunate situation of having to write the same URI
differently in different positions of an RDF /XML document. The next section
introduces a method that still allows us to at least abbreviate URIs in cases
where namespaces cannot be used. XML has a number of further syntactic
restrictions that may complicate the encoding of arbitrary RDF graphs. It
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is, e.g., not allowed to use a hyphen directly after a colon in XML tags, even
though hyphens might occur within URIs. It may thus become necessary
to declare auxiliary namespaces merely for the purpose of exporting single
elements in a valid way.

Another practical problem is that the percent sign % occurs frequently
within URLs since it is used to escape forbidden characters. The string %20,
e.g., encodes the space character. Just like colon, the percent sign is not al-
lowed in XML tags, and it can happen that existing URLs cannot be used as
URIs in RDF. Fortunately, many problems of this kind are already addressed
by existing RDF programming libraries, so that application developers do not
need to focus on such serialization issues. Yet they should be aware that there
are valid URIs that cannot be encoded at all in XML.

2.2.5 Shorter URIs: XML Entities and Relative URIs

In the above examples, we have always used absolute URIs as values of
the attributes rdf : about and rdf :resource, as the use of namespaces would
not be admissible in this context. This section discusses two methods for
abbreviating such values as well. While these abbreviations are of course
optional additions to the basic syntax, they are very widely used and thus
indispensable for understanding most of today’s RDF documents.

A simple method to abbreviate values in XML is the use of so-called XML
entities. An entity in XML is a kind of shortcut that can be declared at the
beginning of a document, and referred to later in the document instead of
giving its complete value. The following is a concrete example of an XML
document using this feature:

<7xml version="1.0" encoding="utf-8"?> <!DOCTYPE rdf :RDF [
<!ENTITY book ’http://semantic-web-book.org/’>
1>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:ex ="http://example.org/">

<rdf:Description rdf:about="&book;uri">
<ex:title>Foundations of Semantic Web Technologies</ex:title>
</rdf :Description>

</rdf :RDF>

An obvious novelty in this example is the initial entity declaration enclosed
in <!'DOCTYPE rdf:RDF[ and ]>. This part of the XML document constitutes
its document type declaration which might provide a so-called Document Type
Definition (DTD). A DTD can be used to declare entities as above, but also

lvww . allitebooks.cond
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to define a number of further restrictions on the contents of the XML docu-
ment. All document type declarations used in this book, however, are plain
entity definitions, so that we can content ourselves with knowing that entities
in RDF/XML are defined as above. In our example, the entity defined is
called book and its value is http://semantic-web-book.org/. Further enti-
ties could easily be defined by providing additional lines of the form <!ENTITY
name 'value'>.

We may now refer to our newly defined entity by writing &book; as in the
value of rdf:about above, and the XML document is interpreted just as if
we had written the declared value of the entity at this position. Such entity
references are allowed in XML attribute values and within plain text data
contained in an element, such as the texts used for serializing data literals in
Section 2.2.3. Entities cannot be used within names of XML elements and
attributes — there we have to stick to the use of namespaces. In our current
example, defining a new entity does not actually shorten the document, but
usually entities for common URI prefixes lead to much more concise serializa-
tions and may also increase readability. XML also provides a small number
of pre-defined entities that are useful for encoding certain symbols that would
otherwise be confused with parts of the XML syntax. These entities are &1t ;
(<), &gt; (>), &amp; (&), &apos; ('), and &quot; (").

There is another common case in which URIs might be abbreviated: in
many RDF documents, URIs primarily stem from a common base namespace.
A website that exports data in RDF, e.g., is likely to use many URIs that
begin with the site’s domain name. XML has the concept of a base URI that
can be set for elements in a document using the attribute xml:base. Other
attributes in the XML document then may, instead of full URIs, use so-called
relative references. Such entries refer to a full URIs which are obtained by
preceding the entries with the given base URI, as illustrated by the following
example:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex ="http://example.org/"
xml:base ="http://semantic-web-book.org/" >

<rdf:Description rdf:about="uri">
<ex:publishedBy rdf:resource="http://crcpress.com/uri" />
</rdf:Description>

</rdf :RDF>

The relative reference rdf:about="uri" is thus interpreted as the URI
http://semantic-web-book/uri. Values of rdf :resource or rdf :datatype
(explained later) can be abbreviated in the same fashion. Relative references
are distinguished from full URIs by lacking a scheme part; see Fig. 2.2. It is
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possible to use relative references even without declaring the intended base
URI beforehand: in this case, the base URI of the document — based on the
URL it was retrieved from — is used. This mechanism is less robust since
locations of documents may change; hence it is suggested to provide explicit
base URIs whenever needed.

A second common use of xml:base for abbreviating URIs relates to the
attribute rdf : ID. This attribute can be used just like rdf : about, but it always
expects a single fragment identifier as its value, whereas complete URIs are
not allowed. The full URI is then constructed by using the given value as a
fragment for the base URI (which thus should not contain any fragment), i.e.
we can obtain the URI by extending the base URI with the symbol # followed
by the value of rdf:ID.

Thus we find that rdf:ID="name" has essentially the same meaning as
rdf :about="#name". The most relevant difference of both ways of writing
URIs is that every value of rdf:ID must be used only once for a given base
URI. An RDF/XML document may thus contain one element with a given
ID, but it may still contain further elements that refer to the same URI by
means of rdf:about and rdf:resource.

The Turtle syntax for RDF provides a similar support for relative references,
which are resolved by using the base URI (URL) of the document. Setting
the base URI explicitly is not encompassed by the current specification, even
though the syntax @base was proposed for this purpose. Overall, relative
references in Turtle are of only minor importance since namespace declarations
can be used without the restrictions of the XML syntax.

Figure 2.4 provides an overview of the various forms of abbreviation mecha-
nisms that we have introduced for RDF /XML. Note that a principal difference
between XML entities and (base) namespaces is that the former can be de-
clared only once for the whole document, whereas the latter may be declared
in arbitrary XML start tags or empty-element tags. The namespaces then
apply to the element within which they were declared, and to all subelements
thereof. Moreover, entities can be used not only for abbreviating URIs but
provide shortcuts for arbitrary text content, even within literal values.

2.2.6 Where Do URIs Come From? What Do They Mean?

Does the use of URIs, which is strictly required throughout RDF, allow for
a semantically unambiguous interpretation of all RDF-encoded information?
The answer is clearly no. It is still possible to use different URIs for the same
resource, just as it is still possible to use the same URI for different things.
A possible solution for this problem is the use of well-defined vocabularies.
As in XML, the term vocabulary in RDF is most commonly used to refer to
collections of identifiers with a clearly defined meaning. A typical example is
provided by RDF itself: the URI

http://www.w3.0rg/1999/02/22-rdf -syntax-ns#Description,
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Namespace declaration Usage: namespace:name in XML element names

Entity declaration

Predefined entities

Base namespace

Declaration: xml:namespace="<ur:>" in XML
start tags or empty-element tags; declarations af-
fect XML subtree; multiple declarations possible

Usage: &entity; in XML attribute values or char-
acter content (RDF literal values) of elements
Declaration: <!ENTITY entity 'text'> in initial
DOCTYPE declaration; declaration affects whole
document; only one declaration possible

Usage: &lt;, &gt;, &amp;, &apos;, or &quot; in
XML attribute values or character content (RDF
literal values) of elements

Declaration: predefined in XML, no declaration

Usage: non-URI name as value for rdf:about,
rdf :resource, rdf:ID, or rdf :datatype

Declaration: xml:base="<wuri>" in XML start
tags or empty-element tags; declarations affect
XML subtree; multiple declarations possible

FIGURE 2.4: Summary of abbreviation mechanisms in RDF /XML
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e.g., has a generally accepted well-defined meaning which applications may
take into account.

But vocabularies are not just used to define the RDF /XML syntax as such;
they are also commonly used to describe information. An example of a par-
ticularly popular vocabulary is FOAF (Friend Of A Friend), which defines
URISs to describe people and their relationships (see Section 9.1.2 for details).
Even though FOAF is not specified by an official standardization authority,
its URISs are sufficiently well known to avoid confusion. Both FOAF and RDF
itself illustrate that the intended use and meaning of vocabularies are typically
not encoded in a machine-readable way.

One of the major misconceptions regarding the Semantic Web is the belief
that semantic technologies enable computers to truly understand complex con-
cepts such as “person.” The unambiguous assignment of URIs indeed allows
us to refer to such concepts, and to use them in a multitude of semantic rela-
tionships — actually comprehending the contents of the encoded statements,
however, is still the task of the human user. This should be obvious based on
our daily experiences of the capabilities and limitations of today’s computers,
but new technologies often are accompanied by a certain amount of inflated
expectations. It is still possible to describe a certain amount of complex rela-
tionships that may refer to a certain vocabulary in a way that is readable by
machines: this is the main aim of the ontology languages RDF Schema and
OWL that we consider later on.

In many cases, a vocabulary for a certain topic area is not readily available,
and it is clearly never possible to assign URIs to all conceivable resources.
Therefore it is required to introduce new URIs on demand, and various pro-
posals and guidelines have been developed for coining new URIs on the Se-
mantic Web. It also makes sense to take the relationship between URLs and
URIs into account in this context.

In some situations, very concrete guidelines are available for creating suit-
able URIs. There is, e.g., an official policy for turning phone numbers into
URIs using the scheme tel. Similar proposals exist for deriving URIs for
books and journals from the ISSN or ISBN numbers.

In numerous other cases, however, it is required to coin completely new
URIs. A first objective in this case must be to ensure that the chosen URI
is not used elsewhere, possibly with a different intended meaning. This is
often surprisingly easy to do by taking advantage of the existing hierarchic
mechanisms for managing URLs. By choosing URIs that — when viewed as
URLs — refer to locations on the Web over which one has complete control, one
can usually avoid clashes with existing URIs. Moreover, it is then possible
to make a document available at the corresponding location, providing an
authoritative explanation of the intended meaning. The information about
the proper usage of a URI thus becomes accessible worldwide.

An important related aspect is the distinction between Web pages and other
(abstract) resources. The URL http://en.wikipedia.org/wiki/Othello,
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e.g., at first appears to be a suitable URI for Shakespeare’s drama, since it
contains an unambiguous description of this resource. If an RDF document
assigns an author to this URI, however, it is not clear whether this refers to
the existing HTML page or to the drama. One thus could be led to believe
that Shakespeare has edited pages on Wikipedia, or that Othello was written
collaboratively by authors such as “User:The Drama_ Llama” It is thus
obvious why URLs of existing documents are not well-suited as URIs for
abstract concepts.

On the other hand, we would still like to construct URIs that point to
existing Web documents. For users of RDF, it would certainly be useful if
URISs could be used to learn more about their intended usage — like an inherent
user documentation closely tied to any RDF document. But how can this be
accomplished without using existing URLs? One option is the use of fragment
identifiers. By writing, e.g., http://en.wikipedia.org/wiki/Othello#uri
one does not use the URL of an existing Web document (since the fragment
“uri” is not defined on the page retrieved at the base URL). Yet, when resolving
this URI in a browser, one obtains the same explanatory document as before.
This solution is also suggested by the possibility of using relative references
together with the attribute rdf :ID explained earlier.

An alternative option is the use of redirects: even if no document is found
at a given URL, a Web server may redirect users to an alternative page. This
is a core functionality of the HTTP protocol. Since the user-side application
notices any such HTTP redirect, the retrieved page can still be distinguished
from the resource that the original URI referred to. The automatic redirect
also has the advantage that a single URI may redirect either to a human-
readable HTML description, or to a machine-readable RDF document — the
server may select which of those is appropriate based on information that the
client provides when requesting the data. This method is known as content
negotiation. An example is the URI http://semanticweb.org/id/Markus:
when viewed in a browser, it provides details on the encoded resource; when
accessed by an RDF-processing tool such as Tabulator,* it returns RDF-based
metadata.

The above technical tricks allow us to create unambiguous URIs that link
to their own documentation, and this explains to some extent why many URIs
still refer to common URL schemes such as http.

4An RDF browsing tool; see http://wuw.u3.org/2005/ajar/tab.
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http://www.w3.0rg/TR/rdf-primer

http://example.org/publicationDate

http://example.org/title

"RDF Primer"~ ~www.w3.0rg/2001/XMLSchema#string

"2004-02-10"~"~http://www.w3.0rg/2001/XMLSchema#date

FIGURE 2.5: An RDF graph with typed literals

2.3 Advanced Features

We already have learned about all the basic features of RDF. There are,
however, a number of additional and derived expressive means, which are
highly important in applications. This section introduces a number of these
advanced features in detail. In each case, we consider presentations using
RDF graphs, Turtle syntax, and RDF/XML.

2.3.1 Datatypes in RDF

We have already seen in Section 2.1.3 that RDF allows us to describe data
values by means of literals. So far, however, all literals we considered have been
nothing more than mere character strings. Practical applications of course
require many further datatypes, e.g., to denote numbers or points in time.
Datatypes usually have a major effect on the interpretation of a given value.
A typical example is the task of sorting data values: The natural order of the
values “10”, “02”, “2” is completely different depending on whether we interpret
them as numbers or as strings. The latter are usually sorted alphabetically,
yielding “02” < “10” < “2”, while the former would be sorted numerically to
obtain “2” = “02” < “10”.

RDF therefore allows literals to carry an explicit datatype. Staying true to
our established principles, each datatype is uniquely identified by a URI, and
might be chosen rather arbitrarily. In practice, however, it is certainly most
useful to refer to datatype URIs that are widely known and supported by
many software tools. For this reason, RDF suggests the use of XML Schema.
Figure 2.5 illustrates how additional datatype information might be added to
an RDF graph. The subject of this example is the RDF Primer document,
identified by its actual URL, for which a title text and publication date are
provided. These data values are specified by a literal string in quotation
marks, followed by “~ and the URI of some datatype. As datatypes, we have
used “string” for simple character sequences, and “date” for calendar days.

It can be seen from the graphical representation that typed literals in RDF
are considered as single elements. Any such literal therefore essentially be-
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haves just like a single untyped literal. From this we can readily derive the
Turtle syntax for the RDF document in Fig. 2.5:

Q@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://wuw.w3.org/TR/rdf -primer>
<http://example.org/title> "RDF Primer"~"xsd:string ;
<http://example.org/publicationDate> "2004-02-10"""xsd:date .

As the example shows, datatype URIs in Turtle can be abbreviated us-
ing namespaces. If they were written as complete URIs, they would need
to be enclosed in angular brackets just as any other URI. The representa-
tion in RDF /XML is slightly different, using an additional XML attribute
rdf :datatype:

<rdf :Description rdf:about="http://www.w3.org/TR/rdf-primer">
<ex:title rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
RDF Primer
</ex:title>
<ex:publicationDate
rdf :datatype="http://www.w3.org/2001/XMLSchema#date">
2004-02-10
</ex:publicationDate>
</rdf :Description>

The general restrictions on the use of namespaces in XML also apply to the
previous example. Since datatype URIs are specified as XML attribute values,
they cannot be abbreviated by namespaces. We may, however, introduce XML
entities for arriving at a more concise serialization.

To obtain a better understanding of RDF’s datatype mechanism, it makes
sense to have a closer look at the meaning of datatypes. Intuitively, we would
expect any datatype to describe a certain value space, such as, e.g., the natural
numbers. This fixes the set of possible values that literals of a datatype denote.
A second important component is the set of all admissible literal strings. This
so-called lexical space of a datatype enables implementations to recognize
whether or not a given literal syntactically belongs to the specified datatype.
The third and final component of each datatype then is a well-defined mapping
from the lexical space to the value space, assigning a concrete value to every
admissible literal string.

As an example, we consider the datatype decimal that is defined in XML
Schema. The value space of this datatype is the set of all rational numbers that
can be written as finite decimal numbers. We thus exclude irrational numbers
like 7, and rational numbers like 1/3 that would require infinitely many digits
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in decimal notation. Accordingly, the lexical space consists of all character
strings that contain only numerals 0 to 9, at most one occurrence of ., and an
optional initial symbol + or -. The mapping between lexical space and value
space is the well-known interpretation of decimal numbers as rationals. The
literal strings 3.14, +03.14, and 3.14000, e.g., are multiple possible ways
to refer to the rational number 3.14. It is common in many datatypes that
a single value can be denoted in multiple different ways. Applications that
support a datatype thus recognize syntactically different RDF literals as being
semantically equal.

Most of the common XML datatypes allow for a meaningful interpretation
in RDF, yet the RDF specification leaves it to individual implementations
to decide which datatypes are supported. In particular, a software tool can
conform to the RDF specification without recognizing any additional XML
datatypes.

The sole exception to this general principle is RDF’s only built-in datatype
rdf :XMLLiteral. This datatype allows the embedding of well-formed XML
snippets as literal values in RDF. As such, the datatype specifically addresses
a possible use case of RDF/XML where it might be convenient to use well-
formed XML directly in the place of literal values.

The datatype rdf:XMLLiteral is most commonly used together with an
additional function for pre-processing and normalizing XML data. This is
achieved by means of the attribute rdf:parseType, which we shall also en-
counter in various other contexts later on:

<rdf :Description rdf:about="http://semantic-web-book/uri">
<ex:title rdf:parseType="Literal">
Foundations of
<br />
<b>Semantic Web Technologies</b>
</ex:title>
</rdf :Description>

In this example, we have embedded text that uses HTML mark-up into an
RDF document. Due to the setting rdf:parseType="Literal", the given
XML fragment is normalized internally, and transformed into a literal of type
rdf :XMLLiteral. Even though XML snippets that are used in this way need
not, be complete XML documents, it is required that their opening and closing
tags are balanced. If this cannot be guaranteed in an application, it is also
common to embed XML fragments into RDF /XML as string literals, using
pre-defined entities like &amp; and &lt; to replace XML syntax that would
otherwise be confused with the remainder of the RDF document.

At this point we should also make sure that we have not allowed ourselves to
be confused by some rather similar terms which have been introduced: RDF
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literals generally are syntactic identifiers for data values in RDF, whereas the
value Literal of the attribute rdf :parseType merely leads to the creation
of one particular kind of literals belonging to the datatype rdf : XMLLiteral.

2.3.2 Language Settings and Datatypes

Now that we are more familiar with the comprehensive datatype system
of RDF and XML Schema, it is in order to take another look at data values
in RDF. The first obvious question is which datatype literals without any
type assignment actually have. In fact, such untyped literals simply have no
type at all, even though they behave very similarly to typed literals of type
xsd:string for most practical purposes.

An important difference between typed and untyped literals is revealed
when introducing language information into RDF. XML in general supports
the specification of language information that tells applications whether part
of an XML document’s content is written in a particular (natural) language.
This is achieved by means of the attribute xml:1lang. A typical example is the
language setting in (X)HTML documents as found on the Web, which often
contain attribute assignments such as xml:lang="en" or xml:lang="de-ch"
in their initial html tag. Not surprisingly, such language information in XML
is managed in a hierarchical way, i.e. all child elements of an element with
a language setting inherit this setting, unless they supply another value for
xml:lang.

Language information can also be provided in RDF /XML, but this is se-
mantically relevant only for untyped literals. For instance, one could write
the following:

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-primer">
<ex:title xml:lang="fr">Initiation & RDF</ex:title>
<ex:title xml:lang="en">RDF Primer</ex:title>

</rdf :Description>

In serializations of RDF other than RDF/XML, language information is
supplied by means of the symbols @. In Turtle this might look as follows:

<http://wuw.w3.org/TR/rdf-primer> <http://example.org/title>
"Initiation a RDF"@fr, "RDF Primer"@en .

This syntax again shows that language settings are really part of the data
value in RDF. The above example thus describes a graph of two triples with
the same subject and predicate. Likewise, in the graphical representation
of RDF, the labels of literal nodes are simply extended to include language
settings just as in Turtle.
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Similar yet distinct

Both language settings and datatypes in RDF are considered to be part of
literals, and their absence or presence thus leads to different literals. This
might sometimes lead to confusion in the users of RDF, and it may also
impose some challenges when merging datasets. Consider, e.g., the following
RDF description in Turtle:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://crcpress.com/uri> <http://example.org/Name> "CRC Press" ,
"CRC Press"Qen ,
"CRC Press"~"xsd:string .

This example does indeed encode three different triples. Literals with lan-
guage settings always constitute a pair of a literal value and a language code,
and thus can never be the same as any literal without language setting. The
untyped literal "CRC Press", according to the RDF specification, represents
“itself”, i.e. there is no distinction between lexical space and value space.
Whether or not the untyped value "CRC Press" is part of the value space of
xsd:string of course is not addressed in the RDF specification, since XML
Schema datatypes are not part of this standard.

In practice, however, many applications expect the two literals without lan-
guage settings to be equal, which probably agrees with the intuition of many
users.

As mentioned above, language settings are only allowed for untyped liter-
als. The justification for this design of the current RDF standard was that the
semantics of typed data values is not dependent on any language. The num-
ber 23, e.g., should have the same (mathematical) meaning in any language.
This view was also extended to strings: values of type xsd:string therefore
are indeed assumed to encode a sequence of characters, not a text of a con-
crete language. Another possibly unexpected consequence of this decision is
that values of type rdf:XMLLiteral do not inherit language settings from
their parent elements, even though this would be assumed if the RDF /XML
document was considered as XML. RDF thus introduces an exception to the
otherwise strictly hierarchical scope of xml:lang in XML.

2.3.3 Many-Valued Relationships

So far, we have represented only very simple binary relationships between
resources, thus essentially describing a directed graph. But does such a sim-
ple graph structure also allow for the representation of more complex data
structures? In this section, we will see how relationships between more than
two resources can indeed be encoded in RDF.

Let us first consider an example. The following excerpt from an RDF

vww . allitebooks.con
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http://example.org/Chutney http://example.org/greenMango

http://fexample.org/hasingredient http://example.org/ingredient

http://example.org/amount 11b

http://example.org/ingredient_1

FIGURE 2.6: Representing many-valued relationships in RDF

description formalizes ingredients of a cooking recipe:

Q@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient "11lb green mango",
"itsp. Cayenne pepper" .

This encoding, however, is not really satisfying, since ingredients and their
amounts are modeled as plain strings of text. Thus it is, e.g., not possible
to query for all recipes that contain green mango, unless the whole text in-
cluding the specified amount is queried. It would therefore be more useful to
describe ingredients and their amounts in separate resources. Let us attempt
the following modeling:

Qprefix ex: <http://example.org/> .
ex:Chutney ex:ingredient ex:greenMango; ex:amount "11b"
ex:ingredient ex:CayennePepper; ex:amount "ltsp." .

It is not hard to see that this encoding is even less suitable than our initial
approach. While ingredients and amounts are described separately, there is no
relationship at all between the individual triples. We could therefore as well
be dealing with 1 tsp. of green mango and 1 lb of Cayenne pepper — a rather
dangerous ambiguity! An alternative approach could be to model amounts
via triples that use ingredients as their subjects. This would obviously clarify
the association of amounts and ingredients, e.g., when writing ex: greenMango
ex:amount "11b". Yet this attempt would again yield undesired results (can
you see why?).

We are thus dealing with a true three-valued relationship between a recipe,
an ingredient, and an amount — one also speaks of ternary (and generally
n-ary) relations. RDF obviously cannot represent relationships with three
or more values directly, but they can be described by introducing so-called
auziliary nodes into the graph. Consider the graph in Fig. 2.6. The node

5Hint: Try to encode multiple recipes that require the same ingredient but in different
amounts.
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ex:Ingredientl in this example plays the role of an explicit connection be-
tween recipe, ingredient, and amount. Further nodes could be introduced for
all additional ingredients to link the respective components to each other.

As can be readily seen, this method can generally be used to connect an
arbitrary number of objects to a subject. This, however, requires the intro-
duction of several additional URIs. On the one hand, the auxiliary node itself
needs an identifier; on the other hand, additional triples with new predicate
names are created. Consequently, our example now contains two predicates
ex:hasIngredient and ex:ingredient. Our choice of names in this case
reflects the fact that the object of ex:ingredient plays a particularly promi-
nent role among the many values in our example relationship. RDF offers
a reserved predicate rdf:value that may be used to highlight a particular
object of a many-valued relation as a “main” value. Instead of the graph of
Fig. 2.6, we may thus choose to write:

Q@prefix ex: <http://example.org/> .
Qprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ex:Chutney ex:hasIngredient ex:ingredientl .
ex:ingredientl rdf :value ex:greenMango;
ex:amount "11b" .

The predicate rdf :value does not have a particular formal semantics. It is
merely a hint to applications that a particular value of a many-valued relation-
ship could be considered as its primary value. Most of today’s applications,
however, do not heed this additional information. Since, moreover, rdf : value
does not play well with the ontology language OWL DL that we introduce
in Chapter 4, it is often the best choice to use application-specific predicate
names instead.

2.3.4 Blank Nodes

As shown in the previous section, modeling many-valued relationships may
require the introduction of auxiliary nodes. Such nodes typically do not refer
to resources that were meant to be described explicitly in the first place,
and rather introduce helper resources with a merely structural function. It
is therefore rarely useful to refer to such resources globally by means of a
specific URI. In such cases, RDF allows us to introduce nodes without any
URI, called blank nodes or simply bnodes.

An example for an RDF graph with a blank node is given in Fig. 2.7. This
graph essentially describes the same structure as the graph in Fig. 2.6. The
second RDF document, however, merely states that there is some resource
taking the place of the blank node, but without providing a URI for referring
to this resource. As the name “blank node” suggests, this feature is only
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http://example.org/Chutney http://example.org/greenMango

http://example.org/hasingredient http://example.org/ingredient

http://example.org/amount

1lb

FIGURE 2.7: Representing auxiliary resources by blank nodes

available for subject and objects of RDF triples. Predicates (i.e. edges) must
alway be specified by URIs.

Blank nodes cannot be addressed globally by means of URIs, and they do
not carry any additional information within RDF graphs. Yet, the syntactic
serialization of RDF necessitates referring to particular blank nodes at least
in the context of the given document. The reason is that a single blank node
may appear as a subject or object in arbitrarily many triples. Therefore,
there must be a way for multiple triples to refer to the same blank node. To
this end, blank nodes in a document may be denoted by means of (node)
IDs. In RDF /XML this is done by using the attribute rdf :nodeID instead of
rdf :about, rdf:ID or rdf:resource. The RDF/XML serialization for the
graph in Fig. 2.7 could thus be as follows:

<rdf :Description rdf:about="http://example.org/Chutney">
<ex:hasIngredient rdf:nodeID="id1" />

</rdf :Description>

<rdf:Description rdf:nodeID="id1">
<ex:ingredient rdf:resource="http://example.org/greenMango" />
<ex:amount>11b</ex:amount>

</rdf :Description>

The label id1 in this example is only relevant for the given document.
Within other documents, in contrast, the same id might well refer to different
resources. In particular, the semantics of an RDF document is not changed if
all occurrences of a given node id are replaced by another id, as long as the
latter was not used yet within this document. This reflects the fact that node
IDs are only a syntactic tool to serialize blank nodes. If the given usage of a
blank node does not actually require the use of this node in multiple positions,
it is also allowed to omit the attribute rdf:nodeID entirely. This can be
particularly useful when nesting descriptions in RDF/XML. The following
example shows yet another possibility of introducing blank nodes without
providing an id:
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<rdf :Description rdf:about="http://example.org/Chutney">
<ex:hasIngredient rdf:parseType="Resource">
<ex:ingredient rdf:resource="http://example.org/greenMango" />
<ex:amount>11b</ex:amount>
</ex:hasIngredient>
</rdf :Description>

The value Resource of the attribute rdf:parseType in this case leads to
the automatic creation of a new blank node which does not have a node id
within the given document. We already encountered rdf :parseType earlier
with the value Literal, where a literal node of type XMLLiteral was newly
created. In general, rdf:parseType modifies the way in which parts of the
XML document are interpreted, usually leading to the generation of additional
triples that have not been specified directly. All uses of rdf:parseType —
including those discussed further below — can be avoided by serializing the
encoded triples directly. Yet, such “syntactic sugar” is often rather useful for
enhancing a document’s readability.

In Turtle and similar triple-based serializations, blank nodes are encoded
by using an underscore instead of a namespace prefix:

Qprefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient _:idl .
:id1 ex:ingredient ex:greenMango; ex:amount "11b" .

The given node id again is relevant only for the current document. Turtle
allows us to abbreviate nested blank nodes in a way that is structurally similar
to RDF/XML:

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient
[ ex:ingredient ex:greenMango; ex:amount "11b" ]

The predicates and objects within square brackets refer to an implicit blank
node without an id. The previous Turtle document thus corresponds to the
same RDF graph structure as in the earlier examples. As a special case, it is
also possible to write [] for a blank node that does not have an explicit id.
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2.4 Simple Ontologies in RDF Schema

In the previous sections, we explained how propositions about single re-
sources can be made in RDF. Essentially, three basic kinds of descriptive
elements were used for this: we specified individuals (e.g., the authors of this
textbook, a publisher or a cooking recipe), that in one way or the other were
put into relation to each other. More casually, we learned that it is possi-
ble to assign types to literals and resources, thereby stating that they belong
to a class of entities sharing certain characteristics (like natural numbers or
ordered lists).

When describing new domains of interest, one would usually introduce new
terms not only for individuals (like “Sebastian Rudolph” or “Karlsruhe Insti-
tute of Technology”) and their relations (such as “employed by”) but also for
types or classes (e.g., “person”, “university”, “institution”). As pointed out in
Section 2.2.6, a repertoire of such terms referring to individuals, relations and
classes is usually called a vocabulary.

When introducing and employing such a vocabulary, the user will naturally
have a concrete idea about the used terms’ meanings. For example, it is
intuitively clear that every university has to be an institution or that only
persons can be employed by an institution.

From the “perspective” of a computer system, however, all the terms in-
troduced by the user are merely character strings without any prior fixed
meaning. Thus, the aforementioned semantic interrelations have to be explic-
itly communicated to the system in some format in order to enable it to draw
conclusions that rely on this kind of human background knowledge.

By virtue of RDF Schema (short RDFS), a further part of the W3C RDF
recommendation which we will deal with in the following sections, this kind of
background information — so-called terminological knowledge or alternatively
schema knowledge — about the terms used in the vocabulary can be specified.

In the first place, RDFS is nothing but another particular RDF vocabulary.
Consequently, every RDFS document is a well-formed RDF document. This
ensures that it can be read and processed by all tools that support just RDF,
whereby, however, a part of the meaning specifically defined for RDFS (the
RDFS semantics) is lost.

RDFS — whose name space http://www.w3.0rg/2000/01/rdf-schema# is
usually abbreviated by rdfs: — does not introduce a topic-specific vocabulary
for particular application domains like, e.g., FOAF does. Rather, the inten-
tion of RDFS is to provide generic language constructs by means of which
a user-defined vocabulary can be semantically characterized. Moreover, this
characterization is done inside the document, allowing an RDFS document
to — roughly speaking — carry its own semantics. This allows for defining a
new vocabulary and (at least partially) specifying its “meaning” in the doc-
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ument without necessitating a modification of the processing software’s pro-
gram logic. Indeed, any software with RDFS support automatically treats
any RDFS-defined vocabulary in a semantically correct way.

The capability of specifying this kind of schema knowledge renders RDF'S a
knowledge representation language or ontology language as it provides means
for describing a considerable part of the semantic interdependencies which
hold in a domain of interest.

Let us dwell for a moment on the term ontology language. In Section 1.1 we
have already discussed the notion ontology and its philosophical origin. On
page 2 we said that in computer science, an ontology is a description of knowl-
edge about a domain of interest, the core of which is a machine-processable
specification with a formally defined meaning. It is in exactly this sense that
RDFS is an ontology language: An RDFS document is a machine-processable
specification which describes knowledge about some domain of interest. Fur-
thermore, RDFS documents have a formally defined meaning, given by the
formal semantics of RDFS. This formal semantics will be explained in Chap-
ter 3, although the most important aspects of it will become intuitively clear
in the following, when we introduce RDFS.

Let us remark that RDFS, despite its usefulness as an ontology language,
also has its limitations, and we will explicate this in Section 3.4. Hence, RDFS
is sometimes categorized as a representation language for so-called lightweight
ontologies. Therefore, more sophisticated applications require more expressive
representation languages such as OWL which will be discussed in Chapters 4
and 5, yet usually the higher expressivity comes at the expense of speed: the
runtime of algorithms for automated inference tends to increase drastically
when more expressive formalisms are used.

Hence the question which formalism to use should always be considered
depending on the requirements of the addressed task; in many cases an RDFS
representation might be sufficient for the intended purposes.®

2.4.1 Classes and Instances

Certainly, one basic functionality that any reasonable knowledge specifica-
tion formalism should provide is the possibility to “type” resources, i.e. to
mark them as elements of a certain aggregation. In RDF, this can be done
via the predicate rdf :type. Generally, the predefined URI rdf :type is used
to mark resources as instances of a class (i.e. belonging to that class). In
order to clearly separate semantics and syntax, we always use the term “class”
to denote a set of resources (being entities of the real world), whereas URIs
which represent or refer to a class are called class names.

6This fact has been put into the common phrase “A little semantics goes a long way” coined
by James Hendler.
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As an example, it would be straightforward to describe this book as a
textbook (which means: a member of the class of all textbooks):

book:uri  rdf:type ex:Textbook .

This example also illustrates that it is possible (and, depending on the ap-
plication domain, very reasonable) to introduce new, user-defined class names.

Obviously, there is no syntactic way of distinguishing URIs representing
individuals (like book:uri) and class names (such as ex:Textbook). Hence,
a single URI does not provide direct information whether it refers to a single
object or a class. In fact, such a clear distinction is not always possible,
even for some real world terms. Even with human background knowledge, it
might be hard to decide whether the URI http://www.un.org/#URI denotes
an individual single organization or the class of all its member states.

Nevertheless, it might be desirable to enforce some clarification by making
a definite modeling decision in the context of an RDFS document. Therefore,
RDFS provides the possibility to indicate class names by explicitly “typing”
them as classes. In other words: it can be specified that, e.g., the class
ex:Textbook belongs to the class of all classes. This “meta-class” is predefined
in the RDFS vocabulary and denoted by the URI rdfs:Class. As we already
know, class membership is expressed via rdf : type, hence the following triple
characterizes the URI ex:Textbook as class name:

ex:Textbook rdf:type rdfs:Class .

On the other hand, the fact that ex:Textbook denotes a class is also an
implicit but straightforward consequence of using it as object of a typing
statement, hence, the preceding triple also follows from the triple

book:uri rdf:type ex:Textbook .

As an additional remark of little practical relevance, note that the class of
all classes is obviously itself a class and hence contained in itself as an element.
Therefore the proposition encoded by the following triple is always valid:

rdfs:Class rdf:type rdfs:Class .

Besides rdfs:Class, there are a few further class names predefined in the
RDF and RDFS vocabularies and carrying a fixed meaning;:
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e rdfs:Resource denotes the class of all resources (i.e. for all elements
of the considered domain of interest).

e rdf:Property refers to the class of all properties, and therefore to all
resources that stand for relations.

e rdf:XMLLiteral has already been introduced as the only predefined
datatype in RDF(S). At the same time, this name denotes the class of
all values of this datatype.

e rdfs:Literal represents the class of all literal values, which implies
that it comprises all datatypes as subclasses.

e The class denoted by rdfs:Datatype contains all datatypes as elements,
for example, the class of XML literals. Note that this is another example
of a class of classes (and hence a subclass of the rdfs:Class class).

e The class names rdf :Bag, rdf : Alt, rdf:Seq and rdfs:Container are
used to declare lists and will be treated in more detail in Section 2.5.1.

e rdfs:ContainerMembershipProperty, denoting the class of contained-
ness properties, will be dealt with in Section 2.5.1 as well.

e The class name rdf :List is used to indicate the class of all collections.
In particular, the empty collection denoted by rdf:nil is an element of
this class.

e rdf:Statement refers to the class of reified triples and will be dealt with
in Section 2.5.2.

All those class names also exhibit a common notational convention: URIs
representing classes are usually capitalized, whereas names for instances and
properties are written in lower case. Note also that the choice for class names
is not limited to nouns; it might be reasonable to introduce classes for qualities
(expressed by adjectives) as well, e.g., ex:0rganic for all organic compounds
or ex:Red for all red things.

Finally, it is important to be aware that class membership is not exclusive:
naturally, a resource can belong to several different classes, as illustrated by
the following two triples:

book:uri  rdf:type ex:Textbook .
book:uri rdf:type ex:WorthReading .
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2.4.2 Subclasses and Class Hierarchies

Suppose an RDFS document contains one single triple referring to this
textbook:

book:uri rdf:type ex:Textbook .

If we now searched for instances of the class of books denoted by ex:Book,
the URI book:uri denoting “Foundations of Semantic Web Technologies”
would not be among the results. Of course, human background knowledge
entails that every textbook is a book and consequently every instance of the
ex:Textbook class is also an instance of the ex:Book class. Yet, an automatic
system not equipped with this kind of linguistic background knowledge is not
able to come up with this conclusion. So what to do?

There would be the option to simply add the following triple to the docu-
ment, explicitly stating an additional class membership:

book:uri rdf:type ex:Book .

In this case, however, the same problem would occur again and again for
any further resource typed as textbook which might be added to the RDFS
document. Consequently, for any triple occurring in the document and having
the form

U rdf :type ex:Textbook .

the according triple

U rdf:type ex:Book .

would have to be explicitly added. Moreover, those steps would have to be
repeated for any new information entered into the document. Besides the
workload caused by this, it would also lead to an undesirable and unnecessary
verbosity of the specification.

Clearly, a much more reasonable and less laborious way would be to just
specify (one may think of it as a kind of “macro”) that every textbook is
also a book. This obviously means that the class of all textbooks is com-
prised by the class of all books, which is alternatively expressed by calling
textbook a subclass of book or equivalently, calling book a superclass of text-
book. Indeed, the RDFS vocabulary provides a predefined way to explicitly
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declare this subclass relationship between two classes, namely, via the predi-
cate rdfs:subClass0f. The fact that any textbook is also a book can hence
be succinctly stated by the following triple:

ex:Textbook rdfs:subClass0f ex:Book .

This enables any software that supports the RDFS semantics (see Chap-
ter 3) to identify the individual denoted by book:uri as a book even without
it being explicitly typed as such.

It is common and expedient to use subclass statements not only for sporad-
ically declaring such interdependencies, but to model whole class hierarchies
by exhaustively specifying the generalization-specification order of all classes
in the domain of interest. For instance, the classification started in the exam-
ple above could be extended by stating that book is a subclass of print media
and the latter a superclass of journal:

ex:Book rdfs:subClassOf ex:PrintMedia .
ex:Journal rdfs:subClass0f ex:PrintMedia .

In accordance with the intuition, the RDFS semantics also implements tran-
sitivity of the subclass relationships, i.e. roughly speaking: subclasses of sub-
classes are subclasses. Therefore, from the triples written down in this section,
the following triple — though not explicitly stated — can be deduced:

ex:Textbook rdfs:subClassO0f ex:PrintMedia .

Moreover, the subclass relationship is defined to be reflexive, meaning that
every class is its own subclass (clearly, the class of all books comprises the
class of all books). Thus, once it is known that ex:Book refers to a class, the
following triple can be concluded:

ex:Book rdfs:subClass0f ex:Book .

This fact also enables us to model the proposition that two classes contain
the same individuals (in other words: they are extensionally equivalent) by
establishing a mutual subclass relationship:

ex:MorningStar rdfs:subClassO0f ex:EveningStar .
ex:EveningStar rdfs:subClassOf ex:MorningStar .
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The most popular and elaborated class hierarchies can certainly be found
in the area of biology, where — following the classical systematics — living
beings are grouped into kingdoms, phyla, classes (as a biological term), orders,
families, genus and species. From the RDFS document from Fig. 2.8, we can
deduce that the individual Sebastian Rudolph is not only a human but also a
mammal. Likewise, by the deducible membership in the class of primates, he
logically makes a monkey of himself.

Documents containing only class hierarchies are usually referred to as tax-
onomies and subclass-superclass dependencies are often called taxonomic re-
lations. Certainly, one reason why this kind of knowledge modeling is so
intuitive is its closeness to human conceptual thinking. In most cases, a class
hierarchy with sub- and superclasses can be conceived as a conceptual hierar-
chy with subordinate and superordinate concepts or, using common linguistic
terminology: hyponyms and hypernyms.

2.4.3 Properties

A special role is played by those URIs used in triples in the place of
the predicate. Examples from previous sections include ex:hasIngredient,
ex:publishedBy and rdf:type. Although those terms are represented by
URIs and hence denote resources, it remains a bit unclear how to concretely
interpret them. A (or the) “publishedBy” can hardly be physically encoun-
tered in everyday life; therefore it seems inappropriate to consider it as class
or individual. In the end, these “predicate URIs” describe relations between
“proper” resources or individuals (referenced by subject and object in an RDF
triple). As the technical term for such relations, we will use property.

In mathematics, a relation is commonly represented as the set of the pairs
interlinked by that relation. According to that, the meaning of the URI
ex:isMarriedTo would be just the set of all married couples. In this respect,
properties resemble classes more than single individuals.

For expressing that a URI refers to a property (or relation), the RDF vo-
cabulary provides the class name rdf :Property which by definition denotes
the class of all properties. The fact that ex:publishedBy refers to a property
can now again be stated by assigning the corresponding type:

ex:publishedBy rdf:type rdf:Property .

Note that rdf:Property itself denotes a class and not a property. It just
contains properties as instances. Finally, in addition to explicitly being typed
as such, a URI can also be identified as property name by its occurrence as
predicate of a triple. Therefore, the RDFS semantics ensures that the above
triple is also a consequence of any triple like
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<?7xml version="1.0" encoding="utf-8"?> <!DOCTYPE rdf :RDF [
<!ENTITY ex ’http://example.org/’>
1>

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:rdfs="http://wuw.w3.0rg/2000/01/rdf-schema#"
xmlns:ex="http://www.semanticweb-grundlagen.de/Beispiele#">

<rdfs:Class rdf:about="&ex;Animalia">
<rdfs:label xml:lang="en">animals</rdfs:label>
</rdfs:Class>

<rdfs:Class rdf:about="&ex;Chordata">
<rdfs:label xml:lang="en">chordates</rdfs:label>
<rdfs:subClass0f rdfs:resource="&ex;Animalia" />
</rdfs:Class>

<rdfs:Class rdf:about="&ex;Mammalia">
<rdfs:label xml:lang="en">mammals</rdfs:label>
<rdfs:subClass0f rdfs:resource="&ex;Chordata" />
</rdfs:Class>

<rdfs:Class rdf:about="&ex;Primates">
<rdfs:label xml:lang="en">primates</rdfs:label>
<rdfs:subClass0f rdfs:resource="&ex;Mammalia" />
</rdfs:Class>

<rdfs:Class rdf:about="&ex;Hominidae">
<rdfs:label xml:lang="en">great apes</rdfs:label>
<rdfs:subClass0f rdfs:resource="&ex;Primates" />
</rdfs:Class>

<rdfs:Class rdf:about="&ex;Homo">
<rdfs:label xml:lang="en">humans</rdfs:label>
<rdfs:subClass0f rdfs:resource="&ex;Hominidae" />
</rdfs:Class>

<rdfs:Class rdf:about="&ex;HomoSapiens">
<rdfs:label xml:lang="en">modern humans</rdfs:label>
<rdfs:subClass0f rdfs:resource="&ex;Homo" />
</rdfs:Class>

<ex:HomoSapiens rdf:about="&ex;SebastianRudolph" />
</rdf :RDF>

FIGURE 2.8: Example for class hierarchies in RDFS
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book:uri ex:publishedBy crc:uri .

2.4.4 Subproperties and Property Hierarchies

In the previous section, we argued that properties can be conceived as sets
of individual pairs and hence exhibit some similarity to classes. Thus, one
might wonder whether modeling constructs in analogy to subclass relation-
ships would also make sense for properties. This is indeed the case: RDFS
allows for the specification of subproperties. For example, the property de-
noted by the URI ex:isHappilyMarriedTo is certainly a subproperty of the
one ex:isMarriedTo refers to, as the happily married couples form a (most
probably even proper) subset of all married couples. This connection can be
declared as follows:

ex:isHappilyMarriedTo rdf:subProperty0f ex:isMarriedTo.

Again, situations where this kind of information is of advantage are easy
to imagine. For example by virtue of the above mentioned triple, the RDFS
semantics allows us to deduce from the triple

ex:markus ex:isHappilyMarriedTo ex:anja .

that also the following triple must be valid:

ex:markus ex:isMarriedTo ex:anja .

Consequently, one single subproperty statement suffices to enable an RDFS-
compliant information system to automatically recognize all pairs recorded as
“happily married” additionally as “married”. Note that this way, also proper-
ties can be arranged in complex hierarchies, although this is not as commonly
done as for classes.

2.4.5 Property Restrictions

Frequently, the information that two entities are interconnected by a certain
property allows us to draw further conclusions about the entities themselves.
In particular, one might infer class memberships. For instance, the statement
that one entity is married to another implies that both involved entities are
persons.
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Now it is not hard to see that the predicate’s implicit additional information
on subject and object can be expressed via class memberships: Whenever a
triple of the form

a ex:isMarriedTo b .

occurs, one wants to assert, for example, that both following triples are valid
as well:

a rdf:type ex:Person .
b rdf:type ex:Person .

As in the previously discussed cases, explicitly adding all those class mem-
bership statements to the RDF document would be rather cumbersome and
would require us to repeat the process whenever new information is added
to the document. Again, it seems desirable to have a “macro” or “template’-
like mechanism which is entered just once and ensures the class memberships
imposed by the predicates.

Fortunately the RDFS vocabulary provides means to do exactly this: one
may provide information about a property’s domain via rdfs:domain and
its range via rdfs:range. The first kind of expression allows us to classify
subjects, the second one to type objects that co-occur with a certain predicate
in an RDF triple. The above mentioned class memberships imposed by the
predicate ex:isMarriedTo can now be encoded by the following triples:

ex:isMarriedTo rdfs:domain ex:Person .
ex:isMarriedTo rdfs:range ex:Person .

In the same vein, literal values in the place of the object can be characterized
by stipulating datatypes (e.g., in order to specify that a person’s age should
be a nonnegative number):

ex:hasAge rdfs:range xsd:nonNegativelnteger .

Obviously, domain and range restrictions constitute the “semantic link”
between classes and properties because they provide the only way of describing
the desired terminological interdependencies between those distinct kinds of
ontology elements.

We would also like to address a frequent potential misconception. Suppose
an RDFS document contains the triples:
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ex:authorOf rdfs:range ex:Textbook .
ex:author0f rdfs:range  ex:Storybook .

According to the RDFS semantics, this expresses that every resource in the
range of an authorship relation is both a textbook and a storybook; it does
not mean that somebody may be author of a textbook or a storybook. The
same holds for rdfs:range statements. So, every declared property restriction
globally affects all occurrences of this property; hence one should be careful
when restricting properties and make sure that always a sufficiently general
class (i.e. one containing all possible resources that might occur in the subject
resp. object position) is used.

Some further consideration is needed to prevent a confusion arising rather
frequently. Consider the following RDF knowledge base:

ex:isMarriedTo rdfs:domain ex:Person .
ex:isMarriedTo rdfs:range ex:Person .
ex:instituteAIFB  rdf:type ex:Institution .

Now assume the following triple was to be added to it:

ex:pascal ex:isMarriedTo ex:instituteAIFB .

Omitting deeper contemplations on a possible metaphorical truth of this
statement, this example reveals a potential modeling flaw. A certain similarity
to the “type mismatch” problem in programming shows up here. One might
now expect that this kind of statement is automatically rejected by a system
containing the above range statement (as a database system might reject
changes if certain conditions are violated). However, RDF range and domain
statements do not carry this kind of constraint semantics. The only indicator
that something might be wrong is that by adding that triple to the knowledge
base, counterintuitively, ex:instituteAIFB is additionally typed as a person,
i.e. the triple

ex:instituteAIFB  rdf:type ex:Person .
is a consequence of the above triples.

2.4.6 Additional Information in RDFS

In many cases it is desirable to endow an RDFS document with additional
information which has no semantical impact but increases the understand-
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ability for human users. One might argue that — at least when using XML
syntax — XML-style comments could just be used for this purpose. How-
ever, this would mean relinquishing the basic RDF(S) rationale to represent
all knowledge as a graph, including all additional, comment-like information.
Therefore, RDF'S provides the possibility to embed additional information into
the graph, thereby making it “semantically accessible.” To this end, RDFS
provides a predefined set of property names by means of which additional in-
formation can be encoded without relinquishing the basic idea to represent all
knowledge as a graph. Thereby, all supplementary descriptions can be read
and represented by any RDF-compliant software. We tacitly used rdfs:1label
in Section 2.4.2. Generally, this property-URI serves the purpose of accompa-
nying a resource (which might be an individual but also a class or a property)
with a name which is more handy than its URI. This sort of information can
be used by tools visualizing the RDF document as a graph, where verbose
URIs might impede readability. The object in a triple containing rdfs:label
as predicate has to be a literal, a syntactic restriction which can be expressed
within RDFS by the following triple:

rdfs:label rdfs:range rdfs:Literal .

rdfs:comment is used for assigning comprehensive human-readable com-
ments to resources. Especially if new class or property terms are introduced,
it is reasonable to write down their intended meaning in natural language.
This facilitates the correct and consistent usage of the new terms by other
users who might have a look at the documentation if in doubt. rdfs:comment
also requires a literal as object.

By means of the expressions rdfs:seeAlso and rdfs:isDefinedBy, it is
possible to link to resources that provide further information about the subject
resource. This might be URLs of websites or URIs referring to print media.
In particular, rdfs:isDefinedBy is used to state that the subject resource is
(in some not further specified way) defined by the object resource. According
to the RDFS semantics rdfs:isDefinedBy is stipulated to be a subproperty
of rdfs:seelAlso.

As an example of the constructs introduced in this section consider the
extended passage, given in Fig. 2.9, of the RDFS document from Fig. 2.8.

2.5 Encoding of Special Datastructures

You now know all the central ideas and notions of RDF(S) and the modeling
features used most frequently. From here you might proceed directly to Chap-
ter 3 to see how the semantics of RDF(S) — that we tried to intuitively convey
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xmlns:wikipedia="http://en.wikipedia.org/wiki/"

<rdfs:Class rdf:about="&ex;Primates">
<rdfs:label xml:lang="en">primates</rdfs:label>
<rdfs:comment>
Order of mammals. Primates are characterized by an
advanced brain. They mostly populate the tropical
earth regions. The term ’Primates’ was coined by
Carl von Linné.
</rdfs:comment>
<rdfs:seeAlso rdf:resource="&wikipedia;Primates" />
<rdfs:subClass0f rdfs:resource="&ex;Mammalia" />
</rdfs:Class>

FIGURE 2.9: Additional information in RDFS documents

in this chapter — is defined formally and how automated RDF(S) inferencing
can be realized. Or you might go on reading if interested in what additional
possibilities RDF(S) has in stock for modeling more complex datastructures:
lists and nested propositions.

2.5.1 Lists in RDF

Many-valued relationships, as introduced in Section 2.3.3, are used for ob-
taining a more structured representation of a single object, separating its
single components (ingredient and amount) in distinct triples. The structure
of the triples referring to the auxiliary node thus was specific to the exam-
ple at hand. In many other cases, in contrast, one simply wants to relate a
subject to a set of objects that play similar roles, e.g., when describing the re-
lationship of a book to the set of its authors. To address such use cases, RDF
offers a number of specific constructs that can be used to describe structures
that resemble lists. This can be achieved in two fundamentally different ways:
with containers (open lists) or with collections (closed lists).

It is important to note that all of the following additional expressive features
are only abbreviations for RDF graphs that could as well be encoded by
specifying individual triples. As in the case of rdf:value above, lists in RDF
do not have a specific formal semantics that distinguishes such structures from
other RDF graphs.

2.5.1.1 RDF Container

RDF containers allow us to encode RDF graphs that resemble the one in
Fig. 2.7 in a unified way. We have already seen that the introduction of
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FIGURE 2.10: A list of type rdf:Seq in RDF

blank nodes can be abbreviated in various serializations of RDF. Containers
introduce two additional changes:

e The triples of a list are denoted by standard identifiers instead of using
specific URIs such as ex:amount in Fig. 2.7.

e It is possible to assign a class to a list, hinting at the desired (informal)
interpretation.

An example of a corresponding list is the following specification of this
book’s authors:

<rdf :Description rdf:about="http://semantic-web-book/uri">
<ex:authors>
<rdf:Seqg>
<rdf:1i rdf:resource="http://semantic-web-book.org/uri/Hitzler" />
<rdf:1li rdf:resource="http://semantic-web-book.org/uri/Krétzsch" />
<rdf:1i rdf:resource="http://semantic-web-book.org/uri/Rudolph" />
</rdf:Seq>
</ex:authors>
</rdf :Description>

We would normally expect an element of type rdf :Description instead of
rdf:Seq in this XML serialization. As explained in Section 2.3.4, this syntax
would then also conveniently introduce a blank node. Something quite similar
happens in the above case, as can be seen when considering the resulting RDF
graph in Fig. 2.10. This graph, however, displays some additional features that
require further explanation.

First, we notice that Fig. 2.10 contains one more node than we may have
expected. While book, authors, and the required blank auxiliary node are
present, we see that, additionally, the blank node is typed as an instance of
the class rdf:Seq. This typing mechanism is used to specify the intended
usage of a given list. RDF provides the following types of lists:
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e rdf:Seq: The container is intended to represent an ordered list, i.e. the
order of objects is relevant.

e rdf:Bag: The container is intended to represent an unordered set, i.e.
the order of objects is not relevant, even though it is inherently available
in the RDF encoding.

e rdf:Alt: The container is intended to represent a set of alternatives.
Even though the RDF document specifies multiple objects, only one of
them is usually required in a particular application.

Those class names can be used instead of rdf:Seq in the above example,
but they do not otherwise affect the encoded RDF graph structure. Only
when displaying or interpreting a list in a given application, this additional
informal information may be taken into account.

A second aspect that can be noted in Fig. 2.10 is that the predicates of the
individual list triples are not labeled like the corresponding elements in XML.
Indeed, the RDF /XML serialization uses elements of type rdf:1i for all el-
ements. The graphical representation, in contrast, uses numbered predicates
rdf:_1 to rdf:_3. The XML syntax in this case is merely a syntactic simpli-
fication for encoding an RDF graph that uses predicates of the form rdf: _n.
This encoding also applies if the list is of type rdf:Bag or rdf:Alt, even
though the exact order may not be practically important in these cases. This
method can be used to encode arbitrarily long lists — the RDF specification
defines predicates of the form rdf:_n for any natural number n.

As explained above, the RDF /XML syntax for containers is merely a syn-
tactic abbreviation that can also be avoided by serializing the corresponding
RDF graph directly. Since blank nodes can be abbreviated in a simple way,
Turtle does not provide a specific syntax for RDF containers. One simply
specifies the according triples individually when denoting containers in Tur-
tle.

2.5.1.2 Containers in RDFS

By introducing new predefined names, RDFS further extends the options
for modeling lists described in the previous section. The URI rdfs:Container
denotes the superclass of the three RDF container classes rdf :Bag, rdf:Seq
and rdf:Alt, allowing us to mark a resource as list without specifying the
precise type.

The URI rdfs:ContainerMembershipProperty is used in order to char-
acterize properties, i.e. it refers to a class the instances of which are not
individuals in the strict sense (as a person or a website), but themselves prop-
erties. The only class having properties as members that we have dealt with
so far is the class of all properties denoted by rdf :Property. Consequently
the following triple holds:



Simple Ontologies in RDF and RDF Schema 61

rdfs:ContainerMembershipProperty  rdfs:subClass0f rdf :Property .

Now, what is the characteristic commonality of the properties contained in
the class denoted by rdfs:ContainerMembershipProperty? All these prop-
erties encode the containedness of one resource in the other. Examples of such
properties are those expressing containedness in a list: rdf:_1, rdf:_2, etc.
Although this new class might seem somewhat abstract and of disputable use,
there are possible application scenarios. For instance, a user might want to
define a new type of list or container (as for cooking recipes) together with
a specific containedness property (say, ex:hasIngredient). By typing this
property with rdfs:ContainerMembershipProperty, the user makes this in-
tended meaning explicit:

ex:hasIngredient rdf:type rdfs:ContainerMembershipProperty .

When using just RDF, finding out whether the resource ex: shakespeare is
contained in the list book:uri/Authors would require asking for the validity
of infinitely many triples:

book:uri/Authors rdf:_1 ex:shakespeare .
book:uri/Authors rdf:_2  ex:shakespeare .
book:uri/Authors rdf:_3 ex:shakespeare .

RDFS provides the property name rdfs:member that denotes a property
which is a superproperty of all the distinct containedness properties. As a
practical consequence, the above mentioned problem can now be solved by
querying for the validity of just one triple:

book:uri/Authors  rdfs:member ex:shakespeare .

Yet, there is even more to it: according to the RDFS semantics, every
instance of the rdfs:ContainerMembershipProperty class is a subproperty
of the rdfs:member property. Now, let’s come back to the aforementioned
case of the self-defined container type. Even if the user now states

ex:cookie ex:hasIngredient ex:peanut .
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using his proprietary property, the characterization of ex:hasIngredient as
a containedness property enables us to deduce the validity of the following
triple:

ex:cookie rdfs:member ex:peanut .

2.5.1.3 RDF Collections

The representation of lists as RDF containers is based on auxiliary predi-
cates rdf:_1, rdf:_2, rdf:_3, etc. The resulting sequences of objects thus
can always be extended by adding further triples, but it is not possible to ex-
press that a given list is complete and closed. RDF thus introduces so-called
collections as a means for representing closed lists.

Like containers, collections are not introducing expressivity beyond what
can already be stated by RDF triples, but they can allow for more concise
RDF serializations. Let us first consider the following RDF /XML fragment:

<rdf:Description rdf:about="http://semantic-web-book/uri">
<ex:authors rdf:parseType="Collection">
<rdf :Description
rdf :about="http://semantic-web-book.org/uri/Hitzler" />
<rdf :Description
rdf :about="http://semantic-web-book.org/uri/Krdtzsch" />
<rdf :Description
rdf :about="http://semantic-web-book.org/uri/Rudolph" />
</ex:authors>
</rdf :Description>

This syntactic description of a collection strongly resembles the explicit
representation of a single triple, but it contains three objects instead of the
usually unique rdf :Description. Furthermore, we encounter once more the
attribute rdf : parseType, this time with the value Collection.

The corresponding RDF graph is the linked list that is shown in Fig. 2.11.
We immediately see that the graph structure differs significantly from the
containers introduced in the previous section. The underlying principle of this
representation is that any non-empty list can be split into two components:
a list head (the first element of the list) and a list rest. The rest of the list
can again be decomposed in this way, or it is the empty list without further
elements.

We can thus uniquely describe the closed list by specifying its head and
rest. As can be seen in Fig. 2.11, the RDF predicates used for this purpose are
rdf:first and rdf:rest. Since any list can be completely described in this
way, the URIs of the individual list nodes are not significant. Consequently,
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FIGURE 2.11: A collection in RDF

http://example.org/authors

all non-empty (partial) lists in Fig. 2.11 are represented by blank nodes. The
only exception is the empty list, which cannot be decomposed further. It is
represented in RDF by the URI rdf :nil.

The empty list concludes the linked list, and indicates that no further ele-
ments follow. We may thus indeed speak of a closed list: By adding additional
triples, one could merely produce RDF graphs that are not proper encodings
of a collection, but one cannot add additional elements to the list.

Although collections could again be encoded in individual triples, Turtle
also provides a more convenient notation for such lists using parentheses. A
corresponding Turtle serialization of the above example could be as follows:

Q@prefix book: <http://semantic-web-book.org/> .
book:uri  <http://example.org/authors>
( book:uri/Hitzler book:uri/Krétzsch book:uri/Rudolph )

2.5.2 Propositions About Propositions: Reification

Much more frequently than we are aware of, we make propositions referring
to other propositions. As an example, consider the sentence: “The detective
supposes that the butler killed the gardener.” One naive attempt to model
this situation might yield:

ex:detective ex:supposes "The butler killed the gardener."

One of the problems arising from this way of modeling would be that the
proposition in question — expressed by a literal — cannot be arbitrarily refer-



64 Foundations of Semantic Web Technologies

enced in other triples (due to the fact that literals are only allowed to occur as
triple objects). Hence it seems more sensible to use a URI for the proposition
leading to something like:

ex:detective ex:supposes ex:theButlerKilledTheGardener .

Yet, this approach leaves us with the problem that the subordinate clause
of our sentence is compressed into one URI and hence lacks structural trans-
parency. Of course it is easy to model just the second part of the sentence as
a separate triple:

ex:butler ex:killed ex:gardener

Actually, a kind of “nested” representation, where the object of a triple is
a triple on its own, would arguably best fit our needs. However, this would
require a substantial extension of the RDF syntax.

One alternative option, called reification, draws its basic idea from the
representation of many-valued relations as discussed in Section 2.3.3: an aux-
iliary node is introduced for the triple about which a proposition is to be
made. This node is used as a “handle” to refer to the whole statement. Ac-
cess to the inner structure of the represented triple is enabled by connecting
the auxiliary node via the property-URIs rdf:subject, rdf:predicate and
rdf :object with the respective triple constituents. The corresponding triple
is then called reified (“thing-made”, from lat. res thing and facere to make).
Using this method, our above sentence could be described by the following
four triples:

ex:detective ex:supposes ex:theory .
ex:theory rdf :subject ex:butler .
ex:theory rdf :predicate ex:hasKilled .
ex:theory rdf:object ex:gardener .

It is important to be aware that writing down a reified triple does not mean
asserting its actual validity. In particular the previous specification does not
allow us to conclude the triple:

ex:butler ex:hasKilled ex:gardener

Note that this makes sense, as the detective’s theory might turn out to be
false.
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FIGURE 2.12: Example of multiple reification in graph representation

In addition to the reification properties already provided by the RDF vo-
cabulary, RDFS contains the class name rdf : Statement that can be used to
mark the “central” node of a reified triple:

ex:theory rdf:type rdf:Statement .

If the reified proposition is to be referenced only locally, it can be rep-
resented by a blank node. Note also that this way of modeling also allows
for multiply nested propositions. An example of both modeling aspects is
depicted in Fig. 2.12. With the knowledge acquired in this section you are
certainly capable of decoding its content.”

2.6 An Example

In order to illustrate the essential modeling capabilities of RDFS, we give a
small ontology as an example. For the sake of simplicity, we omit literals and
datatypes. Suppose that an RDF document contains the following triples:

"Hint: It’s also some sort of detective story; see Genesis 4:1-16 or Qur’an at 5:26-32 or
Moses 5:16-4.
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ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .
ex:sebastian rdf :type ex:AllergicToNuts
ex:sebastian ex:eats ex:vegetableThaiCurry .
ex:AllergicToNuts rdfs:subClass0f ex:Pitiable .
ex:thaiDishBasedOn rdfs:domain ex:Thai
ex:thaiDishBasedOn rdfs:range ex:Nutty .
ex:thaiDishBasedOn rdfs:subProperty0f ex:hasIngredient
ex:hasIngredient rdf:type rdfs:ContainerMembershipProperty.

This RDFS specification models the existence of “vegetable thai curry”,
a Thai dish based on coconut milk.® Moreover we learn about a resource
“Sebastian” belonging to the class of individuals allergic to nuts. The third
triple states that Sebastian eats the vegetable Thai curry. These statements
constitute the so-called assertional knowledge making propositions about the
concrete entities of our domain of interest.

As terminological knowledge, our tiny ontology expresses that the class of
nut-allergic individuals is a subclass of the class of pitiable things, that any
Thai dish (based on something) belongs to the class of Thai things, and (re-
flecting the personal experience of the afflicted author) that any Thai dish
is based only on ingredients belonging to the class of nutty things. Finally,
we learn that whenever a (Thai) dish is based on something it also contains
that “something” and that “having something as ingredient” constitutes a con-
tainedness property. Figure 2.13 shows the same ontology depicted as a graph
and once more illustrates the distinction between terminological (or schema)
knowledge and assertional (also: factual) knowledge. From knowledge speci-
fied in this way, it is now possible to derive implicit knowledge. In the next
chapter, we provide the theoretical foundations for this and give an example
showing how to automatically draw conclusions from the ontology introduced
here.

8The usage of the property ex:thaiDishBasedOn is rather questionable from the perspective
of a good modeling practice, as arguably too much information is squeezed into one property
which thereby becomes overly specific. However, we used it for the sake of a small yet
informative example. Moreover, we employed it to circumvent a modeling weakness of RDF:
if the example were paraphrased using a ex:ThaiDish class and a ex:basedOn property, we
would no longer be able to express the proposition “Everything a Thai dish is based on is
nutty”.
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rdfs:ContainerMembershipProperty

rdf:type

ex:haslIngredient @

rdfs:subClassOf rdfs:domain rdfs:subPropertyOf ~ /rdfsirange

ex:Pitiable @

A

@@ ex:thaiDishBasedOn
7y .
terminological knowledge (RDFS)
rdf:type assertional knowledge (RDF) :

ex:eats . ex:thaiDishBasedOn
ex:sebastian ex:vegetableThaiCurry »(ex:coconutMilk

FIGURE 2.13: Graph representation of a simple RDFS ontology

2.7 Summary

In this chapter, we have introduced the description language RDF and its
extension RDFS. Both rely on a data model of graph structures consisting of
basic elements called triples, which are also used for encoding more complex
data structures like lists. URIs admit the unique identification of nodes and
edges in those triples. While RDF essentially serves the purpose of making
propositions about the relationships of singular objects (individuals), RDFS
provides means for specifying terminological knowledge in the form of class
and property hierarchies and their semantic interdependencies.

2.7.1 Overview of RDF(S) Language Constructs
RDF(S) classes

rdfs:Class rdf :Property
rdfs:Resource rdfs:Literal
rdfs:Datatype rdf:XMLLiteral
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RDF(S) properties

rdfs:range
rdf :type

rdfs:domain
rdfs:subClass0f

rdfs:subProperty0f rdfs:label
rdfs:comment
RDF lists
rdfs:Container rdf :Bag
rdf:Seq rdf:Alt
rdf:1i rdf:_1
rdf:_2 .
rdfs:ContainerMembershipProperty rdfs:member
rdf:List rdf:first
rdf :rest rdf:nil
reification

rdf :Statement

rdf:subject

rdf:predicate rdf:object
RDF attributes
rdf :about rdf:ID
rdf:resource rdf:nodelD
rdf :datatype
XML attributes
xml :base xmlns
xml:lang

RDF(S) further constructs

rdf :RDF

rdfs:seellso

rdfs:isDefinedBy rdf:value
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2.8 Exercises

Exercise 2.1 Consider the following RDF document:

<rdf :RDF
xmlns:rdf="http://www.w3.0org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf -schema#"
xmlns:iswww="http://sw.edu/#"

>

<rdf:Description rdf:about="http://sw.edu/#germany">
<rdf:type rdf:resource="http://sw.edu/#country" />
</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#capital_of">
<rdf:type
rdf:resource="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#Property"/
>
<rdfs:domain rdf:resource="http://sw.edu/#city" />
<rdfs:range rdf:resource="http://sw.edu/#country" />
</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#country">
<rdf:type rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Class" />
<rdfs:label xml:lang="de">Land</rdfs:label>

</rdf:Description>

<rdf:Description rdf:about="http://sw.edu/#berlin">
<rdfs:label xml:lang="en">Berlin</rdfs:label>
<rdf:type rdf:resource="http://sw.edu/#city" />
<iswww:capital_of rdf:resource="http://sw.edu/#germany" />
</rdf :Description>

<rdf :Description rdf:about="http://sw.edu/#city">
<rdf:type rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Class" />
<rdfs:label xml:lang="de">Stadt</rdfs:label>

</rdf:Description>

</rdf :RDF>
e Describe in natural language the content of this document.

e Draw the graph representation of the above document.

Exercise 2.2 Write down the modeled list of authors of this book from
page 63 in Turtle syntax.
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Exercise 2.3 Translate the culinary-allergic example ontology presented in
Section 2.6 into RDF /XML syntax.

Exercise 2.4 Represent the following sentences graphically by means of rei-
fied triples:

e Romeo thought that Juliet was dead.
e John believes that Mary wants to marry him.

e The dwarf noticed that somebody had been eating from his plate.

Exercise 2.5 Decide whether the following propositions can be satisfactorily
modeled in RDFS and, if so, give the corresponding RDF(S) specification.

e Every pizza is a meal.

e Pizzas always have at least two toppings.

e Every pizza from the class PizzaMargarita has a Tomato topping.
e Everything having a topping is a pizza.

e No pizza from the class PizzaMargarita has a topping from the class
Meat.

e “Having a topping” is a containedness relation.

2.9 Further Reading
The documents of the RDF(S) specification of 2004 are

e “RDF Primer” [MMO04], which gives a first overview and introduction to
the Resource Description Framework,

e “RDF Concepts and Abstract Syntax” [KC04], where the basic concepts
and data model of RDF are introduced,

e “RDF Vocabulary Description Language 1.0: RDF Schema” [BG04],
introducing the RDF'S vocabulary and its intended meaning,

e “RDF /XML Syntax Specification” [Bec04], defining the XML serializa-
tion of RDF,

e “RDF Semantics” [Hay04|, which details the formal semantics of RDF
and RDFS,
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e “RDF Test Cases” [GB04|, which specifies the design and usage of the
RDF test suite that can be used to check the conformance of RDF tools.

These documents have replaced the initial RDF specification “RDF Model
and Syntax” [LS99| which was published as a W3C recommendation in 1999,
and the first RDF Schema candidate recommendation [BG00] of 2000. The
early version of RDF that is described in those older documents is not com-
patible with the updated specifications of 2004.

The Turtle syntax for RDF is defined online at [BBL08|. A very restricted
subset of Turtle is N-Triples, which is introduced as part of the RDF test
case document [GB04]. A much more extensive formalism is Notation3 (also
known as N3) [BLal|, which does not only encompass all of Turtle, but also
further expressive features that go beyond what can be expressed in RDF.
However, the available online resources currently provide only an “early draft
of a semi-formal semantics of the N3 logical properties” [BLb]| instead of a
complete specification.






Chapter 3

RDF Formal Semantics

After having dealt with the RDF(S) language in the previous sections, we
now attend to its semantics. Our explanations closely follow the official W3C
RDF semantics specification document [Hay04].

Before that, we will briefly explain why the definition of a formal semantics
became necessary (note that in the early days of RDF, there was no explicit,
mathematically defined semantics) and the advantages it brings about.

3.1 Why Semantics?

The term semantics (from Greek onuavrikos “significant”) is used in many
different contexts (like logic, linguistics, or programming languages to name
just three). Probably the most appropriate corresponding English term is
“meaning.”

In this chapter, we mainly focus on the logical dimension of the notion of
semantics, frequently referred to by the less ambiguous term formal semantics.

Introducing a formal semantics for RDF(S) became necessary because the
previous informal RDF(S) specification — though successful in conveying some
intuition — left plenty of room for interpretation about what conclusions can
be drawn from a given specification. Indeed, first implementations of RDF(S)
storage and reasoning tools (so-called triple stores) provided differing results
to posed queries, a situation severely obstructing interoperability of tools and
interchangeability of specifications, aims the RDF(S) standard actually was
designed for.

While providing sets of examples for valid and invalid conclusions might
clarify some singular cases, this can never ensure that each of the infinitely
many entailments in question will be agreed upon. The most convenient way
to resolve this problem is to avoid the vagueness of an informal specification
by providing a well-defined formal semantics.

For our further considerations, it is necessary to define the notion of se-
mantics in a mathematically precise way. As mentioned before, the central
purpose of mathematical logic is to formalize correct reasoning. Hence, we
first need a notion for statements as the basic elements of our reasoning pro-
cess. Those elementary constituents are usually referred to as propositions.

73
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What exactly the propositions are depends on the specific logic under consid-
eration. In our case, for instance, the propositions are RDF triples. In the
appendix you can find another example of logic propositions in the context
of first-order predicate logic. Given a specific logic, let us denote the set of
all propositions by P. Furthermore, we need a notation to state that, e.g.,
propositions p3 and p4 are logical consequences of the propositions py, and po.
Most commonly, this is expressed by {p1,p2} |E {ps,ps}, where |= is called
entailment relation and relates sets of propositions with sets of propositions
(hence: |= C 2F x 2F). A logic L is therefore composed of a set of propositions
together with an entailment relation and can be described by L = (P, =) on
an abstract level.

There are numerous ways to define the entailment relation of a specific logic.

In the following, we will attend to a rather frequently employed method that
is also used in the case of RDF(S).

3.2 Model-Theoretic Semantics for RDF(S)

We start by giving a high-level perspective of the notion of model-theoretic
semantics. Thereby, one central notion is that of an interpretation. Interpre-
tations might be conceived as potential “realities” or “worlds.” In particular,
interpretations need in no way comply with the actual reality. In formal logic,
one usually chooses certain mathematical structures as interpretations in or-
der to work in a formally correct way. Which structures to choose in particular
depends on the considered logic.

After stipulating what the interpretations of a logic are, one proceeds by
defining how to decide whether a specific interpretation I satisfies a specific
proposition p € P (in which case we call I model of p and write I |= p, using
the same symbol as for the entailment relation). Moreover, for a set P C P of
propositions, one says that I is a model of P (written I |= P), if it is a model
for every p € P.

Based on this “model relation” the actual entailment relation is defined in
the following (also intuitively plausible) way: a proposition set P’ C P is
entailed by a set of propositions P C P (written: P | P’) if and only if
every interpretation I satisfying all sentences p from P (formally: I = P) is
also a model of every sentence p’ from P’ (i.e., I = P’). Figure 3.1 depicts
this correspondence graphically. To further illustrate the basic concept of this
definition, consider the following (only halfway formal) analogy: “light green”
entails “green,” because all light green things are also just green. Using the
terminology just introduced and thinking of interpretations as single real world
objects, this can be expressed as follows: {light green} [E=green, because every
thing (every interpretation) I that satisfies light green (i.e., I |=light green)
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propositions

logical
entailment

Py P2 Ps

models models models
of p, of p; of p,

interpretations

FIGURE 3.1: Definition of the entailment relation via models

RDFS-interpretations

RDF-interpretations

simple interpretations

FIGURE 3.2: Correspondence of interpretations

is automatically also a model of the proposition green (i.e., I [=green).

We define the model-theoretic semantics for RDF(S) in several steps: we
start by the comparably easy definition of simple interpretations of graphs.
After that, we provide additional criteria which qualify these interpretations as
RDF-interpretations. Finally we give further constraints to be fulfilled by an
RDF-interpretation in order to be acknowledged as an RDFS-interpretation.
As a natural consequence of this approach, every RDFS-interpretation is a
valid RDF-interpretation and every RDF-interpretation constitutes a simple
interpretation. This correspondency is depicted in Fig. 3.2.

3.2.1 Simple Interpretations

So, let us first have a look at the so-called simple interpretations. We shall
use the Turtle syntax introduced in Section 2.2 in order to represent RDF
graphs, presuming the two conventionally used prefix definitions

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
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Our starting point for the definition of interpretations is the notion of vo-
cabulary, introduced in Section 2.2.6 and further elaborated in Section 2.4.
Formally, a vocabulary is just an arbitrary set containing URIs and literals.

Of course, the aim of the introduced semantics is to correctly reflect the
intuition behind RDF graphs; hence the interpretations to be defined in the
sequel should — although more abstract — in a certain sense be similar to the
“possible worlds” resp. “realities” described by the graphs.

As pointed out in Chapter 2, triples are employed to describe how resources
are interrelated via properties. Consequently, an interpretation contains two
sets IR and IP, the elements of which can be understood as abstract resources
resp. properties, as well as a function Igxr that tells which resources are in-
terconnected by which properties. So, “resource” and “property” are notions
which are purely semantic and to be used on the interpretation side only,
whence — in the strict sense — it would be wrong to say that URIs (or liter-
als) are resources. More precisely, one should state that (syntactic) URIs or
literals stand for or represent (semantic) resources. And exactly this kind of
representation is encoded by further functions that assign a semantic counter-
part to every URI and literal. In the case of simple interpretations, all URIs
are treated equally as there is no “semantic special treatment” for the RDF
and the RDFS vocabulary.

So we define: a simple interpretation Z of a given vocabulary V' consists of

e /R, a non-empty set of resources, alternatively called domain or universe
of discourse of Z,

e [P, the set of properties of Z (which may overlap with IR),

e Ipxr, a function assigning to each property a set of pairs from IR,
ie. Ipxr : IP — 21X where Igxr(p) is called the extension of the
property p,

e Ig, a function, mapping URIs from V into the union of the sets IR and
IP ie. Ig:V — IRUIP,

e [;,, a function from the typed literals from V into the set IR of resources
and

e LV a particular subset of IR, called the set of literal values, containing
(at least) all untyped literals from V.

Based on the sets IR, IP, and LV as well as the functions Igxr, Is, and Iy,
we now define an interpretation function -Z that in the first place maps all
literals and URIs contained in the vocabulary V' to resources and properties:

e cvery untyped literal "a" is mapped to a, formally: ("a")? = a,

e every untyped literal carrying language information "a"@t¢ is mapped
to the pair (a, t), ie. ("a"@Qt)T = (a,t),
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e every typed literal 1 is mapped to Ir,(1), formally: 1Z =1p(1), and
e every URI u is mapped to Is(u), i.e. uZ = Is(u).

Note that, as mentioned in Section 2.1.3, untyped literals without language
information are essentially mapped to themselves, while untyped literals with
language information are assigned to pairs consisting of the pure literal and
the language identifier. Figure 3.3 graphically illustrates this part of the
definition of a simple interpretation.

<
names 3
o
literals URIs g_)
untyped typed i
-
15}
S
@
)
=
=}
N

FIGURE 3.3: Schematic representation of a simple interpretation

Now, starting from the definition of the interpretation function with respect
to single basic RDF elements, we further extend this function in a way that
it assigns a truth value (true or false) to every grounded triple (i.e. every
triple not containing blank nodes): the truth value s p 0.7 of a grounded
triple s p o. will be true exactly if all of its constituents s, p, and o are
contained in the vocabulary V and additionally (s?,0?) € Igxr(p?) holds.
Verbally, the latter condition demands that the pair constructed from the
resources assigned to s and o is within the extension of the property denoted
by p. Figure 3.4 graphically displays this condition. If one of these mentioned
conditions is violated, the truth value will be false.

Finally, the interpretation function -Z also assigns a truth value to every
grounded graph G: G7 is true if and only if every triple contained in the
graph G is true, i.e. GT = true exactly if T = true for all T € G.

Mark that the notion of interpretation which we have introduced so far
only covers grounded graphs, i.e. those not containing blank nodes. In order
to enable an interpretation to deal with blank nodes, we have to further
generalize our technical notion of interpretation. For this, the essential idea
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triple

FIGURE 3.4: Criterion for the validity of a triple with respect to an
interpretation

is to let a graph that contains blank nodes be valid, if everyone of these blank
nodes can be replaced by a resource, such that the resulting bnode-free graph
is valid. Hence, let A be a function assigning a resource from IR to every blank
node occurring in G. Moreover, we define for such a mapping A and a given
interpretation Z a sort of combined interpretation Z+ A that behaves exactly
like 7 on the URIs and literals but additionally uses A to assign resources to
all blank nodes: (b)%** = A(b). Accordingly T+ A can be extended to triples
and further to graphs.

Eventually, we have to abstract from the concrete blank node assignments
by stipulating that a (non-combined) interpretation Z be a model of a graph
G if there exists a function A’, such that GTH = trye. By this trick, we have
extended our original notion of an interpretation to non-grounded graphs. An
example of such a simple interpretation is given in Fig. 3.5.

In full compliance with the idea of model-theoretic semantics, we now say
that a graph G7 (simply) entails a graph Ga, if every simple interpretation
that is a model of GG; is also a model of Gs.

3.2.2 RDF-Interpretations

As mentioned earlier, simple interpretations essentially treat all URIs oc-
curring in the vocabulary in the same way, irrespective of their namespace and
their intended special meaning. For example, a simple interpretation does not
semantically distinguish between the URIs ex:publishedBy and rdf:type.
In order to restore the fixed vocabulary to its intended meaning, the set of ad-
missible interpretations has to be further restricted by additional constraints.

The RDF vocabulary Vgpr consists of the URIs
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Let us consider as an example the graph from Fig. 2.7. The corresponding
vocabulary V' consists of all names of nodes and edges of the graph.
A simple interpretation Z for this vocabulary would now be given by:

IR = {X,’U,T,Z/,G,Mllb} IS: ex:
IP = {T,V,L} ex:

ex:
LV = {1p} -
T = 7 {(x,)} o

v {{ev)} :
o {{e, 1ib)) L

chutney — X
greenMango — v
:hasIngredient — 7
ingredient — v
:amount =L

is the “empty function,” since
there are no typed literals.

Letting A : _:idl — ¢, we note that the interpretation Z+ A valuates all

three triples of our considered graph with true:

(ex:chutney?™, _:id17t4) = (x, ¢) € Igxr(7) =Imxr(ex:hasIngredien

tI+A )

(_:id1™ ex:greenMango’™)= (¢, v) € Ipxr (V) =Imxr(ex: ingredient?)
(_:id1THA 11" T = (e, 11b) € Trxr (1) = Ipxr (ex : amountZH4)

Therefore, the described graph as a whole is also valued with ¢true. Hence,
the simple interpretation Z is a model of the graph.

FIGURE 3.5: Example of an interpretation
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rdf:type rdf:Property rdf:XMLLiteral rdf:nil rdf:List rdf:Statement
rdf:subject rdf:predicate rdf:object rdf:first rdf:rest rdf:Seq
rdf :Bag rdf:Alt rdf:value

plus an infinite number of URIs rdf_i for every positive integer 3.

Recall the intuitive semantics for this vocabulary: rdf:type is used to
assign a type to a URI; in other words, it declares that the resource associated
to this URI belongs to a certain class. The name rdf :Property denotes such
a class and characterizes all those URIs that may serve as a triple’s predicate,
i.e. those URIs whose assigned resources have an extension (i.e. which are
in IP in terms of simple interpretations). Consequently, only interpretations
satisfying those conditions will be admitted.

As we learned in Section 2.3.1, there is exactly one predefined datatype
in RDF, namely, rdf :XMLLiteral. As opposed to other (externally defined)
datatypes, the special characteristics of this one are explicitly taken care of in
the RDF semantics definition. In order to do this, it is necessary to distinguish
between well-typed and ill-typed XML literals. An XML literal is categorized
as well-typed if it satisfies the syntactic conditions for being contained in the
lexical space of rdf:XMLLiteral; otherwise it is ill-typed.

This distinction is relevant for the subsequent definition, because well-typed
literals are mapped to literal values (i.e. elements of LV'), whereas ill-typed
ones are mapped to resources that are not literal values.

An RDF-interpretation of a vocabulary V is a simple interpretation of the
vocabulary V U Vrpr that additionally satisfies the following conditions:

e x € IP exactly if (z,rdf:Property?) € Igxr(rdf:typel).

x is a property exactly if it is connected to the resource denoted
by rdf:Property via the rdf:type-property (this automatically
causes IP C IR for any RDF-interpretation).

e if "s"""rdf:XMLLiteral is contained in V and s is a well-typed XML-
Literal, then
- Ip("s"""rdf:XMLLiteral) is the XML value® of s;
- Ip("s"""rdf:XMLLiteral) € LV;

- (I("s"""rdf:XMLLiteral),rdf:XMLLiteral”)
€ Ipxr(rdf : type?l)

1The value space of the datatype assigned to rdf:XMLLiteral contains, for every well-
typed XML string (from the lexical space), exactly one so-called XML value. The RDF
specification does not give further information about the nature of XML values; it only
requires that an XML value is not an XML string, nor a data value, nor a Unicode string.
For our purposes and the intuitive usage, however, it does no harm to suppose that XML
values are just XML strings.



RDF Formal Semantics 81

e if "s"""rdf:XMLLiteral is contained in V' and s is an ill-typed XML
literal, then

- Ip("s"""rdf:XMLLiteral) ¢ LV and
- (IL("s"~"rdf:XMLLiteral),rdf:XMLLiteral”)
& Tpxr (rdf : type?).

In addition to those semantic restrictions, RDF-interpretations have to sat-
isfy the condition that all of the subsequent triples (called aziomatic triples)
must be valued as true:

rdf : type rdf : type rdf : Property.
rdf : subject rdf : type rdf :Property.
rdf : predicate rdf:type rdf :Property.
rdf : object rdf : type rdf :Property.
rdf : first rdf : type rdf :Property.
rdf : rest rdf : type rdf : Property.
rdf : value rdf : type rdf :Property.
rdf: i rdf : type rdf :Property.
rdf : nil rdf : type rdf:List.

Again, the 7 in rdf:_i is to be replaced by all positive integers; therefore
we actually have infinitely many axiomatic triples.

Except for the last one, all those triples serve the purpose of marking re-
sources that are assigned to particular RDF URIs as properties. This is done
in the usual way by typing them with rdf:type rdf:Property which due to
the above definition of RDF-interpretations has exactly the desired effect.

Together, the listed restrictions ensure that an RDF-interpretation complies
with the intended meaning.

In exact analogy to the definition of the simple entailment, we now say
that a graph G; RDF-entails a graph G5 if every RDF-interpretation that is
a model of GG; is also a model of G5.

3.2.3 RDFS Interpretations

As pointed out in Section 2.4, RDFS enriches the RDF vocabulary by fur-
ther constructs which have to be interpreted in a special way. For example,
new class names are introduced that allow us to mark a URI as referring to
a resource, to an untyped literal, or to a class via rdf:type. New URIs for
properties allow for characterizing domain and range of a property by typing
them with classes. Moreover class names as well as property names can be put
into hierarchical relations. This set of modeling options enables us to express
schematic or terminological knowledge in the form of triples.

The RDFS vocabulary Vrprs to be specifically interpreted consists of the
following names:



82 Foundations of Semantic Web Technologies

rdfs:domain rdfs:range rdfs:Resource rdfs:Literal rdfs:Datatype
rdfs:Class rdfs:subClass0f rdfs:subProperty0f rdfs:member
rdfs:Container rdfs:ContainerMembershipProperty rdfs:comment
rdfs:seeAlso rdfs:isDefinedBy rdfs:label

For the sake of a simpler presentation, we introduce a new function Icgxr
which, given a fixed RDF-interpretation, maps resources to sets of resources
(formally: Icgxr : IR — 2'%). We define Icpxr(y) to contain exactly those
elements x for which (x,%) is contained in Igxr (rdf : type?). The set Icgxr (y)
is then also called the (class) extension of y.

Moreover we let IC' denote the class extension of the URI rdfs:Class,
formally: IC = Icpxr(rdfs:Class?). Note that both Icgxr as well as IC' are
uniquely determined by -7 and Igxr.

We now employ the newly introduced function in order to specify the se-
mantic requirements on an RDFS-interpretation:

An RDFS-interpretation of a vocabulary V is an RDF-interpretation of the
vocabulary V U Vrprg that in addition satisfies the following criteria:

e IR = Icpxr(rdfs:Resource?)
Every resource has the type rdfs:Resource.
o LV = Icpxr(rdfs:Literal?)
Every untyped or well-typed literal has the type rdfs:Literal.
o If (z,y) € Ipxr(rdfs:domain?) and (u,v) € Ipxr(z),
then u € Icpxr(y).
If z and y are interconnected by the property rdfs:domain and
the property = connects the resources v and v, then v has the type
Y.
o If (z,y) € Ipxr(rdfs:range?) and (u,v) € Ipxr(z),
then v € Iemxr(y).

If x and y are interconnected by the property rdfs:range and the
property x connects the resources u and v, then v has the type y.

e Igxr(rdfs:subProperty0f?) is reflexive and transitive on IP.

The rdfs:subProperty0f property connects every property with
itself.

Moreover: if rdfs:subProperty0f links property  with property
y and also y with the property z, then rdfs:subProperty0f also
links x directly with z.

o If (x,9) € Igxr(rdfs:subProperty0f?),
then x,y € IP and Igxr(z) C Igxr(y).

Whenever = and y are interlinked by rdfs:subProperty0f, then
both x and y are properties and every pair of resources contained
in x’s extension is also contained in the extension of y.
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o Ifz e IC,
then (v, rdfs:Resource’) € Igxr(rdfs:subClass0f?).

Every class x is a subclass of the class of all resources, i.e. the
pair constructed from z and rdfs:Resource is in the extension of
rdfs:subClass0f.

o If (z,y) € Igxr(rdfs:subClass0f?),
then z,y € IC and Icmxr(x) C Iomxr(v).

If z and y are in the rdfs:subClass0f relation, then both x and y

are classes and the (class) extension of z is a subset of the (class)
extension of y.

e Igxr(rdfs:subClass0f?) is reflexive and transitive on IC.

The rdfs:subClass0f property connects each class with itself.

Moreover if the rdfs:subClass0f property connects a class x with
a class y and y with some class z, it also connects x with z directly.

e If 2 € Icpxr(rdfs:ContainerMembershipProperty?),
then (z,rdfs:member?) € Ipxr(rdfs:subProperty0f?).

Any property typed with rdfs:ContainerMembershipProperty is
in the rdfs:subProperty0f relation to the rdfs:member property.

o If v € Iopxr (rdfs:Datatype?),
then (v, rdfs:Literal”?) € Ipxr(rdfs:subClass0f?)

Any zx typed as rdfs:Datatype must be a subclass of the class of
all literal values (denoted by rdfs:Literal).

In analogy to the definition of RDF-interpretations, we name a list of ax-
iomatic triples which (in addition to the aforementioned constraints) have
to be satisfied by an RDF-interpretation in order to render it an RDFS-
interpretation:

rdf:type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf :Property .
rdfs:range rdfs:domain rdf :Property .
rdfs:subProperty0f rdfs:domain rdf:Property .
rdfs:subClass0f rdfs:domain rdfs:Class .
rdf:subject rdfs:domain rdf :Statement .
rdf :predicate rdfs:domain rdf:Statement .
rdf:object rdfs:domain rdf:Statement .
rdfs:member rdfs:domain rdfs:Resource .
rdf:first rdfs:domain rdf:List .

rdf :rest rdfs:domain rdf:List .
rdfs:seelAlso rdfs:domain rdfs:Resource .

rdfs:isDefinedBy rdfs:domain rdfs:Resource .
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rdfs:comment rdfs:domain rdfs:Resource
rdfs:label rdfs:domain rdfs:Resource
rdf:value rdfs:domain rdfs:Resource
rdf :type rdfs:range rdfs:Class
rdfs:domain rdfs:range rdfs:Class
rdfs:range rdfs:range rdfs:Class
rdfs:subProperty0f rdfs:range rdf :Property .
rdfs:subClass0f rdfs:range rdfs:Class
rdf:subject rdfs:range rdfs:Resource
rdf :predicate rdfs:range rdfs:Resource
rdf:object rdfs:range rdfs:Resource
rdfs:member rdfs:range rdfs:Resource
rdf:first rdfs:range rdfs:Resource
rdf :rest rdfs:range rdf:List
rdfs:seeAlso rdfs:range rdfs:Resource
rdfs:isDefinedBy rdfs:range rdfs:Resource
rdfs:comment rdfs:range rdfs:Literal .
rdfs:label rdfs:range rdfs:Literal .
rdf :value rdfs:range rdfs:Resource

rdfs:ContainerMembershipProperty

rdfs:subClassOf rdf :Property .
rdf:Alt rdfs:subClass0f rdfs:Container .
rdf :Bag rdfs:subClass0f rdfs:Container .
rdf:Seq rdfs:subClass0f rdfs:Container .

rdfs:isDefinedBy rdfs:subProperty0f rdfs:seeAlso .

rdf :XMLLiteral rdf :type rdfs:Datatype
rdf:XMLLiteral rdfs:subClass0f rdfs:Literal .
rdfs:Datatype rdfs:subClass0f rdfs:Class
rdf:_i rdf:type
rdfs:ContainerMembershipProperty .
rdf:_i rdfs:domain rdfs:Resource .
rdf:_: rdfs:range rdfs:Resource .

Again, i can be replaced by any positive integer. Obviously this set of triples
can be divided into several groups. The first group contains triples with pred-
icate rdfs:domain. The declarative purpose of such a triple p rdfs:domain
c is to associate the URI p with a class name c. Basically, this enforces a
class membership (realized via rdf:type) for every URI s occurring as a sub-
ject together with the predicate p in a triple s p o . For example, the fifth
triple in this list just states that whenever a triple ¢ rdfs:subclass0f d is
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encountered, an immediate consequence is that ¢ denotes a class, expressed
by the triple ¢ rdf:type rdfs:Class.

Similarly, the triples gathered in the second group and having the predicate
rdfs:range cause class memberships of triple objects.

As to containers, the axiomatic triples specify the class of all containedness
properties as subclass of the class of all properties. Additionally, the class
denoted by rdfs:Container is declared as the superclass of all kinds of open
lists.

Moreover, the rdfs:isDefinedBy property is classified as a special case of
the rdfs:seeAlso property. The class of XML values is marked as a datatype
and subclass of all literal values, and the class of all datatypes is identified as
a class of classes.

Finally the predefined containedness properties for lists are characterized
as such.

Based on the introduced notion of an RDFS-interpretation and in analogy
to the previous two cases, we now define that a graph G; RDFS entails a
graph G5 if every RDFS-interpretation that is a model of G is also a model
of GQ.

3.2.4 Interpretation of Datatypes

We already know that there is just one predefined datatype in RDFS,
namely, rdf : XMLLiteral, the semantic characteristics of which are fully cov-
ered by the definition of RDFS-interpretation in the previous section. Never-
theless, other externally defined datatypes can be used in RDF(S).

In Section 2.3.1 we learned that a datatype d is composed of a value space
Valg, a lezical space Lexy and a function Lex2Valy, assigning a value to ev-
ery element of the lexical space, formally: d = (Valy, Lexq, Lex2Valy) with
Lex2Valy : Lexy — Valg.

In the same section we also mentioned that when employing external data-
types, one can have URIs referring to those datatypes within the vocabulary.
This allows for making statements about datatypes within an RDF(S) spec-
ification. For example, it might be reasonable to specify that the natural
numbers are a subset of the integers.

In order to capture the entirety of all datatypes used in an RDF(S) de-
scription, we introduce the notion of a datatype map D, a function assigning
the datatypes to their URIs: D : u— d. Of course, the predefined datatype
has to be treated accordingly; hence we require every datatype map to satisfy
D(I‘df :XMLLiteral) = dxXMLLiteral -

Given a datatype map D, we now define a D-interpretation of the vocabu-
lary V' as an RDFS-interpretation Z of V.U {a | there is a d with D(a) = d}
(that means the vocabulary V' extended by the domain of D) that for every
a and d with D(a) = d additionally satisfies the following properties:
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For URIs denoting datatypes, the interpretation function -Z coin-
cides with the datatype map D.

° ICEXT(d) = Vald g Lv.

The class extension of a datatype d is the value space of d and is a
subset of the literal values.

e For every typed literal "s"~~d € V with d? = d the following hold:

- if s € Lexg, then I,("s""~d) = Lex2Valy(s),
- if s & Lexgq, then I,("s"""d) ¢ LV.

Every well-typed literal (i.e. one contained in the lexical space of its
associated datatype) is mapped into the literal values in accordance
with this datatype’s lexical-to-value mapping, whereas every ill-
typed literal is mapped to a resource outside the literal values.

e o € Iopxr(rdfs:Datatype?).

Every datatype (i.e. every resource assigned to a datatype URI) is
a member of the rdfs:Datatype class.

3.2.5 Worked Example

Let us have a closer look at the definitions of models for RDF and RDFS
documents by working through them for the example ontology from Sec-
tion 2.6. This is going to be a bit tedious, but it helps to understand the
definitions. Usually, you would not do this manually, but rather use systems
based on algorithms like that from Section 3.3.

Let us start by defining a simple interpretation, as given in Fig. 3.6. These
assignments define a simple interpretation which is a model of the example
ontology. You can check this easily yourself.

Next, we define an RDF-interpretation starting from the simple interpreta-
tion just given. To do this, we need to augment the simple interpretation by
adding mappings for all elements of Vipr and by redefining Igxr(y).

It does not really matter how we set Ig(x) for those € Vrpr which the
Is from the simple interpretation does not map, so pick anything that is not
yet in IR U IP and extend Ig accordingly. Note that we could also reuse the
elements from IR U IP because the unique name assumption is not imposed,
but we want to construct a model which is intuitively feasible, and so we avoid
reuse. Let’s do the settings as given in Fig. 3.7.

Now redefine Igxr(y) from the simple interpretation to the following:

Texr () = (s, a), (h ), (d, ), (e, ), (hy w), (b, ), (m, ), (o, ), (), ),

<p17 p2>a <P4, 7T>7 <p5, 7T>, <P67 7T>’ <P7, 7T>7 <,087 7T>, <P12, 7T>7 <5k7 7T> ‘ ke N}
This way, we satisfy the first condition on page 80. The other conditions are
not important for us since we have no such elements in V.
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LV
Is
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Ir,

= {avcaivnap, $,t,0,Y, d’ h}

= ex:AllergicToNuts
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{d7 €, ha b7 m,o,T, y}
0

ex:coconutMilk
ex:Nutty
ex:Pitiable
ex:sebastian
ex:Thai

ex:vegetableThaiCurry
ex:thaiDishBasedOn

ex:eats
ex:hasIngredient

rdfs:subProperty0f

—a
—c
—n
= p
— S
— 1
— v
—d
—e
— h

— b

rdfs:ContainerMembershipProperty — 4

rdfs:domain
rdfs:subClass0f
rdfs:range

rdf :type

d— {(v,c)}

e {(s,v)}
hi— 0

b {(d, )}

FIGURE 3.6: Example of a simple interpretation

= m
= 0
=T

=Y
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Ig : rdf :Property ~—m
rdf :XMLLiteral — pg
rdf:nil = p1
rdf:List = p2
rdf :Statement — p3
rdf :subject — P4
rdf :predicate ~— ps

rdf:object — pP6
rdf:first — p7
rdf:rest — pg
rdf :Seq = P9
rdf :Bag = P10
rdf:Alt = P11
rdf :value — P12
rdf:_n — Op, for alln € N

FIGURE 3.7: Example of an RDF-interpretation

Note that we now also need to adjust IR and IP to take the new elements
into account. We set them as follows.

IR = {a,c,i,n,p,s,t,v,d,e,h,b,m,o,r,y,ﬂ',pk,éj | ke {07712}a.] EN}
IP = {d767h7b7ma07r7y7p47"'ap87p1275k | kGN}

Finally, set Iexr(pa) = lixr(ps) = Iexr(ps) = lexr(pr) = Iexr(ps) =
Iexr(p12) = Igxr(dx) for all k£ € N. This completes the definition of an RDF-
interpretation which is actually also a model of the given ontology. Check it
yourself from the definitions in Section 3.2.2.

We will now finally attempt to extend this to an RDFS-interpretation which
is a model of the ontology. Actually, we will see that this is too tedious a task
to be done manually, but let’s at least have a start to see how it would work
in principle. We first extend Ig, for example, as given in Fig. 3.8.

We now redefine IR to contain all those things Is maps to, and IP to contain
all elements of IR which are properties. LV and Ij, are obviously empty for
this example.

{a,c,i,n,p,s,t,v,d,e,h,b,m,o,r,y,ﬂ',po, -+ P12,00, - - '7097671, | n e N}
{dveahvbamaov Y, P4, - - ~aP87P12704706,07;0830975k | ke N}
0
0

IR
r
LV

I

We finally have to define Igxr(z) for all # € IP. This can in principle be
done by starting from the RDF-interpretation above and going through the
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Is = ex:AllergicToNuts —a
ex:coconutMilk —c
ex:Nutty —n
ex:Pitiable —p
ex:sebastian — S
ex:Thai =t
ex:vegetableThaiCurry — v
ex:thaiDishBasedOn —d
ex:eats —e
ex:hasIngredient — h
rdfs:subProperty0f — b
rdfs:ContainerMembershipProperty — %
rdfs:domain —m
rdfs:subClass0f =0
rdfs:range =T
rdf :type =y
rdf :Property — T
rdf :XMLLiteral — Po
rdf:nil = p1
rdf:List — P2
rdf :Statement — p3
rdf :subject — P4
rdf :predicate — pPs
rdf:object = p6
rdf:first — p7
rdf :rest — ps
rdf:Seq — Po
rdf :Bag — P10
rdf:Alt — P11
rdf :value — P12
rdf:_n — O, for all n € N
rdfs:Resource — 0
rdfs:Literal — 01
rdfs:Datatype — 09
rdfs:Class — O3
rdfs:member — 0y
rdfs:Container — 05
rdfs:comment — O0g
rdfs:seellso — o7
rdfs:isDefinedBy — 03y
rdfs:label — 09

FIGURE 3.8: Example of Ig
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list of requirements on an RDFS-interpretation from pages 82 through 83.
While going through the list, we add to Igxr to fulfill all of the requirements.
Note, however, that some additions may necessitate going back to one of the
earlier requirements and making more additions. Also, don’t forget to watch
the conditions on RDF-interpretations from page 80 which also need to be
satisfied.

You should try this yourself, just to get a feeling for it. In fact, if you do
this manually you will soon notice that it’s a rather extensive and tedious
task. In fact, we refrain from giving the complete Igxr, which would be a bit
pointless — it’s better to do this automatically, e.g., by means discussed in
Section 3.3.

3.3 Syntactic Reasoning with Deduction Rules

In the preceding sections, we introduced a model theoretic semantics for
RDF(S) that defines the entailment relation, i.e. we specified in a mathemati-
cally precise way when an RDF(S) graph entails another RDF(S) graph. Yet,
while a model-theoretic approach is very well suited to theoretically specify a
logic’s desired behavior with respect to what conclusions can be drawn, it pro-
vides no direct algorithmic means for actually doing the reasoning. In order
to directly use the model theoretic semantics definition for deciding whether
a given graph is entailed by a set of graphs, in principle all interpretations
would have to be considered. However, as there are always infinitely many
such interpretations, this is simply impossible — an essential problem occurring
in the context of any sufficiently expressive logic.

Consequently, one strives for methods to decide the validity of conclusions
syntactically. These methods would operate only on the given propositions
of a logic without directly recurring to interpretations. Of course, any such
method would have to be justified by mathematically proving that the results
it yields (i.e. its so-called operational semantics) are exactly those expected
from the model-theoretic semantics.

One option for describing such a syntactic method consists of providing
so-called deduction rules (also known as inference rules or derivation rules)
which in general have the form:

P1 - Pn
p

Such a deduction rule states that, given the validity of the propositions
P1,- .., Pn, we can deduce that p must also be valid. The whole set of deduction
rules given for a logic (usually there are several) is called deduction calculus,
and the fact that all propositions of a set P’ can be derived from a proposition
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set P by some sequence of applications of the deduction rules is often expressed
by writing P+ P’.

When comparing such a set of inference rules to the semantics of a logic
(mediated by its entailment relation =), there are two central notions: sound-
ness and completeness. A deduction calculus is sound with respect to a given
semantics if every proposition set P’ that can be derived from a set of propo-
sitions P by means of the deduction rules is a semantic consequence; formally
P+ P’ implies P = P’. On the other hand, a deduction calculus is called
complete if every proposition set P’ that is semantically entailed by a propo-
sition set P can also be deduced by means of the provided deduction rules,
i.e. if P = P’ implies P - P’.

Note, however, that the existence of a (sound and complete) deduction
calculus does not directly lead to a decision procedure, i.e. an algorithm that,
given two proposition sets P and P’, terminates after some time and correctly
answers the question whether P = P’. Clearly, there are infinitely many
possibilities to apply the deduction rules (in the simplest case, the same rule
might be applied over and over again), so simply trying out all of them does
not work. In order to turn a deduction calculus into a decision procedure, one
has to come up with a strategy telling what rules to apply when and when
to stop. This is not always possible: there are even logics with a sound and
complete deduction calculus that are undecidable, i.e. they lack a decision
procedure. Therefore, one should be aware that a deduction calculus provides
a way to syntactically characterize a logic’s semantics and in the best case
provides some hints on how to algorithmize inferencing but it is usually not
a ready-to-implement blueprint of a reasoner.

We now consider the case for RDF(S). The different kinds of interpretations
introduced previously (simple, RDF-, and RDFS-interpretations) lead to dif-
ferent entailment relations (according to the model-theoretic way of defining
entailment relations introduced in Section 3.2). Consequently, we will in the
following provide three different sets of deduction rules for triples. Applying
a deduction rule in our special case just means adding the triple below the
line to the graph under consideration.

By means of those derivation rules, the three distinct entailment relations
(simple, RDF, and RDFS-entailment) can be characterized syntactically, al-
though we need some special care in the RDFS case.

As the deduction rules that we will consider in the sequel usually do not
only refer to single URIs or literals but, for instance, to all URIs or all literals,
the following notations will come in handy:

e a and b can refer to arbitrary URIs (i.e. anything admissible for the
predicate position in a triple),

e _:n will be used for the ID of a blank node,

e u and v refer to arbitrary URIs or blank node IDs (i.e. any possible
subject of a triple),
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e z and y can be used for arbitrary URIs, blank node IDs or literals
(i.e. anything admissible for the object position in a triple), and

e 1 may be any literal.

Other symbols will be explained where they occur.

3.3.1 Deduction Rules for Simple Entailment

As suggested by its name, simple entailment can be characterized com-
paratively easily. Since all occurring URIs are treated equally, the question
whether one graph entails another can be decided based on simple structural
considerations which are captured by the following two deduction rules

sel
u a _:n
U a T
se2
n a T

However, one has to be careful when “weakening” a subject or object by
applying either of these rules: The rules can safely be applied if the blank
node identified by _:n is not contained at all in the graph the rule is applied
to. If _:n is already contained, then the the rules are applicable only if _:n has
been introduced by weakening the same URI, literal, or blank node identifier
(via rule sel or se2) as the current application of the rule does. In other words,
sel and se2 must not be used to turn distinct URISs, literals or bnodes into
the same bnode. An example is given in Fig. 3.9.

It can be formally proven that those two deduction rules indeed capture the
semantics of the simple entailment. More specifically, the following theorem
holds:

THEOREM 3.1
A graph Gy simply entails a graph Ga, if G1 can be extended to a graph G
by virtue of the rules sel and se2 such that Gy is contained in GY.

Recalling that graphs are just sets of triples, the fact that G5 is contained
in G} just means G2 C G} (i.e. every triple from G is contained in G}).

In Fig. 3.11, we give an example that illustrates how this theorem can be
used to show simple entailment.

3.3.2 Deduction Rules for RDF-Entailment

As opposed to simple entailment, RDF-entailment presumes a special mean-
ing of particular URISs since it is defined via RDF-interpretations. In order to
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In order to illustrate why this constraint to the applicability of the above
deduction rules is essential, consider the following deduction:

ex:heidrun ex:motherOf ex:sebastian . 9
se

_:id1 ex:mother0f ex:sebastian .

Essentially, the proposition “Heidrun is the mother of Sebastian” is weak-
ened to the proposition “Sebastian has a mother.” Furthermore, it would be
possible to make the following deduction

ex:wolfgang ex:marriedTo ex:heidrun .

sel
ex:wolfgang ex:marriedTo _:idl .

as id1 is introduced by “weakening” the same URI ex:heidrun as in the
previous deduction. Together the two generated triples can be read as “Se-
bastian’s mother is married to Wolfgang.”
However, imagine there was another triple

:id1l ex:mother0f ex:markus .

(i-e. “Markus has a mother”) present in the graph to be reasoned about. Then,
by violating the additional applicability constraint above, the first deduction
would lead to the erroneous conclusion that Markus and Sebastian have the
same mother.

FIGURE 3.9: Example of simple entailment

http://example.org/publishedBy
http://semantic-web-book.org/uri »

http://example.org/name http://example.org/name

CRC Press

FIGURE 3.10: Graph that is simply entailed by the graph from Fig. 2.3
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Suppose we want to find out whether the graph in Fig. 2.3 (let’s call it Gy)
entails the graph G depicted in Fig. 3.10. To this end, we first represent G
as a set of triples:

book:uri ex:publishedBy crc:uri .
book:uri ex:title "Foundations of Semantic Web Technologies" .
crc:uri  ex:name "CRC Press" .

We now have to find out whether and — if yes — how the given deduction
rules sel and se2 can be applied to this set such that the resulting graph G}
contains the graph G5 (again understood as a set of triples).

Indeed, applying rule sel to the first of G1’s three triples allows us to add
the triple

book:uri ex:publishedBy _:blankl .

with a blank node to our graph. Moreover, by applying se2 to the third of
the original triples, we can also add the triple

_:blank1 ex:name "CRC Press" .

to the graph, since the empty node referenced by _:blankl has been in-
troduced by rule sel exactly for crc:uri (and no other URI). Finally, the
application of rule sel to the triple that has just been generated yields the
triple

_:blankl ex:name _:blank2 .
By now, we have created a graph G/ containing all triples from the original
graph G; and three additional ones. Its not hard to see that exactly these

three new triples together form the graph Go from Fig. 3.10. Hence, because
of G5 C G, we have shown that G; simply entails Gs.

FIGURE 3.11: Example deduction illustrating Theorem 3.1



RDF Formal Semantics 95

account for this, the deduction rules have to be amended. In the sequel, we
will introduce the deduction rules for RDF-entailment.

First, we provide a number of rules having no preconditions and there-
fore being always applicable. Essentially, those rules ensure that the RDF
axiomatic triples (whose validity is explicitly demanded in the definition of
RDF-interpretations) can always be derived. Hence, they have the form

rdfax

u a T

for all RDF axiomatic triples “u a z.” introduced in Section 3.2.2.2
Moreover, we need a specialized version of rule sel:

lg

v oa _’n .

The same applicability restrictions as for rule sel apply: lg must not be
used to introduce a blank node that is already present in the graph and has
not itself been created out of 1. The deduction rule

v ay .

rdfl
a rdf:type rdf:Property .

ensures that for every URI occurring anywhere in predicate position, one can
deduce that it is of type rdf :Property. The last rule

u a l
T
_:n rdf:type rdf:XMLLiteral

df2

allows us to deduce the existence of a literal if a concrete witness (namely, 1)
is present in the graph. Note that we have again the applicability condition
that _:n must not be previously present in the considered graph unless it has
been introduced for that very literal by a preceding application of the Ig rule.

By means of these deduction rules and based on the characterization of sim-
ple entailment introduced in the preceding chapter, we can now also capture
the RDF-entailment in a syntactic way.

THEOREM 3.2

A graph G1 RDF entails a graph Go if and only if there is a graph G that
can be derived from Gy by virtue of the rules lg, rdfl, rdf2, as well as rdfax
such that G| simply entails Gs.

2Note that, technically, rdfax is a rule scheme comprising infinitely many rules, as there are
infinitely many axiomatic triples due to the infinitely many URIs rdf:_1, rdf:_2 and so
forth. This fact needs special care when addressing decidability and implementation issues.
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Observe that the syntactic deduction process is divided into two steps:
initially the rules mentioned in the theorem (but not sel and se2) are used to
derive the graph G and thereafter the rules sel and se2 (but only those) are
employed to show simple entailment.

3.3.3 Deduction Rules for RDFS-Entailment

Beyond the RDF constructs, the RDFS vocabulary contains further URIs
that come with a special interpretation. This necessitates the introduction of
a variety of further deduction rules:

RDFS axiomatic triples

Also for RDFS-entailment, each of the (again infinitely many) axiomatic
triples must be derivable without preconditions. Hence we have the rule

rdfsax
T

for all RDFS axiomatic triples “u a z .” listed in Section 3.2.3. Note that
this rule covers (in combination with rules rdfs2 and rdfs3) all the domain
and range restrictions specified by those triples.

Treatment of literals

u a 1l

- rdfsl
_:n rdf:type rdfs:Literal .

where 1 is an untyped literal (with or without language tag) and _:n again
identifies a blank node with the usual novelty restriction. Essentially this rule
allows us to deduce an existence statement with respect to literals from their
occurrence.

Effects of property restrictions

a rdfs:domain z . U oa y

~ rdfs2

u rdf:type = .

As pointed out in the previous chapter, rdfs:domain is used to stipulate that
if an individual is the start of a given property then we can deduce that it must
be a member of a certain class. If we now encounter a triple containing the
corresponding property URI as predicate, we can conclude that this triple’s
subject must be in this class. This type of deduction is realized by rule rdfs2.

a rdfs:range z . u a v

~ rdfs3

v rdf:type = .
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In an analogue manner, rdfs:range is used to infer class memberships for
a property’s target resources, allowing us to draw corresponding conclusions
about a triple’s object (rule rdfs3).

Everything is a resource

The following deduction rules ensure that every URI occurring in a triple
can also be formally identified to refer to a resource. They ensure that the
type “resource” can be explicitly assigned to any subject and any object that
is not a literal.

U a T

rdfsda

u rdf:type rdfs:Resource .

u a v

rdfs4b

v rdf:type rdfs:Resource .

Note that we do not need an extra deduction rule for enabling the same typing
for triple predicates, since this can be derived from the other deduction rules:

u a T

dfl
dfs4a

r
a rdf:type rdf:Property r

a rdf:type rdfs:Resource

Subproperties

The next two deduction rules make sure that the special characteristics of
the rdfs:subProperty0f property, by definition demanded for every RDFS-
interpretation, are accessible for syntactic deduction: transitivity (rdfs5) and
reflexivity (rdfs6).

u rdfs:subProperty0f v . v rdfs:subProperty0f z
u rdfs:subProperty0f z

~ rdfsb

v rdf:type rdf:Property . Afs6
rdis

u rdfs:subProperty0f u

The third deduction rule dedicated to rdfs: subProperty0f operationalizes
its actual “encoding purpose,” namely that all pairs of resources that are
interlinked by a property are also connected by any superproperty of this

property.

a rdfs:subProperty0f b . u a .
Perry Y - rdfs7

v by
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By this rule, subproperty specifications (which can be conceived as a kind
of macro) can be applied to concrete triples (by executing the macro).
An example of an application of this rule would be

ex:mother0f rdfs:subProperty0f ex:ancestorOf .
ex:heidrun ex:mother0Of ex:sebastian .

rdfs7

ex:heidrun ex:ancestor0f ex:sebastian .

Subclasses

The following deduction rules capture the semantic characteristics of the
subClass0f property.

u rdf:type rdfs:Class .

rdfs8

v rdfs:subClass0f rdfs:Resource .

By means of this rule, every URI typed as a class can be concluded to
denote a subclass of the class of all resources.

u rdfs:subClassOf z . v rdf:type u

~ rdfs9
v rdf:type =

This rule allows us to “inherit” a resource’s membership in a class to the
superclasses of this class.

v rdf:type rdfs:Class .
u rdfs:subClass0f u

rdfs10

Hereby we can deduce that every class is its own subclass, in other words:
this rule realizes the reflexivity of the rdfs:subClass0f property.

u rdfs:subClass0f v . v rdfs:subClass0f z
4 rdfs:subClass0f z

~ rdfs1l

Accordingly, the rule rdfsll implements the rdfs:subClass0f property’s
transitivity.
Container

The following rule identifies the rdfs:member property as superproperty of

all properties contained in the rdfs:ContainerMembershipProperty class.

u rdf:type rdfs:ContainerMembershipProperty .
yP PTTOPeTLY rdfs12

u rdfs:subProperty0f rdfs:member .
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Datatypes

Eventually, by the last rule, any resource that has been identified as data-
type (which is equated with its value space) can be inferred to be a subclass
of all literal values.

v rdf:type rdfs:Datatype .

. rdfs13
u rdfs:subClass0f rdfs:Literal .

Reliteralizing blank nodes

The following rule can be seen as a kind of inverse of the rule gl:

where _:n identifies a blank node introduced by an earlier “weakening” of the
literal 1 via the rule lg.

In fact, the necessity of this rule is not at all obvious. It has been added
to the calculus at a rather late stage in the approval phase of the respective
W3C document in order to ensure deductions that are required by the RDFS
semantics. To demonstrate why it is indeed needed, consider the following
example:

ex:Even ex:lastDigits "02468"
ex:lastDigits rdfs:range rdfs:Class

It takes a little effort to verify that the triple
:id1 rdfs:subClass0f "02468"

is RDFS-entailed. However, gl is necessary to come up with a corresponding
deduction:

ex:Even ex:lastDigits 702468~ .

1
ex:Even ex:lastDigits _:idl . &
ex:lastDigits rdfs:range rdfs:Class .
gd1 df:t gdf Cl )
_34l rdf :type rdf:Class rdfss
_:1id1 rdfs:SubClass0f _:id1 al

_:id1 rdfs:SubClass0f 02468~

Now, prior to framing how RDFS-entailment can be captured by deduction
rules, we have to address a somewhat peculiar special case. If a given graph G
is inconsistent (which means that there is no interpretation that is a model of
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QG), it entails any arbitrary graph (which can be easily understood by consid-
ering the model-theoretic semantics definition). As opposed to other logics,
such as predicate logic (see Appendix C) or OWL (which will be dealt with
in the next chapter), in RDFS the opportunities to cause inconsistencies are
rather restricted.

As an example of such an inconsistency in RDFS, consider the following two
triples:

ex:hasSmiley rdfs:range rdf:Literal .
ex:viciousRemark ex:hasSmiley ">:->"~"XMLLiteral .

Therein, on the one hand, all targets of the ex:hasSmiley property are
required to be literal values (i.e. elements of LV). On the other hand, an
ill-typed XML literal (due to the imbalanced occurrences of “>”), which by
definition must not be interpreted as a literal value, is in the object position
of a triple containing ex:hasSmiley as predicate. Hence there can be no
RDFS-interpretation valuing both triples as true.

However, such an enforced type mismatch can be diagnosed relatively easy:
it occurs as soon as a triple of the form

z rdf:type rdfs:Literal .

can be derived, where z has been assigned to an ill-typed XML literal by rule
lg. Such a case is called an XML clash.

Informed about this special case, we can now give a sufficient syntactic
criterion for RDFS-entailment in the following theorem.

THEOREM 3.3

A graph G1 RDFS entails a graph Gy if there is a graph G| which can be
derived from G via the rules lg, gl, rdfax, rdfl, rdf2 as well as rdfsl to
rdfs13 and rdfsax such that

o G simply entails Go or

e G contains an XML clash.

Note that the preceding theorem just guarantees soundness of the given
deduction calculus. When the calculus was provided in the RDF semantics
specification, it was also considered complete, but a bit later that turned out
not to be the case.
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As an example of the calculus’ incompleteness, consider the following set of
triples:

ex:isHappilyMarriedTo rdfs:subProperty0f _:bnode .
_:bnode rdfs:domain ex:Person .
ex:markus ex:isHappilyMarriedTo ex:anja .

It is not hard to show that the triple

ex:markus rdf :type ex:Person .

is a semantic consequence of the above. However, it cannot be derived by
means of the given deduction calculus.

One option to deal with this problem is to extend the definition of RDF: it
has been shown that allowing blank nodes in the predicate position of triples
overcomes this problem.

It remains to consider the issue mentioned in Section 3.3: even the existence
of a sound and complete set of deduction rules does not ensure that semantic
entailment of two proposition sets (or in our case, graphs) can be decided
by an automatic procedure.> In our case, it can be shown that the set of
(relevant) inferable triples cannot become arbitrary large and therefore a kind
of saturation is certainly reached. However, showing this is not trivial: in
principle, arbitrarily many blank node triples can be created by the rules sel
and se2 in the simple entailment case. As to RDF and RDFS entailment,
there are infinitely many rules involved (due to the infinitely many axiomatic
triples). So one has to carefully consider how to restrict the application of
rules without losing relevant consequences. Moreover, even if a terminating
algorithm has been found, it might still not be efficient at all. Summing up,
the design of efficient RDF(S) reasoning tools for possibly large data sets is an
extremely challenging task requiring both theoretical expertise and profound
software engineering skills. This is also substantiated by the fact that simple,
RDF, and RDFS entailment are NP-complete problems.*

3Put into terms of theoretical computer science: there are problems which are recursively
enumerable but not decidable. Entailment in first order predicate logic is a prominent
example of this.

4The reason for this complexity is the blank nodes. Checking whether an RDF graph
simply entails an RDF graph containing blank nodes allows us to solve the graph homo-
morphism problem which is known to be NP-complete. By disallowing blank nodes, all
three entailment problems become polynomial.
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3.3.4 Additional Rules for Datatypes

The deduction rules introduced so far only addressed the compatibility with
RDFS-interpretations which only take care of the correct semantic character-
ization of rdf:XMLLiteral. External datatypes may be introduced by name
(by typing them as class members of the rdfs:datatype class); however,
it is impossible to completely characterize their semantic behavior only by
RDFS-internal means.

Of course, additional deduction rules capturing the functionality of specific
datatypes would have to depend on the intended semantics of the latter. Still,
it is possible to state how frequently occurring interdependencies related to
datatypes should be expressed by deduction rules.

For instance, if a literal s is known to be well-formed with respect to a
datatype d being represented by the URI d (i.e., D(d) = d and s is contained
in d’s lexical space Lexy), the following deduction rule yields valid triples

d rdf:type rdfs:Datatype . u a"s"""d .
P yP rdfD1

_:n rdf:type d .

Here, _:n denotes a blank node which has not been assigned to any other
entity than the literal "s"~"d. In the end, this deduction rule just allows us
to infer the existence of a resource of some type, if a well-typed individual of
this type is explicitly mentioned.

As another frequently occurring case, the value spaces of certain datatypes
might overlap, e.g., there are numbers being both natural and floating point
numbers (obviously, the typed literals "2"~"xsd:nonNegativeInteger and
"2.00"""xsd:decimal should be recognized to represent the same values).
Now suppose that the lexical expression sof a datatype denoted by the URI
d is expected to represent the same value as the lexical expression t of a
datatype denoted by e. Then the following rule can be applied

d rdf:type rdfs:Datatype .
e rdf:type rdfs:Datatype .
v a "s"°7d .

v a "t" e rdfD2

It essentially allows us to substitute any occurrence of one typed literal in
object position (the only place where it is allowed to show up syntactically)
by the other one. Mark that this rule covers the case s = t (as for instance,
for "2"""xsd:nonNegativeInteger and "2"""xsd:Integer).

Another frequent piece of information about datatypes is that one includes
the other (e.g., any natural number is an integer). If the value space of the
datatype d is known to be contained in the value space of another datatype
e, the deduction rule

rdfDAx
d rdfs:subClassOf e .
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can be used to add the respective subclass relation to the set of axiomatic
triples.

If the mentioned preconditions are satisfied, the above deduction rules lead
to valid conclusions. However, there is no guarantee that all semantic conse-
quences can be created by virtue of those deduction rules.

For instance, in any D-interpretation that supports all XML datatypes ad-
missible for RDF and that satisfies the triples

U rdf:type xsd:nonNegativelnteger .
U rdf:type xsd:nonPositiveInteger .

also the triple
U rdf:type xsd:byte .
must hold. Yet, it cannot be derived from the given rules.

Likewise it would be possible to use the characteristics of particular datatypes
to cause inconsistencies by assigning two datatypes with disjoint value spaces
to one resource, e.g.:

U rdf:type xsd:integer .
U rdf:type xsd:string .

All those and many more consequences that arise from the special seman-
tics of D-interpretations with particular datatypes would have to be realized
by software systems which claim to support those datatypes in a logically
complete way. Note, however, that for RDF(S) compliance as prescribed by
the W3C specification, only the support of rdf:XMLLiteral is required.

3.3.5 Example of an RDFS Deduction

Now, as we have treated the deduction rules for RDFS-entailment, we will
illustrate their usage by a small example. We start with the example ontology
introduced in Section 2.6 and would like to logically detect whether an emer-
gency will occur, i.e. whether a person allergic to nuts consumes something
having nutty ingredients. Translated into graph notation this would mean
checking whether the graph G depicted in Fig. 2.13 entails the graph G
from Fig. 3.12.

To start with, let’s list the triples of Gy:
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ex:AllergicToNuts

ex:eats rdfs:member

FIGURE 3.12: Graph G5, possibly RDFS-entailed by G,

ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .
ex:sebastian rdf:type ex:AllergicToNuts .
ex:sebastian ex:eats ex:vegetableThaiCurry .
ex:AllergicToNuts rdfs:subClass0f ex:Pitiable .
ex:thaiDishBasedOn rdfs:domain ex:Thai .
ex:thaiDishBasedOn rdfs:range ex:Nutty .
ex:thaiDishBasedOn rdfs:subProperty0f ex:hasIngredient .
ex:hasIngredient rdf:type rdfs:ContainerMembershipProperty.

Next, we apply several deduction rules to GG;. We exploit the classification
of objects via range restrictions, the fact that rdfs:member comprises all
containedness relations, the transitivity of the subproperty relation and the
generalization of a triple by subproperties. This is shown in Fig. 3.13.

This way, we have obtained the graph G by enriching the graph G;. In
order to prove the RDF-entailment in question, it remains to show that G
simply entails Gs. It is easy to see that this can be achieved by manifold
application of sel and se2, in analogy to the example given in Fig. 3.11.

3.4 The Semantic Limits of RDF(S)

The semantics presented in the previous sections is not the only “reasonable”
semantics for RDF(S). Further logical consequences that do not arise from the
standard semantics (which is sometimes also called intensional semantics)
might be desirable in some cases. This can be realized by an alternative
extensional semantics for RDF'S which imposes stronger constraints on RDFS-
interpretations. The reason for choosing the weaker semantics as the standard
is the following: for the intensional semantics, there are deduction rules that
can be implemented rather easily, which facilitates the development of tools
supporting RDFS. Hence, it is reasonable to define the standard as a kind of
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rule rdfs3:

ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .
ex:thaiDishBasedOn rdfs:range ex:Nutty .

ex:coconutMilk rdf:type ex:Nutty .

rule rdfs12:

ex:hasIngredient rdf:type rdfs:ContainerMembershipProperty .

ex:hasIngredient rdfs:subProperty0f rdfs:member .

rule rdfsb:

ex:thaiDishBasedOn rdfs:subProperty0f ex:hasIngredient
ex:hasIngredient rdfs:subProperty0f rdfs:member .

ex:thaiDishBasedOn rdfs:subProperty0f rdfs:member .

rule rdfs7:

ex:thaiDishBasedOn rdfs:subProperty0f rdfs:member .
ex:vegetableThaiCurry ex:thaiDishBasedOn ex:coconutMilk .

ex:vegetableThaiCurry rdfs:member ex:coconutMilk .

FIGURE 3.13: Example of an RDFS deduction
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minimal requirement for RDF(S)-compatible systems.

As an example of a seemingly reasonable inference not supported by the
standard RDF(S) semantics consider the triples

ex:speaksWith rdfs:domain ex:Homo .
ex:Homo rdfs:subClassOf ex:Primates .

which should allow us to deduce the following triple:

ex:speaksWith  rdfs:domain ex:Primates .

Irrespective of the question whether the intensional or the extensional se-
mantics is employed, the modeling capabilities of RDFS are fundamentally
restricted. As one of the most significant shortcomings, it is impossible to
express negated statements: the fact that some statement is not true can-
not be described in RDFS.5 Of course, it is possible to incorporate negation
into class or property names and simply introduce URIs like ex:NonSmoker
or ex:notMarriedTo. However, there is no way to enforce that those vocab-
ulary elements are interpreted in accordance with their intended semantics.
For instance, the two triples

ex:sebastian rdf:type ex:NonSmoker .
ex:sebastian rdf:type  ex:Smoker .

do not cause an inconsistency (as one might expect) as there is no way to spec-
ify in RDFS that the two classes denoted by ex:NonSmoker and ex:Smoker
must not contain common elements. In the next chapter we will introduce an
ontology language which provides those capabilities, and many more, the cost
being that automated inferencing becomes much harder in the worst case.

3.5 Summary

By introducing a model-theoretic semantics of RDF(S), a binding standard
for tools processing RDF(S) data is created. We distinguish simple, RDF- and
RDFS-entailment, which are defined via respective interpretations. Moreover,

5Note also that the absence of a triple in a graph does not imply that the corresponding
statement does not hold as the RDF(S) semantics is based on the open world assumption.
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we discussed how any of those entailments can be characterized in terms of
a deduction calculus, whereby in the case of RDFS, some amendments would
be required. In addition, we investigated how external datatypes may be
introduced into the semantics. Finally, we pointed out that the ontology
language RDFS is insufficient for certain modeling purposes.

3.6 Exercises

Exercise 3.1 Describe a very simple RDFS-interpretation that is a model of
the example ontology from Section 2.6.

Exercise 3.2 Consider the ontology from Exercise 3.1 and find
e a simply entailed triple,
e an RDF-entailed triple, which is not simply entailed,

e an RDFS-entailed triple, which is not RDF-entailed.

Exercise 3.3 As you know, the unique name assumption does not hold in
RDF(S), i.e. in a model, several URIs might be assigned to the same resource.
Contemplate whether (and if so, how) it is possible to specify in RDFS that
two given URISs refer to the same resource.

Exercise 3.4 The empty graph does not contain any triples (i.e. it corre-
sponds to the empty set). Give derivations showing that the empty graph
RDFS-entails the following triples:

rdfs:Resource rdf:type rdfs:Class .
rdfs:Class rdf:type rdfs:Class .
rdfs:Literal rdf:type rdfs:Class .
rdf :XMLLiteral rdf:type rdfs:Class .
rdfs:Datatype rdf:type rdfs:Class .
rdf:Seq rdf:type rdfs:Class .

rdf :Bag rdf:type rdfs:Class .
rdf:Alt rdf:type rdfs:Class .
rdfs:Container rdf:type rdfs:Class .
rdf:List rdf:type rdfs:Class .
rdfs:ContainerMembershipProperty rdf:type rdfs:Class .
rdf :Property rdf:type rdfs:Class .
rdf:Statement rdf:type rdfs:Class .
rdfs:domain rdf:type rdf:Property .
rdfs:range rdf:type rdf:Property .
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rdfs:
rdfs:
:member rdf:type rdf:Property .
rdfs:
rdfs:
rdfs:
:label rdf:type rdf:Property .

rdfs

rdfs
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subProperty0f rdf:type rdf:Property .
subClass0f rdf:type rdf:Property .

seeAlso rdf:type rdf:Property .
isDefinedBy rdf:type rdf:Property .
comment rdf:type rdf:Property .

3.7

There is comparatively little literature about the RDF(S) semantics. The
W3C document “Semantics” [Hay04] constitutes the normative standard ref-

Further Reading

eremnce.

An article of Herman J. ter Horst [tHO5| provides further information on
the incompleteness of the RDFS deduction rules and complexity of RDFS

reasoning.

“A Semantic Web Primer” [AvHO8| provides one way to define the exten-
sional semantics of RDFS via a translation into first-order predicate logic.
Another approach for expressing the simple, RDF, and RDFS semantics in

terms of first-order logic is described in Section 6.4.6.
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Chapter 4

Ontologies in OWL

In this chapter, we introduce the ontology language OWL. We focus on an
introduction to the syntax and on conveying an intuitive understanding of the
semantics. We will also discuss the forthcoming OWL 2 standard. A formal
treatment of the semantics will be done later in Chapter 5, and a discussion
of OWL software tools can be found in Section 8.5.

We have seen at the end of Chapter 3 that RDF(S) is suitable for modeling
simple ontologies and allows the derivation of implicit knowledge. But we
have also seen that RDF(S) provides only very limited expressive means and
that it is not possible to represent more complex knowledge. For example, it
is not possible to model the meaning of the sentences from Fig. 4.1 in RDF(S)
in a sufficiently precise way.

For modeling such complex knowledge, expressive representation languages
based on formal logic are commonly used. This also allows us to do logical
reasoning on the knowledge, and thereby enables the access to knowledge
which is only implicitly modeled. OWL is such a language.

The acronym OWL stands for Web Ontology Language.® Since 2004 OWL
is a W3C recommended standard for the modeling of ontologies, and since
then has seen a steeply rising increase in popularity in many application do-
mains. Central for the design of OWL was to find a reasonable balance be-
tween expressivity of the language on the one hand, and efficient reasoning,
i.e. scalability, on the other hand. This was in order to deal with the general
observation that complex language constructs for representing implicit knowl-
edge usually yield high computational complexities or even undecidability of

IThere exist a number of speculations about the origin of the distorted acronym. In partic-
ular, it is often said that the acronym was a reference to a character appearing in the book
Winnie the Pooh by Alan Alexander Milne: the character is an owl which always misspells
its name as wol instead of owl.

Historically correct, however, is that the acronym was originally proposed by Tim Finin in
an email to www-webont-wg@w3.org, dated 27th of December 2001, which can be found un-
der http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html: “I prefer
the three letter WOL .... How about OWL as a variation. ...it has several advantages:
(1) it has just one obvious pronunciation which is easy on the ear; (2) it opens up great
opportunities for logos; (3) owls are associated with wisdom; (4) it has an interesting back
story.”

The mentioned background story concerns an MIT project called One World Language by
William A. Martin from the 1970s, which was an early attempt at developing a universal
language for knowledge representation.

111
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Every project has at least one participant.

Projects are always internal or external projects.

Gisela Schillinger and Anne Eberhardt are the secretaries of Rudi Studer.
The superior of my superior is also my superior.

FIGURE 4.1: Sentences which cannot be modeled in RDF(S) in a suffi-
ciently precise way

reasoning, and therefore unfavorable scalability properties. In order to give
the user a choice between different degrees of expressivity, three sublanguages
of OWL — called species of OWL — have been designed: OWL Full, OWL DL,
and OWL Lite. OWL Full contains both OWL DL and OWL Lite, and OWL
DL contains OWL Lite. The main differences between the sublanguages are
summarized in Fig. 4.2. We will discuss this in more detail in Section 4.2.

We introduce OWL in this chapter by means of a syntax based on RDF.
While most of the contents of this chapter should be accessible without any
in-depth knowledge about RDF, the reader may occasionally want to refer to
Chapter 2, and in particular to Sections 2.1 to 2.3.

4.1 OWL Syntax and Intuitive Semantics

OWL documents are used for modeling OWL ontologies. Two different syn-
taxes have been standardized in order to express these. One of them is based
on RDF and is usually used for data exchange. It is also called OWL RDF
syntax since OWL documents in RDF syntax are also valid RDF documents.
The other syntax is called the OWL abstract syntaxr and is somewhat more
readable for humans. However, it is only available for OWL DL, and it will
undergo some major changes in the transition to OWL 2. In this chapter,
we introduce the RDF syntax since it is more widely used. In Chapter 5 we
will present yet another syntax for OWL DL which is very popular among
researchers due to its conciseness and because it is stripped of some techni-
calities. Indeed in later chapters, we will mostly use this latter syntax. The
RDF syntax which we now introduce, though, is suitable for data exchange
on the Web, which is why it is so important.

An OWL ontology is basically expressed in terms of classes and properties,
which we already know from RDF(S). In OWL, however, much more complex
relationships between these classes and properties can be described. The
sentences in Fig. 4.1 are examples of such complex relationships. We will see
how they can be modeled by means of a number of constructors taken from
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OWL Full

contains OWL DL and OWL Lite,

is the only OWL sublanguage containing all of RDFS,
very expressive,

semantically difficult to understand and to work with,
undecidable,

supported by hardly any software tools.

OWL DL

contains OWL Lite and is contained in OWL Full,
decidable,
fully supported by most software tools,

worst-case computational complexity: NExpTime.

OWL Lite

contained in OWL DL and OWL Full,
decidable,
less expressive,

worst-case computational complexity: ExpTime.

FIGURE 4.2: The three sublanguages of OWL and their most important
general properties. Further details can be found in Section 4.2
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formal logic. We will introduce them on an intuitive level in this chapter,
and will give an in-depth formal treatment of the underlying logical aspects
in Chapter 5.

4.1.1 The Header of an OWL Ontology

The header of an OWL document contains information about namespaces,
versioning, and so-called annotations. This information has no direct impact
on the knowledge expressed by the ontology.

Since every OWL document is an RDF document, it contains a root element.
Namespaces are specified in the opening tag of the root, as in the following
example.

<rdf :RDF
xmlns ="http://www.example.org/"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd ="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://wuw.w3.0rg/2000/01/rdf-schema#"
xmlns:owl ="http://www.w3.o0rg/2002/07/owl#">

The second line in this example defines the namespace used for objects
without prefix. Note the namespace which should be used for owl.

An OWL document may furthermore contain some general information
about the ontology. This is done within an owl:0Ontology element. We give
an example.

<owl:Ontology rdf:about="">
<rdfs:comment
rdf :datatype="http://www.w3.o0rg/2001/XMLSchema#string">
SWRC ontology, version of June 2007
</rdfs:comment>
<owl:versionInfo>v0.7.1</owl:versionInfo>
<owl:imports rdf:resource="http://www.example.org/foo" />
<owl:priorVersion
rdf :resource="http://ontoware.org/projects/swrc" />
</owl:0ntology>

Note the first line of this example: it states that the current base URI —
usually given by xml:base — identifies an instance of the class owl:0ntology.
Some header elements are inherited from RDFS, for example the following;:
rdfs:comment
rdfs:label
rdfs:seelAlso
rdfs:isDefinedBy
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For versioning, the following elements can be used:
owl:versionInfo
owl:priorVersion
owl:backwardCompatibleWith
owl:incompatibleWith
owl:DeprecatedClass
owl:DeprecatedProperty
owl:versionInfo usually has a string as object. With the statements
owl:DeprecatedClass and owl:DeprecatedProperty, parts of the ontology
can be described which are still supported, but should not be used any longer.
The other versioning elements contain pointers to other ontologies, with the
obvious meaning.
It is also possible to import other OWL ontologies using the owl:imports
element as given in the example above. The content of the imported ontology
is then understood as being part of the importing ontology.

4.1.2 Classes, Roles, and Individuals

The basic building blocks of OWL are classes and properties, which we
already know from RDF(S), and individuals, which are declared as RDF in-
stances of classes. OWL properties are also called roles, and we will use both
notions interchangeably.

Classes are defined in OWL using owl:Class. The following example states
the RDF triple Professor rdf:type owl:Class.?

<rdf:Description rdf:about="Professor">
<rdf:type rdf:resource="&owl;Class" />
</rdf :Description>

Equivalently, the following short form can be used:

<owl:Class rdf:about="Professor" />

Via rdf :about="Professor", the class gets assigned the name Professor,
which can be used for references to the class. Instead of rdf:about it is also
possible to use rdf :ID, if the conditions given on page 33 are observed.?

2We assume that <!ENTITY owl ’http://www.w3.org/2002/07/owl#’> has been declared —
see Section 2.2.5.

3For better readability, we assume that http://www.example.org/ is the namespace used
in all our examples, as declared on page 114.
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There are two predefined classes, called owl:Thing and owl:Nothing. The
class owl:Thing is the most general class, and has every individual as an
instance. The class owl:Nothing has no instances by definition.

owl:Class is a subclass of rdfs:Class. There are some differences, how-
ever, which we will discuss in Section 4.2 on the different sublanguages of
OWL.

As in RDF, individuals can be declared to be instances of classes. This is
called class assignment.

<rdf:Description rdf:about="rudiStuder">
<rdf:type rdf:resource="Professor" />
</rdf :Description>

Equivalently, the following short form can be used.

<Professor rdf:about="rudiStuder" />

There are two different kinds of roles in OWL: abstract roles and concrete
roles. Abstract roles connect individuals with individuals. Concrete roles con-
nect individuals with data values, i.e. with elements of datatypes. Both kinds
of roles are subproperties of rdf:Property. However, there are again some
differences which we will discuss in Se