
www.allitebooks.com

http://www.allitebooks.org

Getting Started with C++
Audio Programming for Game
Development

A hands-on guide to audio programming in game
development with the FMOD audio library and toolkit

David Gouveia

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with C++ Audio Programming
for Game Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August, 2013

Production Reference: 1190813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-909-9

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
David Gouveia

Reviewers
Tomas Pettersson

Daniel Varela

Acquisition Editor
Edward Gordon

Commissioning Editor
Shreerang Deshpande

Technical Editors
Larissa Pinto

Nitee Shetty

Project Coordinator
Suraj Bist

Proofreader
Lesley Harrison

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Gouveia is a Software Engineer and Game Developer from Portugal, Madeira
Island. He recently finished his MSc in Computer Science, with a specialization in
graphics and multimedia, and is currently working full-time as a game programmer
for a local company. He runs an educational blog about game development and enjoys
sharing his knowledge with the community whenever possible. His main interests in
game development are graphics and audio programming. He also has a strong interest
in music and synthesizers, having played the keyboard most of his life.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Tomas Pettersson is a creator of the freeware audio tools SFXR and Musagi.

Daniel Varela was born in Trebujena, Spain, in 1980. His strong passion for
music and technology led him to obtain a Bachelor's degree in Sound and Image
Engineering from the University of Málaga, Spain, in 2004.

From very early on in his education, he focused on digital audio signal processing,
designing and developing software simulations for audio signals quantification noise
modeling, experimental reverb effects, and culminating in an application for the
digital audio editing as his final project of studies.

After graduating, he worked for six years in the software consultancy area as an
Applications Programmer and Analyst. During this stage, he improved his Object
Oriented Programming skills and working methodology, but however, he felt like
something was missing.

In 2010, he joined TheGameKitchen, a just born indie videogames development
company, as a Generalist Programmer. During this period, he made familiar
game engines, such as XNA or Unity3D and developed some audio application
prototypes, such as a MOD tracker player for XNA or a scratching application for
Windows Phone.

In 2011, he started working at BlitzGamesStudios in the UK as Audio Programmer,
developing a successful career in the area of audio programming for videogames.
He is responsible for maintaining and improving an existing cross platform end to
end audio pipeline, as well as working with third party audio middleware such as
FMOD and Wwise.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Audio Concepts 7

Sound waves 7
Analog and digital audio 9
Multi-channel audio 11
Audio file formats 11
Summary 12

Chapter 2: Audio Playback 13
Understanding FMOD 13
Installing FMOD Ex Programmer's API 14
Creating and managing the audio system 15
Loading and streaming audio files 16
Playing sounds 17
Checking for errors 18
Project 1 – building a simple audio manager 19

Class definition 19
Initialization and destruction 21
Loading or streaming sounds 22
Playing sounds 22
A note about the code samples 23

Summary 24
Chapter 3: Audio Control 25

The channel handle 25
Controlling the playback 26
Controlling the volume 27
Controlling the pitch 27
Controlling the panning 29
Grouping channels together 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Controlling groups of channels 31
Project 2 – improving the audio manager 32

Class definition 32
Initialization and destruction 33
Loading songs and sound effects 34
Playing and stopping sound effects 35
Playing and stopping songs 36
Controlling the master volume of each category 38

Summary 39
Chapter 4: 3D Audio 41

Positional audio 42
Positional audio in FMOD 43

Creating an audio source 43
Setting the audio source's position and velocity 43
Setting the audio source's direction 44
Setting the audio source's range 44
Setting the audio listener's properties 45
Integration with a game 46

Reverb 46
Reverb in FMOD 47

Creating a reverb object 47
Setting reverb properties 47
Setting reverb position and radius 48
Setting the default ambient reverb 48

Obstruction and occlusion 48
Obstruction and occlusion in FMOD 49

Effects 50
Effects in FMOD 51
Example 1 – time stretching 51
Example 2 – simple radio effect 52

Summary 52
Chapter 5: Intelligent Audio 53

Audio files versus sound events 54
Introducing the FMOD Designer 55
Simple events 57

Examples of simple events 60
Avoiding repetitive sound effects 60
Creating a footsteps sound loop 60
Creating a breaking glass sound effect 61
Creating an ambient track of singing birds 61

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Multi-track events 61
Examples of multi-track events 65

Creating an interactive footsteps sound loop 66
Simulating the sound of a car engine 66
Creating a complex ambient track of a forest 67

Interactive music 67
The vertical approach (re-orchestration) 68
The horizontal approach (re-sequencing) 68

Calling sound events from the game code 69
Summary 71

Chapter 6: Low-level Audio 73
Representing audio data 73
Playing audio data 75
Loading a sound 77
Playing a sound 80
Pausing a sound 83
Looping a sound 84
Changing volume 84
Changing pitch 86
Changing panning 87
Mixing multiple sounds 89
Implementing a delay effect 90
Synthesizing a sound 92
Summary 95

Index 97

www.allitebooks.com

http://www.allitebooks.org

Preface
Audio is certainly one of the most powerful tools at our disposal when it comes
to making the players feel something from a video game. Audio can serve many
different purposes in video games, such as giving feedback with sound effects,
increasing immersion with ambient tracks, telling stories with recorded speech,
or conveying all kinds of emotions through background music.

Video games have been making use of sound since their earliest days. For instance,
the 1972 classic, Pong, used a beep sound effect to provide feedback whenever the ball
collided with something, with different pitches used to distinguish between collisions
with the walls, collisions with the paddles, or the ball leaving the game court.

Space Invaders, on the other hand, made a very clever use of its rudimentary
background music by progressively increasing the speed of the song as the danger
of the alien invasion drew closer, thus enhancing the feelings of tension within the
player. Studies have shown that gamers that played the game without sound did not
feel the same sense of urgency, and their heart rates did not rise like the ones that
played the game with the sound turned on.

Since those days, there have been many advances in technology, which allowed
audio in games to evolve considerably. Most games began using recorded audio
instead of crude synthesized tones, and new techniques such as 3D audio now
allow the players to feel like the sound is coming from all around them and
interacting with the game environment.

Music has also played a very important role in video games. The popular Final Fantasy
games owe a great portion of their emotional impact to the sweeping, cinematic
soundtracks composed by Nobuo Uematsu. The most memorable scenes in the series
would have not been the same without the music that accompanied them.

Preface

[2]

Many developers and composers have also looked into ways of making the music
react to the game play. For example, starting with Monkey Island 2, LeChuck's Revenge,
every graphic adventure game that LucasArts created uses a custom interactive
music system called iMUSE, which among other features, allows seamless musical
transitions between themes as the player moves from one room to another.

There are even games that incorporate audio concepts directly into their main
gameplay mechanics, such as the songs that the player has to memorize and play in
The Legend of Zelda: Ocarina of Time, and games that revolve entirely around sound,
with the most popular examples being rhythm games, such as PaRappa the Rapper,
Dance Dance Revolution, or Guitar Hero.

However, despite being such an important part of video games, many game
development books skim through the subject of audio programming. Even the ones
that dedicate a chapter to audio, often only teach you the very basics, such as loading
and playing audio files, or use outdated audio engines instead of the ones used
by the industry nowadays. Additionally, other game development topics, such as
graphics, physics, or artificial intelligence tend to be more enticing to beginner level
game developers and learning about audio becomes less of a priority.

The main goal of this book is to give you a crash course on audio programming
for games by using a popular and well-established audio engine, and covering the
subject from several different levels of abstraction. It is my hope that this approach
will give you enough knowledge to implement most of the audio features that are
normally required for a video game, and form a foundation so that you may pursue
other topics that are more advanced.

What this book covers
Chapter 1, Audio Concepts, covers some of the most important audio concepts, such as
sound waves, analog and digital audio, multi-channel audio, and audio file formats.

Chapter 2, Audio Playback, shows how to use FMOD to load and play audio files,
and how to begin creating a simple audio manager class.

Chapter 3, Audio Control, shows how to control the playback and parameters of a
sound, and how to group sounds into categories and control them simultaneously.

Chapter 4, 3D Audio, covers the most important concepts of 3D audio, such as
positional audio, reverberation, obstruction/occlusion, along with a few DSP effects.

Chapter 5, Intelligent Audio, provides an overview of high-level sound design using
the FMOD Designer tool, with examples of how to create adaptive and interactive
sound events and music.

Preface

[3]

Chapter 6, Low-level Audio, provides basic information on how to work with audio at a
very low-level, by manipulating and writing audio data directly.

What you need for this book
For this book, you will need the following software:

• C++ IDE: Instructions are provided for Microsoft Visual Studio, but you
should be able to use any C++ IDE or compiler. The Express version of
Visual Studio is free and can be downloaded from the Microsoft website.

• FMOD Ex: Needed for chapters 2 - 4, and 6 and can be downloaded for free
from www.fmod.org.

• FMOD Designer: Needed for chapter 5. Can be downloaded for free from
www.fmod.org.

• SFML: All of the code samples on the website also use SFML (Version 2.0)
to handle other tasks, such as window management, graphics, and input
handling. Free download from www.sfml-dev.org.

Who this book is for
This book is oriented towards C++ game developers who have little or no experience
with audio programming and would like a quick introduction to the most important
topics required to integrate audio into a game.

You will need an intermediate knowledge of C++ to be able to follow the code
examples in the book, including an understanding of basic C++ Standard Library
features, such as strings, containers, iterators, and streams. Some game programming
experience is also recommended, but not mandatory.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Notice that the function returns the system object through a parameter."

Preface

[4]

A block of code is set as follows:

#include <math.h>

float ChangeOctave(float frequency, float variation) {
 static float octave_ratio = 2.0f;
 return frequency * pow(octave_ratio, variation);
}
float ChangeSemitone(float frequency, float variation) {
 static float semitone_ratio = pow(2.0f, 1.0f / 12.0f);
 return frequency * pow(semitone_ratio, variation);
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

#include <SFML/Window.hpp>
#include "SimpleAudioManager.h"

int main() {
 sf::Window window(sf::VideoMode(320, 240), "AudioPlayback");
 sf::Clock clock;

 // Place your initialization logic here
 SimpleAudioManager audio;
 audio.Load("explosion.wav");

 // Start the game loop
 while (window.isOpen()) {
 // Only run approx 60 times per second
 float elapsed = clock.getElapsedTime().asSeconds();
 if (elapsed < 1.0f / 60.0f) continue;
 clock.restart();
 sf::Event event;
 while (window.pollEvent(event)) {
 // Handle window events
 if (event.type == sf::Event::Closed)
 window.close();

 // Handle user input
 if (event.type == sf::Event::KeyPressed &&
 event.key.code == sf::Keyboard::Space)
 audio.Play("explosion.wav");
 }
 // Place your update and draw logic here

Preface

[5]

 audio.Update(elapsed);
 }
 // Place your shutdown logic here
 return 0;
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"For all the steps that follow, make sure that the Configuration option is set
to All Configurations."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Audio Concepts
Programming the audio component of a game is a lot easier these days, thanks to
all the powerful audio libraries that are available. These libraries ease the burden on
the developers by taking care of most of the low-level implementation details. While
this is a good thing, it also makes it easier to dismiss the need to understand sound
theory. For instance, we can easily play a sound file without knowing anything about
its representation in memory.

However, even when we are using an audio library, there are still situations that
will require some theoretical knowledge. For instance, we will often find parameters
and function names related to the theory, such as the frequency of a sound, or the
bit depth of an audio buffer. Knowing the meaning of these concepts is important to
ensure that we are using them properly.

The goal of this chapter is to serve as a light introduction to the concepts that we will
need the most during the course of this book.

Sound waves
Sound is created from the vibrations of objects. These vibrations produce variations
in the atmospheric pressure which propagate away from the objects in the form
of sound waves. Our ears are capable of detecting incoming sound waves and
converting them into nerve signals that our brain interprets as sound.

One way to visualize sound is to draw a graph of the variations in the atmospheric
pressure at each moment in time. However, understanding how those graphs relate
to what we hear can be extremely complex. For that reason, we usually start by
studying the simplest type of wave, the sine wave.

Audio Concepts

[8]

The sine wave is interesting for educational purposes, because we can easily identify
two of the main properties of sound from it: volume and pitch. Most audio libraries
allow us to control both of these properties for any sounds that we play.

• Volume: This property corresponds to how loud or quiet the sound is.
It depends directly on the amplitude (or the height) of the sound wave,
as measured on the vertical axis. The main unit of volume is the decibel
(dB), but most audio libraries use a scale between zero (silence) and one
(full volume).

Pressure

Amplitude

Lower Volume

Time

Pressure

Amplitude

Higher Volume

Time

• Pitch: This property determines how high or low the sound is. It depends
on the frequency of the sound wave, which is the number of times that it
repeats every second. The unit of frequency is the hertz (Hz). Two things
that you should know about frequency are that the human ear can only hear
frequencies within the 20 Hz and 20,000 Hz range, and that most sounds that
you hear are actually a combination of several different frequencies.

Pressure

1st Cycle 2st Cycle

1 second

Lower Pitch

Time

Frequency = 2 Hz

Pressure

1st Cycle 2st Cycle 3st Cycle 4st Cycle

1 second

Higher Pitch

Time

Frequency = 4 Hz

Chapter 1

[9]

Analog and digital audio
Now that we know what sound is, let us turn our thoughts towards recording the
sound and storing it on a computer. The first step in this process is to convert the
sound wave into an electrical signal. When we use a continuous signal to represent
another signal of a different quantity, we call it an analog signal or in the case of a
sound wave, an analog audio signal. You are probably already familiar with the
devices that perform this conversion:

• Microphones: These are devices that convert sound waves into
electrical signals

• Speakers: These are devices that convert electrical signals into sound waves

Analog signals have many uses, but most computers cannot work with them directly.
Computers can only operate on sequences of discrete binary numbers, also known
as digital signals. We need to convert the analog signal recorded by the microphone
into a digital signal, that is, digital audio, before the computer can understand it.

The most common method used to represent analog signals digitally is pulse
code modulation (PCM). The general idea of PCM is to sample (or measure) the
amplitude of the analog signal at fixed time intervals, and store the results as
an array of numbers (called samples). Since the original data is continuous, and
numbers on a computer are discrete, samples need to be rounded to the nearest
available number, in a process known as quantization. Samples are usually stored
as integer numbers, but it is also possible to use floating-point numbers as shown in
the following example:

PCM Data

0.00 0.16 0.30 0.45 0.59 0.70 0.81 0.89 0.95 0.99 1.00 ...

Analog
Signal

Time

www.allitebooks.com

http://www.allitebooks.org

Audio Concepts

[10]

There are two ways to control the quality of the sampled audio:

• Sampling rate: Also known as the sampling frequency, it is the amount of
samples taken for each second of audio. According to the Nyquist sampling
theorem, the sampling rate should be at least twice as high as the highest
frequency of the analog signal, in order to allow a proper reconstruction.
You will usually work with values of 44,100 Hz or 48,000 Hz. The following
figure compares sampling at different rates:

Higher Sampling Rate

Amplitude

Time

Lower Sampling Rate

Amplitude

Time

• Bit depth: Also known as the resolution, it is the amount of bits used to
represent a single sample. This controls the number of possible discrete
values that each sample can take, and needs to be high enough to avoid
quantization errors. You will usually work with bit depths of 16 bits or 24
bits, stored as integer numbers, or 32 bits stored as floating-point numbers.
The following figure compares sampling at different resolutions:

Higher Bit Depth

Amplitude

Time

Lower Bit Depth

Amplitude

Time

Chapter 1

[11]

Multi-channel audio
Another aspect that we should talk about is that many audio systems have more than
one output. By sending different audio signals to separate outputs (called channels),
it is possible to produce the illusion of directionality and space. The number of
channels on these systems can vary from one (mono) or two (stereo), to several
more on surround sound systems.

The PCM format described earlier can store audio for multiple channels at once,
by interleaving one sample from each channel in the correct order. The following
figure shows an example of this for a stereo system:

Combined Strereo PCM Data

Left Channel

Right Channel

L1 R1 L2 R2 L3 R3 L4 L4 R4 ...

R1 R2 R3 R4 ...

L1 L2 L3 L4 ...

Besides volume and pitch, which we have examined earlier, there is another property
that you will usually find in every audio library, called panning. Panning applies
to stereo systems, and allows you to simulate the position of the sound, placing it
anywhere between the left and the right channels. For positioning in configurations
with more than two channels, you normally use other advanced features, such as
3D sound.

Audio file formats
There are so many different file formats for storing audio on a computer that it is
easy to feel overwhelmed at first. Thankfully, you will only use a couple of them
in your games, most of the time. Audio file formats usually fall into one of the
following categories:

• Uncompressed audio files: These are audio files where the data is stored
in its original state (normally PCM). This means that their data is already
prepared for playback without any further processing. The downside is that
they take up a lot of space on disc (approximately 10 MB for one minute of
audio). For example, WAV and AIFF.

Audio Concepts

[12]

• Lossless compression: These are audio files where the data is encoded
using compression algorithms that only perform reversible changes, so that
no information is permanently lost. These files can be up to half the size of
the uncompressed formats, but need the computer to decode them before
playback. For example, FLAC and APE.

• Lossy compression: These are the audio files where the data is encoded using
compression algorithms where some loss of the information is acceptable.
These algorithms use heuristics to determine which parts of the data are less
likely to be audible, in order to discard them. File sizes can be as small as 10
percent of the original size, although sound quality can suffer considerably if
the compression is too strong. For example, MP3, WMA, and OGG.

• Sequenced music: There are some formats that do not fit into any of the
earlier mentioned categories. For example, MIDI files only store information
about how the music should be played, but do not contain any sound data,
leaving it to the computers to decide how they should be interpreted. For
this reason, they are extremely small, but sound quality is limited, and varies
from system to system. There are also hybrid formats such as MOD files (also
known as module or tracker files), which are in many ways similar to MIDI
files, but also contain any sound data that is required to play them (known
as instruments).

Be aware that despite its popularity, the MP3 is a patented format, and you cannot
use it commercially without paying royalties (refer to http://mp3licensing.com/
for more information). For this book, we will be using OGG files for long sounds,
and WAV files for small sound effects.

Summary
In this chapter, we have seen that sound is a series of variations in atmospheric
pressure, travelling in the form of sound waves. We also saw that sound waves
have properties such as amplitude and frequency, which control how loud or high
it is and that you can represent a sound wave using electrical signals (analog audio)
and a series of numbers (digital audio). We learned that when converting an analog
signal to a digital signal, you need to control the sampling rate and the bit depth.
Finally, we saw that many audio systems have more than one output and that there
are many different types of audio file formats.

Audio Playback
In this chapter, we will perform two of the most fundamental operations in audio
programming—loading and playing audio files. This might not seem like much,
but it is already enough to get us started adding audio into our games.

There are many different audio libraries available these days, such as DirectSound,
Core Audio, PortAudio, OpenAL, FMOD, or Wwise. Some are available only on
certain platforms, while others work almost everywhere. Some are very low-level,
providing little more than a bridge between the user and the sound card driver,
while others provide high-level features such as 3D sound or interactive music.

For this book, we will be using FMOD, a cross-platform audio middleware
developed by Firelight Technologies that is extremely powerful, yet easy-to-use.
However, you should try to focus more on the concepts covered, instead of the API,
because understanding them will allow you to adapt to other libraries more easily,
since a lot of this knowledge is interchangeable.

For starters, we will learn how to install FMOD, how to initialize and update the
audio system, and how to get it to play an audio file. At the end of the chapter,
we will work through the creation of a very simple audio manager class, which
encapsulates all of these tasks behind a minimalistic interface.

Understanding FMOD
One of the main reasons why I chose FMOD for this book is that it contains two
separate APIs—the FMOD Ex Programmer's API, for low-level audio playback, and
FMOD Designer, for high-level data-driven audio. This will allow us to cover game
audio programming at different levels of abstraction without having to use entirely
different technologies.

Audio Playback

[14]

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Besides that reason, FMOD is also an excellent piece of software, with several
advantages to game developers:

• License: It is free for non-commercial use, and has reasonable licenses
for commercial projects.

• Cross-platform: It works across an impressive number of platforms. You can
run it on Windows, Mac, Linux, Android, iOS, and on most of the modern
video game consoles by Sony, Microsoft, and Nintendo.

• Supported formats: It has native support for a huge range of audio file
formats, which saves you the trouble of having to include other external
libraries and decoders.

• Programming languages: Not only can you use FMOD with C and C++,
there are also bindings available for other programming languages, such as
C# and Python.

• Popularity: It is extremely popular, being widely considered as the industry
standard nowadays. It was used in games such as BioShock, Crysis, Diablo
3, Guitar Hero, Start Craft II, and World of Warcraft. It is also used to power
several popular game engines, such as Unity3D and CryEngine.

• Features: It is packed with features, covering everything from simple audio
playback, streaming and 3D sound, to interactive music, DSP effects and
low-level audio programming.

Installing FMOD Ex Programmer's API
Installing a C++ library can be a bit daunting at first. The good side is that once you
have done it for the first time, the process is usually the same for every other library.
Here are the steps that you should follow if you are using Microsoft Visual Studio:

1. Download the FMOD Ex Programmer's API from http://www.fmod.org
and install it to a folder that you can remember, such as C:\FMOD.

2. Create a new empty project, and add at least one .cpp file to it. Then,
right-click on the project node on the Solution Explorer, and select
Properties from the list. For all the steps that follow, make sure that the
Configuration option is set to All Configurations.

Chapter 2

[15]

3. Navigate to C/C++ | General, and add C:\FMOD\api\inc to the list of
Additional Include Directories (entries are separated by semicolons).

4. Navigate to Linker | General, and add C:\FMOD\api\lib to the list of
Additional Library Directories.

5. Navigate to Linker | Input, and add fmodex_vc.lib to the list of Additional
Dependencies.

6. Navigate to Build Events | Post-Build Event, and add xcopy /y "C:\FMOD\
api\fmodex.dll" "$(OutDir)" to the Command Line list.

7. Include the <fmod.hpp> header file from your code.

Creating and managing the audio system
Everything that happens inside FMOD is managed by a class named FMOD::System,
which we must start by instantiating with the FMOD::System_Create() function:

FMOD::System* system;
FMOD::System_Create(&system);

Notice that the function returns the system object through a parameter. You will see
this pattern every time one of the FMOD functions needs to return a value, because
they all reserve the regular return value for an error code. We will discuss error
checking in a bit, but for now let us get the audio engine up and running.

Now that we have a system object instantiated, we also need to initialize it by calling
the init() method:

system->init(100, FMOD_INIT_NORMAL, 0);

The first parameter specifies the maximum number of channels to allocate. This
controls how many sounds you are able to play simultaneously. You can choose
any number for this parameter because the system performs some clever priority
management behind the scenes and distributes the channels using the available
resources. The second and third parameters customize the initialization process,
and you can usually leave them as shown in the example.

Many features that we will use work properly only if we update the system object
every frame. This is done by calling the update() method from inside your game loop:

system->update();

You should also remember to shutdown the system object before your game ends,
so that it can dispose of all resources. This is done by calling the release() method:

system->release();

Audio Playback

[16]

Loading and streaming audio files
One of the greatest things about FMOD is that you can load virtually any audio
file format with a single method call. To load an audio file into memory, use the
createSound() method:

FMOD::Sound* sound;
system->createSound("sfx.wav", FMOD_DEFAULT, 0, &sound);

To stream an audio file from disk without having to store it in memory, use the
createStream() method:

FMOD::Sound* stream;
system->createStream("song.ogg", FMOD_DEFAULT, 0, &stream);

Both methods take the path of the audio file as the first parameter, and return a
pointer to an FMOD::Sound object through the fourth parameter, which you can use
to play the sound. The paths in the previous examples are relative to the application
path. If you are running these examples in Visual Studio, make sure that you copy
the audio files into the output folder (for example, using a post-build event such as
xcopy /y "$(ProjectDir)*.ogg" "$(OutDir)").

The choice between loading and streaming is mostly a tradeoff between memory
and processing power. When you load an audio file, all of its data is uncompressed
and stored in memory, which can take up a lot of space, but the computer can play
it without much effort. Streaming, on the other hand, barely uses any memory, but
the computer has to access the disk constantly, and decode the audio data on the
fly. Another difference (in FMOD at least) is that when you stream a sound, you can
only have one instance of it playing at any time. This limitation exists because there
is only one decode buffer per stream. Therefore, for sound effects that have to be
played multiple times simultaneously, you have to either load them into memory,
or open multiple concurrent streams. As a rule of thumb, streaming is great for
music tracks, voice cues, and ambient tracks, while most sound effects should be
loaded into memory.

The second and third parameters allow us to customize the behavior of the sound.
There are many different options available, but the following list summarizes the
ones we will be using the most. Using FMOD_DEFAULT is equivalent to combining the
first option of each of these categories:

• FMOD_LOOP_OFF and FMOD_LOOP_NORMAL: These modes control whether the
sound should only play once, or loop once it reaches the end

• FMOD_HARDWARE and FMOD_SOFTWARE: These modes control whether
the sound should be mixed in hardware (better performance) or software
(more features)

Chapter 2

[17]

• FMOD_2D and FMOD_3D: These modes control whether to use 3D sound

We can combine multiple modes using the bitwise OR operator (for instance, FMOD_
DEFAULT | FMOD_LOOP_NORMAL | FMOD_SOFTWARE). We can also tell the system to
stream a sound even when we are using the createSound() method, by setting the
FMOD_CREATESTREAM flag. In fact, the createStream() method is simply a shortcut
for this.

When we do not need a sound anymore (or at the end of the game) we should dispose
of it by calling the release() method of the sound object. We should always release
the sounds we create, regardless of the audio system also being released.

sound->release();

Playing sounds
With the sounds loaded into memory or prepared for streaming, all that is left is
telling the system to play them using the playSound() method:

FMOD::Channel* channel;
system->playSound(FMOD_CHANNEL_FREE, sound, false, &channel);

The first parameter selects in which channel the sound will play. You should usually
let FMOD handle it automatically, by passing FMOD_CHANNEL_FREE as the parameter.

The second parameter is a pointer to the FMOD::Sound object that you want to play.

The third parameter controls whether the sound should start in a paused state,
giving you a chance to modify some of its properties without the changes being
audible. If you set this to true, you will also need to use the next parameter so that
you can unpause it later.

The fourth parameter is an output parameter that returns a pointer to the
FMOD::Channel object in which the sound will play. You can use this handle to
control the sound in multiple ways, which will be the main topic of the next chapter.

You can ignore this last parameter if you do not need any control over the sound,
and simply pass in 0 in its place. This can be useful for non-lopping one-shot sounds.

system->playSound(FMOD_CHANNEL_FREE, sound, false, 0);

Audio Playback

[18]

Checking for errors
So far, we have assumed that every operation will always work without errors.
However, in a real scenario, there is room for a lot to go wrong. For example,
we could try to load an audio file that does not exist.

In order to report errors, every function and method in FMOD has a return value
of type FMOD_RESULT, which will only be equal to FMOD_OK if everything went right.
It is up to the user to check this value and react accordingly:

FMOD_RESULT result = system->init(100, FMOD_INIT_NORMAL, 0);
if (result != FMOD_OK) {
 // There was an error, do something about it
}

For starters, it would be useful to know what the error was. However, since
FMOD_RESULT is an enumeration, you will only see a number if you try to print it.
Fortunately, there is a function called FMOD_ErrorString() inside the fmod_errors.h
header file which will give you a complete description of the error.

You might also want to create a helper function to simplify the error checking
process. For instance, the following function will check for errors, print a description
of the error to the standard output, and exit the application:

#include <iostream>
#include <fmod_errors.h>

void ExitOnError(FMOD_RESULT result) {
 if (result != FMOD_OK) {
 std::cout << FMOD_ErrorString(result) << std::endl;
 exit(-1);
 }
}

You could then use that function to check for any critical errors that should cause
the application to abort:

ExitOnError(system->init(100, FMOD_INIT_NORMAL, 0));

The initialization process described earlier also assumes that everything will go as
planned, but a real game should be prepared to deal with any errors. Fortunately,
there is a template provided in the FMOD documentation which shows you how to
write a robust initialization sequence. It is a bit long to cover here, so I urge you to
refer to the file named Getting started with FMOD for Windows.pdf inside the
documentation folder for more information.

Chapter 2

[19]

For clarity, all of the code examples will continue to be presented without error
checking, but you should always check for errors in a real project.

Project 1 – building a simple audio
manager
In this project, we will be creating a SimpleAudioManager class that combines
everything that was covered in this chapter. Creating a wrapper for an underlying
system that only exposes the operations that we need is known as the façade design
pattern, and is very useful in order to keep things nice and simple.

Since we have not seen how to manipulate sound yet, do not expect this class to be
powerful enough to be used in a complex game. Its main purpose will be to let you
load and play one-shot sound effects with very little code (which could in fact be
enough for very simple games).

It will also free you from the responsibility of dealing with sound objects directly
(and having to release them) by allowing you to refer to any loaded sound by its
filename. The following is an example of how to use the class:

SimpleAudioManager audio;
audio.Load("explosion.wav");
audio.Play("explosion.wav");

From an educational point of view, what is perhaps even more important is that you
use this exercise as a way to get some ideas on how to adapt the technology to your
needs. It will also form the basis of the next chapters in the book, where we will build
systems that are more complex.

Class definition
Let us start by examining the class definition:

#include <string>
#include <map>
#include <fmod.hpp>

typedef std::map<std::string, FMOD::Sound*> SoundMap;

class SimpleAudioManager {
 public:
 SimpleAudioManager();
 ~SimpleAudioManager();

www.allitebooks.com

http://www.allitebooks.org

Audio Playback

[20]

 void Update(float elapsed);
 void Load(const std::string& path);
 void Stream(const std::string& path);
 void Play(const std::string& path);
 private:
 void LoadOrStream(const std::string& path, bool stream);
 FMOD::System* system;
 SoundMap sounds;
};

From browsing through the list of public class members, it should be easy to deduce
what it is capable of doing:

• The class can load audio files (given a path) using the Load() method
• The class can stream audio files (given a path) using the Stream() method
• The class can play audio files (given a path) using the Play() method

(granted that they have been previously loaded or streamed)
• There is also an Update() method and a constructor/destructor pair to

manage the sound system

The private class members, on the other hand, can tell us a lot about the inner
workings of the class:

• At the core of the class is an instance of FMOD::System responsible for
driving the entire sound engine. The class initializes the sound system
on the constructor, and releases it on the destructor.

• Sounds are stored inside an associative container, which allows us to search
for a sound given its file path. For this purpose, we will be relying on one
of the C++ Standard Template Library (STL) associative containers, the
std::map class, as well as the std::string class for storing the keys.
Looking up a string key is a bit inefficient (compared to an integer, for
example), but it should be fast enough for our needs. An advantage of having
all the sounds stored on a single container is that we can easily iterate over
them and release them from the class destructor.

• Since the code for loading and streaming audio file is almost the same,
the common functionality has been extracted into a private method called
LoadOrStream(), to which Load() and Stream() delegate all of the work.
This prevents us from repeating the code needlessly.

Chapter 2

[21]

Initialization and destruction
Now, let us walk through the implementation of each of these methods. First we
have the class constructor, which is extremely simple, as the only thing that it needs
to do is initialize the system object.

SimpleAudioManager::SimpleAudioManager() {
 FMOD::System_Create(&system);
 system->init(100, FMOD_INIT_NORMAL, 0);
}

Updating is even simpler, consisting of a single method call:

void SimpleAudioManager::Update(float elapsed) {
 system->update();
}

The destructor, on the other hand, needs to take care of releasing the system object,
as well as all the sound objects that were created. This process is not that complicated
though. First, we iterate over the map of sounds, releasing each one in turn, and
clearing the map at the end. The syntax might seem a bit strange if you have never
used an STL iterator before, but all that it means is to start at the beginning of the
container, and keep advancing until we reach its end. Then we finish off by releasing
the system object as usual.

SimpleAudioManager::~SimpleAudioManager() {
 // Release every sound object and clear the map
 SoundMap::iterator iter;
 for (iter = sounds.begin(); iter != sounds.end(); ++iter)
 iter->second->release();
 sounds.clear();

 // Release the system object
 system->release();
 system = 0;
}

Audio Playback

[22]

Loading or streaming sounds
Next in line are the Load() and Stream() methods, but let us examine the private
LoadOrStream() method first. This method takes the path of the audio file as a
parameter, and checks if it has already been loaded (by querying the sound map).
If the sound has already been loaded there is no need to do it again, so the method
returns. Otherwise, the file is loaded (or streamed, depending on the value of the
second parameter) and stored in the sound map under the appropriate key.

void SimpleAudioManager::LoadOrStream(const std::string& path, bool
stream) {
 // Ignore call if sound is already loaded
 if (sounds.find(path) != sounds.end()) return;

 // Load (or stream) file into a sound object
 FMOD::Sound* sound;
 if (stream)
 system->createStream(path.c_str(), FMOD_DEFAULT, 0, &sound);
 else
 system->createSound(path.c_str(), FMOD_DEFAULT, 0, &sound);

 // Store the sound object in the map using the path as key
 sounds.insert(std::make_pair(path, sound));
}

With the previous method in place, both the Load() and the Stream() methods
can be trivially implemented as follows:

void SimpleAudioManager::Load(const std::string& path) {
 LoadOrStream(path, false);
}
void SimpleAudioManager::Stream(const std::string& path) {
 LoadOrStream(path, true);
}

Playing sounds
Finally, there is the Play() method, which works the other way around. It starts by
checking if the sound has already been loaded, and does nothing if the sound is not
found on the map. Otherwise, the sound is played using the default parameters.

void SimpleAudioManager::Play(const std::string& path) {
 // Search for a matching sound in the map
 SoundMap::iterator sound = sounds.find(path);

Chapter 2

[23]

 // Ignore call if no sound was found
 if (sound == sounds.end()) return;

 // Otherwise play the sound
 system->playSound(FMOD_CHANNEL_FREE, sound->second, false, 0);
}

We could have tried to automatically load the sound in the case when it was not
found. In general, this is not a good idea, because loading a sound is a costly
operation, and we do not want that happening during a critical gameplay section
where it could slow the game down. Instead, we should stick to having separate load
and play operations.

A note about the code samples
Although this is a book about audio, all the samples need an environment to run on.
In order to keep the audio portion of the samples as clear as possible, we will also
be using the Simple and Fast Multimedia Library 2.0 (SFML) (http://www.sfml-
dev.org). This library can very easily take care of all the miscellaneous tasks, such as
window creation, timing, graphics, and user input, which you will find in any game.

For example, here is a complete sample using SFML and the SimpleAudioManager
class. It creates a new window, loads a sound, runs a game loop at 60 frames per
second, and plays the sound whenever the user presses the space key.

#include <SFML/Window.hpp>
#include "SimpleAudioManager.h"

int main() {
 sf::Window window(sf::VideoMode(320, 240), "AudioPlayback");
 sf::Clock clock;

 // Place your initialization logic here
 SimpleAudioManager audio;
 audio.Load("explosion.wav");

 // Start the game loop
 while (window.isOpen()) {
 // Only run approx 60 times per second
 float elapsed = clock.getElapsedTime().asSeconds();
 if (elapsed < 1.0f / 60.0f) continue;
 clock.restart();
 sf::Event event;
 while (window.pollEvent(event)) {

Audio Playback

[24]

 // Handle window events
 if (event.type == sf::Event::Closed)
 window.close();

 // Handle user input
 if (event.type == sf::Event::KeyPressed &&
 event.key.code == sf::Keyboard::Space)
 audio.Play("explosion.wav");
 }
 // Place your update and draw logic here
 audio.Update(elapsed);
 }
 // Place your shutdown logic here
 return 0;
}

Summary
In this chapter, we have seen some of the advantages of using the FMOD audio
engine. We saw how to install the FMOD Ex Programmer's API in Visual Studio,
how to initialize, manage, and release the FMOD sound system, how to load or stream
an audio file of any type from disk, how to play a sound that has been previously
loaded by FMOD, how to check for errors in every FMOD function, and how to create
a simple audio manager that encapsulates the act of loading and playing audio files
behind a simple interface.

Audio Control
In the previous chapter, we saw how to load and play audio files in FMOD. This
time, we will explore some of the ways in which we can control the playback of
those files. We will start with controlling the playback flow, by stopping the sound
on demand, or seeking to different points in the audio file. Then we will cover how
to modify the main properties of sound that were described in Chapter 1, Audio
Concepts, such as volume and pitch. We will also see how FMOD lets us group
sounds into categories, in order to control multiple sounds at once.

At the end of the chapter, we will expand the audio manager from the previous
chapter, and make it more flexible and appropriate for use in games. This extended
audio manager will provide a distinction between songs and sound effects, and handle
each of them differently. We will see how to implement a fade in/fade out effect using
simple volume manipulation, and how to add a variation to sound effects with a bit of
randomness. The audio manager will also expose individual volume control for each
category, making it easy to control from a game's option screen.

The channel handle
Let us start with a quick reminder from last chapter. When we use the playSound()
method and pass the address of an FMOD::Channel pointer to the fourth parameter,
we get a channel handle in return:

FMOD::Channel* channel;
system->playSound(FMOD_CHANNEL_FREE, sound, false, &channel);

Through this handle, we can control the sound in many ways. This handle remains
valid while the sound has not finished playing, or until we explicitly stop the sound.
If we try to perform an operation on the channel after the sound has stopped,
nothing happens. Instead, the method we called returns an error stating that the
channel handle is invalid, or already in use by another sound, if that is the case.

Audio Control

[26]

Something that might be confusing is that this FMOD channel is not the same
type we talked back in Chapter 1, Audio Concepts, when we discussed multi-channel
audio. This is simply the name FMOD gives to each of the slots it uses to play
sounds simultaneously.

Controlling the playback
We already know how to play audio files, but it is also important to know how to
stop them from playing. This is particularly important for looping sounds, because
otherwise they would keep repeating forever. Usually, all we have to do is call the
stop() method on the channel handle:

channel->stop();

When a sound stops playing—because it reached the end and it is not set to loop,
or because we stopped it ourselves—its channel becomes free for other sounds
to use. This means that once we stop a sound there is no way to resume it. If we
need to stop a sound temporarily, and resume it at a later time, we need to use the
setPaused() method:

// Pause the sound
channel->setPaused(true);
// Resume the sound
channel->setPaused(false);

Most methods that start with set are accompanied by an equivalent get method,
such as getPaused(), that we can use to check the current value of that property.
The following is a function that uses both methods in conjunction with each other,
to toggle the paused state of a channel:

void TogglePaused(FMOD::Channel* channel) {
 bool paused;
 channel->getPaused(&paused);
 channel->setPaused(!paused);
}

Another common operation is to seek the sound to a different position in the file.
This is done with the setPosition() method, which takes a number representing
the position we want to seek to, and the units we are specifying that position in
(milliseconds in the following example). This is useful if we want to make a sound
start from the beginning after unpausing it:

channel->setPosition(0, FMOD_TIMEUNIT_MS);

Chapter 3

[27]

Finally, if we have a looping sound, we can use the setLoopCount() method to
control the number of times the sound should loop. The following example shows
some of the possible parameters (with the default being -1 to loop endlessly):

// Repeat endlessly
channel->setLoopCount(-1);
// Play once then, stop
channel->setLoopCount(0);
// Play three times, then stop
channel->setLoopCount(2);

Controlling the volume
Next, we will see how to control some of the main properties of sound, starting with
its volume. This is done with a simple call to the setVolume() method, which takes a
value ranging from 0 (silence) to 1 (maximum volume):

channel->setVolume(1.0f);

Similar to the way we paused the sound earlier, we can also silence it temporarily by
using the setMute() method. Once we unmute the sound, it continues playing at its
previous volume:

channel->setMute(true);

Both the methods preciously mentioned modify all channels of the sound
simultaneously. On a sound with multiple channels, we can modify the volume of
each channel separately, using the setInputChannelMix() method. This works for
any amount of channels, by taking an array of volume levels as the first parameter,
and the number of channels as the second. The following is an example for a stereo
sound that mutes the left channel:

float levels[2] = {0.0f, 1.0f};
channel->setInputChannelMix(levels, 2);

Controlling the pitch
Controlling the pitch is not as straightforward as controlling the volume. We already
know that modifying the frequency of a sound, changes its pitch and the channel
handle actually has a setFrequency() method just for that:

channel->setFrequency(261.626f);

Audio Control

[28]

However, it does not work the way some of us might expect. For example, the
middle C note on a piano has a frequency of approximately 261.626 Hz, so we might
expect that setting the frequency to that value, would make the sound assume a pitch
close to the middle C note, but this is not the case.

In order to understand this problem, let us first turn our attention to the
getFrequency() method. If we call this method on a channel with its original
frequency, what we get in return is actually the sampling rate of the sound. This means
that any frequency values that we set must be relative to this value, or in other words,
that any values above the original sampling rate of the sound will increase its pitch,
and vice versa.

We could choose frequency values arbitrarily to get the desired effect, but an easier
way to deal with pitch is in musical terms. In musical theory, the difference between
two pitches is called an interval, with two of the most basic types of intervals being
the octave, which corresponds to the distance between two consecutive notes with
the same name, and the semitone, which corresponds to the distance between any
two adjacent notes. The following are a few simple rules; we can modify an existing
frequency by any of these intervals:

• Every time we multiply/divide a frequency by two we get a new frequency
that sounds one octave higher/lower

• Every time we multiply/divide a frequency by two and a half we get new
a frequency that sounds one semitone higher/lower

To make things easier, here are two helper methods that perform the previous
calculations, given a frequency, and the number of octaves or semitones to change.
Notice the use of the pow() function to apply the previous multiplications and
divisions the necessary amount of times:

#include <math.h>

float ChangeOctave(float frequency, float variation) {
 static float octave_ratio = 2.0f;
 return frequency * pow(octave_ratio, variation);
}
float ChangeSemitone(float frequency, float variation) {
 static float semitone_ratio = pow(2.0f, 1.0f / 12.0f);
 return frequency * pow(semitone_ratio, variation);
}

Chapter 3

[29]

Using these helper methods, it becomes simple to modify the pitch of a sound in
FMOD in a meaningful way. For example, to decrease the pitch of a sound by 3
semitones, we could do the following:

float frequency;
channel->getFrequency(&frequency);
float newFrequency = ChangeSemitone(frequency, -3.0f);
channel->setFrequency(newFrequency);

Note that changing the frequency of the sound will also have the side effect of
speeding it up or slowing it down. There is a way to change the pitch of a sound
without affecting its speed in FMOD, but it requires using a DSP effect, which is
outside the scope of this chapter. We will briefly cover DSP effects in the next chapter.

Controlling the panning
Finally, we can also control the panning of some sounds, as long as they are mono or
stereo, and 2D (as the FMOD engine automatically positions 3D sounds). When these
conditions are met, you can change the panning of the sound using the setPan()
method, which takes any value from -1 (completely on the left) to 1 (completely
on the right):

channel->setPan(-1.0f);

Panning works by modifying the volume of each output to give the illusion of
position. However, the way FMOD calculates these values is different between
mono and stereo sounds.

For mono sounds, the volume of each speaker follows a constant power curve that
starts at 0 percent on one side, and goes to 100 percent on the other side, with the
center position being at around 71 percent. This technique results in a smoother
transition from one side to the other than using regular linear interpolation with 50
percent in the middle (because of the way we perceive sound intensity).

www.allitebooks.com

http://www.allitebooks.org

Audio Control

[30]

Stereo sounds, on the other hand, use a simpler formula referred to as setting the
balance of the sound. Using this approach, both outputs are already at 100 percent in
the center position, and panning to one side only decreases the volume of the opposite
channel in a linear fashion. The following figure demonstrates both the approaches:

Constant Power

Panning

Vo
lu

m
e

1

1-1

0

0

Left
Right

0.707

Balance

Panning

Vo
lu

m
e

1

1-1

0

0

Grouping channels together
Another great feature of FMOD is that it lets us add different channels to a group and
control them simultaneously. This is very useful for video games, where sound tends
to fall into categories (such as background music, sound effects, or speech). To create
a channel group we use the createChannelGroup() method of the system object:

FMOD::ChannelGroup* musicGroup;
system->createChannelGroup("music", &musicGroup);

Then we can easily add a channel to a group using the setChannelGroup() method
of the channel object:

channel->setChannelGroup(musicGroup);

It is also possible to add a group as a child of another group, creating a hierarchy.
This is done using the addGroup() method of the parent channel group object:

channelGroup->addGroup(anotherGroup);

There is also a global channel group called the master channel group, where every
channel is placed every time you play a sound. You can get a reference to the master
channel group by calling the getMasterChannelGroup() method of the system object:

FMOD::ChannelGroup* masterGroup;
system->getMasterChannelGroup(&masterGroup);

Chapter 3

[31]

A good way to organize sounds in our games is to create a channel group for
each category of sounds, and add all channel groups to the master channel group.
This way we have control over individual categories, but we also have a way to
control all sounds at once.

Controlling groups of channels
Most operations supported by channel groups are the same that we have seen
already for individual channels. In particular, we can stop, pause, or mute all channels
in a group, and control their volume and pitch. The syntax for these operations is the
same as before, except for pitch, which is done through a setPitch() method, that
instead of a frequency, takes any value between 0 and 10, and multiplies it by the
current frequency.

// Calls stop on all channels in the group
channelGroup->stop();
// Mute or pause all channels
channelGroup->setMute(true);
channelGroup->setPaused(true);
// Halve the volume of all sounds in the group
channelGroup->setVolume(0.5f);
// Double the frequency of all sounds in the group
channelGroup->setPitch(2.0f);

All of these changes propagate down the channel group hierarchy automatically,
without overwriting the values stored inside the channels. The way these values
are applied depends on the type of operation.

For operations such as pausing and muting, the values in the channel group override
the values in the children. This means that if the channel group is paused, every
channel will remain paused regardless of their real values. On the other hand, if the
channel group is not paused, the individual values in the channels are considered.

For volume and pitch, the values in the channel group are multiplied by the values
in the children. For example, a channel at 80 percent volume inside a channel group
at 50 percent volume will play at 40 percent volume instead.

Audio Control

[32]

Project 2 – improving the audio manager
In this project, we will build on top of the simple audio manager developed in the
last chapter, and make it more flexible and game oriented. This time, besides loading
and playing sounds, we will also be able to stop them and control their volume,
which is necessary in almost every game. Furthermore, we will divide all sounds
into two categories, each with its own set of features and behaviors:

• Sound effects (SFXs): Sounds that are loaded into memory and do not loop.
Multiple instances can be played at the same time. Their volume and pitch
can be controlled directly, or randomized within a user-defined range, to add
variation to the sound.

• Songs: Sounds that are streamed and set to loop. Only one song can be
playing at any time. Transitions between songs are handled smoothly
by the audio manager with volume fades.

Each game has its own needs, so you might want to create more categories,
such as one for speech or ambient tracks.

Class definition
Once again, let us start with a listing of the class definition:

#include <string>
#include <map>
#include <fmod.hpp>

class AudioManager {
 public:
 AudioManager();
 ~AudioManager();
 void Update(float elapsed);

 void LoadSFX(const std::string& path);
 void LoadSong(const std::string& path);

 void PlaySFX(const std::string& path,
 float minVolume, float maxVolume,
 float minPitch, float maxPitch);
 void PlaySong(const std::string& path);

 void StopSFXs();
 void StopSongs();

Chapter 3

[33]

 void SetMasterVolume(float volume);
 void SetSFXsVolume(float volume);
 void SetSongsVolume(float volume);

 private:
 typedef std::map<std::string, FMOD::Sound*> SoundMap;
 enum Category { CATEGORY_SFX, CATEGORY_SONG, CATEGORY_COUNT };

 void Load(Category type, const std::string& path);

 FMOD::System* system;
 FMOD::ChannelGroup* master;
 FMOD::ChannelGroup* groups[CATEGORY_COUNT];
 SoundMap sounds[CATEGORY_COUNT];
 FMOD_MODE modes[CATEGORY_COUNT];

 FMOD::Channel* currentSong;
 std::string currentSongPath;
 std::string nextSongPath;

 enum FadeState { FADE_NONE, FADE_IN, FADE_OUT };
 FadeState fade;
};

The class contains quite a few more members than the SimpleAudioManager
class, but the basis is the same. To summarize the differences, we now have public
methods to load, play, stop, and control the volume of sound effects and songs
separately. Then, in the private portion of the class, we have an enumeration with
the types of categories, and arrays of channel groups, sound maps, and modes,
containing enough entries for each of the categories. Finally, there are some variables
required to handle transitions between songs.

Initialization and destruction
In the constructor, besides initializing the sound system, we create one group
channel for each sound category, and add them to the master channel group.
We also initialize an array of modes describing how sounds in each category
should be loaded. Finally, we seed the random number generator that will be
used to play sound effects.

AudioManager::AudioManager() : currentSong(0), fade(FADE_NONE) {
 // Initialize system
 FMOD::System_Create(&system);
 system->init(100, FMOD_INIT_NORMAL, 0);

Audio Control

[34]

 // Create channels groups for each category
 system->getMasterChannelGroup(&master);
 for(int i = 0; i < CATEGORY_COUNT; ++i) {
 system->createChannelGroup(0, &groups[i]);
 master->addGroup(groups[i]);
 }

 // Set up modes for each category
 modes[CATEGORY_SFX] = FMOD_DEFAULT;
 modes[CATEGORY_SONG] = FMOD_DEFAULT | FMOD_CREATESTREAM |
 FMOD_LOOP_NORMAL;

 // Seed random number generator for SFXs
 srand(time(0));
}

In the destructor, we do the same thing as we did in the simple audio manager,
but this time there are multiple sound maps to clear.

AudioManager::~AudioManager() {
 // Release sounds in each category
 SoundMap::iterator iter;
 for(int i = 0; i < CATEGORY_COUNT; ++i) {
 for (iter = sounds[i].begin(); iter != sounds[i].end(); ++iter)
 iter->second->release();
 sounds[i].clear();
 }
 // Release system
 system->release();
}

Loading songs and sound effects
The loading portion of the manager is very similar to what we did in the last chapter.
The public methods LoadSFX() and LoadSong() delegate their work to the private
Load() method which does the actual loading process. The only difference is that the
Load() method needs to use the correct sound map and mode from the arrays, based
on the value of the first parameter:

void AudioManager::LoadSFX(const std::string& path) {
 Load(CATEGORY_SFX, path);
}
void AudioManager::LoadSong(const std::string& path) {
 Load(CATEGORY_SONG, path);

Chapter 3

[35]

}
void AudioManager::Load(Category type, const std::string& path) {
 if (sounds[type].find(path) != sounds[type].end()) return;
 FMOD::Sound* sound;
 system->createSound(path.c_str(), modes[type], 0, &sound);
 sounds[type].insert(std::make_pair(path, sound));
}

Playing and stopping sound effects
Sound effects are the easier of the two categories to play. The PlaySFX() method
takes the path of the sound, and a pair of minimum and maximum volume and
pitch values. Then it searches for the sound in the correct map, and plays it back like
before, except that it sets the volume and pitch of the sound using random values
generated within the selected ranges:

void AudioManager::PlaySFX(const std::string& path,
 float minVolume, float maxVolume,
 float minPitch, float maxPitch) {
 // Try to find sound effect and return if not found
 SoundMap::iterator sound = sounds[CATEGORY_SFX].find(path);
 if (sound == sounds[CATEGORY_SFX].end()) return;

 // Calculate random volume and pitch in selected range
 float volume = RandomBetween(minVolume, maxVolume);
 float pitch = RandomBetween(minPitch, maxPitch);

 // Play the sound effect with these initial values
 FMOD::Channel* channel;
 system->playSound(FMOD_CHANNEL_FREE, sound->second,
 true, &channel);
 channel->setChannelGroup(groups[CATEGORY_SFX]);
 channel->setVolume(volume);
 float frequency;
 channel->getFrequency(&frequency);
 channel->setFrequency(ChangeSemitone(frequency, pitch));
 channel->setPaused(false);
}

The preceding code makes use of two helper methods, ChangeSemitone() which
was already shown earlier in this chapter, and RandomBetween() which can be seen
in the following code snippet:

#include <stdlib.h>
#include <time.h>

Audio Control

[36]

float RandomBetween(float min, float max) {
 if(min == max) return min;
 float n = (float)rand()/(float)RAND_MAX;
 return min + n * (max - min);
}

Stopping all sound effects from playing is trivial to implement, thanks to the
channel groups. You would typically call this when changing between scenes
or opening a menu:

void AudioManager::StopSFXs() {
 groups[CATEGORY_SFX]->stop();
}

Playing and stopping songs
Songs are a bit harder to handle because we only want one to be playing at all times
and we want transitions between them to happen smoothly. FMOD does not provide
a way to fade the volume between sounds automatically, so we have to implement
this manually with setVolume() calls within the Update() method. First, we need
to create some member variables to store some states:

FMOD::Channel* currentSong;
std::string currentSongPath;
std::string nextSongPath;
enum FadeState { FADE_NONE, FADE_IN, FADE_OUT };
FadeState fade;

From the top, we need the channel handle to update the volume of the song, the path
of the current song to ensure that we do not play the same song again, and the path
of the next song to start playing it after the previous one finishes fading out. We also
need a variable to store if we are currently fading in or fading out. The PlaySong()
method follows these rules:

• If we are trying to play a song that is already playing, nothing should happen.
• If we are trying to play a song, but another song is already playing, we

cannot start immediately. Instead, we instruct the manager to begin stopping
the current song, and store the path of the song to play afterwards.

Chapter 3

[37]

• If no song is playing, we can start the new song immediately, with its initial
volume set to zero, and the manager set to the fade in state. The song must
also be added to the correct channel group:
void AudioManager::PlaySong(const std::string& path) {
 // Ignore if this song is already playing
 if(currentSongPath == path) return;

 // If a song is playing stop them and set this as the next song
 if(currentSong != 0) {
 StopSongs();
 nextSongPath = path;
 return;
 }
 // Find the song in the corresponding sound map
 SoundMap::iterator sound = sounds[CATEGORY_SONG].find(path);
 if (sound == sounds[CATEGORY_SONG].end()) return;

 // Start playing song with volume set to 0 and fade in
 currentSongPath = path;
 system->playSound(FMOD_CHANNEL_FREE,
 sound->second, true, ¤tSong);
 currentSong->setChannelGroup(groups[CATEGORY_SONG]);
 currentSong->setVolume(0.0f);
 currentSong->setPaused(false);
 fade = FADE_IN;
}

• The StopSongs() method is significantly easier to implement, as it only
needs to trigger a fade out if a song is playing, and clear any pending song
request that was previously set:
void AudioManager::StopSongs() {
 if(currentSong != 0)
 fade = FADE_OUT;
 nextSongPath.clear();
}

It is in the Update() method where all of the fading takes place. The process follows
these rules:

• If a song is playing and we are fading in, increase the volume of the current
song a bit. Once the volume reaches one, stop fading.

• If a song is playing and we are fading out, decrease the volume of the current
song a bit. Once the volume reaches zero, stop the song, and stop fading.

Audio Control

[38]

• If no song is playing, and there is a song set up to play next, start playing it:
void AudioManager::Update(float elapsed) {
 const float fadeTime = 1.0f; // in seconds
 if(currentSong != 0 && fade == FADE_IN) {
 float volume;
 currentSong->getVolume(&volume);
 float nextVolume = volume + elapsed / fadeTime;
 if(nextVolume >= 1.0f) {
 currentSong->setVolume(1.0f);
 fade = FADE_NONE;
 } else {
 currentSong->setVolume(nextVolume);
 }
 } else if(currentSong != 0 && fade == FADE_OUT) {
 float volume;
 currentSong->getVolume(&volume);
 float nextVolume = volume - elapsed / fadeTime;
 if(nextVolume <= 0.0f) {
 currentSong->stop();
 currentSong = 0;
 currentSongPath.clear();
 fade = FADE_NONE;
 } else {
 currentSong->setVolume(nextVolume);
 }
 } else if(currentSong == 0 && !nextSongPath.empty()) {
 PlaySong(nextSongPath);
 nextSongPath.clear();
 }
 system->update();
}

Controlling the master volume of each
category
Controlling the master volume of each category is just a matter of calling
the corresponding channel group method:

void AudioManager::SetMasterVolume(float volume) {
 master->setVolume(volume);
}
void AudioManager::SetSFXsVolume(float volume) {
 groups[CATEGORY_SFX]->setVolume(volume);
}
void AudioManager::SetSongsVolume(float volume) {
 groups[CATEGORY_SONG]->setVolume(volume);
}

Chapter 3

[39]

Summary
In this chapter, we have seen how to control the playback of a sound, how to control
the volume, pitch, and panning of a sound, how to control multiple sounds at once
using channel groups, and finally how to apply these features in practical situations,
such as fading between songs, or applying random variations to sound effects.

www.allitebooks.com

http://www.allitebooks.org

3D Audio
Our perception of sound varies depending on where we are located in relation to its
source, and on several characteristics of the environment. We have already discussed
that sound is a mechanical wave, which has an origin, and needs to travel all the way
to our ears before we can hear it. Along the way, those sound waves interact with the
environment, such as walls, objects, or the air itself, and begin to change. Many of the
changes provide valuable cues for our brain to determine the location of the sound or
the nature of the environment. The following is a list of some of the most important
factors that have an impact on sound:

• Distance: The distance between the source of the sound and our ears has a
significant effect on its intensity, because air and other mediums attenuate
sound as it passes by.

• Direction: Our ears can identify the direction a sound is coming from
thanks to minor time and intensity variations between the sounds captured
by each ear.

• Movement: The relative speed between the sound source and our ears can
make it appear to have a different pitch, because of a phenomenon known
as the Doppler effect.

• Room: The size and shape of the room we are in can cause multiple echoes to
accumulate, producing a reverberation effect, where sound seems to persist
temporarily even after the original sound has stopped.

• Obstacles: Obstacles between the sound source and our ears tend to
attenuate and muffle the sound. This is particularly true in the case of
large obstacles such as walls.

3D Audio

[42]

In this chapter, we will explore the basics of 3D audio, which is the field of audio
programming that tries to take some (or all) of these factors into consideration in
order to produce a realistic audio simulation. This is one of the areas where using
an audio engine such as FMOD really pays off, as it would be extremely difficult to
implement some of these features ourselves.

Positional audio
The first aspect of 3D audio that we are going to work with (and perhaps the most
important) is positional audio. Positional audio deals primarily with the location of
each object that produces sound (which we will refer to as audio sources) in relation
to or our ears (which we will refer to as the audio listener).

The first step required to create a 3D audio simulation is to describe every audio
source and listener in the environment. Note that there is typically only one audio
listener in a scene, unless we are creating a multiplayer split-screen type of game.
The following figure shows an example of a scene with multiple audio sources and
one audio listener in the middle:

For each audio source and listener in the scene, we store information such as
position, orientation, and velocity. Using this information, the audio engine produces
a 3D audio simulation by modifying all the sounds in real time in several ways:

• Position: The volume of a source decreases and becomes muffled (by filtering
the sound to attenuate some of the higher frequencies) as the distance to the
listener increases. The formula used to calculate the volume of the sound
given a distance is usually controllable by selecting a minimum and maximum
distance, and a roll-off model.

Chapter 4

[43]

• Orientation: Depending on the orientation of the listener in relation to
each source, the audio engine simulates sound direction and position using
speaker placement (for surround sound systems such as 5.1) or panning
(for stereo sound systems). Audio sources can also be oriented, usually by
defining a sound projection cone, with direction and angle information.
Sound is then attenuated for listeners standing outside the range of the cone.

• Velocity: If the audio source is moving in relation to the listener, the pitch
of the sound changes (increasing as the entities move closer and decreasing
as the entities move apart) because of the Doppler effect. You can hear this
effect in the real world, for example, when an ambulance passes next to you
with its siren turned as soon as the ambulance moves past your location,
there is a sudden drop in the pitch of the siren.

Positional audio in FMOD
Using positional audio in FMOD is not too different from what we have done so
far. In fact, we have already used all the classes required for positional audio on the
previous chapters; the FMOD::Channel class already works as an audio source, while
the FMOD::System class controls all the audio listeners in the scene. Let us break
down the entire process into steps.

Creating an audio source
The first point that we have to remember is to create our sounds using the FMOD_3D
flag; otherwise, the 3D audio engine will not process them:

system->createSound("explosion.wav", FMOD_3D, 0, &sound);

Then we simply need to play the sounds as usual, storing a reference to the channel
handle so that we can modify the 3D properties of the sound.

Setting the audio source's position
and velocity
Once we play the sound and get back a channel handle, we can use it to set the
position and velocity of the audio source with the set3DAttributes method:

FMOD_VECTOR position = { 3.0f, 4.0f, 2.0f };
FMOD_VECTOR velocity = { 1.0f, 0.0f, 0.0f };
channel->set3DAttributes(&position, &velocity);

We will typically set these values once when creating the audio source and update
them every frame, or every time the game object associated with the audio source
changes its position or velocity.

3D Audio

[44]

By default, the position is defined in meters, and the velocity is defined in meters
per second (as we would typically see on a physics engine). We can change this scale
by setting a different distancefactor parameter in the System::set3DSettings
method.

Note that simply subtracting an object's position by its position on the previous
frame does not yield a velocity in meters per second, as required. If we need to use
this method, for example, because we do not know the actual velocity of the object,
we have to multiply this delta by the time elapsed since the previous frame first
(in seconds):

FMOD_VECTOR velocity;
velocity.x = (position.x - lastPosition.x) * elapsed;
velocity.y = (position.y - lastPosition.y) * elapsed;
velocity.z = (position.z - lastPosition.z) * elapsed;

Setting the audio source's direction
By default, every sound source is omnidirectional which means that the sound
is emitted equally in every direction. We can give a sound source a direction,
by defining a projection cone, using the set3DConeOrientation and
set3DConeSettings methods:

FMOD_VECTOR direction = { 1.0f, 2.0f, 3.0f };
channel->set3DConeOrientation(&direction);
channel->set3DConeSettings(30.0f, 60.0f, 0.5f);

The set3DConeOrientation method takes a vector defining the main direction of
the sound cone. The set3DConeSettings method takes three parameters, containing
the inner angle, the outer angle, and the outer volume of the sound cone. The sound
source is at full volume when the listener is within the inner angle, and attenuates
towards the outer volume as the listener moves outside that angle.

Setting the audio source's range
We can control the overall distance where a sound is still audible with the
set3DMinMaxDistance method:

channel->set3DMinMaxDistance(1.0f, 10000.0f);

We specify the range of the sound as a pair of values: the minimum distance and
maximum distance. The minimum distance is the point at which the sound starts
attenuating. If the listener is any closer to the source than the minimum distance,
the sound will play at full volume. The maximum distance is the point at which the
sound stops attenuating and its volume remains constant (a volume which is not
necessarily zero).

Chapter 4

[45]

The way volume varies between the minimum and maximum distance is known
as the rolloff model. By default, FMOD uses a logarithmic rolloff that attenuates
volume as a proportion of the minimum distance:

volume = min / distance;

By changing the minimum distance, we can control the overall size of the sound
(for example, we could set a value of 0.1 for the sound of a fly, or a value of 500 for
the sound of an explosion). When using this model, the maximum distance should
have a large value, in order to give the sound enough distance to attenuate to silence.
We can make the sound attenuate slower or faster by changing the rolloffscale
parameter in the System::set3DSettings method.

The logarithmic model is realistic, but has the disadvantage of making it harder to
calculate the full range of the sound, that is, the distance to silence. For this reason
there are other models available that are easier to use, such as the linear rolloff
model, which maps the minimum distance to full volume, the maximum distance to
silence, and interpolates linearly in between. We can select the linear rolloff model
when creating the sound by adding the FMOD_3D_LINEARROLLOFF flag. In this model,
the system rolloff scale does nothing:

if (distance <= min) volume = 1.0
else if (distance >= max) volume = 0.0
else volume = (distance - min) / (max - min);

Setting the audio listener's properties
Finally, we must set the position, velocity, and orientation of the audio listener, using
the set3DListenerAttributes method of the system object:

FMOD_VECTOR pos = { 3.0f, 4.0f, 2.0f };
FMOD_VECTOR vel = { 1.0f, 0.0f, 0.0f };
FMOD_VECTOR forward = { 1.0f, 0.0f, 0.0f };
FMOD_VECTOR up = { 0.0f, 1.0f, 0.0f };
system->set3DListenerAttributes(0, &pos, &vel, &forward, &up);

This is very similar to setting up the attributes for an audio source, except for the
added orientation. The orientation is specified as a pair of normalized, perpendicular
vectors, pointing in the up and forward directions of the listener (which you will
typically get from your camera object or from the view transformation matrix).

The first parameter is an index that identifies the audio listener. By default, there is
only one audio listener in the scene, so we use the value of 0. If we need more than
one audio listener, we can use the set3DNumListeners method of the system object
to increase that number.

3D Audio

[46]

Integration with a game
There are several ways to approach this problem, depending on the architecture used
by the game engine, but in general, the process is to assign an audio source to each
game object that can emit a sound, and assign an audio listener to the camera object.
Then, in the update phase of our game loop, every time we change the position,
velocity, or orientation of a game object or camera, we must follow it up with an
update to the corresponding audio structures. Finally, at the end of the update phase,
we update the audio system, which processes all the changes made to the sources
and listeners and updates the simulation accordingly.

Reverb
Positional audio (with its attenuation, speaker placement, and Doppler effect)
comprises the most fundamental level of 3D audio. Now we will cover some
advanced techniques that we can use on top of positional audio to provide a more
complete simulation of how sounds interact with the environment. One of those
techniques is called reverberation, or reverb.

Reverb is the capability of sound to persist in a particular space for some time after
the original sound has stopped. We can think of reverb as a succession of echoes with
very little time in between them.

Reverb occurs because most audio sources project sound in several directions
at once. Some of those sound waves reach our ears directly, in the shortest path
possible. Others, however, head in different directions, and reflect off various
surfaces, such as walls, before finally reaching our ears. These reflected sound waves
take longer to reach our ears than the direct sound waves, and become quieter with
every bounce they make. The combination of all the reflected sound waves creates
the effect of reverb.

Chapter 4

[47]

Simulating reverb in a game can enhance the realism of a scene because it provides
strong cues about the size and nature of the environment. For example, an empty
cathedral with large, reflective walls will usually result in a lot of reverb. On the
other hand, an outdoor location with no walls will have virtually no reverb. We can
also infer the size of a room from the duration of the reverb, since sound waves have
to travel longer in a large room than in a small room.

Reverb in FMOD
If we are already using positional audio in our scene, adding reverb in FMOD
requires only a few extra lines of code.

Creating a reverb object
First, we need to create an FMOD::Reverb object using the createReverb method:

FMOD::Reverb* reverb;
system->createReverb(&reverb);

This creates a reverb zone that automatically applies reverb to every sound that a
listener can hear when standing inside that zone. You can safely create more than
one reverb zone simultaneously, as FMOD automatically combines their effects.

To disable a reverb zone, you can use the setActive method. Alternatively,
if you do not need that zone any more, you can destroy it permanently with
the release method:

reverb->setActive(false); // Disable temporarily
reverb->release(); // Destroy reverb

Setting reverb properties
A reverb has many properties to customize its behavior. These properties are defined
inside the FMOD_REVERB_PROPERTIES structure, and can be applied to the reverb
object using the setProperties method. Fortunately, FMOD also provides a set
of presets that you can use directly, such as FMOD_PRESET_CONCERTHALL:

FMOD_REVERB_PROPERTIES properties = FMOD_PRESET_CONCERTHALL;
reverb->setProperties(&properties);

3D Audio

[48]

Setting reverb position and radius
We can specify the position and range of the reverb using the set3DAttributes
method. The range of the reverb is specified with a minimum radius (reverb is at
full volume within that radius) and a maximum radius (reverb is disabled outside
that radius).

FMOD_VECTOR position = { 10.0f, 0.0f, 0.0f };
reverb->set3DAttributes(&position, 10.0f, 20.0f);

Setting the default ambient reverb
We can also set which reverb properties to use when the listener is not inside any
reverb zone, using the setReverbAmbientProperties method of the system object.

FMOD_REVERB_PROPERTIES properties = FMOD_PRESET_OFF;
system->setReverbAmbientProperties(&properties);

Obstruction and occlusion
Obstacles in the environment, such as large objects, or walls, also alter the way we
perceive sound. We can often hear a person speaking in an adjacent room, but the
sound is not as clear as if they were standing next to us. The reason for this is that
although sound can pass through several types of materials, it loses energy and
several of its higher frequencies during the process. This results in a quieter, muffled
sound. There are two techniques used to simulate obstacles in 3D audio: obstruction
and occlusion.

Obstruction occurs when the source and the listener are in the same environment, and
there is an obstacle in the way, but there is still enough space around the obstacle for
the sound waves to flow. In this situation, sound waves passing directly through the
obstacle are attenuated and filtered, but reflected sound waves are not affected.

Occlusion occurs when the source and listener are in different environments, and
all the sound needs to go through an obstacle, such as a wall, before reaching the
listener. In this situation, both direct and reflected sound waves are attenuated
and filtered.

Chapter 4

[49]

The filter applied to the obstructed or occluded sound waves is usually a low pass
filter, which attenuates the higher frequencies, resulting in a muffled sound.

Obstruction and occlusion in FMOD
We can simulate obstruction and occlusion in FMOD using the built-in geometry
engine. This only works if we already have our audio sources and listeners set up.
Afterwards, we need to create geometry objects to represent the obstacles in
our environment.

The easiest way to create these objects is to start from a 3D triangle mesh
representation of our obstacle. Then we create an instance of FMOD::Geometry
with enough space to store all of our triangles and vertices, using the
createGeometry method:

FMOD::Geometry* geometry;
system->createGeometry(numTriangles, numVertices, &geometry);

Next, for each triangle in our mesh, we add a new polygon to the geometry object
using the addPolygon method. The first two parameters control the amount of
obstruction and occlusion to perform. The third parameter decides if the polygon
should be double sided. The fourth parameter is the number of vertices in the
polygon, and the fifth parameter is the polygon data itself. The sixth parameter
returns an index which can be used to perform further operations on the polygon.

FMOD_VECTOR vertices[3]; // Fill with triangle vertices
int polygonIndex; // Gets an index for the new polygon
geometry->addPolygon(0.5f, 0.5f, false, 3, vertices,
&polygonIndex);

We should create the polygon using vertices in object space, not in world space.
Then, in order to position the geometry the world, we can use a combination of
the setPosition, setRotation, and setScale methods.

www.allitebooks.com

http://www.allitebooks.org

3D Audio

[50]

Effects
Besides all of the 3D audio simulations described earlier, there is another subject
that we should cover: DSP effects. A DSP effect (which stands for digital signal
processing) is an algorithm that takes sound data as input, modifies it in some way,
and returns a new set of data as output. Most effects either manipulate the amplitudes
or frequencies of the sound data, or add multiple sounds together (frequently that
sound is a delayed and attenuated version of itself). The following is a list of some
common types of DSP effects:

• Normalize: This effect scales the volume of the sound so that the peak
amplitude is at the maximum volume level.

• Compressor: This effect makes the loud sections of the sound quieter, then
brings the entire volume up to compensate, reducing the dynamic range of
the sound

• Distortion: This effect distorts the sound, making it sound harsher
• Low-pass filter: This effect attenuates all frequencies in the sound above

a certain range, making the sound muffled
• High-pass filter: This effect attenuates all frequencies in the sound below

a certain range, making the sound thinner
• Parametric EQ: This effect provides complex volume control over all

different ranges of frequencies in the sound
• Delay: In this effect the sound plays once, and keeps repeating after a certain

amount of time, until it runs out of energy
• Echo: In this effect a delay with a duration that is long enough for us to

perceive as separate sounds
• Flanger: This effect doubles the sound with a very small delay between each

instance, and varies this delay over time
• Chorus: This effect plays multiple instances of the sound together, with small

pitch and time variations between them
• Pitch shift: This effect changes the pitch of a sound without altering its

playback speed
• Noise removal: This effect silences every value below a certain

volume threshold

Chapter 4

[51]

Effects in FMOD
Once again, we will only cover the very basics here. The easiest way to create a DSP
effect in FMOD is to use the createDSPByType method, with one of the available
DSP types as a parameter (check the FMOD documentation for the complete list
of types).

FMOD::DSP* dsp;
system->createDSPByType(FMOD_DSP_TYPE_ECHO, &dsp);

This returns an FMOD::DSP object that you can apply to any channel, channel group,
or the system object itself, using the addDSP method of the corresponding object.
You can also add more than one DSP effect to the same object, which chains them
together automatically:

channel->addDSP(dsp, 0);

The second parameter allows more control over the DSP connection, but we will
ignore it for our simple examples.

Finally, most DSP effects have a set of parameters that you can control using the
setParameter method (once again, check the documentation for a list of all the
available parameters):

dsp->setParameter(FMOD_DSP_ECHO_DECAYRATIO, 0.75f);

Example 1 – time stretching
As our first application of DSP effects, here is an example that shows how to change
the playback speed of a sound without affecting its pitch. To do this, we need to
combine a regular frequency change, which modifies both the pitch and the speed of
the sound, with a pitch shift DSP effect, in order to return the pitch back to normal.

// Play at half speed
float amount = 0.5f;

// Modify frequency which changes both speed and pitch
float frequency;
channel->getFrequency(&frequency);
channel->setFrequency(frequency * amount);

// Create a pitch shift DSP to get pitch back to normal
// by applying the inverse amount
FMOD::DSP* dsp;
system->createDSPByType(FMOD_DSP_TYPE_PITCHSHIFT, &dsp);
dsp->setParameter(FMOD_DSP_PITCHSHIFT_PITCH, 1.0f / amount);

3D Audio

[52]

dsp->setParameter(FMOD_DSP_PITCHSHIFT_FFTSIZE, 4096);

// Now only the speed will change
channel->addDSP(dsp, 0);

Example 2 – simple radio effect
You can also combine multiple effects to achieve behaviors that are more
complicated. For example, here is a rudimentary radio effect simulation,
which works by applying a distortion and a high pass filter to the sound.

FMOD::DSP* distortion;
system->createDSPByType(FMOD_DSP_TYPE_DISTORTION, &distortion);
distortion->setParameter(FMOD_DSP_DISTORTION_LEVEL, 0.85f);

FMOD::DSP* highpass;
system->createDSPByType(FMOD_DSP_TYPE_HIGHPASS, &highpass);
highpass->setParameter(FMOD_DSP_HIGHPASS_CUTOFF, 2000.0f);

channel->addDSP(distortion, 0);
channel->addDSP(highpass, 0);

The distortion simulates the loss of information that often occurs when transmitting
analog signals and the high pass filter makes the sound thinner by getting rid of the
lower frequencies.

Summary
In this chapter, we have seen how to simulate sound coming from specific locations
in the environment, how to simulate reverb from reflected sound waves, how to
simulate obstruction and occlusion from obstacles, and finally how to apply DSP
effects to sounds.

Intelligent Audio
Up to this point, we have played sounds in a very linear fashion; we load an
audio file from a disk and play it when needed, optionally controlling some of its
parameters during playback. Even when we used advanced features such as 3D
audio, there was still a one-to-one relationship between the sound and the audio file.

However, a sound does not necessarily correspond to a single audio file. In many
scenarios we can benefit from using multiple audio files for a single sound. For
example, we can often reduce repetition by providing several variations of the same
sound as separate audio files, or we can build complex soundscapes by combining
several smaller sound fragments.

For other sounds, the modifications we apply at runtime to their parameters are
just as important as the audio files that compose them. For example, we cannot
realistically simulate the sound of a car engine without constantly updating its pitch
and volume based on the engine's rpm and load values. Another common example is
to have a soundtrack dynamically react to the events in the game in order to convey
more or less tension to the player.

As programmers, we could certainly implement any of these features by writing
specialized code for each situation, orchestrating each audio file and sound parameter
as necessary. However, this approach takes a significant amount of effort, and is hard
to manage and tweak, since most of the behavior gets hardcoded into the game. An
even bigger problem is that it is usually a sound designer, not a programmer, which
creates the sounds for a game, and using this approach would require a significant
amount of communication and synchronization between both parties.

Thankfully, we can solve this problem by using a high-level audio engine. These
engines usually provide an external tool that the sound designer can use to create
complex sounds, independently from a programmer, and store them as sound events.
Then, regardless of the complexity of the sound, the programmer can easily trigger it
from the game, usually by writing the name of the event.

Intelligent Audio

[54]

The main difficulty in covering this topic is that there are several high-level audio
engines available, and each of them has its own set of features and philosophy.
Using these tools, we can perform things such as generative audio (generating
audio at runtime from a set of sound samples and rules) or adaptive music (music
that changes depending on game events). To simplify the terminology, we will be
using the term intelligent audio to encompass all situations where a sound can have
complex behavior attached to it.

In this chapter, we will work with the FMOD Designer tool and see some of the
interesting stuff that we can do with it. A detailed coverage of the tool would be
impossible given the limited scope of the book, but it should be enough to give you
some ideas and to get you started. For more information, the FMOD Designer tool
ships with a user manual that is over 400 pages long, and a sample project with
many examples.

Audio files versus sound events
Before installing the FMOD Designer tool, let us start by really understanding the
difference between treating each audio file as a sound, and working at a higher level
of abstraction with sound events (or sound cues in some engines). The following
figure demonstrates how we have been approaching audio in our games so far:

Audio files

Programmer

Write code to handle
custom sound behavior

Control sound playback
and parameters directly

Load audio files

Play audio files

Game

In this model, we can see that the game interacts directly with the audio files, and
that the code is responsible for using these audio files in a way that is appropriate for
the game, which usually requires the creation of specialized codes. When we move
over to using a high-level audio engine such as the FMOD Designer, the process is
significantly different, as we can see in the following figure:

Chapter 5

[55]

Programmer

Sound Event

Custom behavior

Custom parameters

Audio profile file

Sound Designer

Update parameters
written specifically for the

game

Trigger sound events

Game

Load audio project files

The first difference in this model is that the game does not interact directly with
audio files. Instead, it interacts with entities known as sound events, which may
contain multiple audio files, and encapsulate all of the custom behavior and
parameters of the sound that were previously inside the game. This separation
makes the game code a lot simpler, and provides a better environment for a sound
designer to work.

Notice also, that there is an audio project file that groups all sound events together.
This means that the game only needs to load this single file to get access to all sound
events, which is significantly easier than having to load every individual audio file.

Introducing the FMOD Designer
The FMOD Designer is the high-level, data-driven API that complements the FMOD
Ex low-level engine that we have been using so far. It contains two parts:

• FMOD Designer: This is a sound designer tool that allows us to
create complex sound events and interactive music for our games
(from http://www.fmod.org)

• FMOD Event System: This is an application layer that lets us use the content
created with the designer within our games (comes bundled with FMOD Ex,
inside the fmoddesignerapi folder)

Intelligent Audio

[56]

The FMOD Designer projects have the .fdp extension, but to use them inside of a
game you must first build them from the Project menu. The build process generates
a .fev file, containing all the information for every sound event in the project, and
one .fsb file for each wave bank in the project, which is where the audio files are
stored. The following is a screenshot of the FMOD Designer user interface:

The most important task of the FMOD Designer is to create sound events. There are
two types of sound events in FMOD, and an interactive music system:

• Simple events: With simple events, we can create sounds composed by
multiple audio files, and play them randomly or sequentially, one or several
at a time, at different rates, and with random volume or pitch variation

• Multi-track events: With multi-track events, we can combine as many simple
events as we need (in this case called sound defs), organize them into layers,
apply effects to them, control which sound defs should be playing at any
given time, create custom parameters, and link those parameters to any of
the properties of the sound or effects

• Interactive music: With the interactive music system, we can create songs
(called cues) composed by multiple segments, and have the game transition
between them in response to certain events. Besides transitions, we can also
add flourishes to the music, which play concurrently and synchronized with
the main song

Chapter 5

[57]

Over the next few sections, we will briefly cover the main features and user interface
of the first two of these systems, as well as some ideas and examples of how to use
them in the context of a game. Coverage of the topic of interactive music will have to
be more superficial, because its breadth exceeds the scope of this book.

Simple events
Simple events are the easiest to use, as well as the least resource intensive. We should
therefore try to use simple events whenever they are enough for our requirements.
With a simple event, we can:

• Create a sound composed by multiple audio files
• Play audio files sequentially or in a random order
• Randomize sound properties, such as volume or pitch
• Control the looping behavior of the sound
• Play multiple audio files at once, or at certain intervals

To create a simple event, go to the Events section, right-click on top of any Event
Group, and then select the Add Simple Event option. If there is no Event Group
created, we can create one from the same context menu. Event groups behave like
folders and serve to organize all of our events:

Intelligent Audio

[58]

With the event selected, the next step is to add the audio files that compose it to
the Playlist pane, either through the right-click context menu, or by dragging some
audio files into it. If we intend to play the audio files in a random order, we can
specify the probability of each file playing through the right-click context menu,
or using the dial control at the bottom-left corner of the pane:

On the Playlist Options pane, we can control how the audio engine should pick files
from the playlist. There are three different Playlist Behaviors:

• Random: This option picks an audio file at random every time, following the
weights attributed in the playlist to each of them. We can also select whether
to allow the same audio file to play twice in a row.

• Shuffle: This option randomizes the playlist once, and then plays the audio
files in that order.

• Sequential: This option follows the same order in which the audio files
appear in the playlist.

Inside the Playlist Options pane, we can also find a Sound Randomization section,
which lets us apply some variation to the starting volume and pitch of each file
(similar to what we implemented ourselves back in Chapter 3, Audio Control):

Chapter 5

[59]

In the Playback Options pane, which controls how many audio files, should be
played and how often, there are four different Playback Modes:

• Oneshot: This mode picks a single audio file, and plays it only once
• Repeating Loop: This mode picks a single audio file, and plays it

multiple times (with the number of times being controlled by the Play
Count parameter)

• Successive Loop: This mode plays multiple audio files in succession, picking
a new one each time (with the number of files to play being controlled by the
Loop Count parameter)

• Granular: This mode is similar to the previous mode, but allows us to control
the time to wait between each file that is played (Grain Interval parameter),
how many files can be playing simultaneously (Polyphony parameter),
and the total amount of files to play before the sound ends
(Total Grains parameter)

Finally, there is the Properties pane on the right side of the interface, which allows us
to control several other properties of the sound event, such as most of the 3D audio
properties discussed on the previous chapter.

www.allitebooks.com

http://www.allitebooks.org

Intelligent Audio

[60]

Examples of simple events
Here are some ideas of how we can use simple events to enrich the audio in our
games. Most of these ideas can be found on the examples project that comes with
the FMOD Designer, so be sure to look there too.

Avoiding repetitive sound effects
Most games have a few sound effects that are played all the time, such as the sound
of a character's footsteps, or the sound of a gun. If we use the exact same audio file
every time, the player will usually notice the repetition after some time, which is
undesirable in most cases. Using simple events, we can easily make these sound
effects more interesting and dynamic, just by providing a few variations of the sound
and letting the audio engine pick one randomly.

Adding a very small volume and pitch variation to the sound can also do wonders,
as long as the variation is not large enough to change the overall nature of the sound.
Values along the lines of -3 dB for the volume and +/- 2 semitones for the pitch are
usually good starting points.

Creating a footsteps sound loop
There are several ways we can use a footsteps sound effect in a game. For example,
we could have an audio file containing the sound of a single footstep, and trigger
it once for every step the character takes inside the game world, or we could have
a looping audio file with a walking sound, and play it constantly whenever the
character is walking.

The first approach requires more work inside the game, while the second approach
takes more memory, as the audio file needs to be longer. Using a simple event, we
can combine both approaches, by taking an audio file of a single footstep, and setting
up the event so that it performs the looping, using time intervals that are appropriate
for a certain walking speed. Later, when working with multi-track events, we will
also see a way to vary the walking speed dynamically.

We start by creating a simple event with the footstep audio files (following the
advices given earlier in order to avoid repetition) and set the playback mode to
granular. Then we adjust the grain interval so that the time between each footstep
corresponds to the speed of the character walking, and increase the polyphony so
that each footstep can sound without having to wait for the previous to end. We can
also set slightly different maximum and minimum grain interval values, to reinforce
the variations of the sound even further.

Chapter 5

[61]

Creating a breaking glass sound effect
Another approach we can use to reduce repetition in our sound effects is to generate
them at runtime as a combination of a few smaller sound fragments. For example, to
simulate the sound of a glass object falling to the ground and shattering, we could
have a pool of different glass breaking sounds, and always play two or three of them
in quick succession. Combined with the usual volume and pitch variations, the result
is a sound effect that will sound different most of the time.

To implement this type of sound effect, we need to use the granular playback mode,
and set both the polyphony and the grain count parameters to the number of sound
fragments that we want to use at once. For the breaking glass sound effect, we could
set the polyphony and grain count to 2 or 3, and set a very small grain interval (for
example, 200 ms), so that the sounds play almost at the same time.

Creating an ambient track of singing birds
The same technique used to generate the sound of a glass breaking can also generate
long, looping, and ever changing, ambient tracks. A common example is to take a
few small audio files of birds singing, and by triggering them randomly at different
times, and with different volume and pitch, we can easily give the impression of
being in a forest, where there are several different birds singing. The process is very
similar to the previous effect, except that this time we should set a large polyphony
(such as 15), a grain interval value of around 1s, and an infinite grain count so
that the sound does not stop playing. Modifying the 3D position randomization
properties can also be useful to create a volumetric sound, and give the impression
that every bird is located in a different point in space, instead of every sound coming
from the same spot.

Multi-track events
Multi-track events are significantly more powerful than simple events. In fact, before
adding any sound to a multi-track event, we must turn it into a sound def, which has
almost the same functionality as a simple event. With a multi-track event, we can:

• Perform everything that we could with a simple event
• Create multiple layers of sounds that play at the same time
• Apply one or more DSP effects to each layer
• Create custom parameters to modify the sound in real-time
• Play different sounds depending on the value of a parameter
• Modify any of the sound or effect properties from a parameter

Intelligent Audio

[62]

Before creating a multi-track event, we must prepare a sound def for each of the
sounds that we intend to use. The process is similar to creating a simple event,
although the interface is a bit different. Head over to the Sound Defs section,
right-click on top of any folder, and select one of the Add sound def options:

The interface used to create a sound def is a bit like a condensed version of the
simple event interface, with the playlist on the left, and every other property on the
right. Since most of the properties control something that we have already seen in
simple events, there is no need to repeat that information here:

Chapter 5

[63]

To create a multi-track event, follow the same steps used to create a simple event,
but select the Add Multi-Track Event option instead:

A multi-track event is divided into layers, or tracks, with each layer being able to
contain multiple sound defs. Adding a new layer, or adding sound to a layer, are
both handled by right-clicking on the following interface and selecting the Add layer
or Add sound option from the context menu:

By default, the preceding example will play all three sound defs at the same time.
This behavior changes as soon as we add a parameter to the sound, which can be
done by right-clicking on the dark area on top of the sounds region, and selecting
the Add parameter option from the list:

Intelligent Audio

[64]

A parameter is essentially a variable with a certain range of permitted values that the
game code can modify. The way the FMOD Designer represents parameters might
look like a timeline, but it is important to understand that a parameter is a generic
value, and does not necessarily represent time.

The first parameter we create is marked as the primary parameter, and it determines
which sounds to play. In the following example, only the two sounds that are in
contact with the red line (representing the current value of the primary parameter)
will be playing. Changing the value of the parameter to any value above 0.5 would
replace the Frogs sound with the Crickets sound. We can create multiple parameters
in the same event, although only one of them will be marked as primary:

Another use of parameters is to control the sound properties of each layer. In order to
do that, we must first add an effect to the layer we want to control, by right-clicking on
the layer, and selecting the Add effect option. Effects can vary from a simple volume
or pitch control, to more complex DSP effects, such as a distortion or a delay:

Having an effect added to a layer, and a parameter selected, we can draw curves on
the layer, which represent how the properties of the effect should vary with the values
of the parameter. In the following example, we have added a second parameter to the
event, which modifies the pitch of the first layer, and the volume of the second layer:

Chapter 5

[65]

Finally, by right-clicking on any sound inside a multi-track event, we can access
some sound instance properties that are not available elsewhere. Among those
properties, there is an auto pitch feature, which behaves like adding a pitch effect
to that sound, and controlling it based on a parameter, but is simpler to use.
This feature is useful when trying to simulate the sound of a car engine:

Examples of multi-track events
Here are some ideas of how we can use multi-track events to provide a more
interactive and dynamic game audio experience in our games. Many of these
ideas build upon the ones discussed earlier for simple events.

Intelligent Audio

[66]

Creating an interactive footsteps sound loop
One of the simple event examples from the previous section described how to
generate a looping footsteps sound. However, that sound was only useful for a
specific walking speed, and for a specific surface. Using multi-track events, we can
create a single sound event that contains footstep sounds for all different types of
surfaces, such as grass, concrete, or sand, and allow the game to control the walking
speed through a parameter.

In order to do this, we must first create a sound def for each type of surface the
character can walk on. Each sound def should play a footsteps sound loop at the
average walking speed, which we can control with the spawn rate parameter (this
speed should be consistent between each sound def).

Then, we must create a multi-track event with a single layer, and two parameters to
control the surface type (primary) and the walking speed. By adding all the sounds to
this layer, distributing them evenly (by right-clicking and selecting the Layout sounds
evenly option), and setting the maximum range of the surface type parameter to be
the total number of sounds in the layer, we can use that parameter as a simple index to
select which surface the character is walking on.

For the walking speed parameter, we need to add an effect of type Spawn
Intensity to the layer, and draw a curve to control how the spawn intensity
relates to the walking speed parameter. For example, a value of 0.5 means that
the footsteps will occur at half the average speed, while a value of 2.0 means that
footsteps will occur at twice the average speed.

Simulating the sound of a car engine
We can also use multi-track events to generate complex interactive sounds, such
as the sound of a car engine. The FMOD Designer examples project has a great car
engine simulation that we can study. That sound event has two layers, and two
parameters, one for the engine's rpm, and one for the engine's load.

Each of the layers contains four different sounds, recorded from a car engine at
different rpm ranges. The sounds on the top layer correspond to the car accelerating
(on-load), while the sounds on the bottom layer correspond to the car decelerating
(off-load).

The load parameter serves to blend between both layers at runtime with a volume
effect. When the load parameter is in the middle, we hear a mix of both layers, but as
the load parameter changes, the volumes quickly change so that we only hear one of
the layers.

Chapter 5

[67]

The rpm parameter serves two purposes. As the primary parameter, it determines
which of the four sounds should be playing for the current value. The sounds
actually overlap at the edges, so at certain rpm values, we can hear a mix of two
sounds at once. The other purpose of the rpm parameter is to modify the pitch of
the sound, so that higher the rpm value, the higher is the pitch of the sound. This is
handled automatically by enabling the auto-pitch feature on each of the sounds:

Creating a complex ambient track of a forest
Using a simple event, we were able to create a looping ambient track with a large
number of singing birds. Using a multi-track event, we can easily extend the ambient
track to contain other layer of sounds. For example, we could add a layer with the
sound of the wind looping in the background, and layers for other types of animal
cries, probably occurring at different rates than the bird sounds.

If we wanted to simulate a cave within the forest, we could create a parameter to
control the location of the character, and add an occlusion effect to every layer that
is only active for a certain range of values.

Additionally, we could create a parameter to specify the time of the day, and play
different sounds depending on its value, such as removing the sounds of the birds
at night, and bringing some cricket sounds in.

Interactive music
In the same way that we can create complex sound effects that change depending on
the events of the game, it is also possible to do the same for the game's background
music. This allows the music to adapt to the circumstances, for example, to convey
the correct emotion for the moment, or provide a sense of tension when danger
draws near.

Intelligent Audio

[68]

Music that is played in a non-linear fashion like this is known as interactive music
(if the player directly controls the changes) or adaptive music (if the music reacts
to the game environment, but not necessarily to the player). There are two main
approaches to creating interactive music.

The vertical approach (re-orchestration)
In this approach, the audio system modifies the mix of the song in real-time
depending on events occurring in the game. This can consist, for example,
of adding new instruments to the song, or making the music play faster
or slower to match the gameplay.

The easiest way to implement this type of interactive music in the FMOD Designer
is by using multi-track events in combination with specially prepared multi-channel
audio files (which we can create using audio editing software, such as Audacity).
This usually requires splitting up the music into layers, and adding each of the
layers to a different audio channel in the file. Then, using the Channel Mix effect
on a multi-track event, we can easily control the individual volumes of each audio
channel based on the value of a parameter.

The most common application of this technique is to create a tension or excitement
parameter, so that the song gets more intense (by adding more layers) as the value
increases. The famous Japanese composer, Koji Kondo, is very fond of creating
interactive music using this approach. Some recent examples include:

• On the Super Mario Galaxy levels where Mario rides on top of a star ball, the
speed at which Mario moves completely determines the pitch, playback rate,
and even the amount of instruments playing in the song.

• On the market area of The Legend of Zelda: Skyward Sword, each merchant
has its own variation of the market theme. As the link approaches one of
the merchants, the music changes very smoothly into the corresponding
variation (while retaining the correct relative positioning within the theme).

The horizontal approach (re-sequencing)
In this approach, the music moves or jumps between different sections depending
on the events of the game. This usually requires splitting the music into segments,
so that the game can transition between them. When the system is not transitioning
between segments, it keeps looping the current segment, and the music continues
playing indefinitely.

Chapter 5

[69]

Information about the tempo and time signature of the music is frequently required,
so that the audio system can synchronize transitions to beats or measures of the song
to provide a more musical experience. The interactive music system in the FMOD
Designer is capable of creating interactive music sequences in this fashion.

A classic example of interactive music using the horizontal approach is the song,
A pirate I was meant to be, in Monkey Island 3, where the player can actually select,
in real-time, what verse of the song the characters will sing next. The song waits in
a loop while the player makes his choice, and transitions gracefully afterwards.

Calling sound events from the game code
In order to test our FMOD Designer project in a game, we must first build the project,
by selecting the Build from the Project menu, or pressing Ctrl + B. This process will
generate the fev and fsb files that we have to copy to our game assets folder.

Next, we have to add some extra dependencies to our C++ project, so that we can
interact with the FMOD Designer API. These dependencies ship together with the
FMOD Ex Programmer's API, but we must add the references ourselves, as follows:

1. Navigate to C/C++ | General, and add C:\FMOD\ fmoddesignerapi\api\
inc to the list of Additional Include Directories (entries are separated by
semicolons).

2. Navigate to Linker | General, and add C:\FMOD\ fmoddesignerapi\api\
lib to the list of Additional Library Directories.

3. Navigate to Linker | Input, and add fmod_event.lib to the list of
Additional Dependencies.

4. Navigate to Build Events | Post-Build Event, and add xcopy /y "C:\FMOD\
fmoddesignerapi\api\fmod_event.dll” "$(OutDir)” to the Command
Line list.

5. Include the <fmod_event.hpp> header file from your code.

Finally, the process of loading an FMOD Designer project, playing a sound event,
and modifying some of its parameters, is in many ways similar to what we saw in
Chapter 2, Audio Playback. Let us take a look at the most basic way to do it.

Intelligent Audio

[70]

First, we must create and initialize an FMOD::EventSystem object, and load the
project file. We should also call the update() method in every frame, and the
release() method at the end of the game:

// Create an event system object
FMOD::EventSystem* eventSystem;
FMOD::EventSystem_Create(&eventSystem);

// Initialize the event system and load the project
eventSystem->init(100, FMOD_INIT_NORMAL, 0, FMOD_EVENT_INIT_NORMAL);
eventSystem->load("project.fev”, 0, 0);

// Update event system every frame
eventSystem->update();

// Release event system when we are done
eventSystem->release();

In order to play an event, we must get a reference to it, by using the fully qualified
name of the event, which contains the project name, the name of the event group
that contains the event, and the name of the event itself. Then, we can simply use the
start() method to play the event:

// Get a reference to the event
FMOD::Event* event;
eventSystem->getEvent("ProjectName/EventGroupName/EventName”,
 FMOD_EVENT_DEFAULT, &event);
// Begin playing the event
event->start();

Finally, if there is a parameter that we want to modify, we can get a reference to it
using the getParameter() method of the event object, and change the value using
the setValue() method of the parameter object:

// Get a reference to the parameter
FMOD::EventParameter* parameter;
event->getParameter("ParameterName”, ¶meter);

// Change the value of the parameter
parameter->setValue(2.0f);

Chapter 5

[71]

Summary
In this chapter, we have seen how a sound can be a lot more than just an audio file,
how FMOD has a high-level tool called the FMOD Designer, how we can create
simple and multi-track sound events in the FMOD Designer, how we can also
apply some of these concepts to music and play sound events created in the FMOD
Designer from our applications.

Low-level Audio
We have now reached the final chapter of this book. So far, we have worked with
audio at many different levels of complexity and abstraction, using both low-level
and high-level audio engines. These audio engines provide an invaluable help to the
developers, and we should definitely use them whenever possible. With their help,
we have loaded and played audio files, learnt how to control sound parameters,
simulated sound in 3D environments, and created complex, multi-layered,
interactive sounds.

In this chapter, however, we will pretend that these audio engines do not exist, and
work with nothing more than the bits and bytes that represent sound in a computer.
We will then re-implement, in a simplified form, many of the features that FMOD
takes care for us. We will also take a brief look at sound synthesis, which is the act of
generating sound using mathematical formulas, instead of relying on recorded audio.

The purpose of this chapter is to further our understanding of how sound works,
and to gain some insight into many of the features that audio engines implement for
us. It should also serve as a starting point for those who are looking to implement
complex audio features in their games.

Representing audio data
In Chapter 1, Audio Concepts, we discussed the most important concepts of digital
audio theory. In particular, we saw that a simple array of numbers could represent
an audio signal, and talked about topics such as PCM, sampling rate, bit depth, and
multi-channel audio.

In this chapter, we will be putting all of those concepts into practice, so make sure
you understand them before continuing. For starters, let us look into the meaning
of audio data, both in theory and in code.

Low-level Audio

[74]

Audio data is nothing more than a sequence of numbers that represent the amplitude
of a sound wave at even time intervals. However, there are many ways to represent
numbers on a computer, depending on the amount of memory used to represent
them, whether they should be able to store negative numbers, and whether the
numbers are integers or floating point numbers. These differences result in the
multiple data types provided by C++ to store numbers, such as int, short, float,
and double. It makes sense then, that audio data can also be stored in several
formats, depending on the chosen data type.

In this chapter, we will limit ourselves to the most common audio format, which is
the signed 16-bit linear PCM format. In this format, every sample is a 16-bit signed
integer (a signed short in C++) ranging from -32768 at the minimum amplitude, to
32767 at the maximum amplitude. To simplify the notation when dealing with PCM
samples and other quantities, we will be using the following aliases:

typedef signed short PCM16;
typedef unsigned int U32;
typedef unsigned short U16;

After deciding what format to use, we need to create an array to hold all of the audio
samples. The size of the array depends directly on the sampling rate of the sound
we want to store, its duration in seconds, and the number of channels being used,
according to the following formula:

count = sampling rate * duration * channels

For example, assuming a sampling rate of 44100 Hz, we could create an array to store
exactly 1 second of mono audio data like the following:

// 1 second of audio data at 44100 Hz (Mono)
// count = 44100 Hz * 1 second * 1 channel
PCM16 data[44100];

If we wanted to store a stereo signal instead, we would need to store twice that
amount of information (and the same idea applies to higher amounts of channels).
Remember that the most common way to represent stereo audio data is to interleave
samples, left and right, in the same array:

// 1 second of audio data at 44100 Hz (Stereo)
// data[0] = left, data[1] = right, data[2] = left, etc.
// count = 44100 Hz * 1 second * 2 channels
PCM16 data[88200];

Chapter 6

[75]

Playing audio data
We need a way to submit the audio data to the sound card, so that we can hear the
resulting sound. We could use a very low-level audio API, such as PortAudio, which
provides the bare minimum functionality required to communicate with an audio
device. However, FMOD is also perfectly capable of handling this task, and since we
have been using it so far, there is little benefit in changing to a different API now.
Therefore, we will use FMOD once again, but only as bridge between the application
and the hardware, and our code will handle all of the processing.

The way FMOD allows us to play user created audio data is by first creating a sound
with the FMOD_OPENUSER flag, and specifying a callback function that will provide
the audio data to the sound.

We must create and fill a FMOD_CREATESOUNDEXINFO structure with a few details
regarding the audio data that we will be submitting, such as the sampling rate,
format, and number of channels, as well as a pointer to the function that will provide
the data itself.

For all of our examples, we will work with a sampling rate of 44100 Hz, use the
16-bit PCM format, and have two channels (stereo). Read the comments for more
information about each attribute:

// Create and initialize a sound info structure
FMOD_CREATESOUNDEXINFO info;
memset(&info, 0, sizeof(FMOD_CREATESOUNDEXINFO));
info.cbsize = sizeof(FMOD_CREATESOUNDEXINFO);

// Specify sampling rate, format, and number of channels to use
// In this case, 44100 Hz, signed 16-bit PCM, Stereo
info.defaultfrequency = 44100;
info.format = FMOD_SOUND_FORMAT_PCM16;
info.numchannels = 2;

// Size of the entire sound in bytes. Since the sound will be
// looping, it does not need to be too long. In this example
// we will be using the equivalent of a 5 seconds sound.
// i.e. sampleRate * channels * bytesPerSample * durationInSeconds
info.length = 44100 * 2 * sizeof(signed short) * 5;

// Number of samples we will be submitting at a time
// A smaller value results in less latency between operations
// but if it is too small we get problems in the sound
// In this case we will aim for a latency of 100ms
// i.e. sampleRate * durationInSeconds = 44100 * 0.1 = 4410

Low-level Audio

[76]

info.decodebuffersize = 4410;

// Specify the callback function that will provide the audio data
info.pcmreadcallback = WriteSoundData;

Next, we create a looping, streaming sound, specifying the FMOD_OPENUSER mode,
and passing it the sound info structure to the third parameter of createStream().
We can then begin playing the sound as normal:

// Create a looping stream with FMOD_OPENUSER and the info we filled
FMOD::Sound* sound;
FMOD_MODE mode = FMOD_LOOP_NORMAL | FMOD_OPENUSER;
system->createStream(0, mode, &info, &sound);
system->playSound(FMOD_CHANNEL_FREE, sound, false, 0);

As long as the sound is playing, the audio engine invokes our callback function
periodically to get the data it requires. The callback function must follow a certain
signature that takes three parameters, a reference to the sound object that we created,
an array for us to write the audio data into, and the total number of bytes that we
should write to the data array. It should also return FMOD_OK at the end.

The data array is defined by a pointer to void (void*) because, as we discussed
earlier, there are many different formats for the data to be in. It is up to us to cast
the data array to the correct format. Since we created the sound with FMOD_SOUND_
FORMAT_PCM16, we have to cast the data array to a signed short* first.

Another important detail is that the length parameter specifies the amount of
data to write to the array in bytes, but each of our samples is a signed short,
which occupy 2 bytes each. Therefore, we should make sure to write no more than
length/2 samples to the data array.

Here is an example of a callback function, which outputs silence by filling the
entire audio buffer with zeros. Not very interesting, but it should serve as a good
starting point:

FMOD_RESULT F_CALLBACK
WriteSoundData(FMOD_SOUND* sound, void* data, unsigned int length) {
 // Cast data pointer to the appropriate format (in this case PCM16)
 PCM16* pcmData = (PCM16*)data;

 // Calculate how many samples can fit in the data array
 // In this case, since each sample has 2 bytes, we divide
 // length by 2
 int pcmDataCount = length / 2;

 // Output 0 in every sample

Chapter 6

[77]

 for(int i = 0; i < pcmDataCount; ++i) {
 pcmData[i] = 0;
 }

 return FMOD_OK;
}

Loading a sound
The most common way to get audio data is to read it from an audio file. However,
as we have seen before, there are many different audio file formats, and reading the
audio data out of them is usually a non-trivial task. This is particularly true with
compressed audio file formats, which require decoding the audio data using some
algorithm, before we can use it in our application. In general, it is usually better to
use an audio engine, or an external library, to read the contents of an audio file.

For educational purposes, we will be reading the audio data from a WAV file. We
will, however, work under the assumption that the WAV file we read from is in the
canonical form (that is, it contains only a format and a data subchunk, in that order)
and that the audio data is stored without any compression. Under these conditions,
we know where all of the data is stored, and can simply index into the file to read
it. That is certainly not the case for every WAV file, which would require a more
complex loading sequence.

The WAV file format builds upon the more generic RIFF file format. A RIFF file is
divided into chunks of data. Every chunk begins with a 4-character ASCII identifier,
and a 32-bit integer describing how much data is stored in the chunk. Next, there is
the actual data of the chunk, which varies depending on the type of the chunk.

All WAV files contain at least the following three chunks (with two of them
considered subchunks of the first):

• A RIFF chunk containing the string literal: WAVE
• A Format subchunk containing information about the audio file
• A Data subchunk containing the actual audio data

Low-level Audio

[78]

The following figure shows the contents of a WAV file in a canonical format. Note
that if the file contains compressed data, the format subchunk can contain more data
than the one shown in the following figure. It is also possible for other chunks to
appear in the file, or in a different order:

Riff Chunk ID
Riff Chunk Size

Format

Format Chunk ID
Format Chunk Size

Audio Format
Number of Channels

Sampling Rate
Bytes Per Second
Bytes Per Block
Bits Per Sample

Data Chunk ID
Data Chunk Size

Audio Data

“RIFF”
4

“WAVE”

“fmt”
16

1 for PCM
e.g. 1 or 2
e.g. 44100

e.g. 16

“data”
n

n samples

Content
char[4]
u 32

char[4]

char[4]
u 32
u 16
u 16
u 32
u 32
u 16
u 16

char[4]
u 32

byte[n]

Type
4
4
4

4
4
2
2
4
4
2
2

4
4
n

Size
0
4
8

12
16
20
22
24
28
32
34

36
40
44

Offset

Now that we have a table listing the contents of a canonical WAV file, let us create
a class to load and store all of the information that we care about from the file
(that is, the sampling rate, bit depth, number of channels, and the audio data).

Keeping in line with what we used previously in FMOD, we will name this class
MySound. For simplicity, every member of the class has public accessibility, although
we could provide a few accessor methods instead, while making the data private:

class MySound {
 public:
 MySound(const char* path);
 ~MySound();

 U32 samplingRate;
 U16 numChannels;
 U16 bitsPerSample;
 PCM16* data;
 U32 count;
};

Chapter 6

[79]

On the constructor, we open the audio file and read all of the relevant data into the
member variables. Note that there is no error checking anywhere, and that this will
only work under the conditions described earlier:

#include <iostream>
#include <fstream>

MySound::MySound(const char* path) {
 // Open file stream for input as binary
 std::ifstream file(path, std::ios::in | std::ios::binary);

 // Read number of channels and sample rate
 file.seekg(22);
 file.read((char*)&numChannels, 2);
 file.read((char*)&samplingRate, 4);

 // Read bits per sample
 file.seekg(34);
 file.read((char*)&bitsPerSample, 2);

 // Read size of data in bytes
 U32 length;
 file.seekg(40);
 file.read((char*)&length, 4);

 // Allocate array to hold all the data as PCM samples
 count = length / 2;
 data = new PCM16[count];

 // Read PCM data
 file.read((char*)data, length);
}

The destructor takes care of cleaning up the memory allocated in the constructor
to hold the audio data:

MySound::~MySound() {
 delete[] data;
}

Low-level Audio

[80]

Playing a sound
Now that we have all of the audio data stored in memory, we are ready to begin
playing the sound. In order to do so we must essentially take each of the values
stored in the data array, and send them in order to the audio card (in our case,
using the callback method that we created earlier).

If the format, sampling rate, and number of channels in the audio data are the same
as the output, then this process is as simple as copying values from one array to
another. However, the process becomes significantly more complicated if they differ
in any way, in particular:

• If our audio data has a different sampling rate from the output, we need
to resample the data so that it matches the sampling rate of the output, or
the sound will play at a different rate than we expect. This operation is not
trivial, and is beyond the scope of this chapter.

• If our audio data is in a different format from the output, we need to convert
the data to the new format first. For example, we may need to convert a 32-
bit floating point sample into a signed 16-bit integer sample. This is not that
complicated, and mostly requires scaling numbers from one range to another.

• If our audio data has different number of channels from the output, we have
to adapt the signal to the new number of channels. Adapting a mono signal
to a stereo is easy, as we simply need to send a duplicate of the data to both
channels. Adapting a stereo signal to mono usually involves adding the
values of both channels together, and dividing the result by two.

For the sake of keeping our examples simple, we will assume that the audio data has
a very specific format, so that no conversions need to take place:

• It has a sampling rate of 44100 Hz, the same as the output
• It is stored in the PCM16 audio format, the same as the output
• It only has one channel (mono) of data, although the output has two channels

(stereo), so that we can see an example of how to implement panning

Under these conditions, we only need two things to play the sound, we need to be
able to access the audio data, and we need a variable to keep a track of the current
position within the sound (that is, how many samples we have written so far) so
that we know which sample to write next. Once the position becomes larger than the
number of samples in the data, it means that the sound has finished playing, and we
interrupt the process.

Chapter 6

[81]

Like we did with the sound class, let us also create a class to encapsulate all of the
data and behaviors related to playing sounds, which we will name MyChannel:

class MyChannel {
 public:
 MyChannel() : sound(0), position(0) {}
 void Play(MySound* mySound);
 void Stop();
 void WriteSoundData(PCM16* data, int count);

 private:
 MySound* sound;
 int position;
};

Like the channels in FMOD, we should be able to reuse a single channel object for
different sounds. Therefore, instead of taking a sound object in the constructor, we
only assign the sound object inside the Play() method. This method also resets the
position value:

void MyChannel::Play(MySound* mySound) {
 sound = mySound;
 position = 0;
}

The Stop() method, on the other hand, simply clears the reference to the
sound object:

void MyChannel::Stop() {
 sound = 0;
}

Finally, the most important portion of the process occurs inside the
WriteSoundData() method, which will be called from within the audio callback.
This method takes two parameters, the array of PCM samples to write to and the
size of this array. Notice that this method already expects the data array to be in
the correct format, instead of the void* provided to the audio callback. The count
also refers to the number of samples in the array, not the number of bytes. There are
comments in the code explaining what each line is doing:

void MyChannel::WriteSoundData(PCM16* data, int count) {
 // If there is no sound assigned to the channel do nothing
 if(sound == 0) return;

 // We need to write "count" samples to the "data" array
 // Since output is stereo it is easier to advance in pairs

Low-level Audio

[82]

 for (int i = 0; i < count; i += 2) {

 // If we have reached the end of the sound, stop and return
 if(position >= sound->count) {
 Stop();
 return;
 }

 // Read value from the sound data at the current position
 PCM16 value = sound->data[position];

 // Write value to both the left and right channels
 data[i] = value;
 data[i+1] = value;

 // Advance the position by one sample
 ++position;
 }
}

Using this class, our audio callback becomes a lot simpler, as we can delegate most
of the work to the WriteSoundData() method of the channel. In the following example
there is a single channel object, so we can only play one sound at a time, but later we
will see how easy it is to add support for multiple sounds, as well as several
other features:

MyChannel channel;

FMOD_RESULT F_CALLBACK
WriteSoundData(FMOD_SOUND *sound, void *data, unsigned int length) {
 // Clear output
 memset(data, 0, length);

 // Get data in the correct format and calculate sample count
 PCM16* pcmData = (PCM16*)data;
 int pcmDataCount = length / 2;

 // Tell the channel to write to the output
 channel.WriteSoundData(pcmData, pcmDataCount);

 return FMOD_OK;
}

Chapter 6

[83]

Notice that in the preceding example, we begin by clearing the audio buffer with
memset. This is necessary because we will not be filling the output with values once
the sound stops playing, and FMOD does not clear the buffer automatically between
callback calls.

Playing a sound with this architecture is as simple as instantiating the sound,
and asking the channel object to play it:

MySound* sound = new MySound("explosion.wav");
channel.Play(sound);

Pausing a sound
Now that we have the basic functionality for playing sounds implemented using the
MySound and MyChannel classes, we can begin adding more features to it. We will
start with the simplest of all, pausing the sound.

We must add a member variable to hold the pause state, and some methods to
modify it. We must also remember to initialize this value to false inside the
constructor, and inside the Play() method:

public:
 bool GetPaused() const { return paused; }
 void SetPaused(bool value) { paused = value }
private:
 bool paused;

Next, all we have to do is add a very simple condition at the beginning of the
WriteSoundData() method so that it does nothing when the sound is paused.
That is as simple as it gets!

void MyChannel::WriteSoundData(PCM16* data, int count) {
 if(sound == 0 || paused) return;
 for (int i = 0; i < count; i += 2) {
 if(position >= sound->count) {
 Stop();
 return;
 }
 PCM16 value = sound->data[position];
 data[i] = value;
 data[i+1] = value;
 ++position;
 }
}

Low-level Audio

[84]

Looping a sound
The next feature that we will implement is the ability to endlessly make a sound loop.
Like the ability to pause a sound, this is also quite trivial to implement. We begin by
repeating everything that we did for pausing, but for looping instead:

public:
 bool GetLoop() const { return loop; }
 void SetLoop(bool value) { loop = value }
private:
 bool loop;

Inside the WriteSoundData() method, in the part where we used to detect if the
sound had already reached the end, we first check if the loop variable is set to true,
and if that is the case, we set the position back to the beginning instead of stopping
the sound:

void MyChannel::WriteSoundData(PCM16* data, int count) {
 if(sound == 0 || paused) return;
 for (int i = 0; i < count; i += 2) {
 if(position >= sound->count) {
 if(loop) {
 position = 0;
 } else {
 Stop();
 return;
 }
 }
 PCM16 value = sound->data[position];
 data[i] = value;
 data[i+1] = value;
 ++position;
 }
}

Changing volume
The next few features that we will implement involve modifying the values that are
sent to the output. Changing the volume of a sound is probably the simplest of them,
as it only requires a multiplication.

Chapter 6

[85]

Let us start by creating a variable and some methods to control the volume. The
volume will be stored as a floating point number between 0 (silence) and 1 (full
volume). The SetVolume() method makes sure that the value is always inside this
range. We should also reset the volume to 1 whenever a sound begins playing:

public:
 float GetVolume() const { return volume; }
 void SetVolume(float value) {
 if(value < 0.0f) volume = 0.0f;
 else if(value > 1.0f) volume = 1.0f;
 else volume = value;
 }
private:
 float volume;

In order to play the sound at this volume, all we have to do is multiply each of the
original values in the audio data by the value of the volume variable, before we write
them to the output. Because the volume variable is a floating point number, we need
to cast the result back to PCM16 after the multiplication:

void MyChannel::WriteSoundData(PCM16* data, int count) {
 if(sound == 0 || paused) return;
 for (int i = 0; i < count; i += 2) {
 if(position >= sound->count) {
 if(loop) {
 position = 0;
 } else {
 Stop();
 return;
 }
 }
 PCM16 value = (PCM16)(sound->data[position] * volume);
 data[i] = value;
 data[i+1] = value;
 ++position;
 }
}

Low-level Audio

[86]

Changing pitch
Changing the pitch of a sound is slightly more complicated than changing its
volume. The most basic way to modify the pitch of a sound (although the speed
of the sound is also affected) is to control how fast we advance the position value.

So far, we have used a position variable that was an integer, and incremented its
value by a full unit every time. In order to provide pitch control, we will change that
variable to a floating point number, and add a pitch variable that determines how
much to increment the position.

By default, the pitch variable will have a value of 1, which plays the sound at the
normal pitch. A value of 2 will double the frequency of the sound, making it sound
one octave higher, and a value of 0.5 will halve the frequency of the sound, making
it sound one octave lower. For practical reasons, we will limit its value to the range
between 0.25 (two octaves below the original sound) and 4 (two octaves above the
original sound):

public:
 float GetPitch() const { return pitch; }
 void SetPitch(float value) {
 if(value < 0.25f) pitch = 0.25f;
 else if(value > 4.0f) pitch = 4.0f;
 else pitch = value;
 }
private:
 float position;
 float pitch;

Inside our WriteSoundData() method, we increment the position variable by
the pitch amount. The hardest part in the process is how to convert the position
variable that is now a floating point number, back into an array index. The simplest
solution is to use a simple cast, which truncates the value to an integer, and that is
what we will use:

void MyChannel::WriteSoundData(PCM16* data, int count) {
 if(sound == 0 || paused) return;
 for (int i = 0; i < count; i += 2) {
 if(position >= sound->count) {
 if(loop) {
 position = 0;
 } else {
 Stop();
 return;
 }

Chapter 6

[87]

 }
 PCM16 value = (PCM16)(sound->data[(int)position] * volume);
 data[i] = value;
 data[i+1] = value;
 position += pitch;
 }
}

However, the truncation from the cast can introduce distortion into the signal. For
example, if the position is advancing at a slower pace than normal, it will have many
values that are between whole numbers, but because of the truncation from the cast,
we will get the same value written multiple times to the output, instead of a flowing
sound wave.

A better approach is to use linear interpolation (or another type of interpolation)
to calculate a value for the sample that takes the surrounding values and the
fractional portion of the position into consideration. For example, using linear
interpolation, if the position was 2.25, instead of outputting the value of data[2],
we would output a mix of 75 percent of the value of data[2] with 25 percent of
the value of data[3] instead.

Changing panning
There are many different approaches to implement stereo panning of a sound. In this
section, we will cover a simple approach that works just by modifying the volumes
of the left and right channels independently.

Before actually doing any calculations, let us prepare the class for panning by
adding two private variables, leftGain and rightGain, to store the volumes
of each channel:

private:
 float leftGain;
 float rightGain;

Then, inside the WriteSoundData() method, we can apply these gains to the data
before writing it to the output, just as we did for the volume before. Naturally,
we should only apply the values of leftGain and rightGain to their respective
channels. In addition, because we need to cast to PCM16 after applying the gains,
there is no need to keep the cast from earlier:

void MyChannel::WriteSoundData(PCM16* data, int count) {
 if(sound == 0 || paused) return;
 for (int i = 0; i < count; i += 2) {
 if(position >= sound->count) {

Low-level Audio

[88]

 if(loop) {
 position = 0;
 } else {
 Stop();
 return;
 }
 }
 float value = sound->data[(int)position] * volume;
 data[i] = (PCM16)(value * leftGain);
 data[i+1] = (PCM16)(value * rightGain);
 position += pitch;
 }
}

With these out of the way, we now need to create a floating point variable
called pan and some methods to modify it. The pan variable should take
values between -1 (full left) and 1 (full right). Whenever the value of pan
changes, we call the private UpdatePan() method to calculate new values
for leftGain and rightGain:

public:
 float GetPan() const { return pan; }
 void SetPan(float value) {
 if(value < -1.0f) pan = -1.0f;
 else if(value > 1.0f) pan = 1.0f;
 else pan = value;
 UpdatePan();
 }
private:
 void UpdatePan();
 float pan;

All that is left is to write the UpdatePan() method. There are a few different
formulas to calculate the gain values for stereo panning. One of the simplest
approaches is to use linear panning, where each channel starts at 0 percent volume
in one side, and increases linearly to 100 percent on the other side, while being at 50
percent in the middle. Here is an implementation of linear panning:

// Linear panning
void MyChannel::UpdatePan() {
 float position = pan * 0.5f;
 leftGain = 0.5f - position;
 rightGain = position + 0.5f;
}

Chapter 6

[89]

Another approach, which usually yields a smoother transition when panning, is to
use constant-power panning, where the volume of each channel follows a circular
curve, with the volume of each channel being roughly 71 percent in the middle.
We have already discussed constant-power panning before, since it is the type of
panning used by FMOD for panning mono sounds. Without going into details about
the math involved, here is an implementation of constant-power panning:

#include <math.h>

#define PI_4 0.78539816339 // PI/4
#define SQRT2_2 0.70710678118 // SQRT(2)/2

// Constant-power panning
void MyChannel::UpdatePan() {
 double angle = pan * PI_4;
 leftGain = (float)(SQRT2_2 * (cos(angle) - sin(angle)));
 rightGain = (float)(SQRT2_2 * (cos(angle) + sin(angle)));
}

Mixing multiple sounds
So far, we have only been playing one sound at a time, but it is quite easy to extend
what we are doing to play multiple sounds at once. The act of combining multiple
sounds into a single output is known as audio mixing, and it can be implemented by
adding all the audio signals together, and clamping the result to the available range.
Looking at our WriteSoundData() method, all we need to do is change the lines of
code that write to the data array, so that the samples are added to the existing values,
instead of completely replacing them:

void MyChannel::WriteSoundData(PCM16* data, int count) {
 if(sound == 0 || paused) return;
 for (int i = 0; i < count; i += 2) {
 if(position >= sound->count) {
 if(loop) {
 position = 0;
 } else {
 Stop();
 return;
 }
 }
 float value = sound->data[(int)position] * volume;
 data[i] = (PCM16)(value * leftGain + data[i]);
 data[i+1] = (PCM16)(value * rightGain + data[i+1]);
 position += pitch;
 }
}

Low-level Audio

[90]

In our main application, instead of having a single channel instance, we can now
create multiple instances, and call WriteSoundData() on all of them:

std::vector<MyChannel> channels;

FMOD_RESULT F_CALLBACK
WriteSoundData(FMOD_SOUND *sound, void *data, unsigned int length) {
 // Clear output
 memset(data, 0, length);

 // Get data in the correct format and calculate sample count
 PCM16* pcmData = (PCM16*)data;
 int pcmDataCount = length / 2;

 // Tell every channel to write to the output
 for(int i = 0; i < channels.size(); ++i)
 channels[i].WriteSoundData(pcmData, pcmDataCount);

 return FMOD_OK;
}

Implementing a delay effect
We have already discussed, back in Chapter 4, 3D Audio, that DSP effects are algorithms
that modify the audio data to achieve a certain goal. Now we will see an example of
how to implement a simple delay effect. The way a basic delay effect works, is to keep
a separate buffer of data, and store the audio data that has already played in it. The
size of the buffer determines how long it takes between the original sound and its echo
plays. Then, we simply need to mix the audio data that is playing, with a portion of the
old signal that was stored in the buffer, which produces a delay. Let us examine the
following MyDelay class definition, which encapsulates the effect:

class MyDelay {
public:
 MyDelay(float time, float decay);
 ~MyDelay();
 void WriteSoundData(PCM16* data, int count);

private:
 PCM16* buffer;
 int size;
 int position;
 float decay;
};

Chapter 6

[91]

The MyDelay class constructor takes two parameters, time and decay. The first
parameter controls how many seconds it takes between the sound and the first echo
occurs. The second parameter controls how much energy is lost during each echo.

The class stores a buffer of PCM16 samples, which we initialize in the constructor
so that it can store the equivalent of time seconds of data at a sampling rate of
44100 Hz. This buffer starts completely filled with zeros. It also contains a position
variable that will be used to cycle through the buffer:

MyDelay::MyDelay(float time, float decay) : position(0), decay(decay)
{
 size = (int)(time * 44100);
 buffer = new PCM16[size];
 memset(buffer, 0, size * 2);
}

The destructor deletes all the data allocated in the constructor:

MyDelay::~MyDelay() {
 delete[] buffer;
}

Finally, the WriteSoundData() method does all of the work. It begins by taking each
sample in the output, and mixing it with a portion of the sample stored in the buffer
at the current position. Next, we take this new value and write it back to the output,
as well as to the buffer. Finally, we increment the position variable to the next
sample, wrapping around the end of the buffer:

void MyDelay::WriteSoundData(PCM16* data, int count) {
 for (int i = 0; i < count; ++i) {
 // Mix sample with the one stored in the buffer at position
 data[i] = (PCM16)(data[i] + buffer[position] * decay);

 // Record this new value in the buffer at position
 buffer[position] = data[i];

 // Increment buffer position wrapping around
 ++position;
 if(position >= size)
 position = 0;
 }
}

Low-level Audio

[92]

To test this effect out, simply create an instance of it in the main application, and call
the WriteSoundData() method at the end of the audio callback:

// When the application starts
MyDelay* delay = new MyDelay(1.0f, 0.50f);

// Inside the audio callback
for(int i = 0; i < channels.size(); ++i)
 channels[i].WriteSoundData(pcmData, pcmDataCount);
delay->WriteSoundData(pcmData, pcmDataCount);

Synthesizing a sound
Before we end this chapter, it is also worth realizing that not every sound needs to
come from an audio file. It is also possible to generate sounds from scratch, using
only mathematical formulas. We call this process, sound synthesis, and there are
entire books just about this subject.

Certain sound waves are particularly common in sound synthesis because of how
easy they are to calculate. We have already talked about one of these sound waves
before, the sine wave. Other common examples are the square wave, the sawtooth
wave, and the triangle wave, all represented in the following figure:

Sine Wave Square Wave

Sawtooth Wave Triangle Wave

Chapter 6

[93]

We will now see how to synthesize each of these sound waves, by creating a class
MyOscillator. The use case for this class is pretty much the same as the MyDelay
class described earlier; just create an instance of it, and call the WriteSoundData()
method from the audio callback to make it play:

#include <math.h>
#define PI 3.14159265359
#define TWO_PI 6.28318530718

class MyOscillator {
 public:
 MyOscillator();
 void SetVolume(double value) { volume = value; }
 void SetFrequency(double frequency);
 void WriteSoundData(PCM16* data, int count);

 private:
 double phase;
 double increment;
 double volume;
};

The class contains three member variables, phase, which describes how far we are
along the sound wave, increment, which depends on the frequency of the sound
and describes how much we should advance the phase between each sample, and
volume, which can be changed through the SetVolume() method. Note that we are
using doubles for everything instead of floats, as sound synthesis tends to require
more precision in its calculations.

All that the class constructor does is initialize the phase to zero, the volume to one,
and set the increment by calling SetFrequency() with a default value of 440 Hz:

MyOscillator::MyOscillator() : phase(0.0), volume(0.5) {
 SetFrequency(440.0);
}

The SetFrequency() method calculates the correct increment value using the
following formula. In this case, we have hardcoded the sampling rate to be 44100 Hz,
but there could be a parameter to control the sampling rate:

void MyOscillator::SetFrequency(double frequency) {
 increment = frequency / 44100.0 * TWO_PI;
}

Low-level Audio

[94]

As usual, most of the work is handled inside the WriteSoundData() method. First,
we calculate the value of the sound wave for the current phase, and scale it into the
correct range for a PCM16 sample (by multiplying by 32767, which is the highest
number that can be stored in a signed short). Next, we write this result to the audio
output, mixing it with anything that was already there. Finally, we increment the
phase, and wrap it so that it always stays within the 0 to 2 PI range:

void WriteSoundData(PCM16* data, int count) {
 for(int i = 0; i < count; i += 2) {
 // Calculate sample value
 double value = sine_wave(phase) * 32767.0 * volume;

 // Mix sample with output
 data[i] = (PCM16)(data[i] + value);
 data[i+1] = (PCM16)(data[i+1] + value);

 // Increment phase
 phase += increment;

 // Wrap phase to the 0-2PI range
 if(phase >= TWO_PI)
 phase -= TWO_PI;
 }
}

The actual audio data is generated by the sine_wave() method highlighted in the
previous code. All that this method does is call the standard sin() function on the
phase value and return the result. We can easily swap this method with any of the
following implementations, depending on the type of sound wave that we want
to play:

double sine_wave(double phase) {
 return sin(phase);
}

double square_wave(double phase) {
 return phase <= PI ? 1.0 : -1.0;
}

double downward_sawtooth_wave(double phase) {
 return 1.0 - 2.0 * (phase / TWO_PI);
}
double upward_sawtooth_wave(double phase) {
 return 2.0 * (phase / TWO_PI) - 1.0;
}

Chapter 6

[95]

double triangle_wave(double phase) {
 double result = upward_sawtooth_wave(phase);
 if(result < 0.0)
 result = -result;
 return 2.0 * (result - 0.5);
}

Summary
In this chapter, we have seen how to work directly with the bits and bytes of audio
data, how to load the audio data from a canonical WAV file, how to play and control
audio data using only low-level operations, how to implement a simple delay effect,
and how to synthesize some basic sound waves.

Index
Symbols
3D audio 42
.fdp extension 56

A
addGroup() method 30
advantages, FMOD

cross-platform 14
features 14
license 14
popularity 14
programming languages 14
supported formats 14

AIFF 11
ambient track, of singing birds

creating 61
analog audio signal 9
analog signal 9
APE 12
audio concepts

analog signal 9
audio file formats 11
digital signal 9
multi-channel audio 11
sound waves 7

audio data
playing 75, 76
representing 73, 74

audio file errors
checking for 18

audio file formats
about 11
lossless compression 12

lossy compression 12
sequenced music 12
uncompressed audio files 11

audio files
loading 16
streaming 16, 17
versus sound events 54, 55

audio listener 42
audio listener properties

setting 45
audio manager

building 19
improving 32

audio manager improvement project
about 32
class definition 32, 33
destruction, implementing 33
initialization, implementing 33
master volume, controlling of category 38
songs, loading 34
songs, playing 36, 37
songs, stopping 36, 37
sound effects, loading 34
sound effects, playing 35
sound effects, stopping 35

audio manager project
class definition, examining 19, 20
code samples 23
destruction, implementing 21
initialization, implementing 21
sounds, loading 22
sounds, playing 22, 23
sounds, streaming 22

audio mixing 89

[98]

audio source direction
setting 44

audio source position
setting 43, 44

audio source range
setting 44

audio sources
about 42
creating 43

audio source velocity
setting 43, 44

audio system
creating 15
managing 15

B
breaking glass sound effect

creating 61

C
car engine

sound, simulating 66
ChangeSemitone() method 35
channel groups

controlling 31
channel handle 25
channels

grouping 30
chorus effect 50
chunks, WAV files

Data subchunk 77
Format subchunk 77
RIFF 77

complex ambient track, of forest
creating 67

compressor effect 50
constant-power panning 89
Core Audio 13
createChannelGroup() method 30
createDSPByType method 51
createSound() method 16
createStream() method 16
cues 56

D
Data subchunk 77
default ambient reverb

setting 48
delay effect 50

implementing 90, 91
digital signal processing. See DSP effect
digital signals 9
DirectSound 13
distortion effect 50
Doppler effect 41
DSP effect 50, 90
DSP effect, types

chorus 50
compressor 50
delay 50
distortion 50
echo 50
flanger 50
high-pass filter 50
low-pass filter 50
noise removal 50
normalize 50
parametric EQ 50
pitch shift 50

E
echo effect 50
effects, FMOD

about 51
simple radio effect 52
time stretching 51

F
façade design pattern 19
FLAC 12
flanger effect 50
FMOD

about 13, 75
advantages 14
effects 51
obstruction, simulating 49
occlusion, simulating 49
positional audio 43

[99]

FMOD_2D mode 17
FMOD_3D mode 17
FMOD::Channel class 43
FMOD_CREATESOUNDEXINFO structure

75
FMOD Designer tool

about 54, 55
URL, for downloading 55

FMOD Event System 55
FMOD Ex low-level engine 55
FMOD Ex Programmer's API

about 13
installing 14, 15
URL, for downloading 14

FMOD_HARDWARE mode 16
FMOD_LOOP_NORMAL mode 16
FMOD_LOOP_OFF mode 16
FMOD_OPENUSER flag 75
FMOD_SOFTWARE mode 16
footsteps sound loop

creating 60
Format subchunk 77

G
game code

sound events, calling from 69, 70
getFrequency() method 28
getMasterChannelGroup() method 30
getPaused() method 26

H
high-pass filter effect 50
horizontal approach (re-sequencing) 68

I
installation, FMOD Ex Programmer's API

14, 15
interactive footsteps sound loop

creating 66
interactive music

about 56, 67
horizontal approach (re-sequencing) 68
vertical approach (re-orchestration) 68

L
Load() method 22
LoadOrStream() method 22
LoadSFX() method 34
LoadSong() method 34
logarithmic rolloff 45
lossless compression 12
lossy compression 12
low-pass filter effect 50

M
microphones 9
MIDI files 12
MOD files 12
MP3 format 12
multi-channel audio 11
multiple sounds

mixing 89, 90
multi-track events

about 56, 61
creating 63
examples 65-67
functionalities 61

N
noise removal effect 50
normalize effect 50
Nyquist sampling theorem 10

O
obstruction

about 48
in FMOD 49

occlusion
about 48
in FMOD 49

OGG 12
OpenAL 13

P
panning

about 11
changing 87, 88

[100]

controlling 29
parametric EQ effect 50
PCM 9
pitch

changing of sound 86
controlling 27-29

pitch property 8
pitch shift effect 50
playback

controlling 26
Playback Modes

Granular mode 59
Oneshot mode 59
Repeating Loop mode 59
Successive Loop mode 59

Playlist Behaviors
about 58
Random option 58
Sequential option 58
Shuffle option 58

Play() method 22, 81, 83
PlaySFX() method 35
PlaySong() method 36
playSound() method 17, 25
PortAudio 13
positional audio 42, 43
positional audio, in FMOD

audio listener properties, setting 45
audio source, creating 43
audio source direction, setting 44
audio source position, setting 43, 44
audio source range, setting 44
audio source velocity, setting 43, 44
using 43

pow() function 28
properties, sound

pitch 8
volume 8

pulse code modulation. See PCM

Q
quantization 9

R
RandomBetween() method 35
release() method 15
repetitive sound effects

avoiding 60
reverb

about 46
position, setting 48
properties, setting 47
radius, setting 48
simulating, in game 47

reverberation. See reverb
reverb, in FMOD

default ambient reverb, setting 48
radius, setting 48
reverb object, creating 47
reverb position, setting 48
reverb properties, setting 47

reverb object
creating 47

RIFF chunk 77
rolloff model 45

S
sampled audio

bit depth 10
sampling rate 10

sequenced music 12
set3DConeOrientation method 44
set3DConeSettings method 44
setChannelGroup() method 30
setFrequency() method 27
SetFrequency() method 93
setInputChannelMix() method 27
setLoopCount() method 27
setMute() method 27
setPan() method 29
setPaused() method 26
setPitch() method 31
setPosition() method 26
setVolume() method 27
SetVolume() method 85, 93

[101]

SFML (Simple and Fast Multimedia Library
2.0)

about 23
URL 23

SimpleAudioManager class 19
simple events

about 56, 57
creating 57
examples 60, 61
functionalities 57

simple radio effect 52
sine wave 7
sine_wave() method 94
sin() function 94
songs 32
sound

about 7
loading 22, 77-79
looping 84
pausing 83
pitch, changing 86
playing 17, 80-83
simulating, of car engine 66
streaming 22
synthesizing 92-94
volume, changing 84

sound defs 56
sound effects (SFXs) 32
sound events

calling, from game code 69, 70
versus audio files 54, 55

sound events, FMOD
multi-track 56, 61-64
simple 56-59

sound, factors
direction 41
distance 41
movement 41
obstacles 41
room 41

sound synthesis 92
sound waves 7
speakers 9
Standard Template Library (STL) 20
stop() method 26
StopSongs() method 37
Stream() method 22
System::set3DSettings method 44

U
uncompressed audio files 11
update() method 15
UpdatePan() method 88

V
vertical approach (re-orchestration) 68
volume

changing, of sound 84
controlling 27

volume property 8

W
WAV 11
WMA 12
WriteSoundData() method 81, 82, 86
Wwise 13

Thank you for buying
Getting Started with C++
Audio Programming for Game
Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity Game Development
Essentials
ISBN: 978-1-84719-818-1 Paperback: 316 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects, and
more!

1. Kick start game development, and build
ready-to-play 3D games with ease

2. Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more

3. Test & optimize your game to perfection with
essential tips-and-tricks

Microsoft XNA 4.0 Game
Development Cookbook
ISBN: 978-1-84969-198-7 Paperback: 356 pages

Over 35 intermediate-advanced recipes for taking
your XNA development arsenal further

1. Accelerate your XNA learning with a myriad of
tips and tricks to solve your everyday problems

2. Get to grips with adding special effects,
virtual atmospheres and computer controlled
characters with this book and e-book

3. A fast-paced cookbook packed with screenshots
to illustrate each advanced step by step task

Please check www.PacktPub.com for information on our titles

AndEngine for Android Game
Development Cookbook
ISBN: 978-1-84951-898-7 Paperback: 380 pages

Over 70 highly effective recipes with real-world
examples to get to grips with the powerful
capabilities of AndEngine and GLES 2

1. Step by step detailed instructions and
information on a number of AndEngine
functions, including illustrations and diagrams
for added support and results

2. Learn all about the various aspects of
AndEngine with prime and practical examples,
useful for bringing your ideas to life

3. Improve the performance of past and future
game projects with a collection of useful
optimization tips

CryENGINE 3 Cookbook
ISBN: 978-1-84969-106-2 Paperback: 324 pages

Over 90 recipes written by Crytek developers for
creating third-generation real-time games

1. Begin developing your AAA game or
simulation by harnessing the power of the
award winning CryENGINE3

2. Create entire game worlds using the powerful
CryENGINE 3 Sandbox.

3. Create your very own customized content for
use within the CryENGINE3 with the multiple
creation recipes in this book

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Audio Concepts
	Sound waves
	Analog and digital audio
	Multi-channel audio
	Audio file formats
	Summary

	Chapter 2: Audio Playback
	Understanding FMOD
	Installing FMOD Ex Programmer's API
	Creating and managing the audio system
	Loading and streaming audio files
	Playing sounds
	Checking for errors
	Project 1 – building a simple audio manager
	Class definition
	Initialization and destruction
	Loading or streaming sounds
	Playing sounds
	A note about the code samples

	Summary

	Chapter 3: Audio Control
	The channel handle
	Controlling playback
	Controlling the volume
	Controlling the pitch
	Controlling the panning
	Grouping channels together
	Controlling groups of channels
	Project 2 – improving the audio manager
	Class definition
	Initialization and destruction
	Loading songs and sound effects
	Playing and stopping sound effects
	Playing and stopping songs
	Controlling the master volume of each category

	Summary

	Chapter 4: 3D Audio
	Positional audio
	Positional audio in FMOD
	Creating an audio source
	Setting the audio source position and velocity
	Setting the audio source direction
	Setting the audio source range
	Setting the audio listener properties
	Integration with a game

	Reverb
	Reverb in FMOD
	Creating a reverb object
	Setting reverb properties
	Setting reverb position and radius
	Setting the default ambient reverb

	Obstruction and occlusion
	Obstruction and occlusion in FMOD

	Effects
	Effects in FMOD
	Example 1 – time stretching
	Example 2 – simple radio effect

	Summary

	Chapter 5: Intelligent Audio
	Audio files versus sound events
	Introducing the FMOD Designer
	Simple events
	Examples of simple events
	Avoiding repetitive sound effects
	Creating a footsteps sound loop
	Creating a breaking glass sound effect
	Creating an ambient track of singing birds

	Multi-track events
	Examples of multi-track events
	Creating an interactive footsteps sound loop
	Simulating the sound of a car engine
	Creating a complex ambient track of a forest

	Interactive music
	The vertical approach (re-orchestration)
	The horizontal approach (re-sequencing)

	Calling sound events from the game code
	Summary

	Chapter 6: Low-level Audio
	Representing audio data
	Playing audio data
	Loading a sound
	Playing a sound
	Pausing a sound
	Looping a sound
	Changing volume
	Changing pitch
	Changing panning
	Mixing multiple sounds
	Implementing a delay effect
	Synthesizing a sound
	Summary

	Index

