
www.allitebooks.com

http://www.allitebooks.org

Getting Started with Hazelcast

An easy-to-follow and hands-on introduction to the
highly scalable data distribution system, Hazelcast,
and its advanced features.

Mat Johns

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Hazelcast

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1190813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-78216-730-3

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Mat Johns

Reviewers
Nishant Chandra

Fuad Malikov

Acquisition Editor
Mary Nadar

Commissioning Editor
Subho Gupta

Technical Editors
Dylan Fernandes

Mrunmayee Patil

Project Coordinator
Akash Poojary

Proofreader
Maria Gould

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org

About the Author

Mat Johns is an agile software engineer, hands-on architect, and a general
technologist based in London. His experience with the Web reaches all the way
back to his misspent youth and some rather hacktastic code, but eventually he grew
up to graduate from the University of Southampton with a Masters in Computer
Science with Distributed Systems and Networks. He has worked for a number
of startups on various web projects and systems since then and nowadays he
specializes in designing and creating high performance and scalable web services,
currently in the Internet TV world.

Away from technology, he is an avid explorer and endeavors to seek out new
destinations and adventures as much as possible. He is also a qualified yacht skipper
and regularly races in, around, and beyond the Solent.

You can follow him on Twitter at @matjohns.

I would like to dedicate this book to my incredible parents and
grandparents (Trevor, Alison, David, and Sheila) as without your
encouragement and support over so many years, this book would
not have been possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Nishant Chandra is a principal software engineer at Boomerang Commerce.
His main interests are in building scalable software, SOA, data mining, and mobile.
He has been working on e-commerce applications based on large J2EE and
peer-to-peer technologies. He is an active blogger (http://n-chandra.blogspot.in/)
and contributes to open source projects. Other than software technology, he is also
interested in analytics, product management, Internet marketing, and startups.

In the past, Nishant has worked at Amazon.com and Adobe Inc.

I would like to thank my wife, Vibhuti, for her encouragement and
patience during the review process.

Fuad Malikov is CTO and co-founder of Hazelcast. Prior to Hazelcast, he
worked on J2EE projects as a technology consultant in financial and telecom
industries. He was an IT architect at IBM, developing a J2EE-based core-banking
system for one of the biggest banking transformation projects in Europe. He loves
math and has a bronze medal from the International Mathematical Olympiad.
He holds a B.Sc.in Computer Engineering from Bogazici University, Istanbul.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read, and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: What is Hazelcast? 7

Starting out as usual 7
Data deciding to hang around 8
Therein lies the problem 9
Breaking the mould 10
Moving to a new ground 12
Summary 14

Chapter 2: Getting off the Ground 15
Let's get started 15
Showing off straightaway 16
Mapping back to the real world 21
Sets, lists, and queues 22
Many things at a time 24
Searching and indexing 26
What happens when we reach our limits? 29
Summary 31

Chapter 3: Going Concurrent 33
Atomic control 33
Distributed locking 34

Tactical locking 36
Transactionally rolling on 37

Differences when queuing 39
Enterprising onwards 40
Collectively counting up 40

Spreading the word 41
Summary 45

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: Divide and Conquer 47
Divvying up the data 47
Backups everywhere and nowhere 48
Scaling up the cluster 50
Grouping and separating nodes 50
Network partitioning 52
Summary 54

Chapter 5: Listening Out 55
Listening to the goings-on 55
The sound of our own data 56

Keyless collections 58
Programmatic configuration ahead of time 59
Events unfolding in the wider world 59
Moving data around the place 61
Summary 65

Chapter 6: Spreading the Load 67
All power to the compute 67

Giving up when tasks take too long 70
Running once, running everywhere 70
Placing tasks next to the data 72

Self-updating results 75
Summary 76

Chapter 7: Typical Deployments 77
All heap and nowhere to go 77
Stepping back from the cluster 78
Serialization and classes 80
Lite cluster members 80
Architectural overview 81

Peer-to-peer cluster 82
Clients and server cluster 82
Hybrid cluster 83

Summary 83
Chapter 8: From the Outside Looking In 85

What about the rest of us? 85
Memcache 85
Going RESTful 88

Cluster status via REST 90
REST resilience 91

Summary 91

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 9: Going Global 93
Getting setup in the cloud 93
Under manual control 94
Discovery – the Amazonian way 95

Filtering the possibilities 97
Spreading out around the globe 98

Summary 100
Chapter 10: Playing Well with Others 101

Don't pass what you need, depend on it 101
Simplifying collection access 103

Transparently caching others' data 105
Bring your own cluster 107

Cacheable methods with the Spring cache 108
Collection persistence 108
Web session storage 109
Management center 111
Summary 112

Configuration Summary 113
Index 119

www.allitebooks.com

http://www.allitebooks.org

Preface
Hazelcast is an innovative new approach to data, in terms of storage, processing, and
distribution; it provides an accessible solution to the age-old problem of application and
data scalability. Getting Started with Hazelcast introduces this great open source technology
in a step-by-step, easy-to-follow manner, from the why to the how to wow!

What this book covers
Chapter 1, What is Hazelcast?, helps us to get introduced with the technology, its place
in an application's stack, and how it has evolved from traditional approaches to data.

Chapter 2, Getting Off the Ground, helps us start coding and get acquainted with
the standard distributed data store collections on offer.

Chapter 3, Going Concurrent, helps us expand to look at more distributed and
concurrent capabilities we can bring into our applications.

Chapter 4, Divide and Conquer, helps us look at how data is split up and split across
many nodes to provide both performance and resilience.

Chapter 5, Listen Out, helps us discover that we can register to receive notifications
from the cluster to enable our application to be aware of the goings on.

Chapter 6, Spreading the Load, helps us move beyond the data storage, and we investigate
the distributed execution service and how Hazelcast is more than just a database.

Chapter 7, Typical Deployments, helps us explore the various ways we can use
or install Hazelcast into our application or infrastructure, looking at the architectural
decisions, reasons, and trade-offs behind each one.

Chapter 8, From the Outside Looking In, helps us look at popular alternative access
we have to our data rather than using the provided drivers for integrating with
a Hazelcast cluster.

Preface

[2]

Chapter 9, Going Global, helps us explode onto the world stage using the public
cloud infrastructure and asynchronous remote replication to take our data all
around the globe.

Chapter 10, Playing Well with Others, helps us bring the technology together with
popular companion frameworks to see how we might start to bring the technology
to work with legacy applications.

Appendix, Configuration Summary, helps us overview of the configurations we have
used throughout the book.

What you need for this book
Hazelcast is a Java-based technology so you will need a Java development
environment (ideally Java 6 or newer) and use of a Java source code editor,
preferably an IDE.

Who this book is for
If you are software architect or Java developer looking to make your applications
more scalable or looking to move into the cloud, Hazelcast is a technology you
should strongly consider. This book seeks to provide an easy introduction to this
innovative data centric framework and into its new way of thinking.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and
an explanation of their meaning.

Code words in text are shown as follows: "A GET method to retrieve an entry,
returning a 200 OK response for keys that hold a value and 204 No Content
for keys that do not."

A block of code is set as follows:
$ pyton memcache_example.py
{'country': 'GB', 'name': 'London', 'population': 8174100}

$ php -f memcache_example.php
array (
 'name' => 'London',
 'country' => 'GB',
 'population' => 8174100,
)

Preface

[3]

Any command-line input or output is written as follows:

$ curl -v -X POST -H "Content-Type: text/plain" -d "bar" \

http://127.0.0.1:5701/hazelcast/rest/maps/test/foo

< HTTP/1.1 204 No Content

< Content-Length: 0

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Now, just go the File menu and click on New".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the
text or the code—we would be grateful if you would report this to us. By doing
so, you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form, on the
Internet, please provide us with the location address or website name immediately
so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Preface

[5]

Trademarks
• Hazelcast is a trademark of Hazelcast Inc.
• Amazon AWS and EC2 are registered trademarks of Amazon Web Services

Inc and/or its affiliates.
• Java is a registered trademark of Oracle Inc and/or its affiliates.
• Puppet is a registered trademark of Puppet Labs Inc.
• Chef is a registered trademark of OpsCode Inc.

What is Hazelcast?
Most, if not all, applications need to store some data, some applications far more
than others. By holding this book in your eager hands and starting to flip through its
pages, it might be safe to assume you have previously worked to architect, develop,
or support applications more towards the latter end of that scale. We could imagine
that you are all too painfully familiar with the common pitfalls and issues that tend
to crop up around scaling or distributing your data layer. But to make sure we are all
up to speed, in this chapter, we shall examine:

• Traditional approaches to data persistence
• How caches have helped improve performance, but bring about their

own problems
• Hazelcast's fresh approach to the problem
• A brief overview its generic capabilities
• Summary of what type of problems we might solve using it

Starting out as usual
In most modern software systems, data is the key. For more traditional architectures,
the role of persisting and providing access to your system's data tends to fall to
a relational database. Typically this is a monolithic beast, perhaps with a degree
of replication, although this tends to be more for resilience rather than performance.

What is Hazelcast?

[8]

For example, here is what a traditional architecture might look like (which hopefully
looks rather familiar).

Application

Primary

Database

Backup

Database

Application Application

This presents us with an issue in terms of application scalability, in that it is
relatively easy to scale our application layer by throwing more hardware at it
to increase the processing capacity. But the monolithic constraints of our data
layer would only allow us to do this so far before diminishing returns or resource
saturation stunted further performance increases; so what can we do to address this?

In the past and in legacy architectures, the only solution would be to increase the
performance capability of our database infrastructure, potentially by buying a
bigger, faster server or by further tweaking and fettling the utilization of currently
available resources. Both options are dramatic, either in terms of financial cost
and/or manpower; so what else could we do?

Data deciding to hang around
In order for us to gain a bit more performance out of our existing setup, we can
hold copies of our data away from the primary database and use these in preference
wherever possible. There are a number of different strategies we could adopt, from
transparent second-level caching layers to external key-value object storage. The
detail and exact use of each varies significantly depending on the technology or its
place in the architecture, but the main desire of these systems is to sit alongside the
primary database infrastructure and attempt to protect it from an excessive load.
This would then tend to lead to an increased performance of the primary database
by reducing the overall dependency on it. However, this strategy tends to be only
particularly valuable as a short-term solution, effectively buying us a little more
time before the database once again starts to reach saturation. The other downside
is that it only protects our database from read-based load; if our application is
predominately write-heavy, this strategy has very little to offer.

Chapter 1

[9]

So our expanded architecture could look a bit like the following figure:

Application

Cache

Primary

Databse

Application

Cache

Application

Cache

Therein lies the problem
However, in insulating the database from the read load, we have introduced
a problem in the form of a cache consistency issue, in that, how does our local data
cache deal with changing data underneath it within the primary database? The
answer is rather depressing: it can't! The exact manifestation of any issues will
largely depend on the data needs of the application and how frequently the data
changes; but typically, caching systems will operate in one of the two following
modes to combat the problem:

• Time bound cache: Holds entries for a defined period (time-to-live or TTL)
• Write through cache: Holds entries until they are invalidated by

subsequent updates

Time bound caches almost always have consistency issues, but at least the amount
of time that the issue would be present is limited to the expiry time of each entry.
However, we must consider the application's access to this data, because if the
frequency of accessing a particular entry is less than the cache expiry time of it, the
cache is providing no real benefit.

Write through caches are consistent in isolation and can be configured to offer strict
consistency, but if multiple write through caches exist within the overall architecture,
then there will be consistency issues between them. We can avoid this by having a
more intelligent cache, which features a communication mechanism between nodes,
that can propagate entry invalidations to each other.

In practice, an ideal cache would feature a combination of both features, so
that entries would be held for a known maximum time, but also passes around
invalidations as changes are made.

www.allitebooks.com

http://www.allitebooks.org

What is Hazelcast?

[10]

So our evolved architecture would look a bit like the following figure:

Application

Cache

Primary

Databse

Application

Cache

Application

Cache

Invalidations Invalidations

So far we've had a look through the general issues in scaling our data layer, and
introduced strategies to help combat the trade-offs we will encounter along the way;
however, the real world isn't quite as simple. There are various cache servers and
in-memory database products in this area: however, most of these are stand-alone
single instances, perhaps with some degree of distribution bolted on or provided
by other supporting technologies. This tends to bring about the same issues we
experienced with just our primary database, in that we could encounter resource
saturation or capacity issues if the product is a single instance, or if the distribution
doesn't provide consistency control, perhaps inconsistent data, which might harm
our application.

Breaking the mould
Hazelcast is a radical new approach to data, designed from the ground up around
distribution. It embraces a new scalable way of thinking; in that data should be
shared around for both resilience and performance, while allowing us to configure
the trade-offs surrounding consistency as the data requirements dictate.

The first major feature to understand about Hazelcast is its masterless nature; each
node is configured to be functionally the same. The oldest node in the cluster is the
de facto leader and manages the membership, automatically delegating as to which
node is responsible for what data. In this way as new nodes join or dropout, the
process is repeated and the cluster rebalances accordingly. This makes Hazelcast
incredibly simple to get up and running, as the system is self-discovering,
self-clustering, and works straight out of the box.

Chapter 1

[11]

However, the second feature to remember is that we are persisting data entirely
in-memory; this makes it incredibly fast but this speed comes at a price. When a node
is shutdown, all the data that was held on it is lost. We combat this risk to resilience
through replication, by holding enough copies of a piece of data across multiple
nodes. In the event of failure, the overall cluster will not suffer any data loss. By
default, the standard backup count is 1, so we can immediately enjoy basic resilience.
But don't pull the plug on more than one node at a time, until the cluster has reacted
to the change in membership and reestablished the appropriate number of backup
copies of data.

So when we introduce our new masterless distributed cluster, we get something like
the following figure:

ApplicationApplication Application

Hazelcast Hazelcast

Primary

Database

A distributed cache is by far the most powerful as it can scale up in
response to changes in the application's needs.

We previously identified that multi-node caches tend to suffer from either saturation
or consistency issues. In the case of Hazelcast, each node is the owner of a number
of partitions of the overall data, so the load will be fairly spread across the cluster.
Hence, any saturation would be at the cluster level rather than any individual node.
We can address this issue simply by adding more nodes. In terms of consistency, by
default the backup copies of the data are internal to Hazelcast and not directly used,
as such we enjoy strict consistency. This does mean that we have to interact with
a specific node to retrieve or update a particular piece of data; however, exactly
which node that is an internal operational detail and can vary over time— we as
developers never actually need to know.

What is Hazelcast?

[12]

If we imagine that our data is split into a number of partitions, that each partition
slice is owned by one node and backed up on another, we could then visualize the
interactions like the following figure:

Partition 3

Overall Data

Partition 2Partition 1

Node 1

Application

Owner

Backup

Node 2 Node 3

Owner

Backup

Owner

Backup

This means that for data belonging to Partition 1, our application will have to
communicate to Node 1, Node 2 for data belonging to Partition 2, and so on. The
slicing of the data into each partition is dynamic; so in practice, where there are
more partitions than nodes, each node will own a number of different partitions
and hold backups for others. As we have mentioned before, all of this is an internal
operational detail, and our application does not need to know it, but it is important
that we understand what is going on behind the scenes.

Moving to a new ground
So far we have been talking mostly about simple persisted data and caches, but
in reality, we should not think of Hazelcast as purely a cache, as it is much more
powerful than just that. It is an in-memory data grid that supports a number of
distributed collections and features. We can load in data from various sources into
differing structures, send messages across the cluster, take out locks to guard against
concurrent activity, and listen to the goings on inside the workings of the cluster.
Most of these implementations correspond to a standard Java collection, or function
in a manner comparable to other similar technologies, but all with the distribution
and resilience capabilities already built in.

• Standard utility collections
 ° Map: Key-value pairs
 ° List: Collection of objects

Chapter 1

[13]

 ° Set: Non-duplicated collection
 ° Queue: Offer/poll FIFO collection

• Specialized collection
 ° Multi-Map: Key-list of values collection

• Lock: Cluster wide mutex
• Topic: Publish/subscribe messaging
• Concurrency utilities

 ° AtomicNumber: Cluster-wide atomic counter
 ° IdGenerator: Cluster-wide unique identifier generation
 ° Semaphore: Concurrency limitation
 ° CountdownLatch: Concurrent activity gate-keeping

• Listeners: Application notifications as things happen

In addition to data storage collections, Hazelcast also features a distributed executor
service allowing runnable tasks to be created that can be run anywhere on the cluster
to obtain, manipulate, and store results. We could have a number of collections
containing source data, then spin up a number of tasks to process the disparate data
(for example, averaging or aggregating) and outputting the results into another
collection for consumption.

Again, just as we could scale up our data capacities by adding more nodes, we can also
increase the execution capacity in exactly the same way. This essentially means that
by building our data layer around Hazelcast, if our application needs rapidly increase,
we can continuously increase the number of nodes to satisfy seemingly extensive
demands, all without having to redesign or re-architect the actual application.

What is Hazelcast?

[14]

Summary
With Hazelcast, we are dealing more with a technology than a server product,
a library to build a system around rather than retrospectively bolting it on, or blindly
connecting to an off-the-shelf commercial system. While it is possible (and in some
simple cases quite practical) to run Hazelcast as a separate server-like cluster and
connect to it remotely from our application, some of the greatest benefits come when
we develop our own classes and tasks run within it and alongside it.

With such a large range of generic capabilities, there is an entire world of problems
that Hazelcast can help solve. We can use the technology in many ways; in isolation
to hold data such as user sessions, run it alongside a more long-term persistent
data store to increase capacity, or shift towards performing high performance and
scalable operations on our data. By moving more and more responsibility away
from monolithic systems to such a generic scalable one, there is no limit to the
performance we can unlock.

This will allow us to keep our application and data layers separate, but enabling the
ability to scale them up independently as our application grows. This will avoid our
application becoming a victim of its own success, while hopefully taking the world
by storm.

In the next chapter, we shall start using the technology itself and investigate the data
collections we have just discovered.

Getting off the Ground
Simply put, we can think of Hazelcast as a library technology—a JAR file that
we bring into our application's classpath, and integrate with in order to harness
its data distribution capabilities. Now, there are many ways we could go about
setting up an application to use various third-party libraries and dependencies.
Most modern IDEs can do this for you. Dependency management or build tools
such as Maven, Ant, or Gradle can automate it, and we could sort all of it out
ourselves manually. But it's now time to jump in, head first into the deep end.
In this chapter, we shall:

• Download Hazelcast
• Create a basic application around the technology
• Explore the various simple storage collections
• Fetch and search our stored data
• Set limits and understand what happens when we reach these

Let's get started
First things first, let's create a working directory for our project.

Now, let's navigate to Hazelcast's download page:

www.hazelcast.com/downloads.jsp

Getting off the Ground

[16]

The following image shows what the downloading page should look like:

We will use the latest version, in this case Version 2.6.

While there is nothing stopping you working with the enterprise
edition, there is nothing within this book that requires it. For our
purposes, the community edition will do just fine.

In unpacking the archive, you will find a lib/ directory. This contains the various
library JAR files we could use within our application. For now, let's copy lib/
hazelcast-2.6.jar to our working directory.

Showing off straightaway
Within the Hazelcast JAR, there is the very useful utility class TestApp. The class
name is a little deceptive as it can be used in more ways than just testing, but
its greatest offering is that it provides a simple text console for easy access to
distributed collections.

To fire this up, we need to run this class using the Hazelcast JAR as the classpath.

$ java -cp hazelcast-2.6.jar com.hazelcast.examples.TestApp

Chapter 2

[17]

This should bring up a fair amount of verbose logging, but a reassuring section to
look for to show that a cluster has been formed is the following code:

Members [1] {
 Member [127.0.0.1]:5701 this
}

This lets us know that a new cluster of one node has been created with the node
indicated by this. The configuration that was used to start up this instance is the
default one built into the JAR. You can find a copy of it at bin/hazelcast.xml
from within the unpacked archive that we downloaded in the previous section.
We should now be presented with a basic console interface prompt provided by
the TestApp class.

hazelcast[default] >

To get lots of information about using the console, issue the help command.
The response will be quite extensive but will be along the lines of the following
command line:

hazelcast[default] > help

Commands:

-- General commands

jvm

 //displays info about the runtime

who

 //displays info about the cluster

whoami

 //displays info about this cluster member

ns <string>

 //switch the namespace

-- Map commands

m.put <key> <value>

 //puts an entry to the map

m.remove <key>

 //removes the entry of given key from the map

m.get <key>

 //returns the value of given key from the map

m.keys

 //iterates the keys of the map

m.values

 //iterates the values of the map

Getting off the Ground

[18]

m.entries

 //iterates the entries of the map

m.size

 //size of the map

m.clear

 //clears the map

m.destroy

 //destroys the map

We can now use the various map manipulation commands such as m.put, m.get,
and m.remove to interact with the default distributed map.

hazelcast[default] > m.put foo bar

null

hazelcast[default] > m.get foo

bar

hazelcast[default] > m.entries

foo : bar

Total 1

hazelcast[default] > m.remove foo

bar

hazelcast[default] > m.size

Size = 0

Obviously, while our map has the potential of being distributed, as we're only
running a single node instance, any changes will be lost when it shuts down.
To avoid this, let us start up another node. As each node should be identical in
its configuration, let's repeat exactly the same process we used before to start up
the first node; however, this time we should see two nodes in the startup logging.
This lets us know that our example application has successfully joined the existing
cluster created by the TestApp console.

Members [2] {
 Member [127.0.0.1]:5701
 Member [127.0.0.1]:5702 this
}

Chapter 2

[19]

If you don't see two nodes, it is possible that the network interface that Hazelcast
is selecting by default doesn't support multicast. You can further confirm that this is
likely to be the case by checking the interface associated with the IP address listed in
logging and looking for the following line:

WARNING: [127.0.0.1]:5702 [dev] Config seed port is 5701 and cluster size
is 1. Some of the ports seem occupied!

To address this, the simplest solution at this stage is to disable the offending interface
if you are able to do so. Otherwise, copy the bin/hazelcast.xml configuration to our
working directory, and edit it to force Hazelcast to a particular network interface like
the following one which will definitely fix the issue, but does skip a little further ahead:

<interfaces enabled="true">
 <interface>127.0.0.1</interface>
</interfaces>

Once we have successfully started the second node, we should immediately have
access to the same data that we have persisted on the first. Additionally behind the
scenes, Hazelcast will be rebalancing the cluster to take advantage of the new node
making it the owner of a number of partitions, as well as creating a backup copy
of all the data that is held on both nodes. We should be able to confirm that this
is happening by having a closer look at the log entries being generated.

INFO: [127.0.0.1]:5701 [dev] Re-partitioning cluster data... Immediate-
Tasks: 271, Scheduled-Tasks: 0

Hazelcast can handle new nodes appearing pretty much at any time without risk
 to its data. We can simulate a node failure by invoking the exit command on
one of our test console nodes in order to shut it down (Ctrl + C also has the same
effect). The actual data held on it will be lost, but if we were to restart the node,
it should come back with all the previous data. This is because the other node
remained running and was able to reinitialize the failed node with the cluster data
as it started backup. As we learned in the previous section, by default, the standard
backup count is 1 (which we look to configure later on), so as long as we don't
have more node failures than the backup count in a short amount of time
(before the cluster has had a chance to react and rebalance the data), then we shall
not encounter any overall data loss. Why not give this a try, let's see if we can lose
some data; after all it's only held in-memory!

www.allitebooks.com

http://www.allitebooks.org

Getting off the Ground

[20]

One sure-fire way to expose this issue is to create a cluster of many nodes
(importantly having more nodes than the backup count) and fail a number of them
in quick succession. To try this, we can use the test console to create a map with
a large number of entries.

hazelcast[default] > m.putmany 10000

size = 10000, 1222 evt/s, 954 Kbit/s, 976 KB added

hazelcast[default] > m.size

Size = 10000

Then quickly fail multiple nodes. We should get the following login indicating
potential data loss and can confirm the extent of the loss by looking at the size of
our map:

WARNING: [127.0.0.1]:5701 [dev] Owner of partition is being removed!
Possible data loss for partition[213].

hazelcast[default] > m.size

Size = 8250

This tells us that we can add more nodes to a cluster quite quickly without risking
the overall data, but we have to allow Hazelcast enough time to rebalance the
cluster if we remove nodes. We can see this rebalancing occurring in the logs of the
remaining nodes, as partitions owned by the now dead node are reassigned. To find
out when things have calmed down, we can use a migration listener to give us more
visibility on this process, but that's a topic for later.

INFO: [127.0.0.1]:5701 [dev] Re-partitioning cluster data... Immediate-
Tasks: 181, Scheduled-Tasks: 0

For the case of failure, we will need to understand our infrastructure's stability, and
set the backup count levels high enough to be able to handle a certain amount of the
unexpected data.

Downloading the example code
You can download the example code files for all Packt Publishing books
you have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files e-mailed
directly to you.

Chapter 2

[21]

Mapping back to the real world
Having briefly explored Hazelcast's distributed capabilities via a test console, let's
have a look at how we are more likely to interact with a cluster in the real world. Let's
create a new SimpleMapExample class with a main method to spin up and manipulate
a named distributed map called capitals. Hazelcast refers to these named collections
as a namespace and must be uniquely named across the cluster.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import java.util.Map;

public class SimpleMapExample {
 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 Map<String, String> capitals = hz.getMap("capitals");
 capitals.put("GB", "London");
 capitals.put("FR", "Paris");
 capitals.put("US", "Washington DC");
 capitals.put("AU", "Canberra");

 System.err.println(
 "Known capital cities: " + capitals.size());

 System.err.println(
 "Capital city of GB: " + capitals.get("GB"));
 }
}

As before, we should see various logging entries on the startup as well as the fun fact
outputs; confirming we persisted into and retrieved from the map programmatically.
We can also use this example in conjunction with our TestApp console from the
previous section and interact with the new map capitals. To do this, we will need
to switch namespaces from within the console before interacting with the map.
Remember to make sure they have formed a cluster when using the console if you
closed it since the previous example.

hazelcast[default] > ns capitals

namespace: capitals

hazelcast[capitals] > m.get GB

London

Getting off the Ground

[22]

As with other implementations of Java maps, if we are creating our own objects
for use within a Hazelcast map, we will need to consider the use of the custom
equals() and hashCode() methods; however, it is the serialized binary form
of the object that is used instead of these custom methods when the object is used
as a key to a Hazelcast map entry.

Sets, lists, and queues
In our previous examples, we have looked at key/value storage provided by
Hazelcast maps; however, there are a number of other collections that provide
keyless groups of objects. Two of these additional types are distributed versions
of collections that we are hopefully already familiar with—sets and lists.

As we know, the primary difference between the two is that lists allow for multiple
entries and a set does not. So if we add them to our previous map example, we get
the following code:

Set<String> cities = hz.getSet("cities");
cities.addAll(captials.values());
cities.add("London");
cities.add("Rome");
cities.add("New York");

List<String> countries = hz.getList("countries");
countries.addAll(captials.keySet());
countries.add("CA");
countries.add("DE");
countries.add("GB"); // duplicate entry

In using our test console again to interact with these new collections, we will have
to use different commands as we are now interacting with a set and a list rather
than a map. You can refer to the help response for further options, but s.iterator
and l.iterator will print out the contents of each for sets and lists respectively.

hazelcast[default] > ns cities

namespace: cities

hazelcast[cities] > s.iterator

1 London

2 New York

3 Paris

4 Rome

5 Washington DC

Chapter 2

[23]

6 Canberra

hazelcast[cities] > ns countries

namespace: countries

hazelcast[countries] > l.iterator

1 FR

2 AU

3 US

4 GB

5 CA

6 DE

7 GB

The last of the generic storage collections that Hazelcast provides is a first-in first-
out (FIFO) based queue. This provides us with a mechanism to offer objects onto
the top of a queue before retrieving them off the bottom. Such a structure would
be incredibly useful if we had a number of tasks to individually handle by
a number of client workers.

Let create a new SimpleQueueExample class again with a main method, but this time
we're going to create an iterator to continuously handle objects taken from the queue.

import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;

import java.util.concurrent.BlockingQueue;

public class SimpleQueueExample {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 BlockingQueue<String> arrivals = hz.getQueue("arrivals");

 while (true) {
 String arrival = arrivals.take();

 System.err.println(
 "New arrival from: " + arrival);
 }
 }
}

Getting off the Ground

[24]

Like before, we can use our test console to interact with the queue. This time
we can offer items to the queue for our client to take and print out. A FIFO queue
should only provide an individual item to a single consumer irrespective of the
number of consumers connected to the queue. We can validate that Hazelcast
is honoring this behavior by running our example client multiple times.

hazelcast[default] > ns arrivals

namespace: arrivals

hazelcast[default] > q.offer Heathrow

true

hazelcast[arrivals] > q.offer JFK

true

From the output of our SimpleQueueExample client, we should then be able to see
the following messages. If we are running multiple clients by this point, then the
output will be spread between them and certainly not duplicated.

New arrival from: Heathrow

New arrival from: JFK

As we mentioned before, queues are great for providing a single pipeline for work
distribution. Items can be concurrently offered onto it before being taken off in
parallel by workers. With Hazelcast ensuring that each item is only reliably delivered
to a single worker while providing us with the distribution, resilience and scalability
are not present when comparing the alternative queuing systems.

Many things at a time
We have seen previously that Hazelcast provides us with a generic key/value map;
however, one popular use of this capability would be to create a key/list-of-values
map. While there is nothing stopping us from defining these ourselves using standard
Java generics, we will have to manually handle the initialization of each key entry.
Hazelcast has luckily gone out of its way to make our lives easier by handling this
case for us, through the use of the specialized MultiMap collection.

Let's have a look at the following example:

Map<String, List<String>> manualCities = hz.getMap("manualCities");

List<String> gbCities = new ArrayList<String>();
manualCities.put("GB", gbCities);

Chapter 2

[25]

gbCities = manualCities.get("GB");
gbCities.add("London");
manualCities.put("GB", gbCities);

gbCities = manualCities.get("GB");
gbCities.add("Southampton");
manualCities.put("GB", gbCities);

List<String> frCities = new ArrayList<String>();
manualCities.put("FR", frCities);

frCities = manualCities.get("FR");
manualCities.get("FR").add("Paris");
manualCities.put("FR", frCities);

System.err.println(
 String.format("Manual: GB=%s, FR=%s",
 manualCities.get("GB"),
 manualCities.get("FR")));

MultiMap<String, String> multiMapCities =
 hz.getMultiMap("multiMapCities");

multiMapCities.put("GB", "London");
multiMapCities.put("GB", "Southampton");

multiMapCities.put("FR", "Paris");

System.err.println(
 String.format("MultiMap: GB=%s, FR=%s",
 multiMapCities.get("GB"),
 multiMapCities.get("FR")));

As we can clearly see, the use of MultiMap in this way dramatically simplifies
the code as well as allowing you to modify the underlying map using delta changes
rather than having to fully retrieve, modify, and persist for what could be a small
change in a large list. One important point to be aware of is that we can't use
a Hazelcast map in a pass-by-reference context, as we might do with a native
Java implementation. For example, the following optimization of the previous
code would not achieve the desired result:

manualCities.get("GB").put("Leeds");

Getting off the Ground

[26]

This is because Hazelcast always returns a cloned copy of the data rather than
the instance actually held; so modifying the returned object as we would in the
preceding code does not actually update the persisted value.

Searching and indexing
In moving towards creating clean key/value-based storage, we may find that we have
lost some of the extra searching capabilities that traditional databases offer. Mainly
 that we now can't find records within a dataset without knowing the primary key
to that entry. However, fear not, as Hazelcast provides similar capabilities for
searching its maps by predefined indexes. These can be either ordered (ascending)
or unordered, depending on our particular data needs. But be aware that indexing
doesn't come for free; the internal lookup table used to provide the quick searching
on reads is maintained as we make changes to the map; this will add latency to every
write operation to that namespace.

So firstly, let's create a new plain old Java object (POJO) to represent a city.

import java.io.Serializable;

public class City implements Serializable {
 private String name;
 private String country;
 private int population;

 public City(String name, String country, int population) {
 this.name = name;
 this.country = country;
 this.population = population;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {

Chapter 2

[27]

 this.country = country;
 }

 public int getPopulation() {
 return population;
 }

 public void setPopulation(int population) {
 this.population = population;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 City other = (City) o;
 if (!this.country.equals(other.country)) return false;
 if (!this.name.equals(other.name)) return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = name.hashCode();
 result = 31 * result + country.hashCode();
 return result;
 }

 @Override
 public String toString() {
 return String.format(
 "City{name='%s', country='%s', population=%d}",
 name, country, population);
 }
}

As you can see, we have created our City class to implement Serializable so
that it can be correctly persisted within Hazelcast. We have also implemented
the equals() and hashCode() methods so the required behavior is ensured.
Additionally, a toString() method has been added for debugging convenience.

Getting off the Ground

[28]

Using this, we can update our previous map example to use our new city POJO.
One major change from the previous example is that in order to access the additional
indexing functionally, we have to use the Hazelcast specific IMap interface rather
than the standard Java Map that we used before.

In order to search the map, we need to provide a Predicate object to filter on. One
such implementation of this is that we can use SqlPredicate, which provides us
with the ability to use a SQL-like syntax to describe the filter.

IMap<String, City> capitals = hz.getMap("capitals");
capitals.addIndex("name", false);
capitals.addIndex("population", true);

capitals.put("GB",
 new City("London", "GB", 8174100));

capitals.put("FR",
 new City("Paris", "FR", 2268265));

capitals.put("US",
 new City("Washington DC", "US", 601723));

capitals.put("AU",
 new City("Canberra", "AU", 354644));

Collection<City> possibleLondons = capitals.values(
 new SqlPredicate("name = 'London'")););

System.err.println(possibleLondons);

Collection<City> largeCities = capitals.values(
 new SqlPredicate("population > 1000000"));

System.err.println(largeCities);

The supported syntax is very much a limited subset of SQL, but should feel familiar.

• AND/OR: For combining multiple expressions
• =, !=, <, <=, >, >=: For expression comparison
• LIKE: For simple string pattern matching expressions
• IN: For providing a defined list of sought values
• BETWEEN: For providing a range of sought numeric values
• NOT: Can be used as a prefix to negate the expression

Chapter 2

[29]

The preceding functions are used in the following code:

country = 'GB' AND population BETWEEN 10000 AND 100000

country NOT IN ('GB', 'FR')

name LIKE 'L%'

If you would prefer to construct your query more programmatically, we can use
a JPA-like criteria API provided by PredicateBuilder, or more manually using
various helper methods in Predicates. We could use the following alternative code
in place of our previous SQL based predicates:

EntryObject c = new PredicateBuilder().getEntryObject();
Predicate londonPredicate = c.get("name").equal("London");

Collection<City> possibleLondons = capitals.values(londonPredicate);

System.err.println(possibleLondons);

Predicate largeCityPredicate = Predicates.greaterThan(
 Predicates.get("population"), 1000000);

Collection<City> largeCities = capitals.values(largeCityPredicate);

System.err.println(largeCities);

What happens when we reach our limits?
As large as we may scale our cluster to handle ever-growing datasets, it is quite
possible that we will want to configure a map to feature specific behavior. The main
things we can customize the number of backup counts and types, limits on how big
a particular map can grow plus what we do when we reach that limit, and defining
a default lifespan for our entries. We can use the hazelcast.xml configuration to
define this behavior for all maps or for an individual one. Now, we can copy the
configuration from the unpacked download bin/hazelcast.xml to our working
directory, and add a custom configuration for our capitals map.

<map name="capitals">

 <max-size policy="cluster_wide_map_size">10</max-size>
 <eviction-policy>LFU</eviction-policy>
 <eviction-percentage>20</eviction-percentage>

www.allitebooks.com

http://www.allitebooks.org

Getting off the Ground

[30]

 <backup-count>1</backup-count>
 <async-backup-count>1</async-backup-count>

 <time-to-live-seconds>86400</time-to-live-seconds>
 <max-idle-seconds>3600</max-idle-seconds>

</map>

The properties we have put in place should all be relatively self-explanatory,
but let's go through them in a little more detail as there are a few that demand
closer inspection.

The first set deals with bounding the size of the map and what to do when that limit
is reached.

The max-size parameter as you would expect governs how big a map may grow
before we have a clear out and evict existing entries for make room to potential
future ones. However, we can additionally pick from five different types of policies
to vary this behavior.

The first (and the default) policy is the easiest to understand.

• cluster_wide_map_size

 ° Maximum number of entries across the entire cluster

The second one is probably the least useful in a real world scenario.

• partitions_wide_map_size

 ° Maximum number of entries per internal partition slice
 ° The number of partitions is also configurable, but as a cluster-wide

parameter rather than specific to any one map

The latter three policies relate to the usage on an individual node basis.

• max_size_per_jvm

 ° Maximum number of entries per node

• used_heap_size

 ° Maximum heap usage in megabytes

• used_heap_percentage

 ° Maximum proportion of the total heap size

eviction-policy governs the strategy used to select entries to discard when
making room for new ones; there are few options to pick from.

Chapter 2

[31]

• NONE
 ° No eviction (default)

• Least Recently Used (LRU)
 ° The oldest interacted with the entries

• Least Frequency Used (LFU)
 ° The least interacted with the entries

eviction-percentage dictates when we trigger an eviction, and how much space
we preemptively need to create relative to the overall max-size of the map.

The next set of configurations deal with backup copies of entries both in terms of
number of duplicate copies to hold, but also the method and consistency of how they
are created.

• backup-count controls the number of backup copies created synchronously
on each change. Increasing this number significantly will have performance
implications as we will have to block waiting upon confirmations this
many nodes.

• async-backup-count controls the number of backup copies that are
created asynchronously on a best effort basis. This figure combined with
backup-count determines the total number of backup copies to be held.

The final set is used to set a map-wide default TTL for entries.

• time-to-live-seconds is a default dumb TTL for each entry. Entities will
be removed from the map after this amount of time, irrespective of use or
resetting when overwritten.

• max-idle-seconds sets the maximum time that an entry can sit unused
before being expired.

Summary
One of Hazelcast's greatest strengths is the ease of getting going with neighbor
self-discovery and automatic clustering we can create a basic resilience and
consistent data source in minutes. While there is plenty of detail left to cover
and simple examples don't paint a full picture, we have hopefully already gained
a lot of confidence in the technology. As we move forward, we will explore the
increasing specialized functionality and understand your application's individual
needs that will dictate how valuable each topic is to you.

In the next chapter, we shall move on a little further, starting to use the more
concurrent capabilities on offer.

Going Concurrent
Along with the simple distributed collections offered, Hazelcast also provides us
with additional complementary capabilities, allowing us to further parallelize our
applications. Some of these features come as standard within more traditional data
stores, while others are inspired by similar technologies. In this chapter we will
look at:

• Atomic and consistent nature of simple collections
• Distributed locking to provide a cluster wide mutex
• Transactional support to cater for more complex operations
• Cluster-wide atomic ID generator
• JMS-like topics for broadcast messaging (publish, subscribe)

Atomic control
When interacting with Hazelcast's distributed collections, we set and retrieve data
in a consistent and atomic way. In that when we modify an entry, it is immediately
available on other nodes irrespective of their processing state. This does mean
that we have to be careful when developing our applications, as data may change
underneath us while performing an operation. However, it is this default lockless
nature that significantly increases application scalability, especially under load.
Two of the collections we have previously looked at additionally implement specific
atomic capabilities provided by the java.util.concurrent interfaces.

As we've previously seen, the distributed map collection provided by Hazelcast is
defined by its own IMap class. This actually extends ConcurrentMap, which will
provide us with additional atomic operations such as putIfAbsent(key, value)
and replace(key, oldValue, newValue). These capabilities may go some way
to prevent any concurrent modification, as we are able to detect when a change has
occurred, and handle it appropriately within the application layer.

Going Concurrent

[34]

We can see how we might use this behavior in the following code:
public class AtomicMapExample {
 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 IMap<String, String> capitals = hz.getMap("capitals");

 capitals.putIfAbsent("GB", "Winchester");
 System.err.println("Capital of GB (until 1066): " +
 capitals.get("GB"));

 String actualCapital = capitals.putIfAbsent("GB", "London");
 System.err.println
 ("Failed to put as already present: " +
 capitals.get("GB") + " = " + actualCapital);

 boolean r1 = capitals.replace("GB", "Southampton", "London");
 System.err.println("Failed to replace as incorrect old value: " +
 capitals.get("GB") + "; [" + r1 + "]");

 boolean r2 = capitals.replace("GB", "Winchester", "London");
 System.err.println("Capital of GB (since 1066): " +
 capitals.get("GB") + "; [" + r2 + "]");
 }
}

Another collection we've worked with so far is the distributed queues. Like their map
counterparts they are also specialized, this time by the IQueue interface; in this case
extending the BlockingQueue concurrency features. The additional features offering
allows us to control how our application reacts to the pushing and popping of the
FIFO queue, in using the various add(item), offer(item), and put(item) methods,
to push onto the queue depending on whether we wish to throw an exception, return
a success, or block. For retrieval, we can use poll() and take() for instant access,
blocking, or waiting for an item to be available. However, indefinitely blocking can
be problematic; the offer(item) and poll() methods can optionally take a defined
timeout, allowing our application to fail more gracefully if the attempted operation
cannot be completed within the specified time.

Distributed locking
In building a broad scalable application, one aspect we tend to lose is our ability
to restrict and prevent concurrent activity. Within a single JVM we would use
a synchronized lock to gatekeeper, a section of functionality from concurrent
execution. Once we move away from a single JVM, this problem becomes a much
bigger issue. Traditional approaches would leverage a transactional database to
provide a system for locking, in the form of a table rowlock or transactional state.
However, this approach presents us with a single point of failure and concurrency
issues when scaling up our application.

Chapter 3

[35]

Hazelcast offers a distributed locking facility, allowing us to attempt to acquire
a cluster-wide named lock and to gatekeeper the functionality behind it. If we can
create an example class LockingExample, we can demonstrate this ability.

public class LockingExample {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 Lock lock = hz.getLock("theTime");

 while (true) {
 if (lock.tryLock(30, TimeUnit.SECONDS)) {
 try {
 while (true) {
 System.err.println(new Date());
 Thread.sleep(1000);
 }
 }
 finally {
 lock.unlock();
 }
 }
 }
 }
}

In considering the preceding code, we are continuously attempting to acquire the
Time lock. Should we be successful in acquiring the lock, we shall start continuously
printing out the time every second. In running our class once,
we will see the behavior as described.

Members [1] {
 Member [127.0.0.1]:5701 this
}

Tue Jan 01 00:00:00 UTC 2013
Tue Jan 01 00:00:01 UTC 2013
Tue Jan 01 00:00:02 UTC 2013
Tue Jan 01 00:00:03 UTC 2013

Going Concurrent

[36]

However, once we start running our example multiple times, we have enabled
resilience of the locked section. In that, multiple nodes are all continuously trying
to enter that block of code, but are prevented by the acquired lock of another code.
This is where the locking capability comes into its own; if we were to start killing
off nodes, especially the one currently holding the lock, we fail-safe. In killing nodes
not holding the lock, the correct behavior is still enforced, but should we kill off the
node currently holding the lock, it will be automatically released, as the owner is
now dead. At this point another node can now acquire the lock and can take over
the responsibility of telling us the time.

Using this capability, we have provided our application with the ability to have a
resilient but exclusive execution task that exists within the cluster. Where that task
actually occurs isn't particularly controllable; but assuming nodes are present, it is
guaranteed to run somewhere, but only once.

Tactical locking
In addition to a single blunt gatekeeper locking where we effectively prevent
concurrent execution across the entire cluster for a specific type of activity, we
might want to lock on a more specific context. Rather than using a Lock object, IMap
provides us with key locking capabilities. Using this, we can acquire a mutex on a
specific entry, enabling the ability to prevent concurrent modifications on a targeted
piece of data.

public class MapLockingExample {
 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 IMap<String, Date> arrivals = hz.getMap("arrivals");

 if (arrivals.tryLock("London")) {
 try {
 arrivals.put("London", new Date());
 }
 finally {
 arrivals.unlock("London");
 }
 }
 }
}

While we have explicitly acquired, processed, and reliably released the lock, this
gives us absolute control over the amount of blocking we might be introducing into
our application; if used wisely this is a very powerful tool.

Chapter 3

[37]

Transactionally rolling on
Now that we have looked at the simple atomic approach we can take when dealing
with the concurrency of consumption and changes to the persisted data, what
happens if this is just too simple for our use case? Well, now that we have the ability
to lock both globally across the cluster and on individual data items, we can prevent
unexpected changes to our supporting data in the middle of an operation. But if we
needed to stop and undo changes we had made part way through an operation, how
might we achieve that?

Luckily, drawing on inspiration from traditional roots, Hazelcast provides us with
transactional capabilities. Offering a REPEATABLE_READ transaction isolation (the only
transactional mode currently supported), once you enter a transaction, Hazelcast
will automatically acquire the appropriate key locks for each entry that is interacted
with; any changes we write will be buffered locally until the transaction is complete.
If the transaction was successful and was committed, all the locally buffered changes
will be flushed out to the wider cluster, and the locks released. If the transaction was
rolled back, we simply release our locks without flushing out the local changes.

Look at the following example:

public class TransactionExample {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 Map<String, String> testMap = hz.getMap("test");

 Transaction tx = hz.getTransaction();
 tx.begin();

 try {
 System.err.println(testMap.get("foo"));

 Thread.sleep(30000);

 System.err.println(testMap.get("foo"));
 testMap.put("foo", "bar");

 tx.commit();
 }
 catch (Exception e) {
 tx.rollback();
 }
 }
}

Going Concurrent

[38]

If we fire up our TestApp console from earlier and attempt to manipulate the
test map during our 30 second pause interacting with keys other than foo will
succeed as normal, however, while we can read from foo, writing to it will cause
our console to block until our application completes its transaction. So from our
TransactionExample application, we will consistently see:

Members [2] {
 Member [127.0.0.1]:5701 this
 Member [127.0.0.1]:5702
}

null
null

Despite our best efforts from the TestApp console to disrupt that functionality:

Members [2] {
 Member [127.0.0.1]:5701
 Member [127.0.0.1]:5702 this
}

hazelcast[test] > m.put other wibble
null

hazelcast[test] > m.get other
wibble

hazelcast[test] > m.get foo
null

hazelcast[test] > m.put foo chew
<blocked until transaction completes>
bar

Chapter 3

[39]

We can see the process of what is going on under the hood in the following diagram:

Differences when queuing
Unlike the storage collections where the transactional nature is when writing, hence
able to be buffered locally before flushing on commit, queues are transactional on
reads. This is as if we were to take an item from the queue and then roll back, the
item would need to be returned to the queue so it could be redelivered; but what if
our node died within the transaction— it wouldn't be able to return it. To avoid this
situation rather than buffering locally, taken values are copied to the next node in the
cluster to be buffered remotely. That way should the node disappear, another node is
in a position to restore the rolled back item to the queue.

www.allitebooks.com

http://www.allitebooks.org

Going Concurrent

[40]

Enterprising onwards
If we are going to use Hazelcast within an enterprise J2EE container, we can also
integrate this provided transaction support as a standard resource adapter. While
the details will vary depending on the container you are using, it would be best to
follow any relevant documentation you have for your specific case, the required
hazelcast-ra-2.6.rar file can be found in the lib/ directory of our previously
downloaded archive.

Collectively counting up
Another piece of functionality we have lost in migrating away from a traditional data
source is our ability to generate a sequence number or an autogenerated identifier.
One primary issue with the original mechanism is the single point of failure in
our previous data source. Hazelcast fortunately provides us with a distributed
alternative in the form of IdGenerator.

This instance provides us with a cluster-wide unique identifier generator from which
we can request a new unique identifier to be issued. We have to be aware that the
internal counter state is only persisted during the life span of the cluster; should
all the nodes be lost, the counter will restart at zero. Let's consider the following
IdGeneratorExample code:

public class IdGeneratorExample {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 IdGenerator idGen = hz.getIdGenerator("newId");

 while (true) {
 Long id = idGen.newId();
 System.err.println("New Id: " + id);
 Thread.sleep(1000);
 }
 }
}

In running this multiple times, we will see that the generated values are unique and
counting upwards within their own group of identifiers.

Members [1] {
 Member [127.0.0.1]:5701 this
}

Chapter 3

[41]

New Id: 1
New Id: 2
New Id: 3

Members [2] {
 Member [127.0.0.1]:5701
 Member [127.0.0.1]:5702 this
}

New Id: 1000001
New Id: 1000002
New Id: 1000003

As you can probably tell from the output, groups of 1 million are allocated to
each node to start with. Once that pool of identifiers has been exhausted, a new
pool of 1 million is allocated. This process is repeated as much as required, with
possible values starting from zero and the largest value that can be issued being
Long.MAX_VALUE.

Spreading the word
The final collection capability offered by Hazelcast is a broadcast messaging system.
This is very much inspired by JMS topics and offers a comparable set of features,
in that, we can publish events on to messaging bus to deliver to a large number
of subscribed receivers.

As we can see in the following diagram, an application can publish a message onto
a topic that will then be distributed across over to all instances of our application
who have subscribed to the topic. This will include the instance that originally sent
the message in the first place, assuming it too has a listener subscribed to the topic.

Application

publish onMessage

Hazelcast Topic

onMessage onMessage

Application Application

Going Concurrent

[42]

First things first, we'll need a MessageListener class to handle messages,
implementing an onMessage(Message<T>) method as required.

public class TopicListener implements MessageListener<String> {

 @Override
 public void onMessage(Message<String> msg) {
 System.err.println("Received: " + msg.getMessageObject());
 }
}

Let's create a class to broadcast some messages and register our TopicListener class
against the broadcast topic, so that each node is advertising itself and with every
node hearing everything from all the peer nodes.

public class TopicExample {
 public static void main(String[] args) throws Exception {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 ITopic<String> broadcastTopic = hz.getTopic("broadcast");
 broadcastTopic.addMessageListener(new TopicListener());

 while (true) {
 broadcastTopic.publish(
 new Date() + " - " +
 hz.getCluster().getLocalMember() + " says hello");

 Thread.sleep(1000);
 }
 }
}

In running our TopicExample class multiple times, we'll see all the broadcasts on
every node instance.

Received: Tue Jan 01 00:00:00 UTC 2013 - Member [127.0.01]:5701 this
says hello
Received: Tue Jan 01 00:00:00 UTC 2013 - Member [127.0.01]:5702 this
says hello

Received: Tue Jan 01 00:00:01 UTC 2013 - Member [127.0.01]:5701 this
says hello
Received: Tue Jan 01 00:00:01 UTC 2013 - Member [127.0.01]:5702 this
says hello

Chapter 3

[43]

One very important thing to be aware of is that the invocation of each listener's
onMessage method to deliver the topic message is single threaded; this ensures that
messages are received in the same order as the original sender; however, the ordering
of messages received from multiple senders is not guaranteed. As we have only one
receiving thread, we need to ensure that we don't undergo too complex, lengthy,
or blocking an operation method directly within that thread, as we will prevent the
delivery of other pending messages. If we do have to perform operations of that
nature, our best bet is to spin them out into a local executor to handle. However
do remember that once a message has been delivered and passed on to the local
executors job queue, it will be vulnerable to be lost should that JVM shutdown
uncleanly prior to execution.

public class TopicExecListener implements MessageListener<String> {

 private ExecutorService exec = Executors.newFixedThreadPool(10);

 @Override
 public void onMessage(final Message<String> msg) {
 exec.execute(new Runnable() {

 @Override
 public void run() {
 System.err.println("Received: " + msg.getMessageObject());
 }
 });
 }
}

Going Concurrent

[44]

We can see how this decoupling can provide a more timely and reliable delivery
of messages from the topic to the application in the following diagram:

One of the primary benefits on this offering which very much highlights the
distributed benefits of Hazelcast, is the lack of any single point of failure; something
that is not easily achievable with most other available pure JMS solutions. If we run
Hazelcast on multiple nodes and push messages onto a topic, we can enjoy the same
level of resilience of our message in terms of persistence that we enjoy with our
other collections.

Chapter 3

[45]

Summary
We have now expanded our awareness of all the data storage and distribution
collections offered by Hazelcast. Additionally we have learned about the default
atomic nature of data concurrency but also the mechanisms to combat, and
gatekeeper concurrency, should our application demand great degrees of control
over the data flow. Finally, we have discovered comparable versions of features
found in traditional alternatives, as well as offered by other Java technologies. By
now we are finding out how extensive and flexible Hazelcast can be. While we've
now touched on most of the basics, there is plenty more detail left to be discovered.

Now we have discovered the various types of collections that we have available
for us to use in our applications, in the next chapter we shall look at how Hazelcast
splits and shares the data around to unlock its incredible scalability.

Divide and Conquer
One of the primary advantages of technologies like Hazelcast is the distributed
nature of their data persistence; by fragmenting and scattering the held data across
many diverse nodes we can achieve high levels of reliability, scalability, and
performance. In this chapter we will investigate:

• How data is split into partitions
• How that data is backed up within the overall cluster
• Replicating backups; synchronous versus asynchronous
• Trade-off between read performance and consistency
• How to silo groups of nodes together
• How we can manage network partitioning (split brain syndrome)

Divvying up the data
In order to be resilient, Hazelcast apportions the overall data into slices referred
to as partitions, and spreads these across our cluster. To do this, it uses a consistent
hashing algorithm on the data keys to consistently assign a piece of data to a particular
partition, before assigning the ownership of an entire partition to a particular node.
By default there are 271 partitions, however this is configurable using the hazelcast.
map.partition.count property.

This process allows for transparent and automatic fragmentation of our data,
but with tunable behavior, while allowing us to ensure that any shared risks
(such as nodes running on the same hardware or sharing the same data center
rack) are militated against.

Divide and Conquer

[48]

We can visualize the partitioning process in the following diagram:

Data Entry
Key Hashing

Partition 32

Partitions

127.0.0.1:5701

Data Entry

Backups everywhere and nowhere
As each node could disappear or be destroyed at any time without notice; in order
to preserve the integrity of the overall persisted data, each partition is backed up
on a number of other nodes and must be nodes other than the owner; an individual
node can only hold each partition just once (either owning or backing up). Should
a node die, the ownership of any partitions that were owned by the now defunct node
will be migrated to one of the backups so that no apparent data loss is experienced.
Additionally in the background, Hazelcast will start to replicate the migrated
partitions over to another node to cater for the fact that there are now fewer backups
available than was configured. This will restore resilience back to as it was configured.
The number of backups that Hazelcast will create is configurable depending on your
hardware's stability, appetite for risk, and available memory.

We can configure the number of backups to keep the method of creation; either
globally using the default collection definition, on a per collection basis by explicitly
listing the collection name, or using a single wildcard to match against multiple
collections simultaneously.

<hazelcast>

 <map name="default">
 <backup-count>1</backup-count>
 <async-backup-count>1</async-backup-count>

Chapter 4

[49]

 <read-backup-data>false</read-backup-data>
 </map>

 <map name="capitals">
 <backup-count>2</backup-count>
 <async-backup-count>1</async-backup-count>
 <read-backup-data>true</read-backup-data>
 </map>

 <map name="countries.*">
 <backup-count>1</backup-count>
 <async-backup-count>1</async-backup-count>
 <read-backup-data>false</read-backup-data>
 </map>

</hazelcast>

backup-count configures the number of backups to keep synchronously up-to-date.
This means any manipulation operations (put, delete, and so on) will block until this
many configured backups have been notified and have confirmed the change.

async-backup-count specifies the number of backups that will be maintained in the
background. The creation of these backups will not block when creating or changing
data, but will be replicated out to other nodes on a best effort basis asynchronously
by Hazelcast.

The number of copies of data will be governed by these two figures:

number-of-copies = 1 owner + backup-count + async-backup-count

As we've seen before, by default the backed up copies are there solely for Hazelcast's
own internal use and not for direct application use; however, if we wish to expose
these backup copies we can do so.

read-backup-data flags that for read operations from this collection we will allow
our application to use a backup copy if it is holding a backup of the appropriate
partition. This has significant performance benefits as now we can obtain data from
a larger number of nodes for a specific piece of data rather than just the owner.
However, using this capability in conjunction with a positive async-backup-count,
we will introduce the possibility of inconsistent reads. This is as the best effort
replication process may not have updated the new data across to the backup before
we attempt to read from it. If our application can tolerate this possibility, then we
can greatly reduce write latencies (by not blocking on changes) while increasing read
performance, but must be used with great care.

www.allitebooks.com

http://www.allitebooks.org

Divide and Conquer

[50]

Scaling up the cluster
Now that we have created a cluster to house all our data, with a number of nodes
holding both owned partitions and backups; but what happens if we need to scale?
This could be for a number of reasons, for example, approaching the current memory
capacity or our application is rather demanding and saturating a hardware resource.
The solution in both cases is simple; add more nodes.

So if we were to start with a cluster of four nodes holding overall 4 million objects,
each individual node would hold roughly 1 million owned objects (and a further
1 million backups). When we introduce a new node, Hazelcast reacts by assigning
partitions from existing nodes to it. This will cause existing data to stream across
to the new node taking on more and more partitions until it holds an overall fair
share. The net result will be that each node now only holds approximately 8,00,000
owned objects (and a similar number of backups). In adding this new node we
have created additional capacity within the cluster; both in terms of memory and
hardware resources.

We previously learned that by default there are 271 partitions, which is a prime
number. If we have scaled up our cluster to contain a large number of nodes
(anything approaching or above 100), then each node won't own that many
partitions and odds are each one is storing a large amount of data. In this situation
it would be a good idea to increase the number of partitions, so that the overall
data distribution across the cluster is likely to be fairer, and the individual cost
of a partition migrating is lower; as moving each one involves less data. This will
also reduce the latency of writes during a migration, as these are blocked while the
corresponding partition is migrated.

Once the partition ownership has stabilized given the new nodes, it will remain static
until something changes; either having another new node joining or if an existing
node dies.

Grouping and separating nodes
By default Hazelcast treats each instance as a completely separate node and as such
will use any combination of the cluster nodes to hold copies (either for ownership
or backups). This instantly introduces a problem where we run multiple JVM
instances on the same machine (either physical or virtual). In that any host or
hardware level issues that affect one JVM, might affect multiple at the same time,
putting data resilience at risk.

Chapter 4

[51]

To avoid this, we can configure Hazelcast to assign partitions not to an individual
node, but to a defined group of nodes. Typically these groups of nodes will be
known to share a common external risk or need to balance any differences in
available memory; this siloing of nodes is referred to as partition grouping.
There are currently two ways to configure a partition group:

Firstly, there exists an automatic process that handles the case of having multiple
JVM instances running on the same machine; this is detected by having different
nodes sharing the same IP address or interface.

<hazelcast>
 <partition-group enabled="true" group-type="HOST_AWARE" />
</hazelcast>

The second is a fully manual option which allows us to specify the IP address ranges
of the nodes to separate into groupings; while much more complex to configure,
allows us to translate more detailed external information that wouldn't otherwise
be visible to Hazelcast. For example, allowing us to separate instances running on
virtualized hardware than share a common host, hosts that share a common data
center rack or any other significant shared risk to which we wish to explicitly cater
for the possibility of simultaneous failure of multiple nodes.

<hazelcast>
 <partition-group enabled="true" group-type="CUSTOM">

 <member-group>
 <interface>10.0.1.*</interface>
 <interface>10.0.2.1-127</interface>
 </member-group>

 <member-group>
 <interface>10.0.2.128-254</interface>
 <interface>10.0.3.*</interface>
 </member-group>

 <member-group>
 <interface>10.0.4.*</interface>
 </member-group>

 </partition-group>
</hazelcast>

Divide and Conquer

[52]

One thing to remember either in terms of the default behavior or when using partition
groups, if there are fewer destinations for a partition to be assigned to for backups,
then we won't be able to satisfy the configured levels of backup counts. To address
this we will need to create more nodes or partition groups to accommodate the desired
configuration. When using partition groups, what is? is the group that now can only
hold one copy of the partition rather than the individual node. So we cannot make
a partition group excessively broad, as we may not be able to accommodate the
required levels of resilience.

Network partitioning
We have seen that Hazelcast is capable of handling individual node outages, reacting
to restore resilience where possible. However it's not just node failures that we have
to be able to handle; it could also easily be an issue in the underlying network fabric
that can lead to a situation know as split brain syndrome. As this happens away
from our application, more at the infrastructure layer, there is very little we can do
to prevent it from happening. But we should understand how the problem could affect
our application and how the issue is handled when the underlying outage is resolved.

The primary issue for our application is where two (or more) sides of a network
outage are able to operate perfectly in isolation. In theory, assuming there were
backup copies of the data held on both sides of the split, we will continue to operate
normally as two independent deployments. But what happens when the sides
become visible again to each other, especially in the case where conflicting changes
have occurred? To address this problem, we can define a merge policy to govern
how to resolve any conflicts.

Subnet A Subnet B

10.0.0.1:5701 10.0.1.1:5701

10.0.0.2:5701 10.0.1.2:5701

Key Value

foo value 1

... ...

Key Value

foo value 2

... ...

Chapter 4

[53]

As the value of the foo entry differs on either side of the split, when the two
sides encounter each other, the oldest node of the cluster will coordinate a merge,
establishing which side of the split to merge from and to. This would typically be
the smaller side of the split which will merge into the large side; if the two sides are
balanced then a hashing algorithm will govern the order. Once this is established,
each node of the target side of the merge will sequentially disconnect and reconnect
to the cluster, sending a merge request for each entry it previously held using
a merge policy to determine whether to retain or override.

Merge policies are strategy classes that implement com.hazelcast.merge.
MergePolicy, we can create our own but there are a number of provided instances
available to us out of the box.

• hz.NO_MERGE, which is a non-operation policy, no entries will be merged.
• hz.ADD_NEW_ENTRY, where the entry will be added if it did not already exist

within the cluster.
• hz.HIGHER_HITS, which merges depending on the amount of activity on

a particular entry on either side of the split. Whichever version of the entry
had been interacted with the most will win.

• hz.LATEST_UPDATE, probably the most useful, whichever version the entry
had most recently been created or updated will be the copy to retain.

The configuration is applied as part of the standard collection configuration; unless
we specify our own, the default is currently hz.ADD_NEW_ENTRY.

<hazelcast>
 <map name="default">
 <merge-policy>hz.LATEST_UPDATE</merge-policy>
 </map>
</hazelcast>

Divide and Conquer

[54]

If we do create our own merge policy class we will need to register it before we are
able to use it. We wire up our class name to a merge policy name, to which we refer
to in our collection configuration.

<hazelcast>
 <map name="default">
 <merge-policy>OUR_MERGE_POLICY</merge-policy>
 </map>

 <merge-policies>
 <map-merge-policy name="OUR_MERGE_POLICY">
 <class-name>
 com.packtpub.hazelcast.OurMergePolicy
 </class-name>
 </map-merge-policy>
 </merge-policies>
</hazelcast>

Summary
So we now know a little more of how Hazelcast apportions data into partitions, how
these partitions are automatically assigned to a node or a partition group and how
we might configure these to our needs. We have also investigated how it deals with
issues, be it failure of an individual node or group of nodes within a defined silo,
and how we recover it to restore resilience; or an underlying network fabric issue
that creates a network split brain, and how we are able to cleanly bring multiple
sides of the split back together and return to normal service.

Now that we have seen how things work behind the scenes to manage and distribute
our data, we might need our application to know about some of these goings-on.
In the next chapter we shall look at how our application can register its interest
to be notified as things happen to support the cluster.

Listening Out
In a broad, distributed cluster of data storage, it is very useful to be able to know
what is happening with our data, either to trigger an application-level response to
an event, or to purely give us some visibility to the internal goings-on. In this
chapter, we will learn about:

• Creating and using collection listeners
• Instance, lifecycle, and cluster membership listeners
• Partition migration listener

Listening to the goings-on
One great feature of Hazelcast is its ability to notify us of the goings-on of our
persisted data and the cluster as a whole. To allow us to register an interest in
events, the listener concept is borrowed from Java. In that way, there are a number
of listener interfaces that we can implement to receive, process, and handle different
types of events; one of which we have previously encountered.

• Collection listeners
 ° EntryListener for map-based (IMap and MultiMap) events
 ° ItemListener for flat collection-based (IList, ISet, and IQueue)

events
 ° MessageListener for receiving topic events, but as we've seen

before, it is used as part of the standard operation of topics

• Cluster listeners

 ° InstanceListener for collection, creation, and destruction events
 ° MembershipListener for cluster membership events
 ° LifecycleListener for local node state events
 ° MigrationListener for partition migration state events

Listening Out

[56]

The sound of our own data
Being notified as our data changes can be rather useful, so we can make an
application-level decision on whether that change is important or not. The first
interface we are going to look at is EntryListener. This class will notify us when
changes are made to the entries stored in a map collection. If we take a look at the
interface, we can see four event types that we will be notified about.

public interface EntryListener<K, V> extends EventListener {
 void entryAdded(EntryEvent<K, V> event);
 void entryRemoved(EntryEvent<K, V> event);
 void entryUpdated(EntryEvent<K, V> event);
 void entryEvicted(EntryEvent<K, V> event);
}

Hopefully, the first three are pretty self-explanatory; however, the last is a little
less clear and in fact, one of the most useful. The entryEvicted method is invoked
when an entry is removed from a map non-programmatically (that is, Hazelcast
has done it all by itself). This instance will occur in one of two scenarios:

• An entry's TTL has been reached and the entry has been expired
• The map size according to the configured policy has been reached, and the

appropriate eviction policy has been kicked in to clear out space in the map

The first scenario allows us a capability very rarely found in data sources, to have
our application be told when a time bound record has expired, and the ability
to trigger some behavior based on it. For example, we could use it to automatically
trigger a teardown operation, should an entry not be correctly maintained by
a user's interactions. This would allow us to generate an event based on the
absence of activity, which is rather useful!

Let's create an example MapEntryListener to illustrate the various events firing off.

public class MapEntryListener
 implements EntryListener<String, String> {

 @Override
 public void entryAdded(EntryEvent<String, String> event) {
 System.err.println("Added: " + event);
 }

 @Override
 public void entryRemoved(EntryEvent<String, String> event) {
 System.err.println("Removed: " + event);
 }

Chapter 5

[57]

 @Override
 public void entryUpdated(EntryEvent<String, String> event) {
 System.err.println("Updated: " + event);
 }

 @Override
 public void entryEvicted(EntryEvent<String, String> event) {
 System.err.println("Evicted: " + event);
 }
}

We can use it in conjunction with MapEntryListeningExample to drive
some behavior.

public class MapEntryListeningExample {
 public static void main(String[] args) {
 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 IMap<String, String> capitals = hz.getMap("capitals");
 capitals.addEntryListener(new MapEntryListener(), true);

 capitals.put("GB", "Winchester");
 capitals.put("GB", "London");
 capitals.put("DE", "Berlin", 10, TimeUnit.SECONDS);
 capitals.remove("GB");
 }
}

We shall see the various events firing off as expected, with a short 10-second wait for
the Berlin entry to expire, which will trigger the eviction event.

Added: EntryEvent {c:capitals} key=GB, oldValue=null, value=Winchester,
event=ADDED, by Member [127.0.0.1]:5701 this

Updated: EntryEvent {c:capitals} key=GB, oldValue=Winchester,
value=London, event=UPDATED, by Member [127.0.0.1]:5701 this

Added: EntryEvent {c:capitals} key=DE, oldValue=null, value=Berlin,
event=ADDED, by Member [127.0.0.1]:5701 this

Removed: EntryEvent {c:capitals} key=GB, oldValue=null, value=London,
event=REMOVED, by Member [127.0.0.1]:5701 this

Listening Out

[58]

Evicted: EntryEvent {c:capitals} key=DE, oldValue=null, value=Berlin,
event=EVICTED, by Member [127.0.0.1]:5701 this

We can obviously implement the interface as extensively as needed to service our
application, potentially creating no-op stubs should we wish not to handle a particular
type of event.

One issue with the previous example is that we have retrospectively reconfigured the
map to feature the listener after it is already in service. To avoid this race condition,
we should wire up the listen in advance of our node-entering service. We can do this
by registering the listener within the map configuration.

<hazelcast>
 <map name="default">
 <entry-listeners>
 <entry-listener include-value="true">
 com.packtpub.hazelcast.listeners.MapEntryListener
 </entry-listener>
 </entry-listeners>
 </map>
</hazelcast>

But in both the methods of configuration, we have provided a Boolean flag when
registering the listener to the map. This include-value flag allows us to configure
it when the listener is invoked, whether or not we are interested in just the key of
the event entry, or the all the data including the entries value. The default behavior
(true) is to include the value, but suppose our use case does not require it, there is
a performance benefit of not having to provide it to the listener.

Keyless collections
While very similar to map collections, the keyless collections (set, list, and
queue) feature their own interface to define the available events, in this case
ItemListener. It is not as extensive as its map counterpart, featuring just
itemAdded and itemRemoved events, and can be used in the same way but
with a lesser degree of visibility.

Chapter 5

[59]

Programmatic configuration ahead of
time
So far the extra configurations we have applied have either been by customizing the
hazelcast.xml file, or retrospectively modifying a collection in the code. But what
if we want to programmatically configure Hazelcast, without the race condition
we discovered earlier? Fortunately, there is such a way. By creating an instance of
the Config class, we can configure the appropriate behavior on it using a similar
hierarchy to the XML configuration, but in code. Before passing this configuration
object over to the instance creation method, the previous example could be
reconfigured to do so.

public static void main(String[] args) {
 Config conf = new Config();
 conf.addListenerConfig(new ListenerConfig(new MapEntryListener()));

 HazelcastInstance hz = Hazelcast.newHazelcastInstance(conf);

Events unfolding in the wider world
Now that we can determine what is going on with our data within the cluster, we
might wish to have a degree of visibility of the state of the cluster itself. We could use
this to trigger application-level responses to cluster instability, or provide mechanisms
to enable graceful scaling. We are provided with a number of interfaces for different
types of cluster activity. All of these listeners can be configured retrospectively as
we have seen in our previous examples; however, in production, it would be better
to configure them in advance for the same race condition reasons as the collection
listeners. We can either do this using the hazelcast.xml configuration or by using
the Config class.

<hazelcast>
 <listeners>
 <listener>com.packtpub.hazelcast.MyClusterListener</listener>
 </listeners>
</hazelcast>

The first of these, InstanceListener, simply notifies all the nodes in the cluster
as to new collection instances being created or having been destroyed. Again,
let's create a new example listener ClusterInstanceListener to receive events.

public class ClusterInstanceListener implements InstanceListener {

 @Override
 public void instanceCreated(InstanceEvent event) {

www.allitebooks.com

http://www.allitebooks.org

Listening Out

[60]

 System.err.println("Created: " + event);
 }

 @Override
 public void instanceDestroyed(InstanceEvent event) {
 System.err.println("Destroyed: " + event);
 }
}

As these listeners are for cluster-wide events, our example usage of this listener is
rather simple, mainly creating an instance with the appropriate listener registered.

public class ClusterListeningExample {
 public static void main(String[] args) {
 Config config = new Config();
 config.addListenerConfig(
 new ListenerConfig(new ClusterInstanceListener()));

 HazelcastInstance hz = Hazelcast.newHazelcastInstance(config);
 }
}

In using our TestApp console, we can create and destroy some collections.

hazelcast[default] > ns test

namespace: test

hazelcast[test] > m.put foo bar

null

hazelcast[test] > m.destroy

Destroyed!

This will produce the following logging on all our nodes that feature the listener:

Created: com.hazelcast.core.InstanceEvent[source=Map [test]]

Destroyed: com.hazelcast.core.InstanceEvent[source=Map [test]]

The next type of cluster listener is MembershipListener, which notifies all nodes
as to the joining or leaving of a node from the cluster. Let's create another example
class, this time ClusterMembershipListener.

public class ClusterMembershipListener
 implements MembershipListener {

Chapter 5

[61]

 @Override
 public void memberAdded(MembershipEvent membershipEvent) {
 System.err.println("Added: " + membershipEvent);
 }

 @Override
 public void memberRemoved(MembershipEvent membershipEvent) {
 System.err.println("Removed: " + membershipEvent);
 }
}

And add it to our previous example application.

conf.addListenerConfig(
 new ListenerConfig(new ClusterMembershipListener()));

Lastly, we have LifecycleListener, which is local to an individual node, and
allows our application built on top of Hazelcast to understand its particular node
state by being notified as it changes while starting, pausing, resuming, or even
shutting down.

public class NodeLifecycleListener implements LifecycleListener {

 @Override
 public void stateChanged(LifecycleEvent event) {
 System.err.println(event);
 }
}

Moving data around the place
The final listener is very useful as it lets our application know when Hazelcast is
rebalancing the data within the cluster. This allows us the opportunity to prevent
or even block the shutdown of a node as we might be in a period of increased data
resilience risk. The interface used for this case is MigrationListener and will notify
our application as partitions are migrated from one node to another and when they
have completed.

public class ClusterMigrationListener implements MigrationListener {

 @Override
 public void migrationStarted(MigrationEvent migrationEvent) {
 System.err.println("Started: " + migrationEvent);
 }

Listening Out

[62]

 @Override
 public void migrationCompleted(MigrationEvent migrationEvent) {
 System.err.println("Completed: " + migrationEvent);
 }

 @Override
 public void migrationFailed(MigrationEvent migrationEvent) {
 System.err.println("Failed: " + migrationEvent);
 }
}

In registering this cluster listener in our example application and creating and
destroying various nodes, we should see a deluge of events showing the migrations
occurring. The more astute among you may have previously spotted a repartitioning
task logging when spinning up multiple nodes.

INFO: [127.0.0.1]:5701 [dev] Re-partitioning cluster data... Immediate-
Tasks: 0, Scheduled-Tasks: 271

This indicated that 271 tasks (one migration task for each partition) have
been scheduled to rebalance the cluster. Our new listener will now give us
significantly more visibility on these events as they occur and hopefully they
will be completed successfully.

Started: MigrationEvent{partitionId=98, oldOwner=Member [127.0.0.1]:5701,
newOwner=Member [127.0.0.1]:5702 this}

Started: MigrationEvent{partitionId=99, oldOwner=Member [127.0.0.1]:5701,
newOwner=Member [127.0.0.1]:5702 this}

Completed: MigrationEvent{partitionId=98, oldOwner=Member
[127.0.0.1]:5701, newOwner=Member [127.0.0.1]:5702 this}

Completed: MigrationEvent{partitionId=99, oldOwner=Member
[127.0.0.1]:5701, newOwner=Member [127.0.0.1]:5702 this}

However, all this logging information is entirely overwhelming and not that useful
to us, so let's expand on our listener to try and provide our application with the
ability to detect if our cluster is currently migrating data partitions or has recently
done so.

Chapter 5

[63]

Let's create a new static class MigrationStatus to hold cluster migration
information and allow us to interrogate it as the current status.

public abstract class MigrationStatus {
 private static final Map<Integer, Boolean> MIGRATION_STATE =
 new ConcurrentHashMap<Integer, Boolean>();

 private static final AtomicLong LAST_MIGRATION_TIME =
 new AtomicLong(System.currentTimeMillis());

 public static void migrationEvent(int partitionId, boolean state) {
 MIGRATION_STATE.put(partitionId, state);
 if (!state) {
 LAST_MIGRATION_TIME.set(System.currentTimeMillis());
 }
 }

 public static boolean isMigrating() {
 Collection<Boolean> migrationStates = MIGRATION_STATE.values();
 Long lastMigrationTime = LAST_MIGRATION_TIME.get();

 // did we recently (< 10 seconds ago) complete a migration
 if (System.currentTimeMillis() < lastMigrationTime + 10000) {
 return true;
 }

 // are any partitions currently migrating
 for (Boolean partition : migrationStates) {
 if (partition) {
 return true;
 }
 }

 // otherwise we're not migrating
 return false;
 }
}

Then we update our listener to pass through the appropriate calls in response to the
events coming into it.

@Override
 public void migrationStarted(MigrationEvent migrationEvent) {
 MigrationStatus.migrationEvent(
 migrationEvent.getPartitionId(), true);

Listening Out

[64]

 }

 @Override
 public void migrationCompleted(MigrationEvent migrationEvent) {
 MigrationStatus.migrationEvent(
 migrationEvent.getPartitionId(), false);
 }

 @Override
 public void migrationFailed(MigrationEvent migrationEvent) {
 System.err.println("Failed: " + migrationEvent);
 MigrationStatus.migrationEvent(
 migrationEvent.getPartitionId(), false);
 }

Finally, let's add a loop to our example application to print out the migration state
over time.

public static void main(String[] args) throws Exception {
 Config conf = new Config();
 conf.addListenerConfig(
 new ListenerConfig(new ClusterMembershipListener()));
 conf.addListenerConfig(
 new ListenerConfig(new MigrationStatusListener()));

 HazelcastInstance hz = Hazelcast.newHazelcastInstance(conf);

 while(true) {
 System.err.println(
 "Is Migrating?: " + MigrationStatus.isMigrating());
 Thread.sleep(5000);
 }
 }

In starting and stopping various nodes, we should see each node detect the presence
of rebalance occurring, but it passes by quite quickly. It is in these small critical
periods of time when data is being moved around that resilience is most at risk,
albeit depending on the configured numbers of backup, the risk could potentially
be quite small.

Added: MembershipEvent {Member [127.0.0.1]:5703} added

Is Migrating?: true

Is Migrating?: true

Is Migrating?: false

Chapter 5

[65]

Summary
Unlike some of its peers, Hazelcast allows us to witness first hand a lot of internal
state information. By registering listeners to be notified as events occur, we can
further enhance our application not only in terms of functionality but also in
resilience. By allowing our application to know when and what events are unfolding
underneath it, we can add defensiveness to it—embracing the dynamic and
destroyable nature of modern agile approaches to applications and infrastructure.

In the next chapter, we will move a little away from just data, and look at the
distributed execution and task processing capabilities on offer.

Spreading the Load
In addition to the distributed data storage, Hazelcast also provides us with an ability
to share out computational power, in the form of a distributed executor. In this
chapter, we shall:

• Learn about the distributed executor service
• Using futures for response retrieval
• Single node and multi-node tasks
• Forcing the location of execution
• Aligning data with compute

All power to the compute
So far, we have been focusing on data storage for a lot of cases that would take up
most of the story for scaling up our application. However, there are other types
of applications that require a lot of computational and data processing power.
To help cater for this use case, Hazelcast provides a distributed executor service.
For us relatively experienced Java developers, we are hopefully already familiar
with the introduction of ExecutorService with Java v1.5. Extending this concept
further, the distributed execution capabilities allow us to run the Runnable and
Callable tasks on the cluster. However, as we are distributing the task, we must
ensure that it is also Serializable.

Spreading the Load

[68]

We can think of Hazelcast as providing the scheduling and task management
capabilities on top of a number of executors, holding a number of worker threads each.

Task

Task Management

Node 1

Thread

Thread

Node 2

Thread

Thread

Node N

Thread

Thread

Like the data storage capabilities offered, should we need to add further capacity
to the cluster, we can start more nodes. This will immediately register their presence
to the cluster and be available to provide extra computational power. To see this
working, let's create an example TimeCallable task to execute.

public class TimeCallable implements Callable<String>, Serializable {

 @Override
 public String call() throws Exception {
 return new Date().toString();
 }
}

Also, create an example application to submit the task for execution as well as
the computation needed to process the running of the task. To get the return value
from the Callable task, we will need to use a Future reference to simplify our
example. For the moment, we will use the blocking get() operation that will await
a response before continuing.

public class ExecutionExample {
 public static void main(String[] args) throws Exception {
 Config conf = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(conf);

 ExecutorService exec = hz.getExecutorService("exec");

Chapter 6

[69]

 while(true) {
 Future<String> timeFuture = exec.submit(new TimeCallable());
 String theTime = timeFuture.get();

 System.err.println(theTime);

 Thread.sleep(1000);
 }
 }
}

We can create a number of nodes that will increase the processing capacity of the
cluster; however, if we did so with our current example, it wouldn't be obvious
from our example where the task was actually running. In fact, some tasks might
actually need to know where they are running; luckily, we can update our Callable
task with where it is running through the use of the HazelcastInstanceAware
interface. This will inform the task with a reference to the appropriate instance prior
to the task execution.

public class TimeInstanceAwareCallable
 implements Callable<String>, HazelcastInstanceAware, Serializable {

 private HazelcastInstance hz;

 @Override
 public void setHazelcastInstance(HazelcastInstance hz) {
 this.hz = hz;
 }

 @Override
 public String call() throws Exception {
 return hz.getCluster().getLocalMember().toString() +
 " - " + new Date().toString();
 }
}

In running our application and having updated it to use our instance aware task, we
should now see that the execution is being shared across multiple nodes.

Member [127.0.0.1]:5701 this - Tue Jan 01 00:00:01 UTC 2013

Member [127.0.0.1]:5702 this - Tue Jan 01 00:00:02 UTC 2013

Spreading the Load

[70]

Giving up when tasks take too long
In using the blocking get() function, we might end up waiting for a very long time
should the computation be extensive or complex. Should we have an SLA that we
need to meet and there is no point continuing the processing if we breach it, we can
specific this timeout on the retrieval call. This has the added benefit of automatically
canceling the processing task should the timeout be reached, freeing up the compute
resource for other tasks.

Running once, running everywhere
So far we've seen how we can gain access to a distributed executor service and
submit our own tasks to it for execution; however, we might need a little more
control as to where a task runs. Should we want to pin a particular task to a specific
node, we can use the wrapper class DistributedTask to provide some signaling
logic to the task manager so that it can detect and control which node the task is
delegated to. You can find the details of the members in the cluster from the Cluster
class, which is accessible from the HazelcastInstance class.

Config conf = new Config();
HazelcastInstance hz = Hazelcast.newHazelcastInstance(conf);

Member thisMember = hz.getCluster().getLocalMember();
Set<Member> clusterMembers = hz.getCluster().getMembers();
ExecutorService exec = hz.getExecutorService("exec");

Callable<String> timeTask = new TimeInstanceAwareCallable();

Member member = <target member>;
FutureTask<String> specificTask =
 new DistributedTask<String>(timeTask, member);

exec.execute(specificTask);
String timeFromSpecificMember =
 specificTask.get(10, TimeUnit.SECONDS);

Should we want to run the task on multiple nodes concurrently, we could manually
submit the task to multiple specific member nodes. However, it would be complicated
to retrieve the results of each execution, especially if the ordering of the responses is
not sequential. To help address this issue, there is another wrapper class we can use,
MultiTask, which is similar to our previous example. However, it handles the capture
and aggregation of various responses for us.

public class MultiExecutionExample {
 public static void main(String[] args) throws Exception {
 Config conf = new Config();

Chapter 6

[71]

 HazelcastInstance hz = Hazelcast.newHazelcastInstance(conf);

 ExecutorService exec = hz.getExecutorService("exec");

 Callable<String> timeCallable = new TimeInstanceAwareCallable();

 while(true) {
 Set<Member> clusterMembers = hz.getCluster().getMembers();

 MultiTask<String> timeTask =
 new MultiTask<String>(timeCallable, clusterMembers);

 exec.execute(timeTask);
 Collection<String> manyTimes = timeTask.get();

 for (String theTime : manyTimes) {
 System.err.println("The time is: " + theTime);
 }

 Thread.sleep(1000);
 }
 }
}

Quite usefully, Hazelcast provides us with a few tasks that we can use to gather
some operation stats on the members in the cluster, the collections in use, the
amount of data stored, and the number of requests we are making to them. These
tasks can be found in the main Hazelcast JAR within the com.hazelcast.monitor
package. Let's have a look at one of these to get high-level partition assignment
information from the cluster.

public class MemberInfoStatsExample {
 public static void main(String[] args) throws Exception {
 Config conf = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(conf);

 ExecutorService exec = hz.getExecutorService();
 MultiTask<MemberInfo> mapStatsTask =
 new MultiTask<MemberInfo>(
 new DistributedMemberInfoCallable(),
 hz.getCluster().getMembers());

 exec.execute(mapStatsTask);

 for(MemberInfo memberInfo : mapStatsTask.get()) {

Spreading the Load

[72]

 System.err.println("partitions: " +
 memberInfo.getPartitions().size());
 }
 }
}

In running the application once, we'll see all the partitions belonging to one node
before any new instances will see this increasingly more distributed.

// 1 node

partitions: 271

// 2 nodes

partitions: 136

partitions: 135

// 3 nodes

partitions: 91

partitions: 90

partitions: 90

Placing tasks next to the data
Our capability to run a task in a specific target location becomes much more useful
when it comes to data affinity. This means that if we are going to be interacting with
the distributed data held within the cluster, it would be optimal to co-locate the
task execution close to where the required data is actually held. This will reduce
the latency of a task and the networking cost of having to retrieve the dependency
data from other nodes across the cluster before processing can actually occur. By
making our task PartitionAware, we can return a key with which our task is going
to interact. From this it is established which partition the key belongs to, and hence
the member node that holds that data. Then the task will be automatically submitted
to execute on that specific node to minimize the network latency for the task to obtain
or manipulate the data.

Chapter 6

[73]

We might also need to interact with multiple related entries, which might belong
to different partitions, hence be owned by other members. If the relationship between
the two entries is strictly coupled, we could consider overriding the standard
partitioning process by providing a specific value to pass on to the partitioning hash
function. This will have the effect of allowing a set of data to be guaranteed to belong
to a shared partition, even if we don't know which one or where. To do this, we will
need to make our persisted class PartitionAware. Let's extend our previous city
model POJO from the previous chapter. I would suggest that cities within the same
country are likely to be coupled (in the data sense at least).

public class City implements PartitionAware, Serializable {

<snip>

 @Override
 public Object getPartitionKey() {
 return country;
 }
}

From this, we could build a number of processing tasks that could search, process,
and return results; say, find us the average population size for our cities for a particular
country. Implement the same PartitionAware interface in the same way as our
persisted class so that our task and supporting data will co-locate.

public class AverageCityPopulationCallable
 implements Callable<Integer>, HazelcastInstanceAware,
 PartitionAware, Serializable {

 private String country;
 private HazelcastInstance hz;

 public AverageCityPopulationCallable(String country) {
 this.country = country;
 }

 @Override
 public void setHazelcastInstance(HazelcastInstance hz) {
 this.hz = hz;
 }

 @Override
 public Object getPartitionKey() {
 return country;
 }

Spreading the Load

[74]

 @Override
 public Integer call() throws Exception {
 System.err.println("Running task on: " +
 hz.getCluster().getLocalMember().toString());

 IMap<String, City> cities = hz.getMap("cities");
 Predicate countryCityPredicate =
 Predicates.equal(Predicates.get("country"), country);
 Collection<City> countryCities =
 cities.values(countryCityPredicate);

 int totalPopulation = 0;
 for (City countryCity : countryCities) {
 totalPopulation += countryCity.getPopulation();
 }

 return totalPopulation / countryCities.size();
 }
}

In using this task against a small dataset, we can see the operation in action.

public class AverageCityPopulationCallableExample {
 public static void main(String[] args) throws Exception {
 Config conf = new Config();
 MapConfig citiesConf = conf.getMapConfig("cities");
 citiesConf.addMapIndexConfig(
 new MapIndexConfig("country", false));

 HazelcastInstance hz = Hazelcast.newHazelcastInstance(conf);

 IMap<String, City> cities = hz.getMap("cities");

 if (cities.isEmpty()) {
 cities.put("London-GB",
 new City("London", "GB", 8174100));
 cities.put("Southampton-GB",
 new City("Southampton", "GB", 304400));
 cities.put("Plymouth-GB",
 new City("Plymouth", "GB", 258700));
 cities.put("York-GB",
 new City("York", "GB", 197800));

 cities.put("Paris-FR",
 new City("Paris", "FR", 2268265));
 }

Chapter 6

[75]

 ExecutorService exec = hz.getExecutorService();

 Future<Integer> avgTask = exec.submit(
 new AverageCityPopulationCallable("GB"));

 Integer avgPop = avgTask.get();
 System.err.println("Average GB city population: " + avgPop);
 }
}

Self-updating results
This type of execution is great if we need real time results for each operation requiring
this value; however, if this was a more computationally expensive operation, we will
still need fast access to this data but perhaps on more of a best effort basis. Rather than
returning sequentially, we could create a Runnable task to run, periodically storing the
result into another collection for consumption. This is akin to pre-aggregation as you
would just retrieve the value from the output collection knowing that the value must
have been generated in the background, and depending on the data, the frequency of
execution might be slightly out of date. However, we can configure how stale it could
be based on our application's own needs.

public class AverageCityPopulationRunnable
 implements Runnable, HazelcastInstanceAware, Serializable {

<snip>

 @Override
 public void run() {

 int avgPopulation = totalPopulation / countryCities.size();
 IMap<String, Integer> avgCityPop = hz.getMap("cityAvgPop");
 avgCityPop.put(country, avgPopulation);
 }
}

Spreading the Load

[76]

Summary
As we can see, this is a technology that deals with many aspects of distribution,
be it data persistence or even computation. By leveraging these capabilities into our
architecture, we are providing ourselves with a very simple scaling mechanism— just
add more nodes. We are scaling up multiple aspects of our application simultaneously;
in this way, we should hopefully not introduce any scaling imbalances that might have
been present if we had just scaled one aspect independently.

In the next chapter, we will examine the different architectural setups that Hazelcast
can operate in, the situations that suit the various options, and how to use them.

Typical Deployments
So far we have been looking at Hazelcast in one particular type of deployment,
however, there are a number of configurations we could use depending on our
particular architecture and application needs. Each deployment strategy tends
to be best suited to certain types of configuration or application deployment;
so in this chapter we will look at:

• The issues of co-locating data too close to the application
• Thin client connectivity, where it's best used and the issues that come with it
• Lite member node (nee super client) as a middle ground option
• Overview of the architectural choices

All heap and nowhere to go
One thing we may have noticed with all the examples we have been working on so far
is that as we are running Hazelcast in an embedded mode, each of the JVM instances
will provide both the application's functionality and also house the data storage. Hence
the persisted cluster data is held within the heap of the various nodes, but this does
mean that we will need to control the provisioned heap sizes more accurately as it is
now more than just a non-functional advantage to have more; size matters.

However, depending on the type of application we are developing, it may not
be convenient or suitable to directly use the application's heap on the running
instance for storing in the data. A pertinent example of this situation would be
a web application, especially one that runs in a potentially shared web application
container (for example, Apache Tomcat).

This would be rather unsuitable for storing extensive amounts of data within the
heap as our application's storage requirements drastically increase, we will either
need to provision more web application containers, or potentially put ours and
other applications running with that container cluster at risk from excessive garbage
collection, or worse still running out of heap altogether.

Typical Deployments

[78]

Stepping back from the cluster
To avoid this situation we can separate our application away from the data cluster
through the use of a thin client driver that looks and appears very similar to a direct
Hazelcast instance; however, in this case, the operations performed are delegated out
to a wider cluster of real instances. This has the benefit of separating our application
away from the scaling of the Hazelcast cluster, allowing us to scale up our own
application without having to scale everything together, maximizing the utilization
efficiency of the resources we are running on. However, we can still scale up our
data cluster by adding more nodes which will lead to a bottleneck, either for memory
storage requirements or performance and compute necessities.

If we create a "server side" vanilla instance to provide us with a cluster of nodes
we can connect out to from a client.

public class VanillaInstanceExample {
 public static void main(String[] args) {
 Config conf = new Config();
 HazelcastInstance hz = Hazelcast.newHazelcastInstance(conf);
 }
}

If we run this a few times to establish a cluster of a number of instances:

Members [3] {
 Member [127.0.0.1]:5701
 Member [127.0.0.1]:5702
 Member [127.0.0.1]:5703 this
}

Now we need to bring in a new dependency, with our original downloaded archive
is the hazelcast-client-2.6.jar, and we can use this to create ClientExample to
connect to the cluster and perform operations against the data that is held there. As
the client is delegating the operations out to the wider cluster, the data persisted will
out-live the client.

public class ClientExample {
 public static void main(String[] args) {
 ClientConfig conf = new ClientConfig();
 conf.addAddress("127.0.0.1:5701");

 HazelcastClient hzc =
 HazelcastClient.newHazelcastClient(conf);

 IMap<String, String> capitals = hzc.getMap("capitals");

Chapter 7

[79]

 if (capitals.isEmpty()) {
 System.err.println("Empty capitals map, adding entries");

 capitals.put("GB", "London");
 capitals.put("FR", "Paris");
 capitals.put("US", "Washington DC");
 capitals.put("AU", "Canberra");
 }

 System.err.println(
 "Known capital cities: " + capitals.size());

 System.err.println(
 "Capital city of GB: " + capitals.get("GB"));

 hzc.shutdown();
 }
}

In running our client multiple times we can see that the first run will initialize the
capitals map with our starting set of data, before shutting down the client which
will allow the JVM instance to complete and exit cleanly. However, when we run
the client again, the data has been successfully persisted by the still running cluster
so that we won't repopulate it a second time. Our client is currently connecting
through to one of the clients specifically, however it learns about the existence
of the other nodes once it is running. So should our supporting member node die,
the client will simply connect over to another one of the other nodes and continue
on as normal. The only critical phase is the initial connection, that unlike the
member nodes we don't have an auto-discovery mechanism in place; so that needs
to be configured explicitly. If the node we have listed is down at the time of our
client starting up, we will fail to connect to the cluster irrespective of the state
of other nodes or the cluster as a whole. We can address this by listing a number
of seed nodes within our client's configuration, as long as one of these nodes
is available we can connect to the cluster and go from there.

ClientConfig conf = new ClientConfig();
conf.addAddress("127.0.0.1:5701");
conf.addAddress("127.0.0.1:5702", "127.0.0.1:5703");

Typical Deployments

[80]

By default, the ordering of the nodes we attempt to connect to is consistent
depending on the configuration, should the first nodes we try to connect to be down
or having networking issues, we might have to wait until the configured connection
time-out to be reached before moving on to the next to try block. To prevent
a consistent issue proving to be an ongoing issue for clients starting up, we can set
the client to randomly order the target nodes list from its configuration. In this way
we would get a faster connection time, at least for a proportion of the time, this may
be preferable to a possible consistent issue.

conf.setShuffle(true);

Serialization and classes
One issue we do introduce when using the thin client driver()is that while our
cluster can hold, persist, and serve classes it doesn't have to and might not actually
hold the POJO class itself; rather a serialization of the object. This means that as long
as each of our clients holds the appropriate class in its classpath we can successfully
serialize (for persistence) and de-serialize (for retrieval), but our cluster nodes can't.
You can most notably see this if we try to retrieve entries via the TestApp console for
custom objects, this will produce ClassNotFoundException.

The process used to serialize objects to the cluster starts by checking whether
the object is a well-known primitive-like class (String, Long, Integer, byte[],
ByteBuffer, Date); if so, these are serialized directly. If not, Hazelcast next checks
to see if the object implements com.hazelcast.nio.DataSerializable and if so
uses the appropriate methods provided to marshal the object. Otherwise it falls back
to standard Java serialization.

However in the case of using the distributed executor, as the execution will actually
be performed on the cluster nodes themselves, those classes must be present on the
classpath of each cluster node.

Lite cluster members
One issue with the client method of connecting to the cluster is that most operations
will require multiple hops in order to perform an action. This is as we only maintain
a connection to a single node of the cluster and run all our operations through it.
With the exception of operations performed on partitions owned by that node, all
other activities must be handed off to the node responsible out in the wider cluster,
with the single node acting as a proxy for the client.

Chapter 7

[81]

This will add latency to the requests made to the cluster. Should that latency be
too high, there is an alternative method of connecting to the cluster known as a lite
member (originally known as a super client). This is effectively a non-participant
member of the cluster, in that it maintains connections to all the other nodes in
the cluster and will directly talk to partition owners, but does not provide any
storage or computation to the cluster. This avoids the double hop required by the
standard client, but adds the additional complexity and overhead of participating
in the cluster. For most uses cases using the standard client is preferable as it is
much simpler to configure and use, and can work over higher latency connections;
however, should you need higher levels of performance and throughput, you could
consider using a lite member.

Lite members are set up as you would set up a standard node, hence the additional
complexity is involved; however with one small addition in the configuration that
flags the node as being non-participant.

Config conf = new Config();
conf.setLiteMember(true);

When a lite member is present in the cluster the other members will be aware of
its presence and the fact that it is such a type of node. You will see the appropriate
logging in the startup and cluster state logging on the various cluster nodes.

Members [3] {
 Member [127.0.0.1]:5701 this
 Member [127.0.0.1]:5702
 Member [127.0.0.1]:5703 lite
}

Architectural overview
As we have seen there are a number of different types of deployment we could
use, which one you choose really depends on our application's make up. Each has
a number of trade-offs but most deployments tend to use one of the first two, with
the client and server cluster approach the usual favorite unless we have a mostly
compute focused application where the former is a simpler set up.

So let's have a look at the various architectural setups we could employ and what
situations they are best suited to.

Typical Deployments

[82]

Peer-to-peer cluster
This is the standard example we have been mostly using until now, each node houses
both our application itself, and data persistence and processing. It is most useful
when we have an application that is primarily focused towards asynchronous or high
performance computing, and will be executing lots of tasks on the cluster. The greatest
drawback is the inability to scale our application and data capacity separately.

Application
Node

Application
Node

Application
Node

Clients and server cluster
This is a more appropriate setup for the situation where we are mostly storing data
in our cluster rather than running tasks. A cluster of server nodes is independently
created, scaled, and managed. It is then interacted to via a thin client driver from
our application. While this provides good separation between our application and
the Hazelcast cluster, it does require more awareness of the classpaths of both our
application and the cluster nodes.

Cluster
Node

Cluster
Node

Cluster
Node

Application Application Application

Chapter 7

[83]

Hybrid cluster
A middle ground between the two previous strategies, the creation and management
of a primary cluster of nodes with a shadow set, holds the application's capabilities
but none of the data or computation responsibilities. The only real use case for
this strategy is where the client option doesn't provide the required latency, and
performance demands from our application due to having to leap frog through other
nodes in the cluster to get at our data.

Cluster
Node

Cluster
Node

Cluster
Node

Application
Lite Node

Application
Lite Node

Summary
We have seen that we have a number of strategies at our deposal for deploying
Hazelcast within our architecture. Be it, treating it like a clustered standalone
product akin to a traditional data source but with more resilience and scalability.
For more complex applications we can directly absorb the capabilities directly into
our application, but that does come with some strings attached. But whichever
approach we choose for our particular use case, we have easy access to scaling
and control at our finger tips.

In the next chapter we will look beyond just Hazelcast and the alternative methods
of getting access to our held data in the cluster.

From the Outside Looking In
In addition to the standard native client access to the cluster, Hazelcast also
provides a few generic interfaces itself so that our application be powered by
a technology stack that isn't necessarily Java-based, and we can still take advantage
of some its capabilities:

• Memcache compatible access to the default map
• RESTful access to map and queue collections

What about the rest of us?
One limitation of Hazelcast is that due to being a Java-based technology it is mostly
focused on supporting applications build around that stack. While we do have a
degree of flexibility, in that, other JVM byte-code based languages (such as Groovy or
Scala) can utilize the standard Java client driver, but that still does leave a rather large
hole for other technology choices. Luckily and very thoughtfully, the cluster nodes do
offer limited access to some of our data storage collections in a more compatible way
using two popular standards.

Memcache
If we were building a script-based application (say in Python or PHP), and required
a data caching service, probably one of the first systems we would consider would
be memcache. Both incredibly fast and remarkably simple, but it is this simplicity
that does come with some drawbacks. Currently to provide resilience or replication,
we have to either handle it on the client side or overlay another system on top of the
default memcache to provide transparent scaling or data sharing. But either way, we
are exposing some consistency risks, especially in the case of node failure or fallover.

However, one of its greatest strengths is the extent of its client libraries, with no
fewer than 10 different technology stacks catered for. Drawing upon these benefits

From the Outside Looking In

[86]

Hazelcast has sought to provide a compatible alternative, in exposing a memcache
API service from each of the Hazelcast cluster nodes. As each of the nodes exposes
access to the whole cluster, we can talk to any node about any key held wherever
it may be. However, as the memcache API only offers access to a single giant map,
we initially interact to the default map collection as provided by Hazelcast. But if
we wish to interact with another map we can do so by prefixing the key with the
map name and a colon (for example, countries:GB).

We must also limit all the serialization to the client side and to the key and value
offering provided by the memcache API. This does mean we will have to be careful
not to use this map by non-memcache clients, as we might create data that cannot
be read by these clients.

We can create a few examples using an appropriate client for a couple of popular
technology choices.

In Python, using the python-memcached client:

#!/usr/bin/env python
import memcache

mc = memcache.Client(["127.0.0.1:5701"], debug=0)

city = {
 "name": "London",
 "country": "GB",
 "population": 8174100
}

mc.set("London-GB", city)

london = mc.get("London-GB")

print london

And in PHP, we can use the PECL Memcache extension:

<?php

$mc = new Memcache();

$mc->connect("127.0.0.1", 5701)

 or die("Could not connect to Hazelcast");

$city = Array();

Chapter 8

[87]

$city["name"] = "London";

$city["country"] = "GB";

$city["population"] = 8174100;

$mc->set("London-GB", $city)

 or die("Failed to save city");

$london = $mc->get("London-GB");

echo var_export($london, true) ."\n";

?>

which will save and persist the value to the Hazelcast cluster and retrieve as required.

$ pyton memcache_example.py
{'country': 'GB', 'name': 'London', 'population': 8174100}

$ php -f memcache_example.php
array (
 'name' => 'London',
 'country' => 'GB',
 'population' => 8174100,
)

We can see from our test console that the stored value is rather memcache them
specific and likely to be incompatible with standard usage.

hazelcast[default] > m.entries
London-GB : MemcacheEntry{bytes=VALUE London-GB 1 81
a:3:{s:4:"name";s:6:"London";s:7:"country";s:2:"GB";s:10:"population"
;i:8174100;}
, flag=1}
Total 1

But we are benefiting from Hazelcast's inbuilt data distribution and resilience, and
we can manage the cluster as we normally would, scaling as required. The only
disadvantage of that flexibility compared to standard memcaching; is that we must
be careful not to remove all the nodes to which the client is expecting to be there
as part of its static configuration.

From the Outside Looking In

[88]

Going RESTful
An alternative to memcache would be the even more generic RESTful API. Without
wanting to go into too much detail, REST is a popular convention of providing
HTTP access to data via resources; these are set up to provide path-like access to
collections, objects, and properties. Hazelcast additionally provides a simple HTTP
service built-in to each of the nodes to enable access to our standard map and queue
collections via HTTP.

The structure of the API is pretty simple:

http://127.0.0.1:5701/hazelcast/rest/maps/mapName/key

http://127.0.0.1:5701/hazelcast/rest/queues/queueName

Where mapName or queueName is as configured within our application, we can then
use the standard REST convention of using the HTTP method to describe the type
of operation we wish to perform.

In the case of maps, we send in all cases the appropriate key as required; but using
a POST method to create or update an entry, specifying an appropriate MIME type
as needed.

$ curl -v -X POST -H "Content-Type: text/plain" -d "bar" \

http://127.0.0.1:5701/hazelcast/rest/maps/test/foo

< HTTP/1.1 204 No Content

< Content-Length: 0

We use a GET method to retrieve an entry, returning a 200 OK response for keys that
hold a value and 204 No Content for keys that do not. The appropriate MIME type
that was specified when setting the data will be returned.

$ curl -X GET \

http://127.0.0.1:5701/hazelcast/rest/maps/test/foo

< HTTP/1.1 200 OK

< Content-Type: text/plain

< Content-Length: 3

bar

Chapter 8

[89]

And a DELETE method to remove an entry, unless there is an error, this method will
always return a No Content response irrespective of whether the data existed or not.

$ curl -v -X DELETE \

http://127.0.0.1:5701/hazelcast/rest/maps/test/foo

< HTTP/1.1 204 No Content

< Content-Length: 0

With queues it is slightly simpler as we only have two operations we can perform
on the queue; pushing and popping. Like maps we use POST to create an item on
the queue.

$ curl -v -X POST -H "Content-Type: text/plain" -d "foo" \

http://127.0.0.1:5701/hazelcast/rest/queues/myEvents

< HTTP/1.1 204 No Content

< Content-Length: 0

For the case of retrieving we use DELETE as this gets, removes, and returns all in one;
we should also pass an extra path parameter when polling for queue events so as to
indicate the poll timeout.

$ curl -v -X DELETE \

http://127.0.0.1:5701/hazelcast/rest/queues/myEvents/10

< HTTP/1.1 200 OK

< Content-Type: text/plain

< Content-Length: 3

foo

In the case of the timeout being reached, we are returned a No Content success
indicating there was no item present on the queue to return.

$ curl -v -X DELETE \

http://127.0.0.1:5701/hazelcast/rest/queues/myEvents/10

< HTTP/1.1 204 No Content

< Content-Length: 0

From the Outside Looking In

[90]

We do need to make sure that we appropriately handle the various HTTP error
conditions as the REST API is not transactional, and we will need to either retry
or trigger the correct error handling logic within our application.

Like the memcache companion API, RESTbased access is best used solely on
collections accessed using this method and in conjunction with storing only string
based or simple primitive values. Attempting to access a more complex object
(perhaps one created via the standard Java client) while that might functionally
work, you will not get the answer that you expect (most likely a binary serialized
blob). However, map DELETE operations will still largely work uninhibited, this is
because they don't return the actual value.

Cluster status via REST
One last bit of useful access via REST is to obtain the cluster state and logging
information. There are two resources that return such information from outside
the cluster. This could be very helpful in setting up external monitoring of the cluster
from tools such as Nagios.

$ curl -v http://127.0.0.1:5701/hazelcast/rest/cluster

< HTTP/1.1 200 OK

< Content-Length: 119

Cluster [2] {

 Member [192.168.1.77]:5701 this

 Member [192.168.1.77]:5702

}

ConnectionCount: 2

AllConnectionCount: 8

$ curl -v http://127.0.0.1:5701/hazelcast/rest/dump

< HTTP/1.1 200 OK

< Content-Type: text/plain

< Content-Length: 128723

Chapter 8

[91]

REST resilience
As we can use the REST API present on any of the nodes to access the cluster's stored
data, this makes it a perfect candidate for placing behind an HTTP load balancer
and/or HTTPS wrapping layer to provide additional resilience or security. As each
operation we perform on a particular node is translated to a cluster-wide operation,
even if we use load-balancing mechanisms such as round robin, the consistency
of the replication will ensure that the correct values are served.

Summary
We have seen that Hazelcast isn't a closed technology, while it draws from its own
Java-centric background, and is best placed to support applications based on that
stack; it does allow more generic access to the cluster's data. Inspired by other
standards and conventions already present in the wider community, Hazelcast has
avoided completely reinventing the wheel and has found an ideal mix to complement
its own offering but also allow existing applications to migrate across easily.

In the next chapter we shall look at taking our application into the cloud and the
differences when deploying on a public cloud infrastructure.

Going Global
As we have seen, Hazelcast provides us with a dynamic data and processing
backbone to build an application around us. However, recently we have seen
the rise of cloud computing. More-and-more applications are designed to work
in conjunction with it and have started embracing this new approach
to infrastructure. In this chapter, we shall look at:

• Newfound problems with cluster discovery in the cloud world
• Manual specific or nomination node approach
• Cloud provider specific solutions
• Spreading out around the world

Getting setup in the cloud
All of our examples so far have relied on the standard default cluster discovery
process. This uses an IP multicast approach, allowing each new node to interrogate the
local network to discover any preexisting clusters, and request to join it should it match
an expected configuration. One notable feature of public cloud infrastructures is that
they tend to share a common network between multiple customers on their virtualized
hardware. To avoid any security concerns, distributed networking capabilities such as
multicast tend to be blocked; as such we need another mechanism of cluster discovery.

There are two other ways of configuring a cluster:

• Manual seeded unicast configuration
• Discovery supported by Amazon AWS management APIs

Going Global

[94]

Under manual control
In a very similar manner to the way we previously used a thin client to connect
to the cluster rather than automatically discovering it, we can nominate a number
of nodes that can be used to discover the presence of the wider cluster. This is akin
to registering a node's presence with a set of arbiters; then using them to both find
existing peers and distributing the appearance of that new node to others in the
cluster. There is a higher expectation of availability of the nodes used in this role.
Should all of them fail, no new node will be able to join the cluster without adjusting
their configuration to address this situation.

So the process works a bit like this. When the 10.0.0.101 node attempts to connect
to the cluster that is configured with the knowledge, it should expect peers to exist
at 10.0.0.1 and 10.0.0.2. Once it has successfully connected to either of these, it can
learn about the rest of the topology of the cluster and establish the required
connections as appropriate.

Node
10.0.0.16

Node
10.0.0.36

Node
10.0.0.61

Node
10.0.0.1

Node
10.0.0.2

Node
10.0.0.101

As this process only requires regular IP unicast to work, it only requires the same
level of networking capabilities as the needs of supporting the cluster generally;
so this process will always be able to work wherever the cluster can. The primary
disadvantage is the static nature of the configuration, but infrastructure automation
technologies (such as Puppet or Chef) might help mitigate this limitation.

To configure this, we can modify our hazelcast.xml file to specify the appropriate
configuration. We can use the hostname or IP addresses/ranges to define the potential
seed nodes to connect to. The default port of 5701 is assumed unless it is overridden.

<hazelcast>
 <network>
 <join>
 <tcp-ip enabled="true">
 <hostname>targethost</hostname>

Chapter 9

[95]

 <hostname>otherhost:5702</hostname>
 <interface>10.0.0.1</interface>
 <interface>10.0.0.1-2</interface>
 </tcp-ip>
 </join>
 </network>
</hazelcast>

Discovery – the Amazonian way
Like we mentioned in the previous section, the network fabric supporting the
public cloud infrastructure tends to avoid allowing low-level network features
that create the possibility of security concerns; this includes broadcast and
multicast. However, in the case of Amazon's AWS elastic cloud offering, there
are quite a few custom API services that can be used to programmatically control
and integrate what has been deployed. To enable non-static but non-multicast
discovery, a wrapper to specifically harness EC2's management APIs has been
created, and is provided as part of the hazelcast-cloud-2.6.jar file.

Node

New

Node

Node

Node

Using this, we can configure this capability once this package has been added to the
classpath, using the following configuration:

<hazelcast>
 <network>
 <join>
 <aws enabled="true">
 <access-key>ourApiAccessKey</access-key>
 <secret-key>ourApiSecretKey</secret-key>
 <region>eu-west-1</region>
 <!-- optionally to filter results -->
 <security-group-name>hazelcast-sg</security-group-name>

Going Global

[96]

 <tag-key>server-type</tag-key>
 <tag-value>hazelcast-node</tag-value>

 </aws>
 </join>
 </network>
</hazelcast>

The configuration of this discovery mechanism is very much specific to how we
use and set up our application within the cloud infrastructure. The access key and
secret key are provided via the Security Credentials section of your account in the
management console, provisioning a new pair if required.

When creating an access key, we will be provided with a text file download containing
the API key identifier, which is a secret key. It is these values we need to insert into our
configuration to provide authentication to the supporting discovery API.

AWSAccessKeyId=AKIAJCC2OT7LRVJTG3QQ

AWSSecretKey=ibfh3UMkSOhJNmoytK/46Q+2juhbJ61KczE+Z43P

Chapter 9

[97]

The region property should correspond to where your application is deployed
(and defaults to us-east-1 if not specified). Unlike our previous manual seeded
option, we don't have the ability to run on custom ports so any application that
must be running on the default port will be discovered. It would be prudent
 to disable the port auto-incrementing functionality within our configuration
so this doesn't become an issue.

<hazelcast>
 <network>
 <port auto-increment="false">5701</port>
 </network>
</hazelcast>

Filtering the possibilities
Once we configure the appropriate security credentials and regions, we shall
have a functioning discovery process in place. However, should we have a large
number of server instances running within our account that are not intending to run
Hazelcast, we might find that the node startup process can be rather slow as we try
unsuccessfully to connect to the irrelevant servers not running Hazelcast. To avoid
this, we have two options at our disposal.

Firstly, AWS provides a way of defining a standard set of network security policies
for a collection of server-like instances; these are known as security groups. It is
considered the best practice to place servers of common types or functions within
the same group. Should we do this for our cluster nodes, we have just to add the
security-group-name to our configuration, and only servers within this group shall
be considered as potential cluster nodes. Secondly, we have the capability of tagging
EC2 instances with a number of custom key values. Should we have our own defined
tag to mark a server instance as running a Hazelcast node, we can use the tag key
and the tag value to inform the node discovery process of this custom configuration.

Going Global

[98]

Spreading out around the globe
To enable true resilience for our application, the standard approach to handling
disaster recovery is to set up a duplicate instance in another data center. Typically,
these should be apart far enough to ensure that if any local event significant in stature
might impact our standard operations, then at least one of our data centers should not
be affected. Irrespective of our requirements of recovery time and recovery point, we
will need a process for migrating data between our sites, so that should there be a need
to fall over to an alternative site, we will have the required data there ready for us.

London

Cluster

Paris

Cluster

Application Application

Active Passive

We can configure Hazelcast to push entries from our local cluster to a remote cluster
by defining a WAN (Wide Area Network) replication policy. So, we add a policy to
push changes to Paris to our London configuration.

<hazelcast>
 <wan-replication name="our-global-cluster">
 <target-cluster group-name="paris" group-password="paris-pass">

 <replication-impl>
 com.hazelcast.impl.wan.WanNoDelayReplication
 </replication-impl>

 <end-points>
 <address>12.34.56.78:5701</address>
 </end-points>

 </target-cluster>
 </wan-replication>
</hazelcast>

This would produce an active-passive setup, as entries created on the London
cluster would be replicated across to paris. But as paris is not configured to push
any changes made on its cluster back to London, it can be considered a pre-warmed
ready standby cluster, which while not normally active can take over should there
exist an issue with the primary site.

Chapter 9

[99]

However, we could go one stage further and enable full active-active replication.
To do this, we would have to update the configuration on our Paris Cluster to
also replicate back to London. In this way, both sites can operate at the same time
and will update each other with the changes made on each of them. But doing
so introduces an issue—as each cluster operates independently, we have enabled
the possibility of a race condition on setting of data. So, when the global replication
kicks in and the data is exported between them, we could have two versions of
the same data. This is a similar situation to the Split-brain networking issue we
previously encountered. To address this problem, we use exactly the same solution
as before; by configuring a consistent merge policy, we can define how to select
which version of the data is the one to keep.

London

Cluster

Paris

Cluster

Application Application

Active Active

As we may wish to tactfully select which collections are actually replicated between the
sites, we need to add an additional configuration to each data collection configuration
(or the default) to enable the replication. We also configure the appropriate merge
policy within each configuration, enabling the ability to vary it for differing collections.

<hazelcast>
 <map name="default">

 <wan-replication-ref name="our-global-cluster">
 <merge-policy>hz.LATEST_UPDATE</merge-policy>
 </wan-replication-ref>
 </map>

</hazelcast>

We can use any of the merge policies we have previously seen, or as before define
our own if needed.

Going Global

[100]

Summary
One of the greatest features of Hazelcast is its distributed scalability. We have now
seen that this isn't just limited to our own servers or data center. We can spread out
to run our application cluster on public cloud infrastructures, and even on multiple
sites around the world, and through the use of an active-active deployment, our
application can truly go global.

In the next and final chapter, we shall look at how Hazelcast can collaborate with
the existing technology stacks, both at the application and data layers.

Playing Well with Others
Technology stacks have evolved into precise and broad choices, with numerous
libraries and their dependencies all bundled together to support our applications.
To help integrate into this wild ecosystem of technologies, Hazelcast provides us
with some support to use and extend a few popularly used libraries.

In this chapter we shall cover:

• Using dependency injection to help set up our cluster
• Working with a popular data layer for caching to help bridge the gap

between traditional databases and the new world of Hazelcast
• Using external database persistence for Hazelcast collections to bridge

the gap back in the opposite direction
• Providing an alternative distributed session store for web applications
• Introducing the cluster management center

Don't pass what you need, depend on it
Most of the examples we have developed so far have created HazelcastInstance
that we use to programmatically access various collections and features of the cluster.
However as we begin to move away from simple conceptual examples, we will need
to start passing references to various collections around our application in order
to access data. This exposes the age-old problem of how to avoid passing around
supporting dependencies around the application layers, but still having access to them,
when and where they are required. Luckily this problem has already been solved for
us in the form of dependency injection. Rather than reinventing the wheel, we should
be able to use the existing technology to help solve this problem.

Playing Well with Others

[102]

One of the most popular DI frameworks is Spring, and Hazelcast features
complimentary support for this framework allowing us to configure our cluster
in a way in keeping with it. To enable this support we need to add the
hazelcast-spring-2.6.jar package to our spring-enabled classpath and in
doing so we can add a Hazelcast specific namespace to our Spring configuration.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:hz="http://www.hazelcast.com/schema/spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
 http://www.hazelcast.com/schema/spring
 http://www.hazelcast.com/schema/spring/hazelcast-spring-2.5.xsd">

This will provide us with an hz namespace to allow us to now configure our cluster,
clients, and collections as required using an XML file used as part of the standard
Spring application's context configuration.

<beans>
 <hz:hazelcast id="hzInstance">
 <hz:config>
 <hz:group name="london" password="london-pass"/>

 <hz:wan-replication name="our-global-cluster">
 <hz:target-cluster
 group-name="paris"
 group-password="paris-pass">
 <hz:replication-impl>
 com.hazelcast.impl.wan.WanNoDelayReplication
 </hz:replication-impl>
 <hz:end-points>
 <hz:address>12.34.56.78</hz:address>
 </hz:end-points>
 </hz:target-cluster>
 </hz:wan-replication>

 <hz:network port="5701" port-auto-increment="false">
 <hz:join>
 <hz:multicast
 enabled="true"
 multicast-group="224.2.2.3"
 multicast-port="54327"/>
 </hz:join>
 </hz:network>

Chapter 10

[103]

 <hz:map
 name="default"
 backup-count="2"
 read-backup-data="true"
 merge-policy="hz.LATEST_UPDATE">
 <hz:wan-replication-ref
 name="our-global-cluster"
 merge-policy="hz.LATEST_UPDATE"/>
 </hz:map>

 </hz:config>
 </hz:hazelcast>
</beans>

As we can see, the structure of the Spring namespace is very much inspired
by the standard hazelcast.xml configuration; admittedly some of the property
elements have been moved to be attributes, but we should be able to use our IDE
in conjunction with the XSD file to navigate through the structure.

Once defined, we can obtain a reference to the configured HazelcastInstance using
Spring's standard application context.

HazelcastInstance hz =
 (HazelcastInstance)applicationContext.getBean("hzInstance");
IMap<String, String> capitals = hz.getMap("capitals");

For cases where rather than creating a full node instance we want to use the native
thin client, we can also configure this in a similar way:

<hz:client id="hzInstance"
 group-name="london"
 group-password="london-pass">

 <hz:member>127.0.0.1:5701</hz:member>
</hz:client>

Simplifying collection access
However, to help simplify our application's code we can also configure Spring
to provide access to collection beans directly. The inbuilt namespace allows us
to do this with a number of the possible distributed collections.

We can configure the standard collections as follows:

<hz:map id="mapBean" instance-ref="hzInstance" name="mapName" />
<hz:set id="setBean" instance-ref="hzInstance" name="setName" />
<hz:list id="listBean" instance-ref="hzInstance"

Playing Well with Others

[104]

 name="listName" />
<hz:queue id="queueBean" instance-ref="hzInstance"
 name="queueName" />
<hz:multiMap id="multiMapBean" instance-ref="hzInstance"
 name="multiMapName" />
<hz:topic id="topicBean" instance-ref="hzInstance"
 name="topicName" />
<hz:atomicNumber id="lockBean" instance-ref="hzInstance"

 name="lockName"/>

We can also configure some of the more advanced capabilities we have looked at.

<hz:executorService id="executorServiceBean"
 instance-ref="hzInstance" name="executorServiceName" />
<hz:idGenerator id="idGeneratorBean" instance-ref="hzInstance"

 name="idGeneratorName" />

Just like before, we can use the application context to inject references to the
configured collections themselves, without having to inject the Hazelcast instance.

<hz:map id="capitalsMap" instance-ref="hzInstance"
 name="capitals" />

IMap<String, String> capitals =
 (IMap)applicationContext.getBean("capitalsMap");

We can even use the annotation-driven-based bean injecting, however be aware
that due to a Spring bug this causes the client application to copy the entire
map from the cluster to a local instance, which given the possible data sizes
involved is very inefficient. To avoid this, we simply have to inject a non-generic
version of the collection.

public class CapitalCityService {

 @Autowired
 private IMap capitals;

}

Chapter 10

[105]

Transparently caching others' data
Another very popularly used framework is Hibernate, used as an ORM (Object
Relationship Mapper) layer, traditionally used to translate objects to and from
a relational database table. While this goes against the distributed data philosophy
we have been exploring with Hazelcast, we may have a legacy application that
is currently using it. By adding a caching layer we can improve the scalability
and performance of this application, however by enabling this cache layer we will
be introducing a data consistency issue; to avoid this we would need an intelligent
distributed cache, exactly like Hazelcast.

To enable the use of the cache layer, we must again include the appropriate
hazelcast-hibernate-2.6.jar extension to the classpath. Additionally we need
to turn on Hibernate's second level caching functionality and define the Hazelcast
region-caching wrapper within its hibernate.cfg.xml configuration.

<hibernate-configuration>
 <session-factory>

 <property name="hibernate.cache.use_second_level_cache">
 true
 </property>

 <property name="hibernate.cache.region.factory_class">
 com.hazelcast.hibernate.HazelcastCacheRegionFactory
 </property>
 </session-factory>
</hibernate-configuration>

Should we be using an older classic version of the Hibernate framework that
does not feature cache regions (versions older than 3.3), we can use the previous
terminology and supported configuration of the cache provider.

<hibernate-configuration>
 <session-factory>

 <property name="hibernate.cache.provider_class">
 com.hazelcast.hibernate.provider.HazelcastCacheProvider
 </property>
 </session-factory>
</hibernate-configuration>

Playing Well with Others

[106]

While this enables the second level cache at a high level, we also need to configure
individual entities to be cached, as they aren't by default. We can do this via
an HBM mapping XML.

<hibernate-mapping>
 <class name="com.packtpub.hazelcast.chapter10.hibernate.City"
table="city">
 <cache region="city" usage="read-write"/>

 <id name="name" column="name" type="string">
 <property name="country" column="country" type="string"/>
 <property name="population" column="population" type="int"/>
 </class>
</hibernate-mapping>

Or, if we are using JPA and annotation based entity mappings, we can use the @
Cache annotation on our entity class itself.

@Entity(name = "city")
@Cache(region = "city", usage =
 CacheConcurrencyStrategy.READ_WRITE)
public class City implements Serializable {

The region name is used by the Hazelcast cache implementation and it is this value
that is used to define the distributed map name where cache entries will be held.
We can configure these cache maps in the same way as we would do for any other
map, should we wish to have specific behavior on these collections.

Hibernate provides us with the ability to use one of the four caching strategies for
entities, however, not all are supported by Hazelcast. The three possible options are:

• Read-only
 ° The best performing strategy for data that is read frequently

but never changes

• Read-write
 ° When our cached data needs to be updated and might be

quite frequently

• Nonstrict-read-write

 ° A performance compromise where data is read most frequently but
might be rarely updated and certainly not concurrently

Chapter 10

[107]

Bring your own cluster
By default we will spin up a new Hazelcast node as part of the Hibernate cache
provider; however, we may not wish to do so. We can connect to a pre-existing
cluster in a number of different ways.

Firstly we can switch the provider created instance into a lite-member, so that rather
than participating in the storage of clusters we can join it for access.

<hibernate-configuration>
 <session-factory>

 <property name="hibernate.cache.hazelcast.use_lite_member">
 true
 </property>
 </session-factory>
</hibernate-configuration>

The next option we have at our disposal is we can use the native thin client to connect
to an external cluster rather than a full or lite instance that joins as a member node.

<hibernate-configuration>
 <session-factory>

 <property name="hibernate.cache.hazelcast.native_client_address">
 127.0.0.1
 </property>
 <property name="hibernate.cache.hazelcast.native_client_group">
 dev
 </property>
 <property
 name="hibernate.cache.hazelcast.native_client_password">
 dev-pass
 </property>
 </session-factory>
</hibernate-configuration>

Lastly, should we have already created a Hazelcast instance within our application,
rather than create a second one for caching we can provide the existing one with
a name and pass that instance name over to the Hibernate cache provider; this
enables the existing instance to be looked up through the use of the helper function
Hazelcast.getHazelcastInstanceByName(String).

<hibernate-configuration>
 <session-factory>

Playing Well with Others

[108]

 <property name="hibernate.cache.hazelcast.instance_name">
 my-existing-instance
 </property>
 </session-factory>
</hibernate-configuration>

Cacheable methods with the Spring cache
While the caching layer provided as part of Hibernate unlocks easy and convenient
caching for high frequency or high cost data; but what about at a higher level and
more generally, method calls can be expensive too.

Newer versions of the Spring framework (since version 3.1) features the ability
to transparently cache method calls and their returned results, through the use
of the com.hazelcast.spring.cache.HazelcastCacheManager class, and its
registration as a Spring cache manager.

<cache:annotation-driven cache-manager="cacheManager" />

<bean id="cacheManager"
 class="com.hazelcast.spring.cache.HazelcastCacheManager">

 <constructor-arg ref="hzInstance"/>
</bean>

With this in place, we can then mark appropriate methods as @Cacheable and where
required use @CacheEvict to trigger cache invalidations.

Collection persistence
Just as using Hazelcast to provide a distributed caching layer in front of our
traditional database, we can also invert this relationship. By having Hazelcast as
the primary data store we can configure MapStore to provide long term persistence
of stored objects, working around the potential risk of data resilience due to
Hazelcast's in-memory nature.

This resilience, however, does come at a cost to performance and scalability. This
means that we have to update an external system upon each change to the cluster
data. However, we can configure the method of this process between synchronous
(where data is written out to the store prior to returning confirmation to the client),
or asynchronous (where this process happens in the background shortly after)
through the use of the write-delay-seconds configuration. A zero value indicates
synchronous persistence and a positive value determines the delay before the
asynchronous process kicks in.

Chapter 10

[109]

So an example map configuration would look something like this:

<map name="default">

 <map-store enabled="true">
 <class-name>
 com.hazelcast.examples.DummyStore
 </class-name>

 <write-delay-seconds>0</write-delay-seconds>
 </map-store>
</map>

We will need to provide our own implementation of MapStore (rather than the example
DummyStore as shown in the preceding code) and to avoid a potential deadlock must
not persist back into Hazelcast, which would rather defeat the point anyway.

Web session storage
Another complementary piece of functionality is the ability to provide session
persistence to a web application. These are normally provided by the application
container, but these typically have replication or scalability issues with large
deployments. This problem tends to be addressed through the use of "sticky
sessions" where a load balancer sitting in front of the application routes related
traffic through to the same container; but what would happen in a failure situation?
If the container did not feature any form of replication, the session would be lost
and a negative customer experience would be encountered.

Hazelcast can help address this issue by providing an external and distributed
session store for our application. By including hazelcast-wm-2.6.jar in our web
application and configuring the web.xml file, we can provide session persistence
using a web application filter. In the case that your application uses multiple filters,
make sure that this is the first filter defined within the configuration.

<listener>
 <listener-class>com.hazelcast.web.SessionListener</listener-class>
</listener>

<filter>
 <filter-name>hazelcast-filter</filter-name>
 <filter-class>com.hazelcast.web.WebFilter</filter-class>

 <init-param>

Playing Well with Others

[110]

 <param-name>map-name</param-name>
 <param-value>session-store</param-value>
 </init-param>

 <init-param>
 <param-name>session-ttl-seconds</param-name>
 <param-value>86400</param-value>
 </init-param>

 <init-param>
 <param-name>cookie-name</param-name>
 <param-value>sessionId</param-value>
 </init-param>

 <init-param>
 <param-name>cookie-domain</param-name>
 <param-value>.packtpub.com</param-value>
 </init-param>

 <init-param>
 <param-name>config-location</param-name>
 <param-value>/WEB-INF/hazelcast.xml</param-value>
 </init-param>
</filter>

<filter-mapping>
 <filter-name>hazelcast-filter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

Should we already have Hazelcast as part of our application, we can use the instance
naming capability to access that existing one; replacing the config-location initial
parameter with one that names the appropriate instance.

<init-param>
 <param-name>instance-name</param-name>
 <param-value>my-existing-instance</param-value>
</init-param>

Chapter 10

[111]

Management center
Throughout this book we have seen how to set up and use Hazelcast to support
our application, but once we start using it we will need to maintain and
support our cluster. While we are able to gain great insight into the goings on
programmatically, that would take some effort to capture and control all aspects
of the cluster. A part of our downloaded archive is Hazelcast's own management
center (mancenter-2.6.war) which provides access to cluster and collection
information as well as management capabilities. While this is a commercial
product, it is currently free to be used with up to a two-node cluster.

Playing Well with Others

[112]

Summary
Here we can see that Hazelcast has yet again attempted to integrate well into a
software library eco-system, knowing that the same wheel has already been invented
in order to solve various problems or provide particular functionality. Being able to
work well with other popular frameworks allows us to bring in this new world of
thinking into our existing stack a much smoother process.

As we have seen throughout, the technology provides us with a flexible, extensible,
and dynamic data source enabling us to build data stores and structures that are
truly distributed without any single point of failure. We can use various generic
collections to hold our data in appropriate ways, be it for key value storage, FIFO
queuing, or providing a mechanism for a cluster wide communication topic. It also
provides us with additional complimentary capabilities that would normally be
crow-barred into other centralized services (for example, using database row locking
for cluster locks or de-duplicating task processing to multiple executor services).
However what makes this technology truly great is its incredibly low barrier to entry
(something I hope we have discovered throughout this journey); now we just need
to expand out into our applications in the real world and we'll further appreciate the
amazing power we are bringing to it.

Configuration Summary
Throughout this book we have progressively listed a number of configurations used
to customize and modify the behavior of the Hazelcast cluster; here we bring them
together as a quick reference.

XML configuration
The following is a complete example of the hazelcast.xml configuration file with
an overview of each section within it:

<hazelcast>

Cluster name

 <group>
 <name>dev</name>
 <password>dev-pass</password>
 </group>

Management Center
 <management-center enabled="true" update-interval="5">
 http://manager-center-host:8080/mancenter
 </management-center>

Configuration Summary

[114]

General Properties
 <properties>
 <property name="hazelcast.map.partition.count">271</property>
 </properties>

WAN replication configuration

 <wan-replication name="our-global-cluster">
 <target-cluster group-name="paris" group-password="paris-pass">

 <replication-impl>
 com.hazelcast.impl.wan.WanNoDelayReplication
 </replication-impl>
 <end-points>
 <address>12.34.56.78:5701</address>
 </end-points>

 </target-cluster>
 </wan-replication>

Local network/interface binding

 <network>
 <port auto-increment="false">5701</port>

 <interfaces enabled="true">
 <interface>192.168.0.*</interface>
 </interfaces>

Cluster discovery

Multicast, Unicast, or EC2-based

 <join>
 <multicast enabled="true">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="true">
 <interface>127.0.0.1</interface>

Configuration Summary

[115]

 </tcp-ip>
 <aws enabled="true">
 <access-key>ourApiAccessKey</access-key>
 <secret-key>ourApiSecretKey</secret-key>
 <region>eu-west-1</region>
 </aws>
 </join>
 </network>

Per map or default map configuration

 <map name="capitals">

cluster_wide_map_size
partitions_wide_map_size
max_size_per_jvm
used_heap_size
used_heap_percentage
 <max-size policy="cluster_wide_map_size">10</max-size>

LRU: Least Recently Used

LFU: Least Frequently Used

NONE

 <eviction-policy>LFU</eviction-policy>
 <eviction-percentage>20</eviction-percentage>

Backup = Synchronous copies
Async = Asynchronous copies
Total copies = 1 Main + Backup + Async
 <backup-count>1</backup-count>
 <async-backup-count>1</async-backup-count>

Age expiry and idle expiry times

 <time-to-live-seconds>86400</time-to-live-seconds>
 <max-idle-seconds>3600</max-idle-seconds>

hz.NO_MERGE
hz.ADD_NEW_ENTRY

Configuration Summary

[116]

hz.HIGHER_HITS
hz.LATEST_UPDATE
 <merge-policy>hz.LATEST_UPDATE</merge-policy>

Selected WAN replication configuration

 <wan-replication-ref name="our-global-cluster">
 <merge-policy> hz.LATEST_UPDATE </merge-policy>
 </wan-replication-ref>

Indexes on values

 <indexes>
 <index ordered="false">name</index>
 <index ordered="true">population</index>
 </indexes>

Listeners notified on map events

 <entry-listeners>
 <entry-listener include-value="true" local="false">
 com.packtpub.hazelcast.listeners.MapEntryListener
 </entry-listener>
 </entry-listeners>

 </map>

Listener notified on topic broadcast

 <topic name="default">
 <message-listeners>
 <message-listener>
 com.hazelcast.examples.MessageListener
 </message-listener>
 </message-listeners>
 </topic>

Configuration Summary

[117]

Cluster-wide listener registration

 <listeners>
 <listener>
 com.packtpub.hazelcast.listeners.TopicListener
 </listener>
 </listeners>

</hazelcast>

Programmatic configuration
As we saw within the book, it is also possible to configure Hazelcast
programmatically, this can provide for a higher application control of the cluster.

Config conf = new Config();

Set general properties

conf.setProperty("hazelcast.map.partition.count", "271");

Set instance name

conf.setInstanceName("my-instance");

Set as lite member

conf.setLiteMember(true);

Get reference to map configuration

MapConfig citiesConf = conf.getMapConfig("cities");

Modify default behavior

citiesConf.setBackupCount(2);
citiesConf.setAsyncBackupCount(1);

Add map index

citiesConf.addMapIndexConfig(
 new MapIndexConfig("country", false));

Index
A
Amazon AWS management API

about 95
access key, creating 96
non-static but non-multicast discovery,

enabling 95
Security Credentials section 96
security groups 97

application cluster
running, on public cloud infrastructure 98,

99
architectural setups

about 81
clients and server cluster 82
Hybrid 83
peer-to-peer cluster 82

async-backup-count 31, 49

B
backup-count 31, 49
broadcast messaging system

about 41-43
benefits 44
class, creating 42

C
cache

about 9
used, for improving performance 8

cacheable methods
with Spring cache 108

cache consistency issue 9
caching systems

time bound cache 9

write through cache 9
ClassNotFoundException 80
clients and server cluster 82
cluster

interacting, in real world 21
scaling up 50

cluster discovery
configuring 93

cluster discovery configuration
about 93
Amazon AWS management APIs 95
manual configuration 94

ClusterInstanceListener 59
cluster listeners

InstanceListener 55
LifecycleListener 55
MembershipListener 55
MigrationListener 55

ClusterMembershipListener 60
cluster state

obtaining, via REST 90
cluster_wide_map_size policy 30
collection access

simplifying 103, 104
collection listeners

EntryListener 55
ItemListener 55
MessageListener 55

collection persistence 108

D
data

backing up 48, 49
spliting, into partitions 47

data persistence
traditional approaches 7

[120]

de facto leader 10
deployment, Hazelcast 77
distributed cache 11
distributed executor service

about 67
accessing 68, 69

distributed locking
about 34-36
tactical locking 36

distributed map collection 33, 34

E
entryEvicted method 56
EntryListener 55, 56
equals() method 27
eviction-percentage 31
eviction-policy 30
ExecutorService 67
expanded architecture 9

F
first-in first-out (FIFO) 23

G
get() function 70

H
hashCode() method 27
Hazelcast

about 10
atomic control 33
basic application, creating 16-20
broadcast messaging system 41
capabilities 12
cluster, scaling up 50
collection listeners, creating 55
collection listeners, using 55
collection persistence 108
data, backing up 48, 49
data, spilting into partitions 47
data, within heap of nodes 77
deployment 77
distributed locking 34
distributed map collection 33

downloading 15, 16
features 10, 11
integrating, with Hibernate 105-107
integrating, with Spring 101-103
limitation 85
limits, setting 29, 30
management center 111
memcache 85
MultiMap collection 24
network partitioning 52-54
nodes, grouping 50-52
nodes, seperating 50-52
programmatic configuration 59, 117
RESTful 88
setting up, in cloud world 93
storage collections, exploring 22-24
transactional capabilities 37
using, within enterprise J2EE container 40
web session storage 109
XML configuration 113

HazelcastInstanceAware interface 69
Hibernate

caching strategies 106
hybrid cluster 83

I
IdGenerator 40
include-value flag 58
indexing 26
InstanceListener 55, 59
ItemListener 55, 58

K
keyless collections 58

L
LifecycleListener 55, 61
lite cluster members 80, 81

M
management center 111
MapEntryListener 56
masterless distributed cluster 11
max-idle-seconds 31

[121]

max-size parameter 30
max_size_per_jvm policy 30
MembershipListener 55, 60
memcache 85-87
merge policy 52
MessageListener 55
MigrationListener

about 55, 61
using 62-64

MIME type 88
MultiMap collection 24, 25

N
Nagios 90
namespace 21
network partitioning 52-54
nodes

generating 50-52
separating 50-52

O
ORM (Object Relationship Mapper) layer

105

P
Paris Cluster 99
partitions_wide_map_size policy 30
PECL Memcache extension 86
peer-to-peer cluster 82
plain old Java object (POJO)

creating 26, 27
POJO class 80
programmatic configuration 59, 117
python-memcached client

using 86, 87

R
read-backup-data 49
REST 88
RESTful API

about 88
structure 88, 89

REST resilience 91
results

storing 75
Runnable task

creating 75

S
searching capabilities 26
security groups 97
serialization

about 80
class 80

SimpleMapExample class 21
Split-brain networking issue 99
Spring 102

T
tactical locking 36
task

running, in target location 72-74
running, on multiple nodes 70, 71
running, on node 70

TestApp class 16, 17
time bound cache 9
time-to-live-seconds 31
toString() method 27
traditional architecture

about 7
example 8

transactional capabilities, Hazelcast
about 37, 38
queuing 39
sequence number, generating 40, 41

U
used_heap_percentage policy 30
used_heap_size policy 30

W
WAN (Wide Area Network) replication

policy 98
web session storage 109, 110
write through cache 9

X
XML configuration 113-117

Thank you for buying
Getting Started with Hazelcast

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Infinispan Data Grid Platform
ISBN: 978-1-84951-8-222 Paperback: 150 pages

Making use of data grids for performance and
scalability in Enterprise Java, using Infinispan
from JBoss

1. Configure and develop applications using the
Infinispan Data grid platform

2. Follow a simple ticket booking example to
easily learn the features of Infinispan in practice

3. Draw on the experience of Manik Surtani, the
leader, architect and founder of this popular
open source project

JBoss AS 7 Configuration,
Deployment and Administration
ISBN: 978-1-84951-6-785 Paperback: 380 pages

Build a fully-functional, efficient application server
using JBoss AS

1. Covers all JBoss AS 7 administration topics
in a concise, practical, and understandable
manner, along with detailed explanations
and lots of screenshots

2. Uncover the advanced features of JBoss AS,
including High Availability and clustering,
integration with other frameworks, and
creating complex AS domain configurations

3. Discover the new features of JBoss AS 7,
which has made quite a departure from
previous versions

Please check www.PacktPub.com for information on our titles

JBoss ESB Beginner's Guide
ISBN: 978-1-84951-6-587 Paperback: 320 pages

A comprehensive, practical guide to developing
service-based applications using the Open Source
JBoss Enterprise Service Bus

1. Develop your own service-based applications,
from simple deployments through to complex
legacy integrations

2. Learn how services can communicate with
each other and the benefits to be gained from
loose coupling

3. Contains clear, practical instructions for service
development, highlighted through the use
of numerous working examples

Drools Developer's Cookbook
ISBN: 978-1-84951-1-964 Paperback: 310 pages

Over 40 recipes for creating a robust business rules
implementation by using JBoss Drools rules

1. Master the newest Drools Expert, Fusion,
Guvnor, Planner and jBPM5 features

2. Integrate Drools by using popular Java
Frameworks

3. Part of Packt's Cookbook series: each recipe is
independent and contains practical, step-by-
step instructions to help you achieve your goal.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is Hazelcast ?
	Starting out as usual
	Data deciding to hang around
	Therein lies the problem
	Breaking the mould
	Moving to new ground
	Summary

	Chapter 2: Getting off the Ground
	Let's get started
	Showing off straight away
	Map back to the real world
	Sets, lists, and queues
	Many things at a time
	Search and indexing
	What happens when we reach our limits?
	Summary

	Chapter 3: Going Concurrent
	Atomic control
	Distributed locking
	Tactical locking

	Transactionally rolling on
	Differences when queuing
	Enterprising onwards
	Collectively counting up

	Spreading the word
	Summary

	Chapter 4: Divide and Conquer
	Divvying up the data
	Backups everywhere and nowhere
	Scaling up the cluster
	Grouping and separating nodes
	Network partitioning
	Summary

	Chapter 5: Listening Out
	Listening to the goings-on
	The sound of our own data
	Keyless collections

	Programmatic configuration ahead of time
	Events unfolding in the wider world
	Moving data around the place
	Summary

	Chapter 6: Spreading the Load
	All power to the compute
	Giving up when tasks take too long

	Running once, running everywhere
	Placing tasks next to the data
	Self-updating results

	Summary

	Chapter 7: Typical Deployments
	All heap and nowhere to go
	Stepping back from the cluster
	Serialization and classes
	Lite cluster members
	Architectural overview
	Peer-to-peer cluster
	Clients and server cluster
	Hybrid

	Summary

	Chapter 8: From the Outside Looking In
	What about the rest of us?
	Memcache
	Going RESTful
	Cluster status via REST
	REST resilience

	Summary

	Chapter 9: Going Global
	Getting set up in the cloud
	Under manual control
	Discovery, the Amazonian way
	Filtering the possibilities
	Spreading out around the globe

	Summary

	Chapter 10: Playing Well with Others
	Don't pass what you need – depend on it
	Simplifying collection access

	Transparently caching others data
	Bring your own cluster

	Cacheable methods with the Spring cache
	Collection persistence
	Web session storage
	Management center
	Summary

	Configuration Summary
	Index

